
Technical Report
Number 840

Computer Laboratory

UCAM-CL-TR-840
ISSN 1476-2986

Minimally supervised
dependency-based methods for

natural language processing

Marek Rei

September 2013

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2013 Marek Rei

This technical report is based on a dissertation submitted
December 2012 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

This work investigates minimally-supervised methods for solving NLP tasks,

without requiring explicit annotation or training data. Our motivation is to cre-

ate systems that require substantially reduced effort from domain and/or NLP

experts, compared to annotating a corresponding dataset, and also offer easier

domain adaptation and better generalisation properties.

We apply these principles to four separate language processing tasks and analyse

their performance compared to supervised alternatives. First, we investigate the

task of detecting the scope of speculative language, and develop a system that

applies manually-defined rules over dependency graphs. Next, we experiment

with distributional similarity measures for detecting and generating hyponyms,

and describe a new measure that achieves the highest performance on hyponym

generation. We also extend the distributional hypothesis to larger structures and

propose the task of detecting entailment relations between dependency graph

fragments of various types and sizes. Our system achieves relatively high accuracy

by combining distributional and lexical similarity scores. Finally, we describe a

self-learning framework for improving the accuracy of an unlexicalised parser, by

calculating relation probabilities using its own dependency output. The method

requires only a large in-domain text corpus and can therefore be easily applied

to different domains and genres.

While fully supervised approaches generally achieve the highest results, our ex-

periments found minimally supervised methods to be remarkably competitive.

By moving away from explicit supervision, we aim to better understand the un-

derlying patterns in the data, and to create systems that are not tied to any

specific domains, tasks or resources.

3

Acknowledgements

Writing a dissertation is a tremendous task, and it would not have been possible

without the help of others. I would first like to thank my supervisor, Professor

Ted Briscoe, for invaluable guidance and advice throughout the completion of

this doctorate. He was able to give me great freedom for pursuing interesting

research directions, while our regular meetings and discussions provided excellent

insight and kept me firmly on track.

Being part of the Natural Language and Information Processing research group

has been an important influence, and I am grateful to all the people I had the

chance to collaborate with. I would like to thank Stephen Clark and Anna Ko-

rhonen for giving early feedback on my work in progress, Andreas Vlachos for

very interesting discussions, and Diarmuid Ó Séaghdha for reading my thesis

and providing valuable suggestions. I am very thankful to my examiners, Ann

Copestake and Rob Gaizauskas, who helped me with knowledgeable comments

and feedback.

I am also very grateful to the Computer Laboratory, Churchill College and EP-

SRC for funding my studies, making it possible for me to pursue a degree in

Cambridge.

I would especially like to thank Helen Yannakoudakis, who has given me con-

stant advice and encouragement. Her invaluable support, both intellectual and

personal, has helped me in so many different ways.

Finally, I am thankful to my family – my mother Sirje, father Karl, and sister

Merlyn – who have always been there for me. Completing this work would not

have been possible without their love and support.

4

Contents

Contents 5

1 Introduction 10

1.1 Research goals . 14

1.2 Project overview . 15

1.2.1 Detection of speculative language 15

1.2.2 Hyponym detection and generation 15

1.2.3 Fragment entailment detection 16

1.2.4 Parser lexicalisation . 17

2 Resources 18

2.1 Tools . 18

2.1.1 The RASP System . 18

2.1.2 C&C Tools . 20

2.1.3 Support Vector Machines 20

2.1.4 Conditional Random Fields 22

2.2 Developed libraries . 22

2.2.1 SemGraph . 22

2.2.2 SemSim . 25

2.3 Datasets . 27

2.3.1 British National Corpus 27

2.3.2 BLLIP WSJ Corpus . 27

2.3.3 Brown Corpus . 28

2.3.4 SUSANNE Corpus . 28

2.3.5 Penn Treebank . 29

5

CONTENTS

2.3.6 PARC 700 Dependency Bank 29

2.3.7 DepBank/GR . 29

2.3.8 WordNet . 30

2.3.9 MEDLINE . 30

2.3.10 PubMed . 31

2.3.11 PubMed Central . 31

2.3.12 BioMed Central . 31

2.3.13 GENIA . 32

2.3.14 GENIA-GR . 32

2.3.15 BioScope . 32

3 Detection of speculative language 34

3.1 Introduction . 34

3.2 Research goals . 35

3.3 Background . 36

3.4 Rule-based methods . 38

3.4.1 Speculation cues . 38

3.4.2 Speculation scopes . 39

3.5 Supervised methods . 42

3.5.1 Speculation cues . 42

3.5.2 Speculation scopes . 44

3.6 Post-processing . 47

3.7 Experiments . 48

3.7.1 Dataset . 48

3.7.2 Cue detection . 51

3.7.3 Scope detection . 53

3.8 Conclusion . 56

4 Hyponym detection and generation 58

4.1 Introduction . 58

4.2 Research goals . 60

4.3 Background . 61

4.4 Similarity measures . 63

6

CONTENTS

4.4.1 Cosine . 64

4.4.2 Pearson product-moment correlation coefficient 64

4.4.3 Spearman’s rank correlation coefficient 65

4.4.4 Jaccard index (Set) . 66

4.4.5 Dice (Set) . 66

4.4.6 Overlap coefficient . 66

4.4.7 Cosine (Set) . 66

4.4.8 Jaccard (Generalisation) 67

4.4.9 Dice (Generalisation) . 67

4.4.10 Dice (Generalisation 2) . 67

4.4.11 Kendall’s tau coefficient 68

4.4.12 Lin similarity . 69

4.4.13 Weeds’ Precision ? . 69

4.4.14 Weeds’ Recall ? . 69

4.4.15 Weeds’ F-score . 70

4.4.16 Clarke’s degree of entailment ? 70

4.4.17 Average precision ? . 70

4.4.18 Average precision (inclusion) ? 71

4.4.19 Average precision (balanced inclusion) ? 71

4.4.20 Directional Lin ? . 72

4.4.21 Balanced precision ? . 72

4.4.22 Kullback-Leibler divergence � ? 72

4.4.23 Jensen-Shannon divergence � 73

4.4.24 α-skew divergence � ? . 74

4.4.25 Manhattan distance � . 75

4.4.26 Euclidean distance � . 75

4.4.27 Chebyshev distance � . 75

4.5 Proposed measure: Weighted Cosine 75

4.6 Datasets . 78

4.7 Experiments . 81

4.7.1 Hyponym detection . 81

4.7.2 Hyponym generation . 84

4.7.3 Supervised learning . 87

7

CONTENTS

4.8 Conclusion . 89

5 Entailment Detection 92

5.1 Introduction . 92

5.2 Research goals . 93

5.3 Background . 94

5.4 Applications . 97

5.5 Modelling entailment between graph fragments 98

5.5.1 Intrinsic similarity . 101

5.5.2 Extrinsic similarity . 102

5.5.3 Hedging and negation . 104

5.6 Dataset . 106

5.7 Experiments . 108

5.8 Conclusion . 112

6 Parser Lexicalisation 114

6.1 Introduction . 114

6.2 Research Goals . 115

6.3 Background . 116

6.4 Reordering dependency graphs . 118

6.4.1 Graph modifications . 118

6.4.2 Edge scoring methods . 120

6.4.3 Smoothing edge scores . 122

6.4.4 Combining edge scores . 124

6.4.5 Graph scoring . 124

6.5 Evaluation methods . 125

6.6 Experiments . 127

6.6.1 DepBank . 127

6.6.2 Genia . 130

6.6.3 Error analysis . 133

6.7 Conclusion . 135

7 Conclusion 137

8

CONTENTS

Appendix A: Hedge cues 140

Appendix B: Hyponym generation examples 142

Appendix C: Similarity measures for entailment detection 152

References 154

9

Chapter 1

Introduction

Natural Language Processing (NLP) is a general term for a wide range of tasks

and methods related to automated understanding of human languages. In re-

cent years, the amount of available diverse textual information has been growing

rapidly, and specialised computer systems can offer ways of managing, sorting,

filtering and processing this data more efficiently. As a larger goal, research in

NLP aims to create systems that can also ‘understand’ the meaning behind the

text, extract relevant knowledge, organise it into easily accessible formats, and

even discover latent or previously unknown information using inference. For ex-

ample, the field of biomedical research can benefit from various text mining and

information extraction techniques, as the number of published papers is increas-

ing exponentially every year, yet it is vital to stay up to date with all the latest

advancements.

Research in Machine Learning (ML) focuses on the development of algorithms

for automatically learning patterns and making predictions based on empirical

data, and it offers useful approaches to many NLP problems. Machine learning

techniques are commonly divided into three categories:

1. Supervised learning methods make use of labelled training data to build

models that can generalise to unseen examples. These include many well-

known learning algorithms, such as support vector machines (Cortes & Vap-

nik, 1995; Joachims, 1998), conditional random fields (Lafferty et al., 2001),

probabilistic neural networks (Specht, 1990) and random forests (Breiman,

10

2001).

2. Semi-supervised systems normally require smaller amounts of labelled

data, and also make use of some unlabelled corpora. This can be achieved

by bootstrapping the system with a small set of annotated examples and

iteratively finding more from the unlabelled data (Agichtein & Gravano,

2000; Thelen & Riloff, 2002), or by propagating the labels of known exam-

ples to unseen instances using some similarity metric (Zhu & Ghahramani,

2002; Chen et al., 2006).

3. Unsupervised learning methods aim to find a hidden structure in the

provided dataset, without using any explicit labelling information. Due

to the restrictions of the problem, this usually reduces to some form of

clustering, such as k-means (Lloyd, 1982), hierarchical clustering (Johnson,

1967), or self-organising maps (Kohonen, 1990).

Supervised systems have been shown to deliver state-of-the-art performance

on a variety of tasks. They are able to automatically learn complicated patterns

from the data, and if a suitable collection of annotated examples is available,

supervised techniques can offer very competitive results for most NLP challenges.

However, obtaining this annotation can be a very costly and time-consuming

process. Manual annotation is often a slow and laborious task, and the datasets

need to be large enough to allow for sufficient generalisation by the algorithms,

usually thousands or tens of thousands of examples. NLP tasks are often domain-

specific, and therefore the annotation should be performed by domain experts,

who can sometimes be reluctant to donate their time. Furthermore, in order to

minimise bias and error, the data should be cross-annotated by more than one

expert. Finally, when the dataset is created, it can be utilised to train a model

for a specific task, but it is usually unable to generalise to different tasks, or even

different domains of the same problem.

In this work we investigate minimally-supervised methods for solving NLP

tasks, and we define them as requiring no explicit training data. Since completely

unsupervised systems are usually only applicable to tasks that can be formulated

as clustering problems, we expand this definition by also allowing:

11

a) existing NLP tools (e.g., tokenisers, POS taggers, parsers) that are not

specific to our task or domain, and/or

b) domain-specific resources, other than annotated training data, which could

be produced by a domain-expert in a relatively short time.

While the amount of required supervision depends on the specific task, we

aim to develop approaches that are expected to require only a fraction of work

from domain experts, compared to manually annotating a dataset for supervised

learning. Semi-supervised systems approach similar problems by making use of

some unlabelled data, but they still require varying amounts of annotation. These

methods have been more thoroughly investigated by other researchers (Zhu, 2005;

Chapelle et al., 2006; Vlachos, 2010), and they will not be the focus in this work.

For developing minimally-supervised systems, we make use of automatically

generated dependency graphs, allowing us to find the binary semantic relations

between individual words. In contrast to parse trees that show the syntactic

construction and grammatical rules in a sentence, dependency relations provide

a more intuitive representation of the meaning behind sentences. For example, the

edge labels in Figure 1.1 indicate that design is the core of the sentence (missing

head relation), engineers are the people doing the designing (non-clausal subject

relation), and engines are being designed (direct object relation). Dependency

graphs are also better suited for representing discontinuous constructions, such

as long-distance dependencies, or grammatical relations that are signalled by

morphology instead of word order (McDonald & Nivre, 2011). By recursively

traversing the directed graph, a system can automatically find how individual

words relate to each other, and reconstruct the semantics of the whole sentence.

The engineer be design new jet engine .
AT NN2 VBR VVG JJ NN1 NN2 .

ncsubj

aux

dobj

ncmod

ncmoddet

Figure 1.1: Example dependency graph for the sentence: The engineers are de-
signing new jet engines.

12

Dependency parsers are available for many different languages and domains,

and they are being utilised to solve various tasks with increasing frequency, mak-

ing them one of the most commonly used tools in natural language processing.

Our work and methods focus on novel uses of dependency graphs, as they provide

valuable information about the semantics of the text, even without any available

task-specific annotation. We experiment with defining heuristic rules over the

graph structure (Chapter 3), use dependency graphs to extract features for a

supervised classifier (Chapter 3), collect distributional features from dependency

graphs (Chapter 4), extend the distributional hypothesis to dependency graph

fragments (Chapter 5), and improve the accuracy of a parser by having it learn

from its own dependency output (Chapter 6).

The goal of this work is to create systems that require substantially reduced

effort from domain experts, compared to annotating a corresponding dataset.

Our research is largely motivated by potential applications in the biomedical do-

main, where expertly annotated data is difficult to obtain and does not exist for

many NLP tasks. However, lack of annotated data also prevents us from per-

forming conclusive evaluation and comparison of all our methods in this domain.

Therefore, we conduct experiments on biomedical data whenever possible, but

also make use of other domains and datasets, where annotation is more readily

available.

Although many problems can be represented as sets of feature vectors in a

very straightforward way, we believe it is important not to get overly reliant on

using only supervised classifiers. A famous quote by Abraham Maslow says ”I

suppose it is tempting, if the only tool you have is a hammer, to treat everything

as if it were a nail.” (Maslow, 1968). By moving away from explicit supervision,

we aim to better understand the underlying patterns in the data, and to create

systems that are not tied to a specific domain or dataset. In addition, the output

of such methods is likely to have good discriminative properties, and can therefore

be used to directly benefit fully supervised systems.

13

1.1 Research goals

In this work, we investigate four different NLP tasks and approach them using

minimally supervised dependency-based methods. Each of these tasks contains a

unique set of challenges and goals that need to be met, and these are described

in detail in their corresponding chapters. However, we also have a set of common

goals that we follow throughout this thesis:

1. Investigate minimally supervised methods and how they can be

applied to different tasks in natural language processing. We aim

to determine whether minimal supervision is a viable approach to NLP, and

whether it can deliver competitive performance even without training data.

2. Compare the performance of minimally supervised systems to

fully supervised systems. We contrast systems with different levels of

supervision in order to measure the decrease in performance when labelled

data is not available, thereby quantifying the actual benefit of manual an-

notation.

3. Examine new and innovative applications for dependency graphs.

We experiment with various ways of using dependency graphs, illustrating

their usefulness as a general-purpose resource for natural language process-

ing, and examining how they can help solve specific language processing

tasks.

4. Find ways of integrating minimally supervised and fully super-

vised systems. We determine whether minimally supervised methods can

be successfully used as discriminative features in a supervised classifier, and

how this affects performance.

5. Create accurate practical systems for solving each of the tasks. We

analyse every individual challenge in detail and look for underlying patterns.

Our focus is on developing solutions that require no training data, thereby

making them more robust, more easily adapted to different domains, and

also more suitable to be deployed in practical applications.

14

1.2 Project overview

We investigate the effect of minimally supervised methods by applying them to

four separate language processing tasks. In each of these case studies, our goal is

to develop a competitive working system for solving the task without requiring

training data. This allows us to study the performance of different systems, in

order to find common properties and approaches that are capable of generalising

across different problem sets and domains. Whenever possible, results are also

presented using a supervised system, allowing us to analyse and compare the two

alternative methodologies.

The tasks we investigate are as follows:

1.2.1 Detection of speculative language

Speculative language is an important tool in scientific literature, allowing sci-

entists to guide research beyond the evidence without overstating what follows

from their work. Vincze et al. (2008) show that 19.44% of all sentences in the

full papers of the BioScope corpus contain speculation cues. Detecting the scope

of uncertainty in text can be important for tasks such as scientific information

extraction or literature curation, as typically only definite information should be

extracted and curated.

We develop and compare three different approaches to the scope detection

task: the baseline system assigns scopes only based on surface text and requires

barely any processing; the heuristic system uses a small number of linguistic rules

defined over dependency graphs, but requires no annotated data; the supervised

system builds on the previous approaches and employs a classifier trained on

human-annotated data. Most of this work has been published in the proceedings

of the Conference on Natural Language Learning 2010 (Rei & Briscoe, 2010).

1.2.2 Hyponym detection and generation

Automatic detection and generation of hyponyms has many practical applications

in nearly all natural language processing tasks. Information retrieval, information

15

extraction and question answering can be improved by performing appropriate

query expansion. Summarisation systems can increase coherence and reduce rep-

etition by correctly handling hyponymous words in the input text. Entailment

and inference systems can improve sentence-level entailment resolution by detect-

ing the presence and direction of word-level hyponymy relations. Hyponyms are

also useful for smoothing language models and word co-occurrence probabilities.

We investigate how hyponyms can be detected and generated based on their

distributional similarity, using dependency relations as context features and re-

quiring only a large corpus of plain text for collecting co-occurrence statistics.

While most common similarity measures are symmetric, recent work on direc-

tional distributional similarity measures has been trying to model asymmetric

relations as well. We present a comprehensive comparison of all prominent simi-

larity measures, create several new datasets to evaluate this task, and also propose

a novel measure based on our observations.

1.2.3 Fragment entailment detection

By generalising the hyponym relation to larger text units such as phrases, pred-

icates and full sentences, we can derive the relation of entailment. For example,

the phrase argues against also entails does not support. While there exist numer-

ous sentence-level entailment detection systems, a broader approach would allow

for entailment discovery among a wider range of fragment types for which no

specialised systems exist. In addition, entailment detection between fragments is

a vital step towards being able to generate entailing sentences for a given input

text.

We present a unified framework that can be used to detect entailment relations

between fragments of various types and sizes. The system is designed to work

with anything that can be represented as a dependency graph, including single

words, constituents of various sizes, text adjuncts, predicates, relations and full

sentences. The approach is unsupervised and uses intrinsic similarity, multi-level

extrinsic similarity and the detection of negation and hedged language to assign a

confidence score to entailment relations between two fragments. Most of this work

has been published in the Workshop on Biomedical Natural Language Processing

16

2011 (Rei & Briscoe, 2011).

1.2.4 Parser lexicalisation

Lexical features are important when choosing the correct derivation in ambiguous

contexts, but they have been shown not to transfer well between different domains

and genres (Sekine, 1997; Gildea, 2001). At the same time, unlexicalised parsers

are surprisingly competitive with their lexicalised counterparts (Klein & Manning,

2004; Petrov et al., 2006). Instead of trying to adapt a lexicalised parser to a new

domain, we explore how lexical features can be integrated with an unlexicalised

parser.

We use the unlexicalised RASP parser to process a large corpus of in-domain

text. Next, we create an augmented version of the dependency graphs by ap-

plying a series of linguistically-motivated modifications. Finally, we use scores

derived from the corpus statistics to rerank the alternative parses created by

RASP, thereby improving the parsing accuracy. The system also makes use of

automatically generated hyponyms to smooth the probabilities and improve the

modelling of rare relations. This framework allows the unlexicalised parser to

learn from its own output and significantly increase accuracy without requiring

any additional annotated data. Most of this work has been published in the 2013

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT 2013) (Rei & Briscoe,

2013).

17

Chapter 2

Resources

In this chapter we provide a description of various tools and datasets which we

utilise or reference in our research.

2.1 Tools

2.1.1 The RASP System

The Robust Accurate Statistical Parsing (RASP) System1 (Briscoe et al., 2006;

Watson et al., 2005; Watson, 2006, 2007; Andersen et al., 2012) contains modules

for a series of language processing tasks, such as finding sentence boundaries,

analysing words to identify their root and any suffixes, assigning part-of-speech

labels, and analysing the grammatical relations between words within sentences.

We employ this toolkit in all of our experiments, as it utilises an unlexicalised

statistical parser, thus reducing the required manual annotation and making it

less domain-dependent.

The structural parse ranking model is trained (in a semi-supervised fashion)

on partially-bracketed sentences from the SUSANNE corpus, itself a subset of

the Brown corpus. The RASP system also utilises a part-of-speech (POS) tagger

which provides tag sequences to the parser, but this too has been trained on

non-WSJ (Wall Street Journal) text drawn from balanced corpora. Although the

tagger does make use of lexical statistics to assign POS tags, no further lexical

1ilexir.co.uk/applications/rasp/download

18

information is exploited in the default parse selection model, which we deploy

in our experiments. Finally, the parser outputs ranked dependency graphs using

the same grammatical relation (GR) scheme (Briscoe & Carroll, 2006) used to

annotate the DepBank/GR subset of WSJ section 23 from the Penn Treebank.

The dependency graphs are directed, connected (except in the event of parse

failures), but not projective or acyclic. For example, with ‘control’ relations,

such as those governing the implicit subject of an infinitive verbal complement, a

dependent of the main verb may also be a dependent of the embedded infinitive,

violating the single-head constraint of dependency tree representations. In non-

subject relative clauses without an overt relative pronoun, the modified head

governs the embedded verb of the relative clause but, in turn, depends on this

verb as its object, introducing a cycle in the dependency graph.

The RASP parser is a generalised LR (GLR) parser which builds a non-

deterministic LALR(1) parse table from the grammar (Tomita, 1987). A context-

free backbone is automatically derived from a unification grammar. The residue

of features not incorporated into the backbone are unified on each reduce action

and if unification fails the associated derivation paths also fail. The parser creates

a packed parse forest represented as a graph-structured stack.

Inui et al. (1997) describe the probabilistic GLR (PGLR) model utilised in the

RASP system where a transition is represented by the probability of moving from

one stack state, σi−1, (an instance of the graph structured stack) to another, σi.

They estimate this probability using the stack-top state si−1, next input symbol

li and next action ai. This probability is conditioned on the type of state si−1. Ss

and Sr are mutually exclusive sets of states which represent those states reached

after shift or reduce actions, respectively.

Watson et al. (2007) utilised about 4,000 unlabelled partially-bracketed train-

ing sentences from the SUSANNE corpus to train the PGLR model in a semi-

supervised two-step process. An initial model was trained from the subset of

about 1,000 bracketed sentences for which there was a single derivation consistent

with the bracketing. This initial model was used to rank derivations consistent

with the bracketing from the remaining ambiguous portion of the training data.

Then the final model was trained using rank-weighted counts from the entire

training corpus.

19

It is difficult to accurately quantify the amount of work required to construct

the grammar rules and partial bracketing necessary for training the models in

RASP. However, it is definitely less compared to the construction of the Penn

Treebank, which is utilised for training most other supervised parsing models. In

our experiments we treat RASP as an external tool and employ it on text from

different domains, such as biomedical papers and WSJ articles. It is clear that

RASP is in no way tuned to perform well in the biomedical domain, as it was

developed using the Brown corpus. This might be more debatable for the WSJ

experiments, as the Brown corpus covers a wide selection of texts, including news

articles from the financial domain. However, financial texts are a relatively small

portion of the dataset (only 4 out of 500 samples), and Gildea (2001) also treats

the Brown corpus as out of domain with respect to the WSJ.

2.1.2 C&C Tools

The C&C Tools1 (Clark & Curran, 2004; Curran et al., 2007) consist of the C&C

Combinatory Categorial Grammar (CCG) parser, the computational semantics

tool Boxer, and the C&C taggers. The grammar used for the parser, consisting of

425 lexical categories expressing subcategorisation information and a small num-

ber of combinatory rules, was extracted from CCGBank (Hockenmaier, 2003), a

CCG version of the Penn Treebank. A supertagger is first used to assign lexical

categories to each word in the sentence, and these are then combined by the parser

using the combinatory rules and the CKY algorithm. A log-linear model is used

to score alternative parses, with features defined over local parts of the deriva-

tion, including word-word dependencies. The parser outputs predicate-argument

dependencies defined in terms of CCG lexical categories. In Chapter 6 we com-

pare the performance of the unlexicalised RASP parser, the fully-lexicalised C&C

parser, and our self-learning lexicalisation method on the DepBank/GR dataset.

2.1.3 Support Vector Machines

Support Vector Machines (SVM) (Vapnik, 1982; Cortes & Vapnik, 1995) are a

type of supervised large-margin discriminative classifier. A binary SVM takes

1svn.ask.it.usyd.edu.au/trac/candc

20

Figure 2.1: Illustration of Support Vector Machines. The circles and crosses
represent different classes, the grey squares represent support vectors on the edge
of the separation margin. Image by Cortes & Vapnik (1995).

as input a labelled dataset with two classes and learns a model for predicting

the class of unseen examples. More specifically, the algorithm finds the hyper-

plane between two classes which, in addition to separating them, also has the

largest distance from either class. The decision function is based on the subset of

training examples that lie closest to the separation plane, referred to as support

vectors. This strategy allows the model to achieve better performance on unseen

data, as the maximum margin hyperplane is expected to correspond to a natural

separation between the classes.

While the original algorithm assumes that a clean separation of the two classes

is possible, Cortes & Vapnik (1995) introduced soft-margin SVMs that try to find

the best possible hyperplane but also allow for misclassified examples. SVMs can

also make use of the kernel trick which allows solving non-linear problems through

linear optimisation techniques.

We utilise SVMLight (Joachims, 1999),1 a well-known efficient implementation

of SVMs, in Chapter 4 to perform supervised learning experiments for hyponym

detection and generation.

1www.cs.cornell.edu/People/tj/svm light/

21

2.1.4 Conditional Random Fields

Conditional Random Fields (CRF) (Lafferty et al., 2001) are a class of probabilis-

tic models for segmenting and labelling sequence data. A CRF can be thought

of as an undirected graphical model, globally conditioned on the sequence of ob-

servations. This makes them well-suited for classification tasks where labels are

highly dependent on sequence and context, such as POS tagging.

Assuming that the graphical model has a simple first-order chain structure,

the overall probability of the label sequence can be calculated using a set of

transition and state feature functions (Wallach, 2004). We make use of CRF++,1

an implementation of CRFs, to identify speculation cues and scopes in Chapter

3.

2.2 Developed libraries

In order to perform all the experiments necessary for this research, we created

two new software libraries which we are releasing as open-source projects:

2.2.1 SemGraph

SemGraph is a Java library for reading, writing and visualising dependency graphs

in different formats.

Numerous alternative dependency parsers have been developed, and most of

them specify a unique format for their output. Applications that need to iterate

through large collections of parsed data often employ an integrated approach, and

the modules for processing parser output are mixed together with system logic.

This results in complex systems that are highly parser-dependent, and modifying

them to work with different parser formats requires expensive large-scale changes.

With SemGraph we have aimed to develop a library that allows for easy sepa-

ration of system logic from any specific parser format. In addition, we wish to pro-

vide well-tested collaboratively developed methods for reading various formats,

instead of every developer re-implementing a personal version of this common

1code.google.com/p/crfpp/

22

1 GraphReader reader = new RaspXmlGraphReader (
” examples / raspxml / f i l e 1 . xml” ,
RaspXmlGraphReader .NODES TOKENS, false , fa l se) ;

2 while (reader . hasNext ()) {
3 Graph graph = reader . next () ;
4 for (Node node : graph . getNodes ())
5 System . out . p r i n t l n (node . getLemma () +

node . getPos ()) ;
6 }

Figure 2.2: Example Java code for iterating through a corpus in RASP XML
format and printing out information about each node.

code. The library can be easily included in any Java project, and the system will

be able to use generic functions for accessing dependency graphs, without explicit

knowledge of the underlying input format.

For example, a common scenario for an NLP system is to iterate through a

large corpus of parsed text in order to collect distributional features or look for

specific patterns in dependency graphs. Using SemGraph, the same system can

utilise corpora parsed with both RASP and C&C parsers without any modifica-

tions, by only specifying the appropriate input location. This enables researchers

and developers to easily switch between alternative parsers and corpora, in order

to use the most appropriate parser for a specific domain or task. In addition, it

reduces the amount of code required for each system, and allows for easy com-

parison of different parsers.

Figure 2.2 contains an example of working code for reading and processing

a corpus of dependency graphs. In line 1 the GraphReader object is initialised

with the input path; the program then loops through all the dependency graphs

(line 2) and every node in every graph (line 4), printing out the lemma and POS

tag (line 5). Currently, the following input formats are supported:

• rasp – The default output format of the RASP parser.

• raspxml – The xml output format of the RASP parser.

• cnc - The default output format of the C&C parser.

23

Natural language processing be a field of computer science and linguistics
JJ NN1 NN1 VBZ AT1 NN1 IO NN1 NN1 CC NN1

ncsubj

xcomp

det iobj

dobj

ncmod

conj conj

ncmod

ncmod

Figure 2.3: The LaTeX version of a dependency graph from RASP.

• parseval - The format used by the Depbank/GR dataset and one of the

output formats of the RASP parser.

• tsv - A simple tab-separated format for representing graphs and sentences.

The input can be a single file or a whole directory, containing plain text or gzipped

files. We plan to extend the library with support for several other well-known

dependency parsers, and we also welcome contributions from other developers.

While the dependency graphs are read into a common data structure, they

are not modified in any way; combining output from different parsers can lead to

unexpected results, since various sources may use different dependency labels or

even have different attachment preferences. Therefore, the library is best used for

switching between alternative input types, or combining them only in cases where

the differences are less important (e.g., when collecting distributional features).

The SemGraph library also provides methods for writing dependency graphs

in different formats. Performing a full conversion from one parser output spec-

ification to another would be a useful feature, but this is currently not possible

– most parsers include unique fields in their output that are not available from

other parsers, and we do not attempt to capture or replicate this highly specific

information. However, we are able to offer two output formats:

• tsv - A simple tab-separated format.

• tikzdependency - A LaTeX representation of the graph.

The tsv format is supported for both reading and writing, allowing users to

modify, save and reload any dependency graphs. The tikzdependency format

contains LaTeX code which can be compiled into a pdf image of a dependency

24

Figure 2.4: The GraphVisualiser tool displaying a dependency graph from RASP.

graph, as shown in Figure 2.3. This allows users to automatically convert parser

output into images suitable for research papers or technical reports, without

having to handle graphics or layout.

The library also includes a tool for visualising dependency graphs, in order to

provide researchers with an intuitive method for navigating parsed corpora and

finding patterns in graphs. The GraphVisualiser tool, shown in Figure 2.4, creates

a dynamic view of dependency graphs by displaying labelled nodes and edges

using a force-directed algorithm. The original sequence of lemmas is provided

under the graph, and the user can iterate forward and backward through a large

corpus. It also includes support for alternative parses – while keys X and Z step

through sentences, keys A and S switch between different parses of the same

sentence.

The SemGraph library is an open-source project and available for download.1

2.2.2 SemSim

SemSim is a Java library for building distributional models from large corpora

of parsed text, and for using these models in various tasks. It is built using the

SemGraph library and can therefore use any input format described in Section

1github.com/marekrei/semgraph

25

2.2.1. Current functionality of the library includes:

• Building a three-dimensional co-occurrence tensor from all dependency re-

lations in the corpora, which allows for fast access to various statistics

regarding the dataset. For example, we can find how many times does

the relation triple (play, dobj, guitar) appear in the corpus, or what is the

probability of guitar being a dependent in a relation.

• Constructing distributional context vectors for each word. Application of

various weighting schemes, such as mutual information, is also supported.

• Applying automatic modifications to dependency graphs. The pipeline in-

cludes modules for adding graph editors to perform tasks such as text nor-

malisation or adding new edges to the graph using linguistic rules. These

modifications can decrease noise and increase the number of available bi-

nary relations, leading to more accurate systems. Several graph editors

have already been implemented, described in Chapter 6, and new ones can

be easily added.

• Calculating distributional similarity between words using a wide range of

similarity measures. We have implemented 30 different well-established

measures from previous research, and we provide the code for perform-

ing experiments with hyponym detection and generation, as described in

Chapter 4. The implementation uses caching and a thread pool to evenly

distribute tasks between available processors while using the same distribu-

tional model, greatly reducing the running time for experiments.

• Reranking dependency parses based on corpus statistics, as described in

Chapter 6. We use a distributional model to calculate probabilities for every

dependency relation, combine them together into parse scores for reranking,

and find distributionally similar words to smooth the calculations. The

implementation has also been optimised to make use of multi-core systems

for faster processing.

26

The SemSim library is an open-source project and publically available for down-

load.1

2.3 Datasets

2.3.1 British National Corpus

The British National Corpus (BNC) (Burnard, 2007) is a corpus containing 100

million words of written and spoken language from a wide range of sources. It is

designed to represent a wide selection of British English from the later part of the

20th century. 90% of the corpus consists of written text, such as extracts from

newspapers, specialist periodicals and journals, academic books and popular fic-

tion, published and unpublished letters, school and university essays, and many

other kinds of text. The remaining 10% contains orthographic transcriptions of

unscripted informal conversations and spoken language collected in different con-

texts. The corpus encoding also contains automatically added part-of-speech tags

and various structural information about the text, such as headings, paragraphs

and lists.

Work on the BNC started in 1991, and the first version was completed in

1994, followed by the revised second edition (BNC World) in 2001, and the third

edition (BNC XML) in 2007. In our experiments we make use of the third edition

of the BNC parsed with RASP4UIMA (Andersen et al., 2008).

2.3.2 BLLIP WSJ Corpus

The Brown Laboratory for Linguistic Information Processing (BLLIP) 1987-89

WSJ Corpus Release 1 (Charniak et al., 2000) contains approximately 30 million

words of text extracted from the Wall Street Journal (WSJ) over a three-year

period (1987 – 1989). The entire archive has been automatically parsed and

part-of-speech (POS) tagged using statistical methods, but the annotation has

not been manually checked. This corpus is a superset of the million-word Penn

Treebank (PTB) collection of parsed and POS-tagged WSJ texts. However, our

1github.com/marekrei/semsim

27

version of the BLLIP WSJ corpus excludes any texts found in PTB, as they are

used to evaluate our parse reranking framework.

2.3.3 Brown Corpus

The Brown University Standard Corpus of Present-Day American English (Brown

Corpus) (Francis & Kučera, 1979) contains 1,014,312 words of edited English-

language prose. The texts come from a variety of sources, all published in 1961

in the United States and written by native speakers, as far as could be determined.

The Corpus is divided into 500 samples of at least 2000 words each, with every

sample beginning at the start of a new sentence, but not necessarily of a paragraph

or other larger division. The samples are distributed across 15 genres (e.g., Press

Reportage, Press Editorial, and Science Fiction), roughly in the same proportions

as the amount published in 1961. A later version of the corpus also contains POS

tags, which were added automatically by a tagger, but have also been manually

checked over the course of several years.

2.3.4 SUSANNE Corpus

The Surface and Underlying Structural Analysis of Naturalistic English (SU-

SANNE) Corpus (Sampson, 1995) is an annotated sample comprising approxi-

mately 130,000 words of written American English text. It was created as part of

an effort towards developing a comprehensive annotation scheme for the logical

and surface grammar of English. SUSANNE guidelines aim to specify an explicit

notation for all aspects of English grammar in sufficient detail, such that inde-

pendent analysts working on the same text would produce identical annotations.

The texts included in the corpus are a subset of 64 sample texts from the Brown

Corpus, covering 4 different genres: Press Reportage, Belles Lettres (biographies

and memoirs), Learned (scientific and technical writing), Adventure and Western

Fiction.

28

2.3.5 Penn Treebank

The Penn Treebank (PTB) (Marcus et al., 1993, 1994; Taylor et al., 2003), also

known as UPenn Wall Street Journal (WSJ) Treebank, contains approximately

50,000 sentences (1 million words) manually annotated with part-of-speech tags

and phrase-structure trees. The texts originate from 1989 Wall Street Journal

Articles (Dow Jones Newswire stories). The initial release was created over a

period of three years and contains annotation of only skeletal trees with syntac-

tic structure. The annotation scheme was later updated (Treebank-2) to allow

for extraction of simple predicate-argument structure and include POS-tags. In

the later stages, the Treebank project also produced a tagged and parsed ver-

sion of the Switchboard corpus of transcribed telephone conversations, including

annotation for common disfluencies in speech (Treebank-3).

2.3.6 PARC 700 Dependency Bank

The PARC 700 Dependency Bank (DepBank) (King et al., 2003) contains 700

sentences randomly selected from section 23 of the WSJ Penn Treebank. They

were parsed with a broad coverage LFG grammar of English using the XLE system

(Maxwell III & Kaplan, 1993), automatically converted to DepBank format, and

then manually corrected and extended by human validators. The final annotation

contains syntactic features and bilexical head-dependent relations derived from

the F-structure representation of LFG.

2.3.7 DepBank/GR

DepBank/GR (Briscoe & Carroll, 2006) is a reannotated version of the PARC

700 Dependency Bank (DepBank), with the labelling matching the GR output

format of the RASP parser (Briscoe et al., 2006). The GR scheme includes one

matching feature from DepBank (passive); several DepBank relations have been

split into separate relations for the GR scheme (e.g., adjunct); some relations

from DepBank are merged together (e.g., oblique and iobj); the GR scheme also

includes some additional featural and subtype information. DepBank/GR is the

main evaluation dataset for RASP and is distributed together with the parser.

29

The corpus is split into 560 sentences for testing and 140 sentences of held-

out/development data.

2.3.8 WordNet

WordNet (Miller, 1995) is a large lexical database of the English language. Nouns,

verbs and adjectives are grouped into 117,000 cognitive synonym sets (synsets),

and short definitions for each of the synsets are provided. The database also

contains annotation for a range of semantic relations between these synsets, for

example hyponymy, meronymy, antonymy, and entailment. It is designed for use

both as a dictionary/thesaurus, and to be accessed automatically by artificial

intelligence or text analysis systems. WordNet has been successfully used as a

resource for many NLP tasks, such as topic classification, summarisation, in-

formation retrieval, information extraction, machine translation and word sense

disambiguation. It contains a sufficiently wide range of commonly used words,

but does not include vocabulary for more specific domains, such as the life sci-

ences. We make use of the annotation in WordNet 3.0 to evaluate methods for

hyponym detection and generation in Chapter 4.

2.3.9 MEDLINE

MEDLINE (Medical Literature Analysis and Retrieval System Online)1 is a bibli-

ographic database of journal articles in life sciences with a focus on biomedicine.

It contains over 21 million citations from approximately 5,600 worldwide jour-

nals, covering the period from 1950 to the present. Among the citations added

between 2005 and 2009, roughly 91% are published in English, and 83% have

English abstracts written by authors of the articles. The records in MEDLINE

are indexed with U.S. National Library of Medicine’s (NLM) Medical Subject

Headings (MeSH).

1www.nlm.nih.gov/pubs/factsheets/medline.html

30

2.3.10 PubMed

PubMed1 is a citation database containing over 22 million citations for biomed-

ical and health literature, also covering fields of medicine, behavioural sciences,

chemical sciences, preclinical sciences and bioengineering. It contains the records

from MEDLINE, and additional articles from selected life science journals. As of

September 2012, over 12 million of these articles are listed with their abstracts,

and approximately 500,000 new records are added to the database every year.

PubMed is also the main method for accessing the records in MEDLINE.

2.3.11 PubMed Central

PubMed Central (PMC)2 is a free archive of biomedical and life sciences journal

literature. As of September 2012, it contains over 2.5 million items, including

articles, editorials and letters. Where available, the records in PubMed are cross-

linked to their corresponding entries in PubMed Central. The PMC Open Access

Subset is a relatively small part of the total collection of articles in PMC, currently

containing 497,820 records made available under a Creative Commons or similar

licence. The full text of these PubMed Central articles is freely available for

bulk downloading and processing, making it a valuable resource for various text

mining applications.

2.3.12 BioMed Central

BioMed Central (BMC)3 is an open-access publisher that publishes a range of

journals across different biomedical fields, from basic life sciences to clinical

medicine. As of September 2012, BMC has published 133,566 articles of peer-

reviewed research, all of which are covered by an open access licence agreement,

allowing free distribution and re-use of the full-text articles. All the articles

are available for download in structured XML format, and also included in the

PubMed Central open access dataset. In our experiments we use an earlier version

of the corpus from 2010, containing 71,821 full papers.

1www.ncbi.nlm.nih.gov/pubmed
2www.ncbi.nlm.nih.gov/pmc/
3www.biomedcentral.com

31

2.3.13 GENIA

The GENIA corpus (Kim et al., 2003) is a collection of 1,999 MEDLINE ab-

stracts annotated with various levels of linguistic and semantic information. The

corpus was created to support the development and evaluation of text mining

and information extraction systems in the domain of molecular biology. The ar-

ticles in GENIA were selected using a PubMed query for the three MeSH terms

‘human’, ‘blood cells’, and ‘transcription factors’. Based on the categories of

annotation, GENIA is divided into the following subcorpora: part-of-speech an-

notation, constituency (phrase structure) syntactic annotation, term annotation,

event annotation, relation annotation, and coreference annotation.

2.3.14 GENIA-GR

The GENIA-GR dataset (Tateisi et al., 2008) is a corpus created for parser eval-

uation in the biomedical domain. It is a subset of the GENIA corpus, containing

50 abstracts (492 sentences). The abstracts were chosen to satisfy the following

conditions:

1. The abstract is indexed with the MeSH term ‘NF-Kappa B’.

2. The full text of the article is freely available from PubMed Central.

3. The abstract does not belong to the set used for training parsers by Hara

et al. (2007).

The dataset is annotated using the grammatical relations scheme proposed

by Carroll et al. (1998) and revised by Briscoe et al. (2006), also matching the

DepBank/GR dataset described in Section 2.3.7. Sentences were first parsed by

the RASP parser and then manually corrected.

2.3.15 BioScope

The BioScope corpus (Vincze et al., 2008) consists of biological and medical texts

annotated for negation and speculation, including their linguistic scope. It is de-

signed to allow for comparison of different systems on the tasks of negation/hedge

32

detection and scope resolution. The corpus is divided into three sections based

on the text sources:

• 1,273 abstracts from the GENIA corpus, containing 11,871 sentences.

• 9 full papers, containing 2,670 sentences. 5 of these papers were previously

annotated by Medlock & Briscoe (2007), the remaining 4 were selected from

the BioMed Central repository.

• 1,954 clinical free texts from the radiology report corpus, used for the CMC

clinical coding challenge (Pestian et al., 2007), containing 6,383 sentences.

The CoNLL-2010 shared task on identifying hedges and their scope (Farkas

et al., 2010) also incorporated the BioScope corpus, and 15 additional full papers

were annotated for evaluation.

33

Chapter 3

Detection of speculative language

3.1 Introduction

Speculative or “hedged” language is a way of weakening the strength of a state-

ment. It is usually signalled by a word or phrase, called a hedge cue, which

weakens some clauses or propositions. These weakened portions of a sentence

form the scope of the hedge cues. In the following examples, cues are marked

with angle brackets and scopes with round brackets:1

(1) These findings (<might> be chronic) and (<may> represent reactive

airways disease).

(2) (This subdomain, corresponding to the first exon in the genes split by two

introns, <appears> to be missing in the sea urchin).

Hedging is an important tool in scientific language allowing scientists to guide

research beyond the evidence without overstating what follows from their work.

Vincze et al. (2008) show that 19.44% of all sentences in the full papers of the

BioScope corpus contain hedge cues. Detecting these cues is potentially valuable

for tasks such as scientific information extraction or literature curation, as typi-

cally only definite information should be extracted and curated. Most work so far

1The difference in annotated scopes for these two examples is somewhat controversial, but it
follows the established guidelines of the CoNLL 2010 Shared Task; more information is available
in Section 3.7.1

34

has been done on classifying entire sentences as hedged or not, but this risks los-

ing valuable information in (semi-)automated systems. More recent approaches

attempt to find the specific parts of a sentence that are hedged.

The detection of hedge scopes is usually done in two stages – the hedge cues

are detected first, and a separate system is then utilised to find the scope of each

cue. Both of these tasks can be formulated as a supervised learning problem (e.g.,

token classification), or by manually constructing linguistically-motivated rules

that correctly resolve the scope. In this chapter we describe our implementations

of both approaches, and compare the performance of a fully-supervised system to

a minimally supervised framework utilising a small number of heuristic rules. We

also developed a combination of both methods for the CoNLL 2010 Shared Task:

Learning to Detect Hedges and their Scope in Natural Language Text (Farkas

et al., 2010). The system is designed to find hedge cues and scopes in biomedical

research papers and works in three stages:

1. Detecting the cues using a token-level supervised classifier.

2. Finding the scopes by combining manual rules and a second supervised

token-level classifier.

3. Applying postprocessing rules to convert the token-level annotation into

predictions about scope.

Our final system achieves 55.9% F-measure on the task of detecting both cues

and scopes in the biomedical papers, ranking second in the shared task results.

The experiments in this chapter make use of the dataset and evaluation metrics

from the shared task, and the results are therefore comparable to all the other

submissions.

3.2 Research goals

Our work on detection of speculative language has the following research goals:

• Investigate the relationship between the scopes of speculation cues and the

paths in dependency graphs.

35

• Create a set of heuristic rules for resolving speculation scopes.

• Develop an effective minimally supervised system for detecting speculation

cues and scopes.

• Compare the performance of minimally supervised systems to fully-supervised

systems on the tasks of detecting speculation cues and scopes.

• Experiment with combining heuristic methods and machine learning for

speculation scope detection.

3.3 Background

Hedge cues typically fall into one of the following categories (Farkas et al., 2010):

• auxiliaries: may, might, can, would, should, could, etc.

• verbs of hedging or verbs with speculative content: suggest, question, pre-

sume, suspect, indicate, suppose, seem, appear, favour, etc.

• adjectives or adverbs: probable, likely, possible, unsure, etc.

• conjunctions: or, and/or, either . . . or, etc.

However, some complex phrases can also function as hedge cues – for example,

cannot exclude the possibility, raises the question of.

The first linguistically and computationally motivated study of hedging in

biomedical texts was done by Light et al. (2004). They presented an analysis of

the problem based on Medline abstracts and constructed an initial experiment

for automated classification of speculative text.

Following their work, most research has focused on classifying sentences as

hedged or not, rather than finding the scope of the speculation. Medlock &

Briscoe (2007) proposed a weakly supervised machine learning approach to the

hedge classification problem. Their system utilised a supervised classifier with

single words as features and a small amount of seed data for bootstrapping the

system. This work was extended by experimenting with a wider range of features

36

such as part-of-speech tags, lemmas, bigrams, trigrams, and external data sources

(Medlock, 2008; Szarvas, 2008). Kilicoglu & Bergler (2008) applied a combination

of lexical and syntactic methods, improving on previous results and showing that

quantifying the strength of a hedge can be beneficial for classification of specula-

tive sentences. Some of the most recent approaches include using meta-classifiers

(Tang et al., 2010), Bayesian logistic regression (Vlachos & Craven, 2010), and

high-quality lexical feature selection (Georgescul, 2010).

With the creation of the BioScope corpus (Vincze et al., 2008), an annotated

dataset of biomedical papers, abstracts and clinical texts, research focus has

begun to shift more towards detecting the individual cues and scopes in sentences.

The corpus, described in more detail in Section 2.3.15, was built by extending

the dataset and annotation scheme used by Medlock & Briscoe (2007), and was

also used as training data for the CoNLL-10 Shared Task.

Morante & Daelemans (2009) were one of the first to approach the problem

of identifying cues and scopes in the BioScope corpus using supervised machine

learning. They trained a selection of classifiers to tag each word and combined

the results with a final classifier, identifying 65.6% of the scopes in abstracts and

35.9% of the scopes in papers. Özgür & Radev (2009) developed a system that

detects hedge cues using a supervised token-labelling approach and then resolves

the scope by applying manually-constructed rules defined over the parse tree.

One of the CoNLL-10 shared tasks involved the detection of individual hedge

cues and scopes in each sentence, and it led to the development of a wide variety

of different systems. As one of the best-performing submissions, Morante et al.

(2010) utilised a range of lexical, context and dependency features together with

a memory-based classifier to label each token, and performed post-processing

steps to construct speculation scopes. Their classification algorithm is based on

the k-nearest neighbour rule and uses a weighted class vote to find the label.

In contrast, Velldal et al. (2010) deployed a maximum entropy classifier for cue

detection and manual rules over dependency representations for scope resolution.

Their system was later improved by incorporating additional syntactic features

(Øvrelid et al., 2010).

In the most recent work, Apostolova et al. (2011) presented a system that

automatically learns syntactic patterns over a parse tree for resolving the scope

37

of both speculation and negation. Read et al. (2011) reformulated the problem

of scope detection as that of selecting the correct subtree from a parse tree,

given a list of candidates; they then rank these candidates using a linear SVM-

based scoring function. Velldal et al. (2012) describe a method for automatically

learning a discriminative ranking function over nodes in constituent trees, and

currently achieve the highest reported results on the CoNLL-10 Shared Task

dataset.

3.4 Rule-based methods

3.4.1 Speculation cues

The detection of hedge cues can be done by creating a fixed list of word sequences

and matching them to the sentences, labelling every occurrence as a cue. This

approach is quite straightforward as the number of unique cues is relatively small

– our training set contains 3,376 cues but only 142 unique examples.1 However,

a word that acts as a cue is not necessarily a cue in every context. For example,

the word or occurs 1,215 times and only 146 of them are annotated as hedge

cues. Selecting all such words as cues will create a system with high recall but

very low precision. Therefore, a more reliable approach would need to select only

instances that have a high probability of being cue words.

We first extracted all word sequences that were tagged as cues in the training

data. Next, we removed any words that occurred more often as a regular word

than a cue. Finally, the list was narrowed down further by removing any cues

that occurred only once in the data. The final set of 42 cue words is shown

in Table 3.1. While our selection was done using annotated data, a similar list

could be manually constructed by a language expert, for example by observing

system output and iteratively improving the selection. Omitting some of the less

frequent cues would not have substantial impact on the performance – while this

set covers 79.98% of all occurrences of speculation cues in the training data, using

only half of them would still include 76.39% the cues.

This rule-based system compares each of the word sequences to the input

1See Appendix A for a complete list of speculation cues in the training data

38

appear, assume, believe, cannot be exclude, hope, hypothesise, hypothesize,
hypothetically, if not, imply, indicate that, indication, likely, may, might, not
clear, not know, perhaps, possible, possibly, potentially, presumably, probable,
probably, propose, putative, raise the possibility, remain to be elucidate, seem,
should, speculate, suggest, suggestion, suggestive, suppose, suspect, think,
unclear, unlikely, whether, whether or not, would

Table 3.1: List of lemmatised hedge cues selected for string matching.

sentences and labels every match as a hedge cue. The method is extremely fast

and scalable, as it does not require any POS-tagging, parsing or classification.

Experiments in Section 3.7.2 show that it performs surprisingly well compared to

much more complex systems.

3.4.2 Speculation scopes

The scope of each cue can also be detected using a set of manual rules. The

simplest solution to this task is to tag everything between the cue word and the

end of the sentence as belonging to the scope. However, we can do better by

observing that the speculation scopes are usually connected subgraphs of depen-

dency graphs. Also, the pattern of the scope often depends on the type of the

cue – for example, while the scopes normally start with the cue word, they also

include the preceeding subject if the cue verb is passive.

To exploit the information in dependency graphs, we parse the sentences us-

ing the RASP parser and develop rules that mark certain words in the directed

dependency graph as belonging to the scope, depending on the position and POS

tag of the cue node. The terminology we use in the following rules and examples:

• “below” refers to nodes that are in the subgraph of dependencies rooted in

the current node.

• “parent” refers to the node that is the head of the current node in the

directed, connected dependency graph.

• “before” and “after” refer to word positions in the text, centred on the

current node.

39

• “mark everything below” means mark all nodes in the subgraph as being

in the scope. However, the traversal of the graph is terminated when a

text adjunct (TA) dependency boundary or a word POS-tagged as a clause

separator is found, since they often indicate the end of the scope.

• All the conditions have to be met together. For example “below the parent

and after the cue” refers to words that are simultaneously below the parent

in the dependency graph and after the cue in the sentence.

The rules for finding the scope of a cue are triggered based on the generalised

POS tag of the cue:

• Auxiliary — VM

Mark everything that is below the parent and after the cue.

If the parent verb is passive, mark everything below its subject (i.e., the

dependent of the subj dependency) before the cue.

• Verb — VV

Mark everything that is below the cue and after the cue.

If the cue is appear or seem, mark everything below subject before the cue.

If the cue is passive, mark everything below subject before the cue.

• Adjective — JJ

Find the parent of the cue. If there is no parent, the cue is used instead.

Mark everything that is below the parent and after the cue.

If the parent is passive, mark everything below subject before the cue.

If the cue is (un)likely and the next word is to, mark everything below

subject before the cue.

• Adverb — RR

Mark everything that is below the parent and after the cue.

• Noun — NN

Find the parent of the cue. If there is no parent, the cue is used instead.

Mark everything that is below the parent and after the cue.

If the parent is passive, mark everything below subject before the cue.

40

• Conjunction — CC

Mark everything below the conjunction.

If the cue is or and there is another cue either before, combine them to-

gether. Either . . . or . . . is a frequent exception containing two separate

cues that form a single scope.

• “Whether” as a conjunction — CSW

Mark everything that is below the cue and after the cue.

• Default — anything else

Mark everything that is below the parent and after the cue.

If the parent verb is passive, mark everything below the subject before the

cue.

It is worth noting that these rules are designed to match the annotation guide-

lines of the shared task, and might not therefore match alternative definitions of

speculation scope.

A partial dependency graph for Sentence 3 is shown in Figure 3.1 (with posi-

tional numbering suppressed for readability).

(3) Lobanov et al. thus developed a sensitive search method to deal with this

problem, but they also admitted that it (<would> fail to identify highly

unusual tRNAs).

admitted it would fail identify highly unusual tRNAs
NNV PPH1 VM VV0 VV0 RR JJ NP2

ccomp that

ncsubj

aux xcomp to

dobj

ncmodncmod

Figure 3.1: Partial dependency graph for sample sentence (3)

Following the rules, would is identified as a cue word with the part-of-speech VM,

which triggers the first rule in the list. The parent of would is fail since they are

connected with a dependency where fail is the head. Everything that is below

41

fail in the dependency graph and positioned after would is marked as being in the

scope. Since fail is not passive, the subject it is left out. The final scope returned

by the rule is then would fail to identify highly unusual tRNAs.

This method does not require any manually annotated data and only relies on

8 linguistically-motivated rules. Similar approaches could be used for other lan-

guages and tasks, such as detecting the scope of negation words. The application

of the rules described in this section requires the sentences to be parsed – this

means the process is not as fast as the rule-based cue detection step. However,

it avoids an additional classification step and is therefore faster than most other

scope detection methods.

3.5 Supervised methods

3.5.1 Speculation cues

One of the most common approaches to detecting speculation cues and scopes

in natural language texts is to formulate the task as a token-level classification

problem. Every word is labelled separately, making use of a wide range of features,

such as POS tags, context in the sentence, paths in the dependency graphs, and

features extracted from parse trees.

For our supervised system of detecting hedge cues we made use of a Con-

ditional Random Field (CRF) (Lafferty et al., 2001) classifier, implemented as

CRF++1. The CRF model was chosen because it is known to achieve state-of-

the-art performance on related sequence-classification tasks. Each word token is

assigned one of the following tags: F (first word of a cue), I (inside a cue), L (last

word of a cue), O (outside, not a cue), hereafter referred to as the FILO scheme.

Minimally two classes (IO) are required for this task, while three classes (FIO)

are also commonly used. We chose to add a fourth class for the last word of the

cue, to allow the system to learn more accurate conditions for ending long cue

phrases.

The feature types used for classification are defined in terms of the dependency

relations output provided by the RASP system. We use binary features that

1crfpp.sourceforge.net

42

indicate whether a word token is a head or a dependent in specific types of

relations. This distinguishes between different functions of the same word (when

used as a subject, object, modifier, etc.). These features are combined with the

POS and lemma of the word to distinguish between uses of different cues and cue

types. We also utilise features for the lemma and POS of the 3 words before and

after the current word.

The feature types for training the supervised classifier are as follows:

• words (in their inflected forms)

• lemma

• part-of-speech

• broad part-of-speech

• incoming dependencies + POS

• outgoing dependencies + POS

• incoming dependencies + POS + lemma

• outgoing dependencies + POS + lemma

• lemma + POS + POS of next word

• lemma + POS + POS of previous word

• 3 previous lemma + POS combinations

• 3 following lemma + POS combinations.

Outgoing dependencies are relations where the current word is the head, incoming

dependencies where it is the dependent.

The predictions from the classifier are compared to the list of known cues

extracted from the training data, and the longest possible match is marked as a

cue. For example, the classifier could output the following tag sequence:

(4) This[O] indicates[F] that[O] these[O] two[O] lethal[O] mutations[O] . . .

indicates is classified as a cue but that is not. The list of known cues contains

‘indicates that’ which matches this sentence, therefore the system prediction will

be:

(5) This <indicates that> these two lethal mutations . . .

43

Our experiments showed that the supervised system is unable to correctly de-

tect previously unseen cues, and instead creates some unnecessary false positives.

Lemma is the most important feature type for cue detection and when it is not

available, there is not enough evidence to make good predictions. Therefore, we

compare all system predictions to the list of known cues and if there is no match,

they are removed. The detection of unseen hedge cues is a potential topic for

future research.

3.5.2 Speculation scopes

The next step of our supervised approach also utilises the CRF classifier to find

the scope for each predicted cue. Every word token in the sentence is tagged with

either F (first word of a scope), I (inside a scope), L (last word of a scope) or O

(outside, not in a scope). The correct tagging for a sample sentence is shown in

Table 3.2.

expect may

We O O
expect F O
that I O
this I O
cluster I O
may I F
represent I I
a I I
novel I I
selenoprotein I I
family L L
. O O

Table 3.2: Example of scope tagging.

If a cue contains multiple words, they are each processed separately and the

predictions are later combined by postprocessing rules, as described in Section

3.6.

44

The list of features for each token, used both alone and as sequences of 5-grams

before and after the token, is:

• token-level prediction derived from the rule-based scope detection system

• lemma

• POS

• is the token also the cue

• distance from the cue

• absolute distance from the cue

• relative position to the cue

• are there brackets between the word and the cue

• is there any other punctuation between the word and the cue

• are there any special (clause separating) words between the word and cue

• is the word in the dependency subtree of the cue

• is the word in the dependency subtree of the main verb

• is the word in the dependency subject subtree of the main verb

We also include the following features of the current word in combination with

the POS sequence of the cue:

• POS

• distance from the cue

• absolute distance from the cue

• relative position to the cue

• is the word in the dependency subtree of the cue

• is the word in the dependency subtree of the main verb

• is the word in the dependency subject subtree of the main verb

Additional features include:

• dependency paths between the word and the cue (full path plus subpaths

with up to 5 nodes)

• dependency paths in combination with the lemma sequence of the cue

These feature sets were found by experimenting on the development data and

choosing the best configuration, optimised for the F-score of the shared task

evaluation.

45

The scope of the hedge cue can often be found by tracking the sequence of

grammatical relations in the dependency graph of a sentence, as described by

the manual rules. To allow the classifier to learn such regularities, we include

features based on the dependency path between the cue word and the word being

classified. Given that the sentence has a full parse and a connected dependency

graph, we can find the shortest connected path between any two words. The

path between the word and the cue is converted into a string representation, to

be used as a feature value in the classifier. Path sections of different lengths allow

the system to find both general and more specific patterns. POS tags are used

as node values to abstract away from word tokens.

An example for the word unusual, using the graph from Figure 3.1, is given

below. Five features representing paths with increasing lengths plus one feature

containing the full path are extracted:

(6) 1: VM

2: VM<–aux–VV0

3: VM<–aux–VV0–xcomp–>VV0

4: VM<–aux–VV0–xcomp–>VV0–dobj–>NP2

5: VM<–aux–VV0–xcomp–>VV0–dobj–>NP2–ncmod–>JJ

6: VM<–aux–VV0–xcomp–>VV0–dobj–>NP2–ncmod–>JJ

Line 1 shows the POS of the cue would (VM). On line 2, this node is connected

to fail (VV0) by an auxiliary dependency relation. More links are added until we

reach unusual (JJ).

The presence of words that often indicate the beginning of a new clause,

used by Morante & Daelemans (2009), is included as a feature type with val-

ues: whereas, but, although, nevertheless, notwithstanding, however, consequently,

hence, therefore, thus, instead, otherwise, alternatively, furthermore, moreover,

since.

Finally, we also experiment with combining the manual rules together with the

supervised approach. First, the text is parsed and the rules from Section 3.4.2 are

applied to sentences. The resulting tagging sequence is then incorporated into the

CRF classifier as additional features. This method uses information from both the

46

manually-developed rules and automatically-extracted features, and experiments

in Section 3.7 show that it achieves the highest precision and recall.

3.6 Post-processing

All of our scope prediction systems perform labelling on the token level and this

does not always result in a continuous scope over the surface form of the text.

Therefore, we can further increase accuracy by performing some simple heuristic

post-processing steps.

First, if the cue contains multiple words, the scope predictions for each word

have to be combined. This is done by overlapping the sequences and choosing

the preferred tag for each word, according to the hierarchy F > L > I > O. Next,

scopes are constructed from tag sequences using the following rules:

• Scope starting point is the first token tagged as F before the cue. If none

are found, the first word of the cue is used instead.

• Scope end point is the last token tagged as L after the cue. If none are

found, search for tags I and F. If none are found, the last word of the cue

is used as end point.

The scopes are further modified until none of the rules below return any updates:

• If the last token of the scope is punctuation, move the end point before the

token.

• If the last token is a closing bracket, move the scope end point before the

opening bracket.

• If the last token is a number and it is not preceded by a capitalised word,

move the scope end point before the token. This is a heuristic rule to

handle trailing citations which are frequent in the training data and often

misattached by the parser.

Finally, scopes are checked for partial overlap and any such instances are

corrected. For example, the system might return a faulty version (7) of a sentence

in which one scope is only partially contained within the other.

47

(7) We [<expect> that this cluster (<may> represent a novel] selenoprotein

family).

This prediction cannot be represented using the current established format for

representing hedge scopes and we were unable to find cases where such annotation

would be needed. Therefore, these scopes are modified by moving the end of the

first scope to the end of the second scope. The example above would become:

(8) We [<expect> that this cluster (<may> represent a novel selenoprotein

family)].

3.7 Experiments

3.7.1 Dataset

Our experiments make use of the CoNLL 2010 Shared Task dataset (Farkas et al.,

2010), annotated for hedge cues and scopes. The training set is a revised version

of the Bioscope corpus (Vincze et al., 2008), which includes 9 full papers and

1,273 abstracts from biomedical research fields. A separate new set of full papers

was released for evaluation as part of the shared task. Table 3.3 contains an

overview of the training data statistics.

Papers Abstracts

Documents 9 1,273
Sentences 2,670 11,871
Cues 682 2,694
Scopes 668 2,659
Unique cues 100 112
Cues with multiple words 10.70% 12.25%
Scopes start with cue 72.00% 80.59%
Scopes with multiple cues 2.10% 1.28%

Table 3.3: Training data statistics.

Sentence (9) provides an example from the corpus illustrating the annotation

scheme. Sentence (10) shows the same example, representing cues with angle

brackets and scopes with round brackets.

48

(9) <sentence id=“S1.166”>We <xcope id=“X1.166.2”><cue

ref=“X1.166.2” type=“speculation”>expect</cue> that this cluster

<xcope id=“X1.166.1”><cue ref=“X1.166.1”

type=“speculation”>may</cue> represent a novel selenoprotein

family</xcope></xcope>.</sentence>

(10) We (<expect> that this cluster (<may> represent a novel selenoprotein

family)).

The annotation guidelines (Farkas et al., 2010) specify that hedge cues should

be marked using the minimal strategy, where only the shortest possible unit that

expresses and determines the strength of speculation should be marked as the cue.

In contrast, hedge scopes should be extended to the largest syntactic unit possible.

The scope of verbs, auxiliaries, adjectives and adverbs usually starts with the cue

word. In the case of verbs or auxiliaries the scope includes all complements

and adjuncts, ending with the clause or the sentence. The scope of predicative

adjectives and sentential adverbs commonly includes the whole sentence. Other

adverbs extend to the end of the clause, and attributive adjectives end with the

following noun phrase. There are different exceptions to these guidelines, and

linguistic phenomena, such as passive voice, can change the scope boundaries in

the sentence.

There are a number of restrictions that are imposed on the annotation:

• Every cue has one scope.

• Every scope has one or more cues.

• The cue must be contained within its scope.

• Cues and scopes have to be continuous.

These limitations simplify the annotation process and the representation format,

but can lead to cases where some more complex hedge scope constructions cannot

be accurately annotated. Most importantly, the requirement for the hedge scope

to be continuous over the surface form of a sentence does not work for some

examples drawn from the training data. In (11) below it is uncertain whether

49

fat body disintegration is independent of the AdoR. In contrast, it is stated with

certainty that fat body disintegration is promoted by action of the hemocytes, yet

the latter assertion is included in the scope to keep it continuous.

(11) (The block of pupariation <appears> to involve signaling through the

adenosine receptor (AdoR)) , but (fat body disintegration , which is

promoted by action of the hemocytes , <seems> to be independent of the

AdoR) .

Similarly, according to the annotation guidelines, the subject of be likely

should be included in its scope, as shown in example (12). In sentence (13),

however, the subject protein pairs is separated by two non-speculative clauses

and is therefore excluded from the scope.

(12) Some predictors make use of the observation that (neighboring genes

whose relative location is conserved across several prokaryotic organisms

are <likely> to interact).

(13) Protein pairs predicted to have a posterior odds ratio below 1.0 have an

estimated true positive rate below 50% and thus (are more <likely> not

to interact than to interact).

In (14), arguably, there is no hedging as the sentence precisely describes a

statistical technique for predicting interaction given an assumption.

(14) More recently, other groups have come up with sophisticated statistical

methods to estimate (<putatively> interacting domain pairs), based on

the (<assumption> of domain reusability).

These examples illustrate several cases where the current guidelines produce

controversial or unintuitive annotation, which in turn can lead to low agreement

of human annotators and low upper bounds for automated systems.1 Ultimately,

dealing effectively with such examples would involve representing hedge scopes

1We are unable to report annotator agreement on the dataset, as it has not been cross-
annotated.

50

in terms of sets of semantic propositions recovered from a logical semantic repre-

sentation of the text, in which anaphora, word sense, and entailments had been

resolved. However, the currently established format can correctly represent a

large majority of scopes and reasonably approximate the remaining cases. It is

part of future work to investigate whether a more accurate annotation scheme

can be created for the representation of hedge scopes.

All of the training and test sentences were tokenised and parsed using the

RASP system (Briscoe et al., 2006). Multiple part-of-speech (POS) tag outputs

were passed to the parser (to compensate for the high number of unseen words in

biomedical text), retaining just the highest ranked directed graph of dependency

relations. Each node in the graph represents a word token annotated with POS,

lemma, and positional order information. In the case of parse failure the set

of unconnected graphs returned by the highest-ranked spanning subanalyses for

each sentence was retained.

3.7.2 Cue detection

We make use of the evaluation scripts provided by the organisers of the shared

task. In cue-level evaluation a predicted cue is counted as correct if it contains

the correct substring of the sentence. Token-level evaluation would not give accu-

rate results because of varying tokenisation rules. The sentence-level evaluation

regards a sentence as being speculative if it contains one or more cues. We re-

port precision, recall and F-measure of different system configurations using both

evaluation methods.

As the baseline system for cue detection we use simple string matching. The

list of known cues is collected from the training data and compared to the test

sentences. The longest possible match is always marked as a cue.

The rule-based system uses a limited list of 42 word sequences that predict

speculation with higher precision. The supervised system uses a fully-supervised

classification system to predict a cue label for each token. During the development

process we separated the training set into two sections and used 60% for training

and 40% for development. The results below measure the system performance on

the evaluation dataset while using all of the training data to build the supervised

51

classifier.

Baseline Rule-based Supervised

Predicted cues 3062 889 991
Correct cues 1018 737 808
Cue precision 33.25 82.90 81.53
Cue recall 97.23 70.39 77.17
Cue F-measure 49.55 76.14 79.29
Sentence precision 41.32 85.81 83.82
Sentence recall 99.49 79.62 83.92
Sentence F-measure 58.40 82.60 83.87

Table 3.4: Cue detection results on the evaluation dataset.

The baseline system returns nearly all cues but since it matches every string,

it also returns many false positives, resulting in low precision and only 49.55%

F-measure. The rule-based system uses a carefully selected list of cue words and

increases F-measure to 76.14%. The supervised system further improves recall

while sacrificing some precision and manages to achieve the highest F-measure

of 79.29%. It is worth noting that the difference between the last two systems

is only 3.15%, despite of the vast differences in complexity. The difference in

sentence-level performance is even smaller – 82.60% F-measure from the rule-

based system, compared to 83.87% from the supervised system. Based on these

experiments we believe that a minimally-supervised method could be a prac-

tical choice for production-level deployment, achieving comparable results with

virtually no complexity or extra resources. However, when trying to achieve the

best possible performance, supervised classifiers can be used to model much more

complicated patterns and reach the highest F-measure.

In the context of the shared task, our supervised system ranked fourth in

the cue-level evaluation, with the top system achieving 81.3% F-measure. If

the rule-based method had also taken part, it would have ranked 9th out of 16

participating systems.

For further analysis of the cue detection task, Table 3.5 lists the ten most

common cues in the test data and the number of cues found by the supervised

system. In the cases of may and suggest, which are also the most common cues

52

TP FP Gold

may 161 5 161
suggest 124 0 124
can 2 1 61
or 9 12 52
indicate that 49 2 50
whether 42 6 42
might 42 1 42
could 30 17 41
would 37 14 37
appear 31 14 31

Table 3.5: True and false positives of the ten most common cues in the evaluation
data, using the best supervised system.

in the development data, the system finds all the correct instances. Can and

or are not detected as accurately because they are both common words that in

most cases are not functioning as speculation cues. For example, there are 1,215

occurrences of or in the training data and only 146 of them are hedge cues; can

is a cue in 64 out of 506 instances. We have not found any extractable features

that reliably distinguish between the different uses of these words.

3.7.3 Scope detection

A scope is counted as correct if it has the correct beginning and end locations in

the sentence, and is associated with the correct cues. Scope prediction systems

require detected cues as input, therefore we present three separate evaluations

– using correct cues from the gold standard, using cues predicted by the rule-

based system (Section 3.4.1), and using cues predicted by the supervised system

(Section 3.5.1).

The baseline method looks at each cue and marks a scope from the beginning

of the cue to the end of the sentence, excluding the ending punctuation. The

system using manual rules applies the appropriate rule, based on the POS tag of

the cue, and selects words that belong to the scope, as described in Section 3.4.2.

The supervised system uses a CRF classifier to label tokens based on a range of

53

features, such as the lemma, part-of-speech, surrounding words, relative position

to the cue, and dependency path to the cue. The combined system takes the

labels from the rule-based predictions and uses them as additional features in the

supervised system. Post-processing rules are applied equally to the output of all

methods.

correct Precision Recall F-measure

Baseline 596 56.92 57.70 57.31
Rule-based 661 63.86 63.99 63.93
Supervised 633 60.46 61.28 60.87
Combined 683 65.99 66.12 66.05

Table 3.6: Scope detection results using the gold standard cues.

correct Precision Recall F-measure

Baseline 470 52.87 45.50 48.91
Rule-based 493 55.46 47.73 51.30
Supervised 498 56.02 48.21 51.82
Combined 526 59.17 50.92 54.73

Table 3.7: Scope detection results using cues found by the rule-based system.

correct Precision Recall F-measure

Baseline 506 51.06 48.98 50.00
Rule-based 532 53.74 51.50 52.60
Supervised 537 54.19 51.98 53.06
Combined 565 57.07 54.70 55.86

Table 3.8: Scope detection results using cues found by the supervised system.

Tables 3.6, 3.7 and 3.8 present the experimental results using different methods

for cue detection. The baseline system performs remarkably well compared to

other approaches. It does not use any grammatical or lexical knowledge apart

from the location of the cue and yet it delivers an F-score of 50.00% with predicted

and 57.31% with gold standard cues.

54

Manual rules are essentially a more fine-grained version of the baseline. In-

stead of a single rule, one of 8 possible rules is selected, based on the POS tag

of the cue. This improves the results, increasing the F-score to 52.60% with pre-

dicted and 63.93% with gold standard cues. The improvement suggests that the

POS tag of a cue is a useful indicator of how it behaves in a sentence.

The supervised system gives a small additional improvement when using pre-

dicted cues, but it is outperformed by the rule-based system if gold-standard

cues are provided as input. This can be explained by the classifier learning cor-

rect patterns for common cues that are also frequent in the training data, but

performing poorly on rare or unseen cues. Since the cue prediction systems are

also better at predicting common cues, the supervised classifier has an advantage

given this specific input. However, when dealing with cues of lower frequency, the

linguistically-engineered scope detection rules perform better. A possible avenue

for future work is to investigate if using a different scope prediction system based

on the frequency of the cue could further improve accuracy.

Finally, the combination system uses information from both sources and achieves

the best overall results, with 66.05% F-measure using gold-standard cues and

55.86% using predicted cues. This configuration ranked second in the scope-level

evaluation of the CoNLL-10 Shared Task; in comparison, the best-performing

system by Morante et al. (2010) achieved 57.3% F-measure with predicted cues.

The system using only heuristic rules for both cue and scope detection would

have ranked 6th out of 15 participants with 51.30% F-measure. Furthermore, the

simple method of detecting cues using a list of 42 phrases and always constructing

the scope from the cue to the end of the sentence achieves 48.91% F-measure and

would have also ranked in the 6th place.

Error analysis on the output of the rule-based system showed that 35% of

faulty scopes were due to incorrect or unconnected dependency graphs output by

the parser, and 65% due to exceptions that the manual rules do not cover. An

example of an exception is given by Sentence 15, with the braces { } showing the

scopes predicted by the rules.

(15) Contamination is {(<probably> below 1%)}, which is {(<likely> lower

than the contamination rate of the positive dataset) as discussed in 47}.

55

In this sentence, as discussed in 47 is a modifier of the clause which is usually

included in the scope, but in this case should be left out.

3.8 Conclusion

This chapter investigated the task of detecting speculation cues and scopes using

systems with varying levels of supervision. We found that the dependency output

from the RASP system can be effectively used as features in a supervised clas-

sifier for detecting cues, and also as the basis for manual rules and features for

scope detection. We demonstrated that a small number of manual rules can pro-

vide competitive results, and that these can be further improved using machine

learning techniques and post-processing rules. The generally low results for the

scope detection task demonstrate the difficulty of both annotating and detecting

the hedge scopes in terms of surface sentential forms. A revised definition of

the overall task could lead to better systems, as the current guidelines can seem

unintuitive in certain cases.

We compared the performance of a minimally supervised rule-based system to

a fully supervised system and found that the small number of manual rules were

able to offer competitive results without requiring any annotation. Furthermore,

this requires much less resources and can therefore be more suitable for practical

deployment. However, for maximum performance, fully supervised methods offer

the way to learn more complicated patterns in the data and achieve the highest

accuracy. Combining the alternative methods together improves the results even

further.

There are several interesting directions for further investigating the problem of

speculation detection. We would encourage further development of manual rules

for scope resolution, as more fine-grained approaches could potentially lead to

performance comparable to supervised systems. Also, Morante et al. (2010), who

ranked first in the task of scope detection, used a k-nearest neighbour algorithm

instead of a probabilistic approach. Using the features developed for our classifier

together with a k-NN approach could give interesting results.

The CoNLL-10 Shared Task triggered the creation of dozens of hedge detection

systems. While their evaluation scores are comparable on the shared dataset, it

56

is currently unclear which components contribute most to achieving the best

results. Different implementations of cue and scope detection systems make use

of a wide range of manual rules, classifiers, parsers, features, post-processing

steps and external resources. Removing some of these variables and conducting

experiments on specific components could also lead to the development of better

systems.

Haghighi et al. (2005) point out three types of language constructions that

make the task of textual entailment recognition more difficult – hedging, negation

and superlative adjectives. These language constructions can change the direction

of an entailment relation, yet they often go unnoticed by simple graph matching

techniques. Our experiments in Chapter 5 also demonstrate that detection of

speculative and negated language can directly improve the performance of entail-

ment detection systems. Negation and superlative adjectives behave similarly to

speculation – there exist certain cue words that have influence over specific parts

of the sentence. As we have a working system for speculation scope detection, an

interesting future extension would be to adapt this technique to also work with

cases involving negation and superlative adjectives.

57

Chapter 4

Hyponym detection and

generation

4.1 Introduction

Hyponymy is a relation between two word senses, indicating that the meaning

of one word is also contained in the other. It can be thought of as a type-

of relation; for example car, ship and train are all hyponyms of vehicle. We

indicate a hyponymy relation between words a and b as (a → b), showing that

a is a hyponym of b, and b is a hypernym of a. For example, (ship → vehicle)

and (villa → house). Hyponymy relations are closely related to the concept

of entailment, and this notation is consistent with indicating the direction of

inference – if a is true, b must be true as well.

Automatic detection and generation of hyponyms has many practical appli-

cations in nearly all natural language processing tasks. Information retrieval,

information extraction and question answering can be improved by performing

appropriate query expansion. For example, a user searching for arthritis treat-

ment is most likely also interested in results containing the hyponyms of treat-

ment, such as arthritis therapy, arthritis medication, and arthritis rehabilitation.

Summarisation systems can increase coherence and reduce repetition by correctly

handling hyponymous words in the input text. Entailment and inference systems

can improve sentence-level entailment resolution by detecting the presence and

58

direction of word-level hyponymy relations. Distributionally similar words have

been used for smoothing language models and word co-occurrence probabilities

(Dagan et al., 1999; Weeds & Weir, 2005), and hyponyms are potentially more

suitable for this task. For example, we may wish to estimate the probability of

publication being the object of read, but due to sparsity this combination never

appears in our corpus. By finding that book is a hyponym of publication, and

that book occurs with read quite frequently, we can infer that publications are

also likely to be read.

Most previous work has been using the general notion of distributional or se-

mantic similarity between two words. Systems often employ symmetric similarity

scores, potentially leading to incorrect behaviour. For example, vehicle can be

replaced by train in a query expansion setting, since every train is also a vehicle

and therefore matches the original query. However, replacing train with vehicle

would likely return incorrect results, as it would also refer to many other types

of vehicles. In addition, different definitions of semantic similarity or relatedness

cover a wide range of relations, some of which are not suitable for word substitu-

tion. For example, window is a meronym of house, but although brick house is a

likely co-occurrence, brick window is an unlikely word pair and does not seman-

tically match the original phrase. Therefore, we focus on hyponymy relations, as

they are asymmetrical and better suited for the applications of query expansion

and lexical substitution.

The task of hyponym detection is to determine whether one word is a

hyponym of the other. Given a directional word pair (a, b), the system needs to

classify it as a valid hyponym relation (a→ b) or not. This can be useful when the

application has a list of candidate pairs, or when looking for similarities between

two sentences. In contrast, hyponym acquisition is the task of extracting all

possible hyponym relations from a given resource or text corpus. Such systems

often make use of heuristic rules and patterns for extracting relations from sur-

face text, and populate a database with hyponymous word pairs. Finally, the

task of hyponym generation is to return a list of all possible hyponyms, given

only a single word as input. This is most relevant to practical applications, as

many systems require a set of appropriate substitutes for a specific term, yet

barely any research has been done in this area. The problem of generation can be

59

reformulated as a hyponym detection task by using a very large set of candidate

hyponyms, or as a hyponym acquisition task by utilising a large corpus contain-

ing all the required word pairs. However, all successful methods for hyponym

detection or acquisition are not necessarily well-suited for hyponym generation,

as it involves a different range of challenges.

Our work focuses on the task of hyponym generation and approaches it

through hyponym detection. We are especially interested in methods using dis-

tributional similarity, as they can be easily deployed on different domains and

genres without requiring annotated training data. First, we created several new

datasets that help us evaluate the performance of different measures on these

tasks. Then, we performed systematic assessment of a wide range of distribu-

tional similarity measures, which are prominent in existing research, on the tasks

of hyponym detection and generation. A novel measure is proposed that builds

on previous work and delivers significantly better results on our dataset of noun

hyponym generation. Finally, we examine how good is the performance of unsu-

pervised similarity measures when compared to a fully supervised approach using

annotated data. A discriminative SVM classifier was trained using additional la-

belled examples and used to run comparative experiments on the same problem

sets.

4.2 Research goals

Our work on hyponym detection and generation has the following goals:

• Construct appropriate datasets for evaluating hyponym detection and gen-

eration.

• Compare the performance of well-known similarity measures on the tasks

of hyponym detection and generation.

• Investigate the properties of a successful directional similarity measure.

• Specify a new similarity measure for hyponym generation.

• Compare the performance of minimally supervised distributional similarity

measures to a fully supervised machine learning algorithm.

60

4.3 Background

Hearst (1992) described one of the earliest methods for automated hyponym

acquisition from corpora. Several lexico-syntactic patterns were manually defined

to model common contexts in which hyponyms appear. For example, pattern (16)

matches sentence (17):

(16) such NP as {NP,}* {(or |and)} NP

(17) . . . works by such authors as Herrick, Goldsmith and Shakespeare.

Their system is low-cost and applicable even to very small text corpora, but it

relies heavily on very specific lexical patterns matching the input text, and is

unable to offer sufficiently wide coverage. Snow et al. (2005) extend this idea by

having the system automatically learn useful lexico-syntactic patterns using an

annotated dataset.

Various alternative approaches have been developed and applied to the related

task of automated ontology creation. Distributional similarity measures have re-

ceived wide attention as well, but mostly as methods for hierarchical clustering

when building prototype-based ontologies (Ushioda, 1996; Bisson et al., 2000;

Wagner, 2000; Paaß et al., 2004). In a prototypical ontology, every node contains

a set of terms that are found to be sufficiently similar, but the structure does not

contain the labels necessary for performing lexical substitution or inducing hy-

ponym relations. Manually constructed patterns, based on the method proposed

by Hearst (1992), can be used to assign suitable labels to each of the clusters in

a post-processing stage (Caraballo, 1999; Cimiano & Staab, 2005).

Discovering a hierarchy between concepts can also be formulated as a super-

vised classification task, given appropriate training data. In such a setting, an

existing ontology can be used for feature extraction and evaluation, and new re-

lations returned by the system can be suggested as potential additions (Alfonseca

& Manandhar, 2002; Witschel, 2005; Snow et al., 2006). Recently, more advanced

methods using Markov Logic have been deployed to jointly induce a probabilistic

ontology and perform knowledge extraction (Poon & Domingos, 2009, 2010).

61

Biemann (2005) offers an overview of different tasks and methods related

to automated ontology creation. However, very limited work has been directed

towards using distributional methods for hyponym detection, and to the best

of our knowledge there has been no previous work attempting to evaluate these

methods for hyponym generation.

Zhitomirsky-Geffet & Dagan (2009) focus on improving feature vector quality

through bootstrapping, and apply it to the task of detecting meaning-preserving

words for lexical substitution. They define the relation of substitutable lexical

entailment (or lexical entailment for brevity). Given a directional pair of

terms (w, v), the term w is said to entail v if the following two conditions are

fulfilled:

1. Word meaning entailment: the meaning of a possible sense of w implies a

possible sense of v.

2. Substitutability: w can substitute for v in some naturally occurring sen-

tence, such that the meaning of the modified sentence would entail the

meaning of the original.

As an example, government entails minister, since The government voted for the

new law entails A minister in the government voted for the new law.

The substitutability criterion requires there to be one context where v can

be substituted by w for there to exist a valid entailment relation. However,

the simple notion of substitutability can in some cases be too general, leading

to ambiguous results. From the previous example, minister should also entail

government, as Ministers passed a new law entails The government passed a

new law. Similarly, He likes fruit entails He likes apples, but He eats apples for

breakfast entails He eats fruit for breakfast. This example seems to indicate that

apple and fruit are interchangeable and essentially synonymous. Other linguistic

phenomena such as negation, hedging and quantifiers can further modify the

direction of the entailment relation, and without additional criteria it can be

difficult to unambiguously determine lexical entailment. In this chapter, we have

chosen to focus on detecting only hyponymy relations, as they are defined between

specific concepts, regardless of the context where they appear, and still cover

62

the majority of word pairs that are suitable for lexical substitution in practical

applications.

Our work follows Kotlerman et al. (2010), who offer one of the most recent

comparisons of different distributional similarity measures for detecting lexical

entailment. They describe the theoretical criteria of a good directional similar-

ity measure, and also propose a new measure based on average precision. We

apply similar methodology to hyponym detection and generation, further extend

their work by suggesting additional desired properties of a directional similarity

measure, and describe a new measure which delivers significant improvements in

our evaluation. As hyponymy is dependent on word senses, we also follow their

approach and define a relation to be valid between two terms if it is valid between

any senses of those terms.

Recently, Baroni & Lenci (2011) created the BLESS data set for evaluation

of distributional semantic models. It contains annotated tuples with various

relations, including hypernyms, but it is designed for the task of distinguishing

different types of alternative relations, as opposed to generating hyponyms from

an open candidate set.

4.4 Similarity measures

In this section we present an overview of prominent distributional similarity mea-

sures which have been used to detect semantic similarity and which could also be

used for hyponymy detection. Fa is used to denote the set of weighted features

for word a, f ∈ Fa indicates one feature instance present in that set, and wa(f)

is the weight of feature f for word a. Examples of possible feature types include

words that occur in a limited context window, connected words and relations

from dependency graphs, or document-level co-occurrences. Since the possible

feature space can be infinite, we say that f belongs to the feature set Fa if it has

a non-zero weight. Some measures require only positive feature weights to return

reasonable similarity scores, and we use F+
a to indicate the subset of features with

strictly positive values. Our implementations always return the similarity value

of 0 if they cannot be calculated – for example, when the input of empty vectors

would lead to division by zero.

63

Most of these measures are true similarities, assigning higher score values to

more similar word pairs, usually in the range of [0,1] or [-1,1]. However, there are

also some distance measures, with higher values showing higher dissimilarity, and

they are indicated by a diamond (�) as their output needs to be reverse-ordered.

Similarly, we also use a star (?) to indicate measures that are asymmetric – the

similarity score for (a, b) will not necessarily have the same value as for (b, a).

4.4.1 Cosine

Cosine similarity calculates the angle between two feature vectors and has become

the standard measure for similarity between weighted vectors in information re-

trieval (IR). Using the inner product between two vectors as a similarity score

developed naturally by generalising coordinate-wise matching. However, inner

product by itself does not take vector length into account and will assign higher

values to longer vectors. In contrast, simply finding the Euclidean distance be-

tween two vectors strongly discriminates against vectors with different lengths.

The cosine measure overcomes both of these problems by considering the direc-

tion of the two vectors, as opposed to their length or distance (Witten et al.,

1999; Curran, 2003):

Cosine(Fa, Fb) =

∑
f∈Fa∩Fb

wa(f)× wb(f)√∑
f∈Fa

wa(f)2 ×
√∑

f∈Fb
wb(f)2

(4.1)

4.4.2 Pearson product-moment correlation coefficient

The Pearson product-moment correlation coefficient, typically denoted by r, was

defined by Karl Pearson in 1895 (Pearson, 1895; Rodgers & Nicewander, 1988)

and it measures correlation between two variables. The value is in the range of

[-1,1], with 0 denoting no correlation and -1 meaning negative correlation. The

formula is presented below:

r(Fa, Fb) =

∑
f∈Fa∪Fb

[(wa(f)− µa)× (wb(f)− µb)]√∑
f∈Fa∪Fb

(wa(f)− µa)2 ×
√∑

f∈Fa∪Fb
(wb(f)− µb)2

(4.2)

64

where µa is the mean of feature weights for vector Fa:

µa =
1

|Fa ∪ Fb|
∑

f∈Fa∪Fb

wa(f) (4.3)

where |Fa ∪ Fb| is the number of unique elements in both vectors combined.

When calculating Pearson’s or Spearman’s correlation, it is important to note

that zero values cannot be simply ignored, as in cosine similarity. Here, the mean

of feature weights is subtracted from each weight, giving these elements a non-

zero value. Therefore, the calculation has to be done over the union of both sets

of features.

One interpretation of this measure is that both feature vectors are modified by

subtracting the corresponding mean of the weights. The cosine similarity between

these modified vectors is also equal to Pearson’s coefficient.

4.4.3 Spearman’s rank correlation coefficient

Spearman’s correlation coefficient (Spearman, 1904), denoted by ρ, is defined as

the Pearson product-moment correlation coefficient between the ranks of feature

weights:

ρ(Fa, Fb) =

∑
f∈Fa∪Fb

[(ra(f)− µ′a)× (rb(f)− µ′b)]√∑
f∈Fa∪Fb

(ra(f)− µ′a)2 ×
√∑

f∈Fa∪Fb
(rb(f)− µ′b)2

(4.4)

where ra(f) is the rank of feature f in the sorted order of vector Fa, and µ′a is

the mean of rank values. In case of tied values in the feature vector, the rank

is calculated as the average of the ranks. For example, if identical values are

positioned in ranks 2 and 3, they are both assigned the rank value of 2.5. As

with Pearson’s correlation, Spearman’s correlation is also symmetrical and with

values in the range of -1 to 1. However, unlike Pearson’s, this measure is less

sensitive to outliers, as the specific weights are reduced to only relative positions.

65

4.4.4 Jaccard index (Set)

Jaccard index (Jaccard, 1901) is a statistic used for comparing the similarity

between two sets. It is calculated as the size of the intersection of these sets,

divided by the size of the set union. Jaccard index can be used for measuring

the similarity of two feature vectors by applying it to the sets of non-zero feature

types. This method ignores the specific feature weights and treats them as binary

values:

JaccardSet(Fa, Fb) =
|Fa ∩ Fb|
|Fa ∪ Fb|

(4.5)

4.4.5 Dice (Set)

Dice’s coefficient, created by Dice (1945), is similar to the Jaccard index and

operates over sets. It compares the size of the intersection to the sum of individual

set sizes. As before, we can apply this to feature vectors by operating over sets

of feature types with non-zero weights:

DiceSet(Fa, Fb) =
2× |Fa ∩ Fb|
|Fa|+ |Fb|

(4.6)

4.4.6 Overlap coefficient

The overlap coefficient (Manning & Schütze, 1999) is similar to the set similarity

measures of Jaccard and Dice. However, it compares the size of the intersection

only to the smaller of the two sets:

OverlapSet(Fa, Fb) =
|Fa ∩ Fb|

min(|Fa|, |Fb|)
(4.7)

4.4.7 Cosine (Set)

This early set-theoretic version of cosine is similar to DiceSet, except the denom-

inator uses a geometric mean instead of an arithmetic mean. They are identical

when both vectors contain the same number of non-zero elements. However, the

CosineSet measure gives a smaller penalty to cases where the number of non-

zero elements is very different. For example, when comparing vectors of length 1

66

and length 1000, with one shared entry, then CosineSet = 1/
√

1000× 1 ≈ 0.03,

whereas DiceSet = 2 × 1/(1 + 1000) ≈ 0.0002. This is a useful property for

statistical NLP, since we often compare words with varying amounts of features

or evidence, but that does not necessarily mean they are not similar in semantics

(Manning & Schütze, 1999).

CosineSet(Fa, Fb) =
|Fa ∩ Fb|√
|Fa| × |Fb|

(4.8)

4.4.8 Jaccard (Generalisation)

Grefenstette (1994) generalised the Jaccard similarity measure to non-binary

value (fuzzy sets) semantics. In this framework, the intersection operation is

replaced with the sum of minimum pairwise feature weights, and the union is

replaced with the sum of maximum pairwise feature weights. If the weights are

constrained to binary values, this measure reduces to the original Jaccard index

performed on sets.

JaccardGen(Fa, Fb) =

∑
f∈Fa∩Fb

min(wa(f), wb(f))∑
f∈Fa∪Fb

max(wa(f), wb(f))
(4.9)

4.4.9 Dice (Generalisation)

Using a similar approach, the Dice similarity measure can also be generalised to

weighted feature vectors (Grefenstette, 1994; Curran, 2003):

DiceGen(Fa, Fb) =
2×

∑
f∈Fa∩Fb

min(wa(f), wb(f))∑
f∈Fa

wa(f) +
∑

f∈Fb
wb(f)

(4.10)

4.4.10 Dice (Generalisation 2)

Curran (2003) describes an alternative way of generalising the Dice measure to

real-valued weights, based on Grefenstette (1994). Instead of finding the mini-

mum of two weights, the values are multiplied together. It is pointed out that

the same formula can also be considered as an alternative generalisation for the

67

Jaccard measure:

DiceGen2(Fa, Fb) =

∑
f∈Fa∩Fb

wa(f)× wb(f)∑
f∈Fa

wa(f) +
∑

f∈Fb
wb(f)

(4.11)

4.4.11 Kendall’s tau coefficient

Kendall’s tau, denoted by τ , is a non-parametric statistic used to measure the

rank correlation between random variables (Kendall, 1938; Kruskal, 1958). It

counts the number of pairwise items that are in the same relative position in

both distributions. The Tau-b variation of the measure also takes into account

the number of possible tied values:

τ(Fa, Fb) =

∑
f,g∈Fa∪Fb

sign((wa(f)− wa(g))× (wb(f)− wb(g)))√
(n0 − na)× (n0 − nb)

(4.12)

where n0 is the total number of pairs:

n0 = |Fa ∪ Fb| × (|Fa ∪ Fb| − 1) (4.13)

and na is the total number of tied pairwise values in set a:

na =
∑
i

tai (t
a
i − 1)/2 (4.14)

where tai is the number of tied values in the ith group of ties for set a.

While both Spearman’s ρ and Kendall’s τ measure correlation between rank-

ings, Kendall’s τ penalises dislocations based on the linear distance of the dislo-

cation, whereas Spearman’s ρ uses the square of the distance.

68

4.4.12 Lin similarity

Lin similarity was created by Lin (1998), and uses the ratio of shared feature

weights compared to all feature weights.

Lin(Fa, Fb) =

∑
f∈F+

a ∩F+
b

[wa(f) + wb(f)]∑
f∈F+

a
wa(f) +

∑
f∈F+

b
wb(f)

(4.15)

where F+
a denotes the subset of features in Fa that have positive weights. This

measure finds a weighted proportion of features that are shared by both words.

The calculation is done only over positive values, as including negative weights

would return an incorrect ratio.

4.4.13 Weeds’ Precision ?

Weeds et al. (2004) proposed using precision and recall as a measure of similarity.

In this framework, the features are treated similarly to retrieved documents in

information retrieval – the vector of the broader term is used as the gold standard,

and the vector of the narrower term is in the role of retrieval results. Precision

is then calculated by comparing the intersection (items correctly returned) to the

values of the narrower term only (all items returned).

WeedsPrec(Fa, Fb) =

∑
f∈F+

a ∩F+
b
wa(f)∑

f∈F+
a
wa(f)

(4.16)

where F+
a refers to the subset of features in Fa that have positive non-zero weights.

4.4.14 Weeds’ Recall ?

Similar to precision, recall can also be formulated as a similarity measure (Weeds

et al., 2004). In this case the calculation is done over the weights in the broader

term, quantifying how well the narrower term encompasses the broader one:

WeedsRec(Fa, Fb) =

∑
f∈F+

a ∩F+
b
wb(f)∑

f∈F+
b
wb(f)

(4.17)

69

4.4.15 Weeds’ F-score

Following IR evaluation methods, the scores for precision and recall can be com-

bined into a single measure by finding their harmonic mean (Weeds et al., 2004):

WeedsF (Fa, Fb) =
2×WeedsPrec(Fa, Fb)×WeedsRec(Fa, Fb)

WeedsPrec(Fa, Fb) +WeedsRec(Fa, Fb)
(4.18)

4.4.16 Clarke’s degree of entailment ?

Clarke (2009) proposed the asymmetric degree of entailment measure, based on

the concept of distributional generality (Weeds et al., 2004). It quantifies the

weighted coverage of the features of the narrower term a by the features of the

broader term b:

ClarkeDE(Fa, Fb) =

∑
f∈Fa∩Fb

min(wa(f), wb(f))∑
f∈Fa

wa(f)
(4.19)

4.4.17 Average precision ?

Kotlerman et al. (2010) proposed using a modified version of average precision

(AP), often used as an IR evaluation metric, as a directional similarity measure

instead. In this framework, the features of the broader term are analogous to

the set of all relevant documents, whereas the features of the narrower term

correspond to retrieved documents. The similarity score will be greater if a large

number of features occur in both vectors. However, it also takes into account the

ranking of these features, and gives greater importance to highly ranked features

from the narrower term a:

AP (Fa, Fb) =

∑|Fa|
r=1[P (r)× rel(fr)]

|Fb|
(4.20)

where

P (r) =
|f ∈ Fa(r) ∩ Fb|

r
(4.21)

70

rel(f) =

{
1 if f ∈ Fb
0 if f /∈ Fb

(4.22)

Fa(r) is used to denote the subset of features from Fa that are ranked 1 to r after

sorting in descending order, placing the highest-weighted feature at rank 1. P (r)

calculates precision at rank r – the number of features that are in ranks 1 to r

in Fa and also present in Fb, normalised by the rank r. rel(fr) takes the feature

that is ranked r in Fa, returning 1 if it is also present in Fb, and 0 otherwise.

4.4.18 Average precision (inclusion) ?

Kotlerman et al. (2010) also further modify the Average Precision measure to

better model directional similarity between words. First, they use the number

of features in Fa for normalisation, instead of Fb. This finds the proportion of

shared features relative to the features for the narrower term, better capturing

their desired property of feature inclusion. In addition, they redefine the relevance

function to give more fine-grained values depending on where the shared feature

ranks in the list of ordered features for Fb, assigning higher weights to higher

ranks:

APInc(Fa, Fb) =

∑|Fa|
r=1[P (r)× rel′(fr)]

|Fa|
(4.23)

rel′(f) =

{
1− rb(f)

|Fb|+1
if f ∈ Fb

0 if f /∈ Fb
(4.24)

where rb(f) is used to denote the rank of feature f in the list of features in Fb,

ranked by weight in descending order. The maximum value of this measure is

0.5, as the rel′(f) function penalises lower ranks, even when in perfect order.

4.4.19 Average precision (balanced inclusion) ?

Finally, Kotlerman et al. (2010) combine the APInc measure with the Lin sim-

ilarity (Lin, 1998) by taking their geometric average. Since APInc models the

similarity using the features of the narrower term Fa, it can give unreliable re-

71

sults when the number of features |Fa| is very small. The motivation behind

combining these measures is that the symmetric Lin measure will decrease the

final score for such word pairs, thereby balancing the results:

BalAPInc(Fa, Fb) =
√
Lin(Fa, Fb)× APInc(Fa, Fb) (4.25)

4.4.20 Directional Lin ?

We proposed an asymmetric version of the Lin measure, and used it for entailment

detection between text fragments (Rei & Briscoe, 2011). Features of word b which

are not found in word a are excluded from the calculation:

LinD(Fa, Fb) =

∑
f∈F+

a ∩F+
b

[wa(f) + wb(f)]∑
f∈F+

a
wa(f) +

∑
f∈F+

a ∩F+
b
wb(f)

(4.26)

4.4.21 Balanced precision ?

Szpektor & Dagan (2008) proposed combining WeedsPrec together with the Lin

measure by taking their geometric average. This aims to balance the WeedsPrec

score, as the Lin measure will penalise cases where one vector contains very few

features:

BalPrec(Fa, Fb) =
√
Lin(Fa, Fb)×WeedsPrec(Fa, Fb) (4.27)

4.4.22 Kullback-Leibler divergence � ?

The relative entropy of two probability mass functions p(x) and q(x) is given by:

D(p||q) =
∑
i

pilog
pi
qi

(4.28)

where we define 0×log(0
q
) = 0. It is also known as the Kullback-Leibler divergence

(Kullback & Leibler, 1951; Kullback, 1959) and measures the difference of two

probability distributions over the same space. Intuitively it measures how well

the true distribution p is modelled by the approximation q. This quantity is

non-symmetric (P (p||q) 6= P (q||p)) and equals 0 iff p = q.

72

It is originally defined only over valid probability distributions, but we re-

define it as a measure between feature vectors. Given that the feature weights

correspond to the values in the probability distribution, the final score will be

the same. Since the result is ∞ whenever there is at least one dimension where

qi = 0 and pi 6= 0, we define the Kullback-Leibler divergence only over features

that have positive weights in both vectors:

KLDivergence(Fa, Fb) =
∑

f∈F+
a ∩F+

b

wb(f)loge(
wb(f)

wa(f)
) (4.29)

As Weeds (2003) point out when discussing the highly-related α-skew measure

(see Section 4.4.24), it can be non-trivial to choose the direction when applying

these measures. While the formula above matches the original description and

is more theoretically-justified, reversing the arguments can lead to better per-

formance for the α-skew. Therefore, we also report the reversed version of KL-

Divergence, calculating how well the narrower term is modelled by the broader

term:

KLDivergenceR(Fa, Fb) =
∑

f∈F+
a ∩F+

b

wa(f)loge(
wa(f)

wb(f)
) (4.30)

4.4.23 Jensen-Shannon divergence �

Jensen-Shannon divergence, also known as ‘information radius’ (IRad) (Manning

& Schütze, 1999) or ‘total divergence to the average’ (Dagan et al., 1997), is a

way of overcoming the division-by-zero issue in KL-Divergence and also making

it into a symmetric measure. It is defined through KL-Divergence and intuitively

answers the question of how much information is lost if we describe the two words

using only their average distribution:

A(p, q) = D(p||p+ q

2
) +D(q||p+ q

2
) (4.31)

73

JSDivergence(Fa, Fb) =
∑

f∈F+
a ∪F+

b

[[wa(f)× loge
wa(f)

wa(f)+wb(f)
2

]+

[wb(f)× loge
wb(f)

wa(f)+wb(f)
2

]]

(4.32)

4.4.24 α-skew divergence � ?

Lee (1999) observed that symmetric measures were unable to model substitutabil-

ity of words in context, and created an alternative directional measure based on

KL-divergence. Since KL-Divergence will return infinity whenever qi = 0 and

pi 6= 0, it was proposed to smooth the distribution of q using the distribution

of p, therefore making sure that the reference distribution has always non-zero

values:

Sα(p, q) = D(q||αp+ (1− α)q) (4.33)

The measure includes parameter α to control the degree to which the distribution

of q is used to smooth p. α-skew can be viewed as an approximation of KL-

divergence and the two measures are equal if α = 1. We set α = 0.99, as is most

commonly done – this allows the reference distribution to closely model p while

still including the desired smoothing property:

AlphaSkew(Fa, Fb) =
∑
f∈F+

b

[[wb(f)× loge
wb(f)

(1− α)wb(f) + αwa(f)
] (4.34)

As with KL-Divergence (Section 4.4.22), we also present the alternative ver-

sion of calculating α-skew in the opposite direction:

AlphaSkewR(Fa, Fb) =
∑
f∈F+

a

[[wa(f)× loge
wa(f)

(1− α)wa(f) + αwb(f)
] (4.35)

74

4.4.25 Manhattan distance �

Manhattan distance, also known as the L1-norm, measures the element-wise ab-

solute difference between two vectors:

Manhattan(Fa, Fb) =
∑

f∈Fa∪Fb

|wa(f)− wb(f)| (4.36)

4.4.26 Euclidean distance �

Euclidean distance, also known as the L2-norm, is calculated as the length of the

difference between the two input vectors:

Eculidean(Fa, Fb) =

√ ∑
f∈Fa∪Fb

(wa(f)− wb(f))2 (4.37)

4.4.27 Chebyshev distance �

Chebyshev distance, also known as L∞-norm, is a measure where the distance

between two vectors is the maximum of their absolute differences along any co-

ordinate dimension:

Chebyshev(Fa, Fb) = max
f∈Fa∪Fb

(|wa(f)− wb(f)|) (4.38)

4.5 Proposed measure: Weighted Cosine

Given a term pair (a → b), Kotlerman et al. (2010) refer to the set of features

of the narrower term a as tested features, since they are tested for inclusion.

Amongst these features, those found in the feature vector of the broader term b

are denoted included features. They hypothesise that a directional distributional

similarity should capture the following desirable properties:

1. The relevance of the included features to the narrower term.

2. The relevance of the included features to the broader term.

75

3. That inclusion detection is less reliable if the number of features of either

the narrower or the broader term is small.

They show that existing measures which correspond to these criteria perform

better and suggest a new directional similarity measure (BalAPInc) based on

these principles. However, it is interesting to note that these properties do not

explicitly mention any directional aspects of the measure, and symmetric similar-

ity scores can also fulfil the requirements. We suggest two additions to this list

of properties, one of which specifically targets the asymmetric properties of the

desired similarity measures:

4. The included features are more important to the directional score calcula-

tion, compared to non-included features.

5. Highly weighted features of the broader term are more important to the

score calculation, compared to features of the narrower term.

Most existing directional similarity scores measure how well the features of the

narrower term are modelled by the broader term. If a entails b, then it is assumed

that the possible contexts of a are also included by b, but b occurs in a wider

range of contexts compared to a. This intuition is used by directional measures

such as ClarkeDE, WeedsPrec, APInc and BalAPInc.

In contrast, we found that many features for the narrower term are often highly

specific to that term and do not generalise even to hypernyms. For example, the

top three features for cheese in our dataset were grana, feta and parmesan. These

features are unlikely to be found together with any other word or phrase, even

with the hypernyms of cheese, such as dairy product and food. Since these features

have a very high weight for the narrower term, their absence with the broader

term will have a big negative impact on the similarity score.

We hypothesise that many terms have certain individual features that are

common to them but not to other related words. Since most weighting schemes

reward high relative co-occurrence, these features are also likely to receive high

weights. Therefore, we suggest that features which are not found for both terms

should have a decreased impact on the score calculation, as many of them are not

expected to be shared between hyponyms and hypernyms. However, removing

76

them completely is also not advisable, as they allow the measure to estimate the

overall relative importance of the included features to the specific term.

In addition, we believe that among the included features, those ranked higher

for the broader term are more important to the directional measure. In the

hyponymy relation (a→ b), the term b is more general and covers a wider range

of semantic concepts. This also means it is more likely to be used in contexts that

apply to different hyponyms of b. For example, some of the high-ranking features

for food are blandly-flavoured, high-calorie and uneaten. These are properties that

co-occur often with the term food, but can also be applied to most hyponyms

of food, such as cheese, meat, omelette or burger. Therefore, we hypothesise

that the presence of these features for the narrower term is a good indication

of a hyponymy relation. This is somewhat in contrast to most previous work,

where the weights of the narrower terms have been used as the main guideline

for similarity calculation. However, our experiments with the new similarity

measure, based on this hypothesis, manage to deliver improved performance on

the hyponym generation task.

Cosine similarity is one of the symmetric similarity measures which corre-

sponds to the first three desired properties. Our experiments also showed that

it performs remarkably well at the tasks of hyponym detection and generation.

Therefore, we decided to modify cosine similarity to also reflect the final two

properties and produce an asymmetric similarity score. The standard feature

vectors for each word contain weights indicating how important this feature is to

the word. In addition, we can also specify weights for every feature that mea-

sure how important the feature is to that specific directional relation between the

two terms. Weighted cosine similarity can then be used to calculate a modified

similarity score:

WCos(Fa, Fb) =

∑
f∈Fa∩Fb

(z(f)× wa(f))× (z(f)× wb(f))√∑
f∈Fa

(z(f)× wa(f))2 ×
√∑

f∈Fb
(z(f)× wb(f))2

(4.39)

where z(f) is an additional weight for feature f , given the directional word pair

(a, b).

77

Based on the new desired properties we want to downweight the importance

of features that are not present for both terms. For this, we choose the simple

solution of scaling them with a small constant C ∈ [0, 1]. Next, we also want

to assign higher z(f) values to the shared features that have high weights for

the broader term b. We use the relative rank of feature f in Fb, rb(f), as the

indicator of its importance and scale this value to the range from C to 1. This

results in the importance function decreasing linearly as the rank number in-

creases, but the weights for the included features always remain higher compared

to the non-included features. Tied feature values are handled by assigning them

the average rank value, following Spearman’s rank correlation coefficient (Section

4.4.3). Adding 1 to the denominator of the relative rank calculation avoids excep-

tions with empty vectors, and also ensures that the value will always be strictly

greater than C. The resulting function is as follows:

z(f) =

{
(1− rb(f)

|Fb|+1
)× (1− C) + C if f ∈ Fa ∩ Fb

C otherwise
(4.40)

The parameter C shows the relative importance of the ‘unimportant’ features

to the directional relation. Setting it to 0 will ignore these features completely,

while setting it to 1 will result in the traditional cosine measure. Experiments

on the development data showed that the exact value of this parameter is not

very important, as long as it is not too close to the extreme values of 0 or 1. We

use the value C = 0.5 for reporting our results, meaning that the non-included

features are half as important, compared to the included features.

4.6 Datasets

Zhitomirsky-Geffet & Dagan (2009) created a manually-annotated dataset for

evaluating detection of lexical entailment. They randomly selected a set of 30

nouns and found 40 most similar words for each of them, according to two versions

of the Lin measure. Every unique word pair was duplicated in both directions and

manually annotated for lexical entailment. While the definition of entailment is

broader than hyponymy, their end-goal of finding substitutable word pairs is very

similar to ours. However, the Minipar (Lin, 1993) parser was used to construct the

78

dataset, generating some multi-word expressions which are not easily reproduced

when finding distributional features with other parsers. We also report results on

their dataset, but run our experiments on the subset of word pairs that contain

only single terms (886 positive and 2,154 negative word pairs). We are thankful

to Zhitomirsky-Geffet & Dagan for generously providing us with their dataset.

As WordNet (Miller, 1995) contains numerous manually annotated hyponymy

relations, we can use it to construct suitable datasets for evaluating both hyponym

detection and generation. While WordNet terms are annotated with only the clos-

est hyponyms, we are considering all indirect/inherited hyponyms to be relevant

– for example, given relations (dog → mammal) and (mammal→ animal), then

dog is also counted as a hyponym of animal. In addition, since synonymy can be

thought of as a symmetric is-a relation, synonyms are counted as hyponyms in

both directions.

For evaluating hyponym detection, we created a balanced dataset of positive

and negative word pairs. As WordNet contains annotation for numerous words

that rarely occur in practical datasets, we filtered out any terms that occurred less

than 10 times in the British National Corpus (BNC), also considering the general

part-of-speech tag (noun or verb) as tagged by RASP (Briscoe et al., 2006).

For every word we extract sets of positive and negative hyponym examples. The

positive examples for a term consist of all its annotated synonyms and hyponyms.

WordNet relations exist between synsets, but we refrain from the task of word

sense disambiguation and count a candidate as a positive example if it is valid

for any synset that contains the term.

There exists no explicit annotation for absence of hyponymy, and using ran-

dom words would risk accidentally choosing correct examples that have not yet

been annotated. However, we can make use of existing relations that directly

contradict the possibility of hyponymy. As negative instances we use antonyms,

together with hyponyms of hypernyms – for example, if (mammal → cat) is

added to the previous example, then cat can be used as a negative hyponymy

instance for dog. Any terms that were present in the positive, as well as the neg-

ative set, were removed from both. We then randomly selected 10 positive and 10

negative examples for the final dataset, given that enough terms were available

in both sets.

79

Zhitomirsky-Geffet & Dagan (2009) extracted only terms with the highest

distributional similarity to annotate for the dataset. This somewhat changes the

task, as all the candidates are distributionally very similar, and the goal is then

to distinguish between the possible directions of the entailment relation. In con-

trast, we would like to evaluate how well similarity measures perform at finding

hyponyms in general, not only the ones that have a high symmetric similarity.

Our hyponym detection dataset does not make use of any initial similarity mea-

sure to filter terms, and allows us to evaluate the performance of each measure

more directly. However, the dataset is still indirectly influenced by distributional

similarity, as the methods for finding both positive and negative examples are

likely to return terms that occur in similar contexts. Of course, this can be

considered the hardest possible scenario for hyponym classification, but systems

optimised only for this task can perform worse when applied to real data and

practical applications.

To better model the scenario of hyponym generation, we create a second

dataset suitable for a more open-ended task. The system will be given a single

word as input and it will have to return all its hyponyms. This can be addressed

as a classification task, returning the putatively correct set, or as a ranking task,

returning a scored list of words with the correct hyponyms ranked highest. In

contrast to the balanced detection dataset, all correct hyponyms are retained in

the generation dataset, but all negative examples are discarded. We only included

hypernyms that have at least 10 hyponyms, such that each of the hyponyms occurs

at least 10 times in the BNC; this was done to limit the ratio of very rare words.

The hypernym itself also needed to pass the frequency criteria. However, given

that the hypernym matches the conditions, then the dataset contains all its direct

and indirect hyponyms present in WordNet, including terms that were not found

in the BNC.

While nearly all work on lexical entailment and hyponymy detection has been

done on nouns, WordNet also includes annotation for verbs. Therefore, we cre-

ated corresponding datasets for both nouns and verbs. In order to better facili-

tate future research and experiments, we randomly separated them into training

(40%), development (30%), and test (30%) sets. The final size of all datasets

is shown in Table 4.1. We make all the datasets available for download online,

80

along with descriptions of additional similarity measures, the complete table of

results, the code used to perform the experiments, and the implementations of

all the similarity measures (see Sections 2.2.1 and 2.2.2 for more information).1

Train Dev Test

Noun detection 23120 17300 17300
Verb detection 10920 8160 8160
Noun generation 1230 922 922
Verb generation 594 444 444

Table 4.1: Dataset sizes for hyponym detection and generation. The detection
datasets are measured in word pairs; the generation datasets are measured in the
number of hypernyms, regardless of their hyponyms.

4.7 Experiments

4.7.1 Hyponym detection

In order to evaluate hyponym detection and generation, we first built distribu-

tional feature vectors for every word. The BNC was used as the background

corpus and parsed by the RASP parser (Briscoe et al., 2006). All the terms were

lowercased; numbers were grouped and substituted by more generic tokens: cur-

rency (30), enumeration (1st), number (one), and other numerical (14.57). We

also use the assigned part-of-speech tag, convert it to a more general form (noun,

verb, etc.) (Petrov et al., 2011), and append it to the lemma. This is done to

provide a basic level of word-sense disambiguation, but still avoid the sparsity

problems related to more specific tags.

As context features for a term, we use every incoming and outgoing depen-

dency relation, together with the connected term. For example, given the depen-

dency relation (play V, dobj, guitar N), the tuple (>dobj, guitar N) was extracted

as a feature for play V, and (<dobj, play V) as a feature for guitar N. We use

only features that occur more than once in the whole dataset, and weight them

using pointwise mutual information to construct feature vectors for every term.

1www.cl.cam.ac.uk/∼mr472/hyponyms/

81

Features with negative weights were retained, as they proved to be beneficial for

some similarity measures; the formulas in Section 4.4 specify which measures are

defined using only positive features.

The first experiments evaluate how well the distributional similarity measures

perform at the task of hyponym detection. Given a collection of term pairs, the

system needs to assign higher scores to the pairs that show a correct hyponymy

example. Following the evaluation by Kotlerman et al. (2010), we measure per-

formance by sorting all the pairs in descending order of scores, and calculating

average precision (AP) over the whole dataset. A system that ranks all correct

pairs higher than any of the incorrect ones would receive an AP of 1.0. As the

distributional similarity measures require no training or development, we report

all results on both of these datasets for better comparison. In addition, LexEnt

is the lexical entailment dataset created by Zhitomirsky-Geffet & Dagan (2009).

Table 4.2 contains the results, with the best measure for each dataset marked in

bold.

We can observe that Cosine and DiceGen2, both symmetric similarity mea-

sures, deliver relatively high performance even though the task is to detect asym-

metric relationships. They do not use any notion of directionality, yet these

measures perform well simply by assigning a higher score to pairs that are more

distributionally similar. DiceGen2 also gives consistently better results on the

verb datasets. BalAPInc and BalPrec are some of the best-performing direc-

tional measures, with BalAPInc achieving the highest performance on the Noun-

Dev dataset.1 Measures based on correlation (Spearman, Pearson, KendallsTau)

do not appear to be well-suited for this task and give some of the lowest results

on all datasets. Finally, the new WeightedCosine measure gives the highest per-

formance on two different datasets, Noun-Train and LexEnt, and it is the second

best-performing measure on both verb datasets.

Cosine, DiceGen2, BalAPInc and WeightedCosine were selected as the highest

performing measures, and we also report their results on the designated test set

in Table 4.3. The performances are similar to the previous results, with some

1Performance of BalAPInc on the lexical entailment dataset is not directly comparable to
the results reported by Kotlerman et al. (2010). We only evaluate on single terms, whereas
they include some multi-word expressions. In addition, our feature vectors are built from BNC
parsed with the RASP parser, whereas they used the Reuters RCV1 corpus with Minipar.

82

Noun Verb
Train Dev Train Dev LexEnt

Cosine 58.76 57.23 57.50 57.33 47.56
Pearson 49.10 50.15 48.95 48.63 28.42
Spearman 48.74 49.70 48.80 48.48 27.93
JaccardSet 55.11 53.02 54.69 54.58 41.59
Lin 56.44 54.23 55.63 55.47 44.77
DiceSet 55.11 53.02 54.69 54.58 41.59
OverlapSet 50.84 51.77 50.52 50.25 31.76
CosineSet 56.03 54.13 55.49 55.44 43.30
JaccardGen 56.88 54.79 56.08 55.82 45.02
DiceGen 56.88 54.79 56.08 55.82 45.02
DiceGen2 58.89 56.93 58.53 58.07 46.66
KendallsTau 48.76 49.71 48.85 48.51 27.98
ClarkeDE ? 57.40 58.04 55.74 56.24 41.96
WeedsPrec ? 54.45 55.06 52.84 52.89 37.76
WeedsRec ? 48.74 48.00 49.77 49.49 29.52
WeedsF 56.25 54.03 55.50 55.34 44.05
AP ? 56.66 54.89 55.94 55.87 44.18
APInc ? 55.10 55.75 53.29 53.50 39.82
BalAPInc ? 58.80 58.81 56.83 56.82 45.04
LinD ? 55.11 55.68 53.37 53.49 38.96
BalPrec ? 58.49 57.89 57.16 56.96 45.61
KLDivergence � ? 52.57 53.09 52.19 51.79 33.62
KLDivergenceR � ? 47.99 47.27 48.66 48.79 28.78
JSDivergence � 52.89 53.21 51.73 51.94 25.19
AlphaSkew � ? 49.72 49.76 49.89 49.97 23.21
AlphaSkewR � ? 52.15 53.05 50.74 51.23 28.36
Manhattan � 52.88 53.19 51.71 51.92 25.13
Euclidean � 52.77 53.13 51.67 51.83 25.22
Chebyshev � 49.81 48.63 50.61 51.04 34.51
WeightedCosine ? 59.09 57.55 57.90 57.73 47.62

Table 4.2: Average precision of different similarity measures when performing
hyponym detection, reported on the training, development, and lexical entailment
datasets.

83

Noun Verb

Cosine 58.65 56.36
DiceGen2 58.60 57.26
BalAPInc ? 58.65 56.79
WeightedCosine ? 59.08 56.57

Table 4.3: Average precision of selected measures on the hyponym detection test
datasets.

measures performing slightly better on nouns and others on verbs. WeightedCo-

sine achieves the highest average precision on nouns (59.08%), while DiceGen2

performs best on verbs (57.26%).

4.7.2 Hyponym generation

Next, we evaluate how well these similarity measures perform at the task of

hyponym generation. Given one input word at a time, the system needs to return

a scored list of terms, such that the correct hyponyms of the original word are

ranked higher. Average Precision is calculated for each returned list, and then

averaged over all lists, resulting in Mean Average Precision (MAP). The MAP

measure is typically used for evaluating the ranking of a fixed set, not in tasks

where the set of returned items can vary. However, by penalising the system for

any unseen correct hyponyms, we are able to report results that are comparable to

other systems using different background corpora, filtering methods, and ranking

measures.

The set of returned terms needs to be chosen by the system, and MAP assigns

a higher penalty when a correct hyponym is not returned at all, compared to

assigning it a low rank. We select as candidates all terms that have the correct

part-of-speech (noun or verb), and occur at least 10 times in the corpus. This

results in 45,986 terms for nouns and 6,011 terms for verbs; the input term itself

is removed from the list before evaluation. The similarity measures are then used

to assign scores to each candidate term, indicating the confidence that it is a

valid hyponym of the input word. Table 4.4 shows results on the training and

development sets.

The results show that WeightedCosine outperforms all other measures on

84

Noun Verb
Train Dev Train Dev

Cosine 2.63 2.62 4.75 5.15
Pearson 0.13 0.14 0.71 0.69
Spearman 0.12 0.14 0.70 0.67
JaccardSet 1.37 1.47 3.01 3.02
Lin 1.99 2.03 3.81 3.95
DiceSet 1.37 1.47 3.01 3.02
OverlapSet 0.18 0.19 0.98 0.97
CosineSet 1.61 1.64 3.60 3.61
JaccardGen 2.01 2.05 3.77 3.93
DiceGen 2.01 2.05 3.77 3.93
DiceGen2 2.48 2.50 4.45 4.64
KendallsTau 0.12 0.14 0.70 0.67
ClarkeDE ? 0.24 0.26 1.14 1.14
WeedsPrec ? 0.15 0.17 0.67 0.68
WeedsRec ? 0.79 0.80 2.25 2.08
WeedsF 1.87 1.93 3.61 3.76
AP ? 1.66 1.67 3.71 3.70
APInc ? 0.18 0.20 0.79 0.78
BalAPInc ? 1.50 1.51 3.08 2.84
LinD ? 0.16 0.18 0.72 0.73
BalPrec ? 1.73 1.74 3.29 2.99
KLDivergence � ? 0.56 0.60 1.43 1.31
KLDivergenceR � ? 0.39 0.38 1.48 1.38
JSDivergence � 0.13 0.16 0.52 0.53
AlphaSkew � ? 0.81 0.83 2.30 2.11
AlphaSkewR � ? 0.08 0.10 0.46 0.46
Manhattan � 0.09 0.11 0.47 0.47
Euclidean � 0.09 0.11 0.47 0.47
Chebyshev � 0.23 0.27 1.34 1.27
WeightedCosine ? 2.73 2.72 4.80 5.18

Table 4.4: Mean average precision of different similarity measures when perform-
ing hyponym generation, reported on the training and development datasets.

85

all datasets. Cosine and DiceGen2 also give high results, whereas the other

measures have considerably lower MAP scores. BalPrec and AP are some of

the highest among directional similarity measures, but are still outperformed

by several symmetric measures. It is interesting to note that AP consistently

outperforms APInc and BalAPInc, which are designed to be improvements of the

original measure. This is likely caused by APInc assigning high similarity scores

to pairs where the narrower term has a much lower frequency compared to the

broader term. Measures such as ClarkeDE and WeedsPrec are also vulnerable

to the same problem, as they quantify the total similarity relative to the sum of

feature weights for the narrower term.

In Table 4.5 we present results of the same high-performing measures on the

test sets. WeightedCosine achieves the highest performance on the nouns (2.88%),

and shares the highest rank with Cosine on the verbs (5.52%).

Noun Verb

Cosine 2.80 5.52
DiceGen2 2.63 4.83
BalAPInc 1.58 2.84
WeightedCosine 2.88 5.52

Table 4.5: Mean average precision of selected measures on the test datasets.

We measure the statistical significance of the change in MAP by using the

Approximate Randomisation Test (Noreen, 1989; Cohen, 1995) with 106 itera-

tions. This method is a computer-intensive statistical hypothesis test, and is the

recommended significance test for measuring MAP differences in the Information

Retrieval task (Smucker et al., 2007). It is designed to assess result differences

with respect to a test statistic in cases where the sampling distribution of the

test statistic is unknown. The performance of WeightedCosine was found to be

significantly better (p < 0.05) on all noun datasets (train, dev and test) in the

generation task, when compared to the second ranking measure (Cosine). The

differences on the verb datasets were not significant.

The numerical values of the MAP scores are noticeably low for all measures on

the hyponym generation task due to a number of reasons. First, the task is rather

difficult for an unsupervised similarity measure, and the MAP score is calculated

86

over a very large number of candidates (45,985 in the case of nouns). Second, as

WordNet is a manually annotated resource, there are presumably many correct

hyponym relations that have not been added yet, and the system will always be

penalised for giving these terms a high score. In addition, there are many words

present in WordNet that do not occur in our corpus, and are therefore not even

considered as potential hyponyms. Finally, the similarity measures assign scores

based on how well one term can be substituted for another, by comparing their

context vectors, and these terms might not always be strictly hyponyms. How-

ever, we assume that distributional similarity measures which assign valid scores

to WordNet-annotated hyponym relations, are more likely to also provide better

scores to other term pairs that may be lexically substitutable. By normalising

MAP over the total number of correct hyponyms in the dataset, we are able to

report results that are comparable even to very different systems using alterna-

tive background corpora and filtering methods. While ontology creation systems

are commonly evaluated only using precision, this approach also takes recall and

ranking into account.

Table 4.6 contains some examples of hyponym generation, ordered by their

score, illustrating the properties of each similarity measure. A larger set of ex-

amples can be found in Appendix B. Cosine and DiceGen2 return both wide

(food) and more specific concepts (garlic), whereas BalAPInc clearly prefers nar-

row and rare terms. WeightedCosine closely follows Cosine, but also includes a

more subtle preference towards narrow concepts.

4.7.3 Supervised learning

Previous sections investigated hyponym detection and generation using distribu-

tional similarity measures. All of these measures use only a large unannotated

corpus for collecting distributional features, and require no labelled data. In or-

der to see how these unsupervised methods compare to fully-supervised learning,

we also constructed experiments with Support Vector Machines (SVM) (Vapnik,

1982; Cortes & Vapnik, 1995).

We utilise SVMLight (Joachims, 1999) and train separate models for hyponym

detection and generation, using a linear kernel and the designated training set.

87

vegetable (noun) travel (verb)

Cosine fruit, salad, potato, food,
lettuce, herb, ingredient,
meal, meat, dish

move, walk, go, work, pass,
run, return, live, drive, fly

DiceGen2 salad, fruit, potato, let-
tuce, herb, ingredient, meat,
mushroom, tomato, garlic

walk, fly, arrive, move, at-
tend, drive, ride, stay, pass,
cross

BalAPInc ? veg, caulerpa, worm-cake,
cryptocorynes, roughage,
parmesan, caviare, lectin,
crudit, owenites

journey, trudge, stray,
tramp, queue, urinate,
stroll, wander, taxi, co-
operate

WeightedCosine ? fruit, salad, lettuce, potato,
food, herb, prawn, meat, in-
gredient, meal

move, walk, pass, work,
drive, fly, go, return, live,
run

Table 4.6: Examples of hyponym generation for the noun vegetable and the verb
travel. Correct hyponyms, according to WordNet, are marked in bold.

Each item being classified corresponds to one directional word pair. As features

for every word pair, we used all the similarity measures described in the previous

sections. This method is based on Berant et al. (2010) who also calculate a wide

selection of different similarity measures and use them as features for an SVM

classifier. In addition, we included the following features for both individual

words and multiplied for the paired words:

• Frequency

• Number of features

• Number of features relative to frequency

• Number of shared features relative to number of total features

All feature values were normalised by subtracting the mean and dividing by

the range. As the generation dataset does not contain any negative examples, we

created a balanced dataset for training by randomly sampling words that were

not annotated as hyponyms. We also experimented with alternative methods for

choosing negative examples, based on the selection method for hyponym detec-

tion, but found random sampling to give the best performance. The results are

presented in Table 4.7.

88

Noun Verb
Train Dev Test Train Dev Test

Detection 63.73 63.46 64.00 64.44 63.03 62.68
Generation 1.88 1.89 1.97 4.64 4.78 4.97

Table 4.7: Experiments on hyponym detection and generation using Support
Vector Machines.

The experiments show that a supervised learning method gives the best re-

sults for the hyponym detection task, achieving 64.00% on the noun-test dataset

compared to 59.08% by WeightedCosine. However, it does not perform as well on

the generation task, giving only 1.97% compared to 2.88% by WeightedCosine.

Running generation experiments with SVMs is also rather time-consuming, as the

system needs to classify all possible word pairs, therefore we find distributional

similarity measures to be a better choice for the task of hyponym generation.

Finally, we also experimented with switching the models, e.g. training a model

on the detection data and testing on generation, but this delivered lower results

for both cases.

4.8 Conclusion

Given only a single term as input, hyponym generation is the task of finding

correct hyponyms for that term. It has practical applications for a wide variety

of NLP tasks. For example, information retrieval and information extraction can

directly benefit from being able to find lexical substitutes and construct more

specific versions of a query, while retaining the original semantics. Ontology

creation, summarisation, question answering, entailment detection and language

modelling can also use hyponyms to increase both accuracy and coverage.

In order to investigate the performance of various distributional similarity

measures on the tasks of hyponym detection and generation, we created four new

datasets using WordNet. They cover hyponym relations between both nouns and

verbs, and are split into training, development and test sets. The hyponym detec-

tion datasets contain a balanced selection of correct and incorrect hyponymous

word pairs. The hyponym generation datasets contain selected terms together

89

with all their hyponyms, leaving it up to the system to find the correct hyponym

instances using unrestricted knowledge sources.

Hyponym generation can be performed by applying hyponym detection on a

large number of candidate pairs. We evaluated and compared the performance

of different distributional similarity measures at both hyponym detection and

generation. Cosine and DiceGen2 similarity measures were found to perform

remarkably well, considering that they are symmetric measures and the task

assumes modelling of a directional relation. This implies that existing directional

similarity measures are not able to capture hyponymy very well, and there is

plenty of room for improvement. The directional measures of AP, BalAPInc and

BalPrec performed well on the hyponym detection task, but were outranked by

several other symmetric measures when doing hyponym generation.

We also proposed a novel similarity measure, based on cosine similarity, by

applying additional directional weights to each feature. We hypothesised that the

feature weights of the broader term are more indicative of the hyponymy relation,

compared to the narrower term. In addition, we assigned lower importance to

features that are not shared between the two terms, since many high-weighted

features are often too specific to contribute to hyponymy detection. Our measure

delivers significantly better results when doing hyponym generation on nouns,

and gives comparable performance on verbs.

Finally, in order to compare these methods to a fully-supervised system, we

trained an SVM classifier for solving the same tasks. All of the unsupervised

similarity measures were included as features in the supervised model, and this

configuration gave the highest performance for hyponym detection. However,

the classifier was outperformed by the best individual similarity measures on hy-

ponym generation. This result demonstrates that a theoretically-motivated ap-

proach without any supervision or annotated data can, in some cases, outperform

a fully supervised method.

There is much room for additional improvement in both hyponym detection

and generation. In addition to potential new similarity measures, the problems

could also be approached through different methods, such as hyponym acquisi-

tion or more focussed supervised learning algorithms. It is also worth exploring

whether nouns and verbs could benefit from different configurations, as they have

90

somewhat different distributions of context features. The task of hyponym gener-

ation is not yet sufficiently researched, and many existing NLP applications can

directly benefit from more accurate solutions.

91

Chapter 5

Entailment Detection

5.1 Introduction

Understanding that two different texts are semantically similar has benefits for

nearly all NLP tasks, including information retrieval, information extraction,

question answering and summarisation. Similarity detection is usually performed

either on single words (synonymy) or full sentences and paragraphs (paraphras-

ing). A symmetric similarity relation implies that both elements can be inter-

changed (synonymy and paraphrasing), while directional similarity suggests that

one fragment can be substituted for the other but not the opposite (hyponymy

and entailment).

All of these language phenomena can be expressed using a single entailment

relation. For paraphrases and synonyms the relation holds in both directions

(observe ↔ notice), whereas entailment and hyponymy are modelled as a uni-

directional relation (overexpress → express). In addition, such relations can be

defined between text fragments of any size and shape, ranging from a single word

to a complete text segment. For example (argues against → does not support),

and (the protein has been implicated↔ the protein has been shown to be involved).

In this chapter we propose a new task – detecting entailment relations between

any kinds of text fragments. A unified approach is not expected to perform better

when compared to systems optimised only for a specific task (e.g., recognising en-

tailment between sentences), but constructing a common theory to cover all text

92

fragments has important benefits. A broader approach will allow for entailment

discovery among a much wider range of fragment types for which no specialised

systems currently exist. In addition, entailment relations can be found between

different types of fragments (e.g., a predicate entailing an adjunct). Finally, a

common system is much easier to develop and integrate with potential applica-

tions compared to having a separate system for each type of fragment.

In Chapter 4 we investigated minimally supervised methods for detecting

hyponym relations between single words. The current chapter extends this task to

include larger dependency graph fragments, and we present a unified framework

that can be used to detect entailment relations between sentence fragments of

various types and sizes.

The final system is designed to work with anything that can be represented

as a connected subgraph of dependency relations, including single words, con-

stituents of various sizes, text adjuncts, predicates, relations and full sentences.

The approach is completely unsupervised and requires only a large plain text

corpus to gather statistics for calculating distributional similarity. This makes it

ideal for the biomedical domain where the availability of annotated training data

is limited. We apply these methods by using a large corpus of biomedical papers

for feature collection and evaluate on a manually constructed dataset of entailing

fragment pairs, extracted from biomedical texts.

5.2 Research goals

In order to analyse the task of entailment detection, and to build a working

system, we have set the following research goals:

• Determine whether dependency graphs are suitable for extracting meaning-

ful connected structures for entailment detection.

• Investigate whether the distributional hypothesis can be extended from sin-

gle words to larger text fragments and, more specifically, to larger depen-

dency graph fragments.

93

• Examine how different types of similarity measures perform with larger

connected subgraphs, compared to single words.

• Find methods of integrating both distributional and lexical similarity when

calculating the similarity between graph fragments.

• Determine whether the detection of sentence-level negation and hedging has

a practical impact to the task of entailment detection.

• Develop and evaluate a unified minimally supervised approach for entail-

ment detection.

5.3 Background

The entailment relation between two sentences or paragraphs is commonly defined

following the guidelines in the Recognizing Textual Entailment (RTE) Challenge

(Bar-Haim et al., 2006):

(18) Text T entails hypothesis H if, typically, a human reading T would infer

that H is most likely true.

For example, the following text (T) entails the hypothesis (H):

(19) T: Francis Crick, James D. Watson and Maurice Wilkins were awarded

the Nobel Prize in 1962.

H: Francis Crick received an award.

When there is no valid entailment relation between sentences, it is due to one

of two reasons: either there is not enough evidence to establish the relation, or

one text contradicts the other. H1 and H2 in the example below illustrate both

of these cases, respectively.

(20) T: Glutamine is the most abundant free amino acid in human blood.

H1: Glutamine is one of the most important sources of energy in cells.

H2: Glutamine is not found in human blood.

94

Over time, additional guidelines have been specified for the entailment detec-

tion challenge:

• Entailment is a directional relation. The hypothesis must be entailed from

the text but the text does not need to be entailed from the hypothesis.

• The hypothesis must be fully entailed by the text and must not contain

parts that cannot be entailed.

• Entailment allows presupposition of common world knowledge.

• If the inference is very probable but not certain, the hypothesis is still

judged as being entailed from the text.

• Given the text and hypotheses might originate from documents at different

points in time, tense aspects should be ignored.

This definition is somewhat subjective, as it assumes certain background

knowledge and a shared understanding of language. However, human judges

have shown very good agreement on the task of entailment recognition – 3 judges

reached 91-96% agreement when independently annotating the dataset of RTE-1

(Dagan et al., 2006). This indicates that humans have a good natural under-

standing of the concept of entailment, and automated systems are not yet close

to that level.

Most existing work on entailment detection has focused on comparing full sen-

tences or larger text units, and various methods have been developed to calculate

their semantic similarity. For example, Haghighi et al. (2005) represent sentences

as directed dependency graphs and use graph matching to measure semantic

overlap. Their method also compares the dependency relations present in both

sentences, thereby incorporating extra syntactic information in the similarity cal-

culation. Hickl et al. (2006) combine lexico-syntactic features and automatically

acquired paraphrases to classify entailing sentences. Lintean & Rus (2009) make

use of weighted dependencies and word semantics to detect paraphrases. In addi-

tion to similarity, they look at dissimilarity between two sentences and use their

ratio as the confidence score for paraphrasing.

95

To a lesser extent, the detection and extraction of entailment examples be-

tween relations has also been investigated. Lin & Pantel (2001) were one of

the first to extend the distributional hypothesis to dependency paths, and they

construct an unsupervised algorithm for Discovering Inference Rules from Text

(often referred to as the DIRT algorithm). Szpektor et al. (2004) further extend

this work and describe the TE/ASE method for extracting entailing relation tem-

plates from the Web. The distributional similarity of argument terms has also

been used for other related tasks, such as detecting entailment between unary

templates (Szpektor & Dagan, 2008), and to learn a transitive entailment graph

of binary relations (Berant et al., 2010).

Finally, there has also been some work on detecting directional similarity

relations between single words. Most methods involve syntactic pattern matching

to automatically discover word-level hypernym pairs (e.g., Snow et al., 2005).

More recently, distributional similarity methods have also been used to detect

directional inference relations between single words (Kotlerman et al., 2010). We

explored the tasks of hyponym detection and generation in more detail in Chapter

4, and additional related research is presented in Section 4.3.

In contrast to our approach, each of the approaches described above only

focuses on detecting entailment between specific subtypes of fragments (either

sentences, relations or words) and optimising the system for a single scenario.

This means only limited types of entailment relations are found and they can-

not be used for entailment generation or compositional entailment detection, as

described in Section 5.4.

MacCartney & Manning (2008) approach sentence-level entailment detection

by breaking the problem into a sequence of atomic edits linking the premise to the

hypothesis. Entailment relations are then predicted for each edit, propagated up

through a syntax tree and then used to compose the resulting entailment decision.

However, their system focuses more on natural logic and uses a predefined set of

compositional rules to capture a subset of valid inferences with high precision but

low recall. It also relies on a supervised classifier and information from WordNet

to reach the final entailment decision.

Androutsopoulos & Malakasiotis (2010) have assembled a survey of different

tasks and approaches related to paraphrasing and entailment. They describe three

96

different goals (paraphrase recognition, generation and extraction) and analyse

various methods for solving them.

5.4 Applications

Entailment detection between fragments is a vital step towards entailment gener-

ation – given text T, the system will have to generate all texts that either entail

T or are entailed by T. This is motivated by applications in information retrieval

(IR) and information extraction (IE). For example, if we wish to find all genes

that are synthesised in the larval tissue, the following IE query can be constructed

(with x and y marking unknown variables):

(21) x is synthesised in the larval tissue

Known entailment relations can be used to modify the query:

• overexpression → synthesis

• larval fat body → larval tissue

• the synthesis of x in y ↔ x is synthesised in y

Pattern (22) entails pattern (21) and would also return results matching the

information need.

(22) the overexpression of x in the larval fat body

A system for entailment detection can automatically extract a database of

entailing fragments from a large corpus and use them to modify any query given

by the user. Recent studies have also investigated how complex sentence-level

entailment relations can be broken down into smaller consecutive steps involving

fragment-level entailment (Sammons et al., 2010; Bentivogli et al., 2010). For

example:

(23) T: The mitogenic effects of the B beta chain of fibrinogen are mediated

through cell surface calreticulin.

H: Fibrinogen beta chain interacts with CRP55.

97

To recognise that the hypothesis is entailed by the text, it can be decomposed

into five separate steps involving text fragments:

1. B beta chain of fibrinogen → Fibrinogen beta chain

2. calreticulin → CRP55

3. the mitogenic effects of x are mediated through y → y mediates the mitogenic

effects of x

4. y mediates the mitogenic effects of x → y interacts with x

5. y interacts with x → x interacts with y

This illustrates how entailment detection between various smaller fragments can

be used to construct an entailment decision between more complicated sentences.

However, only the presence of these constructions has been investigated and, to

the best of our knowledge, no models currently exist for automated detection and

composition of such entailment relations.

5.5 Modelling entailment between graph frag-

ments

In order to cover a wide variety of language phenomena, a fragment is defined as

follows:

Definition 1 A fragment is any connected subgraph of a directed dependency

graph containing one or more words and the grammatical relations between them.

This definition is intended to allow extraction of a wide variety of fragments

from a dependency tree or graph representation of sentences found using any

appropriate parser capable of returning such output (e.g., Kübler et al., 2009;

Briscoe et al., 2006; Curran et al., 2007; Nivre et al., 2007). The definition covers

single- or multi-word constituents functioning as dependents (e.g., sites, putative

binding sites), text adjuncts (in the cell wall), single- or multi-word predicates

(* binds to receptors in the airways) and relations (* binds and activates *),

98

induce

in

B61recombinant

autophosphorylation of ECK

cell intact

mod

mod

subj

iobj

iobj

dobj

dobj

dobj

Figure 5.1: Dependency graph for the sentence: Recombinant B61 induces au-
tophosphorylation of ECK in intact cells. Some interesting fragments are marked
by dotted lines.

including ones with ‘internal’ dependent slots (* inhibits * at *), some of which

may be fixed in the fragment (* induces autophosphorylation of * in * cells), and

also full sentences.1

Dependency graphs are naturally well-suited for the extraction of smaller sub-

fragments, as can be seen from the example in Figure 5.1. The structure is centred

at the main verb, and each outgoing edge adds more specific information, usually

in the order of decreasing importance (modifiers are positioned further compared

to the main verbs and nouns). Splitting any of the dependency relations auto-

matically creates two smaller structures that are still semantically coherent, even

though the textual representation may be broken. For example, removing the

central dobj relation creates two fragments: a noun phrase (autophosphorylation

of ECK), and a verb phrase with an unspecified object (Recombinant B61 in-

duces * in intact cells). This property also applies when futher separating the

fragments recursively. Similar splits of the textual representation would easily

create numerous incoherent sequences, such as ‘of ECK in intact’.

Our aim is to detect semantically similar fragments which can be substituted

for each other in text, resulting in more general or more specific versions of the

same proposition. This kind of similarity can be thought of as an entailment

relation and we define entailment between two fragments as follows:

1The asterisks (*) are used to indicate missing dependents in order to increase the readability
of the fragment when represented textually. The actual fragments are kept in graph form and
have no need for them.

99

Definition 2 Fragment A entails fragment B (A → B) if A can be replaced by

B in a sentence S and the resulting sentence S’ can be entailed from the original

one (S → S’).

This also requires estimating entailment relations between sentences, for which

we use the definition established by Bar-Haim et al. (2006):

Definition 3 Text T entails hypothesis H (T→ H) if, typically, a human reading

T would infer that H is most likely true.

It is important to note that the sentence S must not contain hedging, negation,

quantifiers, or other constructions that can modify the properties of the entail-

ment relation.

We model the semantic similarity of fragments as a combination of two sepa-

rate directional similarity scores:

1. Intrinsic similarity: how similar are the components of the fragments.

2. Extrinsic similarity: how similar are the contexts of the fragments.

To find the overall score, these two similarity measures are combined linearly

using a weighting parameter α:

Score(A→ B) = α× IntSim(A→ B) + (1− α)× ExtSim(A→ B)

We use the notation f(A → B) to indicate an asymmetric function between

A and B. When referring only to single words, lowercase letters (a,b) are used;

when referring to fragments of any size, including single words, then uppercase

letters are used (A,B).

Score(A → B) is the confidence score that fragment A entails fragment B –

higher score indicates higher confidence and 0 means no entailment. IntSim(A→
B) is the intrinsic similarity between two fragments. It can be any function that

compares them internally, for example by matching the structure of one fragment

to another, and outputs a similarity score in the range of [0, 1]. ExtSim(A →
B) is a measure of extrinsic similarity that compares the contexts of the two

100

fragments. α is set to 0.5 for an unsupervised approach, but the effects of tuning

this parameter are further analysed in Section 5.7.

The directional similarity score is first found between words in each fragment,

which are then used to calculate the overall score between the two fragments.

5.5.1 Intrinsic similarity

IntSim(A → B) is defined as the intrinsic similarity between the two words or

fragments. In order to best capture entailment, this measure should be asym-

metrical. We use the following simple formula for word-level score calculation:

IntSim(a→ b) =
length(c)

length(b)

where c is the longest common substring for a and b. This measure will show the

ratio of b that is also contained in a. For example:

IntSim(overexpress→ expression) = 0.70

IntSim(expression→ overexpress) = 0.64

We found that measuring the length of the longest shared substring worked

better, compared to the more widely used Levenshtein distance measure (Leven-

shtein, 1966), also known as string edit distance. For example, Levenshtein dis-

tance will assign a high similarity to the word pair (overexpress, overcompress),

even though they have different lexical stems and very different meaning. In

contrast, our IntSim measure will return a relatively low similarity, as it matches

only on the common suffix.

The intrinsic similarity function for fragments is defined using an injective

function between components of A and components of B:

IntSim(A→ B) =
Mapping(A→ B)

|B|

where Mapping(A → B) is a function that goes through all the possible word

pairs {(a, b)|a ∈ A, b ∈ B} and at each iteration connects the one with the

101

while unused elements in A and B do
bestScore = 0
for a ∈ A, b ∈ B, a and b are unused do

if Score(a→ b) > bestScore then
bestScore = Score(a→ b)

end if
end for
total+ = bestScore

end while
return total

Figure 5.2: Pseudocode for mapping between two fragments.

highest entailment score, returning the sum of those scores. Figure 5.2 contains

pseudocode for the mapping process. Dividing the value of Mapping(A → B)

by the number of components in B gives an asymmetric score that indicates how

well B is covered by A. It returns a lower score if B contains more elements than

A, as some words cannot be matched to anything. While there are exceptions,

it is common that if B is larger than A, then it cannot be entailed by A as it

contains more information.

The word-level entailment score Score(a → b) is directly used to estimate

the entailment score between fragments, Score(A → B). In this case we are

working with two levels – fragments which in turn consist of words. However,

this can be extended to a truly recursive method where fragments consist of

smaller fragments.

5.5.2 Extrinsic similarity

The extrinsic similarity between two fragments or words is modelled using mea-

sures of directional distributional similarity. We define a context relation as a

tuple (a, d, r, a′) where a is the main word, a′ is a word connected to it through

a dependency relation, r is the label of that relation and d shows the direction of

the relation. The tuple f : (d, r, a′) is referred to as a feature of a.

To calculate the distributional similarity between two fragments, we adopt an

approach similar to Weeds et al. (2005). Using the previous notation, (d, r, a′) is

a feature of fragment A if (d, r, a′) is a feature for a word which is contained in

102

A. The general algorithm for feature collection is as follows:

1. Find the next instance of a fragment in the background corpus.

2. For each word in the fragment, find dependency relations which connect to

words not contained in the fragment.

3. Count these dependency relations as distributional features for the frag-

ment.

For example, in Figure 5.1 the fragment (* induces * in *) has three features:

(1, subj, B61), (1, dobj, autophosphorylation) and (1, dobj, cell). The value 1

indicates an outward-directed relation.

The BioMed Central corpus of full papers was used to collect distributional

similarity features for each fragment. 1,000 papers were randomly selected and

separated for constructing the test set, leaving 70,821 biomedical full papers.

These were tokenised and parsed using the RASP system (Briscoe et al., 2006)

in order to extract dependency relations.

We experimented with different schemes for feature weighting and found the

best one for this task to be a variation of Dice’s coefficient (Dice, 1945), described

by Curran (2003):

wA(f) =
2P (A, f)

P (A, ∗) + P (∗, f)
(5.1)

where wA(f) is the weight of feature f for fragment A, P (∗, f) is the probability of

the feature appearing in the corpus with any fragment, P (A, ∗) is the probability

of the fragment appearing with any feature, and P (A, f) is the probability of the

fragment and the feature appearing together.

We evaluated 15 best-performing similarity measures from Chapter 4 for mod-

elling extrinsic similarity, and found that words and fragments benefitted from dif-

ferent types of measures. ClarkeDE (Clarke, 2009), described in Section 4.4.16,

was used for fragment-level ExtSim in the final system as it achieved the highest

performance:

ClarkeDE(A→ B) =

∑
f∈FA∩FB

min(wA(f), wB(f))∑
f∈FA

wA(f)
(5.2)

103

where FA is the set of features for fragment A and wA(f) is the weight of feature

f for fragment A. It quantifies the weighted coverage of the features of A by the

features of B by finding the sum of minimum weights.

The ClarkeDE similarity measure is designed to detect whether the features

of A are a proper subset of the features of B. This works well for finding more

general versions of relatively sparse fragments, but not when comparing words or

fragments which are roughly equal paraphrases. As a solution we constructed a

new measure based on the symmetrical Lin measure (Lin, 1998).

LinD(A→ B) =

∑
f∈FA∩FB

[wA(f) + wB(f)]∑
f∈FA

wA(f) +
∑

f∈FA∩FB
wB(f)

(5.3)

In the LinD measure, described in Section 4.4.20, the features of B which

are not found in A are excluded from the score calculation, making the score

non-symmetrical but more balanced compared to ClarkeDE. We applied this

for word-level distributional similarity and achieved better results compared to

other common similarity measures.

Finally, we also use the LinD similarity to better detect possible paraphrases

between fragments. If this similarity is very high (greater than 85%), then a

symmetric relationship between the fragments is assumed and the value of LinD

is used as ExtSim. Otherwise, the system reverts to the ClarkeDE measure for

handling unidirectional relations.

The system does not explicitly restrict two entailing fragments to have the

same syntactic type or internal structures. However, the incorporation of the

distributional similarity score will lead the system towards fragments that occur

in similar contexts and have similar valency.

5.5.3 Hedging and negation

In general, adding more information to a text will produce a new proposition

that still entails the original hypothesis. However, as Haghighi et al. (2005) point

out, there are some important exceptions. Speculative language, also known as

hedging, is a way of weakening the strength of a statement and can be one source

of such exceptions.

104

In the following example, we have only added a modifier to the original term,

but this is enough to invert the direction of the entailment relation:

(24) is repressed by → is affected by

may be repressed by ← is affected by

The same applies to negation cues, which are also capable of reversing the

relation:

(25) biological discovery → discovery

no biological discovery ← no discovery

Such cases are handled in our system by inverting the direction of the score

calculation if a fragment is found to contain a special cue word that commonly

indicates hedged language or negation. In order to find the list of indicative hedge

cues, we analysed the training corpus of CoNLL 2010 Shared Task (Farkas et al.,

2010), also used in Chapter 3, which is annotated for speculation cues and scopes.

Any cues that occurred less than 5 times or occurred more often as normal text

than as cue words were filtered out, resulting in the following list:

(26) suggest, may, might, indicate that, appear, likely, could, possible, whether,

would, think, seem, probably, assume, putative, unclear, propose, imply,

possibly

For negation cues we used the list collected by Morante (2009):

(27) absence, absent, cannot, could not, either, except, exclude, fail, failure,

favor over, impossible, instead of, lack, loss, miss, negative, neither, nor,

never, no, no longer, none, not, rather than, rule out, unable, with the

exception of, without

This is a fast and basic method for estimating the presence of hedging and

negation in a fragment. In Chapter 3 we described a more sophisticated system

which could deliver more accurate results, especially when extended to negation

scopes. However, in this experiment we wish to test whether the detection of

hedging and negation in general will have any direct practical effect on entailment

105

detection. In addition, the exact scope detection is most beneficial for longer

texts, whereas the presence of a keyword acts as a good indication of hedging

and negation for relatively short fragments. Therefore, we leave the integration

of these systems for future work, and present here the preliminary experiments

with a simplified approach.

5.6 Dataset

We created a “pilot” dataset for evaluating different entailment detection methods

between fragments, and it is publically available for download.1 In order to look

for valid entailment examples, 1,000 biomedical papers from the BioMed Central

full-text corpus were randomly chosen and analysed. We hypothesised that two

very similar sentences extracted from the same paper are likely to be more and less

general versions of the same proposition. For example, the author may write the

same statement in three separate locations: the introduction, the main article

body, and the conclusion. Some of these statements tend to be more specific

than others, or modified paraphrases of each other, providing a natural source of

fragment-level entailment examples. To find these instances, we first use a bag-

of-words approach to calculate the similarities between all sentences in a single

paper. Next, ten of the most similar but non-identical sentence pairs from every

paper were presented for manual review and 150 fragment pairs were created

based on these sentences, 100 of which were selected for the final set. Negative

instances were found using the same process, selecting fragment pairs in similar

contexts that do not entail each other, but some fragments were slightly modified

to make them substitutable in the same sentence.

The Microsoft Research (MSR) Paraphrase Corpus (Dolan & Brockett, 2005)

is a similar dataset containing a collection of sentence pairs that have been man-

ually annotated for paraphrases. The corpus was created by automatically ex-

tracting sentences based on high word similarity, and then suggesting them for

manual labelling. It was found that on average 70% of the words in these sentence

pairs are identical (Weeds et al., 2005). Such a dataset will not contain a wide

range of paraphrase types, since only sentences with high lexical overlap can pass

1www.cl.cam.ac.uk/∼mr472/entailment/

106

1: These findings suggest that spinal AMPARs might participate in

the central spinal mechanism of persistent inflammatory pain.

2:

3: might participate in

4: <-

5: are involved in

Figure 5.3: Example sentence pair from the dataset

the initial automatic filter. We employ a similar method to construct our dataset,

but as our work involves smaller graph fragments compared to full sentences, the

overlap problem is somewhat reduced. While all words in the sentence are used

to perform the initial matching, most of them are discarded and only the non-

identical fragments are retained. Experiments in Section 5.7 demonstrate that

a simple bag-of-words approach performs rather poorly on the task, confirming

that the extraction method produces a diverse selection of fragments.

Two annotators assigned one of four relation types to every candidate pair

based on how well one fragment can be substituted for the other in text while

preserving meaning (A ↔ B, A → B, A ← B or A 6= B). Cohen’s Kappa

between the annotators was 0.88, indicating very high agreement. Instances with

disagreement were then reviewed and replaced for the final dataset.

Each fragment pair has two binary entailment decisions (one in either di-

rection) and the set is evenly balanced, containing 100 entailment and 100 non-

entailment relations. An example sentence with the first fragment is also included

in the dataset. Fragment sizes range from 1 to 20 words, with the average of 2.86

words.

Figure 5.3 shows one example from the dataset. The first line contains the

sample sentence, followed by the first fragment, the direction of the relation, and

the second fragment. The fragments are not stored in their final graph form in

order to enable the use of different dependency parsers, but they are chosen to

produce connected dependency graphs.

107

5.7 Experiments

The system assigns a score to each entailment relation, with higher values in-

dicating higher confidence in entailment. All the relations are ranked based on

their score, and Average Precision (AP) is used to evaluate the performance:

AP =
1

R

N∑
i=1

E(i)× CorrectUpTo(i)
i

(5.4)

where R is the total number of correct entailment relations, N is the number of

possible relations in the test set, E(i) is 1 if the i-th relation is entailment in the

gold standard and 0 otherwise, and CorrectUpTo(i) is the number of correctly

returned entailment relations up to rank i. Average precision assigns a higher

score to systems which rank correct entailment examples higher in the list.

As a secondary measure, we also report the Break-Even Point (BEP), which

is defined as precision at the rank where precision is equal to recall. Using the

previous annotation, this can also be calculated as precision at rank R:

BEP =
CorrectUpTo(R)

R
(5.5)

BEP is a much more strict measure, treating the task as binary classification and

ignoring changes to the ranks within the classes.

The test set is balanced, therefore random guessing is expected to achieve an

AP and BEP of 50.0% which can be regarded as the simplest (random) baseline.

Table 5.1 contains results for two more basic approaches to the task. For the bag-

of-words (BOW) system, the score of A entailing B is found as the proportion of

lemmatised words in B that are also contained in A:

Scorebow(A→ B) =
|{b|b ∈ A,B}|
|{b|b ∈ B}|

(5.6)

We also tested entailment detection when using only the directional distribu-

tional similarity between fragments, as is commonly done for calculating similarity

between single words. While both of the systems perform better than random,

the results are much lower than those for more informed methods. This also

indicates that even though there is some lexical overlap between the fragments,

108

it is not enough to make accurate decisions about the entailment relations.

System type AP BEP

Random baseline 50.00 50.0
BOW 65.66 61.0
Distributional similarity (ClarkeDE) 64.49 48.0

Table 5.1: Results for the basic approaches on fragment entailment detection.

We were interested in seeing what types of similarity measures perform well

for entailment detection between larger fragments, compared to single words. For

this experiment, the system was set up to use intrinsic and extrinsic similarity, as

described in Section 5.5, but without the additional modifications of paraphrase

checking and hedge/negation detection. We utilised the top similarity measures

from the hyponym detection task in Chapter 4, and evaluated them as predic-

tors of extrinsic similarity (ExtSim) in the fragment entailment detection task.

Different measures were allowed for word-level and fragment-level similarity cal-

culation. Table 5.2 shows a subset of our results, and the full matrix can be found

in Appendix C.

The results show that fragment-level entailment detection requires somewhat

different measures compared to word-level hyponym detection and generation.

Similarity measures such as WeightedCosine and DiceGen2, which were most ac-

curate in previous tasks, do not perform as well here. In contrast, the best results

are achieved with ClarkeDE and WeedsPrec, both of which focus even more on

the directional nature of the relation, and directly model the subsumption ratio

of features. This can be explained by larger text fragments being less ambiguous

and occurring in fewer contexts, therefore more closely matching the underlying

inclusion hypothesis of these measures. The best performing combination is us-

ing ClarkeDE for fragments and LinD for words, and we employ these settings in

further experiments.

In order to investigate the contribution of each component to the final system,

we conducted an experiment where the components are added incrementally.

Table 5.3 shows the results, starting only with the intrinsic similarity between

words and fragments.

Using only the intrinsic similarity, the system performs better than any of the

109

Cosine Lin DiceGen2 ClarkeDE LinD

Cosine 73.21 74.40 73.11 73.31 75.43
Lin 72.72 72.67 70.69 72.84 73.94
JaccardGen 72.64 74.34 74.20 72.35 75.72
DiceGen 73.59 74.74 74.08 73.24 75.89
DiceGen2 71.63 72.92 70.66 71.17 73.98
ClarkeDE 77.45 79.17 79.06 77.28 80.08
WeedsPrec 75.82 75.00 72.76 75.97 75.36
WeedsRec 66.52 66.20 62.65 66.54 66.84
WeedsF 72.93 72.62 70.85 72.86 73.94
AP 71.71 72.97 71.42 71.42 73.99
APInc 73.89 75.00 74.90 73.62 76.00
BalAPInc 74.54 75.76 76.24 74.33 76.75
LinD 74.37 73.54 70.92 74.04 73.42
BalPrec 72.84 71.70 71.38 72.87 73.76
WeightedCosine 72.79 73.68 71.58 72.99 74.32

Table 5.2: Average Precision of the entailment detection system using different
distributional similarity measures. Rows correspond to the ExtSim measures
between fragments, columns represent measures between words.

basic approaches, delivering 70.98% AP. Next, the extrinsic similarity between

words is included, raising the AP to 75.43%. When the string-level similarity

fails, the added directional distributional similarity helps in mapping semantically

equivalent words to each other.

The inclusion of extrinsic similarity between fragments gives a further increase,

with AP of 80.08%. The 4.6% increase shows that while fragments are larger and

occur less often in a corpus, their distributional similarity can still be used as a

valuable component to detect semantic similarity and entailment.

Checking for negation and hedge cues raises the AP to 83.09%. The perfor-

mance is already high and a 3% improvement shows that hedging and negation

affect fragment-level entailment, and other components do not manage to suc-

cessfully capture this information.

Finally, applying the fragment-level check for paraphrases with a more appro-

priate distributional similarity measure, as described in Section 5.5.2, returns an

AP of 84.14%. The results of this final configuration are significantly different

compared to the initial system using only intrinsic similarity, according to the

110

System type AP BEP

Intrinsic similarity only 70.98 68.0
+ Word ExtSim 75.43 71.0
+ Fragment ExtSim 80.08 71.0
+ Negation & hedging 83.09 72.0
+ Paraphrase check 84.14 72.0

Table 5.3: Results for the system described in Section 5.5. Components are added
incrementally.

Wilcoxon signed rank test at the level of 0.05.

The formula in Section 5.5 contains parameter α which can be tuned to adjust

the balance of intrinsic and extrinsic similarity. This can be done heuristically or

through machine learning methods, and different values can be used for fragments

and words. In order to investigate the effects of tuning on the system, we tried

all possible combinations of αword and αfragment with values between 0.0 and 1.0

at increments of 0.05. Table 5.4 contains results for some of these experiments.1

αword αfragment AP BEP

0.5 0.5 84.14 72.0
* 0.0 65.61 48.0
0.0 1.0 81.30 72.0
1.0 1.0 76.59 69.0
0.45 0.65 84.75 74.0

Table 5.4: Results of tuning the weights for intrinsic and distributional similarity.

The best results were obtained with αword = 0.45 and αfragment = 0.65, re-

sulting in 84.75% AP and 74.0% BEP. This shows that parameter tuning can

improve the results, but the 0.6% increase is modest, and a completely unsuper-

vised approach can provide competitive results. In addition, the optimal values of

α are close to 0.5, indicating that all four components (intrinsic and distributional

similarities for words and fragments) are all contributing to the performance of

the final system.

1The system presented in Table 5.4 uses all the components (checking for negation, hedging
and paraphrasing), and therefore only matches Table 5.3 at parameter values 0.5.

111

5.8 Conclusion

Entailment detection systems are generally developed to work on specific text

units – either single words, relations, or full sentences. This reduces the complex-

ity of the problem, but can also lead to important information being disregarded.

In this work we proposed a new task – detecting entailment relations between

any kind of dependency graph fragments. Dependency graphs provide a natural

way of separating complete sentences into smaller units, and our definition of

a fragment covers the language structures mentioned above, while also extend-

ing to others that have not been fully investigated in the context of entailment

recognition (such as multi-word constituents, predicates and adjuncts).

To perform entailment detection between various types of graph fragments, a

new system was built that combines the directional intrinsic and extrinsic simi-

larities of two fragments to reach a final score. Fragments which contain hedging

or negation are identified and their score calculation is inverted to better model

the effect on entailment. The extrinsic similarity is found with two different dis-

tributional similarity measures, first checking for symmetric similarity and then

for directional containment of distributional features. The system was evaluated

on a manually constructed dataset of fragment-level entailment relations from

the biomedical domain and each of the added components improved the results.

Traditionally, the method for entailment recognition is chosen based on what

appears optimal for the task – either structure matching or distributional sim-

ilarity. Our experiments showed that the combination of both gives the best

performance for all fragment types. It is to be expected that single words will

benefit more from distributional measures while full sentences get matched by

their components. However, this separation is not strict and evidence from both

methods can be used to strengthen the decision.

Our experiments also demonstrate that the distributional hypothesis can be

successfully applied to larger graph fragments, but optimal performance is achieved

with different measures, compared to working only with single words. As larger

fragments are less ambiguous but more sparse, they are more suitable for mea-

sures that emphasise the subsumption ratio of context features.

As this is a new task with only a small annotated dataset, we were unable

112

to run comparative experiments using a supervised learning approach. However,

using an unsupervised approach based only on intrinsic and extrinsic similarity,

the system was able to achieve 84.14% average precision. The experiments con-

firmed that entailment between dependency graph fragments of various types can

be detected in a completely unsupervised setting, without the need for specific re-

sources or annotated training data. As this method can be applied equally to any

domain and requires only a large plain text corpus, we believe it is a promising

direction for future research in entailment detection. This can lead to useful so-

lutions in biomedical information extraction where manually annotated datasets

are in short supply. The framework for fragment-level entailment detection can

be integrated into various applications that require identifying and rewriting se-

mantically equivalent phrases – for example, query expansion in IE and IR, text

mining, sentence-level entailment composition, and relation extraction.

113

Chapter 6

Parser Lexicalisation

6.1 Introduction

In recent years, dependency parsers have become increasingly important tools

in the field of natural language processing. They are often used to provide a

syntactic and semantic analysis of the input text for tasks such as information

extraction, text mining, machine translation, word sense disambiguation, named

entity recognition, and coreference resolution. In previous chapters we described

some additional innovative ways of utilising automatically generated dependency

graphs for language processing. It is necessary to develop robust and accurate

parsing methods, as any parser errors are likely to be propagated to other com-

ponents, impacting the overall performance.

Most parsers make use of machine learning and a syntactically annotated

dataset (e.g., treebank), incorporating a wide range of features in the training

process to deliver a competitive performance. The use of lexical features, such as

lemma or word forms, is very important when choosing the correct derivation in

ambiguous contexts. However, this also leads the parser to learn rules that are

highly specific to the domain of the training data, and lexical features have been

shown to not transfer well between different domains and genres (Sekine, 1997;

Gildea, 2001). Furthermore, manual creation of treebanks is an expensive and

time-consuming process, which can only be performed by experts with sufficient

linguistic and domain knowledge.

114

In contrast, unlexicalised parsers avoid the use of specific lexical information

and aim to provide a syntactic analysis using only more general features, such

as POS tags. While they are not expected to achieve the highest accuracy on

most well-known treebanked datasets, unlexicalised parsers can be surprisingly

competitive with their lexicalised counterparts (Klein & Manning, 2004; Petrov

et al., 2006). In this work, instead of trying to adapt a lexicalised parser to other

domains, we explore how bilexical features can be integrated with an unlexicalised

parser. As our method requires only a large unannotated corpus, lexical features

can be easily tuned to a specific domain or genre by selecting a suitable dataset.

In addition, our graph expansion process allows the system to capture selected

bilexical relations that improve performance but would require sparse higher-

order feature types in most dependency parsers. As any bilexical features can

still be sparse, we also develop a novel approach to estimating confidence scores

for dependency relations using directional distributional similarity measures. The

final framework integrates easily with any unlexicalised (and therefore potentially

less domain/genre-biased) parser capable of returning ranked dependency analy-

ses.

6.2 Research Goals

Our work on parser lexicalisation has the following research goals:

• Test the hypothesis that lexical features can increase the accuracy of an

unlexicalised parser using a self-learning process.

• Investigate methods for automatically extending and modifying dependency

graphs, thereby increasing the number of binary relations available for fea-

ture extraction.

• Develop novel methods for assigning confidence scores to bilexical relations,

using unsupervised corpus-based methods.

• Investigate possible methods for smoothing the relation scores using distri-

butionally similar words.

115

• Create a working system for improving the performance of an unlexicalised

parser by reranking the derivations in a post-processing stage, using only

an unannotated text corpus.

6.3 Background

We hypothesise that a large corpus will often contain examples of dependency

relations in non-ambiguous contexts, and these will mostly be correctly parsed

by an unlexicalised parser. Lexical statistics derived from the corpus can then be

used to select the correct parse in a more difficult context. For example, consider

the following sentences:

(28) a. Government projects interest researchers.

b. Government raises interest rates.

c. Government projects receive additional funding.

d. Interest rates are increasing.

Noun-verb ambiguities over projects and interest might erroneously result in

the unlexicalised parser returning similar dependency graphs for both a and b.

However, sentences c and d contain less ambiguous instances of the same phrases

and can provide clues to correctly parsing the first two examples. In a large

corpus we are likely to find more cases of researchers being the object for interest

and fewer cases where it is the object of project. In contrast, rates is more likely

to have interest as a modifier than as a head in an object relation. Exploiting

this lexical information, we can assign the correct derivation to each of the more

ambiguous sentences.

Similar intuitions have been used to motivate the acquisition of corpus-based

bilexical features for improving parser accuracy. However, previous work has

only focused on including these statistics as auxiliary features during supervised

training of lexicalised parsers. van Noord (2007) incorporates bilexical prefer-

ences as features via self-training to improve the Alpino parser for Dutch. The

bilexical frequencies are collected from parsed versions of Dutch Wikipedia and

116

Europarl, mapped to more general feature types using POS tags, converted to

pointwise mutual information scores, and then integrated into the parser’s max-

imum entropy parse ranking model. Similarly, Zhou et al. (2011) extract n-gram

counts from Google queries and a large corpus to improve the MSTParser. They

construct a range of features based on lexical co-occurrence and weight them

using pointwise mutual information. Plank & van Noord (2008) investigate the

application of auxiliary distributions for domain adaptation. They incorporate

information from both in-domain and out-of-domain sources into their maximum

entropy model and find that the out-of-domain auxiliary distributions do not

contribute to parsing accuracy in the target domain.

We formulate our self-learning framework as a reranking process that assigns

new scores to top derivations found by the original parser. Parse reranking has

been successfully used in previous work as a method of including a wider range of

features to rescore a smaller selection of highly-ranked candidate parses. Collins

(2000) was one of the first to propose supervised reranking as an additional step to

increase parser accuracy and achieved a 1.55% accuracy improvement. Charniak

& Johnson (2005) utilise a discriminative reranker and show a 1.3% improvement

for the Charniak parser. McClosky et al. (2006) extend their work by adding

new features and further increase the performance by 0.3%. Ng et al. (2010)

implemented a discriminative maximum entropy reranker for the C&C parser

and showed a 0.23% improvement over the baseline. All of them treat reranking

as a supervised task and train a discriminative classifier using parse tree features

and annotated in-domain data. In contrast, our reranker uses statistics from an

unlabelled source and requires no manual annotation. However, we utilise an

unlexicalised parser, therefore, the baseline performance on WSJ text is lower

compared to most fully-lexicalised parsers (Briscoe & Carroll, 2006).

Our experiments in Section 6.6 demonstrate that parsing accuracy can be

significantly improved by acquiring all bilexical features through a self-learning

process and utilising them only in an unsupervised reranking component. There-

fore, the system starts from a simpler unlexicalised parser, less likely to be biased

to domains or genres manifested in the training data. The reranker then has the

advantage of being able to utilise open-ended amounts of text for lexicalising the

parser and tuning it to a required domain and/or genre.

117

6.4 Reordering dependency graphs

For every sentence s the parser returns a list of dependency graphs Gs, ranked

by the log probability of the associated derivation in the structural PGLR model.

Our goal is to reorder this list to improve ranking accuracy and, most importantly,

to improve the quality of the highest-ranked dependency graph. This is done by

assigning a confidence score to every graph gs,r ∈ Gs where r is the rank of gs

for sentence s. The system treats each sentence independently, therefore we can

omit the sentence identifiers and refer to gs,r as gr.

Our framework first calculates confidence scores for all the individual edges

and then combines them into an overall score for the dependency graph. In

the following sections we start by describing a series of graph modifications that

allows the system to incorporate selected higher-order relations, without intro-

ducing unwanted noise or complexity into the reranker. Next, we outline different

approaches for calculating and smoothing the confidence score of a bilexical rela-

tion. Finally, we describe methods for combining together alternative scores and

calculating an overall confidence score for a dependency graph.

6.4.1 Graph modifications

For every dependency graph gr the system creates a modified representation g′r

which contains a wider range of bilexical relations. The motivation for this graph

expansion step is similar to that motivating the move from first-order to higher-

order dependency path features (e.g., Carreras, 2007). However, compared to

using all second-order paths, these rules are chosen to maximise the utility and

minimise the sparsity of the resulting bilexical features. In addition, the cascading

nature of the rules means in some cases the expansion can even produce useful

3rd and 4th order dependencies. Similar approaches to graph modifications have

been successfully used for several NLP tasks (van Noord, 2007; Arora et al., 2010).

For any edge e we also use notation (rel, w1, w2), referring to an edge from

w1 to w2 with the label rel. Our system performs the following modifications on

every dependency graph:

1. Normalising lemmas. All lemmas are converted to lowercase. Numerical

118

lemmas are replaced with more generic tags to reduce sparsity: numbers

(e.g., 1, 104), lexical representations of numbers (one, eighty), currency

values ($10,000, £20), enumerative lemmas (1st, 2nd).

2. Bypassing conjunctions. For every edge pair (rel1, w1, w2) and (rel2, w2, w3)

where w2 is tagged as a conjunction, we create an additional edge (rel1, w1, w3).

This bypasses the conjunction node and creates direct edges between the

head and dependents of the conjunctive lemma.

3. Bypassing prepositions. For every edge pair (rel1, w1, w2) and (rel2, w2, w3)

where w2 is tagged as a preposition, we create an additional edge (rel3, w1, w3).

rel3 = rel1 + ‘ prep’, where ‘ prep’ is added as a marker to indicate that

the relation originally contained a preposition.

4. Bypassing verbs. For every edge pair (rel1, w1, w2) and (rel2, w1, w3)

where w1 is tagged as a verb, w2 and w3 are both tagged as open-class

words, rel1 starts with a subject relation (subj, ncsubj, xsubj, csubj), rel2

starts with an object relation (obj, dobj, iobj, obj2), we create an additional

edge (rel3, w2, w3) where rel3 = rel1 + ‘-’ + rel2. This creates an additional

edge between the subject and the object, with the new edge label containing

both of the original labels.

5. Duplicating nodes. For every existing node in the graph, containing

the lemma and POS for each token (lemma pos), we create a parallel

node without the POS information (lemma). Next, for each edge (rel,

lemma1 pos1, lemma2 pos2) we create three additional edges using these

new nodes: (rel, lemma1 pos1, lemma2), (rel, lemma1, lemma2 pos2), (rel,

lemma1, lemma2). This quadruples the number of edges in each graph and

allows the system to use both specific and more generic instantiations of

each lemma.

Figure 6.1 illustrates the graph modification process. It is important to note

that each of these modifications gets applied in the order that they are described

here. For example, when creating edges for bypassing verbs, the new edges for

prepositions and conjunctions have already been created and also participate in

119

italian pm meet with cabinet member and senior official
JJ NP1 VVZ IW NN1 NN2 CC JJ NN2

ncmod ncsubj iobj

dobj

ncmod conj

conj

ncmod

ncsubj-iobj prepncsubj-iobj prep

iobj prep
iobj prepiobj prep

dobjdobj

Figure 6.1: Modified graph for the sentence ‘Italian PM meets with Cabinet mem-
bers and senior officials’ after steps 1-4. Edges above the text are created by the
parser, edges below the text are automatically created using the operations de-
scribed in Section 6.4.1. The 5th step will create 9 new nodes and 45 additional
edges (not shown).

this operation. We performed ablation tests on the development data and verified

that each of these modifications positively contributes to the final performance.

6.4.2 Edge scoring methods

We start the scoring process by assigning individual confidence scores to every

bilexical relation in the modified graph. In this section we present some possible

strategies for performing this task.

The parser returns a ranked list of graphs and this can be used to derive

an edge score without requiring any additional information. We estimate that

the likelihood of a parse being the best possible parse for a given sentence is

roughly inversely proportional to the rank that it is assigned by the parser. These

values can be summed for all graphs that contain a specific edge and normalised

to approximate a probability. We then calculate the score for edge e as the

Reciprocal Edge Score (RES) – the probability of e belonging to the best possible

parse:

RES(e) =

∑R
r=1[

1
r
× contains(g′r, e)]∑R

r=1
1
r

(6.1)

where R is the total number of parses for a sentence, and contains(g′r, e) returns

1 if graph g′r contains edge e, and 0 otherwise. The value is normalised, so that

120

an edge which is found in all parses will have a score of 1.0, but occurrences at

higher ranks will have a considerably larger contribution.

The score of an edge can also be assigned by estimating the probability of that

edge using a parsed reference corpus. van Noord (2007) improved overall parsing

performance in a supervised self-training framework using feature weights based

on pointwise mutual information:

I(e) = log
P (rel, w1, w2)

P (rel, w1, ∗)× P (∗, ∗, w2)
(6.2)

where P (rel, w1, w2) is the probability of seeing an edge from w1 to w2 with label

rel, P (rel, w1, ∗) is the probability of seeing an edge from w1 to any node with

label rel, and P (∗, ∗, w2) is the probability of seeing any type of edge linking

to w2. Plank & van Noord (2008) used the same approach for semi-supervised

domain adaptation but were not able to achieve similar performance benefits.

In our implementation we omit the logarithm in the equation, as this improves

performance and avoids problems with log(0) for unseen edges.

I(e) compares the probability of the complete edge to the probabilities of

partially specified edges, but it assumes that w2 will have an incoming relation,

and that w1 will have an outgoing relation of type rel to some unknown node.

These assumptions may or may not be true – given the input sentence, the system

has observed w1 and w2 but does not know about possible relations they are

involved in. Therefore, we create a more general version of this measure that

compares the probability of the complete edge to the individual probabilities of

the two words – the Conditional Edge Score (CES1):

CES1(e) =
P (rel, w1, w2)

P (w1)× P (w2)
(6.3)

where P (w1) is the probability of seeing w1 in text, estimated from a background

corpus using maximum likelihood.

Finally, we know that w1 and w2 are in a sentence together but cannot assume

that there is a dependency relation between them. However, we can choose to

think of each sentence as a fully connected graph, with an edge going from every

word to every other word in the same sentence. If there exists no genuine relation

between the words, the edge is simply considered a null edge. We can then find

121

the conditional probability of the relation type given the two words:

CES2(e) =
P (rel, w1, w2)

P (∗, w1, w2)
(6.4)

where P (rel, w1, w2) is the probability of the fully-specified relation, and P (∗, w1, w2)

is the probability of there being an edge of any type from w1 to w2, including a

null edge. Using fully connected graphs, the latter is equivalent to the probabil-

ity of w1 and w2 appearing in a sentence together, which again can be calculated

from the background corpus.

6.4.3 Smoothing edge scores

Apart from RES, all the scoring methods from the previous section rely on

correctly estimating the probability of the fully-specified edge, P (rel, w1, w2).

Even in a large background corpus these triples will be very sparse, and it can be

useful to find approximate methods for estimating the edge scores.

Based on common smoothing techniques applied to language modelling, the

system could back-off to a more general version of the relation. For example, if

(dobj, read, publication) is not frequent enough, the score could be approximated

using the probabilities of (dobj, read, *) and (dobj, *, publication). However, this

can lead to unexpected results due to compositionality – while (dobj, read, *) and

(dobj, *, rugby) can be fairly common, (dobj, read, rugby) is an unlikely relation.

Instead, we can consider looking at other words which are similar to the rare

words in the relation. If (dobj, read, publication) is infrequent in the data, the

system might predict that book is a reasonable substitute for publication and use

(dobj, read, book) to estimate the original probability.

Given that the system has a reliable way of finding likely substitutes for a

given word, we can create expanded versions of CES1 and CES2, as shown in

Equations 6.5 and 6.6. C1 is the list of substitute words for w1, and sim(c1, w1)

is a measure showing how similar c1 is to w1. The methods iterate over the list

of substitutes and calculate the CES score for each of the modified relations.

The values are then combined by using the similarity score as a weight – more

similar words will have a higher contribution to the final result. This is done for

both the head and the dependent in the original relation, and the scores are then

122

normalised and averaged.

ECES1(rel, w1, w2) =
1

2
× (

∑
c1∈C1

sim(c1, w1)× P (rel,c1,w2)
P (c1)×P (w2)∑

c1∈C1
sim(c1, w1)

+

∑
c2∈C2

sim(c2, w2)× P (rel,w1,c2)
P (w1)×P (c2)∑

c2∈C2
sim(c2, w2)

)

(6.5)

ECES2(rel, w1, w2) =
1

2
× (

∑
c1∈C1

sim(c1, w1)× P (rel,c1,w2)
P (∗,c1,w2)∑

c1∈C1
sim(c1, w1)

+

∑
c2∈C2

sim(c2, w2)× P (rel,w1,c2)
P (∗,w1,c2)∑

c2∈C2
sim(c2, w2)

)

(6.6)

We use WeightedCosine, the best-performing directional distributional simi-

larity measure from Chapter 4, to generate a list of hyponyms for substituting

each word in the relation. Hyponyms are well-suited for lexical expansion, as

the properties of a hypernym (e.g., publication) are also expected to apply to its

hyponyms (book, magazine, catalogue). In addition, by utilising a distributional

similarity measure we are able to directly use the real-valued similarity score in

the equations and avoid the use of any domain-specific or manually annotated

resources.

In order to calculate word similarity scores, the feature vectors for each word

are built from the same vector space model that is used for calculating edge prob-

abilities, which includes all the graph modifications described in Section 6.4.1.

Features are either (rel, head) or (rel, dependent) tuples, corresponding to the

directed relations that the word is involved in, weighted by mutual information.

The system calculates the similarity between a word and all other words in the

corpus, retaining the top 10 highest ranking substitutes. We also include the

original word in this list with similarity 1.0, thereby assigning the highest weight

to the original relation.

123

6.4.4 Combining edge scores

While the CES and ECES measures calculate confidence scores for bilexical

relations using statistics from a large background corpus, they do not include

any knowledge about grammar, syntax, or the context in a specific sentence.

In contrast, the RES score implicitly includes some of this information, as it

is calculated based on the original parser ranking. We wish to combine these

scores, in order to take advantage of both information sources. Since the means

and variances of alternative scoring methods can be rather different, we found

that taking the geometric mean gives the best performance. In Section 6.6 we

evaluate the following two combination scores:

CMB1(e) = 3
√
RES(e) ∗ CES1(e) ∗ CES2(e) (6.7)

CMB2(e) = 3
√
RES(e) ∗ ECES1(e) ∗ ECES2(e) (6.8)

6.4.5 Graph scoring

Every edge in graph g′r is assigned a score indicating the reranker’s confidence

in that edge belonging to the best parse. We investigated different strategies for

combining these values together into a confidence score for the whole graph. The

simplest solution is to sum together individual edge scores, but this would lead the

system to always prefer graphs that have a larger number of edges. Interestingly,

averaging the edge scores does not produce good results either – the system will be

biased towards smaller graph fragments containing only highly-confident edges.

We created a new scoring method which prefers graphs that connect all the

nodes, yet does not explicitly bias towards a higher number of edges. For every

node in the graph, it finds the average score of all edges which have that node as

a dependent. These scores are then averaged again over all nodes:

NodeScore(n) =

∑
e∈Eg

EdgeScore(e)× isDep(e, n)∑
e∈Eg

isDep(e, n)
(6.9)

124

GraphScore(g) =

∑
n∈Ng

NodeScore(n)

|Ng|
(6.10)

where g is the graph being scored, Ng is the set of nodes in g, Eg is the set of

edges in g, n ∈ Ng is a node in graph g, e ∈ Eg is an edge in graph g, isDep(e, n)

is a function returning 1.0 if n is the dependent in edge e, and 0.0 otherwise.

NodeScore(n) is set to 0 if the node does not appear as a dependent in any edges.

We found this method to perform well, as it prefers graphs that connect together

many nodes without simply rewarding a larger number of edges. However, future

research could be directed towards integrating the edge scores more closely with

the underlying parsing algorithm, potentially leading to improved accuracy.

It is important to note that while the score calculation is done using the mod-

ified graph, the resulting score is directly assigned to the corresponding original

graph, and the reordering of the original dependency graphs is used for evaluation.

6.5 Evaluation methods

In order to evaluate how much the reranker improves the highest-ranked depen-

dency graph, we calculate the microaveraged precision, recall and F-score over

all dependencies from the test and gold standard parses. Following the official

RASP evaluation (Briscoe et al., 2006) we employ the hierarchical edge match-

ing scheme which aggregates counts up the GR subsumption hierarchy and thus

rewards the parser for making more fine-grained distinctions.1

Statistical significance of the change in F-score is calculated using the Ap-

proximate Randomisation Test (Noreen, 1989; Cohen, 1995) with 106 iterations.

This method is a computer-intensive statistical hypothesis test which can be used

for many NLP tasks (Yeh, 2000), including parsing (Cahill et al., 2008). It is de-

signed to assess result differences with respect to a test statistic in cases where

the sampling distribution of the test statistic is unknown.

Under the null hypothesis, the new system is not different from the baseline,

1Slight changes in the performance of the baseline parser compared to previous publications
are due to using a more recent version of the parser and minor corrections to the gold standard
annotation.

125

therefore any analysis produced by one of these systems is just as likely to have

been produced by the other. This is tested by switching dependency graphs

between the two systems and recomputing the difference between the evaluation

metrics. For n sentences there are 2n different ways of shuffling the graphs,

which can get computationally intractable for even a relatively small n. Instead

of generating every possible combination, the test can be performed using an

approximate randomisation over many iterations, where each shuffle is performed

with random assignments – for every sentence, there is a 50% probability of

switching the corresponding dependency graphs from both systems. We count

the number of times c when the difference between the F-scores of two randomly

shuffled outputs is greater or equal than the difference between our system and

the baseline. The probability of obtaining a difference in the evaluation metric

at least as extreme as the one that was actually observed, assuming that the null

hypothesis is true, is then calculated as:

p =
c+ 1

R + 1
(6.11)

where R is the number of trials performed (Noreen, 1989). If the value is smaller

than 0.05, the null hypothesis is rejected and the systems are considered signifi-

cantly different. For experiments in Section 6.6 we use R = 106.

We also wish to measure how well the reranker does at the overall task of

ordering dependency graphs. For this we make use of an oracle that creates the

perfect ranking for a set of graphs by calculating their individual F-scores; this

ideal ranking is then compared to the output of our system. Spearman’s rank

correlation coefficient between the two rankings is calculated for each sentence

and then averaged over all sentences. If the scores for all of the returned analyses

are equal, this coefficient cannot be calculated and is set to 0.

Finally, we also report the number of times the system assigns the highest

score to the best available dependency graph.

126

6.6 Experiments

6.6.1 DepBank

The system was evaluated using the DepBank/GR reannotation (Briscoe & Car-

roll, 2006) of the PARC 700 Dependency Bank (King et al., 2003), described in

Section 2.3.7. The dataset is provided with the open-source RASP distribution

and has been used for evaluating different parsers, including RASP (Briscoe &

Carroll, 2006; Watson et al., 2007) and C&C (Clark & Curran, 2007). It con-

tains 700 sentences, randomly chosen from section 23 of the WSJ Penn Treebank

(Marcus et al., 1993), divided into development (140 sentences) and test data

(560 sentences).

We made use of the development data to experiment with a wider selection

of edge and graph scoring methods. However, we found that the results between

different configurations became more stable after removing the 10 longest sen-

tences in the development set. Long and convoluted sentences are most difficult

for the parser and reranker to handle correctly. At the same time, they contribute

a large proportion of the final results, as the dataset is very small and the F-score

is averaged over individual dependencies, not sentences. Therefore, we used 130

sentences to perform experiments during the development process.

For reranking we collect up to 1,000 top-ranked parses for each sentence. The

actual number of parses that RASP outputs depends on the sentence and can be

smaller. As RASP first constructs parse trees and converts them to dependency

graphs, different parses of the same sentence may result in identical graphs; we

remove any duplicates to obtain a ranking of unique dependency graphs.

The reranking framework relies on a large unannotated corpus of in-domain

text, and for this we used the BLLIP corpus containing 50M words of in-domain

WSJ articles. Our version of the corpus excludes texts that are found in the Penn

Treebank, thereby also excluding the section that we use for evaluation. All the

data was reparsed with RASP, the resulting highest-ranked dependency graphs

were modified using the process described in Section 6.4.1, and the required oc-

currence counts for words and relations were automatically collected.

The baseline system is the unlexicalised RASP parser with default settings. In

127

DepBank/GR Development Set (130)
Prec Rec F ρ Best

Baseline 77.90 74.43 76.13 33.81 49
Upper Bound 87.29 83.09 85.14 76.15 130

I 76.93 73.80 75.33 31.25 54
RES 77.23 73.77 75.46 39.26 47
CES1 78.34 74.90 76.58 35.48 56
CES2 79.61 76.06 77.79 43.72 54
ECES1 78.50 75.10 76.77 38.23 55
ECES2 80.06 76.73 78.36 44.49 57
CMB1 79.67 76.04 77.81 43.95 57
CMB2 80.24 76.66 78.41 45.95 55

Table 6.1: Performance of different edge scoring methods on the development
data. For each measure we report precision, recall, F-score, average Spearman’s
correlation (ρ), and the number of times the system assigns the highest rank to
the best available dependency graph (Best). The highest results for each measure
are marked in bold. The underlined F-scores are significantly better compared to
the baseline.

order to identify an upper bound, we use an oracle to calculate the F-score for each

dependency graph individually, and then create the best possible ranking using

these scores. The upper bound for precision, recall and F-measure is less than

100%, as the parser does not always return a perfect derivation as one of the top

1000 candidates. Average Spearman’s correlation for the upper bound is expected

to be 1.0, as it is compared to itself. However, when all the dependency graphs

have the same score according to the gold standard (including when the parser

returns only 1 analysis), then the correlation coefficient cannot be calculated and

is, therefore, set to 0.

Tables 6.1 and 6.2 contain evaluation results on the development and test

sets. The baseline system achieves 76.41% F-score on the test data, with 32.70%

average correlation, and returns the best possible parse as the top parse 231 times

out of possible 560. I and RES scoring methods give results comparable to the

baseline, with RES improving correlation by 9.56%. The CES scores make use

of corpus-based statistics and significantly improve over the baseline system. The

F-score is increased to 78.85% and additional 39 sentences are correctly ranked as

the top parses. The ECES scores utilise similarity-based smoothing and improve

128

DepBank/GR Test Set (560)
Prec Rec F ρ Best

Baseline 77.91 74.97 76.41 32.70 231
Upper Bound 86.74 82.82 84.73 75.36 560

I 77.77 75.00 76.36 33.32 238
RES 78.13 74.94 76.50 42.26 228
CES1 79.68 76.40 78.01 41.95 262
CES2 80.48 77.28 78.85 48.43 270
ECES1 79.96 76.68 78.29 42.41 266
ECES2 80.71 77.52 79.08 49.05 272
CMB1 80.64 77.31 78.94 48.25 263
CMB2 80.88 77.60 79.21 49.02 273

Table 6.2: Performance of different edge scoring methods on the test data.

the results even further, giving the F-score of 79.08%.

Finally, we combine the RES score with the corpus-based methods by finding

their geometric mean, and the CMB2 measure delivers the best overall results.

The final F-score is 79.21%, an improvement of 2.8%, corresponding to 33.65%

relative error reduction with respect to the upper bound. Correlation is increased

by 16.32% and 273 sentences get assigned the correct top analysis. This means

the methods not only manage to create a better overall ranking, but also improve

the chances of differentiating between the best dependency graph and all the

others. The F-scores for all the corpus-based scoring methods are statistically

significant compared to the baseline (p < 0.05).

By using only a plain-text corpus and a self-learning framework, the system

was able to significantly improve the original unlexicalised parser. To put the

overall result in wider perspective, Clark & Curran (2007) achieve an F-score

of 81.86% on the DepBank/GR test sentences using the C&C lexicalised parser,

trained on 40,000 manually-treebanked sentences from the WSJ. The RASP un-

lexicalised parser, using a manually-developed grammar and a parse ranking

component trained on 4,000 partially-bracketed unlabelled sentences from a do-

main/genre balanced subset of Brown (Watson et al., 2007), achieves an F-score

of 76.41% on the same test set. The method introduced here improves this to

79.21% F-score without using any further manually-annotated data, closing more

than half of the gap between the performance of a fully-supervised in-domain

129

Genia-GR Dataset (492)
Prec Rec F ρ Best

Baseline 79.91 78.86 79.38 36.54 229
Upper Bound 86.33 84.71 85.51 78.66 492

I 77.18 76.21 76.69 30.23 175
RES 80.06 78.89 79.47 47.52 228
CES1 78.64 77.50 78.07 36.06 192
CES2 79.92 78.92 79.42 43.09 194
ECES1 79.09 78.11 78.60 38.02 194
ECES2 79.84 78.95 79.39 43.64 195
CMB1 80.60 79.51 80.05 44.96 204
CMB2 80.69 79.64 80.16 46.24 206

Table 6.3: Performance of different edge scoring methods on the GENIA-GR
dataset.

parser and a semi-supervised more domain-neutral one.

6.6.2 Genia

The strength of our reranking framework is that it does not require any domain-

dependent resources or manually annotated training data. Therefore, we are

interested in seeing how it performs on a dataset from a completely different

domain.

We evaluate this system on the GENIA-GR dataset (Tateisi et al., 2008),

a collection of 492 sentences from biomedical research papers in GENIA (Kim

et al., 2003). The sentences have been manually annotated with dependency-

based grammatical relations that correspond to the same scheme used by RASP.

However, it does not contain dependencies for all tokens and many multi-word

phrases are treated as single units. For example, the tokens ‘intracellular redox

status’ are annotated as one node with label intracellular redox status. When

parsing, we retain this annotation and allow RASP to treat these nodes as unseen

words; however, we use the last lemma in each multi-word phrase to calculate the

edge scoring statistics. The dataset is described in more detail in Section 2.3.14.

In order to initialise our parse reranking framework, we also need a background

corpus that closely matches the evaluation domain. The annotated sentences in

130

GENIA-GR were chosen from abstracts that are labelled with the MeSH term

‘NF-kappa B’.1 Following this method, we created our background corpus by

extracting 7,100 full-text articles (1.6M sentences) from PubMed Central Open

Access collection, containing any of the following terms with any capitalisation:

‘nf-kappa b’, ‘nf-kappab’, ‘nf kappa b’, ‘nf-kappa b’, ‘nf-kb’, ‘nf-κb’. Since we

retain all texts from matching documents, this keyword search acts as a broad

indicator that the sentences contain topics which correspond to the evaluation

dataset. This focussed corpus was then parsed with RASP and used to create a

statistical model for the reranking system, following the same methodologies as

described in Sections 6.4 and 6.6.1.

Table 6.3 contains the results for experiments in the biomedical domain. The

first thing to notice is that while the upper bound for RASP is similar to the Dep-

Bank experiments in Section 6.6.1, the baseline results are considerably higher.

This is largely due to the nature of the dataset – since many complicated multi-

word phrases are treated as single nodes, the parser is not evaluated on edges

within these nodes. In addition, treating these nodes as unseen words eliminates

many incorrect derivations that would otherwise split the phrases. This results in

a naturally higher baseline of 79.38%, and also makes it more difficult to further

improve the performance.

The edge scoring methods I, CES1 and ECES1 deliver F-scores lower than

the baseline in this experiment. RES, CES2 and ECES2 manage to give a

modest improvement in both F-score and Spearman’s correlation. Finally, the

combination methods again give the best performance, with CMB2 delivering

an F-score of 80.16%. This is an absolute increase of 0.78% on an already high

baseline, and the result is also statistically significant (p < 0.05). The experiments

show that our self-learning framework works on very different domains, and it can

be used to significantly increase the accuracy of an unlexicalised parser without

requiring any annotated data.

131

Baseline CMB2

Label #GRs Prec Rec F Prec Rec F ∆F

dependent 10682 80.01 77.29 78.62 82.48 79.70 81.07 2.45
aux 400 93.40 92.00 92.70 91.21 90.75 90.98 -1.72
conj 595 74.74 71.60 73.13 76.47 74.29 75.36 2.23
ta 291 41.25 47.77 44.27 42.49 50.52 46.15 1.89
det 1114 87.95 90.39 89.15 89.26 91.74 90.48 1.33
arg mod 8282 79.22 75.31 77.21 82.36 78.11 80.18 2.96
mod 3906 74.50 67.54 70.85 77.35 70.92 73.99 3.15
ncmod 3548 75.84 69.73 72.66 78.57 73.25 75.82 3.16
xmod 178 50.89 48.31 49.57 56.80 53.93 55.33 5.76
cmod 168 52.58 30.36 38.49 56.52 30.95 40.00 1.51
pmod 12 30.77 33.33 32.00 33.33 33.33 33.33 1.33
arg 4376 77.94 76.76 77.34 81.42 79.09 80.24 2.89
subj dobj 3120 82.73 75.22 78.80 85.30 77.53 81.23 2.43
subj 1359 81.36 67.77 73.95 84.44 69.46 76.22 2.28
ncsubj 1350 81.95 67.93 74.28 85.05 69.56 76.53 2.25
xsubj 7 33.33 28.57 30.77 33.33 28.57 30.77 0.00
csubj 2 14.29 50.00 22.22 25.00 100.00 40.00 17.78
comp 3017 75.47 79.45 77.41 79.30 82.27 80.75 3.34
obj 2325 78.27 79.96 79.11 80.47 83.14 81.79 2.68
dobj 1761 81.99 79.39 80.67 84.52 82.45 83.47 2.80
obj2 20 20.69 30.00 24.49 27.78 25.00 26.32 1.83
iobj 544 71.09 77.76 74.28 71.91 82.35 76.78 2.50
clausal 668 62.37 72.46 67.04 70.25 74.25 72.20 5.16
xcomp 380 77.08 77.89 77.49 80.16 78.68 79.42 1.93
ccomp 288 47.45 64.58 54.71 58.56 67.71 62.80 8.10
pcomp 24 66.67 66.67 66.67 77.27 70.83 73.91 7.25

Table 6.4: System results on the test data, separated for each label in the GR
type hierarchy. The table shows the number of times the label occurs in the gold
standard, Precision/Recall/F-score of both the baseline and the best reranking
method, and the difference in F-scores between the two systems.

132

as companies with newer , big-selling prescription drugs fared especially well
CSA NNJ2 IW JJR , JJ NN1 NN2 VVD RR RP

dobj ncmod

dobj

ncmod

ncmod

ccomp

ncsubj

ncmod

ncmod

as companies with newer , big-selling prescription drugs fared especially well
CSA NNJ2 IW JJR , JJ NN1 NN2 VVD RR RP

ccomp

ncsubj

ncmod

ncmodncmod

dobj

ncmod

ncmod

ncmod

Figure 6.2: Subset of dependency relations for the sentence ‘Earnings for most of
the nation’s major pharmaceutical makers are believed to have moved ahead briskly
in the third quarter, as companies with newer, big-selling prescription drugs fared
especially well’. The top graph is ranked highest by the baseline parser; the
bottom graph is chosen by the reranker.

6.6.3 Error analysis

Following Briscoe et al. (2006) and Clark & Curran (2007), we also present a

more fine-grained analysis of the system performance on the DepBank/GR test

dataset. Table 6.4 contains the results separated for each label in the GR type

hierarchy. The auxiliary dependency is the only relation for which the reranking

process reduces both precision and recall in this dataset; all other dependency

types show improved results. Complements and modifiers are attached with much

higher accuracy, resulting in 3.34% and 3.15% increase in corresponding F-scores.

The system has also given an increase of 3.16% for the non-clausal modifier re-

lation (ncmod), which is the most frequent label in the dataset. subj and obj

relations show a slightly lower increase, mostly because the baseline system al-

ready attaches them with higher accuracy. In contrast, the obj2 relation retains

a rather low accuracy, and this is due to errors in the top 1,000 derivations – the

upper bound for the F-score of obj2 was found to be only 36.84%.

1NF-κB is a protein complex found in many mammals, including humans.

133

We ’re not making a killing , but we had a good day
PPIS2 VBR XX VVG AT1 NN1 , CCB PPIS2 VHD AT1 JJ NNT1

ncsubj

aux

ncmod

ccomp

ncsubj

dobj

det

ncmodconj conjdet

We ’re not making a killing , but we had a good day
PPIS2 VBR XX VVG AT1 NN1 , CCB PPIS2 VHD AT1 JJ NNT1

ncsubj

ccomp

xmod

ncsubj

dobj

det

ncmodconj conjdetncmod

Figure 6.3: Subset of dependency relations for the sentence ‘We’re not making a
killing, but we had a good day.’. The top graph is ranked highest by the baseline
parser; the bottom graph is chosen by the reranker.

We also performed a manual analysis of how the introduction of lexical fea-

tures has changed the results of the unlexicalised parser. Sentences from the de-

velopment data were ranked by the unlexicalised parser and by the best reranker

configuration, and the output was compared in order to better understand the

system differences. Lexicalisation was found to have the most noticeable effect

on correctly attaching modifiers, especially in ambiguous contexts. Figure 6.2

contains example graphs from the two systems, demonstrating the improved ac-

curacy of the reranker. Among other things, the system has successfully learned

that companies are more likely to be the subject of fare, and that especially is

more likely to modify well.

In contrast, Figure 6.3 shows an example where the reranking process de-

creased the accuracy of the top parse. While RASP had correctly attached are as

an auxiliary verb to making, the reranker incorrectly preferred we as the subject

for are. This also illustrates the overall decrease in accuracy for the auxiliary

dependency relations. Neither system correctly captured the phrase making a

killing.

134

6.7 Conclusion

The use of lexical features, such as lemmas or word forms, is very important

for accuracte parsing and can help the system choose the correct derivation in

ambiguous contexts. However, it also leads parsers to learn rules that are highly

specific to the domain of the training data, and lexical features have been shown

to not transfer well between different domains and genres. Furthermore, manual

creation of annotated treebanks is an expensive and time-consuming process,

which can only be performed by experts with sufficient linguistic and domain

knowledge.

Instead of trying to adapt a lexicalised parser to other domains, we explored

how bilexical features can be integrated with an unlexicalised parser, without

requiring training data. We hypothesised that a large corpus will often con-

tain examples of dependency relations in non-ambiguous contexts, and these will

mostly be correctly parsed by an unlexicalised parser. Lexical statistics derived

from the corpus can then be used to select the correct parse in a more difficult

context.

In this chapter we developed a self-learning framework for dependency graph

reranking that requires only a plain-text corpus of in-domain text. We automat-

ically parse this corpus with RASP and use it to estimate maximum likelihood

probabilities for bilexical relations. Every dependency graph is first modified to

incorporate additional edges that model selected higher-order relationships. Each

edge in the graph is then assigned a confidence score based on statistics from the

background corpus and preferences from the parser. We also described a novel

method for smoothing these scores using directional distributional similarity mea-

sures. Finally, the edge scores were combined into an overall graph score by first

averaging them over individual nodes.

We performed evaluation on data from two different domains: the Dep-

Bank/GR dataset of WSJ text, and the GENIA-GR dataset of biomedical ab-

stracts. On DepBank/GR the reranking process was able to increase the F-score

from 76.41% to 79.21%. The improvement was consistent on nearly all individual

dependency types, with important benefits for correctly attaching complements

and modifiers. On GENIA-GR the corresponding F-score was increased from

135

79.38% to 80.16%. The lower relative improvement can be partly attributed to

an overall higher baseline performance, due to the nature of the dataset. In both

experiments the results were found to be statistically significant.

While fully-supervised parsers, such as the C&C parser, still return higher

performance on WSJ text, our self-learning framework successfully improved the

performance of the unlexicalised RASP parser and reduced the relative difference

by 51.4%. As it requires no annotated data, it can be easily adapted to different

domains and genres, and this was demonstrated by experiments using biomedical

texts. It remains as part of future work to evaluate the performance of WSJ-

specific supervised parsers on the GENIA-GR dataset.

136

Chapter 7

Conclusion

The amount of available textual resources is constantly growing with a remark-

able speed, and the field of Natural Language Processing (NLP) offers methods

for efficiently organising, analysing and summarising large amounts of informa-

tion. Many systems with state-of-the-art performance employ supervised machine

learning techniques, using a manually labelled dataset to optimise model param-

eters. This allows them to learn complex patterns from the data, but also makes

them highly reliant on manually annotated corpora, which are time-consuming

and costly to create. Furthermore, systems trained on domain-specific datasets

often do not generalise well to other genres and domains.

In this work we investigated minimally-supervised methods for solving NLP

tasks, and we defined them as requiring no explicit training data. However, since

completely unsupervised systems are usually only applicable to tasks that can be

formulated as clustering problems, we expand this definition by allowing minimal

external information to be incorporated. For example, this can be in the form

of selected heuristic rules, linguistic knowledge encoded into the system, or by

utilising some task-independent tools (e.g., an existing dependency parser). The

motivation for our work is to create systems that require substantially reduced

effort from domain and/or NLP experts, compared to annotating a correspond-

ing dataset, and also offer easier domain adaptation and better generalisation

properties.

We applied the principles of minimal supervision to four NLP tasks and com-

pared their performance to alternative methods:

137

In Chapter 3 we described a system for detecting the scope of speculation in

sentences, by using only 8 manually-defined rules over dependency graphs. We

found that the small number of manual rules were able to offer competitive results

without requiring any annotation. In addition, the best performance was achieved

when the rule-based output was included as an extra feature in a supervised

classifier.

Chapter 4 presented experiments for detecting and generating hyponyms us-

ing a wide range of distributional similarity measures. We also proposed a new

similarity measure which delivered the best performance for hyponym generation,

even outperforming a supervised alternative. In contrast, the best results for the

hyponym detection task were achieved by including all the similarity measures

as features in a classifier.

In Chapter 5 we proposed a new task of detecting entailment relations between

dependency graph fragments of various types and sizes. Our system made use

of the lexical and distributional similarity of graph fragments and was able to

perform entailment detection in a completely unsupervised setting, without the

need for specific resources or annotated training data. We were also able to

demonstrate that the distributional hypothesis can be applied to larger graph

fragments for unsupervised similarity detection.

Finally, in Chapter 6 we described a self-learning framework for improving

the accuracy of an unlexicalised parser, by calculating relation probabilities from

its own dependency output. The method requires only a large in-domain text

corpus and can therefore be easily applied to different domains and genres. Our

experiments showed significant improvements on both WSJ and biomedical text,

and the system greatly decreased the performance gap between the unlexicalised

RASP parser and the lexicalised C&C parser.

While fully supervised approaches generally achieve the highest results, our

experiments found minimally supervised methods to be remarkably competitive.

For example, by utilising a minimally-supervised system for detecting speculation

cues and scopes, the relative F-score was only 3.32% lower, compared to using

fully supervised classifiers. At the task of parse reranking, the relative F-score

for our self-learning framework was lower by only 3.24%, when compared to the

supervised C&C parser. Furthermore, the best distributional similarity measures

138

were able to outperform a supervised classifier on the task of hyponym generation.

In order to further improve the performance of supervised systems, a common

strategy is to provide more data. This also applies for minimally-supervised

methods that rely on similarity scores or corpus statistics, and obtaining plain

text is considerably easier compared to annotating new examples. In both cases,

however, the improvements are expected to reach a plateau as even more data

is added. In contrast, rule-based systems can be further improved by examining

samples from the system output and iteratively adjusting the rules.

The results presented here are the outcome of four case studies and are un-

likely to generalise to every NLP problem. In most tasks, supervised systems

consistently deliver the highest performance, and it remains to be seen whether

minimally-supervised methods can achieve a similar level. However, by develop-

ing unsupervised and minimally-supervised systems, we aim to create solutions

that are more likely to generalise across domains and genres. As part of future

work, we would encourage development of systems that are capable of taking full

advantage of the large amounts of unannotated text available from various sources

on the Web. In addition, as dependency graphs can offer an automated method

for resolving the structure and semantics in unlabelled text, it is important to

further improve the accuracy and versatility of existing parsing methods.

Supervised classifiers can offer out-of-the-box approaches for solving many

NLP challenges with relatively high accuracy, but the cost of manually labelling

a separate dataset for each different task and domain is likely to be high. By

moving away from explicit supervision, we aim to better understand the under-

lying patterns in the data, and to create systems that are not tied to any specific

domains. We described different methods for applying minimal supervision, and

showed that these systems are able to deliver competitive performance without

any annotation costs. In addition, when manually labelled data is available, these

techniques can be used as discriminative features in a combined system to fur-

ther improve the accuracy. We conclude that minimally supervised methods are

viable solutions to many different natural language processing tasks, offering low

costs, fast performance, and competitive results.

139

Appendix A: Hedge cues

Lemma Cue Total Lemma Cue Total

suggest 683 685 possibility 15 40
may 583 587 assume 14 25
indicate that 316 319 not know 13 18
appear 182 217 perhaps 13 15
or 146 1215 presumably 12 12
whether 122 129 expect 10 34
might 112 112 predict 10 137
likely 96 101 apparently 9 22
could 95 196 speculate 9 10
possible 79 97 and/or 8 60
can 64 506 estimate 8 58
potential 51 136 not clear 8 8
think 49 52 raise the possibility 8 8
putative 47 69 apparent 7 33
seem 45 45 assumption 7 14
propose 44 64 consider 7 93
either 36 206 not 6 1409
would 31 37 suspect 6 7
possibly 30 30 whether or not 6 6
unknown 29 74 suggestion 5 5
probably 28 29 support 5 90
should 27 37 unlikely 5 5
imply 26 27 idea 4 11
indicate 25 421 notion 4 9
potentially 25 28 cannot be exclude 3 3
hypothesis 22 50 clear 3 39
unclear 20 23 indication 3 5
hypothesize 18 20 infer 3 8
believe 16 18 must 3 25
if 16 114 consistent with 2 76

Table 1: Part 1/2 of all lemmatised speculation cues in the CoNLL-10 training
data, including counts of how many times they occurred as cues and in total.

140

Lemma Cue Total Lemma Cue Total

elucidate 2 24 likelihood 1 105
favor 2 8 look as 1 1
hope 2 2 look like 1 1
hypothesise 2 2 may , or may not 1 1
hypothetically 2 2 must be leave open 1 1
if not 2 2 no clear evidence 1 1
implicate 2 73 no evidence of 1 2
no evidence 2 7 no guarantee 1 1
postulate 2 11 no proof 1 2
prediction 2 101 not be clearly elucidate 1 1
probable 2 3 not clearly delineate 1 1
remain to be elucidate 2 3 not evident 1 3
suggestive 2 2 not exclude 1 2
suppose 2 3 not fully understand 1 4
tend 2 8 not possible to ascertain 1 1
address a number of question 1 1 obscure 1 5
address the question of 1 1 plausible 1 1
advance the hypothesis 1 1 potent 1 96
argue 1 5 preferentially 1 36
can be deduce 1 1 presume 1 3
cannot 1 47 prone to 1 2
cannot assign 1 1 proposal 1 1
cannot be 1 25 putatively 1 1
cannot exclude 1 2 question 1 17
cannot exclude the possibility 1 1 raise an interest question 1 1
cannot rule out the possibility 1 1 raise question 1 1
compel evidence 1 2 raise the hypothesis 1 1
conceivable 1 1 raise the intrigue possibility 1 1
conclusion 1 60 raise the question 1 1
elusive 1 3 reason 1 5
evaluate for 1 2 refer to 1 39
examine for 1 10 remain to be determine 1 1
feasible 1 4 remain to be investigate 1 1
feel 1 1 speculation 1 1
happen 1 1 test 1 154
hypothetical 1 8 to confirm 1 7
increase evidence 1 5 uncertain 1 3
investigate 1 237 unproven 1 1
issue be raise 1 1 viable 1 9
know 1 252 with certainty 1 1
lend strong support 1 1 yet to be understand 1 1

Table 2: Part 2/2 of all lemmatised speculation cues in the CoNLL-10 training
data, including counts of how many times they occurred as cues and in total.

141

Appendix B: Hyponym

generation examples

We present here some examples of hyponym generation, using a model trained on

BNC and the best-performing distributional similarity measures from Chapter 4.

Correct hyponyms, according to WordNet, are marked in bold.

scientist (noun)

Cosine researcher, psychologist, expert, writer, chemist, bi-
ologist, official, teacher, professional, sociologist, practi-
tioner, student, economist, journalist, politician

DiceGen2 researcher, expert, psychologist, writer, official,
economist, journalist, historian, chemist, scholar, ana-
lyst, politician, professional, practitioner, engineer

BalAPInc biologist, sociologist, researcher, geologist, as-
tronomer, psychologist, clinician, linguist, archaeol-
ogist, chemist, hydrogeologist, academic, geneticist, in-
vestigator, anthropologist

ClarkeDE medicinal, g.d, ying, endocytosis, battison, chouilly, oak-
brook, wissenland, assyria, saurischian, nation-building,
thuringia, tidesman, mordor, lawren

BalPrec researcher, sociologist, biologist, psychologist, in-
vestigator, practitioner, astronomer, chemist, profes-
sional, academic, archaeologist, geologist, counsellor,
commentator, planner

WeightedCosine researcher, expert, chemist, psychologist, writer, biol-
ogist, official, economist, science, teacher, student, jour-
nalist, professional, scholar, historian

142

politician (noun)

Cosine government, official, leader, people, party, scientist, jour-
nalist, critic, member, candidate, writer, voter, teacher,
unionist, businessman

DiceGen2 official, journalist, critic, leader, businessman, scientist,
candidate, voter, government, activist, writer, lawyer,
politics, minister, democrat

BalAPInc unionist, educationalist, proponent, sociologist, protestant,
clinician, republicanism, nationalist, diplomat, yorkshire-
men, environmentalist, assemblyman, intellectual, legisla-
tor, backbencher

ClarkeDE medicinal, ying, chouilly, g.d, oakbrook, sidmouth, wis-
senland, zelan, macbryde, blacksell, ibaez, to-ing, endo-
cytosis, phinehas, evangelicals

BalPrec unionist, sociologist, participant, delegate, voter, protes-
tant, professional, academic, reformer, commentator,
catholic, nationalist, diplomat, activist, researcher

WeightedCosine government, official, leader, party, critic, people, journal-
ist, member, politics, candidate, scientist, businessman,
writer, minister, voter

sport (noun)

Cosine game, football, club, tennis, news, rugby, cricket, race,
racing, athletics, baseball, event, television, golf, news-
paper

DiceGen2 game, football, tennis, news, race, racing, cricket,
rugby, tournament, club, golf, championship, newspaper,
television, competition

BalAPInc baseball, archery, athletics, canoeing, curtain-raiser,
specialty, boxing, tennis, troon, all-rounders, soldiering,
dramatics, story-telling, adida, g-mex

ClarkeDE medicinal, oakbrook, thuringia, mordor, orkneys, chouilly,
zenda, window-seat, cygnus, sidmouth, richmondshire,
kesteven, polyunsaturate, evangelisation, lancome

BalPrec athletics, athlete, tennis, football, rugby, baseball,
hobby, racing, specialty, boxing, cricket, entertainment,
tournament, venue, golf

WeightedCosine game, football, club, news, tennis, race, racing, rugby,
cricket, golf, event, television, art, championship, base-
ball

143

weapon (noun)

Cosine gun, missile, bomb, weaponry, force, item, vehicle, war-
head, tool, device, goods, instrument, equipment, measure,
material

DiceGen2 missile, gun, bomb, device, tool, vehicle, item, instru-
ment, goods, equipment, ingredient, threat, troops, mea-
sure, remedy

BalAPInc weaponry, warhead, mycotoxin, valuable, gadget, mis-
sile, armament, yardstick, deterrent, safeguard, precau-
tion, binoculars, power-up, explosive, breadwinner

ClarkeDE medicinal, oakbrook, uim, chouilly, yore, introjection, en-
docytosis, glander, saurischian, amniocentesis, transsexu-
alism, tidesman, mordor, guppies, sidmouth

BalPrec missile, weaponry, safeguard, precaution, warhead, sanc-
tion, deterrent, ingredient, remedy, yardstick, gadget, arte-
fact, valuable, bomb, aeroplane

WeightedCosine gun, missile, bomb, weaponry, warhead, force, device, ve-
hicle, tool, item, equipment, threat, sword, goods, instru-
ment

support (noun)

Cosine assistance, commitment, help, resource, service, interest,
benefit, control, protection, demand, strength, involve-
ment, policy, responsibility, approval

DiceGen2 commitment, resource, assistance, interest, help, service,
benefit, control, application, demand, strength, contribu-
tion, capability, opposition, influence

BalAPInc assistance, funding, encouragement, co-operation, back-
ing, approval, impetus, cooperation, help, endorse-
ment, involvement, subsidy, leverage, foothold, partici-
pation

ClarkeDE medicinal, thuringia, mordor, oakbrook, caulerpa, chouilly,
egress, lebensraum, self-worth, biosynthesis, outworking,
orkneys, buchlyvie, age-, yore

BalPrec assistance, funding, commitment, involvement, help, pro-
tection, recognition, co-operation, resource, approval,
expertise, encouragement, subsidy, benefit, responsibility

WeightedCosine assistance, commitment, help, service, interest, resource,
control, benefit, backing, application, demand, strength,
protection, approval, policy

144

linguist (noun)

Cosine sociologist, linguistics, archaeologist, anthropologist, re-
searcher, psychologist, marxists, mathematician, scholar,
commentator, educationist, taxonomist, historian, theo-
rist, scientist

DiceGen2 sociologist, linguistics, archaeologist, anthropologist,
mathematician, marxists, biologist, botanist, psychologist,
physicist, commentator, pianist, proponent, theorist, edu-
cationist

BalAPInc aglietta, demographer, taxonomist, tumin, liberal-
historian, counterlife, hydrogeologist, vaill, gerontology,
sexologist, centenarian, qalys, grave-goods, mafart, bailee

ClarkeDE medicinal, ying, g.d, endocytosis, battison, saurischian,
chouilly, zelan, macbryde, blacksell, ibaez, to-ing, wis-
senland, aggi, oakbrook

BalPrec aglietta, taxonomist, educationist, grave-goods, sociologist,
tumin, occultist, bailee, demographer, attitudinist, linguis-
tics, vaill, pharmacologist, embryologist, bacteriologist

WeightedCosine linguistics, sociologist, archaeologist, anthropologist, psy-
chologist, mathematician, researcher, scholar, marxists,
historian, commentator, theorist, educationist, grammar-
ian, hydrogeologist

fabric (noun)

Cosine cloth, yarn, curtain, garment, carpet, material, jacket,
skirt, dress, stitch, pattern, rug, sweater, thread, finish

DiceGen2 cloth, yarn, curtain, garment, carpet, jacket, skirt,
sweater, finish, dress, rug, trousers, thread, layer, stitch

BalAPInc wall-hanging, bollworm, yarn, bedspread, outworking,
buzz-word, cloth, jacquard, garment, coat-hanger, mi-
crofibre, counterpane, cladding, swatch, sheeting

ClarkeDE medicinal, chouilly, orkneys, thuringia, mordor, introjec-
tion, wissenland, bollworm, oakbrook, m42, sidmouth,
yore, outworking, ecms, aggi

BalPrec yarn, garment, cloth, curtain, rug, carpet, stripe, stitch,
tights, furnishings, canvas, skirt, sweater, thread, decor

WeightedCosine cloth, yarn, curtain, garment, carpet, jacket, material,
sweater, skirt, stitch, dress, trousers, lace, finish, thread

145

vegetable (noun)

Cosine fruit, salad, potato, food, lettuce, herb, ingredient, meal,
meat, dish, prawn, garlic, fish, cabbage, tomato

DiceGen2 salad, fruit, potato, lettuce, herb, ingredient, meat,
mushroom, tomato, garlic, prawn, onion, cabbage,
dish, steak

BalAPInc veg, caulerpa, worm-cake, cryptocorynes, roughage,
parmesan, caviare, lectin, crudit, owenites, gherkin, ren-
net, endive, d.i.y, mollies

ClarkeDE medicinal, zelan, macbryde, blacksell, ibaez, to-ing, aggi,
caulerpa, acquisitiveness, chouilly, oakbrook, polyunsatu-
rate, thuringia, sidmouth, guppies

BalPrec veg, lettuce, foodstuff, roughage, time-cue, herb, worm-
cake, salad, cabbage, spice, prawn, spinach, parmesan,
produce, ingredient

WeightedCosine fruit, salad, lettuce, potato, food, herb, prawn, meat,
ingredient, meal, garlic, tomato, dish, onion, apple

fruit (noun)

Cosine apple, vegetable, tomato, grape, meat, food, potato,
pear, herb, melon, leaf, strawberry, mushroom, plum,
cheese

DiceGen2 apple, tomato, vegetable, grape, meat, potato, cheese,
herb, leaf, mushroom, chocolate, food, strawberry, onion,
orange

BalAPInc chillus, pear, melon, grape, kumquat, vegetable, plum,
rhubarb, yam, tomato, citrus, daphnium, raisin, grape-
fruit, strawberry

ClarkeDE medicinal, aggi, zelan, macbryde, blacksell, ibaez, to-ing,
polyunsaturate, thuringia, oakbrook, caulerpa, chouilly,
nissel, ying, orkneys

BalPrec vegetable, grape, melon, herb, pear, tomato, apple,
banana, strawberry, potato, plum, mushroom, meat,
chillus, chocolate

WeightedCosine apple, tomato, grape, vegetable, meat, potato, pear,
food, melon, leaf, strawberry, herb, mushroom, plum,
cheese

146

treatment (noun)

Cosine therapy, measure, care, procedure, use, method, rem-
edy, practice, action, assessment, approach, investigation,
change, condition, intervention

DiceGen2 therapy, measure, procedure, method, care, use, rem-
edy, approach, assessment, technique, investigation, action,
practice, solution, condition

BalAPInc therapy, medication, remedy, chemotherapy, antibi-
otic, disclosure, intervention, investigation, evaluation,
reconsideration, cure, assessment, referral, modification,
monitoring

ClarkeDE medicinal, mordor, chouilly, thuringia, oakbrook, egress,
introjection, christianization, perdition, marksmanship,
criterion-referencing, spiritualism, yore, g.d, orkneys

BalPrec therapy, remedy, intervention, investigation, assess-
ment, evaluation, consideration, measure, medication,
dose, care, modification, improvement, procedure, disclo-
sure

WeightedCosine therapy, care, procedure, measure, method, use, ac-
tion, remedy, approach, practice, investigation, assessment,
change, programme, condition

travel (verb)

Cosine move, walk, go, work, pass, run, return, live, drive,
fly, arrive, carry, stay, take, come

DiceGen2 walk, fly, arrive, move, attend, drive, ride, stay, pass,
cross, wander, return, visit, head, enter

BalAPInc journey, trudge, stray, tramp, queue, urinate, stroll,
wander, taxi, co-operate, paddle, sail, venture, clamber,
ski

ClarkeDE -drop, jive, foal, traipse, busk, urinate, loaf, taxi, defe-
cate, doss, hassle, fund-raise, bunk, liaise, empathize

BalPrec wander, behave, sail, queue, progress, participate, ven-
ture, march, swim, stray, book, retreat, dance, commu-
nicate, stroll

WeightedCosine move, walk, pass, work, drive, fly, go, return, live,
run, arrive, carry, stay, talk, visit

147

take (verb)

Cosine make, give, go, use, put, bring, come, find, see, get,
hold, leave, provide, offer, show

DiceGen2 give, make, use, go, bring, find, put, come, hold, see,
get, leave, offer, call, show

BalAPInc put, carry, bring, hold, change, move, offer, receive,
decide, allow, start, work, draw, set, return

ClarkeDE jive, over-indulge, doss, disbar, urinate, comply, traipse,
foal, action, defecate, card, accede, liaise, empathize, mas-
turbate

BalPrec put, bring, hold, carry, allow, offer, go, move, set, help,
give, require, begin, need, provide

WeightedCosine make, give, go, use, get, find, come, put, bring, see,
hold, leave, show, provide, offer

distribute (verb)

Cosine integrate, develop, allocate, provide, market, operate, pro-
duce, implement, expand, support, supply, obtain, sell,
base, print

DiceGen2 integrate, market, allocate, print, implement, expand,
supply, generate, ship, deliver, operate, circulate, pur-
chase, handle, store

BalAPInc reseller, redistribute, unbundle, resell, computerise, chan-
nel, export, process, interface, ship, circulate, redeploy,
recompile, source, network

ClarkeDE unbundle, videoconference, recompile, reseller, action, re-
allocate, deprave, multiprocess, reroute, coldwater, re-
allocate, vend, busk, jive, discomfort

BalPrec allocate, export, process, integrate, circulate, ship,
channel, implement, redistribute, disperse, deploy,
computerise, market, invest, trade

WeightedCosine integrate, develop, market, base, provide, operate, expand,
allocate, sell, supply, support, print, produce, circulate,
introduce

148

guarantee (verb)

Cosine ensure, require, provide, limit, improve, reduce, achieve,
restrict, pay, increase, allow, offer, affect, accept, maintain

DiceGen2 ensure, restrict, limit, grant, improve, secure, permit,
enhance, earn, achieve, reduce, afford, define, assess, affect

BalAPInc refund, accrue, backdate, jeopardize, deduct, stipulate,
exempt, infringe, allocate, confer, repay, insure, imperil,
compromise, recalculate

ClarkeDE disbar, backdate, no-win, recalculate, fand, overcompen-
sate, preselect, mishear, jive, turbocharge, clown, action,
imperil, hunger, closet

BalPrec allocate, assess, confer, repay, accrue, amount, restrict,
preclude, compromise, benefit, attain, deduct, insure, ex-
empt, dictate

WeightedCosine ensure, limit, require, provide, reduce, improve, achieve,
pay, grant, increase, offer, restrict, allow, secure, affect

address (verb)

Cosine discuss, concern, deal, consider, examine, present,
identify, regard, relate, tackle, understand, focus, reflect,
recognise, refer

DiceGen2 discuss, deal, examine, tackle, concern, present, iden-
tify, confront, direct, relate, focus, investigate, inform, ex-
plore, pursue

BalAPInc debate, action, clarify, analyze, evaluate, substantiate,
comply, redress, familiarize, communicate, tackle, expli-
cate, conceptualize, articulate, assimilate

ClarkeDE action, jive, re-express, explicate, not, familiarize, foal,
schoon, empathize, demean, lame, hospitalize, misspell,
slight, redress

BalPrec debate, evaluate, tackle, clarify, communicate, resolve,
solve, implement, fulfil, focus, comply, confront, initiate,
articulate, criticize

WeightedCosine discuss, concern, deal, consider, present, examine, re-
gard, relate, identify, refer, tackle, express, direct, raise,
reflect

149

meet (verb)

Cosine take, see, tell, make, ask, find, give, bring, know, work,
put, help, hold, come, go

DiceGen2 tell, ask, bring, join, help, work, hold, send, receive, face,
put, set, visit, allow, pay

BalAPInc fulfil, interview, attend, benefit, satisfy, cope, invite, en-
gage, persuade, implement, comply, compete, contact, as-
sist, deal

ClarkeDE empathize, preselect, foal, -drop, liaise, microprogram,
martin, over-indulge, economise, fand, oversleep, intercede,
jive, re-offend, best

BalPrec satisfy, attend, invite, fulfil, benefit, deal, act, persuade,
recognise, engage, agree, discuss, treat, travel, address

WeightedCosine tell, take, see, ask, make, give, find, bring, know, work,
hold, put, come, go, help

display (verb)

Cosine show, reveal, develop, produce, reflect, demonstrate, rep-
resent, exhibit, require, contain, express, present, place,
change, provide

DiceGen2 exhibit, reveal, demonstrate, reflect, possess, express,
store, acquire, represent, develop, present, lack, combine,
illustrate, retain

BalAPInc exhibit, store, reproduce, communicate, convey, interface,
conform, utilize, stock, evaluate, capitalise, manifest, opti-
mize, utilise, classify

ClarkeDE actualize, vandalize, empathize, foal, actualise, discomfort,
hillwalk, jive, excerpt, child-rear, turbocharge, socrate, re-
present, optimize, serialise

BalPrec exhibit, store, communicate, reproduce, convey, assess,
evaluate, possess, function, appreciate, evolve, classify, ex-
ploit, interpret, view

WeightedCosine show, develop, reveal, produce, reflect, demonstrate, rep-
resent, contain, require, exhibit, express, place, provide,
present, describe

150

sneak (verb)

Cosine tiptoe, busk, clamber, stroll, bluff, taxi, crawl, slink, dart,
nip, swan, bump, tramp, rope, wander

DiceGen2 tiptoe, clamber, stroll, dart, amble, nip, peep, tramp,
scamper, crawl, sprint, rope, bluff, bump, grope

BalAPInc busk, queer, tiptoe, taxi, waylay, chug, traipse, swagger,
swan, slink, standin’, tip-toe, bluff, plop, scoot

ClarkeDE busk, queer, coddle, chicken, traipse, tip-toe, bunk, not,
swagger, economise, re-invest, clown, deprave, swan, skive

BalPrec busk, tiptoe, taxi, queer, waylay, bluff, chug, swan, traipse,
rope, swagger, rough, barge, standin’, whack

WeightedCosine tiptoe, clamber, stroll, slink, dart, crawl, bluff, creep, taxi,
sprint, wander, slip, swan, tramp, bump

confirm (verb)

Cosine indicate, reveal, suggest, accept, demonstrate, state, ex-
plain, show, report, reflect, express, consider, concern,
agree, announce

DiceGen2 indicate, demonstrate, reveal, state, accept, report, ex-
plain, announce, suggest, express, acknowledge, reflect,
deny, assume, imply

BalAPInc substantiate, corroborate, contradict, verify, reiter-
ate, disclose, underline, summarize, infer, disprove, en-
dorse, dispel, ascertain, reconsider, refute

ClarkeDE not, action, corroborate, socrate, fand, re-affirm, prese-
lect, substantiate, mishear, vandalize, demob, deprave,
countermand, explicate, even

BalPrec disclose, demonstrate, acknowledge, underline, endorse,
state, contradict, interpret, review, emphasise, indicate,
infer, question, submit, document

WeightedCosine indicate, reveal, suggest, accept, demonstrate, report,
explain, state, show, express, announce, agree, concern,
reflect, consider

151

Appendix C: Similarity measures

for entailment detection

We present here the full set of results for entailment detection. Word-level sim-

ilarity measures are in columns, fragment-level similarity measures are in rows.

The result of the best combination is marked in bold.

Cosine Lin JaccardGen DiceGen DiceGen2

Cosine 73.21 74.40 72.42 72.74 73.11
Lin 72.72 72.67 72.12 72.32 70.69
JaccardGen 72.64 74.34 71.13 71.73 74.20
DiceGen 73.59 74.74 72.25 72.64 74.08
DiceGen2 71.63 72.92 70.13 70.58 70.66
ClarkeDE 77.45 79.17 76.39 76.83 79.06
WeedsPrec 75.82 75.00 75.77 75.77 72.76
WeedsRec 66.52 66.20 66.13 65.85 62.65
WeedsF 72.93 72.62 72.34 72.51 70.85
AP 71.71 72.97 70.40 70.87 71.42
APInc 73.89 75.00 72.72 73.09 74.90
BalAPInc 74.54 75.76 73.59 73.87 76.24
LinD 74.37 73.54 74.07 74.08 70.92
BalPrec 72.84 71.70 72.67 72.34 71.38
WeightedCosine 72.79 73.68 72.23 72.34 71.58

152

ClarkeDE WeedsPrec WeedsRec WeedsF AP

Cosine 73.31 75.25 73.62 74.35 71.90
Lin 72.84 73.54 71.64 72.52 71.33
JaccardGen 72.35 75.15 73.75 74.25 70.73
DiceGen 73.24 75.66 73.91 74.72 71.51
DiceGen2 71.17 73.69 72.13 72.90 69.46
ClarkeDE 77.28 79.94 78.37 79.10 75.93
WeedsPrec 75.97 75.89 73.96 74.95 75.20
WeedsRec 66.54 67.00 64.97 66.13 64.88
WeedsF 72.86 73.65 71.64 72.52 71.12
AP 71.42 73.86 72.13 72.87 69.72
APInc 73.62 75.78 74.16 75.00 72.26
BalAPInc 74.33 76.60 75.03 75.81 72.94
LinD 74.04 74.02 72.53 73.49 73.83
BalPrec 72.87 73.24 70.80 71.66 72.04
WeightedCosine 72.99 74.56 72.68 73.73 71.67

APInc BalAPInc LinD BalPrec W-Cosine

Cosine 74.19 74.40 75.43 74.79 73.33
Lin 71.72 72.83 73.94 72.69 72.73
JaccardGen 73.30 73.66 75.72 74.72 72.82
DiceGen 74.30 74.66 75.89 75.15 73.70
DiceGen2 71.21 71.99 73.98 73.23 71.83
ClarkeDE 78.70 78.91 80.08 79.55 77.63
WeedsPrec 75.14 75.21 75.36 75.38 75.77
WeedsRec 64.94 65.83 66.84 66.49 66.39
WeedsF 71.91 72.75 73.94 72.54 72.87
AP 72.16 72.54 73.99 73.39 71.90
APInc 74.18 74.86 76.00 75.24 74.09
BalAPInc 75.71 75.52 76.75 76.11 74.77
LinD 72.65 73.48 73.42 73.81 74.33
BalPrec 72.03 72.75 73.76 72.84 72.73
WeightedCosine 72.96 73.44 74.32 74.11 72.80

153

References

Agichtein, E. & Gravano, L. (2000). Snowball: Extracting relations from

large plain-text collections. In Proceedings of the fifth ACM conference on Dig-

ital libraries , 85–94, ACM New York, NY, USA. 11

Alfonseca, E. & Manandhar, S. (2002). Extending a lexical ontology by a

combination of distributional semantics signatures. EKAW ’02 Proceedings of

the 13th International Conference on Knowledge Engineering and Knowledge

Management. Ontologies and the Semantic Web., 1–7. 61

Andersen, Ø., Briscoe, T., Buttery, P., Carroll, J., Medlock, B.,

Parish, T. & Watson, R. (2012). Text Processing Tools and Services from

iLexIR Ltd. Tech. rep. 18

Andersen, Ø. E., Nioche, J., Briscoe, E. J. & Carroll, J. (2008). The

BNC parsed with RASP4UIMA. In Proceedings of the Sixth International Lan-

guage Resources and Evaluation Conference (LREC08), Marrakech, Morocco.

27

Androutsopoulos, I. & Malakasiotis, P. (2010). A survey of paraphrasing

and textual entailment methods. Journal of Artificial Intelligence Research, 38,

135–187. 96

Apostolova, E., Tomuro, N. & Demner-Fushman, D. (2011). Automatic

extraction of lexicosyntactic patterns for detection of negation and speculation

scopes. In Proceedings of the 49th Annual Meeting of the Association for Com-

putational Linguistics: Human Language Technologies: short papers , 283–287.

37

154

REFERENCES

Arora, S., Mayfield, E., Penstein-Rosé, C. & Nyberg, E. (2010). Senti-

ment Classification using Automatically Extracted Subgraph Features. In Pro-

ceedings of the NAACL HLT 2010 Workshop on Computational Approaches to

Analysis and Generation of Emotion in Text . 118

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D.,

Magnini, B. & Szpektor, I. (2006). The Second PASCAL Recognising Tex-

tual Entailment Challenge. In Proceedings of the Second PASCAL Challenges

Workshop on Recognising Textual Entailment , 1–9, Citeseer. 94, 100

Baroni, M. & Lenci, A. (2011). How we BLESSed distributional semantic

evaluation. In Proceedings of the GEMS 2011 Workshop on GEometrical Models

of Natural Language Semantics , Edinburgh. 63

Bentivogli, L., Cabrio, E., Dagan, I., Giampiccolo, D., Leggio, M. L.

& Magnini, B. (2010). Building Textual Entailment Specialized Data Sets:

a Methodology for Isolating Linguistic Phenomena Relevant to Inference. In

Proceedings of the Seventh conference on International Language Resources

and Evaluation (LREC’10). 97

Berant, J., Dagan, I. & Goldberger, J. (2010). Global learning of focused

entailment graphs. In Proceedings of the 48th Annual Meeting of the Asso-

ciation for Computational Linguistics , Section 6, 1220–1229, Association for

Computational Linguistics. 88, 96

Biemann, C. (2005). Ontology learning from text: A survey of methods. LDV

Forum, 20, 75–93. 61

Bisson, G., Nédellec, C. & Cañamero, D. (2000). Designing clustering

methods for ontology building-The Mo’K workbench. In ECAI Ontology Learn-

ing Workshop. 61

Breiman, L. (2001). Random forests. Machine learning , 5–32. 10

Briscoe, T. & Carroll, J. (2006). Evaluating the accuracy of an unlexicalized

statistical parser on the PARC DepBank. In Proceedings of the COLING/ACL

155

REFERENCES

on Main conference poster sessions , July, 41–48, Association for Computational

Linguistics, Morristown, NJ, USA. 19, 29, 117, 127

Briscoe, T., Carroll, J. & Watson, R. (2006). The second release of the

RASP system. In Proceedings of the COLING/ACL 2006 Interactive Presenta-

tion Sessions , July, 77–80, Association for Computational Linguistics, Sydney,

Australia. 18, 29, 32, 51, 79, 81, 98, 103, 125, 133

Burnard, L. (2007). Reference Guide for the British National Corpus (XML

Edition). Tech. rep. 27

Cahill, A., Burke, M., O’Donovan, R., Riezler, S., van Genabith, J.

& Way, A. (2008). Wide-Coverage Deep Statistical Parsing Using Automatic

Dependency Structure Annotation. Computational Linguistics , 34, 81–124. 125

Caraballo, S. A. (1999). Automatic construction of a hypernym-labeled noun

hierarchy from text. In Proceedings of the 37th annual meeting of the Asso-

ciation for Computational Linguistics on Computational Linguistics , 120–126.

61

Carreras, X. (2007). Experiments with a higher-order projective dependency

parser. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL,

vol. 7, 957–961. 118

Carroll, J., Briscoe, T. & Sanfilippo, A. (1998). Parser evaluation: a

survey and a new proposal. In Proceedings of the 1st International Conference

on Language Resources and Evaluation. 32

Chapelle, O., Scholkopf, B. & Zien, A. (2006). Semi-Supervised Learning .

12

Charniak, E. & Johnson, M. (2005). Coarse-to-fine n-best parsing and Max-

Ent discriminative reranking. Proceedings of the 43rd Annual Meeting on As-

sociation for Computational Linguistics - ACL ’05 , 1, 173–180. 117

Charniak, E., Blaheta, D., Ge, N., Hall, K., Hale, J. & Johnson, M.

(2000). BLLIP 1987-89 WSJ Corpus Release 1. Tech. rep. 27

156

REFERENCES

Chen, J., Ji, D., Tan, C. L. & Niu, Z. (2006). Relation extraction using

label propagation based semi-supervised learning. In Proceedings of the 21st

International Conference on Computational Linguistics and the 44th annual

meeting of the ACL - ACL ’06 , July, 129–136, Association for Computational

Linguistics, Morristown, NJ, USA. 11

Cimiano, P. & Staab, S. (2005). Learning concept hierarchies from text with a

guided hierarchical clustering algorithm. In ICML-Workshop on Learning and

Extending Lexical Ontologies by using Machine Learning Methods . 61

Clark, S. & Curran, J. R. (2004). Parsing the WSJ using CCG and log-

linear models. In Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics . 20

Clark, S. & Curran, J. R. (2007). Formalism-independent parser evaluation

with CCG and DepBank. In Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics , vol. 45, 248–255. 127, 129, 133

Clarke, D. (2009). Context-theoretic semantics for natural language: an

overview. In Proceedings of the Workshop on Geometrical Models of Natural

Language Semantics , March, 112–119, Association for Computational Linguis-

tics. 70, 103

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence. The MIT

Press, Cambridge, MA. 86, 125

Collins, M. (2000). Discriminative reranking for natural language parsing. In

The 17th International Conference on Machine Learning (ICML). 117

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning .

10, 20, 21, 87

Curran, J. R. (2003). From distributional to semantic similarity . Ph.D. thesis,

University of Edinburgh. 64, 67, 103

Curran, J. R., Clark, S. & Bos, J. (2007). Linguistically motivated large-

scale NLP with C&C and Boxer. Proceedings of the ACL 2007 Demonstrations

Session (ACL-07 demo), 33–36. 20, 98

157

REFERENCES

Dagan, I., Lee, L. & Pereira, F. (1997). Similarity-based methods for word

sense disambiguation. Proceedings of the 35th Annual Meeting of the Associ-

ation for Computational Linguistics and Eighth Conference of the European

Chapter of the Association for Computational Linguistics , 56–63. 73

Dagan, I., Lee, L. & Pereira, F. C. N. (1999). Similarity-based models of

word cooccurrence probabilities. Machine Learning , 31, 1–31. 59

Dagan, I., Glickman, O. & Magnini, B. (2006). The PASCAL Recognising

Textual Entailment Challenge. Machine Learning Challenges , 177–190. 95

Dice, L. R. (1945). Measures of the amount of ecologic association between

species. Ecology , 26, 297–302. 66, 103

Dolan, W. & Brockett, C. (2005). Automatically constructing a corpus of

sentential paraphrases. Proc. of IWP , 9–16. 106

Farkas, R., Vincze, V., Móra, G., Csirik, J. & Szarvas, G. (2010).

The CoNLL-2010 Shared Task: Learning to Detect Hedges and their Scope

in Natural Language Text. In Proceedings of the Fourteenth Conference on

Computational Natural Language Learning — Shared Task , 1–12, Association

for Computational Linguistics. 33, 35, 36, 48, 49, 105

Francis, W. N. & Kučera, H. (1979). Brown corpus manual. Tech. rep. 28

Georgescul, M. (2010). A Hedgehop over a Max-Margin Framework Using

Hedge Cues. In Proceedings of the Fourteenth Conference on Computational

Natural Language Learning—Shared Task , July, 26–31. 37

Gildea, D. (2001). Corpus variation and parser performance. In Proceedings of

the 2001 Conference on Empirical Methods in Natural Language Processing ,

167–202. 17, 20, 114

Grefenstette, G. (1994). Explorations in Automatic Thesaurus Discovery .

Kluwer Academic Publishers, Norwell, MA, USA. 67

Haghighi, A. D., Ng, A. Y. & Manning, C. D. (2005). Robust textual infer-

ence via graph matching. In Proceedings of the conference on Human Language

158

REFERENCES

Technology and Empirical Methods in Natural Language Processing , Associa-

tion for Computational Linguistics, Morristown, NJ, USA. 57, 95, 104

Hara, T., Miyao, Y. & Tsujii, J. (2007). Evaluating the Impact of Re-

training a Lexical Disambiguation Model on Domain Adaptation of an HPSG

Parser. In Proceedings of the 10th Conference on Parsing Technologies , June,

11–22. 32

Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text cor-

pora. In Proceedings of the 14th conference on Computational linguistics (COL-

ING ’92), July, 539, Association for Computational Linguistics, Morristown,

NJ, USA. 61

Hickl, A., Bensley, J., Williams, J., Roberts, K., Rink, B. & Shi, Y.

(2006). Recognizing textual entailment with LCC’s GROUNDHOG system. In

Proceedings of the Second PASCAL Challenges Workshop. 95

Hockenmaier, J. (2003). Data and models for statistical parsing with Combi-

natory Categorial Grammar . Ph.D. thesis. 20

Inui, K., Sornlertlamvanich, V., Tanaka, H. & Tokunaga, T. (1997).

A new formalization of probabilistic GLR parsing. In Proceedings of the 5th

International Workshop on Parsing Technologies . 19

Jaccard, P. (1901). Étude comparative de la distribution florale dans une por-

tion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Na-

turelles , 547–579. 66

Joachims, T. (1998). Text categorization with support vector machines: learn-

ing with many relevant features. In 10th European Conference on Machine

Learning (ECML-98), 137–142, Springer, Chemnitz, Germany. 10

Joachims, T. (1999). Making large scale SVM learning practical. Tech. rep. 21,

87

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32. 11

159

REFERENCES

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30,

81–93. 68

Kilicoglu, H. & Bergler, S. (2008). Recognizing speculative language in

biomedical research articles: a linguistically motivated perspective. BMC bioin-

formatics , 9 Suppl 11, S10. 37

Kim, J. D., Ohta, T., Tateisi, Y. & Tsujii, J. (2003). GENIA corpus -

a semantically annotated corpus for bio-textmining. Bioinformatics , 19, 180–

182. 32, 130

King, T. H., Crouch, R., Riezler, S., Dalrymple, M. & Kaplan, R.

M. (2003). The PARC 700 dependency bank. In Proceedings of the EACL03:

4th International Workshop on Linguistically Interpreted Corpora (LINC-03),

1–8. 29, 127

Klein, D. & Manning, C. D. (2004). Corpus-based induction of syntactic

structure: Models of dependency and constituency. In Proceedings of the 42nd

Annual Meeting on Association for Computational Linguistics , 478, Associa-

tion for Computational Linguistics. 17, 115

Kohonen, T. (1990). The Self-Organizing Map. Proceedings of the IEEE . 11

Kotlerman, L., Dagan, I., Szpektor, I. & Zhitomirsky-Geffet, M.

(2010). Directional distributional similarity for lexical inference. Natural Lan-

guage Engineering , 16, 359–389. 63, 70, 71, 75, 82, 96

Kruskal, W. H. (1958). Ordinal measures of association. Journal of the Amer-

ican Statistical Association, 53, 814–861. 68

Kübler, S., McDonald, R. & Nivre, J. (2009). Dependency Parsing. In

Synthesis Lectures on Human Language Technologies , vol. 2, 1–127. 98

Kullback, S. (1959). Information Theory and Statistics . John Wiley and Sons,

New York. 72

Kullback, S. & Leibler, R. A. (1951). On information and sufficiency. The

Annals of Mathematical Statistics , 22, 79–86. 72

160

REFERENCES

Lafferty, J., McCallum, A. & Pereira, F. (2001). Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In Pro-

ceedings of the Eighteenth International Conference on Machine Learning , 282–

289, Citeseer. 10, 22, 42

Lee, L. (1999). Measures of distributional similarity. In Proceedings of the 37th

annual meeting of the Association for Computational Linguistics on Computa-

tional Linguistics , 25–32, Association for Computational Linguistics. 74

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, inser-

tions, and reversals. In Soviet Physics Doklady , vol. 10, 707–710. 101

Light, M., Qiu, X. Y. & Srinivasan, P. (2004). The language of bioscience:

Facts, speculations, and statements in between. Proceedings of BioLink 2004

Workshop on Linking Biological Literature, Ontologies and Databases: Tools

for Users , 17–24. 36

Lin, D. (1993). Principle-based parsing without overgeneration. In Proceedings

of the 31st annual meeting on Association for Computational Linguistics (ACL

’93), 112–120. 78

Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceed-

ings of the 17th international conference on Computational linguistics-Volume

2 , 768–774, Association for Computational Linguistics. 69, 71, 104

Lin, D. & Pantel, P. (2001). Discovery of inference rules for question-

answering. Natural Language Engineering , 7, 343–360. 96

Lintean, M. C. & Rus, V. (2009). Paraphrase Identification Using Weighted

Dependencies and Word Semantics. In Proceedings of the FLAIRS-22 , vol. 22,

19–28. 95

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions

on Information Theory , 28, 129–137. 11

MacCartney, B. & Manning, C. D. (2008). Modeling semantic containment

and exclusion in natural language inference. In Proceedings of the 22nd Inter-

161

REFERENCES

national Conference on Computational Linguistics , 521–528, Association for

Computational Linguistics. 96

Manning, C. D. & Schütze, H. (1999). Foundations of statistical natural

language processing . MIT Press, Cambridge, MA, USA. 66, 67, 73

Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R., Bies,

A., Ferguson, M., Katz, K. & Schasberger, B. (1994). The Penn Tree-

bank: annotating predicate argument structure. In ARPA Human Language

Technology Workshop, 114–119. 29

Marcus, M. P., Santorini, B. & Marcinkiewicz, M. A. (1993). Build-

ing a large annotated corpus of English: The Penn Treebank. Computational

linguistics , 1–22. 29, 127

Maslow, A. (1968). Toward a Psychology of Being . 13

Maxwell III, J. T. & Kaplan, R. M. (1993). The interface between phrasal

and functional constraints. Computational Linguistics . 29

McClosky, D., Charniak, E. & Johnson, M. (2006). Effective self-training

for parsing. In Proceedings of the Human Language Technology Conference of

the North American Chapter of the Association of Computational Linguistics ,

June, 152–159, Association for Computational Linguistics, Morristown, NJ,

USA. 117

McDonald, R. & Nivre, J. (2011). Analyzing and integrating dependency

parsers. Computational Linguistics . 12

Medlock, B. (2008). Exploring hedge identification in biomedical literature.

Journal of Biomedical Informatics , 41, 636–54. 37

Medlock, B. & Briscoe, T. (2007). Weakly supervised learning for hedge

classification in scientific literature. In Proceedings of the 45th Annual Meet-

ing of the Association of Computational Linguistics , vol. 45, 992–999, Prague,

Czech Republic. 33, 36, 37

162

REFERENCES

Miller, G. A. (1995). WordNet: a lexical database for English. Communica-

tions of the ACM , 38, 39–41. 30, 79

Morante, R. (2009). Descriptive analysis of negation cues in biomedical texts.

In Proceedings of the Seventh International Conference on Language Resources

and Evaluation (LREC10), 1429–1436. 105

Morante, R. & Daelemans, W. (2009). Learning the scope of hedge cues

in biomedical texts. In Proceedings of the Workshop on BioNLP , June, 28–36,

Association for Computational Linguistics. 37, 46

Morante, R., Asch, V. V. & Daelemans, W. (2010). Memory-based reso-

lution of in-sentence scopes of hedge cues. In CoNLL-2010: Shared Task , July,

40. 37, 55, 56

Ng, D., Honnibal, M. & Curran, J. R. (2010). Reranking a wide-coverage

CCG parser. In Proceedings of the Australasian Language Technology Associa-

tion Workshop 2010 , 90. 117

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler,

S., Marinov, S. & Marsi, E. (2007). MaltParser: A language-independent

system for data-driven dependency parsing. Natural Language Engineering , 13,

1. 98

Noreen, E. W. (1989). Computer Intensive Methods for Testing Hypotheses:

An Introduction. Wiley, New York. 86, 125, 126

Øvrelid, L., Velldal, E. & Oepen, S. (2010). Syntactic scope resolution

in uncertainty analysis. In Proceedings of the 23rd international conference on

computational linguistics , August, 1379–1387. 37

Özgür, A. & Radev, D. R. (2009). Detecting speculations and their scopes

in scientific text. Proceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing , 1398–1407. 37

Paaß, G., Kindermann, J. & Leopold, E. (2004). Learning prototype on-

tologies by hierachical latent semantic analysis. 61

163

REFERENCES

Pearson, K. (1895). Note on regression and inheritance in the case of two

parents. Royal Society Proceedings , 58, 241. 64

Pestian, J. P., Brew, C., Matykiewicz, P., Hovermale, D. J., John-

son, N., Cohen, K. B. & Duch, W. (2007). A shared task involving

multi-label classification of clinical free text. In Proceedings of the Workshop

on BioNLP 2007 Biological, Translational, and Clinical Language Processing

(BioNLP ’07), Association for Computational Linguistics, Morristown, NJ,

USA. 33

Petrov, S., Barrett, L., Thibaux, R. & Klein, D. (2006). Learning ac-

curate, compact, and interpretable tree annotation. In Proceedings of the 21st

International Conference on Computational Linguistics and the 44th annual

meeting of the ACL (ACL ’06), 433–440, Association for Computational Lin-

guistics, Morristown, NJ, USA. 17, 115

Petrov, S., Das, D. & McDonald, R. (2011). A universal part-of-speech

tagset. ArXiv:1104.2086 . 81

Plank, B. & van Noord, G. (2008). Exploring an auxiliary distribution based

approach to domain adaptation of a syntactic disambiguation model. In Coling

2008: Proceedings of the Workshop on Cross-Framework and Cross-Domain

Parser Evaluation, 9–16, Association for Computational Linguistics, Manch-

ester, UK. 117, 121

Poon, H. & Domingos, P. (2009). Unsupervised Semantic Parsing. In Proceed-

ings of the Conference on Empirical Methods in Natural Language Processing .

61

Poon, H. & Domingos, P. (2010). Unsupervised ontology induction from text.

In Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics (ACL ’10). 61

Read, J., Velldal, E., Oepen, S. & Øvrelid, L. (2011). Resolving Specu-

lation and Negation Scope in Biomedical Articles with a Syntactic Constituent

Ranker. In Proceedings of the Fourth International Symposium on Languages

in Biology and Medicine (LBM 2011). 38

164

REFERENCES

Rei, M. & Briscoe, T. (2010). Combining manual rules and supervised learning

for hedge cue and scope detection. In Proceedings of the 14th Conference on

Natural Language Learning , July, 56. 15

Rei, M. & Briscoe, T. (2011). Unsupervised Entailment Detection be-

tween Dependency Graph Fragments. In Proceedings of the 2011 Workshop

on Biomedical Natural Language Processing, ACL-HLT 2011 , 10. 17, 72

Rei, M. & Briscoe, T. (2013). Parser lexicalisation through self-learning.

In In Proceedings of the 2013 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT 2013). 17

Rodgers, J. L. & Nicewander, W. A. (1988). Thirteen ways to look at the

correlation coefficient. American Statistician, 42, 59–66. 64

Sammons, M., Vydiswaran, V. V. & Roth, D. (2010). ”Ask not what

textual entailment can do for you...”. In Proceedings of the Annual Meeting of

the Association for Computational Linguistics (ACL), 1199–1208, Association

for Computational Linguistics. 97

Sampson, G. R. (1995). English for the Computer: The SUSANNE Corpus and

Analytic Scheme. Clarendon Press (Oxford University Press). 28

Sekine, S. (1997). The domain dependence of parsing. In Proceedings of the fifth

conference on Applied natural language processing , vol. 1, 96–102, Association

for Computational Linguistics, Morristown, NJ, USA. 17, 114

Smucker, M. D., Allan, J. & Carterette, B. (2007). A comparison of

statistical significance tests for information retrieval evaluation. Proceedings

of the sixteenth ACM conference on information and knowledge management

(CIKM ’07), 623. 86

Snow, R., Jurafsky, D. & Ng, A. Y. (2005). Learning syntactic patterns for

automatic hypernym discovery. In Advances in Neural Information Processing

Systems . 61, 96

165

REFERENCES

Snow, R., Jurafsky, D. & Ng, A. Y. (2006). Semantic taxonomy induction

from heterogenous evidence. In Proceedings of the 21st International Confer-

ence on Computational Linguistics and the 44th annual meeting of the ACL

(ACL ’06), July, 801–808, Association for Computational Linguistics, Morris-

town, NJ, USA. 61

Spearman, C. (1904). The proof and measurement of association between two

things. The American journal of psychology , 15, 72–101. 65

Specht, D. F. (1990). Probabilistic neural networks. Neural networks , 3. 10

Szarvas, G. (2008). Hedge classification in biomedical texts with a weakly super-

vised selection of keywords. In Proceedings of 46th Meeting of the Association

for Computational Linguistics , June, 281–289. 37

Szpektor, I. & Dagan, I. (2008). Learning entailment rules for unary tem-

plates. In Proceedings of the 22nd International Conference on Computational

Linguistics (COLING ’08), 849–856, Association for Computational Linguis-

tics, Morristown, NJ, USA. 72, 96

Szpektor, I., Tanev, H., Dagan, I. & Coppola, B. (2004). Scaling web-

based acquisition of entailment relations. In Proceedings of EMNLP , vol. 4,

41–48. 96

Tang, B., Wang, X., Wang, X., Yuan, B. & Fan, S. (2010). A Cascade

Method for Detecting Hedges and their Scope in Natural Language Text. In

Proceedings of the Fourteenth Conference on Computational Natural Language

Learning - Shared Task , July, 13–17. 37

Tateisi, Y., Miyao, Y., Sagae, K. & Tsujii, J. (2008). GENIA-GR: a

Grammatical Relation Corpus for Parser Evaluation in the Biomedical Domain.

In Proceedings of LREC , 1942–1948. 32, 130

Taylor, A., Marcus, M. & Santorini, B. (2003). The Penn treebank: an

overview. Treebanks . 29

166

REFERENCES

Thelen, M. & Riloff, E. (2002). A bootstrapping method for learning seman-

tic lexicons using extraction pattern contexts. Proceedings of the Conference on

Empirical methods in Natural Language Processing - (EMNLP ’02), 214–221.

11

Tomita, M. (1987). An efficient augmented-context-free parsing algorithm.

Computational Linguistics , 13. 19

Ushioda, A. (1996). Hierarchical clustering of words and application to NLP

tasks. In Proceedings of the Fourth Workshop on Very Large Corpora, 28–41.

61

van Noord, G. (2007). Using self-trained bilexical preferences to improve dis-

ambiguation accuracy. In Proceedings of the 10th International Conference on

Parsing Technologies , June, 1–10, Association for Computational Linguistics,

Morristown, NJ, USA. 116, 118, 121

Vapnik, V. (1982). Estimation of dependences based on empirical data. Springer-

Verlag, New York. 20, 87

Velldal, E., Øvrelid, L. & Oepen, S. (2010). Resolving Speculation: Max-

Ent Cue Classification and Dependency-Based Scope Rules. In CoNLL-2010:

Shared Task , July, 48. 37

Velldal, E., Øvrelid, L., Read, J. & Oepen, S. (2012). Speculation and

negation: Rules, rankers, and the role of syntax. Computational Linguistics .

38

Vincze, V., Szarvas, G., Farkas, R., Móra, G. & Csirik, J. (2008). The

BioScope corpus: biomedical texts annotated for uncertainty, negation and

their scopes. BMC Bioinformatics , 9 Suppl 11, S9. 15, 32, 34, 37, 48

Vlachos, A. (2010). Semi-supervised learning for biomedical information ex-

traction. Tech. Rep. 791. 12

Vlachos, A. & Craven, M. (2010). Detecting Speculative Language Using

Syntactic Dependencies and Logistic Regression. In Proceedings of the Four-

167

REFERENCES

teenth Conference on Computational Natural Language Learning - Shared Task ,

July, 18–25. 37

Wagner, A. (2000). Enriching a lexical semantic net with selectional prefer-

ences by means of statistical corpus analysis. In ECAI Workshop on Ontology

Learning . 61

Wallach, H. M. (2004). Conditional random fields: An introduction. Tech. rep.

22

Watson, R. (2006). RASP Evaluation Schemes. Tech. rep. 18

Watson, R. (2007). Optimising the speed and accuracy of a Statistical GLR

Parser . Ph.D. thesis. 18

Watson, R., Carroll, J. & Briscoe, T. (2005). Efficient extraction of gram-

matical relations. In Proceedings of 9th Int. Workshop on Parsing Technolo-

gies (IWPT05), October, 160–170, Association for Computational Linguistics,

Morristown, NJ, USA. 18

Watson, R., Briscoe, T. & Carroll, J. (2007). Semi-supervised training

of a statistical parser from unlabeled partially-bracketed data. Proceedings of

the 10th International Conference on Parsing Technologies - IWPT ’07 , 23–32.

19, 127, 129

Weeds, J. & Weir, D. (2005). Co-occurrence retrieval: A flexible framework

for lexical distributional similarity. Computational Linguistics . 59

Weeds, J., Weir, D. & McCarthy, D. (2004). Characterising measures of

lexical distributional similarity. Proceedings of the 20th international conference

on Computational Linguistics - COLING ’04 . 69, 70

Weeds, J., Weir, D. & Keller, B. (2005). The distributional similarity

of sub-parses. In Proceedings of the ACL Workshop on Empirical Modeling of

Semantic Equivalence and Entailment , 7–12, Association for Computational

Linguistics, Morristown, NJ, USA. 102, 106

168

REFERENCES

Weeds, J. E. (2003). Measures and applications of lexical distributional simi-

larity . Ph.D. thesis, University of Sussex. 73

Witschel, H. F. (2005). Using decision trees and text mining techniques for

extending taxonomies. In Proceedings of the Workshop on Learning and Ex-

tending Lexical Ontologies by using Machine Learning . 61

Witten, I. H., Moffat, A. & Bell, T. C. (1999). Managing Gigabytes.

Compressing and Indexing Documents and Images . Academic Press, San Diago,

CA USA, 2nd edn. 64

Yeh, A. (2000). More accurate tests for the statistical significance of result

differences. In Proceedings of the 18th conference on Computational Linguistics ,

vol. 2, 947, Association for Computational Linguistics, Morristown, NJ, USA.

125

Zhitomirsky-Geffet, M. & Dagan, I. (2009). Bootstrapping Distributional

Feature Vector Quality. Computational Linguistics , 35, 435–461. 62, 78, 79,

82

Zhou, G., Zhao, J., Liu, K. & Cai, L. (2011). Exploiting Web-Derived Selec-

tional Preference to Improve Statistical Dependency Parsing. In 49th Annual

Meeting of the Association for Computational Linguistics , 1556–1565. 117

Zhu, X. (2005). Semi-supervised learning literature survey. Tech. rep. 12

Zhu, X. & Ghahramani, Z. (2002). Learning from labeled and unlabeled data

with label propagation. Tech. rep. 11

169

	840.pdf
	Contents
	1 Introduction
	1.1 Research goals
	1.2 Project overview
	1.2.1 Detection of speculative language
	1.2.2 Hyponym detection and generation
	1.2.3 Fragment entailment detection
	1.2.4 Parser lexicalisation

	2 Resources
	2.1 Tools
	2.1.1 The RASP System
	2.1.2 C&C Tools
	2.1.3 Support Vector Machines
	2.1.4 Conditional Random Fields

	2.2 Developed libraries
	2.2.1 SemGraph
	2.2.2 SemSim

	2.3 Datasets
	2.3.1 British National Corpus
	2.3.2 BLLIP WSJ Corpus
	2.3.3 Brown Corpus
	2.3.4 SUSANNE Corpus
	2.3.5 Penn Treebank
	2.3.6 PARC 700 Dependency Bank
	2.3.7 DepBank/GR
	2.3.8 WordNet
	2.3.9 MEDLINE
	2.3.10 PubMed
	2.3.11 PubMed Central
	2.3.12 BioMed Central
	2.3.13 GENIA
	2.3.14 GENIA-GR
	2.3.15 BioScope

	3 Detection of speculative language
	3.1 Introduction
	3.2 Research goals
	3.3 Background
	3.4 Rule-based methods
	3.4.1 Speculation cues
	3.4.2 Speculation scopes

	3.5 Supervised methods
	3.5.1 Speculation cues
	3.5.2 Speculation scopes

	3.6 Post-processing
	3.7 Experiments
	3.7.1 Dataset
	3.7.2 Cue detection
	3.7.3 Scope detection

	3.8 Conclusion

	4 Hyponym detection and generation
	4.1 Introduction
	4.2 Research goals
	4.3 Background
	4.4 Similarity measures
	4.4.1 Cosine
	4.4.2 Pearson product-moment correlation coefficient
	4.4.3 Spearman's rank correlation coefficient
	4.4.4 Jaccard index (Set)
	4.4.5 Dice (Set)
	4.4.6 Overlap coefficient
	4.4.7 Cosine (Set)
	4.4.8 Jaccard (Generalisation)
	4.4.9 Dice (Generalisation)
	4.4.10 Dice (Generalisation 2)
	4.4.11 Kendall's tau coefficient
	4.4.12 Lin similarity
	4.4.13 Weeds' Precision
	4.4.14 Weeds' Recall
	4.4.15 Weeds' F-score
	4.4.16 Clarke's degree of entailment
	4.4.17 Average precision
	4.4.18 Average precision (inclusion)
	4.4.19 Average precision (balanced inclusion)
	4.4.20 Directional Lin
	4.4.21 Balanced precision
	4.4.22 Kullback-Leibler divergence
	4.4.23 Jensen-Shannon divergence
	4.4.24 -skew divergence
	4.4.25 Manhattan distance
	4.4.26 Euclidean distance
	4.4.27 Chebyshev distance

	4.5 Proposed measure: Weighted Cosine
	4.6 Datasets
	4.7 Experiments
	4.7.1 Hyponym detection
	4.7.2 Hyponym generation
	4.7.3 Supervised learning

	4.8 Conclusion

	5 Entailment Detection
	5.1 Introduction
	5.2 Research goals
	5.3 Background
	5.4 Applications
	5.5 Modelling entailment between graph fragments
	5.5.1 Intrinsic similarity
	5.5.2 Extrinsic similarity
	5.5.3 Hedging and negation

	5.6 Dataset
	5.7 Experiments
	5.8 Conclusion

	6 Parser Lexicalisation
	6.1 Introduction
	6.2 Research Goals
	6.3 Background
	6.4 Reordering dependency graphs
	6.4.1 Graph modifications
	6.4.2 Edge scoring methods
	6.4.3 Smoothing edge scores
	6.4.4 Combining edge scores
	6.4.5 Graph scoring

	6.5 Evaluation methods
	6.6 Experiments
	6.6.1 DepBank
	6.6.2 Genia
	6.6.3 Error analysis

	6.7 Conclusion

	7 Conclusion
	Appendix A: Hedge cues
	Appendix B: Hyponym generation examples
	Appendix C: Similarity measures for entailment detection
	References

