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Abstract
The BERI Hardware Reference describes the Bluespec Extensible RISC Implementation (BERI)
protoype developed by SRI International and the University of Cambridge. The reference is
targeted at hardware and software developers working with the BERI1 and BERI2 processor
prototypes in simulation and synthesized to FPGA targets. We describe how to use the BERI1
and BERI2 processors in simulation, the BERI1 debug unit, the BERI unit-test suite, how to
use BERI with Altera FPGAs and Terasic DE4 boards, the 64-bit MIPS and CHERI ISAs im-
plemented by the prototypes, the BERI1 and BERI2 processor implementations themselves,
and the BERI Programmable Interrupt Controller (PIC).
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Chapter 1

Introduction

This document is the BERI Hardware Reference for the Bluespec Extensible RISC Implemen-
tation (BERI) prototype. The document describes the status of the processor prototype and
the processor implementations themselves. It provides a reference for various aspects of the
hardware platform – such as the BERI Programmable Interrupt Controller (PIC) and supported
Altera, Terasic, and Cambridge/SRI IP cores. It complements the BERI Software Reference,
which describes the BERI software development environment, the CHERI Instruction-Set Ar-
chitecture, which describes the CHERI ISA extensions for fine-grained memory protection and
scalable compartmentalization, and the CHERI Programmer’s Guide, which discusses CHERI-
related extensions to the BERI software environment.

1.1 Bluespec Extensible RISC Implementation (BERI)
The Bluespec Extensible RISC Implementation (BERI) is a platform for performing research
into the hardware-software interface that has been developed as part of the CTSRD project at
SRI International and the University of Cambridge. It consists of a CPU supporting the 64-bit
MIPS ISA implemented in Bluespec System Verilog and a complete software stack. Supported
software packages include the open-source FreeBSD operating system and Clang/LLVM com-
piler suite. BERI also supports FreeBSD and a broad range of popular open-source applications
such as the Apache web server and popular scripting languages. Wherever possible, BERI
makes use of BSD- and Apache-licensed software to maximize opportunities for technology
transition.

1.2 BERI and BERI2 Prototypes
The first BERI prototype (BERI1) has been developed from 2010–2015 by Jonathan Woodruff,
Alexandre Joannou, and Alan Mujumdar, based in part on an earlier experimental RISC pro-
cessor created by Gregory Chadwick. We are also developing multi-core support for BERI1.
BERI1 is the primary focus of the current BERI Hardware Reference and CHERI Programmer’s
Guide.

BERI2 is a second version of the prototype developed between 2011–2015 by Nirav Dave
and Robert Norton using a stylized form of Bluespec to better support formal verification.
BERI2 is designed to support multi-threaded as well as multi-core operation.
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Although BERI and BERI2 share significant infrastructure (for example, memory subsys-
tems and simulated peripheral buses), we do not currently envision convergence of the two
implementations. Instead, we expect researchers to select between BERI1 and BERI2 based
on their requirements. BERI1 offers a mature and higher-performance platform for “produc-
tion” research, such as CHERI, and may be the first port of call for researchers focused on
instruction-set and functional extension. BERI2 remains a work in progress as we refine our
implementation techniques to better support formal verification, and consider tradeoffs between
more performant hardware design techniques and those suitable for verification. In the longer
term, we hope that BERI2’s support for formal methods tools will lead to much greater cor-
rectness and reliability. Its support for hardware multithreading may be of particular interest to
researchers interested in scheduling and interthread communication.

1.3 The CHERI Capability Model

The first major research project to be implemented on BERI is Capability Hardware Enhanced
RISC Instructions (CHERI). CHERI is an extension to RISC ISAs to support fine-grained mem-
ory protection and scalable protection-domain transition within conventional MMU-based ad-
dress spaces. Both BERI1 and BERI2 include optionally compiled implementations of the
CHERI ISA. To allow use of the CHERI features within UNIX applications, we have developed
an extended version of FreeBSD/BERI, called CheriBSD, and made changes to the Clang/L-
LVM compiler. These are available under an open-source license, and are described in more
detail in the CHERI Instruction-Set Architecture and the CHERI Programmer’s Guide.

1.4 Getting BERI

We distribute the BERI prototype and software stack as open source via the BERI website:

http://www.beri-cpu.org/

1.5 Using BERI
The BERI prototype is implemented in the Bluespec System Verilog hardware description language
(HDL), which may be compiled into a C-language simulator, or synthesized for an FPGA target. The
former requires access to the proprietary Bluespec toolchain; the latter additionally requires access to
the Altera FPGA toolchain.

Currently, BERI is supported on the Altera-based Terasic DE4 board. There is also some build
infrastructure present for the Altera-based Terasic tPad and SoCKit boards, and early support for BERI
on the Xilinx-based NetFPGA 10G board.

1.6 Licensing
The BERI hardware design, simulated peripherals, and software tools are available under the BERI
Hardware-Software License, a lightly modified version of the Apache Software License that takes into
account hardware requirements.

9
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We have released our extensions to the FreeBSD operating system to support BERI under a BSD
license; initial support for BERI was included in FreeBSD 10.0, but further features will appear in
FreeBSD 10.1. We have also released versions of FreeBSD and Clang/LLVM that support the CHERI
ISA under a BSD license; these are distributed via GitHub.

We welcome contributions to the BERI project; however, we are only able to accept non-trivial
changes when an individual or corporate contribution agreement has been signed. The BERI hardware-
software license and contribution agreement may be found at:

http://www.beri-open-systems.org/

1.7 Version History
Some content in this report was previously made available in the CHERI Platform Reference.

1.0 The first version of the Platform Reference Manual was created from two relocated chapters of the
then existing User’s Guide and new content such as information on the CHERI Programmable
Interrupt Controller (PIC), as well as improvements to the peripheral description (such as addition
of a boot loader area to the DE4 Intel StrataFlash layout, and information on the Cambridge
HDMI controller).

1.1 The second version is an incremental update that reflected changes in the CHERI and CHERI2
hardware platforms. Most importantly, the facilities of the new CHERI Floating Point Unit (FPU)
are described. This version includes documentation of higher interrupt numbers (available due
to the CHERI PIC) for DE4 peripherals. Brief documentation for the Bluespec 6550 UART has
been added. The new 64K L1 and L2 caches are documented. Additional divergences from the
MIPS R4000 ISA are described, such as the larger 40-bit physical address space. CHERI ISA
instruction information is updated. (CSBH, CSWH are no longer defined; CLLD, CSCD are now
implemented; BC2F is no longer defined; CBTS, CBTU are now implemented.)

1.2 The CHERI Platform Reference has been renamed as the BERI Hardware Reference to reflect its
focus on BERI, rather than CHERI. Test-suite attributes and simulator ISA extensions for testing
are now documented; test statuses for various parts of the ISA are updated. BERI2 compilation
options are now documented. Tables of floating-point instructions, conversions, and rounding
modes are now included. Multicore PIC support is now documented. Further ISA extensions for
core/thread identification and the thread-local storage register are documented.

1.3 - UCAM-CL-TR-852 This version of the BERI Hardware Reference was made available as a Uni-
versity of Cambridge Technical Report. This version attempts to reduce the degree to which
instructions and information (e.g., Subversion repository location) are dependent on the SRI/-
Cambridge development environment; build documentation has generally been improved. The
instructions for simulating BERI were expanded to cover setting up a development environment
from scratch including obtaining all the tools. Information was updated to reflect open sourcing
of BERI/CHERI and its software stack. Numerous general updates are made to reflect ongoing
BERI development, including a transition from virtually to physically indexed L1 caches. Instruc-
tion and coprocessor status information is updated: CACHE instruction operations are now listed;
supported CP0 registers are listed; implementation-defined registers are documented. BERI1 and
BERI2 are now better differentiated throughout the document. Support for the Terasic tPad is
deemphasized in favor of the Terasic DE4. Testing documentation has been updated to describe
the test-suite support library, as well as multi-threaded testing support. FPU implementation sta-
tus has been updated. The chapter order was changed to have a more logical flow.
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1.4 - UCAM-CL-TR-868 This version of the BERI Hardware Reference was made available as a Uni-
versity of Cambridge Technical Report. This version of the BERI Hardware Reference is updated
for a variety of changes to the BERI and BERI2 processors since the last revision, and has been
timed to coincide with the second open-source release of the processor implementations. Ref-
erence to the Terasic tPad has now been removed. The PISM configuration file simconfig
has been renamed memoryconfig. HDMI is no longer configured by miniboot. Descrip-
tions of the BERI and BERI2 processor implementations have been updated to reflect changes in
their cache configurations and internal implementations; where there are ISA-visible differences
between the two implementations (e.g., with respect to the TLB), those differences are better
documented. A pointer is now provided to the L3 ISA models for MIPS and CHERI.

1.8 Document Structure
This document is an introduction to and reference manual for the BERI processor prototype in simula-
tion, and synthesized for Altera FPGAs on Terasic boards.

Chapter 2 documents how to check out the BERI source code, build the BERI simulator, and run the
BERI unit test suite. Various build options are discussed, including debug options.

Chapter 3 describes the BERI hardware debug unit, which allows low-level access to processor internals
via a real or simulated UART, for the purposes of debugging.

Chapter 4 documents the BERI unit test suite, including how to run the suite and add new tests.

Chapter 5 describes how to configure and synthesize BERI in the Altera development environment.

Chapter 6 describes how to build and synthesize the BERI prototype for the Terasic DE4 FPGA devel-
opment board.

Chapter 7 describes the instruction-set architecture implemented by the BERI prototypes, including
64-bit MIPS and CHERI instructions. In particular, it documents sections of the MIPS ISA that have
been intentionally omitted (e.g., 32-bit compatibility; mixed-endian support). It also documents the
implementation status of BERI-specific ISA features, as well as aspects of the configuration of reference
BERI systems such as physical memory maps.

Chapter 8 provides a high-level description of the BERI1 implementation.

Chapter 9 provides a high-level description of the BERI2 implementation.

Chapter 10 describes the BERI Programmable Interrupt Controller, an integrated device that supports
interrupts from peripherals as well as interprocessor interrupts (IPIs). The PIC is also responsible for
mapping a larger number of interrupt sources associated with peripherals down to a smaller number of
processor interrupt lines.
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Chapter 2

Simulating BERI

This chapter describes how to check out the BERI source code, build the BERI simulator, and run the
BERI unit test suite. It describes various build targets for the simulator with varying levels of tracing.
This documentation assumes access to the following resources:

• 64-bit Ubuntu Linux 14.04 LTS workstation (32-bit and 64-bit Ubuntu Linux 10.04.2 LTS and
12.04 LTS workstation and server have worked in the past). Other distributions may work with
some changes to this workflow: we suggest running in an Ubuntu virtual machine to begin with.

• Either a public release of BERI, or the private Subversion repository containing the current de-
velopment version.

2.1 Software Dependencies to Build BERI

2.1.1 Installing Bluespec System Verilog compiler

This release is tested with version 2014.05.C of the Bluespec compiler. Access to the Bluespec compiler
requires a license from Bluespec. If you are an academic institution you can sign up to the University
Program at:

http://bluespec.com/university-program.html

Bluespec requires you to configure a FlexLM license server and will supply you with instructions for
installing the software. Specific releases of Bluespec can be downloaded from the Software Releases
section of the Bluespec Forum (you need to be logged in to see the attachments):

http://www.bluespec.com/forum/

2.1.2 Ubuntu Package Dependencies

Table 2.1 documents Ubuntu packages required to build the BERI simulator and test suite. To install an
Ubuntu package such as those listed in the table, using the following command:

sudo apt-get install <package-name>
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Program Ubuntu Package Required to

Subversion subversion Check out
Git git Check out
Build tools build-essential C compiler and libraries
GNU make make Build, run test suite
GNU Bison 2.4.1 bison Build simulator
bzip2 bzip2 Uncompress tarballs
bzip2 headers libbz2-dev Build berictl
Flex 2.5.35 flex Build simulator
Perl perl Build
Python 2.6 python Build, run test suite
SDL 1.2.14 libsdl1.2-dev,

libsdl1.2debian
Build, run simulated tPad frame
buffer

Nose 0.11.1 python-nose Run test suite
SRecord srecord Build
DTC device-tree-

compiler
Build

libpciaccess libpciaccess-dev Build berictl

Table 2.1: Software build dependencies for BERI components. Further packages are installed
by the GCC installation script (see below).

2.1.3 Installing the GCC Compiler
BERI requires a MIPS cross compiler. We use the gcc-4.4-mips-linux-gnu package from
Emdebian. A script to install the compiler on Ubuntu 14.04 may be found in the BERI source dis-
tribution here:

cheri/trunk/install-mips-gcc.sh

Please be aware that these packages come from a non-system repository and this script will add this and
the standard Debian repository to your system configuration. It will attempt to minimise the number of
packages installed from Debian. This step will also install a necessary dependency (the libgmp3c2
package) for Bluespec.

2.1.4 Installing the CHERI MIPS assembler
The CHERI MIPS assembler extends the GNU assembler with additional capability support, and is
available from:

https://github.com/CTSRD-CHERI/binutils

You can build this with:

git clone https://github.com/CTSRD-CHERI/binutils
cd binutils
./configure --target=mips64 --disable-nls --disable-werror
make
sudo make install
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2.1.5 Installing the Altera Quartus II FPGA tools (optional)
To build BERI for Altera FPGAs, you will need to install the Quartus II FPGA tools. This version
of BERI is tested with Quartus II version 13.1 subscription edition, which will need a license from
Altera. It may work with the free Quartus II web edition, but we have not tested this. Quartus II can be
downloaded from:

http://www.altera.com/

If you do not wish to download the full package you need to download the Quartus II Software bundle
(about 1.8GB) and the device support for the Stratix IV (630MB) if targeting the DE4 platform. We
recommend accepting the default installation options.

2.2 Downloading a BERI Release
BERI releases are distributed as a git repository. You can download this from github using:

git clone https://github.com/CTSRD-CHERI/cheri.git

You will then have a source distribution containing high-level directories:

cheri/trunk BERI1
cheri2/trunk BERI2
cheribsd/trunk Boot loaders and scripts
cherilibs/trunk BERI1/BERI2 common code and tools
cheritest/trunk BERI test suite

You will also find a README file and information on copyright and licensing.
You can update to the most recent release from any level of the source distribution by doing:

git pull

2.3 Checking Out the Development Version of BERI
Alternatively, if you have access to the CTSRD Subversion repository, the following instruction will
allow you to check out the BERI source code.

The Cambridge Subversion repository uses SSH authentication keys as capabilities to identify the
repository and rights held by a client. By default, SSH will offer keys held by the agent (or in your home
directory) in the order it finds them, which, if you hold multiple keys to different repositories on the
Subversion server, may cause SSH to select the wrong key. It is therefore necessary to ensure that the
right SSH key is used. One way to do so is to create a new SSH agent, adding only the appropriate key
to that session1. To set up an SSH agent in this manner, use something like the following:

ssh-agent bash
ssh-add ~/.ssh/id_ctsrd_rsa

It is also possible to configure .ssh/config to offer only a specific key to specific servers; see
the SSH man page for details. To perform an initial checkout of BERI, use the following Subversion
command:

1On Mac OS X, new ssh-agent sessions inherit all SSH keys added to the user keychain, so you must run
ssh-add -D to flush them. This step is not required on other platforms.
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svn co svn+ssh://secsvn@svn-ctsrd.cl.cam.ac.uk/ctsrd ctsrd

To update an existing checkout of BERI, use the following Subversion command:

cd ctsrd
svn update

2.4 Configuring the Build Environment
The BERI source code and build tools may be found in the cheri/trunk directory tree (or for BERI2,
cheri2/trunk). Before building BERI, you must configure the Bluespec development environment:

cd cheri/trunk
cp setup-local-example.sh setup-local.sh

Next, edit setup-local.sh to point to your local install of Bluespec (and Quartus, if available).
You will need to set up paths to the installations, and pointers to the licence servers or licence files you
received from Bluespec and/or Altera. If you do not know this information, ask the person responsible
for software licensing at your institution. You should only need to change the first few lines of this file,
see the comments for more information. You can test your install with:

cd cheri/trunk
source setup.sh
bsc -v
quartus_sh -v

Whenever you run a BERI build or run you need to source setup.sh to add these tools to your
path. You must be in the cheri/trunk directory when you source this script. We recommend the use of
bash as your shell (the default interactive shell on most distributions).

2.5 Building the BERI Simulator
The BERI build is sensitive to a number of make variables, depending on which components should be
included or excluded from the pipeline. An example run of the simulator might be initiated using:

make sim COP1=1
./sim

The BERI build is configured by defining a number of make variables. A brief summary is given below;
a fuller list is shown in Table 8.3. If a macro is undefined then the function is turned off (if a macro is
defined but set to zero then the function is still enabled).

MICRO=1 Cause BERI to build without an L2 cache or virtual-address translation.

NOBRANCH=1 Do not predict branches; always wait for the final branch destination before fetching the
next PC.

CAP=1 Include the CHERI capability unit.

COP1=1 Build with the Floating-Point Unit (FPU).
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MULTI=1, MULTI=2 Build memory coherence logic with n cores.

The BERI executable is sensitive to four arguments. The +trace argument will give a concise
report for each instruction committed. The +cTrace argument will report the number of dead cycles
between committed instructions. The +regDump argument will enable the debug instructions which
report the contents of the register files. The +debug argument will report all debug output from the
internal processor state.

The build also compiles an interactive software test tool, found in the sw sub-directory. The simu-
lation can also be used to run the CHERI test suite described in Chapter 4, and to boot OS images (e.g.,
FreeBSD) using the simboot loader found in cheribsd/trunk/simboot. When the simulator is
run, it loads a memory image from the current working directory; running the simulator from the root of
the BERI development tree will automatically load the interactive test tool.

2.6 Configuring the BERI Simulator
At startup, the simulator tries to read the file ./memoryconfig or the file pointed to by the envi-
ronment variable CHERI_MEMORY_CONFIG. This file describes in a C-like syntax how the hardware
should be simulated. A valid configuration must exist or the simulator will not start. A default configu-
ration file is included in the cheri/trunk directory.

Individual simulated hardware peripherals are built as shared libraries. The simulator will attempt to
dlopen() these shared libraries as they are encountered in the configuration file. Any module-specific
options are passed to the module at load-time. If a module fails to load, either because it cannot be found
or because invalid options were given, the simulation will terminate with an assertion failure. Figure 2.1
illustrates a sample memoryconfig file.

First, a series of simulated device modules are loaded using module statements; paths must be spec-
ified. Then, a series of devices is declared using device blocks, which must each declare a class,
which selects the simulated device type; for each device, at least a base address (addr) and length
(length) must be specified. An optional irq can be set, as well as device class-specific parameters
such as socket types, file paths, and so on. Devices can be conditionally defined based on whether envi-
ronmental variables have been set; both positive ifdef and negative ifndef syntaxes are permitted.
Finally, options can be set from environmental variables using the getenv syntax; if a variable is not
set, then an empty string will be used for the value.

2.7 Simulating BERI
When the sim target is used, a simulator binary, sim, is generated. The simulator automatically loads
a physical memory image from mem64.hex which is used to populate initial memory contents for
BRAM. By default, the memory image generated from sw contains a small interactive test suite that
communicates via a simulated serial I/O hooked up to the simulator’s standard input and output streams.

2.8 Running the BERI Test Suite
The cheritest/trunk subtree contains a MIPS ISA unit test suite that exercises various processor
features, including initial register values, memory access, jump instructions, exceptions, and so on.
make test in the cheritest/trunk tree will run the test suite; a detailed discussion of the test
suite appears in Chapter 4.
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module ../../cherilibs/trunk/peripherals/dram.so
module ../../cherilibs/trunk/peripherals/ethercap.so
module ../../cherilibs/trunk/peripherals/uart.so

device "dram0" {
class dram;
addr 0x0;
length 0x40000000;

};
ifdef "CHERI_KERNEL" device "kernel" {

class dram;
addr 0x100000;
length 0xff00000;
option path getenv "CHERI_KERNEL";
option type "mmap";
option cow "yes";

};
ifdef "CHERI_SDCARD" device "sdcard0" {

class sdcard;
addr 0x7f008000;
length 0x400;
option path getenv "CHERI_SDCARD";
option readonly "yes";

};
ifndef "CHERI_CONSOLE_SOCKET" device "uart0" {

class uart;
addr 0x7f000000;
length 0x20;
irq 0;
option type "stdio";

}
ifdef "CHERI_CONSOLE_SOCKET" device "uart0" {

class uart;
addr 0x7f000000;
length 0x20;
irq 0;
option type "socket";
option path getenv "CHERI_CONSOLE_SOCKET";

}

Figure 2.1: Example memoryconfig configuration file
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Chapter 3

Using the BERI1 Debug Unit

The BERI1 prototype includes a simple debug unit that communicates with an external host using a
two-way streaming 8-bit interface. The debug unit can pause and step the pipeline, set breakpoints, and
insert instructions into the pipeline. Instructions inserted by the debug unit may use operands from the
debug unit as well as operands from the register file. The result of an instruction from the debug unit
may be written back to the debug unit as well as the register file. These debug unit elements may be used
to implement a variety of higher-level services, including a proxy from the GDB server protocol, and
an external memory image loader. In general, users of BERI should interact with the debug unit using
berictl rather than interfacing directly with the debug-unit protocol, which is subject to change over time
and between BERI versions.

3.1 Communicating with the BERI Debug Unit
The BERI debug unit communicates with a host computer over a two-way streaming 8-bit interface.
The current system uses an Altera JTAG UART component which is tunnelled over USB to the host PC;
berictl can use the same protocol over a UNIX domain socket to communicate with a simulated debug
unit. Alternatively, the Altera System Console utility may send and receive bytes to and from the debug
unit using USB via an Altera JTAG bridge to BERI memory. All commands and responses are defined
as series of bytes sent or received over this streaming channel.

Commands and responses traveling over the channel are arranged as messages. Every message
begins with two bytes. The first is the message type and the second is the message length. If the
message length is non-zero, the prescribed number of bytes follow the two bytes of the message header.

3.2 BERI Debug Registers
The BERI debug unit has eight registers:

• Debug Instruction

• Operand A

• Operand B

• Breakpoint 0

• Breakpoint 1

• Breakpoint 2
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Instruction Command Length Payload

Load Instruction i 4 Instruction
Load Operand A a 8 64-bit Operand
Load Operand B b 8 64-bit Operand
Execute Instruction e 0
Report Destination d 0
Load Breakpoint 0 0 8 64-bit Address
Load Breakpoint 1 1 8 64-bit Address
Load Breakpoint 2 2 8 64-bit Address
Load Breakpoint 3 3 8 64-bit Address
Pause Execution p 0
Resume Execution r 0
Step Execution s 0
Resume Execution r 0
Move PC to Destination c 0
Resume Unpipelined u 0

Table 3.1: Instruction messages for the debug unit

• Breakpoint 3

• Destination

The first seven registers can be written and the Destination register can be read.

3.3 BERI Debug Instructions
The BERI debug unit supports the instructions listed in Table 3.1. The “Command” is the ASCII char-
acter that should appear in the first byte of the message sent to the debug unit, that is, the message
type. The “Length” is the value of the second byte of the message. The “Payload” is the contents of
the following bytes, equal in number to the value of the “Length” field. All instructions will produce a
response from the debug unit confirming completion of the request. These message types are listed in
Section 3.4.

Notes on Some Instructions:

Load Instruction Load an instruction into the debug unit’s Instruction register in preparation for
inserting it into the processor pipeline.

Load Operand A & B Load values into the Operand A & B registers for possible use as operands
of the instruction in the Instruction register.

Execute Instruction Insert the instruction contained in the Instruction register into the processor
pipeline.
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Message Type Byte Length Payload

Load Instruction Response 0xe9 0
Load Operand A Response 0xe1 0
Load Operand B Response 0xe2 0
Execute Instruction Response 0xe5 0
Execute Exception Response 0xc5 1 MIPS Exception Code
Report Destination Response 0xe4 8 64-bit Value
Load Breakpoint 0 Response 0xb0 0
Load Breakpoint 1 Response 0xb1 0
Load Breakpoint 2 Response 0xb2 0
Load Breakpoint 3 Response 0xb3 0
Pause Execution Response 0xf0 0
Resume Execution Response 0xf2 0
Step Execution Response 0xf3 0
Resume Execution Response 0xf2 0
Move PC to Destination Response 0xe3 0
Resume Unpipelined Response 0xf5 0
Breakpoint Fired 0xff 8 64-bit Address

Table 3.2: Message types from the debug unit

Report Destination Report the 64-bit (8-byte) value in the Destination register. The debug unit will
send a message containing the contents of the Destination register back to the debugger.

Load Breakpoint 0-3 Load an address into one of the Breakpoint registers and arm that breakpoint.
When the next program counter is equal to one of the Breakpoint registers, the processor will automat-
ically pause; when the breakpoint is fired, its value will be sent in a message to the debugger. Loading
the address 0xffffffffffffffff will disable a breakpoint.

Step Execution Step one instruction if the processor is paused. If the next instruction is a branch,
the branch delay slot and the branch target will also be executed.

Accessing Debug Registers from Debug Instructions When instructions originate from the
debug unit, references to R0 are interpreted as references to registers in the debug unit. An instruction
from the debug unit which takes two operands from R0 and writes back to R0 will take Operand A and
Operand B and will write back to the Destination register in the debug unit. In general, if “rs” refers to
R0, that operand will come from Operand A in the debug unit and if “rt” refers to R0, that operand will
come from Operand B in the debug unit.

3.4 BERI Debug Responses
Table 3.2 lists message types that the debug unit may generate. All of them are direct responses to
instructions except for the “Breakpoint Fired” command which might be delivered at any time.

Notes for Some Responses:
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Execute Instruction and Exception Responses When an “Execute Instruction” command is re-
ceived, the debug unit will return an “Execute Instruction Response” message if execution of the instruc-
tion did not throw an exception. If the instruction generated an exception, the debug unit will return an
“Execute Exception Response” message with a payload of one byte which will contain the 5-bit MIPS
exception code generated by the instruction.

Breakpoint Fired The “Breakpoint Fired” message is sent when an instruction commits a next PC
in write-back which is equal to one of the four breakpoint registers. The “Breakpoint Fired” message
has a payload containing the 8-byte address value of the breakpoint that fired.

3.5 Multicore debugging
In multicore BERI1, there is one debug unit for each core.

In the Bluesim simulation, the environment variables BERI_DEBUG_SOCKET_0 and BERI_DEBUG_SOCKET_1
set the filenames of Unix domain sockets used for communicating with core0 and core1’s debug units.
BERI_DEBUG_SOCKET_1 has no default, so a socket will not be created for core1 debug unless it is
set.

In the FPGA, there is a separate JTAG UART for each core’s debug unit. Typically, UART instance
1 will connect to core0’s debug unit and UART instance 4 will connect to core1’s debug unit; these
instance numbers are chosen by the FPGA toolchain when a bitfile is created, so users should not rely
on their values staying the same.

The “pause” debug command pauses all cores; most other debug commands affect the core attached
to the debug unit they have been sent to.

The trace information returned by the debug unit includes the value of an internal counter. The same
internal counter is used across all cores, so its value can be used to approximately synchronize traces
from different cores of the same CPU. Multicore BERI1 does not guarantee sequential consistency,
so a multicore trace sorted in order of the internal counter may show loads or stores out of order. In
particular, when one core does a write, the message to invalidate the other cores’ L1 caches takes a
while to propagate, so there is a possibility of loads reading stale data.
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Chapter 4

The BERI Unit Test Suite

The BERI prototype includes a simple unit test suite implemented using the Python Nose framework.
The test suite exercizes key BERI functionality in a controlled and easily diagnosable environment, an
instrumented BERI simulator, with a goal of testing both basic MIPS ISA functionality and CHERI
security extensions. This chapter explains the structure and components of the test suite, how to run the
test suite, and how to add new tests. It also describes some of the tools available for diagnosing test
results.

4.1 The BERI Unit Test Environment
The BERI unit test suite is implemented using a combination of the BERI Bluespec simulator (with
extensions for debugging), make, the MIPS toolchain, the Python Nose test framework, and a moderate
collection of test programs and Nose classes to evaluate test output. The unit test suite can also be run
against the gxemul MIPS simulator, which has proven useful for checking our interpretation of the
MIPS ISA against a more common interpretation. In the future, we hope also to run the test suite against
BERI synthesized in an FPGA, likely with the help of JTAG.

4.2 Software Dependencies
To run the BERI unit test suite, you will need to have the following software installed. Installation of
this toolchain is described in more detail in the CHERI Programmer’s Guide.

• Python

• The MIPS GCC cross-linker, installed as mips-linux-gnu-ld.

• The CTSRD-modified version of the GNU binutils, available from:

https://github.com/CTSRD-CHERI/binutils

The assembler should be installed as mips64-as, objcopy as mips64-objcopy and so on.

If you want to run the tests that are written in the C language with capability extensions, you will
also need the CTSRD-modified version of the Clang compiler, available from:

https://github.com/CTSRD-CHERI/llvm

If you want to run the tests against GXEMUL, you will also need the CTSRD-modified version of
GXEMUL, available from:
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Directory Description

cheritest/trunk/ Root of the BERI test suite tree, home of the
makefile, linker scripts, and test library code

gxemul_log/ Destination for gxemul test run output
log/ Destination for BERI simulator test run output
obj/ Destination for test object files, memory

images, and assembly dumps
tests/ Various subdirectories holding source code

for individual tests, and their matching Python
Nose classes

tools/ Utility functions to perform common func-
tions such as interpreting BERI simulator and
gxemul output

fuzzing/ Scripts for fuzz testing the TLB

Table 4.1: Directories in the BERI unit test suite

https://github.com/CTSRD-CHERI/gxemul

The modified GXEMUL does not include support for the capability instructions, but it does include
modifications to integrate it with our test framework, and improved emulation of floating point instruc-
tions.

If you want to run the tests against the formal model of MIPS ISA developed by the REMS (“Rig-
orous Engineering for Mainstream Systems”) project, you will also need their MIPS ISA formal model,
available from:

https://github.com/acjf3/l3mips

If you want to run the tests against a Bluespec-level simulation of BERI, you will also need the Blue-
spec tools, and a compatible version of GCC. (Bluespec is compiled into C++ which is then compiled
by g++).

4.2.1 BERI Test-Suite Directory Layout

Table 4.1 describes the directories in the BERI unit test suite.

4.2.2 BERI ISA Extensions for Testing

The BERI test suite employs debugging extensions to the 64-bit MIPS ISA to examine the state of a
simulated BERI system after each test. It dumps the general-purpose register file, the CP0 registers and
the capability coprocessor registers, and allows tests to terminate the simulation in a controlled manner.
Current extensions are exposed via CP0 register operations, as shown in Table 4.2. In the future they will
likely move to capability coprocessor extensions to reduce the possibility of collision with the existing
MIPS ISA. In the future, we anticipate the addition of further extensions in support of testing to dump
the simulation memory image.
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Instruction Description

mtc0 register, $26 Dump arithmetic registers to trace
mtc0 register, $26, 1 Dump ICache tags to trace
mtc2 register, $0, 6 Dump capability registers to trace
mtc0 register, $23 Stop the simulation

Table 4.2: BERI ISA extensions for testing

4.2.3 Unit Test Support Library
Most BERI unit tests are linked against a thin loader, init.s, which is responsible for setting up
various aspects of CPU and memory configuration. They serve to:

• Set up a stack at the top of memory.

• Install default before- and after-boot exception vectors and handlers, which will dump the register
file and terminate if triggered.

• Explicitly clear all general-purpose registers except stack-related registers that may have been
modified during startup.

• Invoke a user-provided test function using JAL; currently all test functions are implemented in
assembly, but the calling convention should support C as well.

• On return from test, dump the register file and terminate.

In addition, a small library of support routines (including functions for copying memory and in-
stalling exception handlers) that are common to more complex tests may be found in lib.s. We
anticipate that this library will grow in size as the test suite is made more comprehensive.

A few low-level tests, referred to as raw tests, execute directly rather than via init.s, and are not
linked against lib.s. Raw tests perform low-level verification of CPU functionality required to reliably
run init.s, such as initial register file values on CPU reset, arithmetic instructions, the reliability of
branch and jump instructions, and basic memory operations. Whenever possible, writing raw tests
should be avoided, because they necessarily replicate functionality (such as register dumping), and lack
access to a pre-configured stack.

Note that all tests will be run twice by the suite – once from uncached instruction memory, and
once from cached instruction memory. Timing and pipeline effects differ significantly between the two
cases. One impact of this difference is that all tests must be relocatable and able to run in multiple MIPS
xkphys segments.

4.3 Running the BERI Test Suite
Typically, the test suite will be run as follows:

$ cd cheritest/trunk
$ make test

The CHERIROOT variable may be used to tell the test suite where to find BERI tools for processing
memory images and the BERI simulator; the BERI simulator must first have been built using make
sim or similar. The test suite may be run against gxemul as follows:

24



TRACE Include per-instruction tracing in log files
CHERI_MICRO Don’t run TLB tests
NOFUZZ Don’t run TLB fuzz tests
COP1 Run floating point tests
TEST_CP2 Run capability unit test
CLANG The Clang compiler supports capabilities
MULTI Run multi-core tests
MT Run multi-threaded tests
CHERI_VER Version of BERI to test (default 1)

Table 4.3: Environment variables for the test suite

$ cd cheritest/trunk
$ make gxemul-build
$ make gxemul-nosetest
$ make gxemul-nosetest_cached

The test suite can be configured to run only a subset of the tests, by setting the environment variables
shown in Table 4.3. TEST_CP2 and CLANG default to 0, so the capability tests will not be run unless
they are set to 1. Some tests check the behavior of FPU instructions in a CPU without an FPU; they
should raise a reserved instruction exception. These these tests will fail if TEST_FPU is not set and the
CPU under test has been configured with a FPU.

By default, the test will run against the BERI1 simulator in ../../cheri/trunk. If CHERI_VER
is set to 2, tests will be run against BERI2 instead.

4.3.1 Jenkins
If you are developing in the Cambridge development environment, the BERI unit test suite is run auto-
matically by the Jenkins build framework. Jenkins can be monitored by visiting the following URL:

https://ctsrd-build.cl.cam.ac.uk

4.4 Unit Test Structure
Each unit test consists of a short assembly program that exercizes specific features in the BERI CPU,
and a Nose class that contains a set of assertions about termination state for the test. Modifications to
the test suite typically take the form of modifying an existing test to check new assertions, or adding an
entirely new test via a new test program and set of corresponding assertions.

4.4.1 Test Types
Tests are split into two categories: raw tests that have few low-level dependencies and are intended to
exercise basic CPU features such as the register file, and higher-level tests that are able to depend on
common CPU initialization code and a support library. Raw tests are necessarily run before higher-level
tests, which typically depend on features checked in raw tests. Raw test files are prefixed with raw_,
and higher-level test file names are prefixed with test_; the build framework uses these prefixes to
identify assembly and linking requirements, so they must be used.
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Unless there is a specific reason to do so, new tests should be added as higher-level tests, relying
on the init.s framework to set up the stack, dump register state on completion, and terminate the
simulator, rather than hand-crafting this code. This provides access to routines such as memcpy that are
frequently useful when implementing tests.

4.4.2 Test Structure

All tests are compiled using 64-bit MIPS instructions, and attempt to follow a standard application binary
interface (ABI) to allow easy reuse of compiled MIPS code reused in the test environment. Currently,
no C code is linked into the test suite; however, it is easy to imagine doing so in the future – in which
case ABI conformance would be critical.

High-level tests implement a single, global function test. When test terminates, the calling
code in init.s will dump register state and terminate the simulator; these registers then become
available to the Nose test framework for checking. Other than changes to the program counter, $PC,
the test framework avoids any changes to register values after the test returns. Tests may rely on the
availability of a roughly 1K stack. Tests execute in both the cached but unmapped region of memory
around 0x9800000040000000, with a stack growing down from 0x9800000080008000, and
the uncached and unmapped region around 0x9000000040000000, with a stack growing down from
0x9000000080000000, but may make use of any required processor features such as cached and
mapped memory regions, CP0 MMU operations, etc.

4.4.3 Test Termination

Normally, high-level tests will terminate by returning from the test function, triggering a register
dump and simulator termination. However, the test framework is executed with a 100000-cycle limit
on simulation time in order to ensure termination, catching (for example) infinite loops in software, or
exception cycles. As tests become more complicated, this limit may need to be changed; currently, its
presence ensures that tests will eventually always terminate, even if software enters an infinite loop.

4.4.4 Connecting New Tests to the Build

Nose test files must begin with the prefix test_, which will normally occur for high-level tests; Nose
test files for raw tests will therefore be prefixed with test_raw_. New unit tests are hooked up
to the build system by adding their source files to the TEST_FILES variable in the makefile. This
is normally done by adding the test filename to one of the make variables for a test subset such as
TEST_ALU_FILES. For the time being, all test source and Nose files must be placed under the tests
directory in an appropriate sub-directory which should be included in the TESTDIRS variable.

4.4.5 Test Attributes

Each of the Python test scripts is tagged with Python attributes that indicate which versions of BERI
(or generic MIPS) the test is expected to run on. The default (no attributes) is that the test is expected
to work on any processor that complies with the MIPS R4000 ISA specification. Dependencies on
additional features are indicated by using the attributes shown in Tables 4.4, 4.5, 4.6 and 4.7.
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Attribute Description

beri Test depends on BERI implementation details
beriinitial Initial values of registers same as BERI
cached Test must be run from cached memory
capabilities CHERI capability unit
cap256 Capability size is 256 bits
comparereg CP0 Compare register
config2 CP0 Config2 register
config3 CP0 Config3 register
einstr EInstr register (see section 7.3.1)
counterdev Counter device
ignorebadex 32-bit arithmetic ignores the top 32 bits
llsc Load-linked and store conditional instructions
llscnotmatching SC will fail if address doesn’t match LL
llscnoalias SC will not fail due to cache line aliasing
llscspan SC succeeds even if there is a load after LL

SC fails if there is a store after LL
lladdr CP0 LLAddr register
pic Programmable Interrupt Controller
rdhwr RDHWR instruction
swi Software interrupts
deterministic_random CP0.Random is like BERI1
multicore Multi-core CPU
mt Multi-threaded CPU
mtc0signex MTC0 sign-extends the value moved
nofloat Test will only work if FPU is absent
sequential_consistency Multicore is sequentially consistent
trapi TRAPI instruction
userlocal User local register
watch Watch points
nowatch Test will only work if watch points absent

Table 4.4: Test attributes

Attribute Description

cache CPU has cached memory
beri1cache Cache is the same size as BERI1
beri2cache Cache is the same size as BERI2
dumpicache Write to CP0 reg 26, sel 1 dumps the ICache
invalidateL2 CACHE instruction supports Invalidate L2
loadcachetag CACHE instruction supports Load Indexed Tag

Table 4.5: Test attributes for the cache
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Attribute Description

tlb CPU has a Translation Lookaside Buffer
extendedtlb TLB supports the BERI1 extended mode
largepage TLB supports pages larger than 4K
cheri1tlb TLB size is like CHERI1
cheri2tlb TLB size is like CHERI2
gxemultlb TLB size is like GXEMUL

Table 4.6: Test attributes for the TLB

Attribute Description

float Floating point unit
float32 Floating point unit that supports 32-bit mode
float64 Floating point unit that supports 64-bit mode
floatcmove Floating point conditional move instructions
floatexception Floating point unit can raise exceptions
floatflags FPU supports IEEE condition flags
floatfcsr
floatfexr
floatfenr
floatindexed
floatpaired Floating point unit that supports paired single
floatrecip RECIP.D and RECIP.D instructions
floatrsqrt RSQRT.S and RSQRT.D instructions

Table 4.7: Test attributes for floating point
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4.5 Unit Test Support Library
All tests (apart from the “raw” tests) are linked against the subroutine library lib.s. The subroutines
defined in lib.s are as follows:

Copying Memory

void *memcpy(void *dest, const void *src, int n);

memcpy() behaves as defined in ANSI C. It copies n bytes from src to dest, and returns the value
of dest.

Exceptions

void bev_clear(void);

bev_clear() clears the BEV bit in the CP0 status register, so that subsequent exceptions will use
the bev0, rather than bev1, transfer vectors.

void install_bev0_stubs(void);

For each type of exception, install_bev0_stubs() copies a stub subroutine its bev0 handler
address. The stub subroutine just loads a pointer to an exception handler from a memory address,
and jumps to it. The stub subroutine may not work correctly if CHERI extensions are being used and
PCC.base is non-zero; tests that use capabilities may need to provide their own stub.

void install_bev1_stubs(void);

install_bev1_stubs() does the same thing as install_bev0_stubs(), except it copies
the stub subroutine to the bev1 exception handler addresses.

void set_bev0_tlb_handler_(void *handler);
void set_bev1_tlb_handler_(void *handler);
void set_bev0_xtlb_handler_(void *handler);
void set_bev1_xtlb_handler_(void *handler);
void set_bev0_cache_handler_(void *handler);
void set_bev1_cache_handler_(void *handler);
void set_bev0_common_handler_(void *handler);
void set_bev1_common_handler_(void *handler);

These functions set the address of the exception handler that the stub subroutines will jump to. This
handler needs to be written in assembler, not C, as registers are not initialized to follow the C ABI before
it is invoked – rather, registers except for $k0 will have whatever value they contained at the time the
exception was triggered; $k0 is used as workspace by the stub subroutine.

void bev0_handler_install(void *handler);

Calls bev0_install_stubs() and set_bev0_common_handler().

void bev1_handler_install(void *handler);

Calls bev1_install_stubs() and set_bev1_common_handler().
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Assertions

#include "assert.h"
void __assert_line(int line);
void assert(int cond);

__assert_line() terminates the simulation, storing line in register $v0. Tests written in the
C language should return 0 on successful completion of the test; thus, the test framework can tell whether
the test failed by examining the final value of $v0.

assert() is a C macro that will call assert_fail() with the current line number if cond is
zero. In a C language test, it can be used to report a failure if part of the test has failed.

Multithreading

int get_thread_id(void);

Returns the ID of the hardware thread on which it is running.

int get_max_thread_id(void);

Returns the maximum hardware thread ID (one less than the maximum number of threads).

int get_core_id(void);

Returns the ID of the core on which it is running.

int get_max_core_id(void);

Returns the maximum core ID (one less than the number of cores).

void thread_barrier(char *barrier);

thread_barrier is used to synchronize all the hardware threads of the CPU. The parameter is a
character array with one element for each thread; in assembly language, this array can be allocated with
the mkBarrier macro. If a thread calls thread_barrier, it will block until all other threads have
also called thread_barrier with the same parameter.

void other_threads_go(void);

other_threads_go is equivalent to thread_barrier(reset_barrier). The parameter
is a static variable declared in init.s). Run at the beginning of all non-raw tests, init.s will cause
all threads apart from thread zero to block on reset_barrier. A single-threaded test can leave the
other threads blocked for the duration of the test. In a multi-threaded test, thread 0 (the only thread
running at the start) can start all the other threads running by calling other_threads_go, releasing
them from the barrier. The other threads should not call other_threads_go, as that would cause
them to be blocked on reset_barrier subsequently.
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4.6 Example Unit Test: Register Zero
To explore the above design, we will consider the test_reg_zero unit test, which checks that the
MIPS general-purpose register R0, also known as $zero, has the required special property that it always
return the value 0. The correct functioning of $zero is not required for any raw tests, nor init.s, so
the test is placed in the high-level test suite. The test performs a number of activities:

• Sets up a stack for the function test by manipulating $sp and $fp.

• Pushes the return address, $ra, and saved frame pointer, $fp, onto the stack.

• Copies a value from $zero into $t0 for inspection.

• Assigns a value to $zero from an immediate, and then copies out to $t1 to confirm that the value
does not get saved.

• Assigns a value to $zero from a register, and then copies out to $t2 to confirm that the value does
not get saved.

• Restores $fp and $ra from the stack and returns.

4.6.1 Register Zero Test Code
Example assembly source code is illustrated in Figure 4.6.1.

4.6.2 Register Zero Nose Assertions
Figure 4.6.2 illustrates the Nose assertion set for this test, confirming a number of desired properties that
should hold after the test code runs:

• that $zero held zero on exit,

• that $t0 held zero on exit, meaning that a simple move from $zero held zero on start,

• and that registers $t1 and $t2 held zero values, meaning that various writes to $zero did not
change the value returned when reading the register.

4.7 Conclusion
This chapter introduces the BERI unit test suite. It explores both the structure of the suite and the
implementation of individual tests. The test suite is intended to supplement formal methods by testing
the programmer-level view of ISA correctness. While it cannot be authoritative regarding the correctness
of BERI, it is extremely valuable in development, because it exercises critical instruction combinations
and providing clear diagnostics. We hope to introduce a new unit test for each bug encountered in BERI,
and expand the test suite to provide detailed coverage of new ISA features.
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.set mips64

.set noreorder

.set nobopt

.set noat

#
# This test checks that register zero behaves the way it should: each of
# $t0, $t1, and $t2 should be zero as at the end, as well as $zero.
#

.global test
test: .ent test
daddu $sp, $sp, -32
sd $ra, 24($sp)
sd $fp, 16($sp)
daddu $fp, $sp, 32

# Pull an initial value out
move $t0, $zero

# Try storing a value into it from an immediate
li $zero, 1
move $t1, $zero

# Try storing a value into it from a temporary register
li $t3, 1
move $zero, $t3
move $t2, $zero

ld $fp, 16($sp)
ld $ra, 24($sp)
daddu $sp, $sp, 32
jr $ra
nop # branch-delay slot
.end test

Figure 4.1: Example regression test checking properties of $zero
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from beritest_tools import BaseBERITestCase

class test_reg_zero(BaseBERITestCase):
def test_zero(self):

’’’Test that register zero is zero’’’
self.assertRegisterEqual(self.MIPS.zero, 0,
"Register zero has non-zero value on termination")

def test_t0(self):
’’’Test that move from zero is zero’’’
self.assertRegisterEqual(self.MIPS.t0, 0,
"Move from register zero non-zero")

def test_t1(self):
’’’Test that immediate store of non-zero to zero returns zero’’’
self.assertRegisterEqual(self.MIPS.t1, 0,
"Immediate store to register zero succeeded")

def test_t2(self):
’’’Test that register store of nonzero to zero returns zero’’’
self.assertRegisterEqual(self.MIPS.t2, 0,
"Register move to register zero succeeded")

Figure 4.2: Example Nose assertion file for the $zero test
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Chapter 5

BERI on Altera FPGAs

This chapter describes how to build BERI for synthesis using Bluespec, configure the Altera build envi-
ronment, and synthesize BERI for the Terasic DE4 FPGA development board described in later chapters.
This information is relevant to researchers working with the BERI hardware design. Software consumers
of BERI can find information on using specific Terasic boards in Chapter 6, and will not need to follow
the directions in this chapter.

5.1 Building BERI for Synthesis
BERI source code may be compiled to Verilog with the verilog target, with the same build options
as simulation. For instance, to build with floating point unit:

$ make verilog COP1=1
$ ./sim

The BERI Verilog build is also sensitive to five make variables described in Section 2.5. The result
of building BERI for synthesis is a set of Verilog files in the appropriate directory in ip/, with the file
mkTopAxi.v containing the top-level module. These files may be copied into one of the directories in
the boards/ directory to be synthesized for a particular board.

5.2 The Altera Development Environment
Terasic’s FPGA evaluation boards include Altera FPGAs; the following sections depend on the correct
installation of Altera’s FPGA development toolchain in order to synthesize and program the on-board
FPGAs. These instructions are written for Quartus II version 13.1 subscription edition, but we have also
used 14.1 successfully.

Some of Altera’s tools – especially the GUIs, but also some command-line tools – require X11; in
these cases, if using a central build server, ensure that the -X argument is passed to the ssh command:

$ ssh -X user@server.example.com

You can also install Xvfb if you need to run without an X connection:

$ Xvfb :99
$ export DISPLAY=localhost:99
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Directory Board

cheri/trunk/boards/terasic_de4 Terasic DE4

Table 5.1: Terasic per-board directories

To configure your shell to use Bluespec, Altera, and other development toolchain elements for BERI
(such as compilers and linkers), use the following script from the BERI distribution or CTSRD Subver-
sion repository (described in previous chapters):

$ cd cheri/trunk
$ source setup.sh

Also ensure that you have added any relevant license files needed to build the project. For example, if
you are using an Terasic touchscreen, you may need to add the license file for the i2c_touch Verilog
module to the license file string for Quartus. The default distribution does not require any additional
licence files beyond those supplied by Altera.

Finally, if you are using Ubuntu, you may need to insert a new rules file into /etc/udev/rules.d/
to allow otherwise unprivileged users to access the USB-Blaster JTAG interface. You might add a new
file named 51-usbblaster.rules with the following contents:

# Set permissions for Altera USB Blaster
SUBSYSTEM=="usb", ATTR{idVendor}=="09fb", ATTR{idProduct}=="6001", \
MODE="0666", OWNER="root", GROUP="dialout"
# Set permissions for Fast Altera USB2 Blaster
SUBSYSTEM=="usb", ATTR{idVendor}=="09fb", ATTR{idProduct}=="6810", \
MODE="0666", OWNER="root", GROUP="dialout"

5.3 Synthesizing BERI
The CTSRD project provides reference configurations for BERI on the Terasic DE4 board; per-board
directories are listed in Table 5.1. Each board directory contains its own Quartus project, Makefile,
etc. Table 5.2 shows the available make targets.

Targets build_cheri and build_peripherals cause other Makefiles to be used to build
various Verilog components that are found by Quartus via the paths in peripherals.ipx and
processors.ipx. build_miniboot compiles the miniboot loader C code and produces a ROM
image initial.hex. which is copied into the board directory.

A make cleanall;make all will take around 40 minutes to an hour and a half to complete on
a fast PC. The generated .sof file can be downloaded to an FPGA using the Quartus GUI or berictl
– see the BERI Software Reference for more details.
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Target Description

all builds everything using the following steps (except
download)

build_cheri builds the BERI processor
build_peripherals builds the peripherals
build_miniboot builds miniboot ROM and copy initial.hex here
build_qsys builds Qsys project containing BERI, etc.
build_fpga synthesize, map, fit, analyze timing, and generate

FPGA image
report_critical scans build_fpga reports for critical warnings
report_error scans build_fpga reports for errors
download attempts to download the FPGA (.sof) image to the

FPGA but the chain file (.cdf) may need to be updated
for your configuration (e.g. USB port number)

clean removes Quartus and Qsys build files
cleanall clean + clean peripherals, BERI and miniboot

Table 5.2: Make targets for per-board directories
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Chapter 6

BERI on Terasic Boards

This chapter describes how to use the BERI processor prototype on the Terasic DE4 development board.
The chapter includes tutorial material on programming the board and on how board peripherals are ex-
posed to BERI in the reference designs provided by the CTSRD project. This chapter is intended to
support software development on BERI. See Chapter 5 for documentation pertinent to hardware devel-
opment.

6.1 BERI Configuration on Terasic FPGA Boards
Communication with external I/O devices, such as NICs, is accomplished via a blend of memory-
mapped I/O, interrupts, and (eventually) DMA. The BERI processor and operating system stack sup-
ports a variety of peripherals ranging from Altera “soft” cores, such as the JTAG UART and SD Card IP
cores, to “hard” peripherals provided by Terasic on its DE4 development board. The following sections
document available peripherals and their configuration on the Avalon system-on-chip bus as configured
in the BERI reference designs.

6.1.1 Physical Address Space on the DE4
Table 6.1 shows the physical addresses reserved for I/O devices in the BERI reference DE4 configura-
tion.

6.2 Altera IP Cores
BERI and FreeBSD support a number of Altera “soft” IP cores on the Terasic tPad and DE4 platforms.
Many of these IP cores are documented in the Embedded Peripherals IP User Guide1 provided by Altera,
including the JTAG UART core and Avalon-MM and Avalon-ST bus attachments.

Certain Altera IP cores are described in other documents, including the Altera Triple-Speed MAC
described in the Triple-Speed Ethernet MegaCore Function User Guide2, and SD Card IP core described
in the Altera University Program Secure Data Card IP Core3 documents from Altera.

1http://www.altera.com/literature/ug/ug_embedded_ip.pdf
2http://www.altera.com/literature/ug/ug_ethernet.pdf
3ftp://ftp.altera.com/up/pub/Altera_Material/11.0/University_Program_IP_

Cores/Memory/SD_Card_Interface_for_SoPC_Builder.pdf
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Base address Length IRQ Description

0x70000000 128 MB - Cambridge Multitouch LCD + 256 Mb Intel StrataFlash
0x7f000000 64 0 Altera JTAG UART
0x7f001000 64 7 Altera JTAG UART for debugging output
0x7f002000 64 8 Altera JTAG UART for data
0x7f004000 4 - Old location of count register until 2013-03-01
0x7f005000 1024 - Altera Triple-Speed Ethernet MegaCore MAC control

Port 1
0x7f005400 8 - ... MAC transmit FIFO
0x7f005420 32 11 ... MAC transmit FIFO control1

0x7f005500 8 - ... MAC receive FIFO
0x7f005520 32 12 ... MAC receive FIFO control2

0x7f006000 1 - DE4 LEDs, one bit per LED
0x7f007000 1024 - Altera Triple-Speed Ethernet MegaCore MAC control

Port 0
0x7f007400 8 - ... MAC transmit FIFO
0x7f007420 32 2 ... MAC transmit FIFO control1

0x7f007500 8 - ... MAC receive FIFO
0x7f007520 32 1 ... MAC receive FIFO control2

0x7f008000 1024 - Altera University Program Secure Data Card IP Core
0x7f009000 2 - Switches and Buttons one bit each (DIP[0:7], SW[0:3],

BUTTON[0:3])
0x7f00A000 20 - Hardware Version ROM 3

0x7f00B000 8 9 OpenCores i2c Controller for the HDMI chip
0x7f00B080 1 - 1-bit PIO to reset the HDMI chip
0x7f00C000 8 - Temperature and Fan Control 4

0x7f100000 - Philips ISP1761 USB 2.0 Chip 5

0x7f100000 256 KB 5 ... Host Controller
0x7f140000 4 4 ... Peripheral Controller
0x7f800000 8 MB - Bluespec Peripheral Address Space
0x7f800000 8 - ... Count Register (from 2013-03-01)

0x7f804000 16 KB - ... BERI PIC_CONFIG_BASE

0x7f804000 16 KB - ... BERI PIC_CONFIG_BASE_0, In a dual core system
- Core 0 PIC

0x7f808000 16 KB - ... BERI PIC_CONFIG_BASE_1, In a dual core system
- Core 1 PIC

1 See “Avalon-MM Write Slave to Avalon-ST Source”
2 See “Avalon-ST Sink to Avalon-MM Read Slave”
3 See Table 6.2
4 See Section 6.5
5 See Philips ISP1761 Hi-Speed Universal Serial Bus On-The-Go controller datasheet

Table 6.1: Bus configuration for BERI’s reference DE4 configuration
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Base Length Item Format

0x0 4 Bytes Build Date Binary coded decimal formated as
mmddyyyy

0x4 4 Bytes Build Time Binary coded decimal formated as
00hhmmss

0x8 4 Bytes Svn Version Binary coded decimal
0xc 8 Bytes Host Name ASCII, truncated to 8 characters

Table 6.2: Contents of the BERI Hardware Build Version Number ROM

6.3 Cambridge IP Cores
Cambridge provides two “soft” peripheral devices: the count device, which simply provides a memory-
mapped register that is incremented on every read (intended for cache testing), and a memory-mapped
interface to the Terasic MTL multitouch LCD panel. This latter IP core includes both memory-mapped
support for a pixel frame and a VGA-like text frame buffer suitable for use as a system console. It also
provides access to multitouch input.

6.3.1 The DE4 Multitouch LCD
Hardware Overview

A Terasic MTL-LCD is connected to the DE4 via the supplied ribbon cable. This connection provides a
parallel interface running at 33 MHz to drive the LCD and an I2C interface to obtain touch information.
Terasic provides an encrypted block (i2c_touch_config.v) to talk I2C to the touch panel and
exports parameters as a simple parallel interface.

We have built three key hardware components to interface to the MTL-LCD:

MTL_LCD_Driver – This peripheral takes an AvalonStream of pixel values and maps them to the MTL
(multi-touch) LCD color screen, which has an 800x480 resolution. Pixels are 24-bits (8-bit red,
green, blue). The main clock must run at the pixel clock rate of 33 MHz. The clock to the MTL-
LCD (mtl_dclk) must be fed to the LCD outside of this module. A dual-clock FIFO is needed
in the AvalonStream between this module and the MTL_Framebuffer_Flash.

MTL_LCD_HDMI – This peripheral is an alternative to MTL_LCD_Driver which runs the multitouch
LCD out of spec (but still working just fine) in order to mirror to HDMI (and via HDMI to
VGA) at 720x480 pixels with the correct timing specification. H-sync and V-sync timings are
changed and the pixel clock is reduced to 27MHz. This reduced pixel clock rate has the ad-
vantage that the bandwidth from the SSRAM frame buffer memory is less demanding. As with
the MTL_LCD_Driver, this module is connected via a dual-clock FIFO and an AvalonStream
interface to the MTL_Framebuffer_Flash. No changes to MTL_Framebuffer_Flash are needed to
use this module since the difference in pixel clock rate is accommodated by flow-control in the
AvalonStream.

MTL_Framebuffer_Flash – This component provides a memory-mapped frame buffer using the DE4’s
off-chip SSRAM to store the frame buffer and provides access to the Flash, which is on the same
bus as the SSRAM. It provides an Avalon memory-mapped interface that allows a processor to
write to the SSRAM. This module is designed to work at the main system clock rate of 100 MHz.
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Note that the clock to the SSRAM needs to be provided outside of this module, directly from a
PLL. The SSRAM conduit interface must be connected to the SSRAM pins. The I2C conduit
interface (coe_touch) must be connected to Terasic’s I2C encrypted block outside of the Qsys
project.

In addition, the following libraries of ours are used:

AlteraROM provides a font ROM initialized from fontrom.mif.

VerilogAlteraROM.v provides Verilog wrapped by AlteraROM.

Avalon2ClientServer provides the Avalon memory-mapped. interface

AvalonStreaming provides the Avalon streaming interface.

Software Overview

The MTL_Framebuffer is accessed via an 8MB memory-mapped region whose first 2MB maps the
SSRAM, which contains both the text and pixel frame buffer. Control registers start 4MB into the
region. Random access reads and writes of arbitrary size are permitted to the main frame buffer, but
registers require 32-bit accesses. Note that writes to the frame buffer are queued and incur little latency,
whereas reads need to schedule access around the LCD updates so incur a much greater latency penalty.
Reads and writes to registers are quick.

The pixel frame buffer is 32 bits per pixel. The upper byte is ignored, but followed by bytes of red,
green and blue channels. The resolution is 800x480 with the first pixel being top level. The text frame
buffer accepts characters of 16-bits with the upper byte representing the VGA text color and the lower
byte holding the character. There are 100 columns and 40 rows of text. VGA text color is a byte in the
following format: (1-bit flashing, 3-bit background color, 4-bit foreground color). Colors are from the
following table:

code color

0 black
1 dark blue
2 dark green
3 dark cyan
4 dark red
5 dark magenta
6 brown
7 light grey

code color

8 dark grey
9 light blue

10 light green
11 light cyan
12 light red
13 light magenta
14 light yellow
15 white

See mtl_test_small.c for an example which drives the MTL-LCD using a NIOS for some
helper functions, and so on. Table 6.3 describes the memory map of the MTL-LCD.

The frame-buffer-blending register has the following format (from MSB to LSB):

• Top 3 bits are unused, but should be set to zero.

• 1 bit indicates the endian of the bytes within a pixel (1=big endian, 0=little endian)

• 4 bits of VGA color code providing a default color for the whole screen. After reset, this is set to
2 (dark green). Typically, this will need to be set to 0 for general use.
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• 8 bits of alpha blending for the pixel frame buffer. This value is subtracted using saturation
arithmetic from the character colors; a value of 255 erases the character frame buffer. Reset value
is 255 (characters off).

• 8 bits of alpha blending for the character frame buffer foreground color, subtracted from the pixel
background color using saturation arithmetic. 255 makes the characters opaque, and 0 makes
them transparent. Reset value is 255 (pixel off) when the character pixel is on.

• 8 bits of alpha blending for the character frame buffer background color, which is subtracted from
the pixel color using saturation arithmetic. 255 makes the background opaque, and 0 makes the
background transparent. Set to 255 after reset (pixel off) when the character pixel is off.

The MTL two-touch gesture codes (copied from the MTL-LCD manual):

base offset length description

0x0000000 2MB SSRAM
0x0000000 800x480 words pixel frame buffer, 32-bit color, although only

24 bits used: 8 bits each of (r,g,b) where b is
the LSB

0x0177000 100x40x2 bytes of text buffer in its default location
0x0400000 1 word frame buffer blending and pixel endian (see

below)
0x0400004 1 word text cursor position, bytes: (unused, unused, x,

y)
0x0400008 1 word character frame buffer offset base address rela-

tive to the start of the SSRAM, 0x177000 after
reset (i.e., 800x480 words, so just after the
pixel buffer). Note that this must be a 32-bit
word aligned offset.

0x040000c 1 word touch point x1, -1 if not valid
0x0400010 1 word touch point y1, -1 if not valid
0x0400014 1 word touch point x2, -1 if not valid
0x0400018 1 word touch point y2, -1 if not valid
0x040001c 1 word (touch_count,gesture), -1 if not valid, where

touch_count is a 2-bit value (0,1 or 2 touches)
and gesture is an 8-bit value (see table below
for details). Reading this register dequeues all
of the current touch sensor values.

0x4000000 64MB Flash memory (see below)

Table 6.3: Memory map used for the MTL device
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code gesture

0x30 north
0x32 north-east
0x34 east
0x36 south-east
0x38 south
0x3A south-west
0x3C west
0x3E north-west
0x40 click
0x48 zoom in
0x49 zoom out

6.3.2 HDMI Chip Configuration via I2C
We use the Terasic HDMI_TX_HSMC daughter card on the DE4 board to obtain HDMI output mir-
roring. Pixel data, H-sync and V-sync are provided by MTL_LCD_HDMI (see Section 6.3.1) when
mirroring the multitouch LCD. However, to obtain output, the HDMI chip on the daughter card must be
configured via an I2C interface. To do this, we use the I2C master interface from OpenCores4. This in-
terface is wrapped in an Avalon interface that we have written5, which is colocated with documentation6

6.4 Standalone HDMI Output
The standalone HDMI output (HDMI_Driver) is an alternative to the mirrored HDMI output from the
MTL-LCD discussed in Section 6.3.2. The motivation is to provide support for video streams of different
resolutions from other sources (e.g., streaming out of high-bandwidth memory like DDR2 memory).

In order to support multiple resolutions, a variable pixel clock is required (Section 6.4.1) together
with a software configurable HDMI timing generator (Section 6.4.2) and the HDMI chip configuration
via I2C discussed earlier in Section 6.3.2. Note that we currently use the I2C interface to place the
HDMI chip into DVI compatibility mode. In this mode, the resolution can be set by changing the pixel
clock frequency and video timing (sync signals) without further configuration of the HDMI chip. (The
HDMI chip documentation is so poor that it is difficult to determine whether this is the correct usage,
but it appears to work.)

6.4.1 Reconfigurable Video Pixel Clock
This is a simple Qsys peripheral written in SystemVerilog to provide an Avalon memory mapped inter-
face to Altera provided reconfigurable PLL. The reconfigurable PLL needs to be instantiated outside of
this module using an ALTPLL megafunction with its reconfiguration interface enabled.

Inside this peripheral, an ALTPLL_RECONFIG is instantiated that provides a cache of the PLL
parameters and, when triggered, writes them to the ALTPLL using a proprietary serial interface. ALT-
PLL_RECONFIG also resets the ALTPLL post configuration.

This module is addressed as follows. All addresses refer to 32-bit little-endian words. Byte
addressing is not supported.

The lower address bits have the following meaning:

4http://opencores.org/project,i2c
5cherilibs/trunk/peripherals/i2c/i2c_avalon.sv
6cherilibs/trunk/peripherals/i2c/i2c_rev03.pdf
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bits 1-0 are always zero (word aligned)
bits 5-2 is the counter_type
bits 8-6 is the counter_parameter
bit 9 When =0 it refers to the ALTPLL_RECONFIG parameters (above). When =1 for a

write it causes the PLL parameters to be written to the PLL. When =1 and reading,
it returns busy =-1, done=0.

counter_type and counter_parameters are defined in Altera’s ALTPLL_RECONFIG Users Guide7 with
the parameters for Stratix IV PLLs appearing on pages 52–54.

For Stratix IV parts (e.g., on the DE4 board), the following counter_types are particularly useful:

counter_type number variable name meaning

0 n master divisor
1 m master multiplier
4 c0 further divisor for clock 0

The output frequency clock c0 is given by:
fout_c0 = (m × fin) / (n × c0)
where f out_c0 is the output frequency for clock 0 on the PLL, and f in is the input clock frequency
(typically from an external pin on the DE4 board running at 50MHz).

For each of these counter_types, the following counter_parameters need to be set (e.g., for a required
value v where v>0):

counter_parameter number variable name bit width value from v

0 high_count (9-bits) (v+1)/2
1 low_count (9-bits) v – high_count
4 bypass (1-bit) (v==1) ? 1 : 0
5 odd_count (1-bit) v & 0x1

Parameters are first written through to a set of device registers, but these register values need to be
transmitted to a physical PLL block using an Altera specific protocol. The memory mapped device is
told to undertake this transfer by writing to the device with address bit 9 set (the data is irrelevant and
the hardware doesn’t care what the lower 8 address bits are), e.g. address offset 0x200. The transfer
completion can be determined by polling from offset 0x200; 0=busy, otherwise done.

Example NIOS2 code is below which should be replaced by sudocode or simply removed but is left
here for now whilst we finalise a device driver.

void
pll_reconfig_write(

int type,
int parameter,
int val)

{
IOWR_32DIRECT(PLLRECON_BASE, ((parameter<<4) | type)*4, val);

}

int

7http://www.altera.co.uk/literature/ug/ug_altpll_reconfig.pdf
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pll_reconfig_read(
int type,
int parameter)

{
return IORD_32DIRECT(PLLRECON_BASE, ((parameter<<4) | type)*4);

}

void
pll_reconfig_update(void)
{

IOWR_32DIRECT(PLLRECON_BASE, (1<<7)*4, 0);
}

int
pll_reconfig_done(void)
{

return IORD_32DIRECT(PLLRECON_BASE, (1<<7)*4);
}

// function to set the PLL multiplier and divider values
void
pll_timing_params(int m, int n, int c0)
{

int high_count, low_count, t;

// initial divisor
high_count = (n+1)/2;
low_count = n-high_count;
t=0;
pll_reconfig_write(t, 0, high_count);
pll_reconfig_write(t, 1, low_count);
pll_reconfig_write(t, 4, n==1 ? 1 : 0); // bypass
pll_reconfig_write(t, 5, (n&0x1)==1 ? 1 : 0); // odd/even
printf("Initial divisor n=%x high=%x low=%x\n",n,high_count,low_count);

// initial multiplier
high_count = (m+1)/2;
low_count = m-high_count;
t=1;
pll_reconfig_write(t, 0, high_count);
pll_reconfig_write(t, 1, low_count);
pll_reconfig_write(t, 4, m==1 ? 1 : 0); // bypass
pll_reconfig_write(t, 5, (m&0x1)==1 ? 1 : 0); // odd/even
printf("Initial multiplier m=%x high=%x low=%x\n",m,high_count,low_count);

// clock divisor
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high_count = (c0+1)/2;
low_count = c0-high_count;
t=4;
pll_reconfig_write(t, 0, high_count);
pll_reconfig_write(t, 1, low_count);
pll_reconfig_write(t, 4, c0==1 ? 1 : 0); // bypass
pll_reconfig_write(t, 5, (c0&0x1)==1 ? 1 : 0); // odd/even
printf("Clock output divisor c0=%x high=%x low=%x\n",c0,high_count,low_count);

printf("Triggering PLL reconfigure...\n");
pll_reconfig_update();
int done=pll_reconfig_done();
printf("PLL reconfig done=%x\n",done);
done=pll_reconfig_done();
printf("PLL reconfig done=%x\n",done);
done=pll_reconfig_done();
printf("PLL reconfig done=%x\n",done);

}

// function which takes the desired pixel clock frequency in MHz and determines the best PLL values
// assumes that the base clock is running at 50MHz
void
video_pixel_clock(double pclkf_MHz)
{

double base_clk_KHz = 50000.0;
int mul=1;
int div=1;
double err=1e6;
int m,d;
double e;
int pclk_KHz = (int) (pclkf_MHz * 1000);
for(m=1; m<64; m++)

for(d=1; d<64; d++) {
e = fabs((base_clk_KHz * m / d) - pclk_KHz);
if(e<err) {

mul=m;
div=d;
err=e;

}
}

int f = (base_clk_KHz * mul) / div;
printf("Pixel clock=%2.2fMHz mul=%1d div=%1d freq=%1d error=%1.2f%%\n", pclkf_MHz, mul, div, f, err*0.1);
pll_timing_params(mul,div,1);

}
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6.4.2 HDMI Timing Driver
The Qsys peripheral (HDMI_Driver) takes an AvalonStream of pixel values and maps them to the Terasic
HDMI Transmitter daughter card (HDMI_TX_HSMC). It needs to be clocked at the video pixel clock
frequency, which may be variable. Thus, an Avalon clock crossing bridge is needed to interface to the
AvalonMM slave interface which allows the following parameters to be set from software.

Address map (32-bit word offset, little-endian 12-bit values in 32-bit word)

0 x-resolution (in pixels)
1 horizontal pulse width (in pixel clock ticks)
2 horizontal back porch (in pixel clock ticks)
3 horizontal front porch (in pixel clock ticks)
4 y-resolution (in pixels/lines)
5 vertical pulse width (in lines)
6 vertical back porch (in lines)
7 vertical front porch (in lines)

Example NIOS2 C function which takes a video mode line and configures PixelStream and the video
PLL. This should probably be replaced by sudocode or removed.

// from modeline parameters e.g. generated by gtf:
// Modeline syntax: pclk hdisp hsyncstart hsyncend htotal vdisp vsyncstart vsyncend vtotal [flags]
void
video_mode_line(
double pclkf,
int hdisp,
int hsyncstart,
int hsyncend,
int htotal,
int vdisp,
int vsyncstart,
int vsyncend,
int vtotal)
{

int xres = hdisp;
int hsync_front_porch = hsyncstart - hdisp;
int hsync_pulse_width = hsyncend - hsyncstart;
int hsync_back_porch = htotal - hsyncend;

int yres = vdisp;
int vsync_front_porch = vsyncstart - vdisp;
int vsync_pulse_width = vsyncend - vsyncstart;
int vsync_back_porch = vtotal - vsyncend;

// first turn the frame buffer off by setting the resolution to zero
write_pixelstream_reg(0, 0); // xres
write_pixelstream_reg(4, 0); // yres

write_pixelstream_reg(3, hsync_front_porch);
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write_pixelstream_reg(1, hsync_pulse_width);
write_pixelstream_reg(2, hsync_back_porch);

write_pixelstream_reg(7, vsync_front_porch);
write_pixelstream_reg(5, vsync_pulse_width);
write_pixelstream_reg(6, vsync_back_porch);

video_pixel_clock(pclkf);

// enable frame buffer by setting the resolution
write_pixelstream_reg(0, xres);
write_pixelstream_reg(4, yres);

printf("------------------------------------------------------------------------------\n");
printf("video_mode_line - %d x %d = %d x %d\n\n", htotal, vtotal, xres+hsync_front_porch+hsync_pulse_width+hsync_back_porch, yres+vsync_front_porch+vsync_pulse_width+vsync_back_porch);
printf("hsync_front_porch = %d\n", hsync_front_porch);
printf("hsync_pulse_width = %d\n", hsync_pulse_width);
printf("hsync_back_porch = %d\n", hsync_back_porch);
printf("\n");
printf("vsync_front_porch = %d\n", vsync_front_porch);
printf("vsync_pulse_width = %d\n", vsync_pulse_width);
printf("vsync_back_porch = %d\n", vsync_back_porch);
printf("------------------------------------------------------------------------------\n");

}

6.5 Temperature and fan control

The temperature and fan control peripheral has two read-only 32-bit registers. The first (address 0x0)
returns the last temperature reading as a 32-bit signed integer in degrees Centigrade. The second (address
0x4) is the power to the fan as a range from 0 to 255.

6.6 Terasic Hard Peripherals

6.6.1 Intel StrataFlash 64M NOR flash

The DE4 board has a single Intel StrataFlash embedded memory. Cambridge has the part with 64 MB
(512 Mb), which is 16 bits wide. Note that this part might be in one package, but it has two die-stacked
internal flash chips that work independently. This flash memory sits on the same bus as the SSRAM
used for the frame buffer; the memory transactions are handled by the multitouch display hardware.

Read mode

After reset, the memory is in read mode, and memory read accesses (bytes, 16-bit and 32-bit word)
appear like conventional memory. Transitions to read mode can be enabled by writing 0x00ff (little
endian) or 0xff00 (big endian) to the base address.
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Write mode

Writes are treated as commands, not memory writes. This is where it gets a lot more complicated. The
data sheet must be read. Here are some notes.

Two chips – The DE4 has a 512 Mb part containing two 256 Mb dies (chips) in the same package.
Therefore, there are actually two independent devices. For example, the reading status is on a
per-die basis. Address bit 25 determines which die is being used.

Data width – The device is 16 bits wide, and byte-wide accesses make no sense to it. Use only 16-bit
writes. 32-bit reads will be turned into two 16-bit reads by our hardware.

Block sizes – Each flash chip is broken down into programming regions and blocks. Blocks are not
equal in size. Blocks 0 to 254 are 128 KB in size and blocks 255 to 258 are 32 KB. See Table 7
on page 24 of the data sheet for further details.

Block erase – Data can be erased (set to 0xffff) only by erasing a whole block.

Write protect – After reset, the flash part write-protects the blocks. Software can issue a block unlock
request before doing a write, and then lock the block again afterwards. There are also one-time
programmable lock registers; we suggest that you avoid touching these!

Writing data – Once a block is unlocked, data can be written one 16-bit word at a time by issuing a
write command followed by the data. After doing a write, the status must be polled to determine
when the write is complete before another write or read is attempted. Writes can only clear bits;
therefore, an erase may be necessary to set all of the bits in the block before doing the write.

Buffered writes – Writes can be conducted in blocks as large as 32 × 16-bit words. This is faster than
using single writes.

Here are some example access commands (see Table 21, page 51 of the data sheet for further details).
Note that this assumes a little-endian view:

Read mode (i.e., the same mode as after reset)
read/write address data comment
write base address 0x00ff clear the status register

Unlock block for writes
read/write address data comment
write address within block 0x0060 unlock setup
write address within block 0x00d0 unlock block

Lock block to write protect
read/write address data comment
write address within block 0x0060 unlock setup
write address within block 0x0001 lock block

Status register

Notes on the status register based on Table 28, page 75 of the data sheet:
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bit name meaning
7 device write status 0 = busy, 1 = ready
6 erase suspend status erase suspend 1 = not in effect, 0 = in effect
5 erase status 0 = success, 1 = fail
4 program status 0 = success, 1 = fail
3 Vpp status programming voltage status (0 = good, 1 = bad)
2 program suspend status program suspend 1 = not in effect, 0 = in effect
1 block-locked status block (0 = not) locked during program or erase
0 BEFP status see data sheet

Bits 7, 6, and 2 are set and cleared by the flash write state machine, but bits 5, 4, 3, and 1 are only
set by it. Thus, a clear is needed before using them to check error status.

Note that these tables assume a little-endian view:
Clear status register

read/write address data comment
write base address 0x0050 clear the status register

Read the status register
read/write address data comment
write base address 0x0070 read status register mode
read base address - status register returned

Erase block

Erasing the block requires the following sequence (in pseudo code):

unlock_block_for_writes(offset)
clear_status_register
issue_erase_block_command(offset)
while (read_status_register = busy) {} // several million polls
read_status_register to see if erase passed
lock_block_to_prevent_writes
read_mode

Note that this table assumes a little-endian view:
Erase unlocked block

read/write address data comment
write address within block 0x0020 block erase setup
write address within block 0x00d0 block erase confirm

To erase a region of memory, the easiest approach seems to be to scan the memory to see if it
contains 0xffff and, when it does not, issue a block erase command at that address.

Note that Intel certify the part for a minimum of 100,000 erase cycles per block.

Writes

Write sequence (post erase) starts with an unlock of the block, performs each write followed by a status
register check, and finally locks the block again, putting the device back into read mode (as above). The
write component is performed using the following sequence (note that this table assumes a little-endian
view):
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Write data
read/write address data comment
write address 0x0040 write command
write address data write the data

Then poll the status register (see below) until bit 7 has gone to 1 (ready). This polling typically took
52 polling loop iterations on a NIOS processor running at 100 MHz with each flash access taking 16
clock cycles. (This is not fast!)

Buffered Writes

Buffered writes are more efficient than single writes. The write sequence is only slightly more involved.

Buffered write data
read/write address data comment
write address 0x00e8 buffered write command
read address status sr[7] = 0 indicates failure
write address 0x001f number of data items to write minus one
write address data write 32 words of data
write address 0x00d0 confirm write
read address status sr[7] = 0 means busy, wait

Flash Regions

Terasic specifies uses for most of the flash memory in the Terasic DE4 Getting Started Guide. Some of
these regions must remain used for their reserved purpose while others have been reallocated for other
uses.

In our design, three regions are of particular importance. The region 0x00000000-0x00020000
is reserved for Terasic uses. The region 0x00020000-0x0181FFFFis dedicated to two FPGA images,
the first of which is loaded at power-up. This offset is programmed into the MAXII FPGA on the DE4
and cannot be changed easily. The region 0x02000000-0x03FFFFFF (the entire second flash chip)
is dedicated to a default software image to be relocated to DRAM at bootup, which is performed by the
miniboot bootloader that is embedded in the FPGA image.

Table 6.4 lists our uses for each range and the corresponding FreeBSD device that provides access
the region. Changes to these allocations may require changes to this document, miniboot, berictl,
BERI_DE4.hints, and flashit.sh.

If portions of the flash are accidentally erased to cause unexpected behavior, factory behavior can be
restored by extracting and writing the file cfi0-de4-terasic.bz to /dev/cfid0. This file can
be found under /usr/groups/ctsrd/cheri on Cambridge systems.

# bunzip2 -c cfi0-de4-terasic.bz2 | dd of=/dev/cfid0

Hardware notes

The device comes out of reset in asynchronous mode operation, which seems to be easiest to deal with.
Thus, the clock to the flash device is simply kept at 0.

The bus is simple to use. Address, address-valid, chip-enable, write-enable, and output-enable can
be asserted together. Writes take a minimum of 85 ns and the address and data are latched on the rising
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offset range BERI use device

0x00000000 - 0x00007FFF user design reset vector /dev/cfid0s.config
0x00008000 - 0x0000FFFF ethernet option bits /dev/cfid0s.config
0x00010000 - 0x00017FFF board information /dev/cfid0s.config
0x00018000 - 0x0001FFFF PFL option bits /dev/cfid0s.config
0x00020000 - 0x00c1FFFF FPGA image 1 (power up) /dev/cfid0s.fpga0
0x00c20000 - 0x0181FFFF FPGA image 2 (on RE_CONFIGn button) /dev/cfid1s.fpga1
0x01820000 - 0x03FDFFFF operating system area /dev/cfid0s.os
0x02000000 - 0x03FDFFFF kernel (temporary) /dev/map/kernel
0x03FE0000 - 0x03FFFFFF boot loader /dev/cfid0s.boot

Table 6.4: Layout of the on-board DE4 Intel StrataFlash

edge of write-enable. The choice to deassert chip-enable (i.e., set to 1) between each access seems to
guarantee updates.
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Chapter 7

The BERI ISA

This chapter describes the Instruction-Set Architecture (ISA) implemented by the BERI1 and BERI2
processors. The core CPU features are described; MIPS and CHERI ISA status are enumerated; BERI’s
modifications to the TLB interface and features such as multi-threading are described.

7.1 BERI CPU Features and ISA
The intent of the BERI prototype is to support exploration and validation of the CHERI fine-grained
in-address-space memory protection and scalable compartmentalization models. Our goal was not to
create a complete and productizable processor design – the marketplace has many high-quality com-
mercial embedded RISC processors. Instead we hope to provide a flexible and extensible platform for
research into the hardware-software interface to facilitate the development of new ideas in processor
design. To this end, BERI is prototyped in the high-level Bluespec System Verilog (BSV) Hardware
Description Language (HDL), which supports highly parameterizable designs and a software-style de-
velopment process.

While design of a new ISA entirely from scratch would have been possible, we instead selected
a 1994-vintage version of the 64-bit MIPS ISA as a starting point that allows us to incrementally de-
ploy and evaluate new ISA feaures against a known baseline, as well as demonstrate the realism of
our approach. We are able to exploit extensive existing software infrastructure including compilers,
toolchain, debuggers, operating systems (such as FreeBSD), and applications (including a substantial
fraction of the open-source corpus). We have implemented CHERI’s capability features using the MIPS
coprocessor-2 instruction encoding space, and adapted FreeBSD, Clang/LLVM, and several applications
to use its features.

The BERI prototype implements a set of high-level hardware features comparable to those found in
the MIPS R4000 processor:

• A pipelined processor design.

• 32 64-bit general-purpose registers usable with the MIPS n64 ABI

• A full range of branch and control operations, including conditional branches, conditional traps,
jump-and-link, and system calls, as well as a branch predictor.

• Instruction and data caches configurable, but 16K, direct-mapped, write-through, physically in-
dexed, and tagged with 32-byte lines by default.

• 64K shared L2 cache that is 4-way set-associative, write-back, physically indexed, and tagged
with 128-byte lines by default.
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• 64-bit integer ALU, including support for multiply and divide.

• Coprocessor 0 (CP0), with system control features such as an MMU that is able to support OS
virtual memory and paging features.

• An IEEE-754-compatible floating-point unit (FPU).

• Multiple CPU protection rings (kernel, supervisor, usermode).

• Mature exception handling, including cycle timer, various arithmetic and memory access excep-
tions, and interrupt delivery from external devices.

• Programmable interrupt controller (PIC), able to multiplex a larger number of interrupt sources
to the smaller number of IRQ lines supported by the MIPS ISA. This also provides support for
interprocessor interrupts (IPIs) required for multi-processor operation.

At this time, the BERI prototype omits a number of features found in the MIPS R4000, largely
because they are not required for validation of the research hypotheses we are exploring. Some other
modifications were made due to the specific implementation characteristics of FPGA soft cores. In
particular, the decision to implement smaller caches was motivated by the performance trade-offs in
the FPGA substrate, which provides comparatively high-speed main memory, as well as a desire for
simplicity. The following features are omitted from the MIPS 4000 ISA, or significantly modified:

• Only 64-bit addressing mode; no 32-bit addressing support.

• Only big endian support; no variable-endian features.

• BERI is usually configured as a single-core, single-threaded processor; we have experimental
support for multiprocessing (in BERI1) and multithreading (in BERI2).

The following sections provide more detailed information on the ISA implemented in the BERI
prototype.

7.1.1 MIPS Instructions
BERI implements roughly the instruction set found in the MIPS R4000, subject to the high-level vari-
ations described in the previous section. The following tables document in greater detail the MIPS
ISA instructions implemented in the BERI prototype, followed by notes on any limitations to specific
instructions:

Table Description

Table 7.1 MIPS load and store instructions
Table 7.2 MIPS arithmetic instructions
Table 7.3 MIPS logical and bitwise instructions
Table 7.4 MIPS jump and branch instructions
Table 7.5 MIPS coprocessor instructions
Table 7.6 MIPS special instructions

Table 7.7 Additional instructions from other MIPS ISA versions
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Instruction Description Status

LB Load byte Implemented
LBU Load byte unsigned Implemented
LD Load doubleword Implemented
LDL Load doubleword left Implemented
LDR Load doubleword right Implemented
LH Load halfword Implemented
LHU Load halfword unsigned Implemented
LL Load linked Implemented
LLD Load linked doubleword Implemented
LUI Load upper immediate Implemented
LW Load word Implemented
LWL Load word left Implemented
LWR Load word right Implemented
LWU Load word unsigned Implemented
SB Store byte Implemented
SC Store conditional Implemented
SCD Store conditional doubleword Implemented
SD Store doubleword Implemented
SDL Store doubleword left Implemented
SDR Store doubleword right Implemented
SH Store halfword Implemented
SW Store word Implemented
SWL Store word left Implemented
SWR Store word right Implemented

Table 7.1: MIPS load and store instructions in the BERI prototype

54



Instruction Description Status

ADD Add Implemented
ADDI Add immediate Implemented
ADDIU Add immediate unsigned Implemented
ADDU Add unsigned Implemented
ADDI Add immediate Implemented
DADD Doubleword add Implemented
DADDI Doubleword immediate Implemented
DADDIU Doubleword add immediate unsigned Implemented
DADDU Doubleword add unsigned Implemented
DDIV Doubleword divide Implemented
DDIVU Doubleword divide unsigned Implemented
DIV Divide Implemented
DIVU Divide unsigned Implemented
DMULT Doubleword multiple Implemented
DMULTU Doubleword multiple unsigned Implemented
DSUB Doubleword subtract Implemented
DSUBU Doubleword subtract unsigned Implemented
MFHI Move from HI Implemented
MFLO Move from LO Implemented
MTHI Move to HI Implemented
MTLO Move to LO Implemented
MULT Multiply Implemented
MULTU Multiply unsigned Implemented
SLT Set on less than Implemented
SLTI Set on less than immediate Implemented
SLTIU Set on less than immediate unsigned Implemented
SLTU Set on less than unsigned Implemented
SUB Subtract Implemented
SUBU Subtract unsigned implemented

Table 7.2: MIPS arithmetic instructions in the BERI ISA
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Instruction Description Status

AND And Implemented
DSLL Doubleword shift left logical Implemented
DSLLV Doubleword shift left logical variable Implemented
DSLL32 Doubleword shift left logical + 32 Implemented
DSRA Doubleword shift right arithmetic Implemented
DSRAV Doubleword shift right arithmetic variable Implemented
DSRA32 Doubleword shift right arithmetic + 32 Implemented
DSRL Doubleword shift right logical Implemented
DSRLV Doubleword shift right logical variable Implemented
DSRL32 Doubleword shift right logical + 32 Implemented
NOR Nor Implemented
OR Or Implemented
ORI Or immediate Implemented
SLL Shift left logical Implemented
SLLV Shift left logical variable Implemented
SRA Shift right arithmetic Implemented
SRAV Shift right arithmetic variable Implemented
SRL Shift right logical Implemented
SRLV Shift right logical variable Implemented
XOR Exclusive or Implemented
XORI Exclusive or immediate Implemented

Table 7.3: MIPS logical and bitwise instructions in the BERI ISA
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Instruction Description Status

BEQ Branch on equal Implemented
BEQL Branch on equal likely Implemented
BGEZ Branch on greater than or equal to zero Implemented
BGEZAL Branch on greater than or equal to zero and link Implemented
BGEZALL Branch on greater than or equal to zero and link likely Implemented
BGEZL Branch on greater than or equal to zero likely Implemented
BGTZ Branch on greater than zero Implemented
BGTZL Branch on greater than zero likely Implemented
BLEZ Branch on less than or equal to zero Implemented
BLEZL Branch on less than or equal to zero likely Implemented
BLTZ Branch on less than zero Implemented
BLTZAL Branch on less than zero and link Implemented
BLTZALL Branch on less than zero and link likely Implemented
BLTZL Branch on less than zero likely Implemented
BNE Branch on not equal Implemented
BNEL Branch on not equal likely Implemented
J Jump Implemented
JAL Jump and link Implemented
JALR Jump and link register Implemented
JR Jump register Implemented

Table 7.4: MIPS jump and branch instructions in the BERI ISA
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Instruction Description Status

BCzF Branch on Coprocessor z false Not implemented
BCzFL Branch on Coprocessor z false likely Not implemented
BCzT Branch On Coprocessor z true Not implemented
BCzTL Branch On Coprocessor z true likely Not implemented
CFCz Move control from coprocessor Not implemented
COPz Coprocessor operation See Section 7.1.5
CTCz Move control to coprocessor Not implemented
DMFC0 Doubleword move from system control coprocessor See Section 7.1.2
DMTC0 Doubleword move to system control coprocessor See Section 7.1.2
LDCz Load doubleword to coprocessor Not implemented
LWCz Load word to coprocessor Not implemented
MFC0 Move from system control coprocessor See Section 7.1.2
MFCz Move from coprocessor See Section 7.1.5
MTC0 Move to system control coprocessor See Section 7.1.2
MTCz Move to coprocessor See Section 7.1.5
SDCz Store doubleword from coprocessor Not implemented
SWCz Store word from coprocessor Not implemented
TLBP Probe TLB for matching entry Implemented
TLBR Read indexed TLB entry Implemented
TLBWI Write indexed TLB entry Implemented
TLBWR Write random TLB entry Implemented

Table 7.5: MIPS coprocessor instructions in the BERI ISA. See Section 7.1.2 for limitations on
CP0 instructions; see Section 7.1.5 for limitations on generic coprocessor instructions
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Instruction Description Status

BREAK Breakpoint Implemented
CACHE Cache Implemented
ERET Exception return Implemented
SYNC Synchronize See Section 7.1.8
SYSCALL System call Implemented
TEQ Trap if equal Implemented
TEQI Trap if equal immediate Implemented
TGE Trap if greater than or equal Implemented
TGEI Trap if greater than or equal immediate Implemented
TGEIU Trap if greater than or equal immediate unsigned Implemented
TGEU Trap if greater than or equal unsigned Implemented
TLT Trap if less than Implemented
TLTI Trap if less than immediate Implemented
TLTIU Trap if less than immediate unsigned Implemented
TLTU Trap if less than unsigned Implemented
TNE Trap if not equal Implemented
TNEI Trap if not equal immediate Implemented

Table 7.6: MIPS special instructions in the BERI ISA

Instruction Description Version Status

MADD Multiply and add signed words to HI, LO MIPS32 Implemented
MADDU Multiply and add unsigned words to HI, LO MIPS32 Implemented
MOVN Move conditional on not zero MIPS32 Implemented
MOVZ Move conditional on zero MIPS32 Implemented
MSUB Multiply and subtract from HI, LO MIPS32 Implemented
MSUBU Multiply and subtract from HI, LO MIPS32 Implemented
MUL Multiply word to general-purpose register MIPS32 Implemented
RDHWR Read hardware register MIPS32 Implemented
SSNOP Superscalar no operation MIPS32 See Section 7.1.8
WAIT Enter standby mode MIPS32 BERI1: acts as a NOP

BERI2: waits

Table 7.7: Selected additional instructions in the BERI ISA, derived from other MIPS ISA
versions; see Section 7.1.8
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Register Status

0 Index Implemented
1 Random Implemented
2 EntryLo Implemented
3 EntryLo1 Implemented
4 0 Context Implemented
4 2 User Local Implemented
5 Page Mask Implemented
6 Wired Implemented
7 HWREna Implemented
8 BadVAddr Implemented
9 Count Read implemented

Write not implemented
10 EntryHi Implemented
11 Compare Implemented
12 Status Implemented
13 Cause Implemented
14 EPC Implemented
15 0 PrId Implemented
15 6 CoreId Non-standard
15 7 ThreadId Non-standard
16 0 Config Implemented
16 1 Config1 Implemented
16 2 Config2 Implemented
16 3 Config3 Implemented
16 5 Config5 Non-standard
16 6 Config6 Non-standard
17 LLAddr Implemented
18 WatchLO Implemented
19 WatchHi Implemented
20 XContext Implemented
23 Non-standard
25 Non-standard
26 0 Non-standard
26 1 Non-standard
27 Non-standard
28 TagLo Implemented
30 ErrorEPC Not tested

Table 7.8: BERI CP0 Registers
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7.1.2 Coprocessor 0 Support
The CP0 registers supported by BERI are shown in table 7.8. BERI has some implementation-specific
CP0 registers; formats for these are described in Section 7.3.

7.1.3 Modifications to the MIPS TLB Model
The MIPS R4000 MMU implements a 48-entry, fully associative Translation Look-aside Buffer (TLB).
Software interacts with the MIPS R4000 TLB by performing Write Indexed or Write Random opera-
tions; the latter operations use the Random CP0 register contents as the index. The Random CP0 register
decrements every cycle but resets to the highest TLB entry when it reaches the Wired CP0 register. Thus,
a Write Random operation never overwrites TLB entries below the Wired register.

BERI2’s TLB behaves as described in the MIPS R4000 ISA.
BERI1’s TLB is configurable but is currently composed of a lower-16 group of fully associative

entries and an upper-128 group of direct-mapped entries. We use this configuration because, while we
desire a large TLB, FPGA fabrics are unable to efficiently construct large associative searches. This
associative plus mapped structure allows an arbitrarily large TLB with trivial additional logic, because
most of the entries are stored in block RAM.

When the E bit in the Config6 register is set to false, the BERI1 TLB behaves as described in the
MIPS R4000 ISA (with a TLB size of 16 entries). The E bit is set to false on power up, so BERI1 is
compatible with software that expects the behaviour described in the MIPS R4000 ISA.

When the E bit is set to true, the BERI1 TLB behaves differently from a simple MIPS R4000 TLB
in several ways:

1. Writes of arbitrary indexed values are supported for only the lower 16 entries. An indexed write
to the upper 128 entries will result in a write to an index above 15 whose lower 7 bits are equal to
the lower 7 bits of the virtual page number.

2. Write Random operations will not write to a random location but rather to an index above 15
whose lower 7 bits are equal to the lower 7 bits of the virtual page number of the written entry.

3. A valid entry that is displaced by a Write Random instruction will be placed in an unpredictable
location above the wired entry and less than or equal to 15. Thus, the fully associative entries
that are not wired act as a victim buffer for the direct-mapped entries. In this context, “valid”
does not refer to the V bits in EntryLo0 and EntryLo1, but instead to a status bit internal to the
BERI1 implementation that is initialized to false on power up and set to true when the TLB entry
is written with either TLBWI or TLBWR.

4. BERI1 only supports variable sized pages in the lower associative entries.

5. BERI1’s TLB implementation also does not support 32-bit virtual addresses as MIPS R4000 does.

6. BERI1’s TLB supports 40-bit physical addresses instead of 36-bit physical addresses in MIPS
R4000. This means the EntryLo registers have a 28-bit PFN field, and the size of the EntryLo
registers is 34 bits in total.

BERI1’s TLB implementation works for FreeBSD without modification. FreeBSD wires only the
bottom TLB entry for use in exception handlers, and then accesses the rest of the TLB entries chiefly
using the Write Random operation – with Write Indexed operations being used only to modify entries
in place or to invalidate TLB entries. When FreeBSD invalidates TLB entries, it uses a virtual page
number whose lower bits are equal to the index number in the TLB. Thus, our design (which takes the
lower bits of the virtual page number as the index) works as expected. Furthermore, FreeBSD always
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Code Description

0x00 Index Invalidate L1 ICache
0x01 Index Writeback Invalidate L1 DCache
0x03 Index Writeback Invalidate L2
0x05 Index Load Tag L1 DCache
0x07 Index Load Tag L2
0x10 Hit Invalidate L1 ICache
0x11 Hit Invalidate L1 DCache
0x13 Hit Invalidate L2
0x15 Hit Writeback Invalidate L1 DCache
0x19 Hit Writeback L1 DCache

Table 7.9: Cache instructions supported by BERI1

probes to find the index of an entry immediately before modifying it, and does not remember where it
placed entries in the table. Thus, FreeBSD is not confused when our implementation relocates entries
from the direct-mapped region to the victim buffer.

If any operating system or hypervisor desires to more closely manage the TLB, it should take into
account the mapped nature of the upper entries of the TLB and the possibility that a Write Random
operation may relocate a previously mapped entry.

In other respects, the BERI1 TLB is similar to the MIPS R4000, including the MIPS design choice
in which each TLB entry maps two pages.

7.1.4 Memory Caches

In BERI1, there are separate L1 caches for instructions and data, and they are not coherent. Explicit
CACHE instructions are needed to synchronize the instruction and data caches. The supported CACHE
instructions are shown in table 7.9. As distributed, each L1 cache is 16K, direct-mapped, write-through,
and physically indexed.

The BERI1 L2 cache is shared between instructions and data. It is configured to be 64K, 4-way set
associative, write-back, and physically indexed.

In BERI2, the instruction and data caches are coherent.

7.1.5 Limitations to Generic Coprocessor Support

The BERI prototype does not currently support generic coprocessor instructions, but does implement an
interface for the capability coprocessor using coprocessor 2.

7.1.6 Reset Exception

On reset, BERI starts executing code from address 0x9000000040000000. This is a different ad-
dress from the standard MIPS address for a reset exception. This address will normally point to the
miniboot ROM, which also includes code to execute on soft reset.
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7.1.7 The BERI Floating-Point Unit (FPU)
The BERI floating-point unit is a fairly complete implementation of the MIPS R4000 floating-point
instuction set, with the following omissions:

• The only supported rounding mode is round to nearest, tie even; see table 7.10.

• Floating-point exceptions are not implemented. Where appropriate, instructions will return an
IEEE “infinity” or “not a number” value, but exceptions cannot be enabled for these cases.

• Floating-point status flags are not implemented.

The FPU also implements some instructions from MIPS IV; see table 7.14. Many of these instruc-
tions are used by the Clang/LLVM compiler.

ABS2008

In conformance with the MIPS R4000 specification, the abs.s, abs.d, neg.s and neg.d instruc-
tions are what the IEEE 754-1985 standard calls arithmetic operations. Later revisions of the MIPS
ISA specification introduced a control bit in FCSR, ABS2008, which causes abs and neg to be non-
arithmetic instructions as required by IEEE 754-2008. We do not implement the ABS2008 control bit.
Because they are “arithmetic”, computing the abs or neg of a signalling NaN would raise an invalid
operation exception if floating-point exceptions were enabled. (We do not support enabling this excep-
tion, as described above.) For the same reason, abs or neg of a quiet NaN does not change the sign
bit.

NAN2008

IEEE 754-1985 did not specify the encoding used to distinguish “signalling NaN” from “quiet NaN”.
The convention adopted by MIPS R4000 is the opposite way round from the convention that was later
standardized in IEEE 754-2008. (i.e. MIPS quiet NaN is encoded like an IEEE 754-2008 signalling
NaN, and vice versa). Later versions of the MIPS ISA specification introduced a control bit in FCSR,
NAN2008, which enables the 2008 encoding. We do not implement the NAN2008 control bit.

Denormalized numbers

MIPS R4000 did not implement denormalized numbers in hardware. In accordance with our general goal
of compatability with MIPS R4000/MIPS III, the BERI FPU does not support denormalized numbers
either. Floating point results that would yield a denormalized result are flushed to zero. In some cases,
BERI will also flush a denormalized operand to zero before applying an arithmetic operation. For
example, multiplication of a denormalized number by infinity may give the result NaN rather than the
infinity required by IEEE 754, because the denormalized operand is flushed to zero and IEEE 754 defines
zero times infinity to be NaN.

In MIPS R4000, it was possible to configure the FPU to raise an exception on a denormalized result
by setting FCSR.FS to 0. As the BERI FPU does not implement exceptions, we do not implement this.

7.1.8 Selected Additions from Later MIPS ISA Versions
Table 7.7 documents selected instructions added to the BERI ISA from later MIPS ISA versions. In
general, we have added instructions only where required by common compiler toolchains and operating
systems.
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Rounding mode Status

Round to nearest, tie to even Implemented
Round towards zero Not implemented
Round towards +∞ Not implemented
Round towards −∞ Not implemented

Table 7.10: IEEE floating-point rounding modes supported by the BERI ISA

Type Status

Single precision Implemented
Double precision Implemented
Paired single Implemented

Table 7.11: IEEE floating-point types supported by the BERI ISA

Instruction Status

ADD Implemented
SUB Implemented
MUL Implemented
DIV Implemented
ABS Implemented
MOV Implemented
NEG Implemented
SQRT Implemented

Table 7.12: FPU computational instructions supported by the BERI ISA
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Instruction Status

CVT.S.D Implemented
CVT.S.W Implemented
CVT.S.L Implemented
CVT.D.S Implemented
CVT.D.W Implemented
CVT.D.L Implemented
CVT.W.S Implemented
CVT.W.D Implemented
CVT.L.S Implemented
CVT.L.D Implemented
ROUND.W.S Implemented
ROUND.W.D Implemented
ROUND.L.S Implemented
ROUND.L.D Implemented
TRUNC.W.S Implemented
TRUNC.W.D Implemented
TRUNC.L.S Implemented
TRUNC.L.D Implemented
CEIL.W.S Implemented
CEIL.W.D Implemented
CEIL.L.S Implemented
CEIL.L.D Implemented
FLOOR.W.S Implemented
FLOOR.W.D Implemented
FLOOR.L.S Implemented
FLOOR.L.D Implemented

Table 7.13: Floating-point conversion instructions supported by the BERI ISA

65



Instruction Version Status

LDXC1 MIPS IV Implemented
LWXC1 MIPS IV Implemented
MOVF MIPS IV Implemented
MOVF.D MIPS IV Implemented
MOVF.S MIPS IV Implemented
MOVN.D MIPS IV Implemented
MOVN.S MIPS IV Implemented
MOVT MIPS IV Implemented
MOVZ.D MIPS IV Implemented
MOVZ.S MIPS IV Implemented
RECIP.D MIPS IV Implemented
RECIP.S MIPS IV Implemented
RSQRT.D MIPS IV Implemented
RSQRT.S MIPS IV Implemented
SDXC1 MIPS IV Implemented
SWXC1 MIPS IV Implemented

Table 7.14: Floating-point instructions from later MIPS ISA versions supported by BERI

Because the BERI prototype is pipelined, but currently neither superscalar nor multicore, the SSNOP
and SYNC instructions are interpreted as a NOPs. If and when superscalar support is added to future
BERI versions, that support will need to be enhanced.

The BERI prototype implements the config1, config2 and config3 CP0 shadow registers,
which were introduced in MIPS32. config1 allows queries of cache layout properties, and is used by
FreeBSD during CPU discovery to select cache management routines. config3 is used by FreeBSD
to detect that the processor supports the “user local” register, which is used by the C runtime to hold a
pointer to thread-local storage.

The BERI prototype also implements the RDHWR (read hardware register) instruction. The registers
that can be read using this instruction are the CPU number (in multicore configurations of BERI1), the
CP0 count register, and the “user local” register. The user local register can be written as CP0 register 4,
select 2.

7.1.9 Virtual Address Space
The 64-bit MIPS ISA divides its 64-bit address space into a number of segments with various properties.
BERI implements roughly the same address-space layout as the MIPS R4000, except that CP0 status
register bits UX, SX, and KX are always set to 1. This means that user, supervisor, and kernel modes
must always execute in 64-bit addressing mode in BERI (i.e., no 32-bit addressing is supported).

Ring 2: User Mode

Table 7.15 illustrates the user-mode address space. The processor is in user mode whenever KSU is 10,
EXL is 0, and ERL is 0. In this mode, only the lower quarter of the address space is available and all
addresses are virtual and mapped by the TLB.
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Start address Stop address Description Size

0x40000000 00000000 0xffffffff ffffffff address error
0x00000000 00000000 0x3fffffff ffffffff xuseg (user) 240 Bytes

Table 7.15: BERI address-space layout in user mode

Start address Stop address Description Size

0xffffffff e0000000 0xffffffff ffffffff address error
0xffffffff c0000000 0xffffffff dfffffff csseg 512M
0x40000000 00000000 0x400000ff ffffffff xsseg 240 Bytes
0x00000000 00000000 0x000000ff ffffffff xsuseg (user) 240 Bytes

Table 7.16: BERI address-space layout in supervisor mode

Ring 1: Supervisor Mode

Table 7.16 illustrates the supervisor address space. The processor is in supervisor mode whenever KSU
is 01, EXL is 0, and ERL is 0. All available addresses are virtual and mapped by the TLB. Unavailable
addresses give an address error exception when referenced.

Ring 0: Kernel Mode

Table 7.17 illustrates the kernel address space. Table 7.18 details the xkphys subset of the address
space, in which the physical memory space is mapped (using various caching policies) directly into
regions of virtual address space. The processor is in kernel mode if KSU is 0, EXL is 1, or ERL is 1.

Start address Stop address Description Size

0xffffffff e0000000 0xffffffff ffffffff ckseg3 - mapped 512M
0xffffffff c0000000 0xffffffff dfffffff cksseg - mapped 512M
0xffffffff a0000000 0xffffffff bfffffff ckseg1 - unmapped, uncached 512M
0xffffffff 80000000 0xffffffff 9fffffff ckseg0 - unmapped, cached 512M
0xc0000000 00000000 0xc00000ff 7fffffff xkseg - mapped
0x80000000 00000000 0x800000ff ffffffff xkphys - unmapped
0x40000000 00000000 0x400000ff ffffffff xsseg 262 Bytes
0x00000000 00000000 0x000000ff ffffffff xsuseg (user) 262 Bytes

Table 7.17: BERI address-space layout in kernel mode
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Start address Stop address Description

0xb8000000 00000000 0xb80000ff ffffffff reserved
0xb0000000 00000000 0xb00000ff ffffffff cached, coherent update on write
0xa8000000 00000000 0xa80000ff ffffffff cached, coherent exclusive on write
0xa0000000 00000000 0xa00000ff ffffffff cached, coherent exclusive
0x98000000 00000000 0x980000ff ffffffff cached, noncoherent
0x90000000 00000000 0x900000ff ffffffff uncached
0x88000000 00000000 0x880000ff ffffffff reserved
0x80000000 00000000 0x800000ff ffffffff reserved

Table 7.18: Layout of the xkphys region in BERI
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Instruction Description Status
CGetBase Move base to a general-purpose register Implemented
CGetLen Move length to a general-purpose register Implemented
CGetOffset Move offset field to a general-purpose register Implemented
CGetPCC Move the PCC and PC to a general-purpose registers Implemented
CGetPerm Move permissions field to a general-purpose register Implemented
CGetSealed Move sealed flag to a general-purpose register Implemented
CGetTag Move the valid capability flag to a general-purpose register Implemented
CGetType Move object type field to a general-purpose register Implemented

CAndPerm Restrict Permissions Implemented
CClearTag Clear the capability valid flag Implemented
CFromPtr Convert a pointer to a capability Implemented
CIncBase Increase Base Implemented
CIncOffset Add to the offset field Implemented
CSetLen Decrease Length Implemented
CSetOffset Set the offset field Implemented

Table 7.19: CHERI ISA instructions for getting and setting capability register fields

Instruction Description Status

CToPtr Convert capability to a pointer Implemented
CPtrCmp Compare two capabilities Implemented

Table 7.20: CHERI ISA instructions for pointer arithmetic

7.2 CHERI ISA Extensions

The BERI1 and BERI2 prototypes have undergone a number of revisions as the CHERI ISA matured,
and now fully implement the feature set described in the CHERI Architecture Document, including
capability coprocessor instructions, exception model, and tagged memory. CHERI Clang/LLVM and
CheriBSD are compiled to use these features, and able to demonstrate the ISA’s support for both memory
protection and sandboxing.

The following tables document in greater detail the CHERI ISA instructions implemented in the
BERI prototype, followed by notes any limitations to specific instructions:

Table Description

Table 7.19 Getting and setting capability fields
Table 7.21 Loading and storing [via] capabilities
Table 7.20 Pointer arithmetic
Table 7.22 Instructions relating to object capabilities
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Instruction Description Status

CSC Store Capability Implemented
CLC Load Capability Implemented
CLB Load Byte Via Capability Register Implemented
CLH Load Half-Word Via Capability Register Implemented
CLW Load Word Via Capability Register Implemented
CLD Load Double Via Capability Register Implemented
CLBU Load Byte Unsigned via Capability Register Implemented
CLHU Load Half-Word Unsigned via Capability Register Implemented
CLWU Load Word Unsigned via Capability Register Implemented
CSB Store Byte Via Capability Register Implemented
CSH Store Half-Word Via Capability Register Implemented
CSW Store Word Via Capability Register Implemented
CSD Store Double Via Capability Register Implemented
CLLD Load Linked Double Via Capability Register Implemented
CSCD Store Conditional Double Via Capability Register Implemented

Table 7.21: CHERI ISA instructions for loading and storing [via] capabilities

Instruction Description Status

CGetCause Read capability exception cause register Implemented
CSetCause Set capability exception cause register Implemented
CJR Jump Capability Register Implemented
CJALR Jump and link Capability Register Implemented
CBTS Branch if tag bit is set Implemented
CBTU Branch if tag bit is not set Implemented
CSeal Seal an unsealed capability Implemented
CUnseal Unseal a sealed capability Implemented
CCall Protected procedure call into a new security domain Implemented
CReturn Return to the previous security domain Implemented
CCheckPerm Check capability permissions Implemented
CCheckType Check capability type Implemented

Table 7.22: CHERI ISA instructions for creating and invoking object capabilities
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Figure 7.2: Config6 Register

7.3 BERI Implementation-defined Registers

7.3.1 EInstr (CP0 Register 8, Select 1)

After an exception, this CP0 register will contain the instruction that caused the exception.
EInstr will not be set if the exception was raised during instruction fetch (cause codes TLBL, AdEL,

or IBE) because in these cases the instruction is not available. EInstr is also not set if the reason for the
exception was an interrupt (cause code Int).

7.3.2 Configuration Register 5 (CP0 Register 16, Select 5)

The CP0 register Config5 is left as implementation-defined in the MIPS ISA specification. In BERI, it is
defined as shown in Figure 7.1. If the X bit is set, the CPU supports a larger TLB size than in the MIPS
R4000 ISA specification. The larger TLB cannot be used until it is enabled by writing to Config6, as
described below.

7.3.3 Configuration Register 6 (CP0 Register 16, Select 6)

The CP0 register Config6 is left as implementation-defined in the MIPS ISA specification. In BERI, it is
defined as shown in Figure 7.2. The E bit is both readable and writable; when set, the CPU will use the
non-standard algorithm described in section 7.1.3, which provides a larger TLB size than in the MIPS
R4000 ISA specification. The TLB_Size - 1 field defines the size of this extended TLB.

7.3.4 Processor Identification (CP0 Register 15, Select 0)

In the MIPS ISA specification, bits 24 to 31 of PRId are reserved for manufacturer-specific options. In
multi-threaded BERI2, they contain the thread ID however this information can also be found in CP0
Register 15, Select 7 as described below. The latter is the preferred way to obtain the thread ID.

7.3.5 Core Identification (CP0 Register 15, Select 6)

BERI uses CP0 register 15 select 6 to hold the core ID, as shown in Figure 7.3.
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7.3.6 Thread Identification (CP0 Register 15, Select 7)
BERI2 uses CP0 register 15 select 7 to hold the thread ID, as shown in Figure 7.4. On BERI this will
return all zero (until such time as multi-threading is supported on BERI).

7.3.7 Stop Simulation (CP0 Register 23)
When BERI is being simulated in Bluesim, a write to CP0 register 23 will terminate the simulation.
Writes to CP0 register 23 have no effect on the FPGA version of BERI. On multicore or multithreaded
BERI, a write to this CP0 register by any thread or core will stop the entire simulation (all threads and
cores).

7.3.8 Debug (CP0 Register 26, Select 0)
When BERI is being simulated in Bluesim, a write to CP0 register 26, select 0 will write the values of
the general purpose registers to the simulation log file. Writes to CP0 register 26 select 0 have no effect
on the FPGA version of BERI. On multicore or multitreaded BERI, only the registers of the core or
thread that wrote to the CP0 register will be written to the simulation log file.

7.3.9 Debug ICache (CP0 Register 26, Select 1)
When BERI is being simulated in Bluesim, a write to CP0 register 26, select 1 will write the state of
the instruction cache to the simulation log file. Writes to CP0 register 26 select 1 have no effect on the
FPGA version of BERI or on BERI2.
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Chapter 8

The BERI1 Processor Implementation

This chapter provides a high-level overview of the BERI1 prototype processor implementation, includ-
ing programming language choice, directory layout, and a high-level description of the prototype’s files
and modules.

8.1 Bluespec
The BERI1 and BERI2 prototypes are implemented in the Bluespec Hardware Description Language
(HDL), a Haskell-derived programming language that allows highly parameterized and structured logic
designs. Bluespec source code may be compiled to an efficient C simulation, or into Verilog for sim-
ulation or synthesis. One of the key properties of Bluespec is that it makes design space exploration
far more accessible than traditional low-level HDLs, which is critical for fast and easy evaluation of the
impact of our design choices on a practical hardware implementation.

8.2 Directory Layout
The Bluespec source code for the BERI1 processor resides in the root of the BERI distribution. A series
of sub-directories, listed in Table 8.1, contain a combination of supplementary software source code
including an interactive self-test and unit test suite and tools used in building BERI. These subdirectories
are also targets for generated files.

8.3 Key Files
Table 8.2 describes the key files in the BERI1 prototype implementation.

Directory Description

cheri/trunk/ Root of the BERI1 source tree, home of Bluespec source code
boards/ Holds project directories for various FPGA boards
sw/ Home of integrated software component source code
ip/ Destination for generated Verilog files

Table 8.1: Directories in the BERI1 source code distribution
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File Description

Makefile GNU makefile to build BERI

MIPS.bsv Types and shared functions for the design
MIPSTop.bsv Top-level module implementing instruction and

register fetch, which instantiates all other modules
Scheduler.bsv Pre-decode stage of the pipeline
Decode.bsv Decode stage of the pipeline
Execute.bsv Execute stage of the pipeline
MemAccess.bsv Memory access and writeback stages of the pipeline
Memory.bsv Memory subsystem, which instantiates the caches,

merging logic, and memory interface
ICache.bsv Instruction level 1 cache
DCache.bsv Data level 1 cache
Interconnect.bsv Package including busses for implementing the

memory heirarchy
L2Cache.bsv L2 cache
CacheCore.bsv Core cache module used in all caches
TopAxi.bsv Top-level module adapting BERI’s memory inter-

face to an AXI bus interface
TopSimAxi.bsv Top-level module interfacing BERI’s memory

interface with the PISM bus for C peripheral models
ForwardingPipelinedRegFile.bsv Forwarding register file
CP0.bsv Coprocessor 0 containing all configuration registers
TLB.bsv 40-entry TLB with three cached interfaces
CapCop.bsv Module implementing the capability coprocessor

Table 8.2: Key files in the BERI1 source code
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Macro Description

ALIGNEDMEMORY Unaligned accesses conform to MIPS ISA
CAP Include capability coprocessor
COP1 Include floating point unit
COP3 Include experimental CP3
DCACHECORE Use alternative DCache implementation
ICACHECORE Use alternative ICache implementation
MULTI Number of cores
MICRO Do not include the TLB and L2 Cache
NOBRANCHPREDICTION Wait for committed branch targets
NOT_FLAT Build with all possible synthesis boundaries
NOTAG Bypass tag cache for capabilities (return True)

Table 8.3: Macros controlling conditionally compiled features in BERI1

8.4 Conditionally Compiled Features
Table 8.3 is a list of conditionally compiled features in the BERI1 processor. Values for these macros
are selected by various build targets described in Chapter 2, and passed to the Bluespec compiler via the
bsc command line.
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Chapter 9

The BERI2 Processor Implementation

BERI2 is the second version of the prototype developed between 2011–2015 by Nirav Dave and Robert
Norton using a stylized form of Bluespec to better support formal verification. BERI and BERI2 share
significant infrastructure (for example, memory subsystems, peripheral and tests) but differ in microar-
chitectural design and coding style. BERI2’s design sometimes favours simplicity, correctness and ver-
ifiability over performance, for example BERI2 has a classic 6-stage RISC pipeline with register for-
warding rather than register renaming as in BERI. BERI2 supports the same ISA as BERI except that it
does not implement floating point and adds support for multi-threading.

9.1 Building BERI2
BERI2 has the same build dependencies as BERI, as listed in section 2.1. It does not depend on any
files in the cheri/trunk directory but does use files from cherilibs/trunk, which is shared
with BERI. The Makefile supports sim and verilog targets for building a Bluespec simulator
and Verilog output respectively. Bluespec intermediate files and simulator output are placed in bdir
and simdir directories whose names are derived from the values of the build configuration variables,
omitting any that are set to their default values. This means that is not necessary to perform a make
clean when changing build options. Note, however, that Verilog files are always output to the same
directory, called ip, so that they can be found easily by downstream Makefiles. For convenience,
the Makefile creates a symlink to the most recently built simulator in the cheri2/trunk directory.

The BERI2 Makefile does not build any firmware. To run the simulator you will need a mem64.hex
file in the current working directory. You can copy one from a software build such as cheri/trunk/sw
or simboot. Alternatively the test target will build the simulator and then run the test suite with suit-
able options.

9.2 BERI2 Configuration Options
BERI2 Table 9.1 shows a summary of compilation options for BERI2. These may be given as arguments
to make when building on the command line. NB the value of boolean variables is not relevant – only
the defined/undefined status. We recommend setting them to 1 when enabling and otherwise leaving
them unset; setting to 0 will not have the desired effect!

DETERMINISTIC_TIMER increments the cycle count register increments on each committed instruc-
tion rather than once each clock cycle. This means that the value of the cycle count register, and
the instruction on which a timer interrupt fires, can be predicted from an ISA-level description of
BERI without knowledge of the number of clock cycles required by each instruction.
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Macro Type Default Description

CAP Bool False Include capability coprocessor
DEBUG Bool False Include the debug unit for debugging in hard-

ware
THREADSZ Integer 0 log2 of the number of threads
VERIFY Bool False Build slower, but easier to verify, version
DETERMINISTIC_TIMER Bool False Increment CC once per instruction instead of

once per cycle
UNPIPELINE Bool False Flush the pipeline between each instruction, re-

sulting in unpipelined execution. Useful for di-
agnosis of pipeline bugs.

NOWATCH Bool False Don’t include watch register. May improve tim-
ing when synthesising.

SIMPLE_TLB Bool False Build with a fully-associative TLB structure
with poorer timing but simpler code.

TLBSIZE Integer 6 log2 of the number of TLB entries.
IWAYS Integer 1 Number of ways in L1 instruction cache.
DWAYS Integer 1 Number of ways in L1 data cache.
DEBUGTHREAD Integer 0 ThreadID of the initial thread to debug.

Table 9.1: Macros controlling conditionally compiled features in BERI2

VERIFY At some points in the BERI2 implementation, there is a choice between a version that can
be converted into a input to formal methods tools, and an alternative version that gives higher
performance. Setting VERIFY selects the former.

9.3 Multi-threading
BERI2 implements a form of multi-threading. It supports a configurable, statically determined number
of hardware threads that are rotated on a cycle-by-cycle basis (fine-grained multi-threading). To build
with multiple threads set the THREADSZ variable when building as described in Table 9.1. In the current
implementation a different thread is selected each cycle in a rotating fashion. Threads can use the WAIT
instruction to be de-scheduled until an interrupt arrives, but note that it may take longer (hundreds of
cycles) for an interrupt to be raised in a waiting thread. All BERI-supported CP0 registers are maintained
independently for each thread and there are separate TLB entries per thread so software can treat each
thread much as it would a physical core. The BERI PIC described in chapter 10 allows each external
interrupt to be directed individually to a given thread. The PIC also provides a means for sending
interrupts between threads.

9.4 BERI2 Debug Protocol
BERI2 has a debug unit that can be connected to a jtag uart stream for use in hardware, just like BERI.
However BERI2’s debug unit is designed to be as independent of the instruction pipeline as possible to
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allow debugging even if the processor fails. Therefore it uses a different protocol with a similar type-
/length/value packet format but commands for higher level actions such as “get register”. berictl
works the same as for BERI except that you must specify -2 argument before the sub-command.
All threads share a single debug unit so to switch to debugging another hardware thread there is a
setthread command.
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Chapter 10

The BERI Programmable Interrupt
Controller

This chapter describes the Programmable Interrupt Controller (PIC) attached to each BERI core. The
PIC provides a simple way to map a potentially large number of external interrupts onto the small set of
hardware interrupts defined by the MIPS ISA (see Table 10.3). In BERI2, each interrupt must also be
mapped to a particular hardware thread. The PIC exposes memory mapped registers which can be used
by software to configure the mapping and also to set, clear and read pending interrupts. Thus, the PIC
allows interrupts to be triggered by both hardware-wired peripherals (e.g., a UART) and by software,
referred to respectively as hard and soft sources. This latter facility can be used for inter-processor
interrupts (IPIs) on multi-threaded and multicore configurations.

10.1 Sources
The PIC consists of S sources, which may be either hard or soft.

Soft The value of a soft source comes from its interrupt-pending (IP) state bit, which can be set or
cleared by software. In the future, some external event, such as a message received over the
inter-core interconnect may potentially set these bits.

Hard The value of a hard source comes directly from a peripheral device, and is not latched. Hard
sources also have an IP bit which may be manipulated in the same way as for soft sources, mainly
for debugging purposes.

To calculate the current state for a particular MIPS interrupt, the PIC ORs the value of all sources which
are enabled and mapped to that interrupt.

10.2 Source Numbers and Base Addresses on BERI
The source numbers and register base addresses are as shown in Tables 10.1 and 10.2.

10.3 Config Registers: PIC_CONFIG_X
Each source has an associated configuration register with the format shown in Figure 10.3. This register
allows direction of the interrupt to a given interrupt number of a given thread; it also can enable or disable
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Source No Use

0–63 Up to 64, hard-wired external interrupts
64–127 64 implemented soft interrupts
128–1023 Reserved soft interrupts, unimplemented

Table 10.1: BERI PIC source number allocation

Register Name Address Used to

PIC_CONFIG_BASE See Chapter 6 Configure interrupts source mappings
PIC_IP_READ_BASE PIC_CONFIG_BASE+ 8 ∗ 1024 Read interrupt source state
PIC_IP_SET_BASE PIC_IP_READ_BASE+ 128 Set interrupt pending bits
PIC_IP_CLEAR_BASE PIC_IP_READ_BASE+ 256 Clear interrupts pendings bits

Table 10.2: BERI PIC control register addresses

delivery of the interrupt. The configuration register for source s has address PIC_CONFIG_BASE + 8s.
The default value for all configuration fields is 0 (i.e. disabled). Word or double-word accesses may be
used.

10.4 Interrupt-Pending Bits
Each interrupt source has one associated bit for an interrupt-pending (IP) state. For hardware sources,
the IP bit is ORed with the incoming interrupt wire to provide the current value for the interrupt source.
This bit may be used to artificially trigger an interrupt for debugging purposes. Note that the hardware
interrupt is not latched by the IP bit; therefore, the source will stay high only as long as the hardware
source asserts its interrupt, and will go low once software has dealt with the interrupt at the device. This
behavior is consistent with the IP bits in the MIPS cause register.

The PIC also provides soft sources which may be used for inter-thread interrupts. We expect that
software will configure at least one soft source per thread for this use. If non-maskable or debug inter-

IRQ Field Value MIPS Interrupt

0-4 MIPS external interrupts 0-4 corresponding to IP2-IP6 in the CP0
Cause register.

5 MIPS external interrupt 5 corresponding to IP7 in the CP0 Cause reg-
ister. The value of IP7 is the logical OR of the output of the PIC with
the core’s timer interrupt value.

6 MIPS non-maskable interrupt corresponding to NMI field of the CP0
Status register. CURRENTLY NOT SUPPORTED ON BERI OR
BERI2.

7 MIPS EJTAG debug exception trigger. CURRENTLY NOT SUP-
PORTED ON BERI OR BERI2.

Table 10.3: Values of the IRQ field of config register.
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023783031

0 Word1

E 0 TID 0 IRQ Word0

0 R/W Zero reserved: zero on read, should be written with zero.
E R/W Enable/disable this interrupt source. If set to one the interrupt will be en-

abled, otherwise it will be masked.
TID R/W Thread ID of the hardware thread which will receive this interrupt. The

width of this depends on the number of hardware threads implemented on
the core.

IRQ R/W MIPS interrupt number to which this interrupt source will be delivered. Val-
ues 0-7 are mapped to the MIPS interrupts as shown in Table 10.3.

Figure 10.1: PIC Configuration Register Format

thread interrupts are also required then two or more sources per thead may be configured.
On future multi-processor builds, a message on the inter-processor interconnect will be able to set

an interrupt-pending bit, thus allowing for interprocessor interrupts or message-based interrupts similar
to PCI’s Message Signalled Interrupts.

The IP bits are packed into 64-bit registers for manipulation by software. The current value for a
source, s, can be read from a read-only register at address PIC_IP_READ_BASE+bs/8c, in bit s mod 64
(numbered from zero as the least significant bit). For hard sources, this value is the value of the external
interrupt wire ored together with the IP bit. Thus, the state of the IP bit cannot be read in isolation.
Software may set the IP bit for a source by writing a value of one to the corresponding offset from
PIC_IP_SET_BASE and, similarly, clear it using an offset from PIC_IP_CLEAR_BASE. Bits written
with zero will have no effect. The set/clear semantics allows for atomic manipulation of one or more
bits in the packed registers without the potential for race conditions associated with a read/modify/write
sequence.

10.5 Reset State
On reset, all PIC configuration and state is set to zero except for the first five hardware sources, 0-4,
which are given a backwards-compatible initial state as follows:

• The E bit is set to one to enable the interrupt

• The TID field is set to zero to pass the interrupt to thread 0

• The IRQ field is set to the source number

Effectively, the PIC is completely transparent to PIC-unaware code, which may behave as if external
interrupts were directly connected to the MIPS interrupt wires. PIC aware software should not rely on
this behavior and should explicitly configure all interrupt sources on boot.

10.6 Safe Handling of Interrupts
A combination of soft interrupts and shared-memory communication is likely to be used to pass inter-
thread or inter-processor messages. In order to do this safely while avoiding missed wakeups, the source
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should be cleared first, before handling any incoming messages in a loop. Otherwise, a spurious interrupt
could result in the case where a second interrupt arrives during the processing of the first interrupt,
although that would not result in missed wakeups.

For hardware sources, the device must provide a safe way of handling and quiescing the interrupt.
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