
Technical Report
Number 883

Computer Laboratory

UCAM-CL-TR-883
ISSN 1476-2986

Survey propagation applied
to weighted partial

maximum satisfiability

Richard Russell, Sean B. Holden

March 2016

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2016 Richard Russell, Sean B. Holden

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Survey propagation applied to weighted partial maximum

satisfiability

Richard Russell

r.a.russell.04@cantab.net

Sean B Holden

sbh11@cam.ac.uk

Abstract

We adapt the survey propagation method for application to weighted partial maximum satisfia-

bility (WPMax-SAT) problems consisting of a mixture of hard and soft clauses. The aim is to find

the truth assignment that minimises the total cost of unsatisfied soft clauses while satisfying all hard

clauses. We use fixed points of the new set of message passing equations in a decimation procedure to

reduce the size of WPMax-SAT problems. We evaluate this strategy on randomly generated WPMax-

SAT problems and find that message passing frequently converges to non-trivial fixed points, and in

many cases decimation results in simplified problems for which local search solvers are able to find

truth assignments of comparable cost faster than without decimation.

1 Introduction

Satisfiability problems are decision problems expressed in Boolean logic. A problem has a set of clauses,

each with one or more literals. A solution is a truth assignment to the variables making at least one literal

true in every clause. A problem is either satisfiable or unsatisfiable depending on whether a solution

exists.

We address a subset of these problems known as random k-SAT. Here, we sample uniformly from

the non-trivially satisfiable clauses of k literals for a fixed set of variables. Given such a formula, with

M clauses and N variables, there is strong empirical evidence that the ratio α = M/N is an important

indicator of satisfiability as N → ∞; it is conjectured that there is a point, αt
k, known as the satisfiabil-

ity threshold, which strongly determines whether a randomly generated k-SAT problem is likely to be

satisfiable. Problems in the region α < αt
k are under-constrained and almost always satisfiable, whereas

those in the region α > αt
k are over-constrained and almost always unsatisfiable. Recent theoretical

results for random 3-SAT give the following bounds: 3.52 ≤ αt
3 [1] and αt

3 ≤ 4.4898 [2]. The survey

propagation method predicts that αt
3 ≈ 4.267 [3] and empirical observations suggest that αt

3 ≈ 4.26 [4].

In practice, algorithms for determining satisfiability often have the longest running times for prob-

lems close to αt
k [5, 6]. Thus, problems sampled near αt

k are a source of challenging benchmark in-

stances, and critical for understanding and improving upon the shortcomings of existing algorithms.

A maximum satisfiability (Max-SAT) problem relaxes the requirement that all clauses be satisfied.

Instead we seek a truth assignment maximizing the number of satisfied clauses. Furthermore, weighted

Max-SAT problems specify numeric weights for the clauses and ask for the truth assignment maximizing

the sum of weights of satisfied clauses.

In this paper, we address a variation of Max-SAT known as weighted partial Max-SAT (WPMax-

SAT). A WPMax-SAT problem has hard and soft clauses, where soft clauses have an integer-valued

weight. An optimal solution is a truth assignment that satisfies all hard clauses and maximises the sum

of weights of satisfied soft clauses.

Recently the survey propagation method [3, 7] has been proposed, based on ideas from statistical

physics, and can be used to solve a higher proportion of the hardest satisfiability problems in random

k-SAT. Survey propagation estimates, for each variable, the probability that it should take the value true,

3

the value false or is unconstrained in a randomly selected satisfying truth assignment. These probabilities

are used to identify variables much more likely to take one value than another. The most strongly biased

variables are set to their more likely values in a process known as decimation. This yields a simplified

problem that is hopefully easier to solve by a more conventional method.

The ideas underlying survey propagation can be adapted to Max-SAT, leading to an algorithm known

as SP(y) [8]. Instead of treating all assignments as equal, SP(y) defines a distribution over truth assign-

ments which peaks for those satisfying the greatest number of clauses. This alters the probability esti-

mates in order to direct the decimation procedure towards truth assignments satisfying as many clauses

as possible.

The SP(y) algorithm has two shortcomings when solving WPMax-SAT problems. First, it does

not distinguish between hard and soft clauses: all clauses are regarded as soft. Second, all clauses are

assumed to have weight 1, which limits expressiveness; for example it cannot model constraints having

different importance.

Our main contributions in this paper are:

• An extension to the survey propagation equations applicable to WPMax-SAT problems with hard

and soft clauses, together with soft clauses with non-uniform integer-valued costs.

• An empirical evaluation of a decimation procedure that uses this new set of equations on random

WPMax-3SAT formulas. We find that decimation often yields simplified problems, in the sense

that local search can find a truth assignment of comparable cost earlier than it can on an undeci-

mated instance.

2 Survey propagation for WPMAX-SAT

We first describe the WPMax-SAT problem. Let B = {0, 1} denote Boolean values and N
+ the positive

integers. A WPMax-SAT problem with N variables V = {Xi}
N
i=1 uses a subset of the literals L =

V ∪ {¬Xi | Xi ∈ V } to form M clauses C = {Ca ⊆ L | ¬∃i.¬Xi ∈ Ca and Xi ∈ Ca}
M
a=1. Each

clause Ca has a weight wa ∈ N
+ ∪ {⊤} denoting the cost of violating that clause. A clause Ca is

hard if its weight wa = ⊤; otherwise, it is a soft clause. A clause Ca is satisfied by a truth assignment

t : V → B if there is at least one literal ℓ ∈ Ca for which JℓKt = 1 where for any i, JXiKt = t(Xi) and

J¬XiKt = 1− t(Xi); otherwise, the clause is unsatisfied or violated. Furthermore, we define for all Ca

JCaKt =

{

1, if ∃ℓ ∈ Ca.JℓKt = 1.

0, otherwise.
(1)

A truth assignment t∗ is a solution if for all clauses Ca ∈ C with wa = ⊤, JCaKt∗ = 1. Additionally, t∗

is an optimal solution if for any other truth assignment t′ that is also a solution,

∑

Ca∈C s.t. wa 6=⊤

(1− JCaKt∗)wa ≤
∑

Ca∈C s.t. wa 6=⊤

(1− JCaKt′)wa.

2.1 Factor graph representation

We model a WPMax-SAT problem as a factor graph [9] G: a bipartite graph representation of a function

f : BN → R, where f can be factorised into a product of smaller factors ϕa : B
|Ca| → R as f(x) =

∏

a ϕa(xa). Each variable Xi ∈ V and factor ϕa is represented in G as a variable and factor node,

respectively. As there is a one-to-one mapping between factor nodes and clauses, we refer to factor

nodes as clause nodes henceforth. We also use i, j and k as placeholders for variable nodes and a, b and

c as placeholders for clause nodes, unless otherwise stated; here, i denotes the variable node for Xi and

a denotes the clause node for clause Ca.

4

Graph G only has edges between clause and variable nodes; namely, the undirected edges {(i, a) |
Xi ∈ Ca or ¬Xi ∈ Ca}. We use the notation of Mézard and Montanari [10] to denote the set of

neighbouring variable nodes of clause a as ∂a and the set of neighbouring clauses of variable i as ∂i. We

also split ∂i into four sets that are a function of a clause a connected to i:

1. Hu
i (a) – the set of hard clauses in C where variable Xi has an opposite sign to that taken in Ca.

2. Hs
i (a) – the set of hard clauses in C , excluding Ca, where variable Xi has the same sign to that

taken in Ca.

3. Su
i (a) – the set of soft clauses in C where variable Xi has an opposite sign to that taken in Ca.

4. Ss
i (a) – the set of soft clauses in C , excluding Ca, where variable Xi has the same sign to that

taken in Ca.

G models the Gibbs-like function g(x) =
∏

a e
−Ea(xa), where a ranges over each clause in our

formula such that

Ea(xa) =











0 if xa satisfies Ca,

∞ if xa does not satisfy Ca and wa = ⊤,

wa otherwise.

(2)

For tree-structured (cycle-free) factor graphs the max-product algorithm can be applied to find a variable

assignment maximizing the function. In general, we cannot rely on G being tree-structured; nevertheless,

in practice max-product applied to non-tree structured graphs can yield useful results, and is then referred

to as a loopy variant of the algorithm.

As the log function is monotonic, maximising g(x) is equivalent to minimising E(x) =
∑

aEa(xa).
Thus, max-product can be rewritten as the min-sum algorithm [9], which is of interest as the survey prop-

agation equations can be derived from it [10, Chapter 19]; however, survey propagation has a more intu-

itive explanation based on the related warning propagation procedure, which we describe first. In Sec-

tion 2.3 we return to the min-sum algorithm, considering the effect of introducing non-uniform weights

for soft clauses and how this affects exchanged messages.

2.2 Warning propagation

Warning propagation [7] aims to simplify SAT problems using the factor graph G. A warning is a

message sent between a variable and a clause node. A variable i sends a warning to clause a to indicate

that i cannot satisfy a based on the messages it has received from i’s other neighbours. A clause a sends

a warning to variable i to indicate that i must take the assignment satisfying a as the other neighbouring

variable nodes of a cannot satisfy it.

Each edge in G connects a variable and a clause node, communicating a message along that edge

in each direction. Messages are initialised randomly to either 0 or 1, where 1 indicates a warning and 0

the absence of a warning. Repeated passes are made along all edges, in a randomised order, computing

whether a warning should be sent based upon the other warnings being received. This is repeated until

convergence: when all edges can be visited with no change needed to the warnings being sent. This final

set of warnings is a fixed point of the message passing equations and may be used in warning inspired

decimation; here, in the absence of conflicting warnings, variables that receive warnings can be set to

their appropriate values. This reduces the size of the problem, and what remains is passed to another

satisfiability solving procedure to complete the solution.

Survey propagation assumes that there may be many fixed points of the warning propagation equa-

tions and seeks to estimate the probability, referred to as a survey, of a warning being exchanged between

two nodes.

5

Warning propagation is a specialization of the more general min-sum algorithm for binary-valued

variables when we only want to find the minimising truth assignment. We now discuss the connection

of the min-sum equations with warning propagation and show how the survey propagation equations

change for WPMax-SAT.

2.3 Min-sum equations

The min-sum equations are message passing equations, similar to those for warning propagation, used

to find a truth assignment minimizing the objective function. Instead of sending warnings, messages

exchanged over an edge of G estimate the lowest ‘energy’ achievable by a truth assignment in the sub-

tree formed by removing the edge in consideration. The equations are as follows,

ui→a(xi) =
∑

b∈∂i\a

vb→i(xi), (3)

va→i(xi) = min
x∂a\i



Ea(x∂a) +
∑

j∈∂a\i

uj→a(xj)



 . (4)

If ∂i \ a or ∂a \ i are empty, the values of the messages are ui→a(xi) = 0 or va→i(xi) = Ea(xi),
respectively.

Consider Equation 4. As xi values are binary, |va→i(0)− va→i(1)| ≤ wa. To see this note that if for

any j ∈ ∂a \ i either

1. uj→a(0) = uj→a(1),

2. or Xj = argminxj
[uj→a(xj)] satisfies a,

then min will select an xj that satisfies a and thus Ea(x∂a) = 0 and va→i(0) = va→i(1); otherwise,

either (1) for some j∗ ∈ ∂a\ i we have |uj∗→a(0)−uj∗→a(1)| = w∗ ≤ wa and min can use j∗ to satisfy

clause a and keep |va→i(1)−va→i(0)| ≤ w∗ or (2) for all j ∈ ∂a\i we have that |uj→a(0)−uj→a(1)| >
wa and Xj = argminxj

[uj→a(xj)] does not satisfy a, which means that min chooses an x∂a\i that does

not satisfy a resulting in |va→i(1) − va→i(0)| = wa.

Consequently, choosing variable assignments to minimise E(x) =
∑

aEa(xa) does not require

knowledge of the absolute values of the messages exchanged, but rather whether those values differ and

by how much between xi = 0 and xi = 1. Furthermore, va→i(0) 6= va→i(1) (by Equation 4) only if all

variables j ∈ ∂a \ i have messages such that Xj = argminxj
[uj→a(xj)] does not satisfy clause a.

This relates to the ideas of Section 2.2 in that a warning is sent from clause a to variable i when

va→i(0) 6= va→i(1). If this warning is ignored then at most wa extra cost is incurred, otherwise no extra

cost is incurred. Therefore, we could adopt the following worst-case assumption: whenever a variable i
ignores a warning from a soft clause a then wa is added to the cost of the truth assignment.

As in SAT, warnings from hard clauses must be heeded; however, for WPMax-SAT, in the absence of

warnings from hard clauses a variable i must resolve potentially conflicting warnings from neighbouring

soft clauses to decide whether to send a warning to clause a. To do this, it should calculate the cavity

field

h =
∑

b∈Su
j (a)

|vb→j(1)− vb→j(0)| −
∑

b∈Ss
j (a)

|vb→j(0)− vb→j(1)| . (5)

Under our worst-case assumption, a warning from clause b ∈ Su
i (a) contributes wb and a warning from

clause c ∈ Ss
i (a) contributes −wc to h. If h > 0, then a warning should be sent from i to a as the cost

incurred from its other neighbours by an assignment not satisfying a is less than if it takes the assignment

satisfying a.

6

3 Survey propagation equations

Survey propagation assumes that there are many fixed-point solutions to Equations 3 and 4 having a

Gibbs distribution. Belief propagation then estimates the marginal probabilities of this distribution—

those estimating the probability of a warning message being sent between two nodes for a randomly

chosen fixed-point solution. The details can be found in [10, Chapter 19]; we now adapt that derivation

for WPMax-SAT and explain the intuitions behind the resulting equations.

Let ηi→a be the probability of a warning from variable i to clause a and let η̂a→i be the probability

of a warning from clause a to variable i. Hard clauses are subject to the survey propagation equations

for SAT. Warnings from hard clauses must be obeyed and we assume that in a fixed-point solution to

the min-sum equations we receive no conflicting warnings from hard clauses. The behaviour for hard

clauses can be described using the quantities:

Hu
i (a) =



1−
∏

b∈Hu
i (a)

(1− η̂b→i)





∏

b∈Hs
i (a)

(1− η̂b→i), (6)

Hs
i (a) =



1−
∏

b∈Hs
i (a)

(1− η̂b→i)





∏

b∈Hu
i (a)

(1− η̂b→i), (7)

H0
i (a) =

∏

b∈Hu
i (a)∪H

s
i (a)

(1− η̂b→i). (8)

Here, Hu
i (a) and Hs

i (a) are the probabilities clause a receives a warning from variable i indicating that

i is constrained by warnings from hard clauses to take a value that will, respectively, violate or satisfy

clause a. H0
i (a) is the third probability that i is not constrained by its neighbouring hard clauses other

than a to take any value.

With no warnings from hard clauses, consider the probability of i receiving warnings from other

neighbouring soft clauses that constrain i to take a value that will satisfy or violate clause a. Let Pi,a(h)
be the probability that the set of incoming warnings to i from clauses b ∈ ∂i \ a according to Equation 5

is equal to h. Also, define

Sui (a) =
∞
∑

h=1

Pi,a(h), Ssi (a) =
−∞
∑

h=−1

Pi,a(h). (9)

Here, Sui (a) and Ssi (a) are the probabilities that variable i receives warnings from soft clauses indicating

that i is constrained under the decision criteria described to take a value that will, respectively, violate or

satisfy a.

We can now write the survey propagation message passing equations for WPMax-SAT:

ηi→a =
Hu

i (a) +H
0
i (a)S

u
i (a)

Hu
i (a) +H

s
i (a) +H

0
i (a)

(10)

η̂a→i =
∏

j∈∂a\i

ηi→a. (11)

Here, η̂a→i is the probability that all other variables connected to a are sending warnings that they cannot

satisfy a. This matches the original survey propagation equations; however, the equations differ in the

handling of ηi→a. This is the sum of the probabilities of two events: (1) that it receives at least one

warning from another hard clause b ∈ Hu
i (a) and (2) that it receives no warnings from hard clauses and

a net warning from soft clauses that i appears in.

7

h =

−6

−4

−2

0

2

4

Figure 1: Possible energy levels from incoming warnings for variable Xi sending a message to clause a
when Su

i (a) has a single clause of weight 4 and Ss
i (a) has two clauses with weights 2 and 5.

3.1 Calculating Pi,a(h)

We use dynamic programming to efficiently compute Pi,a(h) (Algorithm 1). Figure 1 provides an exam-

ple. Without loss of generality, we consider clauses in Ss
i (a) followed by clauses in Su

i (a); thus Figure 1

shows horizontal and downwards movements initially, then horizontal and upwards movements.

As fixed-point solutions to the min-sum equations are Gibbs distributed, the computation of Pi,a(h)
includes a term e−ywb for each clause b ∈ ∂i \ a that contributed to h and had its warning ignored. The

term y is an inverse pseudo-temperature parameter used to control the distribution. In the for loop on

line 3, warnings received agree on the sign that Xi should take; however, from line 8 onwards, warnings

received may conflict and if ignored can result in a clause being violated and so require the penalty term

e−ywb . Where h < 0, warnings received from clauses in Su
i (a) will be ignored, but as we cross into the

region h > 0 those warnings will be respected and instead the warnings already received from clauses

Ss
i (a) will be ignored; thus, penalty terms already included in P̃

(t)
i,a (h) are now attributed to clauses in

Ss
i (a). This is the effect of the term θ(h,wb), where

θ(h,w) =











0 if h > 0,

w if h+ w < 0,

−h otherwise.

(12)

3.2 Calculating bias and decimation

Once a fixed point of Equations 10 and 11 is found, we use the η̂a→i to calculate each variable’s bias.

Let H+
i = {a | Xi ∈ Ca and wa = ⊤} and H−

i = {a | ¬Xi ∈ Ca and wa = ⊤}. Slightly modified

equations are then used to compute the bias of a variable.

H+
i =



1−
∏

a∈H+

i

(1− η̂a→i)





∏

a∈H−
i

(1− η̂a→i), (13)

H−
i =



1−
∏

a∈H−
i

(1− η̂a→i)





∏

a∈H+

i

(1− η̂a→i), (14)

H0
i =

∏

a∈H+

i ∪H−
i

(1− η̂a→i). (15)

Algorithm 1 can be adjusted to calculate the distribution Pi(h) in line 13 instead of Pi,a(h): replace

Ss
i (a) and Su

i (a) in lines 3 and 8 with S+
i = {a | Xi ∈ Ca and wa 6= ⊤} and S−

i = {a | ¬Xi ∈

8

Algorithm 1: Calculating P (h)

Result: The distribution Pi,a(h) of the net sum of weights h of soft clauses in Ss
i (a) ∪ Su

i (a)
sending warnings.

1 begin

2 t← 1 ; P̃ (1)(0)← 1
3 for b ∈ Ss

i (a) do

4 for h ∈ {x | P̃ (t)(x) 6= 0} do

5 P̃ (t+1)(h)← P̃ (t+1)(h) + (1− η̂b→i)P̃
(t)(h)

6 P̃ (t+1)(h− wb)← P̃ (t+1)(h− wb) + η̂b→iP̃
(t)(h)

7 t← t+ 1

8 for b ∈ Su
i (a) do

9 for h ∈ {x | P̃ (t)(x) 6= 0} do

10 P̃ (t+1)(h)← P̃ (t+1)(h) + (1− η̂b→i)P̃
(t)(h)

11 P̃ (t+1)(h+ wb)← P̃ (t+1)(h+ wb) + η̂b→iP̃
(t)(h)e−yθ(h,wb)

12 t← t+ 1

13 Z ←
∑∞

h=−∞ P̃ (t)(h) ; Pi,a(h)←
1
Z
P̃ (t)(h)

Ca and wa 6= ⊤}, respectively. We can then calculate

S−i =

∞
∑

h=1

Pi(h), S+i =

−∞
∑

h=−1

Pi(h). (16)

Together, these terms can be used to calculate the bias, Bias(i) = B+i − B
−
i , of variable Xi, where

B+i =
H+

i +H0
iS

+
i

H+
i +H−

i +H0
i

, B−i =
H−

i +H0
iS

−
i

H+
i +H−

i +H0
i

. (17)

When a variable is selected for assignment, it should be true (1) if Bias(i) > 0 and false (0) otherwise.

If no variable’s absolute bias exceeds a minimum threshold, it may be that further assignments using the

bias estimates are not worthwhile and we should switch to a different search strategy.

The decimation algorithm is typical of one based on survey propagation. First construct G for the

problem and initialise all clause to variable messages randomly in [0, 1]. Visit the clause nodes in random

order and calculate incoming surveys from neighbouring variables using Equation 10 with values η̂b→i.

Use the results with Equation 11 to compute outgoing surveys to neighbouring variable nodes. Repeat

until all clause nodes can be visited in one pass with outgoing warnings unchanged. This fixed point

is used to set the most strongly biased variables to their favoured value. The process can stop when it

becomes difficult to find a fixed point with strongly biased variables.

4 Experimental results

We allowed up to 50 rounds of decimation. In each round, up to 100 variables with the highest absolute

bias > 0.006 had their values fixed, and up to 1000 iterations of message passing were performed. At the

end of each round unit propagation was performed to simplify the remaining problem. Within a round,

a fixed point was detected if no survey changed by more than 0.0001. If at the end of a round either

no fixed point had been found or one was found but no variables had an absolute bias > 0.006 then

decimation terminated.

9

percentage reduction in truth assignment cost by cutoff value (%)

problem 104 105 106 107 108

1
worst 91.3 ± 2.1 99.9 ± 6.5 99.4± 43.9 26.2 ± 4.2 −14.0 ± 4.1
best 98.8 ± 2.0 100.0 ± 6.4 99.6± 43.9 55.1 ± 5.4 34.3 ± 6.5

2
worst 70.8 ± 2.1 95.4 ± 4.9 99.7± 20.7 85.5± 100.7 40.0 ± 5.5
best 84.7 ± 2.1 99.8 ± 4.6 99.8± 20.7 87.9± 102.0 46.2 ± 5.0

3
worst 52.9 ± 2.0 79.9 ± 5.3 96.8± 19.8 93.9 ± 59.5 37.6 ± 59.4
best 56.0 ± 2.1 83.3 ± 5.5 98.7± 19.5 94.1 ± 59.5 41.1 ± 60.9

4
worst 29.5 ± 2.1 51.8 ± 5.0 75.6± 16.1 87.0 ± 45.4 64.4 ± 102.3
best 30.6 ± 2.1 54.5 ± 5.1 80.9± 16.2 95.5 ± 42.9 65.9 ± 103.1

5
worst 69.9 ± 2.1 94.1 ± 5.8 99.7± 25.5 79.1 ± 90.3 41.0 ± 6.0
best 74.2 ± 2.1 97.7 ± 5.7 99.7± 25.5 80.9 ± 91.0 43.7 ± 5.9

6
worst 93.0 ± 2.3 100.0 ± 4.9 99.7± 31.8 49.7 ± 4.7 28.1 ± 5.6
best 99.1 ± 2.2 100.0 ± 4.9 99.8± 31.8 57.6 ± 5.0 40.4 ± 6.2

7
worst 59.8 ± 2.3 90.4 ± 5.8 99.7± 20.5 93.9 ± 75.3 42.4 ± 6.1
best 85.2 ± 2.3 99.8 ± 5.5 99.8± 20.4 95.1 ± 75.7 47.8 ± 5.7

8
worst 93.5 ± 2.4 100.0 ± 6.7 99.4± 33.7 31.8 ± 5.6 4.3 ± 5.8
best 99.0 ± 2.3 100.0 ± 6.7 99.6± 33.7 50.3 ± 5.9 27.2 ± 6.1

9
worst 48.8 ± 2.1 76.8 ± 6.0 97.3± 20.4 83.1 ± 82.3 26.7 ± 5.8
best 60.4 ± 2.2 87.5 ± 6.0 99.5± 19.9 85.2 ± 83.0 33.9 ± 5.7

10
worst 87.4 ± 2.1 99.6 ± 5.4 99.6± 28.8 53.0 ± 64.5 24.6 ± 4.4
best 96.3 ± 2.0 100.0 ± 5.2 99.7± 28.8 58.2 ± 66.7 36.4 ± 5.4

Table 1: Percentage reduction in mean cost found by Walksat after decimation for (α, β) = (4.09, 0.2).

We generated 10 random problems for each pair (α = Mh

N
, β = Ms

N
) where Mh and Ms are the

number of hard and soft clauses. We did this for the pairs (4.09, 0.2), (4.14, 0.15), (4.19, 0.10) and

(4.24, 0.05), with the number of variables set to N = 10000. By keeping α below 4.25 we expect these

problems to be in the satisfiable region, but α + β is held at 4.29 so we expect that some clauses will

not be satisfiable. All clauses had three distinct literals sampled without replacement from the set of

variables then negated with probability 0.5. Soft clauses were given an integer weight chosen uniformly

from the range [1, 100].

For each problem we performed decimation for values y ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} yielding 70

problems for each (α, β) pair, 10 of which were the original problems with the remaining 60 correspond-

ing to decimations for the 6 values of y.

We used UBCSAT [11] to explore local search algorithms on the randomly generated problems

and their decimated counterparts. We tested the stochastic algorithms ‘crwalk’, ‘novelty’, ‘novelty+’,

‘irots’, ‘walksat’ and ‘walksat-tabu’; these were chosen as they had weighted variants applicable to our

problems. For each problem, the hard clause weight was set to the sum of weights of soft clauses in the

problem so that truth assignments satisfying all hard clauses had lower cost than any which violated at

least one hard clause. UBCSAT takes a cutoff argument that limits the number of steps taken in searching

for a solution; once exceeded, the lowest cost truth assignment found so far is returned. We gathered 100

runs for each algorithm/problem/cutoff combination and took the mean and standard error, repeating

each for the cutoff values {104, 105, 106, 107, 108}.

The experiments were run on virtual machines in a batch processing cluster, so the hardware could

differ between problems. Thus the times measured are a guideline and cannot be reliably used for

comparisons. Of the algorithms used, Walksat most effectively found the lowest cost truth assignments;

due to space limitations, we only present our results for Walksat from the total gathered. Table 1 shows

the reduction in mean truth assignment cost found running Walksat on the decimated problem compared

10

Hard/soft clause ratios (α, β)
(4.09, 0.2) (4.14, 0.15) (4.19, 0.1) (4.24, 0.05)

worst −14.0 ± 4.1 17.7 ± 4.9 93.8 ± 35.1 61.2 ± 11.9
best 34.3± 6.5 39.9 ± 6.1 97.2 ± 32.5 65.4 ± 12.2

worst 40.0± 5.5 44.2 ± 72.7 87.1 ± 23.5 41.0 ± 10.4
best 46.2± 5.0 65.9 ± 84.2 92.7 ± 22.9 44.8 ± 10.2

worst 37.6 ± 59.4 53.7 ± 80.1 87.8 ± 26.3 35.6 ± 10.2
best 41.1 ± 60.9 68.8 ± 87.5 95.1 ± 23.8 49.9± 9.9

worst 64.4 ± 102.3 84.5 ± 66.6 94.7 ± 32.9 93.0 ± 16.9
best 65.9 ± 103.1 87.3 ± 65.2 96.9 ± 32.2 96.1 ± 16.8

worst 41.0± 6.0 15.2 ± 4.2 41.1 ± 17.8 48.2 ± 10.6
best 43.7± 5.9 36.6 ± 5.4 50.1 ± 17.5 51.5 ± 11.0

worst 28.1± 5.6 70.6 ± 92.6 89.9 ± 76.1 50.1 ± 14.5
best 40.4± 6.2 72.8 ± 93.6 91.3 ± 76.6 56.7 ± 14.3

worst 42.4± 6.1 85.7 ± 73.0 95.4 ± 29.3 52.0 ± 11.0
best 47.8± 5.7 87.6 ± 73.6 98.0 ± 27.6 59.1 ± 11.1

worst 4.3 ± 5.8 63.9 ± 96.6 34.5 ± 16.9 66.1 ± 11.3
best 27.2± 6.1 71.2± 100.6 45.4 ± 17.6 68.5 ± 11.2

worst 26.7± 5.8 48.0 ± 71.0 84.0 ± 27.7 32.7± 8.7
best 33.9± 5.7 54.0 ± 73.5 87.6 ± 27.1 36.3± 8.5

worst 24.6± 4.4 37.6 ± 5.3 96.8 ± 35.7 76.5 ± 14.1
best 36.4± 5.4 55.5 ± 6.4 97.9 ± 34.3 78.6 ± 14.7

Table 2: Percentage reduction in mean cost found by Walksat after decimation at cutoff 108 across ten

problems.

to the undecimated instance. The ‘worst’ and ‘best’ are taken from the reductions obtained across all

y values, choosing those yielding the least and greatest reduction of mean truth assignment cost after

decimation. The errors are a 95% confidence interval using Student’s t-distribution with 99 degrees of

freedom. Initially errors increase with cutoff value, but it is likely that errors will reduce as this value

increases further, as given a sufficiently high cutoff value most Walksat runs should converge to equal

cost. The increase in error is most likely due to Walksat finding solutions in a larger proportion of runs

as cutoff value is increased, and to a large difference in truth assignment cost between solutions and

non-solutions leading to large variance when results from these two classes mix in the runs.

Table 2 shows the reduction in mean truth assignment cost found by Walksat after decimation, for cut-

off 108 across the (α, β) pairs. The variance across the 100 runs of Walksat is larger for the middle values

(4.14, 0.15) and (4.19, 0.1) than for the values (4.09, 0.2) and (4.24, 0.05). For (4.14, 0.15) the errors

are too large to make a meaningful statement; however, despite the large error for (4.19, 0.1), decimation

consistently makes a significant reduction by over 50% in seven out of ten problems. For (4.24, 0.05),
eight out of ten problems show a significant cost reduction by over 30%, whereas for (4.09, 0.2) six out

of ten problems reduce cost by over 20%. There is only one decimation significantly increasing cost: by

14± 4% for (4.09, 0.2).

Table 3 shows average CPU time taken to complete decimation over the 10 problems for each y.

The time dramatically increases as we increase the soft clause ratio. This is expected, as computing

the distribution of warnings from soft clauses is an expensive part of the calculation, and needs to be

performed more often as the soft clause ratio increases. There appears to be no significant change in the

time to perform decimation as y is altered for fixed clause ratios.

Figure 2 shows a histogram of the number of variables set during decimation across problem sets for

11

y
(α, β) 0.5 1.0 1.5 2.0 2.5 3.0

(4.09,0.2) 68.9 ± 37.6 93.6 ± 62.2 73.5 ± 41.7 67.7± 22.9 70.8± 36.8 96.8± 28.5
(4.14,0.15) 38.2 ± 6.9 39.3 ± 18.3 53.9 ± 18.3 82.7 ± 6.1 44.2± 13.5 31.9 ± 3.1
(4.19,0.1) 11.3 ± 1.0 10.7 ± 1.3 10.9 ± 1.1 10.9 ± 0.9 9.1± 0.8 9.1± 0.6
(4.24,0.05) 3.7 ± 0.3 3.7 ± 0.3 3.5 ± 0.3 3.6± 0.3 3.7± 0.3 3.3± 0.3

Table 3: Average time taken to perform decimation step (hours).

Figure 2: Histogram of the number of variables set during decimation across all problem sets grouped

by clause ratio pairs (α, β).

different clause ratios. The problems with lowest hard clause ratio appear to promote the setting of the

most variables during decimation. No problem with hard clause ratio 4.24 had more than 3,500 variables

set during decimation.

During decimation, as variables are set we may infer that some soft clauses have become false. The

sum of weights of these clauses is the cost incurred by decimation. Figure 3 shows a histogram of this

metric over all 10 problems and y values, grouped for clause ratio pair (α, β). Across all problem sets

the highest cost was 1043, occurring when 5000 variables were set during decimation in the context of

a problem having a sum of weights of soft clauses of 100,934. No hard clauses were violated during

decimation across all experiments.

5 Discussion

Unlike in other experiments testing SP(y) [8], the value y did not strongly affect the mean truth assign-

ment cost after decimation for WPMax-SAT. SP(y) showed a distinction between truth assignment costs

as y changed, the lowest costs being found as y increases. This may be because SP(y) is applied to

Max-SAT problems with only soft clauses, so the y term affects the calculation of surveys from every

variable node. In WPMax-SAT, there may be variable nodes connected to a small number of soft clauses

or only to hard clauses; in such cases, y has little or no effect on the survey calculation. Decimation is

randomised, so we would need many decimation experiments, for a fixed y, to identify any statistically

12

Figure 3: Histogram of the cost incurred during decimation across all problem sets grouped by clause

ratio pairs (α, β).

significant difference between values of y, and its magnitude if it exists.

Of our 60 decimation experiments, three failed due to a bug which is now fixed. 1 All other decima-

tion experiments converged to non-trivial fixed points. Two experiments set fewer than 1000 variables,

instead setting 800 and 900 variables. There were six instances, all with (α, β) = (4.09, 0.2), where

decimation set the imposed maximum of 5000 variables. This may suggest that decimation cannot con-

tinue simplifying the problem given extra computing resources. Another concern is the costly running

times of decimation. No randomised restart strategy was used to improve our chances of convergence,

nor did we retry if a fixed point was found containing no variables with sufficient bias to continue dec-

imation. Experimenting with these may increase the amount of simplification decimation can achieve

and improve aggregate running times by avoiding poor random seeds. It should be possible to parallelize

message updates but the effect on convergence properties remains to be seen.

6 Related work

Belief propagation has been applied to other problems with loops in the factor graph; for example, in

decoding low density parity check codes, with performance close to the Shannon limit [12]. Experi-

ments on smaller graphs with loops, for which exact marginals can be found, indicate that when belief

propagation converges its marginal estimates are surprisingly accurate [13].

An explanation for the success of loopy belief propagation is that fixed points of the belief propaga-

tion equations correspond to stationary points of the Bethe free energy [14]. This provides a fix when

belief propagation does not converge: minimise the Bethe free energy, which is guaranteed to terminate.

Empirical data suggests that this yields similar results to belief propagation [15].

This link between belief propagation and the Bethe approximation has inspired generalised belief

propagation [16] methods, based on increasingly accurate approximations to the free energy, known as

1Numerical results were unaffected, but the bug sometimes caused a crash when there were multiple variables with the same

bias.

13

Kikuchi approximations. These group variables into regions and sum the free energies of each region

together with terms correcting for over-counted regions. Messages are then passed from regions to their

subregions. The accuracy improves with region size until the approximation is exact when a region

surrounds the entire graph; however, complexity increases exponentially. On graphs with many small

loops, it may be possible to eliminate most of the error from belief propagation by surrounding these

loops with small regions whilst limiting the increase in complexity this causes.

7 Conclusion

We have extended the survey propagation equations allowing them to be applied to WPMax-SAT prob-

lems: those consisting of (1) both hard and soft clauses and (2) arbitrary integer weights for soft clauses.

We demonstrated the convergence of these equations across randomly generated WPMax-3SAT formu-

las with hard clause ratios close to the satisfiability threshold. We found that in most cases, decimation

using fixed-points of these equations appears to simplify the problem, allowing local search solvers to

find a truth assignment of comparable cost faster than without decimation.

The computational cost of message passing is high and increases with the ratio of soft clauses; work

will be needed to turn this into a practical problem-solving method, possibly by updating multiple mes-

sages in parallel. Whether this affects convergence or the resulting fixed points remains to be seen.

References

[1] A.C. Kaporis, L.M. Kirousis, and E.G. Lalas. The probabilistic analysis of a greedy satisfiability

algorithm. Random Structures & Algorithms, 28(4):444–480, 2006.

[2] J. Dı́az, L. Kirousis, D. Mitsche, and X. Pérez-Giménez. On the satisfiability threshold of formulas

with three literals per clause. Theoretical Computer Science, 410(30-32):2920–2934, 2009.

[3] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random satisfiability

problems. Science, 297(5582):812–815, 2002.

[4] James M Crawford and Larry D Auton. Experimental results on the crossover point in random

3-sat. Artificial intelligence, 81(1):31–57, 1996.

[5] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems are. In Proc. IJCAI,

1991.

[6] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems. In Proc.

AAAI, 1992.

[7] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey propagation: An algorithm for

satisfiability. Random Structures & Algorithms, 27(2):201–226, 2005.

[8] D. Battaglia, M. Kolář, and R. Zecchina. Minimizing energy below the glass thresholds. Physical

Review E, 70(3):036107, 2004.

[9] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-product

algorithm. Information Theory, IEEE Transactions on, 47(2):498–519, 2001.

[10] Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford University

Press, 2009.

[11] Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: An implementation and experimentation

environment for SLS algorithms for SAT and MAX-SAT. In Proc. SAT, 2004.

14

[12] D.J.C. MacKay and R.M. Neal. Near Shannon limit performance of low density parity check codes.

Electronics letters, 32(18):1645, 1996.

[13] K. Murphy, Y. Weiss, and M.I. Jordan. Loopy belief propagation for approximate inference: An

empirical study. In Proc. UAI, 1999.

[14] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations.

In G. Lakemeyer and B. Nebel, editors, Exploring artificial intelligence in the new millennium,

chapter 8, pages 239–270. Morgan Kaufmann Publishers, 2003.

[15] M. Welling and Y.W. Teh. Belief optimization for binary networks: A stable alternative to loopy

belief propagation. In Proc. UAI, 2001.

[16] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Generalized belief propagation. In Proc. NIPS, 2000.

15

