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Summary

This thesis shows how supercompilation, a powerful technique for transformation and
analysis of functional programs, can be effectively applied to a call-by-need language.
Our setting will be core calculi suitable for use as intermediate languages when compiling
higher-order, lazy functional programming languages such as Haskell.

We describe a new formulation of supercompilation which is more closely connected to
operational semantics than the standard presentation. As a result of this connection, we
are able to exploit a standard Sestoft-style operational semantics to build a supercompiler
which, for the first time, is able to supercompile a call-by-need language with unrestricted
recursive let bindings. We give complete descriptions of all of the (surprisingly tricky)
components of the resulting supercompiler, showing in detail how standard formulations
of supercompilation have to be adapted for the call-by-need setting.

We show how the standard technique of generalisation can be extended to the call-
by-need setting. We also describe a novel generalisation scheme which is simpler to
implement than standard generalisation techniques, and describe a completely new form
of generalisation which can be used when supercompiling a typed language to ameliorate
the phenomenon of supercompilers overspecialising functions on their type arguments.

We also demonstrate a number of non-generalisation-based techniques that can be
used to improve the quality of the code generated by the supercompiler. Firstly, we show
how let-speculation can be used to ameliorate the effects of the work-duplication checks
that are inherent to call-by-need supercompilation. Secondly, we demonstrate how the
standard idea of “rollback” in supercompilation can be adapted to our presentation of the
supercompilation algorithm.

We have implemented our supercompiler as an optimisation pass in the Glasgow
Haskell Compiler. We perform a comprehensive evaluation of our implementation on
a suite of standard call-by-need benchmarks. We improve the runtime of the benchmarks
in our suite by a geometric mean of 42%, and reduce the amount of memory which the
benchmarks allocate by a geometric mean of 34%.
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Chapter 1

Introduction

When programming, it is often valuable to work at a high level of abstraction, or to com-
pose together many related subsystems to produce the final program. These practices
are particularly prevalent in functional programs, where abstraction over functional ar-
guments, and the generous use of intermediate data structures to communicate between
multiple pieces of code, is idiomatic and commonplace [Hughes, 1989].

The use of abstraction and composition can be a considerable boon to programmer
productivity, but it can impose runtime costs because the additional abstraction often
hides information that a compiler could otherwise have used when optimising the program
during compilation. In the context of functional programming, this cost manifests itself
in many ways:

• Calls to higher-order functional arguments involve indirect branches, which are typ-
ically less efficient than direct jumps on modern processors due to the difficulties
they cause with branch prediction.

• Compiled functions are typically compiled at a certain arity, which is the number
of arguments a caller may apply them to before their code is entered [Marlow and
Peyton Jones, 2004]. When making a call to a higher-order argument, the caller
has to explicitly inspect this arity at runtime in order to check that it has supplied
enough arguments to actually enter the code of the functional argument. In contrast,
calls to known functions can omit these checks because the arity is known at compile
time.

• Allocation of intermediate data structures requires calls to the runtime system to
allocate the necessary memory. Even if the allocation code (e.g. a simple bump
allocator) is inlined into at the call site by the compiler, it will cause memory
traffic, and the garbage collector will need to be invoked if no memory is immediately
available. These branches to the garbage collector can impede low-level optimisation
because program data in registers needs to be spilled to the stack around the branch
in order that the garbage collector may traverse it.

• Memory usage from intermediate data structures typically will not increase peak
memory usage (intermediate data structures are transient by definition), but they
will cause the collector to be run more frequently.

It has long been observed that many of these runtime penalties can be ameliorated or
eliminated if the compiler is able to perform appropriate program specialisation or partial
evaluation steps. Within this broad framework, there are many approaches that can be
used, but one particularly attractive option is so-called supercompilation [Turchin, 1986].
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Supercompilation is a partial evaluation strategy which is uniquely simple to implement
and use: unlike many common partial evaluation algorithms, it does not make use of an
offline “binding time analysis” to decide where specialisation should occur and it does
not require program annotation. It also has many characteristics desirable for a com-
piler optimisation pass: the algorithm is guaranteed to terminate regardless of the form
of the input program and it is meaning-preserving—in particular, it does not transform
non-terminating programs into terminating ones or vice-versa. Furthermore, research has
shown supercompilation to be effective at eliminating abstraction-induced inefficiencies of
the sort we are concerned with [Jonsson, 2011; Mitchell, 2008]. Supercompilation is capa-
ble of achieving results similar to popular optimising transformations such as deforestation
[Wadler, 1988], function specialisation and constructor specialisation [Peyton Jones, 2007].

1.1 Supercompilation by example

At the highest level, the goal of a supercompiler is simply to perform evaluation of a
program. (For our purposes, a “program” will be a term (expression) in a purely functional
programming language.) Unlike a simple evaluator, however, a supercompiler can perform
symbolic evaluation—i.e. evaluate open terms where not all information is available at
the time of evaluation.

The best way to begin to understand supercompilation in more detail is by example.
Let’s begin with a simple example of how supercompilation can specialise functions to
their higher-order arguments:

let inc = λx . x + 1
map = λf xs .case xs of [ ] → [ ](y ∶ ys)→ f y ∶map f ys

in map inc zs

A supercompiler evaluates open terms, so that reductions that would otherwise be done
at runtime are performed at compile time. Consequently, the first step of the algorithm
is to reduce the term as much as possible, following standard evaluation rules:

let inc = . . . ;map = . . .
in case zs of [ ] → [ ](y ∶ ys)→ inc y ∶map inc ys

At this point, we become stuck on the free variable zs . One of the most important decisions
when designing a supercompiler is how to proceed in such a situation, and we will spend
considerable time later explaining how this choice is made when we cover the splitter in
Section 3.5. In this particular example, we continue by recursively supercompiling two
subexpressions. We intend to later recombine the two subexpressions into an output term
where the case zs remains in the output program, but where both branches of the case
have been further optimised by supercompilation.

The first subexpression is just [ ]. Because this is already a value, supercompilation
makes no progress: the result of supercompiling that term is therefore [ ].

The second subexpression is:

let inc = . . . ;map = . . .
in inc y ∶map inc ys

Again, evaluation of this term is unable to make progress: the rules of call-by-need reduc-
tion do not evaluate within non-strict contexts such as the arguments of data constructors.
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It is once again time to use the splitter to produce some subexpressions suitable for further
supercompilation. This time, the first subexpression is:

let inc = . . . in inc y

Again, we perform reduction, yielding the supercompiled term y + 1. The other subex-
pression, originating from splitting the (y ∶ ys) case branch, is:

let inc = . . . ;map = . . .
inmap inc ys

This term is identical to the one we started with, except that it has the free variable ys
rather than zs . If we continued inlining and β-reducing the map call, the supercompiler
would not terminate. This is not what we do.

Instead, the supercompiler uses a memo function. It records all of the terms it has
been asked to supercompile as it proceeds, so that it never supercompiles the same term
twice. In concrete terms, it builds up a set of promises, each of which is an association
between a term previously submitted for supercompilation, its free variables, and a unique,
fresh name (typically written h0 , h1 , etc.). At this point in the supercompilation of our
example, the promises will look something like this:

h0 zs ↦ let inc = . . . ;map = . . . in map inc zs
h1 ↦ [ ]
h2 y ys ↦ let inc = . . . ;map = . . . in inc y ∶map inc ys
h3 y ↦ let inc = . . . in inc y

We have presented the promises in a rather suggestive manner, as if the promises were a
sequence of bindings. Indeed, the intention is that the final output of the supercompilation
process will be not only an optimised expression, but one optimised binding for each
promise h0 ,h1 , . . . ,hn.

Because the term we are now being asked to supercompile is simply a renaming of the
original term (with which we associated the name h0 ) we can immediately return h0 ys as
the supercompiled version of the current term. Producing a tieback like this we can rely
on the (not yet known) optimised form of the original term (rather than supercompiling
afresh), while simultaneously sidestepping a possible source of non-termination.

Now, both of the recursive supercompilations requested in the process of supercom-
piling h1 have been completed. We can now rebuild the optimised version of the h2 term
from the optimised subterms, which yields:

h3 y ∶ h0 ys

Continuing this process of rebuilding an optimised version of the supercompiler input
from the optimised subexpressions, we eventually obtain this final program:

let h0 zs = case zs of [ ] → h1 ; (y ∶ ys)→ h2 y ys
h1 = [ ]
h2 y ys = h3 y ∶ h0 ys
h3 y = y + 1

in h0 zs

A trivial post-pass can eliminate some of the unnecessary indirections to obtain a version of
the original input expression, where map has been specialised on its functional argument:
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let h0 zs = case zs of [ ] → [ ]; (y ∶ ys)→ (y + 1) ∶ h0 ys
in h0 zs

Throughout the thesis, we will usually present the results of supercompilation in a sim-
plified form similar to the above, rather than the exact output of the supercompiler. In
particular, we will tend to inline saturated h-functions when doing so does not cause any
work duplication issues, and either:

• Have exactly one use site, as with h1 , h2 and h3 above

• Have a body that is no larger than the call to the h-function, as for h1 in a term
like let h1 f x = f x in (h1 g y ,h1 l z)

The motivation for these transformations is for clarity of the output code. These are
transformations that will be performed by any optimising compiler anyway, so applying
them to the presented code should not give any misleading impressions of the degree of
optimisation the supercompiler performs.

1.1.1 Supercompilation for optimisation

Because supercompilation performs symbolic evaluation, by making use of supercompi-
lation as an optimisation pass in a compiler we tend to perform at compile time some
evaluation that would otherwise have happened at run time. For example, consider

let map f xs = case xs of [ ] → [ ](y ∶ ys)→ f y ∶map f xs
in map f (map g ys)

Compiling this program typically produces machine code that heap-allocates the list pro-
duced by the map g ys invocation. A supercompiler is able to symbolically evaluate the
above program to the following:

let h f g xs = case xs of [ ] → [ ](y ∶ ys)→ f (g y) ∶ h f g ys
in h f g xs

Note that this program omits the allocation of the intermediate list, and thus the compiled
program will typically run faster than the pre-supercompilation program.

In this example, supercompilation has performed an optimisation usually known as
“deforestation”. Specialised techniques [Gill et al., 1993; Coutts et al., 2007; Wadler,
1988] already exist to perform deforestation, but the attraction of the supercompilation
approach is that deforestation is only a special case of supercompilation—a supercompiler
uses a single symbolic evaluation algorithm to perform a large class of optimisations. We
characterise the class of optimisations it is able to perform more precisely in Section E.5.

The use of supercompilation for optimisation will be the focus of this thesis.

Optimisation is not the only use of supercompilation. The ability to evaluate open
terms is also useful when proving properties that will hold for every possible execution of
the program. This approach has been used to verify the correctness of cache-coherency
protocols [Klimov, 2010; Lisitsa and Nemytykh, 2005] and also of general programs [Lisitsa
and Nemytykh, 2008].
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1.2 Contributions

Previous work has focused on supercompilation in a call-by-name [Klyuchnikov, 2009;
Sørensen and Glück, 1995] context. The focus of call-by-name appears to be because his-
torically supercompilation has been more popular as a proof technique than as a program
optimisation.

More recently, supercompilation has been extended to call-by-value [Jonsson and Nord-
lander, 2009], with an eye to taking advantage of it to optimise popular call-by-value lan-
guages such as Lisp [Steele Jr and Common, 1984] and the commercial product F# [Syme
and Margetson, 2008]. However, existing work cannot be straightforwardly adapted to a
call-by-need setting (as used by the popular functional programming language Haskell).
The key difference between call-by-need and call-by-name is work sharing : the work done
reducing a term when it is used at one reference site is shared by all other reference sites,
should they need to reduce the term themselves. The need to preserve work sharing has
an impact on all parts of the supercompiler, and previous work on supercompilation in
the context of Haskell [Mitchell and Runciman, 2008] has only dealt with a restricted
form of programs not involving full recursive let expressions, as these create particular
difficulties for the preservation of work sharing.

This thesis focuses on the issues surrounding supercompilation in a call-by-need set-
ting: specifically in the setting of the compiler intermediate language of the Glasgow
Haskell Compiler (GHC) [Peyton Jones et al., 1992]. Concretely, our contributions are:

1. We describe a way of structuring a supercompiler which is more modular than
previous work (Chapter 3). A modular implementation is desirable not only from
a software engineering perspective (in that it separates concerns) but also because
clearly defined module boundaries make it straightforward to swap in alternative
implementations of those modules for the purposes of research and experimentation.

Our modularisation contains at its heart a call-by-need evaluator that is a straight-
forward implementation of the operational semantics of the language (in GHC, by
contrast, evaluation and optimisation are intimately interwoven), which helps to
make clear the relationship between supercompilation and the operational seman-
tics of the language being supercompiled.

2. The choice of call-by-need semantics has a subtle but pervasive effect on the imple-
mentation of the supercompiler. We exploit the fact that our modular implemen-
tation is explicitly based on an operational semantics to define the first supercom-
pilation algorithm for a call-by-need language that includes unrestricted recursive
let expressions (Chapter 3, Chapter 4 and Chapter 5). Our central use of opera-
tional semantics is important because a Sestoft [Sestoft, 1997] or Launchbury-style
[Launchbury, 1993] semantics are the theoretical tools by which we can understand
the phenomenon of work-sharing.

As a result of our use of operational semantics, our supercompiler is defined to op-
timise abstract machine states rather than expressions. As a first-order approxima-
tion, these states can be seen as a “zipperised” [Huet, 1997] version of an expression.
In fact, the presence of Sestoft-style update frames in our states both breaks the
strict analogy with zippers and will also provide precisely the information we need
to correctly deal with call-by-need evaluation.

A supercompiler which takes into account the full implications of call-by-need has
two principal advantages:
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• Our supercompiler can deforest value recursive programs. For example, the
following term:

let ones = 1 ∶ ones ;map = . . .
inmap (λx . x + 1) ones

will be optimised into the direct-style definition:

let xs = 2 ∶ xs in xs

Previous supercompilers for lazy languages have dealt only with non-recursive
let bindings, and so have been unable to perform this optimisation. Klyuch-
nikov’s call-by-name supercompiler HOSC [Klyuchnikov, 2009] is able to de-
forest this example, but at the cost of sometimes duplicating work—something
that we are careful to avoid.

• Because recursion is not special, unlike previous work, we do not need to give
the program top-level special status, or λ-lift the input program. Not only is
avoiding λ-lifting convenient, it is particularly useful to avoid it in a call-by-
need setting because λ-lifting must be careful to preserve work sharing. For
example, when given the input program:

f x = let g = λy . . . . g . . . in . . .

In order to avoid pessimising the program by λ-abstracting the lifted λ over
the recursive use of g , we should lift it to:

glift x y = . . . (glift x) . . .
f x = let g = glift x in . . .

And not to this more obvious program:

glift x g y = . . . g . . .
f x = let g = glift x g in . . .

Conversely, if g is bound to a non-value, as in the following:

f x = let g = h (λy . . . . g . . .) in . . .

In order to preserve work sharing we have to lift this g using the second for-
mulation and not the first one:

glift x g y = . . . g . . .
f x = let g = h (glift x g) in . . .

So in a call-by-need setting with full recursive let, λ-lifting can potentially turn
let-bound variables into λ-bound variables. All other things being equal, this
can lead to compiler optimisations being significantly pessimised. By work-
ing with non-λ-lifted terms directly we avoid this need to pessimise the input
program before we optimise it with the supercompiler.

3. We also show how the standard technique of generalisation can be extended to a
call-by-need setting (Section 6.2), describing not only a call-by-need version of the
most specific generalisation (Section 6.2.3) but also a novel generalisation technique
which is easier to implement than most specific generalisation (Section 6.2.2).
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It is critical that a supercompiler performs generalisation because without it only
simple programs without accumulating arguments can be deforested and specialised.
For example, a supercompiler without generalisation amap f .map g composition can
both be deforested and specialised on the functions f and g , but a call foldl (+) 0 z
will generate a residual call to an unspecialised foldl loop.

4. We describe how let-speculation can be used to make the work-duplication checks
inherent to a call-by-need supercompiler less conservative so that, for example,
“cheap” computations such as partial applications can be propagated to their use
sites (Section 6.3).

5. We show how the known technique of rollback can be adapted to our formulation of
supercompilation by using an exception-throwing mechanism, which we implement
with a continuation-passing monad (Section 6.1.2).

6. Previous work has paid little attention to the issues arising from supercompiling
a typed intermediate language. This is a problem because compiler intermediate
languages commonly carry type information for reasons of sanity-checking and code
generation; for example, the representation of a value at the machine-level may de-
pend on the user-level type of that value. This is a source of unreliability for some
supercompilers: e.g. the supercompiler for the call-by-value Timber language [Black
et al., 2002] has an intermediate language that obeys the Hindley-Milner typing dis-
cipline [Damas and Milner, 1982], and supercompilation is performed by discarding
the type information, supercompiling, and then performing type inference on the
result. Unfortunately, in some cases supercompilation can transform programs ty-
peable in Hindley-Milner to ones which are untypeable, so the last step can fail. For
example, the input program

let choose = if fib n > 100 thenλx y . x elseλx y .y
a = if choose True False then choose 1 2 else choose 3 4
b = if choose True False then choose 5 6 else choose 7 8

in (a, b)
might be transformed by a call-by-need supercompiler (that is careful to preserve
work-sharing) into

let h0 n = let choose = h1 n
in (h2 choose,h3 choose)

h1 n = if fib n > 100 thenλx y . x elseλx y .y
h2 choose = if choose True False then choose 1 2 else choose 3 4
h3 choose = if choose True False then choose 5 6 else choose 7 8

in h0 n

While the input is typeable thanks to let-generalisation, the output is untypeable
because choose has been transformed from a let-bound into a λ-bound variable.

This thesis solves these issues by showing how to supercompile a typed language
based on System Fω that contains explicit type abstraction and application, which
we call Core (Chapter 2).

7. Supercompiling a typed intermediate language is mostly straightforward, but it
leads to the phenomenon of type overspecialisation: the output of supercompilation
can include in the output multiple specialisations that differ only in their type
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information. It is necessary for the supercompiler to specialise on type information
to at least some degree in order to ensure that the output is type-correct, but from
a code-size perspective, it seems unfortunate to specialise only on type information.
We describe a novel technique by which the supercompiler can avoid specialising on
type information which is provably unnecessary (Section 6.2.6).

8. We evaluate an implementation of our supercompiler as an optimisation pass in
GHC. We provide experimental results for our supercompiler, including an evalua-
tion of the effects on benchmarks drawn from the standard “nofib” benchmark suite
[Partain, 1993] (Chapter 7). As part of this work, we look at the effects that our
new supercompilation techniques such as let-speculation have on the quality of the
generated code.

In previously published work [Bolingbroke et al., 2011] we showed how the mathematical
theory of well-quasi-orders could be realised as a Haskell combinator library, which can
be used to concisely, efficiently and safely implement the termination-checking module
of our supercompiler. This work can be seen as an alternative implementation of the
termination module of our modular supercompiler design. As this work was done in the
context of the Ph.D we reproduce it in Appendix D, but it is not necessary to read it in
order to understand any other part of the thesis.

Appendix E discusses some of the practical considerations involved with supercompi-
lation, which have seen scant attention in the published literature. To help rectify this, we
share some of our experience with building an implementation of a supercomplier as part
of an existing widely-used compiler: in particular we consider the issues arising from sep-
arate compilation (Section E.1), discuss the more unusual features of GHC’s intermediate
language (Section E.3), and contrast supercompilation with various other optimisations
implemented by GHC (Section E.5).
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Chapter 2

Preliminaries

In this chapter we introduce the grammar, type system and operational semantics of
the language that we will supercompile. The language is chosen to be representative
of a compiler intermediate language in a compiler for a call-by-need language such as
Haskell, and is close to the core language of GHC, in which we have implemented our
supercompiler. A detailed discussion of the differences between GHC’s language and this
one—and the complications which arise from the differences—is provided in Section E.3.

2.1 The Core language

The Core language, whose grammar is given in Figure 2.1, is based on System Fω, and
as such is an explicitly typed, higher-order functional language. In Core, we make the
following extensions to standard System Fω:

• Every subterm is associated with a tag, where each tag t is a natural number. A
tagged term (d in Figure 2.1) is simply a term e with a tag t, written et. Before
supercompilation begins, the untagged input program is tagged, once and for all,
with a fresh tag at every node, for later use by the supercompilation algorithm. We
will write Tag for the set of tags thus used to annotate the original term.

• We introduce algebraic data types and case statements to deconstruct them. We
insist that all data constructors occur saturated, and use the standard technique of
wrapper functions to handle any partial applications.

• We add a built-in let for both recursive and non-recursive binding.

• The language is in A-normal form (ANF) [Flanagan et al., 1993]: all arguments at
applications are variables. However, for clarity of presentation we will often write
non-ANFed expressions in our examples.

In Section E.2 and Section E.3 we discuss how Core can be further extended to encom-
pass other language features which are often used by compiler intermediate languages for
functional languages.

As Core is based on System Fω, it has a type system incorporating polymorphism.
The full type system is presented in Figure 2.2. Note that we leave implicit the standard
well-formedness requirement that there be no clashing binders in the same binding group
(e.g. the same let, case alternative etc).

We leave implicit the (obvious) definition of the functions fvs and ftvs which find the
free term and type variables (respectively) of an expression.
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Type Vars α,β Term Vars x, y, z Type Constructors T ∶∶= Int , (→), . . .
Kinds

κ ∶∶= ⋆ Kind of term types∣ κ→ κ Kind of type constructors

Types

τ, υ ∶∶= α Type variable∣ T Type constructors∣ τ τ Type application∣ ∀α ∶κ. τ Parametric polymorphism

Terms

d ∶∶= et Tagged term
e ∶∶= x Term variable∣ λx ∶τ. d Term abstraction∣ d x Term application∣ C τ x Algebraic data

∣ case d of C α ∶κ x ∶τ → d Algebraic scrutinisation

∣ let x ∶τ = d in d Recursive term binding∣ Λα ∶κ. d Type abstraction∣ d τ Type application

Heaps

H ∶∶= h Heap
h ∶∶= x ∶τ ↦ d Heap binding

States S ∶∶= ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩Σ∣Γ
Kinding Contexts Σ ∶∶= T ∶κ,α ∶κ

Typing Contexts Γ ∶∶= C ∶τ, x ∶τ

Stacks

K ∶∶= κt Stack
κ ∶∶= update x ∶τ Update frame∣ ● x Supply argument to function value∣ ● τ Instantiate value

∣ case ● of C α ∶κ x ∶τ → d Scrutinise value

Values

u ∶∶= vt Tagged value
v ∶∶= λx ∶τ. d Function values∣ Λα ∶κ. d Type-abstracted values∣ C τ x Algebraic data values

Figure 2.1: Syntax of Core and its operational semantics

2.2 Operational semantics of Core

The dynamic semantics of Core are given by a small-step operational semantics which
implements lazy evaluation Sestoft-style [Sestoft, 1997]. The operational semantics, pre-
sented in Figure 2.3, is concerned with reducing machine states rather than terms d. A
state S ≡ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩Σ∣Γ has the following components (the full grammar was presented in
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Σ∣Γ ⊢ e ∶ τ
x ∶τ ∈ Γ

Σ∣Γ ⊢ x ∶ τ Var

Σ∣Γ, x ∶υ ⊢ e ∶ τ Σ ⊢κ υ ∶ ⋆

Σ∣Γ ⊢ λx ∶υ. et ∶ υ → τ
Lam

Σ∣Γ ⊢ e ∶ υ → τ x ∶υ ∈ Γ

Σ∣Γ ⊢ et x ∶ τ App

C ∶∀α∀ ∶κ∀
i, α∃ ∶κ∃

j . τC
k → T α∀ ∈ Γ

Σ ⊢κ υ∀ ∶ κ∀ Σ ⊢κ υ∃ ∶ κ∃ x ∶τC[υ∀/α∀, υ∃/α∃] ∈ Γ
Σ∣Γ ⊢C υ∀

i, υ∃
j xk ∶ T υ∀

i Data

Σ∣Γ ⊢ e ∶ T υ∀
i ftvs (τ) ∩ α∃ = ∅

C ∶∀α∀ ∶κ∀
i, α∃ ∶κ∃

j. τC
k → T α∀

i ∈ Γ Σ, α∃ ∶κ∃∣Γ, x ∶τC[υ∀/α∀] ⊢ eC ∶ τ
Σ∣Γ ⊢ case et of C α∃ ∶κ∃

j x ∶τC[υ∀/α∀]k → etC
C
∶ τ

Case

Σ∣Γ, x ∶υ ⊢ ex ∶ υ Σ∣Γ, x ∶υ ⊢ e ∶ τ
Σ∣Γ ⊢ let x ∶υ = etxx in et ∶ τ

LetRec

Σ, α ∶κ∣Γ ⊢ e ∶ τ
Σ∣Γ ⊢ Λα ∶κ. et ∶ ∀α ∶κ. τ TyLam

Σ∣Γ ⊢ e ∶ ∀α ∶κ. τ Σ ⊢κ υ ∶ κ

Σ∣Γ ⊢ et υ ∶ τ[υ/α] TyApp

Figure 2.2: Type system of Core

Figure 2.1):

• The heap, H , is a finite mapping from variable names to the term to which that
variable is bound.

• The focus term, d, is the focus of evaluation.

• The stack, K, describes the evaluation context of the focus term.

• The kinding context, Σ, records the kinds of free type variables.

• The typing context, Γ, records the types of free kind variables.

The inclusion of kinding and typing contexts in our states is unconventional, but as
supercompilers are concerned with evaluating open terms it is often crucial to have this
typing information available. We often omit the typing and kinding contexts from a
state to avoid clutter, writing ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩ instead. For example, the typing and kinding
information is irrelevant to the operational semantics, so our reduction rules leave implicit
the fact that this information is preserved by reduction.

Throughout the thesis, in order to avoid cluttering our definitions with name-management
machinery, we will often implicitly assume that α-conversion has taken place. Our opera-
tional semantics is no exception to this convention. For example, the rule for performing
β-reduction assumes we have implicitly α-converted the λ-bound variable to match the
applied variable. Similarly, we assume in the rule for dealing with let that the group of
let-bound variables has been α-renamed so none of the bound variables clash with any of
those already present in the heap.
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⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩↝ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩
var ⟨H,x ∶τ ↦ d⎪⎪⎪⎪xt⎪⎪⎪⎪K⟩ ↝ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪update x ∶τ t,K⟩ (d /≡ vtv)
updatev ⟨H⎪⎪⎪⎪u⎪⎪⎪⎪update x ∶τ tx ,K⟩ ↝ ⟨H,x ∶τ ↦ u⎪⎪⎪⎪xtx⎪⎪⎪⎪K⟩
update ⟨H[x ∶τ ↦ u]⎪⎪⎪⎪xtx⎪⎪⎪⎪update y ∶τ ty ,K⟩ ↝ ⟨H,y ∶τ ↦ xty⎪⎪⎪⎪xtx⎪⎪⎪⎪K⟩
app ⟨H⎪⎪⎪⎪⎪(d x)t⎪⎪⎪⎪⎪K⟩ ↝ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪● xt,K⟩
betav ⟨H⎪⎪⎪⎪⎪(λx ∶τ. d)tλ⎪⎪⎪⎪⎪● xt@ ,K⟩ ↝ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩
beta ⟨H[f ∶υ ↦ (λx ∶τ. d)tλ]⎪⎪⎪⎪⎪f tf⎪⎪⎪⎪⎪● xt@ ,K⟩ ↝ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩
tyapp ⟨H⎪⎪⎪⎪⎪(d τ)t⎪⎪⎪⎪⎪K⟩ ↝ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪● τ t,K⟩
tybetav ⟨H⎪⎪⎪⎪⎪(Λα ∶κ. d)tΛ⎪⎪⎪⎪⎪● τ t@ ,K⟩ ↝ ⟨H⎪⎪⎪⎪d[τ/α]⎪⎪⎪⎪K⟩
tybeta ⟨H[f ∶τ ↦ (Λα ∶κ. d)tΛ]⎪⎪⎪⎪⎪f tf⎪⎪⎪⎪⎪● τ t@ ,K⟩ ↝ ⟨H⎪⎪⎪⎪d[τ/α]⎪⎪⎪⎪K⟩
case ⟨H⎪⎪⎪⎪⎪⎪(case d of C α ∶κ x ∶τ → dC)t⎪⎪⎪⎪⎪⎪K⟩ ↝ ⟨H⎪⎪⎪⎪⎪⎪d⎪⎪⎪⎪⎪⎪case ● of C α ∶κ x ∶τ → dC

t
,K⟩

datav
⟨H⎪⎪⎪⎪⎪⎪(C τ∀

i, τ∃
j xk)tC⎪⎪⎪⎪⎪⎪case ● of {. . .C α∃ ∶κ∃

j x ∶υk → d . . .}t ,K⟩
↝ ⟨H⎪⎪⎪⎪⎪⎪d[τ∃/α∃]⎪⎪⎪⎪⎪⎪K⟩

data
⟨H[y ∶T τ∀ ↦ (C τ∀

i, τ∃
j xk)tC]⎪⎪⎪⎪⎪⎪yty⎪⎪⎪⎪⎪⎪case ● of {. . .C α∃ ∶κ∃

j x ∶υk → d . . .}t ,K⟩
↝ ⟨H⎪⎪⎪⎪⎪⎪d[τ∃/α∃]⎪⎪⎪⎪⎪⎪K⟩

letrec ⟨H⎪⎪⎪⎪⎪⎪(let x ∶τ = dx in d)t⎪⎪⎪⎪⎪⎪K⟩ ↝ ⟨H,x ∶τ ↦ dx
⎪⎪⎪⎪⎪d⎪⎪⎪⎪⎪K⟩

Figure 2.3: Operational semantics of Core

The type-correctness of a state ⊢ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩Σ∣Γ ∶ τ is defined by the type-correctness
judgement of its “rebuilding” into a term Σ∣Γ ⊢ ⟨∣H⎪⎪⎪⎪d⎪⎪⎪⎪K ∣⟩ ∶ τ , where rebuilding is
defined as follows:

⟨∣x ∶τ ↦ dx
⎪⎪⎪⎪⎪d⎪⎪⎪⎪⎪ǫ∣⟩ = let x ∶τ = dx in d⟨∣H⎪⎪⎪⎪d⎪⎪⎪⎪update y ∶τ,K ∣⟩ = ⟨∣H,y ∶τ ↦ d⎪⎪⎪⎪y⎪⎪⎪⎪K ∣⟩⟨∣H⎪⎪⎪⎪d⎪⎪⎪⎪● x,K ∣⟩ = ⟨∣H⎪⎪⎪⎪d x⎪⎪⎪⎪K ∣⟩⟨∣H⎪⎪⎪⎪⎪d⎪⎪⎪⎪⎪case ● of C α ∶κ x ∶τ → dC,K ∣⟩ = ⟨∣H⎪⎪⎪⎪⎪case d of C α ∶κ x ∶τ → dC

⎪⎪⎪⎪⎪K ∣⟩⟨∣H⎪⎪⎪⎪d⎪⎪⎪⎪● τ,K ∣⟩ = ⟨∣H⎪⎪⎪⎪d τ⎪⎪⎪⎪K ∣⟩
Sometimes we will want to refer to the ith stack frame in a stack K, which we will write
as K[i]. The frame at index 0 is the first frame in K, i.e. the one closest to the focus of
evaluation. When we wish to make stack frame indexes explicit, we will write the stack
in the form 0:κ,1:κ, . . ..

Our operational semantics, while not an entirely standard call-by-need operational
semantics (as we discuss in Section 2.2.2 and Section 2.2.3), still enjoys all the properties
you would expect: in particular, it is deterministic, type-preserving, and succeeds in
reducing an initial state to a final “value” state exactly as often as a standard call-by-
need operational semantics would. Value states are those of the form ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪ǫ⟩ such that
deref (H,d) is a value, where deref is defined by:

deref (H,et) = ⎧⎪⎪⎨⎪⎪⎩
d e ≡ x ∧ x↦ d ∈H

et otherwise
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2.2.1 Update frames

The operational semantics deals with the call-by-need memoisation of evaluation by using
Sestoft-style update frames. When a heap binding x ↦ e is demanded by a variable x
coming into the focus of the evaluator, e may not yet be a value. To ensure that we only
reduce any given heap-bound e to a value at most once, the evaluator’s var rule pushes
an update frame update x on the stack, before beginning the evaluation of e . After e
has been reduced to a value, v, the update frame will be popped from the stack, which is
the cue for the evaluator’s rule updatev or update to update the heap with a binding
x ↦ v. Now, subsequent uses of x in the course of evaluation will be able to reuse that
value directly, without reducing e again.

As an example of how update frames work, consider this reduction sequence:

⟨x ↦ (λz .True) ()⎪⎪⎪⎪case x of True → case x of True → False⎪⎪⎪⎪ǫ⟩
case
↝ ⟨x ↦ (λz .True) ()⎪⎪⎪⎪x⎪⎪⎪⎪case ● of True → case x of True → False⟩
var
↝ ⟨ǫ⎪⎪⎪⎪(λz .True) ()⎪⎪⎪⎪update x ,case ● of True → case x of True → False⟩
app
↝ ⟨ǫ⎪⎪⎪⎪λz .True⎪⎪⎪⎪● (),update x ,case ● of True → case x of True → False⟩

betav
↝ ⟨ǫ⎪⎪⎪⎪True⎪⎪⎪⎪update x ,case ● of True → case x of True → False⟩

updatev
↝ ⟨x ↦ True⎪⎪⎪⎪x⎪⎪⎪⎪case ● of True → case x of True → False⟩

data
↝ ⟨x ↦ True⎪⎪⎪⎪case x of True → False⎪⎪⎪⎪ǫ⟩

case
↝ ⟨x ↦ True⎪⎪⎪⎪x⎪⎪⎪⎪case ● of True → False⟩

data
↝ ⟨x ↦ True⎪⎪⎪⎪False⎪⎪⎪⎪ǫ⟩

Notice that once the initial binding associated with x has been reduced to the value True,
the update frame updates the heap with the evaluated version of x . The later use of the
same variable x can use this recorded value directly, without evaluating the β-reduction(λz .True) () again, demonstrating that call-by-need is operating as it should.

Because the corresponding heap binding is removed from the heap whenever an update
frame is pushed, the update frame mechanism is what causes reduction to become stuck
if you evaluate a term which forms a so-called “black hole”:

⟨x ↦ x⎪⎪x⎪⎪ǫ⟩↝ ⟨ǫ⎪⎪⎪⎪x⎪⎪⎪⎪update x ⟩ /↝
2.2.2 Normalisation

Our exact choice of operational semantics is motivated by the desire to define a useful nor-
malising subset of the operational semantics: a subset of the rules which are guaranteed
to terminate on an arbitrary (well formed) input state. As we will see later (Section 3.9),
by making use of a powerful normaliser in the supercompiler, we will be able to reduce
the number of termination checks we have to do, which will in turn have beneficial effects
on supercompiler runtime and the amount of reduction we can safely perform at compile
time.

A more conventional operational semantics would include a rule dealing with update
frames such as the following:

update-copy ⟨H⎪⎪⎪⎪v⎪⎪⎪⎪update x ∶τ,K⟩ ↝ ⟨H,x ∶τ ↦ v⎪⎪⎪⎪v⎪⎪⎪⎪K⟩
Our semantics does not include a rule of this form, which is its principal area of

divergence from a standard operational semantics for System Fω. Instead, the updatev

rule reduces the LHS to a state with x in the focus, so that the value is not copied.
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To ensure that our reduction rules can further reduce such a state, all of the standard
reduction rules that expect to have a value in the focus come in two versions: one version
deals with the familiar case where there is a value in the focus, and one which is capable of
“looking through” a single variable in the focus into a heap-bound value.1 An example of
such a pair is betav and beta respectively, with the other pairs being updatev/update,
tybetav/tybeta and datav/data.

Given that we have pairs of rules like this, we can define a normaliser as a term evalu-
ator that applies every rule in Figure 2.3, except for the two β-reduction rules beta and
tybeta (note that we do allow the normaliser to apply the rules betav and tybetav).
The intuition behind this restriction is that these are the only two rules which actually
cause code to be duplicated: every other rule reduces the size of the abstract machine
state in some sense.

Definition 2.2.1 (Multi-step reduction). S ↝n S ′ is defined to mean that S reduces to
the state S ′ via exactly n uses of the non-normalising rules beta and tybeta, and any
number of uses of the normalising rules.

Definition 2.2.2 (Convergence). For a closed state S ≡ ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩,
⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ⇓n ⇐⇒ ∃H ′, e′, u. ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩↝n ⟨H ′⎪⎪⎪⎪e′⎪⎪⎪⎪ǫ⟩ ∧ deref (H ′, e′) = u

S ⇓ ⇐⇒ ∃n.S ⇓n

S ⇓≤n ⇐⇒ ∃m.S ⇓m ∧ m ≤ n

Theorem 2.2.1 (Normalisation). The operational semantics of Figure 2.3 without beta
and tybeta is normalising.

Proof. See Appendix A.

Theorem 2.2.2 (Normalised forms). Normalised states are guaranteed to have one of the
following forms:

• Values: ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪ǫ⟩ where deref (H,d) = u for some u

• Term β-redexes: ⟨H,f ∶τ → υ ↦ (λx ∶τ. d)t0⎪⎪⎪⎪f t1⎪⎪⎪⎪● xt2 ,K⟩
• Type β-redexes: ⟨H,f ∶∀α ∶κ.υ ↦ (Λα ∶κ. d)t0⎪⎪⎪⎪f t1⎪⎪⎪⎪● τ t2 ,K⟩
• Free-variable references: ⟨H⎪⎪⎪⎪xt⎪⎪⎪⎪K⟩ where x ∉ bvs(H) (remember that states can be
open)

Often, when we wish to present a (normalised) state, we will not write down an actual
state in the form ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩, but will rather write down the term ⟨∣H⎪⎪⎪⎪d⎪⎪⎪⎪K ∣⟩ it rebuilds
to. Expressions and normalised states are unambiguously interchangeable in this way
since ⟨ǫ⎪⎪⎪⎪⟨∣H⎪⎪⎪⎪d⎪⎪⎪⎪K ∣⟩⎪⎪⎪⎪ǫ⟩ ↝0 ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩. Therefore, the normalised state we refer to when
we write the expression e can be determined by exhaustively applying the normalising
reduction rules to the initial state ⟨ǫ⎪⎪e⎪⎪ǫ⟩.

1This ability to look through variables to the values they are bound to in the heap is similar to what
can be achieved by the use of indirections in an implementation of call-by-need on stock hardware such
as the STG machine [Peyton Jones, 1992].
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2.2.3 Tags

The other unusual feature of the operational semantics is that the states it reduces are
tagged. Tags are used for two quite separate purposes in our supercompiler. Firstly, they
are used as the basis of a test to ensure that the supercompiler terminates (Section 3.2),
and secondly they are used to guide generalisation (Section 6.2).

Tags take the form of an integer which is associated with every term. The intention
is that the initial program input to the supercompiler has a distinct integer assigned to
every subterm.

The operational semantics of Figure 2.3 define how tags are propagated during eval-
uation. The unbreakable rule is that no new tags are generated ; it is this invariant that
guarantees termination of the overall supercompiler. This however leaves plenty of room
for variations in how tags are propagated. For example, update could sensibly tag the
indirection it creates with the update frame tag rather than that of the value.

In fact, absolutely any choice of tags may be made by the operational semantics as
long as all the tags present in a term after reduction were present in the input: the
rest of the supercompiler will work unmodified with no changes given any choice of tags.
The exact choice can however influence both the termination test and the effectiveness of
generalisation.

2.3 Improvement theory

In order to precisely define what the components of the supercompiler should do, we make
use of improvement theory for lazy languages [Moran and Sands, 1999a,b]. Improvement
theory is a tool for reasoning about the soundness of equational transformations (such
as supercompilation). When applied to lazy languages, it not only allows us to reason
about the termination behaviour of the programs we are transforming, but also their
work-sharing properties. We will use the tools of improvement theory to not only prove
the correctness of the supercompiler (Section 3.8), but also to define the properties that
the various modules of our modular supercompiler will have, so it is essential to introduce
the basics of the theory at this point.

Because our operational semantics differs slightly from a standard Sestoft-style ab-
stract machine, we cannot reuse Sand’s improvement theorems directly and must instead
adapt them to our new setting, but thankfully the changes required will turn out to be
straightforward. What follows will be a brief introduction to the lexicon of improve-
ment theory: detailed development of the theory for our language will be relegated to
Appendix C.

For the purposes of defining improvement theory, we will omit tags entirely (i.e. as if
d ∶∶= e). Tags are unimportant to the correctness of the proofs as they are computationally
irrelevant.

To define improvement, we need to describe the notion of program contexts. To aid
our proofs, we will work with so-called “generalised contexts” [Sands, 1998], defined as
follows:

C,D ∶∶= ξ ⋅ x ∣ x∣ λx ∶τ.C ∣ C x

∣ C τ x ∣ case C of C α ∶κ x ∶τ → D

∣ let x ∶τ = C in D∣ Λα ∶κ.C ∣ C τ

The variables ξ are meta-level variables, and the syntax ξ ⋅ x indicates a meta-level
application of the meta-variable ξ to the syntax for the object-level variables x. We
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denote meta-level abstractions as (x). e, where the x bind variables that may be free
in e. We define the operation C[(x). e/ξ] of substitution for a meta-level variable ξ in a
context C as a standard inductively-defined non-capturing substitution with the additional
identification that (ξ ⋅ x)[(x). e/ξ] = e.

Each meta-variable has an associated arity, and we implicitly assume that that arity is
respected both at application sites and by the meta-level abstractions that are substituted
for those variables.

In addition to term contexts C, we define V, H and K to range over value contexts (i.e.
algebraic data, or λ/Λ abstractions whose bodies may syntactically contain applications
to meta-variables), heap contexts and stack contexts respectively.

These contexts generalise the standard definition of contexts, since given a traditional
context Ĉ, we can construct a generalised context C = Ĉ[ξ̂ ⋅x], where x is a vector of vari-
ables bound around the holes in Ĉ and ξ̂ is a fresh meta-level variable of suitable arity. The
result of the hole-filling operation Ĉ[e] is then equivalent to C[(x). e/ξ̂]. Generalised con-
texts are more convenient to work with for our purposes than standard contexts because
they are freely α-convertible, whereas standard contexts are not. For more discussion on
this point, see Section C.1.

Throughout the thesis, we will work with generalised contexts that contain a single
“hole” meta-variable ξ (though the meta-variable may occur multiple times within the
same context), and will write C[(x). e] to abbreviate C[(x). e/ξ].

We are now in a position to define the fundamental notion of improvement:

Definition 2.3.1 (Improvement). A term e is improved by e′, written e ⊳∼ e
′, iff for all⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ such that ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e] and ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e′] are closed,

⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e] ⇓nÔ⇒ ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e′] ⇓≤n
Intuitively, a term e is improved by another term e′ if they both have the same meaning,

and e′ is at least as fast as e. For our purposes, “speed” is defined not in terms of machine
cycles, but rather by the number of non-normalising reduction steps that are required.
One intuitive explanation for this definition is that normalising reductions can be seen as
purely administrative reductions which a good compiler would do anyway, and so “don’t
really count” for the purposes of defining speed. Thus, we can say:

let f = (λx . x) in f True ⊳∼ True
True ⊳∼ True

Note that the first of these two is a strict improvement, i.e. it is not an improvement
in the other direction. We can also define the stronger notion of a cost equivalence that
relates only those terms that are exactly as fast as each other:

Definition 2.3.2 (Cost equivalence). A term e is cost-equivalent to e′, written e◃▹∼ e
′ iff

e ⊳∼ e
′ and e′ ⊳∼ e.

For example, we can say that (λx . x) True ◃▹∼ True. It is useful to define an operator
✓e (pronounced “tick e”) which “slows down” reduction by exactly one use of a non-
normalising rule:

✓e = let bot ∶∶C = bot ;dly = λ(bot ∶∶C ). e in dly bot
for fresh variables bot and dly , C an arbitrary nullary type constructor

Theorem 2.3.1 (Tick). For all e, e′, H, H ′, K, K ′, n, if ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩↝n ⟨H ′⎪⎪⎪⎪e′⎪⎪⎪⎪K ′⟩ then⟨H⎪⎪⎪⎪✓e⎪⎪⎪⎪K⟩↝n+1 ⟨bot ∶C ↦ bot ,dly ↦ λ(bot ∶∶C ). e,H ′⎪⎪⎪⎪e′⎪⎪⎪⎪K ′⟩
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Proof. By considering the reduction of a ticked term:

⟨H⎪⎪⎪⎪✓e⎪⎪⎪⎪K⟩ ↝0 ⟨bot ∶C ↦ bot ,H⎪⎪⎪⎪λ(bot ∶∶C ). e⎪⎪⎪⎪update dly ,● bot ,K⟩ letrec,app,var

↝1 ⟨bot ∶C ↦ bot ,dly ↦ λ(bot ∶∶C ). e,H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ beta

↝n ⟨bot ∶C ↦ bot ,dly ↦ λ(bot ∶∶C ). e,H ′⎪⎪⎪⎪e′⎪⎪⎪⎪K ′⟩ Lemma C.0.2

The notions of improvement and cost-equivalence will come into play when we discuss
matching in Section 3.4, and when we prove the supercompiler correct in Section 3.8.
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Chapter 3

Supercompilation by evaluation

In this section, we cast supercompilation in a new light. The result is a supercompiler
which is:

• Modular, with logically separate parts of the algorithm are broken into their own
modules. This not only makes it simpler to understand the algorithm, but also
means we enjoy other benefits of modularity, such as the fact that modules can be
independently varied for experimental purposes.

• Based directly on the operational semantics of the language, making central the role
of the underlying abstract machine in a way that Turchin’s original work always
intended with its notion of configurations [Turchin, 1986].

Viewing supercompilation in this way is valuable, because it makes it easier to
derive a supercompiler in a systematic way from the language, and to adapt it to
new language features.

• Proven to terminate, and proven to preserve the meaning of the program it trans-
forms.

Previous work tends to intermingle the elements of supercompilation in a more complex
way, and often is defined with reference to a complicating mutable “process tree” data
structure.

3.1 Core of the algorithm

We will formulate key parts of the supercompiler by means of an implementation in
Haskell. This implementation will draw on a standard set of types, including not only
those defined in Figure 3.1 and Figure 3.2 but also in the Haskell standard library [Marlow
et al.].

The core of the supercompilation algorithm is sc, whose key property is this: for any
history hist and state S , (sc hist S) returns a term with exactly the same meaning as S ,
but which is implemented more efficiently1:

sc, sc′ ∶∶History → State → ScpM Term
sc hist =memo (sc′ hist)
sc′ hist S = case terminate hist S of

1It may be counterintuitive that no relationship is required between hist and S for this property to
hold, but this is in fact the case.
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Stop → split (sc hist) S
Continue hist ′ → split (sc hist ′) (reduce S)

In the subsequent text we will pick apart this definition and explain all the auxiliary
functions. The main data types and function signatures are summarised in Figure 3.2.
In particular, the type of sc shows a unique feature of our approach to supercompilation,
namely that sc takes as input the machine states that are the subject of the reduction
rules, rather than terms as is more conventional. We review the importance of this choice
in Section 3.9.

The main supercompiler sc is built from four, mostly independent, subsystems:

1. The memoiser (Section 3.4). The call to memo checks whether the input State
is equal (modulo renaming) to a State we have already encountered. It is this
memoisation that “ties the knot” so that a recursive function is not specialised
forever. The memoiser records its state in the ScpM monad.

2. The termination criterion (Section 3.2). With luck the memoiser will spot an op-

type Subst = . . . -- Term var to term var, type var to type
substVar ∶∶ Subst → Var → Var
substTyVar ∶∶ Subst → TyVar → Type
substTerm ∶∶ Subst → Term → Term
substType ∶∶ Subst → Type → Type

type Tag = Int

type Heap = . . . -- See H in Figure 2.1

type Stack = [StackFrame ] -- See K in Figure 2.1
data UStackFrame = . . . -- See κ in Figure 2.1
type StackFrame = (Tag ,UStackFrame)
data UTerm = . . . -- See e in Figure 2.1
type Term = (Tag ,UTerm) -- See d in Figure 2.1
data Value = . . . -- See v in Figure 2.1

var ∶∶Var → Term
apps ∶∶Term → [Var ]→ Term
tyApps ∶∶Term → [Type ]→ Term
lambdas ∶∶ [(Var ,Type)] → Term → Term
tyLambdas ∶∶ [(TyVar ,Kind)]→ Term → Term

type Type = . . . -- See τ in Figure 2.1
type Kind = . . . -- See κ in Figure 2.1

forAllTys ∶∶ [(TyVar ,Kind)]→ Type → Type
funTys ∶∶ [Type ]→ Type → Type

data QA = Question Var ∣ Answer Value

type State = (Heap, (Tag ,QA),Stack) -- Normalised
type UState = (Heap,Term,Stack) -- Unnormalised

stateType ∶∶ State → Type
freeVars ∶∶ State → ([(TyVar ,Kind)], [(Var ,Type)])
rebuild ∶∶ State → Term

Figure 3.1: Types used in the basic supercompiler
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sc ∶∶History → State → ScpM Term

-- The normaliser (Section 2.2.2)
normalise ∶∶UState → State

-- The evaluator (Section 3.3)
step ∶∶ State →Maybe UState
reduce ∶∶ State → State

-- The splitter (Section 3.5)
split ∶∶Monad m ⇒ (State →m Term)

→ State →m Term

-- Termination checking (Section 3.2)
type History = [State ]
emptyHistory = [ ] ∶∶History
data TermRes = Stop ∣ Continue History
terminate ∶∶History → State → TermRes

-- Memoisation and the ScpM monad (Section 3.4)
memo ∶∶ (State → ScpM Term)

→ State → ScpM Term

match ∶∶ State → State →Maybe Subst

runScpM ∶∶ ScpM Term → Term
freshVar ∶∶ ScpM Var
unit ∶∶Var
unitTy ∶∶Type
bind ∶∶Var → Type → Term → ScpM ()
promises ∶∶ ScpM [Promise ]
promise ∶∶Promise → ScpM ()
data Promise = P {name ∶∶Var ,

ftvs ∶∶ [TyVar ], fvs ∶∶ [Var ],
meaning ∶∶ State }

Figure 3.2: Types of the basic supercompiler

portunity to tie back. Unfortunately, for some functions—for example, one with an
accumulating parameter—each recursive call looks different, so the memoiser will
never encounter an identical state. So, if memo does not fire, sc′ uses terminate to
detect divergence (conservatively, of course). The History argument of terminate
allows the caller to accumulate the States that terminate has seen before.

3. The splitter (Section 3.5). If the State fails the termination test (the Stop branch),
the supercompiler abandons the attempt to optimise the entire term. Instead, it
splits the term into a residual “shell” and some (smaller) sub-terms which it then
supercompiles, gluing the results back together into their context.

4. The evaluator (Section 3.3). If the State passes the termination test (the Continue
branch), we call reduce to perform symbolic evaluation of the State . This may take
many steps, but will eventually halt (it has its own internal termination test). When
it does so, we split and residualise just as before. This use of split to recursively
supercompile some subcomponents of the reduced state allows us to optimise parts
of the term that reduction didn’t reach.
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To get things rolling, the supercompiler is invoked as follows:

supercompile ∶∶Term → Term
supercompile e = runScpM (sc emptyHistory init state)
where init state = normalise (ǫ, e, [ ])

(The normalise function implements normalising reduction, as previously discussed in
Section 2.2.2.)

A simple demonstration of the parts of sc we have seen so far is in order. Imagine that
this state was input to sc (recall from Section 2.2.2 that we use expressions as shorthand
for their corresponding normalised machine states):

let x = True;y = (λz . z) 1
in case x of True → Just y ;False → Nothing

Assuming that this state has never been previously supercompiled, sc′ will be invoked
by memo, after memo associates this state with a new promise h0 in the ScpM monad.
Further assuming that the termination check in sc′ returns Continue, we would reduce
the input state to head normal form, giving a new state, S ′:

let y = (λz . z) 1 in Just y

The case computation and x binding have been reduced away. It would be possible
to return this S ′ as the final, supercompiled form of our input—indeed, in general the
supercompiler is free to stop at any time, using rebuild to construct a semantically-
equivalent result term. However, doing so misses the opportunity to supercompile some
subcomponents of S ′ that are not yet in head normal form. Instead, we feed S ′ to split ,
which:

1. Invokes sc hist ′ on the subterm (λz . z) 1, achieving further supercompilation (and
hence optimisation). Let’s say for the purposes of the example that this then returns
the final optimised term h1 , with a corresponding optimised binding h1 = 1 recorded
in the monad.

2. Reconstructs the term using the optimised subexpressions. So in this case the Term
returned by split would be let y = h1 in Just y .

When sc returns to the top level call to supercompile, runScpM wraps the accumulated
bindings around the final term, like so:

let h1 = 1
h0 = let y = h1 in Just y

in h0

We will now consider each module involved in the definition of sc in more detail.

3.2 The termination criterion

The core of the supercompiler’s termination guarantee is provided by a single function,
terminate :

terminate ∶∶History → State → TermRes
data TermRes = Stop ∣ Continue History
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As the supercompiler proceeds, it builds up an ever-larger History of previously-observed
States. This history is both interrogated and extended by calling terminate. Termination
is guaranteed by making sure that History cannot grow indefinitely. More precisely,
our system guarantees that for the function terminate, for any history hist0 and states
S0,S1,S2, . . . there can be no infinite sequence of calls to terminate of this form:

terminate hist0 S0 = Continue hist1
terminate hist1 S1 = Continue hist2

. . .

Instead, there will always exist some j such that:

terminate hist j Sj = Stop

In Section 3.3 we will see how reduce uses terminate to ensure that it only performs
a bounded number of reduction steps. The same terminate function (with a different
History) is also used by sc, to ensure that it only recurses a finite number of times, thus
ensuring the supercompiler is total (Section 3.7).

So much for the specification, but how can terminate be implemented? Of course,(λx y .Stop) would be a sound implementation of terminate, in that it satisfies the prop-
erty described above, but it is wildly over-conservative because it forces the supercompiler
to stop reduction immediately. We want an implementation of terminate that is correct,
but which nonetheless waits for as long as possible before preventing further reduction by
answering Stop.

One good way to implement such a termination criterion is by defining a well-quasi-
order [Higman, 1952; Leuschel, 1998]. A relation ⊴ ∈ State × State is a well-quasi-order
(WQO) iff for all infinite sequences of elements of type State (S0,S1, . . .), it holds that:
∃ij. i < j ∧ Si ⊴ Sj. Given any WQO ⊴ ∈ State × State , we can then implement a sound
terminate function:

type History = [State ]
terminate ∶∶History → State → TermRes
terminate prevs here ∣ any (⊴ here) prevs = Stop∣ otherwise = Continue (here ∶ prevs)

To implement a sound WQO on States we follow Mitchell [2010] by extracting a compact
summary of the State (a bag of tags), and compare these tag-bags2:

S1 ⊴ S2 = tagBag S1 ⊴b tagBag S2

The relation (⊴) is a WQO on States if ⊴b is a WQO on tag-bags, where we again follow
Mitchell in defining ⊴b as:

b1 ⊴b b2 ⇐⇒ set (b1) = set (b2) ∧ ∣b1∣ ≤ ∣b2∣
Where the expression ∣b∣ returns the number of elements in the bag b, and the set function
returns a set of all elements in the input bag (i.e. it removes duplicates).

Theorem 3.2.1. If there are a finite number of tags, ⊴b is a well-quasi-order.

Proof. See Section D.6.3.

2It is simple matter to memoise the repeated use of tagBag on prevs , an optimisation we describe
thoroughly in Section D.5.2.
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We can compute a tag-bag from a State like so:

tagBag ∶∶ State → TagBag
tagBag ⟨H⎪⎪⎪⎪et⎪⎪⎪⎪K⟩ = tagBagH(H) ∪ {{t}} ∪ tagBagK(K)
tagBagH(H) = {{t ∣x ∶τ ↦ et ∈H}}
tagBagK(K) = {{t ∣κt ∈K}}

We use {{. . .}} notation to introduce bag literals and comprehensions with the standard
meaning, and overload the set operator ∪ for bags. Notice carefully that we only collect
the root tag from each heap binding, the focus term, and stack frame. We do not collect
tags from internal nodes. Doing so would make the bags larger without making the
termination test more discriminating because, remembering that tags all derive from the
originally-tagged input program, a node tagged t will usually have the same children tags
as another node tagged t.

Appendix D discusses further the theory of well-quasi-orders and the design of a
Haskell library concretely implementing several lemmas about them. Section D.6.3 shows
how the resulting library can be used to define a correct-by-construction terminate func-
tion exactly equivalent to the one we discuss above: this is the definition of the termination
check we use in our implementation.

3.3 Reduction

The reduction rules are used in the supercompiler in two places. Firstly, they are used to
implement the normalise function, and secondly they are used to implement reduce.

We discuss normalise first. The State type is the type of normalised states3, and we
represent the fact that the focus of such a state will only ever be a variable or a value
by introducing a new sum type QA (see Figure 3.1). The normalise function allows a
non-normalised state (UState) to be injected into the State data type in the obvious way:

normalise ∶∶UState → State

All of the modules of the supercompiler accept only normalised states, and normalise
is used by any module whenever it needs to convert some unnormalised state into a
normalised one to pass to another module.

Normalisation performs lots of reduction, but the supercompiler still needs to perform
some potentially non-normalising reduction steps in order to make good progress.

The reduce function tries to reduce a State to head normal form. In case the term
diverges, reduce includes a termination check that allows it to stop after a finite number
of steps. (This check is conservative, of course, so reduce might fail to find a head normal
form when one does exist.) The two key properties of reduce are:

• Reduction preserves meaning: the input and output States have the same semantics

• Regardless of what meaning the input State may have, reduce always terminates

We can implement reduce in terms of a function step that performs the non-normalising
beta and tybeta reduction rules of Figure 2.3.

step ∶∶ State →Maybe UState

3To reduce clutter, we leave implicit the treatment of the typing and kinding contexts.
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If either of the β rules fire, step returns an unnormalised state, UState ; otherwise it
returns Nothing . We can use step and normalise together to build the terminating multi-
step evaluator reduce, which in turn is called by the main supercompiler sc′:

reduce ∶∶ State → State
reduce = go emptyHistory
where

go hist S = case terminate hist S of

Stop → S
Continue hist ′ → case step S of

Nothing → S
Just uS ′ → go hist ′ (normalise uS ′)

The totality of reduce is achieved using the terminate function from Section 3.2. If
terminate reports that evaluation appears to be diverging, reduce immediately returns.
As a result, the State triple ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩ returned by reduce might not be fully reduced
(though it will of course be normalised)—in particular, it might be the case that K

begins with the frame ● x, and d ≡ f t where f is bound to a function value in H .

3.4 Memoisation and matching

The purpose of the memoisation function, memo, is to ensure that we reuse the results
of supercompiling a State if we come to supercompile an equivalent State later on.

We achieve this by using the ScpM state monad: whenever we supercompile a new
State we give it a fresh name of the form hn for some n, and record the State and name
in the monad as a promise. The supercompiled version of that State will be λ-abstracted
over its free variables and bound to that name at the top level of the output program.
Now if we are ever asked to supercompile a later State equivalent to that earlier one (up
to renaming) we tie back by just looking in the promises and producing a call to the name
of the earlier state, applied to appropriate arguments.

Precisely, the ScpM monad is a simple state monad with three pieces of state:

1. The promises, which comprise all the States that have been previously submitted
for supercompilation, along with:

• The names that the supercompiled versions of those States will be bound to in
the final program (e.g. h0 , h1 )

• The list of free term variables and type variables that those bindings will be
abstracted over. By instantiating these free variables several different ways, we
can reuse the supercompiled version of a State several times.

The data structure used to store all this information is called a Promise (Figure 3.2).

2. The optimised bindings, each of the form x ∶τ = e. The runScpM function, which is
used to actually execute ScpM Term computations, wraps the optimised bindings
collected during the supercompilation process around the final supercompiled Term
using a let in order to produce the final output.

3. A supply of fresh names (h0 , h1 , ...) to use for the optimised bindings.
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When sc begins to supercompile a State , it records a promise for that state; when it
finishes supercompiling that state it records a corresponding optimised binding for it. At
any moment there may be unfulfilled promises that lack a corresponding binding, but
every binding has a corresponding promise. Moreover, every promise will eventually be
fulfilled by an entry appearing in the optimised bindings. Figure 3.2 summarises the
signatures of the functions provided by ScpM .

We can now implement memo as follows:

memo ∶∶ (State → ScpM Term)
→ State → ScpM Term

memo opt S = do
ps ← promises
let ress = [ (var (name p) ‘tyApps ‘map (substTyVar θ) (ftvs p)

‘apps ‘ (unit ∶map (substVar θ) (fvs p)))∣ p ← ps
, Just θ ← [match (meaning p) S ]]

case ress of
res ∶ → return res[ ] → do

hn ← freshVar
let (tvs , vs) = freeVars S
promise P {name = hn,

ftvs = map fst tvs , fvs = map fst vs ,
meaning = S }

e ← opt S
bind hn (forAllTys tvs (funTys (unitTy ∶map snd vs) (stateType S)))(tyLambdas tvs (lambdas ((unit ,unitTy) ∶ vs) e))
return (var hn ‘tyApps ‘map fst tvs ‘apps ‘map fst (unit ∶ vs))

The memo function proceeds as follows:

1. Firstly, it examines all existing promises. If the match function (Section 3.4.2)
reports that some existing promise matches the State we want to supercompile (up
to renaming), memo returns a call to the optimised binding corresponding to that
existing promise.

2. Assuming no promise matches, memo continues:

(a) A new promise for this novel State is made, in the form of a new Promise entry.
A fresh name of the form hn (for some n) is associated with the Promise.

(b) The input state S is optimised by calling opt (i.e. the supercompiling function
sc′), obtaining an optimised term e.

(c) A final optimised binding hn = Λftvs (S). λfvs (S). e is recorded using bind .
This binding will be placed in a let that encloses the output program by
runScpM .

(d) Finally, a call to that binding, hn ftvs (S) fvs (S), is returned.
Note that because we are working in a typed language, the new bindings created by memo
are abstracted over not just their free term variables, but also their free type variables.
We abstract over all the type variables before any of the term variables to ensure that
the resulting term is well-scoped, since the types of the term variables can mention the
free type variables.
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3.4.1 Avoiding unintended sharing

We additionally abstract every h-function over a variable unit of type unitTy , and apply
the same variable whenever making a call to a h-function. We expect that:

• unit is the name of a fresh variable not bound anywhere else

• unitTy is the type of the nullary tuple, ()
• runScpM will wrap a binding unit ∶unitTy = () around the final output term along
with all of the h-function bindings added by bind , to ensure that the initial free
occurrence of unit is bound

The purpose of this extra abstraction is to ensure that every h-function binding is a
value and is not subject to call-by-need work-sharing. If we did not add these extra
abstractions, then we might end up increasing work sharing for terms which have no
free type or term variables4. For example, we could transform the term (fib 100,fib 100)
into let h = fib 100 in (h,h). With the extra abstraction, we instead supercompile it
to let unit = ();h = λunit .fib 100 in (h unit ,h unit), which has the same work-sharing
properties as the input.

Increasing work sharing may look harmless and perhaps even beneficial in some cases,
but it can cause unexpected “space leaks” [Hughes, 1983] if the evaluated form of a binding
causes more memory to be live for garbage collection purposes than the unevaluated
version does. Space leaks are the reason that general common subexpression elimination
is not commonly used for call-by-need language [Chitil, 1997], and we also want to avoid
introducing space leaks during supercompilation.

For clarity of exposition, we will almost always omit these unit abstractions, applica-
tions and bindings from our examples.

3.4.2 Matching

The match function is used to compare States. If the two States being matched are seen
to be the same up to renaming, a substitution (of type Subst) from the first argument
State to the second is returned:

match ∶∶ State → State →Maybe Subst

A substitution θ is a mapping from term variables to term variables and from type vari-
ables to types. A more usual notion of substitution would contain a mapping from term
variables to terms, but this an unnecessary complication in our ANFed setting. We will
assume functions are available to apply substitutions to various syntactic entities (Fig-
ure 3.1).

The key properties of the match function are that:

• If two states match, they should have the same meaning. One way to phrase this is
to say that if match S0 S1 = Just θ then the meaning of rebuild S1 is the same as
that of substTerm θ (rebuild S0), i.e.

(rebuild S0)θ◃▹∼ rebuild S1
(The rebuild function (whose type is given by Figure 3.1) turns a State back into a
Term, i.e. using the definition of Section 2.2, rebuild ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩ = ⟨∣H⎪⎪⎪⎪d⎪⎪⎪⎪K ∣⟩)

4Our actual implementation only inserts unit abstractions if there are no other variables to be ab-
stracted over: for simplicity, the memo we define here always inserts them.
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In fact, in order to prove that memoisation is correct, we will require a slightly
refined version of this property to hold (Section 3.8, Definition 3.8.1). However, this
simpler version of the property is an excellent intuitive guide to what is expected of
a matcher.

• If a state S0 is syntactically identical to S1, modulo renaming of free variables, then
isJust (match S0 S1). This property is necessary for termination of the supercom-
piler, as we will discuss in Section 3.7.3.

Naturally, it is desirable for the match function to match as many truly equivalent terms
as possible while obeying these constraints. We discuss the implementation of a match
function for a call-by-need language that respects these two properties in Section 5.2.

3.5 The splitter

The job of the splitter is to complete the process of supercompiling a State whose reduction
is stuck, either because of a lack of information (e.g. if the State is blocked on a free
variable), or because the termination criterion is preventing us from reducing that State
further. The splitter has the following type signature5:

split ∶∶Monad m ⇒ (State →m Term)
→ State →m Term

In general, (split opt S) identifies some sub-components of the state S , uses opt to op-
timise them, and combines the results into a term whose meaning is the same as S
(assuming, of course, that opt preserves meaning), i.e. essentially6 we expect that:

(∀S .rebuild S ⊳∼ opt S) Ô⇒ ∀S .rebuild S ⊳∼ split opt S

A sound, but feeble, implementation of split opt S would be one which never recursively
invokes opt :

split S = return (rebuild S)
Such an implementation is wildly conservative, because not even trivially reducible subex-
pressions will benefit from supercompilation. A good split function will residualise as little
of the input as possible, using opt to optimise as much as possible.

It turns out that, starting from this sound-but-feeble baseline, there is a rich variety
of choices one can make for split , and it is difficult to write an implementation that is
simultaneously sound and reasonably non-conservative. We discuss the issues surrounding
split , as well as the particular implementation we use in our call-by-need supercompiler,
in much more detail in Chapter 4.

3.6 A complete example

Here is an example of the supercompiler in action. Consider the function map, whose
tagged definition is as follows:

5In fact, we will only instantiate the Monad m in the type signature of split to ScpM , but this
signature makes clear that split does not make use of any of the monad-carried information.

6Similar to the situation in Section 3.4.2 this property is not what we actually expect split to satisfy:
the true property is discussed in Section 3.8.
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map f xs = (case xs t1 of [ ] → [ ](y ∶ ys)→ ((f y)t2 ∶ ((mapt3 f )t4 ys)t5)t6)t7
Now, suppose we supercompile the call ((mapta not)tb xs)tc , which inverts every element in
a list of Booleans, xs . Remember (Section 3.1) that supercompile normalises the expression
before giving it to sc. Normalisation will evaluate the term until it gets stuck, which is
nearly immediate, because it needs to inline map. So the initial State given to sc is this:

S0 = ⟨map ↦ (. . .)t9 ,not ↦ (. . .)t8⎪⎪⎪⎪⎪mapta⎪⎪⎪⎪⎪● not tb ,● xstc⟩
As this is the first invocation of sc, there is no way for memo to tie back, so sc′ is called.
The history is empty, so the termination check passes—after extending the history with
the tag-bag {{ta, tb, tc, t9, t8}}—and so sc′ calls reduce which evaluates the state (including
inlining; see Section 3.3) until it gets stuck because it has no binding for xs :

⟨map ↦ (. . .)t9 ,not ↦ (. . .)t8⎪⎪⎪⎪⎪xst1⎪⎪⎪⎪⎪κt7⟩
where κ is the stack frame for the case expression:

κ = case ● of { [ ] → [ ](y ∶ ys)→ ((not y)t2 ∶ ((mapt3 not)t4 ys)t5)t6) }
Now split residualises part of the reduced State (case xs of [ ] → . . . ; (y ∶ ys) → . . .) and
recursively supercompiles the two branches of the case. We concentrate on the (∶) branch.
Once again the State constructed for this branch is normalised before being passed to the
recursive invocation of sc. The normalised state looks like this:

⟨ map ↦ (. . .)t9 ,not ↦ (. . .)t8 ,
z ↦ (not y)t2 , zs ↦ ((mapt3 not)t4 ys)t5

⎪⎪⎪⎪⎪⎪⎪⎪⎪(z ∶ zs)
t6
⎪⎪⎪⎪⎪⎪⎪⎪⎪ǫ⟩

We cannot tie back at this point because this state does not match any existing promise.
Furthermore, the tag-bag for this state, {{t2, t5, t6, t9, t8}}, is distinct (as a set) from that
for the previous State , and so supercompilation proceeds in the Continue branch of sc′ by
splitting the State (reduce is the identity function on this State as it is already a value).
Both the head z and tail zs of the output list are recursively supercompiled, but we focus
on the tail. Normalising gives:

S2 = ⟨map ↦ (. . .)t9 ,not ↦ (. . .)t8⎪⎪⎪⎪⎪mapt3⎪⎪⎪⎪⎪● not t4 ,● xst5⟩
When sc is invoked on S2, the memoiser notices that it has already supercompiled the
α-equivalent state S0, and so it returns immediately with a Term that just invokes the
corresponding h-function, h0 .

The final output program (including the h3 and h4 functions generated by invocations
of sc that we have elided) is thus:

h0 xs = case xs of [ ] → h3(y ∶ ys)→ h1 y ys
h1 y ys = h4 y ∶ h0 ys
h3 = [ ]
h4 y = not y

After inlining h1 , h2 and h4 we recognise h0 as a version of map specialised for not as
its first argument.
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3.7 Termination of the supercompiler

The focus of this thesis is not to provide a completely formal proof that the supercompiler
we define is terminating or correct. However, we will lay out the properties we expect to
hold, will formally prove substantial theorems, and clearly mark conjectures where they
are necessary (principally in Chapter 4 and Chapter 5). For the purposes of these proofs,
we will often omit tags, since it is only important that there is some tag information
present: the actual values of the tags themselves are irrelevant for the purposes of the
proofs. In this section, we tackle the issue of supercompiler termination.

3.7.1 Two non-termination checks

Although we have been careful to ensure that our evaluation function, reduce, is total, it
is not so obvious that sc itself is terminating. Since split may recursively invoke sc via
its higher order argument, we might get an infinitely deep stack of calls to sc.

To rule out this possibility, sc carries a history, which—as we saw in Section 3.1—is
checked before any reduction is performed. If terminate allows the history to be extended,
the input State is reduced before recursing. Otherwise, the input State is fed to split
unchanged. Note that we do not simply stop supercompiling by returning the rebuild ing
of the input State if the termination test fails: by passing the State to split unchanged
instead, we ensure that we have a chance to optimise all the subcomponents of the current
state.

It is important to note that the history carried by sc is extended entirely independently
from the history produced by the reduce function (this is similar to the concept “transient
reductions” [Sørensen and Glück, 1999]). The two histories deal with different sources of
non-termination.

The history carried by reduce prevents non-termination due to divergent expressions,
such as this one:

let f x = 1 + (f x) in f 10

In contrast, the history carried by sc prevents non-termination that can arise from re-
peatedly invoking the split function—even if every subexpression would, considered in
isolation, terminate. This is illustrated in the following program:

let count n = n ∶ count (n + 1) in count 0

Left unchecked, we would repeatedly reduce the calls to count , yielding a value (a cons-
cell) each time. The split function would then pick out both the head and tail of the cons
cell to be recursively supercompiled, leading to yet another unfolding of count , and so on.
The resulting (infinite) residual program would look something like:

let h0 = h1 ∶ h2 ;h1 = 0
h2 = h3 ∶ h4 ;h3 = 1
h4 = h5 ∶ h6 ;h5 = 2
. . .

The check with terminate before reduction ensures that instead, one of the applications
of count is left unreduced. This use of terminate ensures that our program remains finite:

let h0 = h1 ∶ h2 ;h1 = 0
h2 = let count = λn.h3 n
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in count 1
h3 n = n ∶ h3 (n + 1)

in h0

3.7.2 Proof of termination without recursive let

In order to be able to prove that the supercompiler terminates, we need some condition
on exactly what sort of subcomponents split opt invokes opt on. (It is also clear that
if opt terminates on all inputs then split itself should not diverge, and hence that split
should only invoke opt finitely many times.)

Let us pretend for a moment that we have no recursive let (we consider the case of
recursive let shortly, in Section 3.7.3). In this scenario, you can show that for our split
(defined in Chapter 4), split-recursion shrinks:

Definition 3.7.1 (Split-recursion shrinks). We say that split-recursion shrinks if split opt S
invokes opt S ′ only if S ′ ≺ S . The ≺ relation is a well-founded relation defined by
S ′ ≺ S ⇐⇒ size (S ′) < size (S), where size ∶ State → N returns the number of abstract
syntax tree nodes in the State .

It is possible to prove property 3.7.1 for split with non-recursive input terms, and this
property is sufficient to ensure termination, as the following argument shows:

Theorem 3.7.1 (Well-foundedness with nonrecursive let). If split-recursion shrinks, sc
always recurses a finite number of times.

Proof. Proceed by contradiction. If sc recursed an infinite number of times, then by
definition the call stack would contain infinitely many activations of sc hist S for (possibly
repeating) sequences of hist and S values. Denote the infinite chains formed by those
values as ⟨hist0,hist1, . . .⟩ and ⟨S0,S1, . . .⟩ respectively.

Now, observe that there it must be the case that there are infinitely many i for which
the predicate isContinue (terminate hist i Si) holds. This follows because the only other
possibility is that there must be some j such that ∀l.l ≥ j Ô⇒ isStop (terminate hist l Sl).
On such a suffix, sc is recursing through split without any intervening uses of reduce . How-
ever, by the property we required split to have, such a sequence of states must have a
strictly decreasing size:

∀l.l > j Ô⇒ size (Sl) < size (Sj)
However, < is a well founded relation, so such a chain cannot be infinite. This contradicts
our assumption that this suffix of sc calls is infinite, so it must be the case that there are
infinitely many i such that isContinue (terminate hist i Si).

Now, form the infinite chain ⟨S ′1,S ′2, . . .⟩ consisting of a restriction of Si of to those
elements for which isContinue (terminate hist i Si) holds. By the properties of terminate,
it follows that:

∀ij.j < i Ô⇒ ¬(tagBag S ′j ⊴ tagBag S ′i)
However, this contradicts the fact that ⊴ is a well-quasi-order.

Combined with the requirement that split opt only calls opt finitely many times, the
whole supercompilation process must terminate.

It is interesting to note that this argument still holds even if the supercompiler does
not use memo. Nonetheless, in practice the results of supercompilation will be much
better if we use memo as in many cases we will be able to avoid failing the termination
test (and hence generating bad code) by tying back to a previous state.
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3.7.3 Extension to recursive let

So much for the case where there is no recursive let. In practice almost all programs we
will encounter will make some use of recursive let, even if it is only in the definition of
library functions such as map. It turns out we can repair the argument above to deal
with recursive let by proving a more complex property about split . Unlike our previous
argument, this version will make fundamental use of the presence of memoisation.

First, let us understand why the argument above breaks down with recursive let.
Consider this input to split :

S = ⟨repeat ↦ λy . let ys = repeat y in y ∶ ys⎪⎪⎪⎪repeat⎪⎪⎪⎪● y⟩
The splitter defined in Chapter 4 would recursively supercompile this state:

S ′ = ⟨repeat ↦ λy . let ys = repeat y in y ∶ ys ,ys ↦ repeat y⎪⎪⎪⎪y ∶ ys⎪⎪⎪⎪ǫ⟩
This state is already larger than the original state by the metric of Definition 3.7.1, so we
can see that if we have recursive let we certainly can’t prove that split-recursion shrinks.
In fact, we can go further and observe that splitting S ′ would cause us to recursively
supercompile two states, one of which (arising from the ys binding) would be:

⟨repeat ↦ λy . let ys = repeat y in y ∶ ys⎪⎪⎪⎪repeat⎪⎪⎪⎪● y⟩
Note that this forms a loop, so we won’t be able to prove that split-recursion shrinks
even if we make a different choice of state-size metric than the syntax-node metric of
Definition 3.7.1.

In the presence of recursive let, we can instead show that for our split a different
property holds:

Definition 3.7.2 (Split-recursion rearranges). split opt ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ only invokes opt on
states ⟨H ′⎪⎪⎪⎪e′⎪⎪⎪⎪K ′⟩ that satisfy all of these conditions:

1. H ′ ⊆H ∪ alt-heap (e,K)
2. K ′ ‘isInfixOf ‘ K

3. e ′ ∈ subterms ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩
The subterms ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ function returns all expressions that occur syntactically within
the heap, stack or focus of the input state. The standard library function isInfixOf
tests whether the left-hand argument occurs as a contiguous sublist within the right-hand
argument. The function alt-heap (e,K) takes the variables bound by update frames in K

and, if e ≡ x for some x , the variable x . It then forms the cross product of that set with
the values C α x in any case●of C α ∶κ x ∶τ → e ∈K. This subterms function is required
only to deal with those new bindings that arise from positive information propagation
(Section 4.2).

Essentially what this property says is that the states recursively supercompiled by
split can be formed only by “rearranging” the components of the input state: entirely
new syntax cannot be generated out of thin air. This will allow us to prove that chains
of successive recursive split calls can only create a finite number of distinct states.

Theorem 3.7.2. The split defined in Chapter 4 obeys the property of Definition 3.7.2.
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Proof. Straightforward inspection of the algorithm: in particular, see the definitions in
Section 4.3.3.

With this, we are in a position to repair the earlier proof.

Theorem 3.7.3 (Well-foundedness). sc always recurses a finite number of times.

Proof. Proceed by contradiction. If sc recursed an infinite number of times, then by
definition the call stack would contain infinitely many activations of sc hist S for (possibly
repeating) sequences of hist and S values. Denote the infinite chains formed by those
values as ⟨hist0,hist1, . . .⟩ and ⟨S0,S1, . . .⟩ respectively. We define Hl, Kl and el such that
Sl ≡ ⟨Hl

⎪⎪⎪⎪el⎪⎪⎪⎪Kl⟩.
Now, observe there must be infinitely many i such that isContinue (terminate hist i Si).

This follows because the only other possibility is that there must exist some j such that
∀l.l ≥ j Ô⇒ isStop (terminate hist l Sl). On such a suffix, sc is recursing through
split without any intervening uses of reduce. By the modified property of split and the
properties of alt-heap and subterms we have that

∀l.l ≥ j Ô⇒
Hl ⊆ Hj ∪ alt-heap (ej ,Kj)

∧ Kl ‘isInfixOf ‘ Kj

∧ el ∈ subterms (Sj)
We can therefore conclude that the infinite suffix must repeat itself at some point (up to
renaming of the free variables): ∃l.l > j ∧ Sl = Sj. However, we required that match
always succeeds when matching two terms equivalent up to renaming, which means that
sc hist l Sl would have been tied back by memo rather than recursing. This contradicts
our assumption that this suffix of sc calls is infinite, so it must be the case that there are
infinitely many i such that isContinue (terminate hist i Si).

Now, form the infinite chain ⟨S ′1,S ′2, . . .⟩ consisting of that restriction of Si for which
isContinue (terminate hist i Si) holds. As in Section 3.7, this contradicts the fact that ⊴
is a well-quasi-order.

Note that although the termination argument becomes more complex in the recursive-
let case, the actual supercompilation algorithm remains as simple as ever.

3.7.4 Negative recursion in data constructors

As a nice aside, the rigorous termination criterion gives us a stronger termination guar-
antee than GHC [Peyton Jones et al., 1992]. Because GHC does not check for recursion
through negative positions in data constructors, the following notorious program would
(until very recently [Peyton-Jones, 2012]) force GHC into an infinite loop:

data U =MkU (U → Bool)
russel u@(MkU p) = not (p u)
x = russel (MkU russel) ∶∶Bool

3.8 Correctness of the supercompiler

In the previous section we argued that the supercompiler terminated. In this section we
will argue that it is correct—i.e. the supercompiled program has the same meaning as
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the input program. Since we are working an a call-by-need setting, this entails not only
proving that supercompilation preserves the denotational meaning of the program, but
also that we don’t lose work sharing.

The standard way [Klyuchnikov, 2010b] to prove the correctness of a supercompilation
algorithm is to use an argument based on the improvement theory [Sands, 1995] introduced
in Section 2.3. The main theorem that is generally proven is that supercompilation is an
improvement:

e ⊳∼ supercompile e

I.e. if the input program terminates in a given context, the supercompiled program will
terminate in the same context in the same number of steps or less. This theorem is
sufficient to prove that supercompilation is correct, as long as you are willing to accept
that a supercompiler may sometimes turn a non-terminating program into a terminating
one. For conciseness in our proofs, this is the definition of correctness that we will use7.

The principal reason that we use improvement theory as the tool to prove that our
supercompiler is correct, rather than arguing directly at the level of e.g. denotational
semantics, is that improvement theory gives a set of tools for reasoning about recursion
in our programs. If we were to make a naive argument with denotational semantics, we
might look at the program:

let f x = 42 in f 10

We might claim that since f x is denotationally equal to 42 for any x it “must” be the
case that we can replace the subterm 42 in the program like so:

let f x = f x in f 10

As the resulting program loops, our argument clearly was deeply flawed: simple deno-
tional equality does not tell us when we can rewrite subterms of a program.In contrast,
improvement theory gives us a simple and clear basis for doing so in a way which will not
affect the termination properties the programs we are working on.

A nice benefit of proving that supercompilation is an improvement is that it establishes
that supercompilation is actually an optimisation in some sense. Of course, just because
the resulting program is faster (or at least no worse) in the abstract sense of “number of
steps” does not mean it is faster on actual hardware, but it is a good first step.

Because our supercompiler design memoises more frequently8 than standard supercom-
pilers we cannot prove the standard theorem. Instead, we will prove the closely related
property that supercompilation is an improvement up to delay :

delaye(e) ⊳∼ supercompile e

The delay family of functions is defined in Figure 3.3. When reading these functions, it
may be helpful to remember that the purpose of the ✓e construct (which was introduced
in Section 2.3) is to delay evaluation of a term by one non-normalising reduction step.

This improvement-up-to-delay property of supercompile says that if a slowed-down
version of the input program terminates in some context, the supercompiled program will
terminate in the same context in the same number of steps or less. Note that unlike the

7It is generally possible to show that supercompilation is in fact a “strong improvement” in that it
is both an improvement and never changes a non-terminating program into a terminating one. Our
supercompiler is no exception in this regard, but we omit the proof.

8Other supercompilers typically only memoise when there is a manifest β-reduction in the focus, we
do so upon every invocation of sc.
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previous property, the property we will show does not establish that supercompilation
is an optimisation in the sense of improvement theory. However, it can be shown that
delaye(e) is only ever a constant multiplicative factor slower than e, i.e.

∃k.e ⇓nÔ⇒ delaye(e) ⇓≤kn
From this fact we can see that showing improvement-up-to-delay implies that work sharing
is not lost by the supercompiler, since loss of work sharing can cause algorithms to become
polynomially slower or worse. For example, the following function

sumLength xs = sum (replicate n n)
where n = length xs

requires a number of reduction steps proportional to the length of the input list xs in
call-by-need, but requires a number of reduction steps proportional to the square of the
length in call-by-name.

In order to show that the supercompiler is correct, we of course need to assume some
properties about the various modules of our supercompiler. Concretely, we will assume
these properties:

Definition 3.8.1 (Matcher correctness). The match function is correct if it succeeds only
when the inputs are cost-equivalent up to delay :

match S0 S1 = Just θ Ô⇒ (delay S0)θ◃▹∼ delay S1
Definition 3.8.2 (Splitter correctness). The split function is correct if:

∀S ′.✓delay S ′ ⊳∼ checkScpM (p,opt S ′)
Ô⇒ delay S ⊳∼ checkScpM (p, split opt S)

delay ⟨x ∶τ ↦ ex
⎪⎪⎪⎪e⎪⎪⎪⎪ǫ⟩ = let x ∶τ = delayh(ex) in delay ′e(e)

delay ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪update y ∶τ,K⟩ = delay ⟨H,y ∶τ ↦ e⎪⎪⎪⎪y⎪⎪⎪⎪K⟩
delay ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪● x,K⟩ = delay ⟨H⎪⎪⎪⎪e x⎪⎪⎪⎪K⟩
delay ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪● τ,K⟩ = delay ⟨H⎪⎪⎪⎪e τ⎪⎪⎪⎪K⟩

delay ⟨H⎪⎪⎪⎪⎪e⎪⎪⎪⎪⎪case ● of C α ∶κ x ∶τ → eC,K⟩
= delay ⟨H⎪⎪⎪⎪⎪case e of C α ∶κ x ∶τ → eC

⎪⎪⎪⎪⎪K⟩

delayh(e) =
⎧⎪⎪⎨⎪⎪⎩
delay ′e(e) e ≡ v

delaye(e) otherwise
delaye(e) = ✓delay ′e(e)

delay ′e(x) = x

delay ′e(λx ∶τ. e) = λx ∶τ.delaye(e)
delay ′e(e x) = delay ′e(e) x

delay ′e(C τ x) = C τ x

delay ′e(case e of C α ∶κ x ∶τ → eC) = case delay ′e(e) of C α ∶κ x ∶τ → delaye(eC)
delay ′e(let x ∶τ = ex ine) = let x ∶τ = delaye(ex) in delay ′e(e)

delay ′e(Λα ∶κ. e) = Λα ∶κ.delaye(e)
delay ′e(e τ) = delay ′e(e) τ

Figure 3.3: Delaying expressions and states
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Where checkScpM is defined as follows:

checkScpM ∶∶ ([Promise ],ScpM Term)→ Term
checkScpM (p,me) = runScpM $ do mapM promise p

e ←me
return $ substPromises (p, e)

substPromises ∶∶ ([Promise ],Term)→ Term
substPromises(ǫ, e) = e

substPromises((p, p), e) = substPromises(p, e[e′/h])
where h = fun p(α ∶κ,x ∶τ) = freeVars (meaning p)

e′ = Λα ∶κ.λunit ∶unitTy. λx ∶τ .✓(delay (meaning p))
The substPromises(p, e) call is designed to eliminate all occurrences in e of the h-functions
corresponding to the promises p. The term e is in ANF, so if a h-function could ever occur
as an argument in e we might have to insert a let to perform this elimination, but fortu-
nately h-functions never occur in argument positions in the result of supercompilation.

We justify the properties of match and split as part of the relevant chapters (see
Section 5.2.2 and Section 4.5), along with arguments as to why our implementations obey
them. For now, we will be content to merely assume that they hold true and use them as
part of our proof of correctness.

In order to show correctness, we also need some lemmas. The first lemma we require
is the following:

Lemma 3.8.1 (Reduction improves up to delay). If S ↝ S ′, then delay S ⊳∼ delay S
′

Proof. We proceed by cases on the reduction rules. We will only consider a few represen-
tative cases, the rest go through similarly.

Case var In this case,

⟨H,x ∶τ ↦ e⎪⎪⎪⎪x⎪⎪⎪⎪K⟩↝ ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪update x ∶τ,K⟩
(where (e /≡ v)). This case follows immediately since:

delay ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪update x ∶τ,K⟩ = delay ⟨H,x ∶τ ↦ e⎪⎪⎪⎪x⎪⎪⎪⎪K⟩
Case update2 In this case,

⟨H[x ∶τ ↦ u]⎪⎪⎪⎪x⎪⎪⎪⎪update y ∶τ,K⟩↝ ⟨H,y ∶τ ↦ x⎪⎪⎪⎪x⎪⎪⎪⎪K⟩
Since delay ⟨H⎪⎪⎪⎪x⎪⎪⎪⎪update y ∶τ,K⟩ = delay ⟨H,y ∶τ ↦ x⎪⎪⎪⎪y⎪⎪⎪⎪K⟩, this case is proven since
it is easy to show that: ⟨y ↦ ✓x⎪⎪⎪⎪⎪y⎪⎪⎪⎪⎪ǫ⟩ ⊳∼ ⟨y ↦ ✓x⎪⎪⎪⎪⎪x⎪⎪⎪⎪⎪ǫ⟩
Case betav In this case,

⟨H⎪⎪⎪⎪λx ∶τ. e⎪⎪⎪⎪● x,K⟩ ↝ ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩
Since delay ⟨H⎪⎪⎪⎪λx ∶τ. e⎪⎪⎪⎪● x,K⟩ = delay ⟨H⎪⎪⎪⎪(λx ∶τ. e) x⎪⎪⎪⎪K⟩, this case is proven since it is
easy to show that: ⟨ǫ⎪⎪⎪⎪(λx ∶τ. e) x⎪⎪⎪⎪ǫ⟩◃▹∼ ⟨ǫ⎪⎪e⎪⎪ǫ⟩
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Case letrec In this case,

⟨H⎪⎪⎪⎪let x ∶τ = ex in e⎪⎪⎪⎪K⟩ ↝ ⟨H,x ∶τ ↦ ex
⎪⎪⎪⎪e⎪⎪⎪⎪K⟩

This case follows because let-floating out of an evaluation context is a cost-equivalence
(assuming the variables x do not occur free outside the context, as in this case), and for
all e, delaye(e) ⊳∼ delayh(e).

We also require this lemma:

Lemma 3.8.2 (Binding and substitution interchangable). If all occurrences of h in ê are
saturated calls of the form h υn

i (unit , ymi ) and p = P {name = h, meaning = S , ftvs =
αn, fvs = xm } and (αn, xm) = freeVars S. then:

substPromises((p, p), ê)◃▹∼ let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ .delay S
in substPromises(p, ê)

Proof.

substPromises((p, p), ê)
= substPromises(p, ê)[Λα ∶κ.λunit ∶unitTy. λx ∶τ .✓delay S/h]
= substPromises(p, ê′[. . . , (h α (unit , x))θi/zi, . . .])[Λα ∶κ.λunit ∶unitTy. λx ∶τ .✓delay S/h]
◃▹∼ substPromises(p, ê′[. . . , (✓delay S)θi/zi, . . .])
◃▹∼ let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ .delay S

in substPromises(p, ê′[. . . , (✓delay S)θi/zi, . . .])
◃▹∼ let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ .delay S

in substPromises(p, ê′[. . . , (h α (unit , x))θi/zi, . . .])
= let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ .delay S

in substPromises(p, ê)

We are now in a position to prove the main theorem:

Theorem 3.8.3 (sc correctness). The sc function is correct if:

✓delay S ⊳∼ checkScpM (p, sc hist S)
Proof. There are three principal cases to consider:

1. The memoiser manages to tie back (the “tieback” case)

2. The memoiser doesn’t tie back, and the termination test says Stop (the “stop” case)

3. The memoiser doesn’t tie back, and the termination test says Continue (the “con-
tinue” case)

We consider each in order.

49



Tieback case In this case, we know that there is some P {name = h, meaning =
S ′, ftvs = α, fvs = x} ∈ p such that:

match S ′ S = Just θ

Therefore, if the matcher is correct, by Definition 3.8.1 it must be the case that:

(delay S ′)θ ◃▹∼ delay S

To prove the case, we need to show:

✓delay S ⊳∼ checkScpM (p, return (h α (unit , x))θ)
= substPromises(p, (h α (unit , x))θ)
= ✓delay S ′θ
◃▹∼

✓delay S

Which follows trivially because ⊳∼ is reflexive.

Stop case Because we know that the recursion of sc is well-founded (see Section 3.7),
we can combine induction with Lemma 3.8.2 to show that:

delay S ⊳∼ checkScpM ((p, p), split (sc hist) S)
= checkScpM (p,do promise p

ê ← split (sc hist) S
return $ substPromises(p, ê))

= substPromises((p, p), ê)
Where p = P {name = h, meaning = S , ftvs = α, fvs = x}, (α,x) = freeVars S . So much
for what we know inductively. To prove the case, we still need to show that:

✓delay S ⊳∼ checkScpM (p, sc hist S)
= checkScpM (p,do promise p

ê ← split (sc hist) S
bind h τ̂ (Λα ∶κ.λunit ∶unitTy. λx ∶τ . ê)
return (h α (unit , x))

Where τ̂ = ∀α ∶κ.unitTy → τ → stateType S .
We can see that the ê returned from the call to split is the same in both this derivation

and what we derived by induction, since they both originate from making the same
recursive call in the same monadic environment of promises. Now, due to the bind call we
know that runScpM will create the binding for h at the top level, and since let-floating of
values is a cost-equivalence we can continue to simplify the required property as follows:

✓delay S ⊳∼ substPromises(p, let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ . ê
in h α (unit , x))

= let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ . substPromises(p, ê)
in h α (unit , x)

Because we know that:

✓delay S ⊳∼ let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ .delay S in h α (unit , x)
Using the improvement theorem (Theorem C.4.2), we simplify our goal to:

let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ .delay S
in delay S
⊳∼ let h ∶ τ̂ = Λα ∶κ.λunit ∶unitTy. λx ∶τ .delay S

in substPromises(p, ê)
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Discarding the (dead) binding for h on the left, and applying Lemma 3.8.2 on the right,
this simplifies to:

delay S ⊳∼ substPromises((p, p), ê)
This is exactly what we earlier showed to be true inductively.

Continue case This case follows similarly to the stop case, except that you need to use
Lemma 3.8.1 to show that the use of reduce by the continue case is meaning-preserving
up to delay.

From this theorem, we can immediately obtain correctness of supercompile as a corol-
lary:

Corollary 3.8.4 (Correctness of supercompile). If e terminates in some context, then
supercompile e terminates in that same context.

Proof. From the correctness of sc, we know that:

✓delay ⟨ǫ⎪⎪e⎪⎪ǫ⟩ ⊳∼ checkScpM (ǫ, sc emptyHistory ⟨ǫ⎪⎪e⎪⎪ǫ⟩)
= runScpM $ sc emptyHistory ⟨ǫ⎪⎪e⎪⎪ǫ⟩
= supercompile e

Since delaye(e) ⊳∼ ✓delay ⟨ǫ⎪⎪e⎪⎪ǫ⟩, this is sufficient to show that supercompilation is an
improvement up to delay:

delaye(e) ⊳∼ supercompile e

3.9 Supercompiling states vs. supercompiling terms

Our supercompiler uses normalised states (Section 2.2.2) ubiquitously throughout: sc
supercompiles a normalised state, matching compares states and the operational semantics
(obviously) operates on states. In this section we review the reasons as to why this is the
most convenient definition.

Firstly, the fact that values of the State type are always normalised has several benefits:

• Because we know that sequences of normalising reductions are always of finite length,
in order to ensure that the reduce function always terminates we only have to test the
termination criteria when we perform a non-normalising reduction (see Section 3.3).
So, normalisation allows us to avoid making some termination tests.

In our experiments we found that this would reduce the number of termination tests
we needed to make in reduce by a large factor of as much as 10 times. The exact
amount by which this optimisation helps will of course depend on the program being
supercompiled: for example, if you are supercompiling a tail recursive loop function
which takes n parameters, then you would expect to make n times fewer termination
tests in reduce.

After some experience with our supercompiler we discovered that making termi-
nation tests infrequent is actually more than a mere optimisation. If we test for
termination very frequently (say, after any reduction rule is used—not just after
non-normalising rules), the successive states will be very similar; and the more sim-
ilar they are, the greater the danger that the necessarily-conservative termination
criterion (Section 3.2) will unnecessarily say Stop.
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• Programs output by our supercompiler will never contain “obvious” undone case

discrimination nor manifest β-redexes.

• Normalising states before matching makes matching succeed more often since trivial
differences between States cannot prevent tieback from occurring (Section 3.4). For
example, early versions of the supercompiler that did not incorporate normalisation
suffered from increased output program size because they did not determine that
the following States all meant the same thing:

⟨foldr ↦ . . .⎪⎪⎪⎪foldr⎪⎪⎪⎪● c,● n⟩⟨foldr ↦ . . .⎪⎪⎪⎪foldr c⎪⎪⎪⎪● n⟩⟨foldr ↦ . . .⎪⎪⎪⎪foldr c n⎪⎪⎪⎪ǫ⟩⟨x ↦ True, foldr ↦ . . .⎪⎪⎪⎪case x of True → foldr c n⎪⎪⎪⎪ǫ⟩
Other benefits accrue because we operate on States rather than terms:

• It is natural to treat a state’s heap as an unordered map. Our implementation
exploits this by providing a match function that is insensitive to the exact or-
der of bindings in the heaps of the states it is to match. A contrasting approach
would be to treat the heap as an ordered association list or sequence of enclos-
ing let expressions, but this would not be as normalising because states such
as ⟨x↦ True, y ↦ False⎪⎪⎪⎪(x ,y)⎪⎪⎪⎪ǫ⟩ and ⟨y ↦ False, x ↦ True⎪⎪⎪⎪(x ,y)⎪⎪⎪⎪ǫ⟩ might not be
considered the same for the purposes of match, losing some tieback opportunities.

• When splitting, it can become necessary to perform transformations such as the
case-of-case transformation in order to fully optimise certain input terms such as
case (case x of True → False;False → True) of False → True;True → False (see
Section 4.2). This family of “stack inlining” transformations are much easier to
implement when we have an explicit stack available as one of the components of the
state.

• Identifying the stack explicitly is convenient for our call-by-need most-specific-
generalisation (Chapter 5) in several ways. We defer discussion of these reasons
until Section 5.9.
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Chapter 4

The call-by-need splitter

The purpose of the supercompiler’s splitter is, when given a (normalised) state, to identify
some new states that can be recursively supercompiled, supercompile them, and then
reassemble to produce a term with the same meaning as the original state. Recall from
Section 3.5 that the type signature of split is:

split ∶∶Monad m ⇒ (State →m Term)
→ State →m Term

The opt argument to a call split opt S is the function that will be used to perform the
recursive supercompilation, while S is of course the state to be split.

Defining a split which achieves a good level of optimisation is straightforward for
call-by-name and call-by-value languages. With call-by-need languages the issue of work
duplication arises: we wish to propagate as much information as possible (to achieve
optimisation) but do not want to risk duplicating work to do so. Achieving the right trade-
off here complicates the definition of split . When considering a call-by-need language with
full recursive let then the problem of defining a good split becomes harder again: this is
the problem we will solve in this chapter. In Section 4.6 we will review the reasons why
defining split is so particularly difficult in our setting compared to the alternatives.

4.1 The push-recurse framework

To aid exposition, we will think about splitting as a two stage process.

1. In the first stage, which we call the pusher (as it inlines and pushes bits of syntax
into each other), the input state is transformed into a new “pushed” state where
every immediate subterm has been replaced with a nested state. For example, an
input state such as

⟨a ↦ f xs , b ↦ g 100, f ↦ g 10⎪⎪⎪⎪(a, b)⎪⎪⎪⎪ǫ⟩
might be transformed by the pusher into the pushed state

⟨a ↦ ⟨f ↦ g 10⎪⎪⎪⎪f xs⎪⎪⎪⎪ǫ⟩ , b ↦ ⟨ǫ⎪⎪⎪⎪g 100⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ (a, b) ⎪⎪⎪⎪ ǫ⟩
This stage is by far the most complicated of the two and will be covered in detail
in Section 4.3.

2. The second stage, after extracting a pushed state, is to recursively supercompile
every nested state in the pushed state (such as ⟨ǫ⎪⎪⎪⎪g 100⎪⎪⎪⎪ǫ⟩) and use the results of
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that recursion to reassemble the final result term. So, after driving and reassembling
the example above might turn into the following final term returned by split :

let a = h5 g xs
b = h6 g

in (a, b)
We will cover this stage in detail in Section 4.4.

Remembering that the states to be split are normalised, and so they may have only a
value or variable in the focus, the grammar of pushed states is as you would expect (in
this section we will elide all tags for clarity):

Pushed States S̊ ∶∶= ⟨H̊⎪⎪⎪⎪⎪e̊⎪⎪⎪⎪⎪K̊⟩
Pushed Heaps

H̊ ∶∶= h̊ Heap

h̊ ∶∶= x ∶τ ↦ e̊ Heap binding

Pushed Terms

e̊ ∶∶= x Term variable∣ λx ∶τ.S Term abstraction∣ C τ x Algebraic data∣ Λα ∶κ.S Type abstraction∣ S Raw state

Pushed Stacks

K̊ ∶∶= κ̊ Stack
κ̊ ∶∶= update x ∶τ Update frame∣ ● x Supply argument to function value∣ ● τ Instantiate value

∣ case ● of C α ∶κ x ∶τ → S Scrutinise value

Given this framework, we can write split as follows:

split ∶∶Monad m ⇒ (State →m Term)
→ State → m Term

split opt S = traverse ˚State opt S̊

where S̊ = push S

where we use two functions:

push ∶∶ State → ˚State

traverse ˚State ∶∶Monad m ⇒ (State → m Term)
→ ˚State →m Term

The call traverse ˚State opt S̊ is intended to recursively replace all nested states S in the
argument S̊ with opt S and rebuild the result into a term. So for example,

traverse ˚State (return .rebuild) ⟨a ↦ ⟨f ↦ g 10⎪⎪⎪⎪f xs⎪⎪⎪⎪ǫ⟩ , b ↦ ⟨ǫ⎪⎪⎪⎪g 100⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ (a, b) ⎪⎪⎪⎪ ǫ⟩
gives the term:

let a = let f = g 10 in f xs
b = g 100

in (a, b)
Our real push function will be defined in Section 4.3. We begin with an extensive intro-
duction to how an ideal push function should behave.

54



4.2 Avoiding information loss in the splitter

Many simple definitions of the splitter are “correct” by the definition of Section 3.8 and
so are safe to use in supercompilation, but fail to achieve certain kinds of specialisation.

The rebuild splitter The simplest possible splitter (albeit one which does not fit within
the push-recurse framework) is defined by:

split opt S = return (rebuild S)
This splitter is non-optimal because it fails to achieve any optimisation of any subcom-
ponents of the input state. A supercompiler with a splitter like this would only achieve
reduction at the very top level of the input state, and so it would be able to optimise the
input term (λy .y) a to a, but would not be able to optimise λa. (λy .y) a to λa.a or
case p of (a, b)→ (λy .y) a to case p of (a, b) → a.

The subterm splitter A slightly better splitter is the splitter which recursively super-
compiles subterms of the input state. This can be defined in the push-recurse framework
as a splitter with the following push function:

push ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩Σ∣Γ = ⟨pushH(Σ,Γ′∣H)⎪⎪⎪⎪push●(Σ,Γ′∣e)⎪⎪⎪⎪pushK(Σ,Γ′∣K)⟩
where Γ′ = Γ , {x ∶τ ∣ update x ∶τ ∈K}

, {x ∶τ ∣ x ∶τ ↦ e ∈H}
pushH(Σ,Γ∣ǫ) = ǫ

pushH(Σ,Γ∣x ∶τ ↦ e,H) = x ∶τ ↦ push●(Σ,Γ∣e),pushH(Σ,Γ∣H)
push●(Σ,Γ∣x) = x

push●(Σ,Γ∣λx ∶τ. e) = λx ∶τ. ⟨ǫ⎪⎪e⎪⎪ǫ⟩Σ∣Γ,x∶τ
push●(Σ,Γ∣Λα ∶κ. e) = Λα ∶κ. ⟨ǫ⎪⎪e⎪⎪ǫ⟩Σ,α∶κ∣Γ

push●(Σ,Γ∣C τ x) = C τ x

push●(Σ,Γ∣e) = ⟨ǫ⎪⎪e⎪⎪ǫ⟩Σ∣Γ
pushK(Σ,Γ∣ǫ) = ǫ

pushK(Σ,Γ∣κ,K) = pushκ(Σ,Γ∣κ),pushK(Σ,Γ∣K)
pushκ(Σ,Γ∣update x ∶τ) = update x ∶τ

pushκ(Σ,Γ∣ ● x) = ● x

pushκ(Σ,Γ∣ ● τ) = ● τ

pushκ(Σ,Γ∣case ● of C α ∶κ x ∶τ → e) = case ● of C α ∶κ x ∶τ → ⟨ǫ⎪⎪e⎪⎪ǫ⟩Σ∣Γ

A supercompiler that uses a push-recurse split defined with this push function is able to
optimise λa. (λy .y) a to λa.a or case p of (a, b) → (λy .y) a to case p of (a, b) → a,
unlike the simple rebuild splitter above. However, this split still leaves something to be
desired. For example, it will split the state:
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let a = id y
id = λx . x

in Just a

as follows: ⟨a ↦ ⟨ǫ⎪⎪⎪⎪id y⎪⎪⎪⎪ǫ⟩ , id ↦ λx . ⟨ǫ⎪⎪x⎪⎪ǫ⟩ ⎪⎪⎪⎪ Just a ⎪⎪⎪⎪ ǫ⟩
This splitting would mean that our supercompiler couldn’t reduce the call id y at compile
time, since the definition of the id function is not present in the appropriate nested heap.

Heap pushing in the subterm splitter To fix the immediate problem, you might
modify the push function so that all heap bindings in the heap passed to push are copied
to all of the nested heaps in the pushed state returned by push (if this happens, we say
that those heap bindings have been “pushed down”). So for our example above, the
pushed state would be:

⟨a ↦ ⟨a ↦ id y , id ↦ λx . x⎪⎪⎪⎪id y⎪⎪⎪⎪ǫ⟩ , id ↦ λx . ⟨a ↦ id y , id ↦ λx . x⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ Just a ⎪⎪⎪⎪ ǫ⟩
This does allow the supercompiler to statically reduce the id application in the example.
However, such a splitter is unsuitable for our purposes as it may duplicate work, such as
when asked to split this state:

let n = fib 100
b = n + 1
c = n + 2

in (b, c)
In which case the pushed state (ignoring dead heap bindings) would be something like:

⟨n ↦ ⟨ǫ⎪⎪⎪⎪fib 100⎪⎪⎪⎪ǫ⟩ , b ↦ ⟨n ↦ fib 100⎪⎪⎪⎪n + 1⎪⎪⎪⎪ǫ⟩ , c ↦ ⟨n ↦ fib 100⎪⎪⎪⎪n + 2⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ (b, c) ⎪⎪⎪⎪ ǫ⟩
One solution to this problem of potential work duplication would be to only push down
that portion of the input heap which is manifestly cheap (i.e. a value or variable). This
heuristic is sufficient to statically reduce the id application in our example as it leads to
the following pushed state (again ignoring dead heap bindings):

⟨a ↦ ⟨id ↦ λx . x⎪⎪⎪⎪id y⎪⎪⎪⎪ǫ⟩ , id ↦ λx . ⟨ǫ⎪⎪x⎪⎪ǫ⟩ ⎪⎪⎪⎪ Just a ⎪⎪⎪⎪ ǫ⟩
However, this simple heuristic fails to achieve as much optimisation as we would like with
examples such as the following:

let map = . . .
ys =map f zs
xs = map g ys

in Just xs

which would be split as follows:

⟨ys ↦ ⟨map ↦ . . .⎪⎪⎪⎪map f zs⎪⎪⎪⎪ǫ⟩ , xs ↦ ⟨map ↦ . . .⎪⎪⎪⎪map g ys⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ Just xs ⎪⎪⎪⎪ ǫ⟩
This splitting means we cannot achieve deforestation of the two nested map calls because
they are independently supercompiled. We would prefer a splitting where ys is instead
pushed down into the heap binding for xs :

⟨xs ↦ ⟨map ↦ . . . ,ys ↦map f zs⎪⎪⎪⎪map g ys⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ Just xs ⎪⎪⎪⎪ ǫ⟩
In general we want to push down as much syntax as possible, so that our recursive
invocations of the supercompiler have as much information as possible to work with.
With this in mind, our real push function will in fact push down heap bindings if they are
manifestly either cheap or used linearly in a certain sense (as in this map-composition
example). In either case, there is no risk of work duplication.
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Stack pushing in the subterm splitter We have concentrated a lot on pushing down
heap bindings, but we have not yet said much about how the stack component of the input
state should be handled. Returning to our original simple subterm splitter, we find that
we would split the state

⟨ǫ⎪⎪⎪⎪unk⎪⎪⎪⎪case ● of True → False;False → True,case ● of True → x ;False → y⟩
as follows:

⟨ǫ⎪⎪⎪⎪⎪⎪⎪⎪⎪unk
⎪⎪⎪⎪⎪⎪⎪⎪⎪
case ● of True → ⟨ǫ⎪⎪⎪⎪False⎪⎪⎪⎪ǫ⟩

False → ⟨ǫ⎪⎪⎪⎪True⎪⎪⎪⎪ǫ⟩
,case ● of True → ⟨ǫ⎪⎪x⎪⎪ǫ⟩

False → ⟨ǫ⎪⎪⎪⎪y⎪⎪⎪⎪ǫ⟩ ⟩
We would really prefer the following alternative splitting where the tail of the stack is
pushed into the two branches of the first case, which allows the intermediate scrutinisation
of a Bool to be performed at compile time:

⟨ǫ⎪⎪⎪⎪⎪⎪⎪⎪⎪unk
⎪⎪⎪⎪⎪⎪⎪⎪⎪
case ● of True → ⟨ǫ⎪⎪⎪⎪False⎪⎪⎪⎪case ● of True → x ;False → y⟩

False → ⟨ǫ⎪⎪⎪⎪True⎪⎪⎪⎪case ● of True → x ;False → y⟩ ⟩
Our real push function will indeed produce this pushed state, in line with the general
principle that in order to achieve maximum specialisation we wish to push down as much
syntax as possible without duplicating work.

Positive information The last important point to bear in mind when defining push is
that we gain information about a free variable when it is scrutinised by a residual case.
This extra “positive information” can be represented by adding additional heap bindings
to the nested states we are to supercompile. Thus, given the state

⟨not ↦ . . . , xor ↦ . . .⎪⎪⎪⎪x⎪⎪⎪⎪case ● of True → not x ;False → xor x True⟩
we should split as follows:

⟨ǫ⎪⎪⎪⎪⎪⎪⎪⎪⎪x
⎪⎪⎪⎪⎪⎪⎪⎪⎪
case ● of True → ⟨x ↦ True,not ↦ . . .⎪⎪⎪⎪not x⎪⎪⎪⎪ǫ⟩

False → ⟨x ↦ False, xor ↦ . . .⎪⎪⎪⎪xor x True⎪⎪⎪⎪ǫ⟩ ⟩
By making use of the values of x we have learnt from the case alternatives, we are able
to statically reduce the not and xor operations in each branch.

In the next section we describe in detail our push function that constructs pushed
states. In Section 4.4, we discuss issues relating to the process whereby the pushed states
are recursively driven and then “pasted” back together.

4.3 Our pushing algorithm

The push function, of type State → ˚State , can be described at a high level as consisting
of a number of stages:

1. A “sharing-graph” is extracted from the input state, where:

• Each graph node c corresponds to either a single stack frame in the input state
(denoted by the 0-based index of that stack frame, n), a single heap binding in
the input state (denoted by the corresponding bound variable x), or the focus
of the term (denoted by ●)
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c ∶∶= ● Focus of input∣ x Heap binding for x in input∣ n Stack frame at index n in input
o ∶∶= ✓ Used in at most one context∣ ✗ Used by multiple contexts

Figure 4.1: Grammar of sharing-graph nodes and edges

• A (directed) edge from one node to another indicates that the former makes
reference to the latter. These edges make explicit the sharing relationship
between the parts of the input state. These edges will be labelled, where the
labels o are either ✓ or ✗: we will explain the meaning of these labels in
Section 4.3.1.

For reference, the grammar of nodes and edges is given formally in Figure 4.1.

2. This sharing-graph is solved to extract the set of marked nodes M . The intention is
that any node which is marked will have its corresponding syntax pushed down into
the state subcomponents that we will recursively supercompile, and furthermore it
is usually true that any node which is marked will not be residualised. In order to
propagate as much information as possible to our children, we desire that M should
be as large as possible. At the same time, we must avoid marking nodes in such a
way that pushing down will cause work duplication.

Striking the right balance between work duplication and information propagation
is hard, and is why we need to explicitly track sharing relationships via the sharing
graph data structure.

3. The final pushed state has one nested state for every direct recursive invocation of
the supercompiler we intend to make. Each of these nested states will contain heaps
and stacks which consist only of those portions of the input heap and stack which
have been marked by the previous step.

We discuss each of these stages in detail below. For clarity, all of our definitions assume
that terms are untagged, though they extend in an obvious manner to tagged terms.

This method of splitting a state may appear overelaborate at first blush. However, the
algorithm presented in this chapter is the last in a long line of our attempts to solve the
splitting problem, and as such is the result of considerable experimentation with different
approaches of varying complexities. We found that in practice it was very easy to define
an algorithm which worked acceptably well for 90% of cases, but devising an approach
that both avoided work duplication and allowed information propagation in all programs
of interest was very difficult, particuarly where those programs involved letrec.

In particular, we found that the identification of sharing graphs and their solution
procedure as a separable problem was a great help in the process of devising a correct
algorithm.

4.3.1 Sharing-graphs

In the previous section, we described sharing graphs as being (possibly-cyclic) directed
graphs with labelled edges. The grammar of nodes c and edge labels o was given in
Figure 4.1.

58



In what follows, we will represent sharing-graphs mathematically as a doubly nested
mapping. To be precise, the graph will be a mapping from the nodes of the graph to
maps from successors of that node to the label. For example, the object {x ↦ {y ↦
✓, z ↦ ✗}, y ↦ {x ↦ ✗}, z ↦ ∅} represents the following sharing-graph:

x yz

✓

✗

✗

Note that this representation enforces the invariant that there is at most one edge between
any pair of nodes. It also allows for graphs containing edges to nonexistent nodes, such
as the node y in {x ↦ {y ↦ ✓}}. This is a useful property of the representation when
we are compositionally forming graphs and do not yet know what nodes will be present
in the complete graph. In the case where a “dead” edge like this remains even once the
complete sharing-graph has been constructed (which can happen), it will be harmless to
our splitting algorithms—they simply treat such edges as nonexistent.

Sharing-graph construction We have so far deferred discussion of the meaning of
edge labels o. A vague but perhaps helpful explanation is that if we have an edge c0

o
→ c1

then o is ✓ if and only if we are able and motivated to push the syntax corresponding
to c1 into a residualised version of the syntax corresponding to c0. If this is not the case
then the edge is labelled instead with ✗.

• To be “able” to do the pushing means that if c0 is the sole reference to c1 then by
pushing c1 into a residualised version of c0 we would not lose work sharing.

• To be “motivated” to push down means that pushing the syntax for c1 down has
some chance of achieving useful simplification from recursive supercompiler invoca-
tions.

Note that both of these tests are done only with information local to c0: in order to decide
whether we are able and motivated we do not need to do a complex work duplication check
involving other potential users of c1. This means that the sharing graph has the property
that the labelled edges outgoing from a node c can be computed entirely from the syntax
corresponding to c, which in turn allows our implementation to construct the sharing-
graph compositionally from the different components of the state.

Actual consideration of the full work duplication consequences of making nodes avail-
able for pushing is left entirely to the next stage of the pushing algorithm: the sharing-
graph solver (Section 4.3.2).

The principles embodied by the “able and motivated” test should become clearer later
when we consider a number of examples of states and their corresponding sharing-graphs.

Sharing-graphs are constructed by the graph family of functions given in Figure 4.2.
The graph is constructed compositionally, with roughly one graph function for each syn-
tactic entity (heap binding, stack frame, focus) in a state. A rough overview is that:

• The graph node for each syntactic entity has outgoing edges to the heap binding
nodes for each of the syntactic entity’s free variables.

• The graph node corresponding to the focus has an outgoing edge to the first stack
frame’s node.

• The graph nodes corresponding to each stack frame each have one outgoing edge to
the subsequent stack frame’s node.
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graph●(e) = {●↦ ({0↦ ✗} ∪ ĝraph●(e))}
ĝraph●(x) = {x↦ ✗}

ĝraph●(λx ∶τ. e) = ĝraphe(e)(✗) ∖ {x}
ĝraph●(Λα ∶κ. e) = ĝraphe(e)(✓)
ĝraph●(C τ x) = {x↦ ✗ ∣ x ∈ x}

ĝraph●(e) = ĝraphe(e)(✓)
graphK(K) = ⋃{graphκ(κ)(i) ∣ K[i] = κ}

graphκ(update x ∶τ)(i) = {i↦ {i + 1↦ ✗}, x↦ {i↦ ✗}}
graphκ(● x)(i) = {i↦ {i + 1↦ ✗, x ↦ ✗}}
graphκ(● τ)(i) = {i↦ {i + 1↦ ✗}}

graphκ(case ● of C α ∶κ x ∶τ → e)(i) = {i↦ ({i + 1↦ ✓} ∪ {y ↦ ✓ ∣ y ∈ ⋃ fvs (e) ∖ x})}
graphH(ǫ) = ∅

graphH(x ∶τ ↦ e,H) = {x↦ ĝraph●(e)} ∪ graphH(H)
ĝraphe(e)(c) = {y ↦ c ∣ y ∈ fvs (e)}

Figure 4.2: Construction of sharing-graphs

Example 1: a simple heap

⟨a↦ f b c, b ↦ g d , c ↦ h d , d ↦ fib x⎪⎪⎪⎪Just a⎪⎪⎪⎪ǫ⟩
● a b

c

d
✗ ✓

✓

✓

✓

All of the edges in this graph which originate from heap binding nodes are labelled with
✓. This reflects the fact that:

• We are able to float a let-binding for x into a let-binding which references x without
duplicating the work embodied by x, (assuming that x is not in fact referenced
anywhere else).

• Our sharing-graph construction algorithm is designed with the assumption that it
could potentially improve optimisation if we had access to the definitions of the free
variables of a heap binding when supercompiling that binding (such as if we were
pushing xs ↦ map f ys into another binding ys ↦ map g xs). Therefore, we are
motivated to do such pushing.

As a human we might look at this example state and see that since f g and h are
all unknown functions, nothing can come of pushing down the definitions of b, c or
d . However, remember that the construction of sharing-graphs makes use of only
information local to nodes, and by looking at a binding like a ↦ f b c in isolation we
cannot say whether the definition of f is available or not, so we must optimistically
say that any of the free variables f , b and c are all motivational.
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The final edge ●
✗
→ a indicates that although pushing a into the argument of Just wouldn’t

duplicate any work, the data constructor context is certainly boring and so we have no
motivation to do so.

Example 2: a work-duplicating context

⟨n↦ fib x⎪⎪⎪⎪λy .n + y⎪⎪⎪⎪ǫ⟩
● n

✗

The solitary edge in this graph is marked ✗ to reflect the fact that pushing the definition
of n beneath the λ would cause work duplication, and so we are not able to push it down.

Example 3: a simple stack

⟨f ↦ λx .case x of True → False;False → True⎪⎪⎪⎪g⎪⎪⎪⎪0: ● xs,1: ● f ⟩
● 0 1 f

✗ ✗ ✗

This example is the first to include a stack frame. In order to aid exposition we make the
index i of each stack frame κ in the state explicit using the notation i:κ.

When the sharing graph is constructed for a non-empty stack, the focus node ● has an
edge to the first stack frame node 0, and then each stack frame node has an edge to the

node of the following frame, such as the edge 0
✗
→ 1 in this graph. When defining sharing-

graphs, we said that there would be an edge between nodes if the predecessor node made
use of the successor. When it comes to stack frame references, this use relationship is less
explicit than with heap binding references, but it is still present: it is the use relationship
you would see if you were to transform the state into continuation-passing style.

In this graph, all edges have been annotated with ✗:

• For the edge ●
✗
→ 0, we choose ✗ since we have (usually) already attempted to reduce

the input to the splitter, and so there are probably no remaining opportunities for
the focus to react with the first stack frame 0: as a result we are unmotivated to
push it into a residualised version of the focus.

• For the edge 0
✗
→ 1, we choose ✗ for similar reasons: there is no motivation to push

the second stack frame into a residualised version of the first stack frame. Indeed, in
this case it is unclear as to exactly what pushing a stack frame into the residualised
stack from ● xs would mean given the restrictive grammar of stack frames. (We will
shortly see an example where the act of pushing a stack frame within another does
make sense.)

• Finally, for the edge 1
✗
→ f we choose ✗, as a residualised version of the second stack

frame ● f is an entirely boring context into which to push the definition of f : there
is no extra context you can glean from being the argument of an unknown function
application.

Example 4: scrutinisation

⟨ǫ⎪⎪⎪⎪⎪⎪⎪⎪⎪unk
⎪⎪⎪⎪⎪⎪⎪⎪⎪
0:case ● of True → False

False → True
,1:case ● of True → f

False → g
,2: ● x,3: ● y⟩

● 0 1 2 3
✗ ✓ ✓ ✗
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This example demonstrates a case where edges pointing to stack frames may usefully be

marked ✓ rather than ✗. The edges 0
✓
→ 1 and 1

✓
→ 2 indicate that we are motivated to

push the tail of the stack into either of the two case frames, since we might potentially be
able to interact a data constructor within a case branch with the stack tail. Furthermore,
doing so would not be work duplicating.

Just like our previous example, the edge ●
✗
→ 0 indicates that we should not attempt

to absorb the initial stack frame into the focus: we would not be able to make progress
by doing so since that stack frame would only be able to interact with the same in-focus
information that we have already simplified and normalised it with regards to. A similar

argument applies for the edge 2
✗
→ 3: the supercompiler has already failed to discover the

result of the application with argument x , and so it is unmotivated to try to absorb the
application with argument y because the function we are calling is unknown.

Example 5: update frames

⟨x ↦ fib y⎪⎪⎪⎪f⎪⎪⎪⎪0: ● x,1:update y⟩
● 0

x

1

y

✗ ✗

✗

✓

✗

Update frames are unique amongst the stack frames in that the graph generated for them
includes nodes not only for the frame itself but also for the variable they bind, such as

the edge y
✗
→ 1 in the example. The purpose of these edges is to ensure that we avoid

pushing down any update frame that binds a variable that is used elsewhere.

Because these edges are essentially “tricks” meant to ensure that references to variables
bound by the stack transitively reference the corresponding stack frame in the sharing-

graph, the annotation on the edges y
✗
→ 1 is actually irrelevant to what follows: we simply

make the arbitrary choice of ✗.

Without these edges, we would always push all trailing stack frames into the first case
frame on the stack, thus erroneously turning

⟨y ↦ fib x⎪⎪⎪⎪f⎪⎪⎪⎪● y,case ● of True → e1;False → e2,update x⟩
into a pushed state of the form:

⟨y ↦ ⟨ǫ⎪⎪⎪⎪fib x⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪f⎪⎪⎪⎪● y,case ● of True → ⟨ǫ⎪⎪⎪⎪e1⎪⎪⎪⎪update x⟩ ;False → ⟨ǫ⎪⎪⎪⎪e2⎪⎪⎪⎪update x⟩⟩

4.3.2 Solving sharing-graphs

Once we have constructed the sharing-graph for a state, we need to solve it to determine
a set M of marked nodes suitable for pushing down that is as large as possible while
avoiding duplicating work through that pushing.

Solving sharing-graphs is not entirely straightforward, because deciding if marking a
node may cause a loss of work sharing cannot be done by a test which only has access to
information local to a node such as the number of incident edges. For example, with the
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following sharing graph:

a

b

c

d

✓

✓

✓

✓

A naive syntactic test that looked at incident incoming edges would say that d could not
be marked as it is used by two other nodes. However, in fact it is acceptable to mark
d since both b and c can be marked and will be pushed into the common residualised
(unmarked) node a.

The acceptability of marking d depends delicately on non-local information. For ex-

ample, if the edge between a and c had been a
✗
→ c instead then c could not have been

marked, which would have led to d not being markable (pushing d down would copy it
into both the c and a contexts, duplicating work in the process). Likewise, if the edge

a
✓
→ c had been replaced with an edge e

✓
→ c with e another unmarked node, then we

would not be able to mark d even though it would be permissible to mark both of its
predecessors b and c (pushing d down would copy it into both the a and e contexts, again
duplicating work).

The situation becomes even more complicated when you consider that graphs can have
arbitrary cyclic structure. For this reason we will spend this section giving the matter of
graph marking a comprehensive treatment.

We will often wish to draw graphs which have corresponding marked-node sets. For
such graphs, marked nodes will be drawn with a darker background. For example, the
node m below is marked but n is not:

m n
✗

In our description of the marking process, the first thing we can do is give a property of
marked sets which, if it holds for a set, means that constructing a pushed state with that
set will never cause work duplication. We call this property admissability. Informally, it
is only admissable for a node to be marked if either that node is cheap (i.e. it corresponds
to a heap binding for a cheap term), or if marking it would result in it being pushed into
a unique, non-work-duplicating, context.

Our notion of term cheapness is captured by a predicate which identifies terms which
can certainly be freely duplicated without risking work duplication:

cheap(e) = e ≡ x ∨ e ≡ v

Before we formally define admissability, we need to define the notion of a pushing path.

Definition 4.3.1 (Pushing path). For a set of marked nodes M , a pushing path c
o
↠
M

c′

is a path in a sharing graph of the form:

c
o
→ c0

o0
→ . . . ci

oi
→ . . .

on
→ c′

Such that:

• The path begins with the unmarked node c ∉M

• It travels through zero or more nodes ci all of which are marked: ci ∈M
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• The path ends at the marked node c′ ∈M

The relevance of this definition is that if there is a pushing path from c
o
↠
M

c′ then the

pushed state constructed from this marking will have pushed the syntax corresponding
to c′ into the residual syntax corresponding to c.

We will sometimes omit the marking M from a pushing path (writing c
o
↠ c′) where

it is clear from context.

Definition 4.3.2 (Admissable marked sets). A set M of marked nodes is admissable for
some sharing-graph G if:

1. The focus node is unmarked: ● ∉M

2. For every node c, at least one of the following is true:

• The node is unmarked: c ∉M , OR

• The node is unreachable from ●, OR

• The node is cheap: c ≡ x ∧ cheap(H(x)) for the heap H in the corresponding
state, OR

• The node is marked (c ∈ M), and there is a unique unmarked node croot ∉ M

such that all pushing paths in G that end at c have the form croot
✓
↠
M

c

In order to solidify our intuition about admissability, we now consider some examples
of admissable markings.

Example 1: work-duplicating contexts

⟨xs ↦ enumFromTo a b, n↦ length xs⎪⎪⎪⎪λy .n + y⎪⎪⎪⎪ǫ⟩
● n xs

✗ ✓

In this example, it would be inadmissable to mark the node n because then there would

be a pushing path ●
✗
↠ n. Indeed, marking n would be dangerous for work duplication

reasons because it would cause the expensive n binding to be pushed underneath the λ.
However, it is admissable to mark xs because if we do there is only a single pushing

path ending at xs , namely n
✓
↠ xs. This reflects the fact that as long as n is residualised

(i.e. not marked and thus pushed under the lambda), it is safe to inline arbitrary let-
bindings into it.

Example 2: transitive uses

⟨x ↦ enumFromTo a b, y ↦ length xs , z ↦ fib y⎪⎪⎪⎪Just z⎪⎪⎪⎪ǫ⟩
● z y x

✗ ✓ ✓

Similarly to the previous example, it is admissable to mark y and x because there is a
single pushing path ending at each of them (both of which begin at z ). As expected, this
admissable marking does not lead to work duplication because it corresponds to pushing
the y and x bindings into the let-binding for z .
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Example 3: multiple uses

⟨x ↦ fib y , y ↦ f x , z ↦ g x⎪⎪⎪⎪(y , z)⎪⎪⎪⎪ǫ⟩
● z

y

x
✗

✗ ✓

✓

In this example, it is inadmissable to mark z or else we would have a pushing path ●
✗
↠ z

(similarly, marking y is inadmissable). As a consequence, it is inadmissable to mark x

because if we did we would have two pushing paths z
✓
↠ x and y

✓
↠ x.

The inadmissability of x reflects the fact that pushing it into both y and z would cause
the work memoised by x to be duplicated.

Example 4: cheap bindings

⟨x ↦ fib n, y ↦ Just x , z ↦ f y⎪⎪⎪⎪(y , z)⎪⎪⎪⎪ǫ⟩
● z

y x

✗

✗
✓

✓

If y were not cheap in this example, it would be inadmissable to mark it. As it is cheap,
however, y may be marked. However, it is still inadmissable to mark x because doing so

would give rise to the two pushing paths ●
✗
↠ x and z

✓
↠ x.

Example 5: unreachable nodes

⟨x ↦ enumFromTo 1 100, y ↦ length x , z ↦ sum x⎪⎪⎪⎪Just z⎪⎪⎪⎪ǫ⟩
● z

y

x
✗ ✓

✓

In this example, it is admissable to mark y as it is unreachable from the focus node ●.
Because we are able to mark y , it is admissable to mark x as well. Marking any nodes
which are not reachable from the focus node has a twofold effect:

• It ensures that we do not consider dead heap bindings such as y above to use their
free variables. If we did not drop such nodes then we might risk identifying x as a
shared heap binding used by both y and z which we could not then inline into the
residual heap binding for z.

• Similarly, it ensures that dead bindings originating from update frames, such as y
in ⟨ǫ⎪⎪⎪⎪x⎪⎪⎪⎪0:case ● of True → e1;False → e2,1:update y,2: ● z⟩, do not count as uses
of those update frames. Without dropping such nodes, we risk that in the above
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state we would not be able to inline the trailing stack frames update y,● z into
the branches of the enclosed case as the update frame for y would be forced to be
residualised due to apparent sharing of the node 1 between the nodes 0 and y.

Maximum markings A natural question to ask is whether for some particular graph
there exists a maximum marking : i.e. an admissable marking such that any other ad-
missable marking is a subset of it. If such a maximum existed, we would certainly want
to use it to solve a sharing-graph for the splitter to ensure that as much information as
possible is propagated. In fact, such a maximum does not necessarily exist. Consider:

⟨x ↦ fib n,y ↦ fib m, z ↦ (x ,y)⎪⎪⎪⎪λa. f z⎪⎪⎪⎪ǫ⟩
● z y

x

✗

✓

✓
● z y

x

✗

✓

✓

Either of the two admissable markings suggested above are maximal in the sense that not
even a single additional node can be marked without the marking becoming inadmissable,
but they are not equivalent. Therefore, a unique maximum does not exist.

Note, however, that one of the two markings is preferable to the other: we should prefer
the marking {z} to {y , x}. The reason is that z is a simple value (x ,y), and pushing the
definitions of x and y is therefore pointless since they cannot interact further with the
boring “value context” in which they are used. However, pushing z under the λ could
potentially lead to simplification because the function f might scrutinise its argument.

Because of this observation, when solving a sharing-graph we will always prefer to mark
cheap nodes if we have a choice1. Under this constraint, a unique maximum marking does
in fact exist. When we talk about finding the maximum marking later in this document,
we mean that we find it under this constraint.

To prove that a maximum marking exists, we first need a lemma that shows that
marking groups of nodes which are admissable because they have unique pushing paths
does not prevent later marking of other groups of nodes which are admissable for the
same reason. Essentially, this lemma states that it does not matter in which order we
mark nodes when building a marking by iterated set union.

Lemma 4.3.1 (Admissability preservation). For a sharing-graph G, if there exist mark-
ings M , M ′ and M ′′ such that:

• All of M , M ∪M ′ and M ∪M ′′ are admissable

• If cheap(H(x)) then x ∈M

• If c is unreachable from ● in G then c ∈M

Then M ∪M ′ ∪M ′′ is also admissable.

1The strategy of always marking cheap nodes can give non-optimal results, but only in the un-
usual situation where we have a type-abstraction Λ over a non-value, such as let y = not z ; x =
Λα.case y of True → False;False → True in (id x , id x). An optimal pushed state for this would
be ⟨x↦ Λα. ⟨y ↦ not z⎪⎪⎪⎪y⎪⎪⎪⎪case ● of True → False;False → True⟩⎪⎪⎪⎪(⟨ǫ⎪⎪⎪⎪id⎪⎪⎪⎪● x⟩ , ⟨ǫ⎪⎪⎪⎪id⎪⎪⎪⎪● x⟩)⎪⎪⎪⎪ǫ⟩, which al-
lows deforestation of the result of not . However if we always mark cheap nodes then we will create the
pushed state ⟨y ↦ not z⎪⎪⎪⎪(⟨x↦ . . .⎪⎪⎪⎪id⎪⎪⎪⎪● x⟩ , ⟨x↦ . . .⎪⎪⎪⎪id⎪⎪⎪⎪● x⟩)⎪⎪⎪⎪ǫ⟩ where the call to not is residualised.
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Proof. Our proposition is that, given node c ∈ (M ∪M ′ ∪M ′′) but c ∉ (M ∪M ′) ∨ c ∉

(M ∪M ′′), there must exist c′ such that there is a unique pushing path c′
✓
↠

M∪M ′∪M ′′

c. We

proceed by induction on the minimum distance (in number of edges) between c and any
node ∉ (M ∪M ′ ∪M ′′).

In the base case, the minimum distance is 0, and hence c ∉ (M ∪M ′ ∪M ′′). However,
this directly contradicts one of our assumptions, and so we are done.

In the inductive case, we consider only the case c ∉ (M ∪M ′′) (the other case follows
symmetrically). We can immediately deduce that c ∈ M ′. Because of our assumptions
about cheapness and unreachability, it must be the case therefore that there exists a

unique pushing path c′
✓
↠

M∪M ′

c, where c′ ∉ (M ∪M ′).
If c′ ∉ M ′′ then the proposition follows immediately since we would have a unique

pushing path c′
✓
↠

M∪M ′∪M ′′

c. In the other case (c′ ∈ M ′′), we can induct to deduce that

there must exist c′′ such that there is a unique pushing path c′′
✓
↠

M∪M ′∪M ′′

c′. (Induction is

valid because c′ ≠ c and so it must be strictly closer to a node ∉ (M ∪M ′ ∪M ′′)).
Armed with the result of induction, we know that the result of joining the two paths

must yield a unique pushing path c′′
✓
↠

M∪M ′∪M ′′

c, as required.

Given this lemma the main theorem is easy to prove:

Theorem 4.3.2 (Maximum marking exists). For a graph G, a maximum marking M

exists given that if cheap(H(x)) then x ∈M .

Proof. Assume that this was not the case: i.e. for some graph G there were two markings
M1 andM2 such thatM1 ≠M2 and both markings are maximal (i.e. there is no admissable
M ′

1 ⊃M1 or M ′
2 ⊂M2).

Let M0 be the smallest marking such that if cheap(H(x)) then x ∈ M0 and if c

is unreachable from ● in G then c ∈ M0. By maximality of both markings, we can
immediately see that M0 ⊂M1 and M0 ⊂ M2. Therefore, since M0 is always admissable,
by Lemma 4.3.1 we know that M0 ∪M1 ∪M2 = M1 ∪M2 must be admissable. However,
this contradicts maximality of M1 and M2.

Finding the maximum marking A simple way to find the maximum marking is to
exhaustively generate all possible markings for a graph and then select the one with the
largest number of elements that passes an admissability test. However, for graphs with
n nodes there will be 2n possible markings, so this may be inefficient, particularly since
we observed that in practice sharing graphs can grow to contain hundreds of nodes. In
practice we prefer the polynomial-time algorithm of Figure 4.3.

The predicate reachable(c, c′,G) holds when c′ is reachable from c in the graph G. The
function sccs(G) returns a topologically-ordered list of (graph, edge map) pairs. Each
graph in the list corresponds to a single strongly-connected-component, containing the
nodes within the SCC as well as the edges between them (note that all nodes in an SCC
are guaranteed to be reachable from each other). Each graph is paired with a mapping
from successor SCCs to another mapping Map (c, c) o which maps pairs of nodes (c, c′)
where c is in the current SCC and c′ is in a successor SCC to the edge annotation o that
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mark(N,G) = m̂ark(N,∅, sccs(G))
m̂ark ∶∶ (Set c,Map c (Maybe c), [(Graph c o, Map (Graph c o) (Map (c, c) o))])

→ Map c c

m̂ark(N,P, ǫ) = ∅

m̂ark(N,P, ((G,E), (G,E))) = M ∪ m̂ark(N,P ′, (G,E))
where PG = {c↦ Pc ∣ c↦ Pc ∈ P, c ∈ dom(G)}

M =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅ PG = ∅

{c↦ ctrg ∣ c ∈ dom(PG)} dom(G) ∩N ≡ ∅ ∧ (ctrg ≡⊞ rng(PG)) ≠ ⧄
mark(N,Gfilt) otherwise

Gfilt = {c↦ {c′ ↦ o ∣ c′ ↦ o ∈ Gc, c′ ∉ dom(PG)} ∣ c↦ Gc ∈ G}
P ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P ∪⊞ ⋃⊞{{c′ ↦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ctrg c ↦ ctrg ∈M

⧄ o ≡ ✗

c otherwise

} ∣ G′ ↦ EG′ ∈ E, (c, c′)↦ o ∈ EG′}

contract(ǫ,G) = G

contract((c,M),G) = contract(M, contract1 (c,G))
contract1 (c,G) = { c0 ↦ {c′1 ↦ o ∣ c↦ o ∈ Gc0, c

′
1 ↦ o′ ∈ (G(c) ∖ {c})}

∪� (Gc0 ∖ {c})∣ c0 ↦ Gc0 ∈ (G ∖ {c})}
c0 ⊞ c1 =

⎧⎪⎪⎨⎪⎪⎩
c0 c0 ≡ c1

⧄ otherwise

o1 � o2 =

⎧⎪⎪⎨⎪⎪⎩
✓ o1 = ✓ ∧ o2 = ✓

✗ otherwise

C0 ∪⋆ C1 = {c↦ o0 ∣ c↦ o0 ∈ C0, c ∉ dom(C1)}
∪ {c↦ o1 ∣ c↦ o1 ∈ C1, c ∉ dom(C0)}
∪ {c↦ o0 ⋆ o1 ∣ c↦ o0 ∈ C0, c↦ o1 ∈ C1}
Figure 4.3: Solving a sharing-graph for the marked set

was on the edge c
o
→ c′ in G. So for example for the following graph:

● a b d

e c

✗ ✓ ✓

✗
✓

✗

One acceptable result (the relative ordering of e and d in the output is unimportant) of
sccs would be:

[ ({●↦ ∅}, {{a↦ {b↦ ✓}, b↦ {c↦ ✗}, c↦ {a↦ ✓}}
↦ {(●, a)↦ ✗}})

, ({a↦ {b↦ ✓}, b↦ {c↦ ✗}, c↦ {a↦ ✓}}, {{e↦ ∅}↦ {(a, e) ↦ ✗},{d↦ ∅}↦ {(b, d)↦ ✓}})
, ({e↦ ∅}, ∅)
, ({d↦ ∅}, ∅)]
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The set N that appears as an argument to mark is the so-called generalisation set used to
prevent certain pushings from occurring. At present, we will always assume that N = {●},
but in Section 6.2.2 we will make more use of this parameter.

We conjecture (but have not proved in detail) that mark can be used to compute a
maximum marking:

Conjecture 4.3.3. The marking Mcheap ∪ dom(mark({●}, contract(Mcheap ,Gorig))) is a
maximum marking for Gorig , where Mcheap = {c ∣ c ∈ dom(Gorig),¬reachable(●, c,Gorig) ∨(c ≡ x ∧ cheap(H(x)))}.

The reason we have for believing this is true is that for every SCC that m̂ark considers,
the maximum admissable number of nodes in that SCC are marked. We only definitively
stop attempting to mark a node when we have detected that it acts as a SCC “entry
node” (i.e. the node has a predecessor in another SCC) for a SCC whose entry nodes do
not have a common target, in which case it is clearly inadmissable (see the section below)
to mark any of the entry nodes.

Furthermore, by Lemma 4.3.1, we know that marking fewer nodes in an earlier SCC
cannot possibly allow us to mark more nodes in a later one. Therefore, the overall marking
set must be maximal.

Because of Theorem 4.3.2, if the algorithm constructed a maximal marking, it would
also be a maximum marking.

Although this conjecture does not say anything about the case where the generalisation
set N supplied to mark is not {●}, we expect that for general N a version of the conjecture
holds true where the computed marked set is the maximum marking “with respect to N”
i.e. it is the maximal marking that does not mark any nodes of N . This property becomes
important when split is used for generalisation (Section 6.2.2)

An explanation of mark We begin by ensuring that all cheap and unreachable nodes
in Gorig are marked, and contract the graph to reflect that. The essential feature of
contract(c,Gorig) is that in the output the node c will be missing, and the old predeces-
sors of c will gain all of the old successors of c as new successors (using � to join any
annotations on edges which would otherwise go between the same pairs of nodes).

With this dealt with, the rest of the algorithm is free to attempt to mark only those
nodes which satisfy the unique-pushing-path admissability criterion. The m̂ark function
considers the graph one SCC at a time in topological order. As it goes along the SCCs it
accumulates a predecessor information mapping P from nodes c to either:

• ⧄, if there certainly cannot be a unique pushing path to c.

• A “target” node ctrg if—from the edges encountered so far—it appears that there is

a unique pushing path ending at c, ctrg
✓
↠ c.

For each SCC it constructs the map PG, mapping entry nodes (i.e. those which have
incoming edges from some preceding SCC) to their predecessor information. Because
we consider nodes in topological order, at the point we reach a SCC the predecessor
information has been updated with information from all predecessors to nodes in the
current SCC G, except for any predecessors which are in G itself.

Now we determine the contribution M to the final graph marking from this SCC. In
fact, within mark we temporarily redefine markings to be not a set, but rather a mapping
from marked nodes to their target nodes: so if c↦ c′ ∈M then in contract(Mcheap ,Gorig)
there will be a pushing path c

✓
↠

Mfinal

c′ forMfinal = dom(mark({●}, contract(Mcheap ,Gorig))).
The domain of M will always be a subset of the nodes in the current SCC graph G.
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In the case that the entire SCC has no predecessors (i.e. PG ≡ ∅) we force M to be
empty. Because the graph input to mark has no unreachable nodes (they were contracted
away), this will only occur in two cases:

1. If G is the acyclic SCC containing only the focus node ●.

2. If G is an acyclic SCC containing only a node which was a SCC entry node for an
earlier use of m̂ark which is recursively calling this instance of m̂ark (this case is
discussed later).

In the case that all of the entry nodes of G have a common target node recorded in PG,
it is admissable to mark the whole SCC, and we do so.

If the entry nodes of G do not have a common target node, we can deduce that it
inadmissable to mark any of the entry nodes. The only entry nodes for which this is
not obvious are those entry nodes c which have a common target recorded in PG i.e.
PG(c) = c′. However, think about what would happen if we marked c in isolation. If we
did, it would have at least two distinct pushing paths terminating at it: one path from c′

and another from one of its predecessors in G. To avoid inadmissability, all predecessors
of c in G would have to be marked as well, and (by the same argument) all of their
predecessors in G, until the entire SCC G would have to be marked. But this is clearly
inadmissable as we already assumed that the entry nodes (a subset of the nodes of G) do
not have a common target.

In this case, even though we cannot mark any of the entry nodes, we might be able to
mark some of the interior nodes of the SCC which are not successors of nodes in earlier
SCCs. We recursively use mark to determine the maximum set of nodes of G that are
suitable for marking (and their target nodes), recursing with Gfilt—a version of G which
ensures that entry nodes do not have any predecessors and hence will never be marked.

When we recurse, we do so with a graph, Gfilt , which has a strictly smaller number of
edges that the graph originally given to mark , so it is easy to show that termination is
guaranteed.

After M has been determined, we update P with predecessor information gleaned
from G. In particular, if a node c in G has been marked and has target node ctrg (i.e.
c ↦ ctrg ∈ M), then we claim that any successor c′ of c will (in the absence of other
predecessors of c′) have the same target node ctrg . Unmarked nodes are either their own
targets to their successors, or cannot act as targets because doing so would mean pushing
along a ✗-marked edge.

4.3.3 Creating the pushed state

Now that we have defined sharing-graphs as well as how to create and solve them, we are
in a position to straightforwardly define the push function used to create a pushed state
suitable for recursive supercompilation from a standard state. In fact, we will define push
in terms of an auxiliary function p̂ush which takes a generalisation set N similar to the
generalisation set argument to the mark function. The definition of push is simple:

push S = p̂ush({●})(S)
For now this will be the only use of p̂ush. It will be used in its full generality when we
come to define generalisation in Section 6.2.

In order to solidify intuition about the operation of push we consider a number of
examples of inputs to push, their sharing graphs (with corresponding maximum markings),
and the optimal (most information propagated) pushed states that will be produced as a
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result of push . Note that for readability in each case we will omit any dead heap bindings
from both the pushed state heap and the nested state heaps.

Example 1: no pushing

⟨x ↦ fib 100⎪⎪⎪⎪λy . x + 1⎪⎪⎪⎪ǫ⟩
● x

✗

⟨x ↦ ⟨ǫ⎪⎪⎪⎪fib 100⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪λy . ⟨ǫ⎪⎪⎪x + 1⎪⎪⎪ǫ⟩⎪⎪⎪⎪ǫ⟩
In this simple example no information can be propagated and so we end up simply recur-
sively supercompiling some subexpressions of the input state.

Example 2: heap pushing

⟨w ↦ fib 100, x ↦ fib w , y ↦ fib w , z ↦ fib x + fib y⎪⎪⎪⎪Just z⎪⎪⎪⎪ǫ⟩

● z

x

y

w
✗

✓

✓

✓

✓

⟨z ↦ ⟨w ↦ fib 100, x ↦ fib w , y ↦ fib w⎪⎪⎪⎪fib x + fib y⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪Just z⎪⎪⎪⎪ǫ⟩
This illustrates how marked heap bindings can be pushed into the nested states that
we supercompile, potentially propagating useful information we can use to simplify the
program at a later date.

Example 3: heap pushing into the stack

⟨y ↦ fib 100⎪⎪⎪⎪x⎪⎪⎪⎪0:case ● of True → y + 1;False → y + 2⟩
● 0

y

✗

✓

⟨ǫ⎪⎪⎪⎪x⎪⎪⎪⎪case ● of True → ⟨y ↦ fib 100⎪⎪⎪⎪y + 1⎪⎪⎪⎪ǫ⟩ ;False → ⟨y ↦ fib 100⎪⎪⎪⎪y + 2⎪⎪⎪⎪ǫ⟩⟩
It is admissable to mark heap bindings for pushing into any context if doing so is admiss-
able, and hence the pushing would not cause work duplication. In this example, we inline
a heap binding into the branch of a stack frame.

Example 4: stack pushing

⟨ǫ⎪⎪⎪⎪unk⎪⎪⎪⎪0:case ● of True → 1 ∶ ys ;False → 2 ∶ ys ,1:update ys ,2:case ● of x ∶ → x ; [ ] → 0⟩
● 0 1

ys

2
✗ ✓

✓

✗

✗

⟨ǫ⎪⎪⎪⎪⎪⎪⎪⎪⎪unk
⎪⎪⎪⎪⎪⎪⎪⎪⎪
case ● of True → ⟨ǫ⎪⎪⎪⎪1 ∶ ys⎪⎪⎪⎪update ys,case ● of x ∶ → x ; [ ] → 0⟩

False → ⟨ǫ⎪⎪⎪⎪2 ∶ ys⎪⎪⎪⎪update ys,case ● of x ∶ → x ; [ ] → 0⟩ ⟩
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In the same way that we can inline marked heap bindings into their use sites, we can inline
marked stack frames into the contexts that the frames receive values from. In practice,
this means that we can push later stack frames into the branches of a case frame.

Example 5: mutually-recursive heap pushing

⟨xs ↦ f x ys ,ys ↦ f x xs , z ↦ head xs + head ys⎪⎪⎪⎪Just z⎪⎪⎪⎪ǫ⟩
● z xs

ys

✗✗ ✓

✓
✓✓

⟨z ↦ ⟨xs ↦ f x ys ,ys ↦ f x xs⎪⎪⎪⎪head xs + head ys⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪Just z⎪⎪⎪⎪ǫ⟩
Just like standard non-recursive heap bindings, our framework allows suitable recursive
and even mutually-recursive heap bindings to be marked and hence pushed.

Example 6: positive information propagation

⟨ǫ⎪⎪⎪⎪unk⎪⎪⎪⎪0:update ys,1:case ● of True → f unk ys ;False → True⟩
● 0 1

✗ ✗

⟨ǫ⎪⎪⎪⎪⎪⎪⎪⎪⎪unk
⎪⎪⎪⎪⎪⎪⎪⎪⎪
0:update ys,1:case ● of True → ⟨unk ↦ True,ys ↦ True⎪⎪⎪⎪f unk ys⎪⎪⎪⎪ǫ⟩

False → ⟨unk ↦ False,ys ↦ False⎪⎪⎪⎪True⎪⎪⎪⎪ǫ⟩ ⟩
In supercompilation, we can learn about the structure of a hitherto-unknown value from
scrutinisation. This learning process is implemented by push.

Example 7: sharing through the stack

⟨z ↦ filter h⎪⎪⎪⎪unk⎪⎪⎪⎪0: ● z,1:case ● of True → f ;False → g ,2:update h,3: ● x⟩
● 0

z

1 2

h

3
✗ ✗

✗

✓

✓ ✗

✗

⟨z ↦ ⟨ǫ⎪⎪⎪⎪filter h⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪unk⎪⎪⎪⎪● z,case ● of True → ⟨ǫ⎪⎪⎪⎪f⎪⎪⎪⎪ǫ⟩ ;False → ⟨ǫ⎪⎪⎪⎪g⎪⎪⎪⎪ǫ⟩ ,update h,● x⟩
If your language has no general recursive heap bindings, there can never be any paths
in the sharing graph from heap nodes to stack nodes (though paths from the stack to
the heap can occur). In this case, the original program used general recursion to build a
graph such that there is a path from the heap to a stack frame, and that graph was such
that it prevented the admissable marking of all but one node in the sharing-graph.

This example also shows that it is irrelevant whether the “heap binding node” for a
variable bound by an update frame (in this case h) is marked if the corresponding update
frame (in this case 2) is not also marked: the update frame will only be pushed down if
the stack frame itself is marked.
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p̂ush(N) ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩Σ∣Γ = ⟨H̊⎪⎪⎪⎪⎪e̊⎪⎪⎪⎪⎪K̊⟩
where (Γ̂H , Ĥ) = prepH(M,H)

ê = prep●(e)(K̂, Γ̂, K̊) = prepresidK(M ∣Σ̂, Γ̂H , Ĥ, ê∣0,K)
e̊ =

⎧⎪⎪⎨⎪⎪⎩
resid ●(Σ̂, Γ̂, Ĥ ∣e) ● ∈ N

⟨Ĥ⎪⎪⎪⎪⎪e⎪⎪⎪⎪⎪K̂⟩Σ̂∣Γ̂ otherwise

H̊ = residH(Σ̂, Γ̂, Ĥ ∣H)
Mcheap = ({x ∣ x ∶τ ↦ e ∈ H, cheap(e)}∪{c ∣ c ∈ dom(G),¬reachable(●, c,G)}) ∖N

M = Mcheap ∪ dom (mark(N, contract(Mcheap ,G)))
GH = graphH(H)
Ge =

⎧⎪⎪⎨⎪⎪⎩
graph●(e) ● ∈ N

{●↦ ({0↦ ✓} ∪ ˆgraphe(e)(✓))} otherwise

GK = graphK(K)
G = GH ∪Ge ∪GK

Figure 4.4: Creating the pushed state

prep●(e) =
⎧⎪⎪⎨⎪⎪⎩
x e ≡ x

ǫ otherwise

resid ●(Σ̂, Γ̂, Ĥ ∣x) = x

resid ●(Σ̂, Γ̂, Ĥ ∣λx ∶τ. e) = λx ∶τ. ⟨Ĥ⎪⎪⎪⎪⎪e⎪⎪⎪⎪⎪ǫ⟩Σ̂∣Γ̂,x∶τ
resid●(Σ̂, Γ̂, Ĥ ∣Λα ∶κ. e) = Λα ∶κ. ⟨Ĥ⎪⎪⎪⎪⎪e⎪⎪⎪⎪⎪ǫ⟩Σ̂,α∶κ∣Γ̂

resid ●(Σ̂, Γ̂, Ĥ ∣C τ x) = C τ x

resid●(Σ̂, Γ̂, Ĥ ∣e) = ⟨Ĥ⎪⎪⎪⎪⎪e⎪⎪⎪⎪⎪ǫ⟩Σ̂∣Γ̂
prepH(M,H) = ({x ∶τ ∣ x ∶τ ↦ e ∈ H,x ∉M},{x ∶τ ∣ x ∶τ ↦ e ∈H,x ∈M})

residH(Σ̂, Γ̂, Ĥ ∣h) = {x ∶τ ↦ resid ●(Σ̂, Γ̂, Ĥ ∣e) ∣ x ∶τ ↦ e ∈H,x ∉ Ĥ ∨ cheap(e)}
prepresidK(M ∣Σ̂, Γ̂, Ĥ, ê∣i, ǫ) = (ǫ, Γ̂, ǫ)

prepresidK(M ∣Σ̂, Γ̂, Ĥ, ê∣i, (κ,K)) = ⎧⎪⎪⎨⎪⎪⎩
((κ, K̂), Γ̂′′,K ′) i ∈M

(ǫ, Γ̂′′, (residκ(Σ̂, Γ̂′′, Ĥ, ê, K̂ ∣κ),K ′)) otherwise

where (K̂, Γ̂′′,K ′) = prepresidK(M ∣Σ̂, Γ̂′, Ĥ, ê′∣i + 1,K)
(ê′, Γ̂′) = ⎧⎪⎪⎨⎪⎪⎩

((x, ê), (x ∶τ, Γ̂)) κ ≡ update x ∶τ ∧ i ∉M

(ǫ, Γ̂) otherwise

residκ(Σ̂, Γ̂, Ĥ, ê, K̂ ∣update x ∶τ) = update x ∶τ

residκ(Σ̂, Γ̂, Ĥ, ê, K̂ ∣ ● x) = ● x

residκ(Σ̂, Γ̂, Ĥ, ê, K̂ ∣ ● τ) = ● τ

residκ(Σ̂, (Γ̂, y ∶T υ), Ĥ , y, K̂ ∣case ● of C α ∶κ x ∶τ → e)
= case ● of C α ∶κ x ∶τ → ⟨Ĥ, y ∶T υ ↦ C υ,α x

⎪⎪⎪⎪⎪e⎪⎪⎪⎪⎪K̂⟩Σ̂,α∶κ∣Γ̂,x∶τ

Figure 4.5: Preparing and residualising syntax for pushed states
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Defining p̂ush Figure 4.4 shows the definition of the p̂ush function, which makes use
of the auxiliary functions defined in Figure 4.5.

The essential action of p̂ush is to construct a sharing-graph from the input using the
graph functions, solve it using mark , and then use the prep and resid family of functions
to construct a pushed state from the input state and the marking.

• The prep family of functions is (loosely speaking) designed to prepare syntax for
pushing into the nested states within the final pushed state.

• The resid family of functions is designed to produce the syntax (heap, stack and
focus) that belongs to the pushed state itself (rather than any nested state).

Interesting features of the definitions are:

• The prepared version of the focus ê is not a term per-se, but rather a list of variables
that the focus is certainly equal to. This is used to implement positive information
propagation.

• Cheap heap bindings are included in both the prepared and residualised versions of
the heap. This is because we both want to inline them into any use site, but also
make them available for residualisation in the output in case they are required. You
can think of this as if cheap bindings are copied down into nested states, whereas
non-cheap bindings are moved down.

• We inline the entire prepared heap into each nested state with no regard for which
of the heap bindings are actually required by the rest of that state. This might seem
reckless, but in fact it does not lead to work duplication because any of the pushed
bindings which are not required will of course not be evaluated and will eventually
be dropped as dead code.

• In the definition of residκ, for anything other than a case frame we appear to throw
away the portion K̂ of the prepared stack passed as an argument, without including
it in the result. In fact, because of the fact that all these stack frames have an
✗-edge to the following stack frame in the sharing-graph, K̂ will always be empty.

4.3.4 The pushing algorithm does not duplicate work

Armed with our previous work on sharing-graphs and admissability, we can confidently
state the following conjecture:

Conjecture 4.3.4 (Pushing is an improvement). For all N and S, S ⊳∼ p̂ush(N)(S)
As the pushing algorithm essentially only does let-floating and case-of-case transfor-

mation, it is easy to believe that the pushed state has the same meaning denotationally
as the input. What is less clear is that it has the same meaning intensionally i.e. with
regard to work sharing.

The reason we have for believing that pushing is actually an improvement is because
we only inline (and hence risk work duplication for) those nodes which are marked by
our use of the mark function, which by Conjecture 4.3.3 returns an marking which is
admissable. Thus, every marked node c will be admissable, and so at least one of three
situations will apply:

1. The node c will be unreachable in the sharing graph. In this case, we know that it
must correspond to either:
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• A dead heap binding, in which case c ≡ x and it cannot pose a problem since
it must still be dead in the output of p̂ush (whether it is bound in the heap
of the pushed state or in the heaps of one or more nested states), and if x ∉
fvs (H ∖ {x}) ∪ fvs (K) ∪ fvs (e) then ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩◃▹∼ ⟨H ∖ {x}⎪⎪⎪⎪e⎪⎪⎪⎪K⟩.

• A dead variable bound by an update frame, in which case (once again) it must
still be dead in the output of p̂ush , in which case whether it is marked or not
does not affect the pushed state in any way.

2. The node c corresponds to a cheap heap binding, in which case pushing it into any
context (even inside a λ) is justified as an improvement by Theorem C.3.1 (if the
bound term is a value) and by a similar argument if the bound term is a variable.

3. The node c has a unique pushing path terminating at it of the form c′
✓
↠ c. In this

case, we can see by inspection of p̂ush that the prepared syntax corresponding to c

will occur only as part of (one or more) nested states within the residualised syntax
corresponding to c′.

By considering the possible cases for the original syntax corresponding to c′ one at
a time we can see that either:

• The graph generated from the original syntax could not have given rise to a
pushing path rooted at c′ starting with ✓, and so c′ cannot have originated
from that syntax. This case applies when c′ corresponds to a λ in the focus of
the input state

• Or else moving the syntax for c down to be totally enclosed by the residualised
syntax for c′ does not cause work duplication. This is easy to see where c′

corresponds to something like a heap binding (in which case we can justify the
transformation by a rule of improvement theory that let-of-let transformation
is a cost equivalence). It is only slightly harder to see where c′ corresponds
to something like a case frame, where the prepared syntax for c will occur
syntactically once inside each of the branches of the residualised case frame in
the pushed state.

4.4 Recursing to drive the pushed state

The simplest splitter would take the pushed state constructed by p̂ush({●})(S), drive all
of the nested states therein, and then rebuild a final term by replacing those nested states
with the result of supercompiling them. This is the model we described in Section 4.1
with the traverse ˚State function.

Dead heap bindings In practice, we use a slight refinement of this scheme which
allows us to avoid supercompiling some of the nested states. As an example, consider the
splitting of the following state:

⟨x ↦ fib n⎪⎪⎪⎪λz . (λy .1) x⎪⎪⎪⎪ǫ⟩
The corresponding pushed state will be:

⟨x↦ ⟨ǫ⎪⎪⎪⎪fib n⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ λz . ⟨ǫ⎪⎪⎪⎪(λy .1) x⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ ǫ⟩
In the simple scheme, we would recursively drive both nested states. However, if we were
to drive the state in the focus first we would find that the variable x is not mentioned in
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the supercompiled version of ⟨ǫ⎪⎪⎪⎪(λy .1) x⎪⎪⎪⎪ǫ⟩. This proves that the heap binding for x is
in fact dead, and so it is not in fact necessary to drive it. Our refined scheme exploits this
by driving the focus first, and then driving only those heap bindings which we discover
to be used either by the focus or something (heap binding or stack frame) that the focus
references2.

This same refinement can also help when the pushed state contains manifestly dead
heap bindings even before driving. For example, consider the following input state:

⟨f ↦ λx .fib (x + 1)⎪⎪⎪⎪λy . f y + f y⎪⎪⎪⎪ǫ⟩
Previously, when presenting the output of push we have implicitly omitted dead bindings
from the pushed state. Temporarily returning to showing these dead bindings, we can
write the pushed state for this input state as follows (remember that cheap heap bindings
like f will be copied into all nested states as well as residualised in place):

⟨f ↦ ⟨f ↦ λx .fib (x + 1)⎪⎪⎪⎪λx .fib (x + 1)⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ λy . ⟨f ↦ λx .fib (x + 1)⎪⎪⎪⎪f y + f y⎪⎪⎪⎪ǫ⟩ ⎪⎪⎪⎪ ǫ⟩
Our refined scheme will avoid driving the dead binding for f in the pushed state. Dead
bindings are endemic in output of the push function defined in Section 4.3, so our refined
driving scheme saves a lot of supercompilation work.

Dead stack frames In just the same way that some heap bindings are either manifestly
dead or can become provably dead as a result of driving, and so need not be optimised
by supercompilation, there may be cases in which stack frames become dead and hence
discardable. Consider:

⟨ǫ⎪⎪⎪⎪error⎪⎪⎪⎪● Bool ,● msg ,case ● of True → fib n;False → fact n⟩
The error function is a Haskell function defined in the standard libraries which never
returns directly3, and so any stack frames following a saturated call to error will never
be entered and so need not be optimised.

It is straightforward to define the splitter in such a way that it detects residual calls
to these known-bottoming functions. Any stack suffix that occurs after a saturated call
to such a function can be replaced with a trivial residual stack of the form case ● of ǫ

which does not require any recursive invocation of the supercompiler. With this change,
our final driven term would be

case error Bool msg of ǫ

Note that we need to replace the discarded stack suffix with a nullary case stack frame
rather than removing it entirely. This is purely for type compatibility reasons: if we used
an empty stack instead, then our final driven term would have type Bool rather than the
required type Int .4

2In order to make this work effectively, we need to modify the memoiser so that if driving a state S
yields a term e for a promise hn, then it returns a call to hn for which only those variables free in e are
free (which are a subset of those variables free in S). So if the state S for promise h1 is (λy. z) x and e is
z then the call returned is let x = x in h1 x z . Ideally the memoiser will also mutate the old promise to
record which variables were dead so that later tiebacks to the promise will be able to use this same trick.

3If normal Haskell functions can be thought of as having a single implicit continuation argument in
addition to their normal value argument, then error can be thought of as being unusual in having a value
argument—the error message String—but no continuation argument.

4In order to be able to infer the type of possibly-nullary case expressions in our implementation, we
made use of the fact that in GHC’s abstract syntax trees, each case is already annotated with the type
of its branches. An alternative solution to preserve type compatibility is to use the coercions and casts
of System FC instead of a nullary case.
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Another thing to look out for with this trick is that the dead stack suffix might contain
some update frames, which cannot be dropped entirely without potentially causing some
variables to be unbound. Thus, the replacement trivial stack should preserve any existing
update frames, and replace all other types of frame with a nullary case. So for example,
if we were driving the pushed state

⟨msg ↦ ⟨ǫ⎪⎪⎪⎪f n⎪⎪⎪⎪ǫ⟩
⎪⎪⎪⎪⎪⎪⎪⎪⎪error

⎪⎪⎪⎪⎪⎪⎪⎪⎪
● Bool ,● msg ,case ● of True → ⟨ǫ⎪⎪⎪⎪fib 100⎪⎪⎪⎪ǫ⟩

False → ⟨ǫ⎪⎪⎪⎪fact 100⎪⎪⎪⎪ǫ⟩
,update n⟩

Then the final driven term would be

let n = case error Bool msg of ǫ

in n

In practice, we found that exploiting known-bottoming functions in this way can save
the supercompiler a lot of work: in particular, the size of supercompiler output for the
bernoulli benchmark in the Nofib benchmark suite [Partain, 1993] fell by 16% when this
optimisation was implemented.

Detecting more dead stack frames As described so far, the splitter is only able to
determine that a stack suffix is dead if it occurs directly after a residualised saturated
call to a bottoming function such as error . An extension of this idea, analogous to the
treatment of dead heap bindings, allows more dead stack frames to be detected.

If we arrange that supercompilation of a state returns not only an optimised term but
also an optional natural number indicating how many arguments need to be applied to
the term before it diverges (zero if the term is already �), then when driving a pushed
state such as

⟨ǫ⎪⎪⎪⎪⎪⎪⎪⎪⎪f
⎪⎪⎪⎪⎪⎪⎪⎪⎪
● x,case ● of True → ⟨ǫ⎪⎪⎪error "True"⎪⎪⎪ǫ⟩

False → ⟨ǫ⎪⎪⎪error "False"⎪⎪⎪ǫ⟩
,update x,case ● of (a, b)→ ⟨ǫ⎪⎪e⎪⎪ǫ⟩⟩

We will be able to detect that both nested states in the residual case diverge, and thus
that all stack frames after the case frame are dead. Assuming that the two nested states
turn into calls to h-functions named h1 and h2 , the resulting driven term would be

let x = case f x of True → h1 ;False → h2
in case x of ǫ

In practice, the number of programs that benefit from propagating information about
bottomness out of recursive invocations of the supercompiler is very small, so our imple-
mentation does not use this extension to the scheme.

4.5 Correctness of the splitter

Recall Definition 3.8.2, which defined what it meant for split to be correct:

Definition 3.8.2 (Splitter correctness). The split function is correct if:

∀S ′.✓delay S ′ ⊳∼ checkScpM (p,opt S ′)
Ô⇒ delay S ⊳∼ checkScpM (p, split opt S)

It is straightforward to prove that split obeys this property as long as the following
conjecture about p̂ush is true:
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Conjecture 4.5.1 (Pushing is an improvement up to delay). For all N , S, delay S ⊳∼
˚delay(p̂ush({●} ∪N)(S)), where:

˚delay ⟨x ∶τ ↦ e̊x
⎪⎪⎪⎪⎪e̊⎪⎪⎪⎪⎪κ̊⟩ = ⟨∣x ∶τ ↦ ˚delaye(̊ex)⎪⎪⎪⎪⎪⎪⎪ ˚delaye(̊e)⎪⎪⎪⎪⎪⎪⎪ ˚delayκ(̊κ)∣⟩

˚delaye(x) = x

˚delaye(λx ∶τ.S) = λx ∶τ.✓delay S

˚delaye(C τ x) = C τ x

˚delaye(Λα ∶κ.S) = Λα ∶κ.✓delay S

˚delaye(S) = ✓delay S

˚delayκ(update x ∶τ) = update x ∶τ

˚delayκ(● x) = ● x

˚delayκ(● τ) = ● τ

˚delayκ(case ● of C α ∶κ x ∶τ → S) = case ● of C α ∶κ x ∶τ → ✓delay S

We conjecture that our p̂ush function does obey this property. We already argued that
p̂ush was an improvement (Section 4.3.4), but this is the first time we have considered the
effect of delays. To justify that this is a plausible conjecture, we will prove the definition
holds for one particular input state which exercises most interesting features of p̂ush,
which we will call S ≡ ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩:
⟨a ↦ Just b, b ↦ let d = λx . x in (λd .d) d , c ↦ f b

⎪⎪⎪⎪⎪⎪⎪⎪⎪f
⎪⎪⎪⎪⎪⎪⎪⎪⎪
● a,case ● of True → (λy .y)

False → (λz . x) ,● c⟩
We can see that:

delay ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ =
let a = Just b

b = ✓(let d = ✓(λx . x) in (λd .✓d) x)
c = ✓(f b)

in (case f a of True → ✓(λy .✓y)
False → ✓(λz .✓x)) c

The pushed version of this state, S̊ ≡ ⟨H̊⎪⎪⎪⎪⎪e̊⎪⎪⎪⎪⎪K̊⟩, is:
⟨a↦ Just b, b ↦ ⟨ǫ⎪⎪⎪⎪⎪⎪⎪⎪⎪

let d = λx . x
in (λd .d) d

⎪⎪⎪⎪⎪⎪⎪⎪⎪ǫ⟩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪f
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
● a,case ● of True → ⟨c↦ f b⎪⎪⎪⎪λy .y⎪⎪⎪⎪● c⟩

False → ⟨c↦ f b⎪⎪⎪⎪λz . x⎪⎪⎪⎪● c⟩ ⟩
and therefore:

˚delay ⟨H̊⎪⎪⎪⎪⎪e̊⎪⎪⎪⎪⎪K̊⟩ =
let a = Just b

b = ✓(let d = ✓(λx . x) in (λd .✓d) d)
in case f a of True → ✓(let c = ✓(f b) in (λy .✓y) c)

False → ✓(let c = ✓(f b) in (λz .✓x) c)
Using the facts that transformations such as let-floating into a linear context and case-
of-case are cost-equivalences, it is straightforward to see that the delayed, pushed state

(̊delay) ⟨H̊⎪⎪⎪⎪⎪e̊⎪⎪⎪⎪⎪K̊⟩ is an improvement on the delayed input delay ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩.
There are two principal subtleties in this conjecture, which we discuss below.
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Generalisation sets that do not include ● Notice that Conjecture 4.5.1 requires
that the generalisation set passed to p̂ush contains ●. If the set does not contain this then
the conjecture is not true. For example, consider the generalisation set N = {x} and the
state ⟨x ↦ True⎪⎪⎪⎪f x⎪⎪⎪⎪ǫ⟩, which is pushed to ⟨x↦ True⎪⎪⎪⎪⟨ǫ⎪⎪⎪⎪f x⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪ǫ⟩. The corresponding
delayed versions are:

delay ⟨x↦ True⎪⎪⎪⎪f x⎪⎪⎪⎪ǫ⟩ = let x = True in f x
˚delay ⟨x↦ True⎪⎪⎪⎪⟨ǫ⎪⎪⎪⎪f x⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪ǫ⟩ = let x = True in ✓(f x)

It is clear that the pushed, delayed state is not an improvement of the input.
This restriction of the conjecture does not affect our proof of the correctness of split ,

since split always uses the generalisation set {●}, but it does mean that we cannot use
our conjecture unmodified to prove facts about uses of p̂ush for generalisation purposes
in Section 6.2.2.

Heap-bound values Because of the fact that delay● does not delay values, the splitter
has to “eagerly” split heap-bound values. For example, given the input state

⟨x ↦ Just y , y ↦ fib 100⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩
We cannot return the pushed state ⟨x ↦ ⟨y ↦ fib 100⎪⎪⎪⎪Just y⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩ from p̂ush, since:

delay ⟨x↦ Just y , y ↦ fib 100⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩ = let x = Just y ;y = ✓(fib 100) in x
˚delay ⟨x ↦ ⟨y ↦ fib 100⎪⎪⎪⎪Just y⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩ = let x = ✓(let y = ✓(fib 100) in Just y) in x

Once again it is clear that the pushed, delayed state is not an improvement of the input.
Instead, our p̂ush function eagerly splits the heap-bound Just y value and returns the
pushed state ⟨x↦ True, y ↦ ⟨ǫ⎪⎪⎪⎪fib 100⎪⎪⎪⎪ǫ⟩⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩.

If we did not eagerly split heap-bound values in the splitter then the supercompiler
would be incorrect. For example, starting with the state S0 = ⟨x↦ True⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩ the splitter
without eager value splitting could recursively drive S1 = ⟨ǫ⎪⎪⎪⎪True⎪⎪⎪⎪ǫ⟩. Because S0 is cost
equivalent to S1 up to delay, the match function would be justified in tying back the
supercompilation process for S1 to the h-function for S05, like so:

let h0 = let x = h in x
in h0

4.6 The interaction of call-by-need and recursive let

The combination of call-by-need and recursive let considerably complicates the imple-
mentation of split . In the absence of either one of these features, if the stack contains a
case frame then the splitter may unconditionally push the entire tail of the stack after
that frame into the residualised version of the case frame. For example, the input:

⟨ǫ⎪⎪⎪⎪h⎪⎪⎪⎪● z,case ● of True → f ;False → g ,K⟩
May be transformed to the pushed state:

⟨ǫ ⎪⎪⎪⎪ h ⎪⎪⎪⎪ ● z,case ● of True → ⟨ǫ⎪⎪⎪⎪f⎪⎪⎪⎪K⟩ ;False → ⟨ǫ⎪⎪⎪⎪g⎪⎪⎪⎪K⟩⟩
5The match function we define in this thesis is not in fact powerful enough to achieve this tieback, but

it is easier to make the splitter eagerly split heap-bound values than it is to find an alternative property
for match which is strong enough to rule out these sorts of tiebacks.
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This will never duplicate work or leave any variables unbound regardless of the form of
K or whether it contains any update frames. If we are working with a language with
recursive let then this is no longer true because we cannot transform the input state:

⟨ǫ⎪⎪⎪⎪h⎪⎪⎪⎪● z,case ● of True → f ;False → g ,update z⟩
Into the pushed state:

⟨ǫ ⎪⎪⎪⎪ h ⎪⎪⎪⎪ ● z,case ● of True → ⟨ǫ⎪⎪⎪⎪f⎪⎪⎪⎪update z⟩ ;False → ⟨ǫ⎪⎪⎪⎪g⎪⎪⎪⎪update z⟩⟩
Since it leaves the occurrence of z in ● z unbound at the top level. The only obvious way
to bind it at the top level would be to duplicate work:

⟨z ↦ case h z of True → f ;False → g
⎪⎪⎪⎪⎪⎪⎪⎪⎪ h
⎪⎪⎪⎪⎪⎪⎪⎪⎪
● z,case ● of True → ⟨ǫ⎪⎪⎪⎪f⎪⎪⎪⎪update z⟩

False → ⟨ǫ⎪⎪⎪⎪g⎪⎪⎪⎪update z⟩ ⟩
This problem does not arise in a call-by-name or call-by-value programming language
because such operational semantics for such languages have no need to ever create update
frames, which are the source of the problem. Furthermore, the problem does not even arise
in a call-by-need without recursive let but with negative recursion in data constructors
(which allows the formation of fixed points). The reason for this is that fixed points
created via negative recursion do not share work: i.e. if the fixed point fibs = 1 ∶ 1 ∶
zipWith (+) fibs (tail fibs) is created via negative recursion then it will do as much work
as the fixed point fibs = λeta.1 ∶ 1 ∶ zipWith (+) (fibs ()) (tail (fibs ())).

If we were not working with a call-by-need language with recursive let then we could
make two key simplifications to the algorithms above:

• The mark function would need only to consider acyclic sharing-graphs, simplifying
the code considerably.

• We can assume that the stack frames with indexes j ≥ i will all be in the maximum

marking as long as there is an edge ipred
✓
→ i, where ipred is unmarked and:

ipred =

⎧⎪⎪⎨⎪⎪⎩
● i = 0

i − 1 otherwise

This invariant is sufficiently informative that it becomes convenient to omit stack
frames entirely from the sharing graph and instead just perform a simple test in
prepresidK whether to push or residualise stack frames (stack frames should be
pushed if the previous stack frame was, or if the previous stack frame was a residu-
alised case frame).

Furthermore, if we are working in a call-by-name language then there is no work sharing
to be preserved and the mark function can be replaced by the trivial function which marks
all nodes in the sharing graph. Likewise, if we are working in a call-by-value language
then the heap is guaranteed to contain only cheap terms, and mark can be replaced by
the same trivial function.
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Chapter 5

Call-by-need matching

In this section we will define the match function used in the supercompiler’s memoisation
module (Section 3.4) for testing the syntactic equivalence of states (up to renaming of free
variables). As we are supercompiling a call-by-need language, our match function needs
to be aware of work sharing. For example, match should not claim that the following two
states are equivalent:

S0 = let a = fib y ; b = fib y in (a, b) S1 = let a = fib y in (a,a)
If match did make such a claim, the supercompiler might tie back the newly-driven state
S1 to an existing promise for S0, thus duplicating work in the supercompiler’s output.
Defining a sharing-aware match function is surprisingly tricky.

The approach we take to defining match is to define it in terms of another function,
msg , which implements a so-called most-specific generalisation (MSG). The principal
advantage of this approach is that the more-general msg function is independently useful
for implementing generalisation in our supercompiler (Section 6.2).

By using msg to implement both match and generalisation in the supercompiler, we
reduce the amount of code in the supercompiler, and hence the number of potential bugs
and supercompiler implementation effort. We will also be able to reuse work done to
prove correctness of the MSG in order to prove the correctness of the matcher.

5.1 Most-specific generalisation

The concept of MSG is a familiar one in the supercompilation literature [Mitchell and
Runciman, 2008; Leuschel and Martens, 1996; Sørensen and Glück, 1995], and has its
roots in some of the earliest work on machine deduction [Plotkin, 1969; Reynolds, 1969;
Robinson, 1965]. The idea is that the MSG of two objects (typically terms, but in our
supercompiler we will consider the MSG of states) is another object that incorporates all
of the structure that is common to the two input terms, but remaining sufficiently general
such that the object can be instantiated to yield either of the two inputs.

More concretely, in an untyped call-by-name language, the most specific generalisa-
tion of two terms e0 and e1 would be another term e such that there exist (variable to
term) substitutions θ0 and θ1 such that eθ0 = e0 and eθ1 = e1, where furthermore the
substitutions are as small as possible—i.e. as much common information as possible has
been incorporated into the common term e rather than the individual substitutions.
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Some examples of MSG in this setting would be:

e0 e1 θ0 e θ1
map f xs map f (filter g xs) {h↦ f, ys↦ xs} map h ys {h↦ f, ys↦ filter g xs}
λx .fib x λx .plus z x {f ↦ fib} λy . f y {f ↦ plus z}
map f xs

case x of True → False

False → True
{y ↦map f xs} y {y ↦ case x of True → False

False → True
}

In the call-by-need setting, we need a more complex MSG definition than we had in the
call-by-name case. Precisely, we wish to define a function msg which obeys the following
property:

Definition 5.1.1 (MSG correctness).

msg(S0,S1) = (⟨H0
′⎪⎪⎪⎪θ0⎪⎪⎪⎪K0

′⟩ ,S , ⟨H1
′⎪⎪⎪⎪θ1⎪⎪⎪⎪K1

′⟩)
Ô⇒ ∀j.rebuild Sj ◃▹∼ ⟨∣Hj

′⎪⎪⎪⎪(rebuild S)θj⎪⎪⎪⎪Kj
′∣⟩

Furthermore, we expect that all ofHj
′ andKj

′ are as small as possible given this defini-
tion, in order that this defines a most-specific generalisation. Note that we can only make
a “best effort” towards minimising the individual heap/stack, because deciding cost equiv-
alence in general requires solving the halting problem: consider what common heap should
be returned by msg(⟨x ↦ tauto1 , id ↦ λx . x⎪⎪⎪⎪id⎪⎪⎪⎪● x⟩ , ⟨x↦ tauto2 , id ↦ λx . x⎪⎪⎪⎪id⎪⎪⎪⎪● x⟩),
where tauto1 and tauto2 encode arbitrary tautologies.

Also worth noting are that:

• The abuse of notation ⟨H⎪⎪⎪⎪θ⎪⎪⎪⎪K⟩ places a substitution where you would normally
expect an expression.

• Substitutions θ map type variables to types and term variables to variables (this is
different from our opening example with a call-by-name MSG, but consistent with
our treatement of substitutions everywhere else in the thesis).

As a simple example, consider the two states

⟨f ↦ λa. (a,a), x ↦ 2⎪⎪⎪⎪f⎪⎪⎪⎪● x⟩ ⟨g ↦ λb. (b, b), c ↦ 2⎪⎪⎪⎪g⎪⎪⎪⎪● y,case ● of (a, b)→ h a b c⟩
We expect the MSGed common state to be

⟨h↦ λa. (a,a)⎪⎪⎪⎪h⎪⎪⎪⎪● z⟩
Where furthermore:

H0
′
= x↦ 2 H1

′
= c↦ 2

K0
′
= ǫ K1

′
= case ● of (a, b) → h a b c

θ0
′
= {z ↦ x} θ1

′
= {z ↦ y}

Notice that matching these two states as terms would have failed because the rebuilding
of the left hand state has an application as the outermost syntax node (excluding the
enclosing let), whereas the right hand state has a case as the outermost syntax node of
its rebuilding.

This example already shows one of the reasons why we insist on cost equivalence
instead of syntactic equivalence between the input states and the instantiated, generalised
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versions discovered by msg : we expect that syntactic equivalence will hardly ever hold.
For our example, we can see that

⟨∣f ↦ λa. (a,a), x ↦ 2⎪⎪⎪⎪f⎪⎪⎪⎪● x∣⟩ = let f = λa. (a,a)
x = 2

in f x

⟨∣H0
′⎪⎪⎪⎪⟨∣h↦ λa. (a,a)⎪⎪⎪⎪h⎪⎪⎪⎪● z∣⟩ θ0′⎪⎪⎪⎪K0

′∣⟩ = let x = 2
in let h = λa. (a,a)

in h x

and

⟨∣g ↦ λb. (b, b), c ↦ 2⎪⎪⎪⎪g⎪⎪⎪⎪● y,case ● of (a, b) → h a b c∣⟩ = let g = λb. (b, b)
c = 2

in case g y of (a, b) → h ab c

⟨∣H1
′⎪⎪⎪⎪⟨∣h↦ λa. (a,a)⎪⎪⎪⎪h⎪⎪⎪⎪● z∣⟩ θ1′⎪⎪⎪⎪K1

′∣⟩ = let c = 2
in case (let h = λa. (a,a)

in h y) of (a, b)→ h a b c

Note that in each case the instantiated, generalised states are cost-equivalent to their
respective input states, but not syntactically equivalent.

There are two further subtleties to our definition of msg :

• Variable occurrences in the generalised state S may be bound by the individual
heaps/stacks Hj

′ and Kj
′. In contrast, occurrences of variables in the individual

heap/stacks may not be bound by binders in the common heap/stack.

• Our insistence on cost equivalence means that our MSG must take into account the
call-by-need cost model.

The combination of these factors leads to some consequences that may be unintuitive for
those used to a standard call-by-name MSG. Consider the two input states, which will
refer to the left and right-hand states respectively:

⟨a ↦ f y⎪⎪⎪⎪(a,a)⎪⎪⎪⎪ǫ⟩ ⟨b ↦ f y , c ↦ f y⎪⎪⎪⎪(b, c)⎪⎪⎪⎪ǫ⟩
Note that the components of each pair are all exactly the same: a call to an unknown
function f . A call-by-name MSG could yield either one of these common generalised states

⟨d↦ f y , e ↦ f y⎪⎪⎪⎪(d , e)⎪⎪⎪⎪ǫ⟩ ⟨d↦ f y⎪⎪⎪⎪(d ,d)⎪⎪⎪⎪ǫ⟩
However, neither of these answers are appropriate for a call-by-need setting. The first
answer is unsuitable because it has less work sharing than the left-hand input due to its
duplication of the computation of the a heap binding. The second answer is unsuitable
because it has more work sharing than the right-hand input due to it commoning up the
work of the b and c heap bindings. A call-by-need MSG algorithm must instead return
the less-generalised state ⟨ǫ⎪⎪⎪⎪(d , e)⎪⎪⎪⎪ǫ⟩
with individual structure respectively

⟨a↦ f y⎪⎪⎪⎪{d↦ a, e ↦ a}⎪⎪⎪⎪ǫ⟩ ⟨a↦ f y , b ↦ f y⎪⎪⎪⎪{d↦ a, e ↦ b}⎪⎪⎪⎪ǫ⟩
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This shows that the choice of call-by-need has real consequences for the definition of the
MSG.

For the purposes of defining the MSG algorithm, we ignore all tags. When extending
the algorithm to deal with tags, we have to confront the fact that there is no mechanism
for abstracting over the tags of a term, and so the common information returned by msg
has to be built with either the left tags or the right tags. In our implementation, we
always use the tags from the right argument and then ensure that whenever we call msg
we do so with the state whose tags we wish to preserve in the right argument.

5.2 Implementing a matcher from MSG

Recall our description (Section 3.8) of what it means for match to be correct:

Definition 3.8.1 (Matcher correctness). The match function is correct if it succeeds only
when the inputs are cost-equivalent up to delay:

match S0 S1 = Just θ Ô⇒ (delay S0)θ◃▹∼ delay S1
Given msg , we can now define a suitable match function using a suitable msg function:

match(S0,S1) = θ

where ⟨ǫ⎪⎪⎪⎪θ⎪⎪⎪⎪ǫ⟩ = instanceMatch(S0,S1)
instanceMatch(S0,S1) = ⟨H1

′⎪⎪⎪⎪θ⎪⎪⎪⎪K1
′⟩

where (⟨ǫ⎪⎪⎪⎪θ0⎪⎪⎪⎪ǫ⟩ , , ⟨H1
′⎪⎪⎪⎪θ1⎪⎪⎪⎪K1

′⟩) = msg(S0,S1)
θ = θ0

−1
○ θ1

Where we make use of substitution inversion, θ−1:

θ−1 =

⎧⎪⎪⎨⎪⎪⎩
{y ↦ x ∣x ↦ y ∈ θ} ∪ {β ↦ α ∣α ↦ β ∈ θ} θ injective ∧∀α ↦ τ ∈ θ.∃β.τ ≡ β

fail otherwise

Note that since both msg and substitution inversion are partial functions, match is also
partial and fails in the case where the second input state cannot be matched against
the first. The fact that this match function succeeds as often as you would expect it to
(in particular, it always succeeds if the two argument states are α-equivalent) depends
crucially on the fact that msg implements a most specific generalisation.

Note also that substitution inversion checks that the input substitution is injective.
In fact, in our application the input substitution θ0 is always surjective in that the range
exhaustively covers the (reachable) free variables of the input state S0, so this check is
sufficient to establish bijectivity.

An example where θ0 is not injective is if we were matching the two states ⟨ǫ⎪⎪⎪⎪(a,a)⎪⎪⎪⎪ǫ⟩
and ⟨ǫ⎪⎪⎪⎪(b, c)⎪⎪⎪⎪ǫ⟩, in which case we would have the non-injective θ0 = {d ↦ a, e ↦ a} (and
θ1 = {d ↦ b, e ↦ c}). Our refusal to invert these non-injective renamings reflects the fact
that there is no way to rename the term (a,a) to obtain the term (b, c).

It is important to note that as msg is formulated in Section 5.3, the substitution
returned by msg will never contain type/term variables in its domain which are not free
in the common state returned by msg . It is important that it doesn’t, since such “dead”
substitutions can cause the invertability check used by match to fail. For example, if
we were to find the MSG of ⟨x↦ True⎪⎪⎪⎪(x , x)⎪⎪⎪⎪ǫ⟩ and ⟨y ↦ True, z ↦ True⎪⎪⎪⎪(y , z)⎪⎪⎪⎪ǫ⟩ one
answer which satisifies Definition 5.1.1 is θ0 = {a↦ x, b ↦ x} and θ1 = {a↦ y, b ↦ z}, with
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common state ⟨a↦ True, b ↦ True⎪⎪⎪⎪(a, b)⎪⎪⎪⎪ǫ⟩ (note that a and b are not free variables of
this state). In this example, θ0 is non-injective, but only due to the dead substitutions
for a and b. To avoid spurious failures of this kind, our definition of msg does not return
substitutions for dead variables in either θ0 or θ1.

5.2.1 Positive information and non-injective substitutions

Although our match fails if θ0 is non-injective, it can succeed if θ1 is non-injective on
term1 variables, which may be surprising. This means that match succeeds in matching
the terms xor a b and xor c c (returning a non-injective θ = {d↦ c, e ↦ c}) where:

xor x y = case x of True → case y of True → False;False → True
False → case y of True → True; False → False

If we were attempting to make maximum use of positive information propagation, we
should not allow the supercompiler’s memoiser to make use of the result of such a match.
If we do not allow such a non-injective tieback, supercompiling (xor a b, xor c c) produces
supercompiled output isomorphic to

let h0 a b = case a of True → case b of True → False;False → True
False → case b of True → True;False → False

h1 c = case c of True → False;False → False
in (h0 a b,h1 c)

whereas if we allow non-injective tiebacks, supercompiling the same term will (depending
on the order of supercompilation of child states) either yield the above output, or the
suboptimal output

let h0 a b = case a of True → case b of True → False;False → True
False → case b of True → True;False → False

in (h0 a b,h0 c c)
Our implementation does not in fact reject non-injective tiebacks, for two reasons:

1. Positive information propagation is not important to most of the optimisations that
the supercompiler achieves (Section 7.1.2), so losing positive information occasion-
ally is not a particular problem.

2. When there exists a non-injective substitution from a previously promised state to
the current state, it is often the case that the previous and the new state have the
same tag-bags.

In this situation, failing to tie back in the memoiser is disastrous because it causes
the termination test to fail (assuming the previous state is still on the sc stack) and
the supercompiler has to use split to throw information away. Tying back a bit too
eagerly in some cases is well worth it if we can avoid such splits.

This reason would not be so important if either one of these two changes were made:

(a) If the termination criteria were stronger, so that it would not trigger on pairs
of states which have a renaming relationship between them — even if their
tag-bags would normally cause the termination check to fail.

1None of the discussion about injectivity in this section applies to type variables, since positive infor-
mation propagation does not apply to them.
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(b) If the memoiser only failed to tie back using a non-injective substitution if
the promise it was tying back to was not an ancestor (i.e. had already been
fulfilled), and thus would not be present in the current History .

Our implementation does not incorporate either of these suggestions, but it does
incorporate a generalisation-based mechanism to avoid such splits (Section 6.2.5).

5.2.2 Correctness of match

It is straightforward to see that if the property we required of msg (Definition 5.1.1) holds,
then match has the property:

match S0 S1 = Just θ Ô⇒ (rebuild S0)θ◃▹∼ rebuild S1
However, this is not quite the same as the property the supercompiler requires of match.
We conjecture (but do not prove) that for the particular implementation of msg described
in this chapter, match does indeed meet the stricter requirements of Definition 3.8.1. An
interesting technical point here is that match is the whole reason that delayh (Figure 3.3)
treats values specially. If it did not treat values specially, so delayh(e) = delaye(e), then
we would have that

delay ⟨x ↦ True⎪⎪⎪⎪(x , x)⎪⎪⎪⎪ǫ⟩ = ⟨x↦ ✓True⎪⎪⎪⎪(x , x)⎪⎪⎪⎪ǫ⟩
delay ⟨y ↦ True, z ↦ True⎪⎪⎪⎪(y , z)⎪⎪⎪⎪ǫ⟩ = ⟨x↦ ✓True, z ↦ ✓True⎪⎪⎪⎪(y , z)⎪⎪⎪⎪ǫ⟩

and therefore delay ⟨x↦ True⎪⎪⎪⎪(x , x)⎪⎪⎪⎪ǫ⟩ /◃▹∼ delay ⟨y ↦ True, z ↦ True⎪⎪⎪⎪(y , z)⎪⎪⎪⎪ǫ⟩, so to have
the required property we would need that:

match ⟨x ↦ True⎪⎪⎪⎪(x , x)⎪⎪⎪⎪ǫ⟩ ⟨y ↦ True, z ↦ True⎪⎪⎪⎪(y , z)⎪⎪⎪⎪ǫ⟩ = Nothing
In order to avoid this pessimisation and allow match to “reuse” values, we take care to
define delay to use delayh on heap bindings, so that we never delay heap-bound values.

It is important to note that even slightly more powerful matchers do not meet the
requirements of the definition, and that violating the definition can easily cause the su-
percompiler to become incorrect. We will demonstrate this through two examples.

Denotational equality Firstly, consider what would happen if the matcher was allowed
to relate any two terms which are denotationally equal, instead of insisting on terms which
are cost-equivalent up to delay. This is perhaps the property that you would expect match
to obey at first glance.

Now, imagine supercompiling the state S0 = ⟨id ↦ λx . x⎪⎪⎪⎪id⎪⎪⎪⎪● x⟩, where for some
reason the termination test in sc′ has been triggered, so we don’t reduce the obvious
β-redex. Given this state, the splitter of Chapter 4 would recursively drive the state
S1 = ⟨ǫ⎪⎪x⎪⎪ǫ⟩ (corresponding to the body of the λ). However, S0 and S1 have exactly the
same (denotational) meaning, so a match that obeyed the proposed property would cause
the memoiser to tie back to the promise corresponding to S0 when asked to supercompile
S1. The resulting optimised program might look like this:

let h0 x = let f = λx .h0 x
in f x

in h0

Clearly, this optimised term does not have the same meaning as the input: all it does is
loop! So a match function whose only constraint on success is that the two inputs must
be denotationally equivalent is clearly unsuitable.
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msg(⟨H0
⎪⎪⎪⎪e0⎪⎪⎪⎪K0⟩Σ0 ∣Γ0

, ⟨H1
⎪⎪⎪⎪e1⎪⎪⎪⎪K1⟩Σ1 ∣Γ1

) = (⟨H0
⎪⎪⎪⎪θ0⎪⎪⎪⎪K0⟩Σ0 ∣Γ0

, ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩Σ∣Γ , ⟨H1
⎪⎪⎪⎪θ1⎪⎪⎪⎪K1⟩Σ1 ∣Γ1

)
msg(⟨H0

⎪⎪⎪⎪e0⎪⎪⎪⎪K0⟩Σ0∣Γ0
, ⟨H1
⎪⎪⎪⎪e1⎪⎪⎪⎪K1⟩Σ1∣Γ1

) = do

rθj ∶= ∅

rΣ ∶= ǫ

rΓ ∶= ǫ

rH ∶= ǫ

e ←msge(e0, e1)(∅,∅)
rK ∶=msgK(K0,K1)
fixup(e)(∅,∅)

Figure 5.1: Call-by-need MSG

Cost equivalence Now consider what would happen if we required that the match
function should only succeed if its two inputs are cost-equivalent:

match S0 S1 = Just θ Ô⇒ (rebuild S0)θ◃▹∼ rebuild S1
This is perhaps the second most intuitive property we could require of match, and it
prevents obvious abuses where the supercompiler can tie back a reduced version of a
term to an earlier, “more expensive” term. This property is in fact enough to prevent
the previous error from occurring, because even though S0 and S1 are denotationally
equivalent, they are not cost-equivalent and so will not be matched, as can be seen by
the following reduction sequences:

⟨x ↦ True, id ↦ λx . x⎪⎪⎪⎪id⎪⎪⎪⎪● x⟩ ↝1 ⟨id ↦ λx . x , x ↦ True⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩⟨x ↦ True⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩ ↝0 ⟨x ↦ True⎪⎪⎪⎪x⎪⎪⎪⎪ǫ⟩
However, as we hinted at in Section 3.4, even insisting on cost-equivalence is not enough
to ensure that matching is safe. To see this, consider the supercompilation of S2 =⟨x ↦ True,y ↦ x⎪⎪⎪⎪y⎪⎪⎪⎪ǫ⟩. A sensible thing for split to do could be to recursively drive
the state S3 = ⟨y ↦ True⎪⎪⎪⎪y⎪⎪⎪⎪ǫ⟩. Unfortunately, it can be shown that S2 is cost-equivalent
to S32, so the supercompilation of S3 is apparently justified to tying back to the promise
corresponding to S2, resulting in this output program:

let h2 = let y = h2 in x in h2

Again, this is clearly not a correct result! We need an even stronger property on match
to ensure correctness of supercompiler memoisation, which motivates the use of cost-
equivalence up to delay.

5.3 MSG algorithm overview

We are now in a position to show how the msg function is actually defined. The top level
of our MSG algorithm is presented in Figure 5.1. Our algorithm makes use of mutable
state and as such is presented in a notation akin to Haskell’s monadic do syntax that
makes sequencing explicit. We make use of pattern matches and case analysis that is done

2To see this intuitively, observe that both datav and data are normalising reduction rules that are
“free” for the purposes of cost-equivalence. We would not have a cost-equivalence in this example if we
replaced True with λx . x because beta-n is free but beta is not.
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top to bottom, and will also at times make use of implicit quantification over j ∈ {0,1}.
For example, if we write:

do rXj ∶= ∅

rθj ∶= rθj ∪ {x↦ xj}
We really mean:

do rX0 ∶= ∅

rX1 ∶= ∅

rθ0 ∶= rθ0 ∪ {x ↦ x0}
rθ1 ∶= rθ1 ∪ {x ↦ x1}

The mutable state we use in the algorithm consists of mutable cells rX that can occur
either as a “lvalue” to the left of the assignment operator ∶= or as a “rvalue” reference in
any other position.

The mutable cells we use are as follows:

• The substitution cells rθ0 and rθ1, which accumulate the substitutions with which
the generalised state will be instantiated.

• The common environment/heap/stack cells rΣ, rΓ, rH and rK which accumu-
late the kinding/typing environment, heap bindings and stack frames (respectively)
which are common to both of the inputs.

The code in msg is concerned with initialising these mutable cells, and then using their
final contents to extract the final MSG. The calls to msgK and msge do the actual work of
computing an MSG, but the MSG they produce completely ignores any work duplication
issues. Our final call to fixup prunes down the MSG so that it does not duplicate work,
and constructs suitable instance environments/heaps/stacks to be returned frommsg with
the final common environments/heap/stack.

Note that many of the functions in our algorithm may fail, written in code as fail.
Unless otherwise specified, failure propagates strictly through the computation of the
MSG, and may even propagate as far upwards as the initial call to msg , which is why
msg is only defined to be a partial function.

We assume that the original environments/heaps/stacks Σj , Γj, Hj and Kj are im-
plicitly passed unchanged to all the functions recursively invoked by msg . This simply
reduces syntactic noise as we can avoid explicitly passing the input heap/stack around as
arguments to every other function.

5.4 Computing an initial MSG

The algorithm for term MSG is defined in Figure 5.2. The call msge(e0, e1)(A,X) is
responsible for finding the MSG of the two input terms under the assumption that the
type variables in the set A and the term variables in the setX are “rigid” i.e. they may not
be mentioned as a free variable in the range of the instantiating substitution/heap/stack.

As a simple example of why the rigid sets are useful, consider the MSG of λ(x ∶∶ Int). x
and λ(x ∶∶ Int).y . There is no non-trivial generalisation of these two terms because the
there is no way for the non-capturing substitutions we work with to instantiate e.g. the
free variable y in λ(x ∶∶ Int).y to the bound variable x . This is reflected in our algorithm
msge because the recursive call to MSG the terms under the λ-binders will take the form
msge(x ,y)(∅,{x}) where the bound variable x is supplied in the rigid set X .

This issue will affect us when we are dealing with both type and term variable substi-
tutions. In preparation, we define the notion of a non-capturing substitution:
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msge(e0, e1) =M(e)
msge(x0, x1)(A,X) = msgx(x0, x1)(X)

msge(λx ∶τ0. e0, λx ∶τ1. e1)(A,X) = λx ∶msgτ(τ0, τ1)(A).msg e(e0, e1)(A,X ∪ {x})
msge(e0 x0, e1 x1)(A,X) = msge(e0, e1)(X,A) msgx(x0, x1)(X)

msge(Λα ∶κ. e0,Λα ∶κ. e1)(A,X) = Λα ∶κ.msge(e0, e1)(A ∪ {α},X)
msge(e0 τ0, e1 τ1)(A,X) = msge(e0, e1)(X,A) msgτ(τ0, τ1)(A)

msge(C τ0
n x0

m,C τ1
n x1

m)(A,X) = C msgτ(τ0, τ1)(A)n msgx(x0, x1)(X)m
msge(case e0 of C α ∶κ x ∶τ0 → eC0

n
,case e1 of C α ∶κ x ∶τ1 → eC1

n)(A,X)
= case msge(e0, e1)(A,X) of

C α ∶κ x ∶msgτ(τ0, τ1)(A ∪ α) → msge(eC0, eC1)(A ∪ α,X ∪ x)n
msge(let x ∶τ0 = ex0

n in e0, let x ∶τ1 = ex1
n in e1)(A,X)

= let x ∶msgτ(τ0, τ1)(A) = msge(ex0, ex1)(A,X ∪ x)) in msge(e0, e1)(A,X ∪ x)
msge(e0, e1) = fail

msgx(x0, x1) =M(x)

msgx(x0, x1)(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x x = x0 = x1 ∧ x ∈X

fail x0 ∈ X ∨ x1 ∈X

x x ↦ x0 ∈ rθ0 ∧ x ↦ x1 ∈ rθ1

do x← fresh

τ ←msgτ(typ(x0), typ(x1))(∅)
rΣ ∶= rΣ, x ∶τ

rθj ∶= rθj ∪ {x↦ xj}
msg ′x(x0, x1)(x ∶τ)
x

otherwise

typ(xj) = τj
typ(xj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τj xj ∶τj ↦ ej ∈Hj

τj update xj ∶τj ∈Kj

τj xj ∶τj ∈ Γj

msg ′x(x0, x1)(x ∶τ) =M()
msg ′x(x0, x1)(x ∶τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rH ∶= rH ∪ {x ∶τ ↦ e} x0 ∶τ0 ↦ e0 ∈H0 ∧ x1 ∶τ1 ↦ e1 ∈H1

∧e ←msge(e0, e1)(∅,∅)() otherwise

Figure 5.2: Call-by-need term MSG

Definition 5.4.1 (Non-capturing substitutions). A substitution θ is non-capturing for
the set of type variables A if for all α ↦ τ ∈ θ, ftvs (τ) ∩A = 0. Likewise, a substitution θ

is non-capturing for the set of term variables X if for all x ↦ y ∈ θ, y ∉X .

All of the substitutions in our msg algorithm are non-capturing with respect to the
relevant X and A sets.

The function msge principally consists of a number of simultaneous case matches on
its two arguments. Whenever we match binders together in the two arguments to msge,
we implicitly α-rename both of the two binders to a single variable, which is fresh in the
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output state. (This same thing happens whenever matching two binders in any part of
the MSG algorithm, including when matching ∀-bound type variables in the type MSG.)

You might expect that when the two arguments to msge cannot be matched then msge
would attempt to generalise rather than failing (by calling fail), so that the MSG of e.g.
f x and λy . e would be a, where:

θ0 = {a↦ a0} H0 = {a0 ↦ f x}
θ1 = {a↦ a1} H1 = {a1 ↦ λy . e}

However, such a MSG does not in fact meet the criteria for MSG we set out because the
instantiated, generalised terms are not cost-equivalent to the original terms. This can be
seen from our example because:

⟨a0 ↦ f x⎪⎪⎪⎪a0⎪⎪⎪⎪ǫ⟩ /◃▹∼ ⟨ǫ⎪⎪⎪⎪f x⎪⎪⎪⎪ǫ⟩
(Similarly for the other input to MSG.) Intuitively, the reason is that the instantiated,
generalised term introduces an additional layer of indirection (via a0) and hence “slows
down” the term. More formally, this fact can be seen as a consequence of the fact that
Theorem C.3.1 cannot be used to prove a cost equivalence.

Variable MSG The rest of msge is straightforward: the interesting work of term MSG
is done by variable MSG, implemented by msgx and msg ′x.

The function msgx is memoised by mutating θ0 and θ1. This is absolutely essential for
a number of reasons:

• Firstly (and least importantly) it saves computation time by avoiding recomputing
the result of MSGing together the same binder pairs multiple times

• Secondly, it avoids non-termination of msge when the terms under consideration
make recursive reference to each other. For example, without memoisation, com-
puting the MSG of ⟨xs ↦ x ∶ xs⎪⎪xs⎪⎪ǫ⟩ and ⟨ys ↦ y ∶ ys⎪⎪⎪⎪ys⎪⎪⎪⎪ǫ⟩ would not terminate.

• Thirdly, it allows us to later assume (in fixup, Section 5.5) that if a non-cheap heap
binding is referred to twice in the range of a θj substitution, then work would be
duplicated by allowing that binding to be part of the common output heap.

Having checked that msgx cannot be satisfied from the memoised information, and that
neither of the two argument variables are rigid, msg ′x is invoked. Since we know that
neither argument is rigid, they must both be bound by the respective input heap/stack,
or be free in the input. The call msg ′x has the job of MSGing together heap bindings to
extend the common heap rH . Therefore, if both variables are heap-bound at this point
we attempt to MSG together the corresponding heap bindings by making a recursive call
to msge.

If the two input variables to msg ′x do not refer to heap bindings for which an MSG
exists, we cannot hope to extend the common heap. However, in either case we do extend
the environment of variables rΓ in which the common state will typecheck with the newly
allocated variable and its generalised type. Note that at this point rΓ does not contain
just free variables of the common state—it might contain some of the variables bound by
rK or rH . As we will see, the later call to fixup will prune out any entries in rΓ which
end up being bound in the common heap, along with creating suitable individual heaps
containing the bindings that do not get commoned up into rH by msg ′x.
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msgK(K0,K1) =M(K)
msgK(K0,K1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κ,msgK(K0

′,K1
′) K0 ≡ κ0,K0

′
∧K1 ≡ κ1,K1

′

∧κ ←msgκ(κ0, κ1)
ǫ otherwise

msgκ(κ0, κ1) =M(κ)
msgκ(update x0 ∶τ0,update x1 ∶τ1) = update msgx(x0, x1)(∅) ∶msgτ(τ0, τ1)(∅)

msgκ(● x0,● x1) = ● msgx(x0, x1)(∅)
msgκ(● τ0,● τ1) = ● msgτ(τ0, τ1)(∅)

msgκ(case ● of C α ∶κ x ∶τ0 → eC0

n
,case ● of C α ∶κ x ∶τ1 → eC1

n)
= case ● of C α ∶κ x ∶msgτ(τ0, τ1)(α) → msge(eC0, eC1)(α,x)n

msgκ(κ0, κ1) = fail

Figure 5.3: Call-by-need stack MSG

Stack MSG The MSG for stacks is defined in Figure 5.3. The job of msgK is to
attempt to MSG together as many consecutive pairs of stack frames from the two input
states as possible. If the stack frames we wish to common up have different structure
(i.e. their MSG fails), or either stack has no more frames available for commoning up, we
simply return a truncated common stack. Our later call to fixup will deal with creating
appropriate individual stacks.

The stack frame MSG, msgκ, is uninteresting except insofar that we treat the binding
variable occurrences in update frames exactly as if they were simple variable occurrences
and MSG them with msgx.

5.5 Removing MSG work-duplication in fixup

The last piece of the MSG algorithm is the fixup family of functions, defined in Figure 5.4,
which is the part of MSG algorithm responsible for ensuring there is no work duplication
and creating the individual heap/stack.

The core of fixup is a loop where we find the sets of variables Yj which should be
bound by the jth individual heap/stack. The reasons for which a variable x should be
forced to be bound by the individual heap/stack are:

• Because x is referred to directly by the current common state ⟨rH⎪⎪⎪⎪e⎪⎪⎪⎪rK⟩ (this
case applies if x is one of the variables you obtain after renaming the free variables
of that state by rθj).

• Because x is an expensive heap binding that msg ′x MSGed against more than one
other corresponding expensive heap binding on the other side.

• Because x is referred to by one of the parts of the current individual heap/stack:
i.e. x is required transitively.

The fixup algorithm continually iterates until all variables that should be bound by the
individual heap stack are so bound. When iteration finishes, the final result of msg is
constructed and returned.

To illustrate the msg algorithm overall and fixup in particular, we consider a number
of examples.
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fixup(e)(X0,X1) =M(⟨H0
⎪⎪⎪⎪θ0⎪⎪⎪⎪K0⟩Σ0∣Γ0

, ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩Σ∣Γ , ⟨H1
⎪⎪⎪⎪θ1⎪⎪⎪⎪K1⟩Σ1∣Γ1

)
fixup(e)(X0,X1) = do

let Γtrim = rΓ∣fvs(⟨rH⎪⎪⎪⎪e⎪⎪⎪⎪rK⟩)
Hprop j

= Hj ∣Xj

θprop j = rθj ∣fvs(⟨rH⎪⎪⎪⎪e⎪⎪⎪⎪rK⟩)
Kprop j

= drop(∣rK ∣,Kj)
Yj = (fvs (Hprop j

) ∪ rng(θprop j) ∪ fvs (Kprop j
)

∪ {xj ∣ ∃y, z.y ≠ z ∧ y ↦ xj ∈ rθj ∧ z ↦ xj ∈ rθj})
∖ Xj

for xj ∈ Yj do fixupx(xj , j)
if Y0 /≡ ∅∨ Y1 /≡ ∅
then fixup(e)(X0 ∪ Y0,X1 ∪ Y1)
else (⟨Hprop0

⎪⎪⎪⎪⎪θprop 0⎪⎪⎪⎪⎪Kprop0
⟩
Σ0∣Γ0

, ⟨rH⎪⎪⎪⎪e⎪⎪⎪⎪rK⟩rΣ∣Γtrim
, ⟨Hprop1

⎪⎪⎪⎪⎪θprop1⎪⎪⎪⎪⎪Kprop1
⟩
Σ1∣Γ1
)

fixupx(x, j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rH ∶= rH ∖ {y ∣ y ↦ x ∈ rθj} x ∶τ ↦ e ∈Hj ∧ ¬cheap(e)
rK ∶= take(i, rK) Kj[i] = update x ∶τ

() otherwise

Figure 5.4: MSG fixup functions

Example 1: preventing work duplication by generalising the heap First, con-
sider the following example of two inputs to MSG that differ in their work-sharing prop-
erties:

S0 = ⟨a↦ f y⎪⎪⎪⎪(a,a)⎪⎪⎪⎪ǫ⟩ S1 = ⟨b↦ f y , c↦ f y⎪⎪⎪⎪(b, c)⎪⎪⎪⎪ǫ⟩
After msge and msgK complete, we have:

rH = d↦ f y , e ↦ f y
e = (d , e)

rK = ǫ

rθ0 = {f ↦ f, y ↦ y, d↦ a, e ↦ a}
rθ1 = {f ↦ f, y ↦ y, d↦ b, e ↦ c}

Because the variable a occurs twice in the range of rθ0, we know that work will have been
duplicated if a refers to an expensive heap binding in S0, which in this example it does.
The first iteration of fixup detects this work duplication and extends Y0 accordingly:

X0 = ∅

Hprop0
= ǫ

Kprop0
= ǫ

θprop 0 = {f ↦ f, y ↦ y}
Y0 = {f, y, a}

X1 = ∅

Hprop1
= ǫ

Kprop1
= ǫ

θprop 1 = {f ↦ f, y ↦ y}
Y1 = {f, y}

The resulting call fixupx(a,0) rectifies the work duplication issue by removing the d and
e bindings from the common heap, so on the next iteration we have:

rH = ǫ

X0 = {f, y, a}
Hprop0

= a↦ f y
θprop0 = {f ↦ f, y ↦ y, d↦ a, e ↦ a}

Y0 = ∅

X1 = {f, y}
Hprop1

= ǫ

θprop 1 = {f ↦ f, y ↦ y, d↦ b, e ↦ c}
Y1 = {b, c}
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On this iteration, we have detected that the removal of d and e that was triggered on the
previous iteration means that we now have to ensure that b and c are bound on the right
hand side. The calls fixupx(b,1) and fixupx(c,1) do nothing since we already trimmed the
common heap, and so the next iteration of fixup is also the final one, terminating with:

X0 = {f, y, a} X1 = {f, y, b, c}
Example 2: work duplication discovered transitively Consider these two inputs
to MSG:

S0 = ⟨a↦ f b, b ↦ f a⎪⎪⎪⎪(a, b)⎪⎪⎪⎪ǫ⟩ S1 = ⟨c↦ f d⎪⎪⎪⎪(c, e)⎪⎪⎪⎪ǫ⟩
After msge and msgK complete, we have:

rH = g ↦ f i
e = (g, h)

rK = ǫ

rθ0 = {f ↦ f, g ↦ a, i ↦ b, h ↦ b}
rθ1 = {f ↦ f, g ↦ c, i ↦ d,h↦ e}

Unlike our previous example, there is no immediate work duplication problem. This does
not mean that fixup has no work to do: its first iteration will still need to ensure that b
is bound in the left-hand individual heap:

X0 = ∅

Hprop0
= ǫ

Kprop0
= ǫ

θprop 0 = {h↦ b}
Y0 = {b}

X1 = ∅

Hprop1
= ǫ

Kprop1
= ǫ

θprop1 = {h↦ e}
Y1 = {e}

Because the b binding transitively refers to a, the following fixup iteration will attempt
to bind a in the left-hand individual heap:

X0 = {b}
Hprop0

= b ↦ f a
θprop 0 = {h↦ b}

Y0 = {f, a}

X1 = {e}
Hprop1

= ǫ

θprop 1 = {h↦ e}
Y1 = ∅

However, since the a binding is expensive, we can’t bind a in the left-hand individual
heap without also preventing its use in the common heap, so the resulting fixupx(a,0)
call removes g from the common heap to prevent work duplication. The next iteration of
fixup therefore detects that the corresponding binding on the other side, c, must be put
into the individual heap:

rH = ∅

X0 = {b, f, a}
Hprop0

= a↦ f b, b ↦ f a
θprop0 = {g ↦ a,h ↦ b}

Y0 = ∅

X1 = {e}
Hprop1

= ǫ

θprop1 = {g ↦ c, h ↦ e}
Y1 = {c}

After one more iteration to ensure the free variables of the a binding are bound, the fixup
iteration terminates:

X0 = {b, f, a} X1 = {e, c, f, d}
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Example 3: generalising the stack due to update frames The examples above
have dealt with heap bindings. In this final example, we see the analogous processes for
the stack. Consider these two MSG inputs:

S0 = ⟨a↦ b + 1⎪⎪⎪⎪g⎪⎪⎪⎪update b,● a⟩ S1 = ⟨ǫ⎪⎪⎪⎪g⎪⎪⎪⎪update d,● c⟩
After msge and msgK complete, we have:

rH = ǫ

e = g

rK = update e,● f

rθ0 = {g ↦ g, e↦ b, f ↦ a}
rθ1 = {g ↦ g, e↦ d, f ↦ c}

In this example, like the last, there is no immediate work duplication problem, but fixup
will find that it needs to bind a in the left-hand individual heap:

X0 = ∅

Hprop0
= ǫ

Kprop0
= ǫ

θprop0 = {g ↦ g, f ↦ a}
Y0 = {g, a}

X1 = ∅

Hprop1
= ǫ

Kprop1
= ǫ

θprop1 = {g ↦ g, f ↦ c}
Y1 = {g, c}

The next iteration will attempt to find the variable b that is transitively used by the a
heap binding:

X0 = {g, a}
Hprop0

= a↦ b + 1
θprop0 = {g ↦ g, f ↦ a}

Y0 = {b}

X1 = {g, c}
Hprop1

= ǫ

θprop1 = {g ↦ g, f ↦ c}
Y1 = ∅

Unlike in the last example, the transitively used variable b is bound by an update frame
and so the call fixupx(b,0) ends up causing a portion of the common stack to be dropped.
The next fixup iteration detects that it is done and returns:

rK = ǫ

X0 = {g, a, b}
Kprop0

= update b,● a

θprop0 = {g ↦ g}
X1 = {g, c}

Kprop1
= update d,● c

θprop1 = {g ↦ g}
5.6 Is the MSG necessarily well-typed?

Before we move on to define the final part of the MSG algorithm (the function msgτ imple-
menting type MSG), we stop to consider how our choice of a typed language impacts the
algorithm. Supercompilation work typically makes use of the MSG in an untyped setting,
but when working with a typed language we need to deal with the additional constraint
that the result of MSG must be well-typed. This introduces further complications, as we
will show in the following examples.

Type variable reuse When we take the MSG of the two untyped terms f True True
and f 1 1 we would be justified in using a new variable to generalise each point of difference
between the two inputs, so a sensible generalised common term would be f x y .
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Now consider the two typed terms λ(x ∶∶ Int) (f ∶∶ Int → Char). f x and λ(x ∶∶Bool) (f ∶∶
Bool → Char). f x . A naive MSG of these two terms might take the same approach at
the type level, and assign a new type variable to every point of difference between the
two, like so:

λ(x ∶∶α) (f ∶∶ β → Char). f x

Unfortunately, we can see immediately that this term does not type check in isolation. If
we instead ensure we reuse the same type variable in all generalised positions if appropri-
ate, the term will type check:

λ(x ∶∶ α) (f ∶∶ α→ Char). f x

Higher-rank types Consider also the MSG of the two typed terms λ(f ∶∶ ∀a.a). f Int
and λ(f ∶∶ ∀a.Int). f Bool . Due to variable capture, there is clearly no way for the MSGed
λ binder to have a ∀type because the only two sensible such terms are:

λ(f ∶∶ ∀a.a). f β λ(f ∶∶ ∀a.Int). f β

(Note that θ0 = {β ↦ Int}, θ1 = {β ↦ Bool} in both cases.) Neither proposed term is a
generalisation of both of the inputs to MSG. We might instead say that the MSG is:

λ(f ∶∶α). f β(θ0 = {α ↦ ∀a.a, β ↦ Int}, θ1 = {α↦ ∀a.Int , β ↦ Bool})
Unfortunately, this generalised term is not well typed due to the type application to β,
so we can see that there is no non-trivial generalisation of these two terms.

5.7 Conditions for MSG type correctness

The previous section demonstrates that a generalised term is not necessarily type correct,
even if the terms it is a generalisation of are well-typed. In this section we will establish
simple syntactic conditions on the result of term generalisation that are sufficient to
establish that the generalised term is well typed.

For the purposes of proving correctness, we restrict ourselves to the setting of System
Fω3, and do not consider features of the full Core language such as let. Nonetheless, we
conjecture that our our correctness proof could be extended to Core without exposing
any problems or requiring the use of different proof techniques.

In order to state what we wish to prove, we need to define the concept of non-coupling
(type) substitution pairs:

Definition 5.7.1 (Non-coupling substitutions). The type substitutions θ0 and θ1 are
non-coupling iff:

1. They have common domains: ∃Σ.dom (θ0) = dom (θ1) = Σ
2. All pairs of types are unique: ¬∃α ∶κ ∈ Σ, β ∶κ ∈ Σ.α ≠ β ∧ αθ0 = βθ0 ∧ αθ1 = βθ1

3. Each pair of types is non-coupling: ∀α ∶κ ∈ Σ.¬coupled (αθ0, αθ1)
The coupling relation picks out those pairs of terms that are “the same at the root” and
is defined by the following axioms:

coupled (τ0 υ0, τ1 υ1) coupled ((→), (→)) coupled (∀α ∶κ. τ0,∀α ∶κ. τ1)
3The syntax and static semantics of System Fω and its type substitutions are given in full in Ap-

pendix B, along with the detailed proof of the correctness of type generalisation.
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Note that the conditions required by coupling reflect the lessons learnt from the exam-
ples in the previous section. (Because of our restriction to System Fω, the only coupled
pair of type constructors is (→): in a language with more type constructors such as Core,
all identical type constructors must also be considered coupled.)

With this setup, we can prove the following theorem, which we will use to justify our
type generalisation algorithm in Section 5.8:

Theorem 5.7.1 (Correctness of type generalisation). In System Fω, if we have Σ0, Σ1,
Σ, Γ0, Γ1, Γ, e0, e1, e, τ0, τ1, θ0, θ1 such that:

• The ungeneralised terms are well typed: Σ0∣Γ0 ⊢ e0 ∶ τ0 and Σ1∣Γ1 ⊢ e1 ∶ τ1

• θ0 and θ1 are non-coupling with common domain Σ

• The term is a generalisation of the originals: eθ0 = e0 and eθ1 = e1

• The type environment is a generalisation of the originals: Γθ0 = Γ0 and Γθ1 = Γ1.

Then there exists a (unique) type τ such that:

• The generalised term is well typed: Σ∣Γ ⊢ e ∶ τ

• The type is a generalisation of the originals: τθ0 = τ0 and τθ1 = τ1

Proof. See Appendix B

5.8 Type MSG algorithm

We are now in a position to define the type MSG msgτ that is used by the term MSG to
generalise type arguments and the types of variable binders. Our type MSG (presented in
Figure 5.5) makes use of mutable variables, just like the term and stack MSG. However,
due to its simpler nature it only needs to inspect the accumulated substitutions rθj .

The algorithm is defined bearing in mind the syntactic conditions on type-correctness
of the MSGed term developed in the previous section, a fact which we prove with the
following theorem:

Theorem 5.8.1. If θj ← rθj are substitutions that are non-capturing for A and non-
coupling, then after executing msgτ(τ0, τ1)(A), we have that:

I The substitutions are extensions of the old ones: ∀j.θj ⊆ rθj.

II The substitutions rθj are still non-capturing for A and non-coupling.

III If the call succeeded with result τ then:

(a) The result is a generalisation: ∀j.τj = τrθj.

(b) This is the most specific generalisation satisfying the conditions I and II.

Proof. The proof of I is straightforward by observing that the sole line which modifies rθj

simply extends it.
The non-capturing portion of II follows easily by observing the explicit check for A-

capture that is made before calling genτ . To show non-coupling, observe that:

• All pairs of types are unique because previously-allocated type variables may be
reused when msgτ consults the rθj before allocating a fresh type variable.
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msgτ(τ0, τ1) =M(τ)
msgτ(α,α)(A ∪ {α}) = α

msgτ(T,T)(A) = T

msgτ(τ0 υ0, τ1 υ1)(A) = msgτ(τ0, τ1)(A) msgτ(υ0, υ1)(A)
msgτ(∀α ∶κ. τ0,∀α ∶κ. τ0)(A) = ∀α ∶κ.msgτ(τ0, τ1)(A ∪ {α})

msgτ(τ0, τ1)(A) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α α ↦ τ0 ∈ rθ0 ∧α ↦ τ1 ∈ rθ1

fail A ∩ (fvs (τ0) ∪ fvs (τ1)) ≠ ∅
genτ(τ0, τ1) otherwise

genτ(τ0, τ1) =M(τ)
genτ(τ0, τ1) = do α ← fresh

if ∃κ.kindof (τ0) ≡ kindof (τ1) ≡ κ
then rΣ ∶= rΣ, α ∶κ

else fail

rθj ∶= rθj ∪ {α↦ τj}
α

kindof (τj) = κj

Σj ⊢κ τj ∶ κj

kindof (τj) = κj

Figure 5.5: Type MSG

• All pairs of types that are added to rθj may not be coupled because coupled type
pairs are caught by earlier pattern matches in the msgτ function.

The proof of generalisation required for IIIa follows straightforwardly from the fact that
once an entry is added to the substitution it may not be removed (I) and that such an
entry is added whenever the MSGed type is in fact generalised.

Finally, to see that this is in fact a most specific generalisation, simply note that when
we extend the substitutions by calling genτ we have already determined that there is no
common outermost structure between the two types.

This allows us to prove our overall goal:

Theorem 5.8.2 (MSG well-typed).

msg(S0,S1) = (⟨H0
′⎪⎪⎪⎪θ0⎪⎪⎪⎪K0

′⟩ ,S , ⟨H1
′⎪⎪⎪⎪θ1⎪⎪⎪⎪K1

′⟩)∧ ⊢ S0 ∶ τ0 ∧ ⊢ S1 ∶ τ1Ô⇒ ∃τ.τθ0 = τ0 ∧ τθ1 = τ1 ∧ ⊢ S ∶ τ

Proof. Theorem 5.8.1 shows that msgτ preserves the non-coupling and non-capturing
nature of the accumulated type substitutions. Since the initial (empty) type substitutions
that are set by msg are also non-coupling and non-capturing, the final type substitution
must also be non-coupling. As a result, Theorem 5.7.1 may be used to prove that the
common state returned by msg is well-typed.

5.9 MSGing states rather than terms

Working with states rather than terms is useful for our MSG algorithm. There are two
principal reasons for this:
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• Identifying the stack explicitly is crucial in our argument that our MSG obeys cost
equivalence. When given two states:

S0 = ⟨f ↦ . . .⎪⎪⎪⎪● x ,case ● of True → g ;False → h⎪⎪⎪⎪f ⟩
S1 = ⟨f ↦ . . .

⎪⎪⎪⎪⎪⎪⎪⎪⎪
● x ,case ● of True → g

False → h
,● x ,case ● of True → g

False → h

⎪⎪⎪⎪⎪⎪⎪⎪⎪f ⟩
The algorithm determines the most specific generalisation of the two states to be a
new state: ⟨f ↦ . . .⎪⎪⎪⎪● x ,case ● of True → g ;False → h⎪⎪⎪⎪f ⟩
Which is cost-equivalent to the inputs in the sense that:

S0 ◃▹∼ ⟨∣ǫ⎪⎪⎪⎪⟨∣f ↦ . . .⎪⎪⎪⎪● x ,case ● of True → g ;False → h⎪⎪⎪⎪f ∣⟩⎪⎪⎪⎪ǫ∣⟩
S1 ◃▹∼ ⟨∣ǫ

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⟨∣f ↦ . . .
⎪⎪⎪⎪⎪⎪⎪⎪⎪
● x ,case ● of True → g

False → h

⎪⎪⎪⎪⎪⎪⎪⎪⎪f ∣⟩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
● x ,case ● of True → g

False → h
∣⟩

A more usual approach to obtaining this generalisation in a supercompiler which is
based on terms instead of states, is the “bowtie” generalisation of Mitchell [2008],
which takes the two corresponding input terms :

e0 = let f = . . . in case f x of True → g ;False → h
e1 = let f = . . . in case (case f x of True → g ;False → h) x of True → g ;False → h

And generalises them to a new term:

let f = . . . in case f x of True → g ;False → h

Such that:

e0 = let gen = let f = . . . in case f x of True → g ;False → h in gen

e1 =
let gen = let f = . . . in case f x of True → g ;False → h

in case gen x of True → g ;False → h

But notice that:

e0 /◃▹∼ let gen = let f = . . . in case f x of True → g ;False → h in gen

(and similarly for e1) since pulling out a term into a let-binding may introduce extra
non-normalising reductions that could have been performed with a normalising re-
duction rule had the term been left in place. Working directly with states, and hence
allowing instantiation with both a surrounding heap and a stack avoids introducing
extra gen-like bindings and hence eases the proof of supercompiler correctness in
Section 3.8.

• Explicitly identifying the stack makes it natural to match terms “inside out” (start-
ing from the focus of evaluation) rather than “outside in” (starting from the final
stack frame) as with most implementations. An example that demonstrates that
this strategy can lead to better generalisation is the MSG of these two states:

S0 = ⟨
odd ↦ λn.case n of Z → False

S m → case (odd m) of True → False
False → True

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
odd

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
● n⟩

S1 = ⟨odd ↦ . . .⎪⎪⎪⎪odd⎪⎪⎪⎪● n,case ● of True → False;False → True⟩
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With corresponding terms:

rebuild S0 = let odd = . . . in odd n
rebuild S1 = let odd = . . . in case odd n of True → False;False → True

A standard call-by-name MSG on terms (such as that of HOSC [Klyuchnikov,
2010a]: “bowtie” generalisation does not generally exhibit this problem) would
claim that these two terms have the trivial MSG x (with appropriate instantiat-
ing variable-to-term substitutions) and thus a supercompiler using such a MSG to
implement generalisation (Section 6.2) will be forced to split rather than generalise,
producing suboptimal code that contains a residual β-reduction of odd .

In contrast, our msg matches the stack from the innermost frame outwards, and so
it will return the state ⟨odd ↦ . . .⎪⎪⎪⎪odd⎪⎪⎪⎪● n⟩ as the MSG of S0 and S1, giving the
supercompiler the opportunity to avoid a residual β-reduction of odd .
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Chapter 6

Improving the basic supercompiler

In this chapter, we describe three additions to the core supercompilation algorithm de-
signed to improve the quality of the output code:

• Rollback: we show (Section 6.1) how to reduce supercompilation code duplication
by letting the supercompiler roll back to a previous state at certain points.

• Generalisation: we show (Section 6.2) how we can achieve better specialisation by
selectively throwing away information that is causing the termination test to fail.
In particular:

– We describe a novel approach to term generalisation in a supercompiler that
uses tags, which we call growing tag generalisation.

– We show how to implement growing tag generalisation with a minimum of code
by reusing the logic of split (Section 6.2.2).

– We compare growing tag generalisation with a generalisation technique based
on our call-by-need MSG (Section 6.2.3).

– We discuss type generalisation to combat the issue of type overspecialisation
(Section 6.2.6).

• Speculation: the need for a call-by-need supercompiler to preserve sharing may
lead to a loss of information and hence a reduction in the amount of optimisation the
supercompiler may achieve. We describe how a “speculating” reduction semantics
can be used to detect those heap bindings (such as partial applications), for which
no work is lost when they are duplicated (Section 6.3).

Each technique is easy to implement by modifying either a single module of our mod-
ular algorithm, or by changing the way we use our existing modules in the top-level sc
implementation. We evaluate each technique individually in Chapter 7.

6.1 Rollback

Suppose that we apply reduce to the following term:

let f x = case f x of True → False;False → True in f True

Evaluation yields a sequence of terms of the form

f True
case f True of True → False;False → True
case (case f True of True → False;False → True) of True → False;False → True
. . .
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and so does not terminate. Therefore, the terminate call in reduce (as defined in Sec-
tion 3.3) will eventually say Stop, and reduce will return whatever term it has reached,
say case (case f x of True → False;False → True) of True → False;False → True. But
since we have detected probable divergence it might reduce output code size to discard
the fruitless work and roll back to an earlier term that has not grown so much. For this
example, this would let us improve the output of the supercompiler from the term:

let h0 = let f x = h1 x
in case f True of True → True;False → False

h1 x = let f x = h1 x
in case f x of True → False;False → True

in h0

To the smaller term:

let h0 = let f x = h1 x in f True
h1 x = let f x = h1 x

in case f x of True → False;False → True
in h0

Because the termination criteria is used in two ways in the supercompiler, there are two
opportunities to introduce rollback—we not only add it to reduce, but to sc as well.

6.1.1 Rolling back reduction

The most straightforward change is to the reduce function (Section 3.3). It would be
possible for reduce to revert all the way to its original input term in the event of divergence,
but that risks discarding any useful computation performed, along with the bloat. For
example, suppose the body of the let in the example above was id (f 2) where id is the
identity function. Then it would be a pity to discard the work of reducing the call to id .

A more sophisticated approach is to modify the termination test API, so that when
terminate reports Stop, it also yields information recorded along with the earlier State
that is related to the new one by ⊴. A simple implementation of this could be as follows:1

type History a = [(State ,a)]
emptyHistory ∶∶History a

data TermRes a = Stop a ∣ Continue (History a)
terminate ∶∶History a → State → a → TermRes a
terminate hist here here extra∣ prev extra ∶ ← [ prev extra∣ (prev ,prev extra) ← hist

, prev ⊴ here ]
= Stop prev extra∣ otherwise
= Continue ((here ,here extra) ∶ hist)

To allow reduce to rollback, we can now use the extra data field in the History to store
the current State whenever the termination criteria is tested2. Should we be forced to

1Our implementation is actually based on a version of the termination combinators introduced in
Appendix D, extended with the ability to return a value with a Stop.

2It may seem redundant to store the State twice in each History entry, but this design is chosen for
uniformity with Section 6.1.2
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Stop reduction, that stored State is returned instead of the latest (more-reduced) version.
A suitable implementation of reduce is as follows (the code may be compared with the
original version in Section 3.3):

reduce ∶∶ State → State
reduce = go emptyHistory
where

go hist S = case terminate hist S S of

Stop Sold → Sold
Continue hist ′ → case step S of

Nothing → S
Just uS ′ → go hist ′ (normalise uS ′)

A simple example of where this makes a difference is using reduce on a term such as this:

let loop xs = loop (x ∶ xs)
id y = y

in id (loop [ ])
A supercompiler without reduce-rollback would produce a State such as this one:

let loop xs = loop (x ∶ xs)
xs0 = [ ]
xs1 = x ∶ xs0
xs2 = x ∶ xs1
xs3 = x ∶ xs2

in loop xs3

Our supercompiler instead rolls back to an earlier State where we duplicate less code:3

let loop xs = loop (x ∶ xs)
xs0 = [ ]
xs1 = x ∶ xs0
xs2 = x ∶ xs1

in loop xs2

The reduce function with rollback is, pleasingly, idempotent.

6.1.2 Rolling back driving

The other use of terminate occurs in the sc function itself, where it controls how deeply
nested recursive invocations of sc can become.

In the introduction to Section 6.1.1 we already saw how rollback could improve reduce,
but can the same idea really improve sc as well? We claim it can, in particular by reducing
the extent to which loops are fruitlessly peeled and unrolled. Consider the state S0:

let doubleacc n v = case n of Z → v
S m → let w = (S (S v))t0

in (doubleacc m w)t1
3The supercompiler still unrolls the call to loop twice, whereas one unrolling might seem more rea-

sonable. This happens because the call to loop in the body of the let is assigned a different tag to the
occurrence of loop in the body of loop itself.
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v = (S Z )t0
in (doubleacc n v)t1

After reduction and splitting, we will drive the following subcomponent S1:

let doubleacc n v = . . .

v = (S Z )t0
w0 = (S (S v))t0

in (doubleacc m0 w0 )t1
Now, tagBag S0 ⊴ tagBag S1, so we will split without reducing, resulting in driving the
following subcomponent state S2:

let doubleacc n v = . . .
in case n of Z → v

S m0 → let w0 = (S (S v))t0
in (doubleacc m0 w0 )t1

We then supercompile a subcomponent derived from the S branch, S3:

let doubleacc n v = . . .
w0 = (S (S v))t0

in (doubleacc m0 w0 )t1
However, tagBag S0 ⊴ tagBag S3, so we split again, driving the body of doubleacc as a
subcomponent. This results in tying back to S2, so the final supercompiled program is:

let h0 n = case n of Z → S Z
S m0 → h1 m0

h1 m0 = let doubleacc n v = h2 n v
v = S Z
w0 = S (S v)

in doubleacc m0 w0
h2 n v = case n of Z → v

S m0 → h3 m0 v
h3 m0 v = let doubleacc n v = h2 n v

w0 = S (S v)
in doubleacc m0 w0

in h0 n

Although this supercompiled result is not bad, it has peeled doubleacc once for no gain
(observe that the h2 and h3 functions form the main recursive loop, and h0 and h1 just
perform the first iteration).

If we change the supercompiler so that it rolls back to the state into which it is
embedded when the termination test fails, then we can avoid this peeling. What this
would mean for our example is that when we detect the termination test failure caused
by driving S1, we would roll back to S0 and act as if the termination test had failed at
that point. If we do this, we will recursively supercompile a new subcomponent S ′1:

let doubleacc n v = . . .
in case n of Z → v

S m0 → let w0 = (S (S v))t0
in (doubleacc m0 w0 )t1
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This leads to supercompiling a new state S ′2:

let doubleacc n v = . . .
w0 = (S (S v))t0

in (doubleacc m0 w0 )t1
Note that tagBag S0 ⊴ tagBag S ′2, but due to the rollback we are behaving as if S0 failed
the termination test, so S0 will not be in the History . Therefore, after reduce and split ,
we drive S ′3:

let doubleacc m w = . . .
w0 = (S (S v))t0
w1 = (S (S w0 ))t0

in (doubleacc m1 w1 )t1
However, tagBag S ′2 ⊴ tagBag S ′3 and so we will roll back to S ′2 and act as if the
termination test had failed there, and the resulting split will drive a subcomponent (from
the body of doubleacc) which just ties back to S ′1, leading to the final program:

let h0 n = let doubleacc n v = h1 n v
v = S Z

in doubleacc n v
h1 n v = case n of Z → v

S m0 → h2 0 m v
h2 m0 v = let doubleacc n v = h1 n v

w0 = S (S v)
in doubleacc m0 w0

in h0 n

This result is much better than what we got without rollback, since we have eliminated
the useless loop-peeling.

Implementing sc-rollback So we would also like to roll back in sc, but doing so is
complicated by the ScpM monadic structure—we must somehow roll back the monad-
carried information as well.

The easiest way to implement this is by making ScpM an exception monad, in which
rollback is triggered by throwing an exception. However, rollback should not revert to
the immediately-enclosing invocation of sc but rather to the invocation that processed
the State that is ⊴ the current state. So we need to throw an exception that will only be
caught by the “right” handler. An elegant way to express this idea is with a single new
primitive in the ScpM monad:

type Throw c = ∀b.c → ScpM b
catchScpM ∶∶ (Throw c → ScpM a) -- Action to try

→ (c → ScpM a) -- Handler
→ ScpM a

The second argument is the easy one: it is the exception handler, invoked if the first
argument throws an exception. The first argument is the action to run in the scope of
the exception handler, but it needs to know how to throw an exception to this particular
invocation of catchScpM . So catchScpM applies its first argument to a freshly-minted
“how to throw” function. This latter function takes a value of the type expected by the
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handler, c in this signature, and throws the exception. This signature allows the code
that raises the exception to pass a value of type c to the handler, to communicate some
information about the failure.

It is straightforward to implement catchScpM by changing the internal implementation
of the ScpM to use a continuation-passing monad [Wadler, 1992].

Given catchScpM , we can implement a version of sc with rollback. We make use of
the same enhanced terminate function, but this time the “extra information” passed to
terminate and returned by Stop is the “how to throw function”.

type ThrowTerm = ()→ ScpM Term

sc′ ∶∶History ThrowTerm → State → ScpM Term
sc′ hist S

= check ‘catchScpM ‘ (λ()→ split (sc hist) S)
where

check throw = case terminate hist S throw of

Stop throw old → throwold ()
Continue hist ′ → split (sc hist ′) (reduce S)

If we are forced to terminate (the Stop branch), then instead of continuing from the
current State (which triggered the termination condition), we raise an exception using
the exception raiser stored with the State which “blew the whistle”. When resuming
execution from an exception handler, we know that supercompiling the state associated
with that handler eventually caused the termination criteria to fire. Therefore, we act
as if the state had failed the termination test and do not reduce it before splitting. It is
remarkable how little the structure of the supercompiler is disturbed by this change.

For now, the “exception type” c in the type of catchScpM is (). However, we will
instantiate it with a more interesting type when we consider generalisation in Section 6.2.

Note that the History at the point we raise an exception (with throw old ) may be longer
than the History at the point we roll back to. In fact, it is not necessary to preserve this
longer history when we rollback—we can make do with the shorter history at the point
the exception handler was installed. Nonetheless, this does not affect termination of the
supercompiler (Section 6.1.3).4

One interesting question is what should happen to the ScpM -carried information when
we rollback. In particular, in between the time the exception handler was installed and
when an exception is raised we may have completed supercompilation of some new h-
functions—what happens to those when we roll back? One strategy would be to discard
them, on the basis that since we have rolled back they will not necessarily be used.
However, we found that in practice these specialisations were often useful even after
rolling back—retaining generated h-functions caused the supercompilation time of the
digitsofe2 benchmark [Partain, 1993] to decrease by 85%.

For this reason, our supercompiler retains as many h-functions as possible when rolling
back. One subtlety is that in between the point at which the exception handler is installed
and the point at which the exception is raised we may have made some new promises that
have not yet been fulfilled. If we are to roll back to the handler, the supercompilation
of these promises is aborted and these promises can never be fulfilled—so we do have to
discard any h-functions (and their dependents) that have tied back on the basis of those
promises. All of this is neatly hidden away inside the implementation of catchScpM .

4Using the longer history can actually be dangerous for termination, since invoking the exception
handlers embedded in the history may allow us to “roll back” to an invocation of sc which has already
been rolled back past by the use of another rollback. This can easily lead to non-termination.
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6.1.3 Termination and correctness of rollback

Rollback does not require any major changes to the supercompiler correctness argument.
When we roll back, the state we roll back to is just split instead of being reduced and
then split , which is clearly fine from a correctness perspective.

However, it is less obvious that a supercompiler with rollback still terminates. The
way to see that it does is to realise that each promise on a chain of recursive invocations
of sc′ can only be rolled back to at most once. The reason for this is that when a later
invocation of sc′ rolls back to an earlier invocation sc′ opt S , the supercompiler continues
by just splitting the S state without recording it in the termination history.

This explanation may seem counter-intuitive, as our supercompiler is only guaranteed
to termination because we do extend the termination history. However, in this case the
opposite is true: we are only guaranteed to terminate because we do not extend it.

To see why this is so, consider what would happen if S were recorded in the his-
tory given to split after a rollback. Executing sc hist S (which generates corresponding
exception-throwing function throw), we might easily get into a situation where:

1. terminate hist S throw = Continue hist ′

2. sc hist S invokes sc hist ′ S ′

3. terminate hist ′ S ′ throw ′ = Stop throw , so the recursive invocation calls throw

4. The code we roll back to invokes split (sc hist ′) S (note that using hist ′ instead of
hist here is how this example differs from what our sc′ function actually does)

5. But by coincidence split (sc hist ′) S splits to the same state we would recursively
supercompile normally, so we recursively invoke sc hist ′ S ′

We are now in a loop which continually recurses between sc hist ′ S ′ and split (sc hist ′) S .
By not extending the history upon rollback we can avoid this problem. Furthermore,

we do not risk non-termination by not extending the history since, as we proved in Sec-
tion 3.7.3, it is impossible to have an infinite chain of recursive invocations which consist
only of split steps.

6.2 Generalisation

A shortcoming of the supercompiler as described so far is that it does not make use of
the standard technique of generalisation [Turchin, 1988; Burstall and Darlington, 1977] to
guess good induction hypotheses. Generalisation is an important strategy for optimising
programs whose supercompilation drives sequences of States that do not tie back—such
as those programs that make use of accumulating parameters.

Note that there is a terminology clash between the supercompilation technique of gen-
eralisation (which we cover in this section) and the notion of a most-specific-generalisation
of two states or terms (covered in Chapter 5). The relationship between the two concepts
is that an algorithm for finding the most-specific-generalisation may be useful in the im-
plementation of a generalisation algorithm for the supercompiler (Section 6.2.3), but not
all generalisation algorithms need make use of the MSG.
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6.2.1 The problem

An example of a function for which generalisation helps the supercompiler achieve opti-
misation is foldl :

foldl c n xs = (case xs t1 of [ ] → n(y ∶ ys)→ let m = (c n y)t4
in (((foldl t2 c)t3 m)t5 ys)t6)t7

Now, suppose we supercompile the invocation ((foldl ta (∧)tb n)tc xs)td which might be
the implementation of Haskell’s standard and function. We will call the corresponding
state S0. After reduction and splitting, we will drive the subcomponent state S1:

let foldl c n xs = . . .(∧) = . . .
m0 = ((∧) n y0 )t4

in (((foldl t2 (∧))t3 m0 )t5 ys0 )t6) t7
The tag-bag for S0 is {{tb, tc, td, t8, t8, t9}} and for S1 is {{t3, t4, t5, t6, t8, t8, t9}}, so the ter-
mination criterion allows us to continue. After reducing and splitting, we drive S2:

let foldl c n xs = . . .(∧) = . . .
m0 = ((∧) n y0 )t4
m1 = ((∧)m0 y1 )t4

in (((foldl t2 (∧))t3 m1 )t5 ys1 )t6) t7
The tag-bag for S2 is {{t3, t4, t4, t5, t6, t8, t8, t9}}. Considered as a set, this has the same
tags as the tag-bag for S1, but a greater multiplicity for t4—the “growing tag”—so the
termination test tells us to stop. The resulting call to split without an intervening reduce
causes us to supercompile the following subcomponent, which just represents a totally
unspecialised version of foldl :

let foldl c n xs = . . .
in (case xs t1 of [ ] → n(y ∶ ys)→ letm = (c n y)t4

in (((foldl t2 c)t3 m)t5 ys)t6)t7
Ideally, we would hope that supercompiling the input program foldl (∧) n xs would have
created an output program containing a copy of foldl that has been specialised for its
function argument. This example has shown that in fact supercompilation only succeeds
in specialising the first two iterations of foldl on the function argument: all later iterations
are entirely unspecialised.

Completing the example, we find that our final output program will contain a peeled,
unrolled5, unspecialised copy of foldl :

let h0 n xs = case xs of [ ] → n(y0 ∶ ys0 ) → h1 n y0 ys0
h1 n y0 ys0 = case ys0 of [ ] → (∧) n y0(y1 ∶ ys1 )→ h2 n y0 y1 ys1
h2 n y0 y1 ys1 = let foldl c n xs = h3 c n xs

5The techniques discussed in Section 6.1.2 will prevent this peeling and unrolling
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m0 = (∧) n y0
m1 = (∧)m0 y1

in foldl (∧)m1 ys1
h3 c n xs = case xs of [ ] → n(y0 ∶ ys0 )→ h4 c n y0 ys0
h4 c n y0 ys0 = case ys0 of [ ] → c (c n y0 ) y1(y1 ∶ ys1 )→ h5 c n y0 y1 ys1
h5 c n y0 y1 ys1 = let foldl c n xs = h3 c n xs

m0 = c n y0
m1 = c m0 y1

in foldl c m1 ys1
in h0 n xs

The problem is that the only thing our standard algorithm can do when the termination
test fires is split , which forces us to supercompile a copy of foldl which is not specialised
on any of its arguments. What we want is to specialise with respect to the one argument
that is not changing, namely (∧), but parameterise over the argument that is changing,
the accumulator n.

The problem of how to continue when the supercompiler termination criteria fails is
well known and is solved by the choice of some generalisation method [Turchin, 1988;
Sørensen and Glück, 1995]. The goal of generalisation is to use the specialisations gener-
ated thus far to infer a “more general” specialisation that subsumes all of them.

In this section, we will discuss two methods of generalisation:

• Firstly, we will discuss a generalisation method suitable for supercompilers that
make use of tag-bags for their termination tests, based upon what we call growing-
tags. The advantage of this generalisation method is that it is very easy to implement
on top of the machinery we have already defined for split , and gives good results in
many common cases: Section 6.2.2.

• Secondly, we discuss a more standard generalisation method using an adaptation of
the most-specific generalisation (MSG): Section 6.2.3. We generally find that the
MSG gives better results than growing-tags generalisation (Section 7.5). Nonethe-
less, growing-tags generalisation may still be useful in the implementation of a su-
percompiler that only incorporates a splitter and term matcher, and does not have
a full MSG implementation.

6.2.2 Growing-tag generalisation

The idea behind growing-tag generalisation is that when the termination test fails there
is usually at least one tag that can be “blamed” for this, in the sense that the number
of occurrences of that tag has grown since we supercompiled the prior state, causing the
size of the tag-bag to rise and hence the termination test to fire.

In our foldl example, there is indeed such a “growing” tag—t4. We can use the set of
growing tags to generalise the State being supercompiled by somehow removing from the
state all syntax tagged with the growing tag(s) and then recursively supercompiling the
thus-eviscerated state. In our example from page 108, when the termination test fails on
S2, we would residualise the heap bindings for m0 and m1 because they are tagged (at
the root) with the growing tag t4, and recursively supercompile a subcomponent which is
really just a version of S2 which lacks those bindings:
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let foldl c n xs = . . .(∧) = . . .
in ((foldl t2 (∧))t3 m1 )t5 ys1 ) t6

Now, since the accumulator m2 has been residualised, this recursively supercompiled state
can immediately tie back to the h function for S0, and we get a loop that implements
foldl :

let h0 n xs = case xs of [ ] → n(y0 ∶ ys0 )→ h1 n y0 ys0
h1 n y0 ys0 = case ys0 of [ ] → (∧) n y0(y1 ∶ ys1 )→ h2 n y0 y1 ys1
h2 n y0 y1 ys1 = let m0 = (∧) n y0

m1 = (∧)m0 y1
in h0 m1 ys1

in h0 n xs

The resulting loop has still been unrolled (because it took two foldl inlinings before
we could spot the pattern of growth), but unlike the output program produced by the
supercompiler without generalisation, the loop is specialised on the (∧) argument.

This technique combines very nicely with rollback—with rollback enabled, we can
simply force residualisation of any syntax in the older State that is tagged with a growing
tag. So for our foldl example, failure of the termination test would cause us to roll-back
to S1, at which point we would notice that the (∧) n y0 thunk is tagged with the growing
tag t4 and thus residualise it. The resulting program will be an optimal specialised loop
that has not been unrolled.

Given two states, we can compute the set of growing tags between them as follows:

bagMinus ∶∶Ord a ⇒ Bag a → Bag a → Bag a
bagToSet ∶∶Ord a ⇒ Bag a → Set a -- Discards duplicates

type Growing = Set Tag

findGrowing ∶∶ State → State → Growing
findGrowing S1 S2 = bagToSet $ tagBag S2 ‘bagMinus ‘ tagBag S1

In general, it might be the case that no tag is growing with respect to the previous
tag bag, which happens if and only if the latest tag-bag is exactly equal to the older one.
In this case we have to fall back to an alternative generalisation method, or else (if all
other generalisation methods also fail) split in the same way as a supercompiler without
generalisation would.

The plumbing needed to implement the growing-tag generalisation method can be
added to the basic supercompiler in a very straightforward manner. We show how it can
be be added to the supercompiler with sc-rollback that we defined in Section 6.1.2. All
that needs to be done is to replace the definition of sc′ with the following:

type ThrowTerm = State → ScpM Term

sc′ ∶∶History ThrowTerm → State → ScpM Term
sc′ hist S = check ‘catchScpM ‘ (λS ′. tryTags (sc hist) S S ′ ‘orElse‘ split (sc hist) S)
where

check throw = case terminate hist S throw of

Stop throw old → throwold S
Continue hist ′ → split (sc hist ′) (reduce S)
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orElse ∶∶Maybe a → a → a
orElse (Just x) = x
orElse Nothing x = x

Note that we instantiated the “exception type” parameter c of catchScpM with State (cf.
Section 6.1.2).

To make use of the growing-tags information, we introduce tryTags , a function similar
to split , but which only residualises those parts of the input State that are marked with
a growing tag (and anything that those residualised portions transitively depend on).
Because it is possible that no tag may be growing, tryTags may fail, and in those cases
we fall back to using split . In our implementation, tryTags shares almost all of its code
with split , and can be defined using the p̂ush and traverse ˚State functions we introduced
in Chapter 4 as follows:

type Generaliser = (State → ScpM Term)
→ State → State
→Maybe (ScpM Term)

tryTags ∶∶Generaliser
tryTags opt S S ′ = fmap (λf . f opt) (tryTags ′ growing S)
where growing = findGrowing S S ′

tryTags ′ ∶∶Growing → State
→Maybe ((State → ScpM Term)→ ScpM Term)

tryTags ′ growing ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩
=

⎧⎪⎪⎨⎪⎪⎩
Just (λopt . traverse ˚State opt S̊) N ≠ ∅

Nothing otherwise

where S̊ = p̂ush(N) ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩
N = {x ∣ x ∶τ ↦ et ∈ H, t ∈ growing}

∪ {i ∣ K[i] = κt, t ∈ growing}
The presentation of tryTags as a call to an auxiliary function tryTags ′ is to set us for a
slight refinement of rollback in Section 6.2.4. The check for a non-empty generalisation
set N is necessary for correctness (Section 6.2.8).

Note that tryTags ′ calls p̂ush with a generalisation set which never contains ●. This
reflects the fact that when generalising we never want to residualise the focus of the state,
only some fraction of the state’s heap or stack. This is in stark contrast to invocations of
p̂ush by split , which always use the generalisation set {●} (Section 4.3.3).

In practice, there will sometimes be several growing tags, in which case supercom-
pilation can continue if we residualise syntax tagged with any non-empty subset of the
growing tags. Presently, our implementation does not take advantage of this freedom:
any syntax tagged with a growing tag is residualised by tryTags .

To exemplify tryTags , recall our previous example’s S2, which we wanted to generalise:

let foldl c n xs = . . .(∧) = . . .
m0 = ((∧) n y0 )t4
m1 = ((∧)m0 y1 )t4

in (((foldl t2 (∧))t3 m1 )t5 ys1 )t6
Generalisation of this state with the growing tag set {t4} would call

p̂ush({m0 ,m1})⟨ foldl ↦ . . . , (∧)↦ . . . ,

m0 ↦ ((∧) n y0 )t4,m1 ↦ ((∧)m0 y1 )t4
⎪⎪⎪⎪⎪⎪⎪⎪⎪foldl

t2
⎪⎪⎪⎪⎪⎪⎪⎪⎪● (∧)

t3 ,● m1 t5 ,● ys1 t6⟩
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which gives the pushed state:

⟨ m0 ↦ ⟨(∧)↦ . . .⎪⎪⎪⎪((∧) n y0 )t4⎪⎪⎪⎪ǫ⟩ ,
m1 ↦ ⟨(∧)↦ . . .⎪⎪⎪⎪((∧)m0 y1 )t4⎪⎪⎪⎪ǫ⟩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⟨foldl ↦ . . . , (∧)↦ . . .
⎪⎪⎪⎪⎪foldl t2⎪⎪⎪⎪⎪● (∧)t3 ,● m1 t5 ,● ys1 t6⟩⎪⎪⎪⎪⎪⎪⎪⎪⎪ǫ⟩

Observe that recursive supercompilation of the subcomponent state

⟨foldl ↦ . . . , (∧)↦ . . .
⎪⎪⎪⎪⎪foldl t2⎪⎪⎪⎪⎪● (∧)t3 ,● m1 t5 ,● ys1 t6⟩

will tie back to S0, just as we claimed.

6.2.3 MSG-based generalisation

Growing-tag generalisation is simple to implement by reusing code from the implementa-
tion of split , and we find it to be fairly effective in practice. However, it suffers from the
problem that if a binding is generalised by growing-tag generalisation, that binding is gen-
eralised away from all use sites. In contrast, generalisation based on the MSG algorithm
of Chapter 5 is capable of making a generalisation decision on a per-use-site basis. To
illustrate the difference, consider the term let x = e in (x , x). Growing-tag generalisation
is able to generalise x away from both use sites, yielding (x , x), but it is incapable of
generalising x away from a subset of use sites to yield a term such as let x = e in (x ,y).

This problem is made particularly acute by the combination of data constructor wrap-
pers (necessary to handle the partially-applied data constructors: Section E.3.6) and spec-
ulation (Section 6.3). With this combination of features, for any given data constructor,
all saturated occurrences of that data constructor will be assigned the same tag.

This in turn means that if we supercompile a function with an accumulating list
argument (such as the standard efficient implementation of reverse) the tag associated
with the (∶) data constructor will be implicated as a growing tag, leading to every cons-
cell heap-bound in the current state being generalised away, regardless of whether those
cells are used in the accumulator or not.

A small demonstration of the problem that makes use of a data constructor wrapper
but does not rely on speculation is the following state S0:

let (∶)wrap x xs = ((∶) x xs)t0
replicacc n xs = case n of

Z → xs
S m → let as = ((∶)wrap x xs)t1

in case as of ∶ → replicacc m as
bs = ((∶)wrap c cs)t2

in case bs of ∶ → case replicacc n xs of[ ] → case bs of ∶ → True
∶ → case bs of ∶ → True

After reducing and splitting S0, we will supercompile S1:

let (∶)wrap x xs = . . .
replicacc n xs = . . .
bs = ((∶) c cs)t0
as0 = ((∶) x xs)t0

in case replicacc m0 as0 of[ ] → case bs of ∶ → True
∶ → case bs of ∶ → True
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After one more round of reducing and splitting, we get S2:

let (∶)wrap x xs = . . .
replicacc n xs = . . .
bs = ((∶) c cs)t0
as0 = ((∶) x xs)t0
as1 = ((∶) x as0 )t0

in case replicacc m1 as1 of[ ] → case bs of ∶ → True
∶ → case bs of ∶ → True

We have that tagBag S1 ⊴ tagBag S2, so the termination test fails, and growing-tags
generalisation will attempt to supercompile the following generalised state S3:

let (∶)wrap x xs = . . .
replicacc n xs = . . .

in case replicacc m1 as1 of[ ] → case bs of ∶ → True
∶ → case bs of ∶ → True

Notice that we have generalised away the heap binding for bs , even though it was not
involved in the accumulator of replicacc. This prevents us from simplifying away the
expression case bs of ∶ → True when the supercompiler eventually ends up driving it.

In contrast, the MSG would have supercompiled the generalised state S ′3:

let (∶)wrap x xs = . . .
replicacc n xs = . . .
bs = ((∶) c cs)t0

in case replicacc m1 as1 of[ ] → case bs of ∶ → True
∶ → case bs of ∶ → True

This is much better because we lose less information.
As we have already defined a msg algorithm, implementing MSG-based generalisation

in our framework is almost as straightforward as implementing growing-tag generalisation.
To do so, we replace the call to tryTags we had in the modified sc′ function of Section 6.2.2
with a call to tryMSG , defined as follows:

tryMSG ∶∶Generaliser
tryMSG opt S S ′ = case msg S ′ S of

Just ( ,Scommon , inst)→ fmap (λf → f opt) (tryMSG ′ Scommon inst)
Nothing → Nothing

tryMSG ′ ∶∶ State → (Heap,Subst ,Stack)
→Maybe ((State → ScpM Term)→ Scp Term)

tryMSG ′ Scommon ⟨H⎪⎪⎪⎪θ⎪⎪⎪⎪K⟩∣ H /≡ ǫ ∨K /≡ ǫ
= Just $ λopt → do e ← opt Scommon

split opt (H, substTerm θ e,K)∣ otherwise
= Nothing

As in the case of the growing-tag generaliser tryTags , we have defined tryMSG using an
auxiliary function tryMSG ′ to prepare us for Section 6.2.4. The check for a non-empty
heap or stack in tryMSG ′ is necessary for correctness (Section 6.2.8).
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Of course, the MSG-based and tag-based generalisation methods can be combined,
using a combinator such as the following:

plusGeneraliser ∶∶Generaliser → Generaliser → Generaliser
plusGeneraliser gen1 gen2 opt S S ′ = gen1 opt S S ′ ‘mplus ‘ gen2 opt S S ′

mplus ∶∶Maybe a →Maybe a →Maybe a
mplus (Just x) = Just x
mplus Nothing mb x =mb x

In our implementation, we attempt MSG-based generalisation first, and if that fails (which
can happen if msg fails because e.g. the focus of one input state is x and the other focus
is a λ, or because the guard in tryMSG ′ fails) we attempt tag-based generalisation. If
both generalisation methods fail we fall back on split . In practice, we find that for our
benchmark suite (Chapter 7) none of the benchmarks experience a situation in which MSG
fails to generalise but where growing-tags generalisation is able to find a generalisation.

The generaliser can be thought of as another independent module in our modular
presentation of the supercompilation algorithm (Chapter 3).

6.2.4 Rolling back to generalise

In the implementation of sc′ with generalisation that we proposed in Section 6.2.2, if the
termination test failed we always rolled back and then tried to generalise the earlier, shal-
lower state that we rolled back to. Although this is not incorrect, it does not necessarily
produce the best code.

One common example where this strategy fails is if we are using MSG-based generali-
sation and the new state is an instance of the old one. This is such a common phenomenon
that it occurs in the example we used to introduce generalisation in Section 6.2, the su-
percompilation of the term ((foldl ta (∧)tb n)tc xs)td . If you recall, in that example we first
recursively drove S1:

let foldl c n xs = . . .(∧) = . . .
m0 = ((∧) n y0 )t4

in (((foldl t2 (∧))t3 m0 )t5 ys0 )t6) t7
And then S2:

let foldl c n xs = . . .(∧) = . . .
m0 = ((∧) n y0 )t4
m1 = ((∧)m0 y1 )t4

in (((foldl t2 (∧))t3 m1 )t5 ys1 )t6) t7
The tag-bags of these two states are embedded, and so the termination test fails. With
growing-tags generalisation, we would roll back to S1 and then residualise the binding
m0 which is tagged with the growing tag t4. However, S2 is an instance of S1 and so
with MSG-based generalisation we are unable to generalise S1 (the check in tryMSG ′ for
a non-empty instantiating heap or stack will fail), and consequently with the version of
sc′ presented in Section 6.2.2 we will end up splitting S1 to produce the final code:

let h0 n xs = case xs of[ ] → n
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(y0 ∶ ys0 )→ h1 n y0 ys0
h1 n y0 ys0 = let foldl c n xs = h2 c n xs

m0 = (∧) n y0
in foldl (∧)m0 ys0

h2 c n xs = case xs of [ ] → n(y0 ∶ ys0 )→ let foldl c n xs = h2 c n xs
m0 = (∧) n y0

in foldl (∧)m0 ys0
in h0 n xs

Note that the inner loop h2 is not specialised on the functional argument c, which we can
see statically will always be instantiated with (∧). If we had not rolled back and instead
generalised S2, we would have got the much better output code:

let h0 n xs = case xs of [ ] → n(y0 ∶ ys0 )→ h1 n y0 ys0
h1 n y0 ys0 = case ys0 of [ ] → (∧) n y0(y1 ∶ ys1 )→ h2 n y0 y1 ys1
h2 n y0 y1 ys1 = let m0 = (∧) n y0

in h1 m0 y1 ys1
in h0 n xs

The fundamental problem is that splitting can be seen as a very aggressive form of gen-
eralisation (in the sense that they both throw away information which we have available
at compile time with the goal of avoiding non-termination), and is consequently generally
much worse for the quality of the output code than the controlled information loss we get
from generalisation. Therefore, if we have to make a choice between:

• Either not rolling back to the earlier embedded state (i.e. not reducing code bloat),
but being able to successfully generalise the later state (improving optimisation)

• Or rolling back to the earlier embedded state (i.e. reducing code bloat) but being
forced to split rather than generalise (impeding optimisation)

If given this choice, we should prefer not rolling back, so that we can avoid having to
split .

It is worth noting that not being able to generalise after rolling back even though we
can generalise before the roll back usually only affects MSG-based generalisation. This
problem very rarely occurs when using the growing-tag generalisation, because it tends
to be the case that if the new state is generalisable then the old one will be as well.

The reason for this is that the new state will be generalisable if there is at least
one growing tag, and there is at least one heap binding or stack frame in the new state
tagged with the growing tag. However, since the tag-bags for the old and the new state
are embedded, it must be the case that at least one bit of syntax (heap binding, stack
binding or focus) in the old state was also tagged with that growing tag. As long it is
not the old state’s focus which is so tagged, it will therefore be the case that at least one
heap binding or stack frame in the old state tagged with the growing tag, which means
that growing-tag generalisation of the old state will succeed.

It is straightforward to change the implementation of sc′ so that it does not roll back
if doing so would lose a generalisation opportunity:

sc′ hist S = check ‘catchScpM ‘(λmb genold .case mb genold of Just genold → genold (sc hist)
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Nothing → split (sc hist) S)
where

check throw = case terminate hist S (S , throw) of
Stop (Sold , throw old)→ case tryMSG Sold S of(Nothing , Nothing) → throwold Nothing(Just genold , ) → throwold (Just genold)(Nothing , Just gennew)→ gennew (sc hist)
Continue hist ′ → split (sc hist ′) (reduce S)

Where we make use of a significantly more complicated type for generalisers:

type Generaliser = State → State
→ (Maybe ((State → ScpM Term)→ ScpM Term),

Maybe ((State → ScpM Term)→ ScpM Term))
tryTags , tryMSG ∶∶Generaliser

The changes from the initial Generaliser type are as follows:

• We simultaneously compute a generalisation for both the “old” (shallower) and
“new” states. This is because we do not know which one we will end up generalising.

• Because we don’t have access to the History that the shallower state was supercom-
piled in at the time we generalise, we delay the point at which we have to supply it
by pushing the demand for the opt ∶∶State → ScpM Term function used to recursively
supercompile inside the Maybe returned by the generaliser.

Although the sc′ we defined above uses tryMSG as a generaliser, we can adapt both of our
previous generalisation methods to this framework straightforwardly, as we conveniently
defined them in terms of suitable auxilliary functions tryTags ′ and tryMSG ′:

tryTags ∶∶Generaliser
tryTags S S ′ = (tryTags ′ growing S , tryTags ′ growing S ′)
where growing = findGrowing S S ′

tryMSG ∶∶Generaliser
tryMSG S S ′ = case msg S S ′ of
Just (inst l ,Scommon , inst r)→ (tryMSG ′ Scommon inst l , tryMSG ′ Scommon instr)
Nothing → (Nothing ,Nothing)

6.2.5 MSG-based generalisation and variable specialisation

When supercompiling, it can sometimes happen that we drive a state f x x and later
drive a similar state f y z which differs from the earlier one only in the sense that it is
less specialised on variables. Because these two states will commonly have identical tag
bags they will be embedded in the tag-bag termination test, and the supercompiler as
described so far will thus split the later state f y z without reducing it (in particular,
MSG-based generalisation will not occur because of the triviality checks in the tryMSG ′

function of Section 6.2.3).
This causes problems in practice, such as when supercompiling the Haskell term

foldr (+) 0 [x + y ∣ x ← xs ,y ← xs ], which can be translated to a state (using the
“TQ translation” for list comprehensions [Peyton Jones and Wadler, 1987]) as follows:

foldr (+) 0 (go1 xs)
where
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go1 [ ] = [ ]
go1 (x ∶ xs) = go2 ys
where

go2 [ ] = go1 xs
go2 (y ∶ ys) = (x + y) ∶ go2 ys

Supercompiling, we find that this program cannot be deforested because an earlier state:

let ys = y0 ∶ ys 0
go1 = . . .
go2 0 [ ] = go1 xs 0
go2 0 (y ∶ ys) = (x0 + y) ∶ go2 ys

in foldr (+) n 0 (go2 ys 0 )
Is embedded by the tag-bag test with the later state:

let ys = y0 ∶ ys 0
go1 = . . .
go2 1 [ ] = go1 xs 1
go2 1 (y ∶ ys) = (x1 + y) ∶ go2 ys

in foldr (+) n 1 (go2 ys 1 )
Note that we can’t tie back the later state to the earlier one because there is no way to
rename the earlier state to the later one, since the earlier state mentions the free variable
ys 0 twice, whereas the later state uses two distinct free variables in those positions. As a
result, the supercompiler is forced to split without reducing, which impedes deforestation.

It seems unfortunate that supercompiling an earlier state f x x and then a later state
f x y forces us to split . If we had instead supercompiled an earlier state f y z and
later came to supercompile f x x we would simply tie back to the earlier promised h-
function and hence avoid splitting altogether (Section 5.2.1), so whether or not we can
avoid splitting depends on the order in which we see the two states. This is particularly
annoying as in practice the vastly more common case is that we supercompile a more-
specialised state like f x x first, followed by a less-specialised state like f y z , so we are
forced to split .

Happily, there is an improvement we can make to our MSG generalisation which avoids
having to make this split . The idea is to make the triviality check more discerning, so
that if both instantiations reported by msg are trivial (i.e. have empty instantiating heaps
and stacks), we allow generalisation via rollback. This can be expressed in code with this
new tryMSG function:

tryMSG ∶∶Generaliser
tryMSG S S ′ = case msg S S ′ of
Nothing → (Nothing ,Nothing)
Just (inst l ,Scommon , inst r)∣ let allow (H,θ,K) opt = Just $ do e ← opt Scommon

split opt (H, substTerm θ e,K)
→ case (nonTrivial inst l ,nonTrivial instr) of(True,True) → (allow inst l , allow inst r)(True,False)→ (allow inst l , Nothing)(False,True)→ (Nothing , allow inst r)(False,False)→ (allow inst l ,Nothing)
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nonTrivial ∶∶ (Heap,Subst ,Stack)→ Bool
nonTrivial (H, ,K) =H /≡ ǫ ∨K /≡ ǫ

The behaviour of this tryMSG differs from that of Section 6.2.4 only because of the(False,False) case, which returns (allow inst l ,Nothing). If this case instead returned(Nothing ,Nothing) then this new tryMSG would behave identically to the old one.
However, this one small difference causes a big change: now if we are attempting gen-

eralisation between an earlier state f x x and a new state f y z , MSG-based generalisation
will be allowed to generalise via rollback. As a result, the stack of sc invocations will be
unwound to the point at which f x x was supercompiled and the variable-generalised state
f y z will be supercompiled in its place.

It is important that we only allow generalisation via rollback in the (False,False)
case. If we allowed generalisation without rollback then there is a danger we could end
up recursively supercompiling f y z as a child of a state f y z , which would cause the
supercompiler to immediately tie back, forming a black hole let h = h in h. When we
generalise via rollback we do not risk this.

Furthermore, whenever we roll back to generalise we know that the term we will roll
back to drive is guaranteed to be strictly less variable-specialised than what it replaces.
The reason for this is that if we are rolling back from S ′ to an earlier state S , then we
must already have attempted to tie back S ′ to the existing promise for S . If there was any
way to instantiate S to obtain S ′ then we would have memoised rather than generalised,
so it must be the case that the generalisation of S and S ′ will be strictly less variable-
specialised than S . For example, if S = f a b b and S ′ = f c c d then the generalisation
could be f a b c, which is strictly more general than either side. If S = f a b and S ′ = f c c
then we would have memoised rather than generalised: if we had (erroneously) failed to
memoise and instead rolled back to S in order to drive the generalisation f a b as a child,
the supercompiler would have returned a black hole let h = h in h.

6.2.6 Type generalisation

Most of the time, a supercompiler will use generalisation only as a last resort: we only
generalise if the sc′ termination test fails. The reason for this is that generalisation throws
away information, and throwing information away can reduce the amount of optimisation
that supercompilation can achieve.

However, while throwing away information is usually a bad idea, throwing away type
information not only does not impede optimisation (because type information is compu-
tationally irrelevant), but also may increase supercompiler speed because promises will
be specialised on less type information and so memoisation may tie back more often.

As an example, consider supercompiling the following program:

let length = Λα.λxs.case xs of [ ] → Z(y ∶ ys)→ S (length α ys)
f xs = length Bool xs
g xs = length Int xs
h xs = length Double xs

in (f , g ,h)
With our standard supercompilation algorithm, we get the following output code:

let h0 (xs ∶∶ [Bool ]) = case xs of [ ] → Z(y ∶ ys)→ S (h0 ys)
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h1 (xs ∶∶ [Int ]) = case xs of [ ] → Z(y ∶ ys)→ S (h1 ys)
h2 (xs ∶∶ [Double ]) = case xs of [ ] → Z(y ∶ ys)→ S (h2 ys)
f xs = h0 xs
g xs = h1 xs
h xs = h2 xs

in (f , g ,h)
The functions h0 , h1 and h2 are versions of length specialised on the type arguments
Bool , Int and Double respectively. A simple change to the supercompiler to eagerly
throw away type information will allow us to common these definitions up into a loop of
type ∀α.[a ]→ Nat , reducing both output code size and supercompilation time.

Of course, we cannot simply throw away all type information, because Core is a typed
language. We may only throw away type information if we are certain that the resulting
term will still be well typed. Luckily, we can reuse the versatile msg function to do this,
as we demonstrated in Section 5.7. To exploit type generalisation using msg , we replace
our memoiser with one which checks whether the new state being supercompiled has an
MSG against any previous promise which generalises only type information. For example,
if we already had a promise for (λ(xs ∶∶ [Bool ]). length Bool xs) and memo is asked to
supercompile (λ(ys ∶∶ [Int ]). length Int ys), by taking the msg of these two states we can
deduce that the common term (λ(zs ∶∶ [α]). length α ys) is well-typed. Furthermore, this
common term has only generalised away type information (i.e. the instantation of α).

Thememo opt call can take advantage of this discovery by invoking opt on the common
state (λ(zs ∶∶ [α]). length α ys), rather than on the original, ungeneralised state (λ(ys ∶∶[Int ]). length Int ys). The advantage of this is that by creating a promise for the type-
generalised state, we open the door to extra future tieback opportunities.

Concretely, this can be implemented as follows:

memo ∶∶ (State → ScpM Term)
→ State → ScpM Term

memo opt S = do
ps ← promises
let tiebacks = [ return (var (name p) ‘tyApps ‘map (substTyVar θ) (ftvs p)

‘apps ‘ (unit ∶map (substVar θ) (fvs p)))∣ p ← ps
, Just θ ← [match (meaning p) S ]]

tygens = [ do e ←memo opt Scommon

return (substTerm θ1 e)∣ p ← ps
, Just (θ0,Scommon , θ1) ← [typeGeneralise (meaning p) S ]
, substNonTrivial θ1]

case tiebacks ++tygens of
res ∶ → res[ ] → do

hn ← freshVar
let (tvs , vs) = freeVars S
promise P {name = hn,

ftvs = map fst tvs , fvs =map fst vs ,
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meaning = S }
e ← opt S
bind hn (forAllTys tvs (funTys (unitTy ∶map snd vs) (stateType S)))(tyLambdas tvs (lambdas ((unit ,unitTy) ∶ vs) e))
return (var hn ‘tyApps ‘map fst tvs ‘apps ‘map fst (unit ∶ vs))

Where we have the following auxilliary functions:

substNonTrivial ∶∶ Subst → Bool
substNonTrivial(θ) = ∃α, τ.α ↦ τ ∈ θ∧ /∃ β.τ ≡ β

typeGeneralise ∶∶ State → State →Maybe (Subst ,State ,Subst)
typeGeneralise(S0,S1) = (θ0,S , θ1)
where (⟨ǫ⎪⎪⎪⎪θ0⎪⎪⎪⎪ǫ⟩ ,S , ⟨ǫ⎪⎪⎪⎪θ1⎪⎪⎪⎪ǫ⟩) = msg(S0,S1)

The function typeGeneralise implements a restricted msg which only generalises type
information, so that:

typeGeneralise S0 S1 = Just (θ0,S , θ1)
Ô⇒ ∀.(rebuild S)θj ◃▹∼ Sj

Note that just like match, typeGeneralise will sometimes throw away potential positive
information by returning substitutions that are non-injective on term variables. For ex-
ample, typeGeneralise will succeed given the two states f Bool c c and f α d e. For more
discussion on this point, see Section 5.2.1.

It might appear that our new memo does twice as much work as the old one, since it
has to test each previous promise not only using match but also typeGeneralise. However,
both match and typeGeneralise are implemented in terms of msg , which does the heavy
lifting. It is a straightforward matter to share the work of the msg between the two calls,
so the additional cost of type generalisation checks should be low.

Example We can demonstrate how this alternative memo function works by using the
length example above. Supercompiling the initial term, split will eventually drive the
following three subcomponents:

S0 = ⟨length ↦ ...⎪⎪⎪⎪length Bool xs⎪⎪⎪⎪ǫ⟩
S1 = ⟨length ↦ ...⎪⎪⎪⎪length Int xs⎪⎪⎪⎪ǫ⟩
S2 = ⟨length ↦ ...⎪⎪⎪⎪length Double xs⎪⎪⎪⎪ǫ⟩

Supercompilation of S0 proceeds normally, generating a copy of length specialised on
the Bool type argument. However, when the supercompiler comes to supercompile S1,
typeGeneralise detects that S0 and S1 gives rise to a generalised state:

S4 = ⟨length ↦ ...⎪⎪⎪⎪length α xs⎪⎪⎪⎪ǫ⟩
where θ0 = {α ↦ Int}. As a result, memo does not create a promise for S1 and instead
recursively supercompiles S4. Supercompilation of S4 proceeds normally, generating a
copy of length unspecialised on its type argument. Finally, the supercompiler comes to
S2. Because S2 is a simple type instance of S4, match detects that a tie back is possible
and supercompilation terminates, producing the final program:

let h0 (xs ∶∶ [Bool ]) = case xs of [ ] → Z(y ∶ ys)→ S (h0 ys)
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h1 (α ∶∶ ∗) (xs ∶∶ [α]) = case xs of [ ] → Z(y ∶ ys)→ S (h1 α ys)
f xs = h0 xs
g xs = h1 Int xs
h xs = h1 Double xs

in (f , g ,h)
Compared to the version of the output generated without type generalisation, there is
one fewer specialisation of length.

Type-generalising the older state In the above example, it might seem odd that
the copy of length specialised for Bool (h0 ) is still present in the output even though
we have implemented type generalisation. To fix this issue, it is possible to extend our
new memo so that when we use the old promise for a fulfilled h-function to detect that
we can generalise the current state, we overwrite the fulfilment for that old h-function
with some code that just makes an appropriately instantiated call to the type-generalised
h-function we are about to create. So in the example above, at the time we detect
the type-generalisation opportunity (when driving length Int), we would overwrite the
fulfilment for h0 with a call to h1 Bool .

With this change our length example would produce the following supercompiled code:

let h0 (xs ∶∶ [Bool ]) = h1 Bool xs
h1 (α ∶∶ ∗) (xs ∶∶ [α]) = case xs of [ ] → Z(y ∶ ys)→ S (h1 α ys)
f xs = h0 xs
g xs = h1 Int xs
h xs = h1 Double xs

in (f , g ,h)
It is possible to apply this same idea to the case where the old promise is unfulfilled, but
in this case we may end up bind ing the same h-function more than once, and so we have
to modify bind so that the first call “wins”.

Both of these changes will reduce output code size (after dropping dead h-functions),
but they will not reduce supercompiler runtime.

A problem with these two changes arises if the supercompiler uses sc-rollback. The
reason is that the techniques above might create a fulfilment which references a promise
(for the type-generalised state) which is later rolled back, leaving the corresponding h-
function unbound in the output program. For this reason, our implementation does not
overwrite old fulfilments when sc-rollback is turned on.

Can there be more than one “best” type generalisation? One possible concern
about the implementation of memo above is that the algorithm always chooses the first
type generalisation that it discovers. It is not immediately clear that this always leads to
us generalising away as much type information as possible.

One potentially worrying scenario is that we could have promises for the states S0 =
f Int Char and S1 = f Char Bool , and then come to drive S2 = f Int Bool . If we
type-generalise S2 against S0 and S1 we find the generalised states f Int α and f α Bool
respectively, but it is clear that if S0 and S1 are type correct, then the more-general state
f α β will also be type correct, and we should prefer driving that to either of the two
instantiated versions.
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In fact, this S0/S1 scenario cannot occur because memo does not record a promise
when it detects a type generalisation, so that environment of promises could not exist.
Instead, when memo is asked to drive S1 it would have detected a type generalisation
using the previous state S0, and therefore only recorded a promise for the generalised
state f α β.

The following theorem about type generalisation can be used to show this fact:

Theorem 6.2.1. If there exist:

• State Sca, and non-coupling type substitutions θca0 and θca1 such that Scaθca0 = Sc
and Scaθca1 = Sa

• State Scb, and non-coupling type substitutions θcb0 and θcb1 such that Scbθcb0 = Sc
and Scbθcb1 = Sb

Then there exists Sab and non-coupling type substitutions θab0 and θab1 such that Sabθab0 =
Sa and Sabθab1 = Sb

Proof. We are restricting attention to type substitutions, so the non-type structure of the
states must match exactly and we can concentrate on corresponding pairs of type τca and
τcb in the respective states. The proof follows inductively on the structure of τca and τcb
in a similar fashion to Lemma B.0.1.

From this, we can see that if there are two earlier promises Sa and Sb against which
we can type-generalise the current state Sc, it must be the case that a type-generalisation
existed between Sa and Sb themselves. If such a type-generalisation exists then the right-
hand substitution must either be trivial or non-trivial. Consider each case separately:

• If the right-hand substitution was non-trivial (as it was in the earlier example, with
Sa = S0, Sb = S1 and Sc = S2) then we would never have recorded a promise for
the later of the two states Sa and Sb, contradicting the premise that we had earlier
promises for both of them.

• If the right-hand substitution was trivial, then promises for both Sa and Sb would
have been recorded by memo.

An example of how this case can occur is if we have earlier promises for S3 =
f Int Char and S4 = f Int α. If we were to type-generalise a later state S5 =
f Bool Char against S3 we would obtain the generalised state f α Char , but if
generalising S5 against S4 we would derive the generalised state f α β. Ideally,
we would like that the more-general f α β state is the one that is chosen as the
type-generalised one by memo, rather than the other option f α Char (of course, if
we do choose f α Char it will be type-generalised against S3 in the recursive call of
memo opt , but it is more efficient to make the more-general choice up front).

If the right-hand substition was trivial, then the newer promise Sb (S4 in our exam-
ple) will always be at least as general as the older promise Sa (S3 in our example),
so as long as memo always prefers to type-generalise against more recent promises
then it will always get the maximum possible amount of type generalisation. This
can be achieved by arranging that promises returns a list of promises with the most
recent promises earlier in the list.

With this constraint on promises, from these two cases we can see that memo always
performs the maximum amount of generalisation that is justified by the set of promises
at the time memo decides to type-generalise.
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Instance matching on types Above, we defined a new memo function that attempts
to eagerly throw away type information. However, notice that the code for detecting
tieback opportunities closely follows that in Section 3.4, with no special provisions for
detecting type instance matches. This reflects the fact that the version of the supercom-
piler we defined in Chapter 3 was already implicitly performing type instance matches
if they were possible. Of course, with the modifications made to memo in this section,
opportunities for type instance matches will tend to arise much more often.

6.2.7 Termination of generalisation

We cannot take the termination argument we made in Section 3.7 and apply it un-
modified to a supercompiler that uses the generalisation methods described above. The
principal problem is our previous argument assumed that the supercompilation function
sc = memo sc′ would always recurse via a call to split if the termination test failed, but
a supercompiler which does generalisation will not in general do so: sometimes it will
recurse via split , but other times it may directly invoke sc on a new, generalised state.

However, with a slight modification to the argument it is possible to show that the
supercompiler still terminates by exploiting the fact that any recursive calls that could
not have originated from split will always recursively supercompile a state which is a
generalisation of the current one, in the sense that it will be equal to the current state in
some context and renaming.

For clarity, we ignore rollback in this proof and focus on the issues raised by generali-
sation, though we believe the result extends to the supercompiler with rollback.

Theorem 6.2.2 (Generalisation well-foundedness). sc recurses a finite number of times.

Proof. Proceed by contradiction. If sc recursed an infinite number of times, then by
definition the call stack would contain infinitely many activations of sc hist S for (possibly
repeating) sequences of hist and S values. Denote the infinite chains formed by those
values as ⟨hist0,hist1, . . .⟩ and ⟨S0,S1, . . .⟩ respectively.

Now, observe that it must be the case that there are infinitely many i for which the
predicate isContinue (terminate hist i Si) holds. This follows because the only other pos-
sibility is that there must exist some j such that ∀l.l ≥ j Ô⇒ isStop (terminate hist l Sl).
On such an isStop suffix with Sl ≡ ⟨Hl

⎪⎪⎪⎪el⎪⎪⎪⎪Kl⟩, then for all l ≥ j:

• Either this sc activation is recursing through a standard call to split , or through a
recursive call by tryTags or tryMSG which is recursively supercompiling one of the
states residualised around the main generalised state in the focus. In this case, Sl+1
will be equal to one of the states that would be recursively supplied to opt by a call
split opt ⟨H ′l⎪⎪⎪⎪⎪e′l⎪⎪⎪⎪⎪K ′l ⟩ where:

– H ′l ⊆ Hl

– K ′l ‘isInfixOf ‘ Kl

– e′l ∈ subterms (Sl)
We call such a recursive call a split-recursion.

• Or else we are recursing via the type generalisation in memo or as the term in the
focus that is recursively driven by tryTags/tryMSG . In this case, Sl is a instance of
the Sl+1 i.e. ∃H,θ,K. ⟨H,Hl+1θ

⎪⎪⎪⎪el+1θ⎪⎪⎪⎪Kl+1θ,K⟩ ≡ Sl.
We call such a recursive call a generalisation-recursion.
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By the modified property of split (defined in Section 3.7.3) and the properties of alt-heap
and subterms we also have that

∀l.l ≥ j Ô⇒ ∃θ.

Hlθ ⊆Hj ∪ alt-heap (ej,Kj)
∧ Klθ ‘isInfixOf ‘ Kj

∧ elθ ∈ subterms (Sj)
Taking these two facts together, we can therefore conclude that the infinite suffix must
repeat itself at some point (up to renaming of the free variables): ∃l0, l1, θ.l0 ≥ j ∧ l1 >

l0 ∧ Sl0θ = Sl1 . However, we required that match always succeeds when matching two
terms equivalent up to renaming, which means that sc hist l1 Sl1 would have been tied
back by memo rather than recursing. This contradicts our assumption that this suffix
of sc calls is infinite, so it must be the case that there are infinitely many i such that
isContinue (terminate hist i Si).

Now, form the infinite chain ⟨S ′1,S ′2, . . .⟩ consisting of a restriction of Si of to those ele-
ments for which isContinue (terminate hist i Si) holds. As in Section 3.7, this contradicts
the fact that ⊴ is a well-quasi-order.

6.2.8 Correctness of generalisation

Once again, we find that the correctness argument of Section 3.8 is insufficient to explain
why the supercompiler with generalisation is correct. In this section we argue why the
supercompiler is still correct in the presence of generalisation.

The origin of the problem is that the correctness argument relies on the extra ticks
added by the delay function to “pay for” the calls to the h-functions that are created by
memo. However, delay only adds a single tick of delay to each subterm, and generalisation
may cause a chain of several h-functions to be created with the same subterm in the focus,
and that single tick will only be enough to pay for the very first h-function. An example
would be if the state S = ⟨x ↦ True⎪⎪⎪⎪● x⎪⎪⎪⎪f ⟩ is generalised by MSG to S ′ = ⟨ǫ⎪⎪⎪⎪● x⎪⎪⎪⎪f ⟩. For
this to be justified by the old correctness argument we would need the two states to be
related by same correctness property as we assumed for the splitter (Definition 3.8.2), i.e.
we would need that:

(delay ⟨x ↦ True⎪⎪⎪⎪● x⎪⎪⎪⎪f ⟩ = let x = True in f x) ⊳∼ let x = True;h x = f x in h x

However, this clearly does not hold since the supercompiled term will always require an
extra non-normalising β-reduction to reach a value than the delayed input does.

One way to repair the proof is to observe that if the supercompiler hypothetically did
not create promises (and hence h-functions) from calls originating from generalisation-
recursion (in the sense of Theorem 6.2.2) then the output would be correct by the same
argument as in Section 3.8, since we would only create a h-function when doing split-
recursion and hence the single tick introduced by delay would be sufficient to make the
correctness proof go through.

The only danger with such a modified supercompilation algorithm would be that
memoising less might make the supercompiler fail to terminate. However, we can see that
this will not happen because whenever we recurse via a generalisation-recursion, the old
state is not only an instance of the new state, but a strict instance of it: i.e. there is some
information in the old state that is not in the new state, be that some type information,
a stack frame, or a (non-dead) heap binding. This property is ensured by:
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• The explicit checks in tryMSG ′ and tryTags ′ for non-trivial generalisations6.

• The check in memo that the substitution returned by typeGeneralise is non-trivial
according to substNonTrivial .

As a result of this strict-instance property, all potential infinite chains of recursion in sc
must be interspersed by infinitely many split-recursions, which are sufficient to show that
sc eventually ties back.

This shows that a hypothetical supercompiler which did not create promises upon
generalisation-recursion is both terminating and correct. To see that the supercompilation
algorithm as we have actually presented it is correct, observe that the process of inlining
all calls to h-functions originating from a generalisation-recursion must terminate, since
all recursive loops involving those h-functions will eventually be broken by a h-function
originating from a split-recursion. Therefore, inlining all calls to h-functions originating
from a generalisation-recursion in the output of our supercompilation algorithm termi-
nates, and yields a term equivalent to that returned by the hypothetical supercompiler.
This shows that if the hypothetical algorithm is correct (which it is, as we argued above)
then our presented algorithm must be.

6.3 Speculative evaluation

A call-by-need supercompiler will unavoidably sometimes find itself discarding information
in split due to work duplication concerns. An example of this is a program such as:

let odd n = case n of Z → False
S m → even m

even n = case n of Z → True
S m → odd m

b = odd unk
in (if b then x else y , if b then y else x)

If we were free to push the b binding into each component of the pair, we could fuse
the consumption of the Bool result by the if expressions into odd , hence deforesting the
intermediate Boolean values:

let h0 n a b = case n of Z → b
S m → h1 m a b

h1 n a b = case n of Z → a
S m → h0 m a b

in (h0 unk x y ,h0 unk y x)
However, if both components of the pair are forced then the entire structure of unk
will be deconstructed by repeated case scrutinisation twice, as opposed to once in the
original term. Work is duplicated by pushing the b binding into each component of the
pair. To prevent such problems, we saw in Chapter 4 how split forces residualisation of
any heap bindings that are not syntactic values, if pushing them down into recursively
supercompiled states would potentially duplicate work.

6For these checks to be sufficient we need that the states we attempt to generalise don’t contain dead
heap bindings, a property which is easy to establish in the implementation by inserting calls to a function
gc ∶∶ State → State that discards such bindings.

125



However, the check for something being a syntactic value is too strict—many things
are in fact safe to duplicate even though they are not manifestly values. A simple example
is a partial application:

let (∧) = λx y .case y of True → x ;False → False
g = (∧) True

in (g False, g True)
As described, our supercompiler would produce the following output for the program:

let g = λy .case y of True → x ;False → False
in (g False, g True)

The (∧) call in the g binding has been inlined, but the two calls to g have not been.
This is because (∧) True is an application, not a value, so the g binding appears to be
expensive and hence is not pushed down into the components of the pair by split . This
prevents the supercompiler from eliminating the case.

Of course, after supercompiling g we discover that it actually evaluates to a value—but
we discover that fact too late to make use of it. Another manifestation of this problem is:

let isJust mb = case mb of Nothing → False;Just → True
isNothing mb = case mb of Nothing → True; Just → False
x = let y = True

in Just y
in (isJust x , isNothing x)

The x binding is not a manifest value since in actually consists of a let-binding wrapped
around a value. As a result, it will not pushed down by split , the supercompiler will fail
to eliminate the cases, and we will get this output:

let h0 mb = casemb of Nothing → False;Just → True
h1 mb = casemb of Nothing → True; Just → False
x = let y = True in Just y

in (h0 x ,h1 x)
As a final example of how work duplication checks can prevent optimisation, consider the
supercompilation of iterate not True, which reduces to the following state:

let not = . . .
iterate f x = let y = f x

ys = iterate f y
in y ∶ ys

x = True
y0 = not x
ys0 = iterate not y0

in x ∶ ys0

This state will split and reduce to:

let not = . . .
iterate f x = . . .
x = True
y0 = not x
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y1 = not y0
ys1 = iterate not y1

in y0 ∶ ys1

If we were to split once again y0 would be residualised because it is used by both not y0
and in the actual cons-cell in the focus of the state. This impedes optimisation and
generates a residual program like:

let h0 = let x = True in x ∶ h1
h1 = let y0 = False in y0 ∶ h2 y0
h2 y0 = let y1 = not y0 in y1 ∶ h2 y1

in h0

This program is suboptimal because it contains residual case-scrutinisations (in not) which
we could have eliminated statically. Ideally, our initial split and reduce would have reduced
the y0 heap binding as well, to produce:

let not = . . .
iterate f x = let y = f x

ys = iterate f y
in y ∶ ys

x = True
y0 = False
ys0 = iterate not y0

in x ∶ ys0

With y0 a manifest value, there are no work duplication problems and we can supercom-
pile the input into an optimal loop:

let h0 = let x = True in x ∶ h1
h1 = let y0 = False in y0 ∶ h0

in h0

Our solution for these problems is to use let-speculation to discover those heap bindings
that are “morally” values. To implement this, all calls of reduce within the main sc′

function are replaced with a call speculate .reduce, where speculate reduces any non-values
in the resulting Heap to values by invoking reduce on them. One way to implement a
suitable speculate would be:

speculate ∶∶ State → State
speculate ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ = ⟨speculateHeap H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩
speculateHeap ∶∶Heap → Heap
speculateHeap H = speculateMany (bvsHeap H)H
where

speculateMany xs H = foldl speculateOne H xs

speculateOne ∶∶Heap → Var → Heap
speculateOne H x∣ H ≡H ′, x ∶τ ↦ e

, ⟨H ′′⎪⎪⎪⎪e ′⎪⎪⎪⎪ǫ⟩ ← reduce (normalise ⟨H ′⎪⎪⎪⎪e⎪⎪⎪⎪ǫ⟩)
= H ′′, x ∶τ ↦ e′∣ otherwise
= H

127



Where bvsHeap ∶∶ Heap → [Var ] is defined by bvsHeap(H) = {x ∣ x ∶ τ ↦ e ∈ H}.
Remember that because we work with normalised states, if reduce returns a state with an
empty stack then the focus must either be a value or a variable (which will either unbound
in the corresponding heap or be bound to a value in that same heap). Both variables
and values are cheap and hence will be propagated without fear of work duplication by
algorithms like split and msg , and so in these cases we use the reduced version as the new
definition for the heap binding being speculated.

Cheap expressions that are “close to” values (like (∧) True or let y = True in Just y in
our example) will be replaced with syntactic values by this speculator, which allows split
to residualise less and propagate more information downwards. The use of this technique
means that unlike Mitchell [2010], we do not require a separate arity analysis stage to su-
percompile partial applications well. Furthermore, this technique automatically achieves
useful let-floating, and also allows fully-applied function calls and primop applications to
be duplicated if those calls quickly reach values7.

6.3.1 Recursive speculation

Using reduce on some heap binding may give rise to further heap bindings requiring
speculation. For example, if we speculate the heap binding y ↦ let x = not True in Just x ,
after reduction the outgoing heap will contain a binding for the term not True.

Naturally, we wish to speculate such bindings recursively, but implemented naively this
creates a new source of non-termination—for example, consider speculating a heap binding
for enumFrom Z , denoting an infinite list of Peano numbers. After a call to reduce, we will
have the state ⟨y0 ↦ S Z ,ys0 ↦ enumFrom y0⎪⎪⎪⎪Z ∶ ys0⎪⎪⎪⎪ǫ⟩. If we recursively speculate the
ys0 binding in turn we generate the new bindings y1 ↦ S y0 and ys1 ↦ enumFrom y1 ,
and if we recursively speculate ys1 it is clear that we will be in a loop.

Furthermore, recursive speculation can be another source of exponential explosion in
supercompilation. Consider this program:

let f1 x = f2 y ++f2 (y + 1)
where y = (x + 1) ∗ 2

f2 x = f3 y ++f3 (y + 1)
where y = (x + 1) ∗ 2

f3 x = f4 y ++f4 (y + 1)
where y = (x + 1) ∗ 2

f4 x = [x + 1]
shared = f1 0

in (sum shared , length shared)
Reduction of this term only serves to place the let-bound terms shared and f1 to f4 in
the heap. Once there, they will be speculated. The f n functions are already values, so
this has no effect. However, speculation of shared gives rise to three new heap bindings:

y0 ↦ (0 + 1) ∗ 2 f2 0 ↦ f2 y0 f2 1 ↦ f2 (y + 1)
Speculating either the f2 0 or f2 1 bindings will give rise to three new bindings:

y1 ↦ (y0 + 1) ∗ 2 f3 0 ↦ f3 y1 f3 1 ↦ f3 (y1 + 1)
7Speculation of saturated applications is a particularly important feature if (like CHSC) your super-

compiler introduces data constructor wrappers to deal with partial application of constructors in the
input language.
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Overall we end up speculating 1 application of f1 , 2 applications of f2 , 4 applications of
f3 , and 2n−1 applications of f n.

We solve the problem of recursive speculation non-termination in the same way as we
solve the problem of supercompiler termination: by using a well-quasi-order based termi-
nation test. However, unlike our use of a termination test in the standard supercompiler,
we will thread the History through our speculator (like state) rather than passing it
strictly down into recursive calls (like an environment). The reason for this is that this
will help to prevent exponential explosion in the speculator without losing most “obvious”
speculation improvements such as reduction of partial applications and let-floating.

Additionally, we will make use of a speculator which is idempotent. The reason that
we desire this property is that we will speculate the entire available heap upon every
non-Stopping invocation of sc′. Furthermore, the heap passed to a recursive invocation
of sc′ is usually substantially similar to the heap of the parent call. Therefore, in a nest
of recursive sc′ invocations we will end up driving substantially similar heaps multiple
times, and it would be strange if speculate made progress on evaluating the heap bindings
with every successive invocation. An example of the behaviour we would like to avoid is
that given the input state:

S0 = ⟨repeat ↦ . . . , x ↦ repeat y
⎪⎪⎪⎪⎪⎪⎪⎪⎪a
⎪⎪⎪⎪⎪⎪⎪⎪⎪
case ● of True → b

False → c
,case ● of True → f x

False → g x
⟩

We might speculate it to:

S ′0 = ⟨repeat ↦ . . . , x ↦ y ∶ x0, x0 ↦ repeat y
⎪⎪⎪⎪⎪⎪⎪⎪⎪a
⎪⎪⎪⎪⎪⎪⎪⎪⎪
case ● of True → b

False → c
,case ● of True → f x

False → g x
⟩

And then when we split to drive the subcomponent state S1:

S1 = ⟨repeat ↦ . . . , x ↦ y ∶ x0, x0 ↦ repeat y
⎪⎪⎪⎪⎪⎪⎪⎪⎪b
⎪⎪⎪⎪⎪⎪⎪⎪⎪
case ● of True → f x

False → g x
⟩

We could speculate in a similar manner to obtain:

S ′1 = ⟨repeat ↦ . . . , x ↦ y ∶ x0, x0 ↦ y ∶ x1, x1 ↦ repeat y
⎪⎪⎪⎪⎪⎪⎪⎪⎪b
⎪⎪⎪⎪⎪⎪⎪⎪⎪
case ● of True → f x

False → g x
⟩

Notice that the x list is becoming longer with every invocation of sc′. If we are careful to
make our speculator idempotent, we will tend to avoid this problem.

In order to achieve idempotence, it is convenient to make use of rollback in a similar
way to Section 6.1. For this purpose we make use of a simple continuation-passing monad
SpecM supporting the following operations:

runSpecM ∶∶ SpecM Heap → Heap

catchSpecM ∶∶ ((∀b.c → SpecM b)→ SpecM a)
→ (c → SpecM a)→ SpecM a

callCC ∶∶ ((∀b.a → SpecM b)→ SpecM a)→ SpecM a
callCC f = catchSpecM f return

We also need some straightforward operations on Heaps:

(∪H) ∶∶Heap → Heap → Heap(∖H) ∶∶Heap → Heap → Heap

insertHeap ∶∶Var → Term → Heap → Heap
heapFromList ∶∶ [(Var ,Term)]→ Heap
singletonHeap ∶∶Var → Term → Heap
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We will also use a topologicalSort function to speculate the heap in dependency order, as
far as that is possible. The list returned by topologicalSort is ordered so that strongly
connected components (SCCs) earlier in the list do not make reference to any heap-bound
variable bound by a later SCC.

topologicalSort ∶∶Heap → [HeapSCC ]
data HeapSCC = AcyclicSCC (Var ,Term) ∣ CyclicSCC [(Var ,Term)]

The last piece we need is a function similar to the standard termination test terminate.
We do not want to make use of the standard tag-bag termination test if we are threading
the history rather than passing it down as an environment, because the fact that S1 ⊴
S2 /Ô⇒ S2 ⊴ S1 means that our speculator could be sensitive to the order in which
unrelated recursive speculations are made. We do not want it to be the case that if we
have the state ⟨x↦ e0, y ↦ e1

⎪⎪⎪⎪(x ,y)⎪⎪⎪⎪ǫ⟩ we might succeed in reducing both e0 and e1 to
a value if we speculate x and then y but not if we were to speculate y and then x .

The terminateSet function therefore defines a termination test like terminate, but the
test is implemented by the symmetric WQO S0 ⊴set S1 ⇐⇒ dom(tagBag(S0)) =
dom(tagBag(S1)) rather than the usual tag-bag WQO. Like in Section 6.1, we allow
History to contain some “extra information”.

terminateSet ∶∶History a → State → a → TermRes a

Now we have all the pieces in place, we can define a suitable idempotent heap speculator
(Figure 6.1).

The overall plan of speculateHeap is to run through the input heap bindings in topo-
logical order, and have speculateHB reduce each binding in an accumulating heap of
previously-speculated bindings. Any new heap bindings arising from reducing a given
heap binding are recursively speculated by speculateSCC , giving rise to a logical tree of
calls to speculateHB . The path from the root of the tree to the current leaf is recorded
in the Path that is passed throughout the speculator.

Generally, the heap of previously-speculated bindings Henv passed to speculateHB will
contain all the information we have about the free variables of the heap binding to be
speculated. However, the situation is complicated somewhat by cyclic SCCs where we
cannot make such a guarantee without implementing a fixed point, and where we do not
want the amount of reduction the speculator can achieve to depend on the arbitrary order
in which the bindings occur in the CyclicSCC list. To avoid these problems, we reduce
each element of a cycle in an environmental heap which does not contain bindings for any
of the other bindings in the cycle.

We rollback (via catchSpecM ) to the heap binding which is the common ancestor
(in the speculateHB tree) of the current heap binding and the one which triggered the
termination test. This is necessary for idempotence, so that if we speculate this heap:

iterate f x = . . .
not x = . . .
y = True
ys = iterate not y

We detect the non-termination that arises from speculating a call to iterate (which pro-
duces an infinite list, and so cannot be fully speculated) and roll back to restore the
original binding ys = iterate not y instead of producing a speculated heap such as:

iterate f x = . . .
not x = . . .
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y = True
ys = y ∶ ys0
y0 = False

type Path = [(Var ,SpecHistory → SpecM (SpecHistory ,Heap))]
speculateHeap ∶∶Heap → Heap

speculateHeap Htop = foldl
′ speculateTopSCC ǫ (topologicalSort Htop)

where

speculateTopSCC ∶∶Heap → HeapSCC → Heap

speculateTopSCC H ′ scc

= runSpecM (fmap snd (speculateSCC (return ()) [ ] ǫ (emptyHistory ,H ′) scc))
speculateSCC ∶∶ SpecM ()→ Path→ Heap → (History [Var ],Heap)→ HeapSCC→ SpecM (History [Var ],Heap)
speculateSCC fail rb path Henv (hist ,H ′) scc = case scc of

AcyclicSCC xe → fmap (λ(hist ,H ′extra). (hist ,H ′extra ∪H H ′))
(speculateHB fail rb path hist (Henv ∪H H ′) xe)

CyclicSCC xes→ callCC (λk → let fail ′rb = fail rb >> k (hist ,H ′ ∪H heapFromList xes)
go (hist ,H ′′) = fmap (λ(hist ,H ′′extra). (hist ,H ′′extra ∪H H ′′))

.speculateHB fail ′rb path hist (Henv ∪H H ′)
in foldM go (hist ,H ′) xes)

speculateHB ∶∶ SpecM ()→ Path→ History [Var ]→ Heap → (Var ,Term)→ SpecM (History [Var ],Heap)
speculateHB fail rb path hist Henv (x , e)
∣ let S@( , ,Knorm) = normalise (Henv , e, ǫ)

(H ′, e ′,K ′) = reduce S
Hdifference =H

′ ∖H Henv

,K ′ ≡ ǫ

, let recurse path ′ hist ′ = fmap (λ(hist ,h ′). (hist , insertHeap x ′ e ′ h ′))
(foldM (speculateSCC fail rb path

′ Henv) (hist ′, ǫ)
(topologicalSort Hdifference))→ if Knorm ≡ ǫ

then recurse path hist

else catchSpecM (λrb. let path ′ = path ++[(x , rb)]
in case terminateSet hist (gc S) (map fst path ′) of

Stop pathold → commonAncestorRB pathold path hist

Continue hist ′ → recurse path ′ hist ′)
(λhist . fail rb >> return (hist , singletonHeap x e))

∣ otherwise→ fail rb >> return (hist , singletonHeap x e)
commonAncestorRB ∶∶ [Var ]→ Path → History [Var ]→ SpecM (History [Var ],Heap)
commonAncestorRB ( ∶ xold ∶ pathold) ( ∶ (x , rb) ∶ path)∣ xold ≡ x = commonAncestorRB (xold ∶ pathold) ((x , rb) ∶ path)
commonAncestorRB (( , rb)∶ )
= rb

Figure 6.1: Idempotent heap speculator
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ys0 = y0 ∶ ys1
ys1 = iterate not y0

The history (of type History [Var ]) used by the termination test is threaded throughout
the speculator, with the notable feature that top-level heap bindings (i.e. those already
present in the output of the reduce performed by sc′) do not thread the history. The
reason for this is that two top-level heap bindings do not have a common ancestor in the
speculateHB tree, and so we cannot sensibly implement rollback for that situation.

There is another form of rollback in the speculator: we may roll back via a use of
fail rb if any heap binding which is a child of a CyclicSCC fails to reduce to a cheap term.
The reason for doing this is that we do not want to reduce just some members of the
CyclicSCC , since that might break the cyclic loop and hence cause the topologicalSort
of the output heap to be less constrained in a subsequent invocation of speculateHeap,
which could in turn lead to the Henv for a call to speculateHB potentially containing more
information than it did last time.

A concrete example of what might go wrong is that we could have the cyclic SCC
y = Just (not x); x = const True y which we partially-speculated to y = Just (not x); x =
True. A subsequent speculateHeap would identify x and y as non-cyclic and so we would
be able to speculate the y binding to Just False, which would violate idempotency.

The function gc ∶∶ State → State is a “garbage collector” for states that drops any
heap bindings that are syntactically dead. This is used because we anticipate that any
individual heap binding we speculate will most likely only use a fraction of the rest of
the heap, and by reducing the size of the heap in a State we reduce the size of the
corresponding tag-bag and hence also reduce the likelihood that the termination test
will fail. Furthermore, we do not test the termination test if the heap binding being
speculated was cheap before reduction, which prevents spurious rollback if we happen to
e.g. speculate two distinct bindings x = Truet0 and y = True t0 which are tagged the same.
This does not compromise termination of the speculator.

Theorem 6.3.1. The speculateHeap function is idempotent.

Proof. Each heap binding in the output of speculateHeap obeys at least one of:

1. The heap binding binds a cheap term.

2. The heap binding could not be reduced to a cheap term by reduce (either because
there wasn’t enough information available to do so, or because the termination test
in reduce failed before this could happen).

3. The heap binding was part of a CyclicSCC that was rolled back to via fail rb .

4. The heap binding was successfully reduced to a cheap term by reduce, but had its
speculation rolled back to by commonAncestorRB .

We consider what a subsequent call to speculateHeap will do to each kind of binding one
at a time.

Case 1 If the speculated heap binding is cheap (i.e. a variable or value), a subsequent
speculateHeap will clearly leave it is a cheap term, so idempotence is straightforward.
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Case 2 If reduce failed to reduce the heap binding to a cheap term in a previous
speculateHeap call, it will still fail to do so in a later call, and so again idempotence
follows. The complication with this case comes with the fact that the reduce is done in
the environment of previously-speculated heap bindings Henv . In order for our argument
to hold, we need that the Henv that reaches the binding in the subsequent speculateHeap
is the same as the Henv in the earlier call (at least, it must be the same for those bound
variables reachable from the binding itself—we don’t mind if it contains a different set of
unreachable bindings).

The reason that this is true is that we can assume that all heap bindings that were
in the original Henv will be treated idempotently by a subsequent speculateHeap call, so
the actual right-hand-side of all bindings will be unchanged. Furthermore, the actual
reachable variables bound in the Henv will be unchanged from last time thanks to the fact
that our topological-order traversal means that we add exactly those bindings which are
reachable to the Henv before we speculate a binding (except for CyclicSCC s, which won’t
be modified by speculation except they are driven completely to cheap terms, in which
situation this case wouldn’t apply).

Case 3 Because we can assume that the environment of heap bindings that reaches the
speculateSCC of a CyclicSCC will be unchanged between two consecutive speculateHeap
calls (by the same argument as the previous case), the reduction of the CyclicSCC to a
value must fail in exactly the same way in both calls, rolling back to place the CyclicSCC
nearest to the root of the speculateHB tree unmodified in the output heap.

Case 4 In this case, because the heap binding is present in the output of speculateSCC it
must mean that two of its children heap bindings in the speculateHB tree were embedded
into each other, and this heap binding was the common ancestor. Therefore, because the
(reachable) Henv is exactly the same as last time (by the same argument as in the last
two cases), when we speculate this heap binding we must end up speculating exactly the
same child bindings and hence causing exactly the same rollback.

Performance impact of speculation As described above, we perform a full run of
speculation using speculateHeap upon every invocation of sc. In practice, this would
be rather expensive. To avoid paying the full cost of speculation, our implementation
records which heap bindings have already been speculated, so that speculateHeap can skip
speculating any binding which has already been thus marked. This is sufficient to reduce
the performance cost of using speculation to only approximately 4% of supercompiler
runtime (Section 7.7).
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Chapter 7

Experiments

In this chapter we evaluate our supercompiler implementation using a number of bench-
marks. The benchmarks are drawn from several sources:

1. Firstly, we use all of the benchmarks from the “imaginary” section of the Nofib
benchmark suite [Partain, 1993]. These small benchmarks were written without
supercompilation or deforestation in mind, so they allow us to test whether su-
percompilation will have a positive effect on programs that do not have obvious
deforestation opportunities.

We do not attempt to supercompile the full Nofib suite because the other Nofib
benchmarks are considerably more complicated and generally suffer from extremely
long supercompilation times.

2. Secondly, we use all the additional (non-Nofib) benchmarks described in Jonsson
[2011]. These benchmarks all have obvious deforestation opportunities, so we use
them to check whether our supercompiler is able to exploit such opportunities.

3. Lastly, we use a number of original microbenchmarks designed to test various de-
forestation and specialisation opportunities:

• Accumulator tests deforestation of the composition foldl c n (enumFromTo a b),
which requires the supercompiler to generalise an accumulating parameter.

• Ackermann tests specialising an Ackermann function with first argument 2.

• AckermannPeano −1 tests specialising an Ackermann function for Peano num-
bers with first argument 1.

• AckermannPeano −2 tests specialising an Ackermann function for Peano num-
bers with first argument 2.

• EvenDouble tests deforestation of the composition even (double x) for Peano
number x , where double is implemented with an accumulating argument.

• EvenDoubleGenerator tests deforestation of the composition even (double x)
for Peano number x , where double is implemented without an accumulator.

• KMP tests specialisation of a string matcher over the alphabet {A,B} looking
for the fixed pattern AAB .

• LetRec demonstrates deforestation in programs using recursive-let by calculat-
ing let ones = 1∶ones in map (λx → x+1) ones andmap (λx → x+1) (repeat 1).

• MapMapFusion test deforestation of a length.map f .map g composition.

• ReverseReverse tests supercompilation on the composition reverse.reverse.
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• SumSquare tests deforestation of foldl ′ (+) 0 [k∗m ∣ k ← enumFromTo 1 n,m ←
enumFromTo 1 k ] (this benchmark originated from the testsuite of Mitchell’s
supercompiler [Mitchell, 2010]).

• ZipMaps demonstrates deforestation of zip-like functions by supercompiling
length $ zip (map Left xs) (map Right xs).

• ZipTreeMaps demonstrates deforestation of zip-like functions on binary trees
by supercompiling

sizeT (zipT (mapT Left (buildTree n Empty)) (mapT Right (buildTree n Empty)))
where buildTree n returns a complete binary tree of depth n and sizeT returns
the number of nodes in the tree.

One of the main unsolved challenges of supercompilation is how to be sufficiently ag-
gressive to garner its benefits, without also risking massive code bloat without any ac-
companying performance gain (Section 9.3). This challenge is not a theoretical one. In
our experiments, supercompilation of some benchmarks (including some very small ones)
failed to terminate after several hours, and we resorted to hand-tuning supercompiler flags
to incorporate their results. Precisely:

• Supercompilation of the tak benchmark did not terminate when positive information
propagation was enabled. Therefore, all tak benchmark numbers are reported with
positive information propagation turned off.

• Supercompilation of wheel−sieve benchmarks did not terminate regardless of whether
positive information propagation was enabled. These benchmarks are all run using
our work-bounding mechanism (Section E.4.2), which limits the total number of β-
reductions performed by the supercompiler to at most 10 times the size (in number
of AST nodes) of the input program.

We believe that this non-termination arises not because an error in our implementation
or proofs means that the supercompiler is diverging, but rather because these programs
suffer from the code explosion problems inherent to supercompilation. The evidence we
have for this is that the tree of calls to sc for these programs is characterised by having
very large numbers of states which are superficially similar but on closer inspection differ
slightly in binding structure or the precise degree of compile-time information which is
available. This pattern is characteristic of programs undergoing code explosion.

The supercompiler implementation incorporates the work of Appendix E, in particular
the inlining control mechanisms described in Section E.4. All benchmarks used the −O2
flag of GHC to enable all of GHC’s optimising transformations, including strictness anal-
ysis and GHC’s own function specialisation mechanisms such as constructor specialisation
[Peyton Jones, 2007]. All benchmarks were carried out on an unloaded machine equipped
with two 2.8 GHz Intel Xeon quad cores and 8 GB of RAM.

7.1 Overall results

Headline results for the supercompiler are presented in Figure 7.1. Overall the perfor-
mance results are good: allocations fell by an average of 34% while runtime fell by 42% on
average. Unsurprisingly, the effect of supercompilation tends to be much more dramat-
ically positive for those benchmarks which are specifically designed to have exploitable
fusion opportunities, but some of the Nofib benchmarks do achieve good speedups, such
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Test Cmp.a Runb Mem.c Sized

Accumulator +51.4% +34.8% -23.1% +22.1%
Ackermann +316.2% -26.7% -52.1% +36.2%
AckermannPeano-1 +72.5% -50.0% -9.1% +27.9%
AckermannPeano-2 +25525.0% -24.8% -20.9% +180.7%
Append +10.3% +6.8% +2.9% +12.5%
EvenDouble +16.2% +0.6% -0.0% +16.2%
EvenDoubleGenerator +10.8% -52.9% -58.3% +8.3%
Factorial +61.1% +0.0% +0.0% +16.8%
KMP +56.8% -34.0% +0.0% +77.5%
LetRec +125.0% -95.1% -100.0% -46.5%
MapMapFusion +13.5% -54.5% -55.0% +18.9%
Raytracer +60.0% -39.4% -51.7% +4.2%
ReverseReverse +15.0% +0.0% -0.0% +20.2%
SumSquare +296.8% -11.7% +109.0% +32.3%
SumTree +1055.0% -89.4% -100.0% +28.1%
TreeFlip +707.5% -91.2% -100.0% +33.4%
ZipMaps +44.7% -69.3% -71.9% +3.6%
ZipTreeMaps +8808.5% -73.2% -79.8% +57.9%
bernouilli +49961.7% -3.6% -8.6% +167.9%
exp3 8 +26802.3% -1.7% -0.0% +188.9%
gen regexps +5969.6% +0.0% +0.3% +4.5%
integrate +48022.9% -62.3% -61.4% +98.3%
paraffins +42320.0% +7.7% +0.2% +0.5%
primes +21556.4% -14.3% +15.5% +100.9%
queens +35627.5% +0.0% +40.9% +89.0%
rfib +20245.9% +0.0% -0.1% +13.7%
tak +29135.1% +0.0% +8226.9% +47.6%
wheel-sieve1 +18395.9% +0.0% -0.0% +35.1%
wheel-sieve2 +15056.6% -1.9% -0.8% +93.0%
x2n1 +132002.0% +0.0% -75.1% -7.3%

Min +10.3% -95.1% -100.0% -46.5%
Max +132002.0% +34.8% +8226.9% +188.9%
Geometric Mean +1865.5% -42.2% -33.7% +37.1%
aCompile time change when supercompilation enabled
b Program runtime change when supercompilation enabled
cRuntime allocation change when supercompilation enabled
dObject file size change when supercompilation enabled

Figure 7.1: Comparison of non-supercompiled and supercompiled benchmarks

as integrate and x2n1 , which allocate 61% and 75% less after supercompilation. Code size
increases are moderate in most cases, but the compilation time penalty is severe: enabling
supercompilation increases compilation time by an average factor of 20 times, with the
penalty being much more pronounced on the Nofib benchmarks.

It is important to note that the baseline for these benchmark numbers already includes
the effects of GHC’s shortcut fusion [Gill et al., 1993] mechanism, which deforests many
of the list-producing computations in these benchmarks. If we disable shortcut fusion, we
can see exactly how much of an improvement supercompilation is over a compiler that
does not implement any deforestation at all: these results are presented in Figure 7.2.
The improvement here is much more obvious, with almost every single program allocating
considerably less as a result of supercompilation.

Returning to the results of Figure 7.1 which compare the supercompiler with the
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version of GHC incorporating shortcut fusion, we notice that the SumSquare, primes ,
queens and tak benchmarks all have the amount which they allocate severely negatively
impacted by supercompilation. We consider each of these cases and explain the cause.

7.1.1 Allocation increase due to strictness analysis

The supercompiled version of tak allocates over 80 times more than the non-supercompiled
version. The reason for this is a bad interaction with GHC’s strictness analysis optimisa-
tion.

The tak benchmark essentially consists of the following loop:

tak ∶∶ Int → Int → Int → Int

Test Cmp.a Runb Mem.c Sized

Accumulator +43.2% +34.0% -23.1% -27.6%
Ackermann +316.2% -94.5% -94.8% -26.7%
AckermannPeano-1 +72.5% -75.0% -41.2% +4.3%
AckermannPeano-2 +24900.0% -31.7% -28.5% +130.7%
Append +10.3% -48.1% -33.3% -18.5%
EvenDouble +16.2% +0.0% -30.8% -18.8%
EvenDoubleGenerator +10.8% -70.4% -68.7% -23.9%
Factorial +61.1% -100.0% -99.9% -31.9%
KMP +56.8% -47.6% -57.1% +40.6%
LetRec +125.0% -98.0% -100.0% -65.4%
MapMapFusion +13.5% -82.7% -73.5% -21.1%
Raytracer +60.0% -71.4% -64.1% -44.6%
ReverseReverse +17.9% +0.0% -0.0% -18.6%
SumSquare +324.1% -72.8% -8.0% +39.7%
SumTree +1000.0% -91.8% -100.0% -19.2%
TreeFlip +707.5% -92.9% -100.0% -18.8%
ZipMaps +48.6% -84.5% -79.5% -17.5%
ZipTreeMaps +9002.2% -78.0% -84.2% +14.0%
bernouilli +51050.0% -18.5% -15.6% +45.3%
exp3 8 +26204.4% -1.7% -6.3% +103.7%
gen regexps +6547.6% +0.0% -14.5% -8.9%
integrate +46098.0% -90.8% -84.2% -15.2%
paraffins +41796.3% +6.1% -1.0% -34.6%
primes +22126.3% -41.2% -23.5% +58.3%
queens +35627.5% -88.9% -94.3% +32.9%
rfib +20811.1% -86.7% -99.9% -35.4%
tak +29135.1% -90.0% -93.3% -17.4%
wheel-sieve1 +19602.2% -62.7% -97.1% -9.7%
wheel-sieve2 +16293.9% -20.8% -45.7% +89.9%
x2n1 +134754.2% -100.0% -99.4% -57.5%

Min +10.3% -100.0% -100.0% -65.4%
Max +134754.2% +34.0% -0.0% +130.7%
Geometric Mean +1882.8% -74.4% -75.7% -8.1%
aCompile time change when supercompilation enabled
b Program runtime change when supercompilation enabled
cRuntime allocation change when supercompilation enabled
dObject file size change when supercompilation enabled

Figure 7.2: Comparison of non-shortcut-fused and supercompiled benchmarks

138



tak x y z = if not (y < x) then z
else tak (tak (x − 1) y z)(tak (y − 1) z x)(tak (z − 1) x y)

Before supercompilation, it is manifestly obvious to GHC’s strictness analyser that this
loop is strict in all of its arguments. After supercompilation, the tak loop is split into
several mutually recursive h-functions, each of which are too large for GHC’s inlining
heuristics to consolidate into a single function. With the core loop broken across several
functions like this, GHC’s strictness analyser produces worse results. The problem is
exemplified by the following code:

f-# NOINLINE f #-g
f ∶∶ (Int → Int → Bool)→ Int → Int → Int
f p x y = if p x y then x + 1

else x ‘seq ‘ y ‘seq ‘ g p (x + 1) (y + 1)
f-# NOINLINE g #-g
g ∶∶ (Int → Int → Bool)→ Int → Int → Int
g x 0 = x + 1
g p x y = f p x y

(The NOINLINE annotations on these mutually-recursive functions prevent GHC from
collapsing them into a single looping function, in just the same way that GHC’s inlining
heuristics prevent the real h-functions produced from tak from being collapsed together
because they are too large.)

With this example, GHC’s strictness analyser correctly deduces that g is strict in both
Int arguments, but it can only deduce that f is strict in its first Int argument, x . This
prevents GHC from unboxing the y argument to f , and so the final loop still allocates a
Int box on every iteration. Notice that if the two functions had been presented as a single
loop:

g ′ ∶∶ (Int → Int → Bool)→ Int → Int → Int
g ′ x 0 = x + 1
g ′ p x y = if p x y then x + 1

else x ‘seq ‘ y ‘seq ‘ g ′ p (x + 1) (y + 1)
Then it would be manifestly obvious that g ′ is strict in both x and y and hence all the
Int arguments could have been unboxed, leaving an optimal non-allocating loop.

Although this interaction with GHC’s strictness analyser is unfortunate, it seems to
argue more for improvements to GHC’s current strictness analysis mechanism than for
a change to our supercompilation approach. We came across several problems with the
fragility of GHC’s strictness analysis during our work on supercompilation: for example,
an earlier version of the supercompiler transformed this same tak loop to:

tak ′ ∶∶ Int → Int → Int → Bool → Int
tak ′ x y z b = if b then z

else tak (let x ′ = x − 1 in tak ′ x ′ y z (not (y < x ′)))(let y ′ = y − 1 in tak ′ y ′ z x (not (z < y ′)))(let z ′ = z − 1 in tak ′ z ′ x y (not (x < z ′)))
tak ∶∶ Int → Int → Int → Int
tak x y z = tak ′ x y z (not (y < x))
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With the tak loop “rotated” in this way, GHC is only able to deduce that tak is strict in
the Int argument z : it cannot detect that the if -expression scrutinising the b argument
will always unleash a demand on the x and y arguments. As a result, only the z argument
to tak ′ is unboxed and so the inner loop must perform a lot of allocation.

Test Cmp.a Runb Mem.c Sized

Ackermann +42.2% +4.7% +0.0% -11.0%
AckermannPeano-1 -23.2% +0.0% +0.0% -5.9%
AckermannPeano-2 -4.3% -0.3% +0.0% -5.8%
KMP -8.6% -6.1% +0.0% -21.7%
SumTree -35.9% +0.0% +0.0% -4.4%
TreeFlip -33.4% +0.0% +0.0% +1.5%
ZipMaps -12.7% +23.9% +0.0% -7.7%
ZipTreeMaps -71.2% -81.9% -100.0% -12.5%
bernouilli +8.8% -0.9% +0.0% +1.7%
exp3 8 -11.3% +1.7% -0.0% -11.6%
integrate +0.0% +0.0% +0.4% +1.3%
primes -5.2% +16.7% +0.1% +3.0%
queens -0.7% +0.0% -9.5% +52.2%
rfib -1.1% +0.0% +0.0% +2.6%

. . . Unchanged benchmarks elided . . .

Min -71.2% -81.9% -100.0% -21.7%
Max +42.2% +23.9% +0.4% +52.2%
Geometric Mean -7.8% -4.7% -9.2% -1.1%
aCompile time change when positive information disabled
b Program runtime change when positive information disabled
cRuntime allocation change when positive information dis-
abled d Object file size change when positive information
disabled

Figure 7.3: Comparison of supercompilation with and without positive information

7.1.2 Allocation increase due to positive information

The increased allocations in the primes and queens benchmarks are caused by positive
information propagation. To see how positive information propagation can cause our
programs to allocate more, consider the following example:

f [ ] = [ ]
f p ( ∶ xs) = case p of (a, b) → p ∶ f p xs

The supercompiler will transform this to:

f = h1

h1 [ ] = [ ]
h1 p ( ∶ xs) = h2 p xs

h2 p xs = case p of (a, b) → h3 a b xs

h3 a b xs = let p = (a, b) in p ∶ h1 p xs

Notice that the supercompiled code allocates one pair (a, b) for every iteration, whereas
the original code only needs to allocate a cons-cell upon each iteration. Sometimes, GHC’s
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later optimisation passes can prevent this allocation. For our example above, h2 and h3
will be inlined by GHC into their only use sites to give:

f = h1

h1 [ ] = [ ]
h1 p ( ∶ xs) = case p of (a, b)→ let p′ = (a, b) in p′ ∶ h1 p′ xs

At this point GHC’s simplification optimisation pass will detect that p′ has the same value
as the syntactically enclosing p binding and hence eliminate the allocation of p′. However,
this optimisation depends delicately on GHC being able to inline the allocation within a
corresponding case-scrutinisation, which fails to happen in the primes benchmark because
the equivalent of h3 is both shared between several use sites and considered too large to
duplicate by GHC’s inlining heuristics.

Interestingly, even if positive information propagation is disabled the supercompiled
version of primes and queens will still allocate more than the normally-optimised version
(allocation falls by almost 10% in queens , but even after this fall it still allocates more than
it does without supercompilation). The reason for this is that GHC’s own optimisation
passes can often cause “reboxing” (i.e. duplication of value allocations) in their own right.
In the case of primes , the strictness optimisations transform a program similar to:

h1 x y ys = case y of Just y ′ → case x of Just x ′ → case x ′ ‘mod ‘ y ′ ≡ 0 of
True → case ys of [ ] → [ ]; (y ∶ ys)→ h1 x y ys
False → y ∶ h2 x ys

h2 x ys = case ys of [ ] → [ ]; (y ∶ ys)→ h1 x y ys

To the more-allocating program:

h1 x ′ y ys = case y of Just y ′ → case x ′ ‘mod ‘ y ′ ≡ 0 of
True → case ys of [ ] → [ ]; (y ∶ ys)→ h1 x ′ y ys
False → y ∶ h2 (Just x ′) ys

h2 x ys = case ys of [ ] → [ ]; (y ∶ ys)→ case x of Just x ′ → h1 x ′ y ys

In the case of queens , the constructor specialisation pass transforms a program similar to:

h1 xs = case xs of (y ∶ ys)→ h2 xs
h3 xs = case xs of (y ∶ ys)→ h1 xs

To the more-allocating program:

h1 y ys = h2 (y ∶ ys)
h3 xs = case xs of (y ∶ ys)→ h1 y ys

The general case It is interesting to investigate the effects of disabling positive infor-
mation propagation in general. The effect of this change is summarised in Figure 7.3.
As you might expect, the results are mixed, with some programs suffering because the
lack of positive information prevents some allocated constructors from being evaluated
away at compile time, whereas in other cases the use of positive information causes the
shared allocation of a single constructor to be duplicated into all use sites of that con-
structor. In the case of ZipTreeMaps the lack of positive information causes a better
generalisation to be chosen, allowing deforestation of the buildTree calls in addition to
the sizeT (zipT (mapT . . .) (mapT . . .)) composition.

141



7.1.3 Allocation increase caused by reduce stopping early

The SumSquare benchmark suffers because the tag-bag termination test is too restrictive:
by causing reduce to terminate too early, the supercompiler misses critical deforestation
opportunities. The problem is most easily illustrated by the SumSquare benchmark, which
essentially consists of this Haskell expression:

foldl ′ (+) 0 [x ∗ y ∣ x ← [1 . .n ],y ← [1 . . x ]]
After reduction and splitting on the term, we are essentially supercompiling the term e0:

foldl ′ (+) 0 [x ∗ y ∣ x ← 1 ∶ [2 . .n ],y ← [1 . . x ]]
The first x is known and hence the full structure of the list [1 . . x ] can be deduced at
compile time. As a consequence, the supercompiler’s reduce function is able to make
considerable progress, statically evaluating the sum as far as the next x :

foldl ′ (+) 1 [x ∗ y ∣ x ← [2 . .n ],y ← [1 . . x ]]
After another round of reduction and splitting, we supercompile the term e1:

foldl ′ (+) 1 [x ∗ y ∣ x ← 2 ∶ [3 . .n ],y ← [1 . . x ]]
For reasons related to our handling of primops this term is not embedded into e0 (Sec-
tion E.2), and so we attempt to reduce. A perfect reduce function would be able to once
again evaluate the sum over y ← [1 . . 2] here. Unfortunately, doing so requires two it-
erations of the foldl ′ loop: one for y = 1 and one for y = 2. The tag-bag termination
test that we use in reduce is incapable of distinguishing between these two iterations of
the loop, and so it blows the whistle on the y = 2 iteration, and reduce returns a term
with some potential β-reductions. The subsequent split then recursively supercompiles
the list-generating comprehension separately from the list-consuming call to foldl ′, and
we lose all hope for deforestation.

The general case It is interesting to consider to what extent a lack of power in our
reduce termination test is causing the output of supercompilation to be suboptimal. To
investigate this, we changed our reduce loop so that it would tolerate 100 failures of
the termination test before giving up, rather than the single failure that would normally
prompt reduce to stop. With this modified reduce we obtained the supercompilation
results of Figure 7.4. The results show that false non-termination is a serious problem:
many benchmarks were improved by using a reduce function which is less likely to report
false non-termination. Nonetheless, several benchmarks had at least one instance where
reduce terminated too early but were not affected by this change, namely Accumulator ,
ZipTreeMaps, gen regexps, paraffins, primes, wheel − sieve1 and wheel − sieve2 .

7.2 Effect of disabling sc-rollback

In Figure 7.5 we show the effects of disabling the sc-rollback mechanism described in
Section 6.1.2. Unlike reduce-rollback, sc-rollback affects almost all of the benchmarks
because almost every benchmark will fail a sc termination test at some point, whereas
failing a reduce termination test is comparatively rare. The effect of disabling sc-rollback
can be dramatic: with it disabled, the size of the ZipTreeMaps binary grew by almost 1000
percent. Furthermore, with these flags the queens benchmark was miscompiled by our
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Test Cmp.a Runb Mem.c Sized

Ackermann -11.0% +0.0% +0.0% -1.8%
AckermannPeano-1 +65.2% +0.0% +0.0% -11.1%
AckermannPeano-2 +11.5% +0.1% +0.0% -4.5%
SumSquare +8.9% -94.5% -100.0% -28.0%
bernouilli +0.5% -0.9% -0.0% -5.3%
integrate +13.1% -75.0% -85.2% -30.5%

. . . Unchanged benchmarks elided . . .

Min -11.0% -94.5% -100.0% -30.5%
Max +65.2% +4.2% +0.0% +0.0%
Geometric Mean +1.9% -13.8% -14.2% -2.9%
a Compile time change when term. test made laxer
b Program runtime change when term. test made laxer
cRuntime allocation change when term. test made laxer
d Object file size change when term. test made laxer

Figure 7.4: Comparison of supercompilation without and with lenient reduce termination

Test Cmp.a Runb Mem.c Sized

Ackermann +261.7% -3.5% +0.0% +68.7%
AckermannPeano-1 -8.7% +100.0% +0.0% +13.0%
AckermannPeano-2 +0.1% -0.3% -0.0% +24.2%
EvenDouble +0.0% -0.6% -0.0% +5.5%
KMP +20.7% +57.6% +0.0% +12.2%
MapMapFusion +4.8% +10.0% +0.0% +11.3%
ReverseReverse +0.0% +0.7% +0.0% +14.4%
SumSquare +0.0% -2.9% -0.0% +24.6%
SumTree +76.4% -20.0% +38761.6% +124.6%
TreeFlip +99.7% -9.1% +2.3% +131.0%
ZipMaps -7.3% -6.3% +0.0% +5.9%
ZipTreeMaps +1176.3% -42.8% -47.4% +959.0%
bernouilli +53.1% +0.0% +0.0% +65.3%
digits-of-e1 +0.5% -2.5% -0.0% +262.6%
exp3 8 +19.7% +0.0% -0.1% +28.9%
integrate +1.0% -2.5% +0.0% +3.6%
primes +1.2% +0.0% -0.0% +0.6%
queens +493.1% N/A N/A +761.2%
tak +10.9% +0.0% -1.9% +46.4%
x2n1 +16.9% +0.0% +0.0% +22.3%

. . . Unchanged benchmarks elided . . .

Min -8.7% -42.8% -47.4% +0.0%
Max +1176.3% +100.0% +38761.6% +959.0%
Geometric Mean +26.8% +0.6% +18.7% +38.3%
a Compile time change when sc rb. disabled
b Program runtime change when sc rb. disabled
cRuntime allocation change when sc rb. disabled
d Object file size change when sc rb. disabled

Figure 7.5: Comparison of supercompilation with and without sc-rollback

supercompiler implementation due to an issue with name handling: supercompilation of
queens terminated, but incorrect results are generated at runtime by the output program.

As expected, enabling sc-rollback tends to decrease the size of the generated code:
in fact, none of the benchmarks had their supercompiled code shrink when disabling
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Test Cmp.a Runb Mem.c Sized

Ackermann -9.1% +0.0% +0.0% -0.4%
AckermannPeano-1 +7.2% +20.0% +0.0% -7.2%
AckermannPeano-2 +1.9% +0.3% +0.0% +0.4%
SumSquare +22.0% +4.6% +0.0% +4.2%
ZipTreeMaps +9.6% -84.3% -100.0% -5.3%
bernouilli -4.0% -0.9% -0.0% -5.7%
integrate +3.8% -25.0% -24.2% -8.9%
primes -0.4% +0.0% -0.0% +0.6%

. . . Unchanged benchmarks elided . . .

Min -9.1% -84.3% -100.0% -8.9%
Max +22.0% +20.0% +0.0% +4.2%
Geometric Mean -0.6% -6.8% -9.7% -0.7%
a Compile time change when reduce rb. disabled
b Program runtime change when reduce rb. disabled
cRuntime allocation change when reduce rb. disabled
d Object file size change when reduce rb. disabled

Figure 7.6: Comparison of supercompilation with and without reduce-rollback

sc-rollback. In most cases, this code size decrease was accompanied by a decrease in
supercompilation time, though this was by no means universal. The effect on program
run time and allocation was more varied: most programs were unaffected by disabling sc-
rollback, but a few benchmarks exhibited greatly increased (e.g. SumTree) or decreased
(ZipTreeMaps) allocations. Generally the results indicate that optimisation opportunities
are not being sacrificed by use of sc-rollback, and that sc-rollback is an extremely effective
technique for reducing supercompilation time and output code size.

7.3 Effect of disabling reduce-rollback

In Section 6.1.1 we described a mechanism whereby we would roll back the reduction
performed by reduce should the embedded termination check ever fail. Figure 7.6 sum-
marises the effect of disabling this feature in the supercompiler. The results are mixed:
SumSquare becomes substantially larger and slower with this change, but integrate and
ZipTreeMaps become both smaller and faster.

It is unclear why disabling reduce-rollback improves the integrate and ZipTreeMaps
benchmark. The most that can be said is that disabling the feature causes both bench-
marks to generalise away less information during supercompilation invocations subsequent
to the failing reduce. These two benchmarks seem to be very sensitive to the exact super-
compilation algorithm, with almost any change causing generalisation to discover a core
loop which is very efficient and compact in comparison with the non-deforested loop dis-
covered by our standard algorithm. For example, we will see in Section 7.7 that disabling
speculation in the supercompiler also greatly improves these two benchmarks: this result
is particularly surprising when you consider that reduce-rollback has the effect of reducing
the amount of reduction that the supercompiler does, but speculation has the effect of
increasing the amount of reduction performed, and yet either change will improve the
generalisation of these two benchmarks.

The gen regexps, paraffins, wheel − sieve1 and wheel − sieve2 benchmarks all expe-
rienced at least one failure of the reduce termination test, but their overall results were
unaffected by disabling reduce-rollback.
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7.4 Effect of disabling generalisation

Test Cmp.a Runb Mem.c Sized

Accumulator +18.9% +33.7% +70.0% +11.9%
Ackermann +223.4% -44.7% -50.8% -9.6%
AckermannPeano-1 -15.9% +0.0% +0.0% -20.2%
AckermannPeano-2 +1.2% +17.7% +13.2% +28.5%
EvenDouble -7.0% +1.7% +0.0% -1.4%
Factorial -6.9% +0.0% +0.0% +2.4%
KMP -8.6% +98.8% +0.0% -17.9%
MapMapFusion +7.1% +126.0% +111.1% +16.8%
ReverseReverse -4.3% +0.0% +0.0% -4.1%
SumSquare +61.0% +5.5% -0.0% +34.7%
SumTree -58.2% +664.0% +708255.3% +10.9%
TreeFlip -51.7% +422.7% +398308.2% +10.9%
ZipMaps -1.8% +220.5% +255.5% -1.4%
ZipTreeMaps -70.3% +113.9% +171.6% -7.6%
bernouilli +10.8% -0.9% +4.1% +9.6%
digits-of-e1 -11.5% -2.5% -0.1% -25.5%
exp3 8 +0.7% -2.5% +0.5% +14.9%
integrate -6.9% +0.0% +13.6% +3.0%
primes -14.0% +0.0% -13.8% +21.7%
queens +1930.9% +100.0% +493.8% +627.5%
tak N/A N/A N/A N/A
x2n1 +25.5% +0.0% +301.2% +29.2%

. . . Unchanged benchmarks elided . . .

Min -70.3% -44.7% -50.8% -25.5%
Max +1930.9% +664.0% +708255.3% +627.5%
Geometric Mean +4.8% +31.3% +112.1% +9.4%
aCompile time change when generalisation disabled
b Program runtime change when generalisation disabled
cRuntime allocation change when generalisation disabled
dObject file size change when generalisation disabled

Figure 7.7: Comparison of supercompilation with and without generalisation

It is well known [Sørensen and Glück, 1995] that careful choice of generalisation heuris-
tic (Section 6.2) is crucial to achieving good performance from a supercompiler. It should
therefore come as no surprise that disabling generalisation altogether (and therefore always
continuing to supercompile using split when the termination test in sc fails) is severely
detrimental to performance. The results of disabling generalisation in our supercompiler
are presented in Figure 7.7. Overall, the results show that on average generalisation
greatly reduces not only the runtime and allocations of the generated code, but also tends
to reduce output code size. One benchmark, tak , was not observed to terminate with
generalisation turned off.

Perhaps the most surprising feature of these results is that the Ackermann and primes
benchmarks appear to actually be improved by using split rather than a generalisation
heuristic. The improvement in allocation for Ackermann is more inconsequential than
the −50.8% change would imply, as the inner loop of the benchmark does not allocate
at all, regardless of whether generalisation is turned on or off. The runtime reduction
is significant, however, and appears to occur because the (purely numerical) inner loop
generated with generalisation turned off happens to be a little more unrolled than the
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version generated by generalisation.
The primes program allocates less because the version without generalisation ends up

residualising a completely inlined call to the iterate library function which is subsequently
subject to shortcut fusion. On the other hand, the version of the program compiled with
supercompiler generalisation is able to inline the iterate call but the supercompiler is not
then able to follow through and achieve the same deforestation gains that shortcut fusion
spots. As the resulting inlined copy of iterate is not subject to shortcut fusion, the net
effect is that the program produced with generalisation allocates more.

Test Cmp.a Runb Mem.c Sized

Accumulator +17.0% +36.2% +70.0% +11.9%
Ackermann +225.3% -44.7% -50.8% -9.6%
AckermannPeano-1 -15.9% +0.0% +0.0% -20.2%
AckermannPeano-2 +3.5% +17.9% +13.2% +29.0%
EvenDouble -7.0% +0.0% +0.0% -1.4%
Factorial -5.2% +0.0% +0.0% +2.4%
ReverseReverse -4.3% +0.0% +0.0% -4.1%
SumSquare +56.1% +208.8% +0.0% +13.3%
SumTree -58.7% +668.0% +708255.3% +10.9%
TreeFlip -51.7% +422.7% +398308.2% +10.9%
ZipMaps -9.1% -0.6% +0.0% +0.2%
ZipTreeMaps -70.1% +114.5% +171.6% -7.6%
bernouilli +10.8% -0.9% +4.1% +9.6%
digits-of-e1 -12.0% -3.7% -0.1% -25.5%
exp3 8 +1.6% -4.2% +0.5% +14.9%
integrate -6.6% +2.5% +13.6% +3.0%
primes -4.9% +0.0% -14.5% +20.5%
queens +1356.4% N/A N/A +350.3%
tak +12954.5% +0.0% -31.6% +31.6%
x2n1 +24.4% +0.0% +301.2% +29.2%

. . . Unchanged benchmarks elided . . .

Min -70.1% -44.7% -50.8% -25.5%
Max +12954.5% +668.0% +708255.3% +350.3%
Geometric Mean +20.4% +24.2% +85.3% +7.3%
aCompile time change when growing tags used
b Program runtime change when growing tags used
cRuntime allocation change when growing tags used
dObject file size change when growing tags used

Figure 7.8: Comparison of supercompilation with MSG and growing-tags generalisation

7.5 Effect of generalising with growing-tags rather

than MSG

It is instructive to compare the effectiveness of using growing-tag generalisation (Sec-
tion 6.2.2) instead of MSG-based generalisation (Section 6.2.3). The growing-tag general-
isation is a rough-and-ready generalisation which is easier to implement than a MSG-based
generalisation, but which we expect to perform worse in practice. Indeed, this is what
we find in the results of Figure 7.81: growing-tag generalisation is somewhat better than

1Just as in Section 7.2 we find that queens is miscompiled
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having no generalisation at all, but not as good as the full MSG-based generalisation.

Test Cmp.a Runb Mem.c Sized

ZipTreeMaps +35.8% +0.6% -0.0% +5.7%
bernouilli +0.4% -0.9% +0.0% +1.4%
digits-of-e1 +0.1% -3.7% +0.0% +2.6%
digits-of-e2 +1.4% +0.7% +0.0% +2.1%

. . . Unchanged benchmarks elided . . .

Min -7.3% -4.5% -0.0% +0.0%
Max +35.8% +2.0% +0.0% +5.7%
Geometric Mean -0.2% -0.4% -0.0% +0.4%
aCompile time change when type gen. disabled
b Program runtime change when type gen. disabled
cRuntime allocation change when type gen. disabled
dObject file size change when type gen. disabled

Figure 7.9: Comparison of supercompilation with and without type generalisation

7.6 Effect of disabling type generalisation

In Section 6.2.6 we introduced type generalisation: a technique for eagerly generalising
away type information in order to ameliorate the problem of type overspecialisation. Be-
cause our benchmarks are small, they generally only instantiate the polymorphic functions
that they use at one or two types, and so there are few opportunities for type generalisa-
tion to make a difference. The benchmark data for those benchmarks which are affected
by disabling type generalisation are presented in Figure 7.9. Generally we see that dis-
abling the feature has a modest worsening effect on code size and little-to-no effect on the
performance of the supercompiled program, as we would expect.

The type generalisation opportunities in these programs are usually of a modest nature.
Across all benchmarks, we often see that pairs of states such as x ∶∶ Int and x ∶∶Bool will
be generalised to x ∶∶ α. Another common piece of code which is often subject to type
generalisation is the function composition f (g x).

7.7 Effect of disabling speculation

The effects of disabling the let-speculation mechanism of Section 6.3 are summarised
in Figure 7.10. The results are a mixed bag: some benchmarks (such as ZipTreeMaps)
are greatly improved by disabling speculation, while others (such as x2n1 ) are worsened.
On average, the results indicate that disabling speculation actually improves code size,
runtime and allocations. This unimpressive showing for speculation is not entirely un-
expected, given that the benchmarks in our test suite do not make substantial use of
idioms (such as partial applications) which speculation is particularly targeted towards
optimising.

There are three principal benchmarks which benefit greatly from disabling speculation:
SumSquare, ZipTreeMaps and integrate. In the case of SumSquare, this occurs because
the main loop uses an auxilliary function strictSum defined by strictSum = foldl ′ (+) 0.
Without speculation, the supercompiler cannot detect that this is in fact a cheap partial
application, and as a result the output program is mostly λ-abstracted over strictSum .
Although this destroys any opportunity for deforesting the list consumed by strictSum ,
this loss of information does have the benefit of causing the termination test in reduce to
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Test Cmp.a Runb Mem.c Sized

Accumulator +1.9% +3.3% +0.0% +0.0%
Ackermann +57.8% +0.0% +0.0% -3.3%
AckermannPeano-1 -5.8% +20.0% +0.0% +19.4%
AckermannPeano-2 -23.3% -0.6% +0.0% -20.6%
Append -4.7% -2.5% +0.0% +0.0%
EvenDouble -7.0% +0.0% +0.0% +2.0%
EvenDoubleGenerator -4.9% +125.0% +140.0% +6.4%
Factorial -3.4% +0.0% +0.0% +0.0%
KMP -25.9% +61.2% +0.0% -39.8%
LetRec +8.9% +0.0% +0.0% +0.5%
MapMapFusion +2.4% +0.0% +0.0% +0.0%
Raytracer +9.4% -2.7% +0.0% +28.9%
ReverseReverse +0.0% +0.0% +0.0% +0.0%
SumSquare +42.3% -55.1% -56.5% -14.5%
SumTree -5.2% +0.0% +0.0% +0.0%
TreeFlip -3.4% -9.1% +0.0% +0.0%
ZipMaps -7.3% -0.6% +0.0% +0.2%
ZipTreeMaps -54.7% -84.9% -100.0% -7.3%
bernouilli -3.3% +3.8% +2.2% -15.2%
digits-of-e1 -0.4% +4.5% +0.0% +3.4%
digits-of-e2 -10.8% +103.7% +94.5% -13.7%
exp3 8 -16.6% +0.0% +0.0% -27.5%
gen regexps -5.1% +0.0% -0.3% -5.2%
integrate -1.8% -75.0% -81.5% -28.3%
paraffins -1.9% +0.0% +0.0% +0.0%
primes -22.4% +0.0% +0.9% -6.2%
queens +15.1% +0.0% +8.2% -12.5%
rfib +0.9% +0.0% +0.0% +0.0%
tak -1.4% +0.0% +0.0% +0.0%
wheel-sieve1 -2.3% +0.0% +0.0% +0.0%
wheel-sieve2 -4.7% +0.0% -0.0% -7.5%
x2n1 -18.3% +0.0% +337.2% +42.6%

Min -54.7% -84.9% -100.0% -39.8%
Max +57.8% +125.0% +337.2% +42.6%
Geometric Mean -4.8% -6.5% -7.2% -4.3%
a Compile time change when speculation disabled
b Program runtime change when speculation disabled
cRuntime allocation change when speculation disabled
d Object file size change when speculation disabled

Figure 7.10: Comparison of supercompilation with and without speculation

not fail (cf. Section 7.1.3), which leads to a better generalisation being made in the same
manner as we described in Section 7.1.3.

For ZipTreeMaps and integrate, the lack of speculation causes the supercompiler to
residualise various shared lists to prevent work duplication. These residualisation decisions
happen to be better generalisations for these two benchmarks than the generalisations that
the supercompiler would otherwise choose in the presence of full information (we already
noted in Section 7.3 that ZipTreeMaps and SumSquare are very sensitive to choice of
generalisation).
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7.8 Performance of the supercompiler

The supercompiler is extremely slow compared to the existing optimisation techniques
implemented by GHC. We have benchmarked our supercompiler using the standard pro-
filing tools for GHC-generated code, and found that the time spent by the supercompiler
is roughly divided up as follows:

• 75% of supercompilation time is spent matching and MSGing terms (since matching
is implemented in terms of MSG, these timings are conflated).

• 4% of time is spent computing split .

• 3% of time is spent on heap speculation.

• 18% of time is spent on name management such as collecting sets of free variables
and looking up binders.

These results suggest that future work should pay more attention to an efficient imple-
mentation of state matching. Two ideas that seem particularly promisising are as follows:

1. λ-lifting essentially assigns every piece of code in the program a unique name. If
we were to λ-lift all functions and case branches then we would be able to quickly
compare two functions just by comparing these unique names, and we would never
have to match under binders. This could considerably speed up pairwise matching.

2. At the moment memoisation is done by trying to match the state of interest against
every previous state, one-by-one. Another approach would be to build a gener-
alised trie [Hinze et al., 2000] keyed off of the state we wish to match. Careful
thought would have to be given as to how this should work, given the work-sharing
constraints of matching described in Chapter 5.
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Chapter 8

Related work

In this chapter we survey the related literature. We begin with a very brief tour of the
supercompilation literature Section 8.2, and then move on to discuss the closely related
areas of deforestation (Section 8.3), shortcut fusion (Section 8.4), partial evaluation (Sec-
tion 8.5) and online termination testing (Section 8.6), describing how each is related to
our own work. Finally, in Section 8.7 we discuss those areas of related work which fail to
fall under one of these broad headings.

8.1 Program derivation systems

Early work on program derivation focused on defining systems which could be used to
find correct equivalences between programs, with little focus on how a program could au-
tomatically use such a system to find interesting equivalences. The fold-unfold framework
[Burstall and Darlington, 1977] is the most prominent example of this era: this system
uses the rules of definition-introduction, instantiation, unfolding, folding and abstraction
to derive new programs. This simple and expressive approach can be seen as forming the
basis of all of the program transformation techniques described in this chapter, including
supercompilation itself.

Another prominent approach is the expression procedures of Scherlis [1981], which
although less expressive than fold-unfold, can still in practice achieve most transformations
of interest, and unlike the fold-unfold rules are guaranteed to preserve total correctness.
Recent work [Tullsen et al., 1999] has shown there to be a close connection between
expression procedures and fix-point fusion [Meijer et al., 1991].

8.2 Supercompilation

Supercompilation was introduced by Turchin [1986] as a program transformation tech-
nique for a functional programming language known as Refal. The fundamental concept
is to transform an initial term into a potentially-infinite tree of “configurations” by driving :
i.e. the unfolding of function definitions at their use sites. This possibly-infinite process
tree is then converted to a certainly-finite graph by means of tying back configurations
to previous ones where possible. If tying back is insufficient to produce a finite graph,
configurations would be generalised, throwing away information and then re-driving the
resulting configuration in the hope of eventually achieving tieback by choosing appropri-
ate generalisations. Later work by Turchin would go into much more detail about the
critical generalisation stage [Turchin, 1988].

The positive supercompiler of Sørensen et al. [1993] was a landmark in that it was
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the first presentation of the ideas of supercompilation in a traditional formalism for a
standard first-order functional language. Unlike Turchin’s original supercompiler, only
positive information (that which can be represented by syntactic substitution) was prop-
agated: negative information about which values a variable could not have was not prop-
agated [Secher and Sørensen, 2000]. Later work described generalisation for the positive
supercompiler [Sørensen and Glück, 1995].

Later supercompilers extended positive supercompilation to higher order languages
with call-by-value [Jonsson and Nordlander, 2009], call-by-need [Mitchell, 2008, 2010]
and call-by-name [Klyuchnikov, 2009] evaluation strategies. Other strands of research
look at making supercompilation perform more powerful program transformations. Both
distillation [Hamilton, 2007] and higher-level supercompilation [Klyuchnikov, 2010c] are
capable of achieving superlinear speedups such as transforming a naive quadratic list
reverse function into an efficient linear one. These results are achieved by using more
powerful methods for deciding term equivalence than the syntactic equivalence a standard
supercompiler will rely on.

8.3 Deforestation

Deforestation [Wadler, 1988] is an algorithm explicitly designed for removing intermediate
data structures from programs. Deforestation as originally presented was only suitable
for optimising first-order programs in so-called “treeless” form (identified via a syntactic
test).

The treeless form is rather restricted: in particular, there is no let, arguments to
function calls may only be variables, and function arguments have to be linear. Few real
programs meet these requirements, so the the original paper proposed two extensions
to handle more programs. Firstly, the algorithm was extended to handle those higher
order functions expressible as non-recursive “higher order macros”: with the addition of
a where facility for local function definition, this allowed certain higher-order functions
to be handled, including map. Secondly, non-treeless code was allowed to occur at certain
positions in the input of deforestation by means of using type information to mark those
terms which were not to be deforested—a technique known as “blazing”.

Later work improved the applicability of deforestation by allowing blazing more often,
and relaxing the linearity restriction—typically by using sharing analysis to discover more
linear terms [Chin, 1990; Hamilton, 1993]. Deforestation was also extended to gracefully
handle higher-order functions [Marlow and Wadler, 1992; Hamilton, 2005; Marlow, 1996].

Although the deforestation algorithm can be seen as a form of partial evaluator de-
signed to statically evaluate case statements that scrutinise known constructors, defor-
estation is typically not as powerful as either supercompilation or partial evaluators due
to the fact that deforestation propagates less information [Sørensen et al., 1994].

Relation to our work The algorithm outlined in this thesis can be described as a
supercompiler in the formalisation of Sørensen et al. [1994], as we are usually careful to
propagate positive information. However, the stated implementation of the matcher can
sometimes discard positive information (Section 5.2.1). This would be straightforward
to change, but we often find that positive information is not important for optimisation
purposes (Section 7.1.2).
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8.4 Short-cut deforestation

The “short-cut” family of deforestation techniques [Gill et al., 1993; Svenningsson, 2002;
Coutts et al., 2007] are useful practical techniques for eliminating intermediate data struc-
tures from programs. They rely on rewriting library function such as map, filter and foldr
in a stylised way, such that producer/consumer relationships between them can, after the
compiler has performed some standard inlining steps, be spotted by a simple compiler
rewrite rule and thus optimised.

Short-cut fusion techniques are much less powerful than supercompilation: the input
program has be manually rewritten for these techniques to have any effect at all, they are
typically aimed only at deforesting list data structures, and there is no way for them to
achieve effects such as function specialisation. However, their simplicity and predictabil-
ity has made them popular: in particular, shortcut fusion is the deforestation method
implemented by GHC.

Relation to our work Shortcut deforestation techniques have the considerable bene-
fit that they are usually more predictable than supercompilation. For example, Coutts
[2010] proves that under some reasonable assumptions about the optimising power of the
underlying compiler, stream fusion is guaranteed to remove intermediate lists. This pre-
dictable optimising power and relatively low time complexity make them more suitable
for use as a compiler optimisation pass than supercompilation, deficits which our work
has not addressed.

8.5 Partial evaluation

A considerable literature exists on the process of evaluating programs symbolically at
compile time in order to achieve optimisation, under the general heading of partial evalu-
ation: a good (if dated) survey of the literature is Consel and Danvy [1993]. Classic work
on partial evaluation [Jones et al., 1985; Sestoft, 1986; Jones et al., 1993] operated under
considerable restrictions: for example, only arguments whose whole structure was known
at compile time could be specialised on. It was impossible to specialise a function on e.g.
a particular shape of input list but leave it generalised over what the elements of that list
actually are. Later work lifted these restrictions [Consel and Danvy, 1991; Bondorf, 1992]
and even allowed functions to be specialised on abstract properties of their arguments
[Consel and Khoo, 1993].

Later discoveries [Glück and Jørgensen, 1994; Nielsen and Sørensen, 1995] allowed
partial evaluators to match and exceed the power of the deforestation algorithm.

Supercompilers, being symbolic evaluators, clearly have a considerable amount of over-
lap with partial evaluation approaches. The question naturally arises as to what particular
features sets a supercompiler apart from the more general class of partial evaluators.

The prevailing view [Sørensen et al., 1994] is that supercompilation is distinguished
from partial evaluation by its propagation of positive (and, optionally, negative) informa-
tion gleaned from residual case expressions or equality comparisons. This extra informa-
tion allows a supercompiler that propagates both positive and negative information (i.e.
a “perfect supercompiler”) to transform a naive string searching algorithm to an instance
of the KMP string search algorithm [Knuth et al., 1977], given that the string to be found
is fixed at compile time [Secher and Sørensen, 2000; Sørensen et al., 1993].1

1A positive supercompiler is not able to achieve a KMP-optimal algorithm, but its use of positive
information does allow some extra reductions to be done compared to what can be achieved by partial
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Another major difference between the supercompilation and partial evaluation school
of thought has been the method of ensuring termination. Work on partial evaluators has
traditionally used a Mix-like approach [Jones et al., 1989] based on an offline (i.e. prior to
specialisation) binding time analysis which attempts to discover which function parame-
ters are available at compile time and hence specialisable. In contrast, supercompilation
has a strong tradition of using an online (i.e. during specialisation) termination test such
as a well-quasi-order [Leuschel, 1998]. However, this criteria alone does not distinguish
a supercompiler from a partial evaluator because online termination methods are also
popular in partial evaluation work, an approach which was popularised by Fuse [Weise
et al., 1991; Ruf, 1993]. Another interesting approach is that taken by deforestation: the
deforestation algorithm is only guaranteed to terminate when used on treeless expressions,
in which case termination is ensured by the memoisation aspect of the algorithm.

Relation to our work The symbolic evaluation of call-by-need programming languages
has been considered by the partial evaluation community. Jørgensen has previously pro-
duced a compiler for call-by-need through partial evaluation of a Scheme partial evaluator
with respect to an interpreter for the lazy language [Jørgensen, 1992]. His work made use
of a partial evaluator capable of dealing with the set ! primitive, which was used to imple-
ment updateable thunks. Our supercompiler takes a direct approach that avoids the need
for any imperative features in the language being supercompiled. A direct approach is
essential in our GHC-based implementation of the supercompiler, since the intermediate
language which is transformed by optimisation passes is a simple call-by-need functional
language, which intentionally does not contain primitives which directly manipulate the
contents of the thunks.

8.6 Online termination tests

The use of the homeomorphic embedding well-quasi-order for termination testing in super-
compilation was introduced in Sørensen and Glück [1995] and has become the prevailing
approach in the field. A notable refinement of this idea is the well-quasi-order of HOSC
[Klyuchnikov, 2010a], which proposes an extension of the homeomorphic embedding which
is more suitable for terms that contain bound variables.

Testing the homeomorphic embedding can be a bottleneck in a supercompiler imple-
mentation [Mitchell and Runciman, 2008]. One approach to solving this is to reduce the
constant factors involved such as by testing multiple embeddings in parallel [Jonsson,
2011], but another approach is to use a more efficient, but weaker embedding that is
nonetheless sufficient for optimising many programs of practical interest [Mitchell, 2010].

Relation to our work In this thesis we have adopted a version of the tag-bag termi-
nation test of [Mitchell, 2010], adjusted to our setting where we supercompile abstract
machine states rather than simple expressions.

In [Mitchell, 2010], Mitchell uses tag-bags in a similar way to us, but only associates
tags with let-bound variables. In order to tag every subexpression, he keeps terms in a
normal form where all subexpressions are let-bound (NB: this is more restrictive than
ANF, where only subexpressions in argument positions are let-bound). Supercompiling
States and tagging subterms directly means that we can avoid let-floating and—because
we distinguish between tags from subexpressions currently being evaluated (in the stack),

evaluation.
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and those subexpressions that are not in the process of being forced (in the heap)—our
termination criterion is a little more lenient.

Furthermore, we make use of an implementation of the termination test that exploits
various properties of well-quasi-orders to speed up the test (Section D.5).

We find that this test gives excellent performance in practice: little (on the order of
6%) of the runtime of our implementation is spent testing the termination condition, and
we have observed only a few examples where the termination test is too weak to achieve
a desirable optimisation.

8.7 Other related work

Supero 2010 [Mitchell, 2010] used a generalisation mechanism for call-by-need supercom-
pilers that uses the tag-bag termination mechanism. The idea is that when computing
a child term for recursive supercompilation, the splitting process avoids pushing down
any bindings that would cause the new child state to immediately fail the termination
check. We found that Supero’s generalisation method gives very similar results to our
growing-tag generalisation method (Section 6.2.2) in almost all situations. However, our
method has two merits:

• It is somewhat easier to implement, because the splitter does not need to try pushing
down bindings in any particular order—the growing tags precisely indicate those
bindings which may be pushed down.

• It is faster: Supero’s method requires one termination test to be carried out for
every binding one may wish to inline, whereas our method simply requires a set
membership test per inlining.

Our use of rollback (Section 6.1) is present in standard supercompilers constructed around
the idea of a “graph of configurations” [Sørensen and Glück, 1999; Klyuchnikov, 2009].
In such systems, when an earlier graph node a is embedded into a later node b, the a

node (rather than the b node) is generalised. This has the effect of cutting off the part of
the graph reachable via a, achieving rollback. We have described how this idea can not
only be applied to a direct-style supercompiler, but have also extended the the concept
to rolling back “loopy” reduction (Section 6.1.1) and heap speculation (Section 6.3).

Traditional graph-based approaches to supercompilation make a distinction between
“upward” and “downward” generalisation steps, with “upward” steps rolling back to
generalise and “downward” steps (triggered by instance matches) not rolling back. The
equivalent distinction in our supercompiler arises when we come to choose whether to use
a rollback opportunity or not (Section 6.2.4).

One clear advantage using an explicit partial process graph in supercompilation is
that it allows the retention in the graph of disconnected nodes which have been made
unreachable by rollback, but which we may later want to resume supercompilation of. In
contrast, in Section 6.1 we described how our rollback mechanism has to carefully discard
any work done towards fulfilling those promises we roll back past. In our formulation
of supercompilation, this discarded work will be redone if the algorithm later needs to
supercompile similar states.

Our decision to use speculative evaluation in the supercompiler was initially inspired by
Ennals’s work [Ennals and Jones, 2003] on an alternative evaluation strategies for Haskell
which speculates fresh heap bindings but still has the same observational semantics as
standard call-by-need.
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Chapter 9

Further work and conclusions

There are a number of avenues which further work in call-by-need supercompilation could
take. In this section we briefly survey both some obvious and less obvious directions.

9.1 Formal verification of module properties

Throughout the thesis, we have clearly defined the properties that we expected each of the
modules (termination, memoisation, splitting and evaluation) of our modular supercom-
piler to have. Assuming that these properties hold, we have been able to prove that the
supercompilation algorithm is correct. However, in some cases we have only been able to
make informal arguments as to why our implementations of the modules obey the stated
properties: this problem is particularly acute in case of the split function (Chapter 4),
but also applies to the msg function (Chapter 5). Although we are confident that the
properties hold, it would be useful to formally verify that our implementations are correct.

9.2 Binding structure in the termination test

We use a tag-bag termination test in our supercompiler. We found (Section 7.1.3) that
this test is in practice almost always sufficiently powerful to avoid generalisation occurring
too early, but sometimes causes the supercompiler to terminate earlier than a standard
homeomorphic embedding would, to the detriment of the generated code.

The root of the problem is that a tag-bag termination test is insensitive to binding
structure. For example, reduce cannot completely reduce away f in the following because
the tag-bag termination test can’t observe that with every iteration of f the argument
becomes strictly smaller, since bs is kept alive by the use in the outermost case-frame:

let f [ ] = True
f (x ∶ xs) = case f xs of True → False

False → True
bs = [True,False ]

in case f bs of True → bs
False → [ ]

Interesting future work would be to combine the tag-bag termination test with a stronger
test similar to a homeomorphic embedding in order to get very fast termination tests in
the common case where the tag-bag test passes, but avoid early termination if the tag-bag
test fails but the more powerful test still passes.
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The main problem with using a standard homeomorphic embedding as the powerful
termination test it that the we wish to use it with states, which due to their potentially
mutually-recursive binding structure are perhaps better modelled by graphs or infinite
trees rather than the finite trees used to model normal terms in previous work. Future
work could explore how the graph minor well-quasi-order [Robertson and Seymour, 1990]
or well-quasi-orders on infinite trees [Nash-Williams, 1965] could be combined with exist-
ing work on homeomorphic embeddings for trees containing bound variables [Klyuchnikov,
2010a] to obtain a termination test suitable for states.

9.3 Code explosion

Supercompiling a program can sometimes vastly increase the size of the programs that it
optimises. Consider, for example, this program:

data Nat = Z ∣ S Nat

bs ∶∶ [Bool ]
bs = [True,False ]
sequence ∶∶ [[a ]]→ [[a ]]
sequence [ ] = [[ ]]
sequence (mx ∶mxs) = concatMap (λx →map (x ∶) (sequence mxs))mx

count ∶∶ [Bool ]→ Nat
count = foldr (λx acc → if x then S acc else acc) Z
root1 =map count (sequence [bs ])
root2 =map count (sequence [bs , bs ])
root3 =map count (sequence [bs , bs , bs ])
root3 =map count (sequence [bs , bs , bs , bs ])

The term rootn enumerates all n-length lists of Booleans and then counts the number of
Trues in each list. As a result, there are 2n items in the list returned by rootn. Most
supercompiler implementations will statically evaluate rootn until it reveals the entire
output list at compile time1. Therefore, as we increase n we linearly increase the size of
the rootn term and exponentially increase the size of the supercompiled version of rootn.

Extreme bloat along these lines is by no means an unusual phenomenon, and the bloat
not only wastes hard disk and code cache space, but also leads to the related problem of
extremely long supercompilation run times, which can quickly exceed what is practically
computable.

Post-hoc code size bounding techniques Jonsson [2011] which examine the output
of supercompilation to guess if the code size increase from supercompilation (if any) is
“worth it” may be part of the solution. However, it is also essential to find principled
ways to avoid producing such large output programs at all, in order to reduce the time
required to optimise a program with supercompilation and hence make it more practical
as a compiler optimisation pass. Our implementation incorporates some mechanisms to
avoid the worst excesses of code explosion (Section E.4), but they are distinctly ad-hoc.

This is an area which needs considerable work, and it is inevitable that any solution
will involve heuristics which sometimes pessimise programs even when supercompiling
normally would not have led to code bloat.

1In fact, our supercompiler is not able to do this because the tag-bag termination test is too weak.
However, we can show similar behaviour by manually unrolling the sequence recursion and replacing each
occurrence of bs with an explicit list [True,False ]
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An alternative approach would be to compose a suitable supercompiler with a just-in-
time compilation algorithm that lazily consumes the syntax tree returned by the super-
compiler. By taking this approach, it would be possible to avoid performing supercompi-
lation for a term until it is actually required at runtime, so we would avoid exploring the
exponential-time worst cases unless the program being run would itself require exponen-
tial time to complete. The main problems with this approach are the relative complexity
of just-in-time compilation, and the fact that it would make it difficult or impossible to
apply other optimisations (such as strictness analysis) to the result of supercompilation
itself.

9.4 Predictable supercompiation

It is very difficult even for those with considerable experience with supercompilation imple-
mentations to predict what the result of supercompiling a program will be. This problem
fundamentally arises not only from the large state space that supercompilation explores,
but also the non-intuitive nature of the well-quasi-order based termination condition that
is applied to bound that search.

It would be interesting to devise a supercompilation algorithm which trades away
factors such as the amount of optimisation that is achieved in exchange for predictability
of the algorithm. As part of this work, it might be fruitful to revisit offline termination
tests (such as binding time analysis) whose results are more immediately explicable to the
user of the transformation system. Another interesting approach is to only generalise when
a user’s annotation explicitly tells you to do so, rather than making use of any automatic
termination test at all. Of course, such a system would necessarily invite non-termination,
but it could be useful in practice when combined with sufficiently good debugging tools
that the programmer can use to discover the source of specialiser non-termination.

Better tools for understanding the supercompilation process tree could be another
path to predictablity. Existing approaches to debugging supercompilation rely on such
primitive methods as inspecting a textual trace showing the states that are being super-
compiled. A GUI which helps manage the huge volume of information generated during
a typical supercompilation run would be extremely useful.

9.5 Reduction before match

An unfortunate feature of our supercompiler is that for a program such as the following,
supercompilation will peel the call to map once:

letmap f xs = case xs of [ ] → [ ](y ∶ ys)→ f y ∶map f ys
inmap

The reason for this is that the state S1 that will be recursively supercompiled is based on
the code underneath the map λ, and as such looks like:

letmap f xs = . . .
in case xs of [ ] → [ ](y ∶ ys)→ f y ∶map f ys

However, when we come to recursively supercompile from the y ∶ys branch of the residual
case expression, the state S2 we supercompile looks like:
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let map f xs = . . . inmap f ys

Notice that this state will reduce into a state which is equivalent (up to renaming) to the
earlier one, but the memoiser will be unable to detect this fact as it only performs exact
syntactic matching. As a result, the optimised program will be:

let h0 = let map f xs = h1 f xs inmap
h1 f xs = case xs of [ ] → [ ](y0 ∶ ys0 )→ f y0 ∶ h2 f ys0
h2 f ys0 = case ys0 of [ ] → [ ](y1 ∶ ys1 )→ f y1 ∶ h2 f ys1

in h0

Note that the map loop has essentially been peeled once. One obvious approach to
ameliorate this is to reduce the states to be matched in the memoiser, exploiting the fact
that reduce will generally be more normalising than a simple call to normalise. With this
change, we will indeed be able to tieback the S2 state to the existing promise for S1.

However, with this modified memoiser, the supercompiler correctness argument no
longer goes through. The reason for this is that we may end up matching a later state
against an earlier one which is strictly slower than it before reduction, even though it
appears to be just as fast after using reduce.

For example, we could have an earlier state let f x = id True in f x which fails the
termination test and is split , so that we recursively drive the state id True. These two
states appear to have the same meaning after reduce, but we do not want to return the
optimised program let h0 x = let f x = h0 x in f x in h0 x !

It is desirable to have some way of avoiding this loop-peeling phenomenon, and the
proposed strategy of using reduce beforematch seems promising, but more work is required
to avoid correctness issues.

9.6 Instance matching

In Section 5.2 we defined the match function used by the memoiser. This function only
reports exact matches between states: you might wonder what would happen if you
defined a memoiser which instead used the companion function instanceMatch to tie back
even if could only detect an instance match against a previous state.

Clearly, this feature can severely impair optimisation if it is uncontrolled. For example,
if we supercompile a call map f xs first, then the danger is that the supercompilation of
a later call map f (map g xs) will detect an instance match and so reuse the code for the
earlier map f xs promise, which prevents deforestation of the map f .map g composition!

Nonetheless, some supercompilers do make restricted use of instance matching. For
example, Jonsson and Nordlander [2010] allow instance matches against promises which
are ancestors of the current node in the process tree (equivalently, unfulfilled promises).
The theoretical justification for this is that parents of the current node will be present
in the current termination history, and if the termination test is implemented with a
homeomorphic embedding (Section D.6.2) then supercompilation of any instance of those
ancestors will immediately cause the termination test to fail. Although this argument
does not apply in a supercompiler using tag-bags to implement the termination test, this
might still be a useful heuristic for allowing instance matches against ancestor promises.

Another possibility is to allow instance matching against non-ancestor promises if the
variables we will instantiate have previously been generalised. As an example, consider
supercompiling the following initial state with a generalising supercompiler:
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let foldl c n xs = (case xs t1 of [ ] → n(y ∶ ys)→ let m = (c n y)t4
in (((foldl t2 c)t3 m)t5 ys)t6)t7

n0 = True
f xs = foldl (∧) n0 xs
n1 = False
g xs = foldl (∧) n1 xs

in (f , g)
Two states will be recursively supercompiled (note that we explicitly write the kinding
and typing environments):

S1 = ⟨foldl ↦ . . . ,n0 ↦ True⎪⎪⎪⎪foldl (∧) n0 xs⎪⎪⎪⎪ǫ⟩ǫ∣xs ∶[Bool ]

S2 = ⟨foldl ↦ . . . ,n1 ↦ False⎪⎪⎪⎪foldl (∧) n0 xs⎪⎪⎪⎪ǫ⟩ǫ∣xs∶[Bool ]

After driving and splitting S1 the following state will be recursively supercompiled:

S3 = ⟨foldl ↦ . . . ,n0 ↦ True,m0 ↦ (∧) n0 y0⎪⎪⎪⎪foldl (∧)m0 ys0⎪⎪⎪⎪ǫ⟩ǫ∣y0 ∶Bool ,ys0 ∶[Bool ]

Which in turn leads to driving:

S4 = ⟨ foldl ↦ . . . ,n0 ↦ True,
m0 ↦ (∧) n0 y0 ,m1 ↦ (∧)m0 y1

⎪⎪⎪⎪⎪⎪⎪⎪⎪foldl (∧)m1 ys1
⎪⎪⎪⎪⎪⎪⎪⎪⎪ǫ⟩ǫ∣y0 ∶Bool ,y1 ∶Bool ,ys1 ∶[Bool ]

At this point, the termination test will fail and so (assuming the supercompiler does
incorporate rollback) the generalisation heuristics will kick in and cause the m1 heap
binding to be generalised away. As a result we could recursively supercompile:

S5 = ⟨foldl ↦ . . .⎪⎪⎪⎪foldl (∧)m1 ys1⎪⎪⎪⎪ǫ⟩ǫ∣ gen

m1 ∶Bool ,ys1 ∶[Bool ]

Note the hypothetical syntax in the typing environment used to mark the fact that the
m1 variable became free due to generalisation. We will recursively supercompile:

S6 = ⟨foldl ↦ . . . ,m2 ↦ (∧)m1 y2⎪⎪⎪⎪foldl (∧)m1 ys2⎪⎪⎪⎪ǫ⟩ǫ∣ gen

m1 ∶Bool ,y2 ∶Bool ,ys2 ∶[Bool ]

Because S6 is an instance of S5 (via the variable m1 ) and m1 is marked with the “gen”
flag, by the proposed instance-matching heuristic we could tie back to S5 at this point.
Turning our attention to the pending state S2, note that it is also an instance of S5 via
the m1 variable, so we can also discharge this promise by an instance match. The final
code would therefore be:

let h0 = let f xs = h1 xs
g xs = h2 xs

in (f , g)
h1 xs = case xs of [ ] → True(y0 ∶ ys0 )→ let n0 = True

m0 = (∧) n0 y0
m1 = (∧)m0 y1

in h5 m1 ys1
h5 m1 ys1 = case ys1 of [ ] → m1(y2 ∶ ys2 )→ h6 m1 y1 ys2
h6 m1 y1 ys2 = let m2 = (∧) m1 y1
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in h5 m2 ys2
h2 xs = let n0 = False

in h5 n0 xs
in h0

This kind of idea seems like a promising basis for a strategy that reduces supercompilation
time without sacrificing essential optimisations. However, the strategy still prevents us
from achieving useful optimisation in certain cases, and so further work is required to
refine it and gather experimental evidence for its effectiveness (or lack thereof).

9.7 Parametricity

Because Core is a typed language, it is possible to exploit the notion of parametricity and
free theorems [Walder, 1989] to eagerly generalise away useless information. For example,
if we have the following state:

let x1 ∶∶α = g x0 y in foldl g x1 xs

Because the x1 heap binding has a type α which is a simple type variable, by parametricity
we immediately know that the evaluation of the call foldl g x1 xs cannot benefit from
knowing the definition of x1 . As a result, it would not impede optimisation (but may
speed up supercompilation) to “eagerly” generalise this term even before the termination
test has failed, and drive foldl g x1 xs instead.

Likewise, it would not impede optimisation if the memoiser was allowed to tie back
even if it only had an instance (rather than exact) match where the instantiating heap
bindings all have types which are simple type variables (or applications to type variables
of the form α τ ).

Our implementation does not exploit these observations because GHC’s core language
actually includes a mechanism known as coercions (Section E.3.7) which are used to im-
plement features such as generalised algebraic data types (GADTs) [Xi et al., 2003] and
type-level functions [Chakravarty et al., 2005]. Coercions and GADTs allow apparently
polymorphic types to be refined by value-level information, which means that these ob-
servations no longer hold. Nonetheless, it may prove useful to explore how useful they
are in supercompilers for languages which use simple parametric polymorphism.

9.8 Conclusions

This thesis has focused on the issues surrounding supercompilation for a call-by-need
language with unrestricted letrec, similar to Haskell. The main result of the thesis is a
supercompiler which is the first in the world capable of supercompiling and deforesting
programs written in these languages, achieving optimisation without the risk of work du-
plication. Nonetheless, the supercompiler still suffers from the same code (and compile
time) explosion problems which plague the field as a whole, and these problems seem
to be particularly acute on examples involving letrec (such as the wheel − sieve bench-
marks of Chapter 7). Worse, the complexity of implementing supercompilation in the
context of GHC, a real-world compiler of considerable complexity, means that although
we have considerable faith in the quality of our research contribution, our realisation of
that contribution as software still contains at least one major bug, as demonstrated by
the miscompilation of queens described in Section 7.2.
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We believe that the supercompiler of this thesis is a solid basis for further work in the
field of call-by-need supercompilation. In particular, we believe that our core contributions
of algorithm structure (Chapter 3), call-by-need splitting (Chapter 4) and call-by-need
matching and generalisation (Chapter 5) are all solid local maxima in the design space.

Some of our contributions are more peripheral and may prove to be dead ends in the
supercompilation research program: in particular, the evidence for the efficacy of our
attempts to improve the degree of optimisation a supercompiler can achieve (Chapter 6)
is mixed.
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Appendix A

Proof of normalisation

Theorem 2.2.1. The operational semantics of Figure 2.3 without beta and tybeta is
normalising.

Proof. The proof proceeds by defining a measure on states that maps each state to a
natural number, and then showing that each of the proposed rules of the operational
semantics strictly decreases this measure. Because this relation is well-founded on natural
numbers, this shows that the proposed ruleset is normalising.

The measure on states ∥⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩∥ ∈ N is defined as follows:

∥⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩∥ = ∥H∥H (values(H)) + ∥d∥d̂ (values(H)) + ∥K∥K
values(H) = {x ∣ x ∶τ ↦ vt ∈ H}

∥et∥d̂ (X) =
⎧⎪⎪⎨⎪⎪⎩
0 e ≡ x ∧ x ∈X

∥e∥e otherwise
∥et∥d = ∥e∥e

∥ǫ∥H (X) = 0∥H,x ∶τ ↦ d∥H (X) = ∥H∥H(X) + ∥d∥d̂ (X)
∥ǫ∥K = 0∥κt,K∥K = ∥κ∥κ + ∥K∥K

∥update x∥κ = 1∥● x∥κ = 1

∥case ● of C α ∶κ x ∶τ → d∥κ = 1 +∑ ∥d∥d∥● τ∥κ = 1

∥x∥e = 2∥λx ∶τ. d∥e = ∥d∥d∥d x∥e = 2 + ∥d∥d∥C τ x∥e = 0

∥case d of C α ∶κ x ∶τ → dC∥e = 2 + ∥d∥d +∑ ∥dC∥d∥let x = dx in d∥e = 1 +∑ ∥dx∥d + ∥d∥d∥Λα ∶κ. d∥e = ∥d∥d∥d τ∥e = 2 + ∥d∥d
For all the normalising rules except var, updatev and update it is easy to show that
the measure is strictly decreased by the rule (it is useful to observe in the letrec case
that for all d and X , ∥d∥d̂(X) ≤ ∥d∥d). We consider the more complicated cases of var,
updatev and update explicitly.
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Case var By this rule, ⟨H,x ∶τ ↦ d⎪⎪⎪⎪xt⎪⎪⎪⎪K⟩ ↝ ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪update x ∶τ t,K⟩, where d is not
a value. Let X = values(H,x ∶ τ ↦ d) and X ′ = values(H). Note that x ∉ X , so we have
that: ∥⟨H,x ∶τ ↦ d⎪⎪⎪⎪xt⎪⎪⎪⎪K⟩∥ = ∥H∥H (X) + ∥d∥d̂(X) + 2 + ∥K∥K∥⟨H⎪⎪⎪⎪d⎪⎪⎪⎪update x ∶τ t,K⟩∥ = ∥H∥H (X ′) + ∥d∥d̂(X ′) + 1 + ∥K∥K
By the definition of values , ∀y.y ∈ X Ô⇒ y ∈ X ′ and so by inspection of the definition
of ∥∥d̂ we can see that ∥H∥H (X ′) ≤ ∥H∥H (X) and ∥d∥d̂(X ′) ≤ ∥d∥d̂(X). This establishes
that ∥⟨H⎪⎪⎪⎪d⎪⎪⎪⎪update x ∶τ t,K⟩∥ < ∥⟨H,x ∶τ ↦ d⎪⎪⎪⎪xt⎪⎪⎪⎪K⟩∥, as required.
Case updatev According to this rule,

⟨H⎪⎪⎪⎪u⎪⎪⎪⎪update x ∶τ tx ,K⟩ ↝ ⟨H,x ∶τ ↦ u⎪⎪⎪⎪xtx⎪⎪⎪⎪K⟩
Let X = values(H) and X ′ = values(H,x ∶τ ↦ u). We have that:

∥⟨H⎪⎪⎪⎪u⎪⎪⎪⎪update x ∶τ tx ,K⟩∥ = ∥H∥H(X) + ∥u∥d̂(X) + 1 + ∥K∥K∥⟨H,x ∶τ ↦ u⎪⎪⎪⎪xtx⎪⎪⎪⎪K⟩∥ = ∥H∥H(X ′) + ∥u∥d̂(X ′) + ∥K∥K
By a similar argument to before, ∥H∥H (X ′) ≤ ∥H∥H (X). We can also see that by the
definition of ∥∥d̂, ∥u∥d̂(X) = ∥u∥d̂(X ′), which establishes that ∥⟨H,x ∶τ ↦ u⎪⎪⎪⎪xtx⎪⎪⎪⎪K⟩∥ <⟨H⎪⎪⎪⎪u⎪⎪⎪⎪update x ∶τ tx ,K⟩ as required.
Case update According to this rule,

⟨H[x ∶τ ↦ u]⎪⎪⎪⎪xtx⎪⎪⎪⎪update y ∶τ ty ,K⟩ ↝ ⟨H,y ∶τ ↦ xty⎪⎪⎪⎪xtx⎪⎪⎪⎪K⟩
Let X = values(H) and X ′ = values(H,y ∶τ ↦ xty). We have that:

∥⟨H[x ∶τ ↦ u]⎪⎪⎪⎪xtx⎪⎪⎪⎪update y ∶τ ty ,K⟩∥ = ∥H∥H(X) + ∥xtx∥d̂(X) + 1 + ∥K∥K∥⟨H,y ∶τ ↦ xty⎪⎪⎪⎪xtx⎪⎪⎪⎪K⟩∥ = ∥H∥H(X ′) + ∥xty∥d̂(X ′) + ∥xtx∥d̂(X ′) + ∥K∥K
We know that x ∈ X and x ∈X ′ so therefore ∥xtx∥d̂(X) = ∥xty∥d̂(X ′) = ∥xtx∥d̂(X ′) = 0. This
is enough to establish ∥⟨H,y ∶τ ↦ xty⎪⎪⎪⎪xtx⎪⎪⎪⎪K⟩∥ < ∥⟨H[x ∶τ ↦ u]⎪⎪⎪⎪xtx⎪⎪⎪⎪update y ∶τ ty ,K⟩∥ as
required.
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Appendix B

Proof of type generalisation

The syntax and static semantics of System Fω are reproduced in Figure B.1 and Fig-
ure B.2, respectively. To conduct our proof, we will require type substitutions, which
we define along with their operations in Figure B.3. For our purposes, all substitutions
are exhaustive and non-capturing. Note that in the following all type equality will be
considered up to α-equivalence, and we will often silently α-convert during our proofs.

The reason that the non-coupling substitutions of Section 5.7 are interesting is that
they allow us to prove that two terms are equal given only that they are equal after the
non-coupling substitutions have been applied. This is codified in the following lemma:

Lemma B.0.1 (Non-coupling equality). If θ0 and θ1 are non-coupling then τθ0 = υθ0 and
τθ1 = υθ1 iff τ = υ.

Proof. Consider the (τ = υ) Ô⇒ . . . direction first. This direction follows trivially
because τθ0 = τθ0 and symmetrically for θ1.

Now consider the other direction. We proceed by simultaneous induction on the
structures on τ and υ.

The first case we consider is τ = α, υ = β. By the assumption we know that αθ0 = βθ0
and αθ1 = βθ1. Note that if α = β then the non-coupling substitution property would be
violated because we would have two distinct variables α and β mapping to α-equivalent
pairs of types. Thus, α = β, satisfying the goal of this case.

The next case we consider is τ = α, υ ≠ β. By the assumption, αθ0 = υθ0 and αθ1 = υθ1.
To discharge this case, it is sufficient to prove coupled (υθ0, υθ1) because doing so would
contradict the non-coupling assumption for the variable α. We prove this by case analysis
on υ:

• Case υ = (→): coupled ((→)θ0, (→)θ1) = coupled ((→), (→)) follows immediately.

• Case υ = υ1 υ2: coupled ((υ1 υ2)θ0, (υ1 υ2) θ1) = coupled (υ1θ0 υ2θ0, υ1θ1 υ2θ1) fol-
lows immediately.

• Case ∀β ∶κ. υ̂: coupled ((∀β ∶κ. υ̂) θ0, (∀β ∶κ. υ̂) θ1) = coupled(∀β ∶κ. υ̂ (θ0, β ∶κ ↦ β) ,∀β ∶
κ. υ̂ (θ1, β ∶κ↦ β)) follows immediately.

The case τ ≠ α, υ = β can be discharged by a symmetric version of the previous case’s
argument. This leaves only cases involving types of the form (→), τ̂ υ̂ and ∀α ∶κ. τ̂ . Note
that since neither τ nor υ can be a variable, the only way our assumption τθ0 = υθ0 can
be true is if the (outermost) forms of τ and υ match before substitution. Thus we only
need consider three more cases: one for each possible form. As we will see, each case can
be discharged by making use of the inductive hypothesis.

The easiest remaining case is τ = (→), υ = (→), which follows trivially.
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Type Variables α,β Term Variables x, y, z

Kinds

κ ∶∶= ⋆ Kind of term types∣ κ → κ Kind of type constructors

Types

τ ∶∶= α Type variable∣ (→) Function type constructor∣ τ τ Type application∣ ∀α ∶κ. τ Parametric polymorphism

Terms

e ∶∶= x Term variable∣ λx ∶τ. e Term abstraction∣ e e Term application∣ Λα ∶κ. e Type abstraction∣ e τ Type application

Figure B.1: Syntax of System Fω

Kinding context Σ ∶∶= α ∶κ Typing context Γ ∶∶= x ∶τ

Σ ⊢κ τ ∶ κ

α ∶κ ∈ Σ
Σ ⊢κ α ∶ κ

TyVar
Σ ⊢κ (→) ∶ ⋆→ ⋆→ ⋆

TyFun

Σ ⊢κ τ ∶ ι → κ Σ ⊢κ υ ∶ ι
Σ ⊢κ τ υ ∶ κ

TyApp
Σ, α ∶κ ⊢κ τ ∶ ⋆

Σ ⊢κ α ∶κ. τ ∶ ⋆
TyForall

Σ∣Γ ⊢ e ∶ τ

x ∶τ ∈ Γ
Σ∣Γ ⊢ x ∶ τ

Var

Σ∣Γ, x ∶υ ⊢ e ∶ τ Σ ⊢κ υ ∶ ⋆

Σ∣Γ ⊢ λx ∶υ. e ∶ υ → τ
Lam

Σ∣Γ ⊢ e1 ∶ υ → τ Σ∣Γ ⊢ e2 ∶ υ

Σ∣Γ ⊢ e1 e2 ∶ τ
App

Σ, α ∶κ∣Γ ⊢ e ∶ τ

Σ∣Γ ⊢ Λα ∶κ. e ∶ ∀α ∶κ. τ
TyLam

Σ∣Γ ⊢ e1 ∶ ∀α ∶κ. τ Σ ⊢κ υ ∶ κ

Σ∣Γ ⊢ e1 υ ∶ τ[υ/α] TyApp

Figure B.2: Type system of System Fω

We next consider τ = τ1 τ2, υ = υ1 υ2. By the assumption, (τ1 τ2)θ0 = τ1θ0 τ2θ0 =

υ1θ0 υ2θ0 = (υ1 υ2)θ0 (and symmetrically for θ1). By the definition of α-equivalence,
τ1θ0 = υ1θ0 and τ2θ0 = υ2θ0 (and symmetrically for θ1). Therefore by induction τ1 = υ1 and
τ2 = υ2, which is sufficient to discharge this case.

Our final case is τ = ∀α ∶ κ. τ̂ , υ = ∀α ∶ κ. υ̂. By the assumption, (∀α ∶κ. τ̂) θ0 = ∀α ∶
κ. τ̂ (θ0, α ∶κ ↦ α) = ∀α ∶ κ. υ̂ (θ0, α ∶κ ↦ α) = (∀α ∶κ. υ̂) θ0 (and symmetrically for θ1). By
the definition of α-equivalence, τ̂ (θ0, α ∶κ↦ α) = υ̂ (θ0, α ∶κ↦ α) (and symmetrically for
θ1). Because α is fresh, our extended substitutions (θ0, α ∶κ ↦ α) and (θ1, α ∶κ ↦ α) are
still non-coupling, and thus by induction we have τ̂ = υ̂, completing the case and the
proof.
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Type substitution θ ∶∶= α ∶κ↦ τ

τθ = υ

α (θ[α ∶κ↦ τ]) = τ(→)θ = (→)(τ υ)θ = τθ υθ(∀α ∶κ. τ) θ = ∀α ∶κ. τ (θ,α ∶κ ↦ α)

e1θ = e2
xθ = x(λx ∶τ. e)θ = λx ∶τθ. eθ(e1 e2) θ = e1θ e2θ(Λα ∶κ. e) θ = Λα ∶κ. e (θ,α ∶κ↦ α)(e τ) θ = eθ τθ

Figure B.3: Type substitution for System Fω

Having established this, we are in a position to define the theorem that justifies the
well-typedness of a generalisation that uses non-coupling substitutions:

Theorem 5.7.1. In System Fω, if we have Σ0, Σ1, Σ, Γ0, Γ1, Γ, e0, e1, e, τ0, τ1, θ0, θ1
such that:

• The ungeneralised terms are well typed: Σ0∣Γ0 ⊢ e0 ∶ τ0 and Σ1∣Γ1 ⊢ e1 ∶ τ1

• θ0 and θ1 are non-coupling with common domain Σ

• The term is a generalisation of the originals: eθ0 = e0 and eθ1 = e1

• The type environment is a generalisation of the originals: Γθ0 = Γ0 and Γθ1 = Γ1.

Then there exists a (unique) type τ such that:

• The generalised term is well typed: Σ∣Γ ⊢ e ∶ τ

• The type is a generalisation of the originals: τθ0 = τ0 and τθ1 = τ1

Proof. Case e = x: by assumptions, xθ0 = x = e0 and xθ1 = x = e1. We thus know that
Σ0∣Γ0 ⊢ x ∶ τ0 and Σ1∣Γ1 ⊢ x ∶ τ1, and hence x ∶ τ0 ∈ Γ0 and x ∶ τ1 ∈ Γ1. Thus, by the
assumption about the type environment, ∃x ∶ τ ∈ Γ.τθ0 = τ0 ∧ τθ1 = τ1. Well-typing is
proven since Σ∣Γ ⊢ x ∶ τ .

Case e = λx ∶ υ̂. ê: by assumptions, (λx ∶ υ̂. ê) θ0 = λx ∶ υ̂θ0. êθ0 = e0, and so Σ0∣Γ0 ⊢ λx ∶

υ̂θ0. êθ0 ∶ τ0. By inspecting the type rules, it must be the case that τ0 = υ̂θ0 → τ̂0 and
Σ0∣Γ0, x ∶ υ̂θ0 ⊢ êθ0 ∶ τ̂0. The same things hold symmetrically with θ1, and so we can
induct to prove that for some τ̂ satisfying τ̂ θ0 = τ̂0∧ τ̂ θ1 = τ̂1, Σ∣Γ, x ∶ υ̂ ⊢ ê ∶ τ̂ . Well-typing
follows since Σ∣Γ ⊢ λx ∶ υ̂. ê ∶ υ̂ → τ̂ .

Case e = e1 e2: by assumptions, (e1 e2) θ0 = e1θ0 e2θ0 = e0 and so Σ0∣Γ0 ⊢ e1θ0 e2θ0 ∶ τ0.
By inspecting the type rules, we must have that Σ0∣Γ0 ⊢ e1θ0 ∶ υ0 → τ0 and Σ0∣Γ0 ⊢
e2θ0 ∶ υ0. The same things hold symmetrically with θ1, and so we can induct to prove
that for some τ̂ and υ, Σ∣Γ ⊢ e1 ∶ τ̂ and Σ∣Γ ⊢ e2 ∶ υ with both τ̂ θ0 = υ0 → τ0∧τ̂ θ1 = υ1 → τ1
and υθ0 = υ0 ∧ υθ1 = υ1. Now, observe that it must be the case that τ̂ = υ̂ → τ for some
υ̂ and τ . The only other possibility consistent with the equality we have just learnt is
that τ̂ = α for some α, but that would violate the non-coupling property of θ0 and θ1.
Therefore, (υ̂ → τ) θ0 = υ̂θ0 → τθ0 = υ0 → τ0 (and symmetrically for θ1). This suffices to
prove that υ̂ = υ and τθ0 = τ0 ∧ τθ1 = τ1 and therefore we can complete this case with
well-typing following from Σ∣Γ ⊢ e1 e2 ∶ τ .

Case e = Λα ∶ κ. ê: by assumptions, (Λα ∶κ. ê) θ0 = Λα ∶ κ. ê (θ0, α ∶κ↦ α) = e0 and
so Σ0∣Γ0 ⊢ Λα ∶ κ. ê (θ0, α ∶κ↦ α) ∶ τ0. By inspecting the type rules, we must have
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that Σ0, α ∶ κ∣Γ0 ⊢ ê (θ0, α ∶κ ↦ α) ∶ τ̂0 where τ0 = ∀α ∶ κ. τ̂0. The same things hold
symmetrically with θ1, so we can induct with the extended θ0 and θ1 (which are still
non-coupling because α is fresh) to show that for some τ̂ we have Σ, α ∶ κ∣Γ ⊢ ê ∶ τ̂ .
Furthermore, inductively we have that τ̂ (θ0, α ∶κ ↦ α) = τ̂0 ∧ τ̂ (θ1, α ∶κ↦ α) = τ̂1, which
implies that (∀α ∶κ. τ̂)θ0 = ∀α ∶κ. τ̂0 = τ0 (and symmetrically for θ1). Well-typing follows
since Σ∣Γ ⊢ Λα ∶κ. ê ∶ ∀α ∶κ. τ̂ .

Case e = ê τ̂ : by assumptions, (ê τ̂)θ0 = êθ0 τ̂ θ0 = e0 and so Σ0∣Γ0 ⊢ êθ0 τ̂ θ0 ∶ τ0.
By inspecting the type rules, we must have that Σ0∣Γ0 ⊢ êθ0 ∶ ∀α ∶κ.υ0, Σ0 ⊢κ τ̂ θ0 ∶ κ

and τ0 = υ0[τ̂ θ0/α]. The same thing holds symmetrically with θ1 and so we can induct
to prove that for some υ̂, Σ∣Γ ⊢ ê ∶ υ̂ where υ̂θ0 = ∀α ∶κ.υ0 ∧ υ̂θ1 = ∀α ∶κ.υ1. Observe
that it must be the case that υ̂ = ∀α ∶ κ.υ. The only other possibility consistent with
the equality we learn by induction is that υ̂ = β for some β, but if there were the case
the non-coupling property of θ0 and θ1 would be contradicted. Therefore, (∀α ∶κ.υ)θ0 =
∀α ∶ κ.υ (θ0, α ∶κ↦ α) = ∀α ∶ κ.υ0 (and symmetrically for θ1). Well typing follows since
clearly Σ ⊢κ τ̂ ∶ κ and so Σ∣Γ ⊢ ê τ̂ ∶ υ[τ̂/α]. The generalisation property holds because
τθ0 = υ[τ̂/α]θ0 = υ (θ0, α ∶κ↦ α) [τ̂ θ0/α] = υ0[τ̂ θ0/α] = τ0 (and symmetrically for θ1).
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Appendix C

Improvement theory

This appendix continues the discussion of improvement theory begun in Section 2.3, com-
pleting the development of the main theorems for our operational semantics.

We begin by stating a fundamental property about the reduction rules for Core (Fig-
ure 2.3), which we will make use of throughout this section:

Lemma C.0.2 (Extension). If ⟨H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩ ↝n ⟨H ′⎪⎪⎪⎪d′⎪⎪⎪⎪K ′⟩ then for all Ĥ and K̂,

⟨Ĥ,H
⎪⎪⎪⎪⎪e⎪⎪⎪⎪⎪K,K̂⟩↝n ⟨Ĥ,H ′

⎪⎪⎪⎪⎪e′⎪⎪⎪⎪⎪K ′, K̂⟩
Proof. Follows by observing that none of the reduction rules can be prevented from being
applicable by extending the stack at its tail, or by adding additional bindings to the
heap.

C.1 Generalised contexts explored

The principle advantage that generalised contexts (as introduced in Section 2.3) have over
standard contexts is that the variables that may be used by the term that is eventually
used to fill the hole are explicitly recorded. This ensures that the usual operational
semantics for the language in question can be extended smoothly to the reduction of
terms containing holes. If we do not explicitly record the variables used by the hole it is
difficult to avoid potentially problematic reduction sequences such as this one:

⟨f ∶(Int → Int)↦ λx ∶Int . [ ]⎪⎪⎪⎪f y⎪⎪⎪⎪ǫ⟩
↝ ⟨ǫ⎪⎪⎪⎪λx ∶Int. [ ]⎪⎪⎪⎪update f ∶Int → Int ,● y⟩
=α ⟨ǫ⎪⎪⎪⎪λy ∶Int. [ ]⎪⎪⎪⎪update f ∶Int → Int ,● y⟩ (∗)
↝ ⟨f ∶(Int → Int)↦ λy ∶Int. [ ]⎪⎪⎪⎪[ ]⎪⎪⎪⎪ǫ⟩

Note that in the pre-reduction state, filling the hole with the term x gives a state that can
be rebuilt to let f = λ(x ∶∶Int)→ x in f y , but after the state has undergone the (erroneous)
reduction, filling the hole with x and rebuilding gives let f = λ(y ∶∶Int)→ x in x , and these
two terms are not denotationally equivalent in all closing contexts. This failure of hole-
filling to commute with reduction fundamentally stems from the erroneous α-conversion
on the line marked (∗). This α-conversion is invalid because standard contexts are not
α-convertible without changing their meaning. In contrast, generalised contexts may be
α-converted freely by simply renaming the occurrences of variables applied to a meta-
variable as you would any other variable occurrence.

We will also make use of a version of the operational semantics of Figure 2.3, extended
to states ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ made up of generalised contexts. This extension is mostly obvious,
except ξ ⋅x should not be considered to be a non-value for the purposes of deciding whether
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the var rule can be used (so ⟨H,x ∶τ ↦ ξ ⋅ x⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ is stuck). The normalisation result of
Theorem 2.2.1 from the standard semantics carries over mostly unchanged, except that:

• Because of the addition of ξ ⋅x to the syntax, there is an additional form of normalised
state: ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩, where deref (H,C) = ξ ⋅ x

• The issue arises of what weight to assign to ξ ⋅ x when extending the normalisation
measure to contexts. Our approach is to have ∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩∥ return a triple where the
components are:

1. The number of syntactic occurrences of the meta-variable ξ

2. ∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). y]∥, where y is an arbitrary variable which is not bound in⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩
3. ∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x).C]∥, where C is an arbitrary data constructor

These triples (n, o, p) are not compared by usual lexical order but instead by the well-
founded ordering defined by (n′, o′, p′) < (n, o, p) ⇐⇒ (n′ ≤ n) ∧ (o′ < o) ∧ (p′ < p).
It is straightforward to show that the normalisation result of Theorem 2.2.1 still
holds since the normalising reduction rules never duplicate occurrences of meta-
variables (although they may remove occurrences) and so the measure on contexts
is still strictly decreased by application of the normalising rules.

This choice of the measure on states allows us to show a useful lemma relating the measure
on contexts and simple states:

Lemma C.1.1. If ∥⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩∥ < ∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩∥ then for all hole-fillers x, e we have∥⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩ [(x). e]∥ < ∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e]∥
Proof. By inspection of the definition of the measures, observing that:

• Measure-decrease on contexts means that the number of occurrences of the meta-
variables has either stayed the same or lessened, and so substitution of an arbitrary
term for those holes will not contribute more weight to the “smaller” context than
it does to the “larger” context.

• Whether e is a value or a non-value, one of the two state measure-decreases witnessed
by ∥⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩∥ < ∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩∥ will suffice to show that the hole-filled state will also
experience measure-decrease.

Many useful lemmas about the standard operational semantics, such as Lemma C.0.2,
carry over in the obvious way to the operational semantics on contexts.

C.2 Basic lemmas

In this section we will develop the basic lemmas of improvement theory: open uniform
computation and a context lemma. These will be necessary to derive the interesting
theorems of improvement theory in the next section.

Lemma C.2.1 (Open Uniform Computation). Given some H, C and K, if there exist

some Ĥ, K̂ and (x). e such that ⟨Ĥ,H
⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎪K, K̂⟩ [(x). e] ⇓ then ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ reduces to a

state context of one of the following forms:
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1. ⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪ǫ⟩, deref (H′,C′) = V′
2. ⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩, deref (H′,C′) = ξ ⋅ y
3. ⟨H′⎪⎪⎪⎪x⎪⎪⎪⎪K′⟩, x ∈ bvs(Ĥ)

Proof. We can assume that for some n, ⟨Ĥ,H
⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎪K, K̂⟩ [(x). e] ⇓n. Proceeding by in-

duction on the pair (n, ∥⟨Ĥ,H
⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎪K, K̂⟩ [(x). e]∥), we take the context ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ and

consider cases on C. For space reasons, we show the proof for illustrative cases only:

Case C = ξ ⋅ y This is a type 2 context, so we are done.

Case C = x We know that the extended state eventually reduces to a value, so x must
be bound either in H or Ĥ. In the latter case, this is a type 3 context, and we are done.
In the former case, H = H0, x ∶ τ ↦ C′. If C′ is ξ ⋅ y then this is a type 2 context and we
are done. Therefore the only cases we need to consider are whether C′ is a value or a
non-value.

• If C′ is a non-value we know

⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ ↝0 ⟨H0
⎪⎪⎪⎪C′⎪⎪⎪⎪update x ∶τ,K⟩∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩∥ > ∥⟨H0
⎪⎪⎪⎪C′⎪⎪⎪⎪update x ∶τ,K⟩∥

Therefore, by Lemma C.0.2, ⟨Ĥ,H0

⎪⎪⎪⎪⎪⎪C′⎪⎪⎪⎪⎪⎪update x ∶τ,K, K̂⟩ [(x). e] ⇓n. Further-

more, by Lemma C.1.1 and inspection of the definition of ∥∥, we can see that

∥⟨Ĥ,H0

⎪⎪⎪⎪⎪⎪C′⎪⎪⎪⎪⎪⎪update x ∶τ,K, K̂⟩ [(x). e]∥ < ∥⟨Ĥ,H
⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎪K, K̂⟩ [(x). e]∥

Because of the measure decrease, we can safely apply the inductive hypothesis to
show that the reduced context ⟨H0

⎪⎪⎪⎪C′⎪⎪⎪⎪update x ∶τ,K⟩ eventually reduces to a
context of the required form.

• If C′ is a value there are 5 cases to consider depending on the form of K. If K is ǫ
then this as a type 1 context, so we are done. Otherwise, there are 4 possible cases
depending on what the uppermost stack frame is. For brevity, we only consider the
case where the uppermost stack frame is such that beta applies.

In this case C′ = λx ∶ υ.C′′, K = ● x,K0 and so ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ ↝1 ⟨H⎪⎪⎪⎪C′′⎪⎪⎪⎪K0⟩. By

Lemma C.0.2, ⟨Ĥ,H
⎪⎪⎪⎪⎪⎪C′′⎪⎪⎪⎪⎪⎪K0, K̂⟩ [(x). e] ⇓n−1. Applying the inductive hypothesis

we can immediately discharge this case.

Case C = V There are 5 cases to consider depending on the form of K: either K is ǫ (in
which case this is a type 1 context, so we are done), or one of the reduction rules that
have a value in focus will apply. For brevity, we only the case in which the form of the
stack means that betav applies.

In this case we know that V = λx ∶τ.C′, K = ● x,K0 and so ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ ↝0 ⟨H⎪⎪⎪⎪C′⎪⎪⎪⎪K0⟩.
By Lemma C.0.2, ⟨Ĥ,H

⎪⎪⎪⎪⎪⎪C′⎪⎪⎪⎪⎪⎪K0, K̂⟩ [(x). e] ⇓n and clearly

∥⟨Ĥ,H
⎪⎪⎪⎪⎪⎪C′⎪⎪⎪⎪⎪⎪K0, K̂⟩ [(x). e]∥ < ∥⟨Ĥ,H

⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎪K, K̂⟩ [(x). e]∥
so we can once again discharge this case via the inductive hypothesis.
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The definition of improvement suggests that in order to prove that one term improves
another, we have to consider them in all (closed) contexts C. Instead, a context lemma
shows that it is sufficient to consider only evaluation contexts. To prove this, we first
require an auxiliary lemma:

Lemma C.2.2 (Reference Equivalence). If for all H, K such that ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ and ⟨H⎪⎪⎪⎪e′⎪⎪⎪⎪K⟩
are closed, ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ⇓nÔ⇒ ⟨H⎪⎪⎪⎪e′⎪⎪⎪⎪K⟩ ⇓≤n
then for all H, K, x, τ such that ⟨H,x ∶τ ↦ e⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ and ⟨H,x ∶τ ↦ e′⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ are closed,

⟨H,x ∶τ ↦ e⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ ⇓nÔ⇒ ⟨H,x ∶τ ↦ e′⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ ⇓≤n
Proof. First consider the case where e is a non-value, so that ⟨H,x ∶τ ↦ e⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ ↝0

⟨H⎪⎪⎪⎪e⎪⎪⎪⎪update x ∶τ,K⟩ and so ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪update x ∶τ,K⟩ ⇓n. By the assumptions, we im-
mediately find that ⟨H⎪⎪⎪⎪e′⎪⎪⎪⎪update x ∶τ,K⟩ ⇓≤n.

Now consider the case where e′ is furthermore a non-value, so that ⟨H,x ∶τ ↦ e′⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ ↝0

⟨H⎪⎪⎪⎪e′⎪⎪⎪⎪update x ∶τ,K⟩ and so by applying the assumption we immediately find that⟨H,x ∶τ ↦ e′⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ ⇓≤n as required. In the case where e′ is a value, we know that⟨H⎪⎪⎪⎪e′⎪⎪⎪⎪update x ∶τ,K⟩ ↝0 ⟨H,x ∶τ ↦ e′⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ which in conjunction with the assump-
tion is also sufficient to establish that ⟨H,x ∶τ ↦ e′⎪⎪⎪⎪x⎪⎪⎪⎪K⟩ ⇓≤n as required.

For the case where e is a value, notice that ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪update x ∶τ,K⟩↝0 ⟨H,x ∶τ ↦ e⎪⎪⎪⎪x⎪⎪⎪⎪K⟩
which establishes once again that ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪update x ∶τ,K⟩ ⇓n, and the rest of the argument
for the other can be reused wholesale.

Lemma C.2.3 (Context Lemma). If for all H, K such that ⟨H⎪⎪⎪⎪e0⎪⎪⎪⎪K⟩ and ⟨H⎪⎪⎪⎪e1⎪⎪⎪⎪K⟩
are closed, ⟨H⎪⎪⎪⎪e0⎪⎪⎪⎪K⟩ ⇓nÔ⇒ ⟨H⎪⎪⎪⎪e1⎪⎪⎪⎪K⟩ ⇓≤n
then e0 ⊳∼ e1.

Proof. By the definition of ⊳∼ we need to show that for all ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ such that ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e0]
and ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e1] are closed,

⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e0] ⇓nÔ⇒ ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e1] ⇓≤n
Assume the hypothesis ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e0] ⇓n. Proceed by induction on the pair:

(n, ∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e0]∥)
By Lemma C.2.1, ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ reduces in k ≥ 0 steps to one of the following cases:

• ⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪ǫ⟩ such that deref (H′,C′) = V, in which case this lemma follows immediately
as the hole does not participate in the computation at all.

• ⟨H′⎪⎪⎪⎪x⎪⎪⎪⎪K′⟩ such that x ∉ bvs(H′). This cannot occur because of the closedness
precondition.

• ⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩ such that deref (H′,C′) = ξ ⋅ x
We need only consider the final case, where ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e1] ↝k ⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩ [(x). e1]
and so ⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩ [(x). e1] ⇓n−k. We consider the two situations in which the deref
condition can hold:

1. C′ = ξ ⋅ x. In this case, let H′0 = H
′
1 = H

′, C′0 = e0 and C′1 = e1
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2. C′ = x, H′ = x ∶ τ ↦ ξ ⋅ x,H′rest . In this case, let H′0 = x ∶ τ ↦ e0,H
′
rest , H

′
1 = x ∶ τ ↦

e1,H
′
rest and C′0 = C

′
1 = x

In either case of deref , we can prove that:

• For i ∈ {0,1}, deref (H′i,C′i) = ei
• For i ∈ {0,1}, ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). ei]↝k ⟨H′i⎪⎪⎪⎪C′i⎪⎪⎪⎪K′⟩ [(x). ei]
• For any m, if ⟨H′0⎪⎪⎪⎪C′0⎪⎪⎪⎪K′⟩ [(x). e1] ⇓m then ⟨H′1⎪⎪⎪⎪C′1⎪⎪⎪⎪K′⟩ [(x). e1] ⇓≤m. In the first
case, this can be shown by a direct application of the assumption. In the second
case, it follows from combining the assumption with Lemma C.2.2.

Now apply Lemma C.2.1 to the state ⟨H′0⎪⎪⎪⎪C′0⎪⎪⎪⎪K′⟩. Again, bearing in mind the closedness
precondition, this state will be reduced in l ≥ 0 steps to one of two forms, which we
consider separately.

Case ⟨H′0⎪⎪⎪⎪C′0⎪⎪⎪⎪K′⟩↝l ⟨H′′⎪⎪⎪⎪C′′⎪⎪⎪⎪ǫ⟩ where deref (H′′,C′′) = V It immediately follows that⟨H′0⎪⎪⎪⎪C′0⎪⎪⎪⎪K′⟩ [(x). e1]↝l ⟨H′′⎪⎪⎪⎪C′′⎪⎪⎪⎪ǫ⟩ [(x). e1] and so ⟨H′0⎪⎪⎪⎪C′0⎪⎪⎪⎪K′⟩ [(x). e1] ⇓l.
By the assumptions, it follows that ⟨H′1⎪⎪⎪⎪C′1⎪⎪⎪⎪K′⟩ [(x). e1] ⇓≤l. Combined with the

fact we already know that ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e1] ↝k ⟨H′1⎪⎪⎪⎪C′1⎪⎪⎪⎪K′⟩ [(x). e1], this shows that⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e1] ⇓≤(k+l=n) as required.
Case ⟨H′0⎪⎪⎪⎪C′0⎪⎪⎪⎪K′⟩↝l ⟨H′′⎪⎪⎪⎪C′′⎪⎪⎪⎪K′′⟩ where deref (H′′,C′′) = ξ ⋅x It immediately follows
that ⟨H′′⎪⎪⎪⎪C′′⎪⎪⎪⎪K′′⟩ [(x). e0] ⇓n−(k+l). It is now safe to apply the induction hypothesis since
e0 is ξ-free, so we must have applied at least one reduction rule within these l steps,
and so using Lemma C.1.1 we know that either k + l > 0 or ∥⟨H′′⎪⎪⎪⎪C′′⎪⎪⎪⎪K′′⟩ [(x). e0]∥ <∥⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e0]∥. The induction hypothesis shows that ⟨H′′⎪⎪⎪⎪C′′⎪⎪⎪⎪K′′⟩ [(x). e1] ⇓≤(n−(k+l))
and so ⟨H′0⎪⎪⎪⎪C′0⎪⎪⎪⎪K′⟩ [(x). e1] ⇓≤(n−k). Applying the assumptions, we find that, as required,⟨H′1⎪⎪⎪⎪C′1⎪⎪⎪⎪K′⟩ [(x). e1] ⇓≤(n−k) and so ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ [(x). e1] ⇓≤n.

C.3 Value-β: an example use of improvement theory

We can use our newly-developed lemmas to prove some interesting laws of the “tick
algebra” for Core. The value-β law is an interesting example that illustrates how the
standard theorems can be adapted and proved in our setting:

Theorem C.3.1 (Value-β). let x = v ; y = C[x] in C[x] ⊳∼ let x = v ; y = C[v] in C[v]
Proof. By Lemma C.2.3, it suffices to show that for all H, K and C such that ({x} ∪
fvs (v)) ⊆ x and the states formed are closed, then

⟨H[(x). x], x ↦ v⎪⎪⎪⎪C[(x). x]⎪⎪⎪⎪K[(x). x]⟩ ⇓nÔ⇒ ⟨H[(x). v], x ↦ v⎪⎪⎪⎪C[(x). v]⎪⎪⎪⎪K[(x). v]⟩ ⇓≤n
Assume the premise ⟨H[(x). x], x ↦ v⎪⎪⎪⎪C[(x). x]⎪⎪⎪⎪K[(x). x]⟩ ⇓n and proceed by induc-
tion on the pair of natural numbers (n, ∥⟨H[(x). x], x ↦ v⎪⎪⎪⎪C[(x). x]⎪⎪⎪⎪K[(x). x]⟩∥). Apply
Lemma C.2.1 to ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ and consider each of the three cases separately:

Case ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ ↝k ⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩ where deref (H′,C′) = V In this case n = k and we
have trivially proved the goal.
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Case ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ ↝k ⟨H′⎪⎪⎪⎪C′⎪⎪⎪⎪K′⟩ where deref (H′,C′) = ξ ⋅x To proceed further, we need
to consider cases on deref :

1. C′ = ξ ⋅ x, in which case

⟨H[(x). x], x ↦ v⎪⎪⎪⎪C[(x). x]⎪⎪⎪⎪K[(x). x]⟩ ↝k ⟨H′[(x). x], x ↦ v⎪⎪⎪⎪C′[(x). x]⎪⎪⎪⎪K′[(x). x]⟩
= ⟨H′[(x). x], x ↦ v⎪⎪⎪⎪x⎪⎪⎪⎪K′[(x). x]⟩

2. C′ = y, H′ = y ↦ ξ ⋅ x,H′rest , in which case

⟨H[(x). x], x ↦ v⎪⎪⎪⎪C[(x). x]⎪⎪⎪⎪K[(x). x]⟩ ↝k ⟨H′[(x). x], x ↦ v⎪⎪⎪⎪C′[(x). x]⎪⎪⎪⎪K′[(x). x]⟩
= ⟨H′rest[(x). x], y ↦ x,x ↦ v⎪⎪⎪⎪y⎪⎪⎪⎪K′[(x). x]⟩
↝0 ⟨H′rest[(x). x], y ↦ x,x ↦ v⎪⎪⎪⎪x⎪⎪⎪⎪K′[(x). x]⟩
= ⟨H′[(x). x], x ↦ v⎪⎪⎪⎪x⎪⎪⎪⎪K′[(x). x]⟩

This shows that both possibilities are confluent and we can consider them together. We
now need to consider cases on K′. For brevity, we restrict attention to when the beta

rule is applicable, in which case K′ = ● z,K′rest and by termination of the extended state
v = λz ∶τ. e, so ⟨H′[(x). x], x ↦ v⎪⎪⎪⎪x⎪⎪⎪⎪K′[(x). x]⟩ ↝1 ⟨H′[(x). x], x ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K′rest[(x). x]⟩.

Since ⟨H′[(x). x], x ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K′rest[(x). x]⟩ ⇓n−(k+1), we can apply the inductive hypoth-
esis to obtain ⟨H′[(x). v], x ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K′rest[(x). v]⟩ ⇓≤(n−(k+1)). It follows directly that, as
required, ⟨H[(x). v], x ↦ v⎪⎪⎪⎪C[(x). v]⎪⎪⎪⎪K[(x). v]⟩ ⇓≤n.
Case ⟨H⎪⎪⎪⎪C⎪⎪⎪⎪K⟩ ↝k ⟨H′⎪⎪⎪⎪x⎪⎪⎪⎪K′⟩ By cases on v and K′, just as in the previous case.

Note that in Moran and Sands’ original presentation of the tick algebra for call-by-
need [Moran and Sands, 1999a], the value-β rule specified a cost equivalence rather than
a simple improvement, i.e. let x = v ; y = C[x] in C[x]◃▹∼ let x = v ; y = C[✓v] in C[✓v].
(Recall that a tick ✓e slows down the execution of a term by exactly one step.) This cost
equivalence does not hold in our system: note that

let x = True
in if x then True then False

reduces to a value in 0 steps, whereas

let x = True
in if ✓True then True then False

requires a single non-normalising step to reach a value. Equally, the “tickless” law let x =
v ; y = C[x] in C[x]◃▹∼ let x = v ; y = C[v] in C[v] does not hold in general: consider that

let f = λy .True
in f y

reduces with 1 use of a non-normalising reduction step to True, but

let f = λy .True
in (λy → True) y

does not require any non-normalising steps to reach that same value.
These special cases do hold, however:

let x = λz . e; y = C[x] in C[x] ◃▹∼ let x = λz . e; y = C[✓λz . e] in C[✓λz . e]
let x = Λα. e; y = C[x] in C[x] ◃▹∼ let x = Λα. e; y = C[✓Λα. e] in C[✓Λα. e]
let x = C τ z; y = C[x] in C[x] ◃▹∼ let x =C τ z; y = C[C τ z] in C[C τ z]
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C.4 The improvement theorem

Finally, we will show how the (very useful) “improvement theorem” can be adapted to
our setting. Once again, we require a simple lemma before the main proof:

Lemma C.4.1. If let f = v in e ⊳∼ let f = v in e′ then for all closing contexts H and
K, ⟨H,f ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ⇓nÔ⇒ ⟨H,f ↦ v⎪⎪⎪⎪e′⎪⎪⎪⎪K⟩ ⇓≤n
Proof. By the definition of ⊳∼, we know that:

⟨H⎪⎪⎪⎪let f = v in e⎪⎪⎪⎪K⟩ ⇓mÔ⇒ ⟨H⎪⎪⎪⎪let f = v in e′⎪⎪⎪⎪K⟩ ⇓≤m
By the reduction rules, we know that both:

⟨H⎪⎪⎪⎪let f = v in e⎪⎪⎪⎪K⟩ ↝0 ⟨H,f ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K⟩⟨H⎪⎪⎪⎪let f = v in e′⎪⎪⎪⎪K⟩ ↝0 ⟨H,f ↦ v⎪⎪⎪⎪e′⎪⎪⎪⎪K⟩
So the goal follows immediately.

Theorem C.4.2 (Improvement Theorem).

let f = v in v ⊳∼ let f = v in v′

let f = v in e ⊳∼ let f = v′ in e

Proof. By Lemma C.2.3 it suffices to show that for all e and closing H and K, if⟨H,f ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ⇓n then ⟨H,f ↦ v′⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ⇓≤n.
Assume the premise ⟨H,f ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ⇓n and proceed by induction on the pair of nat-

ural numbers (n, ∥⟨H,f ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K⟩∥). We apply Lemma C.2.1 to ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ and consider
the two possible cases (since we are reducing a simple state, not a context, we can’t
encounter a meta-variable ξ).

Case ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩↝k ⟨H ′⎪⎪⎪⎪e′⎪⎪⎪⎪K ′⟩where deref (H ′, e′)v In this case we have by Lemma C.0.2
that ⟨H,f ↦ v′⎪⎪⎪⎪e⎪⎪⎪⎪K⟩↝k ⟨H ′, f ↦ v′⎪⎪⎪⎪e′⎪⎪⎪⎪K ′⟩ and since k = n, ⟨H,f ↦ v′⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ⇓≤n as re-
quired.

Case ⟨H⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ↝k ⟨H ′⎪⎪⎪⎪f⎪⎪⎪⎪K ′⟩ (Note that no other variable than f can appear in the
context in this case due to the closedness condition.). In this case, for both v̂ ∈ {v, v′}

⟨H,f ↦ v̂⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ↝k ⟨H ′, f ↦ v̂⎪⎪⎪⎪f⎪⎪⎪⎪K ′⟩ Lemma C.0.2

To proceed further we need to consider cases on K ′. For brevity, we restrict attention to
those cases in which the beta rule is applicable, in which case K ′ = ● y,K ′rest , and by
well-typedness of the state we know that v = λy ∶τ. ê and v′ = λy ∶τ. ê′, so

⟨H ′, f ↦ v⎪⎪⎪⎪f⎪⎪⎪⎪K ′⟩ ↝1 ⟨H ′, f ↦ v⎪⎪⎪⎪ê⎪⎪⎪⎪K ′rest⟩⟨H ′, f ↦ v′⎪⎪⎪⎪f⎪⎪⎪⎪K ′⟩ ↝1 ⟨H ′, f ↦ v′⎪⎪⎪⎪ê′⎪⎪⎪⎪K ′rest⟩
We have assumed that let f = v in v ⊳∼ let f = v in v′, and it is easy to see that this
implies that let f = v in ê ⊳∼ let f = v in ê′.

Combining this fact, Lemma C.4.1 and ⟨H ′, f ↦ v⎪⎪⎪⎪e⎪⎪⎪⎪K ′rest⟩ ⇓n−(k+1), we can derive⟨H ′, f ↦ v⎪⎪⎪⎪ê′⎪⎪⎪⎪K ′rest⟩ ⇓≤(n−(k+1)). We can now apply the induction hypothesis to discover
that ⟨H ′, f ↦ v′⎪⎪⎪⎪ê′⎪⎪⎪⎪K ′rest⟩ ⇓≤(n−(k+1)), which allows us to derive ⟨H,f ↦ v′⎪⎪⎪⎪e⎪⎪⎪⎪K⟩ ⇓≤n as
required.
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Appendix D

Termination combinators

The question of termination arises over and over again when building compilers, theorem
provers, or program analysers. For example, a compiler may inline a recursive function
once, or twice, but should not do so forever. One way to extract the essence of the problem
is this:

The online termination problem. Given a finite or infinite sequence of
terms (often syntax trees), x0, x1, x2, ..., with the elements presented one by
one, shout “stop” if the sequence looks as if it is diverging. Try not to shout
“stop” for any finite sequence; but guarantee to shout “stop” at some point
in every infinite sequence.

The test is “online” in the sense that the terms are presented one by one, and the entity
producing the terms is a black box. In contrast, static, offline termination checkers analyse
the producing entity and try to prove that it will never generate an infinite sequence.

Termination is a well-studied problem and many termination tests are known. But
building good online termination tests is hard. A good test is

• Sound : every infinite sequence is caught by the test.

• Lenient : it does not prematurely terminate a sequence that is actually finite. As an
extreme example, shouting ”stop” immediately is sound, but not very lenient.

• Vigilant : sequences of terms that are clearly growing in an “uninteresting” way are
quickly reported as such—the termination test “wait for a million items then say
stop” is not what we want.

These properties are in direct conflict: making a test more lenient risks making it less
vigilant, or indeed unsound. Termination tests are typically tailored for a particular
application, and it is all too easy to inadvertently build tests that are either unsound or
too conservative.

Our contribution is to describe how to encapsulate termination tests in a library. Ter-
mination tests built using our library are guaranteed sound, and the library embodies
standard (but tricky) techniques that support leniency and vigilance. Our specific con-
tributions are these:

• We give the API of a combinator library that allows the client to construct sound,
lenient, and vigilant termination tests (Section D.1). Our API is modular and
compositional : that is, you can build complex tests by combining simpler ones.
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• An API is not much good unless you can implement it. Building on classical work
we show how to implement a termination test in terms of a so-called well-quasi-order
(WQO) on the underlying type (Section D.2). WQOs compose well, and we give
combinators for sums, products, finite maps, and so on.

• Termination tests for recursive types are particularly interesting (Section D.4). We
generalise the classic homeomorphic embedding to our setting, and show what proof
obligations arise.

• We show that some useful improvements to termination tests can be incorporated,
once and for all, in our library: Section D.5.

• We show that our library subsumes several well-studied termination tests, includ-
ing homeomorphic embedding [Kruskal, 1960], and tag-bags [Mitchell, 2010] (Sec-
tion D.6). We further show how our combinators can capture a novel and slightly
stronger version of the tag-bag termination test (Section D.6.4).

To our knowledge, our development is the first time that anyone has even identified an
online termination tester as a separable abstraction, let alone provided a library to let you
build such a thing. Yet an online termination-testing heuristic is built into the guts of
many symbolic programs, including compilers (don’t inline recursive functions forever) and
theorem provers (don’t explore unproductive proofs forever). We do not claim that our
termination testers are better than any particular competing ones; rather, our library is a
domain-specific language that makes it easy to explore a rich variety of online termination
testers, while still guaranteeing that each is sound.

D.1 The client’s eye view: tests and histories

Our goal is to define termination tests over terms whose type is under the control of the
user. Recall that the client produces successive terms x0, x1, x2..., and the business of the
termination test is to shout “stop” if the sequence looks as if it might diverge. (In the
literature the term “blow the whistle” is often used instead of “shout stop”.) A possible
API is thus:

data TTest a -- Abstract
testSequence ∶∶TTest a → [a ]→ Bool

Here a TTest A is a termination tester for type A. If we have such a tester, we can test
a sequence of values of type [A] using the function testSequence; a result of True means
that the tester shouts “stop”.

We will return to the question of construction of TTest values shortly, but we can
already see one problem with the API. The client produces values x0, x1, ..., one a time.
As each value is produced we want to ask “should we stop now”. We can certainly do
this with testSequence, by calling it on arguments [x0 ], [x0, x1 ], [x0, x1, x2 ], and so on,
but it could be terribly inefficient to do so. Each call to testSequence may have to check
the entire sequence in case earlier elements have changed, rather than just looking at the
most recent addition. A better API would allow you to say “here is one new value to add
to the ones you already have”. Thus:

data History a -- Abstract
initHistory ∶∶TTest a → History a
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test ∶∶History a → a → TestResult a
data TestResult a = Stop ∣ Continue (History a)

A History A is an abstract type that embodies the knowledge about the terms (of type A)
seen so far. The function initHistory creates an empty history from a termination test.
Given such a history, a client can use test to extend the history with one new term. The
test indicates that it has blown the whistle by returning Stop. Otherwise it returns a new
history, augmented with the new term.

That leaves the question of how one creates a termination test in the first place. The
exact test you want to use will depend greatly on the application, and so it is crucial that
there is significant flexibility in defining them. Our library is therefore structured as a
number of composable combinators to allow flexibility and rapid experimentation.

Our combinator library uses a type directed approach. A subset of the API is as
follows:

intT ∶∶TTest Int
boolT ∶∶TTest Bool
pairT ∶∶TTest a → TTest b → TTest (a, b)
eitherT ∶∶TTest a → TTest b → TTest (Either a b)
cofmap ∶∶ (a → b)→ TTest b → TTest a

We provide built-in tests for Int and Bool , and a way to compose simple tests together to
make more complex ones. (We will tackle the question of recursive types in Section D.4.)

Note that TTest is abstract, so that the client can only construct termination tests us-
ing the combinators of the library. That is the basis for our guarantee that the termination
test is sound.

As an example, here is how a client could make a History that (via test) can be use
to monitor sequences of (Int ,Bool) pairs:

myHistory ∶∶History (Int ,Bool)
myHistory = initHistory (intT ‘pairT ‘ boolT )

An artificial example of how this History could be used to implement an online termination
test follows. Let’s say that we have a possibly-infinite list vals ∶∶ [(Int ,Bool)] from which
we would like to take the last item. However, the list is potentially infinite, and we would
like to give up and return an intermediate element if we don’t reach the end of the list
promptly. A suitable value vals last can be obtained as follows:

vals last ∶∶ (Int ,Bool)
vals last = go myHistory init lst init rst
where(init lst ∶ init rst) = vals
go hist lst rst = case test hist lst of
Continue hist ′ ∣ (lst ′ ∶ rst ′) ← rst
→ go hist ′ lst ′ rst ′

→ lst

We know that vals last will be defined (if the elements of vals are, and vals has at least
one item in it) because the termination test promises to eventually shout “stop”. As long
as our termination test intT ‘pairT ‘ boolT is reasonably lenient we can expect to extract
the final value from a truly finite vals list with high probability, while still gracefully
failing for “bad” infinite lists.

More realistic (but more complicated) examples can be found in Section D.6.
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D.2 Termination tests and well-quasi-orders

Now that we have sketched the API for our library, we turn to the question of implement-
ing it. The way that humans intuitively look for termination is to find a totally-ordered,
well-founded “measure” and check that it is decreasing. For example, if each member
of a sequence of syntax trees has strictly fewer nodes than the preceding member, the
sequence cannot be infinite; here the measure is the number of nodes in the tree.

The trouble is that it can be difficult to find a simple, strictly-decreasing measure,
except ones that are absurdly conservative, especially when the elements are trees. For
example, the size-reduction criterion on syntax trees is sound, but far too conservative:
in a compiler, inlining a function often increases the size of the syntax tree, even though
progress is being made.

This is a well-studied problem [Leuschel, 1998]. The most widely-used approach is to
use a so-called well-quasi-order (WQO) instead of a well-founded order. In this section
we’ll explore what WQOs are, why they are good for termination testing, and how to
build WQOs using our library.

D.2.1 What is a WQO?

Definition D.2.1. A well-quasi-order on A is a transitive binary relation ⊴ ∈ A×A, such
that for any infinite sequence x∞ ∈ A∞, there exist i, j > i such that xi ⊴ xj .

For example ≤ is a WQO on the natural numbers; in any infinite sequence of natural
numbers there must be an xi, xj with i < j, and xi ≤ xj. However, a WQO ⊴ is not total ;
that is, there may be pairs of elements of A that are not related by ⊴ in either direction.
A WQO is transitive by definition, and is necessarily reflexive:

Lemma D.2.1. All well-quasi-orders are reflexive.

Proof. For any x ∈ A, form the infinite sequence x,x, x, . . .. By the well-quasi-order
property it immediately follows that x ⊴ x.

The significance of a WQO is that every infinite sequence has at least one pair related
by the WQO. (In fact, infinitely many such pairs, since the sequence remains infinite if
you delete the pair thus identified.) We say that a sequence x is rejected by ⊴ if there
exists such a pair:

Definition D.2.2. A finite or infinite sequence x ∈ A is rejected by relation R if ∃i, j >
i. R(xi, xj). A sequence is accepted if it is not rejected.

The relation ⊴ is a WQO if and only if every infinite sequence is rejected by ⊴1. Hence,
given an implementation of TTest that uses WQOs, it is easy to implement a History :

data TTest a =WQO {(⊴) ∶∶ a → a → Bool }
newtype History a = H {test ∶∶ a → TestResult a }
initHistory ∶∶ ∀a.TTest a → History a
initHistory (WQO (⊴)) = H (go [ ])
where

go ∶∶ [a ]→ a → TestResult a
go xs x

1In the literature, a sequence is “good for ⊴” iff it is rejected by ⊴. This terminology seems back to
front in our application, so we do not use it.
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∣ any (⊴ x) xs = Stop∣ otherwise = Continue (H (go (x ∶ xs)))
A termination test, of type TTest , is represented simply by a WQO. A History closes
over both the WQO ⊴ and a list xs of all the values seen so far. The invariant is that xs
is accepted by ⊴. When testing a new value, we compare it with all values in xs ; if any
are related to it by wqo, we blow the whistle by returning Stop; otherwise we extend xs
and Continue.

Notice that basing a termination test on a WQO is somewhat less efficient than bas-
ing it on a total, well-founded measure, because in the latter case we could maintain a
single monotonically-decreasing value, and blow the whistle if the newly presented value
is not smaller. In exchange WQOs are simpler, more composable, and more lenient. In
Section D.5.1, we will show how we can use the fact that well-quasi-orders are transitive
to reduce the length of history, which would otherwise get extended by one element each
and every time test is called.

D.2.2 Why WQOs are good for termination tests

WQOs make it easier to construct good termination tests. For example, suppose we are
interested in termination of a sequence of finite strings, consisting only of the 26 lower-case
letters; for example

[abc,ac,a ] (1)[a, b, c ] (2)[c, b,a ] (3)[aa, ccc, bbbbaa, ca ] (4)
One can invent a total order on such strings, based on their length, or on their lexico-
graphic ordering, but it is not altogether easy to think of one for which all the above
sequences are strictly decreasing.

Here is a WQO on such strings, inspired by Mitchell [2010]:

s1 ⊴s s2 iff set(s1) = set(s2) and #s1 ≤#s2

where set(s) is the set of characters mentioned in s, and #s is the length of s. Notice
that strings for which set(s1) /= set(s2) are unrelated by ⊴s, which makes it harder for ⊴s
to hold, and hence makes the corresponding termination test more lenient. For example,
all the sequences (1-4) above are good for this WQO.

But is this relation really a WQO? The reader is invited to pause for a moment, to
prove that it is. Doing so is not immediate—which is a very good reason for encapsulating
such proofs in a library and do them once rather than repeatedly for each application.
Anyway, here is a proof:

Theorem D.2.2. The relation ⊴s is a well-quasi-order.

Proof. Transitivity of ⊴s is straightforward, but we must also check that every infinite
sequence is rejected by ⊴s. Suppose we have an infinite sequence of strings. Partition the
sequence into at most 226 sub-sequences by set equality. At least one of these sequences
must also be infinite, say x∞. The length of the strings in this sequence cannot be strictly
decreasing (since lengths are bounded below by zero). So we can find two elements xi, xj

with i < j and xi ⊴s xj.
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It is often useful to find a relation that is as sparse as possible, while still remaining
a WQO. For example, when solving the online termination problem we wish to delay
signalling possible divergence for as long as we reasonably can.

Following this principle, me can make our string example sparser still like this:

s1 ⊴t s2 iff set(s1) = set(s2) and
∀c ∈ [a...z]. N(s1, c) ≤ N(s2, c)

where N(s, c) is the number of occurrences of letter c in string s. So s1 ⊴t s2 only if s1
has no more a’s than s2, and no more b’s, and no more c’s, etc. These conjunctions make
it even harder for s1 ⊴t s2 to hold. Exercise: prove that this too is a WQO.

We can quantify how lenient a WQO is by asking how long a sequence it can tolerate.
One measure of lenience is something we call the characteristic index.

Definition D.2.3 (Characteristic index). The characteristic index K(⊴, x∞) of a WQO
⊴, relative to a finite or infinite sequence x∞, is the largest index n for which x0, . . . , xn is
accepted by ⊴.

One WQO is (strictly) more lenient than another if it always has a bigger characteristic
index:

Definition D.2.4 (Lenience). A WQO ⊴1 is more lenient than ⊴2 if K(⊴1, x) >K(⊴2, x)
for every infinite sequence x.

This is a rather strong definition of lenience: in practice, we are also interested in
well-quasi-orders that tend to be more lenient than others on commonly-encountered
sequences. However, this definition will suffice for this paper.

D.3 Termination combinators

In this section we describe the primitive combinators provided by our library, and prove
that they construct correct WQOs.

D.3.1 The trivial test

The simplest WQO is one that relates everything, and hence blows the whistle immedi-
ately:

alwaysT ∶∶TTest a
alwaysT =WQO (λx y .True)

This alwaysT is trivially correct, and not at all lenient. Nonetheless, it can be usefully
deployed as a “placeholder” well-quasi-order when we have yet to elaborate a well-quasi-
order, or a natural well-quasi-order does not exist (e.g. consider well-quasi-ordering values
of type IO Int).

D.3.2 Termination for finite sets

Our next combinator deals with termination over finite sets:

finiteT ∶∶ ∀a.Finite a ⇒ TTest a
finiteT =WQO (≡)
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class Eq a ⇒ Finite a where

elements ∶∶ [a ] -- Members of the type

This WQO relates equal elements, leaving unequal elements unrelated. Provided all the
elements are drawn from a finite set, (≡) is indeed a WQO:

Proof. Consider an arbitrary sequence x∞ ∈ A∞ where there are a finite number of el-
ements of A. Since A is finite, the sequence must repeat itself at some point—i.e.
∃jk.j ≠ k∧xj = xk. The existence of this pair proves that finiteT defines a well-quasi-order.
Meanwhile, transitivity follows trivially from the transitivity of (≡).

Using finiteT , we can trivially define the boolT combinator used in the introduction:

boolT ∶∶TTest Bool
boolT = finiteT

The combinator finiteT is polymorphic. The fact that the element type a must be finite
using the “Finite a ⇒” constraint in finiteT ’s type. But there is clearly something odd
here. First, ‘finiteT‘ does not use any methods of class Finite, and second, it is the the
client who makes a new type T into an instance of Finite, and the library has no way to
check that the instance is telling the truth. For example, a client could bogusly say:

instance Finite Integer where

elements = [ ]
Moreover, the user could give a bogus implementation of equality:

data T = A ∣ B
instance Eq T where(≡) p q = False
instance Finite T where

elements = [A,B ]
Here the new type T is finite, but since the equality function always returns False, the
whistle will never blow.

So our library guarantees the soundness of the termination testers under the assump-
tion that the instances of certain classes at the element type A satisfy corresponding cor-
rectness conditions. Specifically:

• (≡) must be reflexive and transitive at type A.

• The type A must have only a finite number of distinct elements (distinct according
to (≡), that is).

Another way to say this is that the instances of Eq and Finite form part of the trusted
code base. This is not unreasonable. On the one hand, these proof obligations are simple
for the programmer to undertake—much, much simpler than proving that a particular
Boolean-valued function is a WQO.

On the other hand, it is unrealistic for the library to check that elements is a finite
list and that the two values we compare are elements of that finite list, for instance, by
using runtime assertions. In the example of Section D.2.2 there are 226 elements of the
type Set Char , so making these checks at runtime would be a very bad idea.
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D.3.3 Termination for well-ordered sets

Another very useful primitive well-quasi-order is that on elements drawn from well-ordered
sets: every well-order is a well-quasi-order (but clearly not vice-versa):

wellOrderedT ∶∶WellOrdered a ⇒ TTest a
wellOrderedT =WQO (≤)
class Ord a ⇒WellOrdered a

Similar to Finite, the WellOrdered predicate picks out types with least elements; that is
ones have a total order (hence the Ord superclass) and a least element. The client’s proof
obligations about instances of a type A are:

• (≤) defines a total order (i.e. it is antisymmetric, transitive and total)

• For every (possibly infinite) non-empty set X ⊆ A of elements, ∃(y ∶∶A) ∈X.∀(x ∶∶A) ∈
X.y ≤ x .

Under these conditions, (≤) is a WQO:

Proof. Transitivity is immediate by assumption. Now consider an arbitrary sequence x∞.
Each pair of adjacent elements xj , xj+1 in the sequence is either shrinking (so ¬(xj ≤ xj+1))
or non-decreasing (so xj ≤ xj+1). If we have at least one pair of the latter kind, the well-
quasi-order property holds. The dangerous possibility is that all our pairs may be of the
former sort.

Because we have that ∀j.¬(xj ≤ xj+1), by the reflexivity of ≤ we know that ∀j.¬(xj <

xj+1)—i.e. we have an infinitely descending chain. However, this fact contradicts the
assumption that ≤ is a well-order.

Given wellOrderedT and an instance WellOrdered Int , it is trivial to define a suitable
intT (as used in the introduction):

intT ∶∶TTest Int
intT = wellOrderedT

D.3.4 Functorality of termination tests

Now that we have defined a number of primitive termination tests, we are interested in
defining some combinators that let us combine these tests into more powerful ones. The
first of these shows that TTest is a contravariant functor:

class Cofunctor f where

cofmap ∶∶ (b → a)→ f a → f b

instance Cofunctor TTest where

cofmap f (WQO (⊴)) =WQO $ λx y . f x ⊴ f y

So, for example, here is how a client could build a (not very good) termination test for
labelled rose trees:

data Tree = Node Label [Tree ]
size ∶∶Tree → Int
size (Tree n ts) = 1 + sum (map size ts)
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treeT ∶∶TTest Tree
treeT = cofmap size wellOrderedT

Here we use size to take the size of a tree, and use the fact that Int is well-ordered by ≤
as the underlying termination test.

The defining laws of contravariant functors (cofunctors) are:

1. Identity: cofmap id = id

2. Composition: cofmap f .cofmap g = cofmap (g .f )
These two laws are easy to verify for TTest instance above. Similarly, it is easy to to
show that (cofmap f t) is a well-quasi-order if t is.

Intuitively, the reason that TTest is a contravariant functor is that it TTest a is a
consumer rather than a producer of values of type a. For the same reason, the arrow
type (→) is contravariant in its first type argument.

In section Section D.5.2, we show how this definition of cofmap f can be improved.

D.3.5 Termination for sums

We are able to build termination test for sum types, given tests for the components:

eitherT ∶∶TTest a → TTest b → TTest (Either a b)
eitherT (WQO (⊴a)) (WQO (⊴b)) =WQO (⊴)
where(Left a1) ⊴ (Left a2) = a1 ⊴a a2(Right b1) ⊴ (Right b2) = b1 ⊴b b2

⊴ = False

The ordering used here treats elements from the same side of the sum (i.e. both Left or
both Right) using the corresponding component ordering, and otherwise treats them as
unordered.

Does this test define a WQO? Yes:

Proof. Consider an arbitrary sequence x∞ ∈ (Either A B)∞. Form the subsequences a∞ ={ai ∈ A ∣ Left ai ∈ x
∞} and b

∞
= {bi ∈ B ∣ Right bi ∈ x

∞}. Since the x sequence is infinite,
at least one of these subsequences must be infinite. Without loss of generality, assume
that the a∞ sequence is infinite. Now, the fact that eitherT (⊴a) (⊴b) is a well-quasi-order
follows directly from the fact that (⊴a) is a well-quasi-order.

Incidentally, notice that if the component types are both (), the test boils down to
the same as the finite-set test for Bool in Section D.3.2. Conversely, it is straightforward
(albeit inefficient) to define finiteT by iterating eitherT once for each item in the elements
list, and the reader is urged to do so as an exercise.

The test eitherT (⊴a) (⊴b) is at least as lenient as (⊴a) or (⊴b) (in the sense of
Definition D.2.4), and is often strictly more lenient. Specifically, if x ∈ Either A B , and
L(x) = {x ∣ Left x ∈ x}, and similarly for R(x), then

min(K((⊴a),L(x)), K((⊴b),R(x)))
≤ K(eitherT (⊴a) (⊴b), x)

≤ K((⊴a),L(x)) + K((⊴b),R(x))
Both the upper and lower bounds of this inequality can actually be realised. For example,
with the test

eitherT finiteT finiteT ∶∶TTest (Either () Bool)
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the lower bound is realised by x∞ = L (),L (),L (), . . ., and the upper bound by x∞ =

L (),R True,R False,L (),R True, . . ..
Although we haven’t defined many combinators, we already have enough to be able

to define natural well-quasi-orders on many simple data types. For example, we can
well-quasi-order Maybe T if we can well-quasi-order T itself:

maybeT ∶∶TTest a → TTest (Maybe a)
maybeT wqo = cofmap inject (eitherT alwaysT wqo)
where

inject Nothing = Left ()
inject (Just x) = Right x

To define maybeT we have adopted a strategy—repeated later in this document—of “in-
jecting” the Maybe data type (which our combinators cannot yet handle) into a simpler
data type which is handled by a primitive combinator—in this case, Either 2.

Note that we use alwaysT from Section D.3.1 to well-quasi-order values of unit type—
there really is no non-trivial way to order a type with only one value.

D.3.6 Termination for products

Just like we could for sum types, we can define a combinator for well-quasi-ordering
product types, given WQOs on the component types:

pairT ∶∶TTest a → TTest b → TTest (a, b)
pairT (WQO (⊴a)) (WQO (⊴b)) =WQO (⊴)
where(a1, b1) ⊴ (a2, b2) = (a1 ⊴a a2) ∧ (b1 ⊴b b2)

The fact that pairT defines a WQO is quite surprising. We can assume that ⊴a and ⊴b
are WQOs, but that only means that given input sequences a∞ and b

∞
respectively, there

exists some i < j. ai ⊴a aj and k < l. bk ⊴b bl. Yet for pairT to define a WQO there must
exist a p < q such that ap ⊴a aq and simultaneously bp ⊴b bq. How can we know that the
related elements of the two sequences will ever “line up”?

Nonetheless, it is indeed the case, as the following proof demonstrates. First we need
a lemma:

Lemma D.3.1. For any well-quasi-order ⊴∈ A ×A and x∞ ∈ A∞, there exists some n ≥ 0
such that ∀j > n.∃k > j. xj ⊴ xk.

This lemma states that, beyond some some threshold value n, every element xj (where
j > n) has a related element xk somewhere later in the sequence.

Proof. This lemma can be shown by a Ramsey argument. Consider an arbitrary sequence
x∞. Consider the sequence

y = {xi ∣ xi ∈ x
∞,∀j > i.¬(xi ⊴ xj)}

of elements of x∞ which are embedded into no later element. If this sequence was infinite
it would violate the well-quasi-order property, since by definition none of the elements of
the sequence are related by ⊴. Hence we have a constructive proof of the proposition if
we take n to be max{i ∣ xi ∈ y}.

2In this and many other examples, the GHC’s optimisation passes ensure that the intermediate Either
value is not actually constructed at runtime.
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A proof of the fact that pairT defines a well-quasi-order as long as its two arguments
does—a result that e.g. Kruskal [1960] calls the Cartesian Product Lemma— now follows:

Proof. Consider an arbitrary sequence (a, b)∞ ∈ (A ×B)∞. By Lemma D.3.1, there must
be a n such that ∀j > n.∃k > j.aj ⊴a ak. Hence there must be at least one infinite
subsequence of a∞ where adjacent elements are related by ⊴a—i.e. an ⊴a al0 ⊴a al1 ⊴a . . .

where n < l0 < l1 < . . ..
Now form the infinite sequence bj , bl0 , bl1 . . .. By the properties of ⊴b, there must exist

some m and n such that m < n and blm ⊴b bln . Because ⊴a is transitive, we also know that
alm ⊴a aln .

This inference, combined with the fact that ⊴a and ⊴b are valid WQOs, and that
transitivity follows by the transitivity of both the component WQOs, proves that pairT ⊴a
⊴b is a well-quasi-order.

From a leniency point of view, we have a lower bound on the leniency of a test built
with pairT :

max( K((⊴a),{ai ∣ (ai, bi) ∈ x∞}),
K((⊴b),{bi ∣ (ai, bi) ∈ x∞}) ) ≤ K(pairT (⊴a) (⊴b), x∞)

However, there is no obvious upper bound on the characteristic index. Not even

K((⊴a),{ai ∣ (ai, bi) ∈ x∞}) ∗K((⊴b),{bi ∣ (ai, bi) ∈ x∞})
is an upper bound for the characteristic index of pairT (⊴a) (⊴b)—for example, the
proposed upper bound is violated by the well-quasi-order pairT finiteT wellOrderedT
and the sequence (T ,100), (F ,100), (T ,99), (F ,99), . . . , (F ,0), which has characteristic
index 300, despite the component characteristic indexes being 2 and 1 respectively.

We now have enough combinators to build the string termination test from Sec-
tion D.2.2:

stringT ∶∶TTest String
stringT = cofmap inject (pairT finiteT wellOrderedT)
where inject cs = (mkSet cs , length cs)

We assume a type of sets with the following interface:

instance (Ord a,Finite a)⇒ Finite (Set a)where . . .

mkSet ∶∶Ord a ⇒ [a ]→ Set a

(We use the bounded Int length of a string in our stringT , but note that this would work
equally well with a hypothetical type of unbounded natural numbers Nat , should you
define a suitable WellOrdered Nat instance.)

The big advantage in defining stringT with our combinator library is that Theo-
rem D.2.2 in Section D.2.2 is not needed: the termination test is sound by construction,
provided only that (a) there are only a finite number of distinct sets of characters, and
(b) the Ints are well ordered.

D.3.7 Finite maps

It is often convenient to have termination tests over finite mappings, where the domain
is a finite type — for example, we will need such a test in Section D.6.4. One way to
implement such a test is to think of the mapping as a large (but bounded) arity tuple.
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To compare m1 and m2 , where m1 and m2 are finite maps, you may imagine forming
two big tuples

(lookup k1 m1 , lookup k2 m1 , . . . , lookup kn m1 )(lookup k1 m2 , lookup k2 m2 , . . . , lookup kn m2 )
where k1 ...kn are all the elements of the key type. The lookup returns a Maybe and, using
the rules for products (Section D.3.6), we return False if any of the constructors differ;
that is, if the two maps have different domains. If the domains are the same, we will
simply compare the corresponding elements pairwise, and we are done.

We can implement this idea as a new combinator, finiteMapT . We assume the follow-
ing standard interface for finite maps:

assocs ∶∶Ord k ⇒Map k v → [(k , v)]
keysSet ∶∶Ord k ⇒Map k v → Set k
elems ∶∶Ord k ⇒Map k v → [v ]
lookup ∶∶Ord k ⇒ k →Map k v →Maybe v

From which the combinator follows:

finiteMapT ∶∶ ∀k v .(Ord k ,Finite k)
⇒ TTest v → TTest (Map k v)

finiteMapT (WQO (⊴)) =WQO test
where

test ∶∶Map k v →Map k v → Bool
test m1 m2 = keysSet m1 ≡ keysSet m2

∧ all (ok m1 ) (assocs m2 )
ok ∶∶Map k v → (k , v)→ Bool
ok m1 (k2 , v2 ) = case lookup k2 m1 of

Just v1 → v1 ⊴ v2
Nothing → error "finiteMapT"

In fact, the finiteMapT combinator can be defined in terms of our existing combinators,
by iterating the pairT combinator (we also make use of maybeT from Section D.3.5):

finiteMapT indirect ∶∶ ∀k v .(Ord k ,Finite k)
⇒ TTest v → TTest (Map k v)

finiteMapT indirect wqo val
= go (const ()) finiteT elements
where

go ∶∶ ∀vtup.(Map k v → vtup)→ TTest vtup → [k ]
→ TTest (Map k v)

go acc test [ ] = cofmap acc test
go acc test (key ∶ keys)
= go acc′ (pairT (maybeT wqo val) test) keys
where acc′ mp = (lookup key mp,acc mp)

Unfortunately, this definition involves enumerating all the elements of the type (via the
call to elements), and there might be an unreasonably large number of such elements,
even though any particular Map might be small. For these reasons we prefer the direct
implementation.
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D.4 Termination tests for recursive data types

Now that we have defined well-quasi-order combinators for both sum and product types,
you may very well be tempted to define a WQO for a data type such as lists like this:

list bad ∶∶ ∀a.TTest a → TTest [a ]
list bad test x = test xs
where

test xs ∶∶TTest [a ]
test xs = cofmap inject (eitherT finiteT(pairT test x test xs))
inject [ ] = Left ()
inject (y ∶ ys) = Right (y ,ys)

Unfortunately the list bad combinator would be totally bogus. Notice that list bad only
relates two lists if they have exactly the same “spines” (i.e. their lengths are the same)
—but unfortunately, there are infinitely many possible list spines. Thus in particular, it
would be the case that the following infinite sequence would be accepted by the (non!)
well-quasi-order list bad finite:

[ ], [()], [(), ()], [(), (), ()], . . .
We would like to prevent such bogus definitions, to preserve the safety property of our
combinator library. The fundamental problem is that list bad isn’t well-founded in some
sense: our proof of the correctness of cofmap, eitherT and so on are sufficient to show
only that test xs is a well-quasi-order if and only if test xs is a well-quasi-order—a rather
uninformative statement! This issue fundamentally arises because our mathematics is set-
theoretical, whereas Haskell is a language with complete partial order (cpo) semantics.

Our approach is to rule out such definitions by making all of our combinators strict in
their well-quasi-order arguments. Note that we originally defined TTest using the Haskell
data keyword, rather than newtype, which means that all the combinator definitions
presented so far are in fact strict in this sense. This trick means that the attempt at
recursion in list bad just builds a loop instead—∀w .list bad w = �.

It is clear that making our well-quasi-order combinators non-strict—and thus allowing
value recursion—immediately makes the combinator library unsafe. However, we still need
to be able to define well-quasi-orders on recursive data types like lists and trees, which—
with the combinators introduced so far—is impossible without value-recursion. To deal
with recursive data types, we need to introduce an explicit combinator for reasoning about
fixed points in a safe way that is lazy in its well-quasi-order argument, and hence can be
used to break loops that would otherwise lead to divergence.

D.4.1 Well-quasi-ordering any data type

You might wonder if it is possible to naturally well-quasi-order recursive data types at all.
To show that we can, we consider well-quasi-ordering a “universal data type”, UnivDT :

data UnivDT = U String [UnivDT ]
The idea is that the String models a constructor name, and the list the fields of the
constructor. By analogy with real data types, we impose the restrictions that there are
only a finite number of constructor names, and for any given constructor the length of
the associated list is fixed. In particular, the finite list of constructors will contain "Nil"

191



(of arity 0) and "Cons" (of arity 2), with which we can model the lists of the previous
section.

We can impose a well-quasi-order on the suitably-restricted data type UnivDT like so:

univT ∶∶TTest UnivDT
univT =WQO test
where test u1@(U c1 us1 ) (U c2 us2 )

= (c1 ≡ c2 ∧ and (zipWith test us1 us2 )) ∨
any (u1 ‘test ‘) us2

Elements u1 and u2 of UnivDT are related by the well-quasi-order if either:

• The constructors c1 and c2 match, and all the children us1 and us2 match (re-
member that the length of the list of children is fixed for a particular constructor, so
us1 and us2 have the same length). When this happens, the standard terminology
is that u1 and u2 couple.

• The constructors don’t match, but u1 is related by the well-quasi-order to one of
the children of u2 . The terminology is that u1 dives into u2 .

Although not immediately obvious, this test does indeed define a well-quasi-order on these
tree-like structures (the proof is similar to that we present later in Section D.4.2), and it
is this well-quasi-order (sometimes called the “homeomorphic embedding”) which is used
in most classical supercompilation work (see e.g. [Turchin, 1988]).

Once again, we stress that for this test to be correct, the constructor name must de-
termine the number of children: without this assumption, given at least two constructors
F and G you can construct a chain such as

U "F" [ ],U "F" [U "G" [ ]],U "F" [U "G" [ ],U "G" [ ]], . . .
which is not well-quasi-ordered by the definition above.

D.4.2 Well-quasi-ordering functor fixed points

We could add the well-quasi-order on our “universal data type” as a primitive to our
library. This would be sufficient to allow the user to well-quasi-order their own data
types—for example, we could define an ordering on lists as follows:

list univ ∶∶TTest [UnivDT ]
list univ = cofmap to univ univT

to univ ∶∶ [UnivDT ]→ UnivDT
to univ [ ] = U "Nil" [ ]
to univ (x ∶ xs) = U "Cons" [x , to univ xs ]

However, this solution leaves something to be desired: for one, we would like to be able to
well-quasi-order lists [a ] for an arbitrary element type a, given a well-quasi-ordering on
those elements. Furthermore, with this approach there is scope for the user to make an
error in writing to univ which violates the invariants on the UnivDT type. This would
break the safety promises of the well-quasi-order library.

We propose a different solution that does not suffer from these problems. The first step
is to represent data types as fixed points of functors in the standard way. For example,
lists are encoded as follows:
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newtype Fix t = Roll {unroll ∶∶ t (Fix t)}
data ListF a rec = NilF ∣ ConsF a rec
deriving (Functor ,Foldable,Traversable)

fromList ∶∶ [a ]→ Fix (ListF a)
fromList [ ] = Roll NilF
fromList (y ∶ ys) = Roll (ConsF y (fromList ys))

The fixT combinator Our library then provides a single primitive that can be used to
well-quasi-order any data type built out of this sort of explicit fixed point scheme:

fixT ∶∶ ∀t .Functor t
⇒ (∀rec.t rec → [rec ])
→ (∀rec.t rec → t rec)
→ (∀rec.TTest rec → TTest (t rec))
→ TTest (Fix t)

fixT kids p f = wqo
where

wqo =WQO (λ(Roll a) (Roll b)→ test a b)
test a b = (⊴) (f wqo) (p a) (p b) ∨

any (test a.unroll) (kids b)
The arguments of fixT are as follows:

• A type constructor t ∶∶ ∗ → ∗ that is equipped with the usual functorial lifting
function fmap ∶∶∀a b.(a → b)→ t a → t b. (By chance, we do not in fact use fmap in
our definition, though it will show up in our proof that fixT is correct. Alternative
representations for TTest—such as that discussed in Section D.5.2—may indeed use
fmap in their definition of fixT .)

• A function kids with which to extract the (or some of the) “children” of a functor
application.

• A function p that we will call the calibrator whose purpose is to map elements of
type t rec to elements of type t rec but where the holes in the returned shape are
filled in with elements returned from the kids function. We explain this in detail
later in this section.

• Finally, a function which determines how we will create a well-quasi-order t rec
given a well-quasi-order for some arbitrary rec. The only invariant we require on
this is that if given a correct well-quasi-order it returns a correct well-quasi-order.
This invariant will be trivially satisfied as long as the user constructs all TTests
using the combinators of our library.

The definition of test in fixT is analogous to the test we saw in univT—the first argument
of ∨ tests whether the left side couples with the right, and the second argument determines
whether the left side dives into one of the kids of the right. The coupling case is actually
slightly more general than the coupling we have seen until now, due to the calibrator p
being applied to a and b before we compare them.

We now present the preconditions for fixT to define a well-quasi-order.

Definition D.4.1 (fixT preconditions). For a particular type constructor t ∶∶ ∗ → ∗

equipped with the usual fmap ∶∶ ∀a b.(a → b) → t a → t b, and functions kids , p and
f (suitably typed) we say that they jointly satisfy the fixT preconditions if:
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• All elements x of type Fix t must be finite, in the sense that size x is defined, where
size is as follows:

size ∶∶ Fix t → Integer
size = (1+).sum .map size.kids .unroll

• The calibrator function p must satisfy the (non-Haskell) dependent type:

g ∶∶ (y ∶ t a)→ t {x ∶ a ∣ x ∈ kids y}
The first condition is not interesting3—it ensures that we can’t be calling kids forever

while comparing two elements. The second condition is the interesting one. Typically
one thinks of kids as returning all the children of a functor. For instance, consider the
BTreeF functor below, that defines labelled binary trees:

data BTreeF a rec = BNil ∣ BNode a rec rec

kids tree ∶∶ ∀a rec.BTreeF a rec → [rec ]
kids tree BNil = [ ]
kids tree (BNode x y) = [x ,y ]

In this case, a valid calibrator is simply the identity

p ∶∶ ∀a rec.BTreeF a rec → BTreeF a rec
p BNil = BNil
p (BNode a x y) = BNode a x y

since both x and y are returned by kids tree . Consider however, a different version of
kids that only returns the left branch of a node:

kids tree alt ∶∶ ∀a rec.BTreeF a rec → [rec ]
kids tree alt BNil = [ ]
kids tree alt (BNode x y) = [x ]

A valid calibrator for this kids tree alt can only plug in the holes of the functor elements
that can be returned from kids tree alt . Consider:

p ok ,p bad ∶∶BTreeF a rec → BTreeF a rec
p ok BNil = BNil
p ok (BNode a x y) = BNode a x x

p bad BNil = BNil
p bad (BNode a x y) = BNode a x y

In this example p ok is a valid calibrator, as it only uses x , which belongs in the list
kids tree alt (BNode a x y). However p bad is not a valid calibrator as it uses y , which
is not returned by kids tree alt . So, the role of the calibrator is to correct the behaviour
of the test, depending on the implementation of kids.

Arguably, the extra generality of a kids function that does not return all kids or may
have even more exotic behaviour is rarely used but provides for an elegant generic proof
of correctness of fixT .

3Again, this constraint arises from our attempt to use Haskell (a language with cpo semantics) as if
it had set semantics.
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Using fixT with lists One correct way to use the fixT combinator is with the following
kids list function

kids list ∶∶ ∀a rec.ListF a rec → [rec ]
kids list NilF = [ ]
kids list (ConsF xs) = [xs ]

along with the identity calibrator to define a correct-by-construction well-quasi-order for
lists (realising the “Finite Sequence Theorem” of Kruskal [1960]):

listT ∶∶ ∀a.TTest a → TTest [a ]
listT wqo elt
= cofmap fromList (fixT kids list id wqo fix)
where

wqo fix ∶∶ ∀rec.TTest rec → TTest (ListF a rec)
wqo fix wqo tail
= cofmap inject $

eitherT finiteT (wqo elt ‘pairT ‘ wqo tail)
inject ∶∶ ∀rec.ListF a rec → Either () (a, rec)
inject NilF = Left ()
inject (ConsF y ys) = Right (y ,ys)

Is fixT correct? Now we have seen an example of the use of fixT , we are in a position
to tackle the important question as to whether it actually defines a well-quasi-order:

Theorem D.4.1 (Correctness of fixT ). If the preconditions of fixT (Definition D.4.1)
are satisfied then fixT kids p f defines a well-quasi-order.

Proof. By contradiction, assume that under our assumptions, there exists at least one
accepted infinite sequence ∈ (Fix t)∞ for the relation (⊴) (fixT kids p f ).

We pick the minimal such accepted sequence t
∞
, such that for all n ∈ N and accepted

sequences s∞ such that ∀i.0 ≤ i < n.ti = si, we have that size tn ≤ size sn.
We now form the possibly infinite set of children, D:

D = {k ∣ i ∈ N, k ∈ kids (unroll ti)}
As a subgoal, we claim that fixT kids p f ∶∶TTest D is a WQO. In other words, the union
of all children of the minimal sequence is well-quasi ordered by fixT kids p f . To see this,
we proceed by contradiction: assume there is some accepted infinite sequence r∞ ∈ D∞.
Because each kids (unroll ti) is finite (since size ti is finite), the accepted sequence r∞

must have an infinite subsequence q∞ such that qi ∈ kids (unroll tf(i)) for some f such that
∀j.f(0) ≤ f(j). Given such a q∞, we can define a new infinite sequence s∞ ∈ (Fix t)∞:

s∞ = t0, t1, . . . , tf(0)−1, qf(0), qf(1), . . .

The sequence s∞ must be accepted because otherwise, by the definition of fixT the original
t
∞
would be rejected (by the “dive” rule). But if it is accepted then we have a contradiction

to the minimality of t
∞

since size qf(0) < size tf(0), qf(0) ∈ kids (unroll tf(0)), and the
children of an element have smaller size than their parent. We conclude that fixT kids p f
is a WQO.

This fact means that f (fixT kids p f ) ∶∶ TTest (t D) is a WQO. Consider now the
infinite minimal sequence t

∞
again and the mapping of each element through the calibrator
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p: ui = p (unroll ti). Each ui has type: ui ∶∶ t {x ∣ x ∈ kids ti}. Furthermore, because
t is a functor and ∀i.kids ti ⊆ D, we have that ui ∶∶ t {x ∣ x ∈ D} and hence we have an
infinite sequence of elements of type t D . Hence there exist two elements p (unroll ti)
and p (unroll tj) such that they are related in the WQO f (fixT kids p f ). By the
definition of fixT , this contradicts the initial assumption that the sequence t

∞
is accepted

by fixT kids p f .

Our proof is essentially a proof of the Tree Theorem [Kruskal, 1960] to our setting,
though the proof itself follows the simpler scheme in Nash-Williams [1963].

Generality is good, but the calibrator has an complex type which may be somewhat
hard for Haskell programmers to check. In the next section we show how kids and the
calibrator p can be written generically, and hence can be entirely eliminated from the
preconditions for fixT .

Further remarks on lists Inlining our combinators and simplifying, we find that our
earlier definition of listT is equivalent to the following:

listT ′ ∶∶TTest a → TTest [a ]
listT ′ (WQO (⊴)) =WQO go
where

go (x ∶ xs) (y ∶ ys)∣ x ⊴ y , go xs ys = True∣ otherwise = go (x ∶ xs) ys
go ( ∶ ) [ ] = False
go [ ] [ ] = True
go [ ] ( ∶ ys) = go [ ] ys

It is interesting to note that listT ′ could be more efficient:

• By noticing that ∀ys.go [ ] ys = True, the last clause of go can be replaced with
go [ ] ( ∶ ys) = True. This avoids a redundant deconstruction of the list in the
second argument (at the cost of changing the meaning if the second argument is in
fact infinite—a possibility we explicitly excluded when defining fixT ).

• By noticing that ∀x,xs, ys.go (x ∶ xs) ys Ô⇒ go xs ys , the first clause of go can
avoid falling through to test go (x ∶ xs) ys if it finds that go xs ys ≡ False.

Both of these observations are specific to the special case of lists: for other data types (such
as binary trees) fixT will generate an implementation that does not have any opportunity
to apply these “obvious” improvements.

D.4.3 From functors to Traversables

As we have presented it, the user of fixT still has the responsibility of providing a correct
kids and a calibrator p with a strange dependent type (which Haskell does not even
support!). Happily, we can greatly simplify things by combining the recently-added ability
of GHC to automatically derive Traversable instances. The Traversable [Gibbons and
d. S. Oliveira, 2009] type class allows us to write the following:

kids traverse ∶∶ ∀t a.Traversable t ⇒ t a → [a ]
kids traverse = unGather .traverse (λx .Gather [x ])
newtype Gather a b = Gather {unGather ∶∶ [a ]}
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instance Functor (Gather a) where

fmap (Gather xs) = Gather xs

instance Applicative (Gather a) where

pure x = Gather [ ]
Gather xs ⟨∗⟩Gather ys = Gather (xs ++ys)

It follows from the Traversable laws that kids traverse collects “all the children” of t rec, and
as a consequence (See Section 4.1 of [Gibbons and d. S. Oliveira, 2009]) the corresponding
projector is just id . We can therefore satisfy the preconditions of Definition D.4.1 by
setting:

kids ∶= kids traverse
p ∶= id

The corresponding generic definition gfixT becomes:

gfixT ∶∶Traversable t
⇒ (∀rec.TTest rec → TTest (t rec))
→ TTest (Fix t)

gfixT = fixT kids traverse id

Therefore, if the user of the library has a correct Traversable instance (possibly compiler-
generated), they need not worry about the calibrator or kids functions at all, and cannot
violate the safety guarantees of the library.

D.5 Optimisation opportunities

Having defined our combinators, we pause here to consider two optimisations we can
apply to our definitions. Thanks to our clearly-defined abstract interface to the TTest
and History types these optimisations are entirely transparent to the user.

D.5.1 Pruning histories using transitivity

In this section we consider an improvement to the definition of initHistory in Section D.2.1.
Normally, whenever a History a receives a new element x ′ ∶∶ a to compare against its

existing xn, we test all elements to see if ∃i < n.xi ⊴ x′. If we do not find such an i, we

append x′ to form the new sequence x′
n+1

which will be tested against subsequently. Thus
at every step the number of tests that need to be done grows by one.

There is an interesting possibility for optimisation here: we may in fact exclude from
x′ any element xj (0 ≤ j < n) such that x′ ⊴ xj. The reason is that if a later element x ′′ ∶∶a
is tested against x′, then by transitivity of ⊴, xj ⊴ x′′ Ô⇒ x′ ⊴ x′′—thus it is sufficient to
test x ′′ only against x ′, skipping the test against the “older” element xj entirely.

To actually make use of this optimisation in our implementation, our implementation
must (for all 0 ≤ j < n), test x′ ⊴ xj as well as xj ⊴ x′. To make this test more efficient, we
could redefine TTest so when evaluated on x and y it returns a pair of Bool representing
x ⊴ y and y ⊴ x respectively:

data TTest a =WQO {(⊴) ∶∶ a → a → (Bool ,Bool)}
Returning a pair of results improves efficiency because there is almost always significant
work to be shared across the two “directions”.

A version of the core data types improved by this new TTest representation and the
transitivity optimisation is sketched below:
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data TTest a =WQO (a → a → (Bool ,Bool))
newtype History a = H {test ∶∶ a → TestResult a }
initHistory ∶∶ ∀a.TTest a → History a
initHistory (WQO (⊴)) = H (go [ ])
where

go ∶∶ [a ]→ a → TestResult a
go xs x∣ or gts = Stop∣ otherwise = Continue (H (go (x ∶ [x ∣ (False, x) ← lts ‘zip‘ xs ])))

where (gts , lts) = unzip (map (⊴ x) xs)
It is unproblematic to redefine all of our later combinators for the elaborated TTest type
so we can take advantage of this transitivity optimisation.

D.5.2 Making cofmap more efficient

The alert reader may wonder about how efficient the definition of cofmap in Section D.3.4
is. Every use of a WQO of the form cofmap f wqo will run f afresh on each of the two
arguments to the WQO. This behaviour might lead to a lot of redundant work in the
implementation of test (Section D.2.1), as repeated uses of test will repeatedly invoke the
WQO with the same first argument. By a change of representation inside the library, we
can help ensure that this per-argument work is cached and hence only performed once for
each value presented to test :

data TTest a where

TT ∶∶ (a → b)→ (b → b → Bool)→ TTest a
newtype History a = H {test ∶∶ a → TestResult a }
initHistory ∶∶TTest a → History a
initHistory (TT f (⊴)) = H (go [ ])
where

go fxs x∣ any (⊴ fx) fxs = Stop∣ otherwise = Continue (H (go (fx ∶ fxs)))
where fx = f x

A History now includes a function f mapping the client’s data a to the maintained history
list [b ]. When testing, we apply the function to get a value fx ∶∶b, which we compare with
the values seen so far.

With this new representation of TTest, cofmap may be defined as follows:

instance Cofunctor TTest where

cofmap f (WQO prep (⊴)) =WQO (prep.f ) (⊴)
The ability to redefine TTest to be more than simply a WQO is one of the reasons why
we distinguish “termination tests”, which the client builds using the combinators, and
“WQOs” which are part of the implementation of a termination test, and are hidden
from the client.

All the TTest-using code we present is easily adapted for the above, more efficient,
representation of TTest . Furthermore, this technique can further be combined with the
optimisation described in Section D.5.1 with no difficulties.

198



D.6 Supercompilation termination tests

Now that we have defined a combinator library for termination tests, you might wonder
whether it is actually general enough to capture those tests of interest in supercompilation.
In this section, we demonstrate that this is so.

D.6.1 Terminating evaluators

Before we discuss those well-quasi-orders used for supercompilation, we would like to
motivate them with an example of their use.

A supercompiler is, at its heart, an evaluator, and as such it implements the operational
semantics for the language being supercompiled. However, the language in question is
usually Turing complete, and we would like our supercompiler to terminate on all inputs—
therefore, a termination test is required to control the amount of evaluation we perform.
We would like to evaluate as much as possible (so the test should be lenient). Equally, if
evaluation appears to start looping without achieving any simplification, then we would
like to stop evaluating promptly (so the test should be vigilant).

Clearly, any test of this form will prevent us reducing some genuinely terminating
terms to values (due to the Halting Problem), so all we can hope for is an approximation
which does well in practice.

Concretely, let us say that we have a small-step evaluator for some language:

step ∶∶Exp →Maybe Exp

The small-step evaluator is a partial function because some terms are already values,
and hence are irreducible. Given this small-step semantics we wish to define a big step
semantics that evaluates an Exp to a value:

reduce ∶∶Exp → Exp

We would like reduce to be guaranteed to execute in finite time. How can we build such a
function for a language for which strong normalisation does not hold? Clearly, we cannot,
because many terms will never reduce to a value even if stepped an infinite number of
times. To work around this problem, supercompilers relax the constraints on reduce:
instead of returning a value, we would like reduce to return a value, except when it looks
like we will never reach one.

Assuming a well-quasi-order test ∶∶TTest Exp It is easy to define reduce :

reduce = go (initHistory test)
where

go hist e = case hist ‘test ‘ e of

Continue hist ′ ∣ Just e ′ ← step e → go hist ′ e ′

→ e

The choice of the test well-quasi-order is what determines which heuristic is used for
termination. The following three sections demonstrate how our combinators can cap-
ture the two most popular choices of termination test: the homeomorphic embedding on
syntax trees (used in e.g. Klyuchnikov [2009]; Jonsson and Nordlander [2009]; Hamilton
[2007]), and the tag-bag well-quasi-order (used in e.g. Mitchell [2010]; Bolingbroke and
Peyton Jones [2010]).
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D.6.2 Homeomorphic embedding on syntax trees

The homeomorphic embedding—previous alluded to in Section D.4.1—is a particular rela-
tion between (finite) labelled rose trees. The proof that it does indeed define a well-quasi-
order is the famous “Tree Theorem” of Kruskal [1960]. We can define it straightforwardly
for the Tree type using our gfixT combinator:

type Tree a = Fix (TreeF a)
data TreeF a rec = NodeF a [rec ]

deriving (Functor ,Foldable,Traversable)
node ∶∶ a → [Tree a ]→ Tree a
node x ys = Roll (NodeF x ys)
treeT ∶∶ ∀a.TTest a → TTest (Tree a)
treeT wqo elt = gfixT wqo fix
where

wqo fix ∶∶ ∀rec.TTest rec → TTest (TreeF a rec)
wqo fix wqo subtree
= cofmap inject (pairT wqo elt (listT wqo subtree))

inject ∶∶ ∀rec.TreeF a rec → (a, [rec ])
inject (NodeF x ts) = (x , ts)

Now we have treeT—the homeomorphic embedding on rose trees—we can straightfor-
wardly reuse it to define a homeomorphic embedding on syntax trees. To show how this
test can be captured, we first define a simple data type of expressions, Exp:

data FnName =Map ∣ Foldr ∣ Even
deriving (Enum ,Bounded ,Eq)

instance Finite FnName where

elements = [minBound . .maxBound ]
data Exp = FnVar FnName ∣ Var String∣ App Exp Exp ∣ Lam String Exp∣ Let String Exp Exp

As is standard, we identify a finite set of function names FnName that occur in the
program to be supercompiled, distinct from the set of variables bound by lambdas or lets.
The purpose of this distinction is that we usually wish that ¬(map ⊴ foldr) but (since we
assume an infinite supply of bound variables) we need that x ⊴ y within λx → x ⊴ λy → y .

Our goal is to define a termination test test1 ∶∶TTest Exp. We proceed as follows:

data Node = FnVarN FnName ∣ VarN∣ AppN ∣ LamN ∣ LetN
deriving (Eq)

instance Finite Node where

elements = VarN ∶AppN ∶ LamN ∶ LetN ∶

map FnVarN elements

test1 ∶∶TTest Exp
test1 = cofmap inject (treeT finiteT)
where

inject (FnVar x) = node (FnVarN x) [ ]
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inject (Var ) = node VarN [ ]
inject (App e1 e2 ) = node AppN [inject e1 , inject e2 ]
inject (Lam e) = node LamN [inject e ]
inject (Let e1 e2 ) = node LetN [inject e1 , inject e2 ]

The correctness of the Finite Node predicate is easy to verify, and thus this termination
test is indeed aWQO. This test captures the standard use of the homeomorphic embedding
in supercompilation.

More typically, the FnName data type will be a string, and the supercompiler will
ensure that in any one execution of the supercompiler only a finite number of strings (the
function names defined at the top level of the program to supercompile) will be placed into
a FnVar constructor. In this case, the code for the termination test remains unchanged—
but it is up to the supercompiler programmer to ensure that the new instance Finite Node
declaration is justified.

D.6.3 Quasi-ordering tagged syntax trees

Observing that typical supercompiler implementations spent most of their time testing
the termination criteria, Mitchell [2010] proposed a simpler termination test based on
“tag bags”. Our combinators are sufficient to capture this test, as we will demonstrate.

The idea of tags is that the syntax tree of the initial program has every node tagged
with a unique number. As supercompilation proceeds, new syntax trees derived from the
input syntax tree are created. This new syntax tree contains tags that may be copied
and moved relative to their position in the original tree—but crucially the supercompiler
will never tag a node with a totally new tag that comes “out of thin air”. This property
means that in any one run of the supercompiler we can assume that there are a finite
number of tags.

We first require a type for these tags, for which we reuse Haskell’s Int type. Crucially,
Int is a bounded integer type (unlike Integer), so we can safely make the claim that Tag
is Finite:

newtype Tag = Tag {unTag ∶∶ Int } deriving (Eq ,Ord)
instance Finite Tag where

elements =map Tag [minBound . .maxBound ]
As there are rather a lot of distinct Ints, the well-quasi-order finiteT ∶∶ TTest Tag may
potentially not reject sequences until they become very large indeed (i.e. it is not very
vigilant). In practice, we will only have as many Int tags as we have nodes in the input
program. Furthermore, most term sequences observed during supercompilation only use
a fraction of these possible tags. For these reasons, these long sequences are never a
problem in practice.

Continuing, we define the type of syntax trees where each node in the tree has a tag:

type TaggedExp = (Tag ,TaggedExp′)
data TaggedExp′

= TFnVar FnName ∣ TVar String∣ TApp TaggedExp TaggedExp∣ TLam String TaggedExp∣ TLet String TaggedExp TaggedExp

We also need some utility functions for gathering all the tags from a tagged expression.
There are many different subsets of the tags that you may choose to gather—one particular
choice that closely follows Mitchell is as follows:
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type TagBag =Map Tag Int

gather ∶∶TaggedExp → TagBag
gather = go False
where

go lazy (tg , e) = singleton tg 1 ‘plus ‘ go′ lazy e

go′ lazy (TFnVar ) = empty
go′ lazy (TVar ) = empty
go′ lazy (TApp e1 e2 ) = go lazy e1 ‘plus ‘ go lazy lazy e2
go′ lazy (TLam e) = empty
go′ lazy (TLet e1 e2 ) = go lazy lazy e1 ‘plus ‘ go lazy e2

go lazy True (tg , ) = singleton tg 1
go lazy False e = go True e

plus ∶∶TagBag → TagBag → TagBag
plus = unionWith (+)

We have assumed the following interface for constructing finite maps, with the standard
meaning:

unionWith ∶∶Ord k ⇒ (v → v → v)
→Map k v →Map k v →Map k v

empty ∶∶Ord k ⇒Map k v
singleton ∶∶Ord k ⇒ k → v →Map k v

We can now define the tag-bag termination test of Mitchell [2010] itself, test2 :

test2 ∶∶TTest TaggedExp
test2 = cofmap (summarise.gather)(pairT finiteT wellOrderedT)
where

summarise ∶∶TagBag → (Set Tag, Int)
summarise tagbag
= (keysSet tagbag , sum (elems tagbag))

D.6.4 Improved tag bags for tagged syntax trees

In fact, there is a variant of the tag-bag termination test that is more lenient than that of
Mitchell [2010]. Observe that the tag bag test as defined above causes the supercompiler
to terminate when the domain of the tag bag is equal to a prior one and where the total
number of elements in the bag has not decreased. However, since there are a finite number
of tags, we can think of a tag-bag as simply a very large (but bounded) arity tuple—so
by the Cartesian Product Lemma we need only terminate if each of the tags considered
individually occur a non-decreasing number of times.

Our more lenient variant of the test can be defined in terms of the finiteMapT com-
binator of Section D.3.7 almost trivially by reusing gather . It is straightforward to verify
that if the finiteMap well-quasi-order relates two maps, those maps have exactly the same
domains—so one of the parts of the original tag-bag termination test just falls out:

test3 ∶∶TTest TaggedExp
test3 = cofmap gather (finiteMapT wellOrderedT)

All three of these termination tests—test1 , test2 and test3—are sound by construction,
and straightforward to define using our library.

202



Appendix E

Practical considerations

In this appendix, we discuss some of the engineering considerations arising from adding
supercompilation to a standard compiler, and the approach our implementation takes to
the issues they raise.

E.1 Supercompilation and separate compilation

One major source of engineering challenge in a supercompiler implementation is sepa-
rate compilation. In this section we discuss the issues relating to the module-by-module
compilation method used by GHC.

E.1.1 Supercompiling modules instead of terms

So far, we have only discussed supercompilation of an expression, not a whole module:
our supercompile function has type Term → Term. In order to use this to supercompile a
module, we first have to transform the module into a term. Given a module such as:

module FooMod (bar , baz) where

bar = spqr .baz
baz = λxs.map inc xs
spqr = λxs .map dec xs

We transform it as follows:

module FooMod (bar , baz) where

bar = case res of (bar , )→ bar
baz = case res of ( , baz)→ baz

res = let bar = spqr .baz
baz = λxs .map inc xs
spqr = λxs.map dec xs

in (bar , baz)
So a program is simply a term, in which the top-level function definitions appear as
possibly-recursive let bindings. After this transformation we can then supercompile the
expression on the RHS of the res binding.

Note that we did not include the unexported function spqr in the tuple bound to
res . It is unnecessary to do so. Furthermore, by omitting it we potentially get better
results from supercompilation because the splitter may freely push down even a non-value
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unexported bindings as long as it is transitively used by at most one of the exported
bindings, where the unexported binding might be deforested away entirely. In contrast if
a non-value unexported binding spqr was mentioned in the res tuple then we would be
forced to residualise it, and it could not possibly be fused together with other bindings in
the module.

Controlling supercompilation targets The scheme we describe above has us super-
compiling the definition of every exported function. In our implementation, we instead
make use of a SUPERCOMPILE pragma that the user uses to mark those definitions
which should be supercompiled. For example, if spqr and baz in the module above were
marked by the pragma, the module would be transformed to:

module FooMod (bar , baz)where

spqr = case res of (spqr , )→ spqr
baz = case res of ( , baz)→ baz
bar = spqr .baz

res = let baz = λxs .map inc xs
spqr = λxs .map dec xs

in (spqr , baz)
Where once again the definition of res would be supercompiled, so the unmarked bar
definition would not be supercompiled at all.

As a shorthand, we also allow the whole module to be marked with SUPERCOMPILE
if you wish to supercompile all exported definitions.

E.1.2 Interface files

When supercompiling, (unlike in control flow analysis [Shivers, 1988]), it is by no means
required that all of the code of the program available—dealing with a call to a function
whose name is known but code is unknown is no more challenging that dealing with a
call to a normal free variable.

However, supercompilation clearly works best when all of the code that can be exe-
cuted is available to the compiler. At first, this may seem incompatible with separate
compilation of program modules, where any given invocation of the compiler is only
asked to compile a single module, and thus presumably only has access to the code for
that module.

In fact, compilers for modern high-level languages (such as Oracle’s javac Java compiler
[Jav]) rarely implement true separate compilation, where modules can be compiled in any
order (as is the case for e.g. the GNU C compiler gcc [GCC]). Instead, when compiling
a module they produce not only object code suitable for execution, but also metadata
necessary when compiling dependent modules. (As a result, modules must be compiled
in dependency order.)

GHC is no exception in this regard, and it records metadata in a so-called “interface
file” which is created as a side-effect of compiling the object file. This metadata may
include Core-language definitions of any exported names: these definitions are also called
“unfoldings” of those names. This feature is used by GHC to implement cross-module
inlining. The key issues surrounding unfoldings are which exported names should have
definitions recorded, and what definition to record. GHC makes the following choice:

• If, after optimisation, an exported name has a definition which is “small” in some
sense, and the definition is non-recursive, that definition is recorded in the interface
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file. These constraints fundamentally reflect the fact that GHC’s inlining algorithm
will only inline non-recursive definitions where the code-size cost of doing the inlining
is compensated for by the benefits of the inlining [Peyton Jones and Marlow, 2002],
and so even if definitions for large or recursive functions in imported modules are
available in the interface file, GHC will never make use of them.

• If an exported name was explicitly marked by the user with an INLINE pragma
then GHC is much more eager than usual to inline it, and as a result it will always
have a definition recorded in the interface file. The twist is that GHC records the
definition as written by the user in the input program, not the definition as it is
after optimisation. One reason for this is that the optimised definition may be
much larger than the original definition, and so there will be less immediate code
size impact from inlining this smaller original definition into all use sites in other
modules than there would be from inlining the larger optimised definition.

Our supercompiler implementation changes these heuristics in that we record post-optimisation
definitions for all exported names not marked with the INLINE pragma, even if they are
recursive. The reason for this is that (unlike GHC’s inliner) the supercompiler does not
risk non-termination when inlining recursive functions, and by making more definitions
available we will have more specialisation opportunity.

Ideally our implementation we would treat the SUPERCOMPILE pragma like the
INLINE pragma in that we would record the definition of the marked function as written
by the user in the interface file, rather than recording the definition of the function after
supercompilation. This would prevent any dependent modules which get supercompiled
from compounding the problem of supercompilation code explosion by supercompiling
already-supercompiled code. However, our implementation does not currently implement
this idea. Instead, our tests only mark the Main module of the program of interest with
the SUPERCOMPILE pragma. Since we do not supercompile the libraries, unfoldings of
imported names will not themselves be supercompiled.

E.1.3 Sharing specialisations across module boundaries

In our implementation, the accumulated environment of promises is discarded after su-
percompilation is complete for the module being compiled. However, it would be possible
to imagine instead recording all the promises in the corresponding interface file. Then,
supercompilation of later modules could start with an environment of promises initialised
from the stored promise lists in all imported modules, which would allow those later su-
percompilation runs to tie back directly to the h-functions created by supercompilation
of those imported modules.

This mechanism would allow some the work associated with using supercompilation
to specialise library code to be done once and for all when compiling the library, and
then reused in all users of the library. This is analogous to GHC’s existing SPECIALISE
pragma, which is used to create specialisations of library functions on type-class dictio-
naries along with associated rewrite rules [Peyton Jones et al., 2001] that ensure that
users of the library make use of the specialisation if one exists.

E.1.4 Making unfoldings available to supercompilation

In Section E.1.2, we described how GHC used unfoldings recorded in interface files to
record the definitions of exported names, so that those definitions could be inlined in
dependent modules. Given that we have access to these unfoldings, the question arises
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as to how to expose them to the supercompilation algorithm so that e.g. the evaluator is
able to β-reduce calls to imported functions.

The approach we take is to form an initial heap Hunfold containing a mapping x ↦ e

for every imported name x if e is the unfolding of x. We speculate this heap, and discard
any of the bindings in the final heap which the speculator failed to reduce to values This
means that the only bindings that are left are those which are either bind values or bind
variables which refer to bindings which bind values.

The speculated, filter heap is wrapped around the initial term to supercompile by the
top-level supercompile function. The cheapness check ensures that we don’t duplicate
work, such as could happen if we allowed inlining of an unfolding like x = fib 100 into all
dependent modules.

The scheme as outlined up to this point works fine, but it leads to considerable code
duplication because it means that a new copy of every transitively reachable imported
function will be created in the module being supercompiled, even if those functions end up
being completely unspecialised. Ideally, we would like to reuse the existing unspecialised
code for the imported functions if possible.

In order to achieve this, we preinitialise the memoiser’s state: before we begin super-
compilation, for every imported name x with unfolding e we record a promise which says
that the state ⟨Hunfold

⎪⎪⎪⎪e⎪⎪⎪⎪ǫ⟩ can be tied back to the “h function” x. In fact, in order to
share more code we will create such a promise for all η-expansions of the unfolding, so for
an imported name f with an unfolding λx y . e we will create promises for:

• let f = λx y . e in f , tying back to f

• let f = λx y . e in f x , tying back to f x

• let f = λx y . e in f x y , tying back to f x y

• λx y . e, tying back to f

• λy . e, tying back to f x

• e, tying back to f x y

This means that when the algorithm tries to supercompile a state which matches one of
the imported functions, it just ties back to the existing imported name for that function
rather than creating a new copy.

Memoiser preinitialisation can potentially cause a loss of optimisation if the exported
function was not fully optimised by the earlier compiler invocation which compiled the
module in which the imported functions were defined. For example, we could supercompile
a module M which depends on a module Library :

module Library (mapmap)where

mapmap f g =map f .map g

If we did not mark Library with SUPERCOMPILE , or compiled it with a flag to turn off
supercompilation, then the generated machine code for mapmap may allocate an interme-
diate list. With memoiser preinitalisation, if we import the mapmap function in module
M which makes the call mapmap f g , then we will just reuse that inefficient exported
code rather than supercompiling mapmap anew and hence achieving deforestation.

We are happy to use memoiser preinitalisation (and hence risk this problem) because
we make the assumption that previously compiled modules have already optimised as
much as possible given the information they had available. With this philosophy, the job
of the supercompiler is just to try to optimise given the new information we have in the
current module being supercompiled.
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E.1.5 Unavailable unfoldings

Sometimes, a name may be imported by the program being supercompiled, but we do not
have an available unfolding that we can add to Hunfold . This may be because the unfolding
is non-cheap, because unfolding is explicitly disallowed by a NOINLINE pragma, or an
unfolding simply was not recorded in the corresponding interface file (even if we modify
the compiler to record unfoldings for all exports when it creates an interface file, unfoldings
may be missing due to loops in the module dependency graph).

For such an unfoldingless name x, the supercompilation algorithm as described will
λ-abstract every h-function whose corresponding state mentions x over the x variable, as
it will regard x as a free variable. So if for some reason there is no unfolding available for
the library function runST , the following module:

module Looper (f )where

g n = . . .
f n = case n of Z → [ ]

S m → runST (g m) ∶ f m

Will be transformed into a program like the following:

module Looper (f )where

f = let h0 runST = let f n = h1 runST n
in f

h1 runST n = case n of Z → [ ]
S m → h2 m ∶ h1 runST m

h2 m = . . .
in h0 runST

This program completely hides the fact that runST is an imported name from each
of its use sites. This is a critical problem because even if we aren’t able to inline the
definition of runST at those use sites, the machine code generated by GHC for a call to
a function whose definition site is known is far more efficient than what it generates for
a call to an λ-bound function with unknown definition [Marlow and Peyton Jones, 2004].
Furthermore, runST might have associated rewrite rules [Peyton Jones et al., 2001] which
can be exploited by GHC’s optimisation mechanisms: if we λ-abstract over runST then
these rules cannot be used.

One approach to fixing this problem would be to apply the static-argument transfor-
mation [Santos, 1995] to the supercompiled code, and hope that it manages to discover all
such problems and undo them. However, we prefer a more robust solution which avoids
introducing these spurious λ-abstractions in the first place.

The approach we take is to use a special form of “dummy” heap binding, which we
write x ∶ τ ↦ let

t, to record which variables should actually bound by imported names
rather than λ-abstractions in the corresponding h-function. These heap bindings are
useless to the evaluator since they do not include any information about the definition
of the corresponding name, but they prevent the variable x that they bind from being
reported as free for the purposes of deciding what variables the h-function should be
abstracted over. With this technique we can drive our example above in an initial heap
containing the binding runST ∶∀a.ST a → a ↦ lett for some tag t, and hence can obtain
the desired output program for our example above:

module Looper (f )where

f = let h0 = let f n = h1 n
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in f
h1 n = case n of Z → [ ]

S m → h2 m ∶ h1 m
h2 m = . . .

in h0

It is important to note that the variables bound by these dummy heap bindings cannot be
freely renamed, because they are really variable occurrences rather than binders. This is
particularly important to consider when modifying msg to deal with let-marked variables.

To see why, observe that we cannot msg S0 = ⟨runST ∶∀a.ST a → a ↦ let⎪⎪⎪⎪runST⎪⎪⎪⎪ǫ⟩
(where runST is let-marked) and S1 = ⟨ǫ⎪⎪x⎪⎪ǫ⟩ to the generalised state ⟨ǫ⎪⎪⎪⎪y⎪⎪⎪⎪ǫ⟩. If msg
did behave that way, it would cause our match implementation to claim that you can
tie back the state S1 to an earlier promise for the state S0 if you use the substitution{runST ↦ x}, which is not in fact true because the h-function for S0 would not have been
λ-abstracted over runST . Our implementation of msg therefore only MSGs together
references to let-marked variables if they have exactly the same bound name on both the
left and right, reflecting the fact that they both refer to the exact same imported name.

Note that the new form of heap binding has an associated tag, just like a normal one.
This is useful because it means that the termination test will not fail if we happen to
supercompile two states that differ only in the imported names to which they refer.

E.2 Primops

Primitive operations such as the arithmetic operators (+) and numeric literals ℓ can be
easily incorporated into the Core language as extra expression productions: e ∶∶= . . . ∣ d �

d ∣ ℓ. The operational semantics can be likewise extended to evaluate primops, with
the syntax of the abstract machine growing to incorporate new types of stack frame:
κ ∶∶= . . . ∣ ● �d ∣ u � ●. When reducing a state such as ⟨ǫ⎪⎪⎪⎪20t2⎪⎪⎪⎪10t1 � ●t0⟩, a choice
exists as to which tag should be used for the result of executing the primop, and the
choice we arbitrarily make is to use the tag of the primop itself, so one of the new rules
of the extended operational semantics is:

⟨H⎪⎪⎪⎪⎪⎪ℓt22 ⎪⎪⎪⎪⎪⎪(ℓt11 ⊗ ●)t0 ,K⟩ ↝ ⟨H⎪⎪⎪⎪⎪(⊗(ℓ1, ℓ2))t0⎪⎪⎪⎪⎪K⟩
All the new syntax can be handled in the splitter and MSG/matcher straightforwardly.
However, there is something interesting about primops in supercompilation: their termi-
nation treatment. A standard supercompiler that uses a homeomorphic embedding will
typically make a choice between:

• Not executing primops at compile time, or

• Treating all literals as identical for the purposes of the termination test (i.e. having
the homeomorphic embedding embed all literals into each other)

The reason for this choice is that if primops are not executed at compile time, you may
assume that the supercompiler will only encounter a fixed finite set of literals during su-
percompilation of any given program (i.e. those literals that were syntactically present in
that program), and so distinct literals may be treated as distinct for termination purposes.

Because our termination test is tag-based, our supercompiler takes a compromise
position where literals that occurred syntactically in the input program are treated as
distinct from each other, while any literals generated by executing primops are treated by
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the termination test as being identical to one of the literal arguments to the primop. This
position allows us to avoid failure of the termination test for longer in programs using
literals, but still execute primops at compile time.

E.2.1 Interaction between primops and generalisation

One subtle point about primops is that they interact poorly with the combination of spec-
ulation (Section 6.3) and growing-tags generalisation (Section 6.2.2). A simple example
of the problem occurs when supercompiling a version of length defined with the non-strict
foldl defined in Section 6.2. Consider this term:

let next n = n + 1; z = 0te in ((foldl ta next tb z)tc xs)td
Supercompiling, we see the following sequence of normalised States:

S1 = ⟨H, z ↦ 0te
⎪⎪⎪⎪⎪foldl t8⎪⎪⎪⎪⎪(● next)tb , (● z)tc , (● xs)td⟩

S2 = ⟨H, z ↦ 0te ,n1 ↦ (next y z)t4⎪⎪⎪⎪⎪foldl t8⎪⎪⎪⎪⎪(● next)t3 , (● n1)t5 , (● ys)t6⟩
S3 = ⟨H,n1 ↦ 1t4 ,n2 ↦ (next y1 n1 )t4⎪⎪⎪⎪⎪foldl t8⎪⎪⎪⎪⎪(● next)t3 , (● n2)t5 , (● ys1)t6⟩
S4 = ⟨H,n2 ↦ 2t4 ,n3 ↦ (next y2 n2 )t4⎪⎪⎪⎪⎪foldl t8⎪⎪⎪⎪⎪(● next)t3 , (● n3)t5 , (● ys2)t6⟩

Up until S4, supercompilation has proceeded untroubled by termination test failure. This
changes when we reach S4, as the latest tag bag is identical to that for S3 and so to ensure
termination the supercompiler has to generalise or split without reduction. Unfortunately,
because we have two equal tag-bags, the supercompiler will be unable to identify a growing
tag suitable for generalisation, and so will have to fall back on standard split rather than
generalising away the n heap bindings as we would hope.

If we had not speculated, we would not have the problem as n1 and n2 would remain
unreduced. This would have turn caused the heap of S3 to contain z—thus triggering
the termination test at the point we supercompiled S3, and fingering t4 as the growing
tag. Likewise, the problem would not occur if we had Peano numbers in place of literals
and primops, because the growing accumulator would have shown up as an increasingly
deeply nested application of S that is readily detectable by the growing-tags heuristic.

E.2.2 Multiplicity-tagging for better primop generalisation

Our implementation implements a solution to this problem which is straightforward and
non-invasive. The idea is that a binding such as n2 should “weigh” more heavily in
the mind of the growing-tags generaliser than a binding like n1 because its literal value
embodies more computational history. To this end, we add a multiplicity to the type of
tags, modelling a tag-bag with several repetitions of a single tag, vaguely approximating
the effect of Peano arithmetic:

typeMultiplicity = Int
type Tag = (Int ,Multiplicity)

Tags are initialised with an Multiplicity of 1. The tagged reduction rules for Core remain
largely the same, but rules which execute primops change to sum multiplicities:

⟨H⎪⎪⎪⎪⎪⎪⎪⎪ℓ
(x2,c2)
2

⎪⎪⎪⎪⎪⎪⎪⎪(ℓ
(x1,c1)
1 ⊗ ●)(x0,c0)

,K⟩ ↝ ⟨H⎪⎪⎪⎪⎪⎪(⊗(ℓ1, ℓ2))(x0,c0+c1+c2)⎪⎪⎪⎪⎪⎪K⟩
This rule differs from the standard one in that it produces an output tag with an
Multiplicity that has grown to be strictly greater than the tags of each of the inputs.
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The final, crucial step is to make use of the Multiplicity information when constructing
the TagBag for the termination test (Section 3.2):

tagBag ⟨H⎪⎪⎪⎪e(x,c)⎪⎪⎪⎪K⟩ = {{x ∣x ↦ e(x,c) ∈ H,0 ≤ i < c}}
∪ {{x ∣0 ≤ i < c}}
∪ {{x ∣κ(x,c) ∈K,0 ≤ i < c}}

No further changes are required—because we construct TagBags with several “copies” of
a tag with an Multiplicity greater than one, the growing tags heuristic identifies them as
growing in just the situations where we need it to. Consider our length function example
above. In S3, the tag t4 on n1 will have an multiplicity of 3, and that on n2 will be 1.
By the time we reach S4 the tag t4 on n2 will have a count of 5 while the tag on n3 will
be 1. Looking at the resulting tag bags, it is clear that t4 is the growing tag and hence
should serve as the basis of residualisation by the growing-tags heuristic.

E.3 Differences between Core and GHC Core

As our supercompiler has been implemented as a part of GHC, it operates on GHC’s own
internal Core language which is different to the Core language we describe in Section 2.1
and use throughout the thesis. In this section, we will summarise the differences and
describe how they affect the supercompilation process.

E.3.1 Unlifted types

GHC’s core language separates base types (i.e. those of a non-arrow kind) into two kinds
rather than the conventional single kind ⋆ that we use. In GHC’s system, types of kind
⋆ are called lifted types and may be inhabited by �, as usual, but types of kind # are
called unlifted types and may not be. This is used to define types such as the unlifted
32-bit integer type Int32# which correspond closely to the type of values that can be held
in a single machine register, and hence manipulated very efficiently without the burden
of heap lookup that is required by usual implementations of laziness on stock hardware
[Launchbury and Paterson, 1996; Jones and Launchbury, 1991].

There are two principle consequences to the supercompiler from this feature.

Unlifted let bindings A (non-recursive) let binding may bind a value of unlifted type,
in which case the usual let evaluation rule of Section 3.3 is incorrect. Instead, the nor-
malising small-step operational semantics must include new evaluation rules and corre-
sponding stack frame:

⟨H⎪⎪⎪⎪⎪(let x ∶τ = dx in d)t⎪⎪⎪⎪⎪K⟩ ↝ ⟨H⎪⎪⎪⎪dx⎪⎪⎪⎪let x ∶τ = ● in dt,K⟩⟨H⎪⎪⎪⎪v⎪⎪⎪⎪let x ∶τ = ● in dt,K⟩ ↝ ⟨x ∶τ ↦ vt,H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩⟨H⎪⎪⎪⎪v⎪⎪⎪⎪update y ∶τ, let x ∶τ = ● in dt,K⟩ ↝ ⟨x ∶τ ↦ vt, y ∶τ ↦ x,H⎪⎪⎪⎪d⎪⎪⎪⎪K⟩
The new strict-let stack frame has to be handled everywhere in the supercompiler, but
is generally straightforward to deal with. Of particular interest is its interaction with the
splitter, where it should be treated similarly to a single-branch case frame, including the
potential to have following stack frames inlined into the “branch” of the strict-let frame.

One other awkward issue arises with unlifted let bindings: because the heap may
contain a mix of lifted and unlifted bindings, we can no longer bind heap bindings with
a simple single recursive let when residualising a state. Instead, we must perform a
strongly-connected-components analysis on the heap and then use a non-recursive let to
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bind non-recursive SCCs (any unlifted heap bindings will become a non-recursive SCC),
and recursive lets to bind recursive SCCs.

Non-abstractability of type information Normally, if we were to compute the most-
specific generalisation (Section 5.1) of the two terms λ(x ∶∶ Int). x and λ(x ∶∶Bool). x we
would derive the type-generalised term λ(x ∶∶ a). x . At this point, we would be justified
(by Theorem 5.7.1) in performing a transformation such as taking this program:

let f = λ(x ∶∶ Int). x
g = λ(x ∶∶Bool). x

in (f , g)
And replacing it with this:

let f = h Int
g = h Bool
h = Λ(a ∶∶ ∗). λ(x ∶∶ a). x

in (f , g)
However, unlifted types complicate things. We cannot replace this program:

let f = λ(x ∶∶ Int32#). x
g = λ(x ∶∶ Int16#). x

in (f , g)
With this one:

let f = h Int32#
g = h Int16#
h = Λ(a ∶∶#). λ(x ∶∶ a). x

in (f , g)
The reason is that unlifted types will generally also be unboxed, so the code that manipu-
lates values of unlifted types may not be polymorphic in the unlifted type. This means we
may never abstract over a type variable of a kind that might ever end up constructing an
unlifted type, so abstraction of the form Λ(a ∶∶#). e, Λ(a ∶∶∗→#). e, Λ(a ∶∶(∗ → ∗)→#). e
and so on must be disallowed. Avoiding inadvertently creating an abstraction of this form
requires an ad-hoc check in the type MSG (Section 5.8).

E.3.2 Wildcard case branches

In GHC, case expressions need not exhaustively list all of the possible constructors that
the scrutinee may evaluate to if it does not need to. Instead, it is allowed to include a
single wildcard branch that is used if none of the explicitly listed constructors match. For
example, the following evaluates to False:

case True of False → True; → False

This poses no problem for the supercompiler, but it can hurt the quality of positive
information that is propagated, since if we have a residual case branch that binds a
wildcard there is no way for a positive supercompiler to express the information we have
learned about the scrutinee. For example, with naive handling of wildcard branches the
following program:
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case x of → case x of False → True;True → False

Will not be further optimised, even though it is easy to see that we need only scrutinise
x once.

To prevent the issues introduced by wildcards, we could potentially perform a pre-pass
on the program before supercompilation to expand wildcard branches to an exhaustive
list:

case x of True → case x of False → True;True → False
False → case x of False → True;True → False

After supercompiling this expanded program, positive information propagation will ensure
we get the desired result—a program that scrutinises x only once:

case x of True → False;False → True

Unfortunately, this expansion process is not practical because for it may increase the
size of the program by a multiplicative factor of mn, where m in the size of the largest
algebraic data family scrutinised in the program and n the depth of the deepest case
nest in the program. An alternative scheme, “λ-lifting” the wildcard branch to a new
function abstracted over the scrutinised variable, is more practical. If using that scheme,
our expanded example program would look as follows:

let k x = case x of False → True;True → False
in case x of True → k True;False → k False

Although this solves the input program code size explosion problem, it is still often not
desirable because of the tendency of supercompilation to specialise terms with regards
to information even when that information gives no tangible runtime benefit: the output
of supercompilation on programs treated this way is almost always much larger with no
runtime gain at all.

Our implementation compromises by expanding only those wildcards which would be
replaced by at most one new branch1, which is occasionally effective at improving positive
information propagation and never increases the size of the input program.

E.3.3 Scrutinee binder of case

In GHC, the scrutinee of a case is bound to a variable that may occur freely in any of
the branches of the case. For example, the following program will evaluate to True:

case True of x {True → x ;False → False}
This feature is unproblematic for the supercompiler except that the scrutinee binder must
also be considered when propagating positive information.

E.3.4 Polymorphic seq

In GHC, case expressions are allowed to scrutinise values of types other than algebraic
data types, in which case they may have at most one branch, and that branch will always
be a wildcard branch.

Such case expressions pose few problems: they can be treated exactly as a standard
case except that (as usual for wildcard branches) no positive information can be gleaned
from them.

1When scrutinising a GADT, type information can sometimes be used to reduce the number of explicit
branches that a wildcard branch expands to.
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E.3.5 Type lambdas are not values

In GHC’s core language, type lambdas are entirely erased before generated code, and so
they cannot be values. However, in Core we treat type lambdas as values. The difference
is observable in GHC core, where it is possible to do a seq that is not only polymorphic
but also “impredicative”! In particular, the following GHC core program should diverge
instead of returning True:

let f = Λ(a ∶∶ ∗). f Int
in case f of → True

Unfortunately, our supercompiler optimises this program to a simple True because it
believes f to be a value. This is a correctness bug, as the supercompiler should not make
a program “more defined”. We accept this as a known bug in the supercompiler because:

• Although it is very important for practical use that the supercompiler preserves
standard polymorphic seqs, seqs on terms of polymorphic type are almost nonexis-
tent in practice, so the bug is unlikely to hurt anyone.

• Fixing the problem (by modifying the evaluator to evaluate underneath type lamb-
das and changing the definition of values to include only Λα ∶κ. v rather than Λα ∶κ. e)
imposes a small but significant cost on the implementation.

E.3.6 Unsaturated data constructors

In GHC’s core language, data constructors may occur saturated, but Core expects data
constructors to be saturated. Therefore, when we convert a Haskell program into our
Core language, we have to introduce wrappers to deal possible partial applications. For
example, the following GHC program:

((∶), (∶) x , x ∶ xs)
Will be translated into the following Core:

let (∶)wrap = (λy . (λys . (y ∶ ys)t2)t1)t0
a1 = (∶)t4wrap x t3

a2 = ((∶)t7wrap x t6 xs)t5
in ((∶)wrap,a1 ,a2 )t8

Notice that after β-reducing uses of the data constructor wrappers, all saturated occur-
rences of data constructors in the input program will have the same tag: for example, in
the above program all saturated occurrences of the (∶) data constructor will have tag t2.

This is a desirable property to have, because it means that the termination test will
be better able to spot functions that are e.g. being specialised multiple times on the same
data constructor argument, even when those data constructor originate from distinct
places in the input program.

E.3.7 Coercions

GHC’s core language is based on System FC [Sulzmann et al., 2007; Vytiniotis et al.,
2012], whose principal interesting difference from System Fω is the presence of coercions
in the syntax of expressions:

e ∶∶= . . . ∣ e ⊳ ϕ ∣ ϕ
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Without going into too much detail, suffice to say that a coercion ϕ of type τ ∼ υ is passed
around as evidence that the runtime representation for the type τ and υ are identical, and
a case e ⊳ ϕ performs an unchecked cast from τ (the type of e) to υ. A cast is intended
to be implemented at runtime by a no-op.

Coercions are integral to the encoding of some of GHC’s most cutting-edge features
in GHC’s core language in a way which still allows the core to be trivially type checked
and inferred, but they are also used to implement features as humble as the newtype

declaration. For this reason, they tend to be ubiquitous in programs of practical interest
and cannot be ignored, which is unfortunate as they impose considerable costs on the
supercompiler implementation:

• The definition of a value has to take into account coercions: v ∶∶= . . . ∣ v ⊳ ϕ ∣ ϕ
• Positive information propagation must be prepared to propagate information about
scrutinees that are not simple variables but possibly variables that have been cast
by one or more coercions.

• Most importantly, the normalising small-step operational semantics has to include
a new stack frame for casts, as well as modify all existing reduction rules to be able
to deal with (potentially several consecutive) casts on the stack between the context
and the stack frames of real interest (e.g. update frames or application frames).

E.3.8 Kind polymorphism

Recent versions of GHC [Yorgey et al., 2012] use an intermediate language that allows
kinds to be abstracted over, making programs such as the following possible (◻ is the
(unique) superkind i.e. all kinds are classified by ◻):

let f = Λ(k ∶∶ ◻).Λ(a ∶∶ k).1
in f ∗ Int + f (∗→ ∗)Maybe

Kind abstraction poses few problems for the supercompiler, and can be handled almost
entirely analogously to type abstraction. The two minor issues that occur are:

• When λ-abstracting a new h-function, to preserve well-scopedness we would usually
abstract over type variables first, followed by term variables. With kind polymor-
phism, we must be careful to abstract over kind variables first, then type variables,
and then finally term variables.

• In the implementation of most specific generalisation, we might say that the MSG
of Λ(a ∶∶ ∗). λ(x ∶∶ Int). x and Λ(a ∶∶ ∗→ ∗). λ(x ∶∶ Int). x is the kind-polymorphic term
Λ(a ∶∶k). λ(x ∶∶Int). x (with appropriate substitutions for k). Although this seems to
be theoretically sound for simple Fω extended with kind polymorphism, in practice
we found that it interacted badly with the “subkinding” system supporting GHC’s
use of unlifted types, and so our MSG implementation never abstracts over new
kind variables.

E.4 Controlling code explosion

Supercompilation of some programs only completes when given unfeasibly large amounts
of time and memory in which to run. Our supercompiler implementation incorporates
two mechanisms that are designed to ameliorate these issues:
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• We use heuristics to determine which non-normalising β-reductions should be per-
formed (Section E.4.1)

• We incorporate an optional mechanism that limits the total number of non-normalising
β-reductions which can be performed in one supercompilation run (Section E.4.2)

E.4.1 Controlling inlining

In the course of our supercompilation research, we found that the supercompiler would
often inline large library functions into contexts where there was little to no available
additional information, contributing to code bloat without achieving useful specialisation.
This code bloat would often reach the point of inlining most of the IO library into the
program that uses it, along with code to e.g. parse numbers out of the command line
arguments to the program. To combat this, we decided to make use of a combination of
annotation and heuristics.

Concretely, we made changes to the implementation of the small-step operational
semantics of step. The standard step function as described in Section 3.3 will use the
beta and tybeta rules to perform any non-normalising β-reductions. When asked to
perform such a β-reduction of a function f , our step function instead makes the following
checks in order:

1. If f is marked with a SUPERINLINABLE pragma in the module where it is defined,
or is lexically within a function marked with such a pragma, the β-reduction is
unconditionally allowed.

2. If f is a recursive function2 then the β-reduction is not allowed. This is a pow-
erful size control mechanism as only those loops which we explicitly annotate as
SUPERINLINABLE will be inlined, which immediately eliminates a large .

3. If GHC’s own inlining heuristics [Peyton Jones and Marlow, 2002] would allow the
β-reduction to occur, we perform it. The inlining heuristics attempt to determine
if the body of the lambda can be simplified enough, given the information available
at the call site, to justify the code size increase of the inlining. Although this is
necessarily an approximate process, they have been developed and refined by the
GHC developers over many years, and so the heuristics give reasonably good results
in practice. By deferring to GHC’s heuristics, we ensure that the supercompiler
β-reduces interesting invocations of non-recursive functions even if those functions
are not annotated with SUPERINLINABLE .

4. If the normalised result of performing the β-reduction is not any larger (in terms of
number of live AST nodes) than the state with the pending β-reduction, then the
reduction is allowed. This is useful for permitting β-reductions of functions f which
are simple wrappers around other things, or are used exactly once.

5. If inlining f means that the (normalised) result of step will be a value, we allow the
β-reduction. This is a somewhat ad-hoc condition, but we found it to be crucial
for speculation. The reason for this is that typically GHC’s inlining heuristics will
(correctly) report that inlining a lambda such as λx y . x into a partial application
f x is not an interesting thing to do. However, when speculating we absolutely need
that inlining to be performed so that we can simplify an expensive binding g = f x
to the manifestly-cheap binding g = λy . x .

2In fact, we check that f is not a “loop breaker”, as defined in Peyton Jones and Marlow [2002].

215



6. Finally, if no other case matched then we prevent the β-reduction.

As a convenience, when supercompiling a module the supercompiler behaves as if all
functions in that module are marked SUPERINLINABLE .

For the purposes of the benchmarks of Chapter 7, we annotated the GHC .List ,
Data.List and Data.Complex modules of GHC’s Haskell library implementation with
the SUPERINLINABLE pragma, since those modules defined those functions which the
supercompiler needed to inline in order to achieve deforestation.

E.4.2 Work bounding

Our supercompiler also implements a rudimentary mechanism for limiting the total num-
ber of β-reductions performed in the course of supercompiling a module. By limiting
the number of β-reduction we indirectly limit the amount of specialisations that we need
to create, since we prevent the supercompiler from gaining information about function
parameters. To achieve this:

• The State type is augmented with a natural number denoting the amount of “fuel”
the state has access to. Whenever the step function performs a non-normalising
β-reduction, it returns a State with one less unit of fuel than the input State . If no
fuel remains, step returns Nothing even when there is an available β-reduction.

• When splitting a state, the fuel of the state input to split is distributed evenly across
the recursively driven states in proportion to the size of those states (in AST nodes),
on the basis that in general larger states will tend to require more fuel to be fully
supercompiled.

• Any fuel unused by supercompilation is returned to the caller of the supercompiler—
so, for example, the sc function gets the new type

sc ∶∶History → State → ScpM (Fuel ,Term)
Fuel unused by previous children of a split call is supplied as extra fuel to the next
child of split to be supercompiled.

• Tying back does not use any fuel, so if memo manages to tie back it returns all of
the fuel of the input state to the caller.

• The initial amount of fuel is set to a fixed multiple—called the “bloat factor”—of
the size of the input module (in AST nodes), on the basis that supercompilation of
larger programs will tend to require more β-reductions. In Chapter 7’s benchmarks,
we set the fuel to 10 times the size of the input: i.e. we use a bloat factor of 10.

One of the attractions of a scheme such as this is that for any given program there exists
some bloat factor for which supercompilation will terminate with exactly the same result
as it would have without work bounding. Therefore, the bloat factor can act as a user-
tuneable “knob” where the user can choose the trade-off between compilation time and
output program speed that they wish to make.

A number of variations on this scheme are possible:

• Fuel can be distributed to the children of split using some other heuristic. For
example, all the fuel could be given to the first State to be recursively supercompiled,
which would lead to a pure first-come-first-served scheme for fuel, equivalent to the
amount of fuel available being stored in a single global mutable variable.
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• With the addition of fuel, the order in which the children of split are traversed can
become important: several variations of traversal order (largest first, smallest-first,
closer-to-focus first) are possible.

• Taking traversal order a step further, it is possible to imagine changing the traversal
order of the supercompiler itself from a depth-first strategy to breath-first. Such a
supercompiler would burn as much fuel as possible close to the root of the process
tree, with deeper levels only getting what is left after those higher levels are done.

We have not investigated these possibilities in detail, nor do we regard this class of work-
bounding mechanisms as particularly promising avenues of further research. In our experi-
ence with this mechanism, we found that if programs are sufficiently slow to supercompile
that they require the use β-reduction limiting, then the performance of those programs
when supercompiled with limits enabled is rarely better than the performance of the
non-supercompiled program.

E.5 Supercompilation versus existing optimisations

There are many existing optimisations for functional programming languages. This sec-
tion considers how some of these existing optimisations relate to supercompilation. Due
to the presence of termination testing and generalisation, it is almost never the case that
we can say that supercompilation strictly subsumes another optimisation. However, we
can say if a supercompiler would achieve the given optimisation for a program where the
termination test does not force generalisation.

E.5.1 Simplification

Almost all compilers for functional languages include a simplification or “shrinking” pass
[Appel and Jim, 1997; Peyton Jones and Marlow, 2002] that achieves any obvious re-
ductions in the input program which shrink the program according to some size metric.
Examples of things done by a such a pass include β-reduction, inlining of let bound values
used at most once and let floating.

Relationship to supercompilation Due to the fact that a supercompiler incorporates
an evaluator, it will achieve all of these optimisations. However, due to the introduction
of h-functions, the output of a supercompiler will often include pending β-reductions not
present in the input program. For example, consider the trivial term Just x which oper-
ationally just allocates a heap-bound value and returns it—in our operational semantics,
evaluating this term takes 0 steps. The immediate output of supercompiling this term
will be:

let h0 = λy .Just y
in h0 x

Operationally, the supercompiled code:

1. Allocates a value λy .Just y on the stack

2. Pushes a stack frame applying the x argument

3. Dereferences h0 , finding a value
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4. Pops the x -application stack frame and enters the body of the function with y = x

5. Allocates a heap-bound value Just x and returns it

Each additional β-reduction introduced by supercompilation amounts to some extra over-
head: the sequence above amounts to 3 reduction steps in our operational semantics
(letrec, app and finally beta).

This overhead will be much lower than the above sequence of steps indicates in an
efficient machine implementation such as the eval-apply STG machine [Peyton Jones,
1992; Marlow and Peyton Jones, 2004]. Furthermore, these new reductions can often be
cleaned up by using a standard shrinking simplification pass just after supercompilation—
for example, this is the case for the output above because h0 is used linearly.

An example term where simplification may not help us would be (Just (f (f x)),Just (f (f x))),
which supercompiles to this term:

let h1 f x = Just (f (f x))
h0 f x = (h1 f x ,h1 f x)

in h0 f x

Although h0 can be inlined at its single use site, inlining h1 would not shrink the lambda
term because it would replace the two application nodes in each h1 f x with two applica-
tion nodes (f applied to x and f applied to f x ) and a use of the Just data constructor.

E.5.2 Inlining

Compilers for functional languages will often perform inlinings that do not manifestly
shrink the input, as long as the inlinings appear to be improvements according to some
heuristic. For example, a compiler might insist that the inlining not increase the input
size more than a fixed threshold, and for it to “worth it”. An example that passes both
this criteria might be the function f = λx . if x then Left x else Right x—inlining it at
an application site f True grows the syntax tree by only a few nodes, and is likely to be
beneficial because we can see that f scrutinises its argument.

Because these inlinings do not necessarily shrink the input, there is no guarantee that
applying them exhaustively will terminate. A simple example would be the following
program involving a recursive definition:

let f x = if x then f False else f True
in f True

Noticing that f scrutinises its argument, a compiler may inline to produce the following
program:

let f x = if x then f False else f True
in f False

After f once more, the compiler would clearly be in a loop.
However, the presence of recursive definitions is not required to expose the problems

with non-shrinking inlining. Since Haskell allows data types recursive in negative positions
we can encode Russel’s paradox in Haskell:

data Russel a = Rus (Russel → a)
foo ∶∶Russel a → a
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foo (Rus f ) = f (Rus f )
bar ∶∶ a
bar = foo (Rus foo)

A compiler may note that foo scrutinises its argument, so inlining it at the call site
foo (Rus foo) is likely to be beneficial. Unfortunately, performing that inlining leads to a
program identical to the initial one. Attempting to exhaustively apply this inlining thus
leads to non-termination of the compiler.

In practice, non-termination due to non-shrinking inlining is almost universally caused
by inlining recursive definitions rather than Russel-like definitions [Peyton Jones and
Marlow, 2002]. A pragmatic solution is therefore to avoid inlining any recursive definition,
which is sufficient to avoid non-termination in almost all cases.

Relationship to supercompilation In supercompilation, inlining is done aggressively
at every use of a function, regardless of how interesting (or otherwise) the context is.
This results in excellent specialisation at the cost of considerable code bloat, though the
memoisation will recover quite a lot of the loss of code sharing. Supercompilation explicitly
addresses questions about non-termination by incorporating a termination condition that
ensures that the supercompiler cannot diverge.

E.5.3 Case-of-case transformation

The case-of-case transformation is a non-shrinking reduction that can expose additional
information to the optimiser. A simple example of where this is beneficial is the fol-
lowing code corresponding to a version of fromEnum (not x) where both functions have
themselves been inlined:

case (case x of True → False;False → True) of True → 1
False → 0

The case-of-case transformation pushes the outer case (originating from fromEnum) into
the two branches of the inner case (originating from not):

case x of True → case False of True → 1;False → 2
False → case True of True → 1;False → 2

As a result of the transformation, we can evaluate the case expression originating from
fromEnum at compile time rather than at runtime.

In the above example, we immediately duplicated the branches of the outer case into
both of the inner cases. This could potentially cause considerable code duplication, though
in this case we are lucky in that almost all of the duplication can immediately be removed
by simple reductions.

In general, if the outer case branches are of size m and there are n inner branches
performing the case-of-case transformation will increase code size by O(m(n − 1)). The
more refined versions of the transformation that tend to be used in practice (such as that
in Santos [1995]), would instead transform as follows:

let j = λy .case y of True → 1;False → 2
in case x of True → j False;False → j True

The new bound variable j is called a “join point”. With this version of the transforma-
tion, code size only increases by a constant factor. The standard non-shrinking inlining

219



heuristics of Section E.5.2 can clean up the output by inlining the normal function j
wherever it seems beneficial to do so, achieving most of the same benefits as the version
of the transformation that greedily duplicates the branches of the outer case.

The case-of-case transformation can be seen as the dual of standard inlining in that it
corresponds to inlining a continuation so it can take advantage of the value “returned” to
it, rather than inlining a normal function so it can take advantage of the thunk applied
to it. This can be readily seen if we represent the original term in a continuation-passing
style, explicitly abstracting it over both the free variable x and the continuation k :

λx k .
letcont k0 y = case y of True → k 1;False → k 0
in case x of True → k0 False;False → k0 True

Relationship to supercompilation The case-of-case transformation is key to achiev-
ing good optimisation through supercompilation—in particular, map-map fusion relies on
it to deforest intermediate cons-cells. In keeping with supercompilation’s aggressive dupli-
cation of code through inlining, the case-of-case transformation is done very aggressively,
and does not attempt to share code in the way that the refined case-of-case transformation
above does.

E.5.4 Constructor specialisation

In constructor specialisation [Peyton Jones, 2007], versions of functions specialised to
particular constructor arguments are generated where an analysis can detect that:

• The corresponding parameters are scrutinised within the body of the function, so
the specialised code is likely to be faster than the unspecialised variant.

• There is at least one syntactic occurrence of a call to this function where that
constructor is used as an argument, so the specialised code is likely to be used (by
at least one caller).

Given a function like the following:

last [ ] = error "last"
last [x ] = x
last (x ∶ xs) = last xs

The compiler can see that in the recursive application of last (last xs), xs is guaranteed
to be a cons, and that last scrutinises that part of the argument. Thus, constructor
specialisation will produce a specialised function last spec, such that any call of the form
last (y ∶ ys) can be replaced with a call last spec y ys . After replacing all such calls, the
following optimised program can be obtained:

last [ ] = error "last"
last [x ] = x
last (x ∶ y ∶ zs) = last spec y ys

last spec y [ ] = y
last spec y (x ∶ xs) = last spec x xs
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Relationship to supercompilation Constructor specialisation is naturally achieved
via supercompilation, as the whole business of a supercompiler is to perform specialisation.
Supercompilation is a much more robust specialisation method than constructor special-
isation. For example, you might hope that the following program would be optimised so
that recursive calls to g do not need to scrutinise the free variable p:

f p = let g y = case p of (x , )→ g (p + y)
in Just (g 10)

Unfortunately, constructor specialisation is only capable of specialising functions on their
arguments, not their free variables, so we cannot obtain this optimised code:

f p = let g y = case p of (x , )→ g spec x (x + y)
g spec x y = g spec x (x + y)

in Just (g 10)
A closely-related optimisation (specific to Haskell programs) is that of type-class special-
isation, where function are specialised for the “dictionary” arguments used to implement
ad-hoc overloading via type-classes [Wadler and Blott, 1989]. These dictionaries are typ-
ically tuples of functions, not algebraic data, so constructor specialisation has no effect.
Supercompilation makes no distinction between functions and data so can achieve type-
class specialisation via the same mechanisms as it obtains constructor specialisation.

E.5.5 Strictness analysis

When compiling a non-strict functional language, it can be beneficial to detect functions
for which it is semantically safe to use call-by-value application rather than call-by-name
or call-by-need application. By using call-by-value application you can avoid the overheads
associated with heap-allocating thunks to implement suspended computations.

Strictness analysis [Mycroft, 1980] detects lambdas (and corresponding application
sites) for which it is safe to use call-by-value application. For example, most strictness
analysers (e.g. [Wadler and Hughes, 1987]) will identify fact as being strict in the n and
acc parameters:

fact acc n = if n ≡ 0 then acc else fact (acc ∗ n) (n − 1)
Since fact is strict in acc and n, it is semantically safe to use call-by-value application
for the corresponding arguments. In fact, GHC will not only use the results of strictness
analysis as an opportunity to perform call-by-value application, but will also use the
worker-wrapper transformation [Gill and Hutton, 2009] to unpack strict arguments. For
example, in the following program:

f p x = if x ≡ 0 then fst p else f (if odd x then (snd p, fst p) else p) (x − 1)
GHC will not only identify f as strict in p and x , but will also unpack the pair p, resulting
in the following code:

f (p1 ,p2 ) x = f worker p1 p2 x
f worker p1 p2 x = if x ≡ 0 then fst p else f (if odd x then (snd p, fst p) else p)(x − 1)
where p = (p1 ,p2 )

After optimisation, the “wrapper” f is inlined into f worker and we obtain an efficient
loop that avoids allocating new pairs in the heap:

f worker p1 p2 x = if x ≡ 0 then p1 else if odd x then f worker p2 p1 (x − 1)
else f worker p1 p2 (x − 1)
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Relationship to supercompilation Supercompilation is not always able to unpack
those arguments that would get unpacked by the combination of strictness analysis and
worker-wrapper transformation. We consider two situations.

First, the case of a series of non-recursive functions (these typically do not trigger the
supercompilation termination condition). For these functions, supercompilation tends to
cause an allocated thunk to reach the context in which it is used and consequently the
allocation of the thunk can be prevented. For example, in the following program:

let fst p = case p of (a, b)→ a
snd p = case p of (a, b)→ b
x = if b then (1,2) else (3,4)
g p = fst p + snd p

in g x

Supercompilation can straightforwardly reduce this to the following code:

if b then 3 else 7

Interestingly, this process is not impeded by the check (in call-by-need supercompilation)
that prevents duplication of thunks that are used non-linearly. The reason for this is that
non-linear uses of a variable x arise from expressions like (x , x) or λy . x that as well as
causing non-linearity, cause x to be non-strict as well.

The second situation to consider is where we have recursive functions which make
recursive calls with newly-constructed thunks as arguments. The first two examples in
this section (fact and f ) are both of this sort. Recall that the definition of f is as follows:

f p x = if x ≡ 0 then fst p else f (if odd x then (snd p, fst p) else p) (x − 1)
We consider the sequence of specialisations created when supercompiling the call f p0 x0 :

f p0 x0

let p1 = if odd x0 then (snd p0 , fst p0 ) else p0
x1 = x0 − 1

in f p1 x1

let p1 = if odd x0 then (snd p0 , fst p0 ) else p0
p2 = if odd x1 then (snd p1 , fst p1 ) else p1
x2 = x1 − 1

in f p2 x2

(Note the asymmetric treatment of the p and x parameters: this arises from the fact that
x is strictly evaluated by the enclosing if before the recursive call to f .)

At this point, the supercompiler will generalise, preventing specialisation on the bind-
ings for p0 and p1 . As a result, supercompilation is not able to remove the thunks
allocated to implement call-by-need evaluation of the pair arguments to f .

This is a general pattern: applications of non-strict arguments are by almost al-
ways accumulating arguments (these applications build a new thunk that refer to those
older thunks bound by unevaluated parameters). Supercompilation of non-strict func-
tions shares all the same problems as supercompilation of functions with accumulating
arguments, and fails to optimise well.

Although supercompilation is unable to replace strictness analysis, it can be comple-
mentary to it. For example, a compiler that uses a first-order strictness analyser can
increase the effectiveness of strictness analysis by supercompiling first, as supercompila-
tion will tend to specialise away higher-order arguments.
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