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Abstract 

This thesis addresses the task of automatically generating reading lists for novices in a 

scientific field.  Reading lists help novices to get up to speed in a new field by providing 

an expert-directed list of papers to read.  Without reading lists, novices must resort to ad-

hoc exploratory scientific search, which is an inefficient use of time and poses a danger 

that they might use biased or incorrect material as the foundation for their early learning.   

The contributions of this thesis are fourfold.  The first contribution is the 

ThemedPageRank (TPR) algorithm for automatically generating reading lists.  It 

combines Latent Topic Models with Personalised PageRank and Age Adjustment in a 

novel way to generate reading lists that are of better quality than those generated by state-

of-the-art search engines.  TPR is also used in this thesis to reconstruct the bibliography 

for scientific papers.  Although not designed specifically for this task, TPR significantly 

outperforms a state-of-the-art system purpose-built for the task.  The second contribution 

is a gold-standard collection of reading lists against which TPR is evaluated, and against 

which future algorithms can be evaluated.  The eight reading lists in the gold-standard 

were produced by experts recruited from two universities in the United Kingdom.  The 

third contribution is the Citation Substitution Coefficient (CSC), an evaluation metric for 

evaluating the quality of reading lists.  CSC is better suited to this task than standard IR 

metrics such as precision, recall, F-score and mean average precision because it gives 

partial credit to recommended papers that are close to gold-standard papers in the citation 

graph.  This partial credit results in scores that have more granularity than those of the 

standard IR metrics, allowing the subtle differences in the performance of 

recommendation algorithms to be detected.  The final contribution is a light-weight 

algorithm for Automatic Term Recognition (ATR).  As will be seen, technical terms play 

an important role in the TPR algorithm.  This light-weight algorithm extracts technical 

terms from the titles of documents without the need for the complex apparatus required 

by most state-of-the-art ATR algorithms.  It is also capable of extracting very long 

technical terms, unlike many other ATR algorithms. 

Four experiments are presented in this thesis.  The first experiment evaluates TPR against 

state-of-the-art search engines in the task of automatically generating reading lists that 

are comparable to expert-generated gold-standards.  The second experiment compares 

the performance of TPR against a purpose-built state-of-the-art system in the task of 

automatically reconstructing the reference lists of scientific papers.  The third experiment 

involves a user study to explore the ability of novices to build their own reading lists 

using two fundamental components of TPR: automatic technical term recognition and 

topic modelling.  A system exposing only these components is compared against a state-

of-the-art scientific search engine.  The final experiment is a user study that evaluates the 

technical terms discovered by the ATR algorithm and the latent topics generated by TPR.  

The study enlists thousands of users of Qiqqa, research management software 

independently written by the author of this thesis. 
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Chapter 1.  

Introduction 

This thesis addresses the task of automatically generating reading lists for novices in a 

scientific field.  The goal of a reading list is to quickly familiarise a novice with the 

important concepts in their field.  A novice might be a first-year research student or an 

experienced researcher transitioning into a new discipline.  Currently, if such a novice 

receives a reading list, it has usually been manually created by an expert. 

Reading lists are a commonly used educational tool in science (Ekstrand et al. 2010).  A 

student will encounter a variety of reading lists during their career: a list of text books 

that are required for a course, as prescribed by a professor; a list of recommended reading 

at the end of a book chapter; or the list of papers in the references section of a journal 

paper.  Each of these reading lists has a different purpose and a different level of 

specificity towards the student, but in general, each list is generated by an expert.  

A list of course textbooks details the material that a student must read to follow the 

lectures and learn the foundations of the field.  This reading list is quite general in that it 

is applicable to a variety of students.  The list of reading at the end of a textbook chapter 

might introduce more specialised reading.  It is intended to guide students who wish to 

explore a field more deeply.  The references section of a journal paper is more specific 

again: it suggests further reading for a particular research question, and is oriented 

towards readers with more detailed technical knowledge of a field.  Tang (2008) 

describes how the learner-models of each individual learner are important when making 

paper recommendations.  These learner-models are comprised of their competencies and 

interests, the landscape of their existing knowledge and their learning objectives.  

The most specific reading list the student will come across is a personalised list of 

scientific papers generated by an expert, perhaps a research supervisor, spanning their 

specialised field of research.  Many experts have ready-prepared reading lists they use 

for teaching, or can produce one on the fly from their domain knowledge should the need 

arise. After reading and understanding this list, the student should be in a good position 

to begin independent novel scientific research in that field. 

Despite their potential usefulness, access to structured reading lists of scientific papers is 

generally only available to novices who have access to guidance of an expert.  What can 

a novice do if an expert is not available to direct their reading? 

Experts in a field are accustomed to strategic reading (Renear & Palmer 2009), which 

involves searching, filtering, scanning, linking, annotating and analysing fragments of 

content from a variety of sources.  To do this proficiently, experts rely on their familiarity 
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with advanced search tools, their prior knowledge of their field, and their awareness of 

technical terms and ontologies that are relevant to their domain.  Novices lack all three 

proficiencies. 

While a novice will benefit from a reading list of core papers, they will benefit 

substantially more from a review of the core papers, where each paper in the list is 

annotated with a concise description of its content.  In some respect, reading lists are 

similar to reviews in that they shorten the time it takes to get the novice up to speed to 

start their own research (Mohammad et al. 2009a), both by locating the seminal papers 

that initiated inquiry into the field and by giving them a sufficiently complete overview 

of the field.  While automatically generating reading lists does not tackle the harder task 

of generating review summaries of papers, it can provide a good candidate list of papers 

to automatically review. 

Without expert guidance, either in person or through the use of reading lists, novices 

must resort to exploratory scientific search – an impoverished imitation of strategic 

reading.  It involves the use of electronic search engines to direct their reading, initially 

from a first guess for a search query, and later from references, technical terms and 

authors they have discovered as they progress in their reading.  It is a cyclic process of 

searching for new material to read, reading and digesting this new material, and 

expanding awareness and knowledge so that the process can be repeated with better 

search criteria. 

This interleaved process of searching, reading, expanding is laborious, undirected, and 

highly dependent on an arbitrary starting point, even when supported by online search 

tools (Wissner-Gross 2006).  To compound matters, the order in which material is read 

is important.  Novices do not have the experience in a new field to differentiate between 

good and bad papers (Wang et al. 2010).  They therefore read and interpret new material 

in the context of previously assimilated information (Oddy et al. 1992).  Without a 

reading list, or at least some guidance from an expert, there is a danger that the novice 

might use biased, flawed or incorrect material as the foundation for their early learning.  

This unsound foundation can lead to misjudgements of the relevance of later reading 

(Eales et al. 2008). 

It is reasonable to advocate that reading lists are better than exploratory scientific search 

for cognitive reasons.  Scientific literature contains opaque technical terms that are not 

obvious to a novice, both when formulating search queries and when interpreting search 

results (Kircz 1991; Justeson & Katz 1995).  How should a novice approach exploratory 

scientific search when they are not yet familiar with a field, and in particular, when they 

are not yet familiar with the technical terms? Technical terms are opaque to novices 

because they have particular meaning when used in a scientific context (Kircz 1991) and 

because synonymous or related technical terms are not obvious or predictable to them. 

Keyword search is thus particularly difficult for them (Bazerman 1985).  More 

importantly, novices – and scientists in general – are often more interested in the 

relationships between scientific facts than the isolated facts themselves (Shum 1998).  
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Without reading lists a novice has to repeatedly formulate search queries using unfamiliar 

technical terms and digest search results that give no indication of the relationships 

between papers.  Reading lists are superior in that they present a set of relevant papers 

covering the most important areas of a field in a structured way.  From a list of relevant 

papers, the novice has an opportunity to discover important technical terms and scientific 

facts early on in their learning process and to better grasp the relationships between them. 

Reading lists are also better than exploratory scientific search for technical reasons.  The 

volume of scientific literature is daunting, and is growing exponentially (Maron & Kuhns 

1960; Larsen & von Ins 2009). While current electronic search tools strive to ensure that 

the novice does not miss any relevant literature by including in the search results as many 

matching papers as they can find, these thousands of matching papers returned can be 

overwhelming (Renear & Palmer 2009).  Reading lists are of a reasonable and 

manageable length by construction.  When trying to establish relationships between 

papers using exploratory scientific search, one obvious strategy is to follow the citations 

from one paper to the next.  However, this strategy rapidly becomes intractable as it leads 

to an exponentially large set of candidate papers to consider.  The search tools available 

for exploratory scientific search also do little to reduce the burden on the novice in 

deciding the authority or relevance of the search results.  Many proxies for authority have 

been devised such as citation count, h-index score and impact factor, but so far, these 

have been broad measures and do not indicate authority at a level of granularity needed 

by a novice in a niche area of a scientific field.  Reading lists present a concise, 

authoritative list of papers focussed on the scientific area that is relevant to the novice. 

The first question this research addresses is whether or not experts can make reading lists 

when given instructions, and explores how they go about doing so.  This question is 

answered with the assembly of a gold-standard set of reading lists created by experts, as 

described in Section 3.2. 

While the primary focus of this research is the automatic generating of reading lists, the 

algorithms that I develop for automatically generating reading lists rely on both the 

technical terms in a scientific field and the relationships between these technical terms 

and the papers associated with them.  These relationships are important for this thesis, 

and arise from my hypothesis that similar technical terms appear repeatedly in similar 

papers.  These relationships make possible the useful extrapolation that a paper and a 

technical term can be strongly associated even if the term is not used in the paper.  As a 

step towards automatically generating reading lists, this thesis will confirm that these 

technical terms and relationships are useful for the automatic generation of reading lists.  

In addition this thesis will explore the hypothesis that exploratory scientific search can 

be improved upon with the addition of features that allow novices to explore these 

technical terms and relationships. 

The second question this research addresses is whether or not the exposition of 

relationships between papers and their technical terms improves the performance of a 
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novice in exploratory scientific search.  This question is answered using the task-based 

evaluation described in Section 5.4. 

The algorithms that I develop for automatically generating reading lists make use of two 

distinct sources of information: lexical description and social context.  These sources of 

information are used to model scientific papers, to find relationships between them, and 

to determine their authority. 

Lexical description deals with the textual information contained in each paper.  It 

embodies information from inside a paper, i.e. the contributions of a paper from the 

perspective of its authors.  In the context of this thesis, this information consists of the 

title, the full paper text, and the technical terms contained in that text.  I use this 

information to decide which technical terms are relevant to each paper, to divide the 

corpus into topics, to measure the relevance of the papers to each topic, and to infer 

lexical similarities and relationships between the papers, technical terms and the topics. 

Social context deals with the citation behaviour between papers.  It embodies information 

from outside a paper, i.e. the contribution, relevance and authority of each paper from 

the perspective of other people.  This information captures the fact that the authors of one 

paper chose to cite another paper for some reason, or that one group of authors exhibits 

similar citing behaviour to another group of authors.  I use this information to measure 

the authority of papers and to infer social similarities and relationships between them. 

These lexical and social sources of information offer different advantages when 

generating reading lists, and their strengths can be combined in a variety of ways.  Some 

search systems use only the lexical information, e.g., TFIDF indexed search, topic 

modelling, and document clustering.  Some use only social information, e.g. co-citation 

analysis, citation count and h-index, and collaborative filtering.  More complex search 

systems combine the two in various ways, either as independent features in machine 

learning algorithms or combined more intricately to perform better inference.  Much of 

Chapter 2 is dedicated to describing these types of search systems.  The algorithms 

developed in this thesis fall into the last category, where lexical information is used to 

discover niches in scientific literature, and social information is used to find authority 

inside those niches. 

The third question this research addresses is whether or not lexical and social information 

contributes towards the task of automatically generating reading lists, and if so, to 

measure the improvement of such algorithms over current state-of-the-art.  It turns out 

that they contribute significantly, especially in combination, as will be shown in the 

experiments in Sections 5.2 and 5.3. 

The task of automatically generating reading lists is a recent invention and so 

standardised methods of evaluation have not yet been established.  Methods of evaluation 

fall into three major categories: offline methods, or “the Cranfield tradition” (Sanderson 

2010); user-centred studies (Kelly 2009); and online methods (Kohavi et al. 2009).  From 

these major categories, four specific evaluations are performed in this thesis: a gold-
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standard-based evaluation (offline method); a dataset-based evaluation (offline method); 

a task-based evaluation (user-centred study); and a user satisfaction evaluation (online 

method). 

Gold-standard-based evaluations test a system against a dataset specifically created for 

particular experiments.  This allows a precise hypothesis to be tested.  However, creation 

of a gold-standard is expensive so evaluations are generally small in scale.  A gold-

standard-based evaluation is used in Section 5.2 to compare the quality of the reading 

lists automatically generated by various algorithms against a gold-standard set of reading 

lists generated by experts in their field. 

Because gold-standards tailored to a particular hypothesis are expensive to create, it is 

sometimes reasonable to transform an existing dataset (or perhaps a gold-standard from 

a different task) into a surrogate gold-standard.  These are cheaper forms of evaluation 

as they leverage existing datasets to test a hypothesis.  They operate at large scale, which 

facilitates drawing statistically significant conclusions, and generally have an 

experimental setup that is repeatable, which enables other researchers to compare 

systems independently.  A disadvantage is that large datasets are generally not tailored 

to any particular experiment and so proxy experiments must be performed instead.  

Automated evaluation is used in Section 5.3 to measure the quality of automatically 

generated reading lists though the proxy test of reconstructing the references sections of 

1,500 scientific papers. 

Task-based evaluations are the most desirable at testing hypotheses because they elicit 

human feedback from experiments specifically designed for the task.  However, this 

makes them expensive – both in the requirement of subjects to perform the task and 

experts to judge their results.  They also require significant investment in time to 

coordinate the subjects during the experiment.  A task-based evaluation is presented in 

Section 5.4.  It explores whether the exposition of relationships between papers and their 

technical terms improves the performance of a novice in exploratory scientific search. 

User satisfaction evaluations have the advantage of directly measuring human response 

to a hypothesis.  Once deployed, they also can scale to large sample populations without 

additional effort.  A user satisfaction evaluation is used in Section 5.5 to evaluate the 

quality of the technical terms and topic models produced by my algorithms. 

In summary, this thesis addresses the task of automatically generating reading lists for 

novices in a scientific field.  The exposition of this thesis is laid out as follows.  Chapter 

2 positions the task of automatically generating reading lists within a review of related 

research.  The two most important concepts presented there are Latent Topic Models and 

Personalised PageRank, which are combined in a novel way to produce one of the major 

contributions of this thesis, ThemedPageRank.  Chapter 3 develops ThemedPageRank in 

detail, along with the four other contributions of this thesis, while Chapter 4 describes 

their technical implementation.  Chapter 5 presents two experiments that compare the 

performance of ThemedPageRank with state-of-the-art in the two tasks of automated 
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reading list construction and automated reference list reintroduction.  Two additional 

experiments enlist human subjects to evaluate the performance of the artefacts that go 

into the construction of ThemedPageRank.  Finally, Chapter 6 concludes with a summary 

of this thesis and discusses potential directions for future work. 
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Chapter 2.  

Related work 

The task of automatically generating reading lists falls broadly into the area of 

Information Retrieval, or IR (Mooers 1950; Manning et al. 2008).  According to 

Fairthorne (2007), the purpose of an IR system is to structure a large volume of 

information in such a way as to allow a search user to efficiently retrieve the subset of 

this information that is most relevant to their information need.  The information need is 

expressed in a way that is understandable by the searcher and interpretable by the IR 

system, and the retrieved result is a list of relevant items.   When automatically generating 

reading lists, a novice’s information need, approximated by a search query, must be 

satisfied by a relevant subset of papers found in a larger collection of papers (a document 

corpus). 

2.1 Information Retrieval 

Almost any type of information can be stored in an IR system, ranging from text and 

video, to medical or genomic data.  In line with the task of automatically generating 

reading lists, this discussion describes IR systems that focus on textual data – specifically 

information retrieval against a repository of scientific papers. 

An IR system is characterised by its retrieval model, which is comprised of an indexing 

and a matching component (Manning et al. 2008).  The task of the indexing component 

is to transform each document into a document representation that can be efficiently 

stored and searched, while retaining much of the information of the original document.  

The task of the matching component is to translate a search query into a query 

representation that can be efficiently matched or scored against each document 

representation in the IR system.  This produces a set of document representations that 

best match the query representation, which in turn are transformed back into their 

associated documents as the search results. 

The exact specification of the retrieval model is crucial to the operation of the IR system: 

it decides the content and the space requirements of what is stored inside the IR system, 

the syntax of the search queries, the ability to determine relationships between documents 

inside the IR system, and the efficiency and nature of scoring and ranking of the search 

results.  Increasingly complex retrieval models are the subject of continued and active 

research (Voorhees et al. 2005).   

The Boolean retrieval model underlies one of the earliest successful information retrieval 

search systems (Taube & Wooster 1958).  Documents are represented by an unordered 

multi-set of words (the bag-of-words model), while search queries are expressed as 
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individual words separated by Boolean operators (i.e. AND, OR and NOT) with well-

known semantics (Boole 1848).  A document matches a search query if the words in the 

document satisfy the set-theoretic Boolean expression of the query.  Matching is binary: 

a document either matches or it does not.  The Boolean retrieval model is useful at 

retrieving all occurrences of documents containing matching query keywords, but it has 

no scoring mechanism to determine the degree of relevance of individual search results.  

Moreover, in searchers’ experience, the Boolean retrieval is generally too restrictive 

when using AND operators and too overwhelming when using OR operators (Lee & Fox 

1988). 

The TFIDF retrieval model (Sparck-Jones 1972) addresses the need for scoring the search 

results to indicate the degree of relevance to the search query of each search result.  The 

intuitions behind TFIDF are twofold.  Firstly, documents are more relevant if search 

terms appear frequently inside them.  This phenomenon is modelled by “term frequency”, 

or TF.  Secondly, search terms are relatively more important or distinctive if they appear 

infrequently in the corpus as a whole.  This phenomenon is modelled by the “inverse 

document frequency”, or IDF. 

TFIDF is usually implemented inside the vector-space model (Salton et al. 1975) where 

documents are represented by T-dimensional vectors.  Each dimension of the vector 

corresponds to one of the T terms in the retrieval model and each dimension value is the 

TFIDF score for term t in document d in corpus D, 

𝑟𝑑 = [

𝑇𝐹𝐼𝐷𝐹1,𝑑,𝐷

⋮
𝑇𝐹𝐼𝐷𝐹𝑇,𝑑,𝐷

] 

Salton & Buckley (1988) describe a variety of TFIDF-based term weighting schemes and 

their relative advantages and disadvantages, but commonly  

𝑇𝐹𝐼𝐷𝐹𝑡,𝑑,𝐷 = 𝑇𝐹𝑡,𝑑 × 𝐼𝐷𝐹𝑡,𝐷

𝐼𝐷𝐹𝑡,𝐷 = 𝑙𝑜𝑔
|𝐷|

|𝐷𝑡|

 

where TFt,d is the frequency of term t in document d, |D| is the number of documents in 

the corpus, and |Dt| is the number of documents in the corpus containing term t. 

Similarly, a query vector representation is the TFIDF score for each term t in query q  

𝑟𝑞 = [

𝑇𝐹𝐼𝐷𝐹1,𝑞,𝐷

⋮
𝑇𝐹𝐼𝐷𝐹𝑇,𝑞,𝐷

] 

The relevance score for a document is measured by the similarity between the query 

representation and the document representation.  One such similarity measure is the 

normalised dot product of the two representations, 
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𝑠𝑐𝑜𝑟𝑒𝑑,𝑞 =
𝑟𝑑 ∙ 𝑟𝑞

|𝑟𝑑| |𝑟𝑞|
 

This score, also called the cosine score, allows results to be ranked by relevance: retrieved 

items with larger scores are ranked higher in the search results. 

The TFIDF vector-space model represents documents using a mathematical construct 

that does not retain much of the structure of the original documents.  The use of a term-

weighted bag-of-words loses much of the information in the original document such as 

word ordering and section formatting.  However, this loss of information is traded off 

against the benefits of efficient storage and querying.  

While traditional IR models like the Boolean and TFIDF retrieval models address the 

task of efficiently retrieving information relevant to a searcher’s need, their designs take 

little advantage of the wide variety of relationships that exist among the documents they 

index. 

Shum (1998) argues that scientists are often more interested in the relationships between 

scientific facts than the facts themselves.  This observation might be applied to papers 

too because papers are conveyors of facts.  The relationships between the papers are 

undoubtedly interesting to scientists because tracing these relationships is a major means 

for a scientist to learn new knowledge and discover new papers (Renear & Palmer 2009). 

One place to look for relationships between papers is the paper content itself.  By 

analysing and comparing the lexical content of papers we can derive lexical relationships 

and lexical similarities between the papers.  The intuition is that papers are somehow 

related if they talk about similar things. 

A straightforward measure of relationship between two papers calculates the percentage 

of words they have in common.  This is known as the Jaccard similarity in set theory 

(Manning et al. 2008), and is calculated as 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑1,𝑑2 =
|𝑤𝑑1 ∩ 𝑤𝑑2|

|𝑤𝑑1 ∪ 𝑤𝑑2|
 

where wd1 and wd2 are the sets of words in documents d1 and d2, respectively.  It is 

intuitive that documents with most of their words in common are more likely to be similar 

than documents using completely different words, so a larger overlap implies a stronger 

relationship.  All words in the document contribute equally towards this measure, which 

is not always desirable.  Removing words such as articles, conjunctions and pronouns 

(often called stop-words) can improve the usefulness of this measure.  

The TFIDF vector-space model (Salton et al. 1975), discussed previously in the context 

of information retrieval, can also be leveraged to provide a measure of the lexical 

similarity of two documents using the normalised dot product of the two paper 

representations.  The TFIDF aspect takes into account the relative importance of words 

inside each document when computing similarity: 
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𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑑1,𝑑2 =
𝑟𝑑1 ∙ 𝑟𝑑2

|𝑟𝑑1| |𝑟𝑑2|
 

In this thesis I focus on the technical terms that are contained by each document, and 

model documents as a bag-of-technical-terms rather than a bag-of-words.  This is 

motivated from three perspectives.   

Firstly, Kircz (1991) and Justeson & Katz (1995) describe the importance of technical 

terms in conveying the meaning of a scientific document, while at the same time 

highlighting the difficulty a novice faces in assimilating them.  Shum (1998) argues that 

many information needs in scientific search entail solely the exposition of relationships 

between scientific facts.  By using technical terms instead of words, there is an 

opportunity to find the relationships between these technical terms in the literature.  

Secondly, the distributions of words and technical terms in a document are both Zipfian 

(Ellis & Hitchcock 1986), so the distributional assumptions underlying many similarity 

measures are retained when switching from a bag-of-words to a bag-of-technical-terms 

model.  Thirdly, many IR systems exhibit linear or super-linear speedup in a reduction in 

the size of the underlying vocabulary (Newman et al. 2006).  Obviously, the vocabulary 

of technical terms in a corpus is smaller than the vocabulary of all words in a corpus, so 

using technical terms should also lead to a noticeable decrease in search time. 

2.2 Latent Topic Models 

While changing the representation of documents from bag-of-words to bag-of-technical-

terms has all the advantages just described, it still suffers from the same two problems 

that plague the bag-of-words model: polysemy and synonymy. Two documents might 

refer to identical concepts with different terminology, or use identical terminology for 

different concepts.  Naïve lexical techniques are unable to directly model these 

substitutions without enlisting external resources such as dictionaries, thesauri and 

ontologies (Christoffersen 2004).  These resources might be manually produced, such as 

WordNet (Miller 1995), but they are expensive and brittle to domain shifts.  This applies 

particularly to resources that cater towards technical terms, such as gene names 

(Ashburner et al. 2000).  Alternatively, the resources might be automatically produced, 

which is non-trivial and amounts to shifting the burden from the naïve lexical techniques 

elsewhere (Christoffersen 2004). 

Latent topic models consider the relationships between entire document groups and have 

inherent mechanisms that are robust to polysemy and synonymy (Steyvers & Griffiths 

2007; Boyd-Graber et al. 2007).  They automatically discover latent topics – latent 

groupings of concepts – within an entire corpus of papers, and latent relationships 

between technical terms in a corpus.  Synonyms tend to be highly representative in the 

same topics, while words with multiple meanings tend to be represented by different 

topics (Boyd-Graber et al. 2007).  Papers with similar topic distributions are likely to be 

related because they frequently mention similar technical terms.  These same 

distributions over topics also expose relationships between papers and technical terms. 
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In addition to automatically coping with polysemy and synonymy, quantitatively useful 

latent relationships between papers emerge when various topic modelling approaches are 

applied to a corpus of papers.  Latent topic models are able to automatically extract 

scientific topics that have the structure to form the basis for recommending citations 

(Daud 2008), and the stability over time to track the evolution of these scientific topics 

(He et al. 2009).   

It is important to bear in mind that while these automated topic models are excellent 

candidates for dissecting the structure of a corpus of data, their direct outputs lack explicit 

structure.  Topics are imprecise entities that emerge only through the strengths of 

association between documents and technical terms that comprise them, so it is difficult 

to interpret and differentiate between them.  To help with interpretation, one might 

manually seed each topic with pre-identified descriptive terms, but this approach is not 

scalable and requires knowledge of the topics in a document corpus beforehand 

(Andrzejewski & Zhu 2009).  This problem becomes even more difficult as the number 

of topics grows (Chang et al. 2009a; Chang et al. 2009b). 

Sidestepping the issue about their interpretability, topics can be used internally as a 

processing stage for some larger algorithm.  This has proved invaluable for variety of 

tasks, ranging from automatically generating image captions (Blei 2004) to automatic 

spam detection on the Internet (Wu et al. 2006). 

Wsd  HMM  POS 
 WSD  markov  part-of-speech 

 word sense disambiguation  hidden markov  part of speech 
 Wordnet  DP  pos tagging 

 word senses  EM  part-of-speech tagging 
 senseval-3  markov models  ME 

 LDA  hidden markov model  pos tagger 

 computational linguistics  training data  rule-based 
 training data  hidden markov models  natural language 
 english lexical  dynamic programming  parts of speech 

 information retrieval  np  crf 
 Ir  NP  CRF 
 IR  VP  EM 

 TREC  PP  training data 

 text retrieval  nps  perceptron 
 query expansion  phrase structure  unlabeled data 

 IDF  parse trees  active learning 
 search engine  syntactic structure  semi-supervised 

 retrieval system  noun phrase  reranking 

 document retrieval  verb phrase  conditional random fields 

Table 1. Examples of Topics Generated by LDA from a Corpus of NLP Papers. 
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To provide some idea of the nature of the topics produced by topic modelling, Table 1 

shows an example of six topics generated by my implementation of a popular model for 

topic modelling, Latent Dirichlet Allocation (LDA) (Blei et al. 2003), over a typical NLP 

document collection, the ACL Anthology Network (Radev et al. 2009b).  The top-10 

most relevant technical terms are shown for six topics chosen arbitrarily from the 200 

topics generated by LDA.  Notice how synonymous technical terms congregate in the 

same topic.  Also notice that while each topic is recognisable as an area of NLP, it is not 

straightforward to label each topic or to discern the boundaries of each topic. For 

example, the first topic might easily be labelled “word sense disambiguation” because 

most of the technical terms that comprise the topic are closely aligned with word sense 

disambiguation.  However, the sixth topic contains a variety of technical terms that are 

loosely associated with machine learning, but are not similar enough to adequately label 

the entire topic. 

Superficially, topic models collapse the sparse high-dimensional document-bag-of-

technical-terms representation of a corpus of documents into a lower-dimensional 

representation where documents are represented by a mixture of topics and topics by a 

mixture of technical terms.  Figure 1 shows how the sparse matrix Ω, containing the 

counts of V technical-terms (the columns) in each of the D documents (the rows), can be 

approximated by the combination of two smaller, but denser matrices Θ, containing the 

document-topic representation, and Φ, containing the topic-technical-term 

representation. 

 

 

Figure 1. A High-Level Interpretation of Topic Modelling. 

  

 

Matrix Θ contains the distributions of documents over the latent topics.  Each row of the 

matrix corresponds to a document, and each column in that row specifies how strongly a 

latent topic applies to that document.  Documents are related if they exhibit similar 

distributions (Steyvers & Griffiths 2007).  One technique for measuring the similarity 

between two documents is the normalised dot-product of their distribution vectors θi and 
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θj: a larger normalised product indicates a stronger relationship between the documents.  

If matrix Θ contains probability distributions (i.e. each row sums to unity), another 

technique is to measure the Jensen-Shannon divergence (Lin 2002) between their 

probability distribution vectors: a smaller divergence indicates a stronger relationship.  

2.2.1 Latent Semantic Analysis 

One type of Latent Topic Model is Latent Semantic Analysis (LSA), which uses Singular 

Value Decomposition (SVD) to discover latent topics in a corpus (Deerwester et al. 

1990). 

SVD is performed on the sparse matrix Ω to produce three matrices: 

ΩD×V = UD×DΣD×V𝑉𝑉×𝑉
𝑇  

where U and VT are unitary matrices and ∑ is a d×v diagonal matrix.  Truncating the 

columns of U and rows of VT corresponding to the largest t singular values in ∑, U and 

VT become d×t and t×v matrices and ∑ becomes a t×t diagonal matrix.  Multiplying ∑ 

with either U or VT produces the representation in Figure 1. 

The number of rows and columns remaining after truncation corresponds to the desired 

number of latent topics, K.  The values in Θ and Φ have no meaningful interpretation – 

they are merely positive and negative values whose product gives the best rank-K 

approximation (under the Frobenius norm measure) to Ω. 

The lack of interpretability of matrices Θ and Φ is the main criticism against SVD 

(Hofmann 1999).  Another criticism is based on the underlying distribution of words in 

language and whether SVD theoretically is the right tool to model such a distribution.  

SVD models joint Gaussian data best – particularly under the assumption that eliminating 

the smallest singular values is Frobenius-optimal (Hofmann 1999).  However, word 

distribution in language is known to be Zipfian (Zipf 1949) and not Gaussian.  Ellis & 

Hitchcock (1986) show that the adoption and use of technical terms in language is also 

Zipfian.  This incorrect underlying theoretical assumption about the distribution of words 

in documents may limit the applicability of LSA in discovering latent topics in document 

corpora.  

In an attempt to redress this criticism of LSA, Probabilistic Latent Semantic Analysis 

(PLSA) (Hofmann 1999) was developed upon a more principled statistical foundation 

than the generic algebraic technique of LSA.  It is based on a mixture decomposition 

derived from a latent class aspect model to decompose documents di and words wi into 

latent topics zi. 

Figure 2 shows two graphical model representations for PSLA.  A document corpus can 

be modelled as shown in Figure 2(a) by  

𝑃(𝑑, 𝑤) = 𝑃(𝑑)𝑃(𝑤|𝑑) = 𝑃(𝑑) ∑ 𝑃(𝑤|𝑧)𝑃(𝑧|𝑑)

𝑧∈𝑍
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Or as shown in Figure 2(b) by  

𝑃(𝑑, 𝑤) = ∑ 𝑃(𝑧)𝑃(𝑑|𝑧)𝑃(𝑤|𝑧)

𝑧∈𝑍

 

P(d,w) can be inferred from a corpus using Expectation Maximisation (Dempster et al. 

1977).  Using the model in Figure 2(b), multiplying P(z) with either P(d|z) or P(w|z) 

produces the representation in Figure 1. 

 

Figure 2. Graphical Model Representations of PLSA. 

 

While the latent topics of PSLA resolve the joint Gaussian limitation of LSA, neither 

LSA nor PLSA implicitly supports a generative model for documents.  After calculation 

of the initial LSA or PLSA model, later additions of documents to a corpus cannot be 

modelled without recalculating the model from scratch. 

LSA and PLSA are also prone to over-fitting because there is no mechanism for 

specifying priors over any of the inferred distributions.  Thus they do not adequately 

model under-represented documents (Blei et al. 2003).  Latent Dirichlet Allocation was 

developed to address both these drawbacks. 

2.2.2 Latent Dirichlet Allocation 

Latent Dirichlet Allocation (LDA) (Blei et al. 2003) is a Bayesian generative 

probabilistic model for collections of discrete data. Although it has been applied to a 

variety of data modelling problems, it has become particularly popular for the modelling 

of scientific text corpora (Wei & Croft 2006; He et al. 2009; Blei & Lafferty 2007; Daud 

2008).  In this thesis I will use LDA predominantly to produce the latent topics that 

express the relationships between papers and technical terms needed for the algorithms 

that automatically generate reading lists. 

In LDA, a document in the corpus is modelled and explicitly represented as a finite 

mixture over an underlying set of topics, while each topic is modelled as an infinite 

mixture over the underlying set of words in the corpus. 
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Figure 3. Graphical Model for Latent Dirichlet Allocation. 

 

Figure 3 shows the graphical model representation of LDA.  For each document in the 

corpus of D documents the multinomial topic distribution Θ is sampled from a corpus-

wide Dirichlet distribution with hyper-parameter α (Θ represents the density of topics 

over the document). To produce each of the Vd technical terms in the document, three 

steps are taken: a topic t is selected by discretely sampling from Θ; the multinomial word 

distribution Φ is sampled from a corpus-wide Dirichlet distribution with hyper-parameter 

β (Φ represents the density of technical terms over the T topics); and finally the technical 

term v is selected from the universe of V technical terms by discretely sampling from Φ 

conditioned on topic t. 

The task of calculating the distributions Θ and Φ exactly is computationally intractable.  

The mathematical derivation of LDA and the use of Gibbs sampling to approximate the 

distributions Θ and Φ are presented in detail in Section 4.3.1. 

The success of LDA has made it almost synonymous with topic modelling in NLP.  LDA 

has been used in a variety of NLP tasks such as document summarisation (Wang et al. 

2009a), social network analysis (Zhao et al. 2011) and part-of-speech tagging (Toutanova 

& Johnson 2007).  However, the LDA model is characterised by several free and 

seemingly arbitrary parameters: the nature of the priors and choice of the hyper-

parameters α and β; the choice of method for approximating the distributions Θ and Φ; 

the termination criteria of Gibbs sampling; and even the number of topics to choose.  

From a theoretical standpoint, much research has gone into finding optimal choices for 

these criteria (Asuncion et al. 2009; Wallach et al. 2009a), leading to localised 

improvements that are by no means universal; for instance, all published improvements 

are domain specific. However, from a practical standpoint, LDA seems rather robust to 

changes in these parameters, and so they are largely ignored in the literature.   

To dispel doubts about the apparent arbitrariness of LDA, this thesis not only explores 

different LDA parameters, but also examines what happens if a different topic modelling 

approach, Non-negative Matrix Factorisation, is used instead of LDA (see the 

experiments in Section 5.1.2). 
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2.2.3 Non-Negative Matrix Factorisation (NMF) 

Non-negative matrix factorisation offers an approach to topic modelling that requires 

only two arbitrary parameters: the number of topics, and the choice of update algorithm.  

It is a generic matrix factorisation technique originally from the field of linear algebra 

(Lee & Seung 2001).  A matrix X is factorised into two non-negative matrices W and H 

such that 

XD×V ≈ WD×THT×V 

The mapping from the W and H matrices of NMF to the topic modelling representation 

in Figure 1 is trivial.  When NMF is applied to document-bag-of-technical-terms counts, 

the rank T of matrices W and H corresponds to the number of topics in the model.  The 

choice of T is dependent on the corpus being modelled.  Large values of T allow the 

product of W and H to reproduce the original matrix X more accurately, at the expense 

of increased computation time and storage space and decreased ability to generalise over 

the topical structure contained in the corpus.  Smaller values of T produce matrices W 

and H that better generalise matrix X, but with increasing error F(W, H) = X - WH.  If T 

is too small, NMF overgeneralises X, leading to topics that are too general to discriminate 

documents. 

Lee & Seung (2001) popularised NMF by presenting two iterative algorithms for 

generating matrices W and H, based either on minimising the Frobenius norm (least 

square error) or on minimising the Kullback-Leibler (KL) divergence.  A detailed 

exposition of these algorithms is given in Section 4.3.2.   

It has been shown that NMF based on KL-divergence is closely related to PLSA and 

produces sparser representations in both the H and W matrices (Gaussier & Goutte 2005).  

Additionally, Van de Cruys et al. (2011) describe how the update rule based on KL-

divergence is better suited to modelling text because it can better model Zipfian 

distributions.  Pauca et al. (2004) and Shahnaz et al. (2006) apply topic modelling using 

NMF to a variety of text collections and find that variants of NMF that impose statistical 

sparsity (such as those that minimise KL divergence) produce more specific topics 

represented by the W matrix, and perform better on various NLP tasks.  Similarly, Xu et 

al. (2003) show that the sparser topical clusters produced by NMF surpass LSI both in 

interpretability and in clustering accuracy. 

2.2.4 Advanced Topic Modelling 

A shortcoming of LDA and NMF is that they use only the lexical information inside the 

documents without considering interactions between documents.  It is reasonable to 

suppose that the topics in a corpus are also influenced by various document metadata, 

such as their authors, their publication dates, and how they cite each other. 

There are numerous extensions to LDA that incorporate external information in addition 

to the lexical information contained in the documents’ text.  Steyvers et al. (2004), Rosen-
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Zvi et al. (2004) and Rosen-Zvi et al. (2010) model authors and documents 

simultaneously to build author-topic models, which are useful in computing the similarity 

of authors and in finding relationships between them.  Tang et al. (2008a) model authors, 

publication venues and documents simultaneously to improve academic paper search.  

McCallum et al. (2005) and McCallum et al. (2007) model the senders, recipients and 

topics in email corpora for the purpose of automatic role discovery inside organisations. 

Ramage et al. (2009) generalise these ideas by modelling document text alongside 

document labels.  The labels are crowd-sourced tags of web pages in their application, 

but they could also be author names, publication venues or university names.  

Another shortcoming is that LDA and NMF assume independence between topics and 

are therefore unable to model correlation between the topics they generate.   

Attempts to model the correlation between topics have produced several advancements 

to LDA.  Instead of using an underlying Dirichlet distribution,  Blei et al. (2004) model 

the correlation between topics using an underlying Nested Chinese Restaurant process, 

Li & McCallum (2006) use multiple Dirichlet distributions, and Blei & Lafferty (2006) 

and Blei & Lafferty (2007) use a correlated logistic normal distribution.  Although these 

advanced models claim to model textual corpora better than LDA, their claims are only 

based on measures of perplexity and have not been evaluated using real-world 

applications.  Chang et al. (2009a) show that topic models with better perplexity scores 

are not necessarily better when judged by human evaluators: they find that LDA and 

PLSI produce topics that are more understandable by humans than the Correlated Topic 

Model of Blei & Lafferty (2006).  Furthermore, the hierarchical structures of these 

advanced models make their results difficult to apply to NLP tasks compared to simple 

LDA. 

As will be seen, the topic models leveraged in this thesis represent documents using a 

bag-of-technical-terms representation rather than a bag-of-words.  Wallach (2006) 

explores aspects of the same idea by treating the underlying documents as bags of words 

and bigrams.  An advantage of her approach is that bigram technical terms are discovered 

as part of the topic modelling process.  However, her model is limited to technical terms 

that are bigrams, without any scalable extension to longer technical terms.  But longer 

technical terms are empirically better: Wang & McCallum (2005) and Wang et al. (2007) 

approach the discovery of technical terms within topics by simultaneously inferring 

topics and agglomerating bigrams.  They report that topics described by n-grams are more 

interpretable by their human subjects than those described by unigrams alone.  

Other extensions to LDA relevant here are those that incorporate the citation structure 

within a document corpus.  Before exploring them, it is instructive to first study the 

literature around this citation structure and how it can be leveraged to provide a measure 

of authority in a document corpus.  Section 2.3.6 continues the discussion of advanced 

topic models that incorporate citation structure. 
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2.3 Models of Authority 

The previous section covered a variety of relationships that can be discovered in a corpus 

of papers using lexical information.  Strohman et al. (2007) point out that lexical features 

alone are poor at establishing the authority of documents, so we now turn to the 

relationships between scientific papers that arise through citation behaviour.  As it turns 

out, these relationships are of a different and often complementary nature.  Together they 

play an important role for automatically recommending reading lists by modelling how 

individual papers are related to each other and to the desired field of the reading list. 

In particular, the citation-based information provides us with a way of distinguishing 

between papers with different levels of authority, quality or significance.  Measures of 

authority, quality or significance are subjective and so in this thesis I do not presume to 

pass judgement on scientific papers.  Instead, I avoid this subjectivity using the same 

construct as does Kleinberg (1999), using his notion of “conferred authority.”  The choice 

of one author to include a hyperlink or citation to the work of another is an implicit 

judgement that the target work has some significance.  In this thesis, the authority of a 

paper is a measure of how important that paper is to a community who confer that 

authority.  This very definition of authority suggests that authoritative papers are likely 

candidates for inclusion in recommended reading lists. 

Incidentally, a wide variety of measurements of authority in scientific literature and on 

the web use the citation graph between papers and web pages.  This will be discussed in 

the upcoming sections. 

2.3.1 Citation Indexes 

The simplest relationship between two scientific papers is the existence of a citation link, 

where the author(s) of one paper chooses to cite the other paper because it has some 

significance to her.  A set of papers D and the entirety of the citations between them E 

forms a citation graph C(D,E).  Garfield (1964) built the first large-scale citation graph 

for scientific papers.  Today, much larger citation graphs of the global pool of millions 

of published papers are available, e.g., from CiteSeer1 or Google Scholar2, or for more 

focussed pools of papers, e.g. the ACL Anthology Network3.  Unfortunately, these 

citations graphs are far from complete (Ritchie 2009) because the automatic discovery of 

citations in such large corpora is a difficult and unsolved task (Giles et al. 1998; Councill 

et al. 2008; Chen et al. 2008). 

There are a variety of relationships that can be read off a citation graph, even if it is only 

partially complete.  The field of bibliometrics investigates the usefulness of a variety of 

                                                 
1 http://citeseerx.ist.psu.edu 
2 http://scholar.google.com 
3 http://clair.si.umich.edu/clair/anthology/index.cgi 

http://citeseerx.ist.psu.edu/
http://scholar.google.com/
http://clair.si.umich.edu/clair/anthology/index.cgi
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these relationships and how they can be applied to such tasks as ranking the importance 

of journals or measuring the academic output of researchers. 

Bibliographic Coupling (Kessler 1963) measures the number of citations two papers have 

in common: 

𝐵𝑖𝑏𝑙𝑖𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑑1,𝑑2 =
|𝑐←𝑑1 ∩ 𝑐←𝑑2|

|𝑐←𝑑1 ∪ 𝑐←𝑑2|
 

where c←d1 and c←d2 are the sets of papers cited by documents d1 and d2, respectively.  

The rationale behind this score is that pairs of papers with a high Bibliographic Coupling 

value are likely to be similar because they cite similar literature. 

Co-citation Analysis (Garfield 1972; Small 1973) measures the number of times two 

papers have been cited together in other papers:  

𝐶𝑜𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑑1,𝑑2 =
|𝑐→𝑑1 ∩ 𝑐→𝑑2|

|𝑐→𝑑1 ∪ 𝑐→𝑑2|
 

where c→d1 and c→d2 are the sets of papers that cite documents d1 and d2, respectively.  

The rationale behind this score is that pairs of papers with a high co-citation value are 

likely to be similar because they are cited by similar literature. 

Relative Co-cited Probability and Citation Substitution Coefficient, the new paper 

similarity metrics I will introduce in Section 3.2, make use of these constructs to measure 

the degree of substitutability of one paper with another.   

It is possible to create graphs based on social relationships other than the citation graph.  

These graphs are typically similar to citation graphs in form and spirit.  For instance, 

papers written by the same author should be related because they draw from the same 

pool of personal knowledge.  Papers written by researchers who have co-authored in the 

past should be related because the authors have had shared interests, experiences and 

resources.  Liben-Nowell & Kleinberg (2007) study co-authorship networks to predict 

future co-authorships.  Papers published in the same journal are also likely to be related 

as they are selected for inclusion in the journal for an audience with specialised interests.  

Klavans & Boyack (2006) investigate a wide variety of the relationships between 

scientific journals and papers.  Several of these relationships have proved useful when 

combined as features in machine learning algorithms: Bethard & Jurafsky (2010) find 

several graph-based relationships that are strong indicators of relationships between 

papers when it comes to predicting citation behaviour. 

The above works were mainly concerned with using citation indexes to assess similarity 

between papers.  But another use of citation indexes is to predict authority among the 

papers in a document corpus, which we turn to next. 
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2.3.2 Bibliometrics: Impact Factor, Citation Count and H-Index 

The first published systematic measure of authority for scientific literature is Impact 

Factor (Garfield 1955), which measures the authority of a journal.  The Impact Factor of 

a journal in year Y is the average number of citations each paper published in that journal 

in years Y-1 and Y-2 received during year Y.  The Science Citation Index (Garfield 1964) 

publishes annual Impact Factors for thousands of journals. Although Impact Factor 

measures authority at the level of the journal, papers published in journals with a high 

Impact Factor are considered to have more authority than those published in journals 

with low Impact Factors.  Although Impact Factor is still in use today, there is criticism 

that it might bias certain fields or be manipulated by unscrupulous publishers (Garfield 

2006). 

Impact Factor offers a measurement of the current authority of a journal – only citations 

to recently published papers are included in the measure.  As time progresses and citation 

patterns change, earlier published papers become less well represented by the Impact 

Factor of their journal, both at the time they were published (because the current Impact 

Factor is meaningless at the time the paper was published) and in the present (because 

the historical Impact Factor is meaningless in the present).  Another metric, citation 

count, is used as a proxy for the overall authority of an individual paper (de Solla Price 

1986).  The authority of a paper is correlated to the number of citations it has received 

over its lifetime.  However, citation count also has some shortcomings.  One example is 

the reliability of citations (MacRoberts & MacRoberts 1996), where citation counts can 

be influenced by citations that are biased (either consciously or unconsciously).  Another 

is the difficulties that arise in comparing citation counts across discipline and over time 

(Hirsch 2005). 

With the increasing availability of complete publication databases, H-Index (Hirsch 

2005) was developed to mitigate the shortcomings of Impact Factor and citation count.  

It measures the authority of an author by simultaneously combining the number of 

publications of the author and the number of times those publications have been cited.  

An author has an H-Index score of H if she has received at least H citations for each of 

at least H publications.  Although H-Index measures the authority of an author rather 

than that of a paper, it can be used as a proxy for the authority of each of her papers.  This 

method has the advantage of providing an authority estimate for papers that are 

systematically outside the scope of other authority measures, in particular newer papers 

that have not yet received many citations. 

2.3.3 PageRank 

In the discussion so far, Impact Factor, citation count and H-Index have made only 

superficial use of the citation graph between papers by counting or averaging the numbers 

of citations to scientific papers.  The PageRank algorithm (Page et al. 1998) goes a step 

further by attributing authority using properties of the entire citation graph, not just local 

neighbourhoods of the citation graph. 
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In its original Web context, PageRank forms the basis of the successful Google search 

engine (Brin & Page 1998) by rating the importance of web pages using the hyperlink 

graph between them.  Higher PageRank scores are assigned to pages that are hyperlinked 

frequently, and that are hyperlinked by other pages with high PageRank scores.  Using 

PageRank, the collective importance of a web page emerges through the network of 

hyperlinks it receives, under the assumption that authors of web pages hyperlink only to 

other web pages that are important to them.   

PageRank works well for discovering important web pages, so can it be applied to 

science?  There are some structural similarities between web pages and their hyperlinks 

and scientific papers and their citations.  In both contexts there is a citation graph, where 

a link exists because one web page or paper bears some significance to another.  Indeed, 

Chen et al. (2007) and Ma et al. (2008) report some success using PageRank to find 

authoritative papers in scientific literature.  Both papers find a high correlation between 

PageRank scores and citation counts and report additionally that PageRank reveals good 

papers (in the opinion of the authors) that have low citation counts. 

However, there are also structural differences between web pages and scientific papers.  

While an author of a web page is able to publish a web site with hyperlinks almost 

indiscriminately, a scientist has to earn their right to publish and cite.  While a web page 

can have an unlimited number of hyperlinks, space in a scientific bibliography is limited, 

so for a scientific author there is a logical cost associated with citing another paper.  

Maslov & Redner (2008) give two reasons as to why PageRank should not be applied to 

the evaluation of scientific literature without modification: the average number of 

citations made by each paper varies widely across the disciplines; and PageRank does 

not accommodate for the fact that citations are permanent once published, while 

hyperlinks can be altered over time.  Walker et al. (2007) argue that PageRank does not 

adequately take into account an important bias of time effects towards older papers.  

Their algorithm accounts for the ageing characteristics of citation networks by modifying 

the bias probabilities of PageRank exponentially with age, favouring more recent 

publications.  Finally, Bethard & Jurafsky (2010) (described in more detail in 

Section 2.4.6) find that PageRank contributes little better than citation counts when used 

as a feature in their SVM model for discriminating relevant papers.   

Certainly, there is ample evidence that PageRank should be useful in the recommendation 

of scientific literature.  However, there is no clear agreement as to how best to apply it. 

The PageRank algorithm is a process that iteratively allocates PageRank through the 

citation graph using bias and transition probabilities.  The bias probabilities represent the 

likelihood of a reader randomly choosing a paper from the entire corpus.  The reader 

might have some bias as to which paper they generally choose.  These bias probabilities 

are expressed as a d-dimensional vector.  The transition probabilities represent the 

likelihood of a reader following a citation from one paper to another.  Again, the reader 

might have some bias as to which citation they generally prefer to follow.  The transition 

probabilities are comprised of a d×d matrix.   
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For each paper d in a corpus of papers D, PageRank is calculated iteratively as 

𝑃𝑅(𝑑, 𝑘 + 1) = 𝛼 × 𝐵𝑖𝑎𝑠(𝑑) +

(1 − 𝛼) × ∑ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑑, 𝑑′) × 𝑃𝑅(𝑑′, 𝑘)

𝑑′∈𝑙𝑖𝑛𝑘𝑖𝑛(𝑑)

 

where PR(d,k) is the PageRank for paper d at iteration k; Bias(d) is the probability that 

paper d is picked randomly from a corpus; Transition(d,d’) is the transition probability 

of following a citation from paper d’ to paper d; linkin(d) is the set of all papers that cite 

paper d; and α weights the relative importance of the bias probabilities to the transition 

probabilities4.  

In the original PageRank algorithm, 

𝐵𝑖𝑎𝑠(𝑑) =
1

|𝐷|
 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑑, 𝑑′) =
1

|𝑙𝑖𝑛𝑘𝑜𝑢𝑡 (𝑑′)|

 

where |D| is the number of pages in the corpus; linkout(d) is the set of all pages 

hyperlinked by page d; α=0.15.   

In the context of the web, Brin & Page (1998) choose α=0.15 because it corresponds to 

a web surfer following six hyperlinks on average before jumping to a random new web 

page (1/7 ≈ 0.15).  Chen et al. (2007) use PageRank to model the scientific literature.  

They recommend bias weight α=0.5 on the basis that, on average, researchers follow just 

a single citation before starting with a new paper.  Ma et al. (2008) agree with this analysis 

but indicate that this change in α has only a minor effect on the resulting PageRank 

scores. 

Both Chen et al. (2007) and Ma et al. (2008) find a strong correlation between the 

PageRank score of a paper and the number of citations it receives, so PageRank is not a 

complete departure from citation count when measuring authority.  However, in 

experiments they anecdotally notice that the PageRank algorithm successfully uncovers 

some scientific papers that they feel are important despite having a surprisingly low 

citation count. 

2.3.4 Personalised PageRank 

The PageRank algorithm produces a global ordering of the authority of connected 

resources in a network.  The notion of global authority works well in the context of the 

Internet, where companies and websites compete for the attention of a generic Internet 

                                                 
4 In this section and the next I have reformulated each published variation of the original PageRank 

algorithm to use consistent notation so that each algorithm can be compared directly by inspecting only 

the formulae for the bias and transition probabilities.  This reformulation sometimes departs from the 

notations used in the original papers.   



  

Related work | 37 

 

 

user.  However, PageRank does not cater for the highly specialised situation we 

encounter in science, where a web page or scientific work might be authoritative to a 

small group of specialists that are interested in a particular topic. 

There are a variety of modifications to the PageRank algorithm in the literature that 

attempt to “personalise” PageRank so that it can cater to highly specialised situations. 

Continuing the notation from the previous section, a dimension t is added to the 

PageRank score and both the bias and transition probabilities.  This dimension represents 

the personalisation aspect of PageRank.  The iterative calculation of the Personalised 

PageRank for each personalisation t then becomes 

 

𝑃𝑅(𝑡, 𝑑, 𝑘 + 1) = 𝛼 × 𝐵𝑖𝑎𝑠(𝑡, 𝑑) +

          (1 − 𝛼) × ∑ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) × 𝑃𝑅(𝑡, 𝑑′, 𝑘)

𝑑′∈𝑙𝑖𝑛𝑘𝑖𝑛(𝑑)

 

 

2.3.4.1 Altering only Bias Probabilities 

Page et al. (1998) also talk about Personalized PageRank in their paper.  They describe 

it as a means to combat malicious manipulation of PageRank scores by giving more 

importance in the PageRank calculations to a set of trusted web sites t.  They alter only 

the bias probabilities: 

𝐵𝑖𝑎𝑠(𝑡, 𝑑) = {
1 / |𝑡|, 𝑖𝑓 𝑑 ∈ 𝑡

0 𝑖𝑓 𝑑 ∉ 𝑡
 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) =
1

|𝑙𝑖𝑛𝑘𝑜𝑢𝑡 (𝑑′)|

 

They also suggest that a different set of trusted websites t could be chosen for different 

purposes.  Although they do not explore this idea experimentally, it does foreshadow that 

personalisation might be used for specialisation. 

Richardson & Domingos (2002) attempt to specialise document search by personalising 

PageRank on-the-fly at query time.  For query q with corresponding topic t=q, 

 

𝐵𝑖𝑎𝑠(𝑡, 𝑑) = 𝐵𝑖𝑎𝑠(𝑞, 𝑑) 

= 𝑃𝑞(𝑑)

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) =  𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑞, 𝑑, 𝑑′)

= 𝑃𝑞(𝑑′) × 𝑃𝑞(𝑑′ → 𝑑)
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where 

𝑃𝑞(𝑑) =
𝑅𝑞(𝑑)

∑ 𝑅𝑞(𝑑′′)𝑑′′∈𝐷
 

𝑃𝑞(𝑑′ → 𝑑) =
𝑅𝑞(𝑑)

∑ 𝑅𝑞(𝑑′′)𝑑′′∈𝑙𝑖𝑛𝑘(𝑑′
𝑜𝑢𝑡)

 

Rq(d) is the relevance of document d to query q (e.g. calculated using TF-IDF).  Pq(d) is 

the global probability of document d given query q.  Pq(d’→d) is the probability of 

reaching page d from page d’ given query q.  This is the first time that both the Bias and 

Transition probabilities are adjusted to personalise PageRank towards a particular search 

need.  However, the authors advise that this algorithm has space and time computational 

requirements up to one hundred times that of PageRank.  

Haveliwala (2003) calculates a Personalised PageRank for each of a set of manually 

created topics.  This avoids the computational scalability problem of Richardson & 

Domingos (2002) because he considers a fixed collection of 16 topics corresponding to 

the web pages in the top 16 categories of the OpenDirectory Project (ODP).  These ODP 

categories are themselves manually created.  For each topic t comprised of several 

documents, he creates a different Personalised PageRank ordering P(t,d) by altering only 

the Bias term: 

𝐵𝑖𝑎𝑠(𝑡, 𝑑) = {
1 / |𝑡|, 𝑖𝑓 𝑑 ∈ 𝑡

0 𝑖𝑓 𝑑 ∉ 𝑡
 

He evaluated the performance of his algorithm by a user study.  The study concludes that 

for web pages in niche areas of interest, his Personalised PageRank can produce more 

accurate PageRank scores than PageRank alone. 

However, there are several drawbacks to Haveliwala’s method.  The obvious drawback 

is that his topics are defined by manually curated lists of authoritative web pages.  Any 

manual step in search algorithms of this kind are always unattractive for a variety of 

reasons: an expert must spend time creating lists of pages that represent each topic; the 

pages will eventually become out-of-date and so the expert must refresh them 

periodically; and the topics are domain dependent and so the work must be done again 

for new domains.  The second drawback is that it is not clear how these topics are 

combined at query time: a searcher needs to know beforehand which personalised 

PageRank best suits his query.  Finally, Haveliwala’s assumption is that a researcher’s 

interests are exactly expressed in a single topic, but what one looks for in science is 

typically a mixture of topics. 

Jeh & Widom (2003) describe how to linearly combine several personalised PageRank 

scores. They show that Personalised PageRank scores (which they call basis vectors) can 

be linearly combined using the searcher’s topic preferences as weights.  Under this 

interpretation, Brin and Page’s original PageRank is a special case of Personalised 
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PageRank when the Personalised PageRank scores are combined with equal weight.  

They also show that personalised PageRank algorithms have similar convergence 

properties as the original PageRank algorithm. 

Haveliwala’s method of personalising by altering the bias probabilities with manually 

created topics has been used for different domains and tasks. 

Wu et al. (2006) perform spam detection by manually choosing several hand-made 

directories of web pages to use as initial biases. 

Gori & Pucci (2006) perform personalised scientific paper recommendations.  They 

crawl the search results of the ACM Portal Digital Library web site to collect 2,000 

papers for each of nine manually selected topics.  Using a subset of the papers from each 

topic as the bias set, they test the performance of their algorithm by evaluating how many 

of their top recommendations appear in the list of papers for that topic. 

Agirre & Soroa (2009) use this form of Personalised PageRank to perform Word Sense 

Disambiguation.  They run PageRank over the WordNet (Miller 1995) sense graph after 

modifying the bias probabilities to favour word senses that exist in their input text.  The 

final PageRank scores identify the word senses that are most likely candidates for 

disambiguation. 

2.3.4.2 Altering only Transition Probabilities 

Narayan et al. (2003) and Pal & Narayan (2005) accomplish personalisation by focussing 

on the transition probabilities instead of the bias probabilities.  They define topics as the 

bags of words assembled from the text inside the pages from each category in the ODP.  

This differs from Haveliwala’s experiment in that the topics of Haveliwala are lists of 

pages from each category in the ODP.  Their method still requires manually curated 

categories of web pages to make up their topics.  Under their model, Transition(t,d) is 

proportional to the number of words in document d that are strongly present in the 

documents contained in topic t. 

2.3.4.3 Altering both Bias and Transition Probabilities 

Nie et al. (2006) produce a more computationally scalable version of the ideas presented 

in Pal & Narayan (2005) by associating a context vector with each document.  They use 

12 ODP categories as the basis for learning these context vectors.  Using a naive Bayes 

classifier, they alter both the bias and transition probabilities to take into account the 

context vector associated with each page as follows: 
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𝐵𝑖𝑎𝑠(𝑡, 𝑑) =
1

|𝐷|
𝐶𝑡(𝑑) 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) = 𝛾 × 𝑇𝑟𝑎𝑛𝑠𝑠𝑎𝑚𝑒_𝑡𝑜𝑝𝑖𝑐(𝑡, 𝑑, 𝑑′) +

          (1 − 𝛾) × 𝑇𝑟𝑎𝑛𝑠𝑜𝑡ℎ𝑒𝑟_𝑡𝑜𝑝𝑖𝑐(𝑡, 𝑑, 𝑑′)

𝑇𝑟𝑎𝑛𝑠𝑠𝑎𝑚𝑒_𝑡𝑜𝑝𝑖𝑐(𝑡, 𝑑, 𝑑′) =
1

|𝑙𝑖𝑛𝑘𝑜𝑢𝑡 (𝑑′)|

𝑇𝑟𝑎𝑛𝑠𝑜𝑡ℎ𝑒𝑟_𝑡𝑜𝑝𝑖𝑐(𝑡, 𝑑, 𝑑′) = ∑
𝐶𝑡′(𝑑′)

|𝑙𝑖𝑛𝑘𝑜𝑢𝑡 (𝑑′)|
𝑡′≠𝑡

 

 

where Ct(d) is the context vector score for topic t associated with document d; 

Transsame_topic(t,d) is the probability of arriving at page d from other pages in the same 

context; Transother_topic(t,d) is the probability of arriving at page d from other pages in a 

different context; and γ is a factor that weights the influence of same-topic jumps over 

other-topic jumps.  Their results suggest that γ should be close to 1, indicating that 

distributing PageRank within topics generates better Personalised PageRank scores.   

Although they rely on manually compiled ODP categories, they suggest as a future 

research direction the potential for abstract topic distributions, like those formed as a 

result of dimension reduction, to automatically determine their categories.  It is one of 

the technical contributions of this thesis to take up this suggestion and connect topic 

modelling with Personalised PageRank (as is described in Chapter 3). 

2.3.4.4 Personalisation by Automatically Generated Topics 

While the Personalised PageRank variants described up to now require manual 

descriptions of topics, Yang et al. (2009) use LDA to automatically discover abstract 

topic distributions in a corpus of scientific papers.  They alter both the bias and transition 

probabilities as follows: 

 

𝐵𝑖𝑎𝑠(𝑡, 𝑑) =
1

|𝐷|
𝑃(𝑡|𝑑) 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) =  𝛾 × 𝑇𝑟𝑎𝑛𝑠𝑠𝑎𝑚𝑒_𝑡𝑜𝑝𝑖𝑐(𝑡, 𝑑, 𝑑′) +

          (1 − 𝛾) × 𝑇𝑟𝑎𝑛𝑠𝑜𝑡ℎ𝑒𝑟_𝑡𝑜𝑝𝑖𝑐(𝑡, 𝑑, 𝑑′)
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𝑇𝑟𝑎𝑛𝑠𝑠𝑎𝑚𝑒_𝑡𝑜𝑝𝑖𝑐(𝑡, 𝑑, 𝑑′) = 𝑃(𝑡|𝑑, 𝑑′)

≅
1

|𝑙𝑖𝑛𝑘𝑜𝑢𝑡 (𝑑′)|

𝑇𝑟𝑎𝑛𝑠𝑜𝑡ℎ𝑒𝑟_𝑡𝑜𝑝𝑖𝑐(𝑡, 𝑑, 𝑑′) =
1

𝑇
∑ 𝑃(𝑑, 𝑡|𝑑′, 𝑡′)

𝑡′≠𝑡

≅
1

𝑇
∑ 𝑃(𝑡|𝑑)𝑃(𝑡′|𝑑′)

𝑡′≠𝑡

 

where T is the number of LDA topics; and P(t|d) is a probability of topic t given document 

d, which can be read directly from the generated LDA probabilities.  Like Nie et al. 

(2006), they achieve best results with γ=1, so their model reduces to 

𝐵𝑖𝑎𝑠(𝑡, 𝑑) =
1

|𝐷|
𝑃(𝑡|𝑑) 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) =
1

|𝑙𝑖𝑛𝑘𝑜𝑢𝑡 (𝑑′)|

 

Their decision that P(d|d’,t) does not involve any of the LDA topic distributions is 

surprising: their Personalised PageRank model ultimately uses the LDA topic 

probabilities to alter only the bias probabilities. 

The model of Ding (2011) is similar to that of Yang et al. (2009), except that they use 

ACT (Tang et al. 2008a) instead of LDA to generate the topics.  ACT is an extension of 

LDA that jointly models the authors and conferences of papers alongside their bag-of-

words representations to generate the latent topics. 

Under the models of both Yang et al. (2009) and Ding (2011), when the reader randomly 

jumps to a new paper, they will tend to favour papers that are closely associated with the 

topic.  However, when they follow a citation link, they will arbitrarily pick any one of 

the citations with equal probability.  Instead it seems intuitive that one should favour 

citations that are closely associated with the topic.  The algorithm presented as a 

contribution of this thesis does exactly this, as will be shown in Chapter 3.  The results 

of the experiments in Sections 5.2 and 5.3 bear out this intuition. 

2.3.5 HITS 

While this thesis primarily focuses on a variant of Personalised PageRank to produce 

measures of authority, it would be inappropriate not to briefly consider HITS (Kleinberg 

1999), whose original title reads, “Authoritative Sources in a Hyperlinked Environment.” 

In the HITS model, there are two classes into which noteworthy pages can fall: hubs, 

which are important because they point to good authorities; and authorities, which are 

important because they are pointed to by many good hubs.  These categories make sense 

in the real-world where we have authorities like Microsoft, which is an expert about the 
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Windows operating system in particular, while we have hubs like the Wikipedia 

operating system page, which is an expert at listing all the available operating systems in 

general. 

The cyclical definitions of hub and authority are mutually reinforcing, and an iterative 

algorithm converges to a steady distribution.  A set of hub scores H and a set of authority 

scores A are generated iteratively for a set of pages using two update steps for each page 

d:  

𝐻(𝑑, 𝑘 + 1) = ∑ 𝐴(𝑑′, 𝑘)

𝑑′∈𝑙𝑖𝑛𝑘𝑜𝑢𝑡(𝑑)

 

𝐴(𝑑, 𝑘 + 1) = ∑ 𝐻(𝑑′, 𝑘)

𝑑′∈𝑙𝑖𝑛𝑘𝑖𝑛(𝑑)

 

Iteration continues until H and A, with appropriate renormalisation, converge to a steady 

state.  The pages with the highest H scores are the hubs, and the pages with the highest 

A scores are the authorities (the goal of the algorithm is to present these pages). 

Whereas PageRank only considers outbound links, HITS iterates between outbound and 

inbound links, making convergence slow for large datasets.  It is most effective for 

evaluating authorities on a local neighbourhood of a dataset – perhaps the set of pages 

found as the result of a query (Bharat & Mihaila 2001).  While HITS may work well in 

the context of the Internet, it is not clear exactly how it would be applied to scientific 

literature.  One might hypothesise that literature reviews could act as hubs.  However, 

there won’t be a review of every topic imaginable, and Lempel & Moran (2000) found 

that a lack of reliable hubs can cause HITS to find authorities only for certain self-

reinforcing regions of the corpus. 

PHITS (Cohn & Chang 2000) places HITS on a more principled statistical foundation by 

providing probabilistic estimates of authority that have clear semantics.  They apply 

PHITS to science with the task of identifying citation communities.  SALSA (Lempel & 

Moran 2000) provides a more efficient algorithm for calculating hubs and authorities.  

Nie et al. (2006) describe a personalised version of the HITS algorithm using LDA. 

2.3.6 Combining Topics and Authority 

As will be seen, the synthesis of topic modelling with Personalised PageRank plays an 

important role in this thesis.  Topic modelling is used to find the lexical relationships 

between papers, specifically with the intention of partitioning a corpus into several 

cohesive groups.  Personalised PageRank is then used to locate the authoritative papers 

within each group.  In contrast to the methods in Section 2.3.4 that use topics to modify 

Personalised PageRank in a relatively pipelined fashion, there are several other 

approaches to combining the ideas of topics and authority. 



  

Related work | 43 

 

 

Mann et al. (2006) explore various combinations of citation- and topic-based 

relationships to define a variety of new bibliometrics measures such as topical impact 

factor, topical precedence and topical longevity.  They then describe where each of these 

measures might be used to improve some of the known shortcomings in the field of 

bibliometrics. 

Bharat & Henzinger (1998) build a topic-specific graph of hyperlinked documents by 

using the results of a search engine to form the topic for a particular query.  They then 

use a modified version of HITS to locate the authorities on this graph.  This technique is 

relevant in the context of this thesis if one interprets the results of a search query as the 

basis of a “topic”. 

Cohn & Hofmann (2001) simultaneously model citations and terms using probabilistic 

factor decomposition.  While they do not specifically model topics or authority, the 

factors that make up their decomposition can be interpreted as topics with authority: each 

factor has associated with it a set of most likely terms (interpretable as the topic 

description) and most likely citations (interpretable as the authorities).  

Erosheva et al. (2004) model a corpus using a multinomial distribution simultaneously 

over a bag-of-citations and bag-of-words representation of each document.  They 

automatically discover latent “aspects” inside a document corpus, each of which is 

associated with a list of the most likely words (interpretable as topics) and citations 

(interpretable as authorities) in that aspect.  These citations can be loosely interpreted as 

the authorities for that aspect because they appear relatively more frequently than other 

citations in the aspect in particular, and in the corpus in general.  This measure is local, 

like citation count, because it does not make use of the wider citation graph in the way 

that PageRank does.  A limitation of their algorithm is that it supports only eight or ten 

aspects.  This reduces the usefulness of the algorithm at determining authoritative papers 

for arbitrary topics. 

While Erosheva et al. use just the topic probabilities associated with a citation to 

influence a citing document, Nallapati & Cohen (2008) and Sun et al. (2008) follow the 

citation to allow the topics of citing documents to influence the topics of the cited 

document.  They measure the influences that blog posts have on other blog posts that link 

to them.  Gruber et al. (2008) also extend the model of Erosheva et al.  They predict the 

presence of hyperlinks between web pages.  Their model treats the absence of a citation 

between two papers as evidence that the papers have differing topics.  

Chang & Blei (2009) extend the model of Nallapati & Cohen (2008) but force their model 

to use the same latent variables to describe the citations and the terms.  They argue that 

earlier models perform less well because each of their latent variables model either the 

terms or the citations in a corpus.  Unlike Gruber et al., they do not treat the absence of 

a citation between two papers as evidence that papers have differing topics because on-

topic papers are often omitted for space reasons. 
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Kataria et al. (2010) additionally model each citation with a bag-of-terms citation context 

extracted from around the citation in the citing document. 

Dietz et al. (2007) extend LDA in two different ways to incorporate citations.  In their 

two models, the topics of cited documents are influenced by the topics of the documents 

that cite them.  22 papers were annotated by their authors to indicate the citations that 

were most influential to that paper.  Their evaluation found that the LDA models that 

incorporate citations were significantly better at categorising papers’ citations as being 

influential or not than LDA alone.  While their model performs well at classifying the 

influence of the citations for a given paper, it works only for papers and citations that 

were present during the learning stage.  It offers no mechanism for predicting influential 

citations for topics in general, or for combinations of topics. 

All these methods that simultaneously model the citations and terms in a corpus report 

incremental improvements in automatically discovering topics and influential papers 

inside those topics.  However, there are some drawbacks to tightly coupling topic 

discovery with citation modelling. 

Firstly, all the authorities in a corpus might not be located because papers that are 

authoritative across several topics will be penalised.  Their associated topic probabilities, 

and hence joint distribution probabilities, will be low because they are divided across 

several topics. 

Secondly, and more disturbingly, these models will not locate topics that lack an 

authority because the authority component of the joint distribution will be near-zero.  

This rules out niches in a corpus where several papers are equally relevant, or young 

niches that do not yet have an established citation network. 

Finally, jointly modelling topics and citations requires models with many thousands of 

factors.  Erosheva et al. (2004) report using 39,616 unique words and 77,115 unique 

citations in their joint model.  While the number of words in a language is bounded 

(Heaps 1978), the number of citations in a corpus grows with the size of the corpus.  It 

therefore makes sense to partition the model where possible.  Scalability is never 

explicitly addressed in any of the papers reviewed in this section, and indeed we can 

observe that the datasets against which they evaluate are generally small, with number of 

papers ranging from several hundred to a couple of thousand, number of citations ranging 

from one- to ten thousand, and number of topics in their models ranging from eight to 

twenty.  Contrastingly, LDA has been shown to scale to corpora of millions (Newman et 

al. 2006), and PageRank to billions (Page et al. 1998) of documents, but these advantages 

are only obvious while they remain decoupled.    This is the reason why the work in this 

thesis advocates the pipelined approaches of Section 2.3.4, which separate topic 

modelling, which is computationally tractable using LDA, from authority modelling, 

which is cheap using Personalised PageRank. 
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2.3.7 Expertise Retrieval 

A particular area that commonly combines topics and measures of authority is 

expertise retrieval or expert finding.  Here, one finds a list of experts for a given topic, or 

vice-versa, one finds a list of topics that best describes an expert’s area of expertise. 

According to Balog et al. (2012), these techniques fall into five broad categories: 

generative probabilistic models; discriminative models; voting models; graph-based 

models; and other miscellaneous models.  In various evaluations, approaches based on 

topic modelling have been outperformed by a range of other methods. 

We don’t explore expertise retrieval in this thesis as the task of selecting experts for a 

field is sufficiently different to generating reading lists.  However, one can imagine a 

tentative approach to generating reading list that first selects the experts that match the 

desired query, and then selects a variety of the experts’ papers as a reading list. 

2.4 Generating Reading Lists 

In this thesis I address the task of automatically generating reading lists for novices in a 

scientific field.  In particular, I focus on the type of reading list that might currently be 

manually created by an expert to quickly familiarise novices with the important concepts 

in their field.  This form of reading list is by no means the only possible manifestation of 

a reading list.  A reading list can be regarded as any set of papers recommended for the 

purpose of guiding a reader through a subset of a corpus of papers.  In this section I 

review a variety of mechanisms that might help a researcher arrive at a set of 

recommended papers. 

2.4.1 Ad-hoc Retrieval 

The simplest incarnation of a reading list is the ad-hoc retrieval of papers using IR 

methods like those described in Section 2.1.  To generate this kind of reading list, a novice 

submits a search query – in whatever query syntax is available – to an IR system.  The 

papers returned are those in a corpus that, according to the IR system, best match the 

novice’s query.  The underlying IR algorithms typically use only the lexical content of 

each paper and use no domain specific knowledge about the papers, such as the citation 

graph.  The “Search using Google” facility on the ACL Anthology Network website5 is 

an example of this kind of mechanism, where the paper content is indexed but the 

available citation graph is ignored. 

Relying only on the lexical information in the papers, improvements to ad-hoc retrieval 

have been made by incorporating document clustering (Liu & Croft 2004) and topic 

modelling (Wei & Croft 2006). 

Several studies show that adding information from the citation graph to ad-hoc retrieval 

yields substantial improvement.  Meij & De Rijke (2007), Fujii (2007) and Ma et al. 

                                                 
5 http://aclweb.org/anthology-new 
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(2008) report improved retrieval performance when citation counts or citation-based-

PageRank scores are combined with more traditional term-based searching.  Ritchie et 

al. (2006) reports improved retrieval performance when a paper’s text is augmented with 

text from the contexts in other papers where it has been cited. 

Two commercial search systems that provide ad-hoc retrieval for scientific search are 

Google Scholar6 and Microsoft Academic Search7.  

2.4.2 Example-based Retrieval 

Rather than generating a reading list from a term-based search query, some systems allow 

a paper or set of papers (a query set) to form the basis of the search query.  An advantage 

of this mechanism is that the query set is often more representative of the novice’s search 

need because it contains more lexical and citation-based information than a single search 

string.  It also allows the system to better take into account the learning interest, 

knowledge and goals of the novice (Tang 2008).  A disadvantage is that the novice has 

to somehow have acquired the query set in the first place. 

Gipp & Beel (2009) use citation proximity analysis and citation order analysis to identify 

documents related to a query set.  Woodruff et al. (2000) generate a reading list for a 

single paper by “spreading activation” over its text and citation data.  El-Arini & Guestrin 

(2011) retrieve influential papers by modelling their connectivity in the citation graph to 

a query set. 

Both Google Scholar and Microsoft Academic Search provide facilities to query by 

example. 

2.4.3 Identifying Core Papers and Automatically Generating Reviews  

There might be instances where the novice neither knows any meaningful search terms 

with which to initiate exploratory search, nor do they possess a set of core papers to use 

for example-based search.  If they have access to a large corpus of papers that they know 

are relevant to the area with which they wish to familiarise themselves, there are several 

systems that locate the core papers inside a corpus of papers. 

Cohn & Chang (2000) create customised authority lists using the PHITS algorithm.  Chen 

et al. (2007) use PageRank to model a corpus of papers.  Wang et al. (2010) combine the 

citation graph with statistics about the frequency of download of each paper.  They 

combine the measures “citation approaching” and “download persistence” to recommend 

classical papers to novices.  Radev et al. (2009a) use a variety of measures to identify 

core papers in a corpus, including citation count, Impact Factor and PageRank scores. 

                                                 
6 http://scholar.google.com 
7 http://academic.research.microsoft.com 

http://scholar.google.com/
http://academic.research.microsoft.com/
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The commercial systems ArnetMiner8 (Tang et al. 2008b) and Microsoft Academic 

Search provide mechanisms for identifying core papers in scientific literature. 

There are some methods that aim at generating automatic reviews, or at least providing 

material for a semi-automatic review creation process.  Nanba et al. (2004; 2005) use 

HITS to generate a short-list of papers to review, focussing on the papers that are hubs.  

Qazvinian & Radev (2008) and Mohammad et al. (2009b) use clustering techniques to 

locate core areas of a corpus, and then use the contexts around each citation to generate 

extracts that stand in as survey summaries. 

2.4.4 History of Ideas and Complementary Literature 

Similar to finding the core papers inside a large corpus of papers, there are several 

systems that attempt to track the flow of ideas through the literature.  A novice might 

familiarise themselves with a new field by paying particular attention to the papers that 

contribute significantly towards the flow of ideas relevant to their field, particularly those 

papers that are considered intellectual turning points in the field. 

Chen (2004) prunes the citation graph of a corpus of papers to identify three types of 

significant papers: turning points, pivot points and hubs.  Their notion is that the flow of 

ideas through the literature can be mapped by the citations connecting these significant 

papers. 

Rather than relying on the citation graph, Shaparenko & Joachims (2007) use only the 

lexical content of papers to discover the flow of ideas.  By representing each document 

as a distribution over words, they use a Likelihood Ratio Test to determine the probability 

that a more recent document was influenced by an older document.  Where there is 

evidence that a more recent document is using significantly more words from an older 

document than is expected, the older document is said to have influenced the more recent 

document.  They build up an influence graph of these influences and identify documents 

that have influenced many other documents.  This is a similar measure to citation count 

on the citation graph. 

There might be instances where an experienced researcher changes their focus from one 

field to another.  In this case they are a novice in their new field, but at the same time 

have a wealth of prior experience to draw from while learning the new field. 

The domain of complementary literature attempts to bring a novice up to speed more 

quickly in a new field by relating foreign concepts in the new field (the target field) to 

well-known concepts in another field (the source field).  This helps the novice more 

quickly grasp related ideas by leveraging their existing expert knowledge.  Swanson & 

Smalheiser (1997) recommend papers from the target field literature that have many 

technical terms in common with papers in “intermediate literatures” that in turn have 

many technical terms in common with papers in the source field literature.  This use of 

                                                 
8 http://arnetminer.org 
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the co-occurrence of technical terms to elicit relationships between papers is similar in 

concept to the mechanism employed by co-citation analysis in the field of bibliometrics. 

2.4.5 Collaborative Filtering 

All the mechanisms for generating reading lists discussed so far involve a novice in 

isolation, or at most a novice with access to an expert.  Collaborative Filtering (CF) 

(Goldberg et al. 1992) allows a novice to leverage relevance judgements made by groups 

of other researchers.  The idea behind CF is that if two researchers have overlapping 

interests – in the case of reading lists, if two researchers have read a common set of papers 

– then the papers judged relevant by only one of them are probably relevant to the other.  

Furthermore, if an individual and a group of researchers have overlapping interests, then 

papers judged relevant by the group are probably relevant to the individual.  CF attempts 

to group researchers automatically by analysing their reading habits. 

CF has been successfully applied to the scientific literature.  McNee et al. (2002) use CF 

to recommend additional citations for research papers using the existing citations in the 

paper as the basis for CF recommendation.  Torres et al. (2004), Bogers & Van Den 

Bosch (2008) and Wang & Blei (2011) recommend scientific papers to researchers using 

the papers the researcher has already read as the basis for CF recommendation. 

Ekstrand et al. (2010) apply CF to the task of automatically generating reading lists.  

Their system assumes that a novice already has a small set of papers from their field of 

interest.  This set of papers is combined with a variety of lexical similarity measures and 

authority measures to form the basis for CF recommendation. 

There are three disadvantages to using CF for the purpose of generating reading lists for 

a novice.  Firstly, the novice has to have chosen a few papers to use as a basis for the CF 

recommendation, and some systems even require that the novice attach a relevance score 

to each of these papers.  But by definition, a novice lacks the experience to choose these 

papers, let alone rate them.  Secondly, CF requires that a large number of other 

researchers have read (and possibly rated) these papers and papers relevant to them.  

These people simply might not exist for a small topic at hand.  Thirdly, CF suffers from 

a “cold-start phenomenon,” where recommendations are generally poor where data is 

sparse.  A novice has to have read (and possibly rated) many papers before they receive 

meaningful recommendations, and a paper has to have been read (and possibly rated) by 

many researchers before it can be meaningfully recommended.  To alleviate the cold-

start phenomenon, Zhou et al. (2008) use information beyond the citation graph to 

include additional features from the author graph (matching papers to authors) and venue 

graph (matching papers to publication venues). 
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Two commercial search systems that rely on CF to provide scientific search are 

CiteSeerX9 and Citeulike10.  

2.4.6 Playlist Generation 

In the area of music information retrieval, the task of playlist generation closely 

resembles the task of generating reading lists.  Here, a playlist – a list of songs – is 

provided in response to a particular search need (Bonnin & Jannach 2013).  This search 

need might be given either as some seed information (such as listening history) or a 

semantic description (such as “joyful songs”) (Barrington et al. 2009).  The ISMIR 2012 

conference (Peeters et al. 2012) dedicates an entire track to the task. 

Both types of search need have parallels to reading list recommendation.   A listening 

history can be likened to a list of previously read papers.  A semantic description (such 

as “joyful songs”) can be likened to a scientific area of expertise (such as “statistical 

machine translation”).  Where the tasks diverge is that reading list generation can use the 

textual information in the papers directly, while in general, playlist generation relies on 

tags that are manually associated with songs (Moore et al. 2012).  However, music 

detection and classification technology such as Shazam (Wang 2006) may in future lead 

to the ability to use the song content directly. 

2.4.7 Reference List Reintroduction 

One of the experiments in this thesis, presented in Section 5.3, involves the task of 

reference list reintroduction (RLR).  Given only the abstract or full text of a paper (with 

citation information redacted) as an indication of a search need, the task is to predict 

which papers the target papers originally cited.  Evaluation by RLR is cheap and allows 

for large and economical data sets.  RLR serves as a proxy evaluation for the task of 

automatically generated reading lists: the citations of a paper can be viewed as a 

recommended reading list by the author of a paper (presumably an expert) that provides 

necessary and sufficient background for the reader (potentially a novice) to understand 

the paper. 

The major downside of evaluation by RLR is that citations are not a perfect gold standard: 

they can exhibit subjective inclusions  and omissions (MacRoberts & MacRoberts 1996), 

and they often reflect the idiosyncrasies of how scientific communities cite prior work 

(Shaparenko & Joachims 2007).  These problems are mitigated by the fact that all the 

systems tested are exposed to the same citation idiosyncrasies and that the subjective 

characteristics are averaged out by the high number of papers in the data set. 

Solutions to RLR necessarily draw from the variety of techniques discussed so far in this 

section.  Lexical similarity plays a large role because a paper and the papers it cites are 

likely to use similar language and terminology.  Topic models are useful because papers 
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are likely to cite other papers that cover the same topics.  The citation graph, and its 

associated measures of authority, identifies those papers that are most likely to be cited.  

Collaborative filtering techniques take advantage of social constructs, characterising 

historic patterns of citation behaviour.  This variety of influences on the RLR task is 

mirrored by the various state-of-the-art approaches employed to perform RLR.  

McNee et al. (2002) attempt the simpler task of recommending suitable additional 

references for a research paper.  They evaluate six collaborative filtering algorithms for 

the task, using the existing citation graph to increase the performance of collaborative 

filtering where data is sparse.  The primary disadvantage of their algorithms is that they 

require a set of existing references from which to start.  They do not use any lexical 

information from the paper – only the citation graph. 

Strohman et al. (2007) approach the task of RLR by searching for citations using only 

the paper text as a query to their recommendation system.  They first use an IR system to 

select the hundred most similar papers to a query paper, and expand those results to 

include all the papers they cite.  Then they combine several features to generate their 

recommendations from this pool of candidate papers: text similarity, citation counts and 

citation coupling, author information, and the citation graph.  Their model achieves a 

mean-average precision (or MAP – see Section 3.2 for details) of 10.16% against a corpus 

from the Rexa11 database. 

Bethard & Jurafsky (2010) improve on Strohman et al. (2007) using a SVM with 19 

features from 6 broad categories: similar terms; cited by others; recency; cited using 

similar terms; similar topics; and social habits.  They achieve a MAP of 27.9% against 

the ACL Anthology Reference Corpus (Bird et al. 2008).  They find that publication age, 

citation counts, the terms in citation sentences, and the LDA topics of the citing 

documents contribute most to the success of their model.  They also find that PageRank 

provides little discriminative power.  A drawback of their method is the large amount of 

information that has to be provided to create their SVM features, much of which is of a 

social nature and in their case is manually curated. 

Daud (2008) address the same problem by altering the LDA algorithm to model word-

over-topic and topic-over-citation distributions.  However, they do not give enough detail 

about their algorithm, nor do they give quantitative results to compare against. 

Tang & Zhang (2009) address the harder task of not only reintroducing the reference list 

of a paper, but also locating the positions in the text of a paper where those citations 

should be.  They train a two-layer Restricted Boltzman Machine (RBM), which jointly 

models the topic distributions of papers and their citation relationships, to recognise the 

most similar papers to the sentence containing a citation.  The drawback of this technique 

is the training data of citation contexts required to train the RBM. 
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He et al. (2010) and He et al. (2011) also address the task of recommending citations and 

their positions in the text of a paper.  Given a query paper, they compare millions of 

previously located sentences containing a citation to a moving window in the query 

paper.  When a sentence matches the moving window closely enough, it is recommended 

as a citation sentence for the query paper at that window position.  The drawback of this 

technique is the requirement of a database of citation sentences that have been used in 

the literature before.  New papers will not be recommended if they have not been cited 

by other authors to build a sufficient catalogue of citation sentences. 

Lu et al. (2011) tackle the problem of reference list reintroduction by training a 

translation model to map between citation contexts and their corresponding papers.  

Again, their model needs to be trained against a database of citation contexts. 

2.5 Evaluation Metrics for Evaluating Lists of Papers 

As will be described in Section 3.3, one of the contributions of this thesis is a new metric 

for evaluating reading lists.  There are a variety of evaluation measures in the field of 

NLP for various tasks, none of which exactly meet the requirements for this type of 

evaluation.  This section describes the performance measures from the NLP literature 

that are relevant to this type of evaluation, and which will be used in the evaluations in 

Chapter 5. 

2.5.1 Precision, Recall and F-score 

Given a set of retrieved papers D and a set of relevant papers C, precision (P) and recall 

(R) are defined as (Van Rijsbergen 1979) 

𝑃(𝐷, 𝐶) =
|𝐶 ∩ 𝐷|

|𝐷|

𝑅(𝐷, 𝐶) =
|𝐶 ∩ 𝐷|

|𝐶|

 

Fξ-score combines precision and recall into a single metric (Van Rijsbergen 1975) 

𝐹𝜉(𝐷, 𝐶) =
(𝜉2 + 1)𝑃(𝐷, 𝐶)𝑅(𝐷, 𝐶)

𝜉2𝑃(𝐷, 𝐶) + 𝑅(𝐷, 𝐶)
 

where ξ weights the relative importance of precision and recall.  Generally, precision and 

recall are equally balanced with ξ=1 to produce the F-score: 

𝐹(𝐷, 𝐶) =
2 × 𝑃(𝐷, 𝐶)𝑅(𝐷, 𝐶)

𝑃(𝐷, 𝐶) + 𝑅(𝐷, 𝐶)
 

Salton (1992) describes how precision-recall measurements, although ubiquitous and 

easy to compute, are not universally acceptable as performance measures for information 

retrieval.  In particular, recall is incompatible with the utility-theoretic approach to 
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information retrieval: a document can be relevant to a query but it may not have 

additional utility in the context of the collection of query results.  In one instance, a 

document might duplicate the information of another relevant document that has already 

been included in the results.  In another instance, a document might be relevant only in 

the complementary context of another document that has not been included in the results 

(Robertson 1977). 

Precision and recall – and hence F-score – have no mechanism to take into account the 

fact that documents might be partially relevant to a query.  Their implementation 

classifies a document as either relevant or irrelevant.  Reading list recommendation is 

more sensitive to this binary classification than more generic information retrieval 

because the resulting sets of recommended papers are inherently shorter than search 

results, i.e. tens of papers vs. hundreds or thousands or search results.  If partial relevance 

is not captured by the evaluation metric, then comparison between RLR systems becomes 

difficult as they all have near-zero scores. 

2.5.2 Mean Average Precision (MAP) 

The precision, recall and F-score of an algorithm are based on unordered sets of papers: 

they are single-value metrics that consider all retrieved papers equally relevant.  

For ranked lists, Average Precision (AP) averages the precision up to each position in the 

list where a relevant paper is present:  

𝐴𝑃(𝐷, 𝐶) =
1

|𝐶|
∑ 𝐼{𝐷𝑖∈𝐶} × 𝑃(𝐷[1: 𝑖], 𝐶)

|𝐷|

𝑖=1

 

where 𝐼{𝐷𝑖∈𝐶} = 1 if paper Di is relevant (0 otherwise), and 𝐷[1: 𝑖] is the list of the top i 

ranked papers.  Note that the denominator of the average is |𝐶|, so any missing relevant 

document is penalised as it contributes 0 towards the AP. 

AP is numerically higher for lists where relevant papers are concentrated at the top.  AP 

is an adequate additional metric in situations where one cares about the relative relevance 

an IR system assigns to its output documents.  Buckley & Voorhees (2000) show that AP 

is more stable and has lower error rates than precision and recall alone.  They also show 

that a difference in AP of 5% between two methods implies a greater than 98% chance 

that the higher-scoring method is better. 

For a set of queries, the Mean Average Precision (MAP) of an algorithm is the average 

of the AP for each query.  For a set of queries Q 

𝑀𝐴𝑃𝑄 =
1

|𝑄|
∑ 𝐴𝑃(𝐷𝑞 , 𝐶𝑞)

𝑞∈𝑄

 

where Dq and Cq are the retrieved papers and the relevant papers for query q, respectively. 
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Because MAP is based on precision and recall, it suffers the same prejudices as F-score 

towards utility-theory based information retrieval.  It is also unable to take into account 

partial relevance of the gold-standard set Cq, but as just explained, it can take into account 

relative relevance in the return set Dq.  

In the task of reference list reconstruction, where the number of recommended papers is 

generally longer than the number of actual references, it is common to use MAP 

(Strohman et al. 2007; Tang & Zhang 2009; Bethard & Jurafsky 2010; He et al. 2010; 

Wang et al. 2010). 

2.5.3 Relative co-cited probability (RCP) 

When performing reference list reintroduction it may happen that some of the papers 

suggested by the system are actually relevant, although they are not in the bibliography.    

This may have happened for a variety of reasons such as the author being unaware of the 

related work or running out of space to include a citation of medium relevance (He et al. 

2011).  Precision- and recall-based measures will overly penalise any system because 

they cannot take into account such “close misses.”  He et al. (2011) introduce relative co-

cited probability (RCP), which measures accuracy based on the assumption that papers 

that are similar in relevance and quality are likely to be cited by the same papers, or co-

cited. 

Given a corpus of papers D, a query paper d, an expert paper cj cited by d, and a system-

generated test paper ri recommended for paper d, the RCP of recommendation ri with 

respect to an individual cited paper ci is 

𝑅𝐶𝑃(𝑟𝑖, 𝑐𝑗) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑝𝑒𝑟𝑠 𝑖𝑛 𝐷 𝑐𝑖𝑡𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑟𝑖 𝑎𝑛𝑑 𝑐𝑗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑝𝑒𝑟𝑠 𝑖𝑛 𝐷 𝑐𝑖𝑡𝑖𝑛𝑔 𝑐𝑗
 

Given the set of papers C cited by D, and the set of recommendations R, the overall RCP 

for recommendations R with respect to actual citations C is 

𝑅𝐶𝑃(𝑅, 𝐶) =
1

|𝑅||𝐶|
∑ 𝑅𝐶𝑃(𝑟𝑖, 𝑐𝑗)

𝑟𝑖∈𝑅,𝑐𝑗∈𝐶

 

Although RCP does attempt to address the prejudice against partial relevance exhibited 

by precision- and recall-based measures by rewarding recommended papers for being co-

cited, the formulation has its own shortcomings.  Firstly, RCP will always give zero score 

to recent papers that have not yet received any citations, regardless of their quality or 

content.  Secondly, RCP overemphasises the importance of partial relevance by allowing 

a partially relevant paper to contribute to the overall score multiple times if it matches 

multiple expert papers.  By way of example, Figure 4 shows how RCP calculates the 

same score to these scenarios: (a) 5 retrieved papers that are each 20% co-cited with all 

of the 5 expert papers; (b) 5 retrieved papers that are each 100% co-cited with one of the 

5 expert papers (the same expert paper each time); and (c) 5 retrieved papers that are each 
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100% co-cited with one of the 5 expert papers (a different expert paper each time).  The 

third scenario is clearly most preferential for the evaluation of a reading list because a 

perfectly relevant substitute is found for each expert paper. 

 

 

Figure 4. Three Scenarios with Identical RCP Scores. 

2.5.4 Diversity 

The evaluation metrics described in the previous subsections evaluate a generated list of 

papers against a gold-standard list of papers.  They do this by comparing whether or not 

each paper in the generated list appears in a gold-standard list.  However, an important 

concept that is missing from these forms of evaluation is that of diversity. 

Goffman (1964) was the first to recognise that the relevance of a paper to a generated list 

of papers must take into account the other papers that appear in the list: papers are not 

independent in their informational content.  Evaluation measures such as MAP judge 

relevance in isolation, treating the constituent papers of a list as independent. 

Bernstein & Zobel (2005) tackle an obvious case of dependence between two papers.  

They use document fingerprint techniques to locate papers that are content-equivalent – 

those that have almost identical informational content.  Clarke et al. (2008) attempt to 

define an evaluation framework for IR that accounts for diversity by finding the largest 

overlap between information properties of documents and probable diverse information 

needs that are expressed by a query.  Zhai et al. (2003) make use of subtopics to evaluate 

how well the subtopics of an information need are covered by the subtopics contained in 

the generated list. 

As will be seen in the next chapter, Citation Substitution Coefficient, a new paper 

similarity metric I will introduce in this thesis, implicitly incorporates diversity. 
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Chapter 3.  

Contributions of this Thesis 

This thesis is primarily concerned with the task of automatically generating reading lists.  

We learned from Section 2.4 that there are a variety of existing mechanisms for 

generating similar artefacts, such as identifying core papers, finding complementary 

literature, and recommendation using collaborative filtering.  However, none of them 

quite address the task of automatically generating a reading list for a given field.  

Section 3.1 presents ThemedPageRank (TPR), the system I have built to address this task 

directly.  TPR makes extensive use of technical terms to model a corpus of papers.  

Section 3.4 presents a light-weight automatic term recognition system built for use in 

TPR. 

Because there are no existing systems for the task of automatically generating reading 

lists, there are also no existing mechanisms for the evaluation of such systems.  

Section 3.2 presents the gold-standard reading lists that I collected specifically for the 

task of evaluating such systems.  This gold standard allows future researchers to 

independently build and evaluate their own systems for the automatic generation of 

reading lists. 

While building and comparing incremental improvements to TPR, I noticed that the 

traditional IR evaluation metrics, such as F-score and MAP, were not granular enough to 

allow me to draw significant conclusions about the relative performance of different 

systems.  Systems generally scored similarly to each other without statistically significant 

differences.  Section 3.3 presents the Citation Substitution Coefficient metric, which is 

designed specifically for the comparison of a list of papers to a gold-standard list of 

papers.  It takes into the account the citation graph to provide partial scores for papers 

that are close to gold-standard papers in the citation graph. 

Finally, Section 3.5 introduces Qiqqa, a research management tool that I built 

independently alongside my PhD.  In this thesis I use Qiqqa to perform two large-scale 

user satisfaction evaluations in the experiments described in Section 5.5.  Qiqqa also 

provides the ability to visualise a large corpus of documents, which helped direct the 

design of TPR.  These visualisations, and a case-study of how they might be used to 

perform exploratory reading, are presented in Section 3.5.3. 
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3.1 ThemedPageRank 

The main contribution of this thesis is the creation of ThemedPageRank (TPR), an 

algorithm for automatically creating reading lists to help bring a novice up to speed in a 

scientific area previously unknown to them.  This contribution addresses the third 

research question addressed in this thesis: does lexical and social information contribute 

towards the task of automatically generating reading lists? 

The automatic generation of reading lists is a relatively recent task.  Tang (2008)  and 

Ekstrand et al. (2010) address for the first time the task of automatically generating 

reading lists for novices, i.e. researchers new to a field.  However, both approaches tackle 

the task using collaborative filtering techniques, which rely on existing ratings of papers 

in the field – either by the novices themselves or by several of their peers.  The 

requirement of existing manually captured ratings is at odds with the automatic 

generation of reading lists because, by definition, at the time their need for a reading list 

arises, a novice has probably not already produced reasonable ratings. 

There are two starting points from which reading lists can be created automatically if one 

does not want to require previously-made judgement.  If we start from a keyword-based 

description of the scientific area covered, the task becomes similar to document retrieval: 

the returned list should not contain many irrelevant papers, but should contain a wide 

variety of relevant papers.  These two properties correspond to precision and recall as 

described in Section 2.5.1.  But if we start the process of automatically creating reading 

lists from a paper known to be relevant to the field, the task then becomes similar to 

reference list reconstruction: the returned list of papers must have sufficient precision to 

be relevant to the query paper, have broad enough recall to cover all the topics discussed 

in the paper, and be notable enough to be included in the bibliography of that paper. 

TPR supports both starting points by emphasising the role of topics in scientific search.  

Both the keyword- and paper-based descriptions of scientific areas that novices might 

use as input queries are converted to distributions over scientific topics.  These 

distribution-based queries have the advantage that they satisfy the range of 

expressiveness required in scientific search (El-Arini & Guestrin 2011): a search need 

might be expressed as a single word, a technical term, a phrase or sentence, a paper 

abstract, a description of the field, a paper in the field, or a small collection of papers in 

the field.  In my approach, each of these can be converted to a distribution over scientific 

topics.  TPR then generates a reading list tailored to this distribution. 

3.1.1 Modelling Relationship using Topic Models and Technical Terms 

Scientific topics are fundamental to the structure of scientific literature and therefore 

central to the design of TPR.  Scientific literature is intrinsically distributed over topics 

at a variety of scales: at the macroscopic level, examples are “astronomy” and “computer 

science”; at the microscopic level, examples are “statistical parsing” and “statistical 
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machine translation”.  TPR inherently takes into account the concept of topics at every 

scale by applying latent topic modelling to a corpus of papers. 

Rather than using words as the underlying representation for papers in its topic models, 

TPR uses technical terms.  This choice is driven by three factors: technical terms are 

important artefacts for formulating knowledge from scientific texts (Ananiadou 1994); 

descriptions of topics are more understandable if they are expressed in terms of technical 

terms rather than words (Wallach 2006; Wang et al. 2007); and the number of unique 

technical terms in scientific text is one to two orders of magnitude smaller than the 

number of unique words (Wong et al. 2009), which means that TPR scales better to large 

corpora (Newman et al. 2006). 

Firstly, TPR automatically detects all technical terms in a corpus using the algorithm 

presented in Section 3.4.  TPR then builds a D × V matrix containing the document-bag-

of-technical-terms representation of the corpus.  D is the number of documents in the 

corpus and V is the number of technical terms.  This is matrix Ω in Figure 1, where the 

entry at row d, column v represents the number of times technical term v appears in the 

full text of document d.  Topic modelling, using either LDA (Section 2.2.2) or NMF 

(Section 2.2.3) is then used to collapse matrix Ω into the two smaller, but denser matrices 

Θ and Φ, where Θ contains the document-topic representation and Φ contains the topic-

technical-term representation. 

Figure 5 shows the results of applying LDA-based topic modelling with 25 topics on a 

corpus of around 700 papers and 130 technical terms.  This was the set of documents that 

comprised the reading material for the thesis being described here.  Exhibit 1 shows a 

paper selected from the corpus with the title, “A note on topical n-grams.”  It is reasonable 

to assume that the paper combines “topic models” and “n-grams”. 

The coloured square to the right of the paper detail is a visual representation of the topics 

that corresponds to this paper, i.e., the paper’s row in matrix Θ.  Each topic is represented 

by a different colour, and the width of each colour is proportional to the topic’s influence 

in the document’s topic distribution.  It is clear that this document is fairly evenly 

distributed over five topics (five coloured strips), with the “mustard” and “turquoise” 

topics being most representative.  Exhibits 2 and 3 show the technical terms associated 

most with the mustard and turquoise topics, respectively.  The same technical terms can 

occur in several topics (columns of matrix Φ).  The average topic distribution for the set 

of technical terms is indicated by the colours of their background diagonal swatch.  

Exhibits 4 and 5 show the eight papers that match each of the technical terms’ 

distributions most closely, using the similarity measure described in Section 4.3.3.  Each 

of those papers has an associated coloured swatch representing their topic distributions. 

The “mustard” topic is strongly associated with the automatic extraction of technical 

terms, both through its associated technical terms and its related papers.  Similarly, the 

“turquoise” topic is strongly associated with topic modelling.  Both these topics make 
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sense, given the title of the sample paper.  It is reassuring that the sample paper in 

Exhibit 1 contains both these topics. 

 

3.1.2 Modelling Authority using Personalised PageRank 

The combination of automatic term recognition with topic modelling provides TPR with 

a scalable approach to discovering the latent topics in a corpus.  This representation 

reveals useful lexical relationships between the topics, the papers and the technical terms 

in the corpus.  However, lexical relationships are just a first step towards automatically 

building reading lists.  While topic modelling alone is able to isolate candidate papers for 

a reading list based on their topical relevance, it lacks a mechanism for extracting the 

most authoritative papers from among these candidate papers. 

As discussed in Section 2.3.2, measures based on citation counts have been used as 

proxies for authority in the scientific domain.  Unfortunately, citation counts have 

shortcomings with respect to the reliability of citations and the lack of comparability of 

citation counts across discipline and over time.  Not all citations are equal. 

PageRank is a method that formalises the intuition that not all citations are equal.  It has 

met with success in eliciting authoritative sources on the web (Page et al. 1998).  

However, the direct application of PageRank to the scientific literature has not shown 

consistent improvement over citation count  (Maslov & Redner 2008; Bethard & Jurafsky 

2010), a result that is confirmed by my experiments in Sections 5.2 and 5.3. 

TPR, the main contribution of this thesis, modifies Personalised PageRank (Haveliwala 

et al. 2003) in a novel way that: (i) is sensitive to the distribution of topics over the papers 

in a corpus; and (ii) takes into account the age of papers when determining their authority.  

This modification addresses two intuitions as to why PageRank does not perform well 

when applied to scientific literature. 

The first intuition about why PageRank does not perform well in the context of scientific 

literature is that in science, authority is topic-specific. Instead of modelling a global 

authority with PageRank, TPR models multiple topic-specific authorities by calculating 

a different Personalised PageRank for each topic it identifies in a corpus.  These topic-

specific Personalised PageRanks are later combined to match the topic distribution of the 

search query to give a query-specific Personalised PageRank score.  This produces a 

measure of authority that is uniquely tailored to the search query. 

Recall from Section 2.3.4 that there are two components to Personalised PageRank where 

personalisation can be implemented, Bias(t,d) and Transition(t,d,d’):  

𝑃𝑅(𝑡, 𝑑, 𝑘 + 1) = 𝛼 × 𝐵𝑖𝑎𝑠(𝑡, 𝑑) +

          (1 − 𝛼) × ∑ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) × 𝑃𝑅(𝑡, 𝑑′, 𝑘)𝑑′∈𝑙𝑖𝑛𝑘𝑖𝑛(𝑑)
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Figure 5. Sample Results of Topic Modelling on a Collection of Papers. 
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where for topic t: PR(t,d,k) is the PageRank for paper d at iteration k; Bias(t,d) is the 

probability that paper d is picked randomly from a corpus; Transition(t,d,d’) is the 

transition probability of following a citation from paper d’ to paper d; linkin(d) is the set 

of all papers that cite paper d; linkout(d) is the set of all papers that are cited by paper d. 

Also, recall from Section 2.3.4.4 how Yang et al. (2009) automatically generate their 

Personalised PageRank using topic models with the following model:  

𝐵𝑖𝑎𝑠(𝑡, 𝑑) =
1

|𝐷|
𝑃(𝑡|𝑑) 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) = 𝑃(𝑡|𝑑, 𝑑′)

≅
1

|𝑙𝑖𝑛𝑘𝑜𝑢𝑡 (𝑑′)|

 

While their bias function reflects the probability of topic t in document d, their choice of 

P(d|d’,t) in their transition function does not involve any of the LDA topic distributions.  

My idea and contribution concerns the case where the random surfer follows a citation, 

i.e. the transition probabilities.  In my model, citations that are closely associated with a 

topic are favoured, whereas in the model of Yang et al, citations are chosen at random. 

TPR incorporates topic probabilities into both the bias and transition functions.  

Specifically, Transition(t,d,d’) takes into account the probabilities of topic t in not only 

documents d and d’, but also in the other documents d’’ referenced by document d’: 

𝐵𝑖𝑎𝑠(𝑡, 𝑑) =
𝑃(𝑡|𝑑)

∑ 𝑃(𝑡|𝑑′′)𝑑′′∈𝐷
 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛∗(𝑡, 𝑑, 𝑑′) = 𝑃(𝑡|𝑑, 𝑑′)

= √
𝑃(𝑡|𝑑′)

∑ 𝑃(𝑡|𝑑′′)𝑑′′∈𝐷
 ×

𝑃(𝑡|𝑑)

∑ 𝑃(𝑡|𝑑′′)𝑑′′∈𝑙𝑖𝑛𝑘𝑜𝑢𝑡(𝑑′)
 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡, 𝑑, 𝑑′) =
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛∗(𝑡, 𝑑, 𝑑′)

∑ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛∗(𝑡, 𝑑, 𝑑′′)𝑑′′∈𝑙𝑖𝑛𝑘𝑖𝑛(𝑑)

 

Here, d is a document whose TPR is being calculated, d’ is a document that refers to 

document d and whose TPR score is being distributed during this iteration of the 

algorithm.  The set linkout(d’) is all the papers that are cited by paper d’.  The set linkin(d) 

is all the papers that cite paper d. The first probability term inside the root of the transition 

function ensures that TPR scores are propagated only from citing documents that are 

highly relevant to topic t.  The second probability term ensures that a larger proportion 

of a document’s TPR score is propagated to cited documents that are highly relevant to 

topic t.  By combining the two probability terms using the geometric mean, combinations 

are penalised when either component probability is close to zero.  The value P(t|d) can 

be read off directly from matrix Θ in Figure 1 (c.f. page 26).  The transition matrix is 
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ergodic: its entries are constant, non-zero and sum to unity over each document d.  This 

ensures that TPR converges to a steady state. 

Figure 6 shows these concepts at play.  Consider a corpus of four documents (d, d’, d’’1 

and d’’2) and three citations (shown by arrows).  The corpus contains two topics (green 

and red).  The topic distribution for each document is shown by the bar-chart below the 

document identifier.   

Exhibit 1 shows the idea behind the calculation of TPR for document d for the green 

topic.  Two factors influence the TPR score for document d.  Firstly, the green topic is 

dominant in the topic distribution of document d’, so more TPR score is likely to flow 

from it (indicated by the thicker green arrows in Exhibit 1 than red arrows in Exhibit 2: 

the sum of the thickness of the green arrows is greater than the sum of the thickness of 

red arrows).  Secondly, document d’’1 is more relevant to the green topic than the two 

other documents cited by document d’, so it receives the bulk of the green TPR score 

from d’ (indicated by the thicker green arrow).  Document d receives hardly any green 

TPR score because it is less relevant to the green topic than documents d’’1 and d’’2. 

Exhibit 2 shows the calculation of TPR for document d for the red topic.  Because 

document d is more relevant to the red topic, it receives the bulk of the red TPR score 

(indicated by the thicker red line).  This time, however, document d’ is far less relevant 

to the red topic so less overall TPR score flows from it (indicated by the thinner red 

arrows in Exhibit 2 than green arrows in Exhibit 1). 

 

Figure 6.  Examples of the Flow of TPR Scores for Two Topics. 

 

Whereas Figure 6 gives the idea behind TPR, Figure 7 gives a numerical example 

calculation of one iteration of TPR for two topics (green and blue), four papers (A, B, C, 

D) and three citations.  A larger box with A, B, C or D in the top-left corner represents a 

paper and its TPR calculation.  P(t|d) is shown in the top-right.  The calculation of TPR 

for each topic is shown at the bottom.  The calculations for the two topics are given in 

the respective colour.  Papers A and B are not cited, so their TPR is comprised only of 

the bias term multiplied by α, indicated by ai.  The box associated with each citation 
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arrow shows the calculation of TPR contribution from a citing paper to a cited paper, 

indicated by bi.  Papers C and D are cited, so they gain an additional contribution from 

each citing paper, which is multiplied by (1- α). 

 

Figure 7.  Example Calculation of an Iteration of ThemedPageRank. 

 

There are two compounding effects at play here.  The first is that the TPR score for topic 

t is propagated mainly through documents relevant to topic t.  The second is that the TPR 

score for topic t accumulates mainly in documents relative to topic t.  Together, these 

effects generate a Personalised PageRank document ranking that is specialised and 

unique to each topic.  This can then be used to infer highly topic-specific authority. 

The iterative calculation of TPR converges rapidly (1-3 iterations) because there are few 

(if any) cycles in the backwards-in-time citation-graph of scientific literature.  Thus TPR 

can easily scale to millions of papers using a standard desktop computer (for the moderate 

corpus analysed in this project, TPR converges in less than a second). 

○ 

The second intuition about why a straightforward application of PageRank does not 

perform well in the context of scientific literature is that there are structural differences 

between the web and scientific literature. Scientific papers and their citations are frozen 

as soon as they are published, which tends to cause older papers to score higher PageRank 

scores overall (Walker et al. 2007).  In contrast, web pages are subject to constant change, 

adding links to newly relevant pages and deleting links to outdated pages, so age has 

negligible effect on PageRank score. 

TPR addresses this problem by adjusting the Personalised PageRank scores based on 

their age: the scores of older papers are adjusted downwards to compensate for the 

increased time over which they have attracted citations.  The ablation experiments in 

Chapter 5 show that TPR is reasonably stable to changes in the method of age adjustment, 
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so it uses the simplest: the Personalised PageRank scores are divided by the age of the 

paper in years to produce the final age-adjusted ThemedPageRank scores.  

3.1.3 Query Model 

At this point, TPR has the capacity to automatically fragment a corpus of papers into 

topics, and for each of these topics, to produce an age-adjusted Personalised PageRank 

score for each paper.  The papers with the highest scores for each topic are the most 

relevant to that topic, according to TPR. 

However, for the task of automatically generating reading lists, a more generalised and 

expressive query model is necessary.  A novice may wish to generate a reading list from 

a search need expressed in many different ways, as we have seen in Chapter 1: as a single 

word, a technical term, a phrase or sentence, a paper abstract, a description of the field, 

a paper in the field, or a small collection of papers in the field. 

TPR appeals to matrices Θ and Φ in Figure 1 to convert each of these search needs into 

a distribution over scientific topics, and then generates a reading list tailored to this 

distribution.  Although the rows of matrix Φ contain the distribution of each topic over 

the set of technical terms, with appropriate normalisation, the columns φi of matrix Φ can 

be interpreted as the pseudo-distributions of each technical term over the topics. 

The following mechanisms might be used to convert a search need into a search topic 

distribution, ξ: 

 Single technical term, satisfying the search need, “generate a reading list based 

around this technical term.”  If the search query is a single known technical term 

(i.e., was in the vocabulary of technical terms during the topic modelling stage), 

then the corresponding normalised column φi of matrix Φ is used as the topic 

distribution, i.e. ξ = φi. 

 Multiple technical terms. If the search query consists of multiple known 

technical terms, then the average of the single technical term distributions is used 

as the topic distribution, i.e. ξ =
1

𝑁
∑ φi

𝑁
𝑖=1 . 

 Unknown words or technical terms, satisfying a free-form search query.  In this 

case, we cannot appeal directly to matrices Θ and Φ in Figure 1, as the words or 

technical terms in the search query are not represented in the LDA topic 

representation because they were not present in the vocabulary during the topic 

modelling stage.  Instead we perform a Lucene TF-IDF-based document search 

over the papers in the corpus.  The 20 highest scoring papers are selected, and 

their corresponding paper distributions are averaged to produce a topic 

distribution in the same way as for the “multiple known papers” mechanism.  The 

assumption behind this approach is that the top papers are those that best match 

the words in the search query.  Although they might individually represent a wide 

variety of topics, their average topic distribution offers a most likely topic 
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distribution for the search query.  This is the query mechanism used in the 

experiment in Section 5.2. 

 Single known paper, satisfying the search need, “generate a reading list based 

on the content of this paper.”  If the search query is a single known document 

(i.e., was in the corpus of papers during the topic modelling stage), then the 

corresponding row θi of matrix Θ is used as the topic distribution, i.e. ξ = 𝜃i.  This 

is the query mechanism used in the experiment presented in Section 5.3. 

 Multiple known papers.  If the search query consists of multiple known papers, 

then the average of the single paper distributions is used as the topic distribution, 

i.e. ξ =
1

𝑁
∑ 𝜃i

𝑁
𝑖=1 . 

 Unknown papers.  Finally, if an unknown paper or set of papers is presented as 

the search query, their combined full-text can be used as the search query in two 

ways.  Firstly, the combined full-text can be scanned for known technical terms 

and a topic distribution can be built from the weighted average of the topic 

distribution of the technical terms.  Secondly, the combined full-text could be 

used as a query for a Lucene TF-IDF-based document search over the papers in 

the corpus, similar in function to the “unknown word or technical terms” 

mechanism. 

Regardless of how it was generated, the query topic distribution ξ is then used to linearly 

combine the multiple topic-specific TPR vector of scores into a unique ThemedPageRank 

vector of scores tailored to the search query q for each document d as follows: 

 𝑇𝑃𝑅(𝑞, 𝑑) = ∑ ξ𝑡 × 𝑇𝑃𝑅(𝑡, 𝑑, ∞)

𝑇

𝑡=1

 

where T is the number of topics, and ξt is the component of the query distribution 

allocated to topic t.  ∑ ξi = 1𝑇
𝑡=1 , by construction.  This formula incorporates the ideas of 

Jeh & Widom (2003) about linearly combining Personalised PageRank scores (c.f. 

Section 2.3.4.1). 

Figure 8 illustrates this calculation.  The graph along the top shows the query distribution 

ξ, which is dominated by topics 9 (light green) and 2 (red).  Below the graph are the TPR 

vectors for each topic, ordered such that the paper with the highest TPR score is first in 

the vector.  The final query-specific ThemedPageRank is shown on the right.  Notice how 

the ordering of the papers in the final query-specific ThemedPageRank more closely 

resembles the ordering of the topic-specific ThemedPageRank associated with the topics 

with higher probability in the query distribution.  This is a consequence of their higher ξi 

values in the linear combination of topic-specific ThemedPageRank scores. 

ThemedPageRank reports the most authoritative papers for the search query as those with 

the highest query-specific TPR scores. 
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Figure 8.  Calculating a Query-Specific ThemedPageRank Score. 

 

3.1.4 Incorporating New Papers 

As new papers are published, it is desirable that they can be efficiently incorporated into 

the document corpus used by ThemedPageRank so that they might immediately become 

available for recommendation. 

There are three components to the calculation of TPR: automatic technical term 

generation; topic modelling; and the generation of Personalised PageRank scores.  Topic 

modelling is by far the most expensive of the three operations by two orders of 

magnitude.  Fortunately, there is a rich literature for efficiently scaling topic modelling 

(at least in the context of LDA and NMF) to corpora of millions of papers. 

However, it is not necessary to recalculate TPR after each addition of a new paper.  Using 

a strategy similar to the query model for “unknown papers,” it is possible to cheaply 

generate a topic distribution for a paper from the existing topic model.  Under the 

assumption that both the topics and technical terms remain constant, this process first 

scans the new paper for existing technical terms, and then combines the topic 

distributions of those technical terms in a weighted average to generate a topic 

distribution for the paper.  Calculation of TPR scores is almost instantaneous, so they can 

be recalculated whenever a new set of papers is incorporated into the corpus. 
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It only becomes necessary to regenerate the technical terms and the topic model from 

scratch once enough new papers have been added and the old set of technical terms and 

topics no longer adequately represents the corpus as a whole. 

3.2 Gold-Standard Reading Lists 

Evaluation of reading lists is fraught with difficulty.  The most problematic is the fact 

that we can never get into the mind of the novice to truly determine whether one reading 

list is better than another at improving their understanding of a field.  The best we can do 

is rely on external judgements either by the novices, who by definition are not in a 

position to know how well they know the field, or by experts, who are probably better 

able to judge the relevance of the reading material for the novice.  Of course, we will still 

have to accept the fact that the experts’ judgements are inherently subjective. 

One of the contributions of this thesis is the creation of a set of gold-standard reading 

lists collected from experts.  This answers the first question this research addresses: can 

experts make reading lists when given instructions, and how they go about doing so? 

Appealing to experts to judge the relevance of reading lists in an ad-hoc fashion is 

expensive, and has the additional disadvantage that the experiment cannot be repeated 

under the same conditions.  The creation of gold-standard reading lists solves these two 

problems: the expensive process of creating the gold-standard can be amortised by 

reusing the gold-standard for many experiments.  

Little research has been done to automatically construct reading lists directly from the 

scientific literature.  Of the little that has been done, most comes from the field of 

collaborative filtering, where there is less interest in the contribution of the paper texts 

themselves, and more interest in the contribution of user ratings.  This might explain why 

little effort has been made before to collect expert gold-standard reading lists against 

which the generated reading lists might be tested. 

The collection of the gold standard reading lists serves three purposes for this thesis.  

Firstly, it produces a reusable gold-standard set of reading lists against which algorithms 

can be tested and ranked against each other, using the general ideas of the test collection 

paradigm (Cleverdon et al. 1966; Cleverdon 1960).  Secondly, it allows the experts’ 

behaviour to be observed while they generate the reading lists.  This gives some insight 

into what experts believe a reading list should contain, and also in how they go about 

building their reading list.  Thirdly, it confirms that reading lists can be created on 

demand by an expert.  

Each reading list in the gold-standard is comprised of papers judged relevant to a 

particular topic or area by an expert.  Relevance judgements are known to differ across 

experts and for the same expert at different times (Voorhees 2000), and this is likely to 

also be a problem in the gold-standard gathered in this work.  Despite this, it has been 

shown that relevance judgements can be a stable form of evaluation for information 

retrieval (Burgin 1992; Buckley & Voorhees 2000). 
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The test collection paradigm (Cleverdon et al. 1966; Cleverdon 1960) requires three 

components: a corpus of papers; a set of queries; and, for each query, a list of relevant 

papers from the corpus. 

3.2.1 Corpus of Papers 

The experiments in this thesis use the November 2010 ACL Anthology Network (AAN) 

(Radev et al. 2009b) as their corpus.  The AAN contains 15,388 papers drawn from 

various NLP conferences, journals and workshops since the mid-1960s.  There are 72,463 

corpus-internal citations. 

This choice of corpus is motivated by the fact that the AAN contains a large proportion 

of the entirety of high-quality papers ever published in the field of Natural Language 

Processing (NLP).  The papers in the corpus cite a large number of other papers in the 

same corpus (Ritchie 2009), which is important for the TPR calculations explained in 

Chapter 3.  Another benefit of using the AAN is that I have a background in the field of 

NLP, so I was able to make informal subjective evaluations of the quality of technical 

terms and topics while developing the methods reported in this thesis.  

For the collection of gold-standard reading lists, the use of the AAN has two advantages.  

Firstly, it is easy to find experts in one’s own field, and these experts are familiar with 

the concept of gold-standards.  Secondly, it was very likely that the AAN would contain 

the majority of papers chosen by the experts. 

3.2.2 Subjects and Procedure 

From each expert, my goal was to obtain two artefacts: a name for their field; and a 

reading list of papers contained in the AAN for their field. 

Eight gold-standard reading lists were produced by experts from the NLP departments of 

two universities (five from the University of Cambridge, three from the University of 

Edinburgh). All experts had an NLP-related PhD degree and several years of research 

experience. 

For geographical reasons, the experts in each of the two groups were recruited in a 

slightly different manner, although the creating of the reading lists proceeded identically.  

For each of the five experts in the first group, a one-hour face-to-face interview was 

scheduled verbally in September 2011 for later in the same week.  Just before the 

interview the expert was given the instructions shown in Figure 9 by email.  For each of 

the three experts in the second group, an email was sent in October 2011 with the 

instructions shown in Figure 10 and a face-to-face interview was scheduled for later in 

the same month.  
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Your task is to construct a reading list that is suitable for an MSc student who 

wants to do a small research project in your area.  They need enough information 

to build up a sufficient background to decide which aspects of your field most 

interest them.  Armed with this knowledge they can then pick a certain aspect for 

their research project and independently research more around that aspect. 

 

For as many papers as possible, please could you give a few words to describe 

why you included the paper in the list? 

 

One limitation is that the papers need to be in the ACL Anthology Network.  A 

list of eligible papers is attached. 

 

Figure 9. Instructions for Gold-Standard Reading List Creation (First Group). 

 

 

Your task is to choose a research topic suitable for an MSc student unknown to 

you who wants to do a small research project in your area, and to create a reading 

list for it. The topic should be of a size that is reasonable for this scenario, and the 

reading list should cover all relevant aspects of the topic. Your selection of papers 

needs to be in the ACL Anthology Network. 

 

In preparation for our meeting, please could you choose a topic and email it back 

to me, along with your availability. We will create the reading list together during 

our meeting (alternatively, you may already have a reading list ready, which is 

also good). I have attached the metadata of the papers in the ACL Anthology to 

this email, which we will need during the meeting. 

 

Figure 10. Instructions for Gold-Standard Reading List Creation (Second Group). 
 

 

At the beginning of the interview, an electronic version of the AAN was made available 

to the expert so that they could use it to confirm that each of their selected papers was in 

the AAN.  They used their own university workstation, which meant they had access to 

their own emails, past papers, and the Internet, which enabled them to perform among 

others, Google searches, Google Scholar searches, and searches on journal websites. 

During the interviews, the interviewer (the author of this thesis) answered only 

procedural questions.  To any questions from the expert regarding the form, length or 

content of the reading lists, the interviewer answered only “Whatever seems reasonable 

for the task.”  The instructions and guidance were intentionally minimal so as to influence 

the experts as little as possible.  In this way, the manner in which the experts created their 

reading lists could be observed (see Section 3.2.4). 

The result of each interview was a text file containing the name of the expert-chosen 

field, and a catalogue of the papers in their reading list. 
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3.2.3 Lists Generated 

Table 2 shows the topics of and the number of papers in each reading list.  It also shows 

the number of papers that the expert would like to have included in the reading list, but 

could not because they were not in the AAN corpus.  The gold-standard reading lists 

themselves are available in Appendix A. 

Topic 
Papers in 

AAN 
Papers not 

in AAN 

concept-to-text generation 16 5 

distributional semantics 14 1 

domain adaptation 11 0 

information extraction 9 2 

lexical semantics 14 0 

parser evaluation 4 3 

statistical machine translation models 5 0 

statistical parsing 22 0 

Table 2. Number of Papers in Each Gold-standard Reading List. 

3.2.4 Behaviour of Experts during the Interviews 

The following anecdotal results emerged during the interviews: 

 Interviews lasted about 30 minutes, the shortest being 20 minutes and the longest 

being 50 minutes. 

 Most experts understood the task almost immediately without requiring more 

information about the form of a reading list. 

 Experts had an intuition for the number of papers that should be in a reading list, 

although this number differed from person to person.  When asked after the 

interview about the length of their list, experts commented that it was influenced 

by the breadth of the subject area, the level of the novice they had in mind, and 

the availability of worthwhile papers. 

 Some experts already had a core reading list for their topic: one for a class they 

taught; and another for a book chapter they had recently written. 

 Some experts already knew the core authors and papers in the field, and only had 

to search for a few less-memorable papers.  Generally they found these papers by 

scanning the bibliography sections of the core papers. 

 Some experts used search tools like Google Scholar or the ACL Anthology 

website to recall the names or authors of papers.  For some, having access to the 

supplied AAN database was sufficient. 

 When a paper was not available in the AAN, an expert generally was able to find 

a replacement paper.  On two occasions did experts mention that an important 

part of their field was not at all represented in the AAN, so they limited the 

broader scope of their field to those topics contained in the AAN. 
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 Some of the easily recalled papers were those that won the best paper prize at a 

conference. 

 While most experts focussed on the precursors and originators of ideas in their 

field, one expert focussed on the most recent papers in their field. 

3.3 Citation Substitution Coefficient (CSC) 

As mentioned in Section 3.2, the evaluation of reading lists is difficult.  In this thesis we 

use gold-standard reading lists to overcome some of the difficulty, but gold-standard 

reading lists still suffer from the fact that they are inherently subjective.  Experts have 

preferences and their relevance judgements may differ.  Also, valid substitutes for papers 

may be available and be found by the system because they have similar content, similar 

publishing time frames, or describe joint inventions. 

Sections 2.5.1 and 2.5.2 discuss some of the arguments against relying solely on 

precision, recall, F-score and MAP: they are unable to take into account subjectivity and 

partial relevance.  Because F-score does not take into account partial relevance, it tends 

to assign low scores to automatically generated reading lists.  Low scores approaching 

zero make meaningful comparison between different systems difficult, particularly when 

testing for statistical significance.  One solution is to decrease variance by increasing the 

sample size of the gold-standard, but collecting gold-standard reading lists is expensive.  

This situation demands a metric that achieves statistical significance even for small data 

sets while at the same time allowing for a fine-grained comparison of the quality of 

different systems’ reading lists. 

Section 2.5.3 describes RCP, which rewards partially relevant recommended papers for 

being frequently co-cited with gold-standard papers.  However, RCP penalises recent 

papers and it is incompatible with the utility-theoretic approach to information retrieval: 

it assigns equal score to reading lists with many similar partially relevant papers as it 

does to reading lists with diverse papers that are perfectly relevant to specific papers in 

the gold-standard.  

A contribution of this thesis is the introduction of Forward and Reverse Citation 

Substitution Coefficient (FCSC and RCSC), which not only tackle partial relevance but 

are also compatible with the utility-theoretic approach to information retrieval. 

FCSC and RCSC estimate partial relevance using the degree of substitutability between 

expert papers and system-generated ones.  The degree of substitutability between two 

papers is related to the number of links in the shortest path between them in the citation 

graph.  Reporting both FCSC and RCSC scores gives a good overall picture of system 

performance, particularly when read together with the F-score. 
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3.3.1 Definition of FCSC and RCSC 

FCSC, a metric between 0 and 1, gives higher scores to system papers closely related to 

expert papers by citation distance: the FCSC of each expert paper, Ei, is related to the 

inverse of the number of nodes in the minimal citation graph connecting the expert paper 

to any system paper, Sj.  Expert papers directly retrieved by the systems score 1, whereas 

expert papers citing or cited by a system-generated paper (i.e., those related to the expert 

paper by a citation path of length 1) score ½, and so on.  An expert paper not connected 

in the citation graph to a system-generated paper scores zero.  

𝐹𝐶𝑆𝐶𝐸𝑖
= max

𝑗
{

1

𝐶[𝐸𝑖 , 𝑆𝑗]
} 

where C[Ei, Sj] is the number of edges in the shortest path between  expert paper Ei and 

system paper Sj in the citation graph.  The overall system FCSC score is the average 

FCSC of all the expert papers:   

𝐹𝐶𝑆𝐶𝑠𝑦𝑠𝑡𝑒𝑚 =
1

|𝐸|
∑ 𝐹𝐶𝑆𝐶𝐸𝑖

|𝐸|

𝑖=1

 

FCSC corresponds to the role of recall in document retrieval, which measures how many 

expert papers are found (or recalled) by the system-generated result set.  Whereas recall 

assigns zero score to any missing expert papers, under FCSC, a missing expert paper 

might still receive partial score through its connection to system papers in the citation 

graph. 

No meaningful information retrieval evaluation can be based on recall alone: a naïve 

implementation can score recall of 1 by returning all possible papers.  RCSC is 

introduced to mirror the equally important role of precision.  RCSC, which ranges 

between 0 and 1, is related to the inverse of the number of nodes in the minimal citation 

graph connecting each system paper to any expert paper.  The overall system RCSC score 

is the average RCSC of all system papers: 

𝑅𝐶𝑆𝐶𝑆𝑗
= max

𝑖
{

1

𝐶[𝐸𝑖 , 𝑆𝑗]
}

𝑅𝐶𝑆𝐶𝑠𝑦𝑠𝑡𝑒𝑚 =
1

|𝑆|
∑ 𝑅𝐶𝑆𝐶𝑆𝑗

|𝑆|

𝑗=1

 

Whereas precision assigns zero score to system papers that are not in the list of expert 

papers, under RCSC, a system paper might still receive partial score through its 

connection to expert papers in the citation graph. 
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For both FCSC and RCSC, up to ten edges are followed in the citation graph when 

searching for a matching paper.  After that, a score of zero is assigned to a test paper. 

3.3.2 Worked Example 

Figure 11 shows a sample calculation of FCSC and RCSC scores for six system papers 

(A-F) being compared with five expert papers (G-K).  Papers L-P are situated on the 

citation graph connecting the system-generated papers to the expert papers.  Citations are 

shown as blue edges between the papers.  The direction of the citation is not important. 

When calculating RCSC, paper A is directly connected to paper G, so it scores a RCSC 

of 1.  Paper B is connected to two expert papers with paper L as a node on the minimum 

citation graph connecting onwards to papers G and H.  The shortest path is two edges 

long, so paper B scores an RCSC of ½.  Paper C has four edges in its shortest connection 

to expert paper I, so it scores ¼.  Paper F is disconnected from all of the expert papers, 

so it scores 0.  The overall RCSC score is the average of the individual paper RCSC 

scores, i.e. 0.46. 

FCSC is calculated similarly.  Note that expert paper G is connected to both 

system-generated papers A and B.  Because the shortest path is one edge to paper A, it 

scores an FCSC of 1.  Paper K scores 0 because it is disconnected from any 

system-generated paper.  The overall FCSC score is the average of the individual paper 

FCSC scores, i.e. 0.45.  

 

Figure 11.  Sample Calculation of FCSC and RCSC Scores. 
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3.3.3 Alternative Formulations 

FCSC and RCSC use an inverse-linear decay function to relate the number of nodes in 

the shortest citation path to a final score.  It is not clear that an inverse-linear decay 

function (CSC(n) = 1/n, where each successive hop scores 1, 1/2, 1/3, 1/4, 1/5...) is the 

most appropriate of all possible decay functions, but empirically, CSC seems rather 

robust to changes in the functional form of this reduction both when testing quadratic 

decay (CSC(n) = 1/n2, where each successive hop scores 1, 1/4, 1/9, 1/16, 1/25...) and 

exponential decay (CSC(n) = 1/2n-1, where each successive hop scores 1, 1/2, 1/4, 1/8, 

1/16...).  

It may be argued that inbound and outbound citations should be weighted differently 

when traversing the citation graph because one direction of citation might be more 

informative of authority than another.  While this argument does bear investigation, it is 

not explored in this thesis.  An argument for weighting inbound citations higher is that 

to receive inbound citations, a paper must have passed an implicit quality assessment to 

be cited.  A counter-argument for weighting outbound citations higher is that when 

making an outbound citation, an author of a citing paper has to carefully select which 

papers to cite because of restrictions to published paper length. 

3.3.4 Evaluation 

FCSC uses the same expert-generated list of papers across each system, so it allows for 

significance testing via non-parametric paired tests such as the Wilcoxon signed-ranks 

test.  RCSC, with different sets of underlying system-generated papers, is suitable only 

for standard parametric statistical testing, i.e. non-paired tests. 

As discussed in Section 2.5.4, diversity is an important concept to address in the 

evaluation of generated reading lists.  By its very definition, RCSC automatically 

includes some notion of this diversity.  Under the presumption that the gold-standard 

reading list already represents a diverse enough set of papers, any machine-generated 

reading list that is not diverse enough to match all the concepts present in the gold-

standard reading list will score a very low RCSC.  

Ideally, any new metric should undergo a series of calibration tests, comparing the 

ordering of CSC scores with those of more traditional IR metrics and potentially even 

calibrating CSC scores on a wide range of IR tasks against user acceptance scores.  An 

empirical evaluation might include comparing the CSC scores to human intuition in a 

systematic way.  For instance, for a given expert-generated reading list, the expert might 

have been asked which other papers they would have accepted as a substitution for each 

paper in their list and a score for each substitution (e.g. they might give a 0.8 score if 

paper A was substituted but 0.6 if paper B was substituted).  This would have provided 

independent calibration points against which CSC might have been evaluated.  Holes in 

the substitution paper list could then be filled using an evaluation metric based on textual 

similarity. 
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Although detailed evaluation of CSC as a metric is beyond the scope of my research, we 

can still get some idea of its suitability in a theoretical sense by checking that its extreme 

cases make sense: 

 If the system generated and expert reading lists are identical, FCSC and RCSC 

equal 1. 

 If one list contains a strict superset of the other, then one of FCSC or RCSC will 

be smaller than 1. 

 If none of the papers in the two lists overlap, and there are not connected in the 

citation graph or are connected by an unreasonably long path, FCSC and RCSC 

equal 0. 

 

3.3.5 Summary 

In summary CSC is beneficial because: 

 It has some measure of “closeness” of hit, unlike precision and recall.  This allows 

for better evaluation of expert-generated gold-standard reading lists because it 

addresses the problem of subjectivity of expert choice. 

 CSC offers a measure in both the forward and reverse directions, giving granular 

equivalents of recall and precision. 

 It can support significance testing: non-parametric tests for RCSC and parametric 

tests for FCSC. 

 It works with recent papers because it takes into account what they cite in addition 

to whether or not they have been cited. 

 It is compatible with the utility-theoretic approach to information retrieval.  If 

many system-generated papers have similar content, they will tend to have the 

same short route to the same expert paper.  The remaining expert papers will be 

penalised because they are relatively distant in the citation graph to these system-

generated papers and have few other alternatives where there might be a shorter 

route. 

 It is cheap to compute.  At first glance, it would appear that the search space 

generated by recursively following citations should grow exponentially.  

However, papers relevant to a particular area of science tend to cite each other, 

so relatively small cliques of inter-referencing papers emerge inside large 

corpora. 

 It incorporates the concept of diversity. 

I will now turn to another contribution of my thesis, which is based on the working 

hypothesis that technical terms are more appropriate for building latent topic models in 

science than words are. 
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3.4 Light-Weight Title-Based Automatic Term Recognition (ATR) 

Technical terms are important artefacts for representing knowledge in and formulating 

knowledge from scientific texts (Ananiadou 1994; Frantzi & Ananiadou 1997).  Sager et 

al. (1980) describe technical terms as the linguistic representation of the concepts in a 

particular subject field.    They have been shown to benefit a wide variety of NLP tasks 

(Kim et al. 2010), and play an important role in this thesis because they form part of the 

underlying representation of scientific papers.  Technical terms exemplify tasks (e.g., 

statistical machine translation, sentence compression); methods (e.g., Naïve Bayes, 

SVM); implementations (e.g., C&C, Indri); resources (e.g., Wordnet, The ACL Anthology 

Network); features (e.g., alignment score, MAP); and many other artefacts. The 

prevalence and importance of technical terms in science is a well-documented 

phenomenon (Justeson & Katz 1995). 

Despite this, technical terms can be difficult to understand to novices because they have 

particular meaning when used in a scientific context (Kircz 1991). Also, novices do not 

find synonymous or related technical terms immediately obvious or predictable.  This 

makes their use in scientific search difficult. 

Any system intended primarily for use by novices can therefore not rely on those novices’ 

background knowledge to provide technical terms for its operation.  Technical terms 

must be sourced either from an expert-generated repository of technical terms, or they 

must be discovered automatically.  Technical terms sourced from experts are domain 

dependent, expensive to generate, and do not adapt over time without the dedication of 

further expensive resources.  In this work I therefore resort to automatic term recognition 

(ATR) for the provision of technical terms. 

Automatic Term Recognition (ATR) from corpus data has a long history: detailed 

historical reviews are provided by Kageura & Umino (1996) and Castellvi et al. (2001).  

It has also been the subject of dedicated competitive conferences such as Task 5 of 

SEMEVAL-2010 (Kim et al. 2010). 

Most methods for ATR rely on one or more of four broad heuristics: 

 Lexical statistics: such as word counts; word co-occurrence statistics; word 

blacklists and whitelists; e.g., (Sparck-Jones & Needham 1968), (Daille 1995), 

(Matsuo & Ishizuka 2004), (Kim et al. 2009). 

 Grammar rules: most technical terms are agglomerations of nouns or nouns and 

adjectives; e.g., (Justeson & Katz 1995), (Park et al. 2002). 

 Document position: technical terms are more likely to appear in specific sections 

of a paper, such as the title, the abstract,  and the methods section; e.g., (Lopez & 

Romary 2010), (Treeratpituk et al. 2010). 

 Supervised machine learning techniques: an automated process acquires rules 

from previously marked-up data; e.g., (Frank et al. 1999), (Lopez & Romary 

2010). 
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The HUMB system (Lopez & Romary 2010) makes use of all four heuristics, although 

they report that grammar rules do not contribute significantly to the performance of their 

algorithm.  While HUMB performed best at the ATR Task at SEMEVAL-2010, it 

requires substantial infrastructure: supervised training of a variety of learning machines; 

access to several human-generated domain-specific datasets; and accurate parsing and 

OCR of PDFs.  Other state-of-the-art systems at SEMEVAL-2010 have similarly high 

infrastructure requirements. 

There is a definite trade-off between the performance of an ATR system and its 

infrastructure and processing requirements.  One of my goals was to reduce these 

requirements as much as possible without sacrificing performance.  To do so, it is 

instructive to summarise the core properties of various ATR systems: 

 Most technical terms are bigrams or longer, and n-grams that are terms are 

significantly more prevalent in text than non-term n-grams (Justeson & Katz 

1995) (for n ≥ 2). 

 Technical terms can be long, e.g., “Fletcher–Reeves Nonlinear Conjugate 

Gradient Method.”  Most systems that examine the full document text are limited 

to unigrams or bigrams.  An exception is Treeratpituk et al. (2010), which 

supports up to 4-grams. 

 Paper titles contain many technical terms: words in the title are around 3 times as 

likely to be technical terms as words in the abstract, and around 50 times as likely 

as words from the whole paper (Nguyen & Luong 2010).  Technical terms 

contained in titles are also most likely to be relevant (Treeratpituk et al. 2010). 

 Technical terms do not start or end with conjunctions, prepositions or pronouns 

(Eck et al. 2008).  While this might remove some technical terms that contain 

ambiguous stop-words, in practice this does not seem to be a problem. 

 Complex terms (e.g., “statistical machine translation”) usually contain simpler 

terms (e.g., “machine translation”) (Daille et al. 1994). 

 One can also observe that most of the unigram technical terms are acronyms. 

I use these properties to build a light-weight title-based ATR algorithm. 

While HUMB represents the state-of-the-art in ATR, it and its close competitors all 

require substantial infrastructure, which tends to be domain dependent and must be 

rebuilt for new domains. 

The method I present in this thesis is light-weight and requires little infrastructure.  The 

only infrastructure is a list of stop-words and the Scrabble lexicon.  While it may not 

perform as well as state-of-the-art, it offers a straightforward way to discover technical 

terms in a corpus that is easy to implement and is readily portable to new domains. 

The algorithm is as follows: 

 Generate the n-grams that appear in two or more titles of papers. 
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 Remove the unigrams that are common English words if they appear in the 

official Scrabble TWL98 or SOWPODS word lists12, leaving behind only the 

unigrams that are proper nouns or non-English words.  The Scrabble lexicon 

was used because, by construction, it includes all English words that are not 

proper nouns or acronyms. 

 Remove all n-grams that start or end with auxiliary stop-words (e.g. 

conjunctions, prepositions, personal pronouns).  Again, these stop-words can be 

retrieved from word lists or dictionaries that indicate parts-of-speech. 

 Remove the n-grams whose total frequency in the corpus is within 25% of the 

frequency of their subsuming (n+1)-gram (so ‘machine translation’ remains, but 

‘statistical machine’ is removed because it only appears in the context of the 

subsuming technical term ‘statistical machine translation’). 

 Finally, remove the least frequent 75% remaining unigrams and bigrams. 

This algorithm adds to the list of technical terms for a corpus any acronyms that appear 

in the titles.  This is done automatically by extracting words consisting of only uppercase 

characters in titles that are of mixed case. 

3.5 Qiqqa: A Research Management Tool 

Automated term recognition (ATR) and topic modelling play important roles in this 

thesis as building blocks for the automatic generation of reading lists.  Both areas are the 

focus of continued and active research activity.  However, a theme evident across both 

tracks of research activity is that the evaluation of each task is difficult.   

3.5.1 Evaluating Automated Term Recognition and Topic Modelling 

The commonly accepted method of evaluating ATR systems (Kim et al. 2010) is to use 

publicly available gold-standard datasets that consist of a corpus of documents manually 

annotated with technical terms by human experts.  While this method successfully 

evaluates some aspects of ATR systems – specifically the ability of systems to recall 

expert-generated technical terms – there is criticism that this evaluation methodology is 

far from comprehensive.  Indeed there are a variety of alternatives advocated in the 

literature.  Frank et al. (1999) propose exact term matching.  Mihalcea & Tarau (2004) 

suggest treating semantically similar terms as being correct.  Zesch & Gurevych (2009) 

argue that near-misses should receive partial credit.  Litvak & Last (2008) contend that 

application-based methodologies are the only way to truly evaluate ATR.  Regardless of 

which of these evaluation methodologies is best, they all require gold-standard datasets, 

which are expensive to create and are domain specific. 

In the area of topic modelling, the lack of a single compelling evaluation methodology is 

equally evident (Wallach et al. 2009b).  The authors of contemporary topic modelling 

techniques suggest that a reduction in perplexity is evidence that their algorithms are 

                                                 
12 http://www.isc.ro/en/commands/dictionaries.html 
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improvements to state-of-the-art (Blei et al. 2004; Li & McCallum 2006; Blei & Lafferty 

2006).  This is a weak and indirect method of evaluation as there is no obvious link 

between the perplexity of topic distributions and human interpretation of topics.  Chang 

et al. (2009a) show that topic models that have higher performance based on measures 

of perplexity are not necessarily better topic models as judged by human evaluators.  To 

test the quality of generated topics using LDA and two other topic models they conduct 

a user satisfaction evaluation using Mechanical Turk13.  They argue that user satisfaction 

evaluations have the advantage of directly measuring human response to a hypothesis, 

and that they can scale relatively cheaply to large sample populations. 

I fully subscribe to this view and built a system that allowed me to measure the quality 

of my algorithms directly by user satisfaction evaluation. 

3.5.2 User Satisfaction Evaluations using Qiqqa 

During the first few months of working on this PhD thesis I found it increasingly difficult 

to manage the volume of PDF papers that I was reading.  These difficulties arose not only 

from the perspective of keeping track of which papers I had already downloaded and 

read, but also from the perspective of remembering what information in each paper was 

significant for my research.  After surveying the tools available for managing this 

process, I found none that could adequately do the job. 

To address the problem, I built the research management tool, Qiqqa14, and made it 

publicly available for download.  Over the past three years Qiqqa has enlisted over fifty 

thousand users, and has grown into a research management system that does far more 

than I originally envisaged. 

The areas of functionality in Qiqqa that are relevant to the work presented here are those 

that allow users to explore their library of papers in PDF format.  The first aspect 

automatically locates technical terms in the papers in a user’s library using the algorithm 

presented in Section 3.4.  The second aspect detects themes in the papers using LDA with 

an underlying bag-of-technical-terms representation using the algorithms presented in 

Section 3.1.1.  

While both aspects of functionality are intended as building blocks for the larger tasks of 

more easily locating interesting papers, they both present the opportunity to perform user 

satisfaction evaluations of both automated term recognition and topic modelling 

algorithms in a system used by thousands of researchers.  Both user satisfaction 

evaluations enlist Qiqqa users to make a subjective judgement on the results of my 

algorithms applied to the users’ own libraries of papers.  Qiqqa enables an evaluation 

audience that significantly outsizes that of Chang et al. (2009a), who enlist only eight 

human evaluators using Mechanical Turk.  

                                                 
13 http://www.mturk.com 
14 http://www.qiqqa.com 

http://www.mturk.com/
http://www.qiqqa.com/
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There are two fundamental disadvantages that apply to any user satisfaction evaluation: 

the experimental design needs to be kept simple and it is difficult to conduct the 

experiments in a controlled environment.  The experiments that use Qiqqa are described 

in Section 5.5. 

3.5.3 Visualisation of Document Corpora using Qiqqa 

Another function of Qiqqa is the ability to visualise a corpus of papers.  The visual 

representation is a graph of nodes representing the papers, authors and themes, and edges 

representing connections between the nodes such as “cited-by”, “cites” or “author-of”.  

These visual representations are similar to those used in co-citation analysis (White & 

McCain 1998; Chen 1999; Noel et al. 2002), understanding citation networks (Elmqvist 

& Tsigas 2007; Schäfer & Kasterka 2010), detecting citation influences (Dietz et al. 

2007), understanding research trends (Lee et al. 2005; Mann et al. 2006; Boyack et al. 

2009), clustering around themes (Schneider 2005; Eisenstein et al. 2011), finding related 

papers (Gipp & Beel 2009), and finding authoritative papers (Eales et al. 2008).   

Visualisation techniques play important roles both in improving the effectiveness of 

information retrieval systems and in understanding the content and relationships inside 

large document corpora (Hearst 2009).  Specifically, Nguyen et al. (2007) present a 

variety of techniques for visualising massive document collections to allow a searcher to 

analyse the relationships between scientific documents and retrieve documents more 

relevant to their search need.  Elmqvist & Tsigas (2007) visualise scientific citation 

networks to improve performance on tasks relating to finding review papers and other 

influential papers.  Noel et al. (2002) use visualisations of co-citation relationships to 

detect areas of scientific corroboration.  Finally, Havre et al. (2000) and Shahaf et al. 

(2012) use visualisations to follow significant thematic changes through large document 

collections. 

Although not directly used in any evaluation in this thesis, the ability to visualise regions 

of the ACL Anthology supported the day-to-day development of the TPR algorithm, 

which is the core contribution of this work.  It allowed me to visually evaluate the quality 

of relationships detected by different versions of the system.  The visualisations that were 

most useful for the development of TPR were those that simultaneously exposed two 

types of relationships: those implied by the citation graph, and those implied by the topic 

modelling distributions.  The citation graph is depicted as edges between nodes and 

quickly exposes the relationships between papers that arise through citation.  The topic 

modelling distributions are represented by colouring each document node according to 

their corresponding topic distribution.  This reveals the relationships between papers that 

arise through the presence of similar topics in their text. 

3.5.3.1 Relationships between Topics, Technical Terms and Papers 

Figure 12 depicts the relationships that arise between topics, technical terms, and papers 

through the use of topic modelling distributions and the citation graph.  This visualisation 
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technique allows the user to examine the relationships from the perspective of any topic, 

paper or technical term.  In particular, Figure 12 explores the relationships that are 

displayed when the user queries the technical term “rhetorical parsing”. 
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Figure 12. The Relationships Involving the Technical Term “rhetorical parsing”. 
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To find the papers that are most similar to this technical term, the topic distribution of 

the term is compared to the topic distributions of all the papers in the corpus using Jensen-

Shannon divergence.  The 50 most similar papers are selected for visualisation and are 

represented by circles in Exhibit 1 of the figure.  Citations between papers (i.e. the edges 

in the citation graph) are depicted by a directed line from the citing paper to the cited 

paper.  They are arranged using an iterative algorithm where: 

 Older papers drift vertically upwards and newer papers drift vertically 

downwards. 

 Papers connected by a citation drift towards each other with a constant force. 

 Papers drift away from each other with a force that is inverse-square to the 

distance between them. 

A paper is represented by concentric circles that correspond to topics in the topic model.  

Each topic is represented by a different random colour.  The area of each topic’s circle is 

proportional to the probability mass of the topic in the topic distribution of the paper.  In 

the case of Figure 12, the papers are all strongly associated with the orange topic, 

although there are some papers that are represented by both the orange and red topics. 

Several points are apparent from Exhibit 1 in Figure 12: 

 The papers that are most similar in topic distribution to the technical term 

“rhetorical parsing” are predominantly in the orange topic. 

 The papers are densely connected in the citation graph, and the 50 most similar 

papers cite each other significantly more than would be expected on average.15  

This does suggest that papers strongly related by topic have a tendency to cite 

each other. 

 The papers span the period from 1990 to 2006, as can be seen by their vertical 

position relative to the blue “year” markers.  The field of “rhetorical parsing” has 

developed over many years. 

 There are red and green topics that also influence some of these papers.  This 

suggests that the red and green topics are weakly related to the field “rhetorical 

parsing,” but may be worthy of further exploration. 

Exhibit 2 in Figure 12 shows the technical terms with the most similar topic distributions 

to the technical term “rhetorical parsing.”  The top terms such as “discourse structure,” 

“RST” (an acronym for rhetorical structure theory) and “cue phrases” would indeed be 

recognised as relevant to someone versed in the field of “rhetorical parsing”. 

                                                 
15 There are N=13,613 papers in the cleaned-up AAN corpus, with N×(N-1)/2=92,650,078 potential 

citations between them.  Of those, only 55,249 edges exist in the AAN citation graph, which is 0.06% of 

the total potential.  For 50 papers, there are 1,225 potential citations.  Assuming a relatively uniform 

distribution of citations across 50 random papers, we would expect only 0.06% × 1,225 = 0.73 citations. 
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Finally, Exhibit 3 lists the papers with most similar topic distributions to the technical 

term “rhetorical parsing.”  Again, these papers are remarkably relevant, as is evident from 

their titles. 

3.5.3.2 Exploratory Reading Strategies 

Figure 13 presents a case-study of two possible approaches to exploratory reading.  At 

the bottom centre, slightly enlarged, is an initial paper that a novice might have read.  The 

paper is influenced predominantly by two topics: beige and green.  How should a novice 

choose what to read next during their exploratory reading? 

The first approach (shown in Exhibit 1) is reference expansion, which is what a novice 

might do when approaching a new area.  After reading an initial paper, the novice might 

move onto reading all the papers that initial paper cited.  Then for each of those papers 

they might follow the citations once more.  Exhibit 1 shows two iterations of citation 

expansion. 

The first observation is that two iterations of this approach already result in a large 

number of papers – 14 from the first iteration and 107 from the second.  There is no 

obvious mechanism for the novice to choose beyond the first 14 papers what to read next.  

If we rely on only the information from the citation graph (via citation expansion), then 

the next generation of 107 papers appear equally relevant.  It is also clear that the citation 

graph of two iterations of cited papers is highly connected.  This might suggest that 

citation count is not a reasonable metric for differentiating between possible next reading 

targets, as many papers have similar citation counts. 

It is also noteworthy that a large number of the first iteration of cited papers are from the 

beige and green topics, which makes sense because the author of the initial paper cited 

them directly.  However, after the second iteration of citation expansion, the papers are 

influenced by a variety of other topics.  These topics may or may not be relevant to the 

novice, but a novice is unfortunately not in a position to make that judgement. 

The second approach a novice might use is ThemedPageRank (TPR).  Given an initial 

paper, TPR orders all other papers in the corpus, offering the novice a prioritised and less 

cluttered view.  Exhibit 2 shows the top 33 papers recommended by TPR.  The 9 papers 

surrounded with a white box are those that were cited by the initial paper.  Only 4 of the 

papers cited by the initial paper do not appear in the top 33 TPR recommendations.  From 

this selection of recommended papers, several observations can be made: 

 Both the beige and green topics are relevant to the initial paper because they are 

strongly present both in papers that are directly cited by the initial paper and in 

papers further away from the initial paper in the citation graph.  

 Two early papers (towards the top of the visualisation, predominantly influenced 

by the green topic) are cited by many of the other recommended papers and are 

probably originators or early influencers of the ideas in the initial paper.  This 
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idea is perhaps represented by the green topic that influences both them and the 

initial paper. 

 The initial paper cites several papers that seem completely off-topic (represented 

by the purple, pink and blue topics).  These might have been cited not because 

they are directly relevant to the research in the initial paper, but rather because 

they describe a specific technique or resource.  This information could be useful 

to a novice before reading a paper so that they can read it in context.  By exploring 

the purple, pink and blue topics, the novice might find other related techniques or 

resources. 

3.6 Summary 

This chapter presented the key contributions of this thesis.  Section 3.1 presented 

ThemedPageRank (TPR), the proposed solution of this thesis towards its third research 

question: does lexical and social information contribute towards the task of 

automatically generating reading lists?  In Sections 5.2 and 5.3, TPR will be evaluated 

by combining the gold standard reading lists described in Section 3.2 together with the 

Citation Substitution Coefficient metric described in Section 3.3.  These same gold 

standard reading lists provide an answer to the first research question: can experts make 

reading lists when given instructions?   Section 3.4 presented the light-weight automatic 

term recognition system that provides the technical terms required by TPR.  Finally, 

Section 3.5 introduced Qiqqa, which will be used in Section 5.5 to perform two large-

scale user satisfaction evaluations. 
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Figure 13. Examples of Recommended Reading for a Paper. 
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Chapter 4.  

Implementation 

4.1 Corpus 

This thesis uses the November 2010 ACL Anthology Network (AAN) (Radev et al. 

2009b) as its corpus.  The AAN contains 15,388 full-text documents and 72,463 edges 

in the AAN-internal citation graph.  Each document is referred to by a unique ACL ID.  

In an earlier but comparable 2005 version of the AAN, the ratio of internal references 

(references within the AAN) to all references (references within and without the AAN) 

had been determined at 33% (Ritchie 2009).  

For the purposes of the experiments in this thesis, it is necessary to filter out some 

corrupted documents that are contained in the AAN.  This corruption came about 

presumably through invalid PDF processing, or through human error while assembling 

the corpus.  The filter process removes: 

 Documents with a length of fewer than 100 characters; 

 Documents with an ACL ID starting with L08 because they are in an XML-based 

format as opposed to plain text; 

 Documents that do not contain the word “the” at least five times.  This heuristic 

detects documents that consist of random sequences of letters; 

 And, documents containing only control characters (below ASCII 32). 

This process reduces the corpus to 13,613 papers and 55,249 edges in the citation graph.   

Figure 14 shows the distribution of AAN-internal citations received by AAN papers.  The 

x-axis indicates the number of citations received by a paper, and the y-axis expresses the 

number of papers with that number of inbound citations.  Notice the downward linear 

trend on a log-log scale, which suggests a Zipfian distribution in the number of inbound 

citations.  In total only 7,485 of the 13,613 papers in the AAN received at least one 

corpus-internal citation.  There are 2,093 papers that are cited only once and 6,270 papers 

received 10 or fewer citations.  40 papers received 100 or more citations with the most-

cited paper being cited 586 times.  It is a well-known phenomenon that a considerable 

percentage of papers receive no citations at all (Kostoff 1998; Schwarz et al. 1998). 
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Figure 14. Distribution of AAN-Internal Citations. 

 

4.2 Technical Terms 

I implemented the algorithm described in Section 3.4 using C#.  It takes approximately 

2 seconds to generate the technical terms for the entire AAN corpus on a standard desktop 

computer.  4,407 technical terms are produced, 1,079 of which are acronyms. 

I have already shown some examples of the technical terms generated for the AAN in 

Table 1 on page 25.  Table 3 shows the distribution of the lengths of the automatically 

generated technical terms.  Given that 1,079 of the 1,299 unigram technical terms are 

acronyms, it is clear that a large proportion of the non-acronym technical terms are 

bigrams or longer.  The longest technical terms found in the AAN are presented in Table 

4.  It is arguable they they are too long to be technical terms, but keep in mind that they 

are a concept that has been mentioned in the title of two or more papers and have appeared 

in the full text of several other papers (as can be read from the “Uses” column). 

Length  Count  

1 1,299 
2 845 

3 1,490 
4 467 
5 174 
6 68 
7 37 
8 13 
9 7 

10 4 
12 3 

Table 3. Distribution of Lengths of Automatically Generated Technical Terms. 
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Length  Uses  Technical term 

8 69 minimum error rate training for statistical machine translation 
8 22 detection and correction of repairs in human-computer dialog 
8 19 figures of merit for best-first probabilistic chart parsing 
8 6 terminological simplification transformation for natural language 

question-answering systems 
8 6 experience and implications of the umist japanese project 
8 5 identifying perspectives at the document and sentence levels 
8 4 automated alignment and extraction of bilingual domain ontology 
8 4 automatic component of the lingstat machine-aided translation 

system 
8 3 word-pair identifier to the chinese syllable-to-word conversion 

problem 
8 3 knowledge-based machine assisted translation research project - site 
8 2 incremental construction and maintenance of minimal finite-state 

automata 
8 2 unsupervised induction of modern standard arabic verb classes 
8 2 contexts and answers of questions from online forums 
9 19 named entity transliteration and discovery from multilingual 

comparable corpora 
9 10 augmented transition network grammars for generation from 

semantic networks 
9 5 combining linguistic and machine learning techniques for email 

summarization 
9 3 approach for joint dependency parsing and semantic role labeling 
9 2 developed by using mails posted to a mailing list 
9 2 named entity recognition based on conditional random fields models 
9 2 effect of dialogue system output style variation on users 
10 8 large-scale induction and evaluation of lexical resources from the 

penn-ii 
10 7 comparing human and machine performance for natural language 

information extraction 
10 3 new york university description of the proteus system as used 
10 3 prosodic and text features for segmentation of mandarin broadcast 

news 
12 4 communicative goals and rhetorical relations in the framework of 

multimedia document generation 
12 3 chinese word segmentation and named entity recognition based on 

conditional random fields 
12 3 hybrid named entity recognition system for south and south east 

asian languages 

Table 4. Longest Automatically Generated Technical Terms. 
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4.3 Topic Models 

TPR relies on topic modelling to provide relationships between the papers and technical 

terms in the document corpus.  The experiments in this thesis explore both LDA 

(Section 2.2.2) and NMF (Section 2.2.3) as the underlying topic modelling apparatus. 

To explore the stability of ThemedPageRank with a different topic modelling technique, 

the ablation experiments in Chapter 5 compare a variant of ThemedPageRank that uses 

LDA to generate latent topics with a variant that uses NMF.  

For both LDA and NMF, I implemented my own algorithms in C# with a uniform topic 

modelling interface.  This interface allows for experiments that can compare various 

scenarios in an automated fashion: e.g., differing underlying document representations 

(bag-of-words vs. bag-of-technical-terms); switching topic modelling models (LDA vs. 

NMF); and changing the number of topics. 

4.3.1 Latent Dirichlet Allocation (LDA) 

LDA (Blei et al. 2003) is a Bayesian generative probabilistic model for collections of 

discrete data that discovers relationships between papers and technical terms.  

Under the LDA model with two parameters α and β, the distribution of a corpus D, is the 

joint probability of all documents, so 

P(D|α, β) = ∏ P(d|α, β)

d∈D

 

The distribution of document d is the sum of all possible combinations of topic 

distributions Θ that might make up that document, and words in the document that might 

be made up of those topics t, so 

P(D|α, β) = ∏ ∫ P(Θd|α)P(Vd, t|Θd, α, β)dΘd

d∈D

 

Expanding the joint probability of all words in the document gives 

P(D|α, β) = ∏ ∫ P(Θd|α) ( ∏ P(v, t|Θd, β)

v∈Vd

) dΘd

d∈D

 

The distribution of word v is the sum of all possible combinations of topic distributions 

that might make up the choice of that word, so 

P(D|α, β) = ∏ ∫ P(Θd|α) ( ∏ ∑ P(t|Θd)P(v|t, β)

t∈Tv∈Vd

) dΘd

d∈D
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The distribution of a word v given a topic is the sum of all possible combinations of word 

distributions Φ that might make up that topic, so 

P(D|α, β) = ∏ ∫ P(Θd|α) ( ∏ ∑ P(t|Θd) ∫ P(Φt|β)P(v|t, Φt)dΦt

t∈Tv∈Vd

) dΘd

d∈D

 

For the Dirichlet distributions Θ and Φ, with parameters α and β, 

P(Θd|α) =
Γ(∑ αt

T
t=1 )

∏ Γ(αt)T
t=1

∏ Θd,t
αt−1

T

t=1

 

P(Φt|β) =
Γ(∑ βv

V
v=1 )

∏ Γ(βv)V
v=1

∏ Φt,v
βv−1

V

v=1

 

The task of calculating the distributions Θ and Φ exactly is computationally intractable. 

There are a variety of approaches to approximating these distributions.  In their original 

paper, Blei et al. (2003) present an approximation using Variational Expectation 

Maximization (VEM).  Minka & Lafferty (2002) use Expectation Propagation (EP).  

Asuncion et al. (2009) review a variety of inference algorithms including ML estimation, 

variational Bayes, MAP estimation and collapsed variational Bayes, and collapsed Gibbs 

sampling.  They conclude that the performance difference between these different 

inference algorithms is negligible. 

ThemedPageRank relies on Gibbs sampling (Steyvers & Griffiths 2007) to approximate 

Θ and Φ because it is straightforward to implement, and it has been shown that Gibbs 

sampling converges more rapidly than either VEM or EP (Griffiths & Steyvers 2004).   

Initially, each technical term in each document is assigned to a random topic. Then each 

technical term in each document is re-evaluated against the entire corpus to allocate it to 

a more likely topic. The probability that a technical term v in document d should be 

allocated to topic t given all the other technical term allocations T, is proportional to 

𝑃(𝑡𝑑,𝑣 = 𝑡|𝑇) ∝
𝐷𝑇𝑑,𝑡 + 𝛼

∑ (𝐷𝑇𝑑,𝑡′ + 𝛼)𝑡′

×
𝑇𝑉𝑡,𝑣 + 𝛽

∑ (𝑇𝑉𝑡,𝑣′ + 𝛽)𝑣′

 

Here DTd,t is the frequency of topic t in document d and TVt,v is the frequency of technical 

term v in topic t.  Note that the frequencies DTd,t and TVt,v are calculated after removing 

the topic allocation of the technical term being considered for reallocation. These 

calculated probabilities are used to randomly assign the technical term to a new topic. 

The repeated reallocation of the technical terms in the documents to a more representative 

topic causes their allocations to converge to a steady state, at which point the iterative 

process terminates. 
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Because LDA is completely unsupervised, it is not obvious when to terminate training.  

One approach is to terminate when there is no further or negligible reduction in in-sample 

perplexity after each iteration (Newman et al. 2006).  Another is to terminate once the 

number of words that change topics after each iteration reaches an equilibrium where the 

topics associated with each word are unchanged or change back and forth.  In this thesis, 

400 iterations are calculated, which can be seen in Figure 15 to be more than sufficient 

to reach this equilibrium. 

The matrices Θ and Φ in Figure 1 are then calculated by integrating over the steady-state 

topic allocations as follows: 

Θd,t =
𝐷𝑇𝑑,𝑡 + 𝛼

∑ (𝐷𝑇𝑑,𝑡′ + 𝛼)𝑡′

 

Φt,v =
𝑇𝑉𝑡,𝑣 + 𝛽

∑ (𝑇𝑉𝑡,𝑣′ + 𝛽)𝑣′

 

It is an open research question as to how best to choose the values for the hyper-

parameters α and β and the number of topics T (Asuncion et al. 2009). 

In this thesis TPR uses only constant symmetric priors with parameters as presented in 

the original LDA paper (Blei et al. 2003), but it has been shown that an asymmetric prior 

over the topic-document distributions can make substantial improvement over a 

symmetric prior (Wallach et al. 2009a) in some domains. 

TPR uses the parameters T=200 topics, α=2/T and β=0.01.  These choices reflect the 

parameters commonly used in the literature. 

LDA via Gibbs sampling scales linearly with the number of topics and the size of the 

underlying vocabulary (Newman et al. 2006). 

Figure 15 shows the running times for 400 iterations of LDA for various numbers of 

topics.  On a 12-CPU desktop machine, 400 iterations of LDA with 100 topics require 

18 minutes, 200 topics require 33 minutes and 400 topics require around 70 minutes.  It 

is also clear from Figure 15 when the point is reached where Gibbs sampling achieves 

equilibrium: after the “elbow” in the lines, additional iterations yield increasingly small 

differences in the number of words changing topics. 

If we use the technical term vocabulary instead of the much larger word vocabulary, an 

immediate speedup can be observed.  Because ThemedPageRank uses a vocabulary of 

only the 1,000s of technical terms of a corpus of papers rather than the 100,000s of unique 

words, the calculation of the relationships between papers and technical terms is at least 

100 times faster than would be using the entire word vocabulary (remember that LDA is 

linear in the size of the vocabulary).  This is evident in Figure 16, where NFIDF (using 

the technical terms, n-gram-frequency-inverse-document-frequency) converges 

remarkably more quickly than TFIDF (using the entire vocabulary, term-frequency-
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inverse-document-frequency) for 400 iterations of 200 topics.  Consequently, it is likely 

that ThemedPageRank would scale from the ACL Anthology corpus of 15,000 papers to 

corpora of millions of papers and still be computable on a standard desktop computer. 

In addition to the speed-up offered by a smaller vocabulary, LDA is amenable to 

implementations that run in parallel across multiple CPUs or multiple networked 

machines.  My LDA implementation of LDA makes use of this parallelisation.  Porteous 

et al. (2008) achieve speed-ups over traditional LDA by up to eight times by improving 

their Gibbs sampling strategy to take advantage of concentrated topic probability masses.  

Nallapati et al. (2007) perform VEM in both a multiprocessor architecture and a 

distributed setting.  Asuncion et al. (2008) distribute Gibbs sampling across several 

processors, each of which communicates their local topic information locally in an 

asynchronous fashion.  Wang et al. (2009b) implement LDA on top of both MPI and 

MapReduce.  They then improve its parallelisability by reducing inter-computer 

communication costs (Liu et al. 2011).  Newman et al. (2007) implement Gibbs sampling 

in a distributed setting in two ways: the more complex version augments LDA with a 

hierarchical Bayesian extension that has a theoretical guarantee of convergence; the 

simpler version approximates LDA by distributing the data across P processors and 

periodically updating a global state.  My implementation of LDA used by TPR follows 

this latter approach. 

 

Figure 15. Comparison of Rates of Convergence for LDA Topic Modelling. 
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Figure 16. Comparison of Rates of Convergence for TFIDF vs. NFIDF LDA. 

 

4.3.2 Non-negative Matrix Factorisation (NMF) 

While LDA was built with NLP tasks in mind, NMF is comparable to LSA in that it is a 

dimensionality reduction technique that was derived for application in an area of 

mathematics completely unrelated to NLP.  It therefore does not explicitly take into 

account the concepts of papers, technical terms, and topics.  It is up to the person using 

NMF to map these concepts into the framework of NMF. 

Lee & Seung (2001) present two algorithms for performing NMF, based either on 

minimising the approximation error measured using the Frobenius norm (least square 

error) or measured using the Kullback-Leibler (KL) divergence.  Van de Cruys et al. 

(2011) conclude that the update rule based on KL-divergence is better suited to modelling 

text because minimisation of the Frobenius norm supposes a Gaussian distribution in the 

underlying model, while it is well known that the frequency distribution of words in text 

follows Zipf’s law.  The version of NMF explored in this thesis uses update rules that 

minimises the Kullback-Leibler (KL) divergence. 

Recall from Section 2.2.3 that NMF factorises a given matrix X into two non-negative 

matrices W and H such that 

XD×V ≈ WD×THT×V 

As the dimension T is reduced, the product of W and H reproduces the information in 

matrix X with increasing error, F(W,H).  Using Kullback-Leibler (KL) divergence to 

measure this error, 

F(W, H) = D(X||WH) 
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= ∑(Xi,jlog
Xi,j

WHi,j
− Xi,j + WHi,j)

i,j

 

To find the W and H matrices that minimise F(W,H), we iteratively alternate between 

two update rules:  

Haμ ← Haμ

∑ Wiai Xiμ/(WH)iμ

∑ Wkak
Wia ← Wia

∑ Haμμ Xiμ/(WH)iμ

∑ Haνν

 

Lee & Seung (2001) prove that KL divergence is non-increasing under these update rules, 

and the update rules become invariant iff W and H are at a stationary point of the 

divergence.  This guarantees finding a (local) minimum in KL divergence.  Lin (2007) 

proves that these alternating update rules converge, and offers a modification to the 

update rules that accelerate their convergence.  The update rules can be trivially run in 

parallel across multiple CPUs.  My implementation of NMF takes advantage of this 

parallelisation. 

Figure 17 compares the convergence speeds of NMF vs. LDA.  To perform 400 iterations 

for 200 topics, it is clear that LDA converges substantially more quickly than NMF.  This 

is already evidence that LDA might be a better choice for topic modelling than NMF for 

performance reasons.  This trend continues in the experimental results in Sections 5.2 

and 5.3.  However, keep in mind that one advantage of NMF is that it requires no 

parameterisation except the number of topics. 

 

Figure 17. Comparison of NMF vs. LDA Convergence Speeds. 
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4.3.3 Measuring the Similarity of Topic Model Distributions 

Topic modelling provides a mechanism for finding distributions of documents over 

topics (matrix Θ in Figure 1) and distributions of topics over technical terms (matrix Φ).  

As explained in Chapter 3, these distributions are fundamental to TPR both in the 

calculations of Personalised PageRank and in the weights applied by the query model to 

combine the Personalised PageRank scores. 

Notwithstanding their usefulness inside the apparatus of TPR, the topic distributions of 

documents and technical terms are informative in their own right.  The similarity of two 

documents can be measured by comparing the similarities of their topic distributions, as 

represented by θi and θj.  Similarly, technical terms can be compared to each other.  

Interestingly, this mechanism also allows us to compare non-like entities, namely 

technical terms and documents. 

One technique for measuring the similarity between two documents is the dot-product of 

their distribution vectors θi and θj (Steyvers & Griffiths 2007).  A larger product indicates 

a stronger relationship between the documents.  Here, the similarity Si,j between 

documents i and j is calculated by 

Si,j = ∑ 𝜃𝑖
(𝑘)

× 𝜃𝑗
(𝑘)

𝑘

 

 

Another technique is to measure the Jensen-Shannon divergence (Lin 2002) between 

their probability distribution vectors: a smaller divergence indicates a stronger 

relationship.  Here, the similarity Si,j between documents i and j is calculated by 

Si,j = JS(P, Q) 

=
1

2
[𝐾𝐿(𝑃||𝑀) + 𝐾𝐿(𝑄||𝑀)] 

where 

M =
1

2
(P + Q) 

𝐾𝐿(𝑋||𝑀) = ∑ 𝑋(𝑘)𝑙𝑜𝑔
𝑋(𝑘)

𝑀(𝑘)

𝑘

 

JS(P,Q) is the Jensen-Shannon divergence between the distributions P and Q, and  

KL(X||M) is the Kullback-Leibler divergence (MacKay 2003) between the distributions 

X and M. 

Other measures of similarity that have been used in the domain of topic modelling are 

Absolute Difference and the Hellinger Distance, introduced by Blei & Lafferty (2007).  

The system built for the experiment described in Section 5.4 uses Jensen-Shannen 
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divergence to suggest similar documents and similar technical terms because Jensen-

Shannen divergence has some useful properties: 

 It is zero if the two vectors are identical; 

 It increases with increasing differences between two distributions; 

 It is always finite; 

 It is symmetrical; 

 Its square-root is a metric; and 

These properties produce a similarity score between two papers that can simultaneously 

be interpreted as percentage scores and used as weights to combine Personalised 

PageRank scores. 

4.4 Examples of ThemedPageRank 

Before moving onto the experimental evaluation of TPR, it is instructive to first provide 

two anecdotal examples of the use of TPR.  The first example lists the 27 topics that are 

automatically detected by TPR in the corpus of around 740 papers I read over the past 

three years during my PhD research.  The second lists the recommended reading that 

ThemedPageRank suggests for the full-text of Chapters 2 to 4 of this thesis. 

4.4.1 Topics Suggested by ThemedPageRank for this Thesis 

The Qiqqa library that I used to keep track of my reading for my PhD contains 740 papers.  

Using the Expedition feature described in Section 3.5.2 and used in the user satisfaction 

evaluation of Section 5.5.2, Qiqqa generates the following topics and associated technical 

terms.  I leave it up to the reader to evaluate the resulting technical terms and topics. 

 citation; citations 

 lsa; automatic term; term extraction; evaluation; latent 

semantic analysis 

 hits; search engine; web search; world wide web; link analysis 

 n-gram; keyphrase extraction; information retrieval; KX; 

automatic keyphrase extraction 

 pagerank 

 citation; scientific articles; structure of scientific articles; 

authors; evaluation 

 text segmentation; dynamic programming; topic segmentation; 

reputation; texttiling 

 similarity 

 topics 

 summarization; evaluation; text summarization; multi-document 

summarization; sigir 

 collaborative filtering; research papers; recommender system; 

paper recommendation; sigir 

 authors 

 em; parallel; kl; plsa; PSBLAS 
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 lda; topics; latent dirichlet allocation; plsi; em 

 hierarchy; tng; chinese restaurant process; PLDA+; nested 

chinese restaurant process 

 lsi; svd; JUNG; document clustering; random indexing 

 natural language; crf; CRF; natural language processing; 

information extraction 

 bayesian; 2010; variational methods; graphical models; topic-

based 

 metadata; digital libraries; tutorial; HCI; information 

extraction 

 text mining; scientific publications; h-index; user study; 

citation networks 

 clustering 

 similarity; natural language; graph-based; information 

retrieval; evaluation 

 evaluation; information retrieval; sigir; stemming; topics 

 topics; topic models; topic model; lda; topic modeling 

 nmf; matrix factorization; non-negative matrix factorization; 

clustering; document clustering 

 co-citation; citation; citation recommendation; similarity; 

clustering 

4.4.2 Bibliography Suggested by ThemedPageRank for this Thesis 

While the bulk of my reading for this PhD involved papers from outside the ACL 

Anthology Network (AAN), it is interesting to examine the bibliography that 

ThemedPageRank suggests for this thesis if the universe of available papers were limited 

to just those in the AAN. 

To generate the bibliography, the full-text from Chapters 2 to 4 of this thesis is used as 

an input query to TPR using the first of the “Unknown papers” mechanisms described in 

Section 3.1.3.  These are the highest scoring papers from the AAN, in descending score 

order.  The four underlined papers are those that are actually cited in this thesis.  While 

evaluating these results, it is important to keep in mind two points.  Firstly, the bulk of 

techniques used in this thesis originate from outside the AAN.  Secondly, the 64 pages 

that comprise Sections 2 to 4 cover a broad variety of topics (sic), so the 20 

recommendations are necessarily going to be quite general. 
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J93-2004: Building A Large Annotated Corpus Of English: The Penn 

Treebank 

Marcus, Mitchell P.; Marcinkiewicz, Mary Ann; Santorini, Beatrice 

1993 Computational Linguistics 

 

D09-1026: Labeled LDA: A supervised topic model for credit attribution 

in multi-labeled corpora 

Ramage, Daniel; Hall, David; Nallapati, Ramesh; Manning, Christopher 

D. 

2009 EMNLP 

 

P09-2074: Markov Random Topic Fields 

Daume; III, Hal 

2009 ACL-IJCNLP: Short Papers 

 

D08-1054: HTM: A Topic Model for Hypertexts 

Sun, Congkai; Gao, Bin; Cao, Zhenfu; Li, Hang 

2008 Conference On Empirical Methods In Natural Language Processing 

 

P02-1040: Bleu: A Method For Automatic Evaluation Of Machine 

Translation 

Papineni, Kishore; Roukos, Salim; Ward, Todd; Zhu, Wei-Jing 

2002 Annual Meeting Of The Association For Computational Linguistics 

 

W09-2206: Latent Dirichlet Allocation with Topic-in-Set Knowledge 

Andrzejewski, David; Zhu, Xiaojin 

2009 Proceedings of the NAACL HLT 2009 Workshop on Semi-supervised 

Learning for Natural Language Processing 

 

A88-1030: Finding Clauses In Unrestricted Text By Finitary And 

Stochastic Methods 

Ejerhed, Eva I. 

1988 Applied Natural Language Processing Conference 

 

D09-1146: Cross-Cultural Analysis of Blogs and Forums with Mixed-

Collection Topic Models 

Paul, Michael; G&icirc;rju, Roxana 

2009 EMNLP 

 

J96-1002: A Maximum Entropy Approach To Natural Language Processing 

Berger, Adam L.; Della Pietra, Vincent J.; Della Pietra, Stephen A. 

1996 Computational Linguistics 

 

J98-1004: Automatic Word Sense Discrimination 

Sch&uuml;tze, Hinrich 

1998 Computational Linguistics 

 

P08-2004: Dimensions of Subjectivity in Natural Language 

Chen, Wei 

2008 Annual Meeting Of The Association For Computational Linguistics 

 

L08-1005: The ACL Anthology Reference Corpus: A Reference Dataset for 

Bibliographic Research in Computational Linguistics 
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Bird, Steven; Dale, Robert; Dorr, Bonnie Jean; Gibson, Bryan; Joseph, 

Mark; Kan, Min-Yen; Lee, Dongwon; Powley, Brett; Radev, Dragomir R.; 

Tan, Yee Fan 

2008 LREC 

 

W09-0206: Positioning for Conceptual Development using Latent Semantic 

Analysis 

Wild, Fridolin; Hoisl, Bernhard; Burek, Gaston G. 

2009 Proceedings of the Workshop on Geometrical Models of Natural 

Language Semantics 

 

P09-1070: Latent Variable Models of Concept-Attribute Attachment 

Reisinger, Joseph; Pa&#x15F;ca, Marius 

2009 ACL-IJCNLP 

 

W09-2002: Topic Model Analysis of Metaphor Frequency for 

Psycholinguistic Stimuli 

Bethard, Steven; Tzuyin Lai, Vicky; Martin, James H. 

2009 Proceedings of the Workshop on Computational Approaches to 

Linguistic Creativity 

 

N09-2029: Contrastive Summarization: An Experiment with Consumer 

Reviews 

Lerman, Kevin; McDonald, Ryan 

2009 HLT-NAACL, Companion Volume: Short Papers 

 

W07-1514: A Search Tool for Parallel Treebanks 

Volk, Martin; Lundborg, Joakim; Mettler, Mael 

2007 Linguistic Annotation Workshop 

 

W03-0404: Learning Subjective Nouns Using Extraction Pattern 

Bootstrapping 

Riloff, Ellen; Wiebe, Janyce M.; Wilson, Theresa 

2003 Conference On Computational Natural Language Learning CoNLL 

 

N09-1054: Predicting Response to Political Blog Posts with Topic 

Models 

Yano, Tae; Cohen, William W.; Smith, Noah A. 

2009 HLT-NAACL 

 

W09-2106: An Application of Latent Semantic Analysis to Word Sense 

Discrimination for Words with Related and Unrelated Meanings 

Pino, Juan; Eskenazi, Maxine 

2009 Proceedings of the Fourth Workshop on Innovative Use of NLP for 

Building Educational Applications 

 

P98-2127: Automatic Retrieval and Clustering of Similar Words 

Lin, Dekang 

1998 COLING-ACL 
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4.5 Summary 

This chapter presented the implementation details of the algorithms in this thesis.  

Section 4.1 described the AAN, the corpus used for most of the experiments in this thesis.  

Sections 4.2 and 4.3 described the technical implementations of the lightweight 

automatic term recognition algorithm and the topic modelling algorithms used by TPR, 

respectively.  These algorithms, combined with the evaluation in Section 5.4 contribute 

towards the second research question addressed in this thesis: does the exposition of 

relationships between papers and their technical terms improves the performance of a 

novice in exploratory scientific search? Finally, Section 4.4 provided two anecdotal 

use-cases for TPR. 
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Chapter 5.  

Evaluation 

Section 3.1 introduced ThemedPageRank (TPR), the primary contribution of this thesis.  

The performance of TPR is evaluated in two ways.  The first evaluation, described in 

Section 5.2, uses the gold standard reading lists presented in Section 3.2 in the task of 

automatically generating reading lists.  Along with standard IR metrics such as MAP, 

F-score and RCP, performance results are reported using the Citation Substitution 

Coefficient established in Section 3.3.  In this first evaluation, TPR significantly 

outperforms two state-of-the-art commercial search systems.  While TPR performs well 

in this task, the collection of gold-standard reading lists is necessarily small because of 

the cost of collection of each gold-standard reading list.  Therefore the second evaluation, 

described in Section 5.3, is performed on a much larger scale, using the proxy task of 

reference list reconstruction.  TPR significantly outperforms a state-of-the-art system 

designed specifically for the task of reference list reconstruction.  In both experiments, 

TPR is also compared against numerous ablation system and baseline systems investigate 

the reasons for the performance of TPR.  These systems are summarised in Section 5.1. 

Section 5.4 investigates the usefulness of technical terms and topic modelling in the task 

of exploratory scientific search.  A task-based evaluation is used to compare how well 

novices are able to produce reading lists using two systems.  The first system is TTLDA, 

a precursor to TPR that suggests related technical terms and papers alongside its search 

results.  The second is Google Scholar, a state-of-the-art scientific search system.  While 

no significant difference in performance is evident from the experimental results (which 

is encouraging in itself), it is evident that the novices search more widely for papers using 

TTLDA with relevant technical terms previously unknown to them.  Using Google 

Scholar, the novices tend to reuse the same technical terms given to them as part of the 

search task. 

Finally, Section 5.5 presents two simple user satisfaction evaluations that make use of 

the Qiqqa system presented in Section 3.5.  The experiment enlists thousands of users of 

Qiqqa to independently evaluate the quality of the important technical terms and topics 

automatically generated from their own collection of PDFs.  Almost two-thirds of the 

users were satisfied with their automatically generated technical terms and topics. 

5.1 Comparative Ablation TPR Systems and Baseline Systems 

To gain some insight into the reasons for the performance of TPR, the experiments in 

Sections 5.2 and 5.3 compare TPR not only to real-world state-of-the-art competitor 

systems, but also against a series of comparative ablation and baseline systems.  Each 

ablation system (those in Sections 5.1.2 to 5.1.5) is a fully-fledged equivalent of TPR 
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with one component removed or altered in some way.  This allows for the investigation 

of the individual contribution of that component towards the performance of TPR.  Each 

baseline system (those in Section 5.1.6) explores a straightforward implementation of a 

theoretical component of TPR. 

5.1.1 Comparing LDA Bag-of-technical-terms vs. Bag-of-words 

TPR models papers using a bag-of-technical-terms representation rather than the 

traditional bag-of-words representation.  There are several reasons for this decision.  

Firstly, technical terms are important artefacts in science and I claim that the technical 

terms contained in a paper are more representative of the scientific content of the paper 

than simple words.  Secondly, the universe of technical terms in a corpus is smaller than 

the universe of words, so the algorithms run more efficiently and consume less memory.  

And finally, I believe that topics comprised of technical terms are easier to interpret for 

humans than topics comprised of words.  At the very least it is instructive to explore 

whether the performance of TPR is not diminished by the choice of bag-of-technical-

terms over bag-of-words.  To investigate the performance of TPR using a bag-of-

technical-terms representation rather than a bag-of-words representation, one ablation 

system is tested: 

 TPR-BAG-OF-WORDS uses a bag-of-words representation of the documents 

when calculating the topic probabilities. 

5.1.2 Comparing LDA vs. NMF 

TPR relies on LDA to provide the topic probabilities that are used in the Personalised 

PageRank calculations.  To investigate the dependency of TPR on LDA, one ablation 

system is tested: 

 TPR-NEG-MAT-FAC uses NMF with 200 topics instead of LDA to provide the 

topic probabilities. 

5.1.3 Comparing Bias-only vs. Transition-only Personalised PageRank 

An aspect of TPR that makes it different to the varieties of Personalised PageRank in the 

literature (see Section 2.3.4) is that it alters both the bias and transition probabilities using 

probabilities automatically derived from LDA topic probabilities.  To investigate the 

incremental improvements realised through the bias and transition, two ablation systems 

are tested: 

 TPR-BIAS-ONLY uses the TPR bias probabilities and the original Personalised 

PageRank transition probabilities. 

 TPR-TRANS-ONLY uses the original Personalised PageRank bias probabilities 

and the TPR transition probabilities.  
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5.1.4 Comparing Different Forms of Age-tapering 

Another aspect of TPR that makes it different to the previously published varieties of 

Personalised PageRank is that it adjusts the Personalised PageRank scores depending on 

the age of the papers.  Walker et al. (2007) suggest that an exponential decay is 

appropriate, but my own experiments showed similar performance using simple division.  

Figure 18 shows the difference between the linear and exponential decays.  Linear decay 

penalises older papers much more quickly than the exponential decay.  TPR divides the 

final Personalised PageRank scores by the age in years of the documents.  To investigate 

the sensitivity of TPR to age-tapering, two ablation systems are tested: 

 AGE-NONE applies no age adjustment to the final Personalised PageRank 

scores. 

 AGE-EXP applies an exponential decay to the final Personalised PageRank 

scores with a half-life of eight years – similar to the τ=8 found in Walker et al. 

(2007).  Under this model, the probability that a paper will be cited halves every 

8 years. 

 

Figure 18. Scaling Factors for Two Forms of Age Adjustment. 

 

5.1.5 Comparing Different Numbers of Topics 

TPR uses LDA with 200 topics.  The number of topics was chosen in agreement with 

previous research on similar-sized corpora (Wallach 2002; Mimno & Blei 2011; Wilson 

& Chew 2010; Chemudugunta et al. 2007; Chambers & Jurafsky 2011).  To investigate 

the sensitivity of TPR to the number of topics in the topic model, four ablations systems 

are tested: 

 TOPICS-50 uses an LDA model with 50 topics. 

 TOPICS-100 uses an LDA model with 100 topics. 

 TOPICS-300 uses an LDA model with 300 topics. 
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 TOPICS-400 uses an LDA model with 400 topics. 

5.1.6 Comparing Baseline Components of TPR 

This section describes the baseline tests that explore the effectiveness of each of the 

general components that go into TPR for the task of generating reading lists.  These 

components are TFIDF, Citation Count, Global PageRank and Age-Adjustment and 

Generic Topic Modelling. 

The first test ranks documents by the TFIDF similarity score of each paper with the query.  

TFIDF, as the most common weighting scheme, is an obvious candidate for a baseline.  

The TFIDF implementation used here is provided by Lucene16.  The corpus is indexed 

with Lucene.NET v2.9.2 using standard out-of-the-box TFIDF parameters.   

 TFIDF uses nothing but the TFIDF score for paper p.  Score(p) = TFIDF(p). 

The next two ablations explore Citation Count and Global PageRank.  They are 

interesting because they have been used widely in the literature as a proxy for authority.  

The citation count for a paper is the number of papers in the AAN that cite the paper.  

The PageRank value for each paper is the Global PageRank score that is generated by 

calculating PageRank (i.e., with no topic specialisation) on the AAN citation graph with 

α=0.5.  Both Citation Count and Global PageRank are then multiplied with the Lucene 

TFIDF score.  While this combination provides only a crude combination of the papers’ 

textual features (via TFIDF) and social features (via Citation Count or Global PageRank), 

it does allow us to compare the relative performance of Citation Count and Global 

PageRank. 

 TFIDF-CITCOUNT multiplies the TFIDF score for paper p with the citation 

count for that paper.  Score(p) = TFIDF(p) × CitCount(p). 

 TFIDF-PAGERANK multiplies the TFIDF score for paper p with the vanilla 

PageRank for that paper.  Score(p) = TFIDF(p) × PageRank(p). 

Adjusting these authority measures to take into account the age of papers corresponds to 

the age-adjustment component of TPR.  Therefore two additional ablations divide the 

Citation Count and Global PageRank scores by the age of the paper in years. 

 TFIDF-CITCOUNT-AGEADJ multiplies the TFIDF score for paper p with the 

citation count for that paper and divides by the paper’s age in years.  Score(p) = 

TFIDF(p) × CitCount(p) / Age(p). 

 TFIDF-PAGERANK-AGEADJ multiplies the TFIDF score for paper p with the 

vanilla PageRank for that paper and divides by the paper’s age in years.  Score(p) 

= TFIDF(p) × PageRank(p) / Age(p). 

                                                 
16 http://lucene.apache.org/core/ 

http://lucene.apache.org/core/
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Finally, the ablation tests explore the ability of Topic Modelling (LDA) to generate 

reading lists on its own.  As a simple test, documents are ranked by their similarity to the 

query using KL-divergence (as described in Section 4.3.3) over the topic distributions.   

 LDA-SIMILARITY uses the KL-divergence between the topic distribution of 

paper p and the query. Score(p) = KL(p). 

5.2 Experiment: Comparison to Gold-standard Reading Lists 

This experiment uses the gold-standard reading lists created by human experts, as 

described in Section 3.2, to directly assess the performance of ThemedPageRank in the 

task of automatically generating reading lists.  

5.2.1 Experimental Design 

Using the gold-standard field name as a search query, the systems’ task is to produce 

reading lists from the AAN corpus described in Section 3.2.1 that mimic the gold-

standard reading lists.  The comparison between system-generated reading lists and gold-

standard reading lists is performed using a variety of evaluation metrics: FCSC and 

RCSC, MAP, F-score and RCP (see Section 3.3).  To gain additional insight into the 

performance of the components that comprise TPR, this experiment also investigates the 

individual ablation systems described in Section 5.1. 

ThemedPageRank (TPR) is compared against two widely-used state-of-the-art search 

systems, Google Scholar (GS) and Google Index Search specialised to the ACL 

Anthology Network (AAN).  It is also compared to a Lucene TFIDF (TFIDF) baseline.  

Google Index Search and Google Scholar were chosen for this experiment because they 

represent widely-used state-of-the-art commercial search engines: Google Scholar has 

established itself as reliable resource for scientific search; and Google Index Search is 

offered as the default search system behind the ACL Anthology website.  Google Scholar 

is used similarly as a baseline in El-Arini & Guestrin (2011).  Lucene TFIDF was chosen 

because it represents a commonly-used out-of-the-box search system that is easily and 

objectively reproducible.  

Google Index Search and Lucene TFIDF rely on only lexical statistics, making no use of 

the notion of authority.  TPR and Google Scholar incorporate the citation graph as a 

proxy for authority.  As a commercial system, nothing is published about the exact 

algorithms behind Google Scholar, but it probably also includes additional proxies of 

authority specific to science, such as the identification of influential authors, journals and 

schools.  For this reason, we would expect Google Scholar to be the toughest competitor 

to TPR. 

For the ThemedPageRank system (“TPR”), the topic name suggested by the expert must 

first be converted into a topic distribution using the “unknown words or technical terms” 

method described in Section 3.1.3.  To do this, a Lucene TFIDF keyword-based search 

is used to find the documents in the gold-standard corpus that are most similar to the 
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topic name.  Then, using the topic model, the document topic distribution θd is retrieved 

for each document d (each corresponding to a different θi in Figure 1).  The query topic 

distribution θq is the average of the document topic distributions:  

𝜃𝑞,𝑡 =
1

|𝐷|
∑ 𝜃𝑑,𝑡

𝐷

𝑑=1

 

A TPR score is calculated for each document using this query topic distribution and the 

D=20 highest-scoring papers are recommended as the TPR reading list. 

For the Google Scholar system (“GS”), the Google Scholar website17 is used to generate 

the reading list for each gold-standard query.  After submitting the topic name as the 

search query, the search results are parsed automatically to exclude papers that are not 

contained in the gold-standard corpus.  On average, this resulted in filtering out about a 

third of the search results – these are the papers that are published in non-AAN venues.  

The top 20 remaining papers are recommended as the GS reading list.  

For the Google Indexed AAN Search system (“GIS”), the “search via Google” search 

box on the ACL Anthology website18 is used to generate the reading list for each gold-

standard query.  After submitting the topic name as the search query, the search results 

are parsed semi-automatically to exclude papers that are not present in the gold-standard 

corpus.  Most of these are papers that have been published in AAN-venues but have been 

added to the ACL Anthology since 2010 when the gold-standard corpus snapshot was 

taken.  The first 20 remaining papers are recommended as the GIS reading list. 

For the Lucene TFIDF system (“TFIDF”), Lucene.NET v2.9.2 was used with standard 

TFIDF parameters to index the gold-standard corpus of papers.  The topic name is used 

as the search query and the 20 highest-scoring papers are recommended as the TFIDF 

reading list. 

5.2.2 Results and Discussion 

Table 5 shows the results of the gold-standard comparison.  The results for TPR are 

shown in bold and system scores that beat TPR are highlighted in red italic.  Where TPR 

has the highest score, significance is reported with the TPR score and is with reference 

to the next best system.  Where another system beats TPR, significance is reported with 

the other score, and compares it to TPR.  All other significance levels of combinations 

of systems are not computed.  Significance levels are indicated in superscript, with 

asterisks using * for the 5% level, ** for the 1% level, *** for the 0.1% level, and with 

a tilde using ~ to indicate no significant difference.  For the metrics where significance 

can be computed using a Wilcoxon signed-rank test, it is indicated by a superscript W.  

                                                 
17 http://scholar.google.com 
18 http://aclweb.org/anthology-new/ 

http://scholar.google.com/
http://aclweb.org/anthology-new/
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Otherwise significance is computed using Student’s t-test, and indicated by a 

superscript S.   

Recall from Section 2.5 that there are many evaluation metrics with different strengths 

and weaknesses.  Also recall that FCSC and RCSC are the new evaluation metrics that I 

propose in Section 3.3. 

Using the measures FCSC, RCSC and RCP, TPR comfortably beats all the other systems 

with significance at the 0.1% level.  Using F-score, TPR beats the others at the 1% level.  

Using MAP, TPR is beaten by GIS at the 1% level and by GS at the 5% level. 

As we were expecting, the significance levels for F-score and MAP are much lower than 

the other metrics.  This is caused by the fact that using the relatively unforgiving F-score 

and MAP, systems perform either particularly well or particularly badly on each reading 

list.  This leads to a large standard deviation, which in turn leads to lower significance 

probabilities.  This effect was one of the motivations behind my proposing a more 

granular, and therefore more differentiating, measure like CSC. 

  S RCSC W FCSC S MAP S F S RCP 

TPR ***0.456 ***0.563 0.043 **0.128 ***0.012 
GIS 0.317 0.527 **0.054 0.117 0.008 
GS 0.364 0.519 *0.049 0.112 0.008 
TFIDF 0.330 0.412 0.008 0.040 0.003 

Table 5. Results for the Comparison to Gold-Standard Reading Lists. 

 

Table 6 shows the results for the ablation systems described in Chapter 5.  The results 

are presented using the same convention as in Table 5.  Under most measures, TPR with 

the bag-of-technical-terms as the LDA document model significantly outperforms the 

more expensive bag-of-words model (line “TPR-BAG-OF-WORDS”).  Using LDA as 

its topic modelling component also tends to outperform using NMF (line “TPR-NEG-

MAT-FAC”), although not remarkably so. 

Under most measures, TPR performs substantially better by modifying both the bias and 

the transition probabilities of its Personalised PageRank component (line “TPR-BOTH” 

vs. “TPR-BIAS-ONLY” and “TPR-TRANS-ONLY”).  Results are less clear when it 

comes to the choice of time decay function.  TPR performs marginally better (at only a 

5% level of significance) using exponential decay (line “AGE-EXP”) rather than linear 

decay (line AGE-LINEAR) to time-adjust Personalised PageRank scores. 

Using 300 topics (line “TOPICS-300”) rather than 200 topics (line “TOPICS-200”) 

produces significant improvements to the performance of TPR.  Increasing the number 

of topics further to 400 does not produce better results – in fact the performance of TPR 

starts declining once we go beyond a maximum around 300 topics.  As described in 

Section 5.1.5, my choice of 200 topics in the final TPR system was based on the 

observation that in the literature it has become the default number of topics for corpus 
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sizes like that of the AAN corpus.  It is unfortunate that these ablation tests were 

performed after all the other experiments, because they uncovered the fact that there is 

room to explore the effect of the number of topics on the performance of TPR. 

Finally, some interesting results emerge when analysing TFIDF, citation counts, global 

PageRank scores, and topic modelling in isolation.  As expected, TFIDF alone performs 

poorly, which is due to the fact that it uses only lexical information.  Incorporating the 

proxies for authority, namely citation count and global PageRank, produce marginally 

better results, although it is only when they are age-adjusted that they produce 

significantly better results.  Using only the lexical similarity information provided by 

topic modelling (line “LDA-SIMILARITY”) does only slightly better than TFIDF. 

  S RCSC W FCSC S MAP S F S RCP 

TPR **0.456 0.563 ~0.043 *0.128 0.012 
TPR-BAG-OF-WORDS 0.450 0.549 0.026 0.110 *0.013 
TPR-NEG-MAT-FAC 0.444 *0.568 0.043 0.122 *0.013 

TPR-BIAS-ONLY 0.440 0.541 0.027 0.118 ~0.012 
TPR-TRANS-ONLY 0.397 0.475 0.009 0.051 0.007 
TPR-BOTH (TPR) ***0.456 ***0.563 ***0.043 **0.128 0.012 

AGE-NONE 0.436 0.526 0.025 0.110 0.013 
AGE-LINEAR (TPR) 0.456 0.563 0.043 0.128 0.012 
AGE-EXP *0.458 *0.566 **0.051 **0.146 **0.014 

TOPICS-50 0.450 0.529 0.022 0.089 0.012 
TOPICS-100 0.458 0.557 0.030 0.126 0.013 

TOPICS-200 (TPR) 0.456 0.563 0.043 0.128 0.012 
TOPICS-300 ***0.482 ***0.608 ***0.085 ***0.174 ***0.017 
TOPICS-400 0.445 **0.589 ***0.079 ***0.157 **0.014 

TFIDF 0.330 0.412 0.008 0.039 0.003 
TFIDF-CITCOUNT 0.359 0.419 0.006 0.047 0.003 
TFIDF-PAGERANK 0.360 0.450 0.004 0.041 0.003 
TFIDF-CITCOUNT-AGEADJ 0.442 0.491 0.016 0.073 0.003 
TFIDF-PAGERANK-AGEADJ 0.407 0.512 0.016 0.088 0.008 
LDA-SIMILARITY 0.332 0.467 0.025 0.079 0.006 

Table 6. Ablation Results for the Automatic Generation of Reading Lists. 

 

5.3 Experiment: Reference List Reconstruction 

The experiment in Section 5.2 addresses the task of automatically generating reading 

lists.  Its evaluation against gold-standard reading lists directly tests the goal of this thesis.  

However, the size of the gold standard, while large enough to provide statistically 

significant results, begs the question of how the performance of TPR might scale on a 

much larger dataset.  Unfortunately the collection of expert-generated gold-standards is 

expensive, so we are forced to look elsewhere for proxy evaluations. 
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The evaluation described here uses the proxy task of Reference List Reconstruction 

(RLR, which has been described in Section 2.4.6) to measure the quality of TPR’s 

recommendation judgements.  Given only the abstract or full text of a paper (with citation 

information redacted) as an indication of a search need, the task is to predict which papers 

the target paper originally cited.  Recall that an anecdotal example of the operation of 

TPR in the task of RLR was given in Section 4.4.2. 

5.3.1 Experimental Design 

This experiment is comprised of two parts.   

In the first part, ThemedPageRank is compared against a state-of-the-art system built 

specifically for the task of RLR (Bethard & Jurafsky 2010).  To reproduce their 

evaluation exactly, RLR is performed on the same subset of 800 test papers in the AAN 

that they used in their experiment.  MAP scores are reported for comparison with their 

results.   

The second part of this experiment explores the application of TPR to the task of 

reference list reintroduction on a larger scale.  Evaluation is done on the full corpus AAN, 

a much larger test set of around 10,000 papers.  To gain some insight into the reasons for 

the performance of TPR, this experiment again uses the individual ablation systems 

described in Chapter 5.  FCSC, RCSC, MAP, F-score and RCP are reported. 

The first part of the experiment compares TPR against the system of Bethard & Jurafsky 

(2010), henceforce B&J.  The corpus used is the same papers that B&J used in their 

experiment: only those papers in the AAN published in or before 2004.  To ensure that 

this experiment compared system performance over the exact same set of query papers, 

Steven Bethard supplied me with a list of the paper IDs they used as queries in their 

experiment, and the resulting average precision score for each query paper.  These 794 

query papers are all the 2005/6 papers citing five or more other papers in the corpus.  To 

generate an average precision score using TPR, a search query topic distribution is 

generated for each query paper from the technical terms appearing in their titles and 

abstracts (using the “multiple technical terms” mechanism in Section 3.1.3).  The top 100 

papers recommended by TPR for each paper are then compared against their actual 

reference lists to generate an average precision for each paper, as described in 

Section 2.5.2.  Finally, the MAP is calculated for TPR for comparison with the MAP 

score of B&J’s system.  

The second part of the experiment investigates the series of ablations described in 

Chapter 5 in the task of Reference List Reconstruction.  Although the first set of ablation 

tests in the experiment in Section 5.2 already provided evidence of my claim that the 

individual components of TPR are advantageous to the final performance of TPR, I 

decided to run a second set of ablation tests in the RLR scenario to further substantiate 

the trends found in the first ablation test runs.  This experiment uses the gold-standard 

corpus described in Section 3.2.1, which is the same as used in the experiment in 
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Section 5.2.  The 1,500 papers citing ten or more other papers in the corpus were used as 

queries in the evaluation.  Their topic distribution (i.e. θi in Figure 1) was used for a 

search query per paper (using the “single known paper” mechanism in Section 3.1.3).  

For each paper d in the experiment, its query topic distribution is used to generate a 

unique ThemedPageRank TPR(d,d’) tailored to paper d over the corpus of papers d’.  The 

papers d’ are then sorted by their ThemedPageRank and the 100 top-scoring papers are 

recommended as the citations for paper d.  These recommended citations are compared 

against the actual citations for that paper using the variety measures detailed in 

Section 3.3: Citation Substitution Coefficients (RCSC and FCSC), MAP, F-score and 

RCP. 

5.3.2 Results and Discussion 

Table 7 shows the results for the evaluation of TPR against B&J.  When reintroducing 

the reference list of B&J’s 800 papers, TPR, a simple unsupervised algorithm, 

outperforms the current state-of-the-art method, which is supervised and substantially 

more complex.  This difference is significant at the 5% level using the Student’s t-test. 

  S MAP 

B&J 0.287 
TPR *0.302 

Table 7. Results for Reference List Reintroduction. 

 

It is remarkable that TPR outperforms Bethard & Jurafsky’s system for several reasons.  

Firstly, B&J is built specifically for the task of RLR, while TPR is more general: it is 

built for the tasks of automatic reading list recommendation.  Secondly, B&J uses a 

variety of sources of data above and beyond the information used by TPR.  Both systems 

use the paper text, publication year and citation graph, but B&J additionally use 

authorship, co-authorship, school and publication information and snippets of text from 

citing documents to use as citation contexts.  Thirdly, besides building topic models and 

calculating PageRanks, B&J requires the expensive training of a support vector machine 

with a variety of features.  Finally, B&J is expensive to compute at build time and at 

query time, while TPR is expensive only at build time.  At query time, B&J requires 

various comparisons of the query paper to every paper in the corpus, while TPR requires 

only a cheap constant-time weighted combination of Personalised PageRanks. 

Table 8 presents the results for the second part of the experiment that explores the 

ablations described in Chapter 5.  The results are presented using the same convention as 

in Section 5.2.2.  For this task, the bag-of-words representation (line “TPR-BAG-OF-

WORDS”) outperforms the bag-of-technical-terms representation (line “TPR”) used in 

the topic modelling step.  This is in contrast to earlier findings.  However, the trend that 

LDA (line “TPR”) is superior to NMF (line “TPR-NEG-MAT-FAC”), which we 

observed earlier in Section 5.2.2, is continued here. 



  

Evaluation | 113 

 

 

Again, modifying both the bias and transition probabilities (line “TPR-BOTH”) 

significantly outperforms systems where only one of the two is performed (lines “TPR-

BIAS-ONLY” and “TPR-TRANS-ONLY”).  This vindicates our surprise at Yang et al. 

(2009) that they alter only the bias component of their algorithm and ignore the transition 

component.  In both this and the previous experiment, an important contribution to the 

performance of TPR is that both the bias and transition components are modified. 

Linear age-adjustment of PageRank (line “AGE-LINEAR”) marginally outperforms 

exponential adjustment (line “AGE-EXP”), and significantly outperforms not performing 

any age-adjustment at all (line “AGE-NONE”). 

Again, the choice of 300 topics (line “TOPICS-300”) appears to be optimal for applying 

topic-modelling on the AAN to TPR.  This is unfortunate but could not be changed for 

the experiments that follow as this was only discovered later on. 

Finally, it is evident that citation count (line “TFIDF-CITCOUNT”) and global 

PageRank (line “TFIDF-PAGERANK”) can improve the performance of simple TFIDF 

(line “TFIDF”), and even more so when age-adjusted (lines “TFIDF-CITCOUNT-

AGEADJ” and “TFIDF-PAGERANK-AGEADJ”), although nowhere near the 

performance of TPR.  Similarity measures using LDA (line “LDA-SIMILARITY”) again 

slightly outperforms using TFIDF on its own. 

  S RCSC W FCSC S MAP S F S RCP 

TPR 0.448 0.825 0.268 0.158 0.009 

TPR-BAG-OF-WORDS ~0.451 ***0.843 ***0.291 ***0.166 ~0.010 
TPR-NEG-MAT-FAC 0.422 0.771 0.202 0.133 0.008 

TPR-BIAS-ONLY 0.440 0.800 0.233 0.147 0.009 
TPR-TRANS-ONLY 0.386 0.643 0.081 0.077 0.004 
TPR-BOTH (TPR) *0.448 **0.825 ***0.268 ***0.158 ***0.009 

AGE-NONE 0.438 0.804 0.242 0.149 0.009 
AGE-LINEAR (TPR) *0.448 *0.825 ~0.268 ~0.158 ~0.009 
AGE-EXP 0.444 0.820 0.266 0.157 0.009 

TOPICS-50 0.444 0.786 0.222 0.141 0.008 
TOPICS-100 0.450 0.814 0.256 0.154 0.009 
TOPICS-200 (TPR) 0.448 0.825 0.268 0.158 0.009 
TOPICS-300 ***0.450 ***0.833 ***0.279 ***0.162 ~0.010 

TOPICS-400 0.436 0.814 0.255 0.153 0.009 

TFIDF 0.356 0.657 0.062 0.085 0.005 
TFIDF-CITCOUNT 0.374 0.673 0.092 0.091 0.005 
TFIDF-PAGERANK 0.363 0.661 0.100 0.086 0.005 
TFIDF-CITCOUNT-AGEADJ 0.384 0.679 0.108 0.094 0.006 
TFIDF-PAGERANK-AGEADJ 0.384 0.677 0.106 0.093 0.006 
LDA-SIMILARITY 0.392 0.666 0.115 0.091 0.007 

Table 8. Ablation Results for Reference List Reintroduction. 
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5.4 Task-based Evaluation: Search by Novices 

The wider goal of this thesis is the automatic generation of reading lists, and the previous 

two experiments more or less directly evaluate TPR in achieving this goal.  The current 

experiment, however, explores the value of two fundamental components of TPR for 

actual search: automatic technical term recognition and topic modelling.  It focuses on 

the particular hypothesis that documents modeled by technical terms and topic models 

retain sufficient semantic content to be useful to a novice for exploratory scientific 

search, and can thus form the foundation for the harder task of reading list generation. 

This experiment presents a search system (called TTLDA) that combines the automatic 

recognition of technical terms (see Section 4.2) with LDA topic modelling (see 

Section 4.3) to augment traditional search.  TTLDA presents similar papers with their 

associated technical terms: related papers can be read in context and understanding of 

each paper can be enriched by the group of technical terms associated with it.  

I claim that this improves novices’ scientific search experience in comparison to standard 

keyword and citation based search in two ways: (i) novices internalise previously 

unknown technical terms during their search with the system; and (ii) they find more 

non-obvious papers relevant to their information need. 

5.4.1 Experimental Design 

Using a task-based evaluation, this experiment simulates exploratory scientific search.  

Given the name of a scientific field, a novice is given the task to create a reading list 

using the operations given by one of two test systems, the conditions in this experiment.  

These systems  are TTLDA, an early precursor to TPR that makes use of technical terms 

and topic modelling, and a suitably disguised version of Google Scholar (GS), a state-of-

the-art bibliographic search system.  The evaluation metrics are quality scores given to 

the reading lists by experts who also supplied the initial field names.  Because there is 

repetition bias, a Latin-square design was used.  A similar search task and evaluation is 

presented in Ekstrand et al. (2010). 

I recruited four experts from the Computer Laboratory at the University of Cambridge.  

Each expert was asked to provide the name of their chosen scientific field, knowing that 

they would have to later determine whether or not novice-selected papers from the AAN 

were relevant to their field.  The fields suggested by four experts were: “distributional 

semantics”, “statistical parsing”, “domain adaptation” and “parser evaluation”. 

Eight test subjects (the novices), who did not previously know these scientific fields, 

were recruited from masters-level classes.  In individual 20-minute sessions, these 

novices found and ranked what they felt were the most relevant papers in each field using 

alternatively TTLDA or GS. Both systems look similar and operate on identical indexed 

material.  A Latin-square design was used in order to avoid item bias: each subject used 

an alternate system for each session (the alternate sets of instructions are included in 
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Appendix B); systems were used in different orders; and fields were presented in 

different orders. 

Once the novices had produced reading lists for each of the fields, the papers in each field 

were pooled.  The pooled papers for each field were marked as relevant or irrelevant by 

the expert of that field.  Evaluation is performed using pooled relevance judgments 

(Buckley & Voorhees 2004) with human judgments, comparing each of the papers in the 

subjects’ ranked reading lists to the experts’ relevance lists, and reported using 

precision-at-rank-n (P@n).  For each rank n, the number of relevant papers in the top-n 

ranked papers in each list is calculated, and the average precision is reported.  In the 

context of the current experiment, it is reasonable to use precision rather than CSC 

because experts make their judgements on the novice-selected papers after they have 

been selected.  There is therefore no need to check the similarity of novice-selected 

papers to expert-selected papers. 

In order to ensure a fair comparison between TTLDA and GS, each system provides 

comparable functionality and an almost identical graphical user interface (GUI).  Both 

systems use the AAN (see Chapter 4) as their underlying corpus.  In both systems, return 

lists of 30 papers are presented to the user. 

TTLDA offers a simple free-form text search facility because GS also provides this. 

TTLDA uses Lucene TFIDF over the AAN corpus to generate search results for a given 

search query. 

For the GS system, a façade with the same simple free-form text search facility is inserted 

between Google Scholar and the searcher, hiding the fact that Google Scholar is the 

underlying search system.  When a user enters a search query, it is forwarded to Google 

Scholar.  The Google Scholar search results are automatically parsed, filtered to remove 

non-AAN papers, and only the first 30 papers appearing in the AAN are presented to the 

user as the paper search results. 

Both systems offer the functionality of “related papers” and “cited by”.  For “related 

papers,” TTLDA presents the 30 most similar papers in the corpus as determined by 

relatedness calculations using topic distribution similarity, as described in Section 4.3.3.  

GS presents the 30 related papers offered by Google Scholar, again filtered to the AAN.  

For “cited by,” both TTLDA and GS list the citing papers from the AAN citation graph.  

The only visual difference between TTLDA and GS is that TTLDA shows relevant 

technical terms for each paper (the most similar technical terms to each paper using the 

same topic distribution similarity as before), while GS shows relevant “contextual 

snippets” harvested from the Google Scholar search results.  While this is the only visual 

difference in the search system, it is a major point in my claim that the presence of these 

technical terms improves novices’ scientific search experience.  To generate its initial 

search results, TTLDA uses TFIDF, presumably a fairly impoverished IR mechanism 

compared to the state-of-the-art GS system.  To compensate for this, TTLDA relies 
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heavily on the claim that the presentation of relevant technical terms improves scientific 

search more than does the presentation of contextual snippets. 

Figure 19 and Figure 20 show screenshots of sample search results for TTLDA and GS, 

respectively.  The search systems can be used as follows: 

1. A novice enters a free-form text search query. When they press ENTER, the top 

30 papers relevant to their search query appear below it. Each paper is 

summarised by items (2)–(5). 

2. The title, year, authors and journal of each paper is listed. Clicking on the paper 

title opens the PDF for that paper. 

3. For TTLDA, a list of technical terms relevant to that paper is listed next. Selecting 

a technical term replaces the current list of papers with 30 papers relevant to that 

technical term.  For GS, a “contextual snippet” is shown. 

4. Selecting the words “Related papers” replaces the current list of papers with 30 

papers relevant to that paper. 

5. Selecting “Cited by nn” replaces the current list of papers with papers that cite 

that paper. nn is the number of papers in the AAN that cite the paper. 

Note that the window titles were added for the purpose of this description.  In the 

actual experiments they read “Paper search.” 

 

 

Figure 19. Screenshot of a Sample TTLDA List of Search Results. 
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Figure 20. Screenshot of a Sample GS List of Search Results. 

 

5.4.2 Results and Discussion 

The eight subjects performed a total of 101 queries and selected a total of 438 papers in 

32 lists across the 4 scientific fields using the 2 different systems.  The shortest result list 

produced by the subjects is 4 papers long, while the longest is 25 papers long. 

Figure 21 and Figure 22 show the average P@n for TTLDA and GS.  The rank is 

represented along the x-axis, while the precision at that rank is represented along the 

y-axis.  Figure 21 is unscaled, and shows that both systems perform similarly with P@n 

scores above 80%.  Figure 22 is a detailed view of Figure 21, where 1-standard deviation 

error ranges have been added.  As can be seen, there is no clear winner between TTLDA 

and GS up to rank 15, and even up to rank 25, the error ranges confirm that TTLDA and 

GS perform similarly without significant difference at the 95% level. 

The results substantiate the hypothesis that documents modeled by technical terms and 

topic models retain sufficient semantic content to be useful to a novice for exploratory 

scientific search, at least compared to a state-of-the-art search system like Google 

Scholar.  We are thus confident that technical terms and topic models can form an 

adequate foundation for the task of reading list generation. 

Figure 23 shows the total number of relevant and irrelevant documents discovered using 

each system.  The x-axis indicates how many of the highest-ranked documents were 

included from each novice-generated reading list.  We can see that the number of relevant 
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documents remains relatively similar at all ranks, in the limit 183 for GS vs. 175 for 

TTLDA. 

While GS does retrieve more relevant papers than TTLDA, both the P@n and relevance 

counts results are noteworthy given the relative simplicity of the TTLDA system 

compared to GS, i.e. what we can speculate is a more complex state-of-the-art production 

search system.  GS presumably has at its disposal citation graphs, information about 

author, school and publishing venue. 

The results are more interesting when the subject-selected papers are categorised 

according to how difficult it was to find them.  The definition of a “hard” paper is one 

where the novice can not simply match the field name to the title of a paper.  My technical 

solution was to classify as “hard” any paper  whose title does not contain any Porter-

stemmed (Porter 1980) words from the field name.  We are far more interested in the 

hard papers because finding easy papers does not require a human’s time as it can be 

automated.  The difficult and interesting cases of relevance are those where different 

lexical items are used in the query and relevant papers. 

Figure 24 and Figure 25 show the average precision-at-rank-n for TTLDA and GS for 

the “hard” papers.  TTLDA substantially outperforms GS (finding 34 vs. 12 papers with 

an average P@n of 63% vs. 53%).  This difference is significant at the 95% level.  These 

results motivate that the relationships induced by topic modelling over technical terms 

helped the subjects find more non-obvious papers which were relevant to their 

information need than GS was able to provide. 

A similar effect can be observed when we consider those cases during the experiment 

when subjects used the search bar to enter their own formulation of queries.  Remember 

that they are not required to do so because they can perform most searches simply by 

clicking.  However, whenever they do, we have an indication of whether they 

encountered some new technical terms from the material presented to them during the 

search so far.  Presumably, they did not know these technical terms before the 

experiment. 

Therefore, it was particularly interesting to me to compare what kind of queries were 

issued when using the TTLDA and GS systems.  Table 9 presents the frequency of “hard” 

queries performed by the subjects.  This time, a “hard” query is one that contains none 

of the words from the name of the field.  This finds the occasions when the subject is 

exploring more widely in their search, rather than just typing in the name or parts of the 

name of the scientific field to find relevant papers.  We find that when subjects use 

TTLDA, they search more frequently than when using GS – 61 queries vs. 40.  This is a 

good effect because it might indicate that the subjects have a wider variety of way to 

articulate their search need, presumably using terms they have learned during the 

experiment.  But more importantly, using TTLDA, they also search more frequently 

using relevant keywords that are not obvious from field names or paper titles.  28% of 

subjects’ queries are “hard” using TTLDA vs. 8% for GS.  This might indicate that 
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novices internalise and use previously unknown technical terms during their search with 

TTLDA.  This would be a positive result because remember how much trouble novices 

have with new technical vocabulary. 

 

  Easy Hard Total 

GS 37 (93%) 3 (7%) 40 (100%) 
TTLDA 44 (72%) 17 (28%) 61 (100%) 

Table 9. Number of Easy vs. Hard Queries Performed by Novices. 
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Figure 21. Precision-at-Rank-N for TTLDA and GS. 

 

 

Figure 22. Precision-at-Rank-N for TTLDA and GS (detail). 

 

 

Figure 23. Relevant and Irrelevant Papers Discovered using TTLDA and GS. 
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Figure 24. Hard-Paper Precision-at-Rank-N for TTLDA and GS. 

 

 

Figure 25. Hard-Paper Precision-at-Rank-N for TTLDA and GS (detail). 

 

 

Figure 26. Relevant and Irrelevant Hard-Papers Discovered using TTLDA and GS. 
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5.5 User Satisfaction Evaluation: Technical Terms and Topics 

Automated term recognition and topic modelling play important roles in this thesis as 

building blocks for the automatic generation of reading lists.  As mentioned in 

Section 3.5.1, while both areas are the focus of continued and active research activity, 

the evaluation of each task is difficult.  

The following experiment employs Qiqqa, a research management tool that I built 

concurrently with the research reported here, and which is being used by over 50,000 

real-world users to manage their own collections of scientific research papers.  The self-

reported breakdown of the background of the users of Qiqqa is such that 65% of the users 

are PhD students, 15% are postdocs or full-time academic researchers, 5% are master’s 

students, and the remaining 15% are professionals such as medical researchers, financial 

analysts and lawyers.  Their PDF libraries range in size from tens to thousands of papers, 

with an average of 200 papers. 

The existence of Qiqqa, which uses some of the facets of TPR, allows me to engage the 

user base in user satisfaction evaluations of the tasks of automated term recognition and 

topic modelling.  Both evaluations ask users to make a subjective judgement on results 

relevant to their own library of PDF papers in their own field. 

5.5.1 Testing the Usefulness of Technical Terms 

The first part of this experiment tests the subjective usefulness of technical terms to Qiqqa 

users.  Numerous methods exist for evaluating the correctness of automated technical 

term recognition systems.  This experiment takes a straightforward approach: to 

automatically generate technical terms on a corpus of papers owned by users of Qiqqa, 

and then to ask the users to rate their quality. 

5.5.1.1 Experiment 

Figure 27 shows the Qiqqa user interface for automatically generating AutoTags (or 

technical terms in the nomenclature of this thesis) for a library of PDF documents.  The 

list of PDF documents in the user’s library are shown to the right of Exhibit 1.  To the 

left of Exhibit 1, the user has selected the AutoTag filter tab.  To the left of Exhibit 2, the 

user presses the Refresh button to regenerate the AutoTags for their paper collection.  

Once generated, the AutoTags are associated with the papers that contain them in their 

full-text.  The algorithm presented in Section 3.4 is applied to the titles of the papers in 

the user’s collection.  The automatically generated AutoTags are shown to the left of 

Exhibit 3.  The user can filter by an AutoTag by clicking on it.  Only the papers associated 

with the selected AutoTag are shown in the paper list.  Exhibit 4 shows the user 

satisfaction evaluation.  After refreshing their AutoTags, the user is prompted to judge 

positively (“thumbs up”) or negatively (“thumbs down”) the entire list of automatically 

generated AutoTags with the following instructions: 
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We are always trying to improve our algorithms.  How do you rate the quality of the 

AutoTags that Qiqqa generated for you? 

The user is not obliged to participate in the user evaluation, so any results are a 

consequence of the user’s voluntary choice to participate.  2,173 users participated. 

 

Figure 27. Screenshot of Qiqqa’s Recommended Technical Terms. 

5.5.1.2 Results and Discussion 

Table 10 shows the results of the user satisfaction evaluation.  1,434 (66%) of the 2,173 

users that participated in the evaluation give the automatically generated technical terms 

a “thumbs up”, indicating that the automatically generated technical terms are useful to 

them.  Where users submitted a quality judgement more than once (potentially after 

refreshing their AutoTags a second time), only their first judgement was included in these 

results. 

One hypothesis of what causes negative reviews might be user collections that are too 

small for the ATR algorithm to work well.  The ATR algorithm relies on repetitions of 

technical terms in the titles of different papers to detect them.  It is likely that small 

collections of papers might not exhibit enough of this overlap to find relevant technical 

terms.  To explore if there is a marked difference in satisfaction for large or small libraries 

(greater than or fewer than 50 PDFs, respectively), the results are broken down further.  

The results show that the size of the collection indeed seems to influence the users’ 

quality judgements.  68% of users with a large library give the automatically generated 

technical terms a “thumbs up”, while only 60% of users with a small library do so. 
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  All Large Small 

Thumbs down         739  (34%)        495  (32%)        244  (40%) 
Thumbs up     1,434  (66%)    1,065  (68%)        369   (60%) 

Total     2,173  (100%)    1,560  (100%)        613   (100%) 

Table 10.  Results of User Satisfaction Evaluation of Technical Terms. 

 

5.5.2 Testing the Usefulness of Topic Modelling 

The second part of the current experiment tests the usefulness of topic modelling.  Recall 

from Section 2.2.4 that a variety of ad-hoc methods exist for evaluating the results of 

topic modelling, ranging from subjective descriptions of their quality to heuristic 

mathematical measurements such as perplexity and entropy.  This experiment uses 

subjective descriptions.  During the experiment, Qiqqa is used to automatically generate 

topics for users’ paper collections, and then to ask the users for their opinion on the 

quality of the topics. 

5.5.2.1 Experiment 

Figure 28 shows the Qiqqa user interface that is used to automatically generate the 

Expedition Themes (or topics in the nomenclature of this thesis) for a collection of papers.  

Exhibit 1 allows the user to select the number of themes to generate.  This number 

defaults to the square-root of the number of papers in their library, a heuristic carried 

over from the literature where 200 topics is generally recommended for corpora of 40,000 

papers.  At Exhibit 2 they press the “Refresh Expedition” button to regenerate the themes 

for their library.  First the AutoTags of the library are generated and associated with each 

paper in the library to form the bag-of-technical-terms representation for each paper.  

Next the topics are generated using the LDA bag-of-technical-terms document model 

described in Section 4.3.1.  Once the topics are generated, they are shown in Exhibit 3.  

The topics are described by listing the technical terms that have the highest probability 

mass in each topic distribution.  Each theme can be expanded, as illustrated in Exhibit 4, 

to show the papers whose topic distribution is most concentrated on the chosen theme.  

Exhibit 5 shows the user satisfaction evaluation.  After generating their Themes, the user 

is prompted to judge positively (“thumbs up”) or negatively (“thumbs down”) the entire 

list of automatically generated Expedition Themes with the following instructions: 

We are always trying to improve our algorithms.  How do you rate the quality of the 

Expedition that Qiqqa generated for you? 

The user is not obliged to participate in the user evaluation, so any results are a 

consequence of the user’s voluntary choice to participate.  1,648 users participated.  
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5.5.2.2 Results and Discussion 

Table 11 shows the results of the user satisfaction evaluation.  1,093 (66%) of the 1,648 

users who participated in the evaluation give the automatically generated technical terms 

a “thumbs up”, indicating that the automatically generated topics are useful to them. 

To explore if there is a marked difference in satisfaction for large or small libraries 

(greater than or fewer than 50 PDFs – or 7 topics, respectively), the results are broken 

down further.  68% of users with a large library give the automatically generated 

technical terms a “thumbs up”, while 62% of users with a small library do so.  This 

suggests that topic models are more useful to users with a larger number of PDFs in their 

libraries, in analogy to the results from Section 5.5.1. 

  All Large Small 

Thumbs down         555  (34%)        382  (32%)        173  (38%) 
Thumbs up     1,093  (66%)        809  (68%)        284  (62%) 

Total     1,648  (100%)    1,191  (100%)        457  (100%) 

Table 11.  Results of User Satisfaction Evaluation of Topic Modelling. 

 

 

Figure 28. Screenshot of Qiqqa’s Recommended Topics. 
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5.6 Summary 

This chapter presented the evaluations performed in this thesis.  Section 5.2 evaluated 

TPR in the task of automatically generating reading lists.  This evaluation directly 

addressed the third research question of this thesis: does lexical and social information 

contribute towards the task of automatically generating reading lists?  TPR significantly 

outperformed two state-of-the-art commercial search systems at this task.  Section 5.3 

evaluated TPR in the task of reference list reconstruction.  TPR significantly 

outperformed a state-of-the-art system designed specifically for this task.  In both 

experiments, TPR was also compared against the ablation system and baseline systems 

summarised in Section 5.1.  The evaluation in Section 5.4 investigated the second 

research question of this thesis: does the exposition of relationships between papers and 

their technical terms improves the performance of a novice in exploratory scientific 

search?  A task-based evaluation was used to compare how well novices were able to 

produce reading lists using TTLDA, a system that embeds the relationships between 

papers and their technical terms in its search results.  Finally, Section 5.5 presented two 

simple user satisfaction evaluations that evaluated the quality of the technical terms and 

topics automatically generated from collections of PDFs. 
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Chapter 6.  

Conclusion 

This thesis addresses the task of automatically generating reading lists and the resulting 

primary output of this research is the ThemedPageRank (TPR) algorithm.  My intuition 

behind TPR is that reading lists are different to generic information retrieval search 

results in two important ways.  Reading lists need to be tailored to specific niches in 

science and they need to contain recommended papers that have authority in those niches.  

TPR automatically finds niches in science using Automatic Term Recognition and Latent 

Topic Modelling and finds authority in these niches using a modified version of 

Personalised PageRank with Age Adjustment.  This novel combination significantly 

improves on state-of-the-art at two different tasks. 

The first task directly evaluates the automatic generation of reading lists for particular 

fields in science.  System-generated reading lists are compared against gold-standard 

reading lists collected from experts specifically for this task.  TPR significantly 

outperforms two state-of-the-art systems, Google Scholar and Google Index Search 

specialised to the ACL Anthology Network (AAN).  It is also significantly outperforms 

a Lucene TFIDF baseline.  While the results are statistically significant, an immediate 

avenue of further research would be to assemble a much larger corpus of gold-standard 

reading lists to strengthen these results.  It would be useful to have additional reading 

lists from a wider range of topics, thus allowing the generalisation capabilities of the 

recommendation algorithms to be tested, and additional reading lists covering the same 

topics, thus reducing the potential subjectivity bias in the experts’ paper choices.  The 

task should be straightforward using the same instructions to the experts provided in this 

work.   

The second task, Reference List Reconstruction, indirectly evaluates the automatic 

generation of reading lists in a much larger experiment.  The proxy task is to reconstruct 

the bibliography section of thousands of scientific papers once all references have been 

redacted from the papers’ text.  TPR, which is unsupervised and uses only textual 

information, significantly outperforms a state-of-the-art system, purpose-built for this 

task, which relies on supervised machine learning and human-annotated data.  While this 

task focusses only on regenerating the bibliography section, some research in the 

literature has tackled the harder task of regenerating the citations themselves in the 

running text.  There are a variety of ways that TPR could be brought to bear on this harder 

task, and it would be an interesting line of further research to compare TPR to the current 

state-of-the-art systems. 
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Both tasks make use of the ACL Anthology Network (AAN) as the underlying corpus of 

scientific papers.  It would make for important further research to examine the generality 

of TPR by performing these tasks on different corpora, especially those from other 

scientific domains such as chemistry or medicine (e.g., the TREC Genomics Corpus 

(Hersh et al. 2006)). 

In both the reading list generation and reference list reconstruction tasks, a variety of 

ablation tests are performed to investigate the performance of the components of TPR.  

The tests show that on their own, traditional information retrieval mechanisms, such as 

TFIDF, Personalised PageRank and Latent Topic Modelling, do not perform particularly 

well at either task.  The tests also highlight the fact that Citation Count, a bibliometric 

measurement widely relied upon by the academic community, does not perform well 

either.  It is only their combination, such as is used in TPR, that produces results that 

better state-of-the-art.  The field of bibliometrics might benefit from a deeper 

investigation of the applicability of TPR (rather than simple Citation Count or Impact 

Factor) to the attribution of authority and its influence on funding and grant allocation. 

Another contribution of this thesis is the Citation Substitution Coefficient (CSC), an 

evaluation metric for evaluating the quality of reading lists.  CSC is better suited to 

evaluating reading lists than standard IR metrics because it gives partial credit to 

recommended papers that are close to gold-standard papers in the citation graph, allowing 

the subtle differences in the performance of recommendation algorithms to be detected.  

Ideally, a new metric should undergo a series of calibration tests, comparing the ordering 

of CSC scores with those of more traditional IR metrics and potentially even calibrating 

CSC scores on a wide range of IR tasks against user acceptance scores.  A detailed 

analysis was beyond the scope of my research, but does deserve deeper investigation. 

From the performance of TPR in general, and from the ablation test results in particular, 

it is clear that topic modelling and technical terms are useful artefacts for the generation 

of reading lists.  Two user satisfaction evaluations is Section 5.5 also confirm that 

automatically generated technical terms and topics are useful in general to two-thirds of 

the thousands of experiment participants. 

The task-based evaluation in Section 5.4 investigates the notion that topic modelling and 

technical terms are useful artefacts specifically for exploratory scientific search.  

TTLDA, an early precursor to TPR that makes use of technical terms and topic 

modelling, performs similarly to a state-of-the-art scientific search system, Google 

Scholar (GS), in the task of novices performing exploratory scientific search.  More 

interestingly, the results substantiate my claim that relationships induced by topic 

modelling over technical terms helps novices not only search  with  more  non-obvious 

search queries,  but also find more non-obvious papers relevant to their information need.  

An obvious avenue of further research would be to repeat the task based evaluation 

comparing GS to full-blown TPR, rather than TTLDA. 
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A final contribution of this thesis is a light-weight algorithm for Automatic Term 

Recognition (ATR).  This light-weight algorithm extracts technical terms from the titles 

of documents without the need for the apparatus required by most state-of-the-art ATR 

algorithms.  It is also capable of extracting very long technical terms, unlike many other 

ATR algorithms.  While my ATR algorithm was adequate for the purposes of generating 

technical terms for TPR’s document representation, comparison of my ATR algorithm to 

state-of-the-art ATR systems was outside the score of my research.  In future, it would 

be worthwhile to investigate their relative performances.  From a more technical 

perspective, it is clear from the results of all the experiments that documents modelled 

using topic distributions over technical terms is comparable to, if not better than, 

documents modelled using their full-text.  This opens several potential lines of research 

into making Information Retrieval systems more scalable by using the more compact and 

efficient model of topic distributions over technical terms. 
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“concept-to-text generation” 

H05-1042: Collective Content Selection For Concept-To-Text Generation 

Barzilay, Regina; Lapata, Mirella 

2005 Human Language Technology Conference And Empirical Methods In 

Natural Language Processing 

 

D09-1005: First- and Second-Order Expectation Semirings with 

Applications to Minimum-Risk Training on Translation Forests 

Li, Zhifei; Eisner, Jason M. 

2009 EMNLP 

 

W98-1411: Experiments Using Stochastic Search For Text Planning 

Mellish, Chris S.; Knott, Alistair; Oberlander, Jon; O'Donnell, 

Michael 

1998 Workshop On Natural Language Generation EWNLG 

 

P04-1011: Trainable Sentence Planning For Complex Information 

Presentations In Spoken Dialog Systems 

Stent, Amanda J.; Prassad, Rashmi; Walker, Marilyn A. 

2004 Annual Meeting Of The Association For Computational Linguistics 

 

P95-1034: Two-Level, Many-Paths Generation 

Knight, Kevin; Hatzivassiloglou, Vasileios 

1995 Annual Meeting Of The Association For Computational Linguistics 

 

P09-1011: Learning Semantic Correspondences with Less Supervision 

Liang, Percy; Jordan, Michael I.; Klein, Dan 

2009 ACL-IJCNLP 

 

W05-1506: Better K-Best Parsing 

Huang, Liang; Chiang, David 

2005 International Workshop On Parsing Technology 

 

P07-1019: Forest Rescoring: Faster Decoding with Integrated Language 

Models 

Huang, Liang; Chiang, David 

2007 45th Annual Meeting of the Association of Computational 

Linguistics 

 

J07-2003: Hierarchical Phrase-Based Translation   

Chiang, David 

2007 Computational Linguistics 
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J93-2003: The Mathematics Of Statistical Machine Translation: 

Parameter Estimation 

Brown, Peter F.; Della Pietra, Vincent J.; Della Pietra, Stephen A.; 

Mercer, Robert L. 

1993 Computational Linguistics 

 

P02-1040: Bleu: A Method For Automatic Evaluation Of Machine 

Translation 

Papineni, Kishore; Roukos, Salim; Ward, Todd; Zhu, Wei-Jing 

2002 Annual Meeting Of The Association For Computational Linguistics 

 

N07-1022: Generation by Inverting a Semantic Parser that Uses 

Statistical Machine Translation 

Wong, Yuk Wah; Mooney, Raymond J. 

2007 Human Language Technologies 2007: The Conference of the North 

American Chapter of the Association for Computational Linguistics; 

Proceedings of the Main Conference 

 

A00-2026: Trainable Methods For Surface Natural Language Generation 

Ratnaparkhi, Adwait 

2000 Applied Natural Language Processing Conference And Meeting Of The 

North American Association For Computational Linguistics 

 

P00-1041: Headline Generation Based On Statistical Translation 

Banko, Michele; Mittal, Vibhu O.; Witbrock, Michael J. 

2000 Annual Meeting Of The Association For Computational Linguistics 

 

C10-2062: Generative Alignment and Semantic Parsing for Learning from 

Ambiguous Supervision 

Kim, Joohyun; Mooney, Raymond J. 

2010 COLING - POSTERS 

 

D08-1082: A Generative Model for Parsing Natural Language to Meaning 

Representations 

Lu, Wei; Ng, Hwee Tou; Lee, Wee Sun; Zettlemoyer, Luke 

2008 Conference On Empirical Methods In Natural Language Processing 

“distributional semantics” 

P93-1024: Distributional Clustering Of English Words 

Pereira, Fernando C.N.; Tishby, Naftali; Lee, Lillian 

1993 Annual Meeting Of The Association For Computational Linguistics 

 

P99-1004: Measures Of Distributional Similarity 

Lee, Lillian 

1999 Annual Meeting Of The Association For Computational Linguistics 

 

C04-1146: Characterising Measures Of Lexical Distributional Similarity 

Weeds, Julie; Weir, David J.; McCarthy, Diana 

2004 International Conference On Computational Linguistics 

 

J07-2002: Dependency-Based Construction of Semantic Space Models 

Pad&oacute;, Sebastian; Lapata, Mirella 



 Appendix A. 

Gold-Standard Reading Lists | 151 

 

 

2007 Computational Linguistics 

 

P02-1030: Scaling Context Space 

Curran, James R.; Moens, Marc 

2002 Annual Meeting Of The Association For Computational Linguistics 

 

P98-2127: Automatic Retrieval and Clustering of Similar Words 

Lin, Dekang 

1998 COLING-ACL 

 

P08-1068: Simple Semi-supervised Dependency Parsing 

Koo, Terry; Carreras, Xavier; Collins, Michael John 

2008 Annual Meeting Of The Association For Computational Linguistics 

 

D09-1098: Web-Scale Distributional Similarity and Entity Set Expansion 

Pantel, Patrick; Crestan, Eric; Borkovsky, Arkady; Popescu, Ana-Maria; 

Vyas, Vishnu 

2009 EMNLP 

 

J01-3003: Automatic Verb Classification Based On Statistical 

Distributions Of Argument Structure 

Merlo, Paola; Stevenson, Suzanne 

2001 Computational Linguistics 

 

P04-1036: Finding Predominant Word Senses In Untagged Text 

McCarthy, Diana; Koeling, Rob; Weeds, Julie; Carroll, John A. 

2004 Annual Meeting Of The Association For Computational Linguistics 

 

P07-1028: A Simple, Similarity-based Model for Selectional Preferences 

Erk, Katrin 

2007 45th Annual Meeting of the Association of Computational 

Linguistics 

 

J98-1004: Automatic Word Sense Discrimination 

Sch&uuml;tze, Hinrich 

1998 Computational Linguistics 

 

D08-1094: A Structured Vector Space Model for Word Meaning in Context 

Erk, Katrin; Pad&oacute;, Sebastian 

2008 Conference On Empirical Methods In Natural Language Processing 

 

P08-1028: Vector-based Models of Semantic Composition 

Mitchell, Jeff; Lapata, Mirella 

2008 Annual Meeting Of The Association For Computational Linguistics 

“domain adaptation” 

W01-0521: Corpus Variation And Parser Performance 

Gildea, Daniel 

2001 SIGDAT Conference On Empirical Methods In Natural Language 

Processing 

 

P07-1033: Frustratingly Easy Domain Adaptation 



 Appendix A. 

Gold-Standard Reading Lists | 152 

 

 

Daum&eacute; III, Hal 

2007 45th Annual Meeting of the Association of Computational 

Linguistics 

 

W06-1615: Domain Adaptation With Structural Correspondence Learning 

Blitzer, John; McDonald, Ryan; Pereira, Fernando C.N. 

2006 Conference On Empirical Methods In Natural Language Processing 

 

W08-1302: Exploring an Auxiliary Distribution Based Approach to Domain 

Adaptation of a Syntactic Disambiguation Model 

Plank, Barbara; van Noord, Gertjan 

2008 Coling 2008: Proceedings of the 3rd Textgraphs workshop on Graph-

based Algorithms for Natural Language Processing 

 

N04-4006: Language Model Adaptation With Map Estimation And The 

Perceptron Algorithm 

Bacchiani, Michiel; Roark, Brian; Sara&ccedil;lar, Murat 

2004 Human Language Technology Conference And Meeting Of The North 

American Association For Computational Linguistics - Short Papers 

 

W07-2202: Evaluating Impact of Re-training a Lexical Disambiguation 

Model on Domain Adaptation of an HPSG Parser 

Hara, Tadayoshi; Miyao, Yusuke; Tsujii, Jun'ichi 

2007 Tenth International Conference on Parsing Technologies 

 

P06-1043: Reranking And Self-Training For Parser Adaptation 

McClosky, David; Charniak, Eugene; Johnson, Mark 

2006 International Conference On Computational Linguistics And Annual 

Meeting Of The Association For Computational Linguistics 

 

D08-1050: Adapting a Lexicalized-Grammar Parser to Contrasting Domains 

Rimell, Laura; Clark, Stephen 

2008 Conference On Empirical Methods In Natural Language Processing 

 

D07-1112: Frustratingly Hard Domain Adaptation for Dependency Parsing 

Dredze, Mark; Blitzer, John; Talukdar, Partha Pratim; Ganchev, Kuzman; 

Gra&ccedil;a, Jo&atilde;o V.; Pereira, Fernando C.N. 

2007 2007 Joint Conference on Empirical Methods in Natural Language 

Processing and Computational Natural Language Learning (EMNLP-CoNLL) 

 

P07-1034: Instance Weighting for Domain Adaptation in NLP 

Jiang, Jing; Zhai, ChengXiang 

2007 45th Annual Meeting of the Association of Computational 

Linguistics 

 

P07-1056: Biographies, Bollywood, Boom-boxes and Blenders: Domain 

Adaptation for Sentiment Classification 

Blitzer, John; Dredze, Mark; Pereira, Fernando C.N. 

2007 45th Annual Meeting of the Association of Computational 

Linguistics 



 Appendix A. 

Gold-Standard Reading Lists | 153 

 

 

“information extraction” 

D09-1001: Unsupervised Semantic Parsing 

Poon, Hoifung; Domingos, Pedro 

2009 EMNLP 

 

P09-1113: Distant supervision for relation extraction without labeled 

data 

Mintz, Mike; Bills, Steven; Snow, Rion; Jurafsky, Daniel 

2009 ACL-IJCNLP 

 

P07-1107: Unsupervised Coreference Resolution in a Nonparametric 

Bayesian Model 

Haghighi, Aria; Klein, Dan 

2007 45th Annual Meeting of the Association of Computational 

Linguistics 

 

D09-1120: Simple Coreference Resolution with Rich Syntactic and 

Semantic Features 

Haghighi, Aria; Klein, Dan 

2009 EMNLP 

 

D08-1112: An Analysis of Active Learning Strategies for Sequence 

Labeling Tasks 

Settles, Burr; Craven, Mark 

2008 Conference On Empirical Methods In Natural Language Processing 

 

N04-4028: Confidence Estimation For Information Extraction 

Culotta, Aron; McCallum, Andrew 

2004 Human Language Technology Conference And Meeting Of The North 

American Association For Computational Linguistics - Short Papers 

 

P08-1090: Unsupervised Learning of Narrative Event Chains 

Chambers, Nathanael; Jurafsky, Daniel 

2008 Annual Meeting Of The Association For Computational Linguistics 

 

N07-4013: TextRunner: Open Information Extraction on the Web 

Yates, Alexander; Banko, Michele; Broadhead, Matthew; Cafarella, 

Michael J.; Etzioni, Oren; Soderland, Stephen 

2007 Human Language Technologies: The Annual Conference of the North 

American Chapter of the Association for Computational Linguistics 

(NAACL-HLT) 

 

P04-1054: Dependency Tree Kernels For Relation Extraction 

Culotta, Aron; Sorensen, Jeffrey S. 

2004 Annual Meeting Of The Association For Computational Linguistics 

“lexical semantics” 

P98-1013: The Berkeley FrameNet Project 

Baker, Collin F.; Fillmore, Charles J.; Lowe, John B. 

1998 COLING-ACL 

 



 Appendix A. 

Gold-Standard Reading Lists | 154 

 

 

W04-2604: Using Prepositions To Extend A Verb Lexicon 

Kipper, Karin Christine; Snyder, Benjamin; Palmer, Martha Stone 

2004 Computational Lexical Semantics Workshop 

 

P03-2030: The FrameNet Data And Software 

Baker, Collin F.; Sato, Hiroaki 

2003 Annual Meeting Of The Association For Computational Linguistics - 

Interactive Posters And Demonstrations 

 

J05-1004: The Proposition Bank: An Annotated Corpus Of Semantic Roles 

Palmer, Martha Stone; Gildea, Daniel; Kingsbury, Paul 

2005 Computational Linguistics 

 

N06-2015: OntoNotes: The 90% Solution 

Hovy, Eduard H.; Marcus, Mitchell P.; Palmer, Martha Stone; Ramshaw, 

Lance A.; Weischedel, Ralph M. 

2006 Human Language Technology Conference And Meeting Of The North 

American Association For Computational Linguistics - Short Papers 

 

N07-1071: ISP: Learning Inferential Selectional Preferences 

Pantel, Patrick; Bhagat, Rahul; Coppola, Bonaventura; Chklovski, 

Timothy; Hovy, Eduard H. 

2007 Human Language Technologies 2007: The Conference of the North 

American Chapter of the Association for Computational Linguistics; 

Proceedings of the Main Conference 

 

N07-1069: Can Semantic Roles Generalize Across Genres? 

Yi, Szuting; Loper, Edward; Palmer, Martha Stone 

2007 Human Language Technologies 2007: The Conference of the North 

American Chapter of the Association for Computational Linguistics; 

Proceedings of the Main Conference 

 

W04-2807: Different Sense Granularities For Different Applications 

Palmer, Martha Stone; Babko-Malaya, Olga; Dang, Hoa Trang 

2004 International Workshop On Scalable Natural Language Understanding 

ScaNaLU 

 

J02-3001: Automatic Labeling Of Semantic Roles 

Gildea, Daniel; Jurafsky, Daniel 

2002 Computational Linguistics 

 

W05-0620: Introduction To The CoNLL-2005 Shared Task: Semantic Role 

Labeling 

Carreras, Xavier; M&agrave;rquez, Llu&iacute;s 

2005 Conference On Computational Natural Language Learning CoNLL 

 

W05-0625: Generalized Inference With Multiple Semantic Role Labeling 

Systems 

Koomen, Peter; Punyakanok, Vasin; Roth, Dan; Yih, Scott Wen-Tau 

2005 Conference On Computational Natural Language Learning CoNLL 

 

W05-0623: A Joint Model For Semantic Role Labeling 

Haghighi, Aria; Toutanova, Kristina; Manning, Christopher D. 



 Appendix A. 

Gold-Standard Reading Lists | 155 

 

 

2005 Conference On Computational Natural Language Learning CoNLL 

 

N06-1017: Unknown Word Sense Detection As Outlier Detection 

Erk, Katrin 

2006 Human Language Technology Conference And Meeting Of The North 

American Association For Computational Linguistics 

 

P09-2019: Generalizing over Lexical Features: Selectional Preferences 

for Semantic Role Classification 

Zapirain, Be&ntilde;at; Agirre, Eneko; M&agrave;rquez, Llu&iacute;s 

2009 ACL-IJCNLP: Short Papers 

“parser evaluation” 

H91-1060: A Procedure For Quantitatively Comparing The Syntactic 

Coverage Of English Grammars 

Black, Ezra W.; Abney, Steven P.; Flickinger, Daniel P.; Gdaniec, 

Claudia; Grishman, Ralph; Harrison, Philip; Hindle, Donald; Ingria, 

Robert J. P.; Jelinek, Frederick; Klavans, Judith L.; Liberman, Mark 

Y.; Marcus, Mitchell P.; Roukos, Salim; Santorini, Beatrice; 

Strzalkowski, Tomek 

1991 Workshop On Speech And Natural Language 

 

P06-2006: Evaluating The Accuracy Of An Unlexicalized Statistical 

Parser On The PARC DepBank 

Briscoe, Ted; Carroll, John A. 

2006 International Conference On Computational Linguistics And Annual 

Meeting Of The Association For Computational Linguistics - Poster 

Sessions 

 

D09-1085: Unbounded Dependency Recovery for Parser Evaluation 

Rimell, Laura; Clark, Stephen; Steedman, Mark 

2009 EMNLP 

 

W08-1307: Constructing a Parser Evaluation Scheme 

Rimell, Laura; Clark, Stephen 

2008 Coling 2008: TextGraphs Workshop On Graph Based Methods For 

Natural Language Processing 

“statistical machine translation models” 

P08-1024: A Discriminative Latent Variable Model for Statistical 

Machine Translation 

Blunsom, Philip; Cohn, Trevor; Osborne, Miles 

2008 Annual Meeting Of The Association For Computational Linguistics 

 

D08-1023: Probabilistic Inference for Machine Translation 

Blunsom, Philip; Osborne, Miles 

2008 Conference On Empirical Methods In Natural Language Processing 

 

P05-1033: A Hierarchical Phrase-Based Model For Statistical Machine 

Translation 

Chiang, David 



 Appendix A. 

Gold-Standard Reading Lists | 156 

 

 

2005 Annual Meeting Of The Association For Computational Linguistics 

 

N04-1035: What's In A Translation Rule? 

Galley, Michel; Hopkins, Mark; Knight, Kevin; Marcu, Daniel 

2004 Human Language Technology Conference And Meeting Of The North 

American Association For Computational Linguistics 

 

N09-1025: 11,001 New Features for Statistical Machine Translation 

Chiang, David; Knight, Kevin; Wang, Wei 

2009 -NAACL 

“statistical parsing” 

J03-4003: Head-Driven Statistical Models For Natural Language Parsing 

Collins, Michael John 

2003 Computational Linguistics 

 

J07-4004: Wide-Coverage Efficient Statistical Parsing with CCG and 

Log-Linear Models 

Clark, Stephen; Curran, James R. 

2007 Computational Linguistics 

 

P02-1035: Parsing The Wall Street Journal Using A Lexical-Functional 

Grammar And Discriminative Estimation Techniques 

Riezler, Stefan; King, Tracy Holloway; Kaplan, Ronald M.; Crouch, 

Richard; Maxwell III, John T.; Johnson, Mark 

2002 Annual Meeting Of The Association For Computational Linguistics 

 

P95-1037: Statistical Decision-Tree Models For Parsing 

Magerman, David M. 

1995 Annual Meeting Of The Association For Computational Linguistics 

 

J93-1002: Generalized Probabilistic LR Parsing Of Natural Language 

(Corpora) With Unification-Based Grammars 

Briscoe, Ted; Carroll, John A. 

1993 Computational Linguistics 

 

J98-4004: PCFG Models Of Linguistic Tree Representations 

Johnson, Mark 

1998 Computational Linguistics 

 

P96-1025: A New Statistical Parser Based On Bigram Lexical 

Dependencies 

Collins, Michael John 

1996 Annual Meeting Of The Association For Computational Linguistics 

 

W97-0301: A Linear Observed Time Statistical Parser Based On Maximum 

Entropy Models 

Ratnaparkhi, Adwait 

1997 Conference On Empirical Methods In Natural Language Processing 

 

P99-1069: Estimators For Stochastic "Unification-Based" Grammars 



 Appendix A. 

Gold-Standard Reading Lists | 157 

 

 

Johnson, Mark; Geman, Stuart; Canon, Stephen; Chi, Zhiyi; Riezler, 

Stefan 

1999 Annual Meeting Of The Association For Computational Linguistics 

 

P05-1012: Online Large-Margin Training Of Dependency Parsers 

McDonald, Ryan; Crammer, Koby; Pereira, Fernando C.N. 

2005 Annual Meeting Of The Association For Computational Linguistics 

 

C04-1010: Deterministic Dependency Parsing Of English Text 

Nivre, Joakim; Scholz, Mario 

2004 International Conference On Computational Linguistics 

 

P08-1108: Integrating Graph-Based and Transition-Based Dependency 

Parsers 

Nivre, Joakim; McDonald, Ryan 

2008 Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue 

 

C96-1058: Three New Probabilistic Models For Dependency Parsing: An 

Exploration 

Eisner, Jason M. 

1996 International Conference On Computational Linguistics 

 

P02-1043: Generative Models For Statistical Parsing With Combinatory 

Categorial Grammar 

Hockenmaier, Julia; Steedman, Mark 

2002 Annual Meeting Of The Association For Computational Linguistics 

 

P01-1010: What Is The Minimal Set Of Fragments That Achieves Maximal 

Parse Accuracy? 

Bod, Rens 

2001 Annual Meeting Of The Association For Computational Linguistics 

 

P04-1013: Discriminative Training Of A Neural Network Statistical 

Parser 

Henderson, James B. 

2004 Annual Meeting Of The Association For Computational Linguistics 

 

P05-1011: Probabilistic Disambiguation Models For Wide-Coverage HPSG 

Parsing 

Miyao, Yusuke; Tsujii, Jun'ichi 

2005 Annual Meeting Of The Association For Computational Linguistics 

 

C92-2065: Probabilistic Tree-Adjoining Grammar As A Framework For 

Statistical Natural Language Processing 

Resnik, Philip 

1992 International Conference On Computational Linguistics 

 

C02-1013: High Precision Extraction Of Grammatical Relations 

Carroll, John A.; Briscoe, Ted 

2002 International Conference On Computational Linguistics 

 

W07-2207: Efficiency in Unification-Based N-Best Parsing 

Zhang, Yi; Oepen, Stephan; Carroll, John A. 



 Appendix A. 

Gold-Standard Reading Lists | 158 

 

 

2007 Tenth International Conference on Parsing Technologies 

 

N07-1051: Improved Inference for Unlexicalized Parsing 

Petrov, Slav; Klein, Dan 

2007 Human Language Technologies 2007: The Conference of the North 

American Chapter of the Association for Computational Linguistics; 

Proceedings of the Main Conference 

 

P03-1054: Accurate Unlexicalized Parsing 

Klein, Dan; Manning, Christopher D. 

2003 Annual Meeting Of The Association For Computational Linguistics 

  



 Appendix B. 

Task-based Evaluation Materials | 159 

 

 

Appendix B. 

Task-based Evaluation Materials 

Instructions to Novice Group A 

Imagine the following situation: 

 

Your friend is going to Sydney to present a scientific topic to an MSc class. This topic 

is generally in her field, but she does not know any of the details of the topic.  Because 

she is in a rush, she has asked you to provide her with the 20 most important papers 

about the topic, which she will then read on the plane. She would appreciate them in 

the order she should read them in case she runs out of time during the flight. You have 

only 20 minutes of search time to find these papers.  This will leave enough time for 

them to be printed before she leaves for the airport. 

 

In this experiment you will do this type of search twice, each time with a different topic 

and different search system. Both systems allow you to: 

• type in search queries to be presented with a list of relevant papers 

• click on the paper title to read the paper 

• see how many people cite each paper returned by the search and follow 

links to see the citing papers  

• follow links to see papers similar to each paper returned by the search 

 

The systems are slightly different in what they present for each paper: 

• System 1 provides a short summary-style “snippet” for each paper.  This 

snippet presents part of the paper that is relevant to your query. 

• System 2 provides relevant technical terms for each paper. They can be 

explored by clicking on them: you will be presented with papers relevant 

to each technical term. 

 

This hour will be split up as follows: 

• Introduction : 5 minutes 

• System 1 : 5 minutes training & 20 minutes search 

• Break : 5 minutes 

• System 2 : 5 minutes training & 20 minutes search 

 

You will be given a new search topic and set up with a new search system at the 

beginning of each of your two search sessions.  

 

At the end of each session, you will be asked to hand in the ranked list of 20 papers 

that you have produced. To produce this list, you can copy-and-paste the paper details 

from the search window into a Word document.  During the search you can reorder 

and delete what you have put in that Word document. 
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Instructions to Novice Group B 

Imagine the following situation: 

 

Your friend is going to Sydney to present a scientific topic to an MSc class. This topic 

is generally in her field, but she does not know any of the details of the topic.  Because 

she is in a rush, she has asked you to provide her with the 20 most important papers 

about the topic, which she will then read on the plane. She would appreciate them in 

the order she should read them in case she runs out of time during the flight. You have 

only 20 minutes of search time to find these papers.  This will leave enough time for 

them to be printed before she leaves for the airport. 

 

In this experiment you will do this type of search twice, each time with a different topic 

and different search system. Both systems allow you to: 

• type in search queries to be presented with a list of relevant papers 

• click on the paper title to read the paper 

• see how many people cite each paper returned by the search and follow 

links to see the citing papers  

• follow links to see papers similar to each paper returned by the search 

 

The systems are slightly different in what they present for each paper: 

• System 1 provides relevant technical terms for each paper. They can be 

explored by clicking on them: you will be presented with papers relevant 

to each technical term. 

• System 2 provides a short summary-style “snippet” for each paper.  This 

snippet presents part of the paper that is relevant to your query. 

 

This hour will be split up as follows: 

• Introduction : 5 minutes 

• System 1 : 5 minutes training & 20 minutes search 

• Break : 5 minutes 

• System 2 : 5 minutes training & 20 minutes search 

 

You will be given a new search topic and set up with a new search system at the 

beginning of each of your two search sessions.  

 

At the end of each session, you will be asked to hand in the ranked list of 20 papers 

that you have produced. To produce this list, you can copy-and-paste the paper details 

from the search window into a Word document.  During the search you can reorder 

and delete what you have put in that Word document. 
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