
Technical Report
Number 880

Computer Laboratory

UCAM-CL-TR-880
ISSN 1476-2986

Access contracts:
a dynamic approach to

object-oriented access protection

Janina Voigt

February 2016

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2016 Janina Voigt

This technical report is based on a dissertation submitted
May 2014 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

In object-oriented (OO) programming, variables do not contain objects directly but ad-
dresses of objects on the heap. Thus, several variables can point to the same object; we
call this aliasing.

Aliasing is a central feature of OO programming that enables efficient sharing of objects
across a system. This is essential for the implementation of many programming idioms,
such as iterators. On the other hand, aliasing reduces modularity and encapsulation,
making programs difficult to understand, debug and maintain.

Much research has been done on controlling aliasing. Alias protection schemes (such
as Clarke et al.’s influential ownership types) limit which references can exist, thus guar-
anteeing the protection of encapsulated objects. Unfortunately, existing schemes are
significantly restrictive and consequently have not been widely adopted by software de-
velopers.

This thesis makes three contributions to the area of alias protection. Firstly, it pro-
poses aliasing contracts, a novel, dynamically-checked alias protection scheme for object-
oriented programming languages. Aliasing contracts are highly flexible and expressive,
addressing the limitations of existing work. We show that they can be used to model
many existing alias protection schemes, providing a unifying approach to alias protection.

Secondly, we develop a prototype implementation of aliasing contracts in Java and
use it to quantify the run-time performance of aliasing contracts. Since aliasing con-
tracts are checked dynamically, they incur run-time performance overheads; however, our
performance evaluation shows that using aliasing contracts for testing and debugging is
nevertheless feasible.

Thirdly, we propose a static analysis which can verify simple aliasing contracts at
compile time, including those contracts which model ownership types. Contracts which
can be verified in this way can subsequently be removed from the program before it is
executed. We show that such a combination of static and dynamic checking significantly
improves the run-time performance of aliasing contracts.

Author publications

Parts of the work reported in this thesis have been published during the period of PhD
study. In particular:

• Chapter 2 contains extracts from a book chapter entitled “Notions of aliasing and
ownership” by Alan Mycroft and Janina Voigt published in “Aliasing in Object-
Oriented Programming” [70].

• Chapter 3 contains extracts from a technical report entitled “Aliasing contracts: a
dynamic approach to alias protection” by Janina Voigt and Alan Mycroft published
by the University of Cambridge Computer Laboratory [96].

• Chapter 5 contains extracts from a conference paper entitled “Dynamic alias pro-
tection with aliasing contracts” by Janina Voigt and Alan Mycroft published in the
proceedings of APLAS 2013 [97].

Acknowledgements

My biggest thanks naturally go to my supervisor Alan Mycroft for his constant guidance
and encouragement throughout the development of this thesis. His feedback and expertise
have been invaluable to me and I have always found him willing to take time out of his
busy schedule to teach me and help improve my work. I am particularly grateful for
his frequent proofreading and his useful suggestions for improvements, in terms of both
content and presentation.

I would also like to thank the Cambridge Computer Laboratory, particularly the other
students from the CPRG research group (Dominic, Raoul, Stephen, Raphael, Tomas,
Peter and others).

This work would not have been possible without the generous financial support of the
Rutherford foundation of the Royal Society of New Zealand and the Cambridge Trust
who supported me through the Cambridge-Rutherford memorial scholarship. I would
also like to thank Trinity College for their academic and pastoral support and several
very enjoyable feasts!

Finally, I want to thank my friends and family who were always on hand to distract
me from my work and make my life more fun and enjoyable. In my time at Cambridge,
I have met so many amazing people that I can’t list them all, but I am sure they will
know who they are! I want to particularly mention Steffen who helped proofread this
thesis and Will whose expertise in theoretical computer science I required on more than
one occasion and who was always keen to discuss his work or mine. Thanks also to Wal
and Liz for frequent Skype conversations and constant encouragement. And of course
a big thank you goes to my boyfriend Tobias for managing to put up with me on both
good and bad days for the past years and for always finding ways to cheer me up when
I was struggling with my work. Last but certainly not least, I want to thank my mother
Angelica for her continued love and support through my many years at university (and
of course beforehand).

Contents

1 Introduction 13

1.1 Motivation . 13
1.2 Aliasing contracts . 16
1.3 Thesis structure . 16

2 Background 19

2.1 Alias protection . 20
2.1.1 Aliasing policies . 20

2.1.1.1 Full encapsulation . 20
2.1.1.2 Uniqueness and linearity 23
2.1.1.3 Ownership: owners-as-dominators and owners-as-modifiers 25
2.1.1.4 Module encapsulation . 33
2.1.1.5 Systems supporting multiple policies 35

2.1.2 Other characteristics . 37
2.1.2.1 References and object accesses 37
2.1.2.2 Static and dynamic checking 38
2.1.2.3 Temporal and spatial aliasing 38
2.1.2.4 Static and dynamic aliasing 39
2.1.2.5 Sharing . 39
2.1.2.6 Borrowing . 40
2.1.2.7 Immutability . 40

2.1.3 Limitations of existing work . 41
2.2 Alias and pointer analysis . 42
2.3 Summary . 45

3 Aliasing contracts: overview and semantics 47

3.1 Overview of aliasing contracts . 47
3.1.1 Encapsulation groups . 51
3.1.2 Contract parameters . 53
3.1.3 Contract suspension . 55
3.1.4 Checking aliasing contracts . 57

3.2 Formalisation of aliasing contracts . 57
3.2.1 Syntax . 57
3.2.2 Operational semantics . 59

3.2.2.1 Notation . 59
3.2.2.2 Contract evaluation . 62
3.2.2.3 Contract transfer . 67
3.2.2.4 Method and constructor calls 67

3.2.2.5 The in operator . 68

3.2.2.6 Conditionals, sequences and boolean operators 68

3.2.2.7 Evaluation contexts . 68

3.3 Case study . 69

3.4 Summary . 72

4 Comparison of aliasing contracts with existing alias protection schemes 73

4.1 References and object accesses . 73

4.2 Static and dynamic checking . 74

4.3 Temporal and spatial aliasing . 74

4.4 Static and dynamic aliasing . 74

4.5 Sharing . 75

4.6 Borrowing . 76

4.7 Immutability . 77

4.8 Multiple ownership . 77

4.9 Ownership transfer . 78

4.10 Aliasing policies . 79

4.10.1 Full encapsulation . 79

4.10.2 Owners-as-dominators and owners-as-modifiers 80

4.10.2.1 Strict owners-as-dominators and owners-as-modifiers . . . 80

4.10.2.2 Peer owners-as-dominators and owners-as-modifiers 81

4.10.2.3 Transitive owners-as-dominators and owners-as-modifiers . 81

4.10.2.4 Clarke-style ownership types 82

4.10.3 Uniqueness and linearity . 83

4.10.4 Module encapsulation . 84

4.10.5 Capabilities . 85

4.11 Using aliasing contracts to compare full encapsulation and Clarke-style ownership types 86

4.12 Summary . 87

5 JaCon: a prototype implementation of aliasing contracts for Java 89

5.1 Extensions of aliasing contracts for real-life OO languages 89

5.2 Description of JaCon . 90

5.2.1 Prototype features . 90

5.2.1.1 Optimisations . 95

5.2.2 Known issues . 96

5.3 Performance evaluation of JaCon . 96

5.3.1 Performance of a single object access 97

5.3.1.1 Method . 97

5.3.1.2 Results . 98

5.3.2 Performance of encapsulation groups 99

5.3.2.1 Method . 99

5.3.2.2 Results . 100

5.3.3 Empirical study with open-source Java programs 101

5.3.3.1 Case study 1: unit test measurements 102

5.3.3.2 Case study 2: A real usage scenario for FindBugs 111

5.4 Summary . 112

6 Static verification of aliasing contracts 115

6.1 Overview of the static analysis . 116
6.2 Formalisation: aliasing graphs and contract verification 116

6.2.1 Definitions . 117
6.2.2 Static rooted paths and dynamic objects 118
6.2.3 Aliasing graph . 119

6.2.3.1 Examples . 121
6.2.3.2 Soundness . 122

6.2.4 Effectively computing the aliasing graph 124
6.2.5 Contract verification . 125

6.2.5.1 Contract verification with cyclic access paths 129
6.2.6 Equivalence edges . 131

6.3 Static analysis for existing alias protection schemes 135
6.3.1 Verifying Clarke-style ownership types 135
6.3.2 Verifying full encapsulation . 139

6.4 StatCon: practical static analysis for Java 139
6.4.1 Description of StatCon . 139
6.4.2 Performance evaluation . 141

6.5 Summary . 144

7 Discussion 145

7.1 Expressiveness . 145
7.2 Unification of existing work . 146
7.3 Run-time performance . 147
7.4 Future directions . 148

7.4.1 Owners-as-locks . 148
7.4.2 Or-contracts . 149
7.4.3 Andersen-style and Steensgaard-style static analysis 150

8 Conclusions 151

Bibliography 161

A Additional case studies of aliasing contracts 163

A.1 Binary tree . 163
A.2 Observer . 165
A.3 Memento . 166

B Using aliasing contracts to model Clarke-style context parameters 169

CHAPTER 1

Introduction

In current OO programming languages, such as Java and C#, objects are reference types;
an object variable does not contain the object itself, but the address of the object on the
heap. Therefore, one object can be referenced by multiple variables at the same time.
This situation is known as aliasing.

Aliasing is a very important part of OO programming but can cause significant prob-
lems; in this thesis, we introduce and develop aliasing contracts to address the problems
associated with aliasing.

1.1 Motivation

Aliasing is a powerful and central feature of OO programming, allowing an object to be
shared efficiently by several parts of the system. Objects can be easily passed around a
shared-memory system, simply by passing a reference, avoiding expensive copy operations.
In this way, aliasing enables developers to describe complex data structures and construct
systems as networks of interacting objects [64, 93].

There are a number of common programming idioms that rely on aliasing. Itera-
tors [37] are frequently discussed in literature about aliasing and are difficult to implement
efficiently without the ability to share the objects in the collection between the collection
itself and the iterator traversing the collection [73]. Similarly, the fly-weight design pat-
tern [37], which aims to share common objects in order to decrease storage costs, relies
on aliasing. Even the simple scenario of one object belonging to two or more separate
collections at the same time requires support for aliasing [76].

While aliasing provides flexibility and enables sharing, it also causes a number of
problems in practical programming and formal verification. These problems stem from
the fact that an object can be changed through an aliasing reference by a seemingly
unrelated part of the system. As Hoare put it as early as the 1970s, “references are like
jumps, leading wildly from one part of a data structure to another. Their introduction
into high level languages has been a step backward from which we may never recover” [47].

Through aliasing, the internal details of an object can be referenced from anywhere
in the system and may be modified without the object’s knowledge. This phenomenon is
known as representation exposure since an object’s representation is exposed to modifica-
tions from the outside [68], constituting a serious breach of encapsulation and information
hiding [80].

13

Although many OO programming languages provide access modifiers such as private,
protected or public, they are an inadequate solution to the problem of representation
exposure. Access modifiers limit the scope in which variables can be used; they protect
only the variable name, not the object to which the variable points [48, 76]. This means
that even objects stored in private variables may not be fully encapsulated if their
reference is leaked to other parts of the system.

Consider the simple LinkedList example below, written in Java. A LinkedList
contains a number of Nodes and holds a reference to the head node of the list; each Node
in the list then has a reference to the next node in the list:

class LinkedList {

private Node head;

public void addItem(Object data) {

Node newNode = new Node(data);

newNode.setNext(head);

head = newNode;

}

public boolean member(Object data) {

for(Node n = head; n != null; n = n.getNext()) {

if(n.getData().equals(data)) {

return true;

}

}

return false

}

public Node getHead() { return head; }

}

class Node {

private Node next;

private Object data;

public Node(Object data) { this.data = data};

public Node getNext() { return next; }

public Object getData() { return data; }

public void setNext(Node next) { this.next = next; }

}

Although next in Node and head in LinkedList are both declared to be private,
the list structure is exposed to modification from other parts of the system: references to
next and head are leaked in several places.

The first leak is caused by the getNext and getHead methods in Node and LinkedList
which return a reference to next and head respectively; a client calling these methods
can thus obtain a direct reference to objects stored in next and head and could modify
them, for example as follows:

LinkedList list;

...

list.getHead().setNext(new Node(newData));

Another encapsulation leak occurs in the setNext method in Node: it accepts an
existing Node object as an argument and stores the reference to this object in its next

field. However, the given argument may already be aliased by the client calling the
method, thus giving the client continued access to the supposedly private next node.

14

Generally speaking, there are two main ways in which a reference to a private object
can be leaked, as illustrated by the above example: it can be passed out to another
part of the system (for example as a method return value or method call argument)
or it can be passed in by another part of the system (for example as a method call
argument). Exposure of protected fields can additionally occur in subclasses without a
class’ knowledge [51].

A well-known bug caused by aliasing commonly cited in literature occurred in Sun’s
Java Development Kit 1.1.1 [3, 57, 76, 94]. The code causing the bug is shown below:

class Class {

private Object[] signers;

Object[] getSigners() {

return signers;

}

}

The defect was caused by the security system method Class.getSigners() which
returned a reference to the internal (and private) array of trusted applets, allowing
malicious applets to modify it and pose as trusted code [57]. Vitek et al. note that “what
is interesting about this example is that none of the standard Java protection mechanisms
seem to help” [94].

In fact, standard OO programming languages do not include any features to avoid
representation exposure (since, as we saw above, access modifiers are insufficient for this
purpose); Noble et al. conclude that “in practice, then, careful programming and eter-
nal vigilance are the only defences against aliasing problems in current object oriented
languages” [76].

Representation exposure and encapsulation breaches caused by aliasing severely re-
duce the modularity of software. Since objects (even supposedly private and encapsu-
lated ones) can be modified by any part of the system which can obtain a reference to
them, modules are no longer independent of each other. This makes software difficult to
understand, debug and maintain.

Due to the significant negative effects of aliasing, many systems been developed to
control it; such systems are often called alias protection schemes. Perhaps the best-known
such system is Clarke et al.’s ownership types [27], which ensures that all reference paths to
an encapsulated object pass through the object’s single owner. This prohibits references
to encapsulated objects being leaked, as in the two examples above, thus preventing
representation exposure. We discuss and compare various existing alias protection schemes
in Chapter 2.

Many existing alias protection schemes are, however, very restrictive, complicating
how users express common idioms and design patterns (such as iterators) which rely
on sharing; this often makes them impractical to use. Ownership types, for example,
stipulate that each object must have a single owner. This means that an object must
be either encapsulated or shared, but not both at the same time. An additional issue
with ownership types is that ownership is optional and alias protection can be completely
avoided by declaring all objects to be shared.

15

1.2 Aliasing contracts

In this thesis e propose a dynamic approach to alias protection which we call aliasing
contracts. Using aliasing contracts, developers can specify which parts of a system should
be allowed to access a particular object. This avoids the problem of representation expo-
sure because accesses to the internal (and encapsulated) representation objects become
illegal. In the above example, we could specify that the representation of the LinkedList
(that is, its nodes) can be accessed only be the LinkedList itself; if any other part of the
system tries to access them, an error is reported.

Aliasing contracts highly flexible and expressive, allowing them to model many alias-
ing conditions which cannot be handled by existing systems. They are easy to use for
software developers, which we suggest means that they are more likely to be taken up in
practice; in addition, we expect that users will be less likely to “hack around” or avoid
them. In addition, aliasing contracts are powerful enough to model many existing alias
protection schemes such as ownership types. They thus give us a unifying approach to
alias protection; we can express existing systems in the same base language – aliasing
contracts – facilitating direct comparisons between them.

One disadvantage of aliasing contracts over existing systems is their run-time perfor-
mance overhead. Aliasing contracts are checked dynamically, not statically as, for ex-
ample, ownership types. However, we suggest that aliasing contracts will be particularly
valuable during the testing phase of software development, as they help developers de-
tect unintended reference leaks and representation exposure. During testing, performance
overheads caused by aliasing contracts are less of a concern.

We further mitigate the performance overheads of aliasing contracts by developing
static analysis that can verify some aliasing contracts at compile time; contracts that can
be verified statically can be removed from the program and do not need to be re-checked
at run time.

1.3 Thesis structure

The remainder of the thesis is structured as follows:

• Chapter 2 describes the background of this work and gives detailed descriptions and
comparisons of existing alias protection schemes.

• Chapter 3 introduces and formalises aliasing contracts; it includes a syntax and
operational semantics for aliasing contracts, as well as a case study showing how
they can be applied in practice.

• Chapter 4 performs a detailed comparison between aliasing contracts and existing
alias protection schemes. It shows how existing systems can be modelled using
aliasing contracts.

• Chapter 5 develops JaCon, a prototype implementation of aliasing contracts in
Java and uses it to quantify the run-time performance of aliasing contracts.

• Chapter 6 presents a static analysis which can verify many simple aliasing contracts
at compile time and demonstrates the benefits of combining static and dynamic
checking of aliasing contracts.

16

• Chapter 7 discusses various aspects of aliasing contracts and promising future re-
search directions.

• Chapter 8 presents the work’s conclusions and summarises our contributions.

17

18

CHAPTER 2

Background

In Chapter 1, we introduced the concept of aliasing, which is a both essential and problem-
atic part of OO programming. We discussed representation exposure, where a reference
to an object’s internal representation is leaked to other parts of the system, exposing it
to unexpected accesses and modifications.

Reynolds describes another, albeit less common, scenario where aliasing can cause
problems [84]: a method expecting two separate arguments is in fact given two references
to the same object. More generally speaking, problems occur if a program expects two
variables to refer to distinct objects when they are in fact aliases for the same object (or
vice versa).

Aliasing causes additional problems in the context of class invariants which describe
valid states of objects. If an object’s state is improperly encapsulated (and aliases exist
to it from other parts of the system), the object’s invariant may be broken without its
knowledge; this can happen if the state is modified through aliases by other parts of the
system [52]. The object essentially loses control of its own invariant and can no longer
ensure the validity of its state. This problem was first identified by Meyer in [64] and is
commonly called the indirect invariant effect.

Because multiple references may point to the same object, memory deallocation and
storage management are also more complex in the presence of aliasing [12, 66]. Deallocat-
ing an object can lead to dangling references which have the potential to crash program
execution if they are dereferenced. This can in turn make programmers reluctant to deal-
locate objects, leading to memory leaks. For this reason, many modern programming
languages provide garbage collection (GC).

As a result of these disadvantages, much work has been done to control aliasing. In this
chapter, we survey various existing approaches to the problems associated with aliasing.

In their seminal paper “The Geneva convention on the treatment of object aliasing”,
Hogg et al. classify approaches to the problem of aliasing using four categories: detection
(finding potential or actual aliasing statically or at run time), advertisement (declaring
the aliasing properties of program parts), prevention (prohibiting certain aliasing from
occurring in the first place) and control (isolating the effects of aliasing) [49]. We start
by looking at approaches to preventing aliasing in Section 2.1; prevention is the approach
taken by so-called alias protection schemes. We also consider alias and pointer analyses
used for alias detection in Section 2.2.

19

2.1 Alias protection

Much research has been done to control aliasing and address its negative effects. A number
of alias protection schemes have been developed which limit the existence and usage of
aliases. The variety of such schemes is huge; in the sections below, we discuss various
important properties of existing alias protection schemes and compare and categorise
existing work in this area. An overview of the most important works discussed here and
their properties is shown in Table 2.1 and Table 2.2.

2.1.1 Aliasing policies

Alias protection schemes usually limit aliasing according to a particular aliasing policy.
In this section, we describe various different aliasing policies and give examples of alias
protection schemes which use each policy.

2.1.1.1 Full encapsulation

Full encapsulation is a simple, but restrictive aliasing policy supported by the earliest
alias protection schemes for OO languages: Hogg’s islands [48], Almeida’s balloons [4]
and Utting’s local stores [93].

Full encapsulation means that a group of objects is encapsulated inside a single object
called the bridge in Hogg’s islands [48] and the balloon in Almeida’s balloons [4]. En-
capsulated objects can reference each other freely, as can unencapsulated objects outside
islands and balloons. However, no referencing is allowed between encapsulated and un-
encapsulated objects; all such references must pass through the bridge or balloon object.
This situation is illustrated in Figure 2.1. Solid arrows represent legal references, while
dotted arrows with crosses represent illegal or impossible references.

Objects transitively referenced by the bridge or balloon are considered to be encap-
sulated. This means that references from an encapsulated object to an unencapsulated
object are impossible; if such a reference existed, the referenced object would also be
encapsulated. References from the outside to encapsulated objects are illegal ; this is en-
forced by ensuring that the bridge or balloon does not leak references to encapsulated
objects.

Full encapsulation implies that the state of encapsulated objects cannot change be-
tween method invocations of the bridge or balloon object; thus, the group of encapsulated
objects can be treated as a black-box and can be tested independently, allowing for mod-
ular verification [4, 48].

While conceptually simple, full encapsulation is highly restrictive. The requirement
that encapsulated objects may only reference other encapsulated objects is particularly
problematic, as it prohibits all sharing between encapsulated and unencapsulated objects.

To mitigate the restrictiveness of full encapsulation, islands and balloons unsafely
loosen the aliasing constraints for certain types of aliases (see Section 2.1.2.4 below).
However, this does not address the actual shortcomings of full encapsulation; Noble et al.
argue that this approach results in alias protection that is both too lax and too restrictive
at the same time [74].

Utting also proposes a full encapsulation scheme, which is based around the notion of
local stores [93]; this technique is an application of syntactic control of interference [93]

20

S
y
st
em

R
ef
er
en
ce
s
or

ob
je
ct

ac
ce
ss
es

S
ta
ti
c
or

d
y
n
am

ic
ch
ec
k
in
g

S
ta
ti
c
ve
rs
u
s

d
y
n
am

ic
al
ia
si
n
g

S
h
ar
ed

R
ea
d
-o
n
ly

B
or
ro
w
in
g

Is
la
n
d
s
[4
8
]

R
ef
er
en
ce
s

S
ta
ti
c

Y
es

N
o

Y
es

-
r
e
a
d

an
n
ot
at
io
n
s

Y
es

-
im

p
li
ci
t

w
it
h
d
y
n
am

ic
al
ia
si
n
g

B
al
lo
on

s
[4
]

R
ef
er
en
ce
s

S
ta
ti
c

Y
es

N
o

N
o

Y
es

-
im

p
li
ci
t

w
it
h
d
y
n
am

ic
al
ia
si
n
g

C
la
rk
e-
st
y
le

ow
n
er
sh
ip

ty
p
es

[2
7
]

R
ef
er
en
ce
s

S
ta
ti
c

N
o

Y
es

-
ob

je
ct
s
in

th
e
ro
ot

co
n
te
x
t

N
o

N
o

O
w
n
er
sh
ip

ty
p
es
:

J
O
E

[2
4
]

R
ef
er
en
ce
s

S
ta
ti
c

Y
es

Y
es

-
ob

je
ct
s
in

th
e
ro
ot

co
n
te
x
t

N
o

Y
es

-
im

p
li
ci
t

w
it
h
d
y
n
am

ic
al
ia
si
n
g

O
w
n
er
sh
ip

ty
p
es

w
it
h
in
n
er

cl
as
se
s
[1
5
]

R
ef
er
en
ce
s

S
ta
ti
c

N
o

Y
es

-
ob

je
ct
s
in

th
e
ro
ot

co
n
te
x
t

N
o

N
o

M
u
lt
ip
le

ow
n
er
sh
ip
:

M
O
J
O

[2
2
]
/

M
o
jo
jo
jo

[6
0
]

R
ef
er
en
ce
s

S
ta
ti
c

N
o

Y
es

-
ob

je
ct
s
in

th
e
ro
ot

co
n
te
x
t

N
o

N
o

D
y
n
am

ic
ow

n
er
sh
ip

ty
p
es

[4
0
]

A
cc
es
se
s

D
y
n
am

ic
N
o

Y
es

-
ob

je
ct
s
in

th
e
ro
ot

co
n
te
x
t

N
o

N
o

U
n
iv
er
se

ty
p
es

[6
8
]

R
ef
er
en
ce
s

S
ta
ti
c

N
o

L
im

it
ed

-
re
ad

-
on

ly
re
fe
re
n
ce
s

Y
es

-
re
ad

-o
n
ly

re
fe
re
n
ce
s

N
o

C
on

fi
n
ed

ty
p
es

[9
4
]

R
ef
er
en
ce
s

S
ta
ti
c

N
o

Y
es

-
al
l
in
st
an

ce
s

of
u
n
co
n
fi
n
ed

ty
p
es

N
o

N
o

O
w
n
er
sh
ip

d
om

ai
n
s
[2
]

R
ef
er
en
ce
s

S
ta
ti
c

N
o

Y
es

-
ob

je
ct
s
in

th
e
s
h
a
r
e
d
d
om

ai
n

N
o

N
o

B
oy
la
n
d
et

al
.’
s

ca
p
ab

il
it
ie
s
[2
1
]

A
cc
es
se
s

B
ot
h

N
o

Y
es

-
ob

je
ct
s
w
it
h
n
o

ex
cl
u
si
ve

ca
p
ab

il
it
ie
s

Y
es

-
ob

je
ct
s

w
it
h
ou

t
b
as
e

w
ri
te

ri
gh

t
Y
es

T
a
b
le

2
.1
:
P
ro
p
er
ti
es

of
in
fl
u
en
ti
al

ex
is
ti
n
g
al
ia
s
p
ro
te
ct
io
n
sc
h
em

es

21

S
y
stem

U
n
iq
u
en

ess
L
in
earity

M
u
ltip

le
ow

n
ersh

ip
O
w
n
ersh

ip
tran

sfer

E
n
cap

su
lation

p
olicy

Islan
d
s
[48

]
Y
es

-
ob

jects
an

n
otated

as
u
n
i
q
u
e

N
o

N
/A

N
/A

F
u
ll
en

cap
su
lation

B
allo

on
s
[4
]

Y
es

-
u
n
iq
u
e

referen
ces

to
b
allo

on
s

N
o

N
/A

N
/A

F
u
ll
en

cap
su
lation

C
larke-sty

le
ow

n
ersh

ip
ty
p
es

[27
]

N
o

N
o

N
o

N
o

T
ran

sitive
ow

n
ers-

as-d
om

in
ators

O
w
n
ersh

ip
ty
p
es:

J
O
E

[24
]

N
o

N
o

L
im

ited
-
d
y
n
am

ic
aliasin

g
L
im

ited
-
d
y
n
am

ic
aliasin

g
T
ran

sitive
ow

n
ers-

as-d
om

in
ators

O
w
n
ersh

ip
ty
p
es

w
ith

in
n
er

classes
[15

]
N
o

N
o

L
im

ited
-
in
n
er

classes
N
o

T
ran

sitive
ow

n
ers-

as-d
om

in
ators

M
u
ltip

le
ow

n
ersh

ip
:

M
O
J
O

[22
]
/

M
o
jo
jo
jo

[60
]

N
o

N
o

Y
es

N
o

T
ran

sitive
ow

n
ers-

as-d
om

in
ators

D
y
n
am

ic
ow

n
ersh

ip
ty
p
es

[40
]

N
o

N
o

L
im

ited
-
ex
p
orted

ob
jects

Y
es

T
ran

sitive
ow

n
ers-

as-d
om

in
ators

U
n
iverse

ty
p
es

[68
]

N
o

N
o

L
im

ited
-
ty
p
e
u
n
iverses

Y
es

-
ex
ten

sion
of

u
n
iverse

ty
p
es

[69
]

P
eer

ow
n
ers-

as-m
o
d
ifi
ers

C
on

fi
n
ed

ty
p
es

[94
]

N
o

N
o

N
/A

N
/A

M
o
d
u
le

en
cap

su
lation

O
w
n
ersh

ip
d
om

ain
s
[2
]

N
o

N
o

N
o

N
o

V
ariou

s

B
oy
lan

d
et

al.’s
cap

ab
ilities

[21
]

Y
es

-
ob

jects
w
ith

all
7

cap
ab

ilities
Y
es

N
/A

N
/A

V
ariou

s

T
a
b
le

2
.2
:
P
rop

erties
of

in
fl
u
en
tial

ex
istin

g
alias

p
rotection

sch
em

es

22

Figure 2.1: Alias protection with full encapsulation

described by Reynolds [84]. One local store contains and protects any number of objects.
All accesses to a group of objects must go through the local store which effectively acts
as a bridge or balloon. To mitigate the restrictiveness of full encapsulation, Utting’s local
stores support transferring objects from one store to another, providing added flexibil-
ity [93].

2.1.1.2 Uniqueness and linearity

Many alias protection schemes support the definition of unique references. A unique
reference is the only reference pointing to a particular object. It thus has exclusive access
rights to the object, allowing it to safely access, modify and move the object, even in the
presence of concurrency.

Uniqueness significantly simplifies reasoning about programs [28] and GC, as it re-
quires no reference counting [98]. Several programming languages, including Clean [81],
Mercury [44] and C++ [91], provide support for unique variables.

Figure 2.2 shows the semantics of uniqueness. A new reference to a unique object can
be added only when the previous reference has been removed.

To maintain uniqueness, a system must ensure that a unique reference remains the
only reference to an object. The simplest way to achieve this is to prohibit assignments of
unique variables, ensuring that once stored in a unique variable, a reference can never be
transferred to another variable. This approach is used by Almeida’s balloon types [4]: ref-
erences to balloon objects must be unique and this is enforced by prohibiting assignments
of variables referencing existing balloons.

Another less restrictive option is to modify the semantics of assignment to nullify the
original variable at the end of the assignment operation; we call this destructive assign-

23

Figure 2.2: Alias protection with uniqueness

ments. This approach is used by the auto ptr class template in C++ [91], by Minsky in
his proposal for unsharable objects [66] and by Hogg to support unique references [48].

Linear types, based on Girard’s linear logic [38], are a stricter approach to uniqueness:
in addition to being unique, a variable of a linear type must be used exactly once. (A
slightly looser version is affine linearity, where a linear variable must be used at most
once.) A good overview and formalisation of linear types is given by Wadler [98].

A linear variable is nullified at run time when it is read through a destructive read.
(This differs from the previous approach, where a variable can be used any number of
times and is nullified only on assignment.) Of course, if a variable is nullified as soon as
it is read, we can be certain that only one alias to the referenced object can ever exists.

Baker proposes use-once variables with linear semantics [7]; they are useful when
working with inherently linear objects such as input and output streams. Baker notes that
the requirement to use a variable exactly once leads to a slightly different programming
style: a function with a use-once variable must either pass it to another part of the system
to be used there or explicitly consume it. Baker claims that an experiment he conducted,
using use-once variables to program various benchmarks and algorithms, showed that this
linear style of programming is easy to adopt [7].

Kobayashi’s quasi-linear types [55] represent a middle-way between linear and unique-
ness types. Kobayashi argues that linear types have not been applied widely in practice
because they are highly restrictive; instead, he proposes quasi-linear variables which can
be used any number of times locally, but only once elsewhere in the program.

PacLang [36] uses a quasi-linear type system to simplify the programming of network
processors. It aims to protect data packets from concurrent accesses by multiple threads,
while facilitating easy flow of packets between threads. The type system allows only one
thread to reference a data packet at a time but allows multiple local references within
one thread. Kilim, an actor framework for Java, extends the unstructured data packets
used by PacLang [89] to support the passing of unique tree-structured objects between
processes.

Boyland argues that destructive reads and assignments for maintaining uniqueness
have several disadvantages [18]: they force the programmer to constantly restore nullified
values, increasing complexity; they may make a method appear to have more side-effects
than it actually does; they require modification of assignment semantics to fit with existing
programming languages.

Boyland also claims that destructive reads are often unnecessary if the nullified variable
is not used again. He proposes alias burying [18], which marks existing aliases as undefined
(buried) when a unique variable is read at run time. Accessing previous (now undefined)
aliases halts the program with an error. Boyland then shows that modular static analysis
can be used to identify programs where all buried aliases are dead (that is, never used

24

again). He argues that such programs do not require uniqueness at all; they execute in
exactly the same way with standard programming language semantics.

2.1.1.3 Ownership: owners-as-dominators and owners-as-modifiers

A number of alias protection schemes are based on the notion of object ownership: an
object owns its components and controls access to them. References (and thus accesses)
to components must pass through the owner, allowing it to remain in control of its rep-
resentation. Many alias protection schemes based on ownership can be type-checked at
compile time. A detailed overview and classification of ownership-based alias protection
schemes can be found in [26].

Two significantly different approaches to ownership have been highlighted in previ-
ous work: owners-as-dominators and owners-as-modifiers [22, 32]. In an owners-as-
dominators scheme, the owner objects fully control their owned object: all references
(and accesses) to the owned object must pass through the owners. Owners-as-modifiers
limits only write accesses to an object while allowing read accesses to bypass an object’s
owners [32]. This approach is problematic in concurrent settings, where unrestricted read
accesses may result in the observation of inconsistent object states.

Ownership schemes can be further categorised by whether they support single or mul-
tiple ownership. Single ownership results in the object graph forming a hierarchical tree
structure called the ownership tree, while multiple ownership produces a directed acyclic
graph.

While single ownership is conceptually simple, it has been widely criticised for limiting
sharing of objects, making it difficult to implement iterators and other idioms that require
sharing [15, 52]. Empirical studies have shown that a tree-shaped ownership structure
does not suit all programs [1, 67, 83]. For example, a study of heaps by Mitchell found
that multiple ownership was required by 75% of object structures [67].

Another important issue in ownership-based alias protection schemes is ownership
transfer, where an object is transferred from one owner to another. Most ownership-
based alias protection schemes do not support ownership transfer, as it does not fit well
with the static ownership system [27]; they require an object’s owner to remain the same
throughout its lifetime.

Mycroft and Voigt use the example of bank accounts to demonstrate that both mul-
tiple ownership and ownership transfer are common in the real world [70]. Shared bank
accounts, for example, require multiple ownership (with different owners having poten-
tially different access rights); transfer of ownership occurs when adding and removing
account holders. The authors argue that given its prevalence in real-world applications,
supporting both multiple ownership and ownership transfer in alias protection schemes is
desirable.

Nägeli similarly argues that both multiple ownership and ownership transfer are es-
sential in practice [71] after attempting to apply ownership-based alias protection to 23
design patters described by Gamma et al. [37].

Owners-as-dominators Owners-as-dominators stipulates that all references to an ob-
ject must pass through the object’s owners. In this section, we look at single-ownership
systems; extensions to support multiple ownership are discussed below.

In the simplest form of owners-as-dominators (which we call strict owners-as-dominators),
an object can be accessed only by its owner. This situation is shown in Figure 2.3a.

25

Strict owner-as-dominators is rather restrictive; it enforces a rigid tree-structured ob-
ject heap, where references can go only from the owner to the owned object. Such a tree
structure is difficult to achieve in practice, as it does not allow any sharing of objects to
occur at all.

To gain more flexibility, we can slightly relax the ownership condition, allowing ob-
jects with the same owner to access each other. We call this peer owners-as-dominators.
Figure 2.3b shows which references are now allowed; the legal references in peer owners-
as-dominators are a superset of the legal references in strict owners-as-dominators.

Transitive owners-as-dominators, shown in Figure 2.3c, relaxes the ownership condi-
tion even further; the references it allows are a superset as those legal in peer owners-as-
dominators.

Transitive owners-as-dominators stipulates that all accesses to an object must pass
through the object’s owner:

• References may go at most one level down the ownership tree, from an object to the
objects it owns. For example, in Figure 2.3c a reference from o1 to o2 is permitted.
However, o1 may not reference o3 as such a reference would bypass o3’s owner, o2.

• References may go any number of levels up the ownership tree, from within an object
to the outside. For example, a reference from o3 to o4 is permitted. If we look at
the entire reference path from the root of the ownership tree (o1) through o3 to o4,
we can see that the path passes through o4’s owner, o1.

• As a result of the above rules, the objects at the top-level of the ownership tree (for
example o1) are shared and accessible to all other objects. They can be reached
from every object in the system by going any number of levels up the ownership
tree and at most one level down.

In their seminal paper “Ownership types for flexible alias protection”, Clarke et al.
introduce ownership types [27], a transitive owners-as-dominators system. Since the orig-
inal proposal, many extensions to ownership types have been proposed (as we discuss
below). We use the term Clarke-style ownership types to refer to the original ownership
types proposal.

Clarke-style ownership types grew out of work on flexible alias protection by Noble
et al. [76] which aimed to address the limitations and inflexibility of full encapsulation
schemes such as Hogg’s islands and Almeida’s balloons [74]. In a major departure from
full encapsulation systems, it allows encapsulated objects to reference unencapsulated
objects (without the referenced objects also becoming encapsulated). This significantly
increases the flexibility of Clarke-style ownership types compared to full encapsulation
systems [42].

Clarke et al. explain that in Clarke-style ownership types “each object owns a con-
text, and is owned by the context that it resides within” [27]. These contexts form the
object’s interior and exterior. Clarke-style ownership types are a single-ownership transi-
tive owners-as-dominators scheme; they ensure that all reference paths to an object pass
through its single owner context.

Every variable is annotated to specify its aliasing properties. The annotation rep

signifies that the object stored in the variable is owned by the object which declares
variable. Ownership types provide “object protection” [27]: the rep context is different
for each object, including for different objects of the same class. Therefore, unlike for

26

(a) Alias protection with strict owners-as-dominators

(b) Alias protection with peer owners-as-dominators

(c) Alias protection with transitive owners-as-dominators

27

Figure 2.4: Ownership structure of the LinkedList example

example in Java, private (that is, owned) representation members cannot be accessed by
other objects of the same class [27].

Alternatively, references may be annotated with norep, in which case the object is
owned by the entire system and may be accessed from anywhere [27]; norep objects
reside at the top-level of the ownership tree.

In addition to rep and norep, Clarke-style ownership types include a third annotation
called owner. An object stored in an owner reference has the same owner as the object
holding the reference. In the example below, a LinkedList implementation owns the
first Node in the list (head) and each subsequent Node (next) has the same owner – the
LinkedList:

class LinkedList {

rep Node head;

}

class Node {

owner Node next;

}

A visual overview of the ownership structure in this example is shown in Figure 2.4; solid
arrows show references, while dotted arrows represent ownership.

This example illustrates the interesting property of Clarke-style ownership types that
the owner of an object does not need to have a direct reference to it. This is legal in
transitive owners-as-dominators, since the path to the indirectly referenced owned object
still passes through the owner.

Clarke-style ownership types further support context parameters which allow different
objects of the same class to exhibit different ownership properties. This significantly
increase the flexibility of Clarke-style ownership types – much in the same way as generic
types. Clarke et al. call this owner polymorphism [26].

A class can declare one or more context parameters. When an instance of the class is
created, instantiations for the context parameters must be provided. These instantiations
can be rep, norep, owner or another context parameter. Instead of declaring references
as rep, norep or owner, a class can use its context parameters to annotate references.
This means that the exact ownership behaviour depends on the values of the parameters
provided when an object of the class is instantiated. Consider the following example taken
directly from [27]:

class Pair<m, n> {

m X fst;

28

n Y snd;

}

Here, Pair<rep, rep> is a Pair which owns both fst and snd. Pair<rep, norep>,
on the other hand, is a Pair which owns only fst, while snd is accessible to the entire
system.

Similarly to the owner annotation, context parameters can be used when an object
does not hold a direct reference to an owned object. Instead, it can pass along its rep
context as a context parameter. For example, this version of LinkedList is equivalent to
the previous one which used owner annotations:

class LinkedList {

rep Node<rep> head;

}

class Node<m> {

m Node<m> next;

}

Criticisms: Clarke-style ownership types have been criticised for their single-ownership
model, which is too restrictive to implement many common design patterns and program-
ming idioms [15, 22, 25, 32, 57, 74]. Clarke-style ownership types also lack support for
ownership transfer.

A further criticism of ownership types is their lack of support for inheritance [27].
Early ownership type papers considered only a simple programming language without
inheritance and did not describe how ownership types could work in its presence [25, 68,
94]. Clarke et al. address this criticism in follow-up papers [24, 25], noting that in the
presence of subtyping, an object’s owner must remain invariant, while its representation
context may vary [25].

Some authors have also criticised context parameters, arguing that, although they
increase flexibility, they are quite complex to use [82].

Owners-as-modifiers Unlike owners-as-dominators, owners-as-modifiers limits only write
accesses to objects. We again distinguish between strict owners-as-modifiers, peer owners-
as-modifiers and transitive owners-as-modifiers.

Universe types first proposed by Müller et al. in 1999 [68] is an example of a peer
owners-as-modifiers system. Each object is associated with a partition of the object store
called its universe which contains the object’s representation. An object can be in only
one universe, making universe types a single-ownership scheme.

An object may reference and modify objects belonging to its own universe and two
objects in the same universe (that is, sharing the same direct owner) may modify each
other freely. All other references across universe boundaries must be read-only references
which cannot be used to modify objects [32, 68]. Read-only references can experience
observational exposure: although they cannot themselves modify an object, they can
observe changes in the object [26].

Universe types can be checked statically and have been formalised and proven using
Isabelle/HOL [54].

Müller et al. argue that universes are more flexible than Clarke-style ownership types
because of their owners-as-modifier approach [32, 68]. They suggest that iterators for

29

collections could be implemented by having read-only references to the items in the col-
lection; this would allow the iterator to traverse, but not modify, the collection. When
the iterator needs to make modifications, it could delegate these to the collection [32].

Nevertheless, universe types still suffer from similar shortcomings as Clarke-style own-
ership types, since they do not support multiple ownership or ownership transfer. Al-
though an iterator implementation as described above is feasible, universes remain unable
to model iterators and collections as closely collaborating, trusted objects which share
full access rights to the collection objects.

Extensions to ownership-based systems We now look at various extensions that
have been proposed to ownership-based alias protection schemes such as Clarke-style own-
ership types and universe types.

Dynamic ownership: Some work has been done on applying the static concept of own-
ership to dynamically-typed and prototype-based languages [40, 75]. Gordon et al., for
example, implement dynamic ownership in the language ConstrainedJava [40]. Ownership
information for every object is stored in a special owner field [75] and is used to check the
validity of method calls at run time; any invalid method calls (that is, calls to an object’s
method where the access path does not pass through the object’s owner) raise an excep-
tion. This dynamic checking of ownership information causes execution overheads [75].
Gordon et al., for example, report a performance decrease of 40 to 50 percent compared
to statically-checked ownership types [40].

Dynamic ownership types represent a major departure from previous work on owner-
ship types because it does not restrict aliasing itself but ensures that no messages can be
sent through illegal aliases. We take the same approach in our work on aliasing contracts,
as explained in Chapter 3.

Gradual ownership: Wrigstad et al. note that a significant disadvantage of many ownership
types systems is their “all-or-nothing approach” [101]. Partially annotating a program
with ownership types does not usually produce any guarantees about encapsulation. This
problem is addressed by Sergey et al.’s gradual ownership types [86]: partially annotated
programs are checked at run time, while fully annotated programs are checked statically
as in previous work. This allows programmers to gradually migrate programs with no
ownership types to fully annotated programs. The authors argue that such a migration
is analogous to a move from untyped to typed code, as supported by gradual typing [87].

External uniqueness: While uniqueness, as described in Section 2.1.1.2 above, simplifies
reasoning about programs, it can also be quite restrictive as it completely disallows any
sharing of objects. Clarke et al. [28] and Wrigstad [100] propose external uniqueness, an
application of the ownership concept to uniqueness. Their proposal loosens uniqueness
constraints to allow any number of internal references within aggregate objects but only a
single external reference [28]. The authors argue that internal references to an aggregate
object which do not cross encapsulation boundaries are innocuous since they do not
affect how the aggregate is viewed externally. External references on the other hand are
dangerous and should be restricted to allow only one unique reference [28].

Clarke et al. note that external uniqueness differs from Clarke-style ownership types
in that it “refines the object graph property underlying ownership types from dominating

30

Figure 2.5: An example of forbidden references in external uniqueness

nodes to dominating edges” [28]; Clarke et al. call this owners-as-dominating-edges [26].
Any references to the aggregate object must pass through the single external reference,
rather than the single owning object.

The difference becomes clear, if we consider an object o which owns two externally
unique objects o1 and o2. With Clarke-style ownership types, o1 and o2 could reference
and access each other since they are owned by the same object. With external uniqueness,
all references to o1 must pass through the externally unique reference held by o; thus, o2
cannot hold a reference to o1. We can see external uniqueness as a transitive owners-as-
dominators system which disallows references between (externally unique) peers. This is
shown in Figure 2.5.

Ownership transfer: Ownership transfer is not supported by most ownership systems;
an exception to this is Müller et al.’s work on ownership transfer in universe types [69].
The authors apply the concept of external uniqueness [28] to ownership transfer. They
present UTT, an extension of universe types, which allows a cluster, or group, of objects
to be transferred from one owner to another. UTT uses modular, intraprocedural static
analysis to ensure that references to clusters are externally unique at the time of ownership
transfer [69].

Gordon et al.’s dynamic ownership types also support ownership transfer [40]. Per-
mission for ownership transfer must be granted by the object’s current owner.

Multiple ownership: One major criticism of many existing ownership-based alias protec-
tion schemes is their lack of support for multiple ownership. Like ownership transfer,
multiple ownership is difficult to capture in simple, static type systems.

A first step towards allowing multiple ownership is taken by Boyapati et al. [13, 15].
They allow objects of inner classes to access rep objects of their containing outer object.
This represents a very restricted version of multiple ownership, where the representation
of the outer object is effectively owned by both the outer object and the inner object;
however, this does not significantly change the underlying single-ownership model and its
associated limitations.

Gordon proposes a limited form of multiple ownership for dynamic ownership types,
allowing one object to export another, thus giving both objects the same ownership con-
text [39]. After the export operation, the exported and exporting object occupy the same
place in the ownership tree; this means that they have the same owner and own the same
objects. The objects owned by the exporting object have effectively gained the exported
object as a second owner.

31

Cameron et al. implement full multiple ownership in the language MOJO, a rela-
tively simple extension of existing single-ownership languages [22]. Unlike other ownership
schemes, this system is descriptive rather than prescriptive; it does not attempt to en-
force an owners-as-dominators discipline. Instead, it relies on a powerful effect system to
detect interference between computations. However, the required effect specifications are
arguably complex for users to define and significantly increase the annotation overhead.

In follow-up work, Li et al. present Mojojojo, a successor to MOJO. Mojojojo uses exis-
tential types and generics, allowing more expressiveness than is possible with MOJO [60].
For example, in Mojojojo different instances of the same class can have a different number
of owners. The authors also claim that the formal foundation of Mojojojo is smaller and
less complex than that of MOJO.

Östlund et al. propose ombudsmen-as-dominators, supporting the definition of mul-
tiple bridge objects (or ombudsmen) to a shared representation [79]. Their work can be
seen as a further simplification of Mojojojo [26].

Östlund et al. explain that in ombudsmen-as-dominators “every path from a root in the
system to an object in an ombudsman-dominated context contains one of the context’s
ombudsmen” [79]. In addition to their private (that is, standard) ownership contexts,
objects at the same level of the ownership tree share a common ombudsman-dominated
context with shared objects. The authors use the term ombudsman to emphasise that
the ombudsmen work together in a “benevolent” [79] manner.

Although ombudsmen-as-dominators allows some multiple ownership (and can for ex-
ample be used to implement iterators), unrestricted multiple ownership is not possible;
objects sharing a multiply-owned object must be at the same level of the ownership tree.

Generics: A common criticism of ownership-based alias protection schemes is the anno-
tation overhead they cause. This is particularly true in languages which already support
type genericity; adding ownership types and particularly ownership genericity (like con-
text parameters in Clarke-style ownership types) significantly increases the complexity for
programmers. To address this problem, Potanin et al. present work combining ownership
information with other generic type information so that both can be expressed in a single
parameter space [82, 105].

Ownership inference: Another approach to reducing the annotation overhead for pro-
grammers is the development of ownership annotation inference tools. Several such tools
have been developed for Clarke-style ownership types, including dynamic [99] and static
approaches [65].

Dietl et al. present a tool to dynamically infer universe type annotations [33]. Their
system observes a program at run time, deducing ownership relationships between ob-
jects. A static universe type inference tool which uses programmer annotations to infer
ownership relationships has also been developed [31].

Effects: Several authors recognise that ownership provides a suitable base for effect sys-
tems. Clarke et al., for example, extend ownership types to add effects reporting [24]. In
their system, a method is annotated with the effects that it causes; that is, the objects it
reads and writes. Since ownership contexts correspond to objects, the authors use them
as a basis for declaring effects.

Lu et al. propose combining ownership with an effect system to ensure that an ob-

32

ject’s invariant remains valid. Their work does not restrict read accesses, resulting in an
owners-as-modifiers system [61].

Owners-as-local-dominators: Cameron et al. use the language Tribe which supports nested
classes for the implementation of an ownership system [23]; they call their approach tribal
ownership. The lexical nesting of classes defines the program’s ownership structure. All
instances of a class are owned by the object enclosing the class.

The authors show how various encapsulation policies, including standard owners-as-
domi-nators and owners-as-modifiers can be modelled using tribal ownership. They also
introduce a new encapsulation policy which they call owners-as-local-dominators. Owners-
as-local-dominators enforces standard owners-as-dominators encapsulation for local sub-
heaps instead of the entire heap.

Applications of ownership: Since being proposed, ownership types have been used for a
variety of purposes, for example safe memory management in real-time Java programs [17],
prevention of data races and deadlocks [14, 16], program verification [8, 34] and software
visualisation [45].

For example, Boyapati et al. adapt Clarke-style ownership types to statically pre-
vent data races and deadlocks [14, 16]; this approach is often called owners-as-locks [26].
Owners-as-locks is based on the idea that if a thread owns a particular object (that is, it
owns the root of the ownership tree containing the object) it can safely access and modify
the object since no other thread can simultaneously own the same object. Essentially,
ownership acts as an implicit locking mechanism.

Owners-as-dominators completely locks an object, restricting both read and write
accesses, while owners-as-modifiers represents only a partial locking mechanism. Because
it does not restrict read accesses, owners-as-modifiers is problematic in the context of
concurrency.

The Spec# programming language [11], an extension of C#, uses ownership to ad-
dress the indirect invariant effect. Spec# supports the definition of software contracts,
including method preconditions, postconditions and object invariants. It uses an owners-
as-modifiers system to avoid object invariants being invalidated through aliasing refer-
ences [10, 59]. Invariants must only use directly or transitively owned objects which can
thus be modified only by the owner.

Spec# uses dynamic ownership, but the powerful static verifier Boogie can check many
programs at compile time [9]. Dynamic ownership can easily support transfer of objects
between different owners, providing additional flexibility [59].

Jacobs et al. extend Spec#’s ownership with an owners-as-locks system similar to that
of Boyapati et al. to support concurrency control [50].

2.1.1.4 Module encapsulation

Rather than encapsulating objects inside other objects, we can encapsulate objects inside
entire program modules, making them accessible to all other objects in the module; we call
this module encapsulation. This type of encapsulation is provided by confined types [94]
and type universes of universe types [68].

Figure 2.6 illustrates module encapsulation. An encapsulated object can be accessed
only by other objects in the same module. Unencapsulated objects provide the interface
to the module. We can essentially see module encapsulation as full encapsulation with a

33

Figure 2.6: Alias protection with module encapsulation

number of bridge or balloon objects which form the connection between unencapsulated
and encapsulated objects. However, a major difference between module encapsulation
and full encapsulation is that references from encapsulated to unencapsulated objects are
generally allowed in module encapsulation, as shown in Figure 2.6 (but such references
are impossible in full encapsulation as we explained in Section 2.1.1.1).

Confined types [42, 94, 95] use module encapsulation. A type is confined in a domain
(or module) if all instances of the type are referenced only within the domain; no references
to objects of confined types may be leaked outside of the domain. The domain essentially
defines a bound on where a confined object can flow. Originally presented as an informal
mechanism [94, 95], confined types were later formalised using a static type system [102,
103].

Vitek et al. extend Java to add annotations for the definition of confined types [94, 95].
They use packages as domains of confinement since they are already a standard language
mechanism supported by access modifiers.

Clarke et al. note that confined types require very few annotations to express aliasing
properties (a Java class simply has to be annotated as confined) but that this comes
at the cost of decreased expressiveness [26]. Confined types operate at a much coarser
level of granularity than ownership-based systems [25] and do not provide encapsulation
at the object level but rather at the class level [32]. All instances of a class are either
encapsulated inside a package or not. In other systems, encapsulation applies separately to
each object; thus, it is possible for objects of the same type to have different encapsulation
and aliasing characteristics.

Universe types also include module encapsulation features. Although mainly enforcing
an owners-as-modifiers aliasing policy, they also include so-called type universes [68] which
use module encapsulation.

Every type T in module M has an associated type universe. Every object of type T’

which is declared in the same module M is an owner of the type universe of T. Thus, objects
in the type universe of type T can be accessed by all objects whose type is declared in

34

module M.
Type universes can be used when several owner objects are required; in order to be

able to share representation, the types of all owner objects must declared be in the same
module.

Müller et al. argue that while module encapsulation such as that used by type universes
decreases the amount of control over aliasing (for example, it cannot separate objects in
two different collections of the same module) it still enables modular reasoning, since all
code which can cause changes to an encapsulated object must be located in the same
module [68].

2.1.1.5 Systems supporting multiple policies

So far, we have considered systems which implement one particular aliasing policy. In
this section, we discuss alias protection schemes which support several different aliasing
policies.

Ownership domains Aldrich et al. propose ownership domains, intended to be a more
flexible alternative to ownership types, which is expressive enough to define common
constructs such as iterators and recursive data structures [2, 57]. They can be seen as
a generalisation of ownership types [2]. Each object can declare any number of separate
domains (instead of a single implied owned context) and arbitrary links between domains
can be specified. Ownership domains developed out of Aldrich et al.’s earlier work on
AliasJava [3].

An important contribution of ownership domains is the separation between the own-
ership mechanism (determining which object owns which other objects) and the aliasing
policy (determining who can access an object). These two concepts were previously tied
together: ownership types establish the owner of an object and at the same time stipu-
late that all accesses to the object must come through the owner. Aldrich et al. argue
that decoupling these mechanisms makes ownership domains both more precise and more
flexible than ownership types [2].

Objects are collected in ownership domains; an object’s domain is specified when it
is created. There is a top-level domain called shared which contains objects that can be
accessed globally. Links and relationships between domains may also be specified, giving
one domain access rights to another domain.

Specifically, object o1 in domain d1 can access object o2 in domain d2 if an only if:

• d1 has been given explicit access permissions to domain d2; or

• d2 is the top-level domain shared; or

• d1 and d2 are in fact the same domain; or

• o1 declares domain d2; or

• o1 has access to another object which declares a public domain d2 [2].

Like Clarke-style ownership types, ownership domains do not support multiple own-
ership (that is, each object is in exactly one domain) or ownership transfer (that is, an
object stays in the same domain throughout its lifetime).

35

Domain access permissions are not transitive. If Domain A has access to Domain B

and Domain B has access to Domain C, this does not necessarily mean that Domain A has
access to Domain C.

The validity of a program with ownership domains can be verified at compile time by
checking that no inter-domain accesses occur unless the appropriate permissions are in
place [57].

Abi-Antoun et al. present an implementation of ownership domains for Java using
annotations [1]. They use their tool to annotate two 15000-line programs and summarise
their experience. The authors report several advantages of using ownership domains,
including their ability to expose tight coupling. On the other hand, they criticise the lack
of support for multiple ownership and ownership transfer.

Capability and permission systems In 2001, Boyland et al. introduced run-time
capabilities which can model various aliasing policies [21]. A capability is an access right
which one must quote to be able to indirect on a given reference. Boyland’s capabilities
combine each object reference with a set of access rights, specifying if the possessor of the
reference has the right to access or modify the object to which the reference points.

Boyland et al.’s work includes seven different access rights. Three primitive access
rights provide read access, write access and identity access (for checking the identity
of an object; for example, to perform x == y identity capabilities for both x and y are
required). Three corresponding exclusive access rights guarantee exclusive read, write and
identity access, stripping incompatible access rights of other capabilities where necessary.
Exclusive access rights can be seen as “negative” [21] access rights; they do not give access
rights to their associated capability but deny access rights for all other capabilities. For
example, a capability with the exclusive write but without the base write access right
cannot write the associated object, while also preventing all other capabilities from doing
so.

The final access right, ownership, is used to resolve conflicts between incompatible
capabilities. Although identical in name, the ownership capability is semantically quite
different from the concept of ownership we discussed in Section 2.1.1.3. A capability
with the ownership right can strip access rights from other, incompatible capabilities; a
capability which lacks the ownership right cannot remove incompatible access rights from
a capability with ownership rights.

In later work, Boyland proposes fractional permissions [19]; a good overview and
formalisation of fractional permissions is given in [20]. Whenever an alias to an object is
created, permissions for the object are split into smaller fractional permissions (all adding
up to one). In order to modify an object, a whole permission is required; reading an object
requires only a fractional permission. Thus, read accesses can coexist but modifications
are only possible if there is a single, whole permission for the object. The elegance of
Boyland’s work lies in the fact that this is enforced automatically as permissions are split
and merged.

Haller et al. introduce compile-time capabilities which serve as names for disjoint heap
regions and represent access permissions to that heap region [43]. Holding a capability
gives access rights to variables in that heap region. Variables are “guarded” [43] by
capabilities and can only be accessed if the capability associated with the heap region
containing the variable is available. The type checker statically ensures that the required
capabilities are always available when an access occurs in the program.

36

Capabilities and permissions can be seen as a unifying approach to alias protection;
they can model various aliasing policies, including uniqueness and ownership. Uniqueness
can be enforced by ensuring that, when an assignment occurs, the capability or permission
to access the unique object is transferred from one variable to another; the old reference
loses its access rights, ensuring that it cannot access the object in the future. This
approach is quite similar to alias burying, as errors occur only when a buried reference
(without capabilities) is used.

With Boyland et al.’s capabilities [21], a reference holding all capabilities, including
all base rights, all exclusive rights and the ownership right, is a unique reference. The
object to which it points cannot be modified through other references because of the
exclusive access rights. The reference’s capabilities cannot be easily stripped away by
other capabilities because it possesses the ownership right. Linearity can be modelled
by stripping away all access rights every time a reference is read, making the reference
unusable for future accesses. This enforces affine linearity, but cannot ensure that a
variable is used exactly once (as is required for true linearity).

Zhao et al. show how fractional permissions can be used to encode owners-as-dominators
and owners-as-locks encapsulation [104]. While it is possible to model such complex alias-
ing policies using capabilities and permissions, we note that this is complex and unlikely
to be suitable for most software developers. This complexity limits the usefulness of
capabilities and permissions as a unifying approach.

2.1.2 Other characteristics

We now consider various other properties of alias protection schemes and give examples
of systems which exhibit the different characteristics.

2.1.2.1 References and object accesses

There are two distinct approaches to restricting aliasing: some systems restrict which
aliases can exist; we say that they restrict references. An alternative approach is to
allow any references to exist but limit under which circumstances they can be used to
access objects; we say that such systems restrict object accesses. Clarke et al. use slightly
different terminology to describe this, distinguishing between systems enforcing topological
restrictions and systems enforcing encapsulation [26], but we find our terminology more
intuitive.

Reference restrictions are commonly used in existing alias protection schemes. Clarke-
style ownership types [27], Universe types [68], islands [48] and balloons [4] all take this
approach. Gordon et al.’s dynamic ownership types [40] and Boyland et al.’s capabil-
ities [21], on the other hand, are examples of systems which check the relevant access
rights only when an object is accessed. Yu et al.’s work on combining ownership with
an effect system also allows references to be leaked but restricts when they can be used
to perform object accesses [61]. This approach makes sense in the presence of an effect
system (which can be used to ensure that no illegal object accesses occur).

Although these two approaches to alias protection differ significantly, both provide
the same encapsulation guarantees. While some systems prohibit the introduction of a
particular reference, other systems may allow the reference to exist but later prohibit any
object accesses through it, effectively rendering it useless.

37

2.1.2.2 Static and dynamic checking

Although some existing alias protection schemes require dynamic checking, the majority
of schemes can be checked at compile time.

Systems which restrict references rather than object accesses can usually be checked
statically. They achieve this by ensuring that references cannot be assigned from a variable
with one set of aliasing properties to a variable with different properties. For example,
an object stored in a standard variable cannot be assigned to a unique variable because
we do not know how many aliases point to the object at the time of the assignment. An
object in a unique variable, however, can safely be moved to another unique variable,
since we know that there is only one reference to it.

Systems which restrict object accesses cannot usually be checked statically. The va-
lidity of an object access depends on the aliasing structure of the program at the time the
access occurs at run time. This makes compile-time checking undecidable in the general
case. Gordon et al.’s dynamic ownership types, for example, use dynamic checking [40];
Boyland et al. suggest that some programs involving their capabilities can be checked
using static analysis, while others require run-time checks, but do not give further de-
tails about the proposed static analysis [21]. Their approach is similar to type checking
in dynamically-typed languages such as Python, where some programs can be checked
statically while others require dynamic checks.

Both static and dynamic checking have some advantages and disadvantages, similar
to the trade-offs between static and dynamic type checking. Static checking allows errors
to be discovered before the program is executed, while dynamic checking requires exe-
cuting the part of the program that contains the error. Static checking also ensures that
alias protection has no effect on the program’s execution and does not incur run-time
performance overheads.

On the other hand, static alias protection schemes are usually less flexible than dy-
namic schemes. They require checking to be conservative in order to discover all possible
errors and report errors when there is not enough information available at compile time
to prove correctness. For example, an object stored in a standard variable can be safely
transferred to a unique variable if only one reference to the object exists at the time of the
transfer. Static schemes would reject such an assignment as they cannot prove at compile
time how many references to the object will exist. This is similar to the conservative
approach used by languages with static type checking such as Java: conversions between
types which cannot be proven correct at compile time generate compilation errors and
require explicit type casts (which are checked only at run time).

2.1.2.3 Temporal and spatial aliasing

Mycroft and Voigt introduce a distinction between temporal and spatial aliasing [70].
Spatial aliasing is the traditional and most common notion of aliasing: it occurs when
two or more references to the same object exist at the same time. This is distinct from
temporal aliasing, where one reference to an object is used multiple times.

Modern OO programming languages allow both spatial and temporal aliasing: an
object can be referenced by several variables and each alias to it can be used any number
of times.

Many alias protection schemes, such as Clarke-style ownership types [27], islands [48]
and balloons [4], limit the spatial aliasing of encapsulated objects. To enable limited

38

sharing of objects, most systems still allow several aliasing references to encapsulated
objects; thus, spatial aliasing is limited but not prohibited. No attempt is made by these
systems to address temporal aliasing.

Uniqueness types disallow spatial aliasing completely by ensuring that only one ref-
erence to a unique object can exist at any time; the unique reference can be used any
number of times (allowing temporal aliasing). Linear types go further and prohibit both
spatial and temporal aliasing: a unique reference to an object can be used only once
before it is consumed. Kobayashi’s quasi-linear types provide a middle ground: temporal
aliasing of a variable is possible only in a limited, statically determined scope.

2.1.2.4 Static and dynamic aliasing

In addition to the distinction between temporal and spatial aliasing, some aliasing pro-
tection systems distinguish between static aliasing and dynamic aliasing [4, 48, 49]. Dy-
namic aliasing involves stack-based variables such as local variables and method argu-
ments; these are easy to track and relatively transient as they disappear at the end of a
method’s execution. Static aliasing, on the other hand, involves instance variables and
is thus more permanent. Hogg argues that this makes it significantly more problematic
since static aliases “can cause unpleasant surprises at an arbitrarily distant point in an
execution” [48].

Some alias protection schemes allow unlimited dynamic aliasing and restrict only static
aliasing. Hogg’s islands [48] and Almeida’s balloons [4] take this approach to lessen the
restrictiveness of full encapsulation, allowing dynamic aliases from unencapsulated to
encapsulated objects. While this increases flexibility [76], it also allows encapsulation
to be broken temporarily by dynamic aliases, compromising the safety of these alias
protection schemes [27].

In addition to standard balloon types which may be aliased dynamically, Almeida pro-
poses opaque balloons which disallow both static and dynamic aliases to their internals [4].
Almeida remarks that “opaque balloons have so many ‘nice’ properties that it can even
be argued that all balloons should be opaque” [4] but does not address this further in his
paper.

Clarke et al. also introduce the distinction between static and dynamic aliases in their
work on ownership types [24], allowing dynamic aliases to temporarily break the owners-
as-dominators property. They argue that this makes their system more expressive, for
example allowing the implementation of iterators. However, this compromises safety and
requires a disciplined approach from programmers.

2.1.2.5 Sharing

Most alias protection schemes support the definition of shared objects, whose reference
semantics are equivalent to the default aliasing policy in most languages: they can be
aliased freely and used by any part of the system.

For example, ownership domains [2] provide a special domain called shared for ob-
jects accessible from anywhere in the system. For confined types [94], all instances of
unconfined types are shared. With Boyland et al.’s capabilities [21], an object with no
exclusive capability applying to it can be shared freely. Several other systems, including
AliasJava [3], provide a shared annotation.

39

Sharing properties vary in different versions of owners-as-dominators and owners-as-
modi-fiers. For transitive owners-as-dominators and owners-as-modifiers, all objects at the
top level of the ownership tree are shared, because they can be accessed by any objects
at the same or lower level of the ownership tree. This corresponds to norep objects in
Clarke-style ownership types [27].

On the other hand, shared objects do not fit well with strict and peer owners-as-
dominators and owners-as-modifiers semantics. In strict owners-as-dominators and owners-
as-modifiers systems, the objects at the top of the ownership tree may not be accessed by
any other object (as they have no owner). In peer owners-as-dominators and owners-as-
modifiers schemes, the objects at the top of the ownership tree can access each other, but
they still cannot be accessed by objects below them. As a result, top-level objects are not
in fact shared among the entire system. Universe types [68] as a peer owners-as-modifiers
system thus does not have globally shared objects (although all objects may be read from
anywhere in the system).

Full encapsulation systems, such as Islands [48] and Balloons [4], also do not have
globally shared objects. Encapsulated objects can be referenced only by other encapsu-
lated objects and unencapsulated objects can be referenced only by other unencapsulated
objects. As we explained in Section 2.1.1.1 references from unencapsulated to encapsu-
lated objects are illegal and references from encapsulated to unencapsulated objects are
impossible.

2.1.2.6 Borrowing

Borrowing allows temporary aliasing of objects; an object’s owner can temporarily give
access (or aliasing) rights for an object to another part of the system, for example for
the duration of a method call. A borrowed reference may not be stored permanently, for
example in a field, and only exists for a limited period of time. This adds flexibility to
alias protection systems, by allowing a reference to be leaked to and used by another part
of the system temporarily. We can see borrowing as a time-limited alternative to shared
objects.

Many systems support some form of borrowing, often through annotations which may
be called borrowed, limited, temporary, unique, unconsumable or lent [21].

Systems which allow unrestricted dynamic aliasing, including Hogg’s islands [48],
Almeida’s balloons [4] and Clarke et al.’s extension to ownership types [24], implicitly
support borrowing by allowing temporary (dynamic) references to protected objects.

Universe types [68] differentiate between read-only references and references with full
access rights. We can see read-only references in universe types as a different kind of
borrowing: they restrict what can be done with a borrowed reference, while standard
borrowing restricts the duration for which a borrowed reference can be used.

2.1.2.7 Immutability

In the context of aliasing, it becomes important to distinguish between mutable and im-
mutable objects. Immutable objects can always be aliased freely, since they cannot be
modified [41, 62, 76]. This means that none of the disadvantages of aliasing described
above apply to immutable objects. As MacLennan puts it, “they exhibit referential trans-
parency : there is never any danger of one expression altering something which is used by
another expression. Any sharing that takes place is hidden from the programmer” [62].

40

Immutable objects are often used to represent constant values and abstractions which
never change and exist only once, such as numbers or Strings in Java. Mutable objects,
on the other hand, are used to simulate the real world; they are created and destroyed
and their state changes over time [62].

Given the significance of immutability for aliasing, many alias protection schemes
provide ways of making an object or a reference immutable. However, the semantics of
immutability vary.

In some systems, immutability protects the reference; it cannot be changed to point
to another object. This does, however, not mean that the object stored in the reference
cannot be changed. C++’s const [91], Scala’s val [77] and Java’s final [6] keyword
produce these semantics.

Alternatively, immutability may ensure that a given reference is not used to modify
the object to which it points; however, this does not necessarily protect the object from
changes, which may be made via aliasing references. These are the semantics of read-only
references in universe types.

In yet other systems, immutability protects the objects themselves, so that they can
never be modified. The read annotation in Hogg’s islands, for example, protects the object
stored in the reference from modifications, rather than just the reference itself [48]. Scala
also includes the concept of immutable objects [77]. Similar semantics are introduced
by Grogono et al. [41] and MacLennan, who distinguishes between values, which are
immutable, and objects, which are mutable [62].

Boyland et al.’s capabilities [21] can be used to model the last two semantics of im-
mutability. A capability with no write access right cannot modify an object. However,
this does not prevent the object being modified through other aliases. On the other hand,
a capability holding an exclusive write access right but no base write protects the object
to which it points from modification. It cannot modify the object to which it points itself
since it does not have the base write access right; at the same time, the exclusive write
access right ensures that the object cannot be modified through other references.

2.1.3 Limitations of existing work

As our discussion above shows, there is a huge variety of alias protection schemes with
many different properties, every one of them with its own advantages and disadvantages.

However, there is little empirical software engineering research about which alias pro-
tection properties are actually useful. Any empirical research that exists is small in scale.
We know of no studies conducted with actual software developers. Instead, most studies
are undertaken by the authors themselves or university students on small systems or ex-
ample design patterns. As a result, we really have no idea what software developers want
or need in terms of alias protection.

Another problem is the lack of a unifying system or theory. While capabilities, which
can be used to model several different alias protection policies, represent a small step in
this direction, their approach is very low-level. Modelling complex encapsulation policies
such as transitive owners-as-dominators is difficult. While possible in theory, we cannot
envisage actual software developers doing this.

Many existing alias protection systems are too inflexible for practical use. For example,
sharing between encapsulated and unencapsulated objects is often difficult to implement.
Most ownership-based systems lack support for ownership transfer and multiple ownership

41

which is essential for modelling common idioms such as iterators. We suggest that when
encountering such issues, software developers may “solve” the problem by simply reverting
to using shared objects (with standard reference semantics), such as norep objects in
Clarke-style ownership types.

Although authors have developed systems which support multiple ownership and own-
ership transfer (and allow some iterator implementations, for example), many of these
systems feel like “work-arounds” rather than solutions to the underlying problem. Any
true implementations of ownership transfer and multiple ownership results in complex
type system, which software developers are likely to avoid. Dynamic approaches appear
to be significantly better at tackling these issues.

From a programmer’s point of view, many of the systems are complex to use. Ownership-
based systems, for example, require developers to carefully structure their program to fit
the prescribed, hierarchical ownership structure. This rigid structure is also likely to make
refactoring and redesign difficult. Many alias protection schemes additionally impose a
significant conceptual and annotation burden on programmers.

Given these limitations of existing work, it is not surprising then that alias protection
schemes have not been widely adopted in practice.

2.2 Alias and pointer analysis

Alias and pointer analysis attempts to determine the values of memory locations and thus
their aliasing relationships at run time. We can distinguish between three different types
of analysis – alias, pointer and points-to analysis – although the boundaries between the
three are fluid and terminology is sometimes used interchangeably in literature [46].

Alias analysis tries to discover which variables may at run time contain the same value
(and may thus be aliased). In this work, we are mainly interested in this kind of analysis.

Pointer analysis takes a broader approach and tries to find possible pointer values
that can occur at run time. This information can subsequently be used to perform alias
analysis.

Points-to analysis determines which variables point to each other; for example x→ y
means that variable x points to variable y. Like pointer analysis, points-to analysis can
be used to perform alias analysis: two variables are aliased if there is a points-to path
from one to the other. Despite the close relationship between alias and points-to analysis,
Khedker et al. note that the points-to relation is fundamentally different from the alias
relation [53]: unlike points-to, aliasing is a symmetric relation.

Alias analysis is used for alias detection, as described by Hogg et al. [49] in The
Geneva convention on the treatment of object aliasing. Detecting aliasing is arguably a
first step to addressing the negative effects it causes. Alias analysis forms a base for many
different kinds of static analyses, including compiler optimisation, program verification,
parallelisation of sequential programs and compile-time GC.

The problem of alias (and pointer and points-to) analysis is undecidable in the gen-
eral case; therefore, any solution must be an approximation. Many different analyses have
been proposed. Approaches to the problem vary widely as we describe below and, as a
result, alias analysis theory and tools exhibit a wide range of performance and precision.
These two attributes conflict with each other: highly precise analyses have high asymp-
totic complexities (up to doubly exponential), whereas other analyses achieve near-linear
performance but significantly lower precision.

42

We can categorise existing alias, pointer and points-to analysis work using a number
of different properties; some of these categorisations are taken from Hind [46]:

• May-aliasing and must-aliasing: May-aliasing describes which variables may be
aliased at run time; if no may-alias exists between two variables, we know for sure
that no aliasing is possible between them at run time. However, we cannot in general
deduce that two variables will definitely be aliased at run time from may-aliasing
information. Must-aliasing shows which variables will certainly be aliased at run
time. The absence of a must-alias between two variables, however, does not indicate
that no aliasing is possible at run time.

Sridharan et al. [88] note that may-aliasing is an over-approximation, as it assumes
that aliasing may exist if it cannot prove otherwise. The simplest possible such
over-approxi-mation is to assume that all variables of matching types are aliased.
We can see all other may-aliasing work as an attempt to improve on this base
approximation [88].

Most existing work concerns may-aliasing, including work by Steensgaard [90] and
Andersen [5]. Work by Emami et al. [35] computes both may-aliasing and must-
aliasing. Depending on the domain, one type of analysis may be more useful than
the other. For example, Sridharan et al. argue that may-aliasing often reports
many false positives and must-aliasing is therefore more useful [88]. However, many
applications of alias analysis, including compiler optimisations, require conservative
assumption, making may-aliasing more suitable.

• Flow-sensitivity: Flow-sensitive analyses (for example work by Emami et al. [35]
and Landi et al. [58]) compute one solution for each program point, while flow-
insensitive analyses (for example Steensgaard’s [90] and Andersen’s [5] analyses)
compute one solution for each method or even for the entire program. For example,
flow-sensitive analyses distinguish between A;B and B;A, while flow-insensitive
analyses treat both as equivalent. This reduces the precision of flow-insensitive
analyses but also significantly improves their performance.

• Flow-insensitive analyses may be either equality-based (for example the analysis
proposed by Steensgaard [90]) or subset-based (for example Andersen’s work [5]).
Equality-based analyses consider assignment statements as bidirectional. This means
that the two assignment statements y = x; z = x; will result in the analysis re-
porting a possible alias between y and z, although such an alias clearly cannot
exist at run time. Subset-based analyses consider assignments to be unidirectional
and can therefore detect that in the above example no aliasing between y and z is
possible.

• Context sensitivity: Context-sensitive analyses (for example Emami et al.’s [35]
and Landi et al.’s [58] work) take into account the calling context when a procedure
is invoked. This allows them to distinguish between different invocations of the same
method which may create different aliases. Again, this is clearly more exact but also
more expensive than context-insensitive analyses (for example Steensgaard’s [90] and
Andersen’s [5] analyses).

• Field sensitivity: OO alias analyses may be field-sensitive or field-insensitive [88].
Field-insensitive approaches merge the values of fields across different objects, while

43

field-sensitive approaches distinguish between them. Sridharan et al. claim that
field sensitivity is not very expensive (as opposed to flow-sensitivity and context-
sensitivity which incur large performance penalties) [88].

• Alias representation: There are three main approaches to representing aliasing
information. All aliases may be represented explicitly, including derived aliases
(inferred from other aliases in the program). For example, the two assignment
statements y = x; z = y; create aliasing between x and z. Analyses using explicit
alias representation (for example Landi et al.’s work [58]) would record the variable
pairs (x, y), (x, z) and (y, z) to show that all three variables may be aliased with
each other. A tool using compact alias representation would record only (x, y) and
(y, z) and derive the third pair when needed.

A third possible representation, called points-to representation (for example used by
Emami et al. [35]) records which variables point to which other variables. For the
example above, a tool using this representation would record (y → x) and (z → y),
which can easily be converted to explicit or compact alias representations [35].

• Referring to memory locations: Alias analyses need a way of referring to specific
memory locations (or objects in OO programming languages). For example, Landi
et al. use object names (an expressions consisting of a variable followed by a series
of field accesses, for example v1.v2.v3) to refer to different memory locations [58].
Recursive data structures are problematic because they create an infinite number
of possible object names.

Many analyses simply treat a recursive data structure as a single object without
distinguishing between individual sub-objects. This allows the analyses to limit the
number of possible memory locations and object names to a finite number. Deutsch
calls this a store-based approach and notes that it is quite inaccurate [30].

Landi et al. propose k-limiting [58]. They introduce a constant k which is the max-
imum number of variable accesses an object name is allowed to contain. Although
more accurate than store-based approaches, k-limiting also conflates sub-objects to
a single object below depth k.

Deutsch proposes a pointer analysis which uses access paths to represent memory
locations [29]; these are roughly equivalent to Landi et al.’s object names. In a
follow-up paper, he proposes symbolic access paths which can represent repetitions in
an access path caused by recursive data structures [30]. For example, the access path
a.b.a.b.c is represented as (a→ b→)2c. This allows more detailed representation
of aliasing, particularly for recursive data structures. For example, Deutsch notes
that his analysis can represent the fact that “the ith element of list X is aliased to
element 2i+ 1 of list Y ” [30].

• Modular and non-modular analysis: Some alias analyses require the code for
the entire program, while others can work with only parts of the program as input.
Sridharan et al. note that partial program analysis is particularly important for
programs written in modern programming languages such as Java which include
huge libraries in addition to programs’ source code [88]. Whole program analysis
must also consider all libraries used by the program, leading to a large increase in
the amount of code to be analysed.

44

The work by Steensgaard [90] and Andersen [5] is particularly well-known. Analyses
with similar characteristics are often referred to as Steensgaard-style and Andersen-style
analyses in literature [46].

Steensgaard proposes a flow-insensitive, context-insensitive and equality-based pointer
analysis with linear space and near-linear time complexity [90]. The analysis uses a non-
standard type system to infer the possible values of pointers. Although less precise than
other analyses, its low asymptotic complexity makes it applicable even to large programs.

Andersen’s approach [5] uses a constraint solver. It is flow-insensitive, context-insensitive
and subset-based, making it both more precise and more expensive than Steensgaard’s
work.

2.3 Summary

In this chapter, we presented the background to the remainder of this work. In particular,
we compared and contrasted a wide range of existing alias protection schemes, highlight-
ing their similarities and differences and discussing common issues. We also reviewed
important work in the area of alias and pointer analysis.

45

46

CHAPTER 3

Aliasing contracts: overview and

semantics

In this chapter, we introduce a dynamic alias protection scheme called aliasing contracts.
Aliasing contracts aim to prevent unintended reference leaks and thus address the prob-
lems of aliasing, including representation exposure. They are highly flexible and ex-
pressive, overcoming the shortcomings of existing alias protection schemes described in
Chapter 2, while at the same time remaining conceptually simple.

Aliasing contracts allow developers to express assumptions about which parts of a
system can access particular objects. Unlike many existing alias protection schemes,
aliasing contracts do not restrict the existence of references to an object (that is, any
reference to any object is allowed) but they limit which references can be used to access
the object.

We complement aliasing contracts with the concept of encapsulation groups which
allow objects to be grouped and permission to access an object given to an entire encap-
sulation group, rather than single objects. Encapsulation groups are very powerful, since
they can be nested. This allows transitive or deep contract specifications where access is
given to directly as well as indirectly contained objects.

The name contract comes from work on software contracts [63]; these support the spec-
ification of preconditions and postconditions for methods. Aliasing contracts essentially
specify preconditions for object accesses; they behave like assertions, reporting errors at
run time. Like assertions and software contracts, we intend aliasing contracts to be used
primarily as a testing and debugging tool to identify unexpected aliasing.

In Section 3.1 of this chapter, we give an informal description of aliasing contracts; we
then formalise them in Section 3.2, giving a syntax and operational semantics. Finally, we
present a case study in Section 3.3 to demonstrate how aliasing contracts can be applied
in practice.

3.1 Overview of aliasing contracts

Aliasing contracts express and enforce restrictions about the circumstances under which
an object can be accessed. We start by defining what exactly we mean by object access,
before explaining the details of aliasing contracts.

In OO programming, objects are at run time stored on the program’s heap. We say

47

that an object is accessed when the region of the heap representing the object is read or
written. This for example occurs when an object’s fields are read or written: the field
read v.f represents an access to the object referenced by v1; it is a lookup of the value
stored in field f in the heap region representing the object stored in v. Field read v.f is
not, however, an access to the object referenced by v.f. Although its address is looked
up, the heap region associated with the object in v.f is not accessed when executing the
expression v.f.

In addition to field reads and writes, we also consider method calls v.m() as object
accesses to the object in v (although the access to the heap region representing the accessed
object is arguably more indirect in this case)2.

Local variables are stored on the stack; thus, reading or writing a local variable does
not represent an object access – the heap is never read or written. For example, if x is
a local variable, then expression x is not an object access (only a stack access), but (as
before) x.f is an access to the object referenced by x.

While method calls are classed as object accesses, constructor calls are not. Construc-
tor calls modify the heap to create a new object, but they do not directly involve regions
of the heap containing existing objects3.

Now, we describe in detail the semantics of aliasing contracts. Each variable (field,
method parameter or local variable) declaration in a program is annotated with an aliasing
contract, which defines under which circumstances the object referenced by the variable
can be accessed. An aliasing contract consists of two side-effect free boolean expressions:
the read contract expression er specifies under which circumstances object reads are legal,
while the write contract expression ew concerns object writes. (Where the read and write
contract expressions of a contract are the same, one can be omitted for convenience; we
call such a contract a rw-contract (read-write-contract).) Reading an object’s fields is an
object read and therefore the object’s read contracts are evaluated; writing an object’s
fields is an object write and causes the evaluation of the object’s write contracts. We
further distinguish between pure and impure methods: a call to a pure method is an
object read and requires the evaluation of the object’s read contracts, while a call to an
impure method is both an object read and write and requires the evaluation of both read
and write contracts.

Due to aliasing, multiple variables may point to the same object; thus, an object
may have multiple contracts associated with it. Access to an object is allowed only if all
of the contracts of variables pointing to the object are satisfied. Whenever an object is
accessed, all contracts are evaluated and the evaluation results are conjoined. If the result
is true, the object access is legal; otherwise, an exception is thrown to report the contract
violation. We can thus see contracts as preconditions for object accesses, protecting not
the variable to which they apply but the object stored in the variable.

In Chapter 1, we used a LinkedList example to demonstrate how references to in-
ternal objects can be leaked unintentionally, leading to encapsulation breaches. We now
review this example to see how aliasing contracts can be used to address this problem.
Specifically, we want to ensure that Nodes in the LinkedList cannot be accessed from
outside the LinkedList. We use a Java-like language for the example, with contracts

1Syntax may allow a field read f without a preceding term v. This is of course simply shorthand for
this.f and thus constitutes an access to the object referenced by this.

2As above, m() is equivalent to this.m() and represents an access to the object in this.
3Object accesses may of course occur inside the constructor body whose statements may read or write

other heap regions; we consider these object accesses separately from the constructor invocation.

48

enclosed in curly braces following variable declarations; a formal syntax for aliasing con-
tracts is given in Section 3.2.1 below. In this first example, we underline contracts to
make them easier to identify:

class LinkedList {
private Node head {accessor == accessed || accessor == this};

public impure void addItem(Object data {true}) {
Node newNode {true} = new Node(data);

newNode.setNext(head);

head = newNode;

}

public pure boolean member(Object data {true}) {
for(Node n {true} = head; n != null; n = n.getNext()) {

if(n.getData().equals(data)) {
return true;

}
}
return false;

}

public pure Node getHead() {
return head;

}
}
class Node {
private Node next {accessor == accessed || accessor == this};
private Object data {true};

public Node(Object data {true}) {
this.data = data;

}

public pure Node getNext() {
return next;

}

public pure Object getData() {
return data;

}

public impure void setNext(Node next {true}) {
this.next = next;

}
}

The aliasing contracts for head and next are of particular interest and we now explain
their exact meaning:

//In LinkedList

Node head {accessor == accessed || accessor == this};

49

//In Node

Node next {accessor == accessed || accessor == this};

Aliasing contracts bind two special variables, accessor and accessed: accessed

points to the accessed object; accessor points to the object making the access. For ex-
ample, for an object access inside a method body, accessor points to that method’s this
object. The value of accessor is determined immediately prior to contract evaluation
and so, for a given contract, may vary from one evaluation to the next.

Each contract is evaluated in the context of its declaring object ; that is, the object
which contains the variable that declares the contract. For example, the above contract
for head is evaluated in the context of the LinkedList object. Contract expressions must
be rooted in the declaring object. This means that contracts declared in methods may not
refer to local variables and method parameters, only to fields and methods of the declaring
object. During contract evaluation, this points to the declaring object. Thus, we can
alternatively view a contract as a boolean method of the declaring class with accessor
and accessed as parameters; for example, the contract for head becomes a method in
LinkedList:

public boolean headContract(Object accessor, Object accessed) {

return accessor == accessed || accessor == this;

}

Thus, in the above linked list implementation with aliasing contracts, Node objects
stored in head can be read and written only by themselves (“accessed”) and the LinkedList
(“this”), while Node objects stored in next can be accessed by themselves (“accessed”)
and the previous node in the list (“this”). Other parts of the system can obtain a refer-
ence to Node objects stored in next and head using the getNext and getHead methods,
but would be unable to use it. This prevents a client from modifying the list by call-
ing list.getHead().setNext(new Node()) for example (as this would cause a contract
violation).

In addition to the contracts specified for next and head, we give all other variables
the rw-contract “true”. This means that we do not impose any restrictions on accesses
to objects stored in those variables.

Aliasing contracts gain much of their flexibility through dynamic alias checking. The
validity of an object access depends on the aliasing structure of the program at run time;
a change to that structure can change the result of a contract evaluation. For example, a
client could obtain a reference (unusable at first) to the head node in the LinkedList by
calling list.getHead(); if that node is subsequently removed from the LinkedList (and
thus the encapsulating contract disappears), the client gains access to the node. This
example also shows that aliasing contracts do not restrict aliasing itself but only object
accesses. It is legal for any object to hold a reference to encapsulated nodes; however,
this reference can only be used when all aliasing contracts are satisfied.

In some situations, we may want to check whether or not we have access to a particular
object before performing an access to ensure that we do not cause a contract violation at
run time. To this end, we define two binary boolean operators, canread and canwrite,
which check if one object can access another one:

if(this canwrite foo) {

foo.bar = new Bar(); //Perform the write access

}

50

The canread and canwrite operators are also useful in contract specifications. For
example, we can modify the contract for the next field in the LinkedList example as
follows:

class Node {

Node next {accessor == accessed || accessor canread this,

accessor == accessed || accessor canwrite this};

...

}

When a Node object stored in next is accessed, this contract first checks if the access
comes from the node itself (“accessed”). If this is true, the contract evaluation returns
true due to the lazy semantics of the || operator. Otherwise, it will check if accessor
can read or write the previous node in the list – the declaring object of the evaluated
contract (“this”). In this way, evaluation continues until the head of the list is reached;
at this point, the contract of the head field in LinkedList is evaluated. As explained
above, this contract evaluates to true if the access comes from the LinkedList or from
the head node. Therefore, the above contract evaluates to true if the access to a node
comes from the LinkedList or any previous nodes in the list. It is important to note
that the values of accessed and this change every time evaluation moves to a contract’s
declaring object, while accessor remains the same.

3.1.1 Encapsulation groups

Although we can specify a number of different contracts with the basic operators intro-
duced above, some contracts remain cumbersome and difficult to express. Consider the
simple example of a Car with four Wheels, where all wheels should be able to access each
other. We can write this contract as follows:

class Car {

Wheel wheel1 {accessor == accessed || accessor == wheel2

|| accessor == wheel3 || accessor == wheel4};

Wheel wheel2 {accessor == accessed || accessor == wheel1

|| accessor == wheel3 || accessor == wheel4};

Wheel wheel3 {accessor == accessed || accessor == wheel1

|| accessor == wheel2 || accessor == wheel4};

Wheel wheel4 {accessor == accessed || accessor == wheel1

|| accessor == wheel2 || accessor == wheel3};

Clearly, this is highly impractical. Imagine if we have ten fields that need to have
mutual access to each other, or even worse, if we also want to give access to directly and
transitively contained objects as in transitive ownership schemes, such as Clarke-style
ownership types. For example:

class Car {

Wheel wheel1 {accessor == wheel1 || accessor == wheel1.tyre

|| accessor == wheel2 || accessor == wheel2.tyre || ...};

In some cases, we may not know how many transitively contained objects there are at
run time. This is particularly the case for recursive data structures.

Let us reconsider our earlier LinkedList example; above, we specified contracts which
encapsulate all Node objects inside their LinkedList; a node could only be accessed by

51

the LinkedList and previous nodes in the list. In order to achieve more flexibility, we
may want to allow any nodes to access each other within a single linked list. We could
try to write:

Node head {accessor == this || accessor == head

|| accessor == head.next || accessor == head.next.next || ...};

Not only is this contract less than ideal from an information hiding and encapsulation
point of view (the LinkedList should only really know about the head node, not subse-
quent nodes in the list), it also does not work, since we do not know how many nodes will
be in the list at run time. This number is unbounded and is likely to change during the
program’s execution.

Although the canread and canwrite operators can deal with unknown and changing
numbers of objects in the LinkedList, we cannot use them to specify this contract –
they are not flexible enough. Using canread and canwrite, we can only model contract
evaluation which proceeds either backwards or forwards through the list, but not in both
directions at the same time. For example, with the contract “accessor canread this,

accessor canwrite this” evaluation moves from a node to the previous node in the
list; with “accessor canread next.next, accessor canwrite next.next” evaluation
moves from a node to the next node in the list4. Attempts to combine the two (for example
as “accessor canread this || accessor canread next.next, accessor canwrite

this || accessor canwrite next.next”) lead to cyclic contract evaluation.
To address these problems, we introduce encapsulation groups, which allow us to group

together several objects and refer to all objects in the group instead of just single objects.
The example below shows how we can rewrite the contracts in the Car class above.

We create an encapsulation group called wheels in Car which contains all four wheels
of the Car. We then use the in operator in the contracts of the four wheels to check if
accessor is in the wheels encapsulation group (that is, if accessor is one of the four
wheels):

class Car {

group wheels = {wheel1, wheel2, wheel3, wheel4};

Wheel wheel1 {accessor in wheels};

Wheel wheel2 {accessor in wheels};

Wheel wheel3 {accessor in wheels};

Wheel wheel4 {accessor in wheels};

}

The real power of encapsulation groups lies in the fact that they can contain an
unlimited number of objects, which may vary at run time. Encapsulation groups can
also contain other, nested groups; if g1 contains another group g2, the contents of the g2
are added to g1. In this way, encapsulation groups support the specification of deep and
transitive contracts.

We can, for example, use encapsulation groups to specify contracts for the LinkedList,
giving both the LinkedList and all nodes access rights to every node in the list. This
is possible even when we do not know how many nodes there will be at run time. First,

4This contract is evaluated when the object in next is accessed, so to proceed to the next node in the
list, we need to evaluate the contract of next.next. The contract “accessor canread next, accessor

canwrite next”, on the other hand, leads to cyclic evaluation, where we always evaluate the contracts
of the same node.

52

we create an encapsulation group nextNodes in Node that contains all following nodes
in the list as shown below; we declare a second encapsulation group called allNodes in
LinkedList which contains all nodes in the list:

//In Node

group nextNodes = {this, next.nextNodes};

//In LinkedList

group allNodes = {head, head.nextNodes};

Now that we have an encapsulation group containing all nodes in our list, we can use
the in operator as follows:

//In LinkedList

Node head {accessor == this || accessor in allNodes};

//In Node

Node next {accessor canread this, accessor canwrite this};

When a node in the list is accessed, contract evaluation succeeds if accessor is either
the enclosing LinkedList object or one of the Node objects in the LinkedList. This
example shows how aliasing contracts can easily specify complex aliasing conditions.

We call a series of field selections such as f1.f2.f3 an access path. Semantically, an
encapsulation group g is a (possibly infinite) set of access paths which can be used in
expressions E in E ′.g to test whether the object resulting from expression E at run time
is a member of those objects reachable from an access path in g starting from object E ′.
Syntactically, groups are specified by a regular grammar (see groupDef in our syntax in
Section 3.2.1).

Like contracts, encapsulation groups are evaluated at run time in the context of their
declaring object. The expressions in the group must thus be valid in the context of that
object. While the paths specified by groups are syntactically defined to be rooted in this,
E ′.g is evaluated at run time starting from the object resulting from expression E ′.

Note that “this” in groups plays the role of empty path, so that in the example above
next.nextNodes could equivalently be written this.next.nextNodes.

Encapsulation groups have simple semantics but naturally result in cycles which com-
plicates the implementation of the in operator. Any implementation must ensure that
cycles are evaluated only once and do not lead to indefinite looping.

For example, cyclic encapsulation-group evaluation will occur in a circular linked list
implementation if we define the encapsulation groups in the same way as we did for
LinkedList above. The next field of the last Node in a circular list simply points back to
the first Node; therefore, evaluation of the nextNodes encapsulation groups will be cyclic.
An implementation must detect such a cycle and return false if it has not found the
object it is looking for after the first traversal of the cycle.

3.1.2 Contract parameters

In their work on ownership types, Clarke et al. introduce context parameters to enable
owner polymorphism [27]. In this section, we present contract parameters, which are
dynamic analogues of Clarke et al.’s context parameters; we say that they enable contract
polymorphism.

Implementations of collections are an example where contract parameters are partic-
ularly useful. In our LinkedList example, we have so far used the rw-contract “true”

53

for the data stored in each Node. This means that the data is not encapsulated by the
LinkedList. However, depending on the exact usage of the collection, we may want to
specify different encapsulation conditions for the data it stores. We can use contract
parameters to achieve this.

A class can be declared to take contract parameters, which it can use in its contract
specifications. When an instance of the class is instantiated, values for the contract pa-
rameters must be provided; we say that the contract parameters are instantiated. We now
show how contract parameters can be used to make LinkedList contract polymorphic:

class LinkedList<cp> {

private Node head {accessor == accessed || accessor == this};

public impure void addItem(Object data {true}) {

Node newNode {true} = new Node<cp>(data);

newNode.setNext(head);

head = newNode;

}

public pure boolean member(Object data {true}) {

for(Node n {true} = head; n != null; n = n.getNext()) {

if(n.getData().equals(data)) {

return true;

}

}

return false;

}

public pure Node getHead() {

return head;

}

}

class Node<cp2> {

private Node next {accessor == accessed

|| accessor instanceof LinkedList};

private Object data {<cp2>};

public Node(Object data {true}) {

this.data = data;

}

public pure Node getNext() {

return next;

}

public impure void setNext(Node next {true}) {

this.next = next;

}

public pure Object getData() {

return data;

54

}

}

The LinkedList class now takes a single contract parameter called cp. When it
creates a Node to store data, it passes this contract parameter to the Node. The Node

class also takes a contract parameter, called cp2, which it uses to specify the contract for
its data field. In this way, the contract parameter is passed from the client creating the
LinkedList to all of the nodes in the list and used there to specify the aliasing properties
of data.

We can now create a LinkedList in class Client as follows:

class Client {

LinkedList list = new LinkedList<accessor == accessed

|| accessor == this || accessor == list>();

}

This instantiates a LinkedList with contract parameter “accessor == accessed ||

accessor == this || accessor == list”. This parameter is passed on to all nodes
created by the list and subsequently used by the nodes to protect the data they store.
This means that all data in the list is accessible to itself (“accessed”), the Client object
that constructed the list (“this”) and to the LinkedList object itself (“list”). By
varying the contract parameter provided when LinkedList is constructed we can specify
a wide range of encapsulation conditions for the data stored in the list.

It is important to note that in the presence of contract parameters, a contract’s declar-
ing object is no longer the object which declares the variable to which the contract is at-
tached, but the object which provides the instantiations for the contract parameters. In
the example above, when the data of a node in list is accessed, the contract “accessor
== accessed || accessor == this || accessor == list” is evaluated in the context
of the Client object that created list and instantiated the contract parameter; the
declaring object of this contract is the Client object which instantiated it, not the Node
which uses it as a contract for its data field (as would be the case with standard, non-
parameterised contracts).

3.1.3 Contract suspension

There are situations, where we want to pass a well-protected object (with a strong con-
tract) to a trusted part of the system, giving away temporary enhanced access to the
object. This is called borrowing in existing work, as explained in Chapter 2. A common
form of borrowing occurs when a method is given access to an encapsulated object (that
it could not normally access) for the duration of its execution.

Aliasing contracts support the suspension of contracts which can be used to model
borrowing. A field, local variable or method parameter contract can be suspended tem-
porarily and reinstated at a later point in the program’s execution. While a contract is
suspended, it will not be evaluated when the associated object is accessed.

The example below gives the syntax for temporarily suspending the contract of a
variable z using a suspend-block. The contract is automatically reinstated at the end of
the block:

Object z {accessor == accessed || accessor == this};

...

55

suspend this.x.y.z {

foo.bar(this.x.y.z);

}

Method foo.bar can access the object in this.x.y.z, because the contract of variable z
is suspended. The suspend-block makes it clear which contracts are suspended at which
points of the program. They also ensure that a programmer cannot simply forget to
reinstate a contract.

Contract suspension can be simulated using temporary variables with rw-contract
“true” and assignment statements; for example, the suspend-block in the example above
can equivalently be modelled as shown below. We use this in our semantics for aliasing
contracts presented in Section 3.2.1, modelling contract suspension as syntactic sugar:

Object temp {true} = this.x.y; //A

Object temp2 {true} = temp.z; //B

temp.z = null; //C

foo.bar(temp.z);

temp.z = temp2; //D

In this desugared version, the contract of variable z is suspended at program point C and
reinstated at program point D.

The desugaring clarifies which access rights are required in order to suspend a contract:
we need both read and write access rights for the object which contains the suspended
contract, the “owner” of the contract. In the example above, we need read access rights
to the object referenced by temp (or equivalently this.x.y) at program point B and write
access rights to temp at program points C and D. This is important to ensure that contracts
cannot be suspended (and thus circumvented) arbitrarily. We also need read access rights
for this and this.x at program point A (but not afterwards5).

In some cases, we can simplify the desugaring to use only a single variable. This is
possible if the suspended expression contains at most one field selection. (Otherwise, a
second temporary variable is useful to ensure that we can reinstate the contract later.)
For example, suspend this.z becomes:

Object temp {true} = this.z;

this.z = null;

foo.bar(temp);

this.z = temp;

Suspension of a variable contract applies only to a single object; the contracts of
the corresponding variables of other objects of the same type remain in place. In the
example above, suspending the contract of z in one object has no effect on the contracts
of z in other instances of the same type. The same is true when suspending local variable
contracts during method execution; contracts of corresponding variables in recursive stack
frames of the same method are unaffected.

In order to simplify the semantics of contract suspension, we stipulate that a variable
may not appear on the left-hand side of an assignment while its contract is suspended.
This means that the variable must point to the same object throughout the suspend-block,
avoiding a transfer of the suspended contract to another object. This is much simpler to
understand and reason about in practice, because, when the contract is reinstated, it will
apply to the same object as before.

5This avoids problems reinstating the contract if we lose access rights to this or this.x during the
suspend-block.

56

3.1.4 Checking aliasing contracts

Since aliasing contracts depend on the dynamic aliasing structure of a program at the time
an object access is made, they cannot be checked statically in the general case. Instead,
the semantics we present here evaluates them at run time, before an object access is
allowed to proceed; if a contract violation is detected, an error is reported. We consider
static checking of aliasing contracts in detail in Chapter 6.

Accesses to objects within contracts themselves trigger contract evaluations. This
ensures that objects are fully protected, even from contracts themselves. This design
choice can, of course, lead to cyclic and infinite contract evaluation if not enough care is
taken by developers writing contracts; for example consider:

String str {str.length() > 0};

The contract states that String str can only be read and written when its length is
larger than zero. However, the contract itself requires an object read for str which leads
to another evaluation of str’s contract, which in turn causes another evaluation and so
on. Our semantics simply loops by recursively evaluating the contract; implementations
of aliasing contracts may prefer to check for such cycles.

3.2 Formalisation of aliasing contracts

In this section, we formalise aliasing contracts. We first give a syntax, before presenting
the operational semantics as a set of reduction rules.

3.2.1 Syntax

A syntax for aliasing contracts is given in Figure 3.1. C ranges over class names, m over
method names, f over field names, g over encapsulation group names, x over variable
(field, local variable and parameter) names and cp over contract parameter names. τ
denotes a type, either a class type or bool. For brevity, we write, for example, fieldDef
for fieldDef 1 . . . fieldDef n.

A program consists of a number of class definitions, each of which contains field, group,
constructor and method definitions. Each class may also declare a number of contract
parameters. Methods and constructors both take arguments and contain definitions of
local variables along with the method body expression. Constructors additionally require
instantiations for the contract parameters declared by their class. Unlike constructors,
methods have a return type and must be declared either pure or impure.

Contracts may be defined for any kind of variable: fields, method parameters and local
variables. A contract is made up of two contract expressions; alternatively, it can consist
of one of the contract parameters declared by the enclosing class. The use of a contract
parameter is marked with angle brackets to clearly distinguish it from standard contracts.

Note that we distinguish here between e and E. We use e for expressions in contracts
and groups; these expressions must be valid in the context (scope) of the nearest enclosing
class (that is, the declaring object at run time). Therefore, they cannot refer to method
parameters and local variables (but can refer to this and thereby to fields and methods).
We distinguish them from standard expressions E to highlight this difference.

The keywords this, accessor and accessed behave just like user-defined variables,
but do not themselves have contracts, nor may they be updated. The variable this

57

program = classDef

classDef = class C 〈cp〉 extends C { fieldDef groupDef constrDef

methodDef }
τ = C | bool

fieldDef = τ f { contractDef };

groupDef = group g = { groupMember }
groupMember = e | e.g

constrDef = C (argDef) { varDef E }

methodDef = (pure | impure) τ m (argDef) { varDef E }
argDef = τ x { contractDef }
varDef = τ x { contractDef };

contractDef = e, e | <cp>
E = x | if E then E else E | E.f | E.f = E | E.m (E)

| x = E | new C〈 contractDef 〉 (E)| E;E
| E canread E |E canwrite E | E instanceof C
| E == E | E in E.g | suspend E { E } | E || E | E && E
| !E | this | accessor | accessed | true | false | null

e = 〈subset of E 〉 (rooted in this – see below)

Figure 3.1: A simple syntax for aliasing contracts

is available in every execution context and points to the current object; accessor and
accessed are logically λ-bound only within aliasing contracts.

Although our syntax does not explicitly support loop definitions, these can be modelled
using tail-recursion.

We impose several additional syntactic restrictions on programs:

• Contract expressions must have boolean type.

• The keywords accessor and accessed and the in operator can be used only in
contracts.

• The expressions used in contracts cannot have side effects; that is, variable assign-
ments and calls to impure methods are not allowed.

The scope and lifetime of variables is defined as follows:

• The lifetime of a field is that of the object which contains it. In our operational
semantics objects live forever and thus their fields are also never deallocated. This
is not problematic in the semantics (although it may not be practical for implemen-
tations), since contract evaluation is monotonic with respect to GC (that is, object
deallocation). Deallocating an object (and therefore removing the contracts of its
fields from the objects to which they point) can never make a contract evaluation
fail which would otherwise have succeeded.

• Local variables and method parameters exist only while the associated method ex-
ecutes. They are deallocated from the stack once the method returns and are not
accessible outside the scope of the method. On deallocation, their contracts are
removed from the objects to which they point.

58

Although included in the syntax, our operational semantics presented below does not
mention suspend-blocks; these are desugared into simple assignments as described in
Section 3.1.3 above.

3.2.2 Operational semantics

Figures 3.2 to 3.5 present the reduction rules of our operational semantics. In the following
sections, we first introduce the necessary notation, before explaining the reduction rules
in more detail.

3.2.2.1 Notation

We define our operational semantics in the context of the current machine state consisting
of a stack ∆, a heap Ψ and a contract store Λ which tracks the aliasing contracts for each
object. We use to denote reduction. The different components of our machine state
are described in this section.

Key-value maps Our operational semantics tracks information about the current ma-
chine state, including objects and contracts. We organise this information into maps of
keys and values. M(k) represents a lookup of key k in map M . M [k 7→ v] represents
an update of the value associated with key k in map M to value v. We define update
semantics as usual: M [k 7→ v](k) = v and M [k 7→ v](k′) =M(k′) if k′ 6= k.

We use angle brackets to indicate tuples and use ↓i to select the ith element of a tuple.
Thus 〈x1, . . . , xn〉 ↓i= xi.

Types and values We use τ to denote types, either the primitive type bool or a class
type. A variable of type bool contains a boolean value b, which may be either true or
false. A variable of any other type contains an address a, which must be a valid heap
address ι or the null-address null. A value v is anything that can be stored in a variable:
a boolean b or an address a.

For convenience, we define the function init(τ) to give the initial value for a variable
of type τ : false for variables of type bool and null for all other types.

Syntactic contracts We use φ to refer to syntactic contracts which can either consist
of two contract expressions, er and ew, or a contract parameter, cp. If φ contains two
contract expressions, φ = 〈er, ew〉. When φ is parameterised, we record the name of the
contract parameter surrounded by angle brackets to distinguish it from non-parameterised
contracts: φ = <cp>.

Compile-time dictionaries In order to simplify the lookup of field, method, contract
and contract parameter information in our operational semantics, we define the compile-
time dictionaries F , M, C and CP . The information in these dictionaries can easily be
determined statically from a program’s source code.

For each class C, FC maps each field name f onto the field’s type τ : FC = {f 7→ τ}.
Similarly, for each class C, MC is a mapping from method m to a tuple containing the
method’s parameters x and their types σ, the method body E, the method’s local variables

59

y and their types τ , and the method’s purity π (true or false): MC = {m 7→ 〈{x 7→
σ}, E, {y 7→ τ}, π〉}.6

Note that we treat constructors as special kinds of methods. They can be looked up in
MC under the method name C. Calling constructors does not require contract evaluation
since the object to be constructed does not yet have aliasing contracts associated with it.
Therefore, it is not necessary to distinguish between pure and impure constructors and
thus no purity is recorded for constructors in MC .

For each variable (field, parameter or local variable) x in class C, CC contains the
syntactic contract φ associated with the variable declaration: CC = {x 7→ φ}. For
simplicity, we assume here that each variable name is unique inside a class.

For class C, CPC contains a set of the class’ formal contract parameter names:
{cp1, . . . , cpn}.

The stack ∆ The stack ∆ stores the contents of local variables. For a local non-boolean
variable, ∆ records the heap address ι of an object on the heap or the special value null.
For local variables of the primitive type bool, ∆ directly stores the variable’s value, either
true or false.

∆ is a list of stack frames, where each stack frame δ is a partial mapping of variable
names to values. The • operator denotes the pushing of a stack frame δ onto the top of
the stack. Thus, ∆ = δ1 • . . . • δn where δn is the top (most recent) stack frame.

Given stack frame δ and variable x, δ(x) gives the current value v of x (provided
(x 7→ v) ∈ δ) and δ[x 7→ v′] gives a new stack frame with the value of x updated to v′.

Note that since our simple syntax does not allow inner classes or nested methods and
functions, the values of local variables and parameters can always be found in the top
frame of the stack. Thus, variable reads and writes for ∆ are defined as ∆(x) = δ(x) and
∆[x 7→ v] = ∆1 • δ[x 7→ v] where ∆ = ∆1 • δ.

The heap Ψ Objects are stored on the heap Ψ, a partial function mapping addresses
ι to objects o. Our semantics does not refer to objects directly, but instead uniquely
identify an object using its heap address ι; there is a one-to-one correspondence between
objects and heap addresses.

For each object o, Ψ records its type τ and a dictionary mapping each field name f
to its current value v. It also stores metadata about each object’s contract parameters,
recording the actual contract parameter instantiations that were provided when the object
was created. These values are not visible or accessible to the programmer and are fixed
for the lifetime of the object. We record them in a dictionary ρ, with each contract
parameter name cp mapping to a triple consisting of the heap address ι′ of the object
which instantiated the contract parameter and the read and write contract expressions er

and ew. Thus, Ψ(ι) = 〈τ, {f 7→ v}, {cp 7→ 〈ι′, er, ew〉}〉.

Contract closures To evaluate a contract, we need to know the address ι of the con-
tract’s declaring object; during contract evaluation, this will be bound to ι. By providing
an address ι, we transform a syntactic contract φ into a contract closure which we denote
ψ. Note that contract closures bind this but leave accessor and accessed unbound. A
binding for accessor and accessed is given only just before a contract is evaluated.

6We often use ‘:’ instead of ‘ 7→’ for types, for example {x : τ}.

60

Given a syntactic contract φ (〈er, ew〉 or <cp>), an object with address ι and its
contract parameter dictionary ρ7, the contract closure ψ is given by closure(φ, ι, ρ) defined
by:

closure(〈er, ew〉, ι, ρ) = 〈ι, er, ew〉

closure(<cp>, ι, ρ) = ρ(cp)

The contract store Λ While the program is executing, we need to track which aliasing
contracts apply to which objects. To this end, we define contract store Λ, a partial function
which, for an object with heap address ι, records the set S of aliasing contracts which
currently apply to the object. S is a set of triples 〈ι′, er, ew〉 containing the address ι′ of
contract’s declaring object and the read and write contract expressions er and ew.

Parameters and local variables exist only while the method which defines them exe-
cutes; their contracts must therefore be removed from the contract store when the method
returns. To facilitate this, we define our contract store as a stack of frames λ0 to λn:
Λ = λ0 • . . . • λn.

Frame λ0 holds the contracts associated with fields; these are not bound to a par-
ticular method execution but persist throughout program execution. When a method is
called, we add a new stack frame λn which holds the contracts declared for the method’s
parameters and local variables. This frame is removed when the method returns, auto-
matically removing the contracts of the method’s parameters and local variables. This
stack approach also ensures that contracts for the same local variable in different stack
frames are recorded separately.

To get the set of all aliasing contracts for an object at heap address ι, we must
perform a lookup in every frame of the contract store stack. Thus, Λ(ι) = λ0(ι) ∪ · · · ∪
λn(ι) where Λ = λ0 • . . . • λn.

Whenever a field is assigned a new value (that is, pointed to a new object), its contract
needs to be removed from the object to which it previously pointed and added to the object
referenced after the assignment; to this end, we update the information in frame λ0.
Assignments of local variables and method parameters require updating the information
in the top stack frame λn.

At first sight, ∆ and Λ appear very similar. However, the semantics of lookup differ
significantly: a lookup in ∆ requires a lookup in the top frame of the stack only; each new
stack frame overrides the information in the lower frames. A lookup in Λ, on the other
hand, requires a lookup in all frames.

Other operators To define the semantics of the instanceof operator, we require a
boolean operator which determines if a type σ is the subtype of another type τ . We define
the compile-time operator <: to return true if a subtype relationship exists between σ
and τ (as determined by the program’s source code) and false otherwise. Note that the
subtype relationship is both reflexive and transitive: type τ is a subtype of itself. If type
τ1 is a subtype of τ2 and τ2 is a subtype of τ3 then τ1 is also a subtype of τ3.

The in operator needs to evaluate all paths in an encapsulation group g with respect
to a current heap Ψ and a starting address ι. We say that it calculates the g-reachable
set of the object at address ι.

7This can be looked up on the heap as Ψ(ι) ↓3.

61

In our semantics, we denote G∗(ι, g,Ψ) the g-reachable set of the object at address
ι in heap Ψ. An encapsulation group contains paths which at run time evaluate to
objects reached by following these paths in Ψ starting from the object at address ι. If
other encapsulation groups appear within g then these are recursively followed, allowing
specification of any regular set of paths.

ι′ canread ι′′,∆,Ψ,Λ eval(ι1, ι′, ι′′, er1) && . . .
(canread)

&& eval(ιn, ι
′, ι′′, ern),∆,Ψ,Λ

where {〈ι1, e
r
1
, ew

1
〉, . . . , 〈ιn, e

r
n, e

w
n 〉} = Λ(ι′′)

ι′ canwrite ι′′,∆,Ψ,Λ eval(ι1, ι′, ι′′, ew1) && . . .
(canwrite)

&& eval(ιn, ι
′, ι′′, ewn),∆,Ψ,Λ

where {〈ι1, e
r
1
, ew

1
, . . . , 〈ιn, e

r
n, e

w
n 〉} = Λ(ι′′)

e,∆ • δ,Ψ,Λ e′,∆ • δ,Ψ,Λ

eval(ι, ι′, ι′′, e),∆,Ψ,Λ eval(ι, ι′, ι′′, e′),∆,Ψ,Λ
(eval-contract)

where δ = {this 7→ ι, accessor 7→ ι′, accessed 7→ ι′′}

eval(ι, ι′, ι′′, b),∆,Ψ,Λ b,∆,Ψ,Λ
(eval-done)

ι.f,∆,Ψ,Λ assert(this canread ι); ι⊙ f,∆,Ψ,Λ
(field-get)

ι⊙ f,∆,Ψ,Λ v,∆,Ψ,Λ
(field-get-⊙)

where v = Ψ(ι) ↓2 (f)

ι.f = v,∆,Ψ,Λ assert(this canwrite ι); ι⊙ f = v,∆,Ψ,Λ
(field-put)

ι⊙ f = b,∆,Ψ,Λ b,∆,Ψ′,Λ
(field-put-⊙-bool)

where Ψ′ = Ψ[ι 7→ 〈Ψ(ι) ↓1,Ψ(ι) ↓2 [f 7→ b],Ψ(ι) ↓3〉]

Figure 3.2: Operational semantics for aliasing contracts

3.2.2.2 Contract evaluation

Contracts are declared on variables (fields, parameters and local variables) and at run
time apply to the objects to which the variables point. Whenever on object is accessed,
all contracts associated with it must be evaluated. Only if they are all satisfied is the
access to the object allowed to proceed.

We distinguish between object reads and writes:

• Field reads in rule (field-get) and calls to pure methods in rule (method-call-pure)
constitute object reads.

62

ι⊙ f = a,∆,Ψ, λ0 • Λ a,∆,Ψ′, λ′
0
• Λ

(field-put-⊙)

where Ψ′ = Ψ[ι 7→ 〈Ψ(ι) ↓1,Ψ(ι) ↓2 [f 7→ a],Ψ(ι) ↓3〉]
and a′ = Ψ(ι) ↓2 (f)
and τ = Ψ(ι) ↓1

and ψ = closure(Cτ (f), ι,Ψ(ι) ↓3)
and λ′

0
= λ0[a

′ 7→ λ0(a
′)− {ψ}] (if a′ 6= null)

[a 7→ λ0(a) ∪ {ψ}] (if a 6= null)

x,∆,Ψ,Λ ∆(x),∆,Ψ,Λ
(local-get)

x = b,∆,Ψ,Λ b,∆[x 7→ b],Ψ,Λ
(local-put-bool)

x = a,∆,Ψ,Λ • λn a,∆[x 7→ a],Ψ,Λ • λ′n
(local-put)

where a′ = ∆(x)
and ι = ∆(this)
and τ = Ψ(ι) ↓1

and ψ = closure(Cτ (x), ι,Ψ(ι) ↓3)
and λ′n = λn[a

′ 7→ λn(a
′)− {ψ}] (if a′ 6= null)

[a 7→ λn(a) ∪ {ψ}] (if a 6= null)

ι.m(v1, . . . , vn),∆,Ψ,Λ assert(this canread ι);
(method-call-pure)

ι⊙m(v1, . . . , vn),∆,Ψ,Λ

where τ = Ψ(ι) ↓1
and Mτ (m) = (, , , true)

ι.m(v1, . . . , vn),∆,Ψ,Λ assert(this canread ι &&
(method-call-impure)

this canwrite ι); ι⊙m(v1, . . . , vn),∆,Ψ,Λ

where τ = Ψ(ι) ↓1
and Mτ (m) = (, , , false)

Figure 3.3: Operational semantics for aliasing contracts

63

ι⊙m(v1, . . . , vn),∆,Ψ,Λ E,∆ • δ,Ψ,Λ • λ
(method-call-⊙)

where τ = Ψ(ι) ↓1
and Mτ (m) = ({x1 : σ1, . . . , xn : σn}, E, {y1 : τ1, . . . , ym : τm}, π)

and δ = {this 7→ ι, x1 7→ v1, . . . , xn 7→ vn,
y1 7→ init(τ1), . . . , ym 7→ init(τm)}

and ψi = closure(Cτ (xi), ι,Ψ(ι) ↓3) (1 ≤ i ≤ n)
and λ = {vi 7→ ψi | 1 ≤ i ≤ n ∧ vi /∈ {null, true, false}}

new C〈(φ1), . . . , (φm)〉(v1, . . . , vn),∆,Ψ,Λ E; ι,∆ • δ,Ψ′,Λ • λ
(new)

where ι is new in Ψ
and ι′ = ∆(this)

and FC = {f1 : τ1, . . . , fk : τk}
and CPC = {cp1, . . . , cpm}

and ψi = closure(φi, ι
′,Ψ(ι′) ↓3) (1 ≤ i ≤ m)

and Ψ′ = Ψ[ι 7→ 〈C, {f1 7→ init(τ1), . . . , fk 7→ init(τk)},
{cp1 7→ ψ1, . . . , cpm 7→ ψm}〉]

and MC(C) = ({x1 : σ1, . . . , xn : σn}, E, {y1 : τ
′

1
, . . . , yl : τ

′

l},)
and δ = {this 7→ ι, x1 7→ v1, . . . , xn 7→ vn,

y1 7→ init(τ ′
1
), . . . , yl 7→ init(τ ′l)}

and ψ′

j = closure(CC(xj), ι,Ψ(ι) ↓3) (1 ≤ j ≤ n)
and λ = {vj 7→ ψ′

j | 1 ≤ j ≤ n ∧ vj /∈ {null, true, false}}

ι in ι′.g,∆,Ψ,Λ b,∆,Ψ,Λ
(in)

where b =

{

true ι ∈ G∗(ι′, g,Ψ)

false ι /∈ G∗(ι′, g,Ψ)

if true then E1 else E2,∆,Ψ,Λ E1,∆,Ψ,Λ
(conditional-true)

if false then E1 else E2,∆,Ψ,Λ E2,∆,Ψ,Λ
(conditional-false)

v;E,∆,Ψ,Λ E,∆,Ψ,Λ
(sequence)

Figure 3.4: Operational semantics for aliasing contracts

64

!b,∆,Ψ,Λ b′,∆,Ψ,Λ
(not)

where b′ =

{

true b = false

false b = true

v1 == v2,∆,Ψ,Λ b,∆,Ψ,Λ
(equals)

where b =

{

true v1 = v2

false v1 6= v2

ι instanceof τ,∆,Ψ,Λ b,∆,Ψ,Λ
(instance-of)

where σ = Ψ(ι) ↓1

and b =

{

true σ <: τ

false ¬σ <: τ

false && E,∆,Ψ,Λ false,∆,Ψ,Λ
(and-false)

true && E,∆,Ψ,Λ E,∆,Ψ,Λ
(and-true)

true || E,∆,Ψ,Λ true,∆,Ψ,Λ
(or-true)

false || E,∆,Ψ,Λ E,∆,Ψ,Λ
(or-false)

E,∆,Ψ,Λ E ′,∆′,Ψ′,Λ′

C[E],∆,Ψ,Λ C[E ′],∆′,Ψ′,Λ′
(context-e)

Figure 3.5: Operational semantics for aliasing contracts

65

• Field writes in rule (field-put) are object writes.

• Calls to impure methods in rule (method-call-impure) constitute both an object read
and an object write.

• The operators canread in rule (canread) and canwrite in rule (canwrite) evaluate
an object’s read and write contracts respectively.

Reads and writes of local variables, including the special variables this, accessor and
accessed, do not require contract evaluation, as explained previously and shown in rule
(local-get). They represent reads and writes to the unaliased stack only; the heap is not
accessed and thus no aliasing contracts need to be evaluated. As already explained above,
constructor calls also do not require contract evaluation; they directly read or write only
to a heap region which does not yet represent an object (and therefore has no associated
contracts).

To describe the execution order of contract evaluations, we introduce three auxiliary
constructs which do not explicitly appear in source programs: assert, ⊙ and eval.

Given an expression ι.fm which requires contract evaluation (a field read, field write
or method call of the object at address ι), we transform the expression to

assert(this canread ι); ι⊙ fm or assert(this canwrite ι); ι⊙ fm

as appropriate – see rules (field-get), (field-put), (method-call-pure) and (method-call-
impure). Here ‘⊙’ represents a standard object access without contract evaluation.

The canread and canwrite operators, described in rules (canread) and (canwrite),
then reduce to

eval(ι1, ι
′, ι′′, e1) && . . . && eval(ιn, ι

′, ι′′, en)),

where e1 . . . en are the contracts (that is, the read or write contract expressions) that
currently apply to the object at address ι′′ (the accessed object), ι1 . . . ιn are the
declaring objects of contracts e1 . . . en and ι′ is the address of the object performing the
access (“accessor”). The && operator is lazy, as shown in rule (and-false). This means
that if any of the eval terms reduces to false, the entire clause also immediately reduces
to false.

Each contract associated with an object is evaluated separately using the eval con-
struct (see rules (eval-contract) and (eval-done)), which is given (by canread/canwrite
in rules (canread) and (canwrite)) the address ι of the contract’s declaring object (bound
in a new stack frame δ as “this”), the address ι′ of the object whose method is making
the access (bound as “accessor”) and the address ι′′ of the accessed object (bound as
“accessed”).

Execution proceeds as shown in rule (eval-contract) until a boolean value is produced
in rule (eval-done). The assert function is conventional – it continues for true, but raises
an exception for false. (An alternative semantic view is that assert(false) is a stuck
state.)

In our operational semantics, contract evaluation constitutes the very last step be-
fore reading or writing an object. Any sub-expressions are reduced before contracts are
evaluated. For example, for a field write of the form E1.f = E2, E1 and E2 are reduced
before the contract evaluation required for the field write is performed. This means that
any side-effects in the expressions E1 and E2 can potentially influence the outcome of the
contract evaluation.

66

We note here that if there are multiple contracts to evaluate, evaluation order is
irrelevant. Expressions in contracts may not have side-effects; contracts cannot declare
new variables or contracts, or change existing variables or contracts. This means that
∆, Ψ, and Λ must be the same before and after each contract evaluation and thus one
contract evaluation cannot affect the result of other contract evaluations.8

3.2.2.3 Contract transfer

Whenever a variable assignment occurs, the contracts in contract store Λ must be updated:
the contract associated with the variable must be removed from the object to which the
variable previously pointed and added to the object to which the variable points after the
assignment.

Such a contract transfer occurs for field writes and local variable writes, as shown in
rules (field-put-⊙) and (local-put). Note that (field-put-⊙) modifies the contracts in λ0,
while (local-put) updates the contracts in λn.

When a parameterised contract needs to be stored in the contract store Λ, we look
up the actual contract associated with the contract parameter in the metadata of the
contract’s declaring object on the heap. This gives us the actual contract expressions
associated with the contract parameter, as well as the appropriate declaring object. We
store this information in Λ, enabling parameterised contracts to be evaluated like any
other contract. Contract evaluation thus needs to have no knowledge of parameterised
contracts (and indeed the contract evaluation rules in our operational semantics do not).

Booleans are primitive types which are not subject to aliasing. Consequently, writes
of boolean fields and local variables do not require updates to the contract store, as shown
in rules (field-put-⊙-bool) and (local-put-bool).

3.2.2.4 Method and constructor calls

The semantics of method and constructor calls are quite similar to each other, as shown
in rules (method-call-⊙) and (new).

Rule (new) modifies the heap to create a new object, recording the object’s type C,
its fields and their (default) values, and the contract parameters cpi with their associated
contract closures ψi. The syntactic contracts φi passed to the constructor as instantia-
tions for the object’s contract parameters may either be full syntactic contracts with two
contract expressions or may themselves be parameterised contracts. The function closure
converts the syntactic contracts φi to contract closures ψi.

To perform the actual method or constructor call (method-call-⊙) and (new) create a
new stack frame δ. For method calls, this is bound to the address of the object whose
method is called; for constructor calls this is bound to the address of the newly created
object. The values of the method’s or constructor’s parameters x1, . . . , xn are initialised
to the values v1, . . . , vn (the method or constructor call arguments). The local variables
y1, . . . , ym are initialised to their default values w1, . . . , wm.

8Of course, this does not mean that ∆, Ψ and Λ cannot change during contract evaluation, as long
as they are returned to their original state at the end of the evaluation. This happens, for example,
when a contract calls a method, modifying ∆. This method may declare local variables and contracts
but these changes all disappear when the method returns (assuming method purity). Incidentally, rule
(eval-contract) would cause a stuck state if any of ∆, Ψ or Λ change.

67

A new frame λ for the contract store is created to store the contracts for local variables
and parameters. Since local variables are initialised to null (or false) and thus do not yet
point to objects, their contracts do not need to be added to the contract store. Parameters,
on the other hand, may already point to heap objects; thus the contracts of non-boolean
method parameters must be added to the contract store frame λ (provided the method
argument corresponding to a parameter is not null).

Finally, the new stack frame δ and contract store frame λ are added to the stack ∆
and the contract store Λ respectively and the method or constructor body E is reduced
in the new context. A constructor call reduces the body E and then returns the address ι
of the newly created object; this enables chaining, for example new Object().method().

3.2.2.5 The in operator

The evaluation of in relies on the computation of the set of objects reachable from an
encapsulation group g. For E in E ′.g, we evaluate E ′ to give object address ι and then
follow all paths in g starting from ι in heap Ψ. This is shown in rule (in), which uses the
G∗ operator to compute the set of g-reachable objects.

Calculating the reachable set of an encapsulation group is potentially expensive. In
the worst case it could contain every object in the system. To find the reachable set,
one must keep track of which encapsulation groups have been evaluated in order to avoid
cyclic (and infinite) evaluation. The reachable set could alternatively be calculated by
our machine. However, the need to avoid cyclic evaluation leads to complex reduction
rules that have to record which encapsulation groups have already been evaluated; the
formalisation given here keeps our reduction rules simple and concise.

3.2.2.6 Conditionals, sequences and boolean operators

Finally, we define some standard reduction rules for conditionals, sequences and boolean
operators. The conditional rules (conditional-true) and (conditional-false) express that a
true condition in an if-clause leads to the evaluation of the then-clause, while a false

condition triggers the evaluation of the else-clause.
The (sequence) rule fixes the evaluation order of a sequence of expressions: the second

expression can be evaluated only after the first one has been reduced to a value.
Our semantics also include rules for the standard boolean operators ! in rule (not),

== in rule (equals), && in rules (and-false) and (and-true) and || in rules (or-false) and
(or-true). These operators have the expected semantics; && and || are both evaluated
lazily.

We also define the evaluation of the instanceof operator in rule (instance-of) using
the operator <: defined in Section 3.2.2.1: an expression ι instanceof τ evaluates to
true if type σ of the object at heap address ι is a subtype of τ .

3.2.2.7 Evaluation contexts

There are a number of contexts in which one expression E is reduced to another expression
E ′. Instead of many similar, separate rules, we define the reduction rule (context-e) using
evaluation contexts to express this.

Possible evaluation contexts are shown below; we use C to denote the evaluation con-
text. For compactness, we define bin op to range over binary operators ==, canread and

68

canwrite.

C = [−]
| if C then E else E
| C;E
| C.f
| C.f = E
| ι.f = C
| x = C
| C.m(E, . . . , E)
| ι.m(C,E, . . . , E)
| ι.m(v, . . . , v, C,E, . . . , E)
| new c〈(φ), . . . , (φ)〉(C,E, . . . , E)
| new c〈(φ), . . . , (φ)〉(v, . . . , v, C,E, . . . , E)
| !C
| C bin op E
| v bin op C
| C instanceof τ
| C in E.g
| ι in C.g
| C || E
| C && E

3.3 Case study

We now present a case study to demonstrate the flexibility of aliasing contracts, showing
how they can be used to enforce a variety of aliasing conditions. We discuss how aliasing
contracts can support encapsulation in the iterator design pattern [37]. We chose this case
study because existing static alias protection schemes struggle to implement iterators; as
a result, iterators are frequently discussed in literature about alias protection (and used to
demonstrate the failings of existing work), including in Clarke et al.’s work on ownership
types [27] and Dietl et al.’s work on universe types [32]. Appendix A contains three
additional case studies: the binary tree data structure and the observer and memento
design patterns.

Iterator is a behavioural design pattern proposed by Gamma et al. [37]. It allows
traversal of a collection’s elements in sequential order, without exposing the underlying
representation of the collection. Thus, the client does not need to know if it is dealing
with, for example, an array list, linked list or hash set.

An iterator can be implemented in a number of different ways. Here, we consider what
Noble calls a structure sharing iterator [73]. This iterator implementation is similar to that
used by Java’s collections library. A UML class diagram of the structure sharing iterator
pattern is shown in Figure 3.6; it deviates slightly from the diagram given by Gamma et
al. [37] who present an external iterator design. We also use a slightly different terminology
from Gamma et al.’s version, referring to the Collection and ConcreteCollection,
instead of Aggregate and ConcreteAggregate.

The important details of the iterator pattern are as follows:

69

Figure 3.6: UML class diagram of the structure sharing iterator pattern

• The createIterator method in ConcreteCollection can be called by clients to
obtain a reference to an iterator for the collection.

• ConcreteIterator contains the functionality for traversing the collection.

• Representation is a class representing the data of the collection. This may take a
number of different forms, for example an array for array lists or a chain of nodes for
a linked list. In our example, we represent all of these possibilities as a single class.
We are not interested in the implementation details of the collection’s representation
here, only in how the representation is shared between the collection and the iterator.

Iterator is commonly discussed in the literature about alias protection because it
requires the collection representation to be shared by the collection and one or more
iterators. For this reason, single-ownership alias protection schemes such as Clarke-style
ownership types struggle to implement structure sharing iterators [73] (although they may
be able to implement other versions of the iterator pattern).

Using aliasing contracts, we can achieve sharing of the collection representation be-
tween the collection and the iterators. There are several different ways to achieve this.
Depending on the exact usage context, different options may be preferable.

All of the options we present below use the rw-contract “true” for reference B in Fig-
ure 3.6. The reason for this is that the collection itself needs to protect its representation;
iterators come and go and therefore cannot provide permanent alias protection. This
places all of the protection burden on the collection itself.

There are a number of different ways that we can annotate reference A in Figure 3.6:

• The rw-contract

{accessor == accessed || accessor == this ||

accessor instanceof ConcreteIterator}

70

allows the collection representation to be read and written by the representation it-
self (“accessed”), the collection (“this”) and any objects of type ConcreteIterator.

One problem with this approach is that it allows all iterators to access a collection’s
representation. Thus, iterators could access the representation of all collection in-
stances, not just of the one they are traversing.

• The rw-contract

{accessor == accessed || accessor == this ||

(accessor instanceof ConcreteIterator &&

((ConcreteIterator) accessor).getCollection() == this)}

addresses the problem with the previous version by checking that iterators which
access the collection are indeed associated with that particular collection instance.
While slightly safer than the previous version, this contract requires the iterator
to implement an additional method, getCollection, which returns the collection
instance being traversed.

• The rw-contract

{accessor == accessed || accessor == this ||

accessor == currentIterator}

works well when only one iterator should traverse the collection at a time, for
example to avoid concurrency issues. In this case, the collection can record the
currentIterator and give it access rights to its representation. If a second itera-
tor attempts to traverse the collection at the same time, this will cause a contract
violation.

• The rw-contract

{accessor == accessed || accessor == this ||

iterators.contains(accessor)}

modifies the previous one to allow multiple iterators to traverse the collection at the
same time. One issue with this version is that iterators which are no longer needed
must be explicitly removed and destroyed9. On the other hand, this approach
can implement quite subtle constraints; for example, we could easily restrict the
number of concurrent iterators to two or three by limiting the size of the iterators
collection.

• The contract

9This could, for example, be implemented in Java by storing iterators in a WeakHashMap, thus removing
the need to explicitly de-register iterators. When an iterator is no longer used by the rest of the system,
it can be finalised and automatically removed from the WeakHashMap. Storing iterators in a standard
data structure would prevent them from being finalised in this way. However, with this implementation
there is no way of knowing exactly when iterators will disappear from the WeakHashMap, as this depends
on when (and if) they are finalised by the GC.

71

{accessor == accessed || accessor == this ||

iterators.contains(accessor),

accessor == this || accessor == accessed ||

accessor == writeIterator}

combines the previous two approaches. It allows many iterators to traverse the col-
lection at the same time, while writes are limited to a single iterator (“writeIterator”).

Standard OO design advice says that behaviour should be placed with the data on
which it acts. This is, for example, expressed by Riel’s heuristic “Keep related data and
behaviour in one place” [85]. Separating behaviour from the relevant data causes coupling
between the class containing the data and the class containing the behaviour.

Arguably, iterator does exactly this, separating the traversal behaviour from the col-
lection and its items. This separation of data and behaviour requires the data to be shared
by more than one object at run time, causing problems for single-ownership systems. The
visitor and strategy patterns [37] include a similar separation; we can implement alias
protection with aliasing contracts for these patterns, much in the same way as described
for iterator here.

3.4 Summary

In this chapter, we introduced a dynamic alias protection scheme called aliasing contracts.
We developed a formal operational semantics for aliasing contracts and demonstrated how
they can be applied in practice to support encapsulation in the iterator design pattern.

Aliasing contracts include several powerful features: encapsulation groups which can
be used to specify deep and transitive contracts and contract parameters which can be used
to achieve contract polymorphism. The case study we presented here (and the additional
case studies in Appendix A) show how flexible and expressive aliasing contracts are. They
can be used to express a wide range of aliasing conditions, including some rather complex
ones.

In Chapter 4, we continue with a detailed comparison between aliasing contracts and
existing alias protection schemes.

72

CHAPTER 4

Comparison of aliasing contracts

with existing alias protection

schemes

In Chapter 3, we introduced aliasing contracts, a dynamic alias protection scheme. In
this chapter, we present a detailed comparison of aliasing contracts with existing work.
To facilitate this comparison, we consider the same categories we used to classify existing
alias protection schemes in Chapter 2.

Aliasing contracts are highly flexible and expressive, as demonstrated with the case
studies in Chapter 3 and Appendix A. Their high level of expressiveness enables them
to model many alias protection policies used in existing work, including full encapsula-
tion, module encapsulation and the three variants of owners-as-dominators and owners-
as-modifiers (strict, peer and transitive). We thus argue that aliasing contracts subsume
many of the existing models and can be used as a unifying approach to alias protec-
tion. We further demonstrate this in Section 4.11 by using aliasing contracts to compare
two seemingly different aliasing protection systems: full encapsulation and Clarke-style
ownership types.

4.1 References and object accesses

In Section 2.1.2.1, we noted that many existing alias protection schemes limit which
references can exist (by restricting which variables can be assigned to each other), while
other systems allow any references to occur but restrict how the references can be used; we
say that some systems restrict references, while others restrict object accesses via these
references. Despite the obvious differences between the two approaches, we argued in
Section 2.1.2.1 that both provide the same encapsulation guarantees.

Aliasing contracts restrict object accesses. This increases their flexibility compared
to systems which restrict references. Whether an object access is allowed (that is, a
particular reference is usable) is determined by the program’s aliasing structure at the
time the object access is made; an unusable reference may become usable as the aliasing
structure changes at run time and vice versa. This is not possible in systems which restrict
references, as the introduction of the illegal (and perhaps later legal) reference would have
been prohibited by the system. In such systems, either a reference is legal or it is illegal

73

but this does not change as the program executes.
In the example below, the object referenced by variable o becomes inaccessible at

program point B, when it is assigned to o2 (that is, reference o becomes unusable). Any
accesses to it now produce a contract violation of the rw-contract “false” of variable o2.
Once that contract is removed at program point D, the object in o becomes accessible
again (that is, reference o becomes usable). Thus, the object accesses at program points
A and E succeed, but the access at program point C fails:

Object o {true};

Object o2 {false};

o.m(); //A

o2 = o; //B

o.m(); //C

o2 = new Object(); //D

o.m(); //E

This example also shows that it is possible for two variables with conflicting contracts
to point to the same object without causing an error; a contract violation is reported
only if the object is then accessed. This behaviour has an analogy in typing: some type
systems may allow the definition of a valid type which turns out not to have any members;
problems occur only when we try to create members of the type, not in the type definition
itself.

4.2 Static and dynamic checking

In Section 2.1.2.2, we discussed the relative advantages and disadvantages of static and
dynamic alias checking. We also noted that systems which restrict object accesses rather
than references cannot usually be checked statically.

Aliasing contracts limit object accesses and thus require dynamic checking. This is due
to the highly dynamic nature of aliasing contracts and their dependence on the aliasing
structure of the program at the time an object access occurs at run time.

4.3 Temporal and spatial aliasing

Section 2.1.2.3 introduced a distinction between temporal and spatial aliasing. Like most
other alias protection schemes, aliasing contracts are concerned with spatial aliasing only;
that is, which spatial aliases to an object exist at the time of object access. Aliasing
contracts can be used to enforce some temporal aliasing restrictions (as we discuss in
Section 4.10.3 below, where we show how to model linearity with aliasing contracts), but
they provide no explicit support for restricting temporal aliasing.

4.4 Static and dynamic aliasing

Section 2.1.2.4 introduced the difference between static and dynamic aliasing: static alias-
ing describes aliasing of objects through fields (that is, more permanent, static variables),
while dynamic aliasing represents aliasing through (less permanent) local variables and

74

method parameters. Some alias protection schemes (such as Hogg’s islands [48] and
Almeida’s balloons [4]) loosen restrictions on dynamic aliasing to gain flexibility.

Aliasing contracts do not distinguish between static and dynamic aliases; the contracts
of all references, whether fields, local variables or method parameters, are treated in the
same way. However, contract suspension can be used to temporarily loosen restrictions
on an object, for example for the duration of a method call. This allows us to model
dynamic aliasing, as we explain in more detail in Section 4.6.

A distinction between static and dynamic aliasing could additionally be achieved by a
simple change to the operational semantics of aliasing contracts presented in Chapter 3.
Instead of checking contracts for all field reads, field writes and method calls as is done in
the current semantics, we could perform such checks only when the read, write or method
call is made through a field (that is, a static alias).

We currently have no plans to implement the modification described above. Allowing
dynamic aliases across encapsulation boundaries would significantly weaken the encap-
sulation guarantees provided by our system. The aim of aliasing contracts is to allow
objects to state assumptions about when the objects they reference may be read and
written. Allowing some reads and writes without contract checks would defeat this pur-
pose; programmers could no longer rely on the assumptions expressed in contracts, leading
to potentially unexpected reads and writes.

4.5 Sharing

Many alias protection schemes include the concept of shared objects which can be accessed
from anywhere in the system, as described in Section 2.1.2.5.

Aliasing contracts can model shared objects using the rw-contract “true”. This con-
tract allows reads and writes to the object from anywhere in the system, as it always
evaluates to true.

There is, however, a subtle difference in semantics between objects annotated with
the rw-contract “true” and shared objects in other systems. In other aliasing protection
schemes, shared objects always remain shared. Objects stored in a variable of one pro-
tection level cannot usually be assigned to a variable of a different protection level. An
object in a shared variable can never be assigned to a variable of a higher protection level
and thus always remains shared.

Aliasing contracts, on the other hand, do not restrict assignments in this way and
therefore allows objects to move between different encapsulation levels. If a shared object
is moved to a higher protection level, it ceases to be shared. The validity of an object
access depends on the conjunction of the aliasing contracts which currently apply to the
accessed object. Even if one reference has the rw-contract “true”, this does not necessarily
mean that the object to which the variable points can be accessed freely from anywhere
in the system, as the following example shows:

Object o {true};

Object o2 {accessor == accessed || accessor == this};

o = o2; //A

o2 = new Object(); //B

At the start, variable o points to a shared object. As soon as the more restrictive
rw-contract “accessor == accessed || accessor == this” is added to the previously

75

shared object at program point A of the example, the object in o can no longer be accessed
freely from anywhere in the system; the more restrictive contract essentially overrides the
weaker rw-contract “true”. The reason for this lies in the conjunction of contracts: con-
joining the contract “true” with another contract simply reduces to the evaluation result
of the other contract. The object in o becomes shared again at program point B above
when the more restrictive contract is removed.

This behaviour is similar to that of Boyland et al.’s capabilities [21]: various references
to a shared object may exist, none of them asserting exclusive access rights. If another
reference then asserts exclusive access rights, the base rights of the other references may
be stripped away: the object is then no longer shared.

Static analysis can be used to detect cases where a shared object is assigned to a
reference with a more restrictive contract. The static analysis we present in Chapter 6
reports such situations, alerting the programmer that an object which was intended to be
shared may be blocked by another contract.

4.6 Borrowing

Borrowing, as described in Section 2.1.2.6, allows temporary aliasing (and thus accesses)
to an otherwise encapsulated object, for example for the duration of a method call. A
borrowed reference can exist for a limited time only and may not be stored permanently
(for example in a field).

Aliasing contracts can model borrowing through contract suspension (which is desug-
ared as explained in Section 3.1.3). The contract protecting an object can thus be removed
temporarily, for example for the duration of a method call as shown in the example below.
This allows other parts of the system to access the usually protected object for a limited
time:

Object o {accessor == accessed || accessor == this};

suspend(this.o) { //A

foo.bar(this.o); //B

} //C

The object referenced by variable o is usually protected from accesses except those coming
from itself (“accessed”) and from the object which declares variable o (“this”). However,
after the contract of variable o (which previously protected the object) is suspended at
program point A, it becomes accessible to other parts of the system (for example in method
foo.bar to which it is passed at program point B). The contract of variable o is reinstated
at program point C at the end of the suspend-block and the object once again becomes
encapsulated.

Suspending a contract achieves the same semantics as borrowing: the object becomes
accessible to another part of the system for the duration of the method call, but not
beyond that. Even if the callee retains a reference to the borrowed object beyond the
method call (for example by storing it in a field) it cannot use that reference later, since
the object will be protected by the reinstated contract.

We note that, as explained in Section 3.1.3, a contract can only be suspended by an
object which has read and write access rights to the contract’s declaring object. This is
essential to ensure that contracts cannot be suspended arbitrarily to circumvent encap-
sulation.

76

Borrowing (with contract suspension) can be used to simulate dynamic aliasing. For
example, suspending the contracts of method arguments for each method call in the
system allows object accesses to occur through method parameters.

4.7 Immutability

In Section 2.1.2.7 we noted that immutability can signify three different things in the
context of alias protection. In some cases (including C++’s const, Scala’s val and
Java’s final keywords) immutability protects references, so that the value (that is, the
address) stored in an immutable reference may not be modified (but the object to which it
points may be). Alternatively, immutability may prevent a particular reference being used
to write the object it contains (as for read-only references of universe types), although
aliasing references may be used to modify the object. Finally, immutability may prohibit
modifications to the object through any aliasing references (as for Hogg’s read annotation
and Scala’s immutable objects). We argue that only the last of these three semantics is
useful in the context of alias protection as it prevents all object writes, regardless of which
reference they come through.

Aliasing contracts restrict object accesses, not references, and therefore can model only
the last of the three semantics described above. The aliasing contract “true, false”
ensures that the object to which the variable points cannot be written, as long as the
variable points to it. Attempts to write the object will always result in a violation of the
variable’s write contract, “false”.

The behaviour of contract “false” does not depend on the existence of other aliasing
contracts (unlike contract “true” discussed in Section 4.5 above). Because contract eval-
uation is conjunctive, contract evaluation will always fail in the presence of the contract
“false”. This is demonstrated by the example below:

Object o {true, false};

Object o2 {true};

o.f = g; //A

o = o2; //B

o.f = g; //C

The object stored in variable o remains immutable (protected by the write contract
“false”) throughout the example. The addition of a second, looser contract at pro-
gram point B has no effect on this. Attempts to write a field of o at program points A

and C both fail.

4.8 Multiple ownership

Many important programming idioms such as iterators require multiple ownership, as
discussed in Section 2.1.1.3. However, multiple ownership is not supported by many
existing ownership-based alias protection schemes, as it is complex to check statically.

Aliasing contracts naturally support multiple ownership. For example, the rw-contract
“accessor == foo || accessor == bar” ensures that the referenced object can be ac-
cessed by both foo and bar (provided there are no other interfering contracts).

Multiple ownership is also supported by encapsulation groups. For example, the rw-
contract “accessor in owners” specifies that an object can be accessed by any of the

77

objects in the owners group. This not only allows any number of owners to share an
object, but supports a theoretically unlimited and changing number of actual owners at
run time.

The approaches discussed above require an object’s owners to be mutually aware of
each other. If, for example, one of the owners specifies the rw-contract “accessor ==

this” for the multiply owned object (thinking it is the object’s sole owner), the other
owners would be blocked from accessing the object. A similar approach is taken by
Östlund et al. in their work on ombudsmen-as-dominators [79], where the ombudsmen
sharing a multiply owned object must cooperate in a “benevolent” [79] manner; that is,
they must know about each other.

For aliasing contracts, it is in fact sufficient for one object to know about all of the
owners; this is far more likely to occur in practice than all owners being aware of each other.
This object can then specify a contract as above, for example rw-contract “accessor ==

foo || accessor == bar”; we call it the coordinating object. The remaining owners
can then simply use the rw-contract “true”, relying on the object to be protected (and
correctly shared) by the coordinating object.

In other cases, owners may have some information about other owners, although they
may not know their exact identity. For example, one owner may know the type of the other
owner; in this case, it could specify the rw-contract “accessor == this || accessor
instanceof Foo” where Foo is the type of the second owner. Although less safe than
explicitly specifying all owners, this contract at least does not conflict with the other
owner’s contract. In the example below, the contracts of variables o in Foo and o2 in Bar
do not conflict; a Foo and a Bar object can simultaneously access (and own) the same
object:

class Foo {

Object o {accessor == this || accessor instanceof Bar};

}

class Bar {

Object o2 {accessor == this || accessor instanceof Foo};

}

In their work on multiple ownership, Cameron et al. argue that “one owner often does
not, or cannot, know the other potential owners” [22]. For this reason, they support an
owner wildcard, ?. As an example, consider:

Project<this & ?> prj = new Project<this & ?>();

This creates a new Project object which is owned by this and an additional unknown
owner. This owner could essentially be any other object in the system. In the most
extreme case, the other owner could be the root of the ownership tree, thus making the
object in prj accessible from anywhere in the system.

We argue that such an approach to multiple ownership is unsafe. In the worst case,
additional (unspecified) owners could allow the multiply owned object to be accessed from
anywhere in the system. This provides no encapsulation guarantees at all, limiting its
usefulness for alias protection.

4.9 Ownership transfer

As discussed in Section 2.1.1.3, many ownership-based alias protection schemes also strug-
gle with ownership transfer. Using aliasing contracts, ownership transfer occurs naturally

78

as the aliasing structure of the program changes at run time.
In the example below, the object stored in variable o is first accessible only to itself

and the object which declares variable o (“this”), before becoming shared at program
point B. This represents a transfer of ownership from this to the entire system:

Object o {accessor == accessed || accessor == this};

Object o2 {true};

o2 = o; //A

o = new Object(); //B

The example shows that transfer occurs in two steps. At program point A, a second
contract is added to the object, in this case the rw-contract “true”. At program point
B, the original contract is removed. This removal can be achieved by pointing o to a new
object (as in the example) or by nullifying o.

4.10 Aliasing policies

We now show how aliasing contracts can be used to model the various aliasing policies
described in Section 2.1.1.

4.10.1 Full encapsulation

Full encapsulation, as described in Section 2.1.1.1, is a rather restrictive aliasing policy.
Objects are encapsulated inside a single object (which we call the bridge below, as in
Hogg’s work [48]). Encapsulated objects can freely alias each other; unencapsulated
objects can also freely alias each other. However, all aliasing between encapsulated and
unencapsulated objects must pass through the bridge object. One major limitation of
full encapsulation is that all objects referenced directly or transitively by an encapsulated
object must also be encapsulated.

We can model full encapsulation using aliasing contracts with the help of encapsulation
groups. In each class, we define an encapsulation group called transitiveClosure which
will at run time contain all objects that can be directly or transitively reached through
a series of field selections, starting from the group’s declaring object. For example, for a
class with fields f1, ..., fn, we define transitiveClosure as follows:

group transitiveClosure = {f1, f1.transitiveClosure, ..., fn,

fn.transitiveClosure};

Next, we identify the bridge classes in the program. These are classes whose instances
act as bridges at run time, encapsulating all directly and indirectly referenced objects.
In bridge classes, we give each field the rw-contract “accessor == this || accessor

in transitiveClosure”. This contract ensures that all directly or transitively contained
objects (that is, all objects encapsulated by the bridge) can be accessed only by the bridge
(“this”) and other encapsulated objects (in group “transitiveClosure”).

For fields in all remaining classes, we use the contract “accessor canread this,

accessor canwrite this”. This contract passes on contract evaluation to its declar-
ing object until either a bridge object is found or if the root of the system is reached.
The root of the system is the “main” object which is created by the operating system
before program execution starts; it resides at the bottom of the execution stack and per-
sists throughout program execution. Importantly, all other objects in the system can be

79

reached through reference paths from the root object. This means that evaluation of the
contract “accessor canread this, accessor canwrite this” must eventually reach
either a bridge object or the system’s root object1. If a bridge object is reached, the ac-
cessed object must be an encapsulated object and contract evaluation (of the rw-contract
“accessor == this || accessor in transitiveClosure”) will succeed only if the ac-
cess came from the bridge itself or another encapsulated object. If contract evaluation
reaches the root of the system, the accessed object was not encapsulated; in this case,
contract evaluation always succeeds, as the root object of the system does not have any
contracts associated with it (that is, there are no references to it).

This approach is demonstrated in the example below. Class Bridge defines a bridge
class, while Foo and Bar are standard non-bridge classes (whose instances may be either
encapsulated or unencapsulated):

class Bridge {

Foo o1 {accessor == this || accessor in transitiveClosure};

group transitiveClosure = {o1, o1.transitiveClosure};

}

class Foo {

Bar o2 {accessor canread this, accessor canwrite this};

group transitiveClosure = {o2, o2.transitiveClosure};

}

class Bar {

...

}

4.10.2 Owners-as-dominators and owners-as-modifiers

Owners-as-dominators and owners-as-modifiers are perhaps the best-known alias protec-
tion policies, implemented, for example, by Clarke et al.’s ownership types [27] and Müller
et al.’s universe types [68]. In this section, we consider only single-ownership variants of
these aliasing policies; multiple ownership was discussed in details in Section 4.8 above.

In Section 2.1.1.3, we identified and described three variants of owners-as-dominators
and owners-as-modifiers: strict, peer and transitive owners-as-dominators and owners-as-
modifiers. We discuss these variants in the next three sections and show how aliasing
contracts can be used to model each of them.

Although most of the ownership-based systems described in Section 2.1.1.3 restrict
references, we talk only about object accesses via these references here. (As we noted
above, both approaches give equivalent encapsulation guarantees.) Owners-as-dominators
restricts both object reads and writes (or references), while owners-as-modifiers limits only
object writes (or references).

4.10.2.1 Strict owners-as-dominators and owners-as-modifiers

Strict owners-as-dominators and owners-as-modifiers is the simplest version of this alias-
ing policy. It allows an object to be accessed only by its direct owner (although it

1This assumes that the aliasing contract implementation eliminates cyclic contract evaluation; other-
wise, contract evaluation may of course loop forever.

80

is usual practice to also allow an object to access itself). We can easily model strict
owners-as-dominators by annotating fields with the rw-contract “accessor == accessed

|| accessor == this”. Strict owners-as-modifiers is then represented by the contract
“true, accessor == accessed || accessor == this”. The condition “accessor ==

accessed” ensures that an object can access itself, while “accessor == this” gives ac-
cess permissions to the object’s owner.

4.10.2.2 Peer owners-as-dominators and owners-as-modifiers

Peer owners-as-dominators and owners-as-modifiers additionally allows objects with the
same owner (that is, peers) to access each other. This is most easily modelled using
encapsulation groups.

In each class, we define an encapsulation group peers and add all of the class’ fields
to the group definition. Thus, each object’s peers group contains the object’s directly
owned objects:

group peers = {f1, f1.peers, ..., fn, fn.peers};

We then annotate each field with the rw-contract “accessor == this || accessor

in peers” for owners-as-dominators or with the contract “true, accessor == this ||

accessor in peers” for owners-as-modifiers. This contract ensures that an object can
be accessed only by its peers (including itself) and its owner.

We can also specify this contract without encapsulation groups. For a class with
fields f1 to fn, each field’s contract becomes “accessor == this || accessor == f1

|| ... || accessor == fn”. Although semantically equivalent to the contract using
encapsulation groups above, this contract is significantly more verbose. It is also less
maintainable: adding a new field to a class requires modifications to each existing field
contract, rather than just the encapsulation group definition.

4.10.2.3 Transitive owners-as-dominators and owners-as-modifiers

Transitive owners-as-dominators and owners-as-modifiers allows an object to be accessed
by all objects below it in the ownership tree (that is, all objects it owns directly or
transitively), in addition to its peers and its owner. This means that object accesses may
go any number of levels up the ownership tree but at most one level down. We can model
this aliasing policy with a simple modification to the peers encapsulation group from the
previous section.

To highlight the difference between transitive and peer owners-as-dominators and
owners-as-modifiers, we name the encapsulation group repGroup instead of peers in this
section. Each object’s repGroup group contains the object’s representation – all objects
it owns directly or transitively. For a class with fields f1 to fn, we define repGroup as
follows:

group repGroup = {f1, f1.repGroup, ..., fn, fn.repGroup};

This group contains all directly owned objects (f1 to fn) and all objects owned transitively
through these directly owned objects (f1.repGroup to fn.repGroup).

We can now use the same contracts as in the previous section: “accessor == this

|| accessor in repGroup” for owners-as-dominators and “true, accessor == this

|| accessor in repGroup” for owners-as-modifiers.

81

4.10.2.4 Clarke-style ownership types

We now look in detail at how aliasing contracts can model Clarke-style ownership types,
arguably the most influential ownership-based alias protection scheme, which we de-
scribed in detail in Section 2.1.1.3. Clarke-style ownership types is a transitive owners-
as-dominators system and therefore the contracts required to model it are very similar
to those discussed in the previous section. The main difference is the introduction of
norep and owner annotations which produce different encapsulation semantics than the
standard transitive owners-as-dominators rep annotation.

Clarke-style ownership types describe a system’s ownership structure using three differ-
ent annotations. The variable annotation rep indicates that the object stored in the vari-
able is owned by the variable’s declaring object (and that transitive owners-as-dominators
semantics apply). Variables annotated with norep contain shared objects accessible any-
where in the system. Objects stored in owner-annotated variables have the same owner
as the variable’s declaring object.

In the previous section, we defined contracts and encapsulation groups to model the
semantics of the rep annotation only. Here, we need to modify the encapsulation group
structure to accommodate the additional owner annotation.

We define an encapsulation group called repGroup in each class as before; in addi-
tion, we define ownGroup which at run time contains all directly and transitively ref-
erenced objects that have the same owner (that is, objects that are reachable through
owner-annotated references). For a class with owner-annotated fields f1, ..., fn and rep-
annotated fields h1, ..., hn the group definitions are as follows:

group ownGroup = {f1, f1.ownGroup, ..., fn, fn.ownGroup};

group repGroup = {h1, h1.repGroup, h1.ownGroup, ...,

hn, hn.repGroup, hn.ownGroup};

The group repGroup contains all directly owned objects (h1, ..., hn), as well as all objects
owned transitively through these directly owned objects (h1.repGroup, ..., hn.repGroup
and h1.ownGroup, ..., hn.ownGroup), assuming that the owned objects’ repGroups and
ownGroups have been specified correctly.

A Clarke-style ownership annotation can then simply be replaced by the corresponding
aliasing contract:

[[rep]] = {accessor == this || accessor in repGroup}
[[norep]] = {true}
[[owner]] = {accessor canread this, accessor canwrite this}

The contract [[rep]] gives transitive owners-as-dominators semantics, as explained in
the previous section.

The contract [[norep]] evaluates to true, regardless of the value of accessor, making
objects stored in norep variables accessible from anywhere in the system.

Finally, [[owner]] captures the semantics of the owner annotation, where an object has
the same owner (and can be accessed by the same objects) as the contract’s declaring
object. When the object in an owner-annotated field is accessed, contract evaluation
continues to the contract’s declaring object (“this”), as explained in Chapter 3. For
example, consider the following simple LinkedList which uses the owner annotation:

class LinkedList {
Node head [[rep]];

82

}
class Node {
Node next [[owner]];

}

When a Node in the list is accessed, evaluation of the [[owner]] contract causes contract
evaluation for the previous Node in the list; this continues until the first Node in the list
is reached. At this point, the [[rep]] contract of the head field of LinkedList is evaluated.
This contract evaluation occurs no matter which node in the list is accessed, thus giving
all nodes in the same list the same owner (the LinkedList).

Clarke-style ownership types additionally include context parameters (as explained in
Section 2.1.1.3) which can be instantiated as rep or norep. Using monomorphisation, we
can simply eliminate context parameters and model the resulting program as described
above. Alternatively, we can directly model them using contract parameters; this is
explained in detail in Appendix B.

4.10.3 Uniqueness and linearity

Uniqueness stipulates that only a single reference can exist to a unique object, as discussed
in Section 2.1.1.2. This cannot be directly modelled using aliasing contracts, which are
concerned only with the usage of references but not their existence.

Instead, aliasing contracts can express the constraint that accesses to an object may
originate only within a single accessor object; in addition, it is usually useful to allow an
object to access itself. This is in fact identical to strict owners-as-dominators as described
in Section 4.10.2.1 above.

The rw-contract “accessor == accessed || accessor == this” ensures that ac-
cesses to an object can only come from a single accessor object (and from the object
itself). The single accessor object may make accesses through any reference it holds
(there may be multiple ones) but accesses from other objects would result in an error.
Thus, this contract does not restrict accesses to a single reference, but to a single object.

Another difference between the semantics of standard uniqueness and those of aliasing
contract is that annotating a variable with the rw-contract “accessor == accessed ||

accessor == this” does not necessarily guarantee access. Other references to the same
object with conflicting contracts may exist; for example, several objects may hold a ref-
erence with rw-contract “accessor == accessed || accessor == this” to the same
object. In this case, none of the variables could be used to access the object, since this
would inevitably lead to a violation of one of the conflicting contracts. Annotating a refer-
ence with rw-contract “accessor == accessed || accessor == this” means that the
associated object can be accessed by either one or zero objects; the contract prohibits
accesses from multiple objects but does not guarantee that any access rights will exist at
all.

Linearity, also described in Section 2.1.1.2, ensures that a variable is used exactly
once. Again, we cannot model these semantics with aliasing contracts, since they concern
references, not object accesses. However, we can use aliasing contracts to enforce the
constraint that an object is accessed at most once. This may be useful for inherently
linear objects, such as input streams, which are consumed when accessed.

To enforce linear access to an object, we store the object in a protecting variable
with rw-contract “false” once it has been accessed, thus ensuring that it cannot be

83

accessed again in the future. This variable must be a field; a local variable is therefore
not sufficient for our purposes here. The reason for this is that a contract disappears
when the associated reference goes out of scope and in this case we want the contract to
persist as long as possible.

In the example below, we have a linear object stored in field lin. Method foo accesses
this object at program point A by calling one of its methods, bar. As soon as this access
has occurred, we assign the linear object to the protecting variable protectingVar with
rw-contract “false” at program point B. This contract protects the linear object from
any further accesses:

LinearObject lin {accessor == accessed || accessor == this};

Object protectingVar {false};

foo() {

lin.bar(); //A

protectingVar = lin; //B

}

Note that we are actually modelling affine linearity, where the object must be accessed
at most once, instead of standard linearity, which would ensure that the object is accessed
exactly once. Boyland et al.’s capabilities [21] can also be used to model affine, but not
standard, linearity.

Inserting assignments to protecting variables, such as protectingVar in the above
example, directly after a linear object has been accessed can easily be done automatically
at compile time.

4.10.4 Module encapsulation

Module encapsulation, as described in Section 2.1.1.4, encapsulates objects inside an entire
module, instead of inside other objects. An encapsulation module could, for example, be
a single type (making encapsulated objects accessible only to all instance of that type)
or a program module such as a package in Java (making encapsulated objects accessible
only to objects of types declared in that module).

Module encapsulation is primarily a static concept: it is easy to determine the module
or class of a particular piece of code at compile time by looking at the class or module in
which it is physically written. At run time, however, this does not work in the same way:
we can easily determine the type of an object and the module in which this type is declared.
However, the code being executed could physically reside in any of the supertypes and
associated modules. Encapsulating an object inside a single type or module does not
make sense at run time, since a single object may at runtime have many different types.

This requires an adjustment to the (inherently static) semantics of module encapsu-
lation. Instead of encapsulating an object inside a single type, we encapsulate it inside
a type and all of its subtypes. We use the instanceof operator: for example, the rw-
contract “accessor instanceof Foo” ensures that the associated object can be read and
written only by objects of type Foo or objects of a subtype of Foo.

We can encapsulate an object inside a module in a similar way. For simplicity, we
assume the existence of a boolean inmodule operator, which is analogous to instanceof:
accessor inmodule M is true if there is a type T in module M such that accessor

instanceof T. Then, the rw-contract “accessor inmodule M” achieves module encap-
sulation: evaluation succeeds if the type of accessor or one of its supertypes is declared
in module M.

84

This shows how easy it is to model module encapsulation using aliasing contracts
(although the semantics of compile-time and run-time module membership necessarily
differ). In contrast, module encapsulation in type universes [68] is modelled using complex
typing rules. Confined types [94] enforce module encapsulation by placing a significant
number of restrictions on method calls, assignment statements and visibility of classes
and fields.

4.10.5 Capabilities

Capabilities are run-time values or access rights which one must quote to be able to
indirect on a given reference. Boyland et al.’s work presented in their paper Capabilities
for sharing: A generalisation of uniqueness and read-only [21], is arguably the aliasing
protection scheme which is conceptually most similar to aliasing contracts. Like aliasing
contracts, it can be used to model a range of other aliasing policies such as uniqueness
and immutability. In this section, we compare and contrast the two approaches.

In Boyland et al.’s work, each reference has an associated capability. This capability
specifies the reference’s access rights for the object to which it points. For example, if a
reference which points to object o holds a read capability, this means that the reference
can be used to read o. If the reference does not have a write capability, it cannot be
used to write o. Holding a particular capability guarantees access rights to an object; a
reference with a read capability can always read the associated object. This is not the
case for aliasing contracts, where a conflicting contract can interfere.

While holding a capability guarantees access rights in Boyland et al.’s work, not hold-
ing a capability does not imply that the associated object cannot be accessed through
another reference. For example, if one reference does not hold a write capability for ob-
ject o, this does not mean that o cannot be written via a different reference. This is
similar to aliasing contracts; just because one part of the system cannot access an object
(because of a contract violation), this does not mean that the object cannot be accessed
from elsewhere.

These semantics imply that, in both Boyland et al.’s work and our aliasing contracts,
we need to consider the union of all capabilities or contracts which currently apply to
an object to determine its aliasing properties (for example, to establish whether it is
immutable).

A major difference between Boyland et al’s capabilities and aliasing contracts is that
capabilities specify access rights for a given reference, while aliasing contracts specify
access rights for the object holding the reference. For example, an exclusive read and write
capability means that the reference can be used to read and write the object it contains;
reads and writes through other references are not permitted. On the other hand, the rw-
contract “accessor == accessed || accessor == this”, means that only the object
itself and the contract’s declaring object, “this”, can read and write the referenced object,
but it does not matter which reference is used to do so. This difference is analogous to the
difference between standard uniqueness semantics and uniqueness semantics as modelled
by aliasing contracts (see Section 4.10.3 above). Thus, Boyland et al.’s capabilities can
model standard uniqueness semantics, while aliasing contracts cannot.

Another difference is that Boyland et al. introduce three base capabilities, read, write
and identity, while aliasing contracts distinguish only between reads and writes to an
object, but do not deal with identity access separately. The reason for this is that aliasing

85

contracts apply only to objects on the heap; contracts are evaluated when the heap
region representing an object is read or written. Comparing the addresses stored in two
references does not require access to the associated objects on heap and is therefore not
currently covered by aliasing contracts. However, introducing the concept of identity
access separately from object reads and writes would require only small changes to the
operational semantics presented in Chapter 3.

Although Boyland et al. suggest that static checking of some programs using capabil-
ities may be possible (and we similarly consider static verification of aliasing contracts in
Chapter 6), the dynamic nature of capabilities and aliasing contracts means that neither
can be checked statically in the general case. Any programs which cannot be proved to
be correct by static analysis must be run in the presence of dynamic checks. Since the
behaviour of both capabilities and aliasing contracts is determined by the conjunction of
all capabilities and contracts applying to an object, such a run-time system needs to be
able to retrieve the capabilities or contracts associated with each object in the system;
this can either be done by storing backpointers or by using an external map recording
the capabilites and contracts for each object. Our prototype implementation for aliasing
contracts in Java (presented in Chapter 5) maintains such an external map.

Both Boyland et al.’s capabilities and aliasing contracts can be used to model various
aliasing policies. However, aliasing contracts are arguably more expressive and high-level;
they support arbitrary boolean conditions, while capabilities can specify only whether or
not a particular reference has a fixed set of (potentially exclusive) read or write access
rights for an object. This higher level of expressiveness makes aliasing contracts more
suitable for modelling complex aliasing policies such as owners-as-dominators.

4.11 Using aliasing contracts to compare full encap-

sulation and Clarke-style ownership types

In this chapter, we have shown that aliasing contracts can model a wide range of existing
alias protection schemes. This is useful when we want to compare two systems: we can
translate them to aliasing contracts and perform a direct comparison.

For example, consider a comparison between Clarke-style ownership types and a full
encapsulation scheme such as Hogg’s islands. Both can be modelled using the same
contracts, “accessor in group” and “accessor canread this, accessor canwrite

this”, suggesting that there is a close formal relationship between them.

For Hogg’s islands, we use the contracts “accessor in transitiveClosure” for all
fields in bridge classes; transitiveClosure is an encapsulation group containing all
directly and transitively referenced objects. Objects referenced by encapsulated ob-
jects must also be encapsulated; we use contract “accessor canread this, accessor

canwrite this” to achieve this.

Clarke-style ownership types use the rw-contract “accessor in repGroup” for owned
(rep-annotated) objects, where repGroup contains all directly and transitively owned
objects. Indirectly owned objects (annotated with owner) have the contract “accessor
can-

read this, accessor canwrite this”.

Clearly, there is a close correspondence between the two systems; in fact, the full
encapsulation of Hogg’s islands is a special case of owners-as-dominators as implemented

86

by Clarke-style ownership types, where bridge classes annotate all their fields as rep and
all other classes annotate their fields as owner. In this case, both the encapsulation group
structure and the contracts used in the two systems match. From this, we can conclude
that full encapsulation is actually a subset of transitive owners-as-dominators.

This example demonstrates that aliasing contracts provide a unifying way to compare
seemingly different alias protection schemes.

4.12 Summary

In this chapter, we showed how aliasing contracts can be used to model various aliasing
policies introduced by existing alias protection schemes, including full encapsulation, mod-
ule encapsulation and the three variants of owners-as-dominators and owners-as-modifiers
(strict, peer and transitive). This ability to model, and thus subsume, many existing
aliasing policies demonstrates the expressiveness of aliasing contracts. It also shows their
potential as a unifying scheme which can be used to understand and compare existing
work in the area, as we demonstrated by comparing full encapsulation and Clarke-style
ownership types.

87

88

CHAPTER 5

JaCon: a prototype

implementation of aliasing

contracts for Java

In this chapter, we present JaCon, a prototype implementation of aliasing contracts in
Java. JaCon supports all of the features of aliasing contracts we proposed in Chapter 3,
including the canread and canwrite operators, encapsulation groups, contract parame-
ters and contract suspension.

The aliasing contracts proposed in Chapter 3 assumed very simple programming se-
mantics. In Section 5.1 of this chapter, we start by extending this original proposal to real
programming languages (and their more advanced features). In Section 5.2, we give an
overview of JaCon, which includes a modified Java compiler and a run-time library im-
plementing dynamic contract evaluation. Finally, in Section 5.3 we present the results of
a performance evaluation of JaCon, including case studies of artificial programs designed
to exhibit particular contract evaluation behaviour and case studies of large real-world
Java programs. The results of the performance evaluation are very encouraging, as they
show that JaCon’s performance is comparable with existing debugging tools, such as
Valgrind [72].

5.1 Extensions of aliasing contracts for real-life OO

languages

The theory of aliasing contracts presented in Chapter 3 is clean and simple – every object
access causes a contract evaluation – but real programming languages have more complex
features that we need to account for.

In particular, static methods do not fit well with our object-based approach. For
object accesses from static methods, there is no accessor object; in calls to static

methods, there is no accessed object.

We address this problem by always allowing calls to staticmethods, since no accessed
object means that there are no contracts which need to be evaluated; they do not repre-
sent actual object accesses. In accesses from static methods, we set accessor to null;
this causes contracts such as “accessor == this” to fail, while contracts which do not

89

use accessor (such as “true”) behave as expected.
We allow contracts to be declared for static fields (which contain objects that we

may want to encapsulate); however, we stipulate for obvious reasons that such contracts
can refer only to static members of the enclosing class.

Many modern OO languages include variables of primitive types, which store values
instead of references to objects. Values cannot be aliased and therefore accessing them
does not require contract evaluations in JaCon.

Other language features, on the other hand, do not require special treatment due to
the dynamic nature of aliasing contracts. For example, objects of inner classes can be
treated just like other objects. Inheritance also fits naturally with aliasing contracts.
Fields are inherited by subclasses, along with their contracts, but cannot be overridden;
to fit with existing inheritance semantics, we similarly disallow the overriding of contracts
in subclasses.

5.2 Description of JaCon

We have implemented a prototype, JaCon, which supports the definition of aliasing
contracts in Java and performs contract evaluation at run time. The prototype consists
of a modified Java compiler and a run-time library (which we call the contract library
below). The compiler injects calls to the contract library into the source code, allowing
the contract library to monitor contracts at run time.

As an alternative approach, we considered modifying the Java Virtual Machine to track
contracts at run time. The advantage of such an approach is that it does not require a
modified compiler, only a specialised virtual machine. On the other hand, code compiled
with JaCon requires only the presence of the contract library to run on any standard
Java Virtual Machine. Another advantage of our approach is that we can inspect the
generated source code to see exactly what code will be executed by the virtual machine,
making it easier for us to trace problems and understand programs’ precise behaviour.

We chose Java as our base programming language since it is currently the most popu-
lar OO programming language [92] and is used in a large number of open-source systems.
However, Java is a relatively complex language with many different features, making
the prototype implementation non-trivial. For example, Java’s non-linear execution flow,
caused by exceptions, break and continue statements, complicates the tracking of con-
tracts, as we discuss below.

Although not described in detail here, our contract library implementation can handle
programs with multiple threads. Its methods and data structures are synchronised in
such a way that addition, removal and evaluation of contracts work correctly, even when
there are concurrent accesses from different threads.

5.2.1 Prototype features

For our prototype implementation, we modified the compiler javac of the OpenJDK 6 [78]
to inject calls to the contract library into a program’s source.

The syntax of contracts in JaCon is identical to the syntax proposed for aliasing con-
tracts in Chapter 3. Syntactically, a contract consists of one or two boolean expressions1,

1As in Chapter 3, one contract expression can be omitted when both contract expressions are identical.

90

separated by a comma and enclosed in braces; contracts can use the special variables
accessor and accessed, as well as the special operators canread, canwrite and in.

Contracts are parsed by the JaCon compiler and converted into anonymous inner
classes extending the abstract class Contract, as shown in the example below; one such
Contract class is created for each syntactically distinct contract expression in a class.
Each Contract class overrides the method checkContract, which can be called by the
contract library to evaluate the contract at run time. Method checkContract takes
two parameters, accessor and accessed, both of type Object; the contract expression
becomes the method’s boolean return statement. Revisiting the LinkedList example
from previous chapters (see, for example, Section 3.1), the rw-contract “accessor ==
accessed || accessor == this” of the head field of Node is transformed into:

public Contract _contractLinkedList42 = new Contract() {

public boolean checkContract(Object accessor, Object accessed) {

return accessor == accessed || accessor == LinkedList.this;

}

};

We note that any references to this in the contract expression must be transformed
to OuterClass.this in order to refer not to the Contract object but to the contract’s
declaring object; in the example above, this becomes LinkedList.this.

Converting contracts into inner classes as shown above automatically enforces the
restriction that contracts can only refer to fields and methods of this, but not to local
variables and method parameters. In addition, the compiler automatically checks that
the contract expression is boolean (as the return type of checkContract is boolean).

To lessen the annotation burden on programmers, JaCon allows contracts to be
omitted completely; it uses default contracts when no contract is specified for a vari-
able: “true, accessor == accessed || accessor == this” for non-public fields and
“true” for public fields, all static variables and local variables and method parameters.
In addition, JaCon defines four “special contracts” and provides keywords to abbreviate
them:

• shared – “true”;

• const – “true, false”;

• owned – “accessor == accessed || accessor == this”

• writeowned – “true, accessor == accessed || accessor == this”.

For example, the declaration private Node head {accessor == accessed || accessor

== this} can be abbreviated to private owned Node head.
Contracts are registered and de-registered when an assignment occurs: for example,

assignment head = newNode (in method addItem of LinkedList – see Section 3.1) points
head away from its current object and to the object currently also pointed to by newNode.
This change to the program’s aliasing structure requires modification of the set of contracts
associated with these two objects: JaCon inserts two calls to the contract library, one
to de-register the contract of variable head before the assignment and one to register the
contract of head after the assignment. The assignment head = newNode becomes:

ContractLibrary.removeContract(head, _contractLinkedList42);

head = newNode;

ContractLibrary.addContract(head, _contractLinkedList42);

91

This corresponds to the reduction rules (field-put-⊙) for field writes and (local-put)
for local variable writes in the operational semantics presented in Chapter 3.

We must be particularly careful with the first argument of addContract and removeCon-
tract, since this expression could contain method calls with side effects. For example,
the assignment myIterator.next().foo = newFoo becomes:

ContractLibrary.removeContract(myIterator.next().foo, _contract0);

myIterator.next().foo = newFoo;

ContractLibrary.addContract(myIterator.next().foo, _contract0);

Assuming the next method of the iterator advances the iterator to the next position in
the list, the modified code (with calls to removeContract and addContract) moves the
iterator forward by three positions instead of just one. To avoid this problem, JaCon

introduces an intermediate variable declaration whenever it encounters a method call in
the left-hand-side expression of an assignment:

Object _o1 = myIterator.next();

ContractLibrary.removeContract(_o1.foo, _contractBar0);

_o1.foo = newFoo;

ContractLibrary.addContract(_o1.foo, _contractBar0);

This produces the desired semantics.

Registration and de-registration of contracts is complicated by Java’s non-linear flow
of execution caused by, for example, exceptions. Contracts of local variables have to be
removed at the end of the block in which they are declared; at this point, local variables go
out of scope and their contracts should not persist. Exceptions are problematic because
an exception causes execution to leave a block prematurely; contracts of local variables
must still be de-registered in this case. We therefore wrap each block in each method in
a try-finally-block and remove local variable and method parameter contracts in the
finally-block.

While contracts of local variables are deallocated at the end of a method’s execution,
field contracts must persist as long as their declaring objects persist. In Java, objects
exist until there are no more references to them and they are eventually finalised by the
GC (at an unspecified time). This inherent uncertainty about how long objects exist
significantly influences the semantics of aliasing contracts and indeed Java finalisation
itself. When should the associated contracts be removed? This is connected to the
somewhat philosophical question about how long an object exists; does the object “die”
when it becomes unreachable or when it is finalised by the GC?

In our operational semantics in Chapter 3, we side-stepped this issue and said that
objects continue to exist until the program finishes executing; thus, contracts of fields
persist as well. However, such an approach is clearly not feasible in practice.

We could remove the contracts of an object’s fields when the object is no longer
reachable. However, this is complex to implement, requiring sophisticated tracking of
references beyond simple reference counting. Alternatively, contracts could persist (along
with the object’s references) until the object is collected by the GC.

We take the second approach in our implementation for practical reasons and because
it fits better with Java’s approach to references. An object’s fields remain in memory
until finalisation by the GC, and so do the fields’ contracts. This means that the contract
of an object waiting to be finalised can cause contract violations. Contract evaluation is

92

monotonic with respect to GC: GC can remove contract violations but never introduce
them.

Contract registration and de-registration as explained above allows us to track which
contracts apply to each object at any point in the program’s execution. This tracking
of contracts is equivalent to tracking the references to each object, which in itself is
potentially useful; this means that JaCon could also be used as a tool for investigating
the topology of the heap, independent of aliasing contracts.

Calls to the contract library to check contracts are required before each object access.
JaCon inserts such calls before field reads and writes (as in the operational semantics in
Chapter 3). Reads and writes of local variables do not require contract evaluation; this is
consistent with the reduction rules (local-get) and (local-put) of the operational semantics
in Chapter 3.

For example, the assignment x.f = y.g contains a write to x and a read to y; it
becomes:

ContractLibrary.checkWriteContracts(x);

ContractLibrary.checkReadContracts(y);

x.f = y.g;

As we noted in Chapter 3, the order in which contract evaluations are performed does
not matter, since one contract evaluation cannot impact the result of another.

The canread and canwrite operators trigger read and write contract evaluations
respectively, according to reduction rules (canread) and (canwrite) in the operational
semantics in Chapter 3. JaCon translates them to calls to contract library methods
checkReadContracts and checkWriteContracts.

Methods may be declared pure or impure. If no purity is specified for a method,
JaCon automatically determines its purity. Calls to pure methods require read contract
evaluations, while calls to impure methods need to trigger both read and write contract
evaluations. Appropriate contract checks are inserted at the entry to each method’s body
(rather than in the caller).

As for calls to addContract and removeContract above, JaCon may need to declare
intermediate variables to avoid methods with side-effects being invoked multiple times.

JaCon does not add contract evaluations for object accesses inside contracts. This
is a departure from our operational semantics proposed in Chapter 3 which included
contract checks for all object accesses, even those inside contracts. Not evaluating object
accesses in contracts is more efficient and avoids the problem of potentially cyclic contract
evaluation, making it a more practical approach for JaCon.

Conditionals and loops complicate contract registration, de-registration and evalua-
tion. In Java, the conditions of if-statements, switch-statements and various loops may
contain expressions (which require contract evaluations), assignments (which require con-
tract registration and de-registration) and, in the case of for-loops, variable declarations.
The situation is complicated further by the presence of break and continue statements
in the loop or conditional body. Although we could insert calls to the various contract
library methods at the appropriate points in the loop or conditional, this would create
highly complex code, as we need to account for all possible execution flows.

A simpler solution involves putting the required calls to contract library methods
directly in the condition of the loop or conditional. This ensures that they are executed
exactly when the condition is also executed. For example, consider the following if-
statement, where y is a local variable and f is a field:

93

if(y != null && y.f != null) {

...

}

JaCon converts this if-statement to:

if(y != null && (ContractLibrary.checkReadContracts(y)

&& y.f != null)) {

...

}

Because of Java’s lazy evaluation of the && operator, this version executes the contract
evaluation for the second part of the condition only if the first part succeeds.

This approach works for if-statements, while-loops and do-while-loops, but not for
switch-statements, for-loops and for-each-loops, all of which have non-boolean expres-
sions in their conditions that cannot be chained together with contract evaluation as
above. This makes the implementation of aliasing contracts significantly more complex
for these constructs2.

JaCon includes support for encapsulation groups, with a syntax similar to that pro-
posed in Chapter 3. However, we change the keywords group and in to encapsgroup and
ingroup here, since we found that group and in are already frequently used as variable
names in real-world programs.

Encapsulation groups are translated into boolean methods, which, given an object as
an argument, will return true if the object is in the group and false otherwise. The
ingroup operator can then simply be transformed into a call to the method representing
the required encapsulation group.

JaCon also allows the definition and use of parameterised contracts. Unlike normal
contracts, parameterised contracts are not translated into anonymous inner classes but are
instead passed around as simple Strings. The contract library tracks the actual values
of the contract parameters for each object, as supplied when the object is instantiated.

When the methods addContract and removeContract receive a parameterised con-
tract as an argument, they simply look up the actual contract corresponding to the con-
tract parameter name. The methods checkReadContracts and checkWriteContracts

can then evaluate them like any other contract. This approach is consistent with our op-
erational semantics in Chapter 3, where parameterised contracts are also resolved before
being stored in the contract store.

Contracts can be temporarily suspended in JaCon using a suspend-block, as sug-
gested in Chapter 3. JaCon replaces a suspend-block with calls to the contract library
methods suspendContract and reinstateContract. For example, suspend(x) {...}
becomes:

ContractLibrary.suspendContract(this, "x");

...

ContractLibrary.reinstateContract(this, "x");

2In this case, JaCon inserts the required contract library calls in various different places in the loop or
conditional. For example, in a for-loop, calls to removeContract are added just before the loop condition
is executed (that is, before the loop, at the end of the loop body and directly before continue statements).
Calls to addContract are inserted immediately following the execution of the loop condition (that is, at
the start of the loop body and directly after the loop – but only provided that no break occurred).

94

As in our operational semantics, we impose the additional restriction that variables
whose contracts are currently suspended cannot appear on the left-hand side of assign-
ments. If the contract library detects reassignment of a variable with a suspended contract,
it throws an exception to report the error.

Finally, the contract library needs to keep track of which object is currently executing
a method; this gives the value of accessor for contract evaluations. For this purpose, it
maintains a call stack. The contract library is notified of context changes at the start and
end of every method execution:

public void foo() {

ContractLibrary.enterContext(this);

...

ContractLibrary.leaveContext();

}

5.2.1.1 Optimisations

A naive implementation of aliasing contracts, as described above, performs many unnec-
essary contract evaluations. We have implemented optimisations to reduce the number of
contract evaluations and improve the performance of JaCon.

We expect that the contract expression “true” will be used commonly in practice.
It signifies that the variable declaring the contract places no restrictions on accesses to
the referenced object. Since this contract expression obviously always evaluates to true,
there is no need for the contract library to store or evaluate it3.

Evaluating all contracts every time an object is accessed is inefficient. JaCon includes
an optimisation which allows it to skip many contract evaluations; it divides contracts
into three categories:

• Contracts whose result does not change for different accessor objects and is not
affected by changes to an object’s state. This includes, for example, the contracts
“true” and “false”. They need to be evaluated only once and can return the same
result for subsequent evaluations.

• Contracts whose result changes for different accessor objects but which are not
affected by changes to an object’s state. This includes the contracts “accessor ==

accessed” and “accessor == this”. These contracts need to be evaluated only
once for each distinct accessor object.

• Contracts which depend on values of fields, call methods or refer to encapsulation
groups, such as “accessor == this.f”, “accessor == getFoo()” or “accessor
in myGroup”. These contracts need to be re-evaluated every time an object is
accessed, since the value of fields (and thus encapsulation group membership) and
the return value of methods may have changed since the previous evaluation.

JaCon’s contract library classifies contracts as above and uses this information to
decide which contracts need to be evaluated when an object is accessed and which contract
evaluations can be skipped.

3Thus, JaCon does not create Contract classes to represent the contract expression “true” and does
not inject calls to addContract and removeContract where the variable on the left-hand-side of the
assignment has the rw-contract “true”.

95

The optimisations above do not fit well with contract suspension: we cannot assume
that a contract has been previously evaluated, if it could have been suspended. Instead,
the optimisations above are applied only when none of the contracts for the accessed
object are suspended. From an efficiency standpoint, it therefore makes sense to limit the
use of contract suspension in programs where performance is important.

5.2.2 Known issues

There are two known issues with the current implementation of JaCon which stop valid
Java programs from compiling correctly. The first concerns the use of labelled break

statements which allow breaking directly out of an inner loop or conditional. Our compiler
does not currently deal with such break statements, as they are quite infrequent in real-
world code. We encountered them in two programs we tested and simply restructured the
code to remove them.

A second issue is that JaCon occasionally requires renaming of variables. This occurs
because JaConmoves around variable declaration when it insers try-finally-blocks into
methods. Variables declared inside the try-block need to be accessible in the finally-
block as well so that their contracts can be de-registered; therefore, JaCon places variable
declarations directly before the try-finally-block. This can lead to name clashes when
two variables with the same name exist inside previously separately scoped sub-blocks.

This issue could easily be addressed by automatically renaming variables when re-
quired. We decided that this was not needed for our prototype implementation given
that such name clashes occur very infrequently. We tested JaCon on five real-world Java
programs each containing thousands of lines of code (LoC) and found that renaming was
usually required in less than ten places per program; in addition, the renaming process is
quick and mechanical. We also argue that having two variables with the same name in the
same method is bad programming practice – two identical names representing different
variables and possibly different concepts is confusing. Therefore, the required renaming
may in fact be beneficial for software engineering purposes.

In addition to the issues described above, JaCon’s compiler could benefit from better
error reporting. In some cases, error messages are cryptic, making JaCon somewhat
difficult to use for developers with little knowledge of the javac compiler. However, at
this stage, JaCon is primarily intended as a proof-of-concept and for this reason we have
not expended additional effort on improving error reporting.

5.3 Performance evaluation of JaCon

Using JaCon, we now quantify the performance overhead of aliasing contracts by con-
ducting three empirical studies. First, we use a simple example program to show how
the time required for contract evaluation increases with the number of contracts asso-
ciated with the accessed object. We then investigate the performance of encapsulation
groups, measuring the performance of the ingroup operator as the number of objects in
the encapsulation group increases. Finally, we apply JaCon to five open-source programs
totalling almost 500,000 LoC and measure the impact of aliasing contracts on their per-
formance. This gives us a good indication of how JaCon can be expected to perform on
real software.

96

All performance measurements were conducted on a Windows 7 laptop with 8GB of
RAM and a 2.5GHz Intel Core i5 processor.

5.3.1 Performance of a single object access

Whenever an object is accessed, all contracts associated with the object must be evaluated.
We thus expect the time required for the object access to increase with the number of
contracts associated with the accessed object (assuming that the contracts cannot be
optimised and all need to be evaluated by JaCon). If we assume that each contract is
a simple boolean condition which can be evaluated in constant time, contract evaluation
time should increase linearly with the number of contracts evaluated.

In Section 5.2.1.1, we presented optimisations which allow JaCon to skip some con-
tract evaluations. We expect to see a significant performance gain when these optimisa-
tions can be applied.

We perform a simple experiment to test these two hypotheses; the experiment char-
acterises the time required for contract evaluation for varying numbers of contracts and
varying contract expressions.

5.3.1.1 Method

To measure the time required to perform an object access, we construct a simple test
program, shown below:

public class SimpleTest {

public void run() {

Bar b = new Bar();

Foo[] foos = new Foo[NUM_OBJECTS];

for(int i = 0; i < NUM_OBJECTS; i++) {

foos[i] = new Foo();

foos[i].bar = b; //A

b.obj = new Object(); //B

}

}

}

class Foo {

public Bar bar {CONTRACT};

}

class Bar {

public Object obj;

}

The program executes a loop, adding one reference (and hence one contract) per itera-
tion to the Bar object stored in variable b. This happens in the assignment foos[i].bar
= b at program point A in the above program. The assignment (field update) b.obj =

new Object() at program point B then performs a write to the Bar object in b, causing
all contracts associated with it to be evaluated. By measuring the time taken for this
access on every iteration, we can measure how the performance varies with the number
of contracts associated with the accessed object.

We also vary the contracts of the accessed Bar object (marked as CONTRACT in the
code above) to see how different contract expressions influence object access time.

97

n Object access time (in ms)
alwaysTrue() alwaysFalse() accessor == accessor

(always succeeds) (always fails) (always succeeds)
0 0 0 0

5,000 0.84 0.00099 0.00011
15,000 3.93 0.00038 0.00032
25,000 6.82 0.00084 0.00074
35,000 8.93 0.00060 0.00038
65,000 15.11 0.00040 0.00068
95,000 19.37 0.00054 0.00056

Table 5.1: Time in milliseconds per object access for varying number of contracts n and varying
contract expressions

We use the rw-contracts “alwaysTrue()” (which calls a method that returns true) and
“alwaysFalse()” (which calls a method that returns false); they involve method calls
and their evaluation can therefore not be optimised by JaCon. Rw-contract “accessor
== accessor”, on the other hand, only needs to be evaluated once for each accessor;
due to JaCon’s optimisations, we expect it to perform significantly better.

5.3.1.2 Results

Table 5.1 presents the results of our measurements. It shows the number of milliseconds
required for a single object access depending on the number of contracts associated with
the accessed object. The table shows results for three different contracts as outlined
above.

JaCon cannot optimise the evaluation of rw-contracts “alwaysTrue()” and “always-
False()” since they involve a method call. These contracts need to be re-evaluated
for each object access. For rw-contract “alwaysTrue()”, evaluation time thus increases
linearly with the number of contracts4, adding around two milliseconds for every 10,000
contracts. When using rw-contract “alwaysFalse()” the very first contract evaluates to
false, making it unnecessary to check the remaining contracts due to the lazy evaluation
of contract conjunction. Thus, the time required for each object access is very low and
does not change as the number of contracts increases.

The rw-contract “accessor == accessor” clearly always evaluates to true. The
contract depends on the value of accessor but is not affected by changes to the object’s
state. Thus, each contract needs to be evaluated only once per accessor. Since accessor
is always the same in our example (the SimpleExample object running the loop), each
contract needs to be evaluated exactly once. Therefore, only one contract is evaluated
for every iteration – the newly added contract. Time taken to access the object there-
fore matches the “alwaysFalse()” case and is not affected by the number of contracts
associated with the object.

Our measurements for the above example show that the time taken to access an object
increases linearly with the number of contracts for contracts whose evaluation cannot be
optimised and where all contracts evaluate to true; evaluation time can be constant in

4Some fluctuations between measurements are of course expected; we try to decrease such fluctuations
by reporting averages of several measurements, both here and in the other case studies below.

98

the best case, where contract evaluation can be optimised by JaCon or where a contract
evaluates to false. Contract evaluation appears feasible despite the linear worst case, as
long as the number of contracts per object remains low. We believe it is unlikely for more
than 10,000 references to point to the same object at once, even in a large program.

Even if there are many references to a single object, the performance presented above
is unlikely to occur. In practice, it is difficult to construct a case where all contracts
evaluate to true but none of them can be optimised. All of the contracts which we expect
to be most commonly used can be optimised, including “true”, “false”, “accessor
instanceof Foo” and “accessor == accessed || accessor == this” (which JaCon

uses as a default contract for non-public non-static fields). This makes contract evaluation
efficient even when many contracts are associated with a single object.

5.3.2 Performance of encapsulation groups

The contracts considered in the above experiment were simple boolean conditions which
can be evaluated in constant time. Contracts involving encapsulation groups are more
complex to evaluate, as an encapsulation group can in theory contain an unlimited number
of objects. In the worst case, this could be every object in the system.

We expect the time taken to determine whether an object is a member of an encap-
sulation group to be linear in the number of objects in the group. Encapsulation group
evaluation proceeds by visiting each object in the group and checking whether it is the
required object; the linear worst case occurs when the required object is either the last
member of the encapsulation group to be visited or where the object is not in the group.
In the best case, where the required object is the first object which is visited, we expect
evaluation time to be constant. We now present an experiment to test these hypotheses.

5.3.2.1 Method

The test program used for this experiment is shown below:

public class GroupTest {

public void run() {

LinkedList list = new LinkedList();

Node current = new Node();

list.head = current;

for(int i = 1; i < NUM_ITERATIONS; i++) {

list.dummyObject.innerDummyObject = new Object(); //A

Node newNode = new Node();

current.next = newNode;

current = newNode;

}

}

}

public class Node {

Node next {true};

encapsgroup nextNodes = {next, next.nextNodes};

}

public class LinkedList {

99

Node head {true};

Foo dummyObject {accessor ingroup allNodes};

encapsgroup allNodes = {head, head.nextNodes};

public LinkedList() {

dummyObject = new Foo();

}

}

public class Foo {

Object innerDummyObject {true};

}

The test method run() in class GroupTest iterates to build up a LinkedList of Nodes.
Every iteration, at program point A, it accesses a dummy object in the LinkedList; this
dummy object’s contract (“accessor ingroup allNodes”) triggers an evaluation of the
encapsulation group called allNodes which contains all nodes in the LinkedList. The
size of the LinkedList, and thus the size of the allNodes group, grows by one per
iteration. By measuring the time taken to perform the access to the dummy object, we
can measure the time taken to search the encapsulation group for the accessor object,
as its size increases.

To avoid other contract evaluations from affecting the measurements, we give all other
variables in the program the rw-contract “true”.

In the test program shown above, the object we search for in the encapsulation group
(accessor – an instance of GroupTest) is never found, producing the worst-case be-
haviour, where every object in the group is visited.

To produce the best-case behaviour, we use a second version of the test program in
which the required object is visited first when allNodes is searched. In this version of the
test program, we add the instance of GroupTest to the encapsulation group allNodes in
LinkedList; the LinkedList class from above becomes:

public class LinkedList {

Node head {true};

Foo dummyObject {accessor ingroup allNodes};

GroupTest test {true};

encapsgroup allNodes = {test, head, head.nextNodes};

public LinkedList(GroupTest test) {

dummyObject = new Foo();

this.test = test;

}

}

When constructing the LinkedList, GroupTest simply passes itself as an argument to
the LinkedList constructor: LinkedList list = new LinkedList(this).

5.3.2.2 Results

Table 5.2 shows the results of our measurements. We can see that, as expected, the time
taken to evaluate group membership grows linearly in the worst case. In our experiment,
we found that for every 10,000 objects in an encapsulation group around five additional
milliseconds were required.

100

Number of Worst case Best case
group objects (in ms) (in ms)

0 0 0
5,000 2.03 0.0032
15,000 6.19 0.0087
25,000 11.19 0.0039
35,000 15.99 0.0028
45,000 20.61 0.0033
55,000 28.75 0.0038
65,000 33.17 0.0025
75,000 37.70 0.0027
85,000 42.34 0.0057
95,000 48.39 0.0027

Table 5.2: Time in milliseconds per encapsulation group evaluation for varying numbers of
objects in the group

The best-case performance results also confirm our expectations. In this case, group
evaluation time is not influenced by the size of the group and remains roughly constant
(at between 0.0025 and 0.0087 ms).

Our results from Section 5.3.1 showed that contract evaluation time increases linearly
with the number of contracts. If every contract for an object involves an encapsulation
group, this would result in quadratic performance in the worst case. However, for this
to be really problematic, the number of contracts and the number of objects in each en-
capsulation group must be quite large. This appears unrealistic in practice. We therefore
argue that this is a theoretical worst case which is unlikely to occur in practical situations.

5.3.3 Empirical study with open-source Java programs

The two empirical studies above give an indication of the expected best-case and worst-
case behaviours of various contracts. However, these results are not very useful for esti-
mating the performance of real-world programs with aliasing contracts.

We conduct two case studies involving five open-source Java programs: FindBugs5,
JGraphT6, JUnit7, NekoHTML8 and Trove9. Table 5.3 shows information about these
programs, including version, size and number of test cases.

All of the selected programs are still being actively developed and have been updated
in the past two years. In addition, all programs include extensive JUnit test suites with
large test cases, making them suitable for performance evaluation.

The five programs we selected come from different domains:

• FindBugs is a static analysis tool which identifies potential bugs in code by analysing
a program’s Java bytecode. The algorithms it uses are complex and build significant

5http://findbugs.sourceforge.net/
6http://jgrapht.org
7http://junit.org/
8http://nekohtml.sourceforge.net
9http://trove.starlight-systems.com

101

http://findbugs.sourceforge.net/
http://jgrapht.org
http://junit.org/
http://nekohtml.sourceforge.net
http://trove.starlight-systems.com

Program Version Date Source files Classes LoC Test cases
FindBugs 2.0.2 10/12/2012 1,060 1,689 192,259 161
JGraphT 0.8.3 19/01/2012 181 262 32,899 152
JUnit 4.10 29/09/2011 162 219 11,994 524
NekoHTML 1.9.18 27/02/2013 26 53 11,482 222
Trove 3.0.3 15/02/2013 691 1,572 239,266 548

Table 5.3: Version, size and number of test cases of the test programs

data structures. We therefore expect the performance of FindBugs to be strongly
influenced by aliasing contracts.

• JGraphT is a graph library which implements various graph data structures (such
as directed and undirected, weighted and unweighted graphs) and associated graph
algorithms (including shortest path, vertex cover and chromatic number algorithms).
Like FindBugs, it involves large data structures and runs algorithms with high
asymptotic complexities. We therefore also expect its performance to be severely
impacted by aliasing contracts.

• JUnit is a well-known tool for unit testing in Java. It does not involve large data
structures and complex algorithms and we therefore expect JUnit’s performance to
degrade only slightly in the presence of aliasing contracts.

• NekoHTML is an HTML scanner and tag balancer. As parsing involves a lot of com-
paratively slow input and output, we do not expect the performance of NekoHTML
to be strongly influenced by aliasing contracts.

• The Trove library provides high performance collections for Java. The large data
structures and collections built by Trove are likely to result in significant perfor-
mance degradation in the presence of aliasing contracts.

We now present the details of our two case studies. First, we evaluate the performance
of the five test programs by running their unit tests with and without aliasing contracts.
This is described in Section 5.3.3.1.

Secondly, we measure the performance of FindBugs for real usage scenarios, as de-
scribed in Section 5.3.3.2. FindBugs takes Java bytecode as input; we execute FindBugs
with bytecode of the above five test programs as input. This represents a real application
of FindBugs, giving us reliable performance data.

In addition to providing a good indication of the expected real-world performance of
aliasing contracts, these two case studies have given us the opportunity to thoroughly
test JaCon. Our modified compiler has generated more than 800,000 LoC. Our contract
library has executed many test cases, some of them enormous in size. This demonstrates
the robustness of our prototype and its ability to handle real-world software.

5.3.3.1 Case study 1: unit test measurements

In our first case study, we compile and execute the unit tests of the five test programs
with and without aliasing contracts and compare their performance.

102

Method

First, we compile each of the programs four times, using the standard Java compiler
(called javac0 below) and three different versions of the JaCon compiler.

The programs we chose include thousands of LoC, making it impossible to manually
annotate them with aliasing contracts. Instead, we measure performance with three dif-
ferent versions of the JaCon compiler, each using different default contracts for variables.

Compiler javac1 shows what happens when all aliasing contracts are “true”; that is,
when aliasing is not at all controlled. (This corresponds to standard reference semantics
without alias protection.) As the contract “true” is not stored or evaluated by the
contract library, programs compiled with javac1 perform no contract additions, removals
or evaluations.

Compiler javac2 uses the rw-contract “true” for local variables, method parameters,
public fields and all static variables, and contract “true, accessor == accessed ||

accessor == this” for non-public fields. These contracts are based on the assumption
that objects stored in non-public fields are intended to be encapsulated and should there-
fore not be written by other parts of the system. The contracts added by javac2 cause
relatively few contract violations in most of our test programs, as shown in our results
below. This indicates that they give a good approximation of the encapsulation used in
the test programs (and therefore probably of any manually added aliasing contracts).

Compiler javac3 uses the rw-contract “accessor == accessor” (which always evalu-
ates to true) for all variables. Programs compiled with javac1 and javac2 contain many
“true” contracts which can be ignored by the contract library; they are neither stored nor
evaluated. In programs compiled with javac3, on the other hand, all contracts must be
stored and evaluated. In addition, contract evaluation can never be aborted prematurely
when a contract evaluates to false.

We argue that the measurements for programs compiled with javac2 give a good indi-
cation of expected performance with manually added contracts; our measurements below
show that few contract violations occur when executing the test programs with these
default contracts, which thus appear to be a good approximation of the test programs’
encapsulation structure. Measurements with javac1 and javac3 give a lower and up-
per performance bound (when only simple, optimisable contracts without encapsulation
groups are used).

For each of the four compilations, we record a range of compilation data: compilation
time, LoC generated, number of bytes generated and the number of various contract
library calls that are injected by the compiler.

LoC (measured at the end of the compilation process) and number of bytes are both
measures of the generated program’s size. Our size measurements include only the pro-
gram’s source code, but exclude unit tests, sample classes and the contract library code.

Next, we execute the test suites of each test program without aliasing contracts (as
compiled by javac0) and with aliasing contracts (as compiled by javac1, javac2 and
javac3), recording various performance measurements.

For each test suite, we measure the time required to run the unit tests. Some unit tests
include random elements, leading to slightly different execution every time and causing
small variations in measurements.

We also record statistics about the Java GC to get an indication of the memory usage
of the programs, looking at the maximum heap size encountered by the GC as well as the
total amount of time spent in GC.

103

Program Test cases Code coverage
FindBugs 161 12.6%
JGraphT 152 70.2%
JUnit 524 74.1%
NekoHTML 222 69.5%
Trove 548 7.1%

Table 5.4: Size and code coverage of the test suites of our test programs

During program execution we also count the number of contract additions, removals
and evaluations performed by the contract library and the number of failed read or write
contract evaluation.

Above, we mentioned that JaCon can be used as a reference tracking tool indepen-
dently of aliasing contracts. To determine how feasible this is, we also run the unit tests
with a modified contract library which skips contract evaluations and performs only con-
tract registration and de-registration. This is equivalent to tracking the references to
each object. For this measurement, we use the javac3 compiler which does not insert
any “true” contracts; thus the contracts of all variables must be stored by the contract
library, tracking all references.

Using unit tests for performance measurements is arguably not ideal since in some
cases unit tests will be far less complex than real usage scenarios. However, the level
of code coverage and size of the test suites of the five test programs we use (shown in
Table 5.4) mitigates this risk. All test suites consist of at least 100 tests. JUnit and Trove
have the biggest test suites with more than 500 tests each.

JGraphT, JUnit and NekoHTML all have excellent code coverage of around 70 percent.
Given the size and code coverage of these test suites, it is reasonable to assume that
performance of the unit tests is indicative of real program performance.

Trove has a large test suite but low code coverage at only around 7 percent. The
reason for this low code coverage, however, is the fact that Trove automatically generates
a large number of collections. Many of the collections have similar code; for example,
Trove generates seven different array list implementations, one for each primitive type in
Java. Since these implementations are all generated from the same template, the unit
tests only test one of them. Taking this into account, the actual code coverage of Trove’s
unit tests is significantly higher.

The unit tests of FindBugs also have low code coverage at 12.5 percent and, given
its size of almost 200,000 LoC, its test suite includes comparatively few test cases. We
should therefore be somewhat careful about drawing conclusions from the performance
measurements of these unit tests. A more reliable performance evaluation of FindBugs is
presented in Section 5.3.3.2.

Results

From the measurements, we make the following observations:

• Both compilation time and program size (see Table 5.5) increase in the presence of
aliasing contracts, This is to be expected, since JaCon’s modified compiler injects
calls to the contract library, requiring more time and producing a larger program

104

P
ro
gr
am

C
om

p
il
at
io
n
ti
m
e
(i
n
s)

j
a
v
a
c
0

j
a
v
a
c
1

R
at
io

j
a
v
a
c
2

R
at
io

j
a
v
a
c
3

R
at
io

F
in
d
B
u
gs

15
.0
8

20
.4
3

1.
35

26
.1
7

1.
73

29
.3
1

1.
94

J
G
ra
p
h
T

4.
64

6.
82

1.
47

6.
97

1.
50

8.
15

1.
76

J
U
n
it

2.
17

3.
46

1.
60

3.
51

1.
62

4.
00

1.
84

N
ek
oH

T
M
L

2.
32

3.
53

1.
52

3.
61

1.
55

3.
77

1.
63

T
ro
ve

17
.2
1

21
.2
9

1.
24

22
.9
5

1.
33

25
.6
8

1.
49

P
ro
gr
am

L
oC

j
a
v
a
c
0

j
a
v
a
c
1

R
at
io

j
a
v
a
c
2

R
at
io

j
a
v
a
c
3

R
at
io

F
in
d
B
u
gs

11
3,
74
8

23
1,
57
5

2.
04

24
8,
54
2

2.
19

30
1,
20
9

2.
65

J
G
ra
p
h
T

11
,4
36

23
,0
31

2.
01

25
,3
90

2.
22

29
,5
44

2.
58

J
U
n
it

7,
50
8

16
,0
74

2.
14

17
,5
13

2.
33

21
,3
68

2.
85

N
ek
oH

T
M
L

6,
31
9

12
,1
49

1.
92

12
,7
99

2.
03

15
,6
33

2.
47

T
ro
ve

15
0,
81
0

33
0,
49
9

2.
19

33
9,
98
7

2.
25

37
5,
30
3

2.
49

P
ro
gr
am

K
il
ob

y
te
s
ge
n
er
at
ed

(i
n
k
B
)

j
a
v
a
c
0

j
a
v
a
c
1

R
at
io

j
a
v
a
c
2

R
at
io

j
a
v
a
c
3

R
at
io

F
in
d
B
u
gs

6,
07
1

7,
23
0

1.
19

8,
30
7

1.
37

10
,3
08

1.
70

J
G
ra
p
h
T

63
9

79
1

1.
24

95
0

1.
49

1,
18
4

1.
85

J
U
n
it

42
9

52
2

1.
22

62
5

1.
46

82
4

1.
92

N
ek
oH

T
M
L

22
7

27
9

1.
23

31
0

1.
37

40
2

1.
77

T
ro
ve

5,
04
0

6,
54
6

1.
30

6,
84
0

1.
36

7,
55
5

1.
50

T
a
b
le

5
.5
:
C
om

p
il
at
io
n
m
ea
su
re
m
en
ts

-
co
m
p
il
at
io
n
ti
m
e
an

d
ou

tp
u
t
p
ro
gr
am

si
ze

105

as output. Our measurements show that the increase in program size is roughly
proportional to the increase in compilation time.

We can see that compilation time and program size are lowest when using javac1

and highest when using javac3. Compiler javac1 gives all variables the rw-contract
“true”; javac2 uses non-true contracts for some fields, while javac3 gives all vari-
ables non-true contracts. Since rw-contracts “true” are not stored or evaluated by
the contract library, compilation is faster and program size smaller the more “true”
contracts there are in the input program.

The measurements for compilation time show that using JaCon is feasible even for
large programs. Compilation of large programs with more than 100,000 LoC, such
as FindBugs and Trove, using JaCon adds only 10 to 15 seconds to the compilation
process; in addition, the size of the generated programs is very manageable at up to
about 300,000 LoC or 10MB – less than three times the size of the program without
contracts.

• The number of calls to addContract and removeContract varies for javac1, javac2
and javac3, while the number of calls to checkReadContracts and checkWriteContracts
remains the same; this is shown in Table 5.6. The change in calls to addContract

and removeContract are explained by the varying number of “true” contracts for
programs compiled with javac1, javac2 and javac3.

In all five programs, around 0.8 calls to the contract library are inserted by javac3

for every line of original source code. This number is lower for javac1 and javac2,
between 0.4 and 0.6, reflecting the smaller number of calls to addContract and
remove-

Contract.

• Execution time (see Table 5.7) increases from javac0 to javac3. As hypothesised
above, both JGraphT and Trove are significantly affected by the presence of aliasing
contracts. JGraphT, for example, runs around 19 times more slowly when compiled
with javac2 and 147 times more slowly when compiled with javac3. Even when
compiled with javac1, JGraphT is slowed down by a factor of 11. Although this
version of the program does not store or evaluate contracts, calls to the contract
evaluation methods are still performed.

If we look more closely at the individual tests in the test suites of JGraphT and
Trove, we find that the performance degradation is caused by only a handful of tests.
The majority of tests run almost as quickly with contracts as without. For example,
the worst-performing test suite in JGraphT is called FibonacciHeapTest. It builds
up a Fibonacci heap, performing 20,000 insertions followed by 10,000 removals, and
runs 112 times more slowly when compiled with javac2 and 330 times more slowly
with javac3.

The remaining programs are less strongly affected by the presence of aliasing con-
tracts and are slowed down by a factor of less than 1.4 for javac1, less than 1.6 for
javac2 and less than 2.6 for javac3. This is expected for NekoHTML and JUnit,
but is somewhat surprising for FindBugs which we expected to be strongly affected
by aliasing contracts. This result can be explained by the program’s relatively small
test suite. The case study of FindBugs presented in Section 5.3.3.2 gives more
reliable results.

106

P
ro
gr
am

C
on

tr
ac
t
li
b
ra
ry

ca
ll
s

C
on

tr
ac
t
ev
al
u
at
io
n
ca
ll
s

%
of

co
n
tr
ac
t
li
b
ra
ry

ca
ll
s

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

F
in
d
B
u
gs

46
,3
36

52
,2
79

92
,1
04

27
,2
10

27
,2
10

27
,2
10

58
.7
2%

52
.0
5%

29
.5
4%

J
G
ra
p
h
T

5,
32
1

6,
12
5

8,
56
0

3,
11
1

3,
11
1

3,
11
1

58
.4
7%

50
.7
9%

36
.3
4%

J
U
n
it

3,
33
1

3,
63
2

5,
96
3

1,
37
7

1,
37
7

1,
37
7

41
.3
4%

37
.9
1%

23
.0
9%

N
ek
oH

T
M
L

3,
38
7

3,
65
9

5,
84
5

2,
51
5

2,
51
5

2,
51
5

74
.2
5%

68
.7
3%

43
.0
3%

T
ro
ve

82
,5
99

85
,8
85

11
0,
44
5

46
,0
97

46
,0
97

46
,0
97

55
.8
1%

53
.6
7%

41
.7
4%

P
ro
gr
am

A
d
d
an

d
re
m
ov
e
ca
ll
s

%
of

co
n
tr
ac
t
li
b
ra
ry

ca
ll
s

L
ib
ra
ry

ca
ll
s
p
er

L
oC

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

F
in
d
B
u
gs

0
4,
96
3

43
,3
71

0%
9.
49
%

47
.0
9%

0.
41

0.
46

0.
81

J
G
ra
p
h
T

0
66
4

3,
04
3

0%
10
.8
4%

35
.5
5%

0.
47

0.
54

0.
75

J
U
n
it

0
25
7

2,
55
4

0%
7.
08
%

42
.8
3%

0.
44

0.
48

0.
79

N
ek
oH

T
M
L

0
18
8

2,
16
8

0%
5.
14
%

37
.0
9%

0.
54

0.
58

0.
92

T
ro
ve

0
2,
72
6

27
,2
66

0%
3.
17
%

24
.6
9%

0.
55

0.
57

0.
73

T
a
b
le

5
.6
:
C
om

p
il
at
io
n
m
ea
su
re
m
en
ts

-
co
n
tr
ac
t
li
b
ra
ry

ca
ll
s
in
je
ct
ed

in
to

th
e
so
u
rc
e
co
d
e

107

P
rogram

E
x
ecu

tion
tim

e
(in

s)
j
a
v
a
c
0

j
a
v
a
c
1

R
atio

j
a
v
a
c
2

R
atio

j
a
v
a
c
3

R
atio

R
ef

track
in
g

R
atio

F
in
d
B
u
gs

47.32
49.72

1.05
55.22

1.17
125.80

2.66
109.68

2.32
J
G
rap

h
T

4.640
50.16

10.82
87.92

18.96
680.93

146.82
15.75

3.39
J
U
n
it

14.67
17.60

1.20
19.84

1.35
29.45

2.01
23.29

1.59
N
ekoH

T
M
L

2.14
3.08

1.44
3.50

1.63
5.58

2.61
4.33

2.03
T
rove

6.54
44.98

6.87
51.52

9.31
78.63

12.02
28.53

4.36

P
rogram

M
ax

im
u
m

h
eap

size
(in

M
B
)

j
a
v
a
c
0

j
a
v
a
c
1

R
atio

j
a
v
a
c
2

R
atio

j
a
v
a
c
3

R
atio

R
ef

track
in
g

R
atio

F
in
d
B
u
gs

37.00
37.01

1.00
76.66

2.07
595.63

16.10
594.56

16.07
J
G
rap

h
T

34.62
34.06

0.98
639.42

18.47
1,824.56

52.70
2,028.73

58.59
J
U
n
it

33.80
33.85

1.00
66.25

1.96
119.08

3.52
120.58

3.57
N
ekoH

T
M
L

32.64
32.64

1.00
42.46

1.30
91.12

2.79
101.99

3.12
T
rove

1,021.97
1,021.90

1.00
1,127.99

1.10
1,140.25

1.12
1,124.85

1.10

P
rogram

T
im

e
in

G
C

(in
s)

j
a
v
a
c
0

j
a
v
a
c
1

R
atio

j
a
v
a
c
2

R
atio

j
a
v
a
c
3

R
atio

R
ef

track
in
g

R
atio

F
in
d
B
u
gs

0.23
0.24

1.04
0.54

2.34
2.54

10.97
1.99

8.57
J
G
rap

h
T

0.032
0.13

3.93
26.22

815.49
103.10

3206.58
111.60

3470.95
J
U
n
it

0.004
0.017

4.20
0.024

5.98
0.83

210.49
0.81

204.87
N
ekoH

T
M
L

0.0037
0.0042

1.15
0.025

6.88
0.10

27.54
0.11

30.50
T
rove

0.044
0.19

4.32
2.71

61.43
10.91

247.38
12.31

279.13

T
a
b
le

5
.7
:
R
u
n
-tim

e
p
erform

an
ce

m
easu

rem
en
ts

–
ex
ecu

tion
tim

e
an

d
m
em

ory
u
sage

108

Tracking only references but not evaluating contracts is significantly more efficient
than full contract evaluation for all of our test programs. We record slow-down
factors of between 1.6 and 4.4. This shows that the decrease in performance is caused
mostly by contract evaluation, not contract tracking. In addition, this demonstrates
that JaCon is also useful as a tool for reference tracking.

The wide range of behaviour we observe here, where the performance of some pro-
grams is barely affected by aliasing contracts, while others experience severe de-
creases in performance, can be explained by the different aliasing properties of the
test programs. The main performance issue with aliasing contracts occurs when
many variables refer to the same object and re-assignment of variables is frequent.
Such conditions occur, for example, in programs building complex data structures
(as we can see in the performance of JGraphT’s unit tests).

While the performance overhead would clearly make many programs unusable in
practice, executing unit tests with aliasing contracts still appears feasible for all our
test programs, demonstrating that it is indeed possible to use aliasing contracts as
a testing and debugging tool.

• Maximum heap size (see Table 5.7) does not significantly increase for programs com-
piled with javac1, compared to programs compiled with javac0. This observation
is consistent with the fact that programs compiled with javac1 do not store any
contracts.

Maximum heap size increases significantly for programs compiled with javac2 and
javac3. The absolute increase in heap size is particularly high for JGraphT and
Trove. This is consistent with the large increase in execution time we observe for
JGraphT and Trove; the remaining programs exhibit a significantly smaller increase
in the maximum heap size.

We see a similar effect in the amount of time required by the GC, where JGraphT
and Trove show the largest increase in GC time.

Somewhat surprisingly, we see an increase in GC time from javac0 to javac1 of
up to a factor of 4.3; however, we observe no associated increase in maximum heap
size, as explained above. Closer investigation shows that this increase in GC time
is caused by the call stack tracking in the contract library. Although the absolute
size of the call stack is small (and thus does not significantly impact the maximum
heap size), it constantly grows and shrinks, creating work for the GC.

When using JaCon for reference tracking, both maximum heap size and GC time
are comparable to execution with javac3. This makes sense since both programs
register and de-register the same number of contracts, thus requiring the same
amount of memory and GC time.

• JGraphT and Trove trigger by far the largest number of contract additions (up to
200 million for JGraphT – see Table 5.8), leading to large memory and execution
overheads.

If we compare the number of contract additions for each program to the number
of contract removals, we find a significant gap. Most contracts are deallocated by
the GC when their declaring objects are finalised; these contract removals do not
trigger calls to the removeContract method of the contract library and (since we

109

P
rogram

A
d
d
ition

s
R
em

ovals
j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

R
ef

track
in
g

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

R
ef

track
in
g

F
in
d
B
u
gs

0
15,503

1,130,863
1,130,863

0
5,441

921,866
921,866

J
G
rap

h
T

0
8,416,061

209,651,980
209,923,196

0
5,295,815

49,280,350
49,306,924

J
U
n
it

0
47,646

1,026,146
988,308

0
60

473,650
455,646

N
ekoH

T
M
L

0
11,085

229,374
229,374

0
467

170,916
170,900

T
rove

0
2,719,679

15,756,822
15,740,664

0
2,471,682

13,152,880
13,136,680

P
rogram

R
ead

evalu
ation

s
W
rite

evalu
ation

s
j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

R
ef

track
in
g

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

R
ef

track
in
g

F
in
d
B
u
gs

1,083,689
1,083,514

1,083,552
0

52,337
52,335

52,335
0

J
G
rap

h
T

206,882,381
206,943,918

206,994,930
0

9,181,740
9,183,227

9,190,091
0

J
U
n
it

618,093
644,204

677,691
0

14,982
16,492

18,689
0

N
ekoH

T
M
L

965,178
965,178

965,178
0

91,950
91,950

91,950
0

T
rove

276,027,883
276,041,447

276,043,045
0

6,971,226
6,971,183

6,971,532
0

P
rogram

F
ailu

res
(read

)
F
ailu

res
(w

rite)
%

F
ailed

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

R
ef

j
a
v
a
c
1

j
a
v
a
c
2

j
a
v
a
c
3

R
ef

j
a
v
a
c
2

track
in
g

track
in
g

F
in
d
B
u
gs

0
0

0
0

0
339

0
0

0.03%
J
G
rap

h
T

0
0

0
0

0
77,015

0
0

0.04%
J
U
n
it

0
0

0
0

0
789

0
0

0.13%
N
ekoH

T
M
L

0
0

0
0

0
38,163

0
0

3.61%
T
rove

0
0

0
0

0
306,205

0
0

0.11%

T
a
b
le

5
.8
:
R
u
n
-tim

e
p
erform

an
ce

m
easu

rem
en
ts

–
con

tract
lib

rary
calls

d
u
rin

g
p
rogram

ex
ecu

tion

110

only count explicit contract removals caused by calls to removeContract here) these
removals are not counted.

The number of read and write contract evaluations are the same for programs com-
piled with javac1, javac2 and javac310. When tracking only references, no con-
tract evaluations are performed.

The percentage of failed contract evaluations is very low. Clearly, the rw-contracts
“true” and “accessor == accessor” used by javac1 and javac3 respectively
cannot fail; only the write contract used by javac2 for non-public fields, “accessor
== accessed || accessor == this”, can cause contract violations. We can see
that the failure rate is very low, even for this contract. NekoHTML exhibits the
largest failure rate at 3.6 percent, while the failure rate is below 0.2 percent for all
other programs. This shows that, although default contracts clearly cannot fully
capture the intended encapsulation structure of programs, the default contracts used
by javac2 provide a good starting place.

• The above results show that the performance of aliasing contracts is comparable to
existing debugging tools such as Valgrind [72]. Nethercote et al. present an empirical
study of Valgrind [72], showing that some programs run up to 58 times more slowly
using Valgrind, while the slow-down factor is below 20 for most programs.

Gordon et al. propose dynamic ownership types, a dynamically-checked alias pro-
tection scheme (like aliasing contracts). The authors perform a simple performance
evaluation, reporting a slow-down of around 50%, significantly lower than what we
have measured here (although comparable to our JUnit and NekoHTML test cases).
Dynamic ownership types are much simpler to check than aliasing contracts. Each
object access requires a single check to see if the access originated in the object’s
owner. This may explain the performance gap between Gordon et al.’s measure-
ments and our own. In addition, the benchmark used by Gordon et al. totals only
1,700 LoC, compared to our benchmark of almost 500,000 LoC. Given the huge
variation in performance we observed in our measurements here, we are doubtful
that Gordon et al.’s performance measurements will generalise to larger programs.

5.3.3.2 Case study 2: A real usage scenario for FindBugs

We also conduct a case study FindBugs with real inputs. This test represents a real usage
scenario and we therefore suggest that the performance measurements collected reliably
characterise the performance of FindBugs in the presence of aliasing contracts.

Method

FindBugs analyses Java bytecode to report possible errors and bugs. We compile Find-
Bugs twice, once with javac0 to get findbugs0 and again with javac2 to get findbugs2.
We select javac2 for this experiment rather than javac1 or javac3 as we expect its de-
fault contracts to give the best approximation of manually added contracts. We then run
the unit tests of each of our test programs with both junit0 and junit2.

It is important to note that we run findbugs0 and findbugs2 on programs which are
themselves compiled with javac0. This means that the test programs include no aliasing

10Except for small variations caused by random unit tests.

111

contracts. Any contract tracking or evaluation (and the associated performance overhead)
is confined to findbugs2 and is not caused by the test programs.

Results

Table 5.9 presents the results of the FindBugs performance evaluation. It shows a signifi-
cant increase in execution time. The worst performance degradation occurs for Trove (55
times slower with findbugs2 that findbugs0) and FindBugs (48 times slower). For the
remaining programs, FindBugs executes less than 15 times more slowly.

These results are caused by the high complexity of FindBugs. This becomes clear when
looking at the number of contract addition, contract removals and contract evaluations
performed. When analysing itself, FindBugs performs more than 210 million contract ad-
ditions, 170 million contract removals, 9 billion read contract evaluations and 500 million
write contract evaluations. The contract failure rate is again low at around 0.5 percent.

The large number of contracts involved in executing FindBugs is also reflected in the
memory usage data: although the maximum heap size required increased by a factor of
only between 2.5 and 6.2, the time spent in GC increased by a factor of up to 352. This
indicates that the number of contracts stored at any point in time is significant. Further-
more, the large increase in GC time suggests that contracts are created and destroyed
frequently.

5.4 Summary

In this chapter, we presented JaCon, a prototype implementation of aliasing contracts for
Java. Our performance evaluation shows that using JaCon as a testing tool is certainly
feasible. It can handle even large programs and its performance is comparable to other
debugging tools such as Valgrind. Future development of JaCon could address some
of its current limitations, including fixing problems with labelled break statements and
developing better error reporting.

JaCon was built as a proof-of-concept and we suspect more attention to low-level
implementation would expose further performance improvement in contract tracking and
evaluation. In addition, we believe that implementing aliasing contracts as part of the
Java Virtual Machine would further decrease performance overheads.

112

P
ro
gr
am

E
x
ec
u
ti
on

ti
m
e
(i
n
s)

M
ax

im
u
m

h
ea
p
si
ze

(i
n
M
B
)

T
im

e
in

G
C

(i
n
s)

f
i
n
d
b
u
g
s
0

f
i
n
d
b
u
g
s
2

R
at
io

f
i
n
d
b
u
g
s
0

f
i
n
d
b
u
g
s
2

R
at
io

f
i
n
d
b
u
g
s
0

f
i
n
d
b
u
g
s
2

R
at
io

F
in
d
B
u
gs

78
.7
6

37
98
.3
8

48
.2
2

2,
11
6

5,
28
2

2.
50

7.
30

11
61
.3
0

15
9.
13

J
G
ra
p
h
T

19
.4
7

26
0.
19

13
.3
6

48
3

1,
77
5

3.
68

0.
80

61
.6
7

76
.6
6

J
U
n
it

14
.6
2

16
4.
02

11
.2
2

28
7

1,
76
3

6.
15

0.
13

45
.0
0

35
1.
50

N
ek
oH

T
M
L

14
.4
0

15
6.
99

10
.9
0

28
9

1,
79
1

6.
20

0.
18

36
.7
6

20
3.
33

T
ro
ve

47
.2
8

25
98
.1
1

54
.9
6

1,
52
8

5,
12
9

3.
36

3.
32

94
2.
30

28
3.
51

P
ro
gr
am

A
d
d
it
io
n
s

R
em

ov
al
s

R
ea
d
ev
al
u
at
io
n
s

W
ri
te

ev
al
u
at
io
n
s

F
ai
lu
re
s
(r
ea
d
)

F
ai
lu
re
s
(w

ri
te
)

%
F
ai
le
d

F
in
d
B
u
gs

21
1,
20
3,
92
0

17
0,
10
0,
57
3

9,
69
7,
19
0,
01
7

55
9,
82
6,
98
8

0
41
,5
07
,2
08

0.
40
%

J
G
ra
p
h
T

16
,1
29
,7
16

12
,9
03
,8
24

68
8,
76
6,
45
8

45
,6
55
,1
46

0
3,
32
9,
90
6

0.
45
%

J
U
n
it

10
,7
05
,9
50

8,
47
4,
15
3

40
3,
06
2,
19
0

28
,1
67
,9
54

0
2,
03
1,
39
3

0.
47
%

N
ek
oH

T
M
L

9,
41
9,
81
0

7,
60
8,
51
1

40
4,
98
2,
96
6

26
,2
31
,7
85

0
1,
93
8,
14
3

0.
45
%

T
ro
ve

15
6,
85
4,
26
3

12
4,
60
6,
33
1

5,
80
0,
08
3,
82
0

41
4,
02
3,
84
2

0
33
,0
39
,3
60

0.
53
%

T
a
b
le

5
.9
:
F
in
d
B
u
gs

ru
n
-t
im

e
p
er
fo
rm

an
ce

m
ea
su
re
m
en
ts

113

114

CHAPTER 6

Static verification of aliasing

contracts

In previous chapters, we proposed aliasing contracts, a highly expressive and flexible alias
protection scheme. The dynamic checking of aliasing contracts (and the associated perfor-
mance overhead) is their main disadvantage compared to existing static alias protection
schemes. In this chapter, we present a static analysis that can verify many simple aliasing
contracts at compile time. To distinguish between compile-time and run-time concepts,
we use the term contract evaluation when talking about run-time checking of contracts,
while contract verification refers to compile-time contract checking.

Aliasing contracts can be arbitrary boolean conditions. It is well known that the
result of such conditions cannot in general be determined without executing the program.
This implies that there are some aliasing contracts which cannot be verified statically and
thus we cannot build a tool to verify all possible aliasing contracts. Furthermore, exact
verification of aliasing contracts requires a full alias analysis of the program to determine
which variables are aliased at each point in the program’s execution (and thus which
contracts need to be verified); this problem is also undecidable in the general case.

Instead of attempting to verify all possible aliasing contracts, we propose a static
analysis which is able to verify some common aliasing contracts, but makes no attempt to
verify more complex conditions. Section 6.1 gives an overview of how the analysis works
and Section 6.2 formalises the analysis.

Our static analysis can fully verify many existing aliasing policies, including owners-
as-dominators (as in Clarke-style ownership types [27]), owners-as-modifiers and full en-
capsulation, as we show in Section 6.3.

Like many existing alias and pointer analyses, our static analysis is conservative; an
error is reported whenever the analysis cannot conclusively show that no contract viola-
tions will occur at run time. Thus, programs which pass our analysis are guaranteed to
execute without contract violations at run time, but the converse does not hold.

Using our static analysis, aliasing contracts can be partially verified at compile time,
while more complex conditions require run-time evaluation. This part-static, part-dynamic
approach is analogous to gradual typing [87]. Contracts which can be verified at compile
time can subsequently be removed from the program during compilation, reducing the
number of contracts which need to be evaluated at run time and improving performance.
In Section 6.4, we present StatCon, a prototype implementation of the analysis we Java.

115

We use StatCon to show that combining static and dynamic contract checking in this
way is feasible and produces the expected performance improvements.

6.1 Overview of the static analysis

Our static analysis works in two stages. First, it performs alias analysis, looking at all
assignments in a program’s source code to determine which variables may be aliased
with each other during the program’s execution. We choose an Andersen-style may-alias
analysis which is context-insensitive, flow-insensitive and subset-based. Such an analysis
is sufficient for our purposes of modelling existing alias protection schemes such as Clarke-
style ownership types [27].

The flow-insensitivity and context-insensitivity of our analysis means that if two vari-
ables x and y are assigned to each other at any point in the program’s source code, they
are always considered to be possible aliases. In addition, our analysis derives may-aliasing
information: it assumes that two variables are aliased if it cannot prove that the two vari-
ables will definitely be disjoint at run time. These conservative assumptions ensure that
programs which pass our static analysis will never cause contract violations at run time.

Static typing used to enforce alias protection in existing static alias protection schemes
such as Clarke-style ownership types is also context-insensitive and flow-insensitive. It
works by restricting assignment statements to ensure that two references with differ-
ent aliasing properties cannot be assigned to each other, thus avoiding objects being
switched from one encapsulation context (or owner) to another. Therefore, our simple
flow-insensitive and context-insensitive analysis is a good match with existing statically-
checked schemes.

The second stage of the analysis consists of verifying each object access in the pro-
gram’s source code, including field reads, field writes and method calls, as proposed in
our operational semantics in Chapter 3. For each source-code object access, our analysis
verifies the contracts of all variables which may point to the accessed object (according
to the may-aliasing information from the first stage of the analysis). If it cannot prove
that a contract will evaluate to true at run time, it reports an error.

6.2 Formalisation: aliasing graphs and contract ver-

ification

In this section, we describe our static analysis in detail. We start by proposing a simple
syntax for our analysis, as shown in Figure 6.1. This syntax is similar to (but slightly
simpler than) the syntax for aliasing contracts introduced in Chapter 3. C ranges over
class names (C ′ may also range over the pre-defined empty class Object), m over method
names, f over field names, x, y, z over local variable names, g over encapsulation group
names, v over all variable names (local variables, method parameters and fields) and ξ over
special contract variables. Letter p ranges over access paths, a sequence of field selections
starting from a local variable or this. As in the syntax in Chapter 3, we abbreviate,
e.g., fieldDef 1 . . . fieldDef n to fieldDef . As our analysis is flow-insensitive, we abstract all
control flow with syntax stmt .

To simplify the analysis explanation below we introduce several further syntactic re-
strictions. Assignments p = p′ require p not to be this and are restricted to ANF form;

116

program = classDef

classDef = class C extends C ′ { fieldDef groupDef methodDef }
fieldDef = C f { contractDef };

groupDef = group g = { groupMember }
groupMember = f | f.g

methodDef = (pure | impure) C m (varDef) { varDef ; stmt ; return v; }
varDef = C x { contractDef }

contractDef = φ, φ
stmt = p = p | x = y.m(z) | x = new C()

p = x | this | p.f
φ = ξ canread ξ | ξ canwrite ξ | ξ==ξ | ξ in g | φ && φ | φ || φ | !φ

ξ instanceof C
ξ = accessor | accessed | this

Figure 6.1: A simple syntax for static analysis of aliasing contracts

that is, p and p′ may contain at most one field selection operator between them (al-
though we relax this requirement in examples). We also simplify method calls to have no
parameters and no result by treating x = y.m(z1, . . . , zn) as a sequence of expressions
y.parm

1
= z1; . . . ; y.par

m
n = zn; y.m(); x = y.retm where parmi (parameters) and retm

(result) are fields of the class which defines m1.

The parameterless syntax for new assumes it merely allocates storage. The idiom
of constructor is achieved by following calls to new with a method call appropriately
initialising the new object; this call is then also treated as parameterless by the technique
above.

For analysis purposes we can also replace local variables x with fields fx; as a result,
the program we are analysing will contain only fields, but no method parameters or local
variables. This means that all access paths p start with this so below we drop the “this”
uniformly. The result of the restrictions is that our analyser may consider the program to
be a set of methods each consisting of a set of simple field assignments and parameterless
calls to methods and new.

6.2.1 Definitions

We define two compile-time operators: we write D <: C (as in Chapter 3) to mean D is
a subclass of C. We write C ⊲⊳ D if C <: D or D <: C; this is useful since, in an OO
language, two variables may only alias if one variable’s (declared) type is a subtype of the
other’s (as only then a value common to both types may exist).

We also write τ(C :v) to give the declared type of variable v in class C; at run time v
may contain values of any subclass. We extend this notation to write τ(C :p) for the type
of a path expression p.

For simplicity we assume that variable names are unique within a class (that is, no
two distinct methods or fields in a given class can have the same name). The notation
C :v (rooted variable) means that v is a field of class C; this uniquely identifies it. Due to
inheritance, the same variable may be described as D :v with D <: C.

1If m is overridden we place these fields in the definition of m highest in the class hierarchy.

117

Figure 6.2: Two simple object graphs.

Access paths p, q, r and s are (as usual) sequences v1.v2. · · · .vn which follow a chain of
field selections. A rooted path C :p is a correctly typed access path; it is a pair C1 :v1. · · · .vn
such that either n = 1 and C1 :v1 is a rooted variable, or n > 1 and C1 :v1 is a rooted
variable and C2 :v2. · · · .vn is a rooted path where C2 = τ(C1 :v1). We call C the class or
context of the rooted path. The pseudo-variable this appearing in class C is represented
as the empty path C :ǫ; this automatically identifies this.f with f .

For practical analysis purposes Section 6.2.4 later extends the idea of a rooted path to
allow it to represent an infinite number of paths with some common repeated sequence of
variables, but we start with a simple, though possibly infinitary, mathematical definition
of aliasing.

Given a program whose aliasing contracts we wish to verify statically, we first use its
statements stmt to create an aliasing graph, and then use this to attempt to verify the
program’s contracts. We start by constructing the aliasing graph.

6.2.2 Static rooted paths and dynamic objects

Rooted paths are static constructs which do not exist at run time. Although we are
developing a static analysis here, we are ultimately interested in the relationships between
run-time objects, not static rooted paths.

The correspondence between rooted paths and run-time objects is as follows: in one
particular state of execution (which can be reached from the initial program state), rooted
path C :p corresponds to objects which are reachable by starting at any object of type C
and performing a chain of field selections p.

In order to verify a program’s contracts, we must determine what aliasing between
objects is possible at run time. Figure 6.2 shows two simple object graphs; objects
are represented by ellipses, while variables are represented by squares. The important
difference between the two graphs is that when object o is accessed in Case (a), this
requires evaluation of the contracts of variables x and y; in Case (b), on the other hand,
an access to o requires evaluation of the contract of x only.

To ensure safety, our analysis must derive an aliasing relationship between two rooted
paths C :x and C :y if there are any possible execution states that have an object graph
as in Case (a); that is, where there may exist an object o2, such that o2.x and o2.y point

118

to the same object o. If this is the case, we say that rooted paths C :x and C :y may-alias.
Our analysis is conservative and derives an over-approximation of may-aliasing: it

assumes aliasing (that is, Case (a)) is possible unless it can prove otherwise; even if
there is no possible object graph that satisfies Case (a), our analysis may still derive
may-aliasing between C :x and C :y.

6.2.3 Aliasing graph

An aliasing graph has rooted paths for vertices, and its edges are first seeded by the
program statements, before a closure operation is performed. Performing alias analysis
on the program results in an aliasing graph. We use an Andersen-style analysis [5] which
is context-insensitive, flow-insensitive and subset-based (and thus takes into account the
direction of value flow in assignments, rather than an equality-based analysis which would
consider assignments as bi-directional).

The aliasing graph has a directed flow edge from C :p.v1 to C :q.v2 (written C :p →
C :q), if there is a run-time possibility that data in an object o of type C may flow from
o.p.v1 to o.q.v2. For example the assignment x = y.f appearing in a method of class C
results in an edge C :y.f → C :x. As usual our notion of ‘may flow’ is conservative –
there may be no feasible execution which witnesses this possibility. Flow is a preorder
relation which is reflexive and transitive but not necessarily symmetric (although in some
instances it may be).

The aliasing graph also has undirected aliasing edges; we write C :p↔ C :q to denote
may-aliasing between rooted paths C :p and C :q, where there may at run time exist an
object o of class C such that o.p and o.q point to the same object (that is, contain the
same value). Aliasing edges are defined in terms of flow edges as shown below. We note
that although flow implies may-aliasing, the converse does not hold. Thus, aliasing edges
are a superset of flow edges in an aliasing graph.

C :p→ C :q

C :p↔ C :q
(↔ 1)

C :q → C :p

C :p↔ C :q
(↔ 2)

C :r → C :p C :r → C :q

C :p↔ C :q
(↔ 3)

Two rooted paths C :p and C :q may-alias if there is flow of data from C :p to C :q
(C :p→ C :q) or vice versa (C :q → C :p). Alternatively, if there is a third rooted path C :r,
such that the value of C :r flows into both C :p and C :q (C :r → C :p and C :r → C :q),
then may-aliasing is also possible between C :p and C :q.

The above rules show that aliasing edges are symmetric but not necessarily transitive;
they are additionally reflexive2. Although the lack of transitivity is perhaps surprising,
it is caused by the distinction between flow edges and aliasing edges which allows the
analysis to discount impossible may-aliasing cases. Consider two assignment statements
y = x and y = z in class C. We have C :x → C :y and C :z → C :y and thus C :x ↔ C :y

2Given the definition of flow edges below (which make flow edges reflexive).

119

and C :z ↔ C :y (by rule (↔ 1) above). However, we do not want to derive C :x↔ C :z;
given only these two assignment statements, it is impossible for an object o of type C
to exist at run time, where o.x and o.z point to the same object; that is, Case (a) in
Figure 6.2 above cannot occur and therefore may-aliasing should not be transitive. This
illustrates that our analysis is subset-based; an equality-based analysis does not take into
account direction of data flow and therefore could not eliminate this case.

Both flow and aliasing edges only connect paths rooted in the same class C, for example
C :p with C :q. We say class C witnesses the flow or aliasing edge.

Given a program Π, the set of flow edges of its aliasing graph is defined by the following
axioms and inference rules:

Seeding: For each assignment p = q appearing in class C of program Π:

C :q → C :p
(Seeding)

Calls to new and method calls do not generate flow edges because method arguments
and results have been reduced to assignments, and new is unaliased3.

Reflexivity: For each rooted path C :p:

C :p→ C :p
(Reflexivity)

This rule makes the flow relation reflexive. Given the above rules defining aliasing
edges, we also have C :p↔ C :p for all rooted paths C :p.

We only need to require C :ǫ → C :ǫ (given the next rule, (Aliased reflexivity)) but
we find that giving the above more general rule is clearer.

Aliased reflexivity If C witnesses p and q being may-aliases then it witnesses flow from
p.r to q.r. This encodes as the following rule:

C :p↔ C :q

C :p.r → C :q.r
(Aliased reflexivity)

If C :p ↔ C :q, this means that there may at run time exist an object o such that
o.p and o.q point to the same object. If this is indeed the case, then o.p.r and o.q.r
must necessarily point to the same object as well. As for the reflexivity rule above,
this causes flow and gives us C :p.r → C :q.r.

As the ↔ relation is symmetric, the above rule will derive both C :p.r → C :q.r and
C :q.r → C :p.r. Note that this is a stronger relationship than C :p.r ↔ C :q.r which
does not necessarily imply flow between C :p.r and C :q.r.

Context transfer and transitivity: This rule describes how two flow edges are com-
bined to deduce a transitive edge. Such an edge may have a different context from
the original edges, thus transferring may-aliasing information from one context to
another.

Suppose class D writes to variable v (perhaps a field in class F) and class E reads
from it. Suppose also class C witnesses a may-alias between D’s path to v and E’s

3That is, a run-time object is unaliased directly following its creation.

120

path to v (for example based on C having paths s to D and s′ to E). Then there
is possible flow from the variable written in D to that read in E and this possible
flow is witnessed by C. This encodes as the following rule:

C :s.q ↔ C :s′.q′

D :p→ D :q.v E :q′.v → E :r

C :s.p→ C :s′.r
(Context transfer and transitivity)

The above definitions export the concept of aliasing edges. As we explained in Sec-
tion 6.2.2, may-aliasing between rooted paths is important for contract verification, where
we need to verify the contracts of all variables that may-alias. Contract verification is
explained in detail in Section 6.2.5.

Flow edges are important for inferring aliasing edges but are not separately required
for contract verification. The reason for this is that the flow edges of an aliasing graph
are a subset of the aliasing edges; thus they do not need to be considered separately.

The above rules define a system similar to that of Andersen or Steensgaard for calculat-
ing the points-to relation; it is a form of dynamic (or online) transitive closure algorithm.
However, the resulting graph may have an infinite number of vertices and edges because
rooted paths are not simply restricted to those appearing in the source code4. We return
to the problem of infinite aliasing graphs in Section 6.2.4.

6.2.3.1 Examples

We now consider several simple examples to show how the above rules work. First,
suppose a class C has the statements x = y and y = z (flow insensitivity means the order
of the statements does not matter). We seed the aliasing graph with edges C :y → C :x
and C :z → C :y according to (Seeding) above. We then expect our analysis to deduce
the obvious transitive aliasing relationship C :z → C :x. This relationship is deduced by
(Context transfer and transitivity): given C :y → C :x and C :z → C :y and C :ǫ → C :ǫ,
it infers C :z → C :x as expected (setting p = z, q.v = q′.v = y, r = x, s = s′ = ǫ).

This also works if the two assignment statements occur in different classes. For exam-
ple, suppose a class D has statement a.x = b.y, class E has statement d.z = c.y and class
C has statement e.b = f.c, then we start by seeding the aliasing graph with edgesD :b.y →
D :a.x, E :d.z → E :c.y and C :f.c→ C :e.d. Applying (Context transfer and transitivity)
with p = d.z, q = c, q′ = b, r = a.x, v = y, s = f and s′ = e we get C :f.d.z → C :e.a.x as
expected. This demonstrates context transfer: the new edge has a different context from
the two edges that we used to deduce it.

Finally, we give an example to demonstrate the application of (Aliased reflexivity).
Suppose class C has statements y = x.a and z = y.b. These give edges C :x.a → C :y
and C :y.b → C :z. Putting these two assignments together, we expect our analy-
sis to deduce an aliasing relationship between x.a.b and z. From the initial edges,
(Aliased reflexivity) deduces C :x.a.b → C :y.b. This in turn enables the application of
(Context transfer and transitivity) (with p = x.a.b, q.v = q′.v = y.b, r = z, s = s′ = ǫ),
generating edge C :x.a.b→ C :z as expected.

4Rule (Context transfer and transitivity) introduces rooted paths which may not exist in the original
source code.

121

6.2.3.2 Soundness

In this section, we demonstrate the soundness of the above rules by showing that they cap-
ture all aliasing relationships which might occur during run-time execution of a program’s
source code.

We model run-time behaviour using a heap as a state and (because of our flow-
insensitive “program is a set of statements” formulation) we assume program statements
are repeatedly executed to give successive new heaps.

As usual a heap Ψ is a partial mapping from heap addresses ι to objects. An object is
represented as a tuple containing the object’s type C and a mapping from the field names
f of C to heap addresses. These two definitions combine to Ψ(ι) = 〈C, {f 7→ ι}〉. This is
similar to the heap definition used in the operational semantics in Chapter 3.

Below, we refer to objects only by their heap address ι which uniquely identifies them.
We use p, q, r and s to represent sequences of field selections. For conciseness, we write
Ψ(ι, p) to represent the lookup of p in heap Ψ starting at the object with address ι.

Given a heap Ψ, we write 〈ι1, f1〉 ∼Ψ 〈ι2, f2〉 if field f1 of object ι1 and field f2 of object
ι2 contain the same value (that is, are aliased) in heap Ψ; thus 〈ι1, f1〉 ∼Ψ 〈ι2, f2〉 if and
only if Ψ(ι1, f1) = Ψ(ι2, f2). The difference between ∼Ψ and ↔ is that ∼Ψ is an aliasing
relationship in the run-time heap, while ↔ represents static may-aliasing. We note that
∼Ψ is an equivalence relation which is reflexive, symmetric and transitive.

Execution consists of non-deterministically choosing an object of type C with address
ι in the heap Ψ and non-deterministically executing a statement s of C (or a subtype of
C); this produces a new heap Ψ′. We write Ψ

ι:s
→ Ψ′. The initial heap has one object of

distinguished class main. Statements that would cause an exception (for example x = y.z
when y is null) do not generate a successor state and so are effectively avoided in the
non-deterministic selection of statements to execute.

Consider the assignment statement p.x = q.y executed on the object with heap address
ι, where Ψ(ι, p) = ι1 and Ψ(ι, q) = ι2. Then, after executing the assignment, we must
have 〈ι1, x〉 ∼Ψ′ 〈ι3, z〉 for all 〈ι3, z〉 where 〈ι2, y〉 ∼Ψ 〈ι3, z〉. Note that this covers the
obvious relationship 〈ι1, x〉 ∼Ψ′ 〈ι2, y〉 due to the reflexivity of ∼Ψ.

Soundness is now a matter of showing that the aliasing graph’s (↔) relation satisfies
∼Ψ (as defined below) for each possible execution heap Ψ having evolved from the initial
heap. For example, if the initial heap can evolve to a heap containing an object of class C
with two fields f and h which both contain identical (non-null) values, then the aliasing
graph must contain C :f ↔ C :h.

We say that (↔) satisfies ∼Ψ if

〈ι1, f1〉 ∼Ψ 〈ι2, f2〉 =⇒ C :p.f1 ↔ C :q.f2 ∀C :p.f1, C :q.f2

Every aliasing relationship in the heap must be represented in the aliasing graph (but
not necessarily vice versa).

We now prove soundness by induction5: the initial heap state contains no aliasing and
therefore gives the base case. The induction step requires us to show that if the aliasing
graph satisfies heap Ψ and a single statement is executed, then the aliasing graph also
satisfies the resulting heap Ψ′.

We only need to consider execution of assignment statements here, as they are the
only statements which change the program’s aliasing structure. Execution of any other

5Often called preservation in proofs of progress and preservation.

122

statements (such as new) may create a heap Ψ′ which is different from the previous heap
Ψ, but Ψ′ must trivially satisfy the aliasing graph, if Ψ did.

In addition, we only need to consider the ∼Ψ′ relationships which do not already exist
in ∼Ψ; any relationships which are common to ∼Ψ and ∼Ψ′ are trivially satisfied, given
that the aliasing graph satisfies Ψ.

Proposition 1. If (↔) satisfies ∼Ψ and Ψ
ι:s.x=s′.y

→ Ψ′, then (↔) satisfies ∼Ψ′.

Proof. We consider the assignment statement s.x = s′.y in the source code of class D,
where Ψ(ι, s) = ι1 and Ψ(ι, s′) = ι2.

We know that we have 〈ι1, y〉 ∼Ψ′ 〈ι3, z〉 for each 〈ι3, z〉 such that 〈ι2, y〉 ∼Ψ 〈ι3, z〉.
Then, we need to show that we also have C :p.x↔ C :r.z for all rooted paths C :r.z such
that C :q.y ↔ C :r.z.

Note that we only need to consider rooted paths C :p and C :q such that the run-time
objects with address ι1 and ι2 are reachable starting from a run-time object o of class C
and performing field selections p and q respectively. This means that we need to consider
only rooted paths C :p and C :q which may-alias rooted paths C :p′.s and C :q′.s′ ending
in s and s′ respectively. Below we can therefore assume that we have C :p ↔ C :p′.s and
C :q ↔ C :q′.s′. Then:

1. Given the assignment statement s.x = s′.y in class D we get D :s′.y → D :s.x by
(Seeding).

2. We get D :s.x→ D :s.x by (Reflexivity).

3. Given D :s′.y → D :s.x and D :s.x → D :s.x we get C :q′.s′.y → C :p′.s.x for all
rooted paths C :p′ and C :q′ by (Context transfer and transitivity).

4. Given C :p ↔ C :p′.s and C :q ↔ C :q′.s′ we derive C :p′.s.x → C :p.x and C :q.y →
C :q′.s′.y by (Aliased reflexivity).

5. Given C :q.y → C :q′.s′.y, C :q′.s′.y → C :p′.s.x and C :p′.s.x → C :p.x we get
C :q.y → C :p.x by two applications of (Context transfer and transitivity).

6. Next, we consider all rooted paths C :r.z such that C :q.y ↔ C :r.z. For each such
path, we need to show that the aliasing graph contains C :p.x ↔ C :r.z. There are
three distinct cases:

(a) We may have C :q.y ↔ C :r.z because C :q.y → C :r.z according to (↔ 1).
Then:

i. Given C :q.y → C :r.z and C :q.y → C :p.x, we get C :p.x ↔ C :r.z as
required by (↔ 3).

(b) We may have C :q.y ↔ C :r.z because C :r.z → C :q.y by (↔ 2). Then:

i. Given C :r.z → C :q.y and C :q.y → C :p.x we derive C :r.z → C :p.x by
(Context transfer and transitivity).

ii. Given C :r.z → C :p.x we get C :p.x↔ C :r.z as required by (↔ 2).

(c) We may have C :q.y ↔ C :r.z because there exists a rooted path C :s such that
C :s→ C :q.y and C :s→ C :r.z by (↔ 3). Then:

123

i. Given C :s → C :q.y and C :q.y → C :p.x we derive C :s → C :p.x by
(Context transfer and transitivity).

ii. Given C :s→ C :p.x and C :s→ C :r.z we get C :p.x↔ C :r.z are required
by (↔ 3).

Thus, if (↔) satisfies ∼Ψ and Ψ
ι:s.x=s′.y

→ Ψ′, then (↔) satisfies ∼Ψ′ . This shows that
the aliasing rules we presented above correctly infer aliasing relationships in heap Ψ′.

6.2.4 Effectively computing the aliasing graph

While the axioms and rules given above to specify the aliasing graph are mathematically
well defined as the least model of the rules, they are computationally problematic as there
can be an infinite number of nodes and edges. For example, consider an extract from the
LinkedList example used in previous chapters:

class LinkedList {

...

public pure boolean member(Object data {true}) {

for(Node n {true} = head; n != null; n = n.next) { //A

...

}

}

}

Assignment n = n.next at program point A seeds the aliasing graph with Node :n.next →
Node :n. Rule (Aliased reflexivity) derives Node :n.next.next → Node :n.next and
(Context transfer and transitivity) combines the two edges to give Node :n.next.next →
Node :n. Subsequently, the analysis derives Node :n.next.next.next → Node :n in the
same way and so on forever. This behaviour is somewhat expected as we need to account
for all possible run-time depths of exploration of the linked list. However, due to the
infinite number of nodes created we cannot solve the problem merely by constructing the
graph on demand.

Our implementation sidesteps this problem by representing a Kleene-star-like “re-
peated traversal of some set of edges” explicitly in a modified aliasing graph. We redefine
the notion of vertices of the aliasing graph, so that the rooted paths C :r specifically ex-
clude paths of the form C :p.f.q.f in which a field name f occurs more than once. When
such a vertex is about to be required, we instead replace the (necessarily) existing vertex
C :p.f with a new form of vertex C :p.f.(q.f). We call C :p.f.(q.f) a cyclic access path and
say that C :p.f , C :p.f.q.f , C :p.f.q.f.q.f and so on are possible expansions of C :p.f.(q.f).
The new vertex C :p.f.(q.f) we create is a summary vertex representing all vertices which
are expansions of C :p.f.(q.f).

The introduction of cyclic access paths to the aliasing graph means that the number
of vertices in the graph is always finite, and determined by the program size.

Our cyclic access paths are similar to symbolic access paths proposed by Deutsch [30].
These also aim to reduce an infinite number of possible access paths to a finite number, but
additionally describe how many times a cycle in an access path can occur; for example, the
access path a.b.a.b.c is shortened to (a→ b→)2c. Notation for compressed access paths
by Komondoor [56] is similar to our work, but the semantics are different: in Komondoor’s
work, p.a.∗ represents access path p.a followed by any field selections, for example p.a.a or

124

p.a.b; this is different from our cyclic access paths, where p.(a) may represent only p.a.a
but not p.a.b.

6.2.5 Contract verification

At run time, an object access requires evaluation of the aliasing contracts of all variables
currently pointing to the accessed object. The aliasing graph constructed in Section 6.2.3
overestimates run-time aliasing. We can use this to statically verify certain aliasing con-
tracts and therefore eliminate dynamic checks. A program which can be verified is then
guaranteed to not cause contract violations at run time but the converse does not hold
(analogous to static versus dynamic typing).

Verification consists of the following: for a class C, we consider each source-code
object access to variable v6 (that is, field reads y = v.f , field writes v.f = y and method
calls v.m()7). For a possible run-time object o of type C, this source-code object access
corresponds to a run-time access to o.v. Such an access requires the evaluation of the
contract of variable v in object o, as well as evaluation of the contract of variable v2 in
object o2 if o.v = o2.v2. Therefore, in order to statically verify the above source-code
object access, we must verify the contracts for all rooted paths C :p such that o.v or o2.v2
can be reached starting at an object o3 of type C and performing field selections p; we
explain below exactly which rooted paths need to be considered.

We write [[C :v]] for the contract in the declaration of variable v visible in class C; the
contract of v then appears in class C or one of its superclasses, attached to the variable
declaration for v. For conciseness, we similarly write [[C :p.v]] for the contract of variable
v visible in class τ(C :p). Depending on the type of object access, our analysis verifies the
read and/or write contracts as appropriate.

To verify a contract, we must provide access paths representing accessor, accessed
and this. We write verify(φ,C :paccessor, C :paccessed, C :pthis) for the verification of the
contract of variable v of class C, where φ = [[C :v]]. We explain the cases of verify for
different contracts φ later in this section.

Due to our ANF-style syntax, there are only two kinds of source-code object accesses
to consider:

Access to v, with v = f : A run-time object o may access another object o2 stored in
its own field f , for example by reading or writing a field f.h or calling a method
f.m().

To verify such an object access, we first find all rooted paths in the aliasing graph
which contain f as their last term: D :p.f , where τ(D :p) ⊲⊳ C. We select these
rooted paths, because the accessed object o2 may be reachable at run time from
an instance of D following field selections p.f . For each such vertex we require
verify([[D :p.f]], D :p,D :p.f ,D :p).

At run time, an access to o2 also requires the evaluation of the contract of variable
h, if there is another object o3 such that o3.h is aliased with o.f . Thus, we find
all rooted paths D :q.h such that D :p.f ↔ D :q.h. For each such D :q.h we require
verify([[D :q.h]], D :p,D :q.h,D :q).

6Where v is either a field f or this.
7No other source-code object accesses are possible due to the restrictions of our ANF-style syntax.

125

We can equivalently require verify([[D :q.h]], D :p,D :p.f ,D :q), where accessed is
described by D :p.f instead of D :q.h. An access to D :p.f requires a contract verifi-
cation for D :q.h because the run-time objects o.p.f and o.q.h may be aliased (Case
(a) in Figure 6.2); contract verification would not be required if the two run-time
objects were unrelated (Case (b) in Figure 6.2). Therefore, o.p.f and o.q.h must be
aliased when the contract of o.q.h is evaluated. It follows that we can treat D :p.f
and D :q.h as equivalent during contract verification (or otherwise verification would
not be needed); it is then sufficient for just one of these two alternative verifications
to succeed in order to prove that the contract will evaluate to true at run time.

We now use a simple example program to show how object accesses with v = f are
verified:

class C {
C f {φ};
C g {φ′};
m() {

f = g; //A

f.m(); //B

}
}

The statement f.m() at program point B represents an access from an instance of
type C (or a subtype of C) to the object stored in its field f . Thus, we require
verify(φ,C :ǫ, C :f, C :ǫ). In addition, the assignment at program point A above
creates aliasing between fields f and g in class C; we have C :f ↔ C :g. We therefore
also require verify(φ′, C :ǫ, C :g, C :ǫ) or equivalently verify(φ′, C :ǫ, C :f, C :ǫ).

Access to v, with v = this: An object of type C may access itself, for example by
reading or writing its own field this.h or calling its own method this.m. At run
time, the accessed object may be any object of type C or a subtype of C. Therefore,
for each rooted path D :p.f where τ(D :p.f) ⊲⊳ C we require verify([[D :p.f]], D :p.f ,
D :p.f ,D :p).

We do not need to separately verify the contracts of aliased rooted paths D :q.h with
D :p.f ↔ D :q.h as the previous case required. D :p.f ↔ D :q.h is possible only if
τ(D :p.f) ⊲⊳ τ(D :q.h); thus, the contracts of D :q.h will already be verified by the
previous paragraph.

As an example of how we verify object accesses with v = this, consider the following
program:

class C {
D f {φ};

}
class D {

m() {
m(); //A

}
}

126

The statement m() at program point A represents an access from an instance of type
D to itself. To verify the correctness of the access, we require verify(φ,C :f, C :f,
C :ǫ), since τ(C :f) ⊲⊳ D.

These two cases show that a single source-code object access may require several
contract verifications, analogous to the conjunctive evaluation of several contracts at run
time. In some cases, the steps described above may cause the same contract φ to be
verified multiple times for the same values of C :paccessor, C :paccessed and C :pthis. For
efficiency reasons, implementations may choose to avoid such repeated verifications by
caching.

We now define when verify(φ,C :paccessor, C :paccessed, C :pthis) holds for different syn-
tactic contracts φ. We only consider syntactic contracts φ which are required to model
existing alias protection schemes such as Clarke-style ownership types and module en-
capsulation. We first explain verification of these contracts with simple rooted paths
representing C :paccessor, C :paccessed and C :pthis; verification with cyclic access paths (in-
troduced in Section 6.2.4 above) is covered in Section 6.2.5.1 below.

Case φ of true always holds.

Case φ of accessor == this holds if, for every run-time object o of type C, o.paccessor
and o.pthis must be aliased. We write C :paccessor ≡ C :pthis to represent this and call
it must-equality.

Our aliasing graph contains only may-aliasing information, which cannot be used to
deduce must-equality. For example, consider two paths C :p and C :q; if the aliasing
graph contains the relationship C :p ↔ C :q, we know only that, for a run-time
object o of type C, o.p and o.q may be aliased (or they may not be).

The only safe way to guarantee must-equality of two rooted paths is when we the
two paths are syntactically equal: C :ǫ ≡ C :ǫ and C :p1.v ≡ C :p2.v if and only if
C :p1 ≡ C :p2. For every run-time object o of type C, o.p and o.p must clearly be
aliased.

Case φ of accessor == accessed holds if C :paccessor ≡ C :paccessed.

Case φ of accessor instanceof D holds if τ(C :paccessor) <: D.

Case φ of accessor in g holds if, for every run-time object o of class C, o.paccessor is in
group g of o.pthis.

We define the compile-time function path to return a set of all rooted paths in group
g in C :p, where the definition of g contains fields f1. . . fn and nested encapsulation
groups g1. . . gm of fields h1. . .hm (h1.g1. . .hm.gm)

8.

path(g, C :p) =
n
⋃

i=1

{C :p.fi} ∪
m
⋃

j=1

path(gj, C :p.hj)

Then, using this definition, verify(accessor in g, C :paccessor, C :paccessed, C :pthis) holds
if C :paccessor ∈ path(g, C :pthis).

8We can use cyclic access paths to ensure that the number of rooted paths returned by path is finite.

127

For example, C :p.v1 is in group g of C :p if the definition of group g in type τ(C :p)
contains field v1. C :p.v1.v2 is in group g of C :p if g in type τ(C :p) contains a nested
group v1.g2 and group g2 in type τ(C :p.v1) contains field v2.

We note here that it is not possible to guarantee that C :p.q is in group g of C :r,
unless we have C :p ≡ C :r; as we noted above, our analysis deduces may-aliasing
relationships only and we can therefore never be certain that, for every run-time
object o of class C, o.p and o.r are definitely aliased unless we have C :p ≡ C :r.

Cases φ of accessor canread this and accessor canwrite this: This contract re-
quires indirect contract verifications: the verification verify(φ,C :p.f , C :q.g.h, C :q.g)
instead requires us to verify the contract φ′ = [[C :q.g]] of the original contract’s
declaring object C :q.g; thus, we require verify(φ′, C :p.f , C :q.g, C :q). This is anal-
ogous to run-time contract evaluation; to evaluate the contract accessor canread

this of variable g of run-time object o.q, we instead evaluate the contracts of o.q,
as explained in Chapter 3.

We verify the contract of the declaring object of φ by removing the last term from
C :paccessed and C :pthis, while keeping C :paccessor the same.

It is possible for C :pthis to become empty if we continue to remove its last term; at
this point, we cannot keep removing terms. For verify(φ,C :p.f , C :q, C :ǫ), we in-
stead require verify(φ′, D :p′.f ′.p.f ,D :p′.f ′, D :p′) where φ′ = [[D :p′.f ′]] for all rooted
paths D :p′.f ′ such that τ(D :p′.f ′) ⊲⊳ C. This is similar to verifying an object ac-
cess to v where v = this: all rooted paths D :p′.f ′ with matching type must be
considered. Consider the following example program, based on a LinkedList data
structure:

class Node {

Node next {accessor canread this, accessor canwrite this};

pure m() {

next.next.m(); //A

}

}

The object access at program point A requires verify(accessor can− read this,
Node :ǫ, Node :next.next, Node :next); as described above, for this to hold, we in-
stead require verify(accessor canread this, Node :ǫ, Node :next, Node :ǫ), where we
simply remove the last term from C :paccessed and C :pthis, while keeping C :paccessor
the same.

Now, because C :pthis is empty (and we cannot remove its last term), we find all
rooted paths C :p such that τ(C :p) ⊲⊳ Node. For example, we set C :p = Node :next
and require verify(accessor canread this, Node :next, Node :next, Node :ǫ).

Verification of the contracts accessor canread this and accessor canwrite this

can cause repeated contract verifications; that is, multiple verifications of the same
contract φ for the same values of C :paccessor, C :paccessed and C :pthis. As already
noted above, such recursively repeated verifications can (and should) be avoided
by caching in implementations of our analysis, thus ensuring that verification of
accessor canread this and accessor canwrite this results in a finite number
of contract verifications.

128

In the example above, verify(accessor canread this, Node :next, Node :next, Node :ǫ)
in turn requires verify(accessor canread this, Node :next.next, Node :next, Node :ǫ)
(if we again set C :p = Node :next) which requires verify(accessor canread this,
Node :next.next.next, Node :next, Node :ǫ) and so on. By using cyclic access paths
and writing verify(accessor canread this, Node :(next), Node :next, Node :ǫ) we can
avoid infinitely repeating contract verifications.

Other cases of φ do not hold for the purposes of this analysis; they do not arise when
modelling existing alias protection systems such as Clarke-style ownership types.

6.2.5.1 Contract verification with cyclic access paths

Section 6.2.4 introduced cyclic access paths C :p.(q).f ensure that the aliasing graph
remains finite; each cyclic access path summarises an infinite number of vertices. In this
section, we look at how contract verification works in the presence of cyclic access paths:
we define when verify(φ,C :paccessor, C :paccessed, C :pthis) holds, where C :paccessor, C :paccessed
and C :pthis may be cyclic access paths:

Case φ of true always holds.

Case φ of accessor == this holds if C :paccessor ≡ C :pthis and neither C :paccessor nor
C :pthis are cyclic. Since cyclic access paths represent many actual access path
expansions, equality of such paths can never be proven; we cannot know for certain
which expansions of the cyclic access paths we are comparing for equality. For
example, we must reject C :a.(b.c) ≡ C :a.(b.c) as this may in fact be a comparison
between two different expansions of C :a.(b.c) (for example C :a.b.c ≡ C :a.b.c.b.c
which is clearly false).

Case φ of accessor == accessed holds if C :paccessor ≡ C :paccessed and C :paccessor and
C :paccessed are not cyclic.

Case φ of accessor instanceof D holds for cyclic access path C :paccessor = C :p.(q.f),
if τ(C :p) <: D and τ(C :p.q.f) <: D. Testing the first two expansions of C :p.(q.f)
is sufficient, since all later expansions (C :p.q.f.q.f , C :p.q.f.q.f.q.f and so on) must
have the same declared type as C :p.q.f , as they all end with the same variable f ;
their declared type is the type of field f in τ(C :p.(q.f).q).

We must check the types of the first two expansions, C :p and C :p.q.f , separately
as their declared types τ(C :p) and τ(C :p.q.f) may differ (as long as they share a
common supertype C ′ such that C ′ :q.f is a valid rooted path). Therefore, τ(C :p) <:
D and τ(C :p.q.f) <: D may give different results and both conditions need to be
verified to show that the contract holds for all possible expansions of C :paccessor.

Case φ of accessor in g : First, we consider verify(accessor in g, C :p.(q).r, C :paccessed,
C :pthis) where C :paccessor is cyclic; this holds if there is another group g2 in D =
τ(C :p) such that:

• C :p.g2 ∈ path(g, C :pthis); and

• C :p.q.g2 ∈ path(g, C :pthis); and

• C :p.r ∈ path(g2, C :p).

129

These conditions simply check for the existence of another encapsulation group g2
which is reachable from group g in C :pthis by zero or more expansions of C :p.(q).
For this, it is sufficient to check that C :p.g2 and C :p.q.g2 are reachable by following
paths in group g starting at C :pthis; the remaining expansions of the cycle (for ex-
ample C :p.q.q.g2) must then necessarily also be reachable from g starting at C :pthis.
Secondly, we require that g2 in C :p contains C :p.r; this ensures that the remainder
of C :paccessor after the cycle is also reachable. These three conditions together ensure
that all expansions of C :p.(q).r must be reachable by following paths in g starting
at C :pthis: any number of expansions of C :p.(q) take us from group g to group g2
and g2 contains the rest of the rooted path we are looking for.

For example, we can use encapsulation groups to model aliasing in a LinkedList
(as we did in Chapter 3):

group allNodes = {head, head.nextNodes}; //In LinkedList

group nextNodes = {next, next.nextNodes}; //In Node

To check verify(accessor in allNodes, LinkedList:head.(next), LinkedList:head,
LinkedList:ǫ), we first set g2 = nextNodes. Then, as required above, we have:

• LinkedList:head.nextNodes ∈ path(allNodes, LinkedList:ǫ); and

• LinkedList:head.next.nextNodes ∈ path(allNodes, LinkedList:ǫ); and

• LinkedList:head ∈ path(nextNodes, LinkedList:head).

As expected, we conclude that the contract holds, having shown that all possible ex-
pansions of LinkedList:head.(next) must be in group allNodes of LinkedList:ǫ.

When C :pthis is cyclic, contract verification must fail. We noted above that it is
not possible for C :p.q to be in group g of C :pthis, unless we have C :p ≡ C :pthis.
As discussed above, must-equality cannot be shown to hold for cyclic paths; thus,
if C :pthis is cyclic, we can never have C :p ≡ C :pthis, meaning that the contract is
not verifiable.

Cases φ of accessor canread this and accessor canwrite this: Contract verifica-
tion of these contracts can be extended to cyclic access paths in a straightforward
way. If C :paccessor is cyclic, this has no effect here, since contract verification is
simply passed on to the contract’s declaring object, while the value of C :paccessor
stays the same; this contract can then be verified as explained in this section.

If we have C :pthis = C :p.(q).f , this requires verification of the contracts of C :p.(q)
instead. We need this verification to cover all possible expansions of C :p.(q) (in-
cluding zero expansions of the cycle). Therefore, for verify(φ,C :paccessor, C :r.h,
C :p.(q).f) we require verify(φ,C :paccessor, C :r, C :p) and verify(φ,C :paccessor, C :r,
C :p.(q).q).

We note that if all variables in q of C :p.(q) have the contract accessor canread

this or accessor canwrite this, verify(φ,C :paccessor, C :r.g, C :p.(q)) simply re-
duces to verify(φ,C :paccessor, C :r, C :p). This happens because verify(φ,C :paccessor,
C :r.g, C :p.(q)) reduces to verify(φ,C :paccessor, C :r, C :p) and verify(φ,C :paccessor,
C :r, C :p.(q).q) as described above. Then, verify(φ,C :paccessor, C :r, C :p.(q).q) will

130

eventually cause repeated verification of verify(φ,C :paccessor, C :r.g, C :p.(q))9 which
implementations should omit by caching.

Other cases of φ do not hold for the purposes of this analysis.

6.2.6 Equivalence edges

Unfortunately, the analysis we have presented so far is over-pessimistic and, as a result,
fails to verify many simple programs (including some programs modelling Clarke-style
ownership types with aliasing contracts). This over-pessimism pertains to relationships
between two rooted paths C :p.v and C :q.v (ending in the same variable v) introduced
by the (Aliased reflexivity) rule presented above. We give an example of a very simple
program which fails to verify below.

In this section, we refine the relationships in our aliasing graph and introduce equiv-
alence edges, denoted ∼=, to make our analysis less conservative, allowing it to verify
more contracts (including those modelling Clarke-style ownership types as discussed in
Section 6.3.1).

Consider the following simple example; the contracts in this example appear straight-
forward to verify, but verification fails as we explain below:

class C {

D x {true};

D y {true};

...

x = y; //A

}

class D {

E z {accessor == this};

...

z.m(); //B

}

Our analysis uses the assignment at program point A to derive C :x ↔ C :y and then
applies (Aliased reflexivity) to deduce C :x.z → C :y.z. This flow edge is a spurious over-
approximation; it occurs despite the fact that variable z is never actually assigned to in
the above code.

Now consider the object access z.m() at program point B. This object access is legal
and this should be easy to show statically.

To verify this object access, our analysis attempts to show that verify(accessor == this,
C :x, C :x.z, C :x) holds; this is straightforward, since the rooted paths representing accessor
and this are identical here (both are C :x).

Next, the analysis considers all rooted paths which are aliased with C :x.z. Since
we have C :x.z ↔ C :y.z, we also require verify(accessor == this, C :x, C :x.z, C :y)
to hold10. This verification clearly does not hold, since the rooted paths representing
accessor and this are not identical here (C :x and C :y respectively). Thus, verification
of this simple object access fails.

9Both C :pthis and C :paccessed eventually start repeating in this way, while C :paccessor stays the same.
10Or alternatively, verify(accessor == this, C :x,C :y.z, C :y) with an equivalent value for accessed

as explained in Section 6.2.5.

131

Figure 6.3: Possible run-time object graphs for C :x.z ↔ C :y.z

The problem is that the assumptions made by our analysis are over-pessimistic. May-
aliasing between C :x.z and C :y.z (C :x.z ↔ C :y.z) correctly reflects the relationships in
three possible run-time object graphs. These are shown in Figure 6.3.

However, given the above example code (without any additional uses of x, y and z
in “...”) Case (b) in Figure 6.3 is impossible. This object graph can be created by the
assignment x.z = y.z but not by x = y only. This case is the cornerstone of the analysis
refinement presented here.

The implications for contract verification are important. When object o is accessed,
Case (a) requires evaluation of the contract of o2.x.z only; Case (b) requires evaluation
of the contracts of o2.x.z and o2.y.z; Case (c) requires evaluation of the contract of
either o2.x.z or o2.y.z. In Case (c), evaluating the contracts of both o2.x.z and o2.y.z is
unnecessary, since they are an evaluation of the same contract of the same object.

In the example above the second contract verification verify(accessor == this, C :x,
C :y.z, C :y) (which fails) is thus completely unnecessary; there is no possible run-time ob-
ject graph that requires it (because Case (b) is unnecessary). By skipping this unnecessary
verification, the above example becomes easy to verify.

The relationship between C :x.z and C :y.z includes fewer possible object graphs than
simple may-aliasing. It is “all-or-nothing” aliasing; if we take an object o of class C, then
o.x.z and o.y.z are aliased if o.x and o.y are aliased; o.x.z and o.y.z are unrelated if o.x
and o.y are unrelated; it is not possible for o.x.z and o.y.z to be aliased if o.x and o.y are
not.

We call this relationship may-equivalence since, for the purposes of contract verifica-
tion, C :x.z and C :y.z can be considered to be equivalent. May-equivalence can produce
object graphs as in Case (a) and Case (c) in Figure 6.3 only, while may-aliasing can pro-
duce all three object graphs. We note that may-equivalence is only possible between two
rooted paths which finish with the same variable v; otherwise, Case (b) above remains
possible.

We introduce equivalence edges, denoted ∼=, to represent may-equivalence in the alias-
ing graph. Equivalence edges, as defined by the rules below, give an equivalence relation
which is reflexive, symmetric and transitive.

We re-state the inference rules given in Section 6.2.3 above to include equivalence

132

edges:

Aliasing edges: The rules describing aliasing edges are unchanged from the previous
definition:

C :p→ C :q

C :p↔ C :q
(↔ 1)

C :q → C :p

C :p↔ C :q
(↔ 2)

C :r → C :p C :r → C :q

C :p↔ C :q
(↔ 3)

Seeding: As before, for each assignment p = q appearing in class C of program Π:

C :q → C :p
(Seeding)

Reflexivity: The relationship between a rooted path and itself is may-equivalence, rather
than may-aliasing as before; clearly, Case (b) in Figure 6.3 is impossible in this
situation:

C :p ∼= C :p
(Reflexivity)

This is a change from the previous version of the rule which added a flow edge from
each rooted path to itself; clearly, this rule makes the equivalence relation reflexive.

Aliased reflexivity: Similarly, C :p ↔ C :q now implies may-equivalence (∼=) between
C :p.r and C :q.r rather than just flow, as explained in the above example:

C :p↔ C :q

C :p.r ∼= C :q.r
(Aliased reflexivity)

Since aliasing edges are symmetric, this rule results in symmetry of equivalence
edges.

Context transfer and transitivity: This rule describes how edges of different types
are combined:

C :s.q ↔ C :s′.q′

D :p
0,1
→ D :q.v E :q′.v

0,1
→ E :r

C :s.p→ C :s′.r
(Context transfer and transitivity 1)

(provided C :s.p 6= C :s′.r , i.e. the paths are syntactically distinct)

Here
0,1
→ represents use of either → or ∼= edges, but at most one can be ∼=.

The rule includes the additional restriction that flow edges cannot be introduced
between two identical rooted paths (since Case (b) in Figure 6.3 is impossible in
that situation).

We give a second rule to describe how two equivalence edges are combined; this rule
makes the equivalence relation transitive:

133

Figure 6.4: One possible run-time object graph for C :p.x.z ∼= C :q.y.z

C :s.q ↔ C :s′.q′

D :p ∼= D :q.v E :q′.v ∼= E :r

C :s.p ∼= C :s′.r
(Context transfer and transitivity 2)

As already mentioned above, we note that equivalence edges as defined by these infer-
ence rules can only exist between two rooted paths C :p.v and C :q.v which share at least
the last term v.

We already briefly discussed the impact of may-equivalence on contract verifications
in the example above. If C :p.v and C :q.v are aliased, this would normally require verifi-
cation of C :q.v when the contract of C :p.v is verified. However, if we have C :p.v ∼= C :q.v
and we have already verified the contract for C :p.v, we can skip verification of the con-
tract of C :q.v. More specifically, we can skip verify([[C :q.v]], C :paccessor, C :q.v, C :q) where
verify([[C :p.v]], C :paccessor, C :p.v, C :p) holds, if C :p.v ∼= C :q.v.

It is of course possible to have both C :p.v ∼= C :q.v and C :p.v ↔ C :q.v at the same
time; if this is the case, we must consider the may-aliasing relationship, as it includes more
possible object graphs than may-equivalence. This then requires us to verify the contract
of C :q.v when verifying the contract of C :p.v (as we did previously in Section 6.2.5); this
is necessary to ensure the continued safety of our analysis.

We note that skipping contract verification by exploiting equivalence (∼=) edges works
for all contract constructs allowed by our syntax in Figure 6.1 and considered in Sec-
tion 6.2.5, but does not apply to contracts involving the canread and canwrite opera-
tors. Contracts involving these operators lead to indirect contract verifications; in order to
verify the contract “accessor canread this” of C :q.v, for example, our analysis must
show that the contract for C :q holds.

For example, assume that we have C :p.x.z ∼= C :q.y.z, where the contract of variable
z is “accessor canread this”. Then, the object graph in Figure 6.4 is possible at
run time. In this situation, it is insufficient to verify only the contract of C :p.x.z; this
verification will indirectly verify the contract of C :p.x but not the contract of C :q.y (as

134

required to verify the contract of C :q.y.z). Therefore, in order to maintain correctness for
all possible run-time object graphs, our analysis verifies the contract of C :q.y.z as usual
where [[C :q.y.z]] is accessor canread this or accessor canwrite this, even when
C :p.x.z ∼= C :q.y.z.

6.3 Static analysis for existing alias protection schemes

In Chapter 4, we showed how aliasing contracts can be used to model existing alias
protection schemes. In this section, we prove that the static analysis presented in this
chapter can verify the aliasing contracts of programs translated from such existing static
alias protection systems, including transitive owners-as-dominators (as implemented by
Clarke-style ownership types), transitive owners-as-modifiers and full encapsulation.

6.3.1 Verifying Clarke-style ownership types

In this section, we show how our static analysis can verify programs translated from
Clarke-style ownership types to aliasing contracts; this translation was explained in detail
in Section 4.10.2.4. Here, we briefly repeat the important details.

We can model ownership types using aliasing contracts by simply replacing Clarke-
style ownership type annotations with aliasing contracts as follows:

[[rep]] = {accessor == this || accessor in repGroup}
[[norep]] = {true}
[[owner]] = {accessor canread this, accessor canwrite this}

For a class with owner-annotated fields f1, ..., fn and rep-annotated fields h1, ..., hn
we define repGroup (and the auxiliary group ownGroup) as follows:

group ownGroup = {f1, f1.ownGroup, ..., fn, fn.ownGroup};

group repGroup = {h1, h1.repGroup, h1.ownGroup, ...,

hn, hn.repGroup, hn.ownGroup};

Clarke-style ownership types also include context parameters which allow objects of
the same type to be parameterised with different annotations. We do not consider these
here, as they can simply be modelled using monomorphisation.

The big picture of this section is that we consider the shape of the aliasing graph
produced by programs with Clarke-style ownership types; the edges which can exist in
this graph are greatly restricted as ownership types limit which assignments are legal. We
then demonstrate that all possible source-code object accesses can be verified, given the
produced aliasing graph, concluding that our static analysis can verify and eliminate all
contracts in a program encoding Clarke-style ownership types as aliasing contracts.

In this section, we augment rooted paths (and hence vertices of the aliasing graph)
by explicitly adding ownership annotations to variables in the paths; this allows a more
direct expression of the various constraints on the aliasing graph produced by programs
using Clarke-style ownership types. For example, rooted path C :p.v[rep] finishes with
a variable v annotated with rep; nothing is known about the annotations of variables
in path p. Path C :p.q[rep.owner∗] finishes with a path q consisting of a rep-annotated
variable followed by zero or more owner-annotated variables: C :p.q[rep.owner∗] may, for
example, be C :p.v1[rep].v2[owner].v3[owner] or C :p.v[rep].

135

Below, we divide rooted paths in three categories according to their annotations so
that each path fits unambiguously into a single category: we distinguish between rooted
paths C :p.q[rep.owner∗] ending with one rep annotation followed by any number of
owner annotations, rooted paths C :p.q[norep.owner∗] ending with one norep annotation
followed by any number of owner annotations and rooted paths C :p[owner∗] which contain
only owner annotations11.

We now consider the aliasing graph produced by programs using Clarke-style own-
ership types. As our static analysis does not allow connections between vertices with
different contexts, we only consider a single context C here. The same constraints as for
context C apply to the structure of the aliasing graph for all other contexts; thus, if we
can show that our analysis works for one context C, this implies that it will also work for
all other contexts.

Only a small range of assignments are allowed by Clarke-style ownership types to
ensure that an object cannot change ownership context; these can be summarised as
follows:

• C :p.q1[rep.owner∗] = C :p.q2[rep.owner∗]
12

• C :p1.q1[norep.owner∗] = C :p2.q2[norep.owner∗]
13

• C :p[owner∗] = C :q[owner∗]

Applying our inference rules, we deduce the following edges:

• We seed our aliasing graph as before, turning assignments of the above form into
→ edges, according to (Seeding).

• Applying (Aliased reflexivity) to this initial aliasing graph, we deduce additional
edges of the form C :p1.q[rep.owner∗] ∼= C :p2.q[rep.owner∗] where C :p1 ↔ C :p2.

• Using (Context transfer and transitivity 1), we then combine C :p1.q1[rep.owner∗] ∼=
C :p2.q1[rep.owner∗] and C :p2.q1[rep.owner∗] → C :p2.q2[rep.owner∗] to derive the
edge C :p1.q1[rep.owner∗] → C :p2.q2[rep.owner∗].

• (Context transfer and transitivity 1) may introduce cyclic access paths. If C :p →
C :p.q.q, we add an edge C :p → C :p.(q). In the ownership types aliasing graph,
such a connection can exist only when all variables in q are annotated with owner.

In the final aliasing graph, all possible edges can be categorised as shown below; we
include only aliasing and equivalence edges here as flow edges are not required for contract
verification:

11Distinguishing between these three cases is sufficient for contract verification. Verifying the contract
for rooted path C :p.q[rep.owner∗] leads to a [[rep]] contract verification, regardless of the annotations of p,
while verifying the contract for rooted path C :p.q[norep.owner∗] requires a [[norep]] contract verification,
also independent of the annotations of p. Therefore, it is sufficient here to categorise rooted paths by
their last annotations and ignore earlier annotations.

12In this case, both rooted paths must share the same prefix p to ensure that an object cannot be
assigned to a different ownership context.

13No restrictions on prefixes p1 and p2 are required here as the assignment is taking place in the global
norep context.

136

• C :p.v1[rep].(q1[owner∗]) ↔ C :p.v2[rep].(q2[owner∗])

• C :p1.v1[norep].(q1[owner∗]) ↔ C :p2.v2[norep].(q2[owner∗])

• C :(p[owner∗]) ↔ C :(q[owner∗])

• C :p1.v1[rep].(q1[owner∗]) ↔ C :p2.v2[rep].(q2[owner∗]) can exist only if the aliasing
graph also contains C :p1.v1.(q1) ∼= C :p2.v1.(q1) and C :p2.v1.(q1) → C :p2.v2.(q2)
(and thus C :p2.v1.(q1) ↔ C :p2.v2.(q2)). This is a consequence of the application
of (Context transfer and transitivity 1) described above, which combines these two
edges to derive C :p1.v1.(q1) ↔ C :p2.v2.(q2). The existence of the equivalence edge
is essential for contract verification, as we explain below.

• There may also be additional equivalence edges, but we omit them here as they are
not relevant to contract verification below.

The important result shown here is that there can be no connections in the aliasing
graph between rooted paths C :p1.v1[rep].(q1[owner∗]) and C :p2.v2[norep].(q2[owner∗]).

Having constructed the augmented aliasing graph, we now demonstrate that all possi-
ble source-code object accesses in a Clarke-style ownership type program can be verified
by our static analysis. We consider only object accesses conforming to our ANF-style
syntax: field reads this.f and h.f , field updates this.f = x and h.f = x, and method
calls this.m() and h.m(). Programs with a wider range of object accesses can easily be
transformed to adhere to such ANF-style syntax.

We also note that there is no need to differentiate between object reads and object
writes because in Clarke-style ownership types each variable’s read and write contracts
are the same.

We merely need to show that that all arising [[rep]] contract verifications hold. We know
that verify([[norep]], C :paccessor, C :paccessed, C :pthis) always holds. The contract verification
verify([[owner]], C :paccessor, C :paccessed, C :pthis) causes indirect contract verification of the
original contract’s declaring object. This will eventually lead to the verification of a [[rep]]
contract (which we need to show holds) or a [[norep]] contract (which we know always
holds).

We note here that verify([[rep]], C :p.v[rep].(q[owner∗]), C :paccessed, C :p) always holds;
given the definition of the encapsulation groups repGroup and ownGroup presented above,
C :p.v[rep].(q[owner∗]) must be in repGroup of C :p.

Similarly, verify([[rep]], C :p, C :paccessed, C :p) holds trivially, as it satisfies the “accessor
== this” condition of the [[rep]] contract.

Proposition 2. All arising [[rep]] contract verifications hold.

Proof. We look at all possible ANF object accesses, showing that each required [[rep]]
contract verification holds. As above, we consider source-code accesses to variable v and
distinguish the two separate cases v = this and v = f :

Access to v, with v = this in class D: This requires contract verification for all rooted
paths C :p where τ(C :p) ⊲⊳ D:

• For C :p.v[rep].(q[owner∗]) we must check verify([[rep]], C :p.v[rep].(q[owner∗]),
C :p.v[rep], C :p) which holds as explained above14.

14This contract verification is an indirect contract verification, required for the verification of the
[[owner]] contracts of q.

137

• For C :p.v[norep].(q[owner∗]) we do not require verification of [[rep]] contracts.

• For C :(p1[owner∗]) we require the verification of the contracts of all rooted
paths E :p2 such that τ(E :p2) ⊲⊳ C

15. E :p2 can have one of three possible
forms:

– For a rooted path E :p2.v2[rep].(q2[owner∗]) our analysis requires verify([[rep]],
E :p2.v2[rep].(q2[owner∗]).(p1[owner∗]), E :p2.v2[rep], E :p2) which holds as
explained above.

– For E :p2.v2[norep].(q2[owner∗]) we do not require any [[rep]] contract ver-
ifications.

– For E :p2[owner∗], verification proceeds recursively as for the original rooted
path C :(p1[owner∗]) until either a [[norep]] or [[rep]] contract is verified; the
two previous cases show that these verifications must hold.

Access to v, with v = f : This requires verification of the contracts of rooted paths end-
ing in f and all aliased rooted paths:

• For a rooted path C :p.v[rep].(q[owner∗]) with final term f , we require verify([[rep]],
C :p.v[rep].(q[owner∗]), C :p.v[rep], C :p) which holds as explained above.

In addition, we have to verify the contracts of C :p.v2[rep].(q2[owner∗]), where
we have C :p.v.(q) ↔ C :p.v2.(q2): verify([[rep]], C :p.v[rep].(q[owner∗]), C :p.v2[rep],
C :p) also holds as explained above.

We do not have to verify contracts for C :p2.v2[rep].(q2[owner∗]) where C :p.v.(q) ↔
C :p2.v2.(q2); we know that there must exist a rooted path C :p.v2[rep].(q2[owner∗])
such that C :p.v.(q) ↔ C :p.v2.(q2) and C :p.v2.(q2) ∼= C :p2.v2.(q2); otherwise
our analysis could not have deduced C :p.v.(q) ↔ C :p2.v2.(q2). This im-
plies that the contract verification can be skipped due to the equivalence with
C :p.v2.(q2) whose contract will already be successfully verified by the previous
paragraph.

• For a rooted path C :p.v[norep].(q[owner∗]) whose last term is f , we require
verification of [[norep]] contracts only. We know that C :p.v[norep].(q[owner∗])
can only be aliased with rooted paths C :p2.v2[norep].(q2[owner∗]), which also
do not require [[rep]] contract verifications.

• For C :(p[owner∗]) whose last term is f , we need to find and verify the contracts
of all rooted paths E :p2 which satisfy τ(E :p2) ⊲⊳ C. As above, E :p2 may have
one of three forms:

– Rooted path E :p2.v2[rep].(q2[owner∗]) requires [[rep]] verification verify([[rep]],
E :p2.v2[rep].(q2[owner∗]).(p[owner∗]), E :p2.v2[rep], E :p2) which holds as
explained above.

– Rooted path E :p2.v2[norep].(q2[owner∗]) does not require [[rep]] contract
verifications.

– Rooted path E :p2[owner∗] again represents the recursive case; it eventu-
ally requires verification of [[rep]] and [[norep]] contracts, which must hold
according to the previous two cases.

15As above, this contract verification is an indirect verification required to verify the [[owner]] contracts
of p1.

138

We also need to verify the contracts of all rooted paths C :(q[owner∗]) such
that C :(p[owner∗]) ↔ C :(q[owner∗]). As for the contract verification of
C :(p[owner∗]), we need to find and verify the contracts of all rooted paths
E :p2 which satisfy τ(E :p2) ⊲⊳ C, leading to very similar contract verifications:

– Rooted path E :p2.v2[rep].(q2[owner∗]) requires [[rep]] verification verify([[rep]],
E :p2.v2[rep].(q2[owner∗]).(q[owner∗]), E :p2.v2[rep], E :p2) which holds.

– As above, rooted path E :p2.v2[norep].(q2[owner∗]) does not require [[rep]]
contract verifications.

– As above, rooted path E :p2[owner∗] represents the recursive case which
must hold given the previous two cases.

This shows that all possible source-code object accesses in a program using Clarke-
style ownership types can be verified and thus eliminated using our static analysis of
aliasing contracts (provided the program is well-ownership-typed).

Clarke-style ownership types are a transitive owners-as-dominators system; thus, this
shows that our static analysis can verify transitive owners-as-dominators encapsulation.

It is straightforward to adapt the above proof to transitive owners-as-modifiers sys-
tems. In these systems, the read contracts of all variables are “true”; thus, proving the
validity of read object accesses becomes trivial. The write contracts match the contracts
of a transitive owners-as-dominators system; these can be verified as we proved above.

6.3.2 Verifying full encapsulation

In Section 4.11, we used aliasing contracts to show that full encapsulation (as for example
provided by Hogg’s islands [48] and Almeida’s balloons [4](is a special case of Clarke-
style ownership types. This implies that if our static analysis can verify the contracts
modelling Clarke-style ownership types (as we proved above), this result must also hold
for programs which use aliasing contracts to implement full encapsulation.

6.4 StatCon: practical static analysis for Java

In this section, we present StatCon, a Java prototype implementation of the static anal-
ysis described above; we implement StatCon as an extension of JaCon (presented in
Chapter 5). Section 6.4.1 describes how StatCon works and how it interacts with Ja-

Con. In Section 6.4.2 we conduct a performance evaluation which shows that StatCon

can be used to analyse large real-world Java programs.
The prototype implementation of StatCon we describe here is simple and rather

limited; however, it gives us a good indication of the feasibility and benefits of combining
static analysis with run-time contract evaluation.

6.4.1 Description of StatCon

StatCon is designed to work closely with JaCon, our prototype for aliasing contracts
in Java presented in Chapter 5. We modified the existing JaCon compiler to output
information about a program during the compilation process, including information about

139

classes, variables and their contracts, assignments and object accesses. StatCon uses
this information as input.

As explained above, the analysis works in two stages: first, StatCon analyses the
relationships between variables; then, it uses this information to verify the contracts for
each object access in the program.

At the end of the analysis process, StatCon outputs two separate results: a list
of variables whose contracts may be violated at run time and a list of source-code ob-
ject accesses that may fail at run time. When StatCon analyses an object access and
cannot prove its correctness, it adds the object access to the list of potentially failing
object accesses and the contract which caused the failure to the list of potentially failing
contracts.

JaCon in turn uses this information as input: during compilation, it removes the
contracts of all variables, except those which may be violated at run time according to
StatCon; these contracts need to be tracked as usual while the program executes. Ja-

Con also omits contract evaluation before object accesses, except for those object accesses
which StatCon has determined may fail. In this way, JaCon reduces the number of
contracts which need to be tracked and the number of contract evaluations which need
to be performed. In the best case, where StatCon can fully verify all contracts in a
program, no contract tracking or evaluation would be required at all. This case is equiva-
lent to what is achieved by static alias protection schemes such as Clarke-style ownership
types, which do not require any run-time aliasing checks.

Unlike the theoretical analysis we presented earlier which only works with a simplified
ANF-style syntax, StatCon can analyse programs with full Java syntax.

The analysis proposed above requires variable names to be unique within a class; addi-
tionally, all inherited versions of the same method must have the same return statement.
StatCon automatically refactors the source code to meet these requirements.

For simplicity, StatCon uses a Steensgaard-style analysis rather than an Andersen-
style analysis as originally proposed above; it treats assignments as bidirectional. This is
simpler to implement in practice, since it means that the set of flow edges (→) and the
set of aliasing edges (↔) coincide.

StatCon also does not consider cycles. The analysis we presented above substitutes a
summary vertex C :p.f.(q.f) when it encounters a vertex C :p.f.q.f in which a field name
f occurs more than once. This ensures that the total number of vertices remains finite.
StatCon stops the creation of vertices of the form C :p.f.q.f (to ensure a finite number
of vertices) but, for simplicity does not create a summary vertex. This means that it
lacks some aliasing information and as a result can correctly verify only a small range of
contracts (if situations requiring summary vertices occur in a program); for example, the
contracts “true” and “accessor == accessed” are unaffected by the presence of cyclic
access path16; they can thus be correctly verified without creating summary vertices.

Although StatCon currently does not create summary vertices, this simple version
is sufficient for our performance evaluation, as we explain below. Extending the current
prototype to support summary vertices with cyclic access paths would be straightforward.

In order to maintain correctness, StatCon must analyse a program’s entire source
code, including the source code of libraries used by the program. Consider the Java code

16This is the case, at least, for programs without the contracts “accessor canread this” and
“accessor canwrite this”. In such programs the rooted paths representing accessor and accessed

can never be cyclic and therefore the evaluation of “accessor == accessed” is not affected by the
presence of cyclic access paths.

140

below, where Stack is a library class:

Stack<Foo> stack = new Stack<Foo>();

Foo x = new Foo();

stack.push(x);

Foo y = stack.pop();

When executed, this code creates aliasing between x and y but StatCon will only discover
this relationship if it analyses the Stack library class in addition to the program’s source
code. Analysing collection libraries is particularly important since they store objects and
are likely to create aliasing, as in the example above.

6.4.2 Performance evaluation

To evaluate the performance of StatCon, we again use the five real-world Java program
to which we applied JaCon in Chapter 5: FindBugs, JGraphT, JUnit, NekoHTML and
Trove. First, we use StatCon to analyse these programs, using the default contracts
“accessor == accessed || accessor == this” for non-static, non-public fields and
“true” to all other variables. We record which contracts and object accesses need to be
evaluated at run time according to StatCon and which can be eliminated.

We noted above that StatCon does not use summary vertices with cyclic access
paths and therefore can only correctly analyse a small range of contracts. The default
contracts we use here, “accessor == accessed || accessor == this” and “true” can
both be analysed without considering cycles: as noted above, the contracts “true” and
“accessor == accessed” (and thus “accessor == accessed || accessor == this”)
are unaffected by the presence of cyclic access paths.

Second, we feed information about required contracts and object accesses to JaCon

and execute the unit tests of the programs, as we did in Chapter 5. This allows us
to measure the performance improvement achieved by combining static and dynamic
checking of contracts, where the static analysis can eliminate some contract tracking and
evaluation from the run-time execution of the program.

Table 6.1 and Table 6.2 show the results of applying StatCon to our five test pro-
grams. Table 6.1 presents information about the input programs, including LoC, number
of variables and number of object accesses. Trove is the largest program, with 239,266
LoC, 16,632 variables and 88,292 object accesses. Table 6.1 also shows the time required
to statically analyse each program with StatCon; total time is the time taken by Stat-

Con, while analysis time is the time taken for the analysis of contracts only, excluding
input and output time. We can see that all programs, including large programs like
Trove, can be analysed by StatCon in under 10 seconds. The actual analysis time is
even lower, less than 7 seconds. Input and output take up a significant portion of the
total time because StatCon must read in large files with information about variables
and object accesses in a program before starting its analysis.

Table 6.2 shows information about the output of StatCon, including the number of
required contracts and object accesses in each program. This demonstrates that only a
small proportion of contracts and object accesses actually need to be evaluated at run
time, while StatCon can prove that most will not cause contract violations.

Next, we take the output produced by StatCon and feed it into JaCon. The up-
dated JaCon compiler, which we call javacStat here, removes tracking of contracts and
evaluation of object accesses which are not required according to StatCon. We compare

141

Program LoC Variables Object Accesses Total time Analysis time
(in s) (in s)

FindBugs 192,259 25,345 113,273 9.40 6.96
JGraphT 32,899 2,570 9,917 1.02 0.52
JUnit 11,994 1,645 4,824 0.40 0.08
NekoHTML 11,482 1,122 6,817 0.36 0.03
Trove 239,266 16,632 88,292 9.46 5.41

Table 6.1: Static analysis measurements – input program size and analysis time

Program Required Percentage Required Percentage
contracts accesses

FindBugs 187 0.74% 4,878 4.31%
JGraphT 24 0.93% 249 2.51%
JUnit 2 0.12% 13 0.27%
NekoHTML 9 0.80% 35 0.51%
Trove 117 0.70% 28,145 31.88%

Table 6.2: Static analysis measurements – analysis results

the performance of programs compiled with javacStat to the performance of programs
when compiled with javac0 (no contracts) and javac2 (the same default contracts as
javacStat: “accessor == accessed || accessor == this” for non-static, non-public
fields and “true” for all other variables). Our performance evaluation in Chapter 5 con-
cluded that although these default contracts are in some sense artificial, they provide a
good approximation for the actual encapsulation used in the test programs. The com-
pilers javac0 and javac2 do not interact with StatCon and are described in detail
in Chapter 5; javac0 gives us a base-line performance without any contract evaluation,
while javac2 shows the performance of programs with full dynamic contract checking.

Although we already measured the performance of the five test programs with javac0

and javac2 in Chapter 5, we remeasure their performance here. The performance evalu-
ation in Chapter 5 was conducted more than six months before this one; in this period of
time, the performance of the laptop used for the experiments decreased markedly. Thus,
remeasuring was required to obtain comparable results.

Table 6.3 shows the execution time for programs compiled with javac0, javac2 and
javacStat. Here, we take two separate measurements using javacStat: the version
called javacStat1 below reduces contract tracking ; it removes contracts which are not
required according to StatCon, but evaluates all object accesses. The version called
javacStat2 below reduces contract evaluation; it tracks all contracts but only evaluates
the object accesses which may fail at run time according to StatCon. The two different
measurements show us which approach performs better; alternatively, the two could be
combined.

The data shows a significant performance improvement for both versions of javacStat
compared to javac2. JGraphT, for example, runs 17.5 times more slowly with javac2

than with javac0, but only about 11.5 times more slowly with javacStat; this corre-
sponds to a performance improvement of around 30%.

If StatCon works correctly, we would expect to see the above performance improve-
ment while still measuring the same number of contract violations as with javac2. A

142

Program javac0 javac2 Ratio javacStat1 Ratio javacStat2 Ratio
(in s) (in s) (in s) (in s)

FindBugs 35.08 42.69 1.22 41.19 1.17 41.27 1.18
JGraphT 5.70 100.02 17.55 66.59 11.69 65.44 11.48
JUnit 15.79 22.82 1.44 21.82 1.38 20.30 1.29
NekoHTML 3.01 3.80 1.26 3.60 1.20 3.19 1.06
Trove 7.11 55.57 7.82 49.27 6.93 20.95 2.95

Table 6.3: Run-time performance measurements – execution time

Program javac2 javacStat1 Percentage javacStat2 Percentage
FindBugs 339 44 12.98% 65 19.17%
JGraphT 77,015 73,290 95.16% 10 0.01%
JUnit 789 0 0% 0 0%
NekoHTML 38,163 26,320 68.97% 19,380 50.78%
Trove 306,205 240,669 78.60% 226,053 73.82%

Table 6.4: Run-time performance measurements – contract evaluation failures

smaller number of contract violations would indicate that some contracts which fail at
run time with javac2 have been mistakenly eliminated by StatCon. However, as we
mentioned above, StatCon must analyse the entire source code of a program, including
all libraries, to work correctly. In this experiment we only analyse the program’s direct
source code for simplicity. As a result, StatCon cannot deduce all aliasing relationships
in the programs and thus misses some contract violations. This is not a problem with the
analysis itself, but with the incomplete input used during this experiment.

Table 6.4 shows the number of contract violations which occurred when using the two
versions of javacStat compared to javac2; javacStat1 and javacStat2 measure fewer
violations than javac2 for all of our test programs, indicating that aliasing caused by
libraries is common. For JGraphT, NekoHTML and Trove, we can detect the majority of
contract violations, but none are discovered for JUnit. This shows that aliasing in JUnit

always occurs through libraries (probably collections).

In addition to the results presented here, we also measure compilation times, memory
usage and the number of contract additions, removals and evaluations performed when
the programs execute. We observe that compilation with the two versions of javacStat
is slightly slower than javac2; this is expected since, in addition to the work done by
javac2, javacStat has to remove contract tracking and evaluation statements that are
not required. Unsurprisingly, programs compiled with javacStat1 (which reduces con-
tract tracking) perform a lower number of contract additions and removals (thus decreas-
ing memory usage), while programs compiled with javacStat2 (which reduces contract
evaluations) perform fewer contract evaluations (but exhibit similar memory usage to
programs compiled with javac2).

Overall, our performance evaluation demonstrates that StatCon is capable of analysing
very large programs in a short amount of time. The combination of static and dynamic
contract checking provides significant performance improvements and we thus conclude
that it is a promising approach to making aliasing contracts more usable in practice.
However, to maintain correctness, it is important for StatCon to verify the entire source
code of the program, including libraries, significantly increasing the amount of code that

143

needs to be analysed. Given the good performance of StatCon even for large programs,
this certainly appears feasible.

6.5 Summary

In this chapter, we presented a static analysis which can verify many aliasing contracts at
compile time. The analysis works by first constructing an aliasing graph to represent the
possible aliasing relationships which can exist at run time. May-aliasing is used, meaning
that a relationship in the aliasing graph must not necessarily exist at run time. On the
other hand, if no relationship between two rooted paths is shown in the aliasing graph,
such a relationship can certainly not exist at run time. We proved the soundness of the
analysis, demonstrating that it discovers all aliasing relationships which are possible at
run time.

In a second step, our proposed static analysis uses the aliasing graph to assess the
validity of every object access in a program’s source code. For each such object access,
the analysis verifies the contracts of all variables which may at run time point to the
accessed object, given the information in the aliasing graph. If a contract cannot be
verified, an error is reported.

We demonstrated that this static analysis can verify aliasing contracts used to model
existing alias protection schemes; for example, programs translated to aliasing contracts
from Clarke-style ownership types and full encapsulation can be fully verified in this way.

Finally, we presented StatCon, a prototype implementation of the static contract
analysis for Java. We used StatCon to show that statically analysing even large programs
is feasible and that combining static and dynamic contract checking provides significant
performance improvements.

144

CHAPTER 7

Discussion

In previous chapters, we proposed, characterised and implemented aliasing contracts, a
novel alias protection scheme for OO programming languages. In this chapter, we discuss
and summarise the important aspects of aliasing contracts. We also identify and briefly
discuss promising future research directions.

7.1 Expressiveness

Aliasing contracts are highly expressive and can support the definition of many different
aliasing conditions. We demonstrated this in our case study in Chapter 3, where we
presented a number of possible aliasing contracts for an iterator.

Aliasing contracts can contain arbitrary boolean conditions (including calls to boolean
methods). In addition, they introduce the concept of encapsulation groups which allow
us to group objects, giving access rights to all objects in a group rather than just single
objects. The real power of encapsulation groups lies in the fact that they can contain an
unbounded number of objects which can change at run time. We can thus give access
rights to a group of objects without knowing exactly how many objects will be in the
group during program execution. In addition, encapsulation groups can contain other
encapsulation groups, thus enabling the definition of deep or transitive aliasing conditions,
where one object encapsulates directly and transitively referenced objects.

Contract parameters which are analogous to Clarke et al.’s context parameters further
increase expressiveness. They support contract polymorphism, where objects of the same
class exhibit different aliasing behaviour. This is, for example, useful for collection classes,
where the desired encapsulation for the data stored in the collection may change from one
collection instance to another.

In Chapter 4, we showed that aliasing contracts can be used to express various different
aliasing policies including full encapsulation and three variants of owners-as-dominators
and owners-as-modifiers (strict, peer and transitive). They can also model uniqueness,
linearity and module encapsulation if we slightly adjust the semantics of these aliasing
policies to fit dynamic checking of object accesses (rather than static checking of refer-
ences). For example, aliasing contracts cannot enforce the existence of only a single unique
reference to an object, but can restrict object accesses to a single unique accessor object;
the reason for this is that aliasing contracts do not deal with references at all, only object
accesses. The ability of aliasing contracts to model so many different aliasing policies

145

demonstrates their high level of expressiveness, particularly compared to existing alias
protection schemes which usually support only a single aliasing policy.

Analogous to dynamic type checking, much of the flexibility of aliasing contracts stems
from their dynamic approach to alias protection. Static alias protection systems tend to
be inflexible because, like static type checkers, they must make conservative assumptions
to prove a program’s correctness. As a result, static systems may reject programs which
in fact exhibit correct alias protection at run time.

With aliasing contracts, the result of a contract evaluation depends on the aliasing
structure of the program when an object is accessed at run time. As the aliasing structure
changes, the result of a contract evaluation may also change. Thus, an object access may
be illegal at one point during program execution, but allowed later on. This also means
that access rights for an object can easily be transferred from one part of a system to
another, as the aliasing structure changes. Many static systems struggle to support such
ownership transfer, but with aliasing contracts it occurs naturally as the program executes.

Many static alias protection schemes also lack support for multiple ownership, where
an object is encapsulated, yet shared by several encapsulating objects at the same time.
Multiple ownership is, for example, essential for the efficient implementation of iterators:
the items in the collection need to be shared between the iterator and the collection, but
protected from aliasing from the rest of the system. Multiple ownership is straightforward
to implement with aliasing contracts, as the iterator case study we conducted in Chapter 3
shows.

Despite the expressiveness of aliasing contracts, we argue that they remain simple for
developers to write. Specifying an aliasing contract for a variable requires a developer
to think only about the aliasing requirements of this particular variable and the object
it contains. In other systems developers must structure the entire system in a particular
way (for example, to achieve a tree-shaped ownership graph for Clarke-style ownership
types). This is far more difficult to achieve as it requires developers to think about the
structure of the entire system, rather than just the local aliasing requirements. This
also complicates design changes and program maintenance because they can disrupt the
program’s aliasing structure.

Aliasing contracts are similar in spirit to assertions, which are easy to specify and
widely used. Both describe assumptions at a particular point in the code. However,
aliasing contracts are significantly more expressive. The contracts which are evaluated
depend on the aliasing structure of the program at run time; one object access can trigger
multiple contract evaluations. In addition, the advanced features of aliasing contracts, in-
cluding encapsulation groups, allow the expression of complex conditions that are difficult
to describe using standard boolean expressions.

7.2 Unification of existing work

A large amount of research has already been done on alias protection. The variety of
approaches and aliasing policies is huge as discussed in Chapter 2. There is currently no
unifying system or theory (although Boyland et al.’s work on capabilities [21] is arguably
a first step towards unification); this makes it difficult to compare systems and understand
their relative advantages and disadvantages.

As mentioned above, aliasing contracts are able to model a wide range of existing alias
protection schemes and their aliasing policies, including full encapsulation, strict, peer

146

and transitive owners-as-dominators and owners-as-modifiers, and module encapsulation.
This suggests that aliasing contracts provide a unifying approach to the area of alias
protection.

We suggest that expressing many different alias protection schemes in a common base
language – aliasing contracts – greatly simplifies direct comparisons between otherwise
seemingly different systems. In Chapter 4, for example, we used aliasing contracts to
show that full encapsulation is a special case of Clarke-style ownership types.

7.3 Run-time performance

Many existing alias protection schemes can be checked at compile time and thus have no
impact on program execution. Aliasing contracts, on the other hand, require dynamic
contract evaluation; as a result, they cause significant performance overheads.

In Chapter 5 we used JaCon, our prototype implementation of aliasing contracts in
Java, to quantify this performance overhead. We concluded that the impact of aliasing
contracts on performance varies widely between different programs, depending on their
run-time aliasing properties; for example, programs which build large and complex data
structures are likely to be significantly affected. While some of our test programs were
slowed down by less than 50%, others executed up to 50 times more slowly with aliasing
contracts than without.

Some test programs (such as JUnit and NekoHTML), which are not significantly af-
fected by aliasing contracts, could be fully utilised in the presence of aliasing contracts.
For other programs, such as JGraphT and FindBugs, the performance overhead would
render the programs unusable in practice. However, in Chapter 5, we noted that running
the unit tests of all of our test programs with aliasing contracts still remains feasible.
Thus, aliasing contracts can be used as a debugging tool to help discover unexpected
aliases and associated bugs (and in fact their performance is comparable to existing de-
bugging tools such as Valgrind); after testing, they can then be removed from the release
versions of programs. This approach is similar to that taken for assertions and software
contracts, which are used during testing but are disabled once the program is shipped to
customers.

In Chapter 6 we presented static analysis which can verify some simple aliasing con-
tracts at compile time. Although not all aliasing contracts may be able to be checked
in this way, verified contracts can be removed from the program during the compilation
process, reducing the number of contract evaluations at run time and improving perfor-
mance. Warnings could be displayed to alert developers to contracts which cannot be
removed in this way.

We demonstrated in Chapter 6 that a combination of static and dynamic contract
checking produces performance improvements. We developed StatCon, a prototype
implementation of the static contract analysis for Java, and used it to show that, un-
surprisingly, programs execute significantly faster when verified contracts are removed at
compile time; for some programs, we measured performance improvements of up to 30%
compared to using only dynamic contract evaluation.

We also showed in Chapter 6 that the contracts required to model existing static alias
protection schemes, including transitive owners-as-dominators (as for example used by
Clarke-style ownership types [27]), transitive owners-as-modifiers and full encapsulation,
can all be verified at compile time by our static analysis. Programs using these existing

147

static alias protection schemes can thus be translated into aliasing contracts without in-
curring any performance penalty. Dynamic contract checking is required only when more
expressiveness is required than is afforded by existing schemes. This essentially removes
the run-time performance disadvantage of aliasing contracts compared to existing work.

7.4 Future directions

We now look at possible future research directions that we uncovered during our work on
aliasing contracts.

7.4.1 Owners-as-locks

Owners-as-locks, first implemented by Boyapati et al. [14, 16], applies owners-as-dominators
to concurrent programs. It is based on the idea that if a thread owns a particular object
(and every object has a single owner) it can safely read and write the object without re-
quiring a lock, since no other thread can simultaneously own the same object. Ownership
thus acts as an implicit locking mechanism.

We suggest that aliasing contracts can similarly be seen as implicit locks on the ob-
jects to which they apply. For example, the rw-contract “accessor == accessed ||

accessor == this” represents a complete lock which restricts both object reads and
writes. If object o1 holds a reference to object o2 with this contract, it is guaranteed
that no accesses from objects other than o1 (and o2 itself) to o2 can occur; any such ac-
cesses would cause a contract violation. This implies that o1 can safely access o2 without
acquiring a lock first.

Other aliasing contracts can simulate more complex locking behaviour. For example,
contract “true, accessor == accessed || accessor == this” represents a write lock
which restricts object writes but allows (potentially concurrent) object reads.

Aliasing contracts do not model exactly the same locking semantics as ownership.
If o1 holds a reference to o2 with rw-contract “accessor == accessed || accessor ==

this”, this does not guarantee that o1 has access to o2; another object may hold a reference
to o2 with a conflicting contract, thus preventing o1 from accessing o2. Ownership, on the
other hand, encapsulates an object inside the owner while at the same time guaranteeing
access rights for the owner.

Although we have not investigated this topic in detail, we give a quick overview of
how aliasing contracts could be used for implicit locking. We suggest the introduction of
a lock-block, in which an object is considered locked by aliasing contracts. The example
below shows how the proposed lock-block works:

Object obj {accessor == accessed || accessor == this}; //A

lock(obj = getObject()) { //B

...

} //C

First, we create a variable obj at program point A to act as the locking mechanism.
In the example above, we use the rw-contract “accessor == accessed || accessor ==

this” to prevent both reads and writes from other objects.
Secondly, the lock is requested using the lock operator at program point B. The lock

operator is followed by an assignment operation which points the locking variable (obj) to

148

the object to be locked (the object returned by the getObject method in our example).
The lock operator ensures that the assignment is performed only when there are no
conflicting aliasing contracts; that is, contracts whose evaluation would fail. To identify
conflicting contracts, it checks if the object can be read and written using the locking
variable. If either the read or the write through the locking variable fails, there must be
a conflicting contract. In this case, lock waits until the conflicting contract disappears
before performing the assignment.

Once the assignment statement is executed, the locking variable holds a lock to the
object it contains. In the above example, any accesses from other parts of the system will
cause a violation of the rw-contract “accessor == accessed || accessor == this” of
the locking variable obj. If any other parts of the system try to acquire a lock for the same
object, the lock-block will force them to wait until the previous lock has been released.
This release occurs at the end of the lock-block at program point C in the above program.

The lock operator outlined above would allow easy locking of objects. Unlike the
owners-as-dominators framework used by Boyapati et al., aliasing contracts could be used
to express a wide range of locking conditions.

7.4.2 Or-contracts

Contract evaluation is conjunctive; a violation is reported if any of the contracts associated
with the accessed object evaluate to false. This is important to ensure that encapsulation
guarantees cannot be subverted.

This approach raises the question of what would happen if contract evaluation was
disjunctive instead. What would be the semantic meaning and applications of such “or-
contracts”?

We suggest that or-contracts (or disjunctive contracts) could be an alternative ap-
proach to implementing multiple ownership. Currently, aliasing contracts require owners
(or at least one owner) to be aware of the existence and identity of the other owners.
Otherwise, owners might specify conflicting contracts for the multiply owned object, thus
blocking other owners from accessing it. We discussed multiple ownership with aliasing
contracts in detail in Chapter 4.

Or-contracts could be useful if owners know about the existence of other owners but
do not know their exact identity. Each owner could specify an encapsulating contract for
the multiply owned object, such as “accessor == accessed || accessor == this”.
Instead of these incompatible contracts blocking other owners from accessing the object,
disjunctive contract evaluation would succeed if at least one owner’s contract evaluates
to true.

We could then distinguish between disjunctive and standard conjunctive contracts and
combine them in contract evaluation as follows: for disjunctive contracts dis1...dism and
conjunctive contracts con1...conn of an accessed object, contract evaluation would be

(dis1 || ... || dism) && con1 && ... && conn

At least one disjunctive contract as well as all standard contracts must be satisfied for
the evaluation to succeed.

While this is an interesting idea in theory, more thought is needed about how to en-
sure that encapsulation cannot be circumvented by other parts of the system. Applying
or-contracts to all situations would provide no encapsulation guarantees at all: in the

149

presence of contract disjunction, accesses to encapsulated objects from other parts of the
system would be valid, even if the contract which is supposed to encapsulate the object
evaluates to false. The combination of conjunctive and disjunctive contract evalua-
tion we suggested above addresses this problem, by allowing developers to specify which
contracts are conjunctive and which are disjunctive. Making important encapsulating
contracts conjunctive would then ensure that they cannot be circumvented.

7.4.3 Andersen-style and Steensgaard-style static analysis

In Chapter 6, we developed a static analysis for aliasing contracts. Although our final
approach used an Andersen-style alias analysis, we originally developed a Steensgaard-
style analysis.

Andersen-style alias analyses are subset-based; assignments are treated as unidirec-
tional (that is, data flows from one variable into another, but not vice versa). Steensgaard-
style analyses, on the other hand, are equality based; assignments are bidirectional and
therefore create data flow in both directions between assigned variables. Andersen-style
analyses are more accurate since assignments are unidirectional in practice.

We originally used a Steensgaard-style analysis for our static analysis as it appeared
to be simpler to implement. Our aim for the analysis was to be able to verify programs
translated to aliasing contracts from existing alias protection schemes, such as Clarke-
style ownership types. A Steensgaard-style analysis is powerful enough for this purpose.
Many existing schemes such as Clarke-style ownership types enforce their aliasing policy
using a static type system which restricts assignments. In Clarke-style ownership types,
for example, an object in one ownership context cannot be moved to another context;
the ownership contexts of both sides of assignment statements must be the same. This
can be modelled by a Steensgaard-style analysis which assumes that assignments are
bidirectional.

During development, we changed to a subset-based Andersen-style analysis. Such an
analysis allows us to eliminate many superfluous edges in the aliasing graph and greatly
decreases the number of possibilities that need to be considered by the analysis. As it
is more powerful than a Steensgaard-style analysis, this Andersen-style analysis can still
model existing systems as described above.

This leads us to an interesting research question: what would happen if we applied an
Andersen-style analysis to existing alias protection schemes such as Clarke-style ownership
types, instead of the Steensgaard-style analysis they currently use? More importantly,
would this be a useful thing to do? Such an approach would allow assignment between
two variables as long as the aliasing properties (or the ownership context in Clarke-style
ownership types) of the left-hand side is a subset of the aliasing properties of the right-
hand side1. Objects could then flow from looser to more restrictive variables but not vice
versa. This is analogous to typing rules in assignments, where objects can flow from a
variable of a subtype to a variable of a supertype but not the other way around.

1Of course this would require careful definition of what it means for one set of aliasing properties (or
one ownership context) to be the subset of another.

150

CHAPTER 8

Conclusions

In this thesis, we have presented aliasing contracts, a dynamic approach to alias protection
in OO programming. Aliasing contracts can be used to detect unintended reference leaks,
thus addressing the negative consequences of aliasing, including representation exposure.
Specifically, we have made the following contributions to the area of alias protection, as
presented in this thesis:

• We presented a detailed overview and comparison of existing work in Chapter 2 to
place our work on aliasing contracts in the context of previous research.

• We developed aliasing contracts (presented in Chapter 3) which address the limi-
tations of flexibility and expressiveness of many existing alias protection schemes.
Aliasing contracts, being dynamically checked, can be used to express aliasing con-
ditions that are not (or only partially) supported by existing work, such as multiple
ownership and ownership transfer. Therefore, they can be used to implement idioms
and design patterns, including iterators, that existing schemes struggle to model.

• We demonstrated the expressiveness and flexibility of aliasing contracts using a case
study in Chapter 3. We showed how aliasing contracts can be used to model and
enforce encapsulation in the iterator design pattern, which is frequently discussed
in alias protection literature.

• In Chapter 4, we placed aliasing contracts in the context of existing work and
demonstrated that they can be used to model many existing aliasing policies. We
thus argued that they can be seen as a unifying approach to the area of alias protec-
tion and can serve as a base language in direct comparisons between different alias
protection schemes.

• We developed and tested JaCon (described in Chapter 5), a prototype implemen-
tation of aliasing contracts in Java, demonstrating the feasibility of adding aliasing
contracts to existing programming languages.

• We used JaCon to quantify the run-time performance of aliasing contracts (pre-
sented in Chapter 5), concluding that aliasing contracts can feasibly be used as a
testing and debugging tool. Our performance evaluation also demonstrated the ro-
bustness of JaCon, which we used to compile and execute several hundred thousand
LoC.

151

• We developed static analysis (presented in Chapter 6) which can verify many simple
aliasing contracts at compile time. We showed that our static analysis can verify the
contracts of programs translated to aliasing contracts from existing alias protection
schemes, such as Clarke-style ownership types.

• We developed StatCon (described in Chapter 6.2), a prototype implementation
of the static contract analysis for Java and tested it on several real-world Java
programs. In this way, we showed that static analysis is feasible in practice, even
for large programs, and that combining static and dynamic contract checking leads
to significant performance improvements compared to using only dynamic contract
checking.

Future implementation work could focus on further developing our two prototypes,
JaCon and StatCon, with the aim of producing industry-standard tools. Currently,
both are proof-of-concept implementations with several limitations that make them diffi-
cult to use in practice. Error messages in JaCon, for example, are rather cryptic at the
moment. StatCon currently lacks some desirable features, including support for cyclic
access paths, contract suspension and contract parameters. In addition, we expect that
further development and a focus on performance optimisation could significantly improve
run-time performance of both prototypes.

In Chapter 7, we proposed several further avenues for future research work, including
using aliasing contracts for locking, investigating the semantics and possible applications
of disjunctive contract evaluation, and exploring the application of Andersen-style static
analysis (that is, subset-based analysis) to existing alias protection schemes.

152

Bibliography

[1] M. Abi-Antoun and J. Aldrich. Ownership domains in the real world. In In-
ternational Workshop on Aliasing, Confinement and Ownership in object-oriented
programming (IWACO), pages 93–104, 2007.

[2] J. Aldrich and C. Chambers. Ownership domains: separating aliasing policy from
mechanism. In M. Odersky, editor, ECOOP 2004 – Object-Oriented Programming,
volume 3086 of Lecture Notes in Computer Science, pages 1–25. Springer Berlin
Heidelberg, 2004.

[3] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program under-
standing. In Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA’02, pages 311–330.
ACM, 2002.

[4] P. Almeida. Balloon types: controlling sharing of state in data types. In M. Aksit
and S. Matsuoka, editors, ECOOP 1997 – Object-Oriented Programming, volume
1241 of Lecture Notes in Computer Science, pages 32–59. Springer Berlin Heidelberg,
1997.

[5] L. Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, Copenhagen, Denmark, 1994.

[6] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison-
Wesley, 2000.

[7] H. Baker. ‘Use-once’ variables and linear objects: storage management, reflection
and multi-threading. ACM SIGPLAN Notices, 30(1):45–52, January 1995.

[8] A. Banerjee and D. Naumann. State based encapsulation for modular reasoning
about behavior-preserving refactorings. In D. Clarke, J. Noble, and T. Wrigstad,
editors, Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
volume 7850 of Lecture Notes in Computer Science, pages 319–365. Springer Berlin
Heidelberg, 2013.

[9] M. Barnett, B. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: a modular
reusable verifier for object-oriented programs. In F. Boer, M. Bonsangue, S. Graf,
and W. Roever, editors, Formal Methods for Components and Objects, volume 4111
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006.

153

[10] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–
56, 2004.

[11] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: an
overview. In G. Barthe, L. Burdy, M. Huisman, J. Lanet, and T. Muntean, editors,
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, volume
3362 of Lecture Notes in Computer Science, pages 49–69. Springer Berlin Heidelberg,
2004.

[12] G. Booch. Object-Oriented Analysis and Design with Applications. Addison-Wesley,
3rd edition, 2004.

[13] C. Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, US, February 2004.

[14] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
preventing data races and deadlocks. In Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
OOPSLA’02, pages 211–230. ACM, 2002.

[15] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL’03, pages 213–223. ACM, 2003.

[16] C. Boyapati and M. Rinard. A parameterized type system for race-free Java pro-
grams. In Proceedings of the 16th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA’01, pages 56–69.
ACM, 2001.

[17] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership types for safe
region-based memory management in real-time Java. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementation,
PLDI’03, pages 324–337. ACM, 2003.

[18] J. Boyland. Alias burying: unique variables without destructive reads. Software:
Practice and Experience, 31(6):533–553, May 2001.

[19] J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor,
Static Analysis, volume 2694 of Lecture Notes in Computer Science, pages 55–72.
Springer Berlin Heidelberg, 2003.

[20] J. Boyland. Fractional permissions. In D. Clarke, J. Noble, and T. Wrigstad,
editors, Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
volume 7850 of Lecture Notes in Computer Science, pages 270–288. Springer Berlin
Heidelberg, 2013.

[21] J. Boyland, J. Noble, and W. Retert. Capabilities for sharing. In J. Knudsen, editor,
ECOOP 2001 – Object-Oriented Programming, volume 2072 of Lecture Notes in
Computer Science, pages 2–27. Springer Berlin Heidelberg, 2001.

154

[22] N. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple ownership. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems and applications, OOPSLA’07, pages 441–460. ACM, 2007.

[23] N. Cameron, J. Noble, and T. Wrigstad. Tribal ownership. In Proceedings of the
ACM international conference on Object oriented programming systems languages
and applications, OOPSLA’10, pages 618–633. ACM, 2010.

[24] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA’02, pages
292–310. ACM, 2002.

[25] D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment.
In J. Knudsen, editor, ECOOP 2001 – Object-Oriented Programming, volume 2072
of Lecture Notes in Computer Science, pages 53–76. Springer Berlin Heidelberg,
2001.

[26] D. Clarke, J. Östlund, I. Sergey, and T. Wrigstad. Ownership types: a survey. In
D. Clarke, J. Noble, and T. Wrigstad, editors, Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification, volume 7850 of Lecture Notes in Computer
Science, pages 59–83. Springer Berlin Heidelberg, 2013.

[27] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA’98, pages 48–64. ACM,
1998.

[28] D. Clarke and T. Wrigstad. External uniqueness is unique enough. In L. Cardelli,
editor, ECOOP 2003 – Object-Oriented Programming, volume 2743 of Lecture Notes
in Computer Science, pages 176–200. Springer Berlin Heidelberg, 2003.

[29] A. Deutsch. A storeless model of aliasing and its abstractions using finite representa-
tions of right-regular equivalence relations. In Proceedings of the 1992 International
Conference on Computer Languages, pages 2–13, 1992.

[30] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting.
In Proceedings of the ACM SIGPLAN 1994 conference on Programming language
design and implementation, PLDI’94, pages 230–241. ACM, 1994.

[31] W. Dietl, M. Ernst, and P. Müller. Tunable static inference for generic universe
types. In M. Mezini, editor, ECOOP 2011 – Object-Oriented Programming, vol-
ume 6813 of Lecture Notes in Computer Science, pages 333–357. Springer Berlin
Heidelberg, 2011.

[32] W. Dietl and P. Müller. Universes: lightweight ownership for JML. Journal of
Object Technology, 4(8):5–32, 2005.

[33] W. Dietl and P. Müller. Runtime universe type inference. In International Workshop
on Aliasing, Confinement and Ownership in object-oriented programming (IWACO),
pages 72–80, 2007.

155

[34] W. Dietl and P. Müller. Object ownership in program verification. In D. Clarke,
J. Noble, and T. Wrigstad, editors, Aliasing in Object-Oriented Programming.
Types, Analysis and Verification, volume 7850 of Lecture Notes in Computer Sci-
ence, pages 289–318. Springer Berlin Heidelberg, 2013.

[35] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation, PLDI’94,
pages 242–256. ACM, 1994.

[36] R. Ennals, R. Sharp, and A. Mycroft. Linear types for packet processing. In
D. Schmidt, editor, Programming Languages and Systems, volume 2986 of Lecture
Notes in Computer Science, pages 204–218. Springer Berlin Heidelberg, 2004.

[37] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[38] J. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, January 1987.

[39] D. Gordon. Encapsulation Enforcement with Dynamic Ownership. PhD thesis,
Victoria University, Wellington, New Zealand, 2008.

[40] D. Gordon and J. Noble. Dynamic ownership in a dynamic language. In Proceedings
of the 2007 Symposium on Dynamic Languages (DLS’07), pages 41–52. ACM, 2007.

[41] P. Grogono and P. Chalin. Copying, sharing, and aliasing. In Proceedings
of the Colloquium on Object Orientation in Databases and Software Engineering
(COODBSE’94), May 1994.

[42] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with confined types.
ACM Transactions on Programming Languages and Systems, 29(6), October 2007.

[43] P. Haller and M. Odersky. Capabilities for uniqueness and borrowing. In
T. D’Hondt, editor, ECOOP 2010 – Object-Oriented Programming, volume 6183
of Lecture Notes in Computer Science, pages 354–378. Springer Berlin Heidelberg,
2010.

[44] F. Henderson, T. Conway, Z. Somogyi, D. Jeffery, P. Schachte,
S. Taylor, C. Speirs, T. Dowd, R. Becket, M. Brown, and
P Wang. The Mercury language reference manual version 11.07.
http://www.mercurylang.org/information/doc-latest/reference_manual.pdf,
2011.

[45] T. Hill, J. Noble, and J. Potter. Scalable visualizations of object-oriented systems
with ownership trees. Journal of Visual Languages and Computing, 13(3):319–339,
2002.

[46] M. Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, PASTE’01, pages 54–61. ACM, 2001.

156

http://www.mercurylang.org/information/doc-latest/reference_manual.pdf

[47] C. A. R. Hoare. Hints on programming language design. Technical Report CS-403,
Stanford University, Stanford, CA, US, 1973.

[48] J. Hogg. Islands: aliasing protection in object-oriented languages. In Conference
proceedings on Object-oriented programming systems, languages, and applications,
OOPSLA’91, pages 271–285. ACM, 1991.

[49] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The Geneva convention
on the treatment of object aliasing. ACM SIGPLAN OOPS Messenger, 3(2):11–16,
April 1992.

[50] B. Jacobs, F. Piessens, K. R. M. Leino, and W. Schulte. Safe concurrency for
aggregate objects with invariants. In Proceedings of the Third IEEE International
Conference on Software Engineering and Formal Methods, SEFM’05, pages 137–147.
IEEE Computer Society, 2005.

[51] S. Kent and I. Maung. Encapsulation and aggregation. In Proceedings of TOOLS
PACIFIC 95 (TOOLS 18), pages 227–238. Prentice Hall, 1995.

[52] E. Kerfoot and S. McKeever. Maintaining invariants through object coupling mech-
anisms. In T. Wrigstad, editor, International Workshop on Aliasing, Confinement
and Ownership in object-oriented programming (IWACO), July 2007.

[53] U. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory and Practice.
CRC Press Inc., 2009.

[54] M. Klebermaß. An Isabelle formalization of the universe type system. Master’s
thesis, Technische Universität München, Munich, Germany, April 2007.

[55] N. Kobayashi. Quasi-linear types. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL’99, pages 29–
42. ACM, 1999.

[56] R. Komondoor. Precise slicing in imperative programs via term-rewriting and ab-
stract interpretation. In F. Logozzo and M. Fähndrich, editors, Static Analysis,
volume 7935 of Lecture Notes in Computer Science, pages 259–282. Springer Berlin
Heidelberg, 2013.

[57] N. Krishnaswami and J. Aldrich. Permission-based ownership: encapsulating state
in higher-order typed languages. In Proceedings of the 2005 ACM SIGPLAN confer-
ence on programming language design and implementation, PLDI’05, pages 96–106.
ACM, 2005.

[58] W. Landi and B. Ryder. A safe approximate algorithm for interprocedural aliasing.
In Proceedings of the ACM SIGPLAN 1992 conference on Programming language
design and implementation, PLDI’92, pages 235–248. ACM, 1992.

[59] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky,
editor, ECOOP 2004 – Object-Oriented Programming, volume 3086 of Lecture Notes
in Computer Science, pages 491–515. Springer Berlin Heidelberg, 2004.

157

[60] P. Li, N. Cameron, and J. Noble. Mojojojo - more ownership for multiple owners.
In International Workshop on Foundations of Object-Oriented Languages, FOOL,
2010.

[61] Y. Lu, J. Potter, and J. Xue. Validity invariants and effects. In E. Ernst, editor,
ECOOP 2007 – Object-Oriented Programming, volume 4609 of Lecture Notes in
Computer Science, pages 202–226. Springer Berlin Heidelberg, 2007.

[62] B. J. MacLennan. Values and objects in programming languages. ACM SIGPLAN
Notices, 17(12):70–79, December 1982.

[63] B. Meyer. Writing correct software. Dr. Dobb’s Journal, 14(12):48–60, 1989.

[64] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition, 1997.

[65] A. Milanova and J. Vitek. Static dominance inference. In J. Bishop and A. Vallecillo,
editors, Objects, Models, Components, Patterns, volume 6705 of Lecture Notes in
Computer Science, pages 211–227. Springer Berlin Heidelberg, 2011.

[66] N. Minsky. Towards alias-free pointers. In P. Cointe, editor, ECOOP 1996 – Object-
Oriented Programming, volume 1098 of Lecture Notes in Computer Science, pages
189–209. Springer Berlin Heidelberg, 1996.

[67] N. Mitchell. The runtime structure of object ownership. In D. Thomas, editor,
ECOOP 2006 – Object-Oriented Programming, volume 4067 of Lecture Notes in
Computer Science, pages 74–98. Springer Berlin Heidelberg, 2006.

[68] P. Müller and A. Poetzsch-Heffter. Universes: a type system for controlling rep-
resentation exposure. In A. Poetzsch-Heffter and J. Meyer, editors, Programming
Languages and Fundamentals of Programming, volume 263, Hagen, Germany, 1999.
Fernuniversität Hagen.

[69] P. Müller and A. Rudich. Ownership transfer in universe types. In Proceedings of the
22nd annual ACM SIGPLAN conference on Object-oriented programming systems
and applications, OOPSLA’07, pages 461–478. ACM, 2007.

[70] A. Mycroft and J. Voigt. Notions of aliasing and ownership. In D. Clarke, J. Noble,
and T. Wrigstad, editors, Aliasing in Object-Oriented Programming. Types, Analysis
and Verification, volume 7850 of Lecture Notes in Computer Science, pages 59–83.
Springer Berlin Heidelberg, 2013.

[71] S. Nägeli. Ownership in design patterns. Master’s thesis, ETH Zurich, Zurich,
Switzerland, March 2006.

[72] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI’07, pages 89–100. ACM,
2007.

[73] J. Noble. Iterators and encapsulation. In Technology of Object-Oriented Languages
and Systems (TOOLS 33), pages 431–442. IEEE Computer Society, June 2000.

158

[74] J. Noble, R. Biddle, E. Tempero, A. Potanin, and D. Clarke. Towards a model of
encapsulation. In International Workshop on Aliasing, Confinement and Ownership
in object-oriented programming (IWACO), July 2003.

[75] J. Noble, D. Clarke, and J. Potter. Object ownership for dynamic alias protection.
In Technology of Object-Oriented Languages and Systems (TOOLS 32), pages 176–
187. IEEE Computer Society, 1999.

[76] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor, ECOOP
1998 – Object-Oriented Programming, volume 1445 of Lecture Notes in Computer
Science, pages 158–185. Springer Berlin Heidelberg, 1998.

[77] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima Inc, 2nd
edition, January 2011.

[78] Oracle Corporation. OpenJDK. http://openjdk.java.net, 2014.

[79] J. Östlund and T. Wrigstad. Multiple aggregate entry points for ownership types.
In J. Noble, editor, ECOOP 2012 – Object-Oriented Programming, volume 7313
of Lecture Notes in Computer Science, pages 156–180. Springer Berlin Heidelberg,
2012.

[80] D. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, 1972.

[81] R. Plasmeijer, M. van Eekelen, and J. van Groningen. Clean language report version
2.2. http://clean.cs.ru.nl/download/doc/CleanLangRep.2.2.pdf, 2011.

[82] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic Java.
In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA’06, pages 311–324.
ACM, 2006.

[83] A. Potanin, J. Noble, M. Frean, and R. Biddle. Scale-free geometry in OO programs.
Communications of the ACM, 48(5):99–103, May 2005.

[84] J. Reynolds. Syntactic control of interference. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, POPL’78,
pages 39–46. ACM, 1978.

[85] A. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[86] I. Sergey and D. Clarke. Gradual ownership types. In H. Seidl, editor, Programming
Languages and Systems, volume 7211 of Lecture Notes in Computer Science, pages
579–599. Springer Berlin Heidelberg, 2012.

[87] J. Siek and W. Taha. Gradual typing for functional languages. In Proceedings of
the Scheme and Functional Programming Workshop, pages 81–92, September 2006.

[88] M. Sridharan, S. Chandra, J. Dolby, S. Fink, and E. Yahav. Alias analysis for
object-oriented programs. In D. Clarke, J. Noble, and T. Wrigstad, editors, Aliasing
in Object-Oriented Programming. Types, Analysis and Verification, volume 7850 of

159

http://openjdk.java.net
http://clean.cs.ru.nl/download/doc/CleanLangRep.2.2.pdf

Lecture Notes in Computer Science, pages 196–232. Springer Berlin Heidelberg,
2013.

[89] S. Srinivasan and A. Mycroft. Kilim: isolation-typed actors for Java. In J. Vitek,
editor, ECOOP 2008 – Object-Oriented Programming, volume 5142 of Lecture Notes
in Computer Science, pages 104–128. Springer Berlin Heidelberg, 2008.

[90] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL’96, pages 32–41. ACM, 1996.

[91] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
2000.

[92] TIOBE software. TIOBE programming community index for May 2014.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, May
2014.

[93] M. Utting. Reasoning about aliasing. In Formal Aspects of Computing, volume 3,
pages 1–15, 1997.

[94] J. Vitek and B. Bokowski. Confined types. In Proceedings of the 14th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and appli-
cations, OOPSLA’99, pages 82–96. ACM, 1999.

[95] J. Vitek and B. Bokowski. Confined types in Java. Software: Practice and Experi-
ence, 31(6):507–532, May 2001.

[96] J. Voigt and A. Mycroft. Aliasing contracts: a dynamic approach to alias protec-
tion. Technical Report UCAM-CL-TR-836, University of Cambridge, Computer
Laboratory, June 2013.

[97] J. Voigt and A. Mycroft. Dynamic alias protection with aliasing contracts. In
C. Shan, editor, Programming Languages and Systems, volume 8301 of Lecture Notes
in Computer Science, pages 140–155. Springer International Publishing, 2013.

[98] P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors,
Programming Concepts and Methods. North Holland, 1990.

[99] A. Wren. Inferring ownership. Master’s thesis, Imperial College, London, UK, 2003.

[100] T. Wrigstad. Ownership-Based Alias Management. PhD thesis, KTH Information
and Communication Technology, Stockholm, Sweden, 2006.

[101] T. Wrigstad and Clarke D. Is the world ready for ownership types? Is ownership
types ready for the world? In International Workshop on Aliasing, Confinement
and Ownership in object-oriented programming (IWACO), 2011.

[102] T. Zhao, J. Palsberg, and J. Vitek. Lightweight confinement for Featherweight Java.
In Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applications, OOPSLA’03, pages 135–148.
ACM, 2003.

160

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[103] T. Zhao, J. Palsberg, and J. Vitek. Type-based confinement. Journal of Functional
Programming, 16(1):83–128, January 2006.

[104] Y. Zhao and J. Boyland. A fundamental permission interpretation for ownership
types. In Proceedings of the 2008 2nd IFIP/IEEE International Symposium on The-
oretical Aspects of Software Engineering, TASE’08, pages 65–72. IEEE Computer
Society, 2008.

[105] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. Ernst. Ownership and immutability
in generic Java. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA’10, pages
598–617. ACM, 2010.

161

162

APPENDIX A

Additional case studies of aliasing

contracts

This appendix contains three additional case studies which demonstrate how aliasing
contracts can be used in practice to enforce complex aliasing conditions. Here, we consider
encapsulation and aliasing the binary tree data structure and in two design patterns
proposed by Gamma et al.’s [37]: observer and memento.

A.1 Binary tree

A binary tree is a commonly used data structure. A UML class diagram for a standard
binary tree implementation is shown in Figure A.1; the figure also shows three references
which we call A, B and C here.

We now consider five different aliasing policies for the binary tree; for each policy, we
give the required aliasing contracts for references A, B and C:

1. A TreeNode can be read or written by itself and the BinaryTree.

We use the rw-contract “accessor == accessed || accessor == this” for ref-
erence A. We then change TreeNode to take a single contract parameter, cp. When-
ever we instantiate a TreeNode in BinaryTree, we pass in an rw-contract identical
to the one used for reference A,“accessor == accessed || accessor == this”.
TreeNode uses contract parameter cp in its specification of contracts for references
B and C. Thus, all references A, B and C in a binary tree will at run time have the
same contract with the same declaring object.

Figure A.1: UML class diagram of a standard binary tree implementation

163

When any TreeNode in the binary tree is accessed, the rw-contract “accessor
== accessed || accessor == this” is evaluated in the context of BinaryTree,
evaluating to true if the access comes from the TreeNode itself (“accessed”) or
from the BinaryTree (“this”).

2. A TreeNode can be read or written by the BinaryTree and all other TreeNodes

in the tree.

First, we create an encapsulation group in BinaryTree (called allNodes) which
contains all of the TreeNodes in the tree:

//In BinaryTree

group allNodes = {root, root.descendants};

//In TreeNode

group descendants = {left, left.descendants, right,

right.descendants};

For reference A, we declare the rw-contract “accessor == this || accessor in

allNodes”. We can again use contract parameters for references B and C as before.
Equivalently, we can use the canread and canwrite operators in the contracts for
references B and C: “accessor canread this, accessor canwrite this”. This
contract causes contract evaluation to move up the tree from a node to its parent
(the contract’s declaring object “this”); finally, this causes the evaluation of the
contract on reference A. This contract will succeed if the access comes from the
BinaryTree (“this”) or any node in the tree (which is in group allNodes).

3. A TreeNode can be read or written by itself, the BinaryTree and any of its

ancestor nodes.

To enforce this aliasing policy, we use the rw-contract “accessor == accessed ||

accessor == this” for reference A. For references B and C, we declare the contract
“accessor == accessed || accessor canread this, accessor == accessed ||

accessor canwrite this”. This contract first checks if the node was accessed by
itself (“accessed”). Otherwise, contract evaluation continues up the tree to the
contract’s declaring object (the tree node’s parent). Each ancestor checks if the
access comes from itself (“accessor == accessed”); thus the contract evaluates to
true if the access comes from one of the ancestors. Finally, the contract on reference
A will be evaluated; this contract succeeds if the access originated in the root node
of the tree (“accessed”) or the binary tree itself (“this”).

4. A TreeNode can be read or written by itself and any of its descendant

nodes.

Implementing this is straightforward using the encapsulation group descendants

declared above. We give reference A the rw-contract “accessor == accessed ||

accessor in root.descendants”; we then use the rw-contracts “accessor ==

accessed || accessor in left.descendants” and “accessor == accessed ||

accessor in right.descendants” for references B and C respectively.

5. A TreeNode can be read or written by itself and any nodes that precede

it in an in-order traversal of the binary tree.

164

Figure A.2: UML class diagram of the observer pattern

This aliasing condition requires different contracts for references B and C in TreeNode.
A node’s left child should be accessible to itself (“accessed”) and its left descen-
dants ; that is, all descendants of its left child. A node’s right child should be
accessible to itself (“accessed”), the parent node (“this”), the parent node’s left
descendants, and its own left descendants. The root node in BinaryTree should
be accessible to itself (“accessed”) and its left descendants.

To simplify the definition of these contracts, we define an encapsulation group called
leftDescendants in TreeNode which contains all of a node’s left descendants:

//In TreeNode

group descendants = {left, left.descendants, right,

right.descendants};

group leftDescendants = {left, left.descendants};

We can then define the rw-contract “accessor == accessed || accessor in

root.leftDescendants” for reference A. For reference B, we use the rw-contract
“accessor == accessed || accessor in left.leftDescendants”. Finally, for
reference C, we use rw-contract “accessor == accessed || accessor == this

|| accessor in right.leftDescendants || accessor in leftDescendants”.

A.2 Observer

Observer is a behavioural pattern proposed by Gamma et al. [37] which allows one or
more objects (called the observers) to observe the state of another object (called the
subject). When the subject’s state changes it notifies all of its observers. In the standard
version of the pattern, the observers then call the subject to get its updated state and take
appropriate action. Alternatively, the subject can pass any relevant state to the observers
when it notifies them. Figure A.2 shows a UML class diagram of the observer pattern.

The observer pattern contains four classes:

165

• Subject is an abstract class representing the observed subject. It can register
observers (attach), de-register observers (detach) and notify all current observers
(notify).

• ConcreteSubject is the concrete subject implementation which contains the sub-
ject’s actual state. When the subject’s state changes it calls the notify method
to notify its observers. ConcreteSubject also includes a getState method which
observers can call to get a reference to the subject’s current state.

• Observer is an abstract class or interface representing the observer. It contains a
method called update which is called by the subject’s notify method.

• ConcreteObserver is the concrete observer implementation. It contains an imple-
mentation of update which gets the subject’s state (by calling getState) and takes
appropriate action.

The observer pattern leads to loose coupling between the subject and the observer and
allows one subject to be observed by any number of observers.

The encapsulation weakness of the pattern arises from the getState method of the
subject which returns a reference to the subject’s state for use by the observers. This
means that the subject’s state needs to be shared between the subject and the observers
(although arguably observers should be able to read but not write the subject’s state).
However, the getStatemethod also leaks a reference to the state to the rest of the system;
it may be called by objects other than the observers, compromising encapsulation.

Using aliasing contracts, we can ensure that only observers and the subject can access
the subject’s state. Other parts of the system may still call the getState method but
will be unable to use the reference they receive. We can further enforce the constraint
that observers should be able to read but not write the subject’s state.

To achieve this, we annotate the state field in ConcreteSubject with the following
contract:

{accessor == accessed || accessor == this ||

observers.contains(accessor),

accessor == accessed || accessor == this}

This contract specifies that the state can be read by itself (“accessed”), the subject
(“this”) and any of the observers, while it can be written by itself and the subject
only. It encapsulates the state inside the subject, while allowing limited sharing with the
observers.

A.3 Memento

Memento is a behavioural pattern proposed by Gamma et al. [37] which allows an object
(called the originator) to store historical records (called mementos) of its state and to
later restore that state. Figure A.3 shows a UML class diagram of the memento pattern.

The memento pattern contains four main classes:

• Memento: The memento stores the state of the originator and protects this state
from accesses by anyone except the originator which created the memento.

166

Figure A.3: UML class diagram of the memento pattern

• Originator: The originator creates mementos by taking snapshots of its state; it
can later restore its state from a memento.

• Caretaker: The caretaker stores mementos but never looks at them. It is thus not
aware of their contents (that is, the state they store).

• State: This class represents the originator’s state. It does not appear in Gamma
et al.’s original description of the memento pattern [37], but we include it here for
clarity.

The advantage of using the memento pattern is that we do not need to add accessor
and mutator methods to the originator to get and restore its state; this improves the
originator’s encapsulation. Instead, the originator itself creates mementos (passing in its
state). Using memento also simplifies the originator, as it does not need to take care of its
own mementos; the mementos are kept safe by the caretaker who does not allow anyone,
except for the originator, to access them.

On the other hand, the memento pattern can be expensive if the originator contains a
lot of state. When creating a memento, the originator must copy its state to ensure that
the memento state and the originator state do not point to the same object; otherwise,
any subsequent state changes in the originator would also change the memento’s state.
This is a case where unintended aliasing leads to incorrect behaviour.

Gamma et al. suggest that, to ensure that the caretaker cannot look at the mementos
it holds, the Memento class should define a narrow interface with few methods for the
caretaker, while providing a wider interface (with a method to get the state) for the orig-
inator, allowing it to access the memento’s state during the restore operation. However,
defining two different interfaces in this way can be difficult depending on the programming
language we use.

Aliasing contracts can help address some of the difficulties with the memento pattern.
We can use them to ensure that the memento’s state and the originator’s state are separate
and do not point to the same object. In addition, we can use contracts to enforce the
constraint that mementos can be accessed only by the originator which created them. To
achieve this, we use the following contracts for references A, B and C in Figure A.3:

• Reference A - “accessor == accessed || accessor == this” - This rw-contract
protects the internal state of the originator. We assume here that the state is fully

167

encapsulated in the originator (that is, it can only be read and written by itself
and the originator), but depending on the exact semantics of the originator, this
contract may vary.

• Reference B - “false” - This rw-contract ensures that state cannot be read or
written while it is stored in the memento.

• Reference C - “accessor == originator, false” - This contract protects the me-
mento from being accessed by any object other than the originator which created
it. It also ensures that the memento cannot be written (for example giving it a new
state) after it was created. Note that this contract requires the caretaker to have
knowledge of which object created which memento. However, this is a reasonable
requirement, because otherwise the caretaker cannot possibly ensure that it gives
the memento only to the correct originator.

With these contracts in place, the memento pattern now proceeds as follows:

1. The originator creates the memento, copying its state. The contract of reference
B now protects this state. Therefore, if the originator has by mistake forgotten to
copy its state and instead passed it to the memento by reference (so that references
A and B now point to the same state object), any subsequent reads or writes to
the originator state would cause a contract violation of the contract of reference B.
This contract ensures that the state, once given to the memento, cannot be read or
written at all.

2. The originator gives the memento to the caretaker. The contract of reference C

now ensures that the memento cannot be read by anyone except the originator that
created it and cannot be written at all.

3. When the originator gets the memento back from the caretaker (the contract refer-
ence C still applies), it can call getState. The originator now has two options. It
can copy the state before storing it; the copy of the state will no longer be subject
to the contract of reference B, which previously prevented all reads and writes of the
state. Alternatively, the originator can store a reference to the state and destroy
the memento, thus removing the restricting contract.

From the description above, we can see that aliasing contracts are very useful for
enforcing encapsulation in the memento pattern. They ensure that the memento’s and
originator’s states do not point to the same object. They can also enforce the constraint
that each memento should only be accessible to the originator that created it. Finally,
aliasing contracts make the memento and its state immutable, thus ensuring that it re-
mains unchanged between the memento’s creation and the state restoration.

168

APPENDIX B

Using aliasing contracts to model

Clarke-style context parameters

Clarke-style ownership types include context parameters which enable ownership polymor-
phism. In Section 4.10.2.4, we showed how Clarke-style ownership types can be modelled
using aliasing contracts. We simply modelled context parameters using monomorphisa-
tion. In this appendix, we show how to model them directly using contract parameters.

We explain how this is done using an example, taken directly from from Clarke et al.’s
paper [27] (but shortened slightly). The code for the example with ownership types is
shown below; a visual overview of the resulting ownership structure is shown in Figure B.1:

class Pair<m, n> {

m X fst;

n Y snd;

}

class Intermediate {

rep Pair<rep, norep> pair1;

norep Pair<rep, norep> pair2;

}

class Main {

norep Intermediate safe;

}

We now translate this code to a program with aliasing contracts as shown below;
this new version uses aliasing contracts to give the same encapsulation guarantees as the
original program with ownership types and produces the same ownership structure as
shown in Figure B.1:

class Pair<m, n> { //A

X fst {<m>}; //B

Y snd {<n>};

group mGroup = {fst, fst.repGroup}; //C

group nGroup = {snd, snd.repGroup}; //D

}

169

Figure B.1: The ownership structure of the Pair example

class Intermediate {

Pair pair1 {accessor == this || accessor in repGroup};

Pair pair2 {true};

group repGroup = {pair1, pair1.repGroup, pair1.mGroup, //E

pair2.mGroup};

Intermediate() {

pair1 = new Pair<(accessor == this || accessor in repGroup),

(true)>(); //F

pair2 = new Pair<(accessor == this || accessor in repGroup),

(true)>(); //G

}

}

class Main {

Intermediate safe {true};

}

From the example, we can see that the following steps are required to model context
parameters with aliasing contracts:

• We use contract parameters to model context parameters. We replace rep context
parameters with the rw-contract “accessor == this || accessor in repGroup”
and norep context parameters with the rw-contract “true”. This is shown at pro-
gram points F and G in the above example.

• If a class C is declared to take context parameters, we translate it to a class which
takes the same number of contract parameters. In the example above, we translate
class Pair in the original program (which declares two context parameters m and n)
to a class Pair with two contract parameters m and n (see program point A above).

We find all fields of class C which are annotated with context parameters in the
original program and give them a parameterised contract with the equivalent con-
tract parameter. For example, in the original program, field fst in class Pair is

170

annotated as m; we translate this to a field with rw-contract “<m>” at program point
B.

Finally, we create an encapsulation group cpGroup for each contract parameter cp.
The aim of this encapsulation group is to contain all owned objects in case the
parameter is instantiated as rep. For each field of class C annotated with parameter
cp, we add the field and the field’s repGroup to cpGroup.

In the example above, we create groups mGroup and nGroup for contract parameters
m and n respectively as shown at point C and D above; mGroup, for example, then
contains fst and fst.repGroup (since fst is annotated with parameter m).

• If a class D creates an object of class C, giving it a rep context parameter, we add
the group associated with the parameter in class C to D’s repGroup. In this way,
any fields annotated with the rep parameter in C will be added to D’s repGroup,
becoming directly owned by the instance of D.

In the example program above, class Intermediate creates two Pair objects (stored
in pair1 and pair2). In both cases, it uses the two context parameters rep and
norep; parameter m is instantiated as rep for both Pair objects. Therefore, we add
pair1.mGroup and pair2.mGroup to repGroup in Intermediate at program point
E. In this way, the Intermediate object will directly own the objects stored in fields
annotated with parameter m in pair1 and pair2.

• No action is required when a class uses a norep parameter when creating an object;
this does not require modification of the ownership structure as norep objects are
not owned by another object (only by the root of the system). In our above example,
we do not add pair1.nGroup and pair2.nGroup to repGroup in Intermediate, as
the n parameters of pair1 and pair2 are both instantiated as norep.

• If class C passes on a context parameter cp to an object e of another class E with con-
tract parameter cp2, we add the cp2Group encapsulation group in e to C’s cpGroup
definition. For example:

class C<cp> {

group cpGroup = {e.cp2Group, ...};

...

E e = new E<cp>();

}

class E<cp2> {

group cp2Group = {...};

}

This ensures that cpGroup in C contains all objects whose contracts use the param-
eter cp, both in class C and any other classes to which the parameter is passed.

Our definition of encapsulation groups is somewhat more complex than the simple
use of context parameters in Clarke-style ownership types. The reason for this is that
ownership types combine the definition of the program’s ownership structure with the
definition of encapsulation policies, while the aliasing contracts formulation describes the
two aspects separately. This gives our system more flexibility but also adds complexity.

171

	Introduction
	Motivation
	Aliasing contracts
	Thesis structure

	Background
	Alias protection
	Aliasing policies
	Full encapsulation
	Uniqueness and linearity
	Ownership: owners-as-dominators and owners-as-modifiers
	Module encapsulation
	Systems supporting multiple policies

	Other characteristics
	References and object accesses
	Static and dynamic checking
	Temporal and spatial aliasing
	Static and dynamic aliasing
	Sharing
	Borrowing
	Immutability

	Limitations of existing work

	Alias and pointer analysis
	Summary

	Aliasing contracts: overview and semantics
	Overview of aliasing contracts
	Encapsulation groups
	Contract parameters
	Contract suspension
	Checking aliasing contracts

	Formalisation of aliasing contracts
	Syntax
	Operational semantics
	Notation
	Contract evaluation
	Contract transfer
	Method and constructor calls
	The in operator
	Conditionals, sequences and boolean operators
	Evaluation contexts

	Case study
	Summary

	Comparison of aliasing contracts with existing alias protection schemes
	References and object accesses
	Static and dynamic checking
	Temporal and spatial aliasing
	Static and dynamic aliasing
	Sharing
	Borrowing
	Immutability
	Multiple ownership
	Ownership transfer
	Aliasing policies
	Full encapsulation
	Owners-as-dominators and owners-as-modifiers
	Strict owners-as-dominators and owners-as-modifiers
	Peer owners-as-dominators and owners-as-modifiers
	Transitive owners-as-dominators and owners-as-modifiers
	Clarke-style ownership types

	Uniqueness and linearity
	Module encapsulation
	Capabilities

	Using aliasing contracts to compare full encapsulation and Clarke-style ownership types
	Summary

	JaCon: a prototype implementation of aliasing contracts for Java
	Extensions of aliasing contracts for real-life OO languages
	Description of JaCon
	Prototype features
	Optimisations

	Known issues

	Performance evaluation of JaCon
	Performance of a single object access
	Method
	Results

	Performance of encapsulation groups
	Method
	Results

	Empirical study with open-source Java programs
	Case study 1: unit test measurements
	Case study 2: A real usage scenario for FindBugs

	Summary

	Static verification of aliasing contracts
	Overview of the static analysis
	Formalisation: aliasing graphs and contract verification
	Definitions
	Static rooted paths and dynamic objects
	Aliasing graph
	Examples
	Soundness

	Effectively computing the aliasing graph
	Contract verification
	Contract verification with cyclic access paths

	Equivalence edges

	Static analysis for existing alias protection schemes
	Verifying Clarke-style ownership types
	Verifying full encapsulation

	StatCon: practical static analysis for Java
	Description of StatCon
	Performance evaluation

	Summary

	Discussion
	Expressiveness
	Unification of existing work
	Run-time performance
	Future directions
	Owners-as-locks
	Or-contracts
	Andersen-style and Steensgaard-style static analysis

	Conclusions
	Bibliography
	Additional case studies of aliasing contracts
	Binary tree
	Observer
	Memento

	Using aliasing contracts to model Clarke-style context parameters

