
Technical Report
Number 869

Computer Laboratory

UCAM-CL-TR-869
ISSN 1476-2986

Bluespec Extensible
RISC Implementation:

BERI Software reference

Robert N. M. Watson, David Chisnall,
Brooks Davis, Wojciech Koszek,

Simon W. Moore, Steven J. Murdoch,
Peter G. Neumann, Jonathan Woodruff

April 2015

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2015 Robert N. M. Watson, David Chisnall,
Brooks Davis, Wojciech Koszek, Simon W. Moore,
Steven J. Murdoch, Peter G. Neumann, Jonathan Woodruff,
SRI International

Approved for public release; distribution is unlimited.
Sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-10-C-0237 (“CTSRD”) as
part of the DARPA CRASH research program. The views,
opinions, and/or findings contained in this report are those of
the authors and should not be interpreted as representing the
official views or policies, either expressed or implied, of the
Department of Defense or the U.S. Government. Portions of
this work were sponsored by Google, Inc.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract
The BERI Software Reference documents how to build and use the FreeBSD operating system
on the Bluespec Extensible RISC Implementation (BERI) developed by SRI International and
the University of Cambridge. The reference is targeted at hardware and software programmers
who will work with BERI or BERI-derived systems.

3

Acknowledgments
The authors of this report thank other current and past members of the CTSRD team, and our
past and current research collaborators at SRI and Cambridge:

Ross J. Anderson Jonathan Anderson Ruslan Bukin Gregory Chadwick
Nirav Dave Khilan Gudka Jong Hun Han Alex Horsman
Alexandre Joannou Asif Khan Myron King Ben Laurie
Patrick Lincoln Anil Madhavapeddy Ilias Marinos A. Theodore Markettos
Ed Maste Andrew Moore Will Morland Alan Mujumdar
Prashanth Mundkur Robert Norton Philip Paeps Michael Roe
Colin Rothwell John Rushby Hassen Saidi Hans Petter Selasky
Muhammad Shahbaz Stacey Son Richard Uhler Philip Withnall
Bjoern A. Zeeb

The CTSRD team wishes to thank its external oversight group for significant support and con-
tributions:

Lee Badger Simon Cooper Rance DeLong Jeremy Epstein
Virgil Gligor Li Gong Mike Gordon Steven Hand
Andrew Herbert Warren A. Hunt Jr. Doug Maughan Greg Morrisett
Brian Randell Kenneth F. Shotting Joe Stoy Tom Van Vleck
Samuel M. Weber

Finally, we are grateful to Howie Shrobe, MIT professor and past DARPA CRASH program
manager, who has offered both technical insight and support throughout this work. We are also
grateful to Robert Laddaga, who has succeeded Howie in overseeing the CRASH program.

4

Contents

1 Introduction 7
1.1 Bluespec Extensible RISC Implementation (BERI) 7
1.2 FreeBSD . 7
1.3 Getting BERI . 8
1.4 Licensing . 8
1.5 Version History . 8
1.6 Document Structure . 9

2 Building FreeBSD/BERI 11
2.1 Obtaining FreeBSD/BERI Source Code . 11
2.2 About FreeBSD/BERI . 11
2.3 Building FreeBSD/BERI . 12

2.3.1 Configuring the Build Environment 12
2.3.2 Cross-Building World . 14
2.3.3 Cross-Building a Kernel . 14

2.4 Cross-Installing FreeBSD . 14
2.4.1 Cross-Installing World . 15
2.4.2 Cross-Installing Kernels . 15
2.4.3 Preparing a Memory Root Filesystem 15

2.5 Preparing a FreeBSD SD Card Image . 16
2.6 Automated Builds . 17

3 Using FreeBSD/BERI 18
3.1 Getting Started with FreeBSD . 18

3.1.1 Obtaining FreeBSD/BERI . 19
3.1.2 Building berictl . 19
3.1.3 Writing Out the SD Card Disk Image (FPGA only) 19
3.1.4 Setting Up the DE4 Development Environment (FPGA only) 21
3.1.5 JTAG (FPGA only) . 21

3.2 Booting FreeBSD in Simulation . 21
3.2.1 Using the berictl debugger . 22

3.3 Programming the DE4 FPGA . 22
3.3.1 Writing an FPGA Bitfile to DE4 Flash from FreeBSD 24
3.3.2 Start a Console . 24

3.4 Models for Booting a FreeBSD/BERI Kernel 24
3.4.1 Load a Kernel into DRAM over JTAG 25

5

3.4.2 Load a Kernel into Flash from FreeBSD 25
3.5 Start Kernel Execution . 26
3.6 Post-Boot Issues . 26

3.6.1 Increasing the Size of an SD Card Root Filesystem 26
3.6.2 Setting a MAC Address . 27

6

Chapter 1

Introduction

This is the Software Reference for the Bluespec Extensible RISC Implementation (BERI) pro-
totype. The Software Reference describes the software development environment on the BERI
processor – especially, as relates using the FreeBSD operating system on FPGA-synthesized
BERI systems. The reference is intended to address the needs of hardware and software devel-
opers who are prototyping new hardware features, bringing up operating systems, language
runtimes, and compilers on BERI, rather than literal end users. It complements the BERI
Hardware Reference, which describes the BERI physical platform, the CHERI Architecture
Document, which describes our CHERI ISA extensions, and the CHERI Programmer’s Guide,
which describes our software extensions for CHERI.

1.1 Bluespec Extensible RISC Implementation (BERI)
The Bluespec Extensible RISC Implementation (BERI) is a platform for performing research
into the hardware-software interface that has been developed as part of the CTSRD project
at SRI International and the University of Cambridge. It consists of a 64-bit FPGA soft-core
processor implemented in Bluespec System Verilog and a complete software stack based on
FreeBSD, Clang/LLVM, and a range of popular open-source software products. BERI im-
plements a roughly 1994-vintage version of the 64-bit MIPS ISA with FPU and system co-
processor sufficient to support a full operating-system implementation. It also implements re-
search extensions such as the CHERI ISA, which supports fine-grained memory protection and
scalable compartmentalization within conventional address spaces. Wherever possible, BERI
makes use of BSD- and Apache-licensed software to maximize opportunities for technology
transition.

1.2 FreeBSD
FreeBSD is an open-source UNIX operating system originating from the Berkeley Software
Distribution in the 1980s. Released under the liberal BSD open-source license, FreeBSD is
widely used in service provider environments (e.g., Yahoo!, Verio, ISC, Netflix) and as a foun-
dation for commercial appliance and embedded products (e.g., NetApp, Juniper, Cisco, EMC,
Apple). We have adapted FreeBSD to run on BERI, which includes a platform support pack-
age and a set of device drivers for common Altera and Terasic peripherals. As part of the BERI

7

effort, we have invested significant effort in improving upstream components such as LLVM
and LLDB to work well with the 64-bit MIPS ISA.

FreeBSD can be cross-compiled from 32-bit and 64-bit x86 workstations and servers run-
ning FreeBSD (or from a VM running FreeBSD). We have also adapted the FreeBSD third-
party package build system (‘ports’) to support cross-compilation, making tens of thousands of
open-source applications (e.g., Apache) available on BERI. FreeBSD is of particular interest
to teaching and research in the hardware-software interface due to tight integration with the
Clang/LLVM compiler suite.

1.3 Getting BERI
We distribute the BERI prototype and software stack as open source via the BERI website:

http://www.beri-cpu.org/

1.4 Licensing
The BERI hardware design, simulated peripherals, and software tools are available under the BERI
Hardware-Software License, a lightly modified version of the Apache Software License that takes into
account hardware requirements.

We have released our extensions to the FreeBSD operating system to support BERI under a BSD
license; initial support for BERI was included in FreeBSD 10.0, but further features will appear in
FreeBSD 10.1. We have also released versions of FreeBSD and Clang/LLVM that support the CHERI
ISA under a BSD license; these are distributed via GitHub.

We welcome contributions to the BERI project; however, we are only able to accept non-trivial
changes when an individual or corporate contribution agreement has been signed. The BERI hardware-
software license and contribution agreement may be found at:

http://www.beri-open-systems.org/

1.5 Version History
Portions of this document were previously made available as part of the CHERI User’s Guide.

1.0 An initial version of the CHERI User’s Guide documented the implementation status of the CHERI
prototype, including the CHERI ISA and processor implementation, as well as user information
on how to build, simulate, debug, test, and synthesize the prototype.

1.1 Minor refinements were made to the text and presentation of the document, with incremental updates
to its descriptions of the SRI/Cambridge development and testing environments.

1.2 This version of the CHERI User’s Guide followed an initial demonstration of CHERI synthesized
for the Terasic tPad FPGA platform. The Guide contained significant updates on the usability
of CHERI features, the build process, and debugging features such as CHERI’s debug unit. A
chapter was added on Deimos, a demonstration microkernel for the CHERI architecture.

1.3 The document was restructured into hardware prototype and software reference material. Infor-
mation on the status of MIPS ISA implementation was updated and expanded, especially with

8

http://www.beri-cpu.org/
http://www.beri-open-systems.org/

respect to the MMU. Build dependencies were updated, as was information on the CHERI sim-
ulation environment. The distinction between BERI and CHERI was discussed in detail. The
Altera development environment was described in its own chapter. A new chapter was added that
detailed bus and device configuration and use of the Terasic tPad and DE4 boards, including the
Terasic/Cambridge MTL touch screen display. New chapters were added on building and using
CheriBSD, as well as a chapter on FreeBSD device drivers on BERI/CHERI. A new chapter was
added on cross-building and using the CHERI-modified Clang/LLVM suite, including C-language
extensions for capabilities.

1.4 This version introduced improved Altera build and Bluespec simulation instructions. A number
of additional C-language extensions that can be mapped into capability protections were intro-
duced. FreeBSD build instructions were updated for changes to the FreeBSD cross-build system.
Information on the CHERI2 prototype was added.

1.5 In this version of the CHERI User’s Guide, several chapters describe the CHERI hardware prototype
have been moved into a separate document, the CHERI Platform Reference Manual, leaving the
User’s Guide focused on software-facing activities.

1.6 This version updated the CHERI User’s Guide for changes in the CheriBSD build including support
for the CFI driver, incorporation of Subversion into the FreeBSD base tree, and non-root cross
builds. It also added information on the quartus_pgm command, and made a number of minor
clarifications and corrections throughout the document.

1.7 In this revision, the BERI Software Reference became an independent document from the CHERI
User’s Guide. This version was updated for the complete merge of FreeBSD/BERI to the FreeBSD
Subversion repository, and migration of CheriBSD to GitHub. It reflects the change from cherictl
to berictl and a number of enhancements to berictl that avoid the need to manually invoke
Altera’s underlying tools for FPGA programming or console access. The isf driver has been
replaced with use of the stock FreeBSD cfi driver. We no longer recommend explicitly building
the cross-toolchain; instead, rely on world.

1.8 - UCAM-CL-TR-853 This version of the BERI Software Reference was made available as a Uni-
versity of Cambridge Technical Report. Information was updated to reflect open sourcing of
BERI/CHERI and its software stack.

1.9 - UCAM-CL-TR-869 This version of the BERI Software Reference was made available as a Uni-
versity of Cambridge Technical Report. It has been timed to coincide with the second open-source
release of the BERI processor implementations. FreeBSD device-driver documentation has now
been upstreamed to the FreeBSD source tree via a series of manual pages, and so has been re-
moved from this reference. The creation of memory root filesystems is now documented in greater
detail.

1.6 Document Structure
This document is an introduction and user manual for Version 1 of the Bluespec Extensible RISC Im-
plementation (BERI) CPU prototype:

Chapter 2 describes how to build the FreeBSD/BERI port from source. You do not need to do this if
using prebuilt kernels.

Chapter 3 describes how to use FreeBSD/BERI.

9

Chapter ?? provides additional reference material for device driver configuration and use under FreeB-
SD/BERI.

10

Chapter 2

Building FreeBSD/BERI

FreeBSD/BERI is an adaptation of the open-source FreeBSD operating system to run on the Blue-
spec Extensible RISC Implementation (BERI). This support has been ‘upstreamed’ to the mainstream
FreeBSD distribution, and appears from version FreeBSD 10.0 onwards. As we are actively continu-
ing development of FreeBSD/BERI, we have extended it to support evolving features in BERI itself,
including device drivers for new hardware peripherals, and kernel support for new CPU features. FreeB-
SD/BERI can be cross-compiled from 32-bit or 64-bit FreeBSD/x86 running FreeBSD 10.0. CheriBSD,
a set of extensions to FreeBSD/BERI to support the CHERI capability coprocessor, are described in a
separate document, the CHERI Programmer’s Guide.

2.1 Obtaining FreeBSD/BERI Source Code
FreeBSD/BERI has been merged to the FreeBSD source tree as released in FreeBSD 10.0. However,
due to post-FreeBSD 10.0 enhancements, we recommend using FreeBSD 10-STABLE, which can be
tracked in the following Subversion branch:

http://svn.freebsd.org/base/stable/10

For closer (and likely faster) access to the repository see the list of mirrors found at:

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/svn-mirrors.
html

With some caution, the FreeBSD development head (11-CURRENT) might also be used in order to get
the very latest BERI features. (For example, at the time of writing, BERI boot-loader support is only
present in that branch.) However, as 11-CURRENT includes many other experimental in-development
OS features, this is not recommended unless you are able to closely track FreeBSD development mailing
lists to be aware of evolving sources of instability:

http://svn.freebsd.org/base/head

2.2 About FreeBSD/BERI
The FreeBSD/BERI port is adapted from the FreeBSD/MALTA 64-bit MIPS port, which offers the
closest match in terms of ISA. BERI- related kernel files may be found in directories listed in Table 2.1.
Wherever possible, FreeBSD/BERI reuses generic MIPS platform code, and is successful in almost all
cases. BERI uses flattened device tree (FDT); currently, DTS files describing BERI hardware are stored

11

http://svn.freebsd.org/base/stable/10
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/svn-mirrors.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/svn-mirrors.html
http://svn.freebsd.org/base/head

Filename Description

sys/mips/beri/ BERI-specific processor/platform code.
sys/boot/fdt/dts/mips Home of BERI flattened device tree (FDT) descrip-

tion files.

sys/dev/altera/atse Altera Triple-Speed Ethernet MAC.
sys/dev/altera/avgen Avalon “generic” driver to export I/O address ranges

to userspace.
sys/dev/altera/jtag_uart Altera JTAG UART device driver.
sys/dev/altera/sdcard Altera University Program SD Card IP core device

driver.
sys/dev/terasic/de4led Terasic DE4 LED array device driver.
sys/dev/terasic/mtl Terasic Multitouch LCD device driver.

Table 2.1: FreeBSD/BERI directories in src/sys/

in the FreeBSD source tree, but we hope to embed them in ROMs in BERI bitfiles in the future. Table 2.2
lists BERI-specific files in the common MIPS configuration directory.

2.3 Building FreeBSD/BERI
The following sections describe how to build a FreeBSD/BERI system. Examples assume the Cambridge
zenith development environment, a FreeBSD 10.0 x86/64 server. With appropriate pathname and
username substitutions, they should work on other FreeBSD 10 build hosts. The FreeBSD userspace
build will automatically build suitable cross-compilers and tools. Once userspace has been built, it must
be installed to a suitable directory tree from which disk images can be created. If you wish to build a
kernel that includes a memory root filesystem, userspace must be built, installed to a temporary location,
and a memory file system image created, before the kernel can be built.

Where appropriate, cheribsd may be substituted for freebsd, and kernel configuration file
names changed, to build CheriBSD instead of FreeBSD/BERI. Please consult the CHERI Programmer’s
Guide for instructions on checking out CheriBSD source code.

Note well: The details of the build process are likely to change over time as we merge changes from
the upstream FreeBSD tree due to the rapid evolution of MIPS support. Users should take care to ensure
that they are using a BERI Software reference that is contemporary with their source tree.

2.3.1 Configuring the Build Environment
By default, the FreeBSD build system will use /usr/obj as its scratch area. Instead, create and
configure your own per-user scratch space:

mkdir -p ${HOME}/obj
export MAKEOBJDIRPREFIX=${HOME}/obj

You may wish to modify your .cshrc or .bashrc to automatically configure the MAKEOBJDIRPREFIX
variable every time you log in.

12

Filename Description

BERI_DE4.hints Terasic DE4 hardware configuration hints
BERI_SIM.hints Bluespec simulation hardware configuration hints
BERI_TPAD.hints Terasic tPad hardware configuration hints

BERI_TEMPLATE FreeBSD/BERI template configuration entries,
included by more specific kernel configuration files

BERI_DE4_BASE FreeBSD/BERI template configuration entries
for DE4 configurations, included by DE4 kernel
configuration files

BERI_DE4_MDROOT FreeBSD/BERI kernel configuration to use a mem-
ory root filesystem on the Terasic DE4

BERI_DE4_SDROOT FreeBSD/BERI kernel configuration to use an SD
Card root filesystem on the Terasic DE4

BERI_SIM_BASE FreeBSD/BERI template configuration entries
for DE4 configurations, included by DE4 kernel
configuration files

BERI_SIM_MDROOT FreeBSD/BERI kernel configuration to use a mem-
ory root filesystem while in simulation

BERI_SIM_SDROOT FreeBSD/BERI kernel configuration to use a simu-
lated SD Card root filesystem

Table 2.2: FreeBSD/BERI files in src/sys/mips/conf; note that hints files have been
deprecated in favor of FDT DTS files for board configuration.

13

2.3.2 Cross-Building World
In FreeBSD parlance, “world” refers to all elements of the base operating system other than the kernel –
i.e., userspace. This includes system libraries, the toolchain (including the compiler), userland utilities,
daemons, and generated configuration files. It excludes third-party software such as Apache, X11, and
Chrome. Cross-build a big-endian, 64-bit MIPS world with the following commands:

cd ${HOME}/freebsd
make -j 16 TARGET=mips TARGET_ARCH=mips64 DEBUG_FLAGS=-g \

-DMALLOC_PRODUCTION buildworld

Note: the DEBUG_FLAGS=-g requests generation of debugging symbols for all userland components.
The atsectl utility allows the MAC address to be set in flash when FreeBSD/BERI is run on a

Terasic DE4 FPGA board. It is part of the FreeBSD source tree, but not built by default as it is only
useful on that platform and often run only once per board. It is stored in the tools/tools/atsectl
directory and can be built and installed with world by adding the following to the make command
lines:

LOCAL_DIRS="tools/tools/atsectl"

2.3.3 Cross-Building a Kernel
FreeBSD kernels are compiled in the context of a configuration file. For BERI, we have provided several
reference configuration files as described earlier in this chapter. In this section we describe only how to
build a kernel without a memory root filesystem. Information on memory root filesystems may be found
in Section 2.4.3. The following commands cross-build a BERI kernel:

cd ${HOME}/freebsd
make -j 16 TARGET=mips TARGET_ARCH=mips64 buildkernel \

KERNCONF=BERI_DE4_SDROOT

Notice that the kernel configuration used here is BERI_DE4_SDROOT; replace this with other configu-
ration file names as required.

BERI uses FDT to describe most aspects of hardware configuration (including bus topology and pe-
ripheral attachments). The only significant exception is physical memory configuration, which is passed
directly to the kernel by the boot loader; we anticipate that physical memory will also be configured us-
ing FDT in the future. For the time being, DTS files describing hardware are embedded in the FreeBSD
source tree in a manner similar to hints files used in earlier iterations of BERI. In the future, these
will be embedded in hardware and a pointer to the configuration will be passed to the FreeBSD kernel
on boot by the loader.

2.4 Cross-Installing FreeBSD
The install phase of the FreeBSD build process takes generated userspace and kernel binaries from
the MAKEOBJDIRPREFIX and installs them into a directory tree that can then be converted into a
filesystem image. Most make targets in this phase make use of the DESTDIR variable to determine
where files should be installed to. Typically, DESTDIR will be set to a dedicated scratch directory such
as ${HOME}/freebsd-root. We advise you to remove the directory between runs to ensure that no
artifacts slip from one instance into a later one:

rm -Rf ${HOME}/freebsd-root
mkdir -p ${HOME}/freebsd-root

14

2.4.1 Cross-Installing World
This phase consists of two steps: installworld, which installs libraries, daemons, command line
utilities, and so on; and distribution, which creates additional files and directories used in the
installed configuration, such as /etc and /var. The following commands cross-install to
${HOME}/freebsd-root

cd ${HOME}/freebsd
make DESTDIR=${HOME}/freebsd-root \

TARGET=mips TARGET_ARCH=mips64 -DDB_FROM_SRC -DNO_ROOT \
installworld distribution

To install the software in the tools/tools/atsectl directory, the following should be added to
the make command line:

LOCAL_DIRS="tools/tools/atsectl"

2.4.2 Cross-Installing Kernels
As with world, kernels can be installed to a target directory tree along with any associated modules. The
following commands install the BERI_DE4_SDROOT kernel into ${HOME}/freebsd-root:

cd ${HOME}/freebsd
make DESTDIR=${HOME}/freebsd-root \

TARGET=mips TARGET_ARCH=mips64 -DDB_FROM_SRC -DNO_ROOT \
KERNCONF=BERI_DE4_SDROOT installkernel

2.4.3 Preparing a Memory Root Filesystem
To build the BERI_DE4_MDROOT kernel, a memory file system image must first be made available.
A demonstration script, makeroot.sh, is available via the CTSRD Subversion repository or CHERI
distribution; most users will wish to customize the script arguments based on their specific environment.
The following command generates a 26-megabyte root filesystem image in ${HOME}/mdroot.img,
and requires that previous steps to install world have been completed and assumes access to a checkout
of the CTSRD repository in ${HOME}/ctsrd:

cd ${HOME}/ctsrd/cheribsd/trunk/bsdtools
sh makeroot.sh -B big -e extras/sdroot.mtree -s 26112k -f net.files \

${HOME}/mdroot.img ${HOME}/freebsd-root

You must also customize BERI_DE4_MDROOT in order to notify it of the memory location of the root
filesystem image. Modify the following section of its configuration file to reflect the size of the generated
filesystem:

options MD_ROOT # MD is a potential root device
options MD_ROOT_SIZE="26112"
options ROOTDEVNAME=\"ufs:md0\"

You may optionally add the following line to include the filesystem when the kernel is built:

makeoptions MFS_IMAGE=${HOME}/mdroot.img

15

Alternatively, you can embed the image by running the following command on a kernel that was previ-
ouly built without the MFS_IMAGE line:

sh ${HOME}/freebsd/sys/tools/embed_mfs.sh kernel.debug \
${HOME}/mdroot.img

Once the root filesystem image is generated, and the kernel configuration file updated, you can build the
kernel:

cd ${HOME}/freebsd
make -j 16 TARGET=mips TARGET_ARCH=mips64 buildkernel \

KERNCONF=BERI_DE4_MDROOT

The resulting kernel can be found in a file named kernel in your MAKEOBJDIRPREFIX tree. With
suitable substitutions for ${SRCDIR} and ${KERNELNAME}, the following path should point at the
generated kernel:

${MAKEOBJDIRPREFIX}/mips.mips64/${SRCDIR}/sys/${KERNELNAME}/kernel

If you did not add the MFS_IMAGE variable you must then run embed_mfs.sh.

2.5 Preparing a FreeBSD SD Card Image
Build and install world and distribution as described in earlier sections. Then build and install
a kernel using the configuration file BERI_DE4_SDROOT. Apply a few tweaks to configuration files,
then use the makefs command to generate a UFS image file:

sudo su -
echo "/dev/altera_sdcard0 / ufs rw 1 1" > \
${HOME}/freebsd-root/etc/fstab

RCCONF=${HOME}/freebsd-root/etc/rc.conf
cat > ${RCCONF} <<EOF
hostname="beri1"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
cron_enable="NO"
tmpmfs="YES"
EOF
METALOG=${HOME}/freebsd-root/METALOG
echo "./etc/fstab type=file uname=root gname=wheel mode=0644" >> \

${METALOG}
echo "./etc/rc.conf type=file uname=root gname=wheel mode=0644" >> \

${METALOG}
cd ${HOME}/freebsd-root && makefs -B big -s 1886m -D \

-N ${HOME}/freebsd-root/etc \
${HOME}/beribsd-sdcard.img METALOG

This command creates a big-endian filesystem of size 1, 977, 614, 336 bytes – the size of the Terasic
2 GB SD Cards shipped with the tPad and DE4 boards. The resulting beribsd-rootfs.img can
then be installed on an SD Card using dd as described in later sections.

If a smaller filesystem is desired (e.g., one that can be more quickly prepared and written to the
SD card), then size 1, 977, 614, 336 bytes (2GiB) can be replaced by 512m or the -s argument can be
omitted entirely to create a minimally sized root image.

16

2.6 Automated Builds
The files described in Chapter 3 can be built with the help of the Makefile in:

cheribsd/trunk/bsdtools/

The template config file in Makefile.conf.template can be copied to Makefile.conf
and customized to your environment. The worlds target runs the buildworld, installworld,
and distribution for each source tree. The images target builds filesystem images from the
installed root directories. The kernels target builds kernels, including MDROOT kernels with images
built by the images target. The sdcard target builds an image suitable for writing to the SD card. The
flash target builds flash preparation images for each kernel. Finally, the dated target makes dated
stamped files of each compressed kernel and image. All the above steps except for running the dated
target may be accomplished with the default all target.

All these targets support the make flag -j. We strongly encourage passing an appropriate value to
-j. In addition to standard FreeBSD tools, the Makefile requires installation of the archives/pxz
port or package.

17

Chapter 3

Using FreeBSD/BERI

This chapter describes the installation and use of FreeBSD/BERI on the Terasic DE4 FPGA board. We
have structured our modifications to FreeBSD into two development branches:

• FreeBSD/BERI is a version of FreeBSD that can run on the BERI hardware-software research
platform as a general-purpose OS.

• CheriBSD is a version of FreeBSD/BERI that has been enhanced to make use of CHERI’s exper-
imental capability coprocessor features.

At the time of writing, FreeBSD has been modified to support a number of BERI features, such as
peripheral devices present on the Terasic DE4 board. CheriBSD extends FreeBSD/BERI to initialize
and maintain CHERI coprocessor registers; more information on CheriBSD can be found in the CHERI
User’s Guide.

3.1 Getting Started with FreeBSD
To get started with FreeBSD/BERI, you need the following:

• Ubuntu development PC or VM (version 14.04 recommended)

• Pre-built or custom-compiled FreeBSD kernel

• Pre-built or custom-compiled FreeBSD root filesystem image

For FPGA targets you also need:

• Terasic DE4 board with supplied 1GB DRAM

• Altera Quartus tools (version 13.1 recommended)

• 2GB SD card1

• BERI bitfile targeted for the Terasic DE4

1Note: Altera’s University Program SD Card IP Core does not support SD cards larger than 2GB.

18

Synchronized versions of BERI FPGA bitfiles and FreeBSD must be used together: as the prototype
evolves, hardware-software interfaces change, as do board configurations; mismatched combinations
will almost certainly function incorrectly. The installed Quartus toolchain should also match the one
used to generate the bitfile being programmed, in order to avoid documented incompatibility.

The remainder of the chapter describes how to obtain FreeBSD kernels and root file-system images,
boot FreeBSD in simulation, write the FreeBSD root file-system image onto the SD card, program the
Terasic DE4 FPGA with a BERI bitfile, set up the JTAG debugging tunnel so that the berictl tool
can manipulate BERI via its debug unit, connect to the BERI console using nios2-terminal over
JTAG, and optionally re-flash the DE4’s on-board CFI flash with a bitfile and kernel to avoid the need to
program them via JTAG on every boot.

3.1.1 Obtaining FreeBSD/BERI
Pre-generated images of FreeBSD/BERI and CheriBSD may be downloaded from the BERI website:

http://www.beri-cpu.org/

Additionally, FreeBSD/BERI and CheriBSD may be built from source code using the instruc-
tions found in Chapter 2. Finally, pre-compiled snapshots of key files and images may be found in
/usr/groups/ctsrd/cheri in the Cambridge environment. Each file is named based on the date
is was generated, consisting of YYYYMMDDv where v is an optional letter indicating further builds that
occurred on the same day.

Table 3.1 describes file types that may be found on the early adopters page and in the above men-
tioned directory; all bitfiles and kernels are compressed using bzip2 and all filesystem images are
compressed with xz. Filesystem images must be decompressed before they can be used. Files passed to
berictl may be uncompressed; alternatively, the -z flag may be used to decompress them on the fly.

3.1.2 Building berictl
berictl is a front-end to a variety of development and debugging features associated with the BERI
processor, both in simulation and when synthesized to FPGA. berictl will generally communicate
with the BERI debug unit over JTAG or a socket.

For building you will require the libbz2 library (libbz2-dev package in Ubuntu 14.04). To
compile:

cd cherilibs/trunk/tools/debug
make

3.1.3 Writing Out the SD Card Disk Image (FPGA only)
To use FreeBSD/BERI on FPGA with an SD card root filesystem, write out the file system image on an
existing Mac, FreeBSD, Linux, or Windows workstation. The following command is typical for a UNIX
system; ensure that the disk device name here is actually your SD card and not another drive!

$ dd if=arcina-beribsd-sdcard.img of=/dev/disk1 bs=512

On Mac OS X, diskutil list may be used to list possible devices to write to. You may need
to use diskutil unmountDisk (or DiskUtility.app) to first unmount an auto-mounted FAT
filesystem if one existed when the card was inserted. Note that SD cards should not be initialized with
FAT or other filesystems, and such filesystems may need to be unmounted before the first image is
written to an SD card; disk images include a complete UFS filesystem intended to be written directly to
the SD card starting at the first block.

19

http://www.beri-cpu.org/

Filename Description

beribsd-de4-kernel-net-mdroot DE4 kernel with built-in
memory root filesystem with
basic network tools

beribsd-de4-kernel-singleuser-mdroot DE4 kernel with built-in
memory root filesystem that
drops to single user mode
with limited tools

beribsd-de4-kernel-sdroot DE4 kernel using an SD card
as a root filesystem

beribsd-sim-kernel-mdroot Simulation kernel with built-
in memory root filesystem

beribsd-sim-kernel-sdroot Simulation kernel with a
simulated SD card as a root
filesystem

beribsd-flashboot FreeBSD boot2 compiled
for direct execution and self
relocation from flash. Not
yet used

beribsd-jtagboot FreeBSD boot2 compiled
for execution at 0x100000,
may be installed in flash in
place of a kernel

beribsd-sdcard.img SD card root filesystem
image

cheribsd-* Same as similarly named
beribsd-* files

cheri-bitfile.bin Altera bitfile for CHERI
processor in binary format
(suitable for writing to flash)

cheri-bitfile.sof Altera bitfile for CHERI
processor in SOF format (for
use with Altera tools)

cfi0-de4-terasic Vanilla CFI flash cfi0

image for the DE4

Table 3.1: Binary files available for FreeBSD/BERI. -dump files will sometimes also be
present, which contain objdump -dS output for kernels and other binaries. Releases will
have the release name (e.g. ambrunes-) prepended and snapshots a date string.

20

3.1.4 Setting Up the DE4 Development Environment (FPGA only)
Many commands in the chapter depend on Altera Quartus 12 tools. Specifically, the nios2-terminal
must be in the user’s PATH, and the system-console command must be available.

In the Cambridge environment, setup can be accomplished by configuring the CHERI build envi-
ronment:

$ source cheri/trunk/setup.sh

A default user install of the Quartus 13 toolkit will also accomplish setup, so long as the ${HOME}/bin
directory is in the user’s path.

The berictl command controls various aspects of CPU and board behavior. For example, it can
be used to inspect register state, modify control flow, and load data into memory. berictl works with
BERI in both simulation and in FPGA. Build berictl using the following commands:

$ cd cherilibs/trunk/tools/debug
$ make

For users without access to the Subversion repository, statically linked versions of berictl are dis-
tributed along with each BERI release.

3.1.5 JTAG (FPGA only)
Many hardware debugging functions rely on JTAG, which allows a host Linux workstation to program
the FPGA board, read and write DRAM on the board, and also interact with the CHERI debug unit
for the purposes of low-level system software debugging. Use of JTAG requires that a USB cable be
connected from your Linux workstation to the Terasic DE4 board. In the remaining sections, JTAG will
be used to access four different debugging funtions:

• programming the FPGA (via berictl loadsof);

• BERI’s JTAG UART console (via berictl console);

• direct DRAM manipulation (via berictl loadbin or berictl loaddram);

• and to use BERI’s debug unit (most other berictl commands).

3.2 Booting FreeBSD in Simulation
To run BERI in simulation, first download or build yourself a suitable kernel (the filename should contain
’sim’). Make sure the build options match your environment (e.g. use a ’beri’ target if capabilities are
not enabled). Decompress this kernel:

bunzip2 20140616-cheribsd-beri-sim-mdroot-singleuser-kernel.bz2

berictl uses UNIX-domain sockets to communicate with BERI in the Bluespec simulator. These
need to be provided as environment variables to the simulator binary. To simulate:

21

cd cheribsd/trunk/simboot
make
mkdir -p /tmp/beri
make run KERNEL=20140616-cheribsd-beri-sim-mdroot-singleuser-kernel \

CHERI_CONSOLE_SOCKET=/tmp/beri/console-socket \
BERI_DEBUG_SOCKET_0=/tmp/beri/debug-socket-0 \
BERI_DEBUG_SOCKET_1=/tmp/beri/debug-socket-1

This will start the simulator running, but not attach a terminal to its console. You can do this with:

cd cherilibs/trunk/tools/debug
./berictl -s /tmp/beri/console-socket console

You should see some initial boot messages within a few seconds. Booting will take about an hour
on a fast PC.

3.2.1 Using the berictl debugger
berictl also provides debugging facilities for BERI. In simulation mode this uses the first BERI
debug socket, for example:

./berictl -s /tmp/beri/debug-socket-0 pc

will print the current program counter. berictl’s other commands are listed in Table 3.2. This list is
subject to change: the berictl man page gives full details and can be shown by:

./berictl man

3.3 Programming the DE4 FPGA
FPGA designs are encapsulated in a bitfile, which can be programmed dynamically using JTAG, or from
the on-board CFI flash on the DE4 when the board is powered on. The former configuration will be used
most frequently during development of processor or other hardware features; the latter will be used most
frequently when developing software to run on BERI, as it effectively treats the board as a stand-alone
computer whose firmware (and hence CPU!) may occasionally be upgraded. The DE4’s FPGA may be
programmed as follows:

$ cd cherilibs/trunk/tools/debug
$./berictl loadsof -z arcina-cheri-bitfile.sof.bz2

Note well: you must terminate all berictl and nios2-terminal sessions connected to the DE4
before using berictl’s loadsof command. If you do not the board may not be reprogrammed or
instances of system-console may crash.

22

berictl command Description

Hardware/Simulator access and control

boot tell miniboot to proceed to the next kernel/loader
cleanup clean up external processes and files
console connect to BERI PISM UART (via -s) or Altera UART
drain drain the debug socket
loadbin load binary file at address
loaddram load binary file at address
loadsof Program FPGA with SOF format file

Status

pc print program counter
regs list general-purpose register contents
c0regs list CP0 register contents
c2regs list CP2 (capability) register contents (has side effects)

Execution control

breakpoint set breakpoint at address
pause pause execution
reset reset processor
resume resume execution (optionally unpipelined)
step single-step execution
setpc set the program counter to address
setreg register to value
setthread set the thread to debug

Memory access

lbu, lhu, lwu load unsigned byte/half word/word from address
ld load double word from address
sb, sh, sw, sd store byte/half word/word/double word value at address

Tracing

settracefilter set a trace filter from stream_trace_filter.config
streamtrace receive a stream of trace data
printtrace print a binary trace file in human readable form

Device debugging

dumpatse dump all atse(4) MAC control registers
dumpfifo dump status and metadata of a fifo
dumppic dump PIC status

Help

help display help for command
man display the berictl manpage

Table 3.2: Options to berictl

23

3.3.1 Writing an FPGA Bitfile to DE4 Flash from FreeBSD
When powered on, the Terasic DE4 board will attempt to automatically load a bitfile from the on-board
CFI flash. New FPGA bitfiles in binary format may be written to the flash from FreeBSD; they take effect
during the board’s next power-cycle. This write operation can be done using dd (note the skipping of
the first 128k):

dd if=arcina-cheri-de4-bitfile.bin of=/dev/cfid0s.fpga0 iseek=256 \
conv=oseek

Bitfiles in SOF format can be converted to binary format using the sof2flash.sh script found in the
CTSRD Subversion repository at cherilibs/trunk/tools/sof2bin.sh.

To simplify the process and add reliability, a script called /usr/sbin/flashit performs these
actions after verifying the MD5 checksum of the files and optionally decompressing bzip2 compressed
images. Note that if flashit is writing a file foo a corresponding foo.md5 file must exist. In ad-
dition to FPGA images, flashit can be used to write kernel images by replacing the fpga argument
with kernel.

flashit fpga Design.bin

Power to the board must not be lost during reflash, as this may corrupt the bitfile and prevent program-
ming of the board on power-on. Therefore, battery-backed DE4 boards should be programmed only
while fully charged.

3.3.2 Start a Console
Connect to the BERI JTAG UART using:

$ berictl console

The console many be terminated by typing ~. (tilde followed by period) after a newline. If connecting to
the console via ssh or other network terminal programs an appropriate number of ~ characters must be
used as most use the same escape sequence. Note: berictl starts an instance of nios2-terminal
to connect to the console so that instance must be terminated before a kernel image or bitfile can be
loaded.

3.4 Models for Booting a FreeBSD/BERI Kernel
FreeBSD kernels may be booted via two different means: installation on the on-board CFI flash device
on the Terasic DE4, or direct insertion of the kernel into DRAM using berictl via JTAG. The micro-
boot loader embedded in ROM in CHERI on the DE4, miniboot, uses the USER_DIP1 switch to
control whether a kernel is relocated from flash or started directly. Note that DIP switches are numbered
0-7, but the physical package has labels 1-8. The proper labels can be seen in Figure 3.1.

USER_DIP0 controls whether miniboot runs immediately or it spins while waiting for register 13
to be set to 0 before booting the kernel, leaving time for the kernel to be injected into DRAM following
programming of the FPGA. Register 13 would normally be set to 0 using the debug unit.

24

Figure 3.1: Buttons and switches on the DE4

3.4.1 Load a Kernel into DRAM over JTAG
To load the kernel into DDR2 memory, load it at the physical address 0x100000 where miniboot
boot loader expects to find it. miniboot reads the ELF header in order to determine the kernel start
address. You can then use berictl loadbin2 to load the kernel to DDR2 memory starting at address
0x100000 (also see note below about USER_DIP0 and USER_DIP1):

$ cd cherilibs/trunk/tools/debug
$./berictl loadbin -z cheribsd-de4-kernel-sdroot.bz2 0x100000

To boot a kernel thus loaded, you must ensure that both USER_DIP0 and USER_DIP1 are on (toward
the top of the board where the USB blaster is connected). USER_DIP0 will cause the processor to spin
in very early boot, waiting for register 13 to be set to 0. This boot operation can be accomplished through
the debug command:

$./berictl boot

USER_DIP1 will skip the relocation from flash routine that would overwrite your freshly inserted kernel.

3.4.2 Load a Kernel into Flash from FreeBSD
From FreeBSD you can use dd or the flashit script to load a kernel to flash:

dd if=kernel of=/dev/map/kernel conv=osync

The safer option using flashit compresses the kernel with bzip2 or gzip, and requires a .md5
file to exist containing the md5 output for the file:

2Some users may be able to use the faster berictl loaddram command, but it is broken for most
configuration at this time – as it relies on undocumented Altera internals that have changed in recent releases.

25

ls kernel.bz2*
kernel.bz2 kernel.bz2.md5
flashit kernel kernel.bz2

At boot, a kernel written to flash will be relocated to DRAM and executed if USER_DIP1 is set to off.
This relocation will occur at power on if USER_DIP0 is off, or when berictl boot is run if it is on.

3.5 Start Kernel Execution
If USER_DIP0 is set to on, then resume the processor after power on/reset:

$./berictl boot

If the DIP switch is unset, then boot will proceed as soon as the FPGA is programmed, either using
JTAG or from flash. If all has gone well, you should see kernel boot messages in output from the
console. If you are using the BERI_DE4_MDROOT or CHERI_DE4_MDROOT kernel configuration, a
memory root filesystem will be used; single or multi-user mode should be reached, depending on the
image. If you are using the BERI_DE4_SDROOT or CHERI_DE4_SDROOT kernel configuration, the
SD card should be used for the root filesystem, and multi-user mode should be reached. Be warned that
the SD-card IP core provided by Altera is extremely slow (100KB/s), and so multi-user boots can take
several minutes.

3.6 Post-Boot Issues
After boot, FreeBSD/BERI is much like any FreeBSD system with a similar set of components. There
are a few issues to keep in mind

• The MDROOT kernels are space limited and have minimal set of tools available.

• Since the root filesystems of MDROOT kernels are stored in memory, all configuration including
ssh keys will be lost at reboot time.

• The Ethernet controllers have no default source of unique MAC addresses and thus default to a
random address that changes on each boot.

3.6.1 Increasing the Size of an SD Card Root Filesystem

After boot, you can extend the filesystem to the size of the SD card using FreeBSD’s growfs command:

$ growfs -y /dev/altera_sdcard0

Before running this command, make sure your filesystem is backed up or easily replacable.

26

3.6.2 Setting a MAC Address
The Altera Triple-Speed Ethernet (ATSE) devices obtain a unique MAC address from the configuration
area at the beginning of the CFI flash. Unfortunately, all DE4 boards come from the factory with the
same MAC address, so that address has been blacklisted by the driver; instead, a random address is
generated at boot for each interface.

An address can be written to the DE4 using the atsectl command. An address derived from the
factory PPR on the Intel StrataFlash on the DE4 can be written with the command:

$ atsectl -u

The default address has the locally administered bit set and uses the Altera prefix dedicated to this
purpose.

In the Cambridge environment, the decision was made to leave the locally administered bit unset.
This can be accomplished with the command:

$ atsectl -gu

If the board was configured following the DE4 Factory Install Guide v1.0, then an Altera prefixed MAC
without the locally administered bit will have been installed on the DE4.

27

	869.pdf
	Introduction
	Bluespec Extensible RISC Implementation (BERI)
	FreeBSD
	Getting BERI
	Licensing
	Version History
	Document Structure

	Building FreeBSD/BERI
	Obtaining FreeBSD/BERI Source Code
	About FreeBSD/BERI
	Building FreeBSD/BERI
	Configuring the Build Environment
	Cross-Building World
	Cross-Building a Kernel

	Cross-Installing FreeBSD
	Cross-Installing World
	Cross-Installing Kernels
	Preparing a Memory Root Filesystem

	Preparing a FreeBSD SD Card Image
	Automated Builds

	Using FreeBSD/BERI
	Getting Started with FreeBSD
	Obtaining FreeBSD/BERI
	Building berictl
	Writing Out the SD Card Disk Image (FPGA only)
	Setting Up the DE4 Development Environment (FPGA only)
	JTAG (FPGA only)

	Booting FreeBSD in Simulation
	Using the berictl debugger

	Programming the DE4 FPGA
	Writing an FPGA Bitfile to DE4 Flash from FreeBSD
	Start a Console

	Models for Booting a FreeBSD/BERI Kernel
	Load a Kernel into DRAM over JTAG
	Load a Kernel into Flash from FreeBSD

	Start Kernel Execution
	Post-Boot Issues
	Increasing the Size of an SD Card Root Filesystem
	Setting a MAC Address

