
Technical Report
Number 857

Computer Laboratory

UCAM-CL-TR-857
ISSN 1476-2986

ARC: Analysis of Raft Consensus

Heidi Howard

July 2014

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2014 Heidi Howard

This technical report is based on a dissertation submitted
May 2014 by the author for the degree of Bachelor of Arts
(Computer Science Tripos) to the University of Cambridge,
Pembroke College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

The Paxos algorithm, despite being synonymous with distributed consensus for a
decade, is famously difficult to reason about and implement due to its non-intuitive
approach and underspecification. In response, this project implemented and evalu-
ated a framework for constructing fault-tolerant applications, utilising the recently
proposed Raft algorithm for distributed consensus. Constructing a simulation frame-
work for our implementation enabled us to evaluate the protocol on everything from
understandability and efficiency to correctness and performance in diverse network
environments. We propose a range of optimisations to the protocol and released to the
community a testbed for developing further optimisations and investigating optimal
protocol parameters for real-world deployments.

3

Acknowledgements

I have thoroughly enjoyed working on this project and my final year at Cambridge, it
wouldn’t have been possible without the help and support of the following wonderful
people: Anil Madhavapeddy, not only have you been an excellent supervisor but you
have been my mentor over the last two years and Diego Ongaro, author of Raft, who
has taken his time to support me in reproducing his results and sharing his ideas. I
would also like to thank Malte Schwarzkopf and Chris Hadley for providing excellent
feedback on my dissertation, which forms the basis of this technical report.

4

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Related Work . 10

1.2.1 Definition of Consensus . 10
1.2.2 CAP theorem: Conjecture, Correctness & Controversy 11
1.2.3 FLP Impossibility Result . 12
1.2.4 Two and Three Phase Commit . 12
1.2.5 (Multi-)Paxos . 12
1.2.6 Viewstamped Replication . 14

2 Preparation 15
2.1 Assumptions . 15
2.2 Approach . 16
2.3 Raft Protocol . 17

2.3.1 Leader Election . 17
2.3.2 Log Replication . 18
2.3.3 Safety and Extra Conditions . 23

2.4 Requirements Analysis . 26
2.5 Choice of Tools . 27

2.5.1 Programming Languages . 27
2.5.2 Build Systems . 27
2.5.3 Libraries . 27
2.5.4 Testing . 27

2.6 Summary . 28

3 Implementation 29
3.1 Simulation Framework . 29
3.2 Clock . 30
3.3 State . 32

3.3.1 Node State . 34
3.3.2 Client State . 35

5

3.4 Events . 35
3.5 Event List . 36
3.6 Simulation Parameters . 37
3.7 Non-determinism . 37
3.8 Correctness . 38
3.9 Summary . 38

4 Evaluation 41
4.1 Calibration . 41
4.2 Leader Election . 44
4.3 Log Replication and Client Semantics . 49
4.4 Testing . 52
4.5 Summary . 54

5 Conclusion 55
5.1 Recommendations . 55
5.2 Future Work . 57

Bibliography 59

A Raft Specification for Simulation 63
A.1 State . 63
A.2 RPCs . 65

A.2.1 Append Entries . 65
A.2.2 Client Commit . 66
A.2.3 Request Vote . 67

B Simulation Parameters 68

6

List of Figures

1.1 Timeline of the key developments in distributed consensus. 11
1.2 Timing diagram of successful Paxos between five nodes 13
1.3 Timing diagram of duelling proposers in Paxos 13

2.1 Components of the replicated state machine approach. 16
2.2 State transition model for Raft consensus 17
2.3 Timing diagram of successful election . 19
2.4 Timing diagram of election timeout and restart 20
2.5 Timing diagram of leader stepping down 21
2.6 General example of replicated logs . 22
2.7 Example of simple command commit between three nodes 23
2.8 Example of leader using AppendEntries RPCs to bring a range of logs

up to a consistent state . 24
2.9 Example of why the extra commit conditions are necessary 25
2.10 Raft’s guarantees to provide distributed consensus 25

3.1 Example DES of Raft consensus . 31
3.2 Shared module signature of FakeTime and RealTime. 32
3.3 Demonstration of enforcing time monotonicity. 32
3.4 Example timeline of terms . 32
3.5 Use of type system to enforce monotonicity of Term. 33
3.6 Functor to limit protocol interaction with state to statecalls. 33
3.7 Example node running a key value store using Raft consensus. 34
3.8 Mutually recursive type definitions of t and event. 35
3.9 Monad signature and Option monad implementation. 36
3.10 Signature for data structures implementing Event List. 36
3.11 SplayTree as a functor over Item . 37
3.12 Type sharing constraint between item and Event.t 37
3.13 Example OCaml interface to each node’s run-time monitor, generated

from SPL. 39
3.14 Raft’s mode of operation transitions modelling in SPL. 40

7

4.1 Time taken to establish leadership as a function of follower timeout . . 42
4.2 Cumulative distribution of the time until first election 43
4.3 Time taken to establish leadership as a function of follower timeout . . 45
4.4 Investigating the impact of alternative candidate timeouts 47
4.5 Box plot showing effect of optimisations on network traffic 48
4.6 Four examples of diverse network topologies 50
4.7 Example of livelock and proposed solution 53
4.8 Screenshot of Travis CI web GUI for testing git commit history. 54

B.1 Table detailing the available simulation parameters 69

8

Chapter 1

Introduction

This technical report describes the implementation, analysis and refinement of the
Raft consensus algorithm, for building fault-tolerant applications on a cluster of repli-
cated state machines.

1.1 Motivation

Distributed consensus builds reliable systems from unreliable components, it forms
the foundation of many distributed systems and is a fundamental problem in com-
puter science. Its applications range from fault-tolerant databases, lock managers,
group membership systems and leader election to terminating reliable broadcast and
clock synchronization, not forgetting Greek parliamentary proceedings [14] and gen-
erals invading a city [19]. The subject of this report is the implementation of fault-
tolerant applications by replicated deterministic state machines and co-ordinating
transitions, known as the replicated state machine approach.

Leslie Lamport’s Paxos protocol [14] is at the heart of distributed consensus in
both research and industry. Despite being synonymous with consensus for a decade,
it is famously difficult to understand, reason about and implement because of its non-
intuitive approach and the lack of universal agreement on the algorithm for multi-
Paxos.

Lamport’s original description of Paxos [14], though highly cited, is notoriously
difficult to understand and therefore has led to much follow up work, explaining the
protocol in simpler terms [15, 36] and optimising it for practical systems [18, 17, 25].
Lamport went on to sketch some approaches to Multi-Paxos, based on consecutive
runs of Paxos, but its under-specification led to divergent interpretations and imple-
mentations.

The search for a more understandable consensus algorithm is not simply about
easing the right of passage for computer science undergraduates or aiding software

9

10 CHAPTER 1. INTRODUCTION

developers but also about bridging the divide between the formal verification and
system communities.

Raft [28, 27] by Diego Ongaro and John Ousterhout promises distributed consen-
sus, which provides the same guarantees as Multi-Paxos under the same assumptions,
with enhanced understandability from an intuition-focused approach and proof of
safety.

On first sight, Raft is the silver bullet to a decade old problem in distributed sys-
tems. Since the draft was first released online, it has been popular with developers,
leading to a dozen implementations. However at the time of writing, the Raft paper
has yet to be published at a peer reviewed venue1 and therefore there does not exist
any formal follow-up literature.

This project will evaluate the claims made by the paper, from its usability to cor-
rectness. Our conclusions will be the first published assessment of the protocol and
hopefully will either spark a new direction in distributed consensus or demonstrate
its shortcomings.

1.2 Related Work

We have seen that distributed consensus is fundamental to today’s computer systems.
Now we consult with the two schools of thought, the theory of distributed consensus
which demonstrates that true consensus is impossible to achieve and the discipline
of engineering practical solutions, which aims to achieve the impossible by reshaping
our assumptions and guarantees. Figure 1.1 highlights the key developments in this
field.

1.2.1 Definition of Consensus

Consensus requires the following conditions to be met:

1. Agreement: all correct nodes2 arrive at the same value (the safety property);

2. Validity: the value chosen is one that was proposed by a correct node (the non-
triviality property);

3. Termination: all correct nodes eventually decide on a value (the liveness property).

Traditional consensus problems require that, in an asynchronous system, agreement
and validity must be met regardless of the number of non-Byzantine failures [29]

1The paper has now appeared in 2014 USENIX Annual Technical Conference, June 2014.
2A correct node is a node that is currently running, so either it has not fail-stopped or has restarted

after a fail-recover.

1.2. RELATED WORK 11

1985 FLP Impossibility Result [8].

1988 Oki and Liskov’s Viewstamped Repication [26].

1998 Lamport’s original Paxos paper "Part-Time Parliment" [8].

2000 Brewer proposes CAP conjecture during Keynote at PODC [2].

2002 Proof of CAP by Gilbert and Lynch [10].

2005 Lamport’s Technical Report on Generalized Consensus & Paxos [16].

2013 Raft Consensus Paper first available online [28].

Figure 1.1: Timeline of the key developments in distributed consensus.

and all three must be met given the number of non-Byzantine failures is less than
a threshold value. The number of nodes which are required to participate in agree-
ment is known as the Quorum size. For multi-Paxos (§1.2.5), Viewstamped Replication
(§1.2.6) and Raft (§2.2), to tolerate at most f failures, the quorum size is f + 1 for a
cluster of 2 f + 1 nodes. The quorum intersection property ensures that for any two
quora from the 2 f + 1 nodes there will be an intersection of at least one node. Thus if
we operate on any quorum, at least one member of any future quorum will be aware
of the previous operation.

1.2.2 CAP theorem: Conjecture, Correctness & Controversy

The CAP conjecture [2] was proposed by Eric Brewer in 2000, it argued that it is nec-
essary to compromise at least one of Consistency, Availability and Partition Tolerance
in a distributed system.

CAP was formally proven two years later [10] operating in asynchronous condi-
tions by considering two nodes either side of a network partition. If these two nodes
receive two conflicting client requests then they must both accept the requests, thus
compromising Consistency or at least one of them must not accept the request, thus
compromising Availability.

There has been much confusion over the CAP theorem, as noted by Brewer [1]
himself. Brewer argues that the two of three formula is misleading as it oversimpli-
fies the complex interactions between the properties. Partitions are often rare and
consistency is not a binary concept, but a whole spectrum of models from Atomicity,
Consistency, Isolation and Durability (ACID) to Basically Available Soft-state services with

12 CHAPTER 1. INTRODUCTION

Eventual-consistency (BASE). The consistency in CAP was intended by Brewer to be
single-copy consistency [1].

1.2.3 FLP Impossibility Result

The FLP result [8] proves that it is not possible to guarantee consensus on a single
value, if one or more processes is fail-stop faulty, in an asynchronous system with re-
liable communication. The asynchronism of the system means that we cannot reliably
differentiate between a slow process or message and a failed node, even if we assume
that communication is reliable.

1.2.4 Two and Three Phase Commit

In two-phase commit a co-ordinator attempts to commit a value in two distinct phases:
the proposal phase where a co-ordinator contacts all other nodes to propose a value
and collect responses, either a commit or abort from each node and the commit phase
where the co-ordinator tells all other nodes whether to commit or abort the previously
proposed value. If a co-ordinator fails during the commit phases, then another node
could try to recover by asking nodes how they voted in the proposal phase. However if
an additional node has failed we cannot know who it voted for and we cannot simply
abort the transaction as the co-ordinator may have already told the failed node to
commit and therefore we must block until the node recovers.

Three-phase commit [32] provides liveness by adding a third prepare to commit
phase between the proposal and commit stages. This phase has the co-ordinator send
prepare to commit messages to all nodes and proceed to the commit phase as long as
all nodes acknowledge receipt, otherwise it aborts the transaction. If the co-ordinator
fails during the commit stage, the nodes will timeout waiting for the commit phase and
commit the transaction themselves, in the knowledge that all nodes must have agreed
to commit the transaction for the protocol to reach this stage. If the co-ordinator fails
during the prepare to commit or proposal phases then, safe in the knowledge that no
node will have committed the transaction, the nodes will consider the transaction
aborted.

Neither 2PC or 3PC allows for asynchronous systems or network partitions.

1.2.5 (Multi-)Paxos

Paxos considers the agreement over a single value, as shown in in Figure 1.2 and
Figure 1.3. A node or set of nodes becomes a Proposer(s), each generating a unique
sequence number which is greater than any they have previously seen, for example
n + 1||nodeID, where n is the first element of the highest sequence number seen so

1.2. RELATED WORK 13

1

2

3

4

5

PROPOSE(11)
COMMIT(11,a)

PROPOSE(n)
PROMISE(n,v)
COMMIT(n,v)
ACCEPT(n)

Figure 1.2: Successful Paxos: node 1 is the first proposer and all nodes promise the
request as it is the first one they have seen. Node 1 is then free to commit a value of
its choosing.

1

2

3

4

5

PROPOSE(11)

PROPOSE(15)

COMMIT(11,b)
PROPOSE(21)

COMMIT(15,a)

PROPOSE(n)
PROMISE(n,v)
COMMIT(n,v)
ACCEPT(n)
REJECT(n)

Figure 1.3: Duelling proposers in Paxos: initially node 1 gets the nodes to promise to
sequence number 11. Node 5 then gets the nodes to promise to sequence number 15.
When the nodes receive the commit(11,b) from node 1, they all reply with reject(15)
since 15 is the last sequence number they have seen. In response, node 1 tries to pro-
pose again with sequence number 21 and the nodes promise. When the nodes receive
the commit(15,a) from node 1, they all reply with reject(21) since the last sequence
number they have seen is 21. This process could continue indefinitely.

14 CHAPTER 1. INTRODUCTION

far. The proposer broadcasts a propose message (including its sequence number) to all
other nodes.

On receipt of a propose message, each node compares the sequence number to
the highest number it has already seen. If this is the highest it has seen, the node
replies with a promise, including the last value accepted and its sequence number, if
any. Otherwise the node responds with a reject message and the highest sequence
number it has seen. If a strict majority of nodes reply with a promise message then the
proposer chooses the value received with the highest sequence number. If no values
are received, then the proposer is free to choose a value. The proposer then broadcasts a
commit message (including sequence number and value) to all nodes.

On receipt of a commit message, each node compares the sequence number to the
highest number it has already seen. If the sequence number is the highest it has seen
and if the value is the same as any previously accepted value, then the node replies
with an accept (as demonstrated in Figure 1.2), otherwise the node responds with a
reject message (as demonstrated in Figure 1.2) and the highest sequence number it
has seen. If a strict majority of nodes reply with an accept message, then the value has
been committed and the protocol terminates, otherwise the protocol starts again.

Multi-Paxos [15] is the chaining together of a series of instances of Paxos to achieve
consensus on a series of values such as a replicated log. Multi-Paxos uses leaders,
long-term proposers who are therefore able to omit the propose message when they
were the last node to commit a value. This series of values is recorded by each node to
build fault tolerant applications using the replicated state machine approach (detailed in
§2.2) and to enable nodes which have fail-recovered to catch up. This is a notoriously
complicated protocol to get to grips with, demonstrating the need for new consensus
algorithms such as Raft.

1.2.6 Viewstamped Replication

Viewstamped Replication (VR) [26, 20] is the most similar of existing protocols to Raft
Consensus, though we will not explain the protocol in detail here due to the consider-
able overlap with Raft Consensus. It is worth highlighting that VR uses round-robin
for leader election instead of the eager algorithm used in Raft and that VR has all
nodes actively communicating, allowing for interesting features such as the ability to
operate without non-volatile storage, though it can be more difficult to reason about.

Chapter 2

Preparation

2.1 Assumptions

Raft consensus operates under the same set of assumptions as Multi-Paxos. The vast
literature on Multi-Paxos details techniques to broaden the application, but here we
are only considering classic Multi-Paxos. These assumptions are as follows:

1. Network communication between nodes is unreliable including network delays,
partitions, and packet loss, duplication, and re-ordering;

2. Nodes have access to infinite persistent storage that cannot be corrupted and
any write to persistent storage will be completed before crashing (known as
write-ahead logging);

3. Nodes operate in an asynchronous environment with faulty clocks, no upper
bound exists for the delay of messages and nodes may operate at arbitrary
speeds;

4. Byzantine failures [29] cannot occur;

5. Nodes are statically configured with a knowledge of all other nodes in the clus-
ter, cluster membership cannot change dynamically;

6. The protocol has use of infinitely large monotonically increasing values;

7. Clients of the application must communicate with the cluster via the current
leader, it is the responsibility of the client to determine which one of them is cur-
rently leader. The clients are statically configured with knowledge of all nodes;
and

8. The state machines running on each node all start in the same state and respond
deterministically to client operations.

15

16 CHAPTER 2. PREPARATION

2.2 Approach

Client

Consensus
Module

Client

Consensus
Module

Consensus
Module

Log

State Machine

Consensus
Module

Log

State Machine

Consensus
Module

Log

State Machine

Network

Figure 2.1: Components of the replicated state machine approach.

We will frame the challenge of distributed consensus in the context of a replicated
state machine (Figure 2.1), drawing a clear distinction between the state machine (a
fault-tolerant application), the replicated log and the consensus module (handled by the
consensus protocol like Multi-Paxos or Raft).

The clients interact with the replicated state machine via commands. These com-
mands are given to the consensus module, which determines if it is possible to com-
mit the command to the replicated state machine and, if possible, does so. The state
machine must be deterministic, so that when commands are committed the state ma-
chines remain identical. A fault-tolerant database is an example of one such applica-
tion. Once a command has been committed, the consensus protocol guarantees that
eventually the command will be committed on every live state machine and they will
be committed in order. This provides linearisable semantics from the client, defined
as each command from the client appearing to execute instantaneously, exactly once,
at some point between its invocation and positive response.

This perspective on distributed consensus has been chosen as it mimics real-world
applications. Zookeeper [13], the currently most popular open source consensus ap-
plication and Chubby [4], a fault-tolerant, distributed locking mechanism used by ap-
plications such as the Google Filesystem [9] and Bigtable [6], both use the replicated
state machine approach [5].

2.3. RAFT PROTOCOL 17

Follower Candidate Leader

starts up/
recovers times out,

starts election

times out,
new election

receives votes from
majority of servers

discovers current
leader of new term

discovers server with higher term

Figure 2.2: State transition model for Raft consensus.

In the pursuit of understandability and in contrast to the approach of View-
stamped Replication, Raft uses strong leadership, which extends the ideas of leader-
driven consensus by adding the following conditions:

1. All message passing will be initialised by a leader (or a node attempting to be-
come leader). The protocol specification makes this explicit by modelling com-
munications as RPCs, emphasizing the clear roles of a node as distinctly either
active or passive.

2. Clients must contact the leader directly to communicate with the system.

3. For a system to be available it is necessary (but not sufficient) for a leader to
have been elected. If the system is in the process of electing a leader, even if all
nodes are up, the system is unavailable.

2.3 Raft Protocol

2.3.1 Leader Election

Each node has a consensus module, which is always operating within one of the
following modes:

• Follower: A passive node, which only responds to RPC’s and will not initiate
any communications.

• Candidate: An active node which is attempting to become a Leader, they initiate
RequestVote RPC’s.

18 CHAPTER 2. PREPARATION

• Leader: An active node which is currently leading the cluster, this node handles
requests from clients to interact with the replicated state machine and initiates
AppendEntries RPC’s.

Events cause the nodes to transition between these modes, as shown by the nonde-
terministic finite automaton (NFA) in Figure 2.2. These events are all either temporal,
such as the protocol’s four main timers Follower Timeout, Candidate Timeout, Leader
Timeout and Client Timeout. Otherwise they can be spatial, such as receiving Appen-
dEntries, RequestVote or ClientCommit RPC’s from other nodes.

Since we cannot assume global clock synchronization, global partial ordering on
events is achieved with a monotonically increasing value, known as term. Each node
stores its perspective of the term in persistent storage. A node’s term is only updated
when it (re-)starts an election or when it learns from another node that its term is out of
date. All messages include the source node’s term, which is checked by the receiving
node. If the source’s term is smaller, the response is negative. If the recipient’s term
is smaller, then its term is updated before parsing the message, likewise if their terms
had been the same.

On startup or recovery from a failure, a node becomes a follower and waits to
be contacted by the leader, which broadcasts regular empty AppendEntries RPC’s. A
node operating as a follower will continue to do so unless it fails to hear from a
current leader or grant a vote to a candidate (details below) within its Follower Timer.
If this occurs a follower will transition to a candidate.

On becoming a candidate, a node will increment its term, vote for itself, start its
Candidate Timer and send a RequestVote RPC to all other nodes. As seen in the NFA
(Figure 2.2) for Raft, there are three possible outcomes of this election. Either the
candidate will receive at least a strict majority of votes and become leader for that
term (Figure 2.3), or it will fail to receive enough votes and restart the election (Figure
2.4), or it will learn that its term is out of date and will step down (Figure 2.5). A
follower will only vote for one node to be leader in a specific term. Since the vote is
stored on non-volatile storage and term increases monotonically, this ensures that at
most one node is the leader in a term (detailed in Figure 2.10).

2.3.2 Log Replication

Now that a node has established itself as a leader, it can service requests for the
replicated state machines from the clients. Clients contact the leader with commands
to be committed to the replicated state machine. On receipt the leader assigns a term
and index to the command, that uniquely identifies the command in the nodes’ logs.
The leader then tries to replicate the command to the logs of a strict majority of nodes
and, if successful, the command is committed, applied to the state machine of the
leader and the result returned to the client. Figure 2.6 shows an example set of logs,

2.3. RAFT PROTOCOL 19

requestVote RPC
appendEntries RPC

follower
leader
candidate

1

2

3

4

5

Node 1
elected leader

1

2

3

4

5

1 2 2

1 2

1 2

1 2

1 2

Figure 2.3: Example of a successful election: All nodes start and enter term 1 as fol-
lowers. Node 1 is the first to timeout and step up to a candidate in term 2. Node 1
broadcasts RequestVotes to all other nodes, who all reply positively, granting Node
1 their vote for term 2. Once node 1 has received 3 votes, it becomes a Leader and
broadcasts a heartbeat AppendEntries to all other nodes.

20 CHAPTER 2. PREPARATION

requestVote RPC
appendEntries RPC

follower
leader
candidate

1

2

3

4

5

Node 1
starts election

Node 1
restarts election

1

2

3

4

5

4 5 6 6

4 4 6

4 4 4

4 5 6

4 4

Figure 2.4: Example of an election timing out due to many nodes failing: At the start
of this trace, node 3 is leader in term 4 and all nodes are aware of this but the nodes
2, 3 and 5 soon fail. Node 1 is the first node to timeout and start an election in term
5. Node 1 is unable to receive votes from nodes 2, 3 and 5 so eventually times out
and restarts the election in term 6. In the meantime, node 2 has recovered and nodes
3 and 5 have recovered and failed again. Node 1 then gets votes from nodes 2 and 4
and wins the election to become leader in term 6.

2.3. RAFT PROTOCOL 21

requestVote RPC
appendEntries RPC

follower
leader
candidate

1

2

3

4

5

Node 1
elected leader

Node 5
elected leader

1

2

3

4

5

1 2 2 3

1 2 3

1 2 3

1 2 3

1 2 3 3

Figure 2.5: Example of an election in the face of a network partition, ultimately result-
ing in a leader stepping down. This cluster starts up with a partition between nodes
1/2/3 and 4/5. Nodes 1 and 5 each timeout and begin an election for term 2. Node 1
is elected leader by nodes 2 and 3 but node 5 is unable to gain votes from the majority
of nodes. After the partition is removed, node 5 times out and restarts the election in
term 3. Nodes 1 to 4 grant votes to node 5 as the term is now 3, so node 5 is elected
leader in term 3.

22 CHAPTER 2. PREPARATION

1
1

x←3

1
!y

1
y←9

2
x←2

3
!x

3
y←7

3
!x

3
x←4

2
1

x←3

1
!y

1
y←9

2
x←2

3
!x

3
1

x←3

1
!y

1
y←9

2
x←2

3
!x

3
y←7

3
!x

3
x←4

4
1

x←3

1
!y

5
1

x←3

1
!y

1
y←9

2
x←2

3
!x

3
y←7

3
!x

1 2 3 4 5 6 7 8 log index

leader

followers

Figure 2.6: Example log states for a collection of 5 nodes. Node 1 is leader and has
committed the first 7 entries in the log as they have been replicated on a majority
of nodes, in this case nodes 3 and 5. Nodes 2 and 4 may have failed or had their
messages lost in the network, therefore their logs are behind. The leader, node 1, is
responsible for bringing these nodes up to date.

the state machines is a key values store and the commands are add e.g. x ← 5 which
associated 5 with key x and find e.g. !y which returns the value associated with the
key y.

Consider the case where no nodes fail and all communication is reliable. We can
safely assume that all nodes are in the same term and all logs are identical. The
leader broadcasts AppendEntries RPCs, which includes (among other things) the log
entry the leader is trying to replicate. Each node adds the entry to its log and replies
with success. The leader then applies the command to its state machine, updates its
Commit Index and returns the result to the client. In the next AppendEntries message,
the leader informs all the other nodes of its updated Commit Index, the nodes apply
the command to their state machines and update their Commit Index. This process
repeats many times, as shown in Figure 2.7.

Now, consider the case that some messages have been lost or nodes have failed and
recovered, leaving these logs inconsistent. It is the responsibility of the leader to fix
this by replicating its log to all other nodes. When a follower receives an AppendEntries
RPC, it contains the log index and term associated with the previous entry. If this does
not match the last entry in the log, then the nodes reply with unsuccessful to the leader.
The leader is now aware that the log is inconsistent and needs to be fixed. The leader
will decrement the previous log index and term for that node, adding entries to the
log whilst doing so until the inconsistent node replies with success and is therefore up
to date, as shown in Figure 2.8.

Each node keeps its log in persistent storage, which includes a history of all com-
mands and their associated terms. Each node also has a Commit Index value, which
represents the most recent command to be applied to the replicated state machine.

2.3. RAFT PROTOCOL 23

1
1

x←3

1
!y

2
1

x←3

1
!y

3
1

x←3

1
!y

1
y←9

1 2 3

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
x←3

1
!y

1
y←9

1
y←9

1 2 3

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
y←9

1 2 3

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
y←9

1 2 3 log index

leader

followers

Figure 2.7: Example of node 1 committing y← 9 in term 1 at index 3. All nodes’ logs
are identical to start with. From right to left: node 1 receives y← 9 from the consensus
module and appends it to its log. Node 1 dispatches AppendEntries to nodes 2 and 3.
These are successful so node 1 updates its commit index (thick black line) to 3, applies
the command to its state machine and replies to the client. A later AppendEntries
updates the commit indexes of nodes 2 and 3.

When the Commit Index is updated, the node will pass all commands between the
new and old Commit Index to the state machine.

2.3.3 Safety and Extra Conditions

To ensure safety we must augment the above description with the following extra
conditions:

Since the leader will duplicate its log to all other logs, this log must include all
previous committed entries. To achieve this, Raft imposes further constraints on the
protocol detailed so far. First, a node will only grant a vote to another node if its log
is at least as up-to-date (defined as either having a last entry with a higher term or, if
terms are equal, a longer log).

The leader node is responsible for replicating its log to all other nodes, including
committing entries from the current term and from previous terms. Currently, how-
ever, it is possible to commit an entry from a previous term and for a node without
this entry to be elected leader and overwrite this (as demonstrated in Figure 2.9).
Therefore a leader can only commit an entry from a previous term if it has already
committed an entry from this current term.

The protocol provides linearisable semantics [12], guaranteeing that a command
is committed between the first time a command is dispatched and the first successful
response. The protocol doesn’t guarantee a particular interleaving of client requests,
but it does guarantee that all state machines will see commands in the same order. The
protocol assumes that if a client does not receive a response to its request within its
Client Timeout or the response is negative, it will retry this request until successful. To
provide linearisable semantics, we must ensure that each command is applied to each
state machine at most once. To address this, each client command has an associated

24 CHAPTER 2. PREPARATION

1
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

2
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

3
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

7
y←5

7
!y

4
1

x←3

4
!y

4
y←9

4
!x

4
y←7

5
1

x←3
2

x←2
2
!x

2
y←7

3
!x

3
x←5

3
!x

3
y←4

3
y←3

1 2 3 4 5 6 7 8 9 10 log index

leader

followers

(a) Initial state of logs

1
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

2
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

3
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

4
1

x←3

4
!y

4
y←9

4
!x

4
y←7

5
1

x←3
2

x←2
2
!x

2
y←7

3
!x

3
x←5

3
!x

3
y←4

3
y←3

7
y←5

7
!y

1 2 3 4 5 6 7 8 9 10

(b) bringing node 3 up-to-date

1
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

2
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

3
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

4
1

x←3

4
!y

4
y←9

4
!x

4
y←7

5
1

x←3
2

x←2
2
!x

2
y←7

3
!x

3
x←5

3
!x

3
y←4

3
y←3

6
x←4

1 2 3 4 5 6 7 8 9

(c) bringing node 2 up-to-date

1
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

2
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

3
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
x

6
x

6
x

4
1

x←3

4
!y

4
x←2

4
!x

4
y←7

5
1

x←3
2

x←2
2
!x

2
y←7

3
!x

3
x←5

3
!x

3
y←4

3
y←3

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

1 2 3 4 5 6 7 8 9

(d) bringing node 4 up-to-date

1
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

2
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

3
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
x

6
x

6
x

4
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

5
1

x←3

4
!y

4
y←9

5
x←2

5
!x

6
y←7

6
!x

6
x←4

1 2 3 4 5 6 7 8

(e) bringing node 5 up-to-date

Figure 2.8: Example of leader, node 1, using AppendEntries RPCs to bring the logs of
nodes 2-5 upto a consistent state. From top right to bottom left:
(b) node 1 has just become the leader of term 6, it dispatches AppendEntries with
< PrevLogIndex, PrevLogTerm >=< 8, 6 > and only node 3 is consistent so it removes
its extra entries;
(c) node 1 retries AppendEntries with < 7, 6 > to nodes 2, 4 and 5, and only node 2 is
consistent so appends < 8, 6 >;
(d) now node 1 can commit the entry at index 8 and next AppendEntries is < 2, 4 >

and node 4 removes incorrect entries index 3-5 and appends new entries;
(e) the final AppendEntries is < 1, 1 > and node 5 is finally consistent.

2.3. RAFT PROTOCOL 25

1
1

x←3

2
!y

2
1

x←3

3
1

x←3

3
y←2

3
x←1

3
!x

1 2 3

1
x←3

2
!y

1
x←3

1
x←3

3
y←2

3
x←1

3
!x

2
!y

1 2

1
x←3

2
!y

1
x←3

3
y←2

3
x←1

3
!x

1
x←3

2
!y

1 2 3 4

1
x←3

3
y←2

3
x←1

3
!x

1
x←3

3
y←2

3
x←1

3
!x

1
x←3

3
y←2

3
x←1

3
!x

1 2 3 4

Figure 2.9: Example of Leader Completeness violation, without the extra condition
on leadership. From left to right: It is term 4 and node 1 is leader whilst node 3 has
failed. The leader, node 1 is replicating its log to node 2 and thus commits !y at index
2 from term 2. Node 1 then fails and node 3 recovers and becomes leader in term 5,
node 3 replicates its log to nodes 1 and 2, thus overwritting !y at index 2.

serial number. Each consensus module caches the last serial number processed from
each client and response given. If a consensus module is given the same command
twice, then the second time it will simply return the cached response. The protocol
will never give a false positive, claiming that a command has been committed when it
in fact has not but the protocol may give false negatives, claiming that a command has
not been committed when in fact it has. To address this, the client semantics specify
that each client must retry a command until it has been successfully committed. Each
client may have at most one command outstanding at a time and commands must be
dispatched in serial number order.

The Raft authors claim that the protocol described provides the guarantees in
Figure 2.10 for distributed consensus.

Election Safety: at most one leader can be elected in a given term
Leader Append-Only: a leader never overwrites or deletes entries in its log; it
only appends new entries.
Log Matching: if two logs contain an entry with the same index and term, then
the logs are identical in all entries up through the given index.
Leader Completeness: if a log entry is committed in a given term, then that entry
will be present in the logs of the leaders for all higher-numbered terms.
State Machine Safety: if a node has applied a log entry at a given index to its state
machine, no other server will ever apply a different log entry for the same index.

Figure 2.10: Raft’s guarantees to provide distributed consensus

26 CHAPTER 2. PREPARATION

2.4 Requirements Analysis

This project aims to evaluate the Raft consensus algorithm as described in the previous
section. We believe that in order to evaluate the protocol across a range of network
environments, we must not only implement the full Raft consensus protocol but also
build a simulation framework around it to allow us to fully explore what the protocol
has to offer. Beyond evaluating the performance of the protocol, we were keen to
use our simulation traces to catch subtle bugs in our implementation (or even the
protocol specification) which may only occur once in 10,000 or even 100,000 traces.
Our insight was that we could use our holistic view of the cluster from the simulator,
to ensure that all nodes’ perspectives of the distributed system were consistent with
the protocol. For this reason we designed our own simulation framework instead of
opting for traditional event-based simulations like ns3 or OMNeT++ [37].

We divided the development up into the following phases:

1. Simple event simulation – Build a simple event-based simulator which takes as
an argument a number of nodes, simulates these nodes sending simple messages
to each other and responding after random timeouts.

2. Raft leader election at start-up – Implement Raft’s basic leader election protocol
by transmitting the RequestVote RPC, terminating the simulation once a leader
has been established.

3. Raft leader election with failures – Simulate Raft nodes failing and recovering,
differentiating clearly between state on volatile and non-volatile storage. Imple-
ment the heartbeat functionality of the AppendEntries RPC.

4. Example fault tolerant application – Build an example application for testing
Raft. This is a distributed key-value store.

5. Raft log replication – Implement the full AppendEntries RPC, testing the consen-
sus protocol using the example application.

6. Client interaction – Simulate clients trying to processes their workloads, imple-
ment leader discovery and command commit.

7. Safety model – Model the behaviour of Raft in SPL and compile to OCaml.

8. Invariant checking – Express the protocol’s invariants (Figure 2.10) in OCaml
and run simulation traces through the checker to ensure no invariants are inval-
idated.

2.5. CHOICE OF TOOLS 27

2.5 Choice of Tools

2.5.1 Programming Languages

Our primary development language was OCaml, which is a multi-paradigm, general
purpose language with a focus on safety, which is key for this project. The core pro-
tocol implementation is pure, optimising expressiveness in the type system to restrict
the behaviour of the protocol to its own safety criteria and liberal use of assertion
checks for restricting run-time behaviour. We are not alone in believing OCaml to be
a solid choice for distributed systems [34, 23, 30].

Statecall Policy Language (SPL) [22, 21] is a first order imperative language for
specifying non-deterministic finite state automata, such as the one used to define
node behaviour in Raft (Figure 2.2). We have chosen to use SPL due to its ability to
be compiled to either Promela, for model checking in SPIN, or OCaml, to act as a
safety monitor at run-time. SPIN is a widely used open source model checker, which
takes a distributed algorithm specified in Promela and properties specified in Linear
Temporal Logic to generate C code verifying that the algorithm satisfies the properties.

2.5.2 Build Systems

For development we used a wrapper around ocamlbuild called corebuild, which pro-
vides sensible compiler options for production development1.

2.5.3 Libraries

We used OPAM [35], a source based package manager for OCaml, to manage the
libraries for this project and to later release the project. To minimise dependencies,
we depend only on Core, an alternative standard library for OCaml, which has been
thoroughly tested in industry. Although we developed and tested on Unix machines,
we limit the dependence on the Unix module to only the Clock.RealTime module, for
future porting to architectures such as Mirage [23] or Js_of_ocaml2.

2.5.4 Testing

We used OUnit3 for Unit testing the code base as it is a popular choice with plenty
of documentation and support available. The unit tests involve multiple test inputs,
focusing particularly on edge cases (e.g. empty lists, 0s, negative numbers, etc.) and

1The precise definition of corebuild is available at github.com/janestreet/core/blob/master/
corebuild

2ocsigen.org/js_of_ocaml
3ounit.forge.ocamlcore.org

github.com/janestreet/core/blob/master/corebuild
github.com/janestreet/core/blob/master/corebuild
ocsigen.org/js_of_ocaml
ounit.forge.ocamlcore.org

28 CHAPTER 2. PREPARATION

asserting that outputs are as expected. These tests are run after successful builds to
ensure that no regressions have occurred.

The testing framework is composed of building Raft and running a wide range of
simulations. These were run in a range of environments using Travis CI, a continuous
integration service for open source projects, which runs the test framework against
the code for each git commit or pull request.

2.6 Summary

We have outlined the Raft consensus algorithm and assumptions under which it op-
erates. We explained our motivation for building a simulation framework to evaluate
the protocol. Finally, we closed with our plans for a safety driven approach in OCaml.

Chapter 3

Implementation

3.1 Simulation Framework

The Event-based Simulation for Raft begins with modelling the activity of a collection
of nodes establishing a leader, then terminating, returning the number of time units
taken to reach agreement on the leader. This phase assumes reliable communication
and always available nodes. From this, we gradually expand functionality and build
up a more elaborate model, reducing the underlying assumptions we are making. We
calibrate our simulator by reproducing the results from the Raft paper, thus initially
evaluating the relationship between the time taken for all nodes to agree upon a leader
and the distribution of follower and candidate timeouts.

The simulator supports two modes of operation, Discrete Event Simulation (DES)
and Real-time Event Simulation (RES), allowing us to tailor the tradeoff between simu-
lation accuracy and time. In the Discrete Event Simulator, each node’s local time will
run arbitrarily fast. Thus we are making primitive assumptions such as that the no-
tion of time is quantised including assuming all computation time is negligible and
if two packets arrive at a node in the same time unit, they may be served in any or-
der. Event-based simulation, particularly DES, will allow us to rapidly iterate over the
vast state space of simulation parameters to evaluate performance and detect rarely
occurring safety violations.

The basic components of the simulator are:

Events Computation to occur at a specific node, at a specific time which can result in
modifications to the state of a node and generate more events, which occur at
later times (i.e. checking timeouts) and may occur on another node (i.e. message
passing between nodes).

Event List Priority queue of events which are waiting to be simulated, typically im-
plemented with data structures such as a splay tree [33], skip lists, calendar
queues [3] or ladder queues.

29

30 CHAPTER 3. IMPLEMENTATION

State Local data for protocol implementation associated with each nodes and client.

Clock Time is a quantised monotonically increasing function where events are in-
stantaneous. The purpose of the clock is solely to provide a partial order on the
application events in the Event list.

Non-determinism Random number generation, required both by the protocol for
contention resolution and for the simulation framework to model packet delay,
loss and node failure.

The main body of the simulator iterates over the events from the event list. Each
event is executed by passing it the state currently associated with that node, then the
event returns both the new state which is associated with that node and any new
events are added to the event list (Figure 3.1).

3.2 Clock

We begin by defining an abstract notion of local time for each node. The purpose
of local time for each node is to implement the timeouts traditionally used in asyn-
chronous distributed system to approximately determine if a node is live and to build
reliable delivery on unreliable channels. We are able to simulate the variation in local
clock speeds by adjusting timeouts accordingly. Every node state and event, has an
associated Time (defined in Figure 3.2).

In the DES, the events are simulated as soon as they are available, as long as the
time ordering is respected. Each node state stores its local time and this is updated
to the event time whenever an event is simulated. In RES, each node state stores
a function which evaluates to system time and the events wait in the event queue
blocking until it is their time for evaluation. A single simulation module, parametrised
over the implementation of Time (defined in Figure 3.2), implements both DES and
RES. This allows us to support both simulation modes with a single simulator, thus
making the code easier to maintain and avoiding code duplication. Furthermore, this
interface makes it easy to plug in alternative implementations of Time which could,
for example, add noise to FakeTime to simulate different clock speeds.

The module signature of TIME contains two abstract time notions, time which
represents the absolute time such as the Unix time or the time since the simulation
was started and span which represents an interval of time. The wait_until function
offers a blocking wait for real time implementations or instantaneously returns unit
for a DES.

Dynamic erroneous behaviour is handled by assert statements. Figure 3.3 is an ex-
tract from the FakeTime module, which implements time as a monotonically increas-
ing integer, by initialising the integer to 0 and ensuring all operations only increase

3.2. CLOCK 31

Figure 3.1: Simplified example of DES, simulating Raft Consensus between 3 nodes.
Node 3 is leader in term 4 and is dispatching AppendEntries to nodes 1 and 2. A
unified event list is used across the nodes to map time and node ID to events.

its value. This output shows how OCaml runtime terminates when assert statements
evaluate to false. The application of assertion checking to enforce inductively defined
invariants is used systematically throughout our code. This constrains the behaviour
of alternative implementations of our signatures, e.g. a poorly designed simulation
GUI would not be able to send packets back in time.

In the Raft specification, a term is a monotonically increasing value used to order
events and messages. A node will only ever need to initialise, increment and compare
terms, thus these are the only operations exposed to nodes. As shown in Figure 3.4,
each term has one or two phases, the leader election phase and the leadership phase.
There will be at most one leader per term and possibly no leaders if consensus is
not reached first time. The previous example demonstrated capturing erroneous be-

32 CHAPTER 3. IMPLEMENTATION

module type TIME =
sig

type t
type span
val init : unit -> t
val compare : t -> t -> int
val add : t -> span -> t
val diff : t -> t -> span
val span_of_int : int -> span
val wait_until : t -> unit

end
module FakeTime : TIME
module RealTime : TIME

Figure 3.2: Shared module signature of FakeTime and RealTime.

let span_of_int x = assert (x>=0); x;;
val span_of_int : int -> int = <fun >
span_of_int (-5);;
Exception: "Assert_failure␣// toplevel //:1:20".

Figure 3.3: Demonstration of enforcing time monotonicity.

haviour at run time, but we can do even better by catching errors statically. OCaml’s
interface definitions abstract from implementation details to limit operations to only
those explicitly made available. The example in Figure 3.5 demonstrates that even
through term is implemented as an integer, this detail is not available outside the Term
module and therefore Term.t is statically guaranteed to only ever increase.

3.3 State

The node and client state is only modified by events during their simulation and the
state is immutable, providing the ability to record and analyse the sequence of state

term 1

election normal
operation

term 2 term 3

no emerging
leader

term 4
terms

Figure 3.4: Example timeline of terms

3.3. STATE 33

module TERM : sig
type t
val succ: t -> t
val init: unit -> t
val compare: t -> t -> int

end

module Term : TERM = struct
type t = int

with compare
let succ = succ
let init () = 0

end

Figure 3.5: Use of type system to enforce monotonicity of Term.

changes by maintaining a history of states.
Each event takes a representation of state as its last argument and returns a new

representation of state, by applying statecalls to the state using a tick function, as de-
fined in Figure 3.6. Internally node state is stored as private record, allowing quick
read access but restricting modification to statecalls. Statecalls are a variant type de-
noting a safe set of atomic operations on node state, allowing us, for example, to
simulate write-ahead logging. The tick, refresh and init functions are the only meth-
ods of generating or modifying node state, either by transformations described by
statecalls, simulating failure by clearing volatile state or initialising a fresh state, re-
spectively. This restriction makes many erroneous states simply unrepresentable, thus
reducing the state space and making it easier to quantify the valid possible states, as
we do in SPL(§3.8).

module type STATE =
functor (Time: TIME) ->
functor (Index: INDEX) -> sig
type t
type statecall =
| IncrementTerm
| Vote of Id.t
| StepDown of Index.t
| VoteFrom of Id.t

....
val tick: statecall -> t -> t
val init: Id.t -> Id.t list -> t
val refresh: t -> t

end

Figure 3.6: Functor to limit protocol interaction with state to statecalls.

34 CHAPTER 3. IMPLEMENTATION

Network Interface

RAFT
CONSENSUS
MODULE

ID:7
MODE:Follower
TERM:3
LEADER:1

REPLICATED LOG
Commit Index:5

1 2 3 4 5 6

2
[1, 1]
x←3

2
[2, 1]
y←9

3
[2, 2]
!y

3
[2, 3]
x←2

4
[1, 2]
!x

4
[1, 3]
y←7

KEY VALUE STORE
Client# Response

1
2

2
3

x=2
Success

Key Value
x
y

2
9

RPCs

Figure 3.7: Example node running a key value store using Raft consensus.

3.3.1 Node State

Access to the tick function (defined in Figure 3.6) for modifying node state is mediated
by the StateHandler module, which is responsible for ensuring that no state transitions
violate the protocol invariants (Figure 2.10) and simulating node failures. The State-
Handler module compares each updated node state to the states of all other nodes and
all past state to ensure that the perspectives from the nodes are compatible and able
to form a coherent global picture of the distributed system.

For example when a node wins an election in term 7 we can check that no other
node has been leader in term 7 (checking Election Safety from Figure 2.10), at least
a strict majority of nodes have at some time voted for that node in term 7 and all
committed entries are present in the new leader’s log (checking Leader Completeness
from Figure 2.10). Or when a follower commits a log entry, we can check that no other
node has committed a different command at the same index (checking State Machine
Safety from Figure 2.10) and that the command serial number is strictly greater then
the last serial number from the corresponding client. To minimise computation, the
majority of these checks are implemented inductively, ensuring each monotonic value
is greater then the last.

3.4. EVENTS 35

3.3.2 Client State

Like replica state, Client state access is limited to a set of operations, performed atom-
ically by the tick function whose access is mediated by the ClientHandler module.
Clients are responsible for not only generating workloads and committing commands,
but also checking the client semantics. This proved vital to the project due to the un-
derspecification of how Raft handles client requests, detailed in §4.3. Locally each
client has its own copy of the key-value store which is used to generate expected
responses for commands. These can then be checked against the responses from the
Raft protocol.

3.4 Events

Our insight is that the Raft protocol can be implemented as a collection of events,
performing computation in specified temporal and spatial environments. We define
operators (see opt in Figure 3.8) as a pure mapping from a node state to a new node
state and a list of new events. A simplified pair of mutually recursive type definitions
seen in Figure 3.8 represent the relationship between events and operators. Polymor-
phic over the representation of time, ID’s and state, event relates the time at which
an operator should be simulated, which node should simulate the operator and the
operator itself. The variant RaftEvent is required as OCaml (by default) does not ac-
cept recursive type abbreviations. We extend the cases of the variant to simulate other
types of event such as client events, simulation timeouts and simulated failures.

type (’time , ’id , ’state) event =
RaftEvent of (’time * ’id * (’time , ’id , ’state) event)

and (’time , ’id , ’state) opt =
’state -> ’state * (’time , ’id , ’state) event list

Figure 3.8: Mutually recursive type definitions of t and event.

All events are queued in the event list as partially applied functions, which per-
form computation when applied to state. If the state was mutable, this could be im-
plemented by withholding a unit argument, or using the lazy evaluation in OCaml. To
communicate, nodes stage events by applying all arguments (except state) to a partic-
ular RPC operator, passing this to unicast, multicast or broadcast functions in the Comms
module to produce the associated events. These functions calculate arrival time from
the packet delay distribution as well as simulating packet loss or duplication.

36 CHAPTER 3. IMPLEMENTATION

3.5 Event List

Continuing with our theme of protocol safety, our implementation explicitly handles
unexpected behaviours with monads and does not use exceptions except for the SPL
safety monitor. Figure 3.9 uses the option monad1 which forces the caller to pattern
match on the result and explicitly handle the case that the Eventlist is empty. Util-
ising the type system for error handling greatly improves the readability of module
interfaces and moves the debugging from runtime to compile time. Thus making it
easier to build alternative implementations to test various protocol optimisations and
modifications.

module type Monad = sig
type ’a t
val bind: ’a t -> (’a -> ’b t) -> ’b t
val return: ’a -> ’a t

end

module Option : Monad = struct
type ’a t = None | Some of ’a
let bind value f =

match value with
| None -> None
| Some x -> f x

let return x = Some x
end

Figure 3.9: Monad signature and Option monad implementation.

module type EVENTLIST = sig
type item
type t
val head: t -> (item * t) Option.t
val add: item list -> t -> t
val init: item list -> t

end

Figure 3.10: Signature for data structures implementing Event List.

The Eventlist defined in Figure 3.10 is the most often used data structure in this
project and is ideal for optimisation due to the limited operations that it is required to
support. In fact, the only access operation is head, which removes the minimal element
in the data structure and returns an element and the new data structure, if not empty.

1Similar to maybe in Haskell.

3.6. SIMULATION PARAMETERS 37

A naive implementation of EventList would be a sorted list, which clearly provides
O(1) for the head function, O(n log n) for init from a list of n items and O(n) to add a
single element in O(n) space. Instead we opted for a splay tree [33], a self-adjusting
binary tree which provides amortized O(log n) for all basic data structure operation
before applying optimisations for the DES access patterns [11].

module SplayTree (Item: sig type t with compare end) = struct
type item = Item.t
...

end

Figure 3.11: SplayTree as a functor over Item

As detailed in Figure 3.11, SplayTree is a functor over implementations of Item.
SplayTree will return a module satisfying the EVENTLIST signature. However this
abstraction will mean that it is no longer possible to use SplayTree as we have no
mechanism of creating things of type Item.t. The solution is a type sharing constraint,
which will allow us to expose to the compiler that type item and Event.t are equivalent
as shown in Figure 3.12.

module EventList =
SplayTree(Event) : EVENTLIST with type item = Event.t

Figure 3.12: Type sharing constraint between item and Event.t

3.6 Simulation Parameters

The simulator accepts a wide range of parameters in the command line interface or
configuration file. These are detailed in Figure B.1 in the appendix.

The statistical distribution fields such as packet delay or follower timer can be
given as as either a fixed value, an exponential distribution with mean λ and offset,
normal distribution with mean µ and standard deviation σ (and options to discard
negative values) or a uniform distribution between minimum and maximum bounds.
These parameters are parsed and packaged into a first class module over which the
Simulation module is parametrised.

3.7 Non-determinism

Non-determinism is essential for simulating networked systems as well as being
part of the Raft protocol to avoid pathologically poor performance. The Core stan-

38 CHAPTER 3. IMPLEMENTATION

dard library provides uniform random floating point values2, from this we can then
generate the required distributions. For example, to simulate the packet delays as
a Poisson process we generate the exponentially distributed inter-arrival times as
needed, to limit the space requirements. We transform the provided U ∼ U(0, 1) into
X ∼ Exp(λ) using the following standard result (eq. 3.1) and used the Box-Muller
Transform [31] to generate X ∼ N(µ, σ) (eq. 3.2 & eq. 3.3).

X =
−1
λ

log U (3.1)

Z0 =
√
−2 ln U1 cos 2πU2 (3.2)

Z1 =
√
−2 ln U1 sin 2πU2 (3.3)

3.8 Correctness

We modelled the operation of a node participating during Raft consensus using the
Statecall Policy Language (SPL) (§2.5.1). The simplest of these automata models the
transitions between the modes of operations as seen in Figure 2.2. The output from
the SPL is shown in Figure 3.14. Once the models for Raft Consensus were developed
in SPL, they were compiled to OCaml for execution alongside the simulations. Each
node stores a Raft Safety Monitor in its state (detailed in Appendix A) and updates it
with statecalls such as StartElection. The safety monitor terminates execution using a
Bad_statecall exception if it leaves states defined in the automata like Figure 2.2.

3.9 Summary

We have described our "correct by construction" approach to implementing the Raft
algorithm and an event-based simulator. Using the OCaml module system we have
drawn abstractions between the specific protocol implementation, its safety and the
simulation framework, exposing at each interface only the essential operations. This
modular design makes it easy to swap implementations, for example testing an al-
ternative leader election algorithm. We encoded the protocol invariants and safety
checks at each statecall to ensure that all safety violations are detected in simulation
traces. Furthermore, we have harnessed the expressibility of the type system, allowing
us to statically guarantee that no possible Raft implementation will invalidate basic
invariants, such as term monotonically increasing.

2/dev/urandom is used to generate the seed, if it wasn’t available then a value is generated from real
time system parameters like time and processID.

3.9. SUMMARY 39

exception Bad_statecall

type s = [
|‘RestartElection
|‘StartElection
|‘Startup
|‘StepDown_from_Candidate
|‘StepDown_from_Leader
|‘WinElection
|‘Recover

]

type t
val init : unit -> t
val tick : t -> [> s] -> t

Figure 3.13: Example OCaml interface to each node’s run-time monitor, generated
from SPL.

40 CHAPTER 3. IMPLEMENTATION

S_seq_14

S_multentry_16

multiple_20=0 (7)

S_or_25

multiple_20=0 (7)

S_or_23

multiple_20=0 (7)

S_multblexit_18

{RestartElection} (8)

S_seq_26

{WinElection} (13)

S_multblexit_11

{StepDown_from_Candidate} (11)

S_multentry_9

{StartElection} (6)

{StepDown_from_Leader} (14)

multiple_13=(multiple_13 + 1) (5)

S_final_2

multiple_13=(multiple_13 + 1) (5)

multiple_20=(multiple_20 + 1) (7)

multiple_20=(multiple_20 + 1) (7) multiple_20=(multiple_20 + 1) (7)

S_either_or_3

multiple_13=0 (5) multiple_13=0 (5)

S_initial_1

{Startup} (1) {Recover} (3)

Figure 3.14: Raft’s mode of operation transitions modelling in SPL.

Chapter 4

Evaluation

In my experience, all distributed consensus algorithms are either:
1: Paxos,
2: Paxos with extra unnecessary cruft, or
3: broken. - Mike Burrows

4.1 Calibration

Reproducibility is vital for research [7], thus our evaluation will begin by attempting
to reproduce the Raft authors’ leader election results shown in Figure 4.1(a)1. This
will also allow us to calibrate the following evaluation by determining how to fix sim-
ulation parameters which are currently not being investigated. After consulting with
the authors, we chose simulation parameters which reflect the original experimental
setup using their LogCabin C++ implementation of Raft. Their setup involved five
idle machines connected via a 1Gb/s Ethernet switch, with an average broadcast time
of 15ms. The time taken to elect a new leader is sufficiently short that we can assume
no node fails. Their use of TCP for the RPC implementation means that we need not
simulate packet loss, but instead use a long tail for packet delay. The authors aimed to
generate the worst case scenario for leader election. They made some nodes ineligible
for leadership due to the log consistency requirements and encouraged split votes
by broadcasting heartbeat AppendEntries RPCs before crashing the leader. We will ap-
proximate this behaviour by starting the cluster up from fresh state and attempting to
elect a leader. The results of this simulation are shown in Figure 4.1(b).

The first feature we noted is the surprisingly high proportion of the authors’ re-
sults which fall below the 150ms mark when the minimum follower timeout is 150ms.
It is necessary (but not sufficient) for at least one follower to timeout, to elect a leader.
Generalising the authors’ analysis [27, §10.2.1], we can show that the distribution

1Reproduced with the authors’ permissions, as shown in Figure 15 in [28] & Figure 10.2 in [27].

41

42 CHAPTER 4. EVALUATION

100 150 300 500 1000 3000 5000 10000
0%

20%

40%

60%

80%

100%

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

(a) Time taken to elect leader − Author’s results

0 100 200 300 400 500 600 700
0%

20%

40%

60%

80%

100%

Time to elect leader (ms)

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

150−151

150−155

150−175

150−200

150−300

12−24

25−50

50−100

100−200

150−300

100 150 300 500 1000 3000 5000 10000
0%

20%

40%

60%

80%

100%

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

(b) Time taken to elect leader − Discrete simulation (ms granularity)

0 100 200 300 400 500 600 700
0%

20%

40%

60%

80%

100%

Time to elect leader (ms)

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

150−151

150−155

150−175

150−200

150−300

12−24

25−50

50−100

100−200

150−300

Figure 4.1: Cumulative distribution function of time to elect leader. Each top plot
represents the time taken to establish a leader where the follower timeout has varying
degrees of non-determinism, with the minimal follower timeout fixed at 150ms. Each
bottom plot varies the timeout from T to 2T, for different values of T. The follower
timeouts in milliseconds are shown in the legends.

4.1. CALIBRATION 43

of the time the first of s nodes times out, Ts, where the timeout distribution follows
f ollowerTimer ∼ U(N1, N2). Ts has a cumulative distribution function, Fs(t) and prob-
ability density function fs(t) described below:

Fs(t) =

0 0 < t < N1

1− (N2−t
N2−N1

)s N1 < t < N2

1 otherwise
(4.1)

fs(t) =

{
s(N2−t)s−1

(N2−N1)s N1 < t < N2

0 otherwise
(4.2)

E[Ts] = N1 +
N2 − N1

s + 1
(4.3)

Figure 4.2 is a plot of the cumulative distribution function (eq. 4.1), this is a base-
line for the leader election graphs in Figure 4.1. After discussing our findings with
the authors, it arose that they had been crashing the leader uniformly between Appen-
dEntries RPC; hence their results are shifted by ∼ U(0, 75).

150 200 250 300
0%

20%

40%

60%

80%

100%

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

Distribution of first follower timeout for 5 nodes

0 50 100 150 200 250 300
0%

20%

40%

60%

80%

100%

Time to first candidate (ms)

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

150−151

150−155

150−175

150−200

150−300

12−24

25−50

50−100

100−200

150−300

Figure 4.2: Cumulative distribution of the time until first election with varying fol-
lower timeouts for five nodes (eq. 4.1).

We observe that our simulation generally took longer to establish a leader than
the authors’ measurements, particularly in the case of high contention. One likely

44 CHAPTER 4. EVALUATION

cause of this is the fact that the authors organised the candidates’ logs such that two
nodes were ineligible for leadership. These nodes may timeout like any other and
dispatch RequestVotes to the other nodes, but these nodes will never gain a majority,
thus reducing the number of possible leaders from five to three and reducing the
likelihood of split votes and multiple rounds of elections. These ineligible candidates
may still timeout, causing the term in the cluster to increase. Furthermore, these nodes
will reject the last AppendEntries triggering the leader to dispatch more until it fails or
brings the node’s logs up to date. At the time of performing this evaluation, the paper
under-specified the experimental setup used, but emphasised that it was a worst-case
scenario. This led to our choices to synchronise nodes and have consistent logs to
maximise the likelihood of split voting.

After observing that the stepping in the curve of the 150–155ms case was greatly
exaggerated in comparison with the authors’ results, we were concerned that the
quantisation that we used in the DES might have been the cause of this. To test this
hypothesis, we repeated the experiment with quanta sizes corresponding to microsec-
ond and nanosecond granularity (see Figure 4.3). We observed no significant differ-
ence between the three levels of granularity tested except in the 150–151ms case2. De-
spite this, we chose to proceed with experiments at the nanosecond granularity due
to a marginal improvement in results and negligible increase in computation time.

4.2 Leader Election

Optimising leader elections

As demonstrated in Figure 4.1, a suitable follower timeout range is needed for
good availability, though the safety of the protocol is independent of timers. If the
follower timer is too small, this can lead to unnecessary leader elections, too large
and followers will be slow to notice a leader failure. The candidate timer must be
sufficiently large to receive all the RequestVotes responses, whilst being sufficiently
small to not delay restarting elections. Both follower and candidate timers need to be
of a wide enough range to avoid split votes. The leader timer must be smaller than
the follower timeout. The exact size is a tradeoff between bandwidth usage and speed
at which information propagates across the cluster. The conclusion drawn by the
protocol’s authors is that T=150ms is a good conservative timeout in general when
applied to the rules below. The first condition is known as the timing requirement,
where broadcastTime is the average time for a node to send RPCs in parallel to every
server in the cluster and receive their responses.

2The simulations were terminated after 10s of simulated time.

4.2. LEADER ELECTION 45

100 150 300 500 1000 3000 5000 10000
0%

20%

40%

60%

80%

100%

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

Time taken to elect leader − Discrete simulation (µsec granularity)

0 100 200 300 400 500 600
0%

20%

40%

60%

80%

100%

Time to elect leader (ms)

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

150−151

150−155

150−175

150−200

150−300

12−24

25−50

50−100

100−200

150−300

100 150 300 500 1000 3000 5000 10000
0%

20%

40%

60%

80%

100%

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

Time taken to elect leader − Discrete simulation (ns granularity)

0 100 200 300 400 500 600
0%

20%

40%

60%

80%

100%

Time to elect leader (ms)

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

150−151

150−155

150−175

150−200

150−300

12−24

25−50

50−100

100−200

150−300

Figure 4.3: Cumulative distribution function (CDF) of time to elect leader. Each top
plot represents the time taken to establish a leader where the follower timeout has
varying degrees of non-determinism, with the minimal follower timeout fixed at
150ms. Each bottom plot varies the timeout from T to 2T, for different values of T.
The follower timeouts in milliseconds are shown in the legends.

46 CHAPTER 4. EVALUATION

broadcastTime << candidateTimeout << MTBF

f ollowerTimeout = candidateTimeout ∼ U(T, 2T)

LeaderTimout =
T
2

Our hypothesis is that the time taken to elect a leader in a contested environment
could be significantly improved by not simply setting the candidate timer to the range
of the follower timer. As the authors use the same timer range for candidates and
followers, in Figure 4.1 we are waiting a minimum of 150ms (and up to twice that)
before restarting an election, despite the fact that, on average, a node receives all of its
responses within 15ms. Figure 4.4 (a) instead sets the minimum candidateTimeout to
µ + 2σ. Assuming broadcastTime ∼ N(µ, σ), this will be sufficient 95% of the time. We
can see that now 99.4% of the time leaders are established within 300ms, compared to
54.3% in Figure 4.1.

Increasing the non-determinism in the candidate timeout clearly reduces the num-
ber of split votes, but it does so at the cost of increasing the time taken to terminate
an election. Our hypothesis is that we can improve the time taken to elect a leader
and make the protocol more resilient to hostile network environments by introduc-
ing a binary exponential backoff for candidates who have been rejected by a majority
of replicas. Figure 4.4(b) shows the improvement from enabling binary exponential
backoff and (c) shows combining the optimisations used in (a) and (b). All optimisa-
tions performed considerably better than the orginal implementation, both in terms
of time to elect a leader (Figure 4.4) and load on the network (Figure 4.5). Though
the binary expontial backoff (b) and combined optimisations (c) took longer to elect
a leader than the fixed reduction optimisation, they both further reduced the load on
the network (Figure 4.5).

Tolerance to packet loss, delay, reordering & duplication

All tests so far have accounted for packet delay and re-ordering. In Figure 4.4, each
packet was delayed by delay ∼ N(7ms, 2ms), since each packet delay is computed in-
dependently, packet re-ordering is implicit. Our simulator provides options for packet
loss and duplication and the protocol remains safe, though performance in the face of
packet loss could be greatly improved by simple retransmission where an acknowl-
edgement of receipt is not received (if not already handled by the transport layer
protocol).

4.2. LEADER ELECTION 47

100 150 200 250 300 350 400
0%

20%

40%

60%

80%

100%

Time without leader (ms)

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

(a) Time taken to elect leader − Fixed reduction optimisation

150−151

150−155

150−175

150−200

150−300

100 150 300 500 1000 3000 5000 10000
0%

20%

40%

60%

80%

100%

Time without leader (ms)

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

(b) Time taken to elect leader − Exponential backoff optimisation

150−151

150−155

150−175

150−200

150−300

100 150 200 250 300 350 400
0%

20%

40%

60%

80%

100%

Time without leader (ms)

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

(c) Time taken to elect leader − Combining optimisations

150−151

150−155

150−175

150−200

150−300

Figure 4.4: Investigating the impact of alternative candidate timeouts, keeping the
range of follower timeouts fixed:
(a) sets candidate timeout to X ∼ U(23, 46)
(b) enables binary exponential backoff for candidate timeout
(c) combines the optimisations from (a) and (b)
The follower timeouts in milliseconds are shown in the legends.

48 CHAPTER 4. EVALUATION

0

250

500

750

1000

1250

1500

A B C D

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

Network load for leader election

Figure 4.5: Box plot showing effect of candidate timer optimisations on network traffic
when electing a leader:
(A) original setup, as seen in Figure 4.1;
(B) fixed reduction optimisation, as seen in Figure 4.4(a);
(C) exponential backoff optimisation, as seen in Figure 4.4(b); and
(D) combining optimisations, as seen in Figure 4.4(c).

4.3. LOG REPLICATION AND CLIENT SEMANTICS 49

Resilience in the face of diverse network environments

Our analysis so far has been limited to considering a cluster of nodes directly con-
nected via an idle network, since packet loss, delay and failure are all assumed to be
independent of the nodes and links involved. This topology is shown in Figure 4.6(a).

Suppose we instead deployed Raft on a network such as the one shown in Fig-
ure 4.6(c), where the replicated state machine is a file synchronization application
working across a user’s devices such as four mobile devices and a cloud VM. The
mobile devices will often be disconnected from the majority of other devices, thus
running election after election without being able to gain enough votes. When these
devices rejoin the network, they will force a new election as their term will be much
higher than the leader. This leads to frequently disconnected devices becoming the
leader when reattached to the network, thus causing regular unavailability of the sys-
tem when they leave again.

In this setup it would be preferable for the cloud VM to remain leader, unless
several of the other devices often share networking that is disconnected from the
internet. We note that if this limitation is a problem for a specific application, it is likely
that the Raft’s model, of providing strong consistency at the cost of availability, may
be unsuitable for that application. In our example topology for a file synchronization
application over a user’s devices across the edge network and cloud, a more suitable
consistency model is likely to be BASE.

It is also interesting to consider the impact of a single node being behind an asym-
metric partition such as a NAT box or firewall (Figure 4.6(b)). This node will re-
peatedly re-run elections as it will not be able to receive incoming messages, each
RequestVotes will have a higher term than the last, forcing the leader to step down.
This will prevent the cluster from being able to make progress.

A further challenge for the protocol is modern heterogeneous networks as shown
in Figure 4.6(d), the high levels of clustering (e.g. at the rack, switch and datacenter
levels) may exacerbate the problem of split votes and network partitions.

4.3 Log Replication and Client Semantics

During the evaluation of the protocol, we noted that the client commit latency of the
system can be improved by employing the following modifications and optimisations.

Client request cache

The Raft authors argue that linearisable semantics for client commands to the state
machine are achieved by assigning all commands a sequential serial number when
committed to the cluster by a client. The state machine then caches the last serial

50 CHAPTER 4. EVALUATION

Figure 4.6: Example diverse network topologies: (a) the original deployment; (b) the
asymmetric link; (c) the disconnected edge nodes; and (d) the clustered network.

number for each client along with its corresponding response. This is referred to as
the client request cache. Thus when a client retransmits a request, if the serial number
of the committed command is found in the cache, the command is not reapplied to
the machine and the cached response is returned. This assumes that commands are
committed to the state machine in order of serial number; thus each client is limited
to at most one outstanding request.

Our first approach, implied by the paper at the time, was to handle this completely
at the state machine level, i.e. a command’s serial number and the state machine cache
are abstracted from the consensus module so all client requests are added to the log
regardless of serial number. First, we observed logs being populated with repeated
sequential commands. This reduces performance, but is safe as the command will
only by applied to each state machine once. The greater challenge was the question
of whether the state machine should handle commands whose serial numbers are
neither the same as the last serial number or the successor. Commands with lower
serial numbers can arrive from client retransmission or network duplication and net-
work delay. Our state machine simply ignores these commands since we know that
the client cannot possible be waiting for a response. Commands with a higher serial
number (but not the successor) can only occur where a client has given up on com-
mitting a command and tried to commit the next command. We deal with this by
requiring clients to continue retrying commands until successful. The potential for
large numbers of extraneous entries from this approach leads us to optimise this by
exposing serial numbers to the consensus module, which can now use a fast discard or
fast response in response to a client’s request.

4.3. LOG REPLICATION AND CLIENT SEMANTICS 51

Inspired by the approach taken by Viewstamped Replication [26], we moved the
client request cache to the consensus module and abstracted it from the state machine.
For each incoming request to the leader, the leader looks up the client ID in the client
request cache:

• If the requested serial number is less then the last serial number, we can ignore
the command, as the client must have already received a response.

• If the requested serial number is the same as the last serial number, we reply
with the cached response if present.

• If the requested serial number is successor of the last serial number, the com-
mand can be added to the log and the last serial number updated. Later, once
the command is committed to the state machine, the response can be cached
alongside the serial number.

But how can it be safe to only store the last serial number and response, when entries
can removed from the log? If any node has ever seen a serial number greater than any
others last serial number, then the cached response will never be needed as the client
must have received the response from that committed entry. This positioning of the
client request cache introduced a livelock bug, which we later address (§4.3).

Client commit latency

As expected, the vast majority of client commands were committed with a latency of
approximately BroadcastTime+RTT, where RTT refers to the round trip time between
the client and the leader. A small minority of commands took considerably longer,
most commonly representing leader failure and subsequent new leader election. A
significant overhead was observed by clients waiting for responses from failed nodes
during leader discovery. Unlike the other RPC’s used by Raft, the client commit timer,
which is used by clients to retransmit requests to nodes, is much higher than the
RTT because the client must wait whilst the leader replicates the client command to
the nodes in the cluster. Introducing a ClientCommit leader acknowledgement would
allow us to split this into two distinct timers, the first which is just above RTT handles
retransmitting normal ClientCommit requests, whilst the second is used after the client
has received a leader acknowledgement and is much higher to allow the node time to
replicate the request.

Leader discovery protocol

The authors recommend contacting nodes randomly to discover which node is the
leader and try another node at random if the leader appears to have failed. We chose

52 CHAPTER 4. EVALUATION

to instead contact nodes using round robin to reduce the system’s non-determinism
and thus make it easier to validate the simulation traces. We recommend retrying the
leader before moving back to trying other nodes. This is because if the client has not
heard from the leader it could simply be due to network delay or loss. Otherwise,
even if the leader has failed, it may have recovered since. If it has then it is more likely
than other nodes to win an election due to the extra condition on elections (§2.3.3).
Our recommendations for leader discovery approach are:

• if the target application is highly latency sensitive, we suggest an approach such
as broadcasting ClientCommit to all nodes or having a leader broadcast to clients
when they come into power.

• if the target application is highly traffic sensitive, we suggest clients back off
when nodes do not know which node is the leader as it is likely that there is no
leader.

Commit-blocking livelock

We believe we have observed permanent livelock in our simulation trace caused by
the interaction between the extra condition on commitment (detailed in §2.3.3) and the
placement of the client request cache (detailed previously). The situation described in
Figure 4.7 is one example of this livelock. Figure 4.7 shows this livelock when there
is only one client, but we believe this can also occur when there are multiple such
clients. We recommend that if a client request is blocked by the extra condition on
commitment, the leader should create a no-op entry in its log and replicate this across
the cluster, as shown in Figure 4.7. Later, when optimising the handling of read only
commands, we implemented the authors’ suggestion of appending a no-op at the start
of each leadership term which is also sufficient to fix this problem.

4.4 Testing

We have extensively tested this project throughout the implementation, making par-
ticularly effective use of static typing. Where erroneous behaviour cannot be detected
at compile time, we utilised unit testing specific modules with OUnit, assertion check-
ing throughout the code, automated checking for each simulation trace and checking
each node’s activity against a safety monitor in SPL. All of these were checked in
a range of environments using Travis CI, a continuous integration service for open
source projects, which runs the test framework against the code for each git commit
or pull request.

Assertions are used liberally throughout the code base. This means that safety
checks are constantly being made as the code runs and so any runtime errors which

4.4. TESTING 53

1
1

x←3

2
!y

2
1

x←3

3
1

x←3

1 2

1

2
1

x←3

3
1

x←3

3
!y

1
x←3

2
!y

1 2

1
1

x←3

2
!y

2
1

x←3

2
!y

3
1

x←3

2
!y

1 2

1
1

x←3

2
!y

4
NOP

2
1

x←3

2
!y

3
1

x←3

2
!y

1 2 3

1
1

x←3

2
!y

4
NOP

2
1

x←3

2
!y

4
NOP

3
1

x←3

2
!y

4
NOP

1 2 3

1
1

x←3

2
!y

4
NOP

2
1

x←3

2
!y

4
NOP

3
1

x←3

2
!y

4
NOP

1 2 3

Figure 4.7: Example of livelock and our proposed solution. Top row from left to right:
It is term 2 and node 1 as leader is trying to commit !y at index 2. Node 1 failed
before replicating !y to another node and node 3 is now trying to commit !y in term
3. Node 3 failed before replicating !y to another node and node 1 is now leader in
term 4. Node 3 recovers and node 1 replicates !y to it. No node will be able to commit
!y until they commit an entry from their own term but the client will not send new
entries until !y is committed. The client retries !y but since it is already in the logs,
it is ignored by the nodes and the cluster will not be able to make progress. Bottom
row: node 1 creates a no-op and replicates it across the nodes, so it can now commit
!y.

54 CHAPTER 4. EVALUATION

Figure 4.8: Screenshot of Travis CI web GUI for testing git commit history.

may have slipped through can be caught near the source rather than propagating
through the code. This made locating the source of errors much easier and also helps
in assessing the safety of the protocol as any invalid behaviour will be checked for
and caught rather than create erroneous results.

As an additional, high level form of testing the calibrations run against the refer-
ence implementation results from the Raft paper (§4.1) were helpful in determining
that the behaviour exhibited by this implementation was consistent with how the
protocol is expected to behave.

4.5 Summary

The complexity of the project far exceeded our expectations. Nevertheless we met all
of the success criteria of the project including one of our optional extensions by using
our work to propose a range of optimisations to the protocol. The project has been a
great success: we have implemented the Raft consensus protocol and used our simula-
tion framework to ensure that protocol operates in asynchronous environments with
unreliable communication. Our key value store provides strong consistency from the
linearisable client semantics and a simple protocol wrapper allows our implementa-
tion to be run as a real-world implementation. Our implementation is able to make
progress whilst the majority of nodes are available, with the patch described in §4.3.

Chapter 5

Conclusion

During the course of this project, a strong community has built up around Raft with
over 20 different implementations in languages ranging from C++, Erlang and Java to
Clojure, Ruby and Python. The most popular implementation, go-raft, is the founda-
tion of the service discovery and locking services used in CoreOS1 as well as being
deployed in InfluxDB2 and Sky3. Distributed consensus is never going to be simple
and Raft’s goal of being an understandable consensus algorithm aims to address a
clear need in the community.

In a well-understood network environment, the protocol behaves admirably; pro-
vided that suitable protocol parameters such as follower timeouts and leadership dis-
covery methods have been chosen. As demonstrated in the evaluation, our simulator
is a good approximation to Raft’s behaviour and is a useful tool for anyone planning
to deploy Raft to rapidly evaluate a range of protocol configurations on their specific
network environment. Despite this, further work is required on the protocol before it
will be able to tolerate modern internet-scale environments, as demonstrated in our
evaluation. In particular, a cluster can be rendered useless by a frequently discon-
nected node or a node with an asymmetric partition (such as behind a NAT).

5.1 Recommendations

We would recommend the following modifications/implementation choices to future
implementations of the Raft Consensus protocol and subsequent deployments:

• Separation of follower and candidate timeouts – We demonstrated (§4.2) signif-
icant performance improvements from the separation of follower and candidate
timers, allowing us to set them more appropriately for their purposes. We also

1coreos.com
2influxdb.org
3skydb.io

55

56 CHAPTER 5. CONCLUSION

demonstrated that applying a binary exponential backoff to the candidate timer
also provides significant performance benefits.

• ClientCommit leader acknowledgement – We addressed the high cost of node
failure on the client leader discovery protocol, by introducing a ClientCommit
leader acknowledgement. This would allow the Client commit timer to be re-
duced to slightly above RTT and when the client receives the new leader ac-
knowledgement it can backoff, setting a much higher timer to give the leader
time to replicate the command (detailed in §4.3).

• Leader discovery protocol – Depending on intended tradeoff between the client
latency and traffic: query nodes in a random or round robin fashion, possibly
asking multiple nodes in parallel or broadcasting queries to all nodes (detailed
in §4.3).

• Diverse network topologies – As we have discussed, Raft consensus can experi-
ence severe availability difficulties in some network topologies. The authors are
considering how to address these and it remains a goal for future work.

• Client semantics – It is our understanding, that the use of serial numbers re-
stricts each client to at most one outstanding request. Otherwise a later client
command could be added to the leader’s log before an earlier one. If the client
wishes to have multiple outstanding requests, they can submit the requests as
if from multiple clients. The protocol will no longer guarantee that these com-
mands will be executed sequentially, but all state machines will commit the
commands in the same order (detailed in §4.3).

• Read commands – Read commands4 need not be replicated across all nodes. It’s
sufficient to execute them only on the leader, assuming that the leader has com-
mitted an entry from its term and recently dispatched a successful AppendEntries
to a majority of nodes.

• Commit blocking – We demonstrated a liveness bug (§4.3) from the interaction
of the client request cache and the extra condition. We went on to propose a
solution by allowing leaders to add no-ops to their logs.

• Client instability – To tolerate client failure and subsequent recovery, clients
need to store their current serial number and outstanding command on non-
volatile storage or take a new client ID. All clients must have distinct ID’s.

4This is referring to any class of commands whose execution is guaranteed to not modify the state
machine.

5.2. FUTURE WORK 57

5.2 Future Work

In the future we would like to extend the project to include:

• Full Javascript interface – Combining our simulation trace visualiser with
js_of_ocaml and an interface for specifying simulation parameters including loss
and partitions on a link-by-link basis and failure rates on a per node basis.

• Solutions to liveness challenges of diverse network topologies – evaluate a
range of possible approaches and determine if the best is sufficient to make Raft
consensus suitable for building distributed systems between users’ devices on
the edge network [30].

• Comparison to Viewstamped Replication (VR) – Utilise the OCaml module
system to implement VR within the same simulation framework and compare
performance.

• Log compaction and membership changes – Implement and evaluate Raft’s
proposed solutions for log compaction and membership changes, drawing com-
parisons to the approach taken by existing consensus algorithms.

• Byzantine fault tolerant Raft – Taking inspiration from existing literature on
Byzantine tolerant Multi-Paxos [24], design and implement the first Byzantine
tolerant Raft.

58 CHAPTER 5. CONCLUSION

Bibliography

[1] Eric Brewer. CAP twelve years later: How the "rules" have changed. Computer,
45(2):23–29, 2012.

[2] Eric A Brewer. Towards robust distributed systems. In Principles of Distributed
Computing, page 7, 2000.

[3] Randy Brown. Calendar queues: A fast 0(1) priority queue implementation for
the simulation event set problem. Communications of the ACM, 31(10), 1988.

[4] Mike Burrows. The chubby lock service for loosely-coupled distributed systems.
In Proceedings of the 7th symposium on Operating systems design and implementation,
pages 335–350, 2006.

[5] Tushar Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live-an
engineering perspective (2006 invited talk). In Proceedings of the 26th ACM Sym-
posium on Principles of Distributed Computing, volume 7, 2007.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:
A distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[7] Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik, Matthew Finlayson,
Jason Herne, and Jeanna Neefe Matthews. Xen and the art of repeated research.
In Proceedings of the USENIX Annual Technical Conference, pages 47–47, 2004.

[8] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-
tem. In ACM SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM,
2003.

59

60 BIBLIOGRAPHY

[10] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59,
2002.

[11] Rick Siow Mong Goh and Ian Li-Jin Thng. Dsplay: An efficient dynamic prior-
ity queue structure for discrete event simulation. In Proceedings of the SimTecT
Simulation Technology and Training Conference, 2004.

[12] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages and
Systems, 12(3):463–492, 1990.

[13] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed.
Zookeeper: wait-free coordination for internet-scale systems. In Proceedings of
the USENIX annual technical conference, volume 8, pages 11–11, 2010.

[14] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16(2):133–169, 1998.

[15] Leslie Lamport. Paxos made simple. ACM SIGACT News 32.4, pages 18–25vi,
2001.

[16] Leslie Lamport. Generalized consensus and paxos. Microsoft Research, Tech. Rep.
MSR-TR-2005-33, 2005.

[17] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[18] Leslie Lamport and Mike Massa. Cheap paxos. In Proceedings of the International
Conference on Dependable Systems and Networks, pages 307–314, 2004.

[19] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[20] Barbara Liskov and James Cowling. Viewstamped replication revisited. Technical
report, MIT technical report MIT-CSAIL-TR-2012-021, 2012.

[21] Anil Madhavapeddy. Creating high-performance statically type-safe network applica-
tions. PhD thesis, University of Cambridge, 2006.

[22] Anil Madhavapeddy. Combining static model checking with dynamic enforce-
ment using the statecall policy language. In Proceedings of the 11th International
Conference on Formal Engineering Methods: Formal Methods and Software Engineering,
pages 446–465, 2009.

BIBLIOGRAPHY 61

[23] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library operating systems for the cloud. In Proceedings of the eigh-
teenth international conference on architectural support for programming languages and
operating systems, pages 461–472. ACM, 2013.

[24] Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine paxos. In Proceedings
of the International Conference on Dependable Systems and Networks, pages 402–411,
2004.

[25] David Mazieres. Paxos made practical. http://www.scs.stanford.edu/~dm/
home/papers/paxos.pdf.

[26] Brian M Oki and Barbara H Liskov. Viewstamped replication: A new primary
copy method to support highly-available distributed systems. In Proceedings of the
seventh annual ACM Symposium on Principles of distributed computing, pages 8–17,
1988.

[27] Diego Ongaro. Consensus: Bridging theory and practice. PhD thesis, Stanford
University, 2014 (work in progress). http://ramcloud.stanford.edu/~ongaro/
thesis.pdf.

[28] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the USENIX Annual Technical Conference, 2014.

[29] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[30] Charalampos Rotsos, Heidi Howard, David Sheets, Richard Mortier, Anil Mad-
havapeddy, Amir Chaudhry, and Jon Crowcroft. Lost in the edge: Finding your
way with Signposts. In Proceedings of the third USENIX Workshop on Free and Open
Communications on the Internet, 2013.

[31] David W Scott. Box–muller transformation. Wiley Interdisciplinary Reviews: Com-
putational Statistics, 3(2):177–179, 2011.

[32] Dale Skeen and Michael Stonebraker. A formal model of crash recovery in a
distributed system. IEEE Transactions on Software Engineering, (3):219–228, 1983.

[33] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. Journal of the ACM (JACM), 32(3):652–686, 1985.

[34] Romain Slootmaekers and Nicolas Trangez. Arakoon: A distributed consistent
key-value store. SIGPLAN OCaml Users and Developers Workshop, 2012.

http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://ramcloud.stanford.edu/~ongaro/thesis.pdf
http://ramcloud.stanford.edu/~ongaro/thesis.pdf

62 BIBLIOGRAPHY

[35] Frederic Tuong, Fabrice Le Fessant, and Thomas Gazagnaire. OPAM: an OCaml
package manager. SIGPLAN OCaml Users and Developers Workshop, 2012.

[36] Robbert Van Renesse. Paxos made moderately complex. http://www.cs.
cornell.edu/courses/cs7412/2011sp/paxos.pdf, 2011.

[37] András Varga et al. The OMNeT++ discrete event simulation system. In Proceed-
ings of the European Simulation Multiconference, volume 9, page 185, 2001.

http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf
http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

Appendix A

Raft Specification for Simulation

The following Raft specification has been updated and extended from the original
Raft specification [28] for the purpose of simulating the protocol and testing a range
of implementation choices.

A.1 State

Persistent State (for all modes of operation)

• Current Term – Monotonically increasing value, initialised at start up and incre-
mented over time, used to order messages.

• Voted For – The node which has been voted for in the current term, if any. This
value is cleared each time the current term is updated and once it has been set
it cannot be changed, thus each node will only hand out one vote per term.

• Log – The replicated log, each entry includes the client’s command, command
serial number, log index and term.

• Last Log Index & Term – Index and term associated with most recent entry in
log.

• State Machine – The state machine which is being replicated1.

• Commit Index – The index of the last command to be passed to the replicated
state machine, initialised at startup and monotonically increasing1.

• Client Serial Numbers and responses – For each client, the serial number of the
last command that has been committed to the state machine. Each is initialised
at start-up and monotonically increasing. Associated with each serial number is
a cached copy of the response from the state machine.

63

64 APPENDIX A. RAFT SPECIFICATION FOR SIMULATION

• ID – Unique reference to this particular node.

• All Nodes – References (and network addresses) to all other nodes in the cluster.

Volatile State (for all modes of operation)

• Mode – Current mode of operation (as shown in Figure 2.2).

• Timers – Implementation of various timers, dependent on current mode, includ-
ing packet re-transmissions and follower, candidate and leader timeouts.

• Time – Function from unit to time, specific implementation depends on if a
simulation mode like discrete is being used thus it returns the current simulated
time or realtime which uses the unit to operate on system local time.

• Leader – The current leader (if known) to redirect client to.

• Safety Monitor – SPL automata to catch run-time behaviour leading to diver-
gence from safe protocol NFA.

Volatile State (for candidates)

• Votes Granted – List of nodes who have successfully granted this candidate a
vote, initialised to empty when election is started/restarted and only appended
to. A pre-appending check ensures that a node isn’t already present in list ensur-
ing that votes are only counted once per replica, if network duplicates packets,
and asserts that the node’s ID is not present in the Votes Not Granted list.

• Votes Not Granted – List of nodes who have not granted this candidate a vote,
initialised to empty when election is started/restarted and only appended to. A
pre-appending check ensures that a node isn’t already present in list, ensuring
that votes are only counted once per node, if network duplicates packets, and
asserts that the node’s ID is not present in the Votes Granted list.

• Backoff Election Number – Number of elections this Candidate has run which
have received a rejection from a majority of candidates.

Volatile State (for leaders)

• Next Index – For each node, the leader maintains an overestimate of how con-
sistent the node’s log is with its own. This value is initialised to one more then
the leader last index and denotes which log entries will be included in the next
AppendEntries RPC.

• Match Index – For each node, the leader maintains a safe underestimate of how
consistent the node’s log is with its own. This value is initialised on becoming
leader and is monotonically increasing.

A.2. RPCS 65

• Outstanding Client Requests – All requests that have been received and the
client is awaiting responses for (at most one per client).

State for each Client

• Workload – The set of commands and associated serial numbers, that the client
will attempt to commit.

• Expected Results – Expected outcome of each item in the workload to check
responses, automatically generated by applying workload to local copy of state
machine.

• Time – Function from unit to time, specific implementation depends on if a
simulation mode like discrete is being used, thus it returns the current simulated
time, or realtime which uses the unit to operate on system local time.

• All Nodes – References (and network addresses) to all nodes in the cluster.

• Leader – Latest node to be selected as leader, if known, or details of how to
choose next node to query.

• Outstanding request – The client’s outstanding commit request, if applicable (at
most one).

• Timer – Implementation of timer, to re-transmit packet when nodes fail or pack-
ets are lost.

A.2 RPCs

A.2.1 Append Entries

Arguments: Term, LeaderID, PrevLogIndex, PrevLogTerm, Entries, LeaderCommitIn-
dex

Results: Success, Term
Method Body:

1. Term Handling: If packet Term is strictly less then node’s Term then the leader
needs neutralising so respond with false and current term. If packet Term is
strictly greater then node’s Term then the node needs to update its term and
step down if its current mode is Candidate or Leader, then proceed. If packet
Term is equal to node’s Term then proceed

2. Update Follower Timer: Node resets its follower timer as it’s now heard from a
valid Leader so we don’t want the node to timeout

66 APPENDIX A. RAFT SPECIFICATION FOR SIMULATION

3. Leader Discovery: Node updates its leader to LeaderID for redirecting a client

4. Test Log Consistency: Use the packet’s PrevLogIndex and PrevLogTerm to de-
termine which of the following consistency states the node’s log is:

(a) Perfect Consistency – The node’s Last Log Index and Term are the same
as PrevLogIndex and PrevLogTerm, so logs are identical (under the log
matching guarantee)

(b) Consistent with surplus entries – An entry with PrevLogIndex and Pre-
vLogTerm is present in the node’s log, remove all extra log entries and then
logs are identical

(c) Inconsistent – An entry with PrevLogIndex is present in the node’s log but
its associated term is different

(d) Incomplete – No entry with PrevLogIndex is present in the node’s log as
the node’s log doesn’t have enough entries

If the log consistency test outcome was inconsistent or incomplete, reply with
false and wait for the leader to retry, otherwise (perfectly consistent or consistent
with surplus), the node’s log is now consistent and ready for new entries

5. Append New Entries: If Entries is non-empty then append the entries to the log
and update Last Log index and Term, otherwise, if Entries is empty, this was a
heartbeat message so no action needs to be taken

6. Commit Indices: If LeaderCommitIndex is greater than node’s current Commit
Index and less than Last Log index then update Commit Index and apply the
log entries between the old Commit Index and new Commit Index.

A.2.2 Client Commit

Arguments: ClientID, SerialNumber, Class, Command
Results: Successful, LeaderID, Results, ClientID, SerialNumber
Method Body:

1. Check client request cache: Search client request cache for the ClientID, if cor-
responding SerialNumber is greater than request SerialNumber then discard. If
serialNumbers are equal, then reply to client with cached response. Otherwise
proceed

2. Leader check – If node is not currently the leader, it responds to the client with
Unsuccessful and the ID of the current leader, if known

A.2. RPCS 67

3. Read Commit – If the Class of command is read and the leader has committed
an entry from its current term, then the leader can apply the command to the
state machine and reply to client

4. Write Commit – Save the client request, add the new SerialNumber to the client
request cache and append entry to log. Broadcast AppendEntries RPCs to all
nodes with the new update

5. Application to state machine – When the leader match Index for at least a strict
majority of nodes is at least as high as the command entry, then the leader can
update its commit Index and apply the command to the state machine

6. Response – The response from the state machine can now be cached in the client
request cache, and dispatched to the client

A.2.3 Request Vote

Arguments: Term, CandidateID, LastLogIndex, LastLogTerm
Results: VoteGranted, Term
Method Body:

1. Term Handling: If packet Term is strictly less then node’s Term then the candi-
date needs neutralising so respond with false and current term. If packet Term
is strictly greater then node’s Term then the node needs to update its term and
step down if its current mode is Candidate or Leader, then proceed. If packet
Term is equal to node’s Term then proceed

2. Vote Granting: Grant vote to this candidate if:

(a) Mode criteria: node’s current state isn’t Leader

(b) Single Vote per Term: node hasn’t yet handed out its vote for this term (or
it was to this candidate)

(c) Safe Condition of Leader Elections: candidate’s log is at least as complete as
follower’s log, hence grant if either the candidate’s last term is greater than
node’s last term or if the last terms are equal, the candidate’s last index is
greater or equal to the follower’s last index

3. Update Follower Timer: If vote has been granted, node resets its follower timer
as it’s now heard from a valid candidate so we don’t want the replica to timeout

1The state machine and commit index, need not be persistent. If not persistent then on restart
initialise the state machine and commit Index, then when commit index is updated the state machine
will be brought upto date

Appendix B

Simulation Parameters

68

69

Name Description
Follower Timeout Distribution of the Follower Timeout
Candidate Timeout Distribution of the Candidate Timeout
Backoff Enable the binary exponential backoff for Candidate

Timeouts
Leader Timeout Distribution of Leader Timeout
Client Timeout Time client waits for response from node
Workload Size Number of commands for the client to commit
Unsuccessful Commit De-
lay

Time client waits after unsuccessful commit to try
again

Successful Commit Delay Time client waits after successful commit to try next
command

Nodes Number of nodes in the cluster
Mode Discrete or Realtime Simulation
Node Failures Distribution of node failure1

Node Recovery Distribution of time until recovery for nodes
Packet Delay Distribution of packet delay
Packet Loss Probability of any packet being lost
Packet Duplication Probability of any packet being duplicated by the net-

work
History Store a complete history of the all state changes to

nodes
Conservative Aggregate requests and dispatch only on epoch
Debug Enable debugging Output
JSON Enable JSON Output
Iteration Number of simulations to run
Termination criteria Terminate simulation once a leader has been elected

or all client commands have been committed or time
has exceeded a given value

Figure B.1: Table detailing the available simulation parameters

	857.pdf
	Introduction
	Motivation
	Related Work
	Definition of Consensus
	CAP theorem: Conjecture, Correctness & Controversy
	FLP Impossibility Result
	Two and Three Phase Commit
	(Multi-)Paxos
	Viewstamped Replication

	Preparation
	Assumptions
	Approach
	Raft Protocol
	Leader Election
	Log Replication
	Safety and Extra Conditions

	Requirements Analysis
	Choice of Tools
	Programming Languages
	Build Systems
	Libraries
	Testing

	Summary

	Implementation
	Simulation Framework
	Clock
	State
	Node State
	Client State

	Events
	Event List
	Simulation Parameters
	Non-determinism
	Correctness
	Summary

	Evaluation
	Calibration
	Leader Election
	Log Replication and Client Semantics
	Testing
	Summary

	Conclusion
	Recommendations
	Future Work

	Bibliography
	Raft Specification for Simulation
	State
	RPCs
	Append Entries
	Client Commit
	Request Vote

	Simulation Parameters

