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Abstract

Increasing server utilization in modern datacenters also increases the likelihood of
contention on physical resources and unexpected behavior due to side-effects from inter-
fering applications. Existing resource accounting mechanisms are too coarse-grained for
allowing services to track the causes of such variations in their execution. We make the
case for measuring resource consumption at system-call level and outline the design of
Resourceful, a system that offers applications the ability of querying this data at runtime
with low overhead, accounting for costs incurred both synchronously and asynchronously
after a given call.

1 Introduction

Running multiple services on the same physical host, multiplexed over a pool of shared
resources, is a common method for increasing machine utilization. This is typically
achieved through operating system process separation, containerization or hypervisor-
based virtualization. However, depending on the workloads of the collocated services, the
increase in utilization may also increase contention on system resources. This translates
into greater variability in system behavior, and lower predictability in terms of perfor-
mance and failure rates [4].

By design, the control planes managing hardware resources (the hypervisor and/or the
OS kernel) are viewed as black boxes by any applications executing on top. This means
that there is no direct way for a single process to detect or query whether its execution
is affected by resource contention (e.g. cache trashing, IO storms). Furthermore, it
is difficult to diagnose and recover from side effects of performance degradation caused
by contention (e.g. fewer results returned, loss of precision in timeout-based processing
algorithms).

The fundamental step towards enabling applications to measure and react to periods
of resource contention during their execution is giving them the ability to query detailed
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resource consumption data on the actions they perform. To this end, we present Resource-
ful, a framework that provides configurable resource utilization measurements at system
call granularity to applications interested in monitoring their footprint in the context of
overall resource consumption.

For actions performed completely in user space, applications can already be instru-
mented to monitor their own execution. In contrast, once a system call is made, they no
longer have any control or visibility into what happens at kernel level in terms of resource
consumption. However, many applications end up spending a significant percentage of
their time in the kernel [2].

It is possible to make coarse-grained measurements at this level in terms of aggregate
resource consumption using existing profiling and monitoring tools. For example, the
Linux kernel provides mechanisms such as the getrusage()1 call, perf2, and ftrace3.
Other tools such as iotop4 or netstat5 use information exposed through /proc, while
DTrace [3] and SystemTap [12] allow the user to write scripts that can gather similar
data. However, current methods fall short in the following important dimensions:

(i) Accounting granularity and aggregation: The mechanisms above can only
obtain system-wide or per-process statistics. Therefore, it is difficult to understand the
contribution of a particular process’ activity towards total resource consumption. For
example, if one wishes to diagnose occasional high latency responses from a server, then
per-process aggregated data is of limited use. Instead, fine-grained information is needed,
such as per system call data aggregated only over the lifetime of the request-response
cycle. Existing tools that can track individual function calls, such as ftrace, are often
limited to debugging scenarios because of the overheads they introduce.

(ii) Accounting for resources consumed asynchronously: not all the effects of
a given system call occur during its execution. A very simple example here is a process
writing data to disk: while the application makes multiple calls to write() on a particular
file descriptor, there may be no immediate I/O activity on disk because of the kernel’s
use of a buffer cache. The actual submission to hardware will occur asynchronously,
depending on the I/O scheduler, the expiration of a flushing interval, or on an explicit
call to fsync. Simply recording resource consumption metrics before and after a write

call will not capture its full cost. In order to fully explain shared resource usage, one
needs to take into account asynchronous effects and assign the costs of running them to
original causes. There are no existing tools supporting this type of investigation.

(iii) Online analysis and feedback: with the exception of getrusage(), most
kernel-level resource accounting mechanisms available are designed for debugging or offline
analysis scenarios – the final output is a log that needs to be processed in order to
extract relevant data. The applications themselves never have access to this data while
running, and therefore cannot adapt in real time to other concurrent workloads. Instead,
applications are given the illusion of exclusive resource ownership.

The difficulty in providing the OS support for dealing with those issues can be at-
tributed to the high overhead that is typically introduced by fine grained measurements

1http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html
2https://perf.wiki.kernel.org/index.php/Main_Page
3https://www.kernel.org/doc/Documentation/trace/ftrace.txt
4http://guichaz.free.fr/iotop/
5http://linux.die.net/man/8/netstat
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and to the challenge of tracking causal dependencies between pieces of code executed
by the kernel. Resourceful addresses these problems through selective kernel probing,
informed by static binary and code analysis.

The main contributions of this paper are:

� Describing an architecture that allows applications to gather fine-grained (system
call level) resource consumption data, broken down per kernel subsystem, with low
overhead.

� Presenting a method for automatically identifying kernel subsystem boundaries and
the minimal number of required instrumentation probe points, using static analysis.

� A framework for attributing resource consumption of asynchronous tasks to the calls
that triggered their execution.

Our current implementation focuses on gathering resource usage data from the Linux
kernel. However, the overall design is general enough to allow for implementation in
hypervisors and extension to other codebases.

In this paper, we show that it is possible to run a system tracking resource consumption
based on our design with reasonable overhead. Our initial experiments consider accounting
for socket accept/send/receive resource consumption in a real application (lighttpd). A
full investigation on the accuracy of the recorded data remains as future work.

2 Resourceful: System design

Fine-grained accounting is required in cases where developers need insights into the
way applications behave or interact with each other: for example, one might want to
understand the cost of a client request, either on a single host or over a distributed
system; this implies being able to aggregate data at sub-process granularity (summing
over the calls that were made to service that request). On high latency requests, there
is a need of diagnosing causes: What is different from the low latency case? Were there
unintended interactions between the server and other co-located applications? Where was
most of the time spent?

The same fine-grained resource usage data can be used in improving user-level schedul-
ing, or application coordination: applications could take such decisions based on the cur-
rent state, for example by task-level coalescing of requests [5], or could trade resources
similar to auction frameworks [10].

With these use cases in mind, Resourceful is designed to give applications full control
over measuring resource consumption of system calls. The framework has three main
components: (i) measurement configuration: this analyzes the current kernel in order
to identify a minimal set of instrumentation probe points and subsystem boundaries
(the level at which aggregation takes place), guided by a user-provided configuration;
(ii) a kernel module responsible for inserting these probes into the kernel and activating
them when applications request resource consumption data and (iii) a user-space library

exposing an API that applications can use to express interest in the resource consumption
of particular system calls and to read the results after the required information was
gathered on the kernel side.
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Each resource accounting result provides detailed metrics grouped by kernel subsys-
tem. For example, the data recorded for one system call would contain total CPU cycles,
wall clock time and memory costs, but these values are further broken down for each
functional subsystem touched during that call: total CPU cycles spent in the Network
subsystem, total cycles spent in VFS and subsystem-specific metrics such as bytes sent/re-
ceived, number of retransmissions, IO queue size, disk writes. The application can select
exactly which of those metrics are recorded and can also perform custom aggregations
across multiple system calls.

By reporting resource consumption aggregated by subsystem, Resourceful provides a
more detailed view of what happens inside the kernel. For example, given a socket send()
operation, the application can view the breakdown of latency and answer questions such
as: Was most of the time spent in the network stack? Was the packet delayed by the
scheduler moving the task on a different core?

2.1 Kernel subsystem identification

The Linux kernel has a modular structure of subsystems, such as VFS, logical filesys-
tems, block devices. A complete list of these can be found in the Linux Kernel Map.6

Resourceful uses this logical structure in identifying suitable probing points for reporting
the resource consumption on a per-subsystem basis.

To identify subsystems, we perform inter-procedural static analysis of the currently-
running kernel. We start by finding all call instructions in the kernel’s binary, and
determine the function symbols for both the callee and the caller. Each function is then
categorized into one of the subsystems in the Linux Kernel Map, predominantly based
on its source file location. We track the function calls that are made from within one
subsystem to another, and we consider them to be part of the subsystem boundary.

global {
subsystem_whitelist: net_link_layer

}

subsystem net_link_layer {
boundary :

probe dev_queue_xmit {
arg : skb

capture : {
name: net_buf_enq ,

val : &skb ->dev ->qdisc

}
},
probe qdisk_restart {

arg : dev

capture : {
name: net_buf_deq ,

val : &dev ->qdisc

}
}

metrics : cycles

map_async : match( net_buf_deq , net_buf_enq )

}

Listing 1: Sample configuration file defining a custom subsystem

6http://www.makelinux.net/kernel_map/
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Instrumentation probes are then inserted around the locations where such boundary
functions are called. Concretely, if the sys socket function (from the Network subsystem)
calls kmalloc (from the Memory subsystem), we need to add probes surrounding the call
site of kmalloc within sys socket. Even if this means we could potentially be setting
numerous probes (a function such as kmalloc is called often), it is the only way to avoid
false positives: setting the probes inside kmalloc would mean probing more often than
necessary: any call to kmalloc would be probed, even when it’s not on a subsystem
boundary (e.g any call to kmalloc from within the Memory subsystem). Whilst inserting
more probes has a higher startup cost, there is no runtime cost of unused probes and
there is no increase in code size from inserting unused probes.

Besides the subsystems identified automatically this way, we allow users to influence
the process through configuration files such as the one presented in Listing 1. Here, users
can remove subsystems detected automatically or add their own. The example shows how
the network link layer could be defined as a separate subsystem, generating probes for
when packets are enqueued or dequeued from device buffers.

So far, we have applied our analysis to the Linux kernel. However, this approach
can be extended to any codebase where modules are organized using a directory-based
structure.

2.2 Kernel accounting infrastructure

Having identified the minimum number of probe points required for measuring per-
subsystem resource consumption, a kernel module has the job of inserting those probes
at runtime. For the Linux kernel, this can be achieved using kprobes.7

When triggered, each kprobe records a snapshot of resource consumption metrics ac-
cording to the subsystem in which the probed function resides. For gathering actual data,
we use existing kernel mechanisms such as perf events for reading CPU Performance
Monitoring Unit (PMU) data or structures that contain statistics, like tcp info.

Besides making sure that those probes run and snapshot resource consumption statis-
tics when required, the kernel module also needs to efficiently store this information and
make it accessible to user-space applications. We provide an overall schematic of how this
works in Figure 1.

On initialization, the kernel module creates two character devices: a data device
(/dev/rscfl) for resource accounting information and a control device (/dev/r ctl)
for communication between user space and the module. When applications linking with
the Resourceful library call init(), the two devices are mmap-ed into their local address
space. This is done for each application thread, and the corresponding mmap allocates a
new buffer on the kernel side to hold resource accounting data for system calls made from
that thread.

On hitting a probe, the module needs to determine the corresponding accounting
buffer for writing resource consumption data. An index that links given pids to their
corresponding buffers is maintained in per-cpu hash tables for this purpose, avoiding
locks on the critical path. Resourceful intercepts calls to scheduler functions in order to
maintain those indexes up-to-date for each cpu.

7https://www.kernel.org/doc/Documentation/kprobes.txt
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Figure 1: Primary user-space/kernel-space interactions detailed. Resource accounting
data is requested by applications for specific system calls and is then available for reading
(zero-copy) from kernel buffer regions mmap-ed into the current address space.

Accounting for Asynchronous Resource Consumption

As described in our initial example, the total cost of performing a buffered write should
also consider the asynchronous operation committing the data to disk. Unlike existing
approaches, Resourceful separately reports the resources consumed asynchronously after
making such system calls. Without reporting the amortized, asynchronous cost, current
performance monitoring APIs provide an incomplete representation of system resource
consumption.

The solution for tracking calls that have caused a given asynchronous task hinges
on the observation that a link between two operations can only exist if the kernel code
maintains some data structure shared by both. Cache buffers in which data is enqueued
and later dequeued asynchronously (flushed) and timers started by a function for running
a given task when reaching zero are just two examples. Tracking the lifetime of those
shared structures and any actions performed on them is sufficient for determining the
calls to which resource consumption should be attributed.

When multiple system calls are amortized over the same asynchronous operation (e.g.
multiple writes being buffered and then flushed to disk once), the resources consumed
by the flush will have to be divided amongst all the initial system calls, following an
attribution strategy. For buffered writes, the simplest strategy is to divide the costs
proportional to the size of each write.
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Resourceful performs accounting for asynchronous kernel operations by observing that
Linux provides a number of abstractions for performing asynchronous work: timers,
tasklets, workqueues and interrupts. Each of these is characterized by particular shared
data structures, and the framework will index their addresses in order to track the oper-
ation that triggered the asynchronous execution.

Custom asynchronous accounting can also be set up: Listing 1 shows how network
scheduler buffers (the qdisc buffer) can be tracked across enqueue/dequeue operations:
when the dev queue xmit probe is hit (synchronously), Resourceful will store the address
of the qdisc buffer. A following qdisc restart probe being hit on an asynchronous
path will match on the address of the qdisc buffer and search the index for the correct
accounting structure that should be filled.

2.3 User space API

The core of Resourceful user’s space API is formed by the three functions presented in
Figure 1. init() must be called by the application on every thread that needs resource
consumption data, and returns a handle used by the other functions in identifying the
locations of mmaped buffers.

Before a system call of interest, the developer calls acct next(). This will write an
entry to the control device marking the fact that the kernel infrastructure must track
resource consumption for the next system call comming from that pid. Variants of
acct next exist, in case the developer needs accounting for the next n system calls,
or just needs to start/stop accounting at specific points in the application. acct next

also allows the user to pass in a bit array in order to filter-out uninteresting kernel sub-
systems from the result. Custom aggregation can be set up by passing an integer token
(arbitrarily chosen by the user) to multiple acct next calls. The data for all the calls
with a given token value will be aggregated in the same accounting structure.

The third API call, acct read, allows zero-copy reads of accounting data from the
kernel. Synchronous costs can be read immediately, and a callback can be set up for
running when the asynchronous part of the cost has also been recorded. The returned
data structure contains the same bit array used to apply filters, but this now specifies
which subsystems the system call has actually touched (in this way, the application knows
which elements of the structure contain valid data).

An API extension which we have not yet implemented in our prototype will allow
applications to mmap resource accounting buffers of other processes. This paves the way
for applications that react to concurrent workloads, by throttling or delaying their own
operations for example.

3 Initial results

We have developed the kernel subsystem identification and resource accounting proto-
types separately, with the purpose of showcasing the feasibility of the design and gathering
preliminary overhead data.

At the moment, the kernel module uses SystemTap to manually set kprobes for the
network, memory and filesystem kernel sub-systems.

In order to understand the overhead introduced by Resourceful, we have modified
lighttpd to link with our user-space library and do resource accounting for each socket

9



accept/send/receive call. At runtime, lighttpd is configured to serve a number of static
files for performing end-to-end latency and throughput tests.

To characterize overhead, we first look at the distribution of latencies and compare a
vanilla lighttpd binary with the one that runs resource accounting using Resourceful, for
10000 sequential requests issued using http ping. As observed in Figure 2, the median
latency increases by 3.9% when resource accounting is active. The tail latency is also
slightly increased, with the 99th percentile growing by 7.66%.

Figure 2: Normalized latency histograms showing changes in latency distribution when
enabling Resourceful for lighttpd

Importantly, the overall characteristics of the latency distribution stay the same: we
see two local maxima and the overall shape remains similar. This suggests that even
with the overhead of measuring resource consumption, one would still observe the latency
characteristics of the underlying system.

Table 1 shows the drop in throughput (∼31%) averaged over 10 runs when doing 100k
sequential requests for small files using http load. This should be seen as an overhead
upper-bound, as we have not yet performed any optimizations on the system as a whole.
An in-depth evaluation is planned as future work.

lighttpd Base + Resourceful
Fetches / second (avg) 2486.4 1716.9
Bytes / second (avg) 54700.5 37772.0

Table 1: Change in throughput when enabling Resourceful for lighttpd

4 Related work
Many existing tracing and profiling tools only instrument a thin layer of the target

system. For example Dapper [11] makes use of instruments in an RPC library and X-
Trace [7] modifies only the protocol and network stacks. Whilst these tools are able to
provide detailed information about their respective instrumented layers, they treat much
of surrounding system as a black-box. The Google-Wide Profiling tool [9] attempts to
overcome this narrow view by profiling the entire target system, but instead of being
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continuous it is sample-based, meaning it makes a trade-off between sample rate and
visibility. Resourceful differs from these by allowing any part of a target system to be
continually profiled whilst only incurring a low-overhead.

Other tracing systems such as Magpie [1] require the user to provide a definition of
the expected system structure in order for it to correctly correlate events. Resource-
ful automatically identifies subsystem boundaries, although those can also be manually
configured by the user.

The primary method of interacting with Resourceful is through its user-space API.
Other systems such as Fay [6] go some way towards providing a programmatic interface
to trace and profile data, but are still limited to a post-hoc evaluation. Resourceful’s API
allows trace data to be retrieved and evaluated in line with the target processes execution.
This runtime availability of resource consumption data give a much richer view of how the
application and kernel are performing, allowing for more informed decisions to be made.

One useful feature to have when designing a dependable system is being able to accu-
rately predict the future. The system described by Ostrowski et al [8] provides methods
for users to carry out what-if analysis on existing trace data. Resourceful not only pro-
vides the primitives to build such a system but allows the user to make decisions and take
action at run-time when provided with the results of a what-if scenario.

5 Future work and conclusion

A number of challenges remain as future work: (i) evaluating the precision and accu-
racy of the resulting data, thus characterizing the limits of our system – this would allow
Resourceful to be used for setting fine-grained quotas or diagnosing software variability
(ii) exploring whether some user-space instrumentation can be automatically added using
either compiler-based methods or binary rewriting. (iii) extending Resourceful to the
hypervisor level and across hosts.

Measuring resource consumption at a fine-grained level is extremely useful in under-
standing the behavior of a system and its interactions with the runtime environment.
However, the main problem with measurements like these is the probe effect they intro-
duce. The main purpose of our developed prototype is showing that it is feasible to obtain
fine-grained accounting data without significantly altering the characteristics of the sys-
tem we measure (which, in turn, means minimizing overhead). Longer term, we envision
applications coordinating their resource usage or even trading resources based on given
policies, using the same fine-grained accounting mechanisms.
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