
Technical Report
Number 825

Computer Laboratory

UCAM-CL-TR-825
ISSN 1476-2986

Privacy engineering for social networks

Jonathan Anderson

December 2012

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2012 Jonathan Anderson

This technical report is based on a dissertation submitted July
2012 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Privacy engineering for social networks

Jonathan Anderson

In this dissertation, I enumerate several privacy problems in online social net-
works (OSNs) and describe a system called Footlights that addresses them. Foot-
lights is a platform for distributed social applications that allows users to control
the sharing of private information. It is designed to compete with the performance
of today’s centralised OSNs, but it does not trust centralised infrastructure to en-
force security properties.

Based on several socio-technical scenarios, I extract concrete technical problems
to be solved and show how the existing research literature does not solve them.
Addressing these problems fully would fundamentally change users’ interactions
with OSNs, providing real control over online sharing.

I also demonstrate that today’s OSNs do not provide this control: both user data
and the social graph are vulnerable to practical privacy attacks.

Footlights’ storage substrate provides private, scalable, sharable storage using
untrusted servers. Under realistic assumptions, the direct cost of operating this
storage system is less than one US dollar per user-year. It is the foundation for a
practical shared filesystem, a perfectly unobservable communications channel and a
distributed application platform.

The Footlights application platform allows third-party developers to write so-
cial applications without direct access to users’ private data. Applications run in
a confined environment with a private-by-default security model: applications can
only access user information with explicit user consent. I demonstrate that practical
applications can be written on this platform.

The security of Footlights user data is based on public-key cryptography, but
users are able to log in to the system without carrying a private key on a hardware
token. Instead, users authenticate to a set of authentication agents using a weak secret
such as a user-chosen password or randomly-assigned 4-digit number. The protocol
is designed to be secure even in the face of malicious authentication agents.

3

4

ACKNOWLEDGEMENTS

I gratefully acknowledge the sponsorship of the Rothermere Foundation. The
2nd Viscount Rothermere, first Chancellor of Memorial University of Newfound-
land, endowed the Rothermere Fellowship to aid Memorial students in their pursuit
of higher degrees in the United Kingdom. Without this generous support, I would
not have been able to pursue my PhD in Cambridge.

I am also grateful for the sponsorship I received from the Natural Sciences and
Engineering Research Council of Canada (NSERC). The US Defence Advanced Re-
search Projects Agency (DARPA) supported projects that I was involved with dur-
ing my PhD, although that work is not part of this dissertation.

I thank my supervisor, Frank Stajano, for his guidance and mentorship dur-
ing my PhD. You gave me freedom to explore my research horizons but kept me
grounded in reality when I needed to communicate those ideas or even when I
needed to Just Finish. I remember clearly the advice you gave me on the first day I
sat in your office; I hope to share it with my own students one day.

They say it takes a village to raise a child. My development as a researcher has
been immeasurably spurred by collaborations and conversations with many col-
leagues. Joseph Bonneau, Claudia Diaz and I collaborated on the work that grew
into this dissertation’s subject. Robert Watson once poked his head in my office
door to ask, “have you ever hacked OS kernels?”; the subsequent collaboration has
greatly influenced my thinking about operating systems and application confine-
ment. Luke Church helped open my eyes to alternative viewpoints on security, as
well as the existence of users as people rather than rhetorical devices. I am grateful
to co-authors Ben Laurie, Kris Kennaway, George Danezis, Sören Preibusch and all
of the CTSRD team. My thinking on both security and the nature of research has
been aided immeasurably by early advice I received from Ross Anderson, Bruce
Christianson and Saar Drimer. I have also received very helpful feedback on drafts
of this dissertation from Ross Anderson, Robert Watson, Joseph Bonneau, Anil Mad-
havapeddy, Richard Clayton, Wei Ming Khoo and Bjoern Zeeb. Thank you all.

I acknowledge my PhD examiners, Bart Preneel and Jon Crowcroft, who en-
gaged with and validated my work; our conversation was stimulating and idea-rich,
although when it comes to a viva voce examination, I believe that once is enough.

5

I would also like to thank my friends Tom & Julie and Will & Jackie, whose
footprints along the doctoral road helped me trace the path to my own PhD.

Thanks to Mom & Dad for buying me Lego and for having patience when I took
things apart and couldn’t put them back together again. You’ve always supported
my creative and academic pursuits, encouraged me to follow my dreams and be-
lieved that I could get there. Thank you.

I also thank Earl & Barbara and Russell & Cara for believing in me and encour-
aging us to go to Cambridge, even though it took Chrissy so very far away.

Finally, to Chrissy, my wife: thank you for your love, support, encouragement
and constant companionship. When I wasn’t sure I could finish this work, you were
there with words of comfort, strength and purpose. I can’t imagine a better friend.
I’ve loved every day we’ve spent together, and I look forward to loving every day
we spend together in the years to come.

Soli Deo gloria.

6

1
AUTHOR PUBLICATIONS

JOURNALS

[1] R. N. M. WATSON, J. ANDERSON, B. LAURIE, AND K. KENNAWAY. A taste
of Capsicum: practical capabilities for UNIX. Communications of the ACM,
55(3):97, Mar. 2012. doi:10.1145/2093548.2093572.

CONFERENCES

[2] J. ANDERSON, C. DIAZ, J. BONNEAU, AND F. STAJANO. Privacy-enabling
social networking over untrusted networks. In WOSN ’09: Proceedings of the
Second ACM Workshop on Online Social Networks. ACM, Aug. 2009. doi:10.
1145/1592665.1592667.

[3] J. ANDERSON AND F. STAJANO. Not that kind of friend: misleading diver-
gences between online social networks and real-world social protocols. In
SPW ’09: Proceedings of the Seventeenth International Workshop on Security Proto-
cols, Apr. 2009. URL: http://www.cl.cam.ac.uk/~jra40/publications/2009/
SPW-misleading-divergences.pdf.

[4] J. ANDERSON AND F. STAJANO. On storing private keys "in the cloud". In
SPW 2010: Proceedings of the Eighteenth International Workshop on Security Proto-
cols, Mar. 2010. URL: http://www.cl.cam.ac.uk/~jra40/publications/2010/
SPW-key-storage.pdf.

[5] J. ANDERSON, F. STAJANO, AND R. N. M. WATSON. How to keep bad papers
out of conferences (with minimum reviewer effort). In SPW 2011: Proceedings
of the Nineteenth International Workshop on Security Protocols, Mar. 2011. doi:
10.1007/978-3-642-25867-1_34.

7

http://dx.doi.org/10.1145/2093548.2093572
http://dx.doi.org/10.1145/1592665.1592667
http://dx.doi.org/10.1145/1592665.1592667
http://www.cl.cam.ac.uk/~jra40/publications/2009/SPW-misleading-divergences.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/SPW-misleading-divergences.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/SPW-key-storage.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/SPW-key-storage.pdf
http://dx.doi.org/10.1007/978-3-642-25867-1_34
http://dx.doi.org/10.1007/978-3-642-25867-1_34

AUTHOR PUBLICATIONS

[6] J. ANDERSON AND R. N. M. WATSON. Stayin’ alive: aliveness as an alterna-
tive to authentication. In SPW 2012: Proceedings of the Twentieth International
Workshop on Security Protocols, Apr. 2012. URL: http://www.cl.cam.ac.uk/
~jra40/publications/2012/SPW-stayin-alive.pdf.

[7] J. BONNEAU, J. ANDERSON, R. J. ANDERSON, AND F. STAJANO. Eight friends
are enough: social graph approximation via public listings. In SNS ’09: Pro-
ceedings of the Second ACM EuroSys Workshop on Social Network Systems, pages
13–18. ACM, Mar. 2009. doi:10.1145/1578002.1578005.

[8] J. BONNEAU, J. ANDERSON, AND G. DANEZIS. Prying data out of a so-
cial network. In Proceedings of the 2009 International Conference on Advances
in Social Networks Analysis and Mining (2009), pages 249–254, 2009. doi:
10.1109/ASONAM.2009.45.

[9] R. N. M. WATSON, J. ANDERSON, B. LAURIE, AND K. KENNAWAY. Cap-
sicum: practical capabilities for UNIX. In Proceedings of the 19th USENIX Se-
curity Symposium. USENIX Association, Aug. 2010. URL: http://portal.acm.
org/citation.cfm?id=1929820.1929824.

WORKSHOPS (NO PROCEEDINGS)
[10] J. ANDERSON. Psychic routing: upper bounds on routing in private DTNs.

In Hot Topics in Privacy Enhancing Technologies (HotPETS), 2011. URL: http:
//petsymposium.org/2011/papers/hotpets11-final9Anderson.pdf.

[11] J. ANDERSON, J. BONNEAU, AND F. STAJANO. Security APIs for online ap-
plications. In ASA-3: Third International Workshop on Analysing Security APIs,
July 2009. URL: http://www.cl.cam.ac.uk/~jra40/publications/2009/ASA-
security-apis-for-online-applications.pdf.

[12] J. ANDERSON, J. BONNEAU, AND F. STAJANO. Inglorious installers: security
in the application marketplace. In WEIS ’10: The Ninth Workshop on the Eco-
nomics of Information Security, pages 1–47, 2010. URL: http://www.cl.cam.ac.
uk/~jra40/publications/2010/WEIS-inglorious-installers.pdf.

[13] J. BONNEAU, J. ANDERSON, AND L. CHURCH. Privacy suites: shared pri-
vacy for social networks (poster). In SOUPS ’09: Symposium on Usable Privacy

8

http://www.cl.cam.ac.uk/~jra40/publications/2012/SPW-stayin-alive.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2012/SPW-stayin-alive.pdf
http://dx.doi.org/10.1145/1578002.1578005
http://dx.doi.org/10.1109/ASONAM.2009.45
http://dx.doi.org/10.1109/ASONAM.2009.45
http://portal.acm.org/citation.cfm?id=1929820.1929824
http://portal.acm.org/citation.cfm?id=1929820.1929824
http://petsymposium.org/2011/papers/hotpets11-final9Anderson.pdf
http://petsymposium.org/2011/papers/hotpets11-final9Anderson.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/ASA-security-apis-for-online-applications.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/ASA-security-apis-for-online-applications.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/WEIS-inglorious-installers.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/WEIS-inglorious-installers.pdf

AUTHOR PUBLICATIONS

and Security, 2009. URL: http://cups.cs.cmu.edu/soups/2009/posters/p13-
bonneau.pdf.

[14] L. CHURCH, J. ANDERSON, J. BONNEAU, AND F. STAJANO. Privacy stories:
confidence in privacy behaviors through end user programming (poster). In
SOUPS ’09: Symposium on Usable Privacy and Security, 2009. URL: http://
cups.cs.cmu.edu/soups/2009/posters/p3-church.pdf.

[15] R. N. M. WATSON AND J. ANDERSON. Connecting the dot dots: model check-
ing concurrency in Capsicum. In International Workshop on Analysing Security
APIs, July 2010. URL: http://www.cl.cam.ac.uk/~jra40/publications/2010/
ASA-capsicum-dot-dots.pdf.

[16] R. N. M. WATSON, P. G. NEUMAN, J. WOODRUFF, J. ANDERSON, R. J. AN-
DERSON, N. DAVE, B. LAURIE, S. W. MOORE, S. J. MURDOCH, P. PAEPS,
M. ROE, AND H. SAIDI. CHERI: a research platform deconflating hardware
virtualization and protection. In RESoLVE’12: Runtime Environments, Systems,
Layering and Virtualized Environments, Mar. 2012. URL: http://www.dcs.gla.
ac.uk/conferences/resolve12/papers/session1_paper3.pdf.

MAGAZINE ARTICLES

[17] R. N. M. WATSON, J. ANDERSON, B. LAURIE, AND K. KENNAWAY. Introduc-
ing Capsicum: practical capabilities for UNIX. ;login:—The USENIX Magazine,
35(6):7–17, Dec. 2010. URL: https://www.usenix.org/system/files/login/
articles/watson.pdf.

WHITE PAPERS, BLOG POSTS AND PRESS RELEASES

[18] J. BONNEAU AND J. ANDERSON. Think of the children [online]. Dec.
2008. URL: http://www.lightbluetouchpaper.org/2008/12/12/think-of-
the-children/.

[19] J. BONNEAU, J. ANDERSON, R. J. ANDERSON, AND R. CLAY-
TON. Democracy theatre on Facebook [online]. Mar. 2009. URL:
http://www.lightbluetouchpaper.org/2009/03/29/commentary-on-
facebooks-terms-of-service/.

9

http://cups.cs.cmu.edu/soups/2009/posters/p13-bonneau.pdf
http://cups.cs.cmu.edu/soups/2009/posters/p13-bonneau.pdf
http://cups.cs.cmu.edu/soups/2009/posters/p3-church.pdf
http://cups.cs.cmu.edu/soups/2009/posters/p3-church.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/ASA-capsicum-dot-dots.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/ASA-capsicum-dot-dots.pdf
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session1_paper3.pdf
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session1_paper3.pdf
https://www.usenix.org/system/files/login/articles/watson.pdf
https://www.usenix.org/system/files/login/articles/watson.pdf
http://www.lightbluetouchpaper.org/2008/12/12/think-of-the-children/
http://www.lightbluetouchpaper.org/2008/12/12/think-of-the-children/
http://www.lightbluetouchpaper.org/2009/03/29/commentary-on-facebooks-terms-of-service/
http://www.lightbluetouchpaper.org/2009/03/29/commentary-on-facebooks-terms-of-service/

AUTHOR PUBLICATIONS

[20] J. BONNEAU, J. ANDERSON, A. LEWIS, AND F. STAJANO. Attack of the zom-
bie photos [online]. May 2009. URL: http://www.lightbluetouchpaper.org/
2009/05/20/attack-of-the-zombie-photos/.

[21] J. BONNEAU, J. ANDERSON, F. STAJANO, AND R. J. ANDERSON. Facebook
consultation as much of a sham as their democracy. Light Blue Touchpa-
per, Apr. 2009. URL: http://www.cl.cam.ac.uk/~jra40/publications/2009/
facebook-press-release.pdf.

[22] J. BONNEAU, S. PREIBUSCH, J. ANDERSON, R. CLAYTON, AND R. J. AN-
DERSON. Comments on Facebook’s proposed governance scheme [online].
Mar. 2009. URL: http://www.cl.cam.ac.uk/~jra40/publications/2009/LBT-
facebook-governance.pdf.

[23] J. BONNEAU, S. PREIBUSCH, J. ANDERSON, R. CLAYTON, AND R. J. AN-
DERSON. The curtain opens on Facebook’s democracy theatre [online].
Apr. 2009. URL: http://www.lightbluetouchpaper.org/2009/04/17/the-
curtain-opens-on-facebooks-democracy-theatre/.

10

http://www.lightbluetouchpaper.org/2009/05/20/attack-of-the-zombie-photos/
http://www.lightbluetouchpaper.org/2009/05/20/attack-of-the-zombie-photos/
http://www.cl.cam.ac.uk/~jra40/publications/2009/facebook-press-release.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/facebook-press-release.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/LBT-facebook-governance.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/LBT-facebook-governance.pdf
http://www.lightbluetouchpaper.org/2009/04/17/the-curtain-opens-on-facebooks-democracy-theatre/
http://www.lightbluetouchpaper.org/2009/04/17/the-curtain-opens-on-facebooks-democracy-theatre/

CONTENTS

1 Author Publications 7

2 Introduction 22

2.1 A socio-technical problem . 24

2.1.1 Jack . 24

2.1.2 CBSA . 25

2.1.3 Facebook . 25

2.1.4 Application developers . 25

2.1.5 Sophie . 26

2.2 Contributions . 26

2.3 Publications . 28

3 Background 32

3.1 Definitions . 32

3.2 Problems . 35

3.2.1 Explicit expressions of user intent 35

3.2.2 Multi-faceted identity . 36

3.2.3 High availability . 36

3.2.4 Untrusted infrastructure . 37

3.2.5 Social applications . 37

3.2.6 Cost . 39

3.2.7 Linkability and anonymity . 39

3.3 Related work . 40

3.3.1 Encryption within OSNs . 40

3.3.2 Distributed social networks . 42

3.3.3 Solutions out of context . 45

11

CONTENTS

3.3.4 Privacy policy specification . 46

4 Antisocial networks 48

4.1 User data privacy . 48

4.1.1 Forced open: evolving defaults in privacy settings 49

4.1.1.1 Use of default settings 49

4.1.1.2 A history of changing defaults 50

4.1.2 Failed open: advertisers and private information 57

4.1.3 Left open: application access to private user data 58

4.2 Social graph privacy . 62

4.2.1 Public search listings . 63

4.2.2 Public listings model . 63

4.2.3 Graph data . 65

4.2.4 Approximations of graph characteristics 66

4.2.4.1 Reachability and shortest paths 66

4.2.4.2 Centrality and influence 68

4.2.5 Related work . 71

4.2.6 Summary . 72

4.3 Summary of contributions . 72

5 Sharable storage 74

5.1 Route of trust to root of trust . 77

5.2 Content-Addressed Store . 79

5.3 Immutable blocks . 81

5.3.1 Naming . 81

5.3.2 Structure . 82

5.3.3 Encryption . 84

5.4 Mutable names . 86

5.5 Filesystem . 90

5.5.1 A root by any other name . 90

12

CONTENTS

5.5.2 Cross-filesystem sharing . 91

5.5.3 Writing to shared filesystems 91

5.5.4 Garbage collection . 92

5.6 Cost . 92

5.7 Pre-cacheing and traffic analysis . 95

5.8 Covert communication . 98

5.8.1 Link hiding . 100

5.8.2 Message forwarding . 100

5.9 Related work . 103

5.10 Summary of contributions . 109

6 Distributed Social Applications 111

6.1 Model of computation . 112

6.1.1 Securing user data . 113

6.1.2 Social DRM . 114

6.1.3 Footlights . 116

6.2 Front end . 119

6.2.1 Unprivileged application context 119

6.2.1.1 Visual container . 119

6.2.1.2 Intra-application communication 121

6.2.1.3 Static content . 122

6.2.2 Privileged supervisor . 123

6.3 Back end . 127

6.3.1 Applications . 127

6.3.1.1 Distribution . 127

6.3.1.2 Initialisation . 129

6.3.1.3 File services . 130

6.3.1.4 Ajax service . 130

6.3.2 Confinement . 131

6.3.3 Static content . 133

13

CONTENTS

6.3.4 Kernel API . 133

6.3.4.1 Files and directories 135

6.3.4.2 Powerboxes . 138

6.3.4.3 Synchronous communication 139

6.3.5 Persistent key-value store . 139

6.4 Example applications . 141

6.4.1 Basic demo . 141

6.4.2 Malicious demo . 143

6.4.3 Tic-tac-toe . 143

6.4.4 Photos . 144

6.4.5 File manager . 147

6.5 Related work . 148

6.6 Summary of contributions . 150

7 Distributed authentication 151

7.1 Problems . 152

7.1.1 The assertion problem . 152

7.1.2 Weak secrets . 153

7.1.3 Location independence . 153

7.1.4 Limited trust . 154

7.1.5 Plausible deniability . 154

7.2 Principals . 154

7.2.1 Insiders . 154

7.2.2 Outsiders . 155

7.3 Protocols . 156

7.3.1 Trusted third party . 156

7.3.2 Semi-trusted storage . 157

7.3.3 Secret sharing . 158

7.3.4 Collision-rich password hashing 159

7.3.4.1 Large-M attack . 160

14

CONTENTS

7.3.4.2 Impostor identity disclosure attack 161

7.3.5 Collision-rich identity hashing 161

7.4 Passwords and probabilities . 162

7.4.1 Uniform distribution . 163

7.4.2 Non-uniform distribution . 164

7.4.3 Outsider dictionary attack . 167

7.4.3.1 Uniform password distribution 167

7.4.3.2 Non-uniform password distribution 170

7.4.4 Insider dictionary attack . 170

7.4.4.1 Uniform password distribution 172

7.4.4.2 Non-uniform password distribution 173

7.4.5 Summary . 173

7.5 Revocation . 176

7.6 Related work . 177

7.7 Summary of contributions . 181

8 Conclusions 182

8.1 Problems . 182

8.2 Footlights . 183

8.3 Future work . 186

8.4 Summary . 189

A Content Delivery Networks 190

B Bibliography 194

C Other References 220

15

LIST OF FIGURES

2.1 High-level overview of the Footlights social platform. 27

3.1 Direct and indirect access to user data. 38

4.1 Facebook privacy timeline . 52

4.2 A sampled graph Gk with k = 1. 64

4.3 Route lengths and reachability in university networks. 67

4.4 Route length approximation under k-sampling (Columbia). 67

4.5 Betweenness centrality in four university networks. 70

4.6 Attacker influence over messages in the Harvard network. 70

5.1 Footlights and its static storage layers. 75

5.2 A block with three links and 3,210 B of user data. 83

5.3 Binary representation of a CAS link. 84

5.4 Resolving a canonical name. 88

5.5 Bytes required to store photos in the Footlights filesystem. 93

5.6 Cost of operating the Footlights storage service. 94

5.7 Cost of basing Footlights on Amazon Web Services. 94

5.8 Embedding covert content in random padding. 99

5.9 Block upload/download is equivalent to multicast messaging. 101

5.10 Random padding viewed as spare message-carrying capacity. 101

6.1 Today’s OSN as an application platform. 115

6.2 Footlights applications run locally. 117

6.3 Applications are split into front-end and back-end components. . . . 118

6.4 An application’s front-end context. 120

6.5 Creating a UI element with the DOM and Footlights APIs. 121

16

LIST OF FIGURES

6.6 Communication over a multiplexed HTTP channel. 122

6.7 Two ways of displaying the user’s name. 126

6.8 A Footlights powerbox. 126

6.9 Sharing a directory with another user. 139

6.10 A basic demo application. 142

6.11 A Tic-Tac-Toe demo application. 144

6.12 A basic photo manager. 145

6.13 A basic file manager. 147

6.14 Sharing a directory with the File Manager application. 147

7.1 Password domain, distribution and equivalence classes. 163

7.2 Possible presentation of a random word from a small dictionary. . . . 164

7.3 Frequency of RockYou passwords v. a power law distribution. 165

7.4 Probability distribution of hM values for RockYou passwords. 166

7.5 Probability of successfully attacking a uniform distribution. 169

7.6 Probability of successfully attacking the RockYou distribution. 171

7.7 The RockYou distribution, sampled for several values of M. 174

7.8 Attacking the sampled RockYou distribution. 175

17

LIST OF TABLES

4.1 Basic statistics from early Facebook networks. 65

4.2 Increase in shortest-path route lengths caused by k-sampling. 68

4.3 Node compromises required to influence socially-routed messages. . 71

A.1 Pricing of Amazon S3 and CloudFront services. 191

A.2 Pricing of Google App Engine storage and content delivery. 191

A.3 Pricing of Rackspace storage and content delivery. 192

A.4 Pricing of NetDNA content delivery. 192

18

ABBREVIATIONS

ACL access control list; a specification of privileges granted to principals

API application programming interface

ASCII American standard code for information interchange; a scheme for encoding
characters required by the English language

CAS content-addressed store; a storage system that names files according to their
contents (see URN)

CDN content delivery network; a global network used to deliver data to geograph-
ically disparate locations with low latency

DES data encryption standard; an historic block cipher

DHT distributed hash table; a CAS spread across a P2P network

DOM document object model; an API for interacting with web pages

DRM digital rights management; a set of techniques for preventing users from
copying content (e.g. games, music, videos)

DSL digital subscriber line; a technology for home Internet service

DTN delay tolerant network; a network that does not require end-to-end connec-
tivity between hosts in order to forward messages

FBML Facebook markup language; formerly used by Facebook applications to de-
scribe web content and user information

FQL Facebook query language; a SQL-like language used by applications to re-
trieve information about users from Facebook

HTTP hypertext transfer protocol; used for communicating web content

HTTPS HTTP over SSL; a security extension to HTTP

IP internet protocol; the protocol used to communicate among computers on the
internet or the address used for this communication

19

LIST OF TABLES

IPC inter-process communication; an explicit protocol for communication among
programs that are separated from each other and therefore cannot use implicit
protocols (e.g. function calls)

JAR Java archive; a format for bundling Java programs and other application con-
tent into a single file

JSON JavaScript object notation; a widely-used scheme for encoding data

JVM Java virtual machine; software that runs programs written in the Java pro-
gramming language

MAC mandatory access control; an enforcement mechanism that allows system ad-
ministrators to specify system security policies

MLS multi-level security; a MAC policy that prevents confidential information
from flowing to unauthorised principals

NFS network file system; a file system shared between users on a network and
hosted on a centralised server

OS operating system; low-level system software that mediates application access
to underlying resources such as physical hardware

OSN online social network

P2P peer-to-peer; a network topology that has no central control point

PDF Portable Document Format; a file format for document interchange

PET privacy enhancing technology

PGP pretty good privacy; a protocol for asymmetric-key encryption and trust man-
agement

PIN personal identification number; a short, numeric password

RSA an asymmetric cryptography scheme developed by Rivest, Shamir and Adle-
man [209]

SQL structured query language; a language for interacting with databases

SSL secure sockets layer; a technique used for securing a variety of internet proto-
cols, including HTTP; now named TLS

20

LIST OF TABLES

TCB trusted computing base; the portions of a system that users and applications
must trust; see the definition of “Trust” on page 34

TLS transport layer security; the modern replacement for SSL

UI user interface; a channel through which a user and system communicate, e.g.
visual “windows” manipulated with a keyboard and mouse

UID user identifier; a string that uniquely identifies a user

URI uniform resource identifer; a standardised format for naming network-accessible
objects

URL uniform resource locator; a URI that describes an object’s location (e.g. a file
name on a particular Web server)

URN uniform resource name; a URI that names an object by an intrinsic property
of the object (e.g. its content)

UX user experience; a holistic view of user interaction with a system

21

2
INTRODUCTION

“ I wanted to create an environment where people could share whatever
information they wanted, but also have control over whom they shared
that information with.

Mark Zuckerberg, September 2006 [310]”Today, hundreds of millions of people communicate via Online Social Networks
(OSNs) such as Facebook, Google+ and Renren. These services allow users to ex-
press personal attributes and relationships, as well as communicate with other users
in front of a virtual audience. Users can manage events, sending invitations to them,
hosting discussion before them and providing a repository for photographs dur-
ing and after them. They can share photographs and tag them with locations and
identities, often assisted by OSN-provided facial recognition. They can “check in”
to locations, declaring their presence and that of others with them; this facilitates
spontaneous offline meetings and enriches users’ daily routines. Social applications
enrich the experience by integrating others’ activities: “your friends have read this
article, would you like to read it too?”

Hundreds of millions have flocked to these services, sharing private information
with the services and their friends. In some cases, however, their information has
been shared more widely than they intended. Private information has been shared
with third-party applications and with advertisers, sometimes against the expressed
intentions of users. On Facebook, advertisers can use “Sponsored Stories” to remind
my friends again and again that I once expressed positive sentiments about a chain
of taco restaurants. Those same “friends”, who include my family, co-workers and
possibly my future employers, can see things I’ve done and places I’ve been, some-
times without my involvement or permission: by default, a single authorisation
gives friends the power to tell each other where I am. Unless I take steps to prevent

22

it, all of my “friends” can read things that I once said within a private context, organ-
ised in a near-public timeline that stretches back to the day of my birth. Applications
used by my “friends” can access information that I shared with Facebook on the un-
derstanding that it would be visible to no-one. The developers of those applications
can harvest my personal information and sell it to third-party data aggregators. As
Chapter 4 will show, some already have; there is no technical protection to stop this
behaviour, nor is there a technical remedy once it is done.

This dissertation considers these problems and more, then demonstrates that the
status quo is not the only way of doing online social networking. While it is not a
trivial task — as Section 3.3, “Related work” will show — it is possible to build on-
line social networks that do not require users to give up their privacy, place absolute
faith in service providers or suffer from peer-to-peer performance penalties. Users
can rely on centralised infrastructure to provide the availability they expect without
trusting it to enforce their intentions for sharing.

The thesis of this dissertation is that practical online social networking is possi-
ble without mandatory privacy or performance penalties: users can choose their
own privacy–performance trade-offs. I demonstrate this by describing a hybrid
centralised–distributed OSN called Footlights that improves on the state of the art
in user data protection. Footlights allows users to choose their own privacy and
performance trade-offs and enjoy the benefits of social applications. Its prototype
implementation is open-source, available under the permissive Apache License [24]
from https://github.com/trombonehero/Footlights.

This technical contribution allows users to adopt a new kind of OSN with a new
business model, one in which one US dollar per user-year of direct costs must be re-
couped via privacy-preserving advertising, direct payment or some other method.
However, I do not claim to have “solved” the complex socio-technical issue of pri-
vacy in social networking. Instead, I provide a technical system that allows users to
more effectively direct the flow of their private information according to their own
social and economic choices.

23

https://github.com/trombonehero/Footlights

CHAPTER 2: INTRODUCTION

2.1 A SOCIO-TECHNICAL PROBLEM

“There’s no technical solution for gossip.

Matthew Ringel, LiveJournal user, 2003 [352]”Many approaches can be taken to the study of privacy in online social networks.
This dissertation will not explore legal or ethical dimensions of the problem, nor will
it propose technical “quick fixes” to social problems. As I have argued elsewhere,
the attempt to impose simplistic technical models on complex social systems has
caused some of the current mismatches between the behaviour of OSNs and users’
expectations [3]. This dissertation begins by considering mismatches between users’
expressions of sharing intent and the actual behaviour of online social networks.
These mismatches are illustrated with several real-life scenarios. In these scenarios,
technology alone would not solve the problem, but there is a technical part to be
played in the socio-technical system.

2.1.1 JACK

An early example of divergence between user expectation and reality comes
from the blogging site LiveJournal. In 2003, the website SecurityFocus reported that
security issues with the site had led to private information becoming public [352]. In
one particular example, a user referred to as “Jack” experienced an account compro-
mise, in which an attacker re-posted private LiveJournal entries publicly, revealing
sensitive information about Jack’s friends, including a discussion with one friend
about her relationship with her employer. Jack’s account may have been compro-
mised by a password-sniffing attacker — at the time, LiveJournal authentication was
unencrypted — but one of Jack’s friends may have simply guessed Jack’s password.
Technical measures can be used to prevent the former scenario: it has become an in-
dustry standard for websites to provide their users with encrypted connections, as
announced by Twitter [338] and Google’s search [324] and GMail [356] teams, even
if it is not always enabled by default as on Facebook [299]. The latter compromise
scenario is more complicated, however: technology can provide additional authen-
tication factors such as hardware tokens or personal knowledge questions, but their
use is subject to non-technical considerations such as cost and shared experience.

24

A SOCIO-TECHNICAL PROBLEM

2.1.2 CBSA

There is less causal ambiguity in the 2007 case of Canada Border Services Agency
(CBSA) recruits whose photographs leaked from Facebook, as reported by the Cana-
dian Broadcasting Corporation [269, 268]. In that case, photos and comments were
posted on Facebook which were described by the Minister of Public Safety as “sim-
ply not acceptable”. There is no evidence of technical failure on the part of Facebook:
it seems that the photos were simply posted with permissive access controls. In this
case, better technology may not have changed users’ decisions to make the com-
ments or post the photos, but it may have been able to better capture users’ intent as
to how widely that content should be shared. However, the decision to deploy such
technology instead of permissive default settings is not a purely technical decision;
it is grounded in the economics of the OSN business.

2.1.3 FACEBOOK

The opposite problem can be observed in the next scenario. In 2009, Facebook
disregarded the explicitly-expressed privacy preferences of its users and decided
to make all users’ friend lists public [302]. Since “the overwhelming majority of
people who use Facebook already make most or all of this information available to
everyone” — the default setting — the change only affected those users who had
taken explicit action to express restrictive privacy preferences and limit the shar-
ing of their friend lists. The subsequent user backlash led to Facebook providing a
new visibility control that allowed friend lists to be hidden from other users’ view,
but the information is “still publicly available [...] and can be accessed by appli-
cations” [296]. This case features a simple technical change: a handful of privacy
controls were disabled. The controversy came about because Facebook made the
change against the express wishes of those affected by it: those whose information
is now shared publicly.

2.1.4 APPLICATION DEVELOPERS

In 2010, the Wall Street Journal found that several developers of popular so-
cial applications were transmitting user information to third-party advertisers and
commercial data aggregators [282, 275]. In this case, applications contravened Face-
book’s terms of service, but the contravention was not rectified until the Wall Street
Journal made the application behaviour public. This leakage of user information
beyond the intent of the OSN came about because of the trust structure of today’s

25

CHAPTER 2: INTRODUCTION

OSNs: third-party application developers must be trusted with private data in order
for applications — as they are currently structured — to perform useful tasks.

2.1.5 SOPHIE

The final scenario is that of “Sophie”, a person with whom I have corresponded
personally. Sophie is technically apt, a facile computer user with a PhD in science,
but she does not trust centralised online services with her personal data. As a re-
sult, she cannot take advantage of the services or social applications offered by cen-
tralised OSNs, nor can she converse easily with those who use OSNs as their pri-
mary mode of communication.

2.2 CONTRIBUTIONS

The scenarios in the previous section provide windows into a complex socio-
technical system. In this dissertation, I do not attempt to “solve” social problems by
pressing them into the mold of graph theory or other easily-expressed mathemat-
ical and computer science concepts. Rather, in Chapter 3, I extract from the above
scenarios a set of technical problems whose solutions would allow users to change
the balance of the overall complex system that is online privacy. In this section, I
outline my solution to these problems.

In this dissertation, I demonstrate some of the privacy problems with today’s
online social networks and show how social networking could be done differently,
providing solutions to the problems enumerated in Section 3.2 and potentially al-
lowing users to change the outcomes they would experience in the real-life scenarios
of Section 2.1. I show in Section 3.3 that existing proposals in the research literature
do not address all of these problems.

In Chapter 4, I show that there is a cost to today’s nominally free services. Pri-
vacy is sacrificed, both for individual users (Section 4.1) and the social graph as
a whole (Section 4.2). OSNs dictate terms and conditions under which they can
change their users’ implicit privacy contract, pushing users into ever-less-private
social interaction (§4.1.1). Services have a history of leaking users’ private infor-
mation both to advertisers (§4.1.2) and to application developers (§4.1.3). OSN op-
erators unilaterally decide that some personal information must be visible to the
world, driving growth but sacrificing privacy for all participants in the social graph
(Section 4.2).

26

CONTRIBUTIONS

User's Local
Computer

Footlights

Application
(untrusted)

Distributed
Authentication

(Ch 5)

Application Platform (Ch 4)

Sharable Storage (Ch 3)

Application
(untrusted)

Commodity Storage
Provider (untrusted)

Figure 2.1: High-level overview of the Footlights social platform.

In order to address the problems in Section 3.2, I present Footlights, a privacy-
enabling platform for untrusted social applications that does not trust centralised
infrastructure. Not only are applications and intrastructure untrusted, even core
parts of the system — both software and protocols — are open for inspection and
verification. Users do not even need to trust Footlights itself, as will be discussed in
the definition of “Trust” on page 34.

The name “Footlights” comes from Goffman’s theatrical analogy for social inter-
action [115], itself based on Shakespeare’s declaration that “all the world’s a stage,
and men and women merely players” [215]. In a theatre, footlights define the con-
ventional physical boundary between the stage and the audience; in my work, the
Footlights system helps users to create performances or definitions of self which
are displayed to an audience chosen by the performer. Some users are invited to
Goffman’s metaphorical backstage, to see behind the scenes of differing or contra-
dictory performances, but those seated in the audience should not be able to see any
evidence that the performer is hanging from wires or that the backdrop is made of
cheap black stuff. This analogy is the source of the name Footlights, but it should
also be seen as homage to the Cambridge Footlights, a real-world theatrical ensemble
that has launched some of the world’s leading acting careers.

Footlights uses an architecture that is radically different from today’s OSNs, yet
still practical. It provides the features afforded by today’s OSNs and competes with
their performance but does not impose their privacy costs. A high-level diagram of
Footlights is shown in Figure 2.1.

27

CHAPTER 2: INTRODUCTION

The Footlights storage substrate provides private, scalable, sharable storage us-
ing untrusted servers (Chapter 5). Under realistic assumptions, the direct cost of
operating this storage system is less than one US dollar per user-year. It is the
foundation for a practical shared filesystem, a perfectly unobservable communications
channel and a distributed application platform.

The Footlights application platform (Chapter 6) allows third-party developers to
write social applications without direct access to users’ private information. Dis-
tributed applications run under a very different model of computation from today’s
OSNs: applications execute in a confined environment under the user’s control. The
application security model is private by default: applications can only access user
information with user consent. This consent is inferred from natural user actions,
rather than “cancel or allow” prompting. Within this constrained environment, the
platform provides traditional Operating System services to applications, allowing
them to perform useful computation; I demonstrate how practical applications can
be written for this platform.

The security of Footlights user data is based on cryptography, so no centralised
service must be trusted to enforce users’ security policies. Unlike existing ap-
proaches to cryptographic authentication, however, Footlights does not require
users to remember strong passwords or carry private keys on hardware tokens. In-
stead, I leverage the distributed social system: users authenticate to a set of authen-
tication agents using a weak secret such as a user-chosen password or a randomly-
assigned 4-digit number (Chapter 7). Even in the face of malicious authentication
agents guessing these weak secrets, users can choose parameters for the authentica-
tion scheme to provide a chosen level of security.

2.3 PUBLICATIONS

In the course of my PhD research, I have co-authored nine peer-reviewed papers,
one in Communications of the ACM. I have also co-authored seven contributions to
workshops and poster sessions without proceedings, one magazine article and six
contributions to the Security Group blog, Light Blue Touchpaper.

I started my PhD in 2008 examining “virtual worlds”, of which online social
networks are a subset. Early on, I began examining the security of OSNs and was
joined by Joseph Bonneau in work that led to several publications. In 2008, we
detailed numerous privacy failings in a social network designed for children in a

28

PUBLICATIONS

posting to the Security Group blog [18]. In 2009, we used data from Facebook in
two publications: “Eight friends are enough”, a study of the information leaked by
Facebook’s Public Listings feature published at the Second ACM EuroSys Workshop
on Social Networks Systems (SNS) [7] and “Prying Data out of a Social Network”, a
summary of various methods that we used to extract information from the service,
published at the 2009 International Conference on Advances in Social Networks
Analysis and Mining (ASONAM) [8]. I have based much of Chapter 4 on the work
that I did for these papers: the collaborative work that we undertook in extracting
data from the social network, the individual work that I did exploring the Facebook
application API and the individual analysis that I performed approximating two
characteristics of the publicly-sampled social graph (Section 4.2).

During this time I also co-authored several Light Blue Touchpaper articles on
the subject of Facebook’s proposed new governance models with Joseph Bonneau,
Sören Preibusch, Ross Anderson and Frank Stajano [19, 21, 22, 23]. These were col-
laborative works, in one case driven by a request from the Open Rights Group to
provide comments on their behalf, and Joseph Bonneau was the lead author. I also
assisted Joseph, along with Andrew Lewis and Frank Stajano, in testing the revoca-
tion properties of various OSNs’ content delivery networks, which was discussed
in a 2009 post on Light Blue Touchpaper [20].

Based on all of this study, I published a paper at the 2009 International Work-
shop on Security Protocols (SPW), describing some of the misleading divergences
between online and real-world social networks and proposing design principles to
mitigate the problems in existing OSNs [3]. I developed these ideas further into a
software architecture and partial prototype that was published later in 2009 at the
second ACM Workshop on Social Networks (WOSN) [2]. This work was the prod-
uct of many collegial debates with co-authors Claudia Diaz, Joseph Bonneau and
Frank Stajano. This architecture would eventually develop into Footlights, a system
that I have been building ever since.

As the Footlights architecture developed, I explored ideas around its perfectly
unobservable communications channels at the 2011 Hot Topics in Privacy Enhanc-
ing Technologies (HotPETs) workshop [10]. This work has influenced my thinking
about the covert channels described in Chapter 5, but its material has not been di-
rectly included in this dissertation.

I developed the ideas in Chapter 7 after a conversation with Sonja Buchegger of
the PeerSoN project [65] in which we discussed PeerSoN’s need for a form of au-
thentication that was reliant neither on centralised infrastructure nor users’ ability

29

CHAPTER 2: INTRODUCTION

to memorise or carry long private keys. This work was published at the 2010 In-
ternational Workshop on Security Protocols (SPW) [4]; Chapter 7 is an expansion of
these ideas with a more in-depth evaluation.

I discussed the Footlights security API in a presentation, co-authored with
Joseph Bonneau, given at the third annual Analysing Security APIs workshop
(ASA) [11]. I explored the security and privacy differences between OSNs and tra-
ditional application marketplaces, assisted by Joseph and Frank Stajano, at the 2010
Workshop on the Economics of Information Security (WEIS) [12]. Neither of these
papers have been directly included in the dissertation, but they have influenced
Footlights design decisions detailed in Chapter 6.

I have also collaborated with Luke Church and Joseph Bonneau to produce two
posters for the 2009 Symposium on Usable Privacy and Security. One of these
posters, of which Luke was the primary author and I was the secondary author,
focused on applying user programming techniques to the problem of privacy pol-
icy specification and included a pilot user study [14]. The other, of which I was the
third author, described the idea of “privacy suites”, expert-supplied default privacy
settings that could be applied by OSN users [13]. Neither of these posters’ material
is included in this dissertation.

I also published other papers during my PhD that have little to do with online
social networks directly but which have influenced my thinking about security is-
sues generally.

In 2010, I joined Robert Watson’s Capsicum project, exploring how the capa-
bility model of security could be applied to traditional UNIX operating systems.
This work was published at the 2010 USENIX Security Symposium, where it won
a Best Student Paper award [9]. We also summarised the work for USENIX ;login:
magazine [17] and explored a particular security API problem that we encountered
at the fourth Analysing Security APIs workshop [15]. This work was collabora-
tive in nature, but Robert Watson was the initiator, chief architect and primary pro-
grammer for the project. We have since merged Capsicum into mainline FreeBSD,
and Capsicum has been featured as a research highlight in the March 2010 issue of
Communications of the ACM [1]. The constraints imposed on Capsicum by current
hardware architectures led to the four-year CTSRD project to re-consider aspects
of hardware design that affect security. So far, the CTSRD project has resulted in
one workshop paper describing a new CPU architecture called CHERI (Capability
Hardware Enhanced RISC Instructions); this was presented at the 2012 Runtime
Environments, Systems, Layering and Virtualized Environments (RESoLVE 2012)

30

PUBLICATIONS

workshop [16]. Although it is not directly included in this dissertation, my work
on Capsicum and CTSRD have significantly influenced my thinking on application
confinement, which is a major focus of Chapter 6.

I have also published two additional papers at the International Workshop on Se-
curity Protocols (SPW). The first, co-authored in 2011 with Frank Stajano and Robert
Watson, considers how automated analysis of citation graphs might help members
of Programme Committees to better focus their time when reviewing submissions
to conferences and journals [5]. The second, co-authored with Robert Watson and
presented at the 2012 workshop, describes modifications to the Kerberos protocol
that could allow users to eschew traditional authentication mechanisms in certain
situations, instead presenting evidence to authentication servers that the user is “a
person who is currently alive” [6].

31

3
BACKGROUND

This dissertation assumes a general computer science background for the reader.
In addition to this background, readers will require a functional familiarity with
cryptographic hash functions, symmetric-key encryption and public-key encryption
and signatures. Readers unfamiliar with these cryptographic primitives may wish
to consult Katz and Lindell’s Introduction to Modern Cryptography [140] or Menezes,
van Oorschot and Vanstone’s Handbook of Applied Cryptography [174].

Beyond these cryptographic primitives, the reader will find in this chapter some
definitions of terms (Section 3.1) used throughout the dissertation and an enumer-
ation of specific technical problems (Section 3.2) to be addressed by any system
attempting to supplant today’s online social networks (OSNs). As stated in Sec-
tion 2.1, addressing these problems will not “solve” privacy, but solutions would
provide a technical framework in which users can change the parameters of the
socio-technical system that is privacy in online social networks.

Finally, I provide an overview of some of the related work in this area (Sec-
tion 3.3) and show why it does not solve the problems in Section 3.2.

3.1 DEFINITIONS

This section defines several terms which appear frequently in the discourse
around privacy and online social networks. Many of these terms will figure in this
dissertation, but I begin with a term that purposefully does not.

Social media A term that confuses meaning by conflating several scarcely-related
concepts while excluding very-related others. Common use of the phrase “social
media” encompasses Twitter and Facebook, which have radically different usage
models, but not blogs and e-mail, which are both media and social in nature. Instead
of this phrase, I use the more specific terms defined below.

32

DEFINITIONS

Personal broadcast medium A communications medium which affords every
user the ability to broadcast to a large, potentially global audience. This includes
online social networks and microblogs as well as more traditional media such as
blogs, mailing lists, Internet Relay Chat (IRC) and Usenet. Such media often pro-
vide a way to initiate a two-way conversation with readers, but their primary usage
is broadcast and “everyone has a microphone” [349].

Online Social Network (OSN) An online experience that centres around the shar-
ing of digital artefacts such as public messages (“wall” posts), photographs and
group events. Users can discuss and collaboratively edit the experience according to
an access control scheme that is based on stable identities. This definition excludes
most blogs and microblogs, but includes those blogs that allow users to comment
on articles based on stable identities and permit the limiting of viewership.

Facebook The current OSN market leader. This dissertation will describe issues
around OSNs abstractly, but many examples will be drawn from Facebook. Steve
Jobs overstated the case only slightly when he said, “we talk about social networks
in the plural, but I don’t see anybody other than Facebook out there. Just Facebook,
they are dominating this” [272]. Facebook is the dominant player in the market,
so the way that it treats user data is more significant than the ways that other net-
works do, and the practices that have fueled its explosive growth deserve particular
scrutiny. Where Facebook’s practices are unique or of particular interest, I highlight
them as such, but wherever possible, I describe the behaviour of Facebook and its
competitors abstractly, using the term OSN.

Privacy Privacy is a complex social good with no single agreed definition. From
Warren and Brandeis’ “right to be let alone” [228] to the German constitutional
court’s “right to informational self-determination” [133], there are varying interpre-
tations of what privacy means and how it interacts with other rights. When does
my right to informational self-determination override others’ right to free speech?
These legal questions have not been uniformly settled across jurisdiction and are
well outside my domain of expertise. Instead of considering them further, therefore,
this dissertation focuses on aspects of the problem where clear technical contribu-
tions can be made: keeping a user-driven distinction between private and public
information, as defined below.

33

CHAPTER 3: BACKGROUND

Public Accessible by any person or computer without special authorisation. This
includes information that is restricted to users of a particular system if no authori-
sation is required to become a user. It also includes information that is technically
available but labelled with a restrictive information-flow label, e.g. covered by a
robots.txt file [323] or available under contractual restrictions.

Private Information that a user intends to be non-public. This definition does not
require users to explicitly label information as private. The question of intent also
steers clear of legal definitions of Personally Identifiable Information (PII) or Per-
sonal Data, most of which were written in a time before Big Data and the ability to
identify users from an “anonymised” social graph as shown by Backstrom et al. [35],
Narayanan et al. [188, 189] and Wondracek et al. [233].

User It is sometimes said in coffee breaks at academic security workshops that
“social networks are for people who don’t care about privacy” or that “they get
what they ask for”. This has not been the finding of research by Acquisti, boyd,
Gross, Krishnamurthy and others into actual use of privacy settings over time [26,
59, 125, 147], nor has it been my experience in speaking with OSN users. For the
purposes of this dissertation, I assume that the User is a person who uses an OSN’s
information-sharing capabilities and who may choose to create Private information
(as defined above).

Trust I adopt the definition of trust recorded by Christianson and Harbison: to say
that A trusts B is to say that “B has the ability to violate A’s security policy”, or more
intuitively, “B has the power to get A sacked” [74]1. In particular, trust is about
power and choice rather than truth: a user may choose or be forced to trust an un-
trustworthy system or a system may be designed around untrusted parties who are
in fact trustworthy. Trust is also separable from reliance: a user may rely on a server
to perform a service, but that need not imply trust if the user can independently ver-
ify that the service was performed correctly. This definition of trust is quite different
from that implied by the famous Russian proverb, “trust but verify” [320].

1Christianson credits Robert Morris with introducing the security policy definition at the first
Security Protocols Workshop in 1993 [73]. The “getting-sacked” variant, in inverted form, is cred-
ited by Ross Anderson to another comment made by Roger Needham at the same workshop [29].
Unfortunately, the transcripts of this workshop have been lost.

34

robots.txt

PROBLEMS

Honest but curious A model of behaviour for a protocol participant who is relied
on but not trusted. This model was first introduced under a different name in 1987
by Goldreich, Micali and Wigderson [116]. They described a “passive adversary”
who would perform a protocol correctly but “try to compute more than their due
share of knowledge”. In 1995, Beimel and Chor coined the label above: they mod-
eled participants in a secret-sharing scheme as honest (“they follow their protocols”)
but curious (“after the protocol has ended some of them can collude and try to gain
some partial information on the secret”) [38].

3.2 PROBLEMS

Based on these definitions, I define several technical problems to be solved by a
privacy-enabling online social network. Solving these problems will not guarantee a
different outcome for the subjects of all the scenarios in Section 2.1, but it will allow
the users in those scenarios to realise more desirable outcomes.

3.2.1 EXPLICIT EXPRESSIONS OF USER INTENT

In today’s OSNs, user actions can have hidden dependencies, using the Cognitive
Dimensions nomenclature described by Blackwell, Green et al. [50, 122]: clicking a
button may both express a sentiment (e.g. “I like this”) and confer invisible privilege
to the author of the application containing the button. The fact that the user clicked
the button may be visible to many more people than the user would have chosen
to reveal the fact to. The application author may be permitted to alter the user’s
profile and advertise to their “friends”. By contrast, a privacy-enabling OSN should
seek clear and explicit expressions of user intent. Service providers, advertising
platforms and third-party application developers should only see a user’s private
information if the user expresses a decision to share it.

These expressions of intent may be — and in Footlights, are — translated into
cryptographic operations, but users should not need a grounding in cryptogra-
phy or computer security to use the system. Wherever possible, users’ sharing in-
tent should be inferred transparently, using existing user actions rather than new
prompts or dialogues.

A solution to this problem would change the outcome of scenario “Facebook” on
page 25, in which users’ private information was made public, whether automati-
cally through permissive defaults or accidentally through a user interface that failed

35

CHAPTER 3: BACKGROUND

to capture user intent.

3.2.2 MULTI-FACETED IDENTITY

In the case of the CBSA recruits whose private photos leaked to the public (sce-
nario “CBSA” on page 25), a different outcome may have been experienced if the
recruits were better able to segregate their personal and professional online per-
sonas. Today’s OSN users may segregate different facets of their identities by using
different OSNs for different roles [346], but difficulties arise when there is overlap
between friends, family, co-workers, supervisor and supervisees.

Instead of a coarse partitioning between OSNs, a privacy-enabling OSN should
support a fine-grained expression of user identity: users should be able to express
different facets of an online persona within different contexts. Users must be able to
assert these facets of identity — e.g. “I post this comment in response to that photo”
— without leveraging trusted authentication infrastructure or requiring users to
carry hardware cryptographic tokens. Furthermore, a user’s various “audiences”
should not be able to infer the existence of other audiences or content, as observed
by Greschbach et al. [123].

Multi-faceted identity must not impose a burden of explicit key management on
users: cryptography must be “under the hood”, implemented as a mapping from
higher-level concepts such as “users” and “accounts”.

3.2.3 HIGH AVAILABILITY

When users share content with other users, it must be reliably stored and readily
accessible to authorised users. Content must be available in terms of both uptime
and access time. It should be possible for future OSNs to achieve the elusive “five
nines” of uptime (99.999% uptime, or about five minutes of downtime per year). It
should be possible for users to store content indefinitely, though perhaps at a cost
(see problem “Cost” on page 39).

Users must also be able to access content quickly: storage should be accessible
via caches or high-throughput Content Delivery Networks (CDNs), not dependent
on the upload speeds of residential DSL lines. The time required to access content
should scale linearly with the size of the content, not with the total size of all content
in the system.

If a privacy-enabling OSN does not provide these availability properties, the

36

PROBLEMS

majority of users who require and expect their OSN to “Just Work” will stay away.
Users like Sophie who are willing to use the new network would therefore lose any
benefits of cover traffic that might come from a large user base, discouraging even
privacy-motivated individuals from adopting the service.

3.2.4 UNTRUSTED INFRASTRUCTURE

In a privacy-enabling OSN, the providers of software and infrastructure should
not be trusted. According to the definition of “Trust” on page 34, providers may
be relied on to perform a service and provide availability, but they should not be
be trusted to implement users’ security policies. Integrity properties, including
those provided by software, should be verifiable. Confidentiality claims should be
grounded in something other than trust in a provider.

Solving this problem would allow a privacy-enabling OSN to change the out-
come for the scenario subjects above who were upset by Facebook’s decision to
declare some private information as public (scenario “Facebook” on page 25). In
a privacy-enabling OSN, it would not be within the power of the provider to make
this policy change, since the provider is not trusted to enforce the user’s confiden-
tiality policy.

3.2.5 SOCIAL APPLICATIONS

Today’s online social networks are not merely repositories of data: they are plat-
forms that allow developers to create social applications. Future privacy-preserving
OSNs should be designed with extension and adaptation in mind. As researchers
such as boyd have shown, it will occur even if not planned for [58], so designers
should provide application programming interfaces (APIs) that allow the OSN to
be extended without compromising the privacy properties of the system.

Changing the outcome in scenario “Sophie” on page 26 requires that social appli-
cations be available on a privacy-enabling OSN, not just today’s OSNs: otherwise,
Sophie will be unwilling to use them. Developers should be able to write applica-
tions in well-known, widely-accepted languages. The platform that runs these so-
cial applications must provide applications with typical Operating System services
such as reliable storage and inter-application communication. Applications must be
able to manage their own namespaces of stored user data, but the security of user
information should not depend on the quality of application code.

The platform’s API should encourage developers to refer to personal informa-

37

CHAPTER 3: BACKGROUND

Listing 3.1: High-level social abstractions.

ui.opponent.appendPlaceholder(’opponent’, ’name’)
Listing 3.2: Low-level implementation.

for (var user : game.players()) {var name = user.name();if (name != my_name) {ui.opponent.appendChild(document.createTextNode(name));break;}}
Figure 3.1: Direct and indirect access to user data.

tion à la Felt and Evans’ “privacy by proxy” [103]. For instance, Figure 3.1 shows
two approaches to inserting the user’s name in a UI element. It is preferable for an
app to specify that “the opponent’s name goes here” as in Listing 3.1 rather than
require direct access to user data as in Listing 3.2. Indirect use of user data should
require no special permissions.

It may be possible for applications to request direct access to user data through a
security API, especially if they compartment themselves into least-privileged com-
ponents. Felt and Evans’ survey of 150 Facebook applications found that only seven
actually processed users’ private information, performing functions such as choos-
ing from a set of horoscopes based on the user’s birthday [103]. On a privacy-
enabling social application platform, a horoscope application might still request di-
rect access to the user’s birthday for this purpose; such a request could certainly be
honoured if the app actually ran as two applications, one with access to the birth
date and one with access to the network, with a one-way information channel be-
tween them. Otherwise, user permission would be required. The path of least resis-
tance, however, should be to refer to private information in abstract, indirect terms.

With user permission (see problem “Explicit expressions of user intent” on
page 35), applications should be able to communicate with other applications, web-
sites and users. Wherever possible, these privileges should derive from user actions
rather than lists of permissions. For instance, rather than granting a “may open local
files” permission when installing an application, applications should request access
to local files via an Open File dialog that is rendered by the platform and only grants

38

PROBLEMS

access to files that the user chooses.

Finally, the behaviour of social applications should be visible to users so that
experienced users can examine application behaviour and critique it on behalf of
the wider user community.

3.2.6 COST

Today’s OSNs are nominally gratis — no direct financial obligation is placed on
users — but they do have a cost. In order to pay for OSNs, user data is brokered,
often indirectly but occasionally directly (see Chapter 4). Hundreds of millions seem
willing to make this exchange of personal information for OSN services, but no
alternative contract is being offered: no currently-available alternatives can offer
the services of today’s OSNs at a competitive scale.

Unlike in today’s OSNs, the cost of providing a privacy-enabling OSN should
be exposed to users. That cost might be paid in any number of ways — advertising,
premium text messages, direct payment — but it should be low and it must not be
hidden behind the exploitation of personal information. The platform should pro-
vide a payment interface that allows the use of arbitrary settlement mechanisms,
creating a secondary market for privacy-preserving advertising — proposed inde-
pendently by Bilenko et al. [48], Guha et al. [126], Pearce et al. [196] and Toubiana et
al. [224] — or Chaum’s anonymous e-cash [71].

The direct payment option might be particularly attractive to corporations, non-
governmental organisations, etc. that wish to accrue the benefits of a shared data
and application platform without the confidentiality costs of today’s OSNs.

As in problem “High availability” on page 36, a solution to this problem would
allow a privacy-enabling OSN to be practical for the current ranks of OSN users
who, unlike “Sophie”, have chosen practical systems over privacy-enabling ones.

3.2.7 LINKABILITY AND ANONYMITY

A practical, performant and scalable application platform may not be immune
to traffic analysis: a malicious storage provider might link some possibly-encrypted
data with client IP addresses. However, the system should be compatible with
anonymity for users who wish to pay a cost: those who are willing to suffer higher
latencies and lower bitrates should be able to communicate in ways that defy traffic
analysis.

39

CHAPTER 3: BACKGROUND

If a privacy-enabling OSN solved this problem, it would allow even “Sophie” to
use the OSN for sensitive communications.

I have claimed in Section 2.2 that Footlights addresses all of these problems.
Before I describe that system, however, I will first show that the existing research
literature does not fully address these problems.

3.3 RELATED WORK

This section is not the only discussion of related work in this dissertation: each
technical chapter contains a more detailed survey of work related to its specific re-
mit. This section provides a high-level overview of systems that have attempted to
solve privacy problems in online social networks.

The research literature contains many proposals to address the privacy prob-
lem in online social networks. There are new architectures: some encrypt user data
within existing, centralised OSNs (§3.3.1) and some distribute user data over decen-
tralised, peer-to-peer networks (§3.3.2). Despite some technical merit, these archi-
tectures fail to entirely solve the problems outlined in Section 3.2. Other proposals
are apparently simply oblivious to the larger socio-technical context, providing tech-
nical solutions to entirely the wrong problems (§3.3.3). The literature also contains
proposals to improve the user experience of privacy policy specification (§3.3.4).
Further work in this area could allow user intent to be better captured as a formal
policy (problem “Explicit expressions of user intent” on page 35), but policy alone
does not provide privacy: mechanism is also required.

3.3.1 ENCRYPTION WITHIN OSNS

Over the past three years, there have been several proposals to add information
hiding to existing OSNs, maintaining ties to large extant user bases while keeping
user data hidden from OSN operators, advertisers and application developers. The
most prominent feature of these proposals, the ability to interoperate with and be
embedded within an existing OSN, is also their tragic flaw. A service so tightly
coupled to extant OSNs cannot protect the social graph: the graph of users and the
relationships among them.

The first proposal of this kind is Lucas and Borisov’s flyByNight [165], which
performs public-key cryptography in JavaScript, translating messages and other
user data into opaque ciphertext that can be embedded in the usual social channels.

40

RELATED WORK

In flyByNight, private keys are stored within the OSN itself for usability reasons,
so a curious OSN operator could decrypt the traffic but other users, search engines
and advertisers could not. A similar approach, which leverages the key manage-
ment infrastructure of PGP, is Beato, Kohlweiss and Wouters’ Scramble! [37]. Since
Scramble! uses the PGP infrastructure, private keys are never visible to the OSN
operator, but this system carries all of the usability problems inherent in PGP [231].
Other variations on this theme have been proposed based on Shamir secret shar-
ing (Atrey et al. [33]), attribute-based encryption (Braghin et al. [61]) and group
cryptosystems (Zhu et al. [247]).

Encryption-based approaches to information hiding carry the risk that the OSN
operator might enact a “no blobs of ciphertext” policy. Luo, Xie and Hengartner’s
FaceCloak [167] avoids this particular risk by populating the user’s Facebook pro-
file with plausible-looking data, while keeping real information on another server
that only FaceCloak users are aware of. Lockr, by Tootoonchian et al. [223] uses so-
cial relationships defined by OSNs to control access to information stored outside
the network: users share “social attestations”, tokens that represent a relationship,
via a social network, and produce attestations to content servers which check them
against “Social ACLs”. Integration with services such as Flickr involve placehold-
ers and external content storage services like FaceCloak. Guha, Tang and Francis’
NOYB [127] uses the clever approach of storing real data, in plaintext, on the pro-
files of other NOYB users; the location of a user’s actual data is given by a keyed
permutation. NOYB does not address the key management problem.

The weakness common to all of these approaches is that they protect user data
without addressing the most important problem: protecting the social graph. As I
will show in Section 4.2, it does not matter if one hides their love of classical music
from an untrustworthy OSN: the musical preferences of others in the social graph
give them away [157, 181, 237, 246]. Similarly, encrypting a profile photo provides
no protection from Jagatic’s social phishing attack, in which information about the
social graph is used to increase the effectiveness of phishing by making it appear to
come from friends [136]. In such an attack, what matters is that some of the target’s
friends have made their names and photos available to the phisher. In contrast to
schemes that achieve differential privacy [96], encrypting one’s own profile data in
an OSN does almost nothing to shield them from this attack; risks are produced by
the actions of others.

41

CHAPTER 3: BACKGROUND

3.3.2 DISTRIBUTED SOCIAL NETWORKS

There have been several proposals in the research literature for distributed online
social networks that do not trust or rely on a centralised service provider, but none
fully address all of the technical problems in Section 3.2.

HelloWorld was a 2009 proposal by Ackerman et al. to build a distributed so-
cial network in which users sent encrypted messages to each other over e-mail or
Freenet [76]. User identities in HelloWorld consisted of mappings from a global
namespace on helloworld-network.org to user-uploaded public keys. This archi-
tecture both relied on public infrastructure such as e-mail servers to perform their
functions correctly and also trusted them not to observe the social graph as en-
crypted messages traversed them.

A more mature proposal for e-mail–based social networking is Fescher et al.’s
“Mr Privacy” [105]. This system uses e-mail as a transport mechanism to support
collaborative social applications. Like HelloWorld, protection of the social graph is
based on trust in the underlying e-mail provider.

A related proposal is Yong et al.’s Mailbook [242]. Mailbook uses e-mail servers
to store content that is shared with other users via a peer-to-peer metadata layer.
This combines the observability of centralised systems with the unreliability of P2P
networks: the mail server can observe all accesses to content and the P2P network
in question has been found to be unreliable by Buchegger et al. [65].

Mannan and van Oorschot have proposed a Kerberos-like system that uses
instant messenger services to distribute capabilities for accessing private Web
pages [168]. This allows user content to be distributed across many servers, but
as in the above mail-based systems, the central IM server is not just relied on but
trusted with the complete social graph. This approach seems to place no more trust
in the IM server than in general IM usage, but this is not actually the case. The ques-
tion to ask is not, “do you trust your IM server with your contacts?” but “would
you continue to trust your IM server with your personal details if it became the
gatekeeper for all of your online social interaction?”

Persona [36] uses attribute-based encryption to protect user data. This allows
users to set up friend-of-friend groups, i.e. Alice can encrypt a message to “anyone
that Bob has labelled with the attributes friend and Cambridge”, but it is orders of
magnitude slower than existing public-key techniques. For this multiplicative in-
crease in computational cost, it provides no discernible security improvements. For
instance, an example given by the Persona authors is that Alice can encrypt content

42

helloworld-network.org
friend
Cambridge

RELATED WORK

for Bob’s friends without Bob needing to entrust Alice with his list of friends. To take
advantage of this affordance, however, Alice must send confidential information to
a set of people whose membership she neither controls nor understands. Alice must
trust Bob absolutely, since Bob can provide absolutely anyone with the friend at-
tribute, or else Alice’s message must not be very confidential. If the message is not
very confidential, it is unclear why Alice would use a computationally-expensive
encryption scheme to protect it rather than existing, efficient schemes.

Buchegger et al.’s PeerSoN [65] is a distributed social network based on a Dis-
tributed Hash Table (DHT) [201]. The authors rightly recognise that “the use of a
DHT in itself [...] does not provide any security or privacy to the users”; the work
initially concentrated on functionality rather than security, although broadcast en-
cryption has subsequently been proposed as a mechanism to provide confidentiality
properties [52]. At the time of writing, PeerSoN has no security implementation, so
it remains to be seen whether a simple layering of encryption on top of PeerSoN’s
P2P network will satisfy the privacy problems in Section 3.2. The authors claim that
PeerSoN will “utilize social trust — which is not present in most traditional DHTs
— to make the DHT reliable” [65], but have not described how this will be done
without revealing social graph information.

Safebook [79, 80, 81] provides access control via a set of nested rings called a
matryoshka within an overlay network above a peer-to-peer overlay network. These
rings consist of concentric circles of friendship relations: close friends, friends of
close friends, etc. In order to access a user’s content, it is necessary to find a path
through this matryoshka to a node in the network that holds the data in question.
This approach suffers from two problems: a lack of availability and a lack of a clear
security model. On availability, churn in the underlying P2P network increases the
difficulty of finding a suitable path through the matryoska. Cutillo et al. define
“available” user data as that which can be accessed via the system with 90% prob-
ability; this falls well short of the commercial standards of centralised OSNs. On
security, the matryoska system embeds unwarranted assumptions about trust. For
instance, it assumes that each user will have a set of friends who are trusted with
all information — this conflicts with problem “Multi-faceted identity” on page 36.
Safebook also assumes that friends-of-friends are more trustworthy than friends-of-
friends-of-friends, etc. Also, since Safebook stores protected data on friends’ com-
puters, the trust relationship is not simply that “I believe this person to be trustwor-
thy” but also “I believe this person to be a competent system administrator who will
keep their trusted node free of malware”. The correct operation of the P2P overlay

43

friend

CHAPTER 3: BACKGROUND

requires a “Trusted Identification Service” to guard against Sybil attacks [93] and
impersonation. The authors claim that “this does not contrast [sic] our goal of pri-
vacy preservation through decentralization” [81] because “this service’s jusrisdic-
tion [sic] is limited to the purpose of authentication” [80], but the TIS is capable of
violating the policy that “only trusted contacts of a node are able to link” that node’s
user ID and P2P node ID. Either this policy is important or it is not; the authors of
Safebook want to have it both ways. This hazy trust model provides no clear basis
for reasoning about security properties. Finally, Safebook provides no application
model to allow third-party extension as required by problem “Social applications”
on page 37: the authors refer to the system itself as a “social networking applica-
tion” [81].

Aiello and Ruffo’s LotusNet [28, 27] is based on the Likir variant of the Kademlia
DHT. In this variant, security properties are claimed based on a binding between
DHT nodes and persistent identities, verified by a trusted Certification Service. Al-
though LotusNet is called a distributed OSN, it is dependent on global identities
and the trusted global name authority for correct operation at its lowest levels.

The open-source Diaspora* project [276] is a federated social network. Users
can create “pods”, each of which hosts some number of users like a conventional,
centralised OSN would. These pods can communicate to provide functionality at
a larger scale. This architecture changes the parameters of trust somewhat, since
users can choose which pod to trust with their data, but a pod must still be trusted
just as a centralised OSN is trusted today. Diaspora* does not currently provide an
application API: all code is curated by a centralised team of developers.

Narayanan et al. criticise distributed approaches to “personal data architectures”
based on technical, economic and cognitive grounds [187]. The technical arguments
are that distributed systems are more challenging to build than centralised ones
and that decentralisation requires standardisation, which is a challenging process.
These arguments are based on true premises, but neither need preclude the design
of distributed social networks — they only preclude naïve designs. The authors also
point out that economies of scale are important and switching costs are real, leading
to the valid point of guidance that new OSN architectures should take economic
considerations into account. Finally, the authors conflate several orthogonal cogni-
tive considerations in social networks generally, describing them as problems with
“decentralised systems”. For instance, the authors state that “more control over per-
sonal data almost inevitably translates to more decisions, which leads to cognitive
overload”, but this is not a reason to avoid decentralised architectures. Centralised

44

RELATED WORK

services such as Facebook provide very detailed and fine-grained control over some
personal data, capable of causing just as much cognitive overload as an equivalent
decision matrix in a decentralised system. What Facebook does not have is an incen-
tive to explore alternative schemes for privacy policy configuration [13, 14] if those
schemes hinder a “free flow of information” within the network [310]. In contrast,
a distributed system that does not extract monetary value from user data has every
incentive to combat cognitive overload by accurately capturing user intent, reduc-
ing decision fatigue and improving the user experience of privacy management.
While the authors of this critique raise some important issues, their case against
decentralised data architectures is greatly overstated.

Distributed architectures for online social networks could overcome the chal-
lenges described by Narayanan et al., but none of the current approaches solve all
of the technical problems described in Section 3.2.

3.3.3 SOLUTIONS OUT OF CONTEXT

The encryption- and P2P-based approaches described above do not satisfy all of
the requirements of Section 3.2, but many of these approaches do have a coherent
model of the OSNs that they are meant to supplement or the larger socio-economic
context that they are meant to operate in. Not all proposals in the research literature
show evidence of this contextual understanding.

An example of a technical solution that fails to consider its social context is
Maximilien et al.’s “Privacy as a Service” architecture [169]. This system is a cen-
tralised reference monitor [160] that users control by declaring a privacy policy with
manually-assigned “privacy levels” for individual user data. Conceptually, this is
exactly what Facebook already does: the difference is that Facebook does not make
a “privacy risk index” salient to users via a “Privacy-aware Marketplace”. The au-
thors appear to consider the problem of privacy in OSNs to be solved, discussing in
their future work section how their algorithmic complexity might be improved, not
how users might overcome Whitten’s secondary goal property — privacy and secu-
rity are typically not a user’s primary reason for using a system [230]. This is, how
can users be convinced to spend their time manually assigning “privacy levels” to
content? The authors do not seem to consider that the lack of privacy salience in
today’s OSNs may not be due to a lack of inventiveness or technical ability on the
part of OSN providers but because of a desire for a “free flow of information” [310].

Similarly, Li, Alessio and Zhou’s 2010 OST (Online Social Trust) model attempts

45

CHAPTER 3: BACKGROUND

to fit numerical trust models from OSNs onto CDNs in preparation for a coming
convergence of the two [156], apparently oblivious to the fact that Facebook made a
business decision several years ago to use CDNs with absolutely no access control,
as illustrated by the 2009 study that Joseph Bonneau, Andrew Lewis, Frank Stajano
and I performed on photo remanence in social network CDNs [20].

3.3.4 PRIVACY POLICY SPECIFICATION

Several works in the research literature attempt to improve user control of in-
formation sharing through improvements to the user experience of privacy policy
specification. These proposals are independent of the underlying policy enforce-
ment mechanism: they could apply equally well to any reference monitor [160]
driven by a user-specified security policy.

Besmer et al. performed a user study in which Facebook installation dialogues
were supplemented with additional information about the application’s behaviour
and the installation decisions taken by their Facebook friends [46]. Instead of the
current “take-it-or-leave-it” model, users were permitted to specify what informa-
tion would be shared with an application. The authors found that “motivated” users
did modify their behaviour based on the extra information, but others did not.

In 2009, I co-authored a poster with Luke Church and Joseph Bonneau that pro-
posed end-user programming techniques for the privacy policy specification prob-
lem [14]. In particular, we allowed users to create their own abstractions around
subjects and objects, which could be expressed in natural language called “Policy
Stories”. In a preliminary study, our two users expressed confidence in their under-
standing of what they had specified using the system.

Other approaches to improving the user experience of policy specification in-
clude selectable, expert-supplied defaults [13] and machine learning of preferences
to inform new policies generated on demand [101]. These approaches have the po-
tential to aid users in clearly expressing their privacy preferences, informing the
OSN “reference monitor” what should be shared. This approach is independent of
the sharing mechanism.

These techniques could contribute to a larger privacy solution for online social
networks, but policy alone does not solve problem “Explicit expressions of user
intent” on page 35: a mechanism to enforce the policy is also required.

46

RELATED WORK

47

4
ANTISOCIAL NETWORKS

“People have really gotten comfortable not only sharing more informa-
tion and different kinds, but more openly and with more people. That
social norm is just something that has evolved over time.

Mark Zuckerberg, January 2010 [350]”Today’s centralised online social networks (OSNs) are trusted to make access con-
trol decisions on behalf of users, but those decisions do not always align with users’
intentions. In some cases, technical flaws lead to data leakage contrary to the wishes
of both users and operators. In other cases, there is a mismatch between user un-
derstanding of privacy settings and the actual protections afforded by the system.
In many cases, however, the interests of the user and the network are simply not
aligned. In these cases, when users’ data must be safeguarded by operators without
the incentive to do so, private information has a history of leaking out.

In this chapter, I consider how extant OSNs have revealed a great deal of their
users’ private information to third parties, often without permission (Section 4.1),
and how, in some cases, sites may be revealing more than they themselves in-
tend (Section 4.2).

4.1 USER DATA PRIVACY

Online social networks can be used to share information with friends, but the
OSNs themselves can also share information beyond users’ intentions. This disclo-
sure has occurred through regular churn in OSNs’ privacy settings (§4.1.1), explicit
leakage of personal information due to less-than-vigorous protection around adver-
tising (§4.1.2) and by providing third-party applications with access to information
that users within the network cannot see (§4.1.3).

48

USER DATA PRIVACY

4.1.1 FORCED OPEN: EVOLVING DEFAULTS IN PRIVACY SETTINGS

Much unintended disclosure in OSNs stems from permissive, ever-changing de-
fault privacy settings. Default settings are important for two reasons. First, as
shown in §4.1.1.1, many users never customise their privacy settings, so their secu-
rity policy is exactly what the default settings dictate. Second changes in default set-
tings over time can affect even those users who have specified a non-default sharing
policy: users’ expressed intentions may be disregarded as new defaults are created.
§4.1.1.2 will show that when some new features were introduced to world’s most
popular OSN, all users were given the same default settings, whether those users
were previously very private or very public. Even more strikingly, as the language
used to express privacy policies changed over time, user-customised settings were
lost and replaced with new, default settings. After these substitutions, a user who
once expressed a very private sharing policy could end up with a quite permissive
policy.

4.1.1.1 USE OF DEFAULT SETTINGS

OSN users have, over time, become increasingly willing to spend time adjusting
privacy settings to match their sharing intentions. Nonetheless, default settings are
still used by many users today.

Gross, Acquisti and Heinz performed a study in 2005, the early days of Face-
book, and found that within a university “network” — a Facebook mechanism for
separating users from different institutions — users engaged in very high rates of
personal information disclosure [125]. 90.8% of user profiles displayed a photo to all
Facebook users in the university, 87.8% displayed a birth date, 50.8% a current resi-
dence and 39.9% a phone number. Facebook profiles contained, by a small margin,
more personally identifiable information than the competing, less exclusive OSN
Friendster. In a later study, Acquisti and Gross found that 77% of users had no
desire to change the default searchability settings [26]. Gross, Acquisti and Heinz
speculated that exclusivity in an OSN is inversely proportional to voluntary disclo-
sure.

This speculation was borne out in a 2008 study by Krishnamurthy and Wills [147],
which found that profile visibility in Facebook “networks” varied from 51% to 93%,
depending on network size. In large networks, users were more likely to hide their
profile information, whereas in smaller networks, users were most often content to
leave their profile at the default visibility. These numbers contrast with the statistics
that Krishnamurthy and Wills found for Twitter, a personal broadcast medium, in

49

CHAPTER 4: ANTISOCIAL NETWORKS

which over 99% of users employed default (public) privacy settings.

A 2010 survey study by boyd and Hargittai [59] found that user interaction with
Facebook’s privacy settings increased dramatically between 2009 and 2010, but the
majority of “occasional” Facebook users have interacted with their privacy settings
three or fewer times and only 53% of “frequent” users had interacted with their
settings four or more times.

Based on these results, it is reasonable to assume that more and more OSN
users will modify their privacy settings over time, customising them from the
OSN-provided defaults to settings that better meet their privacy and sharing goals.
Nonetheless, it also seems prudent to assume that there will always be a population
of users who keep the default settings.

Still, the fact that many users express their privacy and sharing intent within an
OSN does not completely insulate them from future disclosure: if the OSN changes
its default settings or the language that privacy settings are expressed in, actual
patterns of disclosure may not match users’ intent.

4.1.1.2 A HISTORY OF CHANGING DEFAULTS

In today’s OSNs, when a user modifies her privacy settings, expressing her intent
about who she wishes to share with, she can only express policies in a language
made available by the OSN. This language is typically a list of rules that state “items
of class X may be shared with users of class Y”, where X might be “all photos” or
“this photo album” and Y might be a friend list or an individual. A user may be able
to express the policy “only share photos from the party last weekend with people I
have explicitly designated”, but she cannot control how her name will be used by a
not-yet-developed OSN feature: the language affords no means of expressing it. An
OSN could provide the vocabulary to express the concept “and any other use which
I have not explicitly described”, but that has not been the practice of today’s OSNs.
On the contrary, as I will demonstrate in this section, the world’s most popular OSN
tends to roll out new features with mandatory information disclosure, then provide
an opt-out facility after user outcry.

Even if users rigorously restrict their current privacy settings, a steady stream
of new features provides a corresponding stream of new switches to be turned off,
and most of these switches default to “on”. An OSN account at rest, with no forces
acting on it other than the OSN itself, tends to become more publicly-accessible over
time.

I will illustrate this tendency by considering the case of Facebook, summarized

50

USER DATA PRIVACY

in Figure 4.1 on the following page. This figure shows a timeline of Facebook’s
development, including new features, privacy-related developments, newsworthy
events and public statements.

Facebook, which is currently the world’s most popular OSN, opened to the gen-
eral public on 26 Sep 2006 [284]. Prior to that, users were required to have a veri-
fiable e-mail address from a “network” such as a university. Suppose a University
of Cambridge student named Alice created a Facebook account in August 2006 and
immediately limited the sharing of all personal information to direct “friends” only,
but left her “searchability” setting at “Everyone” so that friends could search for
her and send friend requests. Without this setting, it was very difficult for real-
life friends to find each other on Facebook: it was impossible for two users with
the most restrictive searchability settings to “friend” each other, which discouraged
users from choosing such settings.

Here is a history of how Facebook’s changing default settings would have af-
fected Alice’s sharing policy from then up to the time of writing, assuming that she
made no further changes to her own privacy settings:

15 Aug 2006 The Facebook development platform is introduced [286], allowing
users to install applications which access their private data and provide ser-
vices such as social games. Alice’s friend Bob installs an application, granting
it access to his profile and any information shared with Bob by his friends, in-
cluding Alice. Whatever personal details Alice has shared with Bob are sent
to an application server run by the application’s maintainer, rather than Face-
book. This data is public according to the definition of “Public” on page 34: no
technical restrictions are imposed by Facebook on what the application main-
tainer can do with Alice’s data.

5 Sep 2006 News Feed and Mini-Feed are introduced [301]: information that was
previously available to users who looked for it (e.g. “Alice is not in a rela-
tionship”) is now broadcast to them (“Alice is no longer in a relationship with
Charlie”). Users protest, leading founder Mark Zuckerberg to declare that the
incident is just a misunderstanding: no privacy settings have changed [311].
Three days later, he admits that the switch from accessible information to
broadcasted information is, in fact, a significant change; new privacy controls
are both required and available, but on an opt-in basis [310].

5 Sep 2007 Public Search Listings are introduced [287]. People who are not signed

51

CHAPTER 4: ANTISOCIAL NETWORKS

2006
2007

2008
2009

2010
2011

Positive Negative
Features OtherPrivacy

Regional network
phase-out

Platform
 Beta

News Feed, Mini-Feed
(insufficient control) Open to General Public

My Shares
External Shares
First Friend Lists

My Privacy page
FQL

Subscriptions

FB Message to e-mailPublic Search Listings
(opt-out)

Social Ads, BeaconBeacon becomes opt-in Friend Lists

Standard in-line privacy
controls, restricted sharing Facebook Chat

External event import
Friend suggestionsFacebook Connect

"Like" button
(always public)

Governance vote

Facebook usernames
Per-post privacy controls

Canadian Privacy
Commissioner investigations

Apps can request e-mail
Public photo, friends, etc.

Facebook Chat everywherePrivacy controls on app content
Automatic Pages connections,

"Like" everywhere, Instant
PersonalizationNon-public connections, opt-out

from Platform and IP

Rapleaf scandal

WSJ PII leakage report

PII leakage paper

Mobile privacy controls

App permissions request

FB mobile

Places
(friends check you in)

Closed-by-default groups Check-in Deals
Android SSO

Sponsored StoriesHTTPS, Social Authentication

New Deals
Google smear campaign

Automatic face tagging

Profile review Smart Lists
Subscribe button

Friend Activity
Timeline

Beacon shuts down

Figure 4.1: Facebook privacy timeline

52

USER DATA PRIVACY

in to Facebook — as well as search engine robots — can now view a page
containing selected information about Alice such as her name, photo and a
subset of her friends. This information both disambiguates Alice from other
Alices on Facebook and shows external viewers that this particular Alice and
her friends are using Facebook.

6 Nov 2007 Facebook Pages and Social Ads are introduced [297]. Brands acquire the
ability to create pages that look like user profiles, but rather than “friending” a
brand, users can declare that they are a “fan” of one. This information is then
used in Social Ads, where users’ names and likenesses are used to advertise
the brand in question to their friends, e.g. “Alice is a fan of Brand X” or “Bob
wrote a review of Local Restaurant Y”.

9 Nov 2007 Beacon is introduced [300]. The actions of logged-in Facebook users
are tracked on external websites and announced within Facebook, e.g. “Al-
ice just bought Security for Ubiquitous Computing by Frank Stajano from Ama-
zon.com”. User outcry leads Mark Zuckerberg to apologise, both for making
Beacon opt-out rather than opt-in and for failing to respond to user complaints
in a timely way [312]. Beacon becomes opt-in, then two years later, is shut
down entirely as part of a legal settlement [281].

27 Apr 2009 The Open Stream API is released [292]. Alice’s favourite newspaper,
which requires readers to log in before they can read all stories or post com-
ments, starts using Facebook Connect for authentication. Alice now logs into
her news site by clicking the Facebook Connect button rather than entering
a username and password: she appreciates the opportunity to remember one
less password. With the Open Stream API, that news site can now publish
items in her Facebook News Feed such as “Alice just commented on story X”
without Alice’s permission: to stop this behaviour, Alice must explicitly opt
out.

2 Jun 2009 Facebook begins phasing out regional networks [295]. Events and
groups that were once restricted to a regional network are now open to every-
one, and Alice’s profile acquires a “Current City” field, which is automatically
populated as “Cambridge”.

29 Oct 2009 Applications (including sites using Facebook Connect for authentica-
tion) are now able to require that Alice provide her e-mail address in order to
use their services [289]. Since Alice does not want to lose all of the comments,

53

CHAPTER 4: ANTISOCIAL NETWORKS

history and other content which she has built up on her favourite newspaper’s
website, she clicks “OK”.

9 Dec 2009 While announcing “new tools to give you even greater control over the
information you share”, Facebook announces that “a limited set of basic infor-
mation that helps your friends find you will be made publicly available”. Face-
book publicly discloses Alice’s name, photo, networks and her previously-
private friend list [302]. Alice’s list of Facebook friends is now visible to all
Internet users and search engines.

10 Dec 2009 Facebook provides a mechanism for users to opt out of having their
friend lists displayed publicly [296]. Without active intervention, Alice’s
friend list — which was once hidden even from her friends — remains public.
Bob opts out of the publicly-viewable friend list, but the setting does not have
the effect he expected: his friend list is no longer displayed on his Facebook
profile page, but the list itself “is still publicly available, however, and can be
accessed by applications” [296].

19 Apr 2010 Some textual profile fields become “connections” to new Facebook
Pages [294]. The next time Alice logs in, she is prompted with a dialog asking
if she wants to link to the University of Cambridge page, since her university
affiliation was automatically inserted into her profile when network-based ac-
cess control was deprecated. If she clicks the default button, thinking “that’s
accurate information” rather than “I want this information to be shared pub-
licly”, her university affiliation will become a “Connection”, considered “pub-
lic information” that cannot be hidden by any privacy setting.

21 Apr 2010 Application policy is changed to permit applications storing user data
indefinitely (up from 24 h) and using it “in any way you believe provides a
richer experience for your users” in order for application developers to “build
a closer relationship” with users [285]. Websites that Alice has logged into
with her Facebook credentials and required her e-mail address as a condition
of use begin sending her daily e-mails that Facebook can neither monitor nor
stop.

The same day, the “Like” button goes global: actions taken on external web-
sites, such as clicking a “Like” button, appear in the internal Facebook News
Feed [291]. Echoes of Beacon ring clearest when Alice makes a comment on
a news website, in the context of a discussion around a particular article, and

54

USER DATA PRIVACY

it appears in the Facebook News Feeds of people Alice does not know. This
is later restricted to the feeds of Alice’s friends [290], most of whom were not
part of the original discussion’s context.

Instant Personalisation is also announced, though it is not yet known by this
name [313]. When Alice visits the review site Yelp, it is informed by Face-
book that Alice is visiting and shown her connection to the University of Cam-
bridge, as well as connections to any local restaurants that Alice has already
“liked”. Later, Alice views a PDF file containing membership rules for a Cam-
bridge society on the document sharing site Scribd. As a trusted Instant Per-
sonalisation partner which has been “carefully chosen, reviewed and ... con-
tractually required to respect people’s privacy preferences” [290], Scribd has
immediate access to Alice’s friend list, which it uses to acquire Bob’s e-mail
address and sign him up for an account with no clear opt-out mechanism,
informing him that Alice has signed him up [347].

26 May 2010 Facebook no longer requires all connections to Pages to be public and
provides opt-out facilities for both the Facebook Platform and Instant Person-
alisation [315]. As a casual user who does not follow Facebook’s press releases
Alice is unaware of the opt-out mechanism. Alice’s connections continue to
be publicly-visible, and Facebook’s Instant Personalisation features continue
to provide her profile details to partner websites.

30 Jun 2010 Facebook launches a new application authorisation process [305]. As
Facebook had promised the Canadian Office of the Privacy Commissioner in
August 2009 [270, 271], a dialogue box appears when applications are installed
to inform the user what personal information the application requires and to
present “Allow” and “Don’t Allow” options. Controls are also provided in Al-
ice’s privacy settings page to restrict what information Bob and other friends
can disclose to applications on her behalf, should she be aware of and choose
to actively manage them.

19 Aug 2010 The Places feature is introduced [303]. Users now have the ability to
“check in” (register their position) at real-world locations. By default, check-
ins are visible to all friends. Alice never checks in to Places herself, but when
she and Bob visit a local coffee shop together, Bob checks in and declares that
he is with Alice; “it is as if [she has] checked in at that place [herself]” [303].
The first time this happens, Alice is asked for authorisation. Because of im-

55

CHAPTER 4: ANTISOCIAL NETWORKS

plied social pressure and because it seems innocuous, Alice chooses the de-
fault option (“Allow”). From then on, no authorisation is required for such
check-ins unless Alice opts out of the service.

6 Oct 2010 Facebook provides closed-by-default groups and an application dash-
board to illuminate what applications are authorised to access Facebook infor-
mation [314]. By clicking an “Edit” link, users can also see what information
applications require and what is optional.

13 Oct 2010 Facebook users’ names and likenesses start appearing in Microsoft’s
Bing search results [306]. Now, when Bob searches on Bing, he will see Alice’s
name and photo endorsing products or websites that Alice has expressed a
“liking” for.

25 Jan 2011 Facebook introduces Sponsored Stories [274, 326], in which advertisers
can pay for Alice’s activities, already published in her News Feed, to be pro-
moted as advertisements. When Bob visits a local coffee shop with Alice and
other friends, his “check-in” declaring their real-world-position may be used
as an advertisement for that coffee shop and shown to Alice’s friends. This is
a paid-for advertising feature; no opt-out is provided.

26 Jan 2011 Facebook introduces opt-in HTTPS for all Facebook content as well as
“Social Authentication”, in which users coming from unusual IP addresses
are required to identify faces of their friends while logging in [299]. Users may
now opt in to Transport Layer Security (TLS) protection of their Facebook ses-
sions, but Alice, using the default settings, is still using Facebook unencrypted
in her local Cambridge coffee shop.

In 2006, Alice configured her Facebook privacy settings to be restricted but still prac-
tical. If she then left them alone and accepted whatever default “Allow” buttons
she was presented with, she would hardly recognise her privacy settings five years
later. Information that she once declared private, such as the list of her friends,
would now be visible to the world and indexed by search engines. Her name and
likeness would appear in advertising, not just on Facebook itself, but next to prod-
ucts and websites in Bing search results. Her activities, such as commenting on a
story on a newspaper’s website, would appear as advertisements within Facebook,
as would the fact that she visited a popular local coffee shop yesterday, even though
she herself did not tell Facebook that she was there. Her friends’ details have been
relayed to “partner” websites, which have signed them up to services and mailing

56

USER DATA PRIVACY

lists that they have no interest in and that are difficult to opt out of. Facebook pro-
vides more privacy controls today than it did in 2006. By default, however, Alice
does not benefit from them.

In summary, changing defaults in OSNs are not a matter of purely academic
interest. When a user signs up for an OSN, they enter into an agreement in which the
user provides sensitive personal information and the OSN protects that information
according to a sharing policy specified by the user. When the OSN changes the
policy’s vocabulary, without revisiting the policy or even providing notice that the
vocabulary has changed, the user’s original intent can be lost. Alice set a restrictive
policy in the 2006 vocabulary. In the 2012 vocabulary, however, she is as open as
Facebook wants her to be.

4.1.2 FAILED OPEN: ADVERTISERS AND PRIVATE INFORMATION

Personal information can leak from social networks when users fail to explic-
itly forbid it via opt-out mechanisms, but this is not the only leakage channel. The
private information of users — OSNs’ product — has been explicitly leaked to ad-
vertisers — OSNs’ paying customers [342].

In 2009, Krishnamurthy et al. [148] identified the leakage of Personally Identifi-
able Information (PII) from several online social networks via request URIs, refer-
rers, etc.. Some of this leakage may have resulted from simple carelessness. For
instance, at the time of Krishnamurthy et al.’s study, Facebook used user IDs em-
bedded in the URI query string, so if users clicked a link to an external site, their
UID would be exposed in the HTTP Referrer header. This has since been rectified so
that, as of September 2011, a user who clicks a Facebook advertisement will present
an opaque binary Referrer header to the target site.

Other instances of PII leakage are more more overtly intentional: Krishnamurthy
et al. discovered that some OSNs explicitly encoded user age, gender and even
postal code in advertising request URIs. Even more egregious are the third-party
applications described in June 2009 by Bonneau [343] that encoded user ID, user
name, profile photo and a list of friends in advertising request URIs.

In July 2010, Korolova demonstrated [145, 146] that Facebook’s advertising plat-
form can be abused to learn private information about users with very restrictive
privacy settings. Any information uploaded to Facebook may be used to select
which advertisements are shown to users; users cannot use privacy settings to con-
trol Facebook advertising. Korolova found that advertisers could specify such pre-

57

CHAPTER 4: ANTISOCIAL NETWORKS

cise targeting that the ad will only be shown to one Facebook user, often using only
publicly-available information. Facebook then reported “aggregate” statistics, such
as impression count, based on that one user. An attacker can target an ad to one user
and then vary a parameter of interest (e.g. age, birthday, sexual orientation), watch-
ing to see which values generate impressions and which do not. Facebook released
a fix within a week of notification, namely to block ads which do not reach at least
20 users, but such a simplistic defence can easily be defeated by the tracker attack,
introduced in 1979 by Denning et al. [88] or — even more simply — by creating 20
accounts that match the targeted characteristics of the query subject [146].

No matter what is claimed by vocal elements of the press [277, 278], Facebook
does not directly sell user data to advertisers. Others OSNs have, however, and a
lack of technical protection around user data has allowed third-party application
developers to sell user data to advertisers. Weak protections also allow advertisers
to learn users’ private details via microtargeted advertisements.

4.1.3 LEFT OPEN: APPLICATION ACCESS TO PRIVATE USER DATA

In this section, I will show how private information has also been shared with
third-party OSN applications, both by surveying the work of others and by describ-
ing research performed by myself and colleagues at the University of Cambridge.
We found that some applications can access more private information when they
run than the user who they are nominally running on behalf of.

Today’s OSNs provide rich platforms for third-party social applications. Appli-
cation functionality is supported by private user information, often served in greater
quantities than actually required. Safeguards against misuse rely heavily on legal
rather than technical protection. Felt and Evans, in their 2008 study of 150 Facebook
applications [103], found that 90% of applications had no need of private user data,
but were being given it anyway. Several applications used information in ways that
contravened Facebook’s Terms of Service, making information visible to users who
would normally be unable to view it.

Of the 150 applications studied, 141 accessed user data for the sole purpose of
displaying it to the user. Felt and Evans proposed that OSNs adopt a privacy-by-
proxy design pattern, providing named placeholders that applications can use to
manipulate user information indirectly. For instance, an application might instruct
the Facebook UI to insert a user’s name in a particular place without the applica-
tion learning the user’s name. In fact, as the paper points out, Facebook had such a

58

USER DATA PRIVACY

Listing 4.1: Example Facebook Markup Language (FBML) tags — now deprecated.

<fb:name id="[$id]"> <!-- Name of specified user. --><fb:friend-selector> <!-- Drop-down friend selector. --><fb:visible-to-friends><!-- Visible only to friends of the user. --></fb:visible-to-friends>

mechanism, called the Facebook Markup Language (FBML), which allowed devel-
opers to insert indirect references to user data as shown in Listing 4.1. Its use was
optional, however, used purely as a performance optimisation to reduce the number
of round-trip messages between application servers and Facebook. FBML was sub-
sequently deprecated in in 2010 in favour of newer APIs [288] and was deactivated
entirely in 2012 [298].

In 2009, Facebook was investigated by the Office of the Privacy Commissioner of
Canada in response to a complaint, an unsatisfactory response and a second com-
plaint [270]. Following the second investigation, Facebook agreed to provide more
user control over application behaviour [271]. User consent is now sought before
applications can obtain personal information: users are prompted with a dialogue
that describes the information sought and provides an opportunity to cancel appli-
cation installation. Such cancel-or-allow approaches have been rightfully criticised
by Yee as “security by admonition” for “forc[ing] security and usability into con-
flict” [241] rather than learning the user’s intent. Furthermore, once divulged, no
technical safeguards exist to prevent misuse of private user information (see the
definition of “Public” on page 34).

Facebook provides applications with programmatic access to user data via the
Graph API [253] and the Facebook Query Language (FQL) [252, 304], which is a
restricted variant of the standard Structured Query Language (SQL). The Graph
API is a Web service: applications use HTTP to retrieve data formatted with the
JavaScript Object Notation (JSON) [258]. For example, the data visible at the URL
https://graph.facebook.com/jonathan.robert.anderson is the public profile of the
author, shown in Listing 4.2 on the following page.

While writing collaborative papers with Joseph Bonneau, Ross Anderson and
Frank Stajano in 2009 [7, 8], before the new application restrictions were introduced,
I used FQL queries of the form shown in Listing 4.3 on the next page to exhaustively

59

https://graph.facebook.com/jonathan.robert.anderson

CHAPTER 4: ANTISOCIAL NETWORKS

Listing 4.2: A Facebook Graph API response.

{ "id": "516792779","name": "Jonathan Anderson","first_name": "Jonathan","last_name": "Anderson","username": "jonathan.robert.anderson","locale": "en_GB"}

Listing 4.3: Sample FQL query: what friendships exist among two sets of users?

SELECT uid1,uid2 FROM friend WHERE uid1 IN (u1,u2,...) AND uid2 IN (u3,u4...)

query the “friend” relations among 18,000 users in the orignal Harvard University
user ID space (users with IDs below 35,647) and among 15,000 users in the early
Stanford University ID space (between 200,001 and 225,615). We found that Face-
book would not reply to requests involving very large user lists, but by limiting
each user list to 1,000 users, we were able to exhaustively query the relevant spaces’
friend relations.

Later, approximately three months after announcing that an agreement had been
reached with the Office of the Privacy Commissioner of Canada, Facebook an-
nounced that some user data, including the list of one’s Facebook friends, would
become public information — users would no longer be able to hide their Facebook
social connections [279]. The next day, amidst user complaints, Facebook provided
an option for users to make their list of friends appear private again [280]; users can
conceal their list of friends from all other users, but friendship information is not
kept hidden from third-party applications.

In September 2011, even with Facebook’s new application restrictions in place,
I confirmed that a Facebook application can still issue an FQL query to discover
whether or not there is a “friend” relation between two specific users or among two
sets of users. Using an FQL query very much like the example in Listing 4.4 on the
facing page, I found that an application running with the credentials of a throwaway
user account could ascertain whether or not there was a “friend” relation between
any two users, even if both users have configured their privacy settings to keep their

60

USER DATA PRIVACY

Listing 4.4: A simple FQL query: are two users friends?

SELECT uid1,uid2 FROM friend WHERE uid1=X AND uid2=Y

Listing 4.5: Response to a Rapleaf API query (pre-purchase) [319].

{ "household_income": "Data Available","loan_to_value_ratio": "Data Available","invested_assets": "Data Available","gender": "Male","length_of_residence": "Data Available","children": "Data Available"}

friend lists secret.

The risk of application misbehaviour is not purely academic: in October 2010,
the Wall Street Journal discovered [282] that popular applications such as Zynga’s
FarmVille, which at the time had 59 million users, shared information about users
and their friends with data brokers [308] such as Rapleaf [275]. These brokers build
user profiles to link user identities across platforms and sell the data to customers
such as online retailers who use it to personalise mass e-mails and other “marketing
experiences”. Rapleaf can furnish firms with customer information such as their
family status and home market value for $.01 USD per e-mail address [316]. Other
fields, such as consumer loan-to-value ratio, are no longer publicised on Rapleaf’s
website but are still accessible through the Rapleaf API, as shown in Listing 4.5.
At the time of the Wall Street Journal story, Rapleaf advertised OSN identifiers for
sale [275], though their spokesman declared that “We do not sell Facebook IDs to ad
networks”.

In the days after the Wall Street Journal story broke, Facebook issued a series of
statements [283, 308, 309] describing three new features. The first was a new UID
encryption feature: Facebook UIDs were encrypted with the symmetric key of the
application receiving the UID in order to mitigate the risk of accidental disclosure.
Second, a new third-party UID was created to be used by applications that share
unique identifiers with third parties. Third, an explicit prohibition was enacted on
applications passing user information to data brokers [307]. These measures did

61

CHAPTER 4: ANTISOCIAL NETWORKS

nothing to prevent intentional disclosure by applications, however. In this case,
Facebook punished several application developers, which it described as “fewer
than a dozen, mostly small developers, none of which are in the top 10 applica-
tions on Facebook Platform” — at odds with the Wall Street Journal’s allegations
about Zynga, one of Facebook’s largest third-party application developers. Face-
book banned these developers from the Platform for six months, and required them
to “submit their data practices to an audit in the future” [308]. Facebook continues
to assert the safety of user information given to third parties, not based on techni-
cal protections but on contractual compliance. That is, according to the definition
of “Public” on page 34, information shared with third-party application developers
is public.

4.2 SOCIAL GRAPH PRIVACY

Explicit disclosure, whether discretionary permissive defaults or mandatory
public information and advertiser access, is not the only way in which users’ pri-
vate information reaches the outside world. Specific data items about OSN users,
such as personal interests and favourite cultural artefacts, is valuable to plausible
attackers such as scammers. However, the social graph is also valuable, and OSNs
may leak more information about it than they intend.

In many attacks, the confidentiality of a user’s profile data is irrelevant. Jagatic’s
social phisher [136] does not need to know my favourite book or West End show, he
needs the names and profile photos of my friends. Even when the private details
of individual profiles are relevant, many of them — from political views to sexual
orientation — can be probabilistically inferred from those of friends [157, 181, 237].
Finally, specific details about a user can almost always be obtained through a tar-
geted attack, e.g. “spear phishing”; the difficulty for the attacker is in determining,
at a very low unit cost, which potential target is worth the cost of a targeted attack,
as demonstrated by Herley [131].

Because of this, it is insufficient for a social network to protect user data without
protecting the social graph. In this section, I consider the protection of the social
graph in the context of public search listings.

62

SOCIAL GRAPH PRIVACY

4.2.1 PUBLIC SEARCH LISTINGS

As described in §4.1.1, Facebook introduced Public Listings in September 2007
to “help more people connect and find value from Facebook” [287]. By exposing
some user information to the public Internet, Facebook could encourage non-users
to join the service. For instance, a non-user Nancy might see that her friend Bob
uses Facebook, as do Bob’s friends — some of whom might be mutual friends. This
information might encourage Nancy to sign up for her own Facebook account.

Furthermore, by exposing Public Search Listings to search engines, people
searching for Bob would find Bob’s Facebook page, raising the profile of Facebook
as a communication medium for first contact. Other OSNs such as LinkedIn are
even more aggressive about search listings: whereas Facebook allows users to opt
out of Public Search Listings, LinkedIn does not.

Publicly exposing all data held by a service would remove the incentive for non-
users to join the OSN (to say nothing of the reaction of current users); the premise
of search listings must therefore be that some limited information from the social
graph can be exposed without revealing all user information. In this section, how-
ever, I demonstrate that, while it is possible to shield user details from search en-
gines, exposing almost any information about the social graph allows adversaries
to approximate important graph characteristics closely.

4.2.2 PUBLIC LISTINGS MODEL

In early 2009, Joseph Bonneau, Ross Anderson, Frank Stajano and I studied the
problem of social graph privacy in the presence of limited disclosure [7]. We were
motivated by, and modelled the problem on, Facebook’s usage of public listings. As
of January 2009, this feature provided a set of eight friends for each public listing
— since then, public listings have exposed more data. The set of friends that is dis-
played seemed to be a function of the viewer’s location: repeated queries from a
Tor exit node [91] yielded the same eight friends, and the set of revealed friends de-
pended on the geographic location of the node — the authors’ public search listings
contained primarily North American friends when querying from a North Ameri-
can exit node but more European friends when querying from a European exit node.
Those in Cambridge, UK viewing a public search listing might be more swayed by
the presence of UK users than Canadian users, since they are more likely to be mu-
tual friends.

Public listings are intended to be indexed by search engines. We encountered no

63

CHAPTER 4: ANTISOCIAL NETWORKS

Figure 4.2: A sampled graph Gk with k = 1.

technical measures to limit the rate of queries: we retrieved approximately 250,000
public search listings per day from a desktop computer connected to JANET, the
UK’s Education and Research Network. This figure comes from a rather simplistic
approach to crawling: we dispatched work to a few tens of crawlers from a single,
contended relational database where all query results were stored. A focussed en-
gineering effort would certainly yield better results, so it is safe to assume that the
complete set of public search listings is available to motivated parties — or contrac-
tual partners. This has been demonstrated by Microsoft, which includes publicly-
visible Facebook information in its Bing search results [306].

This section uses a model of public search listings depicted in Figure 4.2. A social
graph G consists of vertices V, representing OSN users, and edges E, representing
one-way “friend” or “follower” relations among them. This graph is sampled to
produce a graph Gk =< V, Ek > which shares vertices V with G, but in which
Ek ⊆ E is a set of edges produced by randomly selecting k outgoing edges from
each vertex v ∈ V.

We computed several functions that might be of interest to attackers over the
sampled graph, e.g. betweenness centrality, which identifies highly-connected users
who are in a position to influence the spread of rumours and other messages (see
§4.2.4.2). We compared the results to those that would be obtained from the com-
plete graph in order to determine how close an approximation of these functions an
attacker could develop from sampled public search listings.

64

SOCIAL GRAPH PRIVACY

Table 4.1: Basic statistics from early Facebook networks.

Network ID Space Nodes Edges |E|/|V|

Harvard 0–35,647 18.2 k 1.06 M 58

Columbia 100,000–127,322 15.4 k 620 k 40

Stanford 200,000–225,615 15.0 k 945 k 63

Yale 300,000–317,759 10.5 k 639 k 61

Our model assumed that sampled edges are available for all vertices in the
graph, that is, no users have opted out of public search listings. This assumption
is based on an ad-hoc exploration at the time of the study, in which we found that
fewer than 1% of users in the Cambridge network had opted out.

4.2.3 GRAPH DATA

In order to evaluate the effect of sampling on a graph’s properties, we required
a social graph that we could treat as ground truth and from which we could derive
a sampled graph. Public search listings provide an already-sampled graph, and
crawling within the Facebook network was ineffective — as shown in §4.1.1, not all
users expose their profiles to non-friends. Instead, we built a Facebook application
using the FQL feature described in §4.1.3 to identify users and friend relations. We
derived our data from well-defined user ID spaces for universities with early ac-
cess to Facebook. These Facebook networks, shown in Table 4.1, have contiguous,
densely populated user ID spaces.

Since our network-crawling application relied on FQL rather than public search
listings, it was subject to rate-limiting. Friendship discovery among users required
O(n2) queries, where n is the number of users in a network. Applications were not
permitted to query complete friend lists for all users even in 2009, but rather had to
employ the techniques shown in §4.1.3. Nonetheless, we were able to exhaustively
search spaces of 25,000–35,000 user IDs for active Facebook accounts, and to query
for friend relations among 10,000–18,000 active users in less than 12 h.

We performed our study before Facebook applications were subject to fine-
grained privacy controls [293], so the only way to conceal particular data items from
an application was to opt out of the Facebook Platform entirely. In 2009, this option

65

CHAPTER 4: ANTISOCIAL NETWORKS

was rarely taken. For instance, out of approximately 500 users known to exist in the
Stanford user ID space, only three were not visible to our FQL-based application.

Our data sets only included relations between users within a UID range. That
is, we captured relationships among users attending the same university, but not
friendships with people outside the university. These social graphs are incomplete
and therefore may not be representative of the complete network, but they do pro-
vide views into real social graphs rather than simulated data. We did not use them to
characterise the social networks themselves, but to characterise an attacker’s ability
to approximate certain graph statistics when presented with a partial view of those
graphs.

4.2.4 APPROXIMATIONS OF GRAPH CHARACTERISTICS

In our study, we demonstrated how several important characteristics of a social
graph can be approximated. In this dissertation, I have only included those charac-
teristics for which I did the analysis work. This leads to a rather obvious omission
— I do not discuss the approximation of users’ degree. I do, however, discuss the
reachability of and shortest paths between nodes (§4.2.4.1) as well as centrality and
its potential use by attackers to influence messages in a social network (§4.2.4.2).

4.2.4.1 REACHABILITY AND SHORTEST PATHS

A key characteristic of social networks is connectedness: can every person in
the network reach every other person via short social paths? This connectedness
can be measured via the lengths of the shortest paths through the network. If some
nodes are disconnected from the rest of the network entirely, then some shortest-
path routes will not exist at all: they have infinite length. A connected graph will
have finite lengths for all routes.

The lengths of shortest-path routes through the four target networks are shown
in Figure 4.3 on the facing page. This figure shows, for l ∈ [0, 12], how many
shortest-path routes of length l exist from any node i to any other node j. The top
figure shows the total number of such (directed) paths, whereas the bottom figure
shows the total number of routes of length l or less as a fraction of the total number
of shortest routes |V|2.

Figure 4.4 on the next page shows the effect of k-sampling, as described in §4.2.2,
on the Columbia University network. This figure shows a frequency count of the

66

SOCIAL GRAPH PRIVACY

0 2 4 6 8 10 12
100101102103104105106107108109

Pa
th

s
Shortest-path routes

Yale
Stanford
Harvard
Columbia

0 2 4 6 8 10 12
Path Length

10-5
10-4
10-3
10-2
10-1
100

CD
F

Yale
Stanford
Harvard
Columbia

Figure 4.3: Route lengths and reachability in university networks.

0 2 4 6 8 10 12 14 16
100
101
102
103
104
105
106
107

Pa
th

s

Shortest-path route length over unsampled graph
k = 32
k = 16
k = 8
k = 4
k = 2
k = 1

0 2 4 6 8 10 12 14 16
Difference between sampled and true path length

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

k = 32
k = 16
k = 8
k = 4
k = 2
k = 1

Figure 4.4: Route length approximation under k-sampling (Columbia).

67

CHAPTER 4: ANTISOCIAL NETWORKS

Table 4.2: Increase in shortest-path route lengths caused by k-sampling.

k Increase in route length
0 1 2 3 4 5 6

32 73.1% 99.9% 1
16 43.5% 97.2% 99.996% 1
8 15.3% 72.3% 99.4% 99.99999% 1
4 2.59% 17.7% 65.2% 97.3% 99.98% 99.9998% 1
2 0.55% 1.63% 5.45% 17.5% 45.5% 80.2% 97.0%
1 0.28% 0.32% 0.37% 0.44% 0.51% 0.58% 0.67%

possible differences in path length between true and sampled values. For all illus-
trated values of k, some paths have a non-zero difference in length between the true
and sampled graphs. This effect is least pronounced in the k = 32 case, in which
over 75% of paths have a difference of zero, but even then, some paths are longer
than in the complete graph. A tabular summary of this information is shown in
Table 4.2.

For k > 1, almost all shortest-path routes in the sampled graph are longer than
the unsampled graph by a small integer number of hops. In the k = 8 case — the
original motivation for this work — 99.4% of all shortest-path routes are lengthened
by two hops or fewer and an attacker can approximate true route lengths by simply
subtracting 1.

4.2.4.2 CENTRALITY AND INFLUENCE

Another important metric in social network analysis is centrality, which is a mea-
sure of the importance of members of the network based on their position in the
graph. Social graph members with high centrality are in a position to wield in-
fluence disproportionate to their degree, because they are not merely connected to
other nodes, they are efficiently connected. Highly central nodes may be sought out
by e.g. marketers searching for “connectors” to trigger a “tipping point” [114]. The
validity of the Tipping Point theory is not assumed here; what matters is that at-
tackers influenced by it may attempt to discover the centrality of nodes in the social
graph.

I employed the betweenness centrality metric in equation (4.1), as defined by Free-
man [108] and calculated using Brandes’ linear-time algorithm [62]. Here, σst is the
number of shortest paths (geodesics) from vertex s to t and σst (v) is the number of

68

SOCIAL GRAPH PRIVACY

such paths which contain the vertex v. A vertex’s centrality can be viewed as a “po-
tential [...] for control of information” [108]; it is the probability that a given vertex
will lie on a random geodesic.

CB (v) = ∑
s 6=v 6=t∈V

σst (v)
σst

. (4.1)

Betweenness centrality is the probability that a given node in a network lies on
the shortest path from one randomly-selected node to another. Thus, a node with
high betweenness centrality is one that can observe or influence many communi-
cation paths through the network. These communication paths are important, not
because the OSN uses them to route traffic, but because real-life social networks can
use them to route information via gossip. A highly central node is able to influence
much of the information flowing through a social network in this way.

I used betweenness centrality to measure the effectiveness with which an at-
tacker might influence information moving through a social network. Suppose an
attacker can compromise N nodes in a social graph and use them to influence in-
formation that passes through them. If the attacker can choose which N nodes to
compromise, the optimal attack strategy is to choose the most central nodes in the
network, yielding the highest probability of being able to influence any communi-
cation path. If the attacker has imperfect centrality information, the probability of
successful attack will be reduced. The question is, how successful can an attacker
be with incomplete centrality information?

Figure 4.5 on the following page shows values of betweenness centrality for the
four target Facebook networks. In all four networks, the shape of the centrality
curve is similar: a shallow decline in centrality across the ~5,000 most central users
in each network, followed by a sharper decline across the remaining, least central
users. The bottom graph shows the percentage of shortest paths in the network that
involve any of the first N nodes by decreasing centrality.

To simulate the attack, I sampled two of the sub-network data sets using several
values for the sampling parameter k. For each value of k, the attacker compromised
N nodes according to their centrality in the sampled graph. That is, the attacker
looked at a limited view of the network and chose to compromise the N nodes that
appeared to be the most central.

Figure 4.6 on the next page shows the influence which the attacker would have

69

CHAPTER 4: ANTISOCIAL NETWORKS

100 101 102 103 104 10510-1110-1010-910-810-710-610-510-410-310-2
Ce

nt
ra

lit
y

Betweenness Centrality

Columbia
Harvard
Stanford
Yale

100 101 102 103 104 105

Node

0
20
40
60
80

100
120

%
 o

f p
at

hs

Columbia
Harvard
Stanford
Yale

Figure 4.5: Betweenness centrality in four university networks.

0 5000 10000 15000 20000
N

0

20

40

60

80

100

%
 o

f p
at

hs

Harvard

Complete
k = 1
k = 2
k = 4
k = 8
k = 16
k = 32
Random

Figure 4.6: Attacker influence over messages in the Harvard network.

70

SOCIAL GRAPH PRIVACY

Table 4.3: Node compromises required to influence socially-routed messages.

k N required for % route influence
10% 25% 50% 75% 90% 95% 99%

∞ 96 466 1,794 4,736 8,788 12,419
32 103 494 1,919 5,048 9,217 12,796
16 107 514 1,980 5,226 9,572 13,193
8 113 559 2,100 5,596 10,210 13,916
4 126 660 2,492 6,440 11,355 14,859
2 186 921 3,175 7,605 12,774 16,419
1 823 2,137 5,089 8,951 16,668 17,994

in this scenario over messages routed over shortest paths via social links. A random
result is also provided for comparison: this simulates the attacker selecting nodes to
compromise without any centrality information (k = 0).

If an attacker randomly chooses N nodes to compromise, the number of shortest-
path message routes that can be influenced increases linearly with N. If any cen-
trality information is provided, however, his influence grows super-linearly. In the
k = 8 case, the attacker needs to compromise 2,100

18,273 = 11.5% of the network in order
to influence 50% of the shortest-path message routes through them. Compromising
5,596

18,273 = 30.6% of the network allows 75% of all such routes to be influenced. These
values of N are just 16–17% higher than if the attacker had full centrality informa-
tion.

4.2.5 RELATED WORK

Nagaraja has studied the problem of evaluating community detection algo-
rithms when given edges from a small subset of nodes [186]. This is related to the
work above, which studies some edges sampled from all nodes, but is concerned
with a different model: evolving covert networks under continuous “decapitation”
attacks.

In a somewhat–spuriously-titled 2011 paper, Zhan describes how it is possible
to compute some properties of a social graph properties under homomorphic en-
cryption [245]. That work was concerned with the ability to compute such values
in a privacy-preserving way; in contrast, this work is about demonstrating just how
much information about the graph leaks under apparently-controlled disclosure.

71

CHAPTER 4: ANTISOCIAL NETWORKS

4.2.6 SUMMARY

Using data from university sub-networks within Facebook, I have demonstrated
that an attacker viewing a publicly-sampled social graph is able to closely approxi-
mate key characteristics of the true, unsampled social graph.

These characteristics include the length of shortest-path routes through the social
graph: for sampling parameter k = 8 (as in Facebook’s original public search list-
ings), an excellent approximation for true route length can be found by simply sub-
tracting 1 from the apparent route length.

The other characteristic I approximated is betweenness centrality, a measure of
how connected a node is within a graph. I have shown that an attacker seeking in-
fluence over messages traversing a social graph is scarcely worse off when viewing
publicly-sampled information than if he were to learn the complete social graph.
When k = 8, this attacker needs to choose 16–19% more nodes to compromise than
if he had access to the complete social graph.

This demonstrates that the decision by an OSN operator to reveal a limited sub-
set of information — just eight friends for each user — may in fact reveal more infor-
mation than was intended. This is part of the motivation for exploring alternative
architectures for online social networking.

4.3 SUMMARY OF CONTRIBUTIONS

In this chapter, I presented qualitative and quantitative analyses of the privacy
practices of today’s online social networks (OSNs), showing how they have revealed
private information about users and the social graph beyond users’ expressed shar-
ing intentions.

The qualitative analysis demonstrates three ways in which the behaviour of
OSNs does not conform to the expectations and wishes of their users. First, I de-
tailed a history of changing privacy settings in Facebook, which is currently the
world’s most popular OSN. These changes mean that a user who configured their
Facebook profile in 2006 with very restrictive settings would today have a very pub-
lic profile, unless active steps were taken to counter automatic changes. Second, I
surveyed literature on advertiser access to private user data, demonstrating that this
access has been less free than some reporters claim but less restrictive than OSNs
claim. Third, I demonstrated how applications can use Facebook’s APIs to retrieve
information that users themselves cannot view.

72

SUMMARY OF CONTRIBUTIONS

My quantitative analysis centres on social graph privacy. I argue that the privacy
of users’ profile information requires the social graph also be kept private. I show
how attackers can use sampled graphs provided by OSNs as public search listings
to approximate important properties of the complete graph.

OSNs today have a demonstrated history of sharing private user information
more widely than users’ expressed preferences would dictate. The ability for OSNs
to unilaterally share private user data means that users must trust their OSNs (as
in the definition of “Trust” on page 34). In the rest of this dissertation, I describe
an alternative social networking system called Footlights that puts users in control
of information sharing, addressing problem “Explicit expressions of user intent” on
page 35. I begin by describing a sharable storage service built on untrusted infras-
tructure that provides a foundation for a distributed filesystem.

73

5
SHARABLE STORAGE

“That’s all you need in life, a little place for your stuff.

George Carlin”Current online social networks (OSNs) may not have good confidentiality proper-
ties — as shown in Chapter 4 — but they do provide their users with some integrity
and availability guarantees. If Alice authenticates to an OSN using a combination
of passwords, geography and social context [142, 240], the OSN can make integrity
assertions to Bob such as, “Alice uploaded this exact photo”. For availability, to-
day’s OSNs deliver static content such as photos through globally-available Content
Delivery Networks (CDNs) [20]. Any system that improves on the confidentiality
properties of today’s OSNs by replacing them must also compete against their in-
tegrity and availability properties.

In Section 2.2, I proposed a distributed social application platform called Foot-
lights to run general-purpose social applications without privileged access to user
information. That platform is built on top of a global distributed storage system for
private content. This storage system, together with the confidentiality and integrity
properties it provides, is the topic of this chapter.

The threat model for the system is based on the behaviour of today’s OSNs, de-
scribed in Chapter 4. I assume that all centralised infrastructure behaves according
to the definition of “Honest but curious” on page 35. That is, centralised infrastruc-
ture is relied on to faithfully perform its observable duties (such as storing content)
while attempting to learn “more than [its] due share of knowledge” [116]. Specifi-
cally, the only computer that the Footlights system trusts to perform access control
is the user’s computer.

Instead of relying on centralised OSN servers to perform access control, the
Footlights storage substrate uses cryptography to achieve its confidentiality and in-

74

Cloud storage provider(s)

Content Addressed Store (CAS)

Filesystem

Application Platform
App 1 App 2

Host 2

App 1

Host 1

Directory

File

Block

https://s3-eu-west-1.amazonaws.com/
me.footlights.userdata/%s

Name → Location mapping

Figure 5.1: Footlights and its static storage layers.

tegrity goals. Users make local access control decisions — which users and applica-
tions to share information with — that are projected into a global, untrusted storage
network (Section 5.1). The substrate provides availability properties via commodity
CDNs: its storage and data transfer capabilities are bounded only by the constraints
of providers such as Amazon and Rackspace.

The Footlights storage system, depicted in Figure 5.1, works by storing files as
small blocks of ciphertext in a content-addressed store (Section 5.2). This store is
based on commodity storage purchased from an untrusted provider. Any partic-
ipant in the system may validate the integrity of any block, but inspection of the
relationships among blocks is only possible through explicit sharing of decryption
keys. These keys are not shared with the storage provider; the provider cannot read
user information and has no semantics of user identity.

75

CHAPTER 5: SHARABLE STORAGE

The basic structure of data is a graph of encrypted, immutable blocks (Sec-
tion 5.3). The entire graph is private by default, but snapshots of arbitrary sub-
graphs can be trivially shared with others using a constant-size communication of a
name and a key, possibly via an indirect, mutable name (Section 5.4). Unlike some
social sharing schemes, the decision to share content with another user implies no
set-up cost or hidden changes to access control rules. Also, the system’s users can-
not observe how much content has not been shared with them, except in the most
trivial sense that anyone may know the total volume of content stored by all users
in the global network.

These primitives are used as the basis for a distributed filesystem (Section 5.5).
Unlike centralised network filesystems, the Footlights filesystem cannot rely on
garbage collection by the storage provider: filesystem semantics are not exposed
to the provider. Instead, users purchase the right to store content blocks for a pe-
riod of time. This is only marginally more expensive than the paid-with-privacy
model of today’s centralised OSNs: the cost of storing a realistic amount of user
content with a current commercial storage provider is on the order of 1 USD/year
(Section 5.6).

A key design goal of the system is to be compatible with privacy and perfor-
mance optimisations at the network layer (Section 5.7). Users can choose their own
privacy–performance trade-offs. Some will choose to access the cloud storage ser-
vice via Privacy-Enhancing Technologies (PETs) in order to hide their identity from
service providers. Others, more interested in low-latency, high-bitrate communica-
tion than anonymity, will find that distributed caches and CDNs allow the system’s
performance to compete with centralised OSNs.

For better or for worse, this network agnosticism means that the system is also
compatible with traffic analysis. If users require anonymity properties in addition
to privacy, the system also provides cover traffic for a communications channel that
is perfectly unobservable (Section 5.8).

76

ROUTE OF TRUST TO ROOT OF TRUST

5.1 ROUTE OF TRUST TO ROOT OF TRUST

“Wise men put their trust in ideas and not in circumstances.

Forbes Magazine, Vol 143, 1989 [267]
misattributed to Ralph Waldo Emerson, 1803–1882 [97]”In today’s centralised OSNs, confidentiality and integrity properties are claimed

on the evidence of user authentication. The provision of these properties relies on
users accessing the OSN through an interface that can restrict access according to
social access control lists. As a performance optimisation, authentication and access
control decisions may be cached with tokens such as cookies. When these decisions
are translated into the policy languages of performance-enhancing content delivery
services, however, their substance can be lost.

In 2009, Joseph Bonneau, Andrew Lewis, Frank Stajano and I showed that Face-
book’s CDN failed to correctly revoke access to photos that were deleted by their
owners [20]. The access control change requested by a photo’s owner was effective
when users browsed the Facebook website, but not when they visited previously-
obtained CDN URLs that cached the result of an earlier access control decision. This
discrepancy persisted through February 2012 [273].

The problem is that an access control decision was made in a centralised context
— Facebook’s data centres — but not translated into the language of the distributed
CDN serving the content. Facebook could check access control rules when the user
visited the OSN website itself, but the CDN could not. Not deleting old photos is
a very obvious failure mode, but more subtle changes, such as modifying an access
control list, can also be lost in translation between the centralised and distributed
services. OSN access control is coupled to a centralised context, with access to social
graphs and ACLs, making it difficult to distribute enforcement to services that do
not have this access. The correctness of enforcement thus depends on the route by
which a user reaches the protected object: whether or not a request goes through
servers with access to the social information required to make the correct access
control decision.

In order to improve the enforcement of confidentiality properties, many have
proposed revisiting the current mix of centralised and decentralised system compo-
nents. Some, like the Diaspora project [276], are partly decentralised: they break one

77

CHAPTER 5: SHARABLE STORAGE

centralised OSN into several federated ones. Others such as Safebook [79] are fully
decentralised: they eschew centrally-maintained storage and instead distribute user
content through peer-to-peer networks. This class of systems is different from cen-
tralised OSNs in many ways, but still exhibits the property identified above: the
effectiveness of access control depends on the route by which content is reached.
Diaspora’s access control operates across a Web interface that is conceptually the
same as centralised OSNs’. Safebook claims some of its confidentiality properties
by virtue of its routing protocol, which forces accesses to go through several layers
of a “matryoska” surrounding a user’s data (see Section 3.3).

In these systems, the route-dependence property does not cause a breakdown
in confidentiality, since users can only reach content via routes that allow access
control to be properly enforced. Instead, route-dependence causes a breakdown in
availability. For instance, one paper about Safebook explores the trade-offs between
network churn and matryoska size, with a goal of maintaining a 90% probability
that a path through the matryoska will exist [81]. This path may not have low la-
tency or be capable of carrying large amounts of traffic: it is a path, and there is a
10% chance that it will not exist at all. This availability raises serious doubts about
the ability of fully-decentralised services to compete with professionally-managed,
centralised ones. OSNs tend not to release uptime statistics, but for comparison,
Amazon, Google and Microsoft start refunding customers if their hosted applica-
tion availability dips below 99.9% [318, 321, 327].

In both centralised and decentralised cases, privacy and performance seem to be
at war. Facebook’s access control (such as it is) breaks down when it uses CDNs to
improve performance. Safebook claims to improve privacy, but does not provide
the availability required of a serious Facebook competitor. I claim, however, that
is it possible to have both privacy and performance in an OSN, as long as the sys-
tem treats privacy as an end-to-end requirement [210] rather than a property of the
route by which users reach content. While the availability of content might be a
property of the network’s core (or “the cloud”), confidentiality and integrity must
be guaranteed by the edges, from end-node to end-node.

Footlights uses cryptography to project access control decisions made on local
end-nodes into a global storage substrate. Information is stored on a shared cloud
infrastructure, paid for as described in Section 5.6. This storage and delivery plat-
form provides the availability Footlights requires. Confidentiality and integrity are
rooted in a private key which represents a user’s identity, rather than the route by
which a user reaches the storage provider.

78

CONTENT-ADDRESSED STORE

Private keys can be bound to real-world people in order to prevent the imper-
sonation and social engineering possible in centralised OSNs or the Sybil attacks
possible in anonymous peer-to-peer networks1. If it is important to know that “the
user I am speaking with” corresponds to “the person in the next office”, keys can
be bound to identities via a real-life exchange of key fingerprints or CryptoIDs [197]
or over channels that are authentic — but not necessarily confidential — with mu-
tual authentication protocols such as Hoepman’s φKE [132] or Wong and Stajano’s
MANA-III variant [234].

Assuming users can authenticate private keys using one of these schemes and
that keys can be revoked if necessary, as discussed in Section 7.5, client software can
perform end-to-end cryptography to assure users of confidentiality and integrity
properties. This allows Footlights to decouple authentication from content storage
and delivery. Footlights can take full advantage of professionally-managed com-
modity storage providers without trusting those providers to perform access con-
trol. This allows the best of both worlds: the privacy properties of a completely
distributed system (end-to-end cryptography) with the availability of a completely
centralised system (the storage platform).

The price of this new trade-off is rigidity. Centralised OSNs, which use rolling
software updates and hide internal representations, can change storage formats at
any time. Footlights interoperability, however, requires that formats be standard-
ised. As shown below, this need not be complex or formal: two binary storage
formats must be specified, which could be done by a single RFC-like document; the
Footlights storage system is more a protocol than a product.

5.2 CONTENT-ADDRESSED STORE

“ I cannot say the crow is white,
But needes must call a spade a spade.

Humfrey Gifford, “A delectable Dreame”, 1580 [112]”1Douceur’s Sybil attack refers to an attacker overwhelming a network with a flood of apparently-
independent nodes under his control [93]. Yu et al.’s SybilGuard and SybilLimit [243, 244] as well
as Mislove et al.’s Ostra [180] defend against this attack by exposing social graph information. This
approach is not suitable for a privacy-enabling system such as Footlights.

79

CHAPTER 5: SHARABLE STORAGE

The Footlights storage substrate holds data on behalf of many users, and the sys-
tem must prevent users from modifying or removing each others’ content. It is
undesirable for the substrate to maintain an Access Control List (ACL) for ev-
ery file, as in distributed filesystems such as OceanStore [49] (discussed in Sec-
tion 5.9). Privacy is a primary goal for the Footlights storage system, so the cen-
tralised part of the system should not be trusted to check credentials or maintain
content–owner/content–reader mappings. Instead, users should be able to upload
content without revealing any identity information. The system may require autho-
risation (e.g. a token representing a micro-payment, as in Section 5.6), but it must
not require authentication.

If the system were to partition user data into per-user namespaces, it would have
to identify users in some way. Even if users’ globally-meaningful names are not
supplied, some identifier must be used to disambiguate Alice’s /photos/albums/
Christmas from a different object that Bob names the same way. This identifier
might be a public key, as in self-certifying path names [170], but even that iden-
tification is unacceptable: it creates an identifier–content mapping that could be
used to track the activity of individuals over time. This tracking cannot be medi-
ated by network-level PETs, as required by problem “Linkability and anonymity”
on page 39, because it is end-to-end: the server’s behaviour depends on the user
doing the uploading, not the communications channel being used.

If the system is not to partition the content namespace into user-specific names-
paces, then all content must be placed in a global namespace that affords no special
(e.g. short and human-readable) names to any user. Users should not be identifiable
via the pattern of names that they use. Users should also be able to create batches
of object-creation operations: Alice might create a photo album on the train, where
she does not have Wi-Fi access, and let it automatically upload when she gets home.
These batch operations, by definition, should not require multiple round trips to the
server in order to ask, “what will this file be called?”. Neither should Alice be re-
quired to pre-reserve part of the namespace: that would provide an opportunity for
the system to track her via her use of the reserved names. Instead, Footlights medi-
ates access to its globally-shared namespace by using a Content-Addressed Store.

A Content-Addressed Store (CAS) names files according to their content, rather
than storage location. In Footlights’ CAS, files are broken into immutable blocks,
each named by a cryptographic hash of its contents.

80

/photos/albums/Christmas
/photos/albums/Christmas

IMMUTABLE BLOCKS

5.3 IMMUTABLE BLOCKS

The Footlights CAS is based on encrypted, deterministically-named, immutable
blocks. It is oblivious to the semantics of user files. Files are meaningful to ap-
plications, but there is no need for low-level storage mechanisms to be aware of
them. Instead, the CAS works on the basis of fixed-size blocks2, out of which files
may be assembled. This distinction has previously been recognised by the CASPER
system [222], a distributed filesystem that represents a file as a “recipe”: a list of
blocks that are stored on a backing server but may also be cached in a local CAS.
This is also the design philosophy behind traditional filesystems: a filesystem is, in
essence, a mapping from application-meaningful names onto hardware-meaningful
disk blocks via system-meaningful objects such as inodes [173].

5.3.1 NAMING

Blocks in this store are named by a cryptographic hash of their content. If the
hash in question admits no collisions, i.e. it is infeasible to find two blocks that hash
to the same value [202], this technique provides a flat, global block namespace with
deterministic names. Block names are Uniform Resource Names (URNs) [260], a
special case of the generic Uniform Resource Identifier (URI) [255] that explicitly
describes the content rather than location or metadata. The integrity of a block can
be checked without decrypting it: if the block hashes to the name used to retrieve it,
it is the correct block.

Footlights blocks named in this way are immutable; this helps solve the con-
sistency problem that generally afflicts distributed filesystems. A filesystem that
allows disconnected operation [143] such as Coda must explicitly resolve conflicts
created when clients perform inconsistent writes to a shared namespace [149, 150].
Even the apparently-synchronous NFSv3 actually has weak cache consistency, so
several clients can have inconsistent versions of the same file [195]. In Footlights,
however, if the content of a block changes, its name must also change; it is a differ-
ent block. The old block can continue to exist as a snapshot (subject to the payment
model of the service), so data — such as a certain snapshot of Alice’s profile — will
always be consistent. The problem becomes: how can users and applications main-
tain consistent metadata? Which snapshot of Alice’s profile is the current one? The
consistency problem is reduced to the version control problem; this is discussed in

2The block format (Figure 5.2 on page 83) allows block size to be any power of two, but Footlights
currently only uses 4 kiB blocks.

81

CHAPTER 5: SHARABLE STORAGE

Section 5.4.

Immutability simplifies the design and implementation of the Footlights block
store because it allows sharing without co-modification. A particular block URN
will always refer to the same content. This is verifiable because the name–content
mapping is easily checked by any participant, so blocks can be delivered via CDN
or Tor and cached anywhere in the network. The cost of this simplicity is the garbage
collection problem, discussed in Section 5.5.

5.3.2 STRUCTURE

A Footlights block, shown in Figure 5.2 on the facing page, contains three things:
links, content and padding. A link is a pointer to another block. It contains a name
and a decryption key and is represented with the binary format shown in Figure 5.3
on page 84. Links provide a mechanism for structuring data into directed acyclic
graphs such as hierarchical filesystem trees. Links are agnostic to the overall struc-
ture of the graph with one important exception: it is computationally infeasible to
construct a cyclic graph. The name of the target block is the hash of its ciphertext,
so the ciphertext must be known in order to name it. For block A to link to block B,
the contents of B must be fixed before A is constructed, including all of B’s outgoing
links. To construct a circular graph would require finding a pre-image for a crypto-
graphic hash; this is assumed to be infeasible for cryptographic hash functions [202].

This sharing mechanism makes it possible for users to share a snapshot of large
quantities of data without any synchronisation costs beyond that of constructing
the blocks in the first place. The cost of sharing is linear in the number of “things”
(i.e. graphs of immutable blocks) shared, be they photos, albums or entire profiles;
it is constant with respect to the size of the shared content. This property reduces
the public-key cryptography burden involved in integrity checking: the graph of
blocks and links is a Merkle tree [175], so signing one block protects the integrity of
an arbitrary quantity of shared content3.

The second component of a block is user content. Since files are broken into
small blocks, slices of the file can be downloaded independently in parallel as in
BitTorrent [77] or the earlier Jigdo (Jigsaw Download) tool [340].

3Strictly speaking, it is a directed acyclic graph (DAG) rather than a tree, but the simplicity and
performance of the Merkle tree apply in all but the most pathological cases.

82

IMMUTABLE BLOCKS

0 7 8 15 16 23 24 31

magic N L offset length

link 0

link 1

link 2

content
(3,210 bytes)

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

padding
(582 bytes)

4 kB

N Total length of block: N = log2 l
L Number of links.

offset Offset of user content within block [B].
length Length of user content [B].

Figure 5.2: A block with three links and 3,210 B of user data.

83

CHAPTER 5: SHARABLE STORAGE

0 32 64 96 128

LINK\r\n Ltotal LU LC LK

URI

Cipher

Decryption key

96 B

Ltotal Total length of link, including magic [B].
LU URI length [B].
LC Cipher name length [B].
LK Decryption key length [B].

Figure 5.3: Binary representation of a CAS link.

The final component of a block is padding. The total size of a block in bytes
must be exactly a power of two: the length of a block is l = 2N (or l = 1 << N),
where N is a byte in the previously-shown binary block structure. Most files will
not fill an integer number of such blocks precisely, leaving 2N −

(
S mod 2N) byte

unfilled, where S is the file size. Filling these bytes with random padding provides
an opportunity for covert communication, and is an important part of the Footlights
design. As described in problem “Multi-faceted identity” on page 36, users should
be able to portray different facets of their online identity to different people. By hid-
ing encrypted information in padding bits — ciphertext which is indistinguishable
from its random surroundings — users can present different information to differ-
ent people via the same profile root. The use of these covert bits is described in
Section 5.8.

5.3.3 ENCRYPTION

Footlights blocks are encrypted with Douceur et al.’s convergent encryption con-
struction [95], in which a cryptographic hash of the plaintext is used to generate a
symmetric encryption key. All users who create the same block of plaintext will gen-
erate the same encryption key, yielding the same ciphertext. If the Footlights CAS
is used for backing up similar files, this de-duplication effect will result in users
needing to upload less information. Since the plaintext of a block includes links, no
keychain is required to store the decryption keys of linked blocks.

84

IMMUTABLE BLOCKS

Intuitively, convergent encryption cannot provide standard security guarantees
such as indistinguishability under chosen plaintext attack (IND-CPA) [41]: when the
attacker knows the encryption key, IND-CPA requires randomisation of encryption.
This lack of indistinguishability is shared with Bellare et al.’s deterministic encryp-
tion [39], a public-key construction in which an encryption algorithm’s randomising
coins are generated from the plaintext itself. Bellare et al. proved that deterministic
encryption provides a notion of privacy when the input plaintext has high min-
entropy and does not depend on the public key. In deterministic encryption, how-
ever, there is a relationship between the encryption key and the plaintext: one is the
cryptographic hash of the other.

The only formal treatment of convergent encryption in the literature is in
Douceur et al.’s extended technical report version of their work [94]. In this report, a
proof is offered in the random oracle model that an attacker cannot output the plain-
text of a given ciphertext with probability Ω (1/nε) unless that attacker can a priori
output the plaintext with probability Ω

(
1/n2ε

)
. This proof relies on non-standard

assumptions and nothing is proven in the standard model, but such analysis is left
for future work. For the purposes of the Footlights storage system, I assume that a
practical attacker is unable to reverse a convergent encryption without brute-force
guessing of the plaintext. Furthermore, I assume that plaintext collisions — if they
exist in the hash function used to generate the key — will not result in ciphertext
collisions: even if the same key is used, different plaintext will produce different
ciphertext.

Since links are embedded within plaintext blocks, storage servers cannot see the
structure of the block graph. The structure might be inferred by the provider via
traffic analysis, however: a server might notice that whenever users download block
A, they quickly come back for blocks B and C. This traffic analysis might be used to
improve the quality of the provider’s service through pre-emptive cacheing for data
locality [211], but users who consider it to be an unacceptable privacy compromise
are able to confuse it by constructing pathological graphs such as linked lists en-
crypted using an all-or-nothing strategy like Rivest’s package transform [208]. This
is discussed further in Section 5.7.

In 2008, Wilcox–O’Hearn — an author of the Tahoe filesystem [232] — showed
that convergent encryption was vulnerable to a “Learn Partial Information” at-
tack [358]. That is, if an adversary knows all but n bits of a file encrypted using
convergent encryption, that adversary can encrypt 2n possible plaintexts and com-
pare the results against the ciphertext being targeted. If one of them matches, the

85

CHAPTER 5: SHARABLE STORAGE

2n bits of formerly-secret information are revealed. In Footlights, however, blocks
are padded with random bytes. In a large file — e.g. a photo or video — the de-
duplication provided by convergent encryption is highly desirable, as it reduces the
amount of storage that the user must pay for. Smaller files — e.g. private messages
— can contain large quantities of random padding. Implementations of the Foot-
lights client software should ensure that small files are not left with a small amount
of padding (shorter than a symmetric key of desired security). Such content should
be split over two properly-padded blocks.

Storing small files within fixed-size blocks will cause an overhead cost, as dis-
cussed in Section 5.6, but this cost can be amortised across several small files if they
are stored together within a block as long as they are meant to be distributed to the
same recipients.

The Footlights encryption model of immutable ciphertext does not lend itself
to revocation: once a user has learned a block’s key, that block can always be re-
downloaded and re-decrypted. I have argued elsewhere that this is consistent with
real-life social sharing, and thus OSNs should not make the false promise of being
able to revoke access to shared content [3]. Instead, Footlights can support Fu’s
“lazy revocation” model: rather than promising to immediately revoke access to a
file, Footlights can simply not give access to the next file or version of the file [109].
Again, this is consistent with a social sharing model: I cannot make my friend forget
a secret that I have already told him, but I can avoid sharing secrets with him in the
future.

5.4 MUTABLE NAMES

“A complete commitment to immutability is
a commitment to never building anything real.

Yaron Minsky, “OCaml for the masses”, 2011 [179]”Notwithstanding the benefits of immutable storage, applications will always require
some volatile objects with stable names. Footlights provides such names through
cacheable, forwardable JSON objects backed by standard Web servers.

A Footlights user’s shared information can be represented as a consistent, static

86

MUTABLE NAMES

Listing 5.1: A mutable pointer to immutable data (Base32-encoded [259]).

{ "name": "Alice’s Profile","fingerprint": "urn:sha-1:XH2ZD25QPHXDARTSANUHT7VF2FWIK52S","key": "AES:Z237XZFGLPANNQVRUSLHYVEL4I======","signature": "urn:sha-1:EGWBEOS2CBF7C4S7LB5ZESW7VYUMZVWN"}

graph of content-addressed data blocks. This information is a snapshot, however,
leading to the question: how can other users find the most up-to-date snapshot?
This is the version control problem alluded to in Section 5.3. If Alice tells Bob in Jan-
uary that her personal information is in a tree whose root is x, Bob cannot be con-
fident in February that x is still the root of her information; Alice’s profile is very
likely to have diverged from this immutable snapshot to a new value x′. In order
for Bob to continue receiving updates from Alice, more communication is required
whenever Alice updates her profile.

If Alice had a secure out-of-band channel over which she could communicate x′

to Bob, the version control problem would be solved. However, reliable one-way
communication channels such as e-mail use the same model of centralised access
control as centralised OSNs; such a solution will not address problem “Untrusted
infrastructure” on page 37.

Rather than depending on the security of external mechanisms, Footlights de-
fines an end-to-end mechanism for translating stable names into mutable references
to immutable data. Users may access this service via caches or proxies, choosing a
trade-off among latency, freshness and privacy that suits their needs. Security guar-
antees are provided by cryptography rather than the trustworthiness of secondary
channels.

In Footlights, URLs [256] can be used as mutable names. Such a URL names a
mutable document that maps to an immutable block’s URN (Section 5.3). The URL
is a canonical, stable representation of an object such as the root of Alice’s profile
or the current version of a software library. The URL does not change whenever
Alice updates her profile or the library vendor produces a new version, but the con-
tent that the URL references does. The example shown in Listing 5.1 is a JavaScript
Object Notation (JSON) object that names an immutable block, a block-specific sym-

87

CHAPTER 5: SHARABLE STORAGE

http://server.com/apps/tictactoe/v1.7

Cacheing
Proxy

server.com

GET /apps/tictactoe/v1.7

hash = urn:sha-256:FD70...
ttl = 3600 s
signature = ...

resolve http://server.com/...

hash = urn:sha-256:FD70...
ttl = 1892 s
signature = ...

Figure 5.4: Resolving a canonical name.

metric decryption key and a signature block.

This JSON object can be stored on any service for which URLs are well-defined,
such as HTTP or FTP. This scheme is designed to be compatible with widely-
deployed cacheing systems to improve performance, privacy or both. As illus-
trated in Figure 5.4, name resolution does not require direct communication with the
host serving the name resolution information. Caches can remember a URL→JSON
mapping and serve it directly to clients. Cacheing might be used to improve perfor-
mance, eliding long-distance round-trip communication with local cache hits, or to
improve privacy: name resolution requests can be forwarded through anonymising
proxies or peers à la Crowds [206].

The inclusion of a decryption key renders the linked block effectively public,
but the indirection stops an honest-but-curious CAS server from reading the target
without significant effort: the URL → URN mapping is not reversible. An honest-
but-curious CAS provider combined with a Web spider will be able to read this
plaintext; I thus apply the term effective plaintext, meaning blocks whose decryption
keys have been made public elsewhere. Nonetheless, the CAS provider alone cannot
trivially read ciphertext blocks without discovering their URL → URN mappings.
URL → URN mappings could be made secret by encrypting them with standard
public-key methods, but the current Footlights implementation does not support
this functionality.

No security properties are guaranteed by the URL’s host: nothing prevents a ma-
licious server or cache from serving modified URNs. Rather than trust the server,
Footlights only accepts URNs that it can verify by reading the signature block
pointed to by the URL→ URN mapping. This verification can use standard public-
key signature algorithms. For instance, when viewing Alice’s profile, Bob will only
follow those URL → URN mappings which have been signed by Alice’s signing

88

MUTABLE NAMES

key.

The use of caches might provide a malicious party with the opportunity to attack
the consistency of the storage system. According to Brewer’s theorem [63, 113], a
distributed system cannot maintain both perfect consistency and perfect availability
in the presence of network partitions: a trade-off must be chosen. In the Footlights
storage system, an attacker in control of a URL → URN cache could force a parti-
tioning of the network, reducing consistency or availability. Footlights makes end-
to-end confidentiality and integrity guarantees with cryptography, so a malicious
cache cannot poison a user’s profile. A cache could refuse to reply to requests — an
attack on availability — but its users can find another source of URL → URN data,
such as resolving the URL itself. A more subtle attack would be a replay attack, an
attack on consistency in which the attacker serves an old mapping rather than the
current one.

A URL → URN mapping cannot vouch for its own currency, but the system
can achieve Li et al.’s fork consistency [155]. That is, for a malicious server to hide
the existence of a fresh URL → URN mapping from user Alice, it must also hide
all content from her that refers to the new mapping. Hiding all such content will
create an Alice-specific “fork” of the system state, presenting her with a view of
the system’s global state that is inconsistent with other views. In order to remain
internally consistent, this fork must necessarily diverge rapidly from the view seen
by other users, so it is easily detected by humans (“why haven’t you replied to my
message?”) or by software performing a consensus protocol such as Byzantine fault
tolerance [68, 151].

Name resolution information will normally be publicly available: users need not
trust the access control of Web services, and making data available to the entire In-
ternet allows users to resolve names via caches or proxies. The scheme can compose
with other access control mechanisms, however: a user could generate a URL which
is only resolvable by e.g. members of an educational institution or users of a cor-
porate VPN. The URL could not be cached by proxies outside of the institution, but
that constraint would complement policies of the institution that the user is relying
on for their access control.

89

CHAPTER 5: SHARABLE STORAGE

Listing 5.2: A filename, relative to an explicit directory block.

urn:sha-1:XH2ZD25QPHXDARTSANUHT7VF2FWIK52S/relative/path

5.5 FILESYSTEM

The purpose of the Footlights storage system is to provide a storage API to dis-
tributed social applications. This API must be accessible to developers who are
specialists in neither privacy nor distributed systems.

In order to meet this requirement, I have built a simple filesystem on top of the
Footlights block storage CAS that can map user- or application-meaningful hierar-
chical names to files of arbitrary length. The details of the API, which should be
familiar to Java programmers, are described in Chapter 6, but this section describes
how the filesystem provides a natural unit of information for storage and sharing.
That unit is a hierarchical subtree of directories based at an implicit or explicit root.

5.5.1 A ROOT BY ANY OTHER NAME

Since the Footlights CAS is a globally-shared medium, there can be no universal
agreement on a directory for all users: participants cannot be relied on to make the
agreement and the shared medium cannot enforce it because it is unable to look
inside the encrypted blocks that the filesystem is built on.

Because of this, a filesystem must be rooted in a specific directory, which is it-
self composed of CAS blocks. An example of such a path is shown in Listing 5.2,
where a relative component (/relative/path) is appended to an absolute directory
URN. This mechanism allows users to have individual filesystems for content, keys,
application settings, etc. without interference. The root does not always need to
be explicit, however: an application might use root directories implicitly, as in "/
absolute/path/to/file", so long as the application platform keeps track of a root
directory for each application. This allows different applications to use completely
virtualised filesystem namespaces even when those applications are run by the same
user on the same application host.

90

FILESYSTEM

5.5.2 CROSS-FILESYSTEM SHARING

It is of little use for applications to have private scratch spaces if they are never
able to share content with applications run by other users — the purpose of an OSN
is to enable social sharing. Sharing content should not necessarily imply future
sharing, however: access to one version of a photo album need not imply access to
future versions. Footlights should not preclude ongoing sharing, but neither should
the basic primitive for inter-user and inter-application sharing imply it.

The basis of sharing in Footlights is the immutable directory snapshot. Since
the Footlights CAS is based on immutable blocks, snapshots are inexpensive: when
saving a new version of a file, the system simply needs to not throw away the link
to the old version. This property is shared with the ZFS file system [55] and the
Git revision control system [161], both of which also use hashes to name blocks of
content. The cost of this approach is seen in garbage collection, discussed in §5.5.4.

Time-varying content can be shared via indirection through a mutable URL (Sec-
tion 5.4) or explicit publishing of updates. This is different from filesystems that
share the one-logical-root-per-application property of Footlights, such as Plan 9’s
/proc filesystem [199, 200], inspired by Killian’s ProcFS [141]. In the /proc filesys-
tem, as implemented by Plan 9, Solaris, the BSDs and Linux, some particulars of
every process on the system are exposed via paths such as /proc/{PID}/fd. Del-
egating access to a portion of this filesystem necessarily implies ongoing access to
up-to-date information. If a system like Capsicum [9] is used to delegate the /proc
/17/environ directory to an untrusted process, that process will always be able to
read the environmental variables of the process with PID 17. There is no way to del-
egate a snapshot of only the current environmental variables without copying. By
contrast, the Footlights sharing mechanism uses immutable snapshots by default. It
is possible to provide ongoing access to changing content, but the default is to share
content as it currently exists.

5.5.3 WRITING TO SHARED FILESYSTEMS

Since each application instance is the master of its own filesystem, no other ap-
plication has the authority to modify its contents. This provides predictable seman-
tics to the application: no other application will concurrently modify content. The
filesystem is not required to mediate conflicting writes to the distributed filesystem.
Mediation would imply a burden for application developers: distributed filesys-
tems such as Coda that support concurrent writes need application-specific conflict

91

CHAPTER 5: SHARABLE STORAGE

resolvers [149, 150].

On the other hand, the ability to modify shared content is a desirable feature. If
application A shares a subset of its private filesystem with application B, then B can-
not directly write into A’s filesystem: it is an immutable snapshot. B can, however,
modify a local version of the shared filesystem and send A an immutable snapshot
of the changes that B would like to see incorporated. A can then decide whether or
not to incorporate the changes and update other applications with the new version.
This is similar to the development model employed by the distributed development
service Github [82]: users can trivially fork an existing Git project — an immutable
tree named by a cryptographic hash of its contents — and modify a local copy, then
submit “merge requests” back to the authors of the original project. This allows a
locally-mutable filesystem to be incorporated into a globally-immutable filesystem
snapshot.

5.5.4 GARBAGE COLLECTION

The Footlights CAS cannot inspect the content of filesystem blocks, nor do users
supply it with metadata such as reference counts. Together, these properties prevent
the underlying storage provider from deleting stale blocks; that is, it cannot perform
garbage collection.

Instead of performing garbage collection, the underlying provider of Footlights
block storage can resort to a fee-for-service model, in which users pay the provider
for de-duplicated storage of encrypted blocks for a fixed period of time. This model
is plausible because the costs of storage are so low, as described in Section 5.6.

5.6 COST

The plausibility of a privacy-preserving storage and sharing service depends on
the cost of operating the service. Current OSNs pay for data storage and trans-
port with targeted advertising. Privacy-preserving advertising schemes have been
proposed [48, 75, 126, 137, 196, 224] which are technically sound, but it is currently
unclear how much revenue they will be able to generate. The question is, how much
revenue is required?

The Footlights storage service uses a commodity provider of storage and content
distribution. I have estimated the costs of running Footlights on top of Amazon,
Google App Engine or Rackspace storage, using either the storage service’s content

92

COST

0 50 100 150 200 250 300 350 400
Raw file size [kB]

0
50

100
150
200
250
300
350
400
450

To
ta

l s
ize

 [k
B]

File sizes in Footlights filesystem
Photos
y=1.02x+48.36

Figure 5.5: Bytes required to store photos in the Footlights filesystem.

delivery network or the NetDNA CDN. The costs published by these services are
given in Appendix A, “Content Delivery Networks”.

Google App Engine provides both storage and distribution services on the basis
of a fixed rate, minus a free monthly quota [336]. Rackspace provides a similar ser-
vice, but with a lower rate and no free quota [330]. In both cases, content delivery
can be performed by an external content delivery network such as NetDNA, which
offers tiered rates based on total volume [337]. Amazon provides tiered rates for
both storage and content delivery, but as shown below, its cost structure is unsuit-
able for Footlights.

Before answering the question of how much the Footlights storage service would
cost to run, I first turn to the question of how much storage is required. In Febru-
ary 2012, the world’s largest OSN — Facebook — reported that it had 845 M active
users and stored 100 PB of photos and videos [333]. On average, this is just 113 MiB
of photo and video content per user. I assume that these values will be similar for
Footlights users: as Figure 5.5 shows, a photo management application (§6.4.4) stor-
ing photos in the filesystem incurs an overhead of 2% (80 B/block) plus a constant
48 kB, according to a least-squared regression.

To estimate the cost of running the Footlights storage system, I assume that each
user will store 4× 113 MiB in the CAS, including de-duplicated photos and videos,
other user data (e.g. text) and a margin for expansion. I also assume that each user
will download one profile worth of other users’ data each month.

Based on these assumptions, the cost of running the Footlights storage service in

93

CHAPTER 5: SHARABLE STORAGE

101 102 103 104 105 106 107 108 109

Total users

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

$
/ u

se
r y

ea
r

Cost per User

Google
Google + NetDNA (10% miss rate)
Google + NetDNA (50% miss rate)
Rackspace
Rackspace + NetDNA (10% miss rate)
Rackspace + NetDNA (50% miss rate)

Figure 5.6: Cost of operating the Footlights storage service.

101 102 103 104 105 106 107 108 109

Total users

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

$
/ u

se
r y

ea
r

Cost per User
Total
Requests
Storage
Transfers

Figure 5.7: Cost of basing Footlights on Amazon Web Services.

several provision scenarios is shown in Figure 5.6. When the Footlights OSN is very
small, Google App Engine’s free quota makes it more economical than Rackspace,
but Rackspace’s lower fixed costs make it more economical once the service has
more than approximately 100 users. The use of a third-party CDN reduces total
costs, particularly as the number of users increases past 10,000, although this dif-
ference is more pronounced in the Rackspace case, since Google App Engine’s free
quota means that the use of a CDN will increase costs when there are few users.

Not shown in Figure 5.6 is the cost of Footlights provision based on Amazon Web
Services. Amazon charges a fixed rate for HTTP requests (per 1,000 PUT or 10,000
GET operations) [317]. Footlights splits files into 4 kB blocks, each of which requires
an independent GET operation, so in the Amazon case — or the new Google Cloud

94

PRE-CACHEING AND TRAFFIC ANALYSIS

Drive — the cost of HTTP GET requests dominates that of storage and data transfer.
This is illustrated in Figure 5.7 on the facing page.

All of these costs are based on publicly-available figures, which do not provide
complete information about the market. Amazon does not disclose its highest-
volume tier prices publicly, and other major CDNs such as Akamai and Limelight
do not disclose any prices. These undisclosed prices will be lower than the publicly-
available ones, further reducing the cost of running the Footlights storage system.

Furthermore, if Footlights grew to serve millions of users, an even more effi-
cient platform might be built to serve static content. Current commodity storage
platforms allow variable-sized, mutable content. A system that mapped fixed-size,
immutable, content-addressed blocks directly to physical blocks in a storage array
might prove more efficient to build and operate than a general-purpose storage plat-
form.

Even without such optimisations, however, it is feasible to provide a Footlights
storage service based on existing infrastructure for less than one US dollar per user-
year. Users might pay such costs directly, perhaps through a premium text message
service, but it is also plausible that these costs might be borne through privacy-
preserving advertising.

5.7 PRE-CACHEING AND TRAFFIC ANALYSIS

Storing user content as a sea of opaque ciphertext blocks accomplishes a confi-
dentiality goal: it prevents the storage provider from reading content that has not
been explicitly shared with it. It also reduces the amount of information that is
available for performance optimisation. This information loss is part of the cost of
improving online privacy, but it can be offset by clients: voluntarily in exchange
for reduced latency or involuntarily through traffic analysis. Traffic analysis can be
defeated, however: clients are able to trade latency for anonymity, sacrificing per-
formance in order to prevent traffic analysis.

Scellato et al. showed that the social graph can be used by Content Distribution
Networks (CDNs) to improve performance via pre-cacheing [211]: if Alice is looking
at Bob’s photo album, there is an increased probability that Alice’s and Bob’s mutual
friends will look at the same album in the near future. This information can be
used to pre-cache the album in locations close to these mutual friends and reduce
the latency with which they can retrieve the content. This source of metadata is

95

CHAPTER 5: SHARABLE STORAGE

removed by Footlights: the storage provider cannot read metadata such as who is
looking at which blocks or how they are linked. This confidentiality gain has the
potential to cause performance costs.

It is clear that information about user intent can improve cacheing decisions. It
is also clear that Scellato’s social cascade detection is one way of inferring intent
probabilistically. However, this is not the only way of obtaining information about
users’ intent for future data accesses. In 1995, Patterson, Gibson et al. considered
the cacheing problem in an economic sense: every cache hit provides a benefit, but
every full cache buffer implies an opportunity cost — that buffer cannot be used
for other information [194]. This economic perspective might be extended to con-
sider the costs of both computation and access to private information. In this view,
socially-informed pre-cacheing has a privacy cost: it requires the lives of users to be
laid open and bare before the CDN. Scellato et al. did not compare the costs and ben-
efits of socially-informed pre-cacheing with other sources of information about user
intent. Sources of intent information compatible with a privacy-preserving storage
system include:

Explicit declaration Client software, when downloading content from a Footlights
CDN, could simply state explicitly which blocks it wishes to download before it
downloads them. This is analogous to the application practice of declaring I/O hints
to the operating system which Patterson et al. found “always increases through-
put” [194]. This explicit declaration of intent will not improve the cache hit rate for
the first block that a client downloads, but it may improve the hit rate for subsequent
blocks. Assuming that the CDN is able to transfer data more quickly internally than
clients can download them — a reasonable assumption, as this is the raison d’être of
a CDN — the CDN should be able to pre-cache all but one of the blocks requested
by the user.

Traffic analysis CDN providers could also infer likely future access patterns
through traffic analysis. CDNs could store patterns such as “when block X is ac-
cessed by any IP address, that IP immediately accesses block Y”, each of which is
associated with a probability. Such a strategy carries a clear algorithmic cost: the
CDN must store traffic information, compute probabilities, etc. This cost is not new,
however: it is simply a translation of the non-monetary cost to privacy that was
previously treated as nil.

In addition to performance enhancement, traffic analysis can also be used to

96

PRE-CACHEING AND TRAFFIC ANALYSIS

identify users and their social graph [34, 182, 205]. If a storage provider and CDN
wished to identify Footlights users, it could record all accesses to content and iden-
tify which IP addresses access the same content, as well as which IP address up-
loaded that content. Such traffic analysis could easily identify cliques of stable IP
addresses, but users can obfuscate their activities.

Taking lessons from the security economics literature [30], the user seeking pro-
tection should not depend on other users taking costly obfuscation actions. When
downloading content, the user who wishes to frustrate traffic analysis can choose to
download via systems like Crowds [206] and Tor [91] which hide the identity of the
downloader. This action has a cost — using relays will slow the download — but
it is borne by the user seeking to frustrate the traffic analysis. The user chooses the
trade-off.

Similarly, when uploading content, a user may wish to hide its structure. The
sea-of-blocks technique hides overt structure, but a malicious storage provider
could perform traffic analysis to infer structure. If a directory contains two files,
those files’ encrypted blocks will often be requested immediately after those of the
directory. Once again, obfuscation comes at a cost: a user’s blocks could be or-
ganised pathologically, e.g. in a linked list rather than a tree and packaged with an
all-or-nothing transform.

Rivest introduced all-or-nothing encryption as a method of slowing brute-force
attacks even when using “marginal” key lengths such as DES’ 56 b or the 40 b im-
posed by US export restrictions at the time [208]. Rivest’s initial all-or-nothing en-
cryption mode, the package transform, applied an inner counter-mode encryption to
plaintext, the key to which was appended to the pseudo-message (the transformed
plaintext) but XOR’ed with hashes of the preceeding pseudo-message blocks. The
pseudo-message was then encrypted in the conventional way, so an attacker guess-
ing the outer key would need to decrypte the entire message rather than a single
block; this added a significant work factor to brute-force attack. Boyko later proved
(in the random oracle model) that the Optimal Assymetric Encryption Padding
(OAEP) algorithm constituted an all-or-nothing transform whose security could not
be substantially bettered by any other such transform [60].

The application of an all-or-nothing transform to the plaintext of Footlights
blocks would increase the burden of creating them — such transforms have a com-
putational cost — but it would especially increase the cost of downloading them,
as clients would need to download an entire profile before they could decrypt any
part of it. As in the downloading case, however, the choice to obfuscate is made by

97

CHAPTER 5: SHARABLE STORAGE

the user who requires protection, and no client with a desire to take shortcuts is in a
position to undermine it.

Users can thus choose to trade off performance for privacy, obfuscating access
patterns to frustrate traffic analysis. The choice to perform obfuscation lies with the
user who wants to be protected from traffic analysis. These mechanisms will make
traffic analysis more difficult, but not impossible. In order to construct a perfectly
unobservable communications channel, users must employ more costly techniques
from Section 5.8.

5.8 COVERT COMMUNICATION

In order to support multi-faceted identity (problem “Multi-faceted identity” on
page 36), it is important that users be able to share limited content without revealing
that the sharing is limited. That is, there should be no “known unknowns”: Bob
should not be able to determine that Alice has published a piece of content unless
she has chosen to share it with him.

As described in Section 5.3, Footlights blocks are padded to a fixed length with
random data. Assuming that the system is implemented with encryption primitives
that can be modeled as pseudo-random permutations [40], i.e. an attacker cannot
distinguish between ciphertext and random data, block padding can be used to hide
covert information.

The technique is illustrated in Figure 5.8 on the facing page. When hiding infor-
mation, the block’s creator Alice chooses an arbitrary offset o within the padding.
This offset allows her to hide multiple covert messages at different locations within
the random padding. She then uses a stream cipher to produce a keystream of
length o + lC, where lC is the length of the covert content. Finally, she XORs the
covert content with keystream[o:o+lc] and embeds the resulting ciphertext at offset
o within the padding. In order to recover the covert content, the receiver Bob uses
the shared key to generate keystream of the same length as the block’s padding.
He then XORs these together and searches for meaningful content embedded in the
random padding.

The stream cipher key may be randomly-generated, in which case Alice must
communicate it covertly to Bob. Alternatively, it may be established by a Diffie-
Hellman exchange [90], using parameters specified by Alice and Bob in their re-

98

COVERT COMMUNICATION

Offset

Random padding

Final padding

⊕
Keystream

Covert content

Ciphertext

Keystream

Hi
di

ng
Di

sc
ov

er
y ⊕

Random padding Covert content

Figure 5.8: Embedding covert content in random padding.

spective profiles.

This protocol involves no explicit message authentication code (MAC). This
is unusual for a protocol that uses a stream cipher for encryption: a similar de-
sign choice in IEEE 802.11’s original Wired Equivalent Privacy (WEP) led to ex-
ploitable vulnerabilities and the eventual introduction of the Michael message in-
tegrity code [235]. The protocol described here is not vulnerable to these attacks,
however.

In the WEP attacks, an attacker could modify all ciphertext bits, leading to linear
changes in both content bits and the linear CRC32 checksum. This allowed attack-
ers to modify the content of messages without detection [57]. In the Footlights case,
however, a block is named by a hash of its contents; if an attacker changes any ci-
phertext content, it will be detected because the content will not hash to the same
value. Even if an attacker finds a second pre-image for the hash function, the mali-
cious block must pass a second integrity check. After decryption, the block’s entire
plaintext is hashed and the result must be equal to the decryption key which was
used to decrypt the ciphertext.

This technique for embedding content within a block’s random padding can be
used to hide covert links (§5.8.1) or content (§5.8.2) within otherwise-overt Foot-
lights blocks.

99

CHAPTER 5: SHARABLE STORAGE

5.8.1 LINK HIDING

Footlights can support multi-faceted identity by hiding links within random
padding using the technique described above. By using different offsets and dif-
ferent keys, a block’s creator can embed one link to be read by Alice and another
to be read by Bob within the same Footlights block. This allows a user to express
different profiles to different friends using the same root block, and neither Alice
nor Bob can detect facets that are not shared with them.

A user may wish to hide more links than will fit in the padding of one block, but
links can be hidden in any number of overt blocks, and the structure of the block
graph is entirely under the control of the user’s client software. A shared key that is
used to hide links could also be distributed to multiple users in an implicit group,
reducing the number of links that must be hidden without revealing the grouping
to any user. Footlights cannot stop users from comparing notes with each other,
examining the differences between what has been shared with each of them. I do
not consider this to be a technical problem, however, but a social one: it is as if
my friends met physically to reveal and compare everything that I tell them. No
technical measure in an OSN can stop people from gossiping.

However, the differences between the blocks that Alice downloads and the
blocks that Bob downloads may be visible to a malicious provider of underlying
storage who performs traffic analysis. In order to hide content not just from friends
but from the provider, a similar technique can be used to hide content rather than
links.

5.8.2 MESSAGE FORWARDING

A sea of immutable blocks with random padding provides an opportunity to set
up a perfectly unobservable communications channel. This channel can be used to
relay covert messages through a social graph without detection.

I pessimistically assume that the underlying storage provider is always able to
link uploads and downloads to a particular user, identified by a static IP address,
and that this channel is the only communications channel available to users. That
is, the storage provider is the global passive adversary [89, 205].

Whenever a block is uploaded by a user S and downloaded by a set of users
R, the global passive adversary can link the upload and download transactions to-
gether and interpret the result as a multicast message from sender S to recipients R.

100

COVERT COMMUNICATION

Alice Bob Charlie

0 1 2

Alice

Bob

Charlie

0

1

2

Figure 5.9: Block upload/download is equivalent to multicast messaging.

Alice

Bob

Charlie

Doug

overt

content

1 2

large overt

content

1

overt

content

1 2

large overt

content

3

small

overt

32

1

User

Overt content

Covert content

Figure 5.10: Random padding viewed as spare message-carrying capacity.

The equivalence of these two views is illustrated in Figure 5.9. Even though users
hide the content of messages from the global passive adversary, traffic analysis re-
veals the structure of communications and thus the structure of the social network.

Inside this overt communication graph, however, the random padding at the
end of each block can be used as excess capacity for carrying covert messages. These
messages may be hidden links as in §5.8.1, but they can also be packets to be routed
around the network. If the random padding in each block is viewed as a channel
from one node in the social network S to all block recipients R, a flow network as de-
scribed by Ford and Fulkerson [107] can be constructed through the overt Footlights
blocks, as shown in Figure 5.10.

If users enqueue covert messages to be embedded opportunistically in the fu-

101

CHAPTER 5: SHARABLE STORAGE

ture, then this communications channel can be perfectly unobservable. As long as
the decision to send a message is not influenced by covert messaging requirements,
the overt communications graph will be the same whether or not it carries covert
packets. The only difference in the two graphs is the content of the blocks, given in
equations (5.1) and (5.2).

B = {CO + R}k=h(CO+R) (5.1)

B′ = {CO + CC}k=h(CO+CC)
(5.2)

In these equations, CO is the overt content of a block, CC is covert content, R
is random padding and h is a cryptographic hash function. The results, B and B′

are the ciphertexts of a block without covert content and a block with covert con-
tent. Under the random oracle assumption4, an adversary inspecting B or B′ will
gain no information about the plaintext CO + R or CO + CC. The adversary cannot
distinguish between the plaintext with embedded covert content and the plaintext
without it; the channel over which the covert content is communicated is perfectly
unobservable.

This perfect unobservability is in contrast to privacy-enhancing technologies
such as mixes [70, 84] and Tor [91], the use of which can be regarded as a “something
to hide” signal. It is also different from steganographic systems [32, 198], in which
detection is a probabilistic affair and “security level” is based on an arbitrary choice
of acceptable false-positive and false-negative rates [198]. In steganographic sys-
tems, knowledge of the cover image exposes the steganographic payload; in Foot-
lights, random block padding means that knowledge of overt plaintext does not
imply knowledge of the resulting block’s ciphertext.

Unlike traditional steganographic file systems such as StegFS [172], the Foot-
lights covert channel is stable: covert content cannot be unwittingly overwritten.
McDonald and Kuhn’s StegFS is inspired by Anderson, Needham and Shamir’s de-
scription of a theoretical steganographic file system [31]. Both systems admit to the
presence of one level of encrypted content, but hide the presence of further levels.
Users unlock levels (“directories”) of hidden information by supplying passphrases,
but can plausibly deny the existence of further levels of secrets. This plausible de-

4Proving indistinguishability between B and B′ in the standard model may be a difficult task,
since each uses a different key but both keys are related to the plaintext. Constructing such a proof
is left for future work.

102

RELATED WORK

niability comes at a cost. Just as it is impossible (under the assumption of block
cipher indistinguishability) for an inspector to determine that further covert con-
tent exists, so it is impossible for the filesystem to avoid overwriting locked covert
information. The filesystem reduces the probability of overwriting through replica-
tion, but it is still a probabilistic guarantee. This guarantee, predicated on complete
control over how much content is written relative to the size of the host partition,
cannot scale to a storage medium shared by millions of users and backed by an un-
trusted cloud provider. In contrast, Footlights uses immutable, content-addressed,
encrypted data that can be verified by any party in the system, so it provides a
stable shared medium in which covert messages will never be overwritten, though
they may expire.

Covert messages can be routed through the network of overt messages using
a routing scheme appropriate to opportunistic, one-way delay-tolerant networks
(DTNs). DTNs, as named by Fall [99, 100], are store-and-forward networks; they route
communication among their nodes without requiring that all the links in a route be
available at the same time. Most DTNs are either opportunistic or one-way: oppor-
tunistic schemes assume that two high-bitrate radios will be in close proximity for
some period of time, whereas one-way communication is typically used with pre-
dictable contact, e.g. space vehicles whose positions can be predicted. The perfectly
unobservable channel afforded by Footlights, however, is both opportunistic and
one-way. Designing a routing protocol that performs well under these constraints
is left for future work.

5.9 RELATED WORK

Blaze’s Cryptographic File System (CFS) [51] allowed Unix users to transpar-
ently encrypt a local filesystem mounted at /crypt. The resulting ciphertext could
be stored on networked filesystems such as NFS and AFS, protecting user informa-
tion from other users of the same distributed filesystem. Authority was concen-
trated in a per-directory key: sharing encrypted content between users required the
sharing of keys. CFS was the first filesystem to use this abbreviation. Confusingly,
both Cedar and Chord — described below — later re-used the acronym without
citation, apparently unaware of Blaze’s work.

Grolimund’s Cryptree is a scheme for managing keys in cryptographic filesys-
tems [124]. Cryptree uses the term “link” in a subtly different way from Footlights:
in Cryptree, a link is a construction that allows one key (e.g. of a subfolder) to be

103

/crypt

CHAPTER 5: SHARABLE STORAGE

calculated from another key (e.g. of a parent folder). The exact construction is not
specified, but the authors cite work such as Chien and Jan’s hierarchical key as-
signment [72]; this work relies on tamper-resistant hardware to translate keys, but a
standard key derivation procedure would also work.

The Cedar filesystem [111] used immutable files to eliminate the cache coherency
problem in a network file system. Cedar was primarily used to support program-
ming, so it had a strong focus on source code. Files were named with an explicit ver-
sion number, so the problem of distributed cache coherency was translated into the
problem of version control, a natural problem for programmers. It seems to have
been influential for distributed revision control systems such as Git [161], which
uses the same model of immutable files but goes a step further with immutable
snapshots of directory trees, as well. Cedar required trusted file servers, which
Footlights seeks to eliminate, and it was also vulnerable to accidental misuse: users
could write to CFS (Cedar File System) files via non-CFS mechanisms, violating the
assumption of immutability. Footlights, in contrast, uses a naming scheme that per-
mits content-based integrity checks.

In 1998, Anderson, Needham and Shamir described two theoretical stegano-
graphic filesystems [31]. The first relied on linear combinations of random data:
a k× n matrix was constructed, where n was the size of a file or directory, and k the
number of random cover files in the system. Users could store up to m ≤ k/2 files
in this matrix by XOR’ing cover files specified by a strong passphrase P, computing
an XOR difference D between the result and the desired file, then XOR’ing D into
the matrix of cover files. By using a k× k extraction key matrix, the user could build
a linear hierarchy of security levels, each of which provided no information about
the next level up. Users unlocked levels (“directories”) of hidden information by
supplying passphrases, but could plausibly deny the existence of further levels of
secrets. This technique was vulnerable to a known-plaintext attack, however, and it
had poor performance properties: to save a covert file would require writing 16–50
times more data than a normal file.

In the second concept, which inspired McDonald and Kuhn’s StegFS [172],
covert data was encrypted and written to disk in pseudo-random locations. Blocks
of data were replicated in several locations to reduce the probability that all copies
of a file might be overwritten. This system chose a different set of trade-offs: it
required ~5× redundant writes rather than 16–50×, but at a cost of a lower load fac-
tor (space utilisation). In this system, lower security levels could not know where
higher-level files might be stored, so overwriting of covert data was a probabilistic

104

RELATED WORK

risk.

Both of these steganographic filesystems assumed absolute control of the under-
lying storage medium. Since any new file might be written to any bit of the k × n
matrix or any location in a Linux partition, the ability to write covert content implied
complete trust by the owner of the filesystem. Users could not share a stegano-
graphic filesystem. In contrast, Footlights provides a storage medium which can be
shared among mutually distrusting users, in which writes performed by one user
cannot degrade the security of others. Instead, one user’s content will enhance the
security of others’ in all but the most pathological cases by providing cover traffic.

In 1998, Gopal and Waters thought that traditional filesystems were reaching
the limits of usability, and sought to integrate “content-based access” into a hybrid
filesystem which they called HAC (“Hierarchy and Content”) [120]. The terminol-
ogy used by this paper is very different from its use in this dissertation, however;
some disambiguation may aid clarity of thought for readers who are familiar with
similar work from this era. Gopal and Waters, in keeping with Gifford et al.’s Se-
mantic File Systems concept [110], used the term “content” to refer to a semanti-
cally rich understanding of file attributes and contents. The Semantic File System
(SFS) incorporated “transducers” that could parse and describe source code, mail
files and New York Times articles. HAC took this concept further, allowing query
“directories” to be more than read-only snapshots of query results, but it too re-
quired the system to have deep knowledge of file contents in order to be useful. As
any screen-scraper knows, scouring New York Times articles to apply semantically-
meaningful names can be a brittle activity. In Footlights, by contrast, the term
“content-addressed” is used to refer to a very shallow semantic: the bytes in a ci-
phertext block. The storage substrate is prevented by cryptography from reading
deeper into content, but cryptographic hashes provide a robust naming scheme.
Applications are expected to interpret their own data, encouraging lock-step co-
development of formats and parsers5.

A content-addressed store, in the sense that Footlights uses, was created by File-
Pool NV in the late 1990s and later acquired by EMC. A FilePool patent filed in 1999
describes how files could be identified by a cryptographic hash of their contents and
collated together with an ASCII representation called an “e-Clip” [67]. This patent
has not been cited by the later research literature.

OceanStore [49, 207] is a model proposed as a “true data utility”. It is based on

5The authors also used the term “fingerprint” in a very different sense from later CAS work: one
of the authors had an interest in biometrics.

105

CHAPTER 5: SHARABLE STORAGE

the premise that “information must be divorced from location”: it uses semi-trusted
replica servers to store and distribute information. Service is paid for by a monthly
fee, although explicit costs are not discussed. Like Footlights, users’ data is stored
encrypted on the utility’s servers, so only users — not service providers — can read
plaintext.

Also like the Footlights storage system, OceanStore names objects with crypto-
graphic hashes. Unlike Footlights, however, OceanStore names are hashes of an
owner signing key and an owner-specified name — Mazières et al.’s self-certifying
path names [170, 171]. This means that users storing content in the system must
identify themselves via a signing key.

This identification is taken a step further when dealing with shared, writable
content. OceanStore names are mappings to mutable content; they can be modified
if a user’s signed update command is accepted by a Byzantine agreement proto-
col among “primary tier” OceanStore replicas. These replicas are not trusted with
plaintext, so objects’ Access Control Lists (ACLs) must be public. Whereas Foot-
lights ensures that each client can choose its own security/performance trade-offs,
OceanStore publishes ACL entries publicly. These entries are only for object writers
and they refer to signing keys rather than identities, but Footlights eliminates this
publishing requirement — and the trust placed in primary tier replicas — by using
completely untrusted content-addressed storage.

The idea of self-certifying path names — though not the name — is used by
Graffi et al. in their discussion of encryption within peer-to-peer–based social net-
works [121]. This work recognises that a system “must be compatible to [sic]
common replication mechanisms and caching mechanisms” in order to provide
the availability properties that users expect. In this system, users can determine
how many users’ public keys a file has been encrypted to; this conflicts with prob-
lem “Multi-faceted identity” on page 36.

The idea of content-addressed storage was developed by Freenet [76], which
named content with “content-hash keys” plus an indirection mechanism with
signed namespaces. Ratnasamy et al.’s Content Addressed Networking paper [204]
further develops the content addressing idea by proposing the distributed hash ta-
ble mechanism. The paper cites Freenet as an example of a file sharing system, but
fails to note Freenet’s content-hash keys as an example of content addressing.

The third CFS is the Cooperative File System [83]. CFS is a read-only filesys-
tem built on top of a block store called DHash, which is itself built on the Chord

106

RELATED WORK

distributed hash table [221]. CFS can use content addressing or certified names-
paces à la OceanStore, above. CFS-on-Chord is conceptually similar to Footlights-
on-Amazon, but not in the details: CFS does not tolerate malicious participants in
the system, nor does it provide lookup anonymity. The authors state, “it is expected
that anonymity, if needed, would be layered on top of the basic CFS system”.

Quinlan et al.’s Venti archival system (2002) [203] used many of the same low-
level techniques as the Footlights block store, including immutable blocks of data
named by a hash of their contents, block de-duplication at the back end and trees
of content that can be represented by a single “pointer” block. Venti provided
an archival block store that could be safely shared by multiple clients without co-
ordination or mutual trust and which provided implicit integrity checks. Footlights’
demo file manager (§6.4.5) is functionally similar to Venti’s vac: it converts files of
arbitrary size into hash references of fixed length. Footlights takes the Venti work
a step further: rather than providing a trusted block store which can be shared by
untrusted clients, Footlights allows untrusted storage providers to supply back-end
storage for mutually suspicious clients.

Muthitacharoen et al.’s Ivy [183, 184] is a writeable filesystem built on the DHash
block store from the Cooperative File System (CFS) described above. Ivy is a log-
structured filesystem: users append immutable entries to their own logs which re-
flect changes to the filesystem state. A particular user’s view of the filesystem can be
calculated by combining trusted logs together. Users can create a shared filesystem
by generating a “view block” that certifies the shared filesystem as a defined set of
user logs. The Ivy filesystem was found by its authors to be 2–3 times slower than
NFS. Like Ivy, the Footlights storage system requires individual users to maintain
their own filesystem namespaces but allows namespaces to be viewed collectively
as a shared filesystem. Unlike Ivy, Footlights is based on current snapshots: re-
trieving the current state of a filesystem involves block retrieval, not log replay and
block retrieval. Ivy does allow snapshot blocks to be periodically constructed, but
in Footlights, it is the current snapshot which is the first-class primitive; logs of a
filesystem’s history are a construction based on snapshots.

Tolia et al.’s CASPER system (2003) [222] used a content-addressed store to op-
portunistically improve the performance of a remote file system accessed via Wide-
Area Network (WAN). CASPER viewed files as “recipes” containing lists of CAS
blocks. These blocks could be cached anywhere in the network, leading to latency
improvements if a client did not need to contact the remote file server directly.
The blocks themselves contained pure content, necessitating the “recipe” indirec-

107

CHAPTER 5: SHARABLE STORAGE

tion. In Footlights, by contrast, less structural information is revealed to the (poten-
tially adversarial) storage service: encrypted blocks which contain links are indis-
tinguishable from those that do not. CASPER does not address encryption directly,
although the paper does suggest that convergent encryption [95] could be used for
de-duplication of CAS blocks.

The SUNDR network file system created by Li et al. [155] is an example of a
shared file server that is verified by clients using public-key cryptography. SUNDR
names blocks according to their SHA-1 hashes, like OceanStore, CFS and Venti. Like
the Ivy filesystem, SUNDR relies on clients signing the actions they take to modify
the shared filesystem. Unlike Ivy, SUNDR centralises the activity log and block
store for performance and to commit to an ordering of operations: its authors claim
that Ivy’s distributed logs do not provide order consistency. SUNDR allows clients
to interact with a fork consistency model (described in Section 5.4), but its access
control model is otherwise conventional, with users and groups administered by a
superuser on a centralised server. The server is not trusted to maintain the integrity
of the filesystem, but it is trusted to maintain confidentiality.

Busca et al.’s Pastis [66] is a read-write distributed filesystem based on the Past
DHT. Like Ivy, it relies on users signing filesystem transactions which are backed by
a content-addressed store. Unlike Ivy, it allows servers to update the inode blocks that
point to content blocks. This mechanism is more reminiscent of OceanStore, but un-
like OceanStore, the updates are based on certificates rather than public ACLs. This
allows content owners to distribute authority to modify content without publishing
information about potential writers.

Like Venti, Ivy, CASPER and SUNDR, Pastis deals with plaintext. Servers are
trusted to maintain confidentiality properties; keeping secrets from servers requires
extra-filesystem encryption: “users may encrypt files’ contents to ensure data confi-
dentiality if needed” [66].

The Tahoe filesystem [232] stores files as encrypted shares using Reed-Solomon
codes. File contents are stored as Merkle trees of immutable blocks, as in Footlights,
but files can also be mutable. Mutable files require an ephemeral public/private
key pair that can be used to sign or verify the file. Directories contain lists of read-
only capabilities to children in the clear, as well as encrypted read-write capabilities.
Unlike Footlights, the original Tahoe design maintained a mapping of users to ci-
phertext files. This was necessary for accounting purposes, but the original storage
provider allmydata.com could observe all user activity. This design was not com-
patible with network-level optimisations for either privacy (e.g. Crowds, Tor) or

108

allmydata.com

SUMMARY OF CONTRIBUTIONS

Listing 5.3: The root of a Footlights profile as a MAGNET-URI.

magnet:?xt=urn:sha1:XH2ZD25QPHXDARTSANUHT7VF2FWIK52S

performance (e.g. CDNs). Subsequently, Tahoe evolved into a purely software-
based project that provided no storage space [335]. Tahoe now provides scripts for
users to use when setting up their own backends, but there is no globally-shared
infrastructure.

HydraFS is a filesystem built on the Hydra content-addressed store [225]. It is
built on immutable blocks, but the similarities to Footlights end there, as HydraFS
is not designed to provide the security properties which Footlights is intended to
provide. HydraFS deals in plaintext, giving the CAS full visibility into block content
and references and permitting server-side garbage collection.

The MAGNET-URI project encourages file-sharing software to name content
with URIs that are both URNs and relative URLs [261]. This scheme is entirely com-
patible with Footlights: Alice’s profile in Listing 5.1 on page 87 could be encoded
as the MAGNET URI in Listing 5.3, which is suitable for parsing as an HTTP query
or as a URN. In this way, existing file-sharing networks could be used to provide
transport for Footlights data. The availability problems of P2P networks would still
apply, but the transport would cost no money.

5.10 SUMMARY OF CONTRIBUTIONS

In this chapter, I have described how untrusted commodity storage can be used
to provide a secure, scalable, available distributed filesystem for social applications.
I exploit commodity storage for availability and cryptography for end-to-end confi-
dentiality and integrity.

The system organises immutable content in a content-addressed store, requiring
constant-size communication to share arbitrary-sized snapshots. Mutable names re-
fer to signed, versioned snapshots of content, allowing the construction of a writable
filesystem with semantics that will be familiar to application developers.

The cost of running this storage system, based on public information about cen-
tralised OSNs and cloud storage providers, is expected to be low: on the order of
one US dollar per user-year. Such a system could be supported by direct payment

109

CHAPTER 5: SHARABLE STORAGE

or a privacy-preserving advertising system.

This end-to-end system is compatible with network-level optimisations for both
privacy and performance. Most users are expected to prefer performance optimi-
sations to privacy optimisations: such users’ data will be safe from confidentiality
threats, but traffic analysis could reveal access patterns of a user’s IP address. Users
seeking assurance of anonymity can use apparently-random padding bits in overt
Footlights blocks to carry covert messages over a perfectly unobservable communica-
tions channel.

Footlights’ scalable storage system provides a storage medium decoupled from
privacy and performance optimisations, allowing users to choose what degree of
each they would like. This system can be used as a substrate for the social applica-
tions described in Chapter 6, “Distributed Social Applications”.

110

6
DISTRIBUTED SOCIAL APPLICATIONS

“ It’s the apps, stupid!

Peter O’Kelly, Lotus Development Corp. 1993 [354]”Platforms matter. Popular, centralised online social networks (OSNs) are not just
websites, they are ecosystems. Facebook, Google+, Twitter, LinkedIn, even Yahoo!
provide APIs which application developers use to enhance users’ online social net-
working experience. If Zittrain’s hypothesis [248] is to be believed — and I believe
that it is — then the key driver of technological staying power is generativity, the
ability to create new and unexpected things out of existing technology. The devel-
opers of Compuserve and Nokia OS produced compelling features, but they could
never compete with all of the creativity wielded by the world’s collective developers
— generative platforms won.

Today’s centralised OSNs have applications, but as Chapter 4 showed, those ap-
plications have been used to share private user information beyond the intent of
users. Distributed social networks have been proposed as a remedy to the privacy
shortcomings of traditional OSNs but almost all lack support for third-party appli-
cations (see Section 6.5). Without third-party applications, the OSN’s developers
must create all functionality that users might ever desire. This is analogous to re-
quiring Facebook’s in-house developers to develop all popular applications such as
FarmVille [334], Spotify [331] and Draw Something [332], some of which use Face-
book as little more than an authentication provider.

In this chapter, I present the Footlights social application platform. This platform
demonstrates the practicality of unprivileged distributed social applications that are
developed in a similar way to today’s client-server social applications. Footlights al-
lows developers to enhance the social networking experience with applications that
are constrained by users’ choices. I will motivate the features provided to Foot-

111

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

lights applications by considering the needs of the lately-popular Draw Something
application [332].

This application is a game in which players alternate drawing and guessing what
the other player has drawn. The game is asynchronous: one player draws a pic-
ture, then sends it to a Facebook friend by uploading the picture to a third-party
cloud service and notifying the friend that it is their turn. Later, the other player
downloads the drawing, guesses what it is then takes a turn at drawing. The es-
sential characteristics of this application are an ability to interactively input some
state (the drawing or the guess) from a user, upload it to a storage service, share it
with another user, keep statistics and display basic information such as a name and
a thumbnail for each player.

Footlights provides the ability to perform these actions. Although I have not
replicated the Draw Something app, I will demonstrate the ability of the Footlights
API to provide the required features by presenting several basic proof-of-concept
applications that run on the Footlights platform.

On the Footlights platform, unprivileged applications run locally on users’ com-
puters, where they can be confined and their behaviour can be observed (Sec-
tion 6.1). Applications are written in familiar languages: UI components are writ-
ten in ECMAScript 5 using a DOM-like API (Section 6.2) and back-end compo-
nents can be written in any JVM-compatible language (Section 6.3). The security
API presented to applications is designed to make the easiest way of implementing
an application a privacy-preserving way; the ability to construct functional, privacy-
preserving applications is demonstrated with several proofs of concept (Section 6.4).
Finally, I conclude with a discussion of related attempts to provide alternative
OSNs and techniques for implementing privacy-preserving social applications (Sec-
tion 6.5).

6.1 MODEL OF COMPUTATION

In order to confine application behaviour, preventing applications from sharing
user information more widely than users desire, it is necessary to choose a different
model of computation from existing OSNs. This model is radically different because
it returns to an older model: application code executing in a local context, operat-
ing on local data. This model allows Footlights — unlike today’s OSNs — to take
advantage of useful protection technologies that have been developed over the past

112

MODEL OF COMPUTATION

decades.

The last several decades have seen many security technologies transferred from
experimental, research and military/intelligence contexts into consumer software.
This transition has increased the protection of users’ private information from ma-
licious applications, but today’s OSNs cannot leverage these advances in data pro-
tection because they use an incompatible model of computation. Instead, they are
only compatible with Digital Rights Management (DRM) schemes.

6.1.1 SECURING USER DATA

Over the past decades, several security technologies from the realms of research
have been adopted by commodity operating systems to protect users’ private data.
In 2010, I co-authored a paper with Joseph Bonneau and Frank Stajano describing
how this occurs in several application markets [12]; this section will summarise a
few relevant highlights from that work.

Mandatory Access Control (MAC) is the imposition of a system-wide security
policy on the behaviour of users and software. It originated in the US military [249]
and intelligence community [217], where it was used to enforce Multi-Level Security
(MLS) [98] and integrity [47] policies. More recently, however, MAC has appeared in
widely-deployed commodity operating systems such as Linux [163], FreeBSD [226]
and Mac OS X [325]. In these operating systems, MAC is used to confine appli-
cations, preventing a malicious or compromised application from accessing users’
private information. This protection of user data is possible because the OS kernel
which mediates all application I/O is the same kernel that is responsible for enforc-
ing the security policy: no communication occurs outside its purview.

Similarly, capability systems have developed from a 1970s research agenda,
starting with work by Needham et al. [191] and Feiertag and Neumann [102],
to inspire the design of modern programming languages such as Java and EC-
MAScript 5 [117, 176, 177]. In 2010, Robert Watson, Ben Laurie, Kris Kennaway
and I incorporated capability concepts into the FreeBSD operating system, improv-
ing the security properties of common applications such as gzip and Chromium
through the Capsicum project [1, 9, 17].

Capabilities are shareable, unforgeable tokens of authority. Examples include
references in object-oriented languages such as Java or JavaScript: software cannot
invent new references to existing objects, it must acquire a reference from something
that already holds one. When combined with a least-privileged — or sandboxed —

113

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

model of execution, software can be run without access to any data that the user has
not explicitly shared with it. For instance, in the CapDesk environment [227], a text
editor would have no authority to open text files. Instead, it would request that the
operating system draw a dialogue box prompting the user to choose a file; only a
capability to this file would be returned to the editor. This technique generalises to
the concept of powerboxes — dialogues that delegate user authority to applications
via trusted operating system components as described by Yee [241]. Applications
can only leverage the authority of the user if that user makes an explicit expression
of intent.

Private user information can be protected by Mandatory Access Control, capa-
bility discipline or other techniques such as Mysers and Liskov’s Distributed Infor-
mation Flow Control [185] — dubbed “Sticky Policies” by Pearson and Mont — but
all of these techniques have a common requirement: a trusted monitor that medi-
ates all activity in the system. This aligns well with traditional software execution
environments — desktops, mainframes and mobile phones — but it does not fit well
with the structure of current OSN application platforms. In today’s OSNs, applica-
tions perform computation on private information on developer-owned computers,
outside the control of both users and the OSN itself. This precludes the use of any of
the useful advances outlined above for the protection of user information. Instead,
protecting user data from today’s social social applications resembles the problem
of Digital Rights Management (DRM).

6.1.2 SOCIAL DRM

Today’s OSN applications are structured as shown in Figure 6.1 on the facing
page: users interact with both the OSN itself and third-party applications through a
Web browser. Applications request information about users directly from the OSN
and may be permitted to store copies of user data [285].

OSNs may impose terms and conditions on application developers, but tech-
nical enforcement of systemic security properties is impossible, since user data is
transmitted from a platform that the OSN controls (the OSN’s data centre) to one
that it does not (the application host). The lack of OSN-controlled infrastructure un-
derneath the application means that techniques such as Mandatory Access Control,
Information Flow Control and capability-oriented sandboxing cannot be applied to
these applications.

Instead, this model of computation resembles digital rights management (DRM).

114

MODEL OF COMPUTATION

OSN Browser

Third-Party Application Host

Profile Data
Social Graph

Copy of
User Data

App Backend

App UI

Executing Code

User Data
Execution Substrate

Socket

OSN UI
Privacy

Manager

Figure 6.1: Today’s OSN as an application platform.

In this model, sensitive information is transmitted to a platform running untrusted
software; the untrusted software is permitted to use the information for one pur-
pose (e.g. displaying a video) but not others (e.g. copying the video). DRM often
takes the form of distributing copyrighted information in encrypted form separately
from the relevant decryption key. Keys may be distributed to authorized players
via broadcast encryption [53, 104] or even Virtual-Machine–based techniques [144].
Hardware players may incorporate self-attesting trusted components to manage de-
cryption keys, but software-based players must, at some point, hold decryption ma-
terial in memory that is visible to the computer’s owner. Fundamentally, a principal
cannot both possess a decryption key and also not possess the decryption key, so
DRM schemes that do not rely on trusted hardware must instead rely on a high sub-
version effort. That is, if the effort required to extract a decryption key is very high,
then unauthorized use may be limited for a period of time.

Most DRM schemes developed by major industries to protect copyrighted con-
tent eventually fall prey to the distributed effort of individuals. From the weak
cryptography employed by DVDs [357] to the stronger cryptography employed by
HD-DVD and Blu-Ray [355] to Blu-Ray–specific virtual machine techniques [341],
no DRM scheme has long withstood scrutiny. Once a single key is recovered, all
copies of a physical disc can be decrypted.

115

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

It might be possible for social application platforms to employ a DRM-like pro-
tection scheme: private user data could be transmitted encrypted to application
hosts, which are permitted to use the data for providing service to the user but not
for selling the user’s data to third-party aggregators, as in §4.1.3. The question is,
what OSN would implement such a scheme, and if it did, what is to be done with
the decryption key?

Unlike major motion-picture studios, OSN providers have little incentive to keep
user information from application developers. Users have an interest in keeping
their private information private, but the proposals for users to encrypt, permute,
scramble or otherwide hide information within an unmodified OSN [37, 127, 165,
167, 223] fail to protect the social graph from either the OSN provider or applications
(see Section 3.3). If users did employ a DRM-like scheme, they could not make use of
social applications in conventional OSNs without providing the relevant keys, but
by providing such keys, all protection would be lost. If the protection scheme re-
quired trusted hardware, as in Conrado et al.’s personal DRM scheme [78], it would
introduce startup and maintenance costs but still be vulnerable to the attacks em-
ployed against commercial DRM. Finally, unlike the motion-picture scenario, users
would have no means to tell whether or not the DRM scheme were even working:
whereas so-called “pirates” upload cracked videos to public file-sharing services,
malicious application developers sell user data privately [282].

Thus, the only known protection mechanism that is applicable to the OSN model
of computation — DRM — would be ineffectual. Rather than attempting to employ
social DRM, Footlights adopts a different model of computation.

6.1.3 FOOTLIGHTS

Footlights demonstrates that a new model for social applications is possible.
This model fuses new, explicit expressions of user intent with a traditional model
of computation: applications execute on users’ computers, operating on user data
stored on those same computers. This does not preclude highly available, scalable
shared storage: Chapter 5 describes how distributed cryptography can be combined
with centralised storage to provide secure, globally-available distributed filesys-
tems. This model is about allowing applications’ computation and communication
to be confined and observed.

Applications running on the Footlights platform are split into two parts, as
shown in Figure 6.2 on the next page: a UI component suitable for interactivity

116

MODEL OF COMPUTATION

Back end Front end

10:53:57 FINE ClasspathLoader.<init> Initialized with classpaths: WrappedArray(file:/Users/jon/
10:53:59 FINE Keychain$.importKeyStore Loaded 123 KeyStore entries
10:53:59 INFO CASClient.apply Retrieving CAS setup defaults from http://footlights.me/set
10:53:59 INFO Bootstrapper$.apply Searching 7 classpaths for UIs...
10:54:00 INFO WebUI.init Using TCP port 4567
10:54:00 INFO Bootstrapper$.apply Loaded UI Thread[me.footlights.ui.web.WebUI,5,main]
10:54:00 INFO Bootstrapper$.apply Starting 'me.footlights.ui.web.WebUI' UI
10:54:00 FINE Bootstrapper$.apply Waiting for me.footlights.ui.web.WebUI to end
10:54:00 FINE CASClient.apply CASClient uploadURL: https://upload.footlights.me/upload
10:54:00 FINE CASClient.apply CASClient downloadURL: https://s3-eu-west-1.amazonaws.com/m
10:54:05 FINE ClasspathLoader.apply Dependency for file:/Users/jon/Footlights/Client/Demos/Bas
10:54:05 INFO file:/Users/jon/Footlights/Client/Demos/Basic/target/classes.init Loading me.fo
10:54:05 FINER Store.store Stored 2 blocks in CASClient
10:54:05 FINE Filesystem.save saved 'Encrypted File [urn:sha-256:MZ5CVNKQLWHDGQ3YPI4DQMK
10:54:05 FINE Store.flush DiskStore { /Users/jon/.footlights/cache }: flushing 2 bloc
10:54:05 FINE Store.flush CASClient: flushing 2 blocks
10:54:05 FINE Store.flush DiskStore { /Users/jon/.footlights/cache }: flushed 2 block
10:54:05 FINER Store.store Stored 1 blocks in CASClient
10:54:05 FINE Filesystem.save saved dir 'Directory(keychain, short-name, root/)'
10:54:05 FINER Store.store Stored 1 blocks in CASClient
10:54:05 FINE Filesystem.save saved dir 'Directory(file%3A%2FUsers%2Fjon%2FFootlights%2FC
10:54:05 INFO Filesystem.me$footlights$core$data$store$Filesystem$$setNewRoot Updated root: Directo
10:54:05 FINER Store.store Stored 1 blocks in CASClient
10:54:05 FINE Filesystem.save saved dir 'Directory(apps/, identities/)'
10:54:05 FINE Keychain.exportKeyStore Exporting to Java KeyStore...
10:54:06 FINE Store.flush DiskStore { /Users/jon/.footlights/cache }: flushing 3 bloc
10:54:06 FINE Store.flush DiskStore { /Users/jon/.footlights/cache }: flushed 3 block
10:54:06 FINE Keychain.exportKeyStore Saved 124 symmetric keys to Java KeyStore
10:54:06 FINER Store.store Stored 2 blocks in CASClient
10:54:06 FINE Filesystem.save saved 'Encrypted File [urn:sha-256:AY3FXDCU3OZF6SNKCXDHK7F
10:54:06 FINER Store.store Stored 2 blocks in CASClient
10:54:06 FINE Filesystem.save saved 'Encrypted File [urn:sha-256:QHPBPC5CBQYS6RICUZMZOXP
10:54:06 FINER Store.store Stored 1 blocks in CASClient
10:54:06 FINE Filesystem.save saved dir 'Directory(keychain, short-name, root/)'
10:54:06 FINER Store.store Stored 1 blocks in CASClient
10:54:06 FINE Filesystem.save saved dir 'Directory(file%3A%2FUsers%2Fjon%2FFootlights%2FC
10:54:06 INFO Filesystem.me$footlights$core$data$store$Filesystem$$setNewRoot Updated root: Directo
10:54:06 FINER Store.store Stored 1 blocks in CASClient
10:54:06 FINE Filesystem.save saved dir 'Directory(apps/, identities/)'
10:54:06 FINE Keychain.exportKeyStore Exporting to Java KeyStore...
10:54:06 FINE Store.flush DiskStore { /Users/jon/.footlights/cache }: flushing 7 bloc
10:54:06 FINE Store.flush DiskStore { /Users/jon/.footlights/cache }: flushed 7 block
10:54:06 FINE Store.flush CASClient: flushed 2 blocks, 10 remain
10:54:06 FINE Store.flush CASClient: flushing 10 blocks
10:54:06 FINE Keychain.exportKeyStore Saved 125 symmetric keys to Java KeyStore
10:54:08 FINE Store.flush CASClient: flushed 10 blocks, 0 remain

User's computer

Figure 6.2: Footlights applications run locally.

and a backend component suitable for richer computation. Both are written in fa-
miliar languages such as JavaScript in the UI front-end and Java, Scala or any other
language that compiles to JVM bytecode in the back-end. It is possible for appli-
cations to exist as purely one or the other, but most full-featured applications will
require both. All execution is local: central servers only store encrypted blocks (see
Chapter 5).

Local execution allows applications to be confined: they run in an unprivileged
environment, starting with no authority to access user information or communicate
with other applications. Application confinement is, in computer science terms,
a very old concept: its “meta-theory” was described by Lampson in 1969 [152].
Nonetheless, as Chapter 4 demonstrated, applications in today’s OSNs are uncon-
fined: once user information has been shared with them, no technical restrictions
are placed on the flow of that information. User information is public according to
the definition of “Public” on page 34. In Footlights, confinement is based on exist-
ing Web and Java Virtual Machine (JVM) technologies. Applications can be granted
capabilities to user data or communication sockets, but many operations can be per-
formed indirectly, without privilege.

Local execution also allows applications to be observed: it is possible to check
them at runtime for undesired behaviour, e.g. leaking private user data. Users can
benefit from this observability even if they do not do the observation themselves.
Experts can observe the behaviour of applications and share their findings with
others, describing the behaviour of particular applications that have well-defined

117

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Back end Front end

ECMAScript 5

App

Supervisor
DOM

User VM UnprivilegedPrivileged

JVM

Bootstrapper

UI
Kernel

App

Storage

UI

Proxies

Figure 6.3: Applications are split into front-end and back-end components.

names (Section 5.4) and can thus can be reliably identified as “the same application
code that I am running”.

This architecture allows applications to perform arbitrary computation, but in-
teraction with users, their data and the outside world can be strictly controlled. It
also reflects a natural alignment with existing computation patterns: an application
like Draw Something uses a centralised OSN to connect users to each other, but com-
putation and user interaction is done locally. The Footlights architecture reinforces
this natural separation of concerns.

A more detailed view of this front-/back-end split is shown in Figure 6.3. Each
of the two components runs atop a trusted substrate. In the front end (Section 6.2),
the substrate is a collection of ECMAScript objects collectively called the supervi-
sor. The supervisor proxies application access to standard Web technologies such
as asynchronous JavaScript (Ajax) and the Web browser’s Document Object Model
(DOM). In the back end (Section 6.3), the substrate is JVM bytecode that confines
application bytecode, mediating access to resources such as user information and
local files. Communication between application components is mediated by the su-
pervisor and the kernel.

118

FRONT END

6.2 FRONT END

The primary Footlights UI is a Web front-end. Other platforms could also be
supported — I have explored Swing and Android UIs — but the current target is
the Web browser. This environment is designed to be familiar to users of today’s
centralised OSNs.

The Footlights web front-end uses the features of ECMAScript 5 [251] and
Google Caja [351] to confine untrusted application code. ECMAScript 5’s strict mode
provides an environment that is amenable to sandboxing and capability-oriented
delegation [178]: access to global variables is restricted and shared objects can be
made read-only. Whereas ECMAScript 3 was described as “one of the hardest
[object-oriented] languages to secure” by Mark Miller, a Caja developer and mem-
ber of the ECMA standards committee, ECMAScript 5 is “one of the easiest [object-
oriented] languages to secure” [177].

Based on this foundation, Footlights executes application code within a sand-
boxed context (§6.2.1). Application code starts with access only to a security API
that it can use to make requests of a privileged supervisor (§6.2.2). This API has
been designed to closely approximate today’s web UI APIs.

6.2.1 UNPRIVILEGED APPLICATION CONTEXT

Every application runs within its own unprivileged execution context. This con-
text has no access to global browser objects such as document or window. Instead,
it is provided with one read-only reference, context, that provides a security API
partly illustrated in Figure 6.4 on the following page. Through this security API,
application front-ends can manipulate a delegated portion of the Footlights UI or
communicate with their respective back-ends.

6.2.1.1 VISUAL CONTAINER

On instantiation, an application front-end is assigned a visual container. This
container is represented by the Web browser as a DOM (Document Object Model)
object; the DOM represents a web page as a tree of objects that can be manipulated
to change the page’s appearance. The Footlights web UI supervisor provides each
application with a proxied DOM object that represents the root of the application’s
visual container. This proxy is shown as the root object in Figure 6.4 on the next
page.

119

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

proxy DOMWindow
root:

context:

ajax: function(message, callback)
context.ajax('foo/(x,y)', callback) GET /<context>/ajax/foo/(x,y)

this.exec(callback(result))

exec: function(code)
context.exec('context.log("foo")') cajaVM.compileModule(code)(

 { 'context': this })

load: function(js_file_name)
context.load('foo.js') GET /<context>/static/foo.js

this.exec(result)

appendElement: function(type)
context.root.appendElement('img')

HTTP request Privileged codeTranslations:

proxy(node.appendChild(
 document.createElement('img')
))appendPlaceholder: function(name)

getChild: function(predicate)
...

Figure 6.4: An application’s front-end context.

Proxying the application’s visual container allows applications to create or ma-
nipulate child nodes without access to the global Document object. In the DOM spec-
ification, every document (HTML or XML) has exactly one Documentobject, to which
every document element (e.g. HTML tag) has a reference, Node.ownerDocument [254].
Access to the Document object, also usually provided to JavaScript through a global
variable document, implies an ability to access any element in the document. Appli-
cations must clearly not be given this privilege. However, access to the Document is
also required to allocate new document elements, through factory methods such as
createElement() and createTextNode(). The Footlights web supervisor allows ap-
plications to create UI elements without access to the Document object by creating a
proxy that wraps a DOM object, including access to the Document object. This allows
applications to create arbitrary UI components without being able to interfere with
— or even name — UI components outside of their visual sandboxes. The differ-
ence between using the DOM API and the Footlights proxying API to create child
elements is shown in Figure 6.5 on the facing page.

120

FRONT END

Listing 6.1: Creating a child node with the standard DOM API.

var node = document.createElement(’img’);container.appendChild(i);
Listing 6.2: Creating a child node with the Footlights proxy API.

var proxy = container.appendElement(’img’);
Figure 6.5: Creating a UI element with the DOM and Footlights APIs.

6.2.1.2 INTRA-APPLICATION COMMUNICATION

An application’s front-end can also communicate with its back-end via the
context.ajax(message,callback) method. This allows a front-end to send asyn-
chronous JavaScript (Ajax) requests to its back-end.

Listing 6.3: Ajax request from an application context.

context.ajax(’foo’, function callback(response) {context.log(’Received response: ’ + response);
// Expecting a JSON-encoded response.context.log(’Protocol v’ + response[’protocol’].version);context.globals[’foo’] = response[’x’];context.globals[’bar’].style.opacity = response[’y’];...});

Ajax requests from all active front-ends are multiplexed over a single Ajax chan-
nel between the supervisor and the Footlights back-end. If the application calls
context.ajax(’foo’), as in Listing 6.3, that request is translated by the supervi-
sor into a request for ’/<context_name>/ajax/foo’. This request is handled by the
back-end as described in §6.3.1.4.

The asynchronous response may be in the form of code or data. In either case,
the front-end making the Ajax request can specify a callback to handle the response.
If the response is code, it will be passed as a string to the callback function; the
front-end can execute it later within the sandbox using context.exec(). No callback
needs to be provided to handle code; the default action is to execute the ECMAScript
within the sandbox using context.exec(). If the response is data, a callback is re-

121

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Back endFront end

/me/footlights/META-INF/...
/me/footlights/foo.png
/me/footlights/js/bar.js
/me/footlights/App.class

JAR

ajaxHandler:
 foo:
 new JavaScript()
 .append("context.log('foo!')")
 .append("context.ajax('bar')")

 some_other_ajax_call:
 ...

proxy
DOMWindow

proxy

var i = context.root
 .appendElement('img');
i.src = 'foo.png';

context.load('foo.js');

context.ajax('foo');

JS

set src
app

end
Ele

men
t /<ctx>/static/foo.png

root:
context:

load:
function

/<ctx>/static/bar.js

ajax:
function

'foo.js'

'foo'

/<ctx>/ajax/foo

class

Figure 6.6: Communication over a multiplexed HTTP channel.

quired to interpret the data, as in Listing 6.3 on the preceding page. This data will
be encoded according to the JavaScript Object Notation (JSON) [258].

Application front-ends can also receive asynchronous events from their back-
ends. These events are ECMAScript and are executed within the application context.
Asynchronous events can be used to notify the front-end that e.g. the opponent in a
game has taken a turn and the UI needs to be refreshed.

Through Ajax requests and asynchronous events, application front-ends can
communicate with code running in the back-end. Front-ends can also communi-
cate with the Footlights back-end in order to serve static content such as images or
script files, as described below.

6.2.1.3 STATIC CONTENT

Applications can also load static files such as images and ECMAScript files.
These files can be stored in either the application file itself or the Footlights CAS.
The back-end handling of these requests is described in §6.3.3.

Applications are distributed as JAR (Java ARchive) files (see §6.3.1). These files
can contain code to execute on the Footlights back-end, but they can also contain
static content such as images and scripts. Images are loaded by assigning to a prox-
ied DOM element’s src property; the proxy translates this request into an HTTP
request for the path /<context_name>/static/<filename>. This is an example of
API taming as described by Stiegler, Miller, Wagner and Tribble [219, 227]: provid-

122

FRONT END

ing a safe subset of a commonly-used API rather than developing completely new
APIs from scratch. Assigning to an image’s src property corresponds exactly to the
standard DOM API, but with the caveat that the Footlights supervisor will reject
path names containing "..".

Images from the Footlights CAS can be loaded by assigning a URI to the
filename property of a DOM proxy instead of src. This allows developers to pack-
age images separately from code and — if using indirect names as in Section 5.4 —
change the visual appearance of applications after release without modifying any
code.

Script files are executed by explicitly calling the context.load() method: this
retrieves the script’s content from the application’s JAR file and executes it with
context.exec() as in the Ajax case above. This allows application developers to
write JavaScript files with conventional tools and examine their loading using con-
ventional Web debuggers.

These three classes of functionality — UI, Ajax and static content — are provided
to unprivileged applications by the privileged supervisor described next.

6.2.2 PRIVILEGED SUPERVISOR

The supervisor portion of the web UI is made up of approximately 200 lines of
ECMAScript that provide Ajax and sandboxing functionality, initialise the root con-
text for the top-level sandbox and import several Google Caja script files (approxi-
mately 1,300 lines of uncompressed ECMAScript, some of which are workarounds
for incomplete browser implementations of ECMAScript 5).

The initialisation of the UI supervisor is shown in Listing 6.4 on the next page.
The root domain is a privileged security domain that can access the global collection
of sandboxes and whose root DOM proxy represents the top-level div containing the
entire UI. However, this domain is run in a sandbox like any untrusted application:
it acquires elevated privileges when it is explicitly passed powerful references in
lines 27–35 of Listing 6.4 on the following page.

One of the functions provided by the supervisor is the proxying of Ajax, static
and CAS file requests. An application context’s ajax method is actually a closure
set up by the supervisor that does two things: it builds a request URL out of the
context’s name and the parameter supplied by the application, then forwards the
resulting URL to the supervisor’s low-level Ajax function. This is how e.g. a context

123

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.4: Supervisor initialisation.

1 ’use strict’;
2 initSES(window, whitelist, atLeastFreeVarNames);
3

4 (function init()
5 {
6 // Set up logging (nice user-visible log box).
7 var status = document.getElementById(’status’);
8 status.log = function logToStatusDiv(t) {
9 var update = document.createElement(’p’);

10 this.insertBefore(update, this.firstChild);
11 var dateStamp = document.createElement(’div’);
12 dateStamp.appendChild(document.createTextNode(new Date().toUTCString()));
13 dateStamp.className = ’timestamp’;
14 update.appendChild(dateStamp);
15 update.appendChild(document.createTextNode(t));
16 };
17

18 function log(message) {
19 console.log(message);
20 status.log(message);
21 }
22

23 var rootContext = sandboxes.wrap(’footlights’, log);
24 rootContext.root = proxy(document.getElementById(’root’), rootContext);
25

26 // The root context has no inherent privileges: pass special things in.
27 rootContext.globals[’sandboxes’] = sandboxes;
28 rootContext.globals[’window’] = window;
29 [’content’, ’status’, ’launcher’].forEach(function(name) {
30 rootContext.globals[name] = proxy(
31 document.getElementById(name), rootContext
32);
33 }
34);
35

36 // A function which sets up a channel for asychronous events.
37 function setupAsyncChannel() {
38 setTimeout(function openAsyncChannel() {
39 rootContext.ajax(’async_channel’);
40 }, 0);
41 }
42

43 rootContext.globals[’setupAsyncChannel’] = setupAsyncChannel;
44

45 sandboxes[’footlights’] = Object.freeze(rootContext);
46

47 rootContext.ajax(’init’);
48 })();

124

FRONT END

.ajax(’foo’) call is translated into the HTTP request /<context name>/ajax/foo,
allowing one Ajax channel to be multiplexed for use by several applications. Similar
closures are used to translate the application requests for static content described in
§6.2.1.3 into requests that can be handled by the Footlights back-end as described in
§6.3.3.

Another function of the supervisor, shown in lines 36–43 of Listing 6.4 on the
preceding page, is to set up a channel over which asynchronous events can be for-
warded to application front-ends. This is done by sending a privileged Ajax request
to the /async_channel path, whose back-end handler blocks until there are events
to be dispatched (see Section 6.3).

The supervisor also provides the placeholder service, which allows applications to
insert private user information into the UI indirectly, without the ability to actually
read the data itself. This service, inspired by Felt and Evans’ “privacy by proxy”
design [103], is conceptually similar to the original Facebook Markup Language
(FBML). FBML once allowed application developers to insert SGML tags such as
<fb:name id="[$id]"> into their UIs. This provided a performance-enhancing indi-
rection: Facebook could pre-populate FBML fields when serving them to clients.
This indirection was deprecated in 2010 [288] and disabled in 2012 [298]. More
details about FBML, as well as how it fits within the larger narrative of Facebook
application privacy, can be found in §4.1.3.

The use of placeholders is shown in Figure 6.7 on the following page, which il-
lustrates two ways of displaying the user’s name in an application UI. The first, in
Listing 6.5 on the next page, is to request access to the user’s name via the applica-
tion back-end, which can make a request to Footlights’ back-end security API, then
to append that information to the UI itself. Along the way, however, the applica-
tion has learned information about the user that it does not need to know, opening
the door to potential misuse. The code in Listing 6.6 on the following page, on the
other hand, uses the context.appendPlaceholder method, causing the supervisor to
issue a fill_placeholder Ajax request on the application’s behalf. The supervisor
then places the user data into a proxied element within the sandboxed UI without
leaking any private information.

A second service provided by the privileged supervisor is the powerbox service.
Traditional dialogue boxes become powerboxes when they are used to confer au-
thority to sandboxed applications, as described by Stiegler, Miller and Yee [219, 241].
For example, the dialogue shown in Figure 6.8 on the next page is not drawn by the

125

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.5: Displaying the user’s name without placeholders.

// Create UI element to hold the user’s name.context.globals[’name_element’] = some_ui.appendChild(’span’);
// Ask the back-end to request user name from security API.context.ajax(’get_value/self.name’, function callback(json) {// Append the retrieved value to the UI element.context.globals[’name_element’].appendText(json.response);

// Potentially do something malicious with the private data?context.globals[’sell_to_rapleaf’](’name’, json.response);});
Listing 6.6: Displaying the user’s name with placeholders.

some_ui.appendPlaceholder(’self’, ’name’);
Figure 6.7: Two ways of displaying the user’s name.

currently-running application: applications have no authority to enumerate other
applications. Rather, this dialogue is drawn with the authority of trusted software
(the Footlights core) to ask the user what authority (sending a directory to an ap-
plication) should be granted to untrusted software. The provision of the powerbox
service is described in §6.3.4.2.

Like the placeholder service and multiplexed Ajax service, the powerbox service

Figure 6.8: A Footlights powerbox.

126

BACK END

depends on communication with the Footlights back-end. That back-end, which
also hosts application back-ends, is described next.

6.3 BACK END

The back-end of a Footlights application is hosted on a Java Virtual Machine
(JVM) based platform. The JVM supports a rich, fully-featured programming envi-
ronment in which applications can perform efficient byte-level computation. Appli-
cations can be written in any language that targets the JVM: core Footlights inter-
faces are specified in Java, the lowest-common-denominator language for the JVM,
although some support libraries are also provided in the Scala language [193]. The
JVM also provides a mechanism for executing untrusted, compiled bytecode in a
constrained environment; Footlights uses this mechanism to confine application
code.

6.3.1 APPLICATIONS

Application back-ends run as untrusted bytecode on the JVM. They are confined
as described in §6.3.2 to prevent them from directly interacting with user data or the
outside world. These interactions are all mediated by the security API [11] described
in Section 6.3.4.

In this section I describe how applications are distributed (§6.3.1.1) and ini-
tialised (§6.3.1.2) and provide services to other applications (§6.3.1.3).

6.3.1.1 DISTRIBUTION

Footlights applications are distributed as JAR (Java ARchive) files in the Content-
Addressed Store (CAS) described in Chapter 5. An application JAR must contain a
manifest file in the conventional location META-INF/MANIFEST.MF that describes the
basic structure of the application. An example of a Footlights application manifest
is shown in Listing 6.7 on the following page. This manifest declares that the ap-
plication’s main class is me.footlights.demos.good.GoodApp, which can be found in
the conventional location within the JAR file (/me/footlights/demos/good/GoodApp
.class).

The manifest also declares that the application depends on a library named by
the URL http://footlights.me/demo/library-v1. Like standard JAR files, this de-

127

http://footlights.me/demo/library-v1

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.7: An example manifest file for a Footlights application.

Manifest-Version: 1.0Class-Path: http://footlights.me/demo/library-v1Footlights-App: me.footlights.demos.good.GoodApp

Listing 6.8: Initialisation of a sample Footlights application.

package me.footlights.demos.good;
import scala.Option;import me.footlights.api.*;
public class GoodApp extends me.footlights.api.Application{ public static GoodApp init(KernelInterface kernel,ModifiablePreferences prefs, Logger log){ log.info("Loading " + GoodApp.class.getCanonicalName());return new GoodApp(new DemoAjaxHandler(kernel, log));}/* ... */private GoodApp(AjaxHandler ajax){ super("Basic demo");this.ajax = ajax;}}

128

BACK END

Listing 6.9: The abstract Application class.

package me.footlights.api;
import scala.Option;Applicationsimport me.footlights.api.ajax.AjaxHandler;
public abstract class Application{ public Application(String shortName) { ... }

/** Open a file from another application. */public void open(File file) {}
/** Open a directory from another application. */public void open(Directory directory) {}
/** A handler for Ajax requests from the Web UI. */public Option<AjaxHandler> ajaxHandler() { ... }
...}

pendency is declared using the Class-Path entry name. Unlike standard JAR files,
however, the dependency is not specified with a local filename. Instead, it is named
with a Footlights CAS name. The dependency can be on a JAR file which hashes to
an exact value; such a name is given as the hash of an immutable file, which implic-
itly provides integrity protection (Section 5.3). Alternatively, the dependency can be
named by a mutable URL that refers to such a name indirectly (see Section 5.4). This
approach provides more flexibility — the app will always use an up-to-date library
— but the integrity of the referenced URL must be protected through other means.

6.3.1.2 INITIALISATION

This main class must have a static init method like that in Listing 6.8 on the
preceding page. init is to a Footlights application what main is to a C application:
a linkage point where execution can begin. The parameters of init are three refer-
ences: the Footlights kernel (Section 6.3.4), a persistent key-value store (§6.3.5) and
a java.util.logging.Logger instance for logging messages.

On invocation, init must return a subclass of the Footlights-provided ab-
stract class me.footlights.api.Application, shown in Listing 6.9. This class pro-

129

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.10: A simplified version of the AjaxHandler class.

/** An object that can process Ajax requests. */public abstract class AjaxHandler{ public AjaxResponse service(WebRequest request){ return new JavaScript();}
public void fireAsynchronousEvent(JavaScript code) { /* */ }
/* ... */}

vides three optional services that may be overridden: a file-opening service and a
directory-opening service, both described in §6.3.1.3, as well as an Ajax handler,
described in §6.3.1.4.

6.3.1.3 FILE SERVICES

Applications can provide file- or directory-based services to other applica-
tions by overriding the methods Application.open(File) and Application.open(
Directory) in Listing 6.9 on the previous page. This allows other applications to
share content with them, directed by the user according to the techniques described
in §6.3.4.2. An example of how this sharing can be used in practice is illustrated by
the File manager application in §6.4.5.

Future versions of Footlights might also allow applications to advertise the ser-
vices they provide in a registry, using a description like a MIME Content-Type
[265, 257]. Such a registry would be conceptually similar to those provided by

Android [329], D-Bus [164], launchd [322] and even inetd [348].

6.3.1.4 AJAX SERVICE

In order to communicate with its front-end, an application can provide an
AjaxHandler by overriding the Application.ajaxHandler() method.

The abstract class AjaxHandler is illustrated in Listing 6.10. It or its subclasses
can respond to a request issued by the front-end with an AjaxResponse. This re-
sponse can be a JavaScript object representing code to execute in the front-end’s
sandboxed context or a JSON object representing data to pass to a front-end callback.

130

BACK END

This allows the application front-end to communicate with the back-end in response
to UI events, JavaScript timers, etc.

When an application is started, the back-end is first initialised, then the front-end
visual context is created (§6.2.1.1). Once this is complete, the front-end supervisor
initialises the UI by sending an Ajax request string "init" to the back-end. The
response to this request is expected to provide a JavaScript object representing the
code required to initialise the UI.

When an AjaxHandler wants to send unsolicited messages to its front-end, it can
call its own fireAsynchronousEvent() method. This method enqueues a JavaScript
object to be delivered via the Web UI’s asynchronous channel. As described in

§6.2.2, this is a multiplexed channel, shared by all sandboxed UI contexts. This
channel allows application back-ends to send event notifications to their front-ends
when directories are shared with the application, long-running tasks are completed,
etc.

6.3.2 CONFINEMENT

Confinement of application back-ends is based on the Java security model, which
allows the JVM to run different bytecode with different permissions as described by
Gong et al. [119] These permissions are assigned by the ClassLoader that loads the
bytecode, so Footlights has a custom ClassLoader.

The Footlights back-end is divided into three key components: the Bootstrap-
per, which contains a custom ClassLoader, the Kernel, which supports applications
and a UI, which manages the Footlights front-end. The Bootstrapper is responsible
for loading both the Kernel and any UIs (Web, Swing, Android or other), and it as-
signs them the java.security.AllPermission when it does. This permission allows
trusted code to access files, network sockets, draw to the UI, etc. subject to certain
constraints discussed in the next paragraph. Any code loaded after the Kernel and
UI is treated as entirely unprivileged; it cannot perform these operations. One of the
few “system” privileges available to unprivileged code is the ability to read the sys-
tem time; if the JVM provided a means to control this via the same privilege system,
Footlights could close covert channels among malicious applications, as described
by Lipner [159].

In the Java security model, privilege is not always applied automatically. Before
performing a privileged operation such as opening a local file, the JVM checks the
call stack to ensure that only privileged (and thus trusted) code is involved in the op-

131

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.11: A simplified version of Footlights’ KernelPrivilege trait.

trait KernelPrivilege extends Footlights {def open(name:URI) = sudo { () => super.open(name) }def openLocalFile() = sudo { () => super.openLocalFile() }def open(link:Link) = sudo { () => super.open(link) }/* ... */}
object Privilege {/*** Execute a function with JVM privilege.

** The name "sudo" is meant to be evocative of privilege in
* general; it does not refer specifically to system
* privilege as conferred by sudo(8).
*/private[core] def sudo[T](code:() => T) =try AccessController.doPrivileged[T] {new PrivilegedExceptionAction[T]() {override def run:T = code()}}catch {case e:PrivilegedActionException => throw e getCause}}

eration. This prevents trusted code from being abused with a confused deputy attack.
A confused deputy, as illustrated by Hardy, is privileged code that is tricked into
using its privilege in an unintended way [130]. The JVM’s stack-checking scheme
prevents confused deputy attacks like the return-to-libc attack by Peslyak (a.k.a. So-
lar Designer) [353]. Privileged code can, however, explicitly perform privileged op-
erations by calling java.security.AccessController.doPrivileged(). This allows
privileged code to assert that it is being called through well-defined interfaces and
that it accepts responsibility for sanitising input appropriately. In this case, the JVM
will only look at the call stack between the privileged operation and the most recent
doPrivileged invocation by privileged code.

Footlights exposes an explicit security API to applications (Section 6.3.4), so all
use of JVM privilege can be represented by a single Scala trait. This trait acts as a
privilege-adding wrapper around the Footlights security API. The trait is illustrated

132

BACK END

in Listing 6.11 on the preceding page; it has been simplified beyond what the Scala
compiler accepts in the interest of readability.

6.3.3 STATIC CONTENT

As described in §6.2.1.3, application front-ends can refer to static content located
either in the application JAR file or the Footlights Content-Addressed Store (CAS).
For instance, static images can be rendered as part of the sandboxed Web UI.

Application JAR files can contain static content such as images for display in the
UI. When the Footlights Web UI receives a request for such content, it comes as
a request for a path such as /<contextname>/static/me/footlights/foo.png. This
request is parsed by the Web UI back-end, which retrieves from the kernel the ap-
plication named by the given context name.

From the application, the Web UI can retrieve the application-specific Footlights
ClassLoader used to instantiate it (§6.3.2). This ClassLoader can open resources
from its class path, given a relative name that identifies a file within the application’s
JAR bundle. The static content can then be served by the Web UI on behalf of the
application. In this way, applications can refer to arbitrary static content bundled
with the application. Practical uses of this capability include the script files and
image files essential to a web-based application UI.

Applications can also refer to static content contained in the Footlights content
addressed store (CAS). Immutable content is named by its URN (Section 5.3) or
indirectly through a mutable URL (Section 5.4). When the Web UI receives a request
for CAS content, it simply retrieves the binary File from the kernel as shown in
§6.3.4.1 and serves it to the application. This allows content such as image files to
be stored in the CAS and displayed in the UI, reducing the amount of content that
must be distributed with the application. For instance, an application can bundle
static bytecode in a JAR file but rely on a mutable URL to direct users to up-to-date
graphics.

6.3.4 KERNEL API

The Footlights kernel can be accessed by applications via the API shown in List-
ing 6.12 on the following page. This API currently demonstrates two kinds of ser-
vices: operations on files (§6.3.4.1) and interactions with the user (§6.3.4.2). A more
complete future API could also provide tools for synchronous collaboration among

133

/<context name>/static/me/footlights/foo.png

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.12: Footlights kernel interface.

/** An application’s interface to the Footlights kernel. */public interface KernelInterface{ /** Save data to a logical file. */public Either<Exception,File> save(ByteBuffer data);
/** Open a file by its URN. */public Either<Exception,File> open(URI name);
/*** Open a file using a hierarchical directory namespace.
** The name given can be rooted in either a URN
* (e.g. "urn:foo/some/path/to/file") or an
* app-specific root (e.g. "/my/path/to/a/file").
*/public Either<Exception,File> open(String name);

/** Open a mutable directory (wraps immutable dir). */public Either<Exception,Directory> openDirectory(String n);
/** Open a file on the local machine (user chooses). */public Either<Exception,File> openLocalFile();
/** Save data into a local file. */public Either<Exception,File> saveLocalFile(File file);
/** Ask the user a question. */public Either<Exception,String>promptUser(String prompt, Option<String> defaultValue);
/** Convenience method with no default value. */public Either<Exception,String> promptUser(String prompt);
/** Share a {@link Directory} with another user. */public Either<Exception,URI> share(Directory dir);
/** Open a file with another app. */public Either<Exception,File> openWithApplication(File f);
/** Open a directory with another app. */public Either<Exception,Directory>openWithApplication(Directory dir);}

134

BACK END

applications (§6.3.4.3).

6.3.4.1 FILES AND DIRECTORIES

As described in Chapter 5, the Footlights storage system provides a mutable
shared filesystem based on immutable structures. This construct is provided to
applications for two purposes. The first purpose is compatibility: today’s applica-
tions store hierarchical information in platform-provided filesystem namespaces, so
a similar Footlights offering will make the application development environment
familiar to developers. The second purpose of the filesystem abstraction is to pro-
vide a natural unit of sharing: anything that can be expressed by an application as a
directory hierarchy can be trivially shared with other users or applications.

A Footlights file, shown in Listing 6.13 on the next page, is an immutable quan-
tity of binary data. Its contents can be read via a Java InputStream as in the Java
file API. This could be augmented in the future with Java NIO primitives [250] to
allow asynchronous transfers and the performance they bring, but the current API
demonstrates compatibility with existing API expectations.

Because files are based on a Content-Addressed Store (CAS), every immutable
file can have a globally-unique name derived from a hash of its contents. This name,
as returned by File.name(), is a Uniform Resource Name (URN): it identifies con-
tent rather than storage location. If the content of the file were to change, it would
not be the same file any more by the CAS definition. To modify a file, an applica-
tion must copy it into a MutableFile, which can be modified and then frozen into
a new immutable File, or else copy the file’s current contents into a mutable buffer
via File.copyContents(). An application can then convert the modified buffer into
a new immutable file via KernelInterface.save(ByteBuffer).

When an application saves data as a file, the decryption key for that file is saved
in an application-specific keychain maintained by the Footlights kernel. This key-
chain is simply a serialisable in-memory mapping to keys from the names of the
blocks they decrypt. The application can later access the file by name, implicitly us-
ing this keychain to decrypt the file. Applications never access cryptographic keys:
they are always managed implicitly via a directory hierarchy or the application key-
chain.

The interface of a directory is shown in Listing 6.14 on page 137. Every ap-
plication receives its own virtual filesystem, which can be accessed by calling

135

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.13: A Footlights file.

/*** A logical file.
** Files are immutable; to modify a file, you must call
* {@link mutable()}, which returns a {@link MutableFile},
* modify that, and {@link MutableFile.freeze()} it.
*/public interface File {public interface MutableFile{ public MutableFilesetContent(Iterable<ByteBuffer> content);

public File freeze() throws GeneralSecurityException;}
/*** The file’s name.
** Client code should treat filenames as opaque identifiers;
* they are certainly not guaranteed to be human-readable.
*/public URI name();

/*** The content of the file, transformed into an
* {@link InputStream}.
*/public InputStream getInputStream();

/*** The content of the file.
* Calling this may be unwise for large files!
*/public ByteBuffer copyContents() throws java.io.IOException;}

136

BACK END

Listing 6.14: A Footlights directory.

/*** A mapping from application-specified names to {@link File}
* and {@link Directory} objects.
** A {@link Directory} is mutable from an application
* perspective, but maps onto immutable structures behind
* the {@link KernelInterface}.
*/public interface Directory{ public interface Entry{ public boolean isDir();public String name();public Either<Exception,Directory> directory();public Either<Exception,File> file();}
/** Name of current snapshot (an immutable directory). */public URI snapshotName();
// Operations on directory entriespublic Iterable<Entry> entries();public Option<Entry> get(String name);public Either<Exception,Directory> remove(String name);
/** Files (not directories) in this directory. */public Iterable<Tuple2<String,File>> files();
/** Direct sub-directories of this directory. */public Iterable<Tuple2<String,Directory>> subdirs();
/** Open by relative name, underneath this directory. */public Either<Exception,File> open(String name);public Either<Ex...,Directory> openDirectory(String name);
/** Save to this directory (direct child). */public Either<Ex...,Entry> save(String name, File file);public Either<Ex...,Entry> save(String name, ByteBuffer b);public Either<Ex...,Entry> save(String name, Directory dir);
/** Create a new subdirectory (fails if already exists). */public Either<Exception,Directory> mkdir(String name);
/** open() if subdir exists, mkdir() if it doesn’t. */public Either<Exception,Directory> subdir(String name);}

137

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

openDirectory("/") on its KernelInterface reference. As in traditional filesystems,
a Footlights directory contains a set of entries which map an application-chosen
name to a file or directory [173]. Unlike traditional filesystems, however, the un-
derlying objects being mapped to are content-addressed, so a directory mapping is
also implicitly a hash tree. At any point in time, a Footlights directory is also an
immutable snapshot: updating a directory’s entry set creates a new directory and
notifies the directory’s owner of the change.

In the case of subdirectories, the owner is the parent directory. Modifying a
subdirectory results in the parent directory being notified so that it can update its
own entry map to point at the new subdirectory. Notifications propagate up the tree
until they reach the root directory of the working tree, which must be able to handle
the update specially.

In the current implementation of Footlights, an application’s virtual filesystem
is a directory within a larger per-user filesystem. Change notifications from appli-
cation directories propagate upwards to a single root directory kept by the user’s
Footlights instance. This root directory is instantiated with a callback that saves the
directory’s encryption key to a local keychain and then atomically saves the direc-
tory’s name to a file in the local filesystem.

6.3.4.2 POWERBOXES

Applications can interact with the user by manipulating the Web UI’s Document
Object Model (DOM) as described in Section 6.2. This allows applications to render
objects and attach event handlers for e.g. mouse clicks, but it does not allow ap-
plications to ask users questions such as, “which file would you like to open?”, or
“which user would you like to share this photo with?”

These interactions are done via the back-end KernelInterface API. For instance,
a photo-sharing application will need to open photos from the local filesystem. An
unsandboxed application might access the filesystem, list the photos present and
prompt the user with a dialogue box to choose one of them. A Footlights application
has no authority to do this, however. Instead, a Footlights application’s back-end
can call kernel methods such as openLocalFile() and saveLocalFile(). The kernel
displays a powerbox, the user chooses a file and a read-only File is returned to
the Footlights application. In this way, the user directs a privileged component (the
Footlights kernel) to delegate limited authority to an unprivileged component (the
Footlights application).

138

BACK END

Figure 6.9: Sharing a directory with another user.

Applications can also call the KernelInterface API in order to share content with
other applications or to share content with other users, resulting in a powerbox like
that in Figure 6.9. In both cases, the kernel uses its privilege (to enumerate running
applications or friends of the user) to present the user with options, then lets the
user direct who or what the application-specified content is shared with.

6.3.4.3 SYNCHRONOUS COMMUNICATION

A third set of kernel methods would provide applications with primitives for
synchronous communication. These methods have not been implemented in the
current Footlights prototype.

In order to support applications with a real-time component such as gaming or
Borisov et al.’s Off-the-Record instant messaging [56], a complete social application
platform should provide synchronous messaging primitives. When applications
running on the same host collaborate, the Footlights platform could transport JSON
objects between them as it does between application front- and back-ends. When
applications running on different hosts collaborate — as in the case of two users
playing a real-time game — the users’ Footlights clients could set up a communica-
tion channel between them using established “hole punching” techniques identified
by Ford et al. [106] or Signposts as developed by Chaudhry et al. [344, 345]. Once
this is accomplished, application channels can be multiplexed over the top using the
same mechanisms as local application communication.

6.3.5 PERSISTENT KEY-VALUE STORE

Having described the first argument to an application’s init method — a refer-
ence to a KernelInterface object — I will now describe the second: a reference to a

139

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.15: The ModifiablePreferences class.

public interface ModifiablePreferences extends Preferences{ public Preferences set(String key, String value);public Preferences set(String key, boolean value);public Preferences set(String key, int value);public Preferences set(String key, float value);
public Preferences delete(String key);}

Listing 6.16: The Preferences class.

public interface Preferences{ public enum PreferenceType {STRING, BOOLEAN, INTEGER, FLOAT };public Iterable<Map.Entry<String,PreferenceType>> keys();
public Option<String> getString(String key);public Option<Boolean> getBoolean(String key)public Option<Integer> getInt(String key);public Option<Float> getFloat(String key);}

persistent key-value store.

The key-value store allows applications to store non-hierarchical information.
For instance, a game can store user preferences and statistics (e.g. which game board
to draw, how many games the user has won) in the key-value store, letting it do the
work of type checking and serialisation.

The interface of this store is shown in Listing 6.15 (which references Listing 6.16).
It currently handles only primitive types, although it could easily be extended to
cover arbitrary binary content stored in the Footlights CAS. This would allow ap-
plications to eschew the file system altogether in favour of a non-hierarchical store.

Updates by applications to the Footlights key-value store are atomic, but there
is no transaction mechanism yet to ensure consistency when updating multiple en-
tries.

By providing these APIs to confined bytecode, untrusted applications can per-

140

EXAMPLE APPLICATIONS

Listing 6.17: Manifest file for the Basic Demo application.

Manifest-Version: 1.0Class-Path: http://footlights.me/demo/library-v1Footlights-App: me.footlights.demos.good.GoodApp

form useful work and operate indirectly on user data. I have evaluated this claim
by building several demonstration applications that exercise the Footlights APIs.
These applications are described in Section 6.4.

6.4 EXAMPLE APPLICATIONS

I have built several basic applications to demonstrate the functionality of the
Footlights APIs (both front-end and back-end). Each is small and none are com-
plex or production-worthy, but together they demonstrate the suitability of the Foot-
lights APIs to support larger, more complex applications.

6.4.1 BASIC DEMO

The Basic demo application is designed to exercise several important aspects of
the Footlights front- and back-end APIs. It does not constitute a practical application
to satisfy a user need, but it does demonstrate how such applications could be built
on the Footlights APIs. A screenshot of this application running on the Footlights
platform is shown in Figure 6.10 on the following page.

On receiving its first Ajax message, "init" (see §6.3.1.4), the application re-
sponds with JavaScript code to do two things: add some simple text to the sand-
boxed UI and send another Ajax request back to the back-end. Using this work-
and-callback pattern, several discrete blocks of functionality are chained together to
form a complete demo.

In the next test block, the demo exercises the Footlights class loader. The Helper
class, part of the Basic Demo bundle, contains both static and instance methods.

These are both tested, along with Helper instantiation.

The next block of tests loads a static JavaScript file using the front-end method
context.load(’text.js’). This file is bundled as part of the demo’s JAR file and

141

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Figure 6.10: A basic demo application.

handled by the static file loading mechanism described in §6.3.3. It is compiled
by the front-end supervisor and exercises the context API. It adds UI elements,
including a placeholder for the user’s name and a static image (bundled with the
application). This image is given event handlers that modify the visual appearance
of various sandboxed UI elements when the mouse cursor moves over or off of the
image or the user clicks it. The UI is also given a box which the user can click to
send an Ajax request that triggers an Open File dialogue as described in §6.3.4.2.

The next test block saves a string of bytes (the ASCII representation of “Hello,
world!”) to a Footlights file and outputs the file’s CAS name.

In the final block of tests, the demo exercises class path dependency resolution
by calling code in a library. This library is declared as a dependency by the Ba-
sic Demo manifest file, as shown in Listing 6.17 on the previous page. The demo
calls static and instance methods of a class called Library, including methods which
themselves exercise Footlights API classes.

Together, these tests demonstrate that applications can perform many useful ac-
tivities without any special privilege.

142

EXAMPLE APPLICATIONS

6.4.2 MALICIOUS DEMO

I have also developed a malicious application to demonstrate Footlights’ con-
finement properties. This application tests the Footlights ClassLoader by attempt-
ing to load code from sources that it should not be able to access and to load its own
packaged code into sealed packages. Sealed packages have been declared complete
by their authors; if malicious code were loaded into them, that code would be able
to access package-internal data.

The application also tests the Java security policy installed by Footlights: it at-
tempts to access remote servers and Footlights-internal classes as well as create
a new ClassLoader. ClassLoader objects are part of the Trusted Computing Base
(TCB) — the computing foundation that is able to violate arbitrary security policies
— because they are responsible for conferring privileges on bytecode. Untrusted
applications must not be permitted to do this, as they could then confer more privi-
leges than they possess, a form of privilege escalation.

Finally, the application legitimately loads a malicious JavaScript file to test the
security API of the Web UI supervisor. This file attempts to contact remote servers,
access global JavaScript objects such as document and window, write to read-only con-
text variables and insert privileged HTML objects such as <iframe/> and <script/>
elements. These elements would be able to access global document and window ob-
jects, so they may not be instantiated. Instead, application front-ends can use the
context.load method, which applies all of the protections described in Section 6.2.

The malicious demo application fails in all of these actions, demonstrating that
even a rich application API can provide the confinement properties required to pro-
tect user privacy.

6.4.3 TIC-TAC-TOE

The Tic-Tac-Toe application depicted in Figure 6.11 on the following page
demonstrates how an application developer can build an interactive game on the
Footlights platform. The platform features used by the application are a strict sub-
set of those used by the basic demo in §6.4.1, but they are used to construct a more
plausible demo.

The Tic-Tac-Toe application uses the sandboxed UI features of the Web UI to
draw an interactive game board. Users alternate clicking squares on this board,
which sends event notifications to the application back-end via Ajax requests (see

143

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Figure 6.11: A Tic-Tac-Toe demo application.

§§6.2.1.2 and 6.3.1.4). The back-end maintains the state of the game, sends game up-
dates to the UI and records play statistics in the persistent key-value store described
in §6.3.5.

The demo does not support playing games against other users: that would re-
quire the synchronous IPC features sketched in §6.3.4.3. If these features were im-
plemented, extending the game to play against a remote rather than local opponent
would be straightforward.

Tic-Tac-Toe is a straightforward game with a straightforward implementation.
Building the game on the Footlights platform required 158 lines of Scala, 147 lines
of Java and 93 lines of JavaScript.

6.4.4 PHOTOS

The Photos application, shown in Figure 6.12 on the next page, manages a set of
photo albums that can be shared with other users or applications.

The application uses loads photos from the local machine’s filesystem according
to user direction, as described in §6.3.4.2. The contents of these photos are con-
verted into CAS files, which are stored in the hierarchical namespace afforded by
the Footlights filesystem. Images are displayed in the Web UI using the mecha-

144

EXAMPLE APPLICATIONS

Figure 6.12: A basic photo manager.

Listing 6.18: Displaying an image: front-end code.

context.globals[’new_photo’] =function new_photo(name, deleteCallback){ /* ... */var i = container.appendElement(’img’);i.filename = name;i.style[’max-height’] = ’150px’;i.style[’max-width’] = ’150px’;i.style[’vertical-align’] = ’middle’;/* ... */}

nisms described in §§6.2.1.3 and 6.3.3: the application front-end simply assigns to
the filename attribute of a proxied image element as shown in Listing 6.18; the name
value is derived from an album maintained in the back-end, as shown in Listing 6.19
on the next page.

The Photos application provides users with the ability to share albums with
other users or applications. A screenshot of the former is shown in Figure 6.9 on
page 139 in §6.3.4.2; one use of the latter is described in the next section.

The implementation of this application requires 265 lines of Scala and 144 lines
of JavaScript.

145

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

Listing 6.19: Displaying an image: back-end code.

override def service(request:WebRequest) ={ request.path() match {/* ... */case OpenAlbum(URLEncoded(name)) =>app album name map { album =>/* ... */setStatus { "Opened album ’%s’" format name } ::(album.photos map addPhoto toList)} fold (ex => setStatus("Error: " + ex),actions => actions reduce { _ append _ })/* ... */}}
private def addPhoto(filename:String) =new JavaScript append "context.globals[’new_photo’](’%s’, %s);".format(filename,JavaScript ajax RemoveImage(URLEncoded(filename).encoded)asFunction)

146

EXAMPLE APPLICATIONS

Figure 6.13: A basic file manager.

Figure 6.14: Sharing a directory with the File Manager application.

6.4.5 FILE MANAGER

The File Manager demo, pictured in Figure 6.13, allows the user to manipulate
any directory hierarchy that he or she chooses to open.

The File Manager demonstrates how explicit powerbox-driven sharing can be
used to delegate partial authority to unprivileged applications. The File Manager
itself is an ordinary application with no special privileges: when it starts running, it
only has access to its own virtual filesystem. The user can instruct it to modify this
private namespace, creating or destroying subdirectories, uploading, downloading
or deleting files. By default, no access is granted to other parts of the user’s larger
filesystem.

The user can, however, choose to open other parts of the filesystem with the
File Manager. For instance, Figure 6.14 shows a powerbox triggered by the user
sharing an album from the Photos application. If the user chooses the File Manager
application from this powerbox, that album’s directory will be shared with the File
Manager and the user will be able to manipulate it. The user can download or delete

147

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

photos, upload new ones or open them with another application.

The File Manager demo application is implemented with 258 lines of Scala and
35 lines of JavaScript.

6.5 RELATED WORK

Very little work has been done to date on confining social applications. Sec-
tion 3.3 discussed numerous proposals to either encrypt content within an exist-
ing OSN or to distribute data in a peer-to-peer network. The pure encryption ap-
proaches do not alter the application model of their host OSN, and very few of the
distributed OSN schemes provide any API for third-party applications.

The confinement problem was first formalised by Lampson in 1973 [153], but
his description was based on the prior experiences of both himself [152] and oth-
ers, such as Schroeder and Saltzer [214]. This problem was: how can an application
user be sure that the application is not leaking information? Lampson identified
three classes of channels for leaking information: storage channels, legitimate chan-
nels (such as a bill) and covert channels, “i.e. those not intended for information
transfer at all”. The goal of social application confinement is to prevent private user
information from leaking through storage or legitimate channels; covert channels
are less tractable a problem in commodity systems.

In 1975, Lipner noted that if an application were only provided with a “virtual
time” rather than real time, it would even be possible to close covert channels among
applications [159]. Unfortunately, Footlights’ JVM foundation always permits appli-
cations to ask the time.

Various degrees of application confinement has been achieved on many conven-
tional computation platforms. Some examples are given in Section 6.1, but I will
highlight three more here.

Stiegler et al.’s Polaris [218] took capability-oriented lessons from the earlier
CapDesk project [219] and applied them to a conventional operating system: Mi-
crosoft Windows. Polaris sandboxed applications by executing them from a re-
stricted user account and used powerboxes to supply user-driven authority to the
unprivileged applications. This allowed unmodified applications to execute with
some degree of confinement, subject to Windows’ ability to sandbox the applica-
tions of restricted users — Watson, Laurie and Kennaway and I have found that
Windows lacked some key enforcement primitives [9].

148

RELATED WORK

Second, Watson et al. brought capability-oriented sandboxing to FreeBSD through
the Capsicum project [1, 9, 17]. This allowed applications to run risky code such as
HTML renderers and JavaScript interpreters inside a sandbox with sound OS foun-
dations. This work solidified the boundaries between privileged and unprivileged
processes in sshd and Chromium and created new separation in gzip and tcpdump.
In all of these cases, Capsicum protections would prevent malicious code from ac-
cessing system or user data if it compromised the application’s internal logic, e.g.
decompression or network packet parsing.

Third, lessons from the CapDesk project and its E programming language have
also been applied to Google Caja [351] and ECMAScript 5 [177, 178], both under
the influence of CapDesk contributor Mark Miller. Caja, whose implementation is
greatly simplified when running on ECMAScript 5, is designed to separate Web
scripts from different sources and protect user data from malicious scripts. Foot-
lights’ Web UI uses Caja extensively.

Turning from traditional platforms to online social networks, however, there has
been much less work done to address the confinement problem.

Baden et al.’s Persona provides its functionality via applications [36], but they are
not not confined in the fully-untrusted sense that Footlights uses. In Persona, ap-
plications are PHP/MySQL components of a web site. Applications perform cryp-
tography themselves and are not confined by the system. Applications have access
to metadata about encryption and are trusted to enforce security policies (e.g. “the
Profile application allows only the registered user to write onto the Doc page”). The
authors leave as future work an alternate design that splits applications into trusted
and untrusted components, running the trusted parts only in the user’s browser.
When Persona was presented, Footlights was already confining applications, al-
though the API these early apps were given was not as useful or complete as the
current one.

Fescher et al.’s “Mr Privacy” allows social applications to be developed without
relying on a centralised OSN database [105]. Instead, Mr Privacy uses e-mail to
transport information among users. The system is not designed for confinement,
however, and content is sent in the clear — the underlying e-mail provider is trusted.
A system like Mr Privacy could implement controls around which applications can
access what data, but authorisation has not been described yet. The applications
themselves run on a standard platform such as a mobile phone or Web browser, so
confinement is a task for the platform.

149

CHAPTER 6: DISTRIBUTED SOCIAL APPLICATIONS

One notable paper amidst the social confinement dearth is Felt and Evans’ work
on protecting users from malicious social applications [103]. This work studied the
behaviour of 150 popular Facebook applications, finding that over 90% had no need
of the user data that they were given. The authors also proposed a “privacy by
proxy” mechanism inspired by the Facebook Markup Language (FBML) that would
allow applications to reference user data indirectly. This is the inspiration for Foot-
lights’ placeholders mechanism, described in §6.2.2. Felt and Evans also proposed
an encrypted user ID scheme like the one eventually adopted by Facebook in the
wake of scenario “Application developers” on page 25.

6.6 SUMMARY OF CONTRIBUTIONS

I have described a platform that demonstrates the viability of distributed social
applications. These applications are split into front-end and back-end components,
both of which are untrusted and unprivileged, but together they can perform ar-
bitrary computation, manage a UI and interact indirectly with private user data to
accomplish user goals via APIs that are familiar to today’s application developers.

Application behaviour can be both confined and observed. Applications have no
access to user data by default, but can reference data indirectly without any special
permissions. Direct access to user data only occurs with explicit expressions of user
intent.

Applications can create information and share it with other users or applica-
tions, but this sharing is always under the control of the user. This allows users to
be in control of their social sharing without sacrificing the benefits of a generative
platform.

150

7
DISTRIBUTED AUTHENTICATION

“ It’s not what you know, it’s who you know.

Workers of Cramps’ Shipyard, 1918 [266]”In today’s online social networks, integrity is provided by a central party: the On-
line Social Network (OSN) operator. The operator first authenticates users with a
combination of passwords and social graph data, then labels content according to
user actions during their authenticated sessions. Users rely on the operator to au-
thenticate other users correctly: a user may talk about “Alice’s photo”, but a more
complete and accurate name for the content would be “a photo that the OSN oper-
ator asserts was uploaded by Alice”.

In order to move to a decentralised model, indirect certification by a trusted third
party must be replaced with direct self-certification. Instead of referencing content
as, “what the OSN asserts that Alice said”, client software must instead reference
“what Alice asserts that she said”. I define this to be the assertion problem. It is
a natural fit for public-key cryptography, where users’ client software can make
cryptographic assertions that can be verified by anyone.

Public-key cryptography alone does not solve the assertion problem, however.
Part of the appeal of OSNs is that they are ubiquitously available: a user can log into
a centralised OSN from any computer, anywhere, using a password and some social
context which may be implicit or explicit. For instance, logging in from an IP ad-
dress that has been recently and frequently used by a friend conveys some implicit
social context — the user is logging in via a friend’s computer or network. Social
context can also be established explicitly, by e.g. identifying friends in photographs
as described by Kim et al. [142]

Decentralised, public-key–based social networks require an authentication mech-
anism that is not merely as rigorous as centralised password authentication — trivial

151

CHAPTER 7: DISTRIBUTED AUTHENTICATION

for a public-key system — but is also as portable, mobile and usable. As described
below, these three requirements preclude traditional approaches to the security of
private keys.

This chapter, based on a publication co-authored with Frank Stajano [4], de-
scribes a solution to the assertion problem. This solution provides a distributed
authentication facility that allows users to retrieve a private key from several au-
thentication agents. These agents are software services run by parties who are honest
but curious: they are assumed to run the authentication protocol correctly, but they
are not trusted with confidential plaintext. An offline dictionary attack against this
protocol by a malicious authentication agent is infeasible, even if the user’s authen-
tication password is very weak e.g. a 4-digit number or dictionary word. Further-
more, the protocol does not allow an attacker to determine if a particular user has
registered with an authentication agent, because the authentication agent does not
need to know the identity of the user.

7.1 PROBLEMS

7.1.1 THE ASSERTION PROBLEM

As described in Chapters 2, 5 and 6, the goal of the Footlights system is to pro-
vide a platform for distributed social applications based on untrusted centralised
infrastructure. This alternative social network must provide a means of asserting
to a user Alice that a digital artefact was created or authorised by the person she
knows as Bob.

Assertions can be made with public-key cryptography, assuming that Bob has
ready access to a private key that is kept secret and whose corresponding public
key is known to Alice. The problem therefore becomes, “how can Bob access his
private key at all times, even when using a friend’s computer rather than his own,
in order to digitally sign artefacts shared via the OSN?”

In order to solve this overarching problem, the protocol specified in this chapter
allows Bob to store his private key with one or more software authentication agents.
Bob can authenticate to a set of these agents from any computer, demonstrating
knowledge of a secret to re-gain access to his private key.

In order to do this, the protocol must solve several sub-problems. It must allow
for the use of weak secrets from any location, require limited trust in authentication

152

PROBLEMS

agents and provide plausible deniability to users.

7.1.2 WEAK SECRETS

If users could reasonably be expected to memorise cryptographically strong se-
crets, there would be no need for distributed authentication. This protocol is predi-
cated on the assumption that users cannot memorise cryptographic keys.

The need for this protocol might also be obviated if users always carry a hard-
ware token — such as a mobile phone — that carries cryptographic keys or performs
cryptographic operations on the user’s behalf. In many cases, however, the user will
prefer a friend’s large screen to her own small one, so she must either copy her pri-
vate key to her friend’s computer (if the hardware token merely carries keys) or be
able to reliably tether her token to her friend’s computer (if the token itself performs
the relevant cryptography). I claim that these requirements are onerous enough to
justify developing an alternative scheme.

For the purposes of this protocol, I require that users must be able to retrieve
their private keys without memorising strong secrets such as cryptographic keys or
carrying them on hardware tokens.

7.1.3 LOCATION INDEPENDENCE

Footlights users must be able to retrieve their keys using any computer.

Users may choose to access Footlights from a shared computer. Authenticating
via any computer places some trust in that computer: any authentication protocol
that relies on a shared secret is vulnerable to malware. This property is not unique
to Footlights. When using a friend’s computer, the malware assumption also breaks
Facebook’s Social Authentication scheme: the malware can learn the user’s pass-
word and the owner of the computer is one of the “insiders” ideally placed to iden-
tify faces of the user’s friends via a Man-in-the-Browser (MITB) attack as described
by de Barros [85, 128].

When using a computer in a shared computer lab, Internet café, etc., the user
would be well-advised not to enter their primary authentication password as a mat-
ter of security hygiene. As an alternative, sub-keys could be configured in advance
to convey limited authority for a limited time. For instance, before going on vaca-
tion, the user might publish a signed notification that “key X may be used to sign
messages that contain no URLs until 2 August 2012”.

153

CHAPTER 7: DISTRIBUTED AUTHENTICATION

7.1.4 LIMITED TRUST

Users who engage in the distributed authentication protocol should not need to
fully trust any participant. Authentication agents should not be able to determine
the user’s weak secret through offline dictionary attacks. Unless there is widespread
collusion, attackers who are also authentication agents should have only marginal
advantage over those who are not.

7.1.5 PLAUSIBLE DENIABILITY

Attackers should not be able to determine that a particular user has stored keys
with an authentication agent. Similarly, attackers must not be able to determine
which users have enlisted the aid of any particular authentication agent.

7.2 PRINCIPALS

Bob, B, is a user of a distributed online social network such as Footlights or
PeerSoN [65]. This network has no central, trusted authority to certify Bob’s digital
identity, so his client software proves who he is using Bob’s private key.

Wishing to access the network from abroad, Bob prepares a temporary private
key K−1

B which he advertises to his peers along with a set of constraints. For in-
stance, Bob could prepare one key per calendar week and declare them valid for
sharing photos but not publishing applications. This would ensure that, if a key is
compromised by an untrustworthy computer, the damage that can be done is lim-
ited. He then enlists software principals Alice, Alexa, Alicia, etc. (A0, A1, A2, . . .) to
act as authentication agents on his behalf: each will store some portion of the private
key or keys, which will only be given out to Bob later if he authenticates himself
with the weak password kB.

I assume that Bob is able to recover his public key KB and those of his agents
KA0 , KA1 , . . . from a public but untrusted source such as a key server. As an un-
trusted service, it provides keys for confidentiality of communications, not authen-
tication of principals. The only secret used for authentication is kB.

7.2.1 INSIDERS

I assume that Alice, Alexa, etc. are honest-but-curious according to the definition
of “Honest but curious” on page 35. I also assume that insiders — or the malware

154

PRINCIPALS

they are infected with — will not collude en masse, following the example of Beimel
and Chor [38]. The distributed authentication protocol will make it difficult for
insiders to identify each other and so collude. Nonetheless, in order to minimise the
chance of collusion, Bob might choose agents who are in different social cliques or
are business competitors.

A malicious agent may attempt to impersonate Bob to other agents. In this situ-
ation, an insider acts as the outsider described below, but with the advantage of the
information that it is storing for Bob.

7.2.2 OUTSIDERS

I assume that there is a malicious outsider, Mallory. His goal may be to learn
Bob’s private key or simply to map his usage of the system by determining which
agents — if any — are storing key material for Bob.

Mallory is modeled as the powerful Dolev–Yao attacker [92]. He can eavesdrop
on communication between Bob and his authentication agents, so the content of
these communications must be protected. He can initiate communication with any
agent, so he can attempt to impersonate Bob to an authentication agent. He can
also intercept messages, so he can attempt to impersonate an authentication agent
to Bob.

The key limitation on the outsider is the dictionary attacks he performs against
Bob’s password must be online. When Mallory impersonates Bob to an authentica-
tion agent, the agent will impose a mandatory timeout between each authentication
attempt. This timeout may be static or a time-varying function, such as an exponen-
tial back-off from a fixed initial timeout, but authentication agents impose it to keep
outsiders from becoming de facto insiders.

As a matter of practicality, a blind exponential timeout provides an attacker with
an opportunity to perform a Denial of Service (DoS) attack: by repeatedly guessing
Bob’s password and driving up the timeout, Bob himself might be prevented from
logging in. This threat might be mitigated by intrusion detection mechanisms, pro-
posed by Denning [87], which probabilistically detect or block attacks. It might also
be mitigated by using secondary communication channels, analogous to the fallback
authentication described by Just and Aspinall [138, 139] or Schechter et al. [212, 213],
to restore Bob’s access during attacks. These mechanisms could be used to combat
denial of service attacks and enhance availability, but they are not trusted to provide
confidentiality or integrity properties.

155

CHAPTER 7: DISTRIBUTED AUTHENTICATION

7.3 PROTOCOLS

I present several security protocols, beginning with a straw-man that relies on a
trusted third party and building towards a protocol that addresses all of the prob-
lems in Section 7.1. As introduced above, I use the following notation:

kB Bob’s weak secret (password)
Kx A public key associated with the name x

K−1
x The private key corresponding to public key Kx

Kt A temporary public key, generated for use in session set-up{
M
}

Kx
A message M encrypted under public key Kx with NM-CPA [41]

Non-malleability of the encryption mechanism is required to prevent an active
attacker from creating new authentication tokens from old ones. These tokens con-
sist of information derived from a secret, concatenated with a nonce to prove fresh-
ness; an ability to construct related tokens could allow challenges to be re-used with
new nonces.

None of the protocols below use explicit integrity mechanisms such as digital
signatures. In particular, the veracity of KA is not known to the supplicant, so sign-
ing information with KA would not yield useful integrity guarantees. Instead, sup-
plicants assume that messages encrypted to Kt have been generated by a principal
to whom Kt has been given.

7.3.1 TRUSTED THIRD PARTY

The first protocol is trivial: Bob stores his private key in plaintext on a trusted
server. After retrieving Alice’s public key from the public key server introduced
above, the protocol is simply:

B→ A : {B, Kt}KA
(7.1)

A→ B : {n}Kt
(7.2)

B→ A : {kB, n}KA
(7.3)

A→ B :
{

K−1
B

}
Kt

(7.4)

in which kB is Bob’s weak authentication secret, Kt is a temporary key used by Bob
to provide confidentiality until he recovers his private key K−1

B and n is a nonce

156

PROTOCOLS

selected by Alice, which prevents Mallory from performing a replay attack should
he later learn the value of Kt.

This protocol is analogous to a common practice in fallback authentication: if
Bob loses his password to a Web service, he can have a reset token sent to his e-mail
account. The e-mail provider is trusted implicitly.

The protocol bears a resemblance to the Kerberos protocol described by Newman
et al. [192, 264]: a supplicant (Bob) proves his identity to a trusted system (Alice),
which releases a token (Bob’s private key) that can be used to obtain other services
(interaction with other users). It is different from Kerberos, however, in that the
authentication agent is not a source of authority: it does not generate or certify keys,
it merely stores them.

Attacks Eavesdropping attacks, as defended against in the Kerboros realm by
Bellovin and Merritt’s original Encrypted Key Exchange (EKE) protocol [43], do not
apply because the message

{
B, Kt

}
which Bob sends to Alice is entropy-rich. The

presence of Kt confounds offline dictionary attack by eavesdroppers.

The protocol also prevents active outsiders (§7.2.2) from conducting success-
ful online dictionary attacks, since Alice can limit the rate of incoming password
guesses. Because of the rate-limiting of Mallory’s online dictionary attack, Bob’s
password can be as weak as an English word.

There are, however, two very obvious attacks against the system. First, in-
sider Alice can simply read Bob’s private key and password in the clear. Second,
outsider Mallory can impersonate Alice in order to learn Bob’s password in mes-
sage (7.3). Bob can download a KA from the public-but-untrusted key server which
is attributed to Alice but, without a shared secret or trusted authority, he has no way
to verify that it is actually Alice’s key.

7.3.2 SEMI-TRUSTED STORAGE

A slight improvement on the Trusted third party scheme is the Semi-trusted stor-
age scheme. In this scheme, Alice does not hold Bob’s password and private key in
the clear. Instead, she holds a cryptographic hash1 of the password h (kB) and Bob’s
private key encrypted using his weak password kB,

{
K−1

B

}
kB

. The protocol is very

similar to that of the Trusted third party scheme:

1As a password hash, it would be salted and iterated; the details are left to implementation.

157

CHAPTER 7: DISTRIBUTED AUTHENTICATION

B→ A : {B, Kt}KA
(7.5)

A→ B : {n}Kt
(7.6)

B→ A : {h (kB) , n}KA
(7.7)

A→ B :
{{

K−1
B

}
kB

}
Kt

(7.8)

After receiving message (7.7), Alice verifies that h (kB) matches her stored copy,
then sends Bob

{
K−1

B

}
kB

in message (7.8).

Attacks This protocol prevents a truly disinterested Alice from reading Bob’s se-
crets, but it does little to stop a curious Alice or a clever Mallory.

Alice can clearly mount an offline dictionary attack against the stored password
— the number of iterations in the password hash affects only the cost of the attack,
not the ability to do it. Since the password is assumed to be weak, an offline dictio-
nary attack should be expected to succeed with high probability.

Furthermore, if Mallory impersonates Alice, Bob will send him the same hash
that Alice stores — this occurs in message (7.7). Based on this hash, Mallory can
mount the same offline dictionary attack as Alice.

7.3.3 SECRET SHARING

A logical and straightforward extension to this protocol is for Bob to spread his
private key across several agents Alice, Alexa, Alicia, etc. using a k of n secret shar-
ing scheme2 as proposed by Shamir [216]. In this case, Alice stores h

(
KAi |kB

)
, which

is a hash of kB personalised to her. Instead of the private key K−1
B she stores Di,

which is one portion of the key K−1
B shared according to the secret sharing scheme.

The protocol between Bob and an agent is now:

2For the purposes of describing the high-level protocol, no specific scheme is specified.

158

PROTOCOLS

B→ Ai : {B, Kt}KAi
(7.9)

Ai → B : {n}Kt
(7.10)

B→ Ai :
{

h
(
KAi |kB

)
, n
}

KAi
(7.11)

Ai → B : {Di}Kt
(7.12)

Attacks This addition to the protocol prevents Alice, Alexa, etc, from reading
Bob’s private key. If the secret sharing scheme provides semantic security, a ma-
licious agent will not be able to use it in an offline dictionary attack. However, there
is nothing to prevent her or impostor Mallory from attacking the weak password by
brute force and, once successful, impersonating Bob to other key recovery agents.

This distinction does not change the parameters of the model — it still fits the
definition of “Honest but curious” on page 35 — but there may be a social value in
the difference. It requires a different degree of brashness for Alice to impersonate
Bob than for her to peek at a value that Bob has asked her to keep secret. As a
technical difference, however, it does not limit the trust which Bob must place in
his authentication agents; problem “Limited trust” on page 154 is not solved by this
protocol.

7.3.4 COLLISION-RICH PASSWORD HASHING

This protocol can be further improved by using collision-rich hash functions as
previously used by Lomas and Christianson [162] (see Section 7.6, “Related work”,
for further details). These functions can be built by discarding some of the output
of cryptographic hash functions, as in equation (7.13):

hM (x) = h (x) mod M . (7.13)

This modified hash function introduces collisions as long as M � 2N/2, where N is
the output size of hash function h.

Collision-rich hash functions frustrate dictionary attacks because they enlarge
the equivalence classes of inputs that map to the same output. If a large number of
salted passwords map to the same output hashes, then an offline dictionary attack
against a hash will only discover the equivalence class of possible inputs. Checking
these inputs requires an online consultation of some other password oracle.

159

CHAPTER 7: DISTRIBUTED AUTHENTICATION

For the purposes of this protocol, I define the collision-rich hash function hM,i for
agent Ai according to equation (7.14), where h (x) is a cryptographic hash function:

hM,i (kB) = hM
(
KAi |kB

)
= h

(
KAi |kB

)
mod M . (7.14)

The protocol now becomes:

B→ Ai : {B, Kt}KAi
(7.15)

Ai → B : {n, M}Kt
(7.16)

B→ Ai : {hM,i (kB) , n}KAi
(7.17)

Ai → B :

{
{Di}Kt

if hM,i (kB) correct

{random}Kt
otherwise

(7.18)

where M is a number chosen by Bob when he enlists Alice as a key recovery agent.
This technique reduces the trust that must be placed in authentication agents, sat-
isfying problem “Limited trust” on page 154. The degree to which this trust is re-
duced is governed by M, which balances attacks by insiders against attacks by out-
siders. As M increases, it becomes more difficult for an attacker to randomly guess
a hM,i (kB) that satisfies Alice. This is the Outsider dictionary attack in §7.4.3. On
the other hand, the larger the value of M, the smaller the equivalence class of kB.
This facilitates the Insider dictionary attack in §7.4.4.

7.3.4.1 LARGE-M ATTACK

Alice stores the value hM,i (kB), where M is decided by Bob when he recruits Al-
ice as an authentication agent. As log2 M increases, hM has fewer collisions. If Mal-
lory impersonates Alice, he could send a large value of M to Bob in equation (7.16).
If Bob were to reply with the message h (KM|kB), Mallory would be able to conduct
an offline dictionary attack and learn kB.

Rather than responding with a collision-poor hash, Bob should ignore some val-
ues of M. The test might be user-driven: the value of M could be displayed to Bob or
used to influence his UI in some recognisable way. If Bob observes a different value
of M from what he usually sees, he can cancel the login attempt. It could also be
automated, rejecting values of M that lie outside of some reasonable range related
to the strength of his password. Finally, all authentication agents could be required
to use the same value of M. In that case, Mallory would need to impersonate all of
Bob’s authentication agents in order to convince him of a false value of M. Other-

160

PROTOCOLS

wise, Bob’s client software could observe the partitioning of M values and abort the
authentication attempt.

7.3.4.2 IMPOSTOR IDENTITY DISCLOSURE ATTACK

If Mallory impersonates Alice, he will not be able to learn Bob’s password easily
for the reasons given in §7.4.4, “Insider dictionary attack”. Neither will he be able
to perform a completely successful middleperson attack, since the hash h (kB|KA)

is bound to Alice’s public key. He would, however, learn that Bob has stored his
private key with Alice by virtue of the fact that Bob has attempted authentication.
This information is probabilistic in nature: since Bob has not authenticated, Mallory
cannot be sure that it was Bob authenticating rather than some impersonator. If such
impersonations occur regularly, however, Bob’s plausible deniability is limited.

7.3.5 COLLISION-RICH IDENTITY HASHING

In order to prevent identity disclosure in the face of the Impostor identity dis-
closure attack (§7.3.4.2), one more layer of complexity can be added: collision-rich
hashing of Bob’s identity. To prevent these hashes from acting as de facto persistent
identifiers, Bob should send each agent a collision-rich hash of his identity and the
agent’s when registering, using a very low modulus of his choice. If the agent can-
not disambiguate him from other users that she provides the authentication service
to, he can try again using a different modulus.

B→ Ai : {h (Ai|B)mod N, N, Kt}KAi
(7.19)

Ai → B : try again (7.20)

B→ Ai :
{

h (Ai|B)mod N′, N′, Kt
}

KAi
(7.21)

Ai → B : {n, M}Kt
(7.22)

B→ Ai : {hM,i (kB) , n}KAi
(7.23)

Ai → B : :

{
{Di}Kt

if hM,i (kB) correct

{random}Kt
otherwise

(7.24)

This protocol gives the same probability of successful dictionary attack by in-
sider or outsider, and it also counters the Impostor identity disclosure attack for the
same reasons. It does not mitigate the potential for traffic analysis: a technically

161

CHAPTER 7: DISTRIBUTED AUTHENTICATION

competent adversary could observe that Bob has connected to Alice. However, I
consider traffic analysis to be beyond the scope of this distributed authentication
protocol, except to say that the protocol is not incompatible with anonymity tech-
nologies such as Tor [91].

7.4 PASSWORDS AND PROBABILITIES

In this section, I evaluate the probability of an attacker learning Bob’s password.
This attacker may be an insider — a curious authentication agent — or an outsider.
Before evaluating these probabilities, I must first provide a more rigorous definition
of “weak password”.

The security of this distributed authentication protocol must not rely on Bob
memorising a strong password (see problem “Weak secrets” on page 153). Instead,
Bob’s password will either be a randomly-assigned word from a small dictionary or
a user-chosen password from a known password distribution.

Bob’s password is drawn from a password distribution which is assumed to be
known to the attacker. This distribution is a function over a domain of possible
passwords, as shown in Figure 7.1 on the next page. The distribution shown in this
figure does not cover all possible passwords: some passwords in the domain have
a probability of zero.

If Alice’s identity is Ai, she holds the value hM,i (kB). I assume that she is able
to perform an offline dictionary attack in order to determine a set or equivalence
class of passwords that hash to the same hM,i (kB) as kB. Under the random oracle
assumption, the size of this equivalence class of passwords will be Σ/M on average,
where Σ is the size of the password domain. If Alice can learn other authentication
agents’ equivalence classes, she might be able to find a small intersection among
them, as shown in Figure 7.1 on the facing page, revealing Bob’s password with
high probability.

I will now consider two realistic distributions that Bob’s password might be
drawn from: a discrete uniform distribution over a small domain and a user-chosen
distribution over a large domain.

162

PASSWORDS AND PROBABILITIES

Password domain

Password
distribution

Equivalence
class 1

hM,1 (kB)

Equivalence
class 2

hM,2 (kB)

kB

Figure 7.1: Password domain, distribution and equivalence classes.

Listing 7.1: Random words from a 10,000-word English dictionary.

aside crypt curd driest finitefunding morale nimbler oven pasta

7.4.1 UNIFORM DISTRIBUTION

If Bob’s password is drawn from a uniformly random distribution, the size of the
password distribution will necessarily be equal to the size of the password domain
Σ. kB must be drawn from a small dictionary in order to aid memorability: the
protocol will not require Bob to memorise random strings such as "NBu6#Z4NI:",
a feat whose difficulty has previously been demonstrated in password research by
Yan et al. [238, 239]

Listing 7.1 shows a set of ten words randomly chosen from an English dictionary
of 10,000 common words. This dictionary was created by filtering a longer list from
Atkinson’s SCOWL (Spell Checker Oriented Word Lists) project [339], which is the
basis for the GNU Aspell spelling checker. My filtering, shown in Listing 7.2 on the
following page, restricts the dictionary to words that are 4-7 letters long and contain
only unaccented Latin letters. It also excludes some very similar word pairings such

163

CHAPTER 7: DISTRIBUTED AUTHENTICATION

Listing 7.2: Filtering words from a SCOWL word list.

./mk-list english 35 \ # SCOWL list, recommended size| grep "^[a-z]\{4,7\}$" \ # keep 4-7 letter words| grep -v "\(ed\)\|\(s\)$" \ # drop "pained", "pains"...| head -n10000 # keep exactly 10,000 words

6472
PIN

oven
ENGLISH

four
FRANÇAIS

Backofen
DEUTSCH

Mobile Password

Figure 7.2: Possible presentation of a random word from a small dictionary.

as plural versions of words and past participles (e.g. “pain” and “pained”).

The resulting words are simple and frequently-used. Some of the psychology
literature [45, 64, 129] suggests that low-frequency words may be easier to recognise
than high-frequency words, but this protocol depends on recall: bringing a partic-
ular word out of long-term memory, not recognising it in a list. For such a task, I
have filtered for high-frequency words, but low-frequency words could be filtered
for just as easily. Empirical evaluations of the experimental psychology of recall are
beyond the scope of this work.

Whether high- or low-frequency words are easiest to recall, the underlying
mechanism is the same: a random number is chosen from the range [0, 9999] and
used as an index into the dictionary. Several dictionaries could be used concur-
rently, as shown in Figure 7.2, possibly increasing memorability: the user need only
remember one of several equivalent words.

7.4.2 NON-UNIFORM DISTRIBUTION

The other possible source of a weak secret is a user-chosen password. The empir-
ical evaluation of user-chosen passwords has recently been given new life through
studies of real-life password data, e.g. Dell’Amico et al.’s recent work on password

164

PASSWORDS AND PROBABILITIES

100 101 102 103 104 105 106 107 108

Password

10-1
100
101
102
103
104
105
106

Fr
eq

ue
nc

y

Password frequency
RockYou
7e5 x−0.9

Figure 7.3: Frequency of RockYou passwords v. a power law distribution.

cracking [86] and especially the RockYou data set, a collection of 32 M user pass-
words leaked in 2010 and previously studied by Weir et al. [229] and Bonneau [54].
I have used this data set to illustrate the effect of collision-rich hashing on user-
chosen password distributions.

Figure 7.3 shows the frequency distribution of passwords in the RockYou cor-
pus. The comparison to a power-law distribution is for visual reference only: this
reference is not an empirically-fitted distribution. The plot illustrates a large varia-
tion in password frequencies, which means that an attacker employing an optimal
guessing strategy will require much less work than bruce-force search to learn a
password with probability α < 1 (see Bonneau’s Gα metric [54]). The effect of a
collision-rich hash on this distribution is to redistribute unlikely passwords into the
same password equivalence classes as likely ones, flattening the probability mass
function (pmf).

Figure 7.4a on the next page illustrates the effect of M on the distribution of hM
values. The complete password distribution shows a wide variation in probabil-
ities: approximately five orders of magnitude. The distribution of corresponding
collision-rich hashes, however, is greatly flattened: the smaller the value of M, the
more even the distribution of equivalence classes.

Figure 7.4b on the following page shows a more detailed view of the most proba-
ble hM values. If x is a randomly-chosen password from the RockYou corpus and Xi
is the ith most common password, then Pr [h64 (x) = X0] is 53.6% greater than 1/64

(the probability of a uniformly random password with n = 64) and Pr [h64 (x) = X1]

is only 11.9% greater than 1/64. In the original distribution, the most-frequent pass-

165

CHAPTER 7: DISTRIBUTED AUTHENTICATION

20 22 24 26 28 210 212 214 216 218 220 222 224

Equivalence class

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

Pr
ob

ab
ili

ty

Probability mass function of hM values
M = 64
M = 128
M = 256
M = 512
Complete

(a) Probability mass function (logarithmic).

0 2 4 6 8 10 12 14 16
Equivalence class

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ili

ty

Probability mass function of hM values
M = 64
M = 128
M = 256
M = 512
Complete

(b) Detail of most likely hM values.

Figure 7.4: Probability distribution of hM values for RockYou passwords.

166

PASSWORDS AND PROBABILITIES

word occurred orders of magnitude more often than the least-frequent. In the
collision-rich distribution with M = 64, the spread between the most- and least-
likely equivalence classes is less than a factor of two.

The use of a collision-rich hash function to create equivalence classes among
passwords yields a probability distribution that reduces the advantage an optimal
attacker has over brute-force guessing.

In Section 7.3, I developed an authentication protocol that uses collision-rich
password hashes. Having introduced two password dictionaries — one with 10,000
equally-likely words and one chosen by real users — I now turn to the evaluation
of attack success probability using this authentication protocol.

7.4.3 OUTSIDER DICTIONARY ATTACK

In order for an outsider, Mallory, to obtain Bob’s credentials, he must convince
at least k authentication agents to reveal their true secret shares.

As described in §7.2.2, I assume that each authentication agent imposes a timeout
between guesses that may itself be a function of time, e.g. exponential back-off.
Under this assumption, time can be viewed as a discrete quantity: the maximum
number of guesses that an attacker can have submitted to each authentication agent.
I assume the attacker sends guesses in parallel to all agents.

7.4.3.1 UNIFORM PASSWORD DISTRIBUTION

If Bob’s password is chosen from a uniformly random distribution, attacker Mal-
lory has no information about which passwords he should attempt to guess first.
Furthermore, assuming that each portion of the shared secret is indistinguishable
from random, Mallory is unable to learn partial information from any single au-
thentication agent: the only way to determine that he has guessed the correct values
of hM,i (kB) is to successfully re-assemble Bob’s private key. Thus, the optimal guess-
ing strategy is to send random guesses of hM,i (kB) to each authentication agent until
k genuine secret shares have been recovered — a brute force attack.

Since Mallory has no information about Bob’s password, each of the M guesses
that he might send to an authentication agent is equally likely to be correct: the
probability is 1

M . Thus, the cumulative distribution function (CDF) for any particu-
lar agent having revealed her genuine secret share at time t is simply t

M . Mallory’s
interaction with each authentication agent is independent of his other interactions,
so each can be considered a Bernoulli trial. The probability that Mallory will have

167

CHAPTER 7: DISTRIBUTED AUTHENTICATION

assembled k shares of the secret from n authentication agents is thus given by the
binomial CDF in equation (7.28).

pr (k, n, t, M) = Pr (X ≥ k) |p= t
M

(7.25)

= 1− Pr (X ≤ k− 1) |p= t
M

(7.26)

= 1−
k−1

∑
i=0

(
n
i

)
pi (1− p)n−i |p= t

M
(7.27)

= 1−
k−1

∑
i=0

(
n
i

) (
t

M

)i (M− t
M

)n−i
. (7.28)

The effect of varying M, k and n is shown in Figure 7.5 on the next page. Varying
M or n creates a shift on the logarithmic success plots: if M is doubled, the attacker’s
success probability will be reduced by a factor of ~100 for a given number of authen-
tication attempts. A similar shift is observed when n is halved. The more interesting
variation, shown in Figures 7.5c, 7.5d and 7.5e, is that of varying k. Unlike M and n,
which cause a shift on the log-log attack success plot, a linear variation in k changes
the slope of the attack success plot. The effect of varying k overwhelms that of other
parameters, such as n: it is more difficult for an attacker to randomly authenticate 10
times out of 50 (Figure 7.5e) than 5 out of 5 (Figure 7.5c) or 6 out of 12 (Figure 7.5d).

Using these graphs, Bob can choose a desired level of security as the pair (pr, t):
a desired maximum probability of attacker success after a certain number of time
intervals. This pair represents a point on the graphs in Figure 7.5 on the facing
page, which can be used to select values of M, k and n.

Suppose Bob registers 12 authentication agents and distributes an 8-of-12 secret
share to them. An outsider performing an online dictionary attack can expect to
achieve a success probability α = 10−4 (equivalent to guessing a random 4-digit
PIN with one attempt) after ~10 parallel online authentication attempts if M = 64.
If M = 256, it will take ~50 attempts to reach this probability of success, but if
M = 1024, it will take ~2,000 attempts. If each authentication attempt triggers an
exponential back-off, more than ~20 attempts may be prohibitive: a five-second
timeout that doubles on each failure will consume 60 days of real time. In this
scenario, 50 attempts would require ~35 million years.

168

PASSWORDS AND PROBABILITIES

100 101 102 103 104

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2

Pr
ob

ab
ili

ty
k = 8, n = 12

M=64

M=128

M=256

M=512

M=1024

(a) Effect of varying M.

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty

k = 8, M = 256

n=16

n=14

n=12

n=10

n=8

(b) Effect of varying n.

100 101 102 103

Attempts

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1

Pr
ob

ab
ili

ty

n = 5, M = 256

k=1

k=2

k=3

k=4

k=5

(c) Effect of varying k (small N).

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty
n = 12, M = 256

k=4

k=6

k=8

k=10

k=12

(d) Effect of varying k (medium N).

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty

n = 50, M = 256
k=10

k=20

k=30

k=40

k=50

(e) Effect of varying k (large N).

Figure 7.5: Probability of successfully attacking a uniform distribution.

169

CHAPTER 7: DISTRIBUTED AUTHENTICATION

7.4.3.2 NON-UNIFORM PASSWORD DISTRIBUTION

If Bob’s password is chosen from a non-uniform distribution, it is easier for the
attacker to guess, but M, n and k can be chosen to frustrate practical attacks.

In this case, the attacker still proceeds by sending likely hM values to each au-
thentication agent and attempting to combine k of n responses into a valid public
key. Unlike the uniformly random case, however, the cumulative distribution func-
tion is non-linear. Rather than the simple ratio t/M, where t is the discrete time, the
CDF is given by actual password frequencies in the distribution that Bob’s password
is drawn from.

I use the CDF of the RockYou corpus with collision-rich hashing as the proba-
bility that any independent authentication agent will have revealed her true secret
share to the attacker at time t. This data-driven approach does not yield a closed-
form solution for the attacker’s combined CDF as in equation (7.28), but it is still a
binomial distribution as shown in equation (7.31).

pr (k, n, t, M) = Pr (X ≥ k) (7.29)

= 1− Pr (X ≤ k− 1) (7.30)

= 1−
k−1

∑
i=0

(
n
i

)
pi (1− p)n−i |p=CDFM(t) . (7.31)

Figure 7.6 on the next page shows the attack success probabilities in this sce-
nario. All of these plots show higher success probabilities than the uniformly ran-
dom case, but the effect is most pronounced in the k = 10 line in Figure 7.6e. Here,
the minimum attack success probability of approximately 10−8 is much higher than
the corresponding value of 10−16 in Figure 7.5e. Nonetheless, practical values of M,
n and k can be chosen (e.g. k = 8, n = 16, M = 256) that keep the attacker’s success
probability below 10−4 until time t = 20, which §7.4.3 showed might correspond to
60 days of real attacker time.

7.4.4 INSIDER DICTIONARY ATTACK

I will now evaluate the probability that an insider Alice or a successful mid-
dleperson Mallory (see §7.2.2) will be able to exploit the collision-rich hash of Bob’s
password with Alice’s public key in order to learn Bob’s password.

170

PASSWORDS AND PROBABILITIES

100 101 102 103 104

Attempts

10-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100
Pr

ob
ab

ili
ty

k = 8, n = 12

M=64

M=128

M=256

M=512

M=1024

(a) Effect of varying M.

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty

k = 8, M = 256

n=16

n=14

n=12

n=10

n=8

(b) Effect of varying n.

100 101 102 103

Attempts

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Pr
ob

ab
ili

ty

n = 5, M = 256

k=1

k=2

k=3

k=4

k=5

(c) Effect of varying k (small N).

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty
n = 12, M = 256

k=4

k=6

k=8

k=10

k=12

(d) Effect of varying k (medium N).

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty

n = 50, M = 256
k=10

k=20

k=30

k=40

k=50

(e) Effect of varying k (large N).

Figure 7.6: Probability of successfully attacking the RockYou distribution.

171

CHAPTER 7: DISTRIBUTED AUTHENTICATION

If Alice performs an offline dictionary attack against hM,i (kB), she will learn the
equivalence class [kB] for which equation (7.32) holds:

hM,i (x) = hM,i (kB) ∀x ∈ [kB] . (7.32)

Under the random oracle assumption, this equivalence class will be a uniformly
random sample of the original password distribution whose size, on average, will
be |X|/M where |X| is the size of the password domain X. Alice can test passwords
in this equivalence class according the optimal ordering given by the original pass-
word distribution; she simply needs to impersonate Bob to at least k other authenti-
cation agents, requesting secret shares and checking to see if they combine to form
Bob’s private key.

As stated in §7.2.1, I assume that the authentication agents do not collude, ac-
cording to precident in the literature. In that section I also suggest measures to
reduce the likelihood of such collusion, making the assumption plausible.

7.4.4.1 UNIFORM PASSWORD DISTRIBUTION

If Bob’s password is drawn from the uniform distribution, then each of his possi-
ble passwords are equally likely. If |X|M ≤ M, Alice can try each of the |X|/M possible
password classes against the other n− 1 authentication agents. If n− 1 ≥ 2k, she
can even query multiple sets of agents in parallel. The probability that Alice will
successfully learn Bob’s password is, therefore:

p (t) = t
M
|X| ·

⌊
n− 1

k

⌋
. (7.33)

This is a linear function of the discrete time t, governed by the number of possible
passwords (|X|/M) and the number of parallel queries which can be executed,

⌊
n−1

k

⌋
.

For instance, if M = 128, |X| = 104, n = 30 and k = 10, then p (t) = 2.56× 10−2 t.
If |X| = 106, however, corresponding to a 6-digit PIN, then p (t) = 1.28× 10−4 t
as long as k > n−1

2 . After 15 discrete-time guess attempts (two days of exponential
back-off from 5 s), the probability that insider Alice will have guessed Bob’s pass-
word is 1.92× 10−3.

If k > n−1
2 , the tunable parameters available to Bob are M and |X|. Increasing

the password space obviously decreases the attacker’s probability of success, but so
does reducing the value of M. This is a fundamental trade-off: smaller values of M
increase the difficulty of the Insider dictionary attack and decrease the difficulty of

172

PASSWORDS AND PROBABILITIES

the Outsider dictionary attack.

7.4.4.2 NON-UNIFORM PASSWORD DISTRIBUTION

In the case where Bob chooses his own password from a distribution like the
RockYou distribution, the Insider dictionary attack’s success probability is almost
identical to that of the Outsider dictionary attack.

If Alice (or middleperson Mallory) learns hM (kB), she can perform an offline
dictionary attack in order to learn a set of |X|/M passwords that includes Bob’s pass-
word. Unlike the case of the uniform password distribution above, however, the
overall size of the password space means that narrowing the problem down to |X|/M

possibilities does not give the attacker much advantage: |X|/M is still much larger
than M.

Figure 7.7 on the following page shows the RockYou password distribution com-
pared with several sampled distributions drawn from it using different several val-
ues of M. The overall shapes of the sampled curves in Figure 7.7a on the next page
are largely the same as the original distribution. More importantly, the number
passwords with frequency f > 1 is larger than M, so Figure 7.7b on the following
page looks very similar to its analogue in Figure 7.4 on page 166.

The PMF of the hM values for sampled RockYou distributions are visually similar
to those of the original distribution, owing to the vast size of the original distribu-
tion. This leads to a Figure 7.8 on page 175 similar to Figure 7.6 on page 171: the
insider has little advantage over the outsider.

7.4.5 SUMMARY

Using a uniform password distribution drawn from a small password space (e.g.
4-digit PINs), the parameters of this protocol can be tuned to provide chosen resis-
tance against malicious outsiders. Insiders have an advantage over outsiders, in that
they have fewer potential passwords to check, but insider attack success probabili-
ties on the order of 10−3 can be maintained over short time periods (approximately
two days): even if a list of passwords to check is short, an online dictionary attack
is very slow.

If user Bob chooses his own password, outsider Mallory is in a slightly bet-
ter position, as he can attack password hashes in order of likelihood. The use of
collision-rich hashes confounds him, however, flattening the probability distribu-

173

CHAPTER 7: DISTRIBUTED AUTHENTICATION

100 101 102 103 104 105 106 107 108

Password

100

101

102

103

104

105

106

Fr
eq

ue
nc

y

Password frequency
RockYou
M=64

M=128

M=256

M=512

M=1024

(a) Frequencies of sampled passwords.

20 21 22 23 24 25 26 27 28 29 210

Hash value

10-4

10-3

10-2

10-1

Pr
ob

ab
ili

ty

Probability mass function of hM values
M=64

M=128

M=256

M=512

M=1024

(b) PMFs of collision-rich hashes of sampled passwords.

Figure 7.7: The RockYou distribution, sampled for several values of M.

174

PASSWORDS AND PROBABILITIES

100 101 102 103 104

Attempt

10-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100
Pr

ob
ab

ili
ty

k = 8, n = 12

M=64

M=128

M=256

M=512

M=1024

(a) Effect of varying M.

100 101 102 103

Attempt

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty

k = 8, M = 256

n=16

n=14

n=12

n=10

n=8

(b) Effect of varying n.

100 101 102 103

Attempt

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

Pr
ob

ab
ili

ty

n = 5, M = 256

k=1

k=2

k=3

k=4

k=5

(c) Effect of varying k (small N).

100 101 102 103

Attempt

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty
n = 12, M = 256

k=4

k=6

k=8

k=10

k=12

(d) Effect of varying k (medium N).

100 101 102 103

Attempt

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty

n = 50, M = 256
k=10

k=20

k=30

k=40

k=50

(e) Effect of varying k (large N).

Figure 7.8: Attacking the sampled RockYou distribution.

175

CHAPTER 7: DISTRIBUTED AUTHENTICATION

tion of the various possible hM values so that an attack success probability of 10−4

can be maintained over extended periods of time. Interestingly, in this case the in-
sider has almost no advantage over the outsider: a user-chosen password from a
real distribution may be a better defense against insiders simply because it is drawn
from a much larger space of possible passwords. Of course, this advantage may not
hold if the distribution of user-chosen passwords is known to be weaker than that
contained in the RockYou data set, but empirical evaluation of password selection
within different communities is left to others.

7.5 REVOCATION

Any scheme that employs public-key cryptography must provide a mechanism
for revoking keys. In the case of Footlights, revocation should be very infrequently-
required, but the subject must be addressed nonetheless.

As described in Section 7.2, a Footlights user can create a constrained, time-
limited key for purposes such as vacations, but in fact, the delgation of limited au-
thority is a generally-wise practice that Footlights client software should perform
transparently. Short-term, purpose-limited signing and encryption keys should
only be accepted because they are signed by longer-term keys and so up, up a hier-
archy to the user’s “root” private key. This delegation of authority ensures that the
damage that can be done by a leaked key is limited and that — with one important
exception — there is always a higher-level authorisation key available to declare a
lower-level key invalid.

The exceptional case is that of the user’s “root” private key. Compromise of such
keys should be very infrequent: they should only rarely be manipulated in the clear,
on the user’s most personal devices. If a user’s root key is compromised, however,
existing techniques such as the Online Certificate Status Protocol (OCSP) [262] can
be used to query revocation state from any server — or servers — the user iden-
tifies. Revocation might be presented to users as a “permanently delete account”
command, implemented as a signature of a revocation message with the private
key in question.

176

RELATED WORK

7.6 RELATED WORK

Distributed protocols for authentication have existed since Needham and Schroeder
described their seminal 1978 protocol [190]. Until this work, however, password au-
thentication has required that the supplicant either trust the authentication server
not to perform offline dictionary attacks or choose a password strong enough to
resist such attacks.

The Needham–Schroeder protocol inspired the Kerberos authentication protocol
as described by Neuman [192], which in its original form was vulnerable to offline
dictionary attack by impersonators and network eavesdroppers. This weakness led
to Kerberos “pre-authentication” in later versions of the protocol [263]. In the orig-
inal protocol, a supplicant asked the authorisation server (AS) for a ticket-granting
ticket (TGT, a cryptographic capability) without providing any authentication data.
The server responded with a TGT encrypted under a key derived from the user’s
password. A user with knowledge of the password could decrypt this ciphertext
to obtain the TGT, but so could an attacker performing an offline dictionary attack
against the user’s password. Kerberos pre-authentication allows the AS to chal-
lenge the supplicant, requiring them to submit evidence of password knowledge,
e.g. the current time encrypted under the user’s key. This prevents an impersonator
from trivially obtaining the material required to perform a dictionary attack but
an eavesdropper can still obtain the timestamp encrypted under the user’s pass-
word and attack it instead. Furthermore, the AS must be trusted with the user’s
password-derived key.

In 1993, Gong et al. considered the problem of protecting “poorly chosen secrets”
from dictionary attack when using network protocols [118]. These protocols, in-
cluding a variant of the Kerberos protocol, were designed to protect user passwords
from eavesdroppers on the network, but they were still based on the assumption
that centralised servers would be trusted with the user’s password. This is not com-
patible with the trust requirements of Footlights: no principal apart from the user
should need to be trusted with the user’s password.

Bellovin and Merritt’s original Encrypted Key Exchange (EKE) protocol allowed
two principals to negotiate a session key based on knowledge of a shared secret
without exposing the negotiation to a dictionary attack by an eavesdropper [43].
More precisely, an eavesdropper would be forced to mount a dictionary attack
against a randomly-generated key pair rather than the password. Instead of send-
ing plaintext encrypted by the shared secret, the protocol is initiated by sending a

177

CHAPTER 7: DISTRIBUTED AUTHENTICATION

public key encrypted with the shared secret. If the public key is encoded to be indis-
tinguishable from random, an eavesdropper will not be able to perform an offline
dictionary attack against the secret. This protected both the password itself and the
session key from computationally feasible attacks by eavesdroppers, but it required
both parties to store the password; an attacker capable of compromising one host or
the other could learn the password and impersonate either party.

Augmented Encrypted Key Exchange (A-EKE), by the same authors, performed
the same protocol with a one-way hash3 of the password h (p) substituted for the
password p, followed by an additional proof of knowledge of p by one princi-
pal [44]. A-EKE is more explicitly a client–server protocol: a stolen h (p) allows
an attacker to impersonate one principal but not the other. This protocol provides
strong authentication properties, but it is not suitable for the Footlights case: an at-
tacker who steals h (p) — or a malicious authentication agent who is given it — can
perform an offline dictionary attack against it to learn p, so any party who possesses
a verifier must be trusted.

Lucks’ Open Key Encryption (OKE) protocol allows principals to negotiate a ses-
sion key based on knowledge of a shared secret, as in EKE, but OKE does not require
a new public-private key pair to be generated for every negotiation [166]. When Al-
ice initiates the protocol, instead of sending an ephemeral key encrypted under the
shared secret, she sends a public key E and a nonce m. Bob replies with his own
nonce µ and a proof of knowledge of the secret (a hash of E, m, µ and the shared
secret) that has been combined with a strong randomly-chosen secret encrypted un-
der E. This combination can be done with any invertible group operation: Alice will
be able to retrieve the encrypted strong secret only if she can invert the operation
using her knowledge of E, m, µ and the shared weak secret. This strong secret can
be used to generate a session key. Like EKE, the OKE protocol trusts both principals
to hold the shared secret (e.g. a user-chosen password), so it is not suitable for the
Footlights setting.

Another closely-related protocol is Jablon’s SPEKE (simple password exponen-
tial key exchange) [135]. This protocol is effectively a Diffie-Hellman key ex-
change [90], but instead of a public generator g as the base for the session key
k = gxy, a function f is parameterised by the secret password, so k = f (p)xy.
Like EKE, SPEKE has an extended variant in which only one party needs to know
the password; this is called B-SPEKE [134]. Like A-EKE, this is a verifier protocol:

3This “password-hashing operation” need not be a cryptographic hash function: in a public-
key–based model, p can be a private key and h (p) the corresponding public key.

178

RELATED WORK

the additional proof of password knowledge can be verified by the party that does
not hold the password. B-SPEKE uses a Diffie-Hellman variant for its verification
stage: the verifying party creates a challenge gX based on a public generator g and
a random value X. Knowledge of the password p allows the supplicant to reply
with

(
gX)p

= gXp. The verifying party holds a verifier gp, allowing it to test that
(gp)X = gXp. As in A-EKE, this prevents supplicant impersonation, but the pass-
word can still be attacked using a stolen verifier as a password oracle: for candidate
password p′, an attacker can test if gp′ = gp .

Wu’s secure remote password (SRP) protocol [236] is inappropriate for the Foot-
lights scenario for the same reason. SRP provides one-way or mutual authentica-
tion using modular-exponentiation–based password verification. Like A-EKE and
B-SPEKE, it provides no protection against offline dictionary attacks by insiders.
SRP is a verifier-based protocol, and a verifier is a password oracle that can be
queried offline. SRP discards the password-derived hash x = h (salt, P) because
Wu describes it as “equivalent to the plaintext password P”, but for the purposes
of an offline dictionary attack, so is the verifier v = gx that SRP requires. A hash
and an exponentiation have different computational costs, but they are both one-
way operations that serve as password oracles. SRP could treat this exponentiation
differently from a salted hash if it were done with respect to a small modulus, cre-
ating a collision-rich operation as this chapter describes, but SRP prescribes expo-
nentiation in the conventional manner: with respect to a large prime number. To
introduce intentional collisions leads inexorably to a multi-party protocol such as
the one described in this chapter: collisions make online attacks easier, so they must
be balanced by a requirement to carry out several successful attacks.

The cryptographic community has contributed further work to this problem,
later known as Password-Authenticated Key Exchange (PAKE): proving the cor-
rectness of existing protocols, as in the work of Bellare et al. [42], as well as propos-
ing new theoretically-grounded generic constructions as in the work of Catalano et
al. [69]. In all of these cases, however, a password verifier can be used to conduct an
offline dictionary attack, just as in earlier work.

ISO 11770-4 also contains techniques for authenticating with weak secrets: “bal-
anced” password-authenticated key agreement, augmented key agreement and
password-authenticated key retrieval [25]. As above, however, nothing prevents
a malicious verifier from conducting an offline dictionary attack against the weak
secret.

Laurie’s Nigori is a protocol for storing secrets such as Web passwords on remote

179

CHAPTER 7: DISTRIBUTED AUTHENTICATION

servers [154]. It is conceptually an online password vault, where users authenticate
to the vault with one password-derived key and store secrets that have been en-
crypted and MACed with other password-derived keys. It is assumed that the three
keys (authentication, encryption and MAC) cannot be used to determine the user’s
master password; that is, that the password is resistant to offline dictionary attack.
In contrast, the distributed authentication protocol presented in this chapter is de-
signed to provide reasonable security properties even with weak passwords. Nigori
allows a secret sharing scheme to be used with several severs in order to reduce the
“trust or burden” required of any one of them. Nigori’s description notes that “this
is likely to be a poor defence unless [the user] uses different passwords at different
servers”. This weakness could be overcome, however, by an authentication protocol
that uses collision-rich hashes, such as the one in this chapter.

Another related vein of cryptographic work is Stinson’s universal hashing [220],
which randomises the use of hash functions in order to reduce the probability of
collision among adversary-supplied keys. The work described in this chapter is a
kind of inverse of universal hashing: rather than reducing collisions, my distributed
authentication protocol defeats adversaries by intentionally introducing collisions
that confound attacks.

Lomas and Christianson have previously used collision-rich hash functions with
weak passwords for integrity checks on trusted computing bases [162]. In the Lo-
mas–Christianson protocol, a user powers on a stateless workstation, which re-
trieves an OS kernel across an untrusted network and boots it. Before the kernel
boots, its integrity is checked by hashing it together with the user’s password us-
ing a collision-rich hash function and comparing the result to a user-specific pub-
lic checksum stored alongside the kernel. Because the checksum incorporates a
collision-rich hash of the user’s password, the attacker cannot perform an offline
dictionary attack to determine the password: he can only calculate a set of candi-
date passwords. This set of candidate passwords can be used to generate a set of
checksums for the modified kernel, but the attacker has no way of knowing which
one of these will be accepted. The use of collision-rich hash functions in this work
has influenced the protocols in this chapter.

180

SUMMARY OF CONTRIBUTIONS

7.7 SUMMARY OF CONTRIBUTIONS

In this chapter, I have described a protocol that allows a user to authenticate to a
cloud of peers using only a weak password (problem “Weak secrets” on page 153).
This authentication can be done via any computer on which the user is willing to
type his password (problem “Location independence” on page 153). Authentica-
tion agents, which are assumed to be honest-but-curious, are unable to learn the
user’s password via offline dictionary attack; they do not need to be trusted (prob-
lem “Limited trust” on page 154). Finally, attackers are unable to determine either
which authentication agents provide their services to a particular user or which
users are served by a particular authentication agent (problem “Plausible deniabil-
ity” on page 154).

The weak password used in the protocol can be chosen from a uniformly ran-
dom distribution over a small space (e.g. a 4-digit PIN) or by the user from a large
password space. In the former case, resistance to outside attackers is excellent, pro-
viding low attack success probabilities over an extended period of time (months).
It is significantly less resistant to insider attacks, however. In the latter case, a com-
promise is struck that reduces outsider attack resistance in exchange for the freedom
and flexibility to choose one’s own password. In this case, insiders gain almost no
advantage over outsiders when attacking the weak password. The sheer size of the
password space means that even though an insider can narrow down the set of pos-
sible passwords by a factor of 64, 128 or even 1024, the remaining passwords must
be checked as an outsider would: using an online dictionary attack.

This protocol allows users to retrieve a private key from untrusted agents with
only weak passwords for authentication. The private key can be used to provide
message integrity in the context of a decentralised social network such as Footlights,
solving the larger assertion problem: the ability of users to assert who said what with-
out relying on a trusted third party.

181

8
CONCLUSIONS

Today’s online social networks (OSNs) provide users with an incredible array of
affordances, allowing them to tap into a social realm wider than their physical circle
of friends, facilitating the spread of information across continents and reducing the
cost of group formation so much that bagpipe photography enthusiasts around the
globe can discuss their passion more easily than members of a political party can
assemble within a single constituency. The outcome of these networks is a more
connected world, but that connectedness comes at a cost to confidentiality and user
privacy.

8.1 PROBLEMS

Chapter 2 described the socio-technical problem that is privacy in online social
networks, illustrating it with concrete scenarios. These scenarios featured user data
in contemporary OSNs being shared more widely than the users involved wanted
or expected it to be. I made the point that a technical system alone cannot “solve”
privacy, but technical contributions could be made that would allow users to change
their own privacy outcomes. Chapter 3 distilled several concrete technical problems
out of the scenarios:

Intent (problem “Explicit expressions of user intent” on page 35) — sharing should
be driven by users’ expressions of intent.

Identity (problem “Multi-faceted identity” on page 36) — users should be able to
present different facets of identity to different audiences without revealing the
existence of other facets.

Availability (problem “High availability” on page 36) — the system must compete
with commercial providers, so its availability (both uptime and bitrate) should
be of commercial standard.

182

FOOTLIGHTS

Trust (problem “Untrusted infrastructure” on page 37) — users should not need to
trust any infrastructure to enforce their desired sharing policies.

Applications (problem “Social applications” on page 37) — the system should pro-
vide an API to allow extension of the social experience via rich applications
that operate on user data indirectly by default.

Cost (problem “Cost” on page 39) — the cost of using the system should be exposed
to users, who should have a choice of how to defray it without sacrificing
privacy.

Anonymity (problem “Linkability and anonymity” on page 39) — users should be
able to choose their own privacy–performance trade-offs: it should be possible
to achieve some degree of anonymity at decreased performance.

I have demonstrated some of the ways today’s OSNs do not meet these standards:
they have exposed users’ private information, sharing it more widely than users’
expressed intent. Chapter 4 demonstrated practical threats to user privacy, in terms
of both user data privacy and social graph privacy. The former class of threats is
illustrated by a qualitative description of how user data has been leaked via chang-
ing default settings, advertiser access and application platforms. This was based on
both literature survey and original research. The second class was illustrated with
a quantitative analysis of how releasing a sampled subset of social graph informa-
tion allows attackers to closely approximate important characteristics of the entire
graph.

8.2 FOOTLIGHTS

In Chapter 5 I started to describe the Footlights system. Footlights is a privacy-
enabling online social network that explores a new mix of centralised and dis-
tributed elements to provide users with performant functionality without paying
a privacy penalty. Its name is derived from Goffman’s description of social interac-
tion as a theatrical performance [115] and is also a homage to the Cambridge Foot-
lights theatrical troupe. Footlights is an architecture, a set of protocols and a proof-
of-concept implementation that demonstrates the viability of a new kind of social
network. The prototype code is available from https://github.com/trombonehero/
Footlights under the Apache License [24].

183

https://github.com/trombonehero/Footlights
https://github.com/trombonehero/Footlights

CHAPTER 8: CONCLUSIONS

Chapter 5 describes the sharable storage system that underpins Footlights. This
system allows users to store private-by-default encrypted data as a sea of 4 kB ci-
phertext blocks on a commodity storage provider. Blocks are encrypted with block-
specific symmetric keys; their content is only readable by principals which possess
the relevant keys. Blocks in the encrypted store contain explicit links to other blocks,
which are only visible to principals that possess the block’s symmetric key. The
choice of a content-addressed store (CAS) ensures that global caching will be effi-
cient, never requiring freshness checks for static content, and that users will never
need to download the same content twice or perform deep searches for fresh content
on trees of already-seen data. The projected cost of operating the storage component
of Footlights is less than one US dollar per user-year. The system also provides op-
portunities for covert communication, including a low-bitrate perfectly unobservable
communications channel.

This global shared filesystem is exposed to social applications via an API
described in Chapter 6, “Distributed Social Applications”. Footlights is genera-
tive [248]: it provides an API that developers can use to craft as-yet-unimagined
social applications. Users maintain control of their data: by default, applications
operate indirectly on user data. Footlights applications are written on two plat-
forms: a browser-based UI and a JVM-based backend. In the browser, UI elements
are sandboxed, but manipulate a rich visual context using a proxy that resembles
the JavaScript DOM API. This UI front-end can communicate with a corresponding
back-end via an Ajax channel. The backend can be written in any JVM language.
The Footlights API provides back-ends with access to the Footlights filesystem and
local user files via the “security by designation” model described by Yee [241]: a
photo-sharing application may read photos from the user’s hard drive, but only
because the user has selected which files to open in an “Open File” dialog. Encryp-
tion is handled at the level of the storage substrate, so even malicious applications
are incapable of transparently leaking user data. With explicit user authorisation,
applications can share content with each other or other users.

Finally, Chapter 7 describes a distributed authentication framework that allows
users to access the Footlights distributed system from untrusted computers with-
out losing control of their digital identity. Footlights ultimately relies on public-key
cryptography for confidentiality and integrity, but problem “Multi-faceted identity”
on page 36 requires that the system be accessible “without leveraging trusted au-
thentication infrastructure or requiring users to carry hardware cryptographic to-
kens”. To solve this problem, I describe a protocol that allows users to retrieve a

184

FOOTLIGHTS

strong secret (a private key) from a set of authentication agents using a weak secret
(a random PIN or user-chosen password) without allowing the agents to determine
the value of the secret, even with an offline dictionary attack.

Together, these three components of the Footlights system could be used to
change the outcomes of all the scenarios given in Chapter 2.

In scenario “Jack” on page 24, a LiveJournal user named “Jack” had private de-
tails from his account re-posted as public ones, likely a result of password compro-
mise. If “Jack” had used the Footlights distributed authentication protocol instead,
his password would be safer from technical attacks. If, however, his problem was
that a friend successfully guessed his password — a plausible explanation — the
Footlights authentication protocol would not solve the problem. It would, however,
provide him with a technical measure that could be imposed at a cost: “Jack” could
forego the distributed authentication approach and carry his private key with him.
This would allow him to use the storage system and application platform with high
security, but the decision to adopt that approach is more economic than technical.

In scenario “CBSA” on page 25, photos and comments were posted to Facebook
by new recruits of the Canada Border Services Agency and subsequently viewed
by members of the public and the media. Facebook’s default settings and privacy
UI failed to capture the sharing intent of the CBSA recruits; Footlights would have
allowed them to share the content as widely as they desired, but its private-by-
default model would have made accidental disclosure of this kind less likely.

In scenario “Facebook” on page 25, Facebook imposed a policy change in which
certain parts of a user’s profile such as name, friends and connections became “pub-
lic information”. This change was undertaken despite the fact that some users had
taken care to make this information private. In Footlights, such a policy change
could never be enforced: sharing decisions are made by users, not the providers of
centralised infrastructure.

In scenario “Application developers” on page 25, several developers of third-
party Facebook applications were caught sharing private user data with data bro-
kers, who in turn sold the information to their customers. In the Footlights applica-
tion ecosystem, this sharing would not have been permitted by default: Footlights
applications can only access user data with explicit user authorisation. Even if appli-
cations had asked for — and received — such authorisation, Footlights applications
are observable : users would be able to detect the data leak from locally-excuted Foot-
lights more easily than the Wall Street Journal did with remotely-executed Facebook

185

CHAPTER 8: CONCLUSIONS

applications.

Finally, scenario “Sophie” on page 26 describes the plight of an OSN non-user.
“Sophie” is a skeptic: her concerns about the privacy practices of today’s OSNs
lead her to forego the benefits of social applications. “Sophie” could be a privacy
advocate concerned about her personal information or a corporate consumer con-
cerned about confidential competitor information. In either case, using Footlights
instead of Facebook would allow “Sophie” to be assured that her confidentiality re-
quirements are being met: rather than trusting a centralised provider to enforce her
security policy, she could verify the cryptographic protocols and software imple-
mentation herself, or rely on an external auditor or certifier to do this on her behalf.

8.3 FUTURE WORK

The research described in this dissertation has revealed many paths that beg
exploration, but I could not walk them all as one traveller. These include:

Implementation In this dissertation, I presented a design and prototype implemen-
tation. I argue that the system will scale well, but the proof of the pudding is
in the eating. It is beyond the scope of this dissertation to implement all of
the APIs required to drive mass adoption, but it is my hope that publicly-
available, royalty-free specifications and an open-source prototype will en-
courage adoption by vendors seeking to securely integrate online social ele-
ments into their platforms.
Specific implementation tasks include the integration of mutual authentica-
tion protocols as described in Section 5.1, the development of the inter-process
communication primitives described in §6.3.4.3 and the implementation of the
distributed authentication protocol in Chapter 7.

Security proofs Footlights relies on techniques whose security has not been proven
in the standard model. Some difficulties can be obviated under the random
oracle assumption, but proofs in the standard model would be a natural direc-
tion to pursue. It is desirable to prove that, first, convergent encryption pro-
vides indistinguishability when random padding is used and that, second, the
construction in Section 5.8, “Covert communication” creates ciphertext blocks
that are indistinguishable to an attacker who does not know the block’s ran-
dom padding or the covert content to be hidden within it.

186

FUTURE WORK

User experience Footlights has been designed with security usability considera-
tions in mind, but I am not a user experience designer. Footlights’ aesthetic
appeal also leaves much to be desired. User adoption of Footlights will re-
quire a focus on usability and aesthetics: if the system is not pleasing to use, it
will not be used.

Funding Networks and storage substrates are not free. Current social networks are
indirectly paid for by user data; future distributed systems will require alter-
native payment schemes. I have argued that the storage backend of Footlights
could be supported by direct payment (e.g. via occasional premium text mes-
sages) or privacy-preserving targeted advertising. One important question is,
how can such an advertising scheme be run without privileged access to the
TCB? Today’s advertisements rely on privilege in order to resist “click-fraud”:
they employ schemes such as frame-busting, which breaks out of browser con-
tainers to prevent encapsulation and redirection, in the same way that mal-
ware attempts to escape virtual machine encapsulation. If Footlights does not
allow such techniques, how much will it deminish the perceived value of a
targeted advertisement?

Consent How can researchers study social networks when users are in charge of
their own data? Today, researchers have such ready access to large corpora
that discussions of informed consent often do not happen. If users are given
full control over their personal information, how can researchers obtain data
and understand biases? These issues have been considered within the realm
of traditional social sciences, but how can those lessons be applied to studies
of millions of users, rather than dozens?

DTN routing Footlights creates a new kind of Delay-Tolerant Network (DTN), one
that relies on one-way communication and opportunistic contact. This net-
work also has more stringent privacy requirements than other DTNs: nei-
ther sender nor recipient should need to make their address globally known.
What constitutes a good routing algorithm for such a DTN? Are there essen-
tial trade-offs between routing efficiency and information revelation by partic-
ipants? Can classes of routing algorithms be tuned for the privacy of sender,
recipient or intermediaries according to need?

DTN congestion The global utility of a covert DTN is derived from routing deci-
sions made by individual users, each with their own goals and incentives. This

187

CHAPTER 8: CONCLUSIONS

problem sounds familiar, but it is not the well-known Tragedy of the Com-
mons: in Footlights, each node has exclusive control over its own patch of the
network. Rather, the problem resembles that of congestion on the Internet,
but the solutions employed there (point-to-point peering agreements, entrust-
ing network stacks to a few privileged individuals) will not apply to a fully-
fledged distributed system like Footlights. How can costs and incentives be
employed to make the Footlights covert DTN usable? Since no one principal
will be in a position to set costs, how can the protocol be made self-enforcing?

Ecosystem The Footlights architecture and prototype constitute an extensible core
for a new online social network. That network will only flourish if others use
it and build on it. To succeed, Footlights must have an ecosystem of both
users and application developers: people must be able to find their friends
and have something to do together. This requires a more rigorous treatment
of API expressibility and usability.

188

SUMMARY

8.4 SUMMARY

““You’re not the customer. The ad service buyer is the customer.
You’re the commodity.”

liorean, forum user, on the 2004 introduction of GMail [158]”The claim is often made that, to use online social networks, users must give up
their privacy. In this dissertation, I have argued that this cynicism is unwarranted:
it is possible to build a new kind of online social network that lets users enjoy all
the activities and functions they have grown accustomed to in today’s OSNs, with
comparable levels of performance, but without having to place absolute faith in the
companies operating the disks and networks.

Privacy and performance need not be forever locked in conflict. It is possi-
ble to rely on centralised infrastructure to provide the availability that users expect
without trusting it to enforce users’ intentions for sharing. I have described an ar-
chitecture and prototype implementation of a hybrid centralised–distributed OSN
called Footlights that allows users to choose their own privacy and performance
trade-offs and enjoy the benefits of social applications. Source code is available from
https://github.com/trombonehero/Footlights under the open-source Apache Li-
cense, version 2.0 [24].

The cost of operating Footlights’ centralised storage foundation is expected to be
less than one US dollar per user-year, recoupable directly or via privacy-preserving
advertising.

This alternative business model is not guaranteed to succeed: it is hard to get
anyone to join an empty social network. What Footlights demonstrates, however,
is that this alternative model is possible. The way that today’s OSNs do business is
just one way of doing business. Privacy is not inherently incompatible with social
networking.

189

https://github.com/trombonehero/Footlights

A
CONTENT DELIVERY NETWORKS

The argument for a system like Footlights is predicated on the plausibility of the
economics: Footlights can only work if someone pays for it. The plausibility of the
Footlights cost structure is addressed in problem “Cost” on page 39 in Chapter 5,
“Sharable storage”. This appendix contains raw data concerning the costs of the
commodity providers that the Footlights storage system could be built on.

In this appendix, I show the advertised costs of storage and data transfer on
several providers’ platforms. Three providers (Amazon, Google and Rackspace)
provide combined storage and content distribution platforms. A fourth provider,
NetDNA, specialises in content delivery services; if using a pure CDN like NetDNA,
content must be backed by storage from another party.

The costs of Amazon’s Simple Storage Service (S3) and CloudFront delivery ser-
vice [328] are shown in Table A.1. Amazon is unique among the surveyed providers
in that it charges its clients according to storage volume, data transfer volume and
number of HTTP PUT and GET requests which act on stored data. Since Footlights
divides files into small (4 kB) blocks, this HTTP request cost is the most significant
portion of the potential cost of running the Footlights storage system on Amazon
(see problem “Cost” on page 39).

Table A.2 shows the cost of storage and content delivery using the Google App
Engine platform [336]. This cost structure is very simple: there is a small quota
of free usage, above which a fixed rate applies. This structure is simple, but the
marginal rate for both storage and data transfer is high.

Rackspace [330] has an even simpler cost structure than Google: it eliminates the
quota of no-charge usage. As shown in Table A.3, there is one marginal rate for any
volume of storage or data transfer.

190

Table A.1: Pricing of Amazon S3 and CloudFront services.

(a) Storage

Volume Marginal cost
Up to 1 TB $125 / TB·month

1–50 TB $105 / TB·month
50–500 TB $95 / TB·month

500 TB–1 PB $90 / TB·month
1–5 PB $80 / TB·month

Above 5 PB $55 / TB·month

(b) HTTP requests

Request type Cost
GET $10 / Mrequest
PUT $1 / Mrequest

(c) Data transfer (out)

Volume per month Marginal cost
Up to 1 GB 0
1 GB–10 TB $120 / TB

10–50 TB $90 / TB
50–150 TB $70 / TB

150–500 TB $50 / TB
Above 500 TB not specified

Table A.2: Pricing of Google App Engine storage and content delivery.

(a) Storage

Volume Marginal cost
Up to 5 GB No charge
Above 5 GB $130 / TB·month

(b) Data transfer (out)

Volume per day Marginal cost
Up to 1 GB No charge
Above 1 GB $120 / TB

191

CHAPTER A: CONTENT DELIVERY NETWORKS

Table A.3: Pricing of Rackspace storage and content delivery.

(a) Storage

Volume Marginal cost
Any volume $100 / TB·month

(b) Data transfer (out)

Volume per month Marginal cost
Any volume $180 / TB

Table A.4: Pricing of NetDNA content delivery.

(a) Storage

Volume Marginal cost
Not available –

(b) Data transfer (out)

Volume per month Marginal cost
Up to 10 GB $60 / TB

10–50 TB $50 / TB
50–150 TB $40 / TB

150–350 TB $35 / TB
350–650 TB $30 / TB

650–3 PB $20 / TB
Above 3 PB $10 / TB

192

Finally, Table A.4 shows the cost of delivering content via the NetDNA content
delivery network [337]. These costs are much lower than comparable data transfer
costs for any of the storage providers, but they do not include the cost of extract-
ing the data from disks. Thus, to use a pure CDN in conjunction with a storage
provider would result in some “double-billing”: the storage provider would charge
to provide data to the CDN and the CDN would charge to replicate and distribute
it around the world.

193

B
BIBLIOGRAPHY

[24] Apache license, version 2.0. The Apache Software Foundation, Jan. 2004. URL:
http://www.apache.org/licenses/LICENSE-2.0.html.

[25] ISO 11770-4: Information technology — Security techniques — Key
management — Part 4: Mechanisms based on weak secrets, June
2012. URL: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_
detail.htm?csnumber=39723.

[26] A. ACQUISTI AND R. GROSS. Imagined communities: awareness, information
sharing, and privacy on the Facebook. IN D. HUTCHISON, T. KANADE, J. KIT-
TLER, J. M. KLEINBERG, F. MATTERN, J. C. MITCHELL, M. NAOR, O. NIER-
STRASZ, C. PANDU RANGAN, B. STEFFEN, M. SUDAN, D. TERZOPOULOS,
D. TYGAR, M. Y. VARDI, G. WEIKUM, G. DANEZIS, AND P. GOLLE, edi-
tors, PET 2006: Proceedings of the 6th Workshop on Privacy Enhancing Technology,
pages 36–58. Springer, 2006. doi:10.1007/11957454_3.

[27] L. M. AIELLO AND G. RUFFO. LotusNet: tunable privacy for distributed on-
line social network services. Computer Communications, 35(2012):75–88, Dec.
2010. doi:10.1016/j.comcom.2010.12.006.

[28] L. M. AIELLO AND G. RUFFO. Secure and flexible framework for decentral-
ized social network services. In PERCOMW 2010: Proceedings of the 8th IEEE
International Conference on Pervasive Computing and Communications Workshops,
pages 594–599. IEEE, 2010. doi:10.1109/PERCOMW.2010.5470506.

[29] R. J. ANDERSON. Liability and computer security: nine principles. In ES-
ORICS ’94: Proceedings of the Third European Symposium on Research in Com-
puter Security, pages 231–245, 1994. URL: http://www.cl.cam.ac.uk/~rja14/
Papers/liability.pdf.

194

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39723
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39723
http://dx.doi.org/10.1007/11957454_3
http://dx.doi.org/10.1016/j.comcom.2010.12.006
http://dx.doi.org/10.1109/PERCOMW.2010.5470506
http://www.cl.cam.ac.uk/~rja14/Papers/liability.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/liability.pdf

BIBLIOGRAPHY

[30] R. J. ANDERSON. Why information security is hard — an economic perspec-
tive. In ACSAC 2001: Proceedings of the 17th Annual Computer Security Applica-
tions Conference, pages 358–365, 2001. doi:10.1109/ACSAC.2001.991552.

[31] R. J. ANDERSON, R. NEEDHAM, AND A. SHAMIR. The steganographic file
system. In IH ’98: Proceedings of the Second International Hiding Workshop, pages
73–82, 1998. doi:10.1007/3-540-49380-8_6.

[32] R. J. ANDERSON AND F. PETITCOLAS. On the limits of steganography. IEEE
Journal on Selected Areas in Communications, 16(4):474–481, 1998. doi:10.1109/
49.668971.

[33] P. K. ATREY. A secret sharing based privacy enforcement mechanism for un-
trusted social networking operators. In MiFor ’11: Proceedings of the 3rd In-
ternational ACM Workshop on Multimedia in Forensics and Intelligence, page 13.
ACM Press, 2011. doi:10.1145/2072521.2072525.

[34] A. BACK, U. MÖLLER, AND A. STIGLIC. Traffic analysis attacks and trade-offs
in anonymity providing systems. In IH 2001: Proceedings of the 4th International
Workshop on Information Hiding, pages 245–257. Springer, 2001. doi:10.1007/
3-540-45496-9_18.

[35] L. BACKSTROM, C. DWORK, AND J. KLEINBERG. Wherefore art thou r3579x?:
anonymized social networks, hidden patterns and structural steganography.
WWW ’07: Proceedings of the 16th International Conference on the World Wide
Web, pages 181–190, 2007. URL: http://www2007.org/paper232.php.

[36] R. BADEN, A. BENDER, N. SPRING, B. BHATTACHARJEE, AND D. STARIN.
Persona: an online social network with user-defined privacy. In SIGCOMM
2009: Proceedings of the ACM SIGCOMM 2009 Conference on Data Communica-
tion. ACM, Aug. 2009. doi:10.1145/1592568.1592585.

[37] F. BEATO, M. KOHLWEISS, AND K. WOUTERS. Scramble! your social net-
work data. In PETS 2011: Proceedings of the 11th International Symposium on
Privacy Enhancing Technology, 2011. URL: http://www.cosic.esat.kuleuven.
be/publications/article-2029.pdf.

[38] A. BEIMEL AND B. CHOR. Secret sharing with public reconstruction (extended
abstract). In CRYPTO ’95: Proceedings of the 15th Annual International Conference
on Advances in Cryptology, page 366, 1995. URL: http://www.springerlink.
com/content/agrjh8ug4vdd7chk/.

195

http://dx.doi.org/10.1109/ACSAC.2001.991552
http://dx.doi.org/10.1007/3-540-49380-8_6
http://dx.doi.org/10.1109/49.668971
http://dx.doi.org/10.1109/49.668971
http://dx.doi.org/10.1145/2072521.2072525
http://dx.doi.org/10.1007/3-540-45496-9_18
http://dx.doi.org/10.1007/3-540-45496-9_18
http://www2007.org/paper232.php
http://dx.doi.org/10.1145/1592568.1592585
http://www.cosic.esat.kuleuven.be/publications/article-2029.pdf
http://www.cosic.esat.kuleuven.be/publications/article-2029.pdf
http://www.springerlink.com/content/agrjh8ug4vdd7chk/
http://www.springerlink.com/content/agrjh8ug4vdd7chk/

BIBLIOGRAPHY

[39] M. BELLARE, A. BOLDYREVA, AND A. O’NEILL. Deterministic and efficiently
searchable encryption. In CRYPTO 2007: Proceedings of the 27th Annual Inter-
national Cryptology Conference on Advances in Cryptology. Springer-Verlag, Aug.
2007. URL: http://portal.acm.org/citation.cfm?id=1777777.1777820.

[40] M. BELLARE, A. DESAI, E. JOKIPII, AND P. ROGAWAY. A concrete security
treatment of symmetric encryption. In Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, pages 394–403, 1997. doi:10.1109/
SFCS.1997.646128.

[41] M. BELLARE, A. DESAI, D. POINTCHEVAL, AND P. ROGAWAY. Relations
among notions of security for public-key encryption schemes. Advances in
Cryptology—CRYPTO’98, pages 26–45, 1998. doi:10.1007/BFb0055718.

[42] M. BELLARE, D. POINTCHEVAL, AND P. ROGAWAY. Authenticated key ex-
change secure against dictionary attacks. In Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and Application of Crypto-
graphic Techniques, pages 139–155, 2000. URL: http://www.iacr.org/archive/
eurocrypt2000/1807/18070140-new.pdf.

[43] S. BELLOVIN AND M. MERRITT. Encrypted key exchange: password-based
protocols secure against dictionary attacks. In SP 1992: Proceedings of the 13th
IEEE Symposium on Security and Privacy, pages 72–84, 1992. doi:10.1109/
RISP.1992.213269.

[44] S. M. BELLOVIN AND M. MERRITT. Augmented encrypted key exchange: a
password-based protocol secure against dictionary attacks and password file
compromise. In CCS ’93: Proceedings of the 1st ACM Conference on Computer
and Communications security. ACM, Dec. 1993. doi:10.1145/168588.168618.

[45] A. BENJAMIN. Predicting and postdicting the effects of word frequency
on memory. Memory & Cognition, 31(2):297–305, 2003. URL: http://www.
springerlink.com/index/PR6407K858N57462.pdf.

[46] A. BESMER, H. R. LIPFORD, M. SHEHAB, AND G. CHEEK. Social applications:
exploring a more secure framework. In SOUPS ’09: Proceedings of the Fifth Sym-
posium on Usable Privacy and Security, 2009. doi:10.1145/1572532.1572535.

[47] K. BIBA. Integrity considerations for secure computer systems. Technical
Report MTR-3153, MITRE Corporation, June 1975. URL: http://oai.dtic.
mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA039324.

196

http://portal.acm.org/citation.cfm?id=1777777.1777820
http://dx.doi.org/10.1109/SFCS.1997.646128
http://dx.doi.org/10.1109/SFCS.1997.646128
http://dx.doi.org/10.1007/BFb0055718
http://www.iacr.org/archive/eurocrypt2000/1807/18070140-new.pdf
http://www.iacr.org/archive/eurocrypt2000/1807/18070140-new.pdf
http://dx.doi.org/10.1109/RISP.1992.213269
http://dx.doi.org/10.1109/RISP.1992.213269
http://dx.doi.org/10.1145/168588.168618
http://www.springerlink.com/index/PR6407K858N57462.pdf
http://www.springerlink.com/index/PR6407K858N57462.pdf
http://dx.doi.org/10.1145/1572532.1572535
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA039324
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA039324

BIBLIOGRAPHY

[48] M. BILENKO, M. RICHARDSON, AND J. Y. TSAI. Targeted, not tracked: client-
side solutions for privacy-friendly behavioral advertising. In HotPETs 2011:
Hot Topics in Privacy Enhancing Technologies, pages 1–13, May 2011. URL: http:
//petsymposium.org/2011/papers/hotpets11-final3Bilenko.pdf.

[49] D. BINDEL, Y. CHEN, S. CZERWINSKI, P. EATON, D. GEELS, R. GUM-
MADI, S. RHEA, H. WEATHERSPOON, C. WELLS, B. ZHAO, J. KUBIATOW-
ICZ, D. BINDEL, Y. CHEN, S. CZERWINSKI, P. EATON, D. GEELS, R. GUM-
MADI, S. RHEA, H. WEATHERSPOON, C. WELLS, B. ZHAO, J. KUBIATOWICZ,
D. BINDEL, Y. CHEN, S. CZERWINSKI, P. EATON, D. GEELS, R. GUMMADI,
S. RHEA, H. WEATHERSPOON, C. WELLS, AND B. ZHAO. OceanStore: an ar-
chitecture for global-scale persistent storage. ACM SIGOPS Operating Systems
Review, 34(5):190–201, Dec. 2000. doi:10.1145/384264.379239.

[50] A. BLACKWELL, C. BRITTON, A. COX, T. GREEN, C. GURR, G. KADODA,
M. KUTAR, M. LOOMES, C. NEHANIV, AND M. PETRE. Cognitive dimensions
of notations: design tools for cognitive technology. Cognitive Technology 2001,
LNAI(2117):325–341, 2001. doi:10.1007/3-540-44617-6_31.

[51] M. BLAZE. A cryptographic file system for UNIX. In CCS ’93: Proceedings of
the 1st ACM Conference on Computer and Communications security. ACM, Dec.
1993. doi:10.1145/168588.168590.

[52] O. BODRIAGOV AND S. BUCHEGGER. Encryption for peer-to-peer social net-
works. In PASSAT 2011: Proceedings of the Third IEEE International Conference on
Privacy, Security, Risk and Trust, pages 1302–1309, 2011. doi:10.1109/PASSAT/
SocialCom.2011.158.

[53] D. BONEH, C. GENTRY, AND B. WATERS. Collusion resistant broadcast en-
cryption with short ciphertexts and private keys. In CRYPTO 2005: Proceed-
ings of the 25th Annual International Conference on Advances in Cryptology, Aug.
2005. URL: http://www.springerlink.com/index/374pjlcakffdffnw.pdf.

[54] J. BONNEAU. The science of guessing: analyzing an anonymized corpus of
70 million passwords. In SP 2012: Proceedings of the 34th IEEE Symposium on
Security and Privacy, May 2012. doi:10.1109/SP.2012.49.

[55] J. BONWICK, M. AHRENS, V. HENSON, M. MAYBEE, AND M. SHELLENBAUM.
The Zettabyte file system. In FAST 2003: 2nd Usenix Conference on File and

197

http://petsymposium.org/2011/papers/hotpets11-final3Bilenko.pdf
http://petsymposium.org/2011/papers/hotpets11-final3Bilenko.pdf
http://dx.doi.org/10.1145/384264.379239
http://dx.doi.org/10.1007/3-540-44617-6_31
http://dx.doi.org/10.1145/168588.168590
http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.158
http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.158
http://www.springerlink.com/index/374pjlcakffdffnw.pdf
http://dx.doi.org/10.1109/SP.2012.49

BIBLIOGRAPHY

Storage Technologies (Work-in-Progress session), 2003. URL: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.184.3704.

[56] N. BORISOV, I. GOLDBERG, AND E. BREWER. Off-the-record communication,
or, why not to use PGP. In WPES ’04: Proceedings of the 2004 ACM Workshop
on Privacy in the Electronic Society. ACM, Oct. 2004. doi:10.1145/1029179.
1029200.

[57] N. BORISOV, I. GOLDBERG, AND D. WAGNER. Intercepting mobile communi-
cations: the insecurity of 802.11. In MobiCom ’01: Proceedings of the 7th Annual
International Conference on Mobile Computing and Networking. ACM, July 2001.
doi:10.1145/381677.381695.

[58] D. M. BOYD. Taken out of context — American teen sociality in networked
publics. PhD thesis, UC Berkeley, 2008. URL: http://www.danah.org/papers/
TakenOutOfContext.pdf.

[59] D. M. BOYD AND E. HARGITTAI. Facebook privacy settings: who cares? First
Monday, 15(8), Aug. 2010. URL: http://firstmonday.org/htbin/cgiwrap/
bin/ojs/index.php/fm/article/view/3086/2589.

[60] V. BOYKO. On the security properties of OAEP as an all-or-nothing transform.
IN M. WIENER, editor, CRYPTO ’99: Proceedings of the 19th Annual International
Conference on Advances in Cryptology, pages 503–518. Springer, Dec. 1999. doi:
10.1007/3-540-48405-1_32.

[61] S. BRAGHIN, V. IOVINO, G. PERSIANO, AND A. TROMBETTA. Secure and
policy-private resource sharing in an online social network. In IEEE Interna-
tional Conference on Social Computing, Oct. 2011. URL: http://libeccio.dia.
unisa.it/Papers/SecOSN/.

[62] U. BRANDES. A faster algorithm for betweenness centrality. Journal of Mathe-
matical Sociology, 25(2):163–177, 2001. doi:10.1080/0022250X.2001.9990249.

[63] E. BREWER. Lessons from giant-scale services. IEEE Internet Computing,
5(4):46–55, 2001. doi:10.1109/4236.939450.

[64] J. BROWN, V. J. LEWIS, AND A. F. MONK. Memorability, word frequency and
negative recognition. Quarterly Journal of Experimental Psychology, 29(3):461–
473, Aug. 1977. doi:10.1080/14640747708400622.

198

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.3704
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.3704
http://dx.doi.org/10.1145/1029179.1029200
http://dx.doi.org/10.1145/1029179.1029200
http://dx.doi.org/10.1145/381677.381695
http://www.danah.org/papers/TakenOutOfContext.pdf
http://www.danah.org/papers/TakenOutOfContext.pdf
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3086/2589
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3086/2589
http://dx.doi.org/10.1007/3-540-48405-1_32
http://dx.doi.org/10.1007/3-540-48405-1_32
http://libeccio.dia.unisa.it/Papers/SecOSN/
http://libeccio.dia.unisa.it/Papers/SecOSN/
http://dx.doi.org/10.1080/0022250X.2001.9990249
http://dx.doi.org/10.1109/4236.939450
http://dx.doi.org/10.1080/14640747708400622

BIBLIOGRAPHY

[65] S. BUCHEGGER, D. SCHIOBERG, L.-H. VU, AND A. DATTA. PeerSoN: P2P
social networking: early experiences and insights. In SNS ’09: Proceedings of
the Second ACM EuroSys Workshop on Social Network Systems. ACM, Mar. 2009.
doi:10.1145/1578002.1578010.

[66] J. BUSCA, F. PICCONI, AND P. SENS. Pastis: a highly-scalable multi-
user peer-to-peer file system. In Euro-Par 2005: Proceedings of the 11th
International Euro-Par Conference on Parallel Processing, volume LNCS 3648,
pages 1173–1182. Springer, 2005. URL: http://www.springerlink.com/index/
dfye6ftnfpy51qac.pdf.

[67] P. R. CARPENTIER, J. F. VAN RIEL, AND T. TEUGELS. Content address-
able information encapsulation, representation, and transfer. United States
Patent and Trademark Office, 713/165; 173/170; 713/176; 713/180; 713/193;
380/28; 705/51(09/236,366), Oct. 2004. URL: http://www.google.com/
patents/US6807632.

[68] M. CASTRO AND B. LISKOV. Practical Byzantine fault tolerance. In OSDI
’99: Proceedings of the 3rd USENIX Symposium on Operating Systems Design and
Implementation, pages 173–186. ACM, 1998. URL: http://www.usenix.org/
events/osdi99/full_papers/castro/castro_html/node5.html.

[69] D. CATALANO, D. POINTCHEVAL, AND T. PORNIN. IPAKE: isomor-
phisms for password-based authenticated key exchange. IN D. HUTCHISON,
T. KANADE, J. KITTLER, J. M. KLEINBERG, F. MATTERN, J. C. MITCHELL,
M. NAOR, O. NIERSTRASZ, C. PANDU RANGAN, B. STEFFEN, M. SUDAN,
D. TERZOPOULOS, D. TYGAR, M. Y. VARDI, G. WEIKUM, AND M. FRANKLIN,
editors, CRYPTO 2004: Proceedings of the 24th Annual International Conference
on Advances in Cryptology, pages 477–493. Springer Berlin Heidelberg, 2004.
doi:10.1007/978-3-540-28628-8{_}29.

[70] D. L. CHAUM. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2), Feb. 1981. doi:10.1145/
358549.358563.

[71] D. L. CHAUM, A. FIAT, AND M. NAOR. Untraceable electronic cash. In
CRYPTO ’88: Proceedings of the Eighth Annual International Conference on
Advances in Cryptology, pages 319–327. Springer, 1990. URL: http://www.
springerlink.com/index/vfjy8u0f7byftqx9.pdf.

199

http://dx.doi.org/10.1145/1578002.1578010
http://www.springerlink.com/index/dfye6ftnfpy51qac.pdf
http://www.springerlink.com/index/dfye6ftnfpy51qac.pdf
http://www.google.com/patents/US6807632
http://www.google.com/patents/US6807632
http://www.usenix.org/events/osdi99/full_papers/castro/castro_html/node5.html
http://www.usenix.org/events/osdi99/full_papers/castro/castro_html/node5.html
http://dx.doi.org/10.1007/978-3-540-28628-8{_}29
http://dx.doi.org/10.1145/358549.358563
http://dx.doi.org/10.1145/358549.358563
http://www.springerlink.com/index/vfjy8u0f7byftqx9.pdf
http://www.springerlink.com/index/vfjy8u0f7byftqx9.pdf

BIBLIOGRAPHY

[72] H.-Y. CHIEN AND J.-K. JAN. New hierarchical assignment without public
key cryptography. Computers and Security, 22(6):523–526, Sept. 2003. doi:
10.1016/S0167-4048(03)00613-8.

[73] B. CHRISTIANSON. Definition of trust. Personal Communication, July 2012.

[74] B. CHRISTIANSON AND W. S. HARBISON. Why isn’t trust transitive? In SPW
’96: Proceedings of the Fourth International Workshop on Security Protocols, pages
171–176, 1996. doi:10.1007/3-540-62494-5_16.

[75] J. CLAESSENS, C. DIAZ, R. FAUSTINELLI, AND B. PRENEEL. A secure and
privacy-preserving web banner system for targeted advertising. COmputer
Security and Industrial Cryptography (COSIC), KU Leuven, 2003. URL: http:
//www.cosic.esat.kuleuven.be/publications/article-824.pdf.

[76] I. CLARKE, O. SANDBERG, B. WILEY, AND T. W. HONG. Freenet: a dis-
tributed anonymous information storage and retrieval system. IN H. FED-
ERRATH, editor, Designing Privacy Enhancing Technologies — Proceedings of the
International Workshop on Design Issues in Anonymity and Unobservability, vol-
ume LNCS 2009, pages 46–66. Springer, 2000. doi:10.1007/3-540-44702-4_4.

[77] B. COHEN. Incentives build robustness in BitTorrent. In Workshop on Economics
of Peer-to-Peer Systems, May 2003. URL: http://www.ittc.ku.edu/~niehaus/
classes/750-s06/documents/BT-description.pdf.

[78] C. CONRADO, M. PETKOVIC, M. VAN DER VEEN, AND W. VAN DER VELDE.
Controlled sharing of personal content using digital rights management. Jour-
nal of Research and Practice in Information Technology, 38(1):85–96, 2006. URL:
http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT38/JRPIT38.1.85.pdf.

[79] L. CUTILLO, R. MOLVA, AND T. STRUFE. Safebook: a privacy-preserving
online social network leveraging on real-life trust. IEEE Communications Mag-
azine, 47(12):94–101, 2009. doi:10.1109/MCOM.2009.5350374.

[80] L. A. CUTILLO, R. MOLVA, AND T. STRUFE. Privacy preserving social net-
working through decentralization. In WONS 2009: Proceedings of the Sixth In-
terational Conference on Wireless On-Demand Network Systems and Services, pages
145–152, 2009. doi:10.1109/WONS.2009.4801860.

[81] L. A. CUTILLO, R. MOLVA, AND T. STRUFE. Safebook: feasibility of transi-
tive cooperation for privacy on a decentralized social network. In AOC 2009:

200

http://dx.doi.org/10.1016/S0167-4048(03)00613-8
http://dx.doi.org/10.1016/S0167-4048(03)00613-8
http://dx.doi.org/10.1007/3-540-62494-5_16
http://www.cosic.esat.kuleuven.be/publications/article-824.pdf
http://www.cosic.esat.kuleuven.be/publications/article-824.pdf
http://dx.doi.org/10.1007/3-540-44702-4_4
http://www.ittc.ku.edu/~niehaus/classes/750-s06/documents/BT-description.pdf
http://www.ittc.ku.edu/~niehaus/classes/750-s06/documents/BT-description.pdf
http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT38/JRPIT38.1.85.pdf
http://dx.doi.org/10.1109/MCOM.2009.5350374
http://dx.doi.org/10.1109/WONS.2009.4801860

BIBLIOGRAPHY

Third International IEEE WoWMoM Workshop on Autonomic and Opportunistic
Communications, pages 1–6, 2009. doi:10.1109/WOWMOM.2009.5282446.

[82] L. DABBISH, C. STUART, J. TSAY, AND J. HERBSLEB. Social coding in GitHub:
transparency and collaboration in an open software repository. In CSCW ’12:
Proceedings of the 2012 ACM Conference on Computer Supported Cooperative Work.
ACM, Feb. 2012. doi:10.1145/2145204.2145396.

[83] F. DABEK, M. F. KAASHOEK, D. KARGER, R. MORRIS, AND I. STOICA. Wide-
area cooperative storage with CFS. In SOSP ’01: Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles. ACM, Dec. 2001. doi:10.
1145/502034.502054.

[84] G. DANEZIS, R. DINGLEDINE, AND N. MATHEWSON. Mixminion: design of a
type III anonymous remailer protocol. In SP 2003: Proceedings of the 24th IEEE
Symposium on Privacy and Security, pages 2–15, 2003. doi:10.1109/SECPRI.
2003.1199323.

[85] A. P. DE BARROS. O futuro dos backdoors. In CNASI 2005: Congresso de
Auditoria de Sistemas, Segurança da Informaçäo e Governança. CISSP-ISSAP, Sept.
2005. URL: http://www.paesdebarros.com.br/backdoors.pdf.

[86] M. DELL’AMICO, P. MICHIARDI, AND Y. ROUDIER. Password strength: an
empirical analysis. In INFOCOM 2010: Proceedings of the 29th IEEE Confer-
ence on Computer Communications, pages 1–9, 2010. doi:10.1109/INFCOM.2010.
5461951.

[87] D. E. DENNING. An intrusion-detection model. IEEE Transactions on Software
Engineering, SE-13(2):222–232, 1987. doi:10.1109/TSE.1987.232894.

[88] D. E. DENNING AND P. J. D. M. D. SCHWARTZ. The tracker: a threat to
statistical database security. ACM Transactions on Database Systems, 4(1), Mar.
1979. doi:10.1145/320064.320069.

[89] C. DIAZ, S. SEYS, J. CLAESSENS, AND B. PRENEEL. Towards measuring
anonymity. In PET 2002: Second International Workshop on Privacy Enhanc-
ing Technologies, pages 184–188, 2002. URL: http://www.springerlink.com/
content/3qb837jkpgukc6b5/.

201

http://dx.doi.org/10.1109/WOWMOM.2009.5282446
http://dx.doi.org/10.1145/2145204.2145396
http://dx.doi.org/10.1145/502034.502054
http://dx.doi.org/10.1145/502034.502054
http://dx.doi.org/10.1109/SECPRI.2003.1199323
http://dx.doi.org/10.1109/SECPRI.2003.1199323
http://www.paesdebarros.com.br/backdoors.pdf
http://dx.doi.org/10.1109/INFCOM.2010.5461951
http://dx.doi.org/10.1109/INFCOM.2010.5461951
http://dx.doi.org/10.1109/TSE.1987.232894
http://dx.doi.org/10.1145/320064.320069
http://www.springerlink.com/content/3qb837jkpgukc6b5/
http://www.springerlink.com/content/3qb837jkpgukc6b5/

BIBLIOGRAPHY

[90] W. DIFFIE AND M. HELLMAN. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.
1055638.

[91] R. DINGLEDINE AND N. MATHEWSON. Tor: the second-generation onion
router. In Proceedings of the 13th USENIX Security Symposium, 2004. URL:
http://portal.acm.org/citation.cfm?id=1251396.

[92] D. DOLEV AND A. YAO. On the security of public key protocols. IEEE Transac-
tions on Information Theory, 29(2):198–208, Mar. 1983. doi:10.1109/TIT.1983.
1056650.

[93] J. R. DOUCEUR. The Sybil attack. In International Workshop on Peer-
to-Peer Systems (IPTPS), 2002. URL: http://www.springerlink.com/index/
3an0ek5gfan3dtx9.pdf.

[94] J. R. DOUCEUR, A. ADYA, W. J. BOLOSKY, D. SIMON, AND M. THEIMER.
Reclaiming space from duplicate files in a serverless distributed file sys-
tem. Technical Report MSR-TR-2002-30, July 2002. URL: http://research.
microsoft.com/apps/pubs/default.aspx?id=69954.

[95] J. R. DOUCEUR, A. ADYA, W. J. BOLOSKY, P. SIMON, AND M. THEIMER.
Reclaiming space from duplicate files in a serverless distributed file system.
In ICDCS 2002: Proceedings of the 22nd International Conference on Distributed
Computing Systems, pages 617–624, 2002. doi:10.1109/ICDCS.2002.1022312.

[96] C. DWORK. Differential privacy. In ICALP 2006: 33rd International Colloquium
on Automata, Languages and Programming, volume LNCS 4052, 2006. URL:
http://www.springerlink.com/index/383p21xk13841688.pdf.

[97] R. W. EMERSON. Worship. In The Conduct of Life, page 192.
Boston, Ticknor and Fields, 1860. URL: http://archive.org/details/
conductlife00emerrich.

[98] J. EPSTEIN, J. MCHUGH, R. PASCALE, H. ORMAN, G. BENSON, C. MARTIN,
A. MARMOR-SQUIRES, B. DANNER, AND M. BRANSTAD. A prototype B3
trusted X Window System. In ACSAC 1991: Proceedings of the Seventh Annual
Computer Security Applications Conference, pages 44–55, 1991. doi:10.1109/
CSAC.1991.213019.

202

http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1976.1055638
http://portal.acm.org/citation.cfm?id=1251396
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1109/TIT.1983.1056650
http://www.springerlink.com/index/3an0ek5gfan3dtx9.pdf
http://www.springerlink.com/index/3an0ek5gfan3dtx9.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=69954
http://research.microsoft.com/apps/pubs/default.aspx?id=69954
http://dx.doi.org/10.1109/ICDCS.2002.1022312
http://www.springerlink.com/index/383p21xk13841688.pdf
http://archive.org/details/conductlife00emerrich
http://archive.org/details/conductlife00emerrich
http://dx.doi.org/10.1109/CSAC.1991.213019
http://dx.doi.org/10.1109/CSAC.1991.213019

BIBLIOGRAPHY

[99] K. FALL. A delay-tolerant network architecture for challenged internets. In
SIGCOMM ’03: Proceedings of the 2003 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications. ACM, Aug. 2003.
doi:10.1145/863955.863960.

[100] K. FALL AND S. FARRELL. DTN: an architectural retrospective. IEEE Jour-
nal on Selected Areas in Communications, 26(5):828–836, 2008. URL: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4530739.

[101] L. FANG AND K. LEFEVRE. Privacy wizards for social networking sites. In
WWW ’10: Proceedings of the 19th International World Wide Web Conference.
ACM, Apr. 2010. doi:10.1145/1772690.1772727.

[102] R. FEIERTAG AND P. G. NEUMANN. The foundations of a provably secure
operating system (PSOS). In NCC ’79: Proceedings of the 1979 AFIPS National
Computer Conference, 1979. doi:10.1109/AFIPS.1979.116.

[103] A. FELT AND D. EVANS. Privacy protection for social networking platforms.
In W2SP 2008: Web 2.0 Security and Privacy 2008, May 2008. URL: http://
w2spconf.com/2008/.

[104] A. FIAT AND M. NAOR. Broadcast encryption. In CRYPTO ’93: Proceedings of
the 13th Annual International Conference on Advances in Cryptology, pages 480–
491, 1993. URL: http://www.springerlink.com/index/C4CDHFU88JLLW2PX.
pdf.

[105] M. H. FISCHER, T. J. PURTELL, AND M. S. LAM. Email clients as decentralized
social apps in Mr. Privacy. In HotPETs 2011: Hot Topics in Privacy Enhancing
Technologies, pages 1–10, May 2011. URL: http://petsymposium.org/2011/
papers/hotpets11-final1Fischer.pdf.

[106] B. FORD, P. SRISURESH, AND D. KEGEL. Peer-to-peer communication across
network address translators. In Proceedings of the 2005 USENIX Annual
Technical Conference. USENIX Association, 2005. URL: http://dl.acm.org/
citation.cfm?id=1247360.1247373.

[107] L. R. FORD AND D. R. FULKERSON. Flows in networks. Technical Report
R-375-PR, RAND Corporation, Aug. 1962. URL: http://www.rand.org/pubs/
reports/R375.html.

203

http://dx.doi.org/10.1145/863955.863960
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4530739
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4530739
http://dx.doi.org/10.1145/1772690.1772727
http://dx.doi.org/10.1109/AFIPS.1979.116
http://w2spconf.com/2008/
http://w2spconf.com/2008/
http://www.springerlink.com/index/C4CDHFU88JLLW2PX.pdf
http://www.springerlink.com/index/C4CDHFU88JLLW2PX.pdf
http://petsymposium.org/2011/papers/hotpets11-final1Fischer.pdf
http://petsymposium.org/2011/papers/hotpets11-final1Fischer.pdf
http://dl.acm.org/citation.cfm?id=1247360.1247373
http://dl.acm.org/citation.cfm?id=1247360.1247373
http://www.rand.org/pubs/reports/R375.html
http://www.rand.org/pubs/reports/R375.html

BIBLIOGRAPHY

[108] L. FREEMAN. A set of measures of centrality based on betweenness. Sociom-
etry, 40(1):35–41, Mar. 1977. URL: http://www.jstor.org/stable/10.2307/
3033543.

[109] K. E. FU. Group sharing and random access in cryptographic storage file systems.
PhD thesis, Massechusetts Institute of Technology, May 1999. URL: http:
//www.cs.umass.edu/~kevinfu/papers/fu-masters.pdf.

[110] D. K. GIFFORD, P. JOUVELOT, M. A. SHELDON, J. W. O’TOOLE, AND JR. Se-
mantic file systems. In SOSP ’91: Proceedings of the Thirteenth ACM Symposium
on Operating Systems Principles. ACM, Oct. 1991. doi:10.1145/121132.121138.

[111] D. K. GIFFORD, R. M. NEEDHAM, AND M. D. SCHROEDER. The Cedar file
system. Communications of the ACM, 31(3):288–298, Mar. 1988. doi:10.1145/
42392.42398.

[112] H. GIFFORD. A delectable dreame. In A posie of gilloflowers eche differ-
ing from other in colour and odour, yet all sweete. Thomas Dawson, 1580.
URL: http://quod.lib.umich.edu/e/eebo/A01740.0001.001/1:38?rgn=div1;
view=fulltext.

[113] S. GILBERT AND N. LYNCH. Brewer’s conjecture and the feasibility of con-
sistent, available, partition-tolerant web services. SIGACT News, 33(2), June
2002. doi:10.1145/564585.564601.

[114] M. GLADWELL. The tipping point: how little things can make a big difference. Back
Bay Books, Jan. 2002. URL: http://www.amazon.com/dp/0316346624.

[115] E. GOFFMAN. The presentation of self in everyday life. Anchor Books,
Jan. 1959. URL: http://www.worldcat.org/title/presentation-of-self-in-
everyday-life/oclc/35136526.

[116] O. GOLDREICH, S. MICALI, AND A. WIGDERSON. How to play ANY men-
tal game. In STOC ’87: Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, pages 218–229. ACM, Jan. 1987. doi:10.1145/28395.
28420.

[117] L. GONG. Java security architecture revisited. Communications of the ACM,
54(11), Nov. 2011. doi:10.1145/2018396.2018411.

204

http://www.jstor.org/stable/10.2307/3033543
http://www.jstor.org/stable/10.2307/3033543
http://www.cs.umass.edu/~kevinfu/papers/fu-masters.pdf
http://www.cs.umass.edu/~kevinfu/papers/fu-masters.pdf
http://dx.doi.org/10.1145/121132.121138
http://dx.doi.org/10.1145/42392.42398
http://dx.doi.org/10.1145/42392.42398
http://quod.lib.umich.edu/e/eebo/A01740.0001.001/1:38?rgn=div1;view=fulltext
http://quod.lib.umich.edu/e/eebo/A01740.0001.001/1:38?rgn=div1;view=fulltext
http://dx.doi.org/10.1145/564585.564601
http://www.amazon.com/dp/0316346624
http://www.worldcat.org/title/presentation-of-self-in-everyday-life/oclc/35136526
http://www.worldcat.org/title/presentation-of-self-in-everyday-life/oclc/35136526
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1145/2018396.2018411

BIBLIOGRAPHY

[118] L. GONG, M. A. LOMAS, R. M. NEEDHAM, AND J. H. SALTZER. Protecting
poorly chosen secrets from guessing attacks. IEEE Journal on Selected Areas in
Communications, 11(5):648–656, 1993. doi:10.1109/49.223865.

[119] L. GONG, M. MUELLER, H. PRAFULLCHANDRA, AND R. SCHEMERS. Go-
ing beyond the sandbox: an overview of the new security architecture in the
Java Development Kit 1.2. USITS ’97: Proceedings of the USENIX Symposium
on Internet Technologies and Systems, 1997. URL: http://static.usenix.org/
publications/library/proceedings/usits97/full_papers/gong/gong.pdf.

[120] B. GOPAL AND E. AL. Integrating content-based access mechanisms
with hierarchical file systems. In OSDI ’99: Proceedings of the 3rd
USENIX Symposium on Operating Systems Design and Implementation, 1999.
URL: https://www.usenix.org/conference/osdi-99/integrating-content-
based-access-mechanisms-hierarchical-file-systems.

[121] K. GRAFFI, P. MUKHERJEE, B. MENGES, D. HARTUNG, A. KOVACEVIC, AND

R. STEINMETZ. Practical security in P2P-based social networks. In LCN 2009:
Proceedings of the 34th Annual IEEE Conference on Local Computer Networks,
pages 269–272, 2009. doi:10.1109/LCN.2009.5355085.

[122] T. GREEN AND M. PETRE. Usability analysis of visual programming envi-
ronments: a ’cognitive dimensions’ framework. Journal of visual languages
and computing, 7(2):131–174, 1996. URL: http://www.sciencedirect.com/
science/article/pii/S1045926X96900099.

[123] B. GRESCHBACH, G. KREITZ, AND S. BUCHEGGER. The Devil is in the meta-
data — new privacy challenges in decentralised online social networks. In
SESOC 2012: Proceedings of the 4th IEEE International Workshop on Security
and and Social Networking, Mar. 2012. URL: http://www.peerson.net/papers/
sesocMetaPrivacy.pdf.

[124] D. GROLIMUND, L. MEISSER, S. SCHMID, AND R. WATTENHOFER. Cryptree:
a folder tree structure for cryptographic file systems. SRDS ’06: Proceedings of
the 25th IEEE Symposium on Reliable Distributed Systems, pages 189–198, 2006.
doi:10.1109/SRDS.2006.15.

[125] R. GROSS AND A. ACQUISTI. Information revelation and privacy in online
social networks. In WPES ’05: Proceedings of the 2005 ACM Workshop on Privacy
in the Electronic Society. ACM, Nov. 2005. doi:10.1145/1102199.1102214.

205

http://dx.doi.org/10.1109/49.223865
http://static.usenix.org/publications/library/proceedings/usits97/full_papers/gong/gong.pdf
http://static.usenix.org/publications/library/proceedings/usits97/full_papers/gong/gong.pdf
https://www.usenix.org/conference/osdi-99/integrating-content-based-access-mechanisms-hierarchical-file-systems
https://www.usenix.org/conference/osdi-99/integrating-content-based-access-mechanisms-hierarchical-file-systems
http://dx.doi.org/10.1109/LCN.2009.5355085
http://www.sciencedirect.com/science/article/pii/S1045926X96900099
http://www.sciencedirect.com/science/article/pii/S1045926X96900099
http://www.peerson.net/papers/sesocMetaPrivacy.pdf
http://www.peerson.net/papers/sesocMetaPrivacy.pdf
http://dx.doi.org/10.1109/SRDS.2006.15
http://dx.doi.org/10.1145/1102199.1102214

BIBLIOGRAPHY

[126] S. GUHA, B. CHENG, AND P. FRANCIS. Privad: practical privacy in online
advertising. In NSDI ’11: Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation. USENIX Association, Mar. 2011.
URL: http://portal.acm.org/citation.cfm?id=1972457.1972475.

[127] S. GUHA, K. TANG, AND P. FRANCIS. NOYB: privacy in online social net-
works. In WOSN ’08: Proceedings of the First Workshop on Online Social Net-
works. ACM, Aug. 2008. doi:10.1145/1397735.1397747.

[128] P. GÜHRING. Concepts against man-in-the-browser attacks. Techni-
cal report, Jan. 2007. URL: http://www.cacert.at/svn/sourcerer/CAcert/
SecureClient.pdf.

[129] R. GUTTENTAG AND D. CARROLL. Memorability judgments for high- and
low-frequency words. Memory & Cognition, 26(5):951–958, Sept. 1998. doi:
10.3758/BF03201175.

[130] N. HARDY. The confused deputy (or why capabilities might have been in-
vented). ACM SIGOPS Operating Systems Review, 22(4):36–38, Oct. 1988. URL:
http://dl.acm.org/citation.cfm?id=54289.871709.

[131] C. HERLEY. The plight of the targeted attacker in a world of scale. In WEIS
’10: The Ninth Workshop on the Economics of Information Security, May 2010.

[132] J.-H. HOEPMAN. The ephemeral pairing problem. IN T. KANADE, J. KIT-
TLER, J. M. KLEINBERG, F. MATTERN, J. C. MITCHELL, M. NAOR, O. NIER-
STRASZ, C. PANDU RANGAN, B. STEFFEN, M. SUDAN, D. TERZOPOULOS,
D. TYGAR, M. Y. VARDI, G. WEIKUM, AND A. JUELS, editors, FC ’04: Pro-
ceedings of the Eigth International Conference on Financial Cryptography, pages
212–226. Springer, 2004. doi:10.1007/978-3-540-27809-2_22.

[133] G. HORNUNG AND C. SCHNABEL. Data protection in Germany I: the popula-
tion census decision and the right to informational self-determination. Com-
puter Law & Security Review, 25(1):84–88, Jan. 2009. doi:10.1016/j.clsr.2008.
11.002.

[134] D. JABLON. Extended password key exchange protocols immune to dictio-
nary attack. In WETICE-1997: Proceedings of the Sixth IEEE Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises, pages 248–255,
1997. doi:10.1109/ENABL.1997.630822.

206

http://portal.acm.org/citation.cfm?id=1972457.1972475
http://dx.doi.org/10.1145/1397735.1397747
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
http://dx.doi.org/10.3758/BF03201175
http://dx.doi.org/10.3758/BF03201175
http://dl.acm.org/citation.cfm?id=54289.871709
http://dx.doi.org/10.1007/978-3-540-27809-2_22
http://dx.doi.org/10.1016/j.clsr.2008.11.002
http://dx.doi.org/10.1016/j.clsr.2008.11.002
http://dx.doi.org/10.1109/ENABL.1997.630822

BIBLIOGRAPHY

[135] D. P. JABLON. Strong password-only authenticated key exchange. ACM SIG-
COMM Computer Communication Review, 26(5):5–26, Oct. 1996. doi:10.1145/
242896.242897.

[136] T. N. JAGATIC, N. A. JOHNSON, M. JAKOBSSON, AND F. MENCZER. So-
cial phishing. Communications of the ACM, 50(10), Oct. 2007. doi:10.1145/
1290958.1290968.

[137] A. JUELS. Targeted advertising... and privacy too. Topics in Cryptology—CT-
RSA 2001, LNCS 2020:408–424, 2001. URL: http://www.springerlink.com/
index/G5WB298DWW81DKR0.pdf.

[138] M. JUST AND D. ASPINALL. Challenging challenge questions. In Trust 2009,
Feb. 2009. URL: http://homepages.inf.ed.ac.uk/mjust/Trust2009.pdf.

[139] M. JUST AND D. ASPINALL. Personal choice and challenge questions: a secu-
rity and usability assessment. In SOUPS ’09: Proceedings of the Fifth Symposium
on Usable Privacy and Security, 2009.

[140] J. KATZ AND Y. LINDELL. Introduction to modern cryptography. Principles and
Protocols. Chapman & Hall/CRC, Aug. 2007. URL: http://books.google.
co.uk/books?id=TTtVKHdOcDoC.

[141] T. J. KILLIAN. Processes as files. In USENIX Summer Conference, 1984.

[142] H. KIM, J. TANG, AND R. J. ANDERSON. Social authentication: harder than it
looks. In Financial Cryptography, Feb. 2012. URL: http://www.cl.cam.ac.uk/
~rja14/Papers/socialauthentication.pdf.

[143] J. J. KISTLER AND M. SATYANARAYANAN. Disconnected operation in the
Coda file system. In SOSP ’91: Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles. ACM, Oct. 1991. doi:10.1145/121132.121166.

[144] P. KOCHER, J. JAFFE, B. JUN, C. LAREN, AND N. LAWSON. Self-
protecting digital content. Technical report, Cryptography Research
International, 2002. URL: http://www.cryptography.com/public/pdf/
SelfProtectingContent.pdf.

[145] A. KOROLOVA. Privacy violations using microtargeted ads: a case study. In
ICDMW 2010: Proceedings of the 10th IEEE International Conference on Data Min-
ing Workshops, pages 474–482, 2010. doi:10.1109/ICDMW.2010.137.

207

http://dx.doi.org/10.1145/242896.242897
http://dx.doi.org/10.1145/242896.242897
http://dx.doi.org/10.1145/1290958.1290968
http://dx.doi.org/10.1145/1290958.1290968
http://www.springerlink.com/index/G5WB298DWW81DKR0.pdf
http://www.springerlink.com/index/G5WB298DWW81DKR0.pdf
http://homepages.inf.ed.ac.uk/mjust/Trust2009.pdf
http://books.google.co.uk/books?id=TTtVKHdOcDoC
http://books.google.co.uk/books?id=TTtVKHdOcDoC
http://www.cl.cam.ac.uk/~rja14/Papers/socialauthentication.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/socialauthentication.pdf
http://dx.doi.org/10.1145/121132.121166
http://www.cryptography.com/public/pdf/SelfProtectingContent.pdf
http://www.cryptography.com/public/pdf/SelfProtectingContent.pdf
http://dx.doi.org/10.1109/ICDMW.2010.137

BIBLIOGRAPHY

[146] A. KOROLOVA. Privacy violations using microtargeted ads: a case study. Jour-
nal of Privacy and Confidentiality, 3(1), 2011. URL: http://repository.cmu.edu/
jpc/vol3/iss1/3/.

[147] B. KRISHNAMURTHY AND C. E. WILLS. Characterizing privacy in online so-
cial networks. In WOSN ’08: Proceedings of the First Workshop on Online Social
Networks, Aug. 2008. doi:10.1145/1397735.1397744.

[148] B. KRISHNAMURTHY AND C. E. WILLS. On the leakage of personally iden-
tifiable information via online social networks. In WOSN ’09: Proceedings
of the Second ACM Workshop on Online Social Networks. ACM, Aug. 2009.
doi:10.1145/1592665.1592668.

[149] P. KUMAR AND M. SATYANARAYANAN. Supporting application-specific res-
olution in an optimistically replicated file system. In WWOS 1993: Proceedings
of the Fourth Workshop on Workstation Operating Systems, pages 66–70, 1993.
doi:10.1109/WWOS.1993.348170.

[150] P. KUMAR AND M. SATYANARAYANAN. Flexible and safe resolution of file
conflicts. In Proceedings of the 1995 USENIX Annual Technical Conference, 1995.
URL: http://www.cs.cmu.edu/~coda/docdir/usenix95.pdf.

[151] L. LAMPORT, R. SHOSTAK, AND M. PEASE. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, July
1982. doi:10.1145/357172.357176.

[152] B. W. LAMPSON. Dynamic protection structures. In AFIPS ’69 (Fall): Pro-
ceedings of the AFIPS 1969 Fall Joint Computer Conference. ACM, Nov. 1969.
doi:10.1145/1478559.1478563.

[153] B. W. LAMPSON. A note on the confinement problem. Communications of the
ACM, 16(10), Oct. 1973. doi:10.1145/362375.362389.

[154] B. LAURIE. Nigori: storing secrets in the cloud [online]. May 2010. URL:
http://www.links.org/files/nigori-overview.pdf.

[155] J. LI, M. KROHN, D. MAZIERES, AND D. SHASHA. Secure untrusted
data repository (SUNDR). In OSDI ’04: Proceedings of the 6th USENIX
Symposium on Operating Systems Design and Implementation, 2004. URL:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=

208

http://repository.cmu.edu/jpc/vol3/iss1/3/
http://repository.cmu.edu/jpc/vol3/iss1/3/
http://dx.doi.org/10.1145/1397735.1397744
http://dx.doi.org/10.1145/1592665.1592668
http://dx.doi.org/10.1109/WWOS.1993.348170
http://www.cs.cmu.edu/~coda/docdir/usenix95.pdf
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/1478559.1478563
http://dx.doi.org/10.1145/362375.362389
http://www.links.org/files/nigori-overview.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7548375546647870391related:t_swEZE3wWgJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7548375546647870391related:t_swEZE3wWgJ

BIBLIOGRAPHY

Retrieve&dopt=AbstractPlus&list_uids=7548375546647870391related:
t_swEZE3wWgJ.

[156] M. LI, B. ALESSIO, AND W. ZHOU. OST: a transaction based online social
trust model for social network and file sharing security. In EUC 2010: Proceed-
ings of the 8th IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, pages 826–832. IEEE, 2010. URL: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=5703616.

[157] J. LINDAMOOD, R. HEATHERLY, M. KANTARCIOGLU, AND B. THURAISING-
HAM. Inferring private information using social network data. In WWW ’09:
Proceedings of the 18th International World Wide Web Conference. ACM, Apr. 2009.
doi:10.1145/1526709.1526899.

[158] LIOREAN. Google 1G mail [online]. Feb. 2004. URL: http://www.
codingforums.com/showpost.php?p=206569&postcount=9.

[159] S. B. LIPNER. A comment on the confinement problem. In SOSP ’75: Proceed-
ings of the Fifth ACM Symposium on Operating Systems Principles. ACM, Nov.
1975. doi:10.1145/800213.806537.

[160] S. B. LIPNER, W. WULF, R. SCHELL, G. POPEK, P. G. NEUMANN, C. WEISS-
MAN, AND T. LINDEN. Security kernels. AFIPS ’74: Proceedings of the 1974
National Computer Conference and Exposition, May 1974. URL: http://dl.acm.
org/citation.cfm?id=1500361.

[161] J. LOELIGER. Version control with Git. O’Reilly, June 2009. URL: http://www.
worldcat.org/title/version-control-with-git/oclc/297148669.

[162] M. LOMAS AND B. CHRISTIANSON. Remote booting in a hostile world: to
whom am I speaking? IEEE Computer, 28(1):50–54, 1995. doi:10.1109/2.
362630.

[163] P. A. LOSCOCCO AND S. D. SMALLEY. Integrating flexible support for secu-
rity policies into the Linux operating system. In FREENIX 2001: Proceedings
of the FREENIX Track of the 2001 USENIX Annual Technical Conference, pages
29–42, 2001.

[164] R. LOVE. Get on the D-BUS. Linux Journal, 2005(130):3, 2005. URL: http:
//www.linuxjournal.com/article/7744.

209

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7548375546647870391related:t_swEZE3wWgJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7548375546647870391related:t_swEZE3wWgJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7548375546647870391related:t_swEZE3wWgJ
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5703616
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5703616
http://dx.doi.org/10.1145/1526709.1526899
http://www.codingforums.com/showpost.php?p=206569&postcount=9
http://www.codingforums.com/showpost.php?p=206569&postcount=9
http://dx.doi.org/10.1145/800213.806537
http://dl.acm.org/citation.cfm?id=1500361
http://dl.acm.org/citation.cfm?id=1500361
http://www.worldcat.org/title/version-control-with-git/oclc/297148669
http://www.worldcat.org/title/version-control-with-git/oclc/297148669
http://dx.doi.org/10.1109/2.362630
http://dx.doi.org/10.1109/2.362630
http://www.linuxjournal.com/article/7744
http://www.linuxjournal.com/article/7744

BIBLIOGRAPHY

[165] M. M. LUCAS AND N. BORISOV. FlyByNight: mitigating the privacy risks of
social networking. In WPES ’08: Proceedings of the 7th ACM Workshop on Pri-
vacy in the Electronic Society. ACM, Oct. 2008. doi:10.1145/1456403.1456405.

[166] S. LUCKS. Open key exchange: how to defeat dictionary attacks without en-
crypting public keys. In SPW ’98: Proceedings of the Sixth International Workshop
on Security Protocols, 1998. doi:10.1007/BFb0028161.

[167] W. LUO, Q. XIE, AND U. HENGARTNER. FaceCloak: an architecture for user
privacy on social networking sites. In CSE ’09: Proceedings of the 12th IEEE
International Conference on Computational Science and Engineering, pages 26–33,
2009. doi:10.1109/CSE.2009.387.

[168] M. MANNAN AND P. C. VAN OORSCHOT. Privacy-enhanced sharing of per-
sonal content on the web. In WWW ’08: Proceedings of the 17th International
World Wide Web Conference. ACM, Apr. 2008. doi:10.1145/1367497.1367564.

[169] E. MAXIMILIEN, T. GRANDISON, K. LIU, T. SUN, D. RICHARDSON, AND

S. GUO. Enabling privacy as a fundamental construct for social networks. In
CSE ’09: Proceedings of the 12th IEEE International Conference on Computational
Science and Engineering, pages 1015–1020, 2009. doi:10.1109/CSE.2009.431.

[170] D. MAZIERES, M. KAMINSKY, M. F. KAASHOEK, E. WITCHEL, D. MAZIERES,
M. KAMINSKY, M. F. KAASHOEK, AND E. WITCHEL. Separating key man-
agement from file system security. In SOSP ’99: Proceedings of the Seven-
teenth ACM Symposium on Operating Systems Principles. ACM, 1999. doi:
10.1145/319151.319160.

[171] D. MAZIERES, M. KAMINSKY, M. F. KAASHOEK, E. WITCHEL, D. MAZIERES,
M. KAMINSKY, M. F. KAASHOEK, AND E. WITCHEL. Separating key man-
agement from file system security. ACM SIGOPS Operating Systems Review,
33(5):124–139, Dec. 1999. doi:10.1145/319344.319160.

[172] A. MCDONALD AND M. G. KUHN. StegFS: a steganographic file system for
Linux. IN A. PFITZMANN, editor, IH ’99: Proceedings of the Third International
Workshop on Information Hiding, pages 463–477, 2000.

[173] M. K. MCKUSICK, W. N. JOY, S. J. LEFFLER, AND R. S. FABRY. A fast file
system for UNIX. ACM Transactions on Computer Systems (TOCS), 2(3), Aug.
1984. doi:10.1145/989.990.

210

http://dx.doi.org/10.1145/1456403.1456405
http://dx.doi.org/10.1007/BFb0028161
http://dx.doi.org/10.1109/CSE.2009.387
http://dx.doi.org/10.1145/1367497.1367564
http://dx.doi.org/10.1109/CSE.2009.431
http://dx.doi.org/10.1145/319151.319160
http://dx.doi.org/10.1145/319151.319160
http://dx.doi.org/10.1145/319344.319160
http://dx.doi.org/10.1145/989.990

BIBLIOGRAPHY

[174] A. J. MENEZES, P. C. VAN OORSCHOT, AND S. A. VANSTONE. Handbook of
Applied Cryptography. CRC Press, Oct. 1996. URL: http://cacr.uwaterloo.
ca/hac/.

[175] R. C. MERKLE. A certified digital signature. IN G. BRASSARD, editor, Advances
in Crypology — Proceedings of CRYPTO ’89, pages 218–238. Springer, 1990. doi:
10.1007/0-387-34805-0{_}21.

[176] A. METTLER, D. WAGNER, AND T. CLOSE. Joe-E: a security-oriented subset
of Java. In NDSS ’10: Proceedings of the Network and Distributed System Security
Symposium, 2010.

[177] M. S. MILLER. Securing ECMAScript 5. In goto;, page 71, Oct. 2010. URL:
http://es-lab.googlecode.com/files/securing-es5.pdf.

[178] M. S. MILLER. ECMAScript 5, Caja and retrofitting security. InfoQ,
Feb. 2011. URL: http://www.infoq.com/interviews/ecmascript-5-caja-
retrofitting-security.

[179] Y. MINSKY. OCaml for the masses. Communications of the ACM, 54(11), Nov.
2011. doi:10.1145/2018396.2018413.

[180] A. MISLOVE, A. POST, P. DRUSCHEL, AND K. P. GUMMADI. Ostra: leveraging
trust to thwart unwanted communication. In NSDI ’08: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation, pages
15–30, 2008. URL: http://static.usenix.org/event/nsdi08/tech/mislove.
html.

[181] A. MISLOVE, B. VISWANATH, K. P. GUMMADI, AND P. DRUSCHEL. You are
who you know: inferring user profiles in online social networks. In WSDM
’10: Proceedings of the Third ACM International Conference on Web Search and
Data Mining. ACM, Feb. 2010. doi:10.1145/1718487.1718519.

[182] S. J. MURDOCH AND G. DANEZIS. Low-cost traffic analysis of Tor. In SP 2005:
Proceedings of the 26th IEEE Symposium on Security and Privacy, pages 183–195,
2005. doi:10.1109/SP.2005.12.

[183] A. MUTHITACHAROEN, R. MORRIS, T. GIL, AND B. CHEN. Ivy: a
read/write peer-to-peer file system. In OSDI ’02: Proceedings of the
5th USENIX Symposium on Operating Systems Design and Implementation,

211

http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://dx.doi.org/10.1007/0-387-34805-0{_}21
http://dx.doi.org/10.1007/0-387-34805-0{_}21
http://es-lab.googlecode.com/files/securing-es5.pdf
http://www.infoq.com/interviews/ecmascript-5-caja-retrofitting-security
http://www.infoq.com/interviews/ecmascript-5-caja-retrofitting-security
http://dx.doi.org/10.1145/2018396.2018413
http://static.usenix.org/event/nsdi08/tech/mislove.html
http://static.usenix.org/event/nsdi08/tech/mislove.html
http://dx.doi.org/10.1145/1718487.1718519
http://dx.doi.org/10.1109/SP.2005.12

BIBLIOGRAPHY

Dec. 2002. URL: http://www.usenix.org/events/osdi02/tech/full_papers/
muthitacharoen/muthitacharoen_html/.

[184] A. MUTHITACHAROEN, R. MORRIS, T. M. GIL, AND B. CHEN. Ivy: a read-
/write peer-to-peer file system. ACM SIGOPS Operating Systems Review,
36(SI):31, Dec. 2002. doi:10.1145/844128.844132.

[185] A. C. MYERS AND B. LISKOV. A decentralized model for information flow
control. In SOSP ’97: Proceedings of the Sixteenth ACM Symposium on Operat-
ing Systems Principles. ACM, Dec. 1997. URL: http://www.pmg.lcs.mit.edu/
papers/iflow-sosp97.pdf.

[186] S. NAGARAJA. The economics of covert community detection and hiding.
In WEIS ’09: The Eighth Workshop on the Economics of Information Security,
2008. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
145.6548&rep=rep1&type=pdf.

[187] A. NARAYANAN, S. BAROCAS, V. TOUBIANA, H. NISSENBAUM, AND

D. BONEH. A critical look at decentralized personal data architectures. In
DUMW: Data Usage Management on the Web, Apr. 2012. URL: http://dig.
csail.mit.edu/2012/WWW-DUMW/papers/dumw2012_submission_5.pdf.

[188] A. NARAYANAN AND V. SHMATIKOV. How to break anonymity of the Netflix
prize dataset. arXiv, Nov. 2007. URL: http://arxiv.org/pdf/cs/0610105.

[189] A. NARAYANAN AND V. SHMATIKOV. Robust de-anonymization of large
sparse datasets. In SP 2008: Proceedings of the 29th IEEE Symposium on Security
and Privacy, pages 111–125, May 2008. doi:10.1109/SP.2008.33.

[190] R. M. NEEDHAM AND M. D. SCHROEDER. Using encryption for authentica-
tion in large networks of computers. Communications of the ACM, 21(12), Dec.
1978. doi:10.1145/359657.359659.

[191] R. M. NEEDHAM, R. D. WALKER, R. M. NEEDHAM, AND R. D. WALKER. The
Cambridge CAP computer and its protection system. ACM SIGOPS Operating
Systems Review, 11(5):1–10, Nov. 1977. doi:10.1145/800214.806541.

[192] B. NEUMAN AND T. TS’O. Kerberos: an authentication service for computer
networks. IEEE Communications Magazine, 32(9):33–38, 1994. URL: http://
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=312841.

212

http://www.usenix.org/events/osdi02/tech/full_papers/muthitacharoen/muthitacharoen_html/
http://www.usenix.org/events/osdi02/tech/full_papers/muthitacharoen/muthitacharoen_html/
http://dx.doi.org/10.1145/844128.844132
http://www.pmg.lcs.mit.edu/papers/iflow-sosp97.pdf
http://www.pmg.lcs.mit.edu/papers/iflow-sosp97.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.6548&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.6548&rep=rep1&type=pdf
http://dig.csail.mit.edu/2012/WWW-DUMW/papers/dumw2012_submission_5.pdf
http://dig.csail.mit.edu/2012/WWW-DUMW/papers/dumw2012_submission_5.pdf
http://arxiv.org/pdf/cs/0610105
http://dx.doi.org/10.1109/SP.2008.33
http://dx.doi.org/10.1145/359657.359659
http://dx.doi.org/10.1145/800214.806541
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=312841
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=312841

BIBLIOGRAPHY

[193] M. ODERSKY, P. ALTHERR, V. CREMET, B. EMIR, S. MANETH, S. MICHE-
LOUD, N. MIHAYLOV, M. SCHINZ, E. STENMAN, AND M. ZENGER. An
overview of the Scala programming language. Technical Report IC/2004/64,
2004. URL: http://infoscience.epfl.ch/record/52656.

[194] R. H. PATTERSON, G. A. GIBSON, E. GINTING, D. STODOLSKY, AND J. ZE-
LENKA. Informed prefetching and caching. In SOSP ’95: Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles. ACM, Dec. 1995.
doi:10.1145/224056.224064.

[195] B. PAWLOWSKI, C. JUSZCZAK, P. STAUBACH, C. SMITH, D. LEBEL, AND

D. HITZ. NFS version 3 design and implementation. In USENIX Summer
Conference, pages 1–16, 1994.

[196] P. PEARCE, A. FELT, AND G. NUNEZ. AdDroid: privilege separation for ap-
plications and advertisers in Android. In ASIACCS ’12: Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Security, 2012.
URL: http://www.cs.berkeley.edu/~daw/papers/addroid-asiaccs12.pdf.

[197] T. PERRIN. Public key distribution through "cryptoIDs". In NSPW ’03: Pro-
ceedings of the 2003 Workshop on New Security Paradigms, pages 87–102, Aug.
2003. URL: http://portal.acm.org/citation.cfm?id=986655.986669.

[198] T. PEVNY, T. FILLER, AND P. BAS. Using high-dimensional image
models to perform highly undetectable steganography. In IH 2010:
Proceedings of the 13th International Workshop on Information Hiding, Jan.
2010. URL: http://boss.gipsa-lab.grenoble-inp.fr/Warming/Materials/
HUGO-electronic_pre_proc.pdf.

[199] R. PIKE, D. PRESOTTO, K. THOMPSON, H. TRICKEY, AND P. WINTERBOT-
TOM. The use of name spaces in Plan 9. In EW 5: Proceedings of the 5th ACM
SIGOPS European Workshop: Models and Paradigms for Distributed Systems Struc-
turing. ACM, Sept. 1992. doi:10.1145/506378.506413.

[200] R. PIKE, D. PRESOTTO, K. THOMPSON, H. TRICKEY, AND P. WINTERBOT-
TOM. The use of name spaces in Plan 9. ACM SIGOPS Operating Systems
Review, 27(2):72–76, Apr. 1993. doi:10.1145/155848.155861.

[201] C. G. PLAXTON, R. RAJARAMAN, AND A. W. RICHA. Accessing nearby
copies of replicated objects in a distributed environment. In SPAA ’97: Pro-

213

http://infoscience.epfl.ch/record/52656
http://dx.doi.org/10.1145/224056.224064
http://www.cs.berkeley.edu/~daw/papers/addroid-asiaccs12.pdf
http://portal.acm.org/citation.cfm?id=986655.986669
http://boss.gipsa-lab.grenoble-inp.fr/Warming/Materials/HUGO-electronic_pre_proc.pdf
http://boss.gipsa-lab.grenoble-inp.fr/Warming/Materials/HUGO-electronic_pre_proc.pdf
http://dx.doi.org/10.1145/506378.506413
http://dx.doi.org/10.1145/155848.155861

BIBLIOGRAPHY

ceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Archi-
tectures. ACM, June 1997. doi:10.1145/258492.258523.

[202] B. PRENEEL. Analysis and design of cryptographic hash functions. PhD the-
sis, Katholieke Universiteit te Leuven, Feb. 1993. URL: http://homes.esat.
kuleuven.be/~preneel/phd_preneel_feb1993.pdf.

[203] S. QUINLAN AND S. DORWARD. Venti: a new approach to archival storage.
In Proceedings of the FAST 2002 Conference on File and Storage Technologies, Jan.
2002. URL: http://db.usenix.org/events/fast02/quinlan.html.

[204] S. RATNASAMY, P. FRANCIS, M. HANDLEY, R. KARP, AND S. SHENKER.
A scalable content-addressable network. In SIGCOMM ’01: Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications. ACM, Aug. 2001. doi:10.1145/383059.383072.

[205] J. RAYMOND. Traffic analysis: protocols, attacks, design issues, and open
problems. In Designing Privacy Enhancing Technologies — Proceedings of the In-
ternational Workshop on Design Issues in Anonymity and Unobservability, pages
10–29, 2000.

[206] M. K. REITER AND A. D. RUBIN. Crowds: anonymity for web transactions.
ACM Transactions on Information and System Security (TISSEC), 1(1), Nov. 1998.
doi:10.1145/290163.290168.

[207] S. RHEA, P. EATON, D. GEELS, H. WEATHERSPOON, B. ZHAO, AND J. KU-
BIATOWICZ. Pond: the OceanStore prototype. In FAST ’03: Proceedings of the
2nd USENIX Conference on File and Storage Technologies, pages 1–14, 2003. URL:
http://www.usenix.org/events/fast03/tech/rhea/rhea_html/.

[208] R. L. RIVEST. All-or-nothing encryption and the package transform. IN E. BI-
HAM, editor, FSE ’97: Proceedings of the Fourth International Workshop on Fast
Software Encryption, pages 210–218. Springer, 1997. doi:10.1007/BFb0052348.

[209] R. L. RIVEST, A. SHAMIR, AND L. ADLEMAN. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2),
Feb. 1978. doi:10.1145/359340.359342.

[210] J. H. SALTZER, D. P. REED, AND D. CLARK. End-to-end arguments in system
design. ACM Transactions on Computer Systems (TOCS), 2(4), Nov. 1984. doi:
10.1145/357401.357402.

214

http://dx.doi.org/10.1145/258492.258523
http://homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf
http://homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf
http://db.usenix.org/events/fast02/quinlan.html
http://dx.doi.org/10.1145/383059.383072
http://dx.doi.org/10.1145/290163.290168
http://www.usenix.org/events/fast03/tech/rhea/rhea_html/
http://dx.doi.org/10.1007/BFb0052348
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/357401.357402
http://dx.doi.org/10.1145/357401.357402

BIBLIOGRAPHY

[211] S. SCELLATO, C. MASCOLO, M. MUSOLESI, AND J. CROWCROFT. Track
globally, deliver locally: improving content delivery networks by tracking
geographic social cascades. In WWW 2011: Proceedings of the 20th Interna-
tional World Wide Web Conference, Mar. 2011. URL: http://www.cl.cam.ac.uk/
research/srg/netos/papers/www2011_geocascades.pdf.

[212] S. SCHECHTER, S. EGELMAN, AND R. REEDER. It’s not what you know,
but who you know: a social approach to last-resort authentication. CHI ’09:
Proceedings of the 27th international conference on Human factors in computing
systems, Apr. 2009. URL: http://portal.acm.org/citation.cfm?id=1518701.
1519003.

[213] S. SCHECHTER AND R. W. REEDER. 1 + 1 = You: measuring the comprehen-
sibility of metaphors for configuring backup authentication. In SOUPS ’09:
Proceedings of the Fifth Symposium on Usable Privacy and Security, 2009.

[214] M. D. SCHROEDER AND J. H. SALTZER. A hardware architecture for im-
plementing protection rings. Communications of the ACM, 15(3), Mar. 1972.
doi:10.1145/361268.361275.

[215] W. SHAKESPEARE. As you like it. 1600. Act II, Scene 7.

[216] A. SHAMIR. How to share a secret. Communications of the ACM, 22(11), Nov.
1979. doi:10.1145/359168.359176.

[217] R. E. SMITH. Constructing a high assurance mail guard. In NCSC 1994: Pro-
ceedings of the 17th National Computer Security Conference, pages 247–253. Se-
cure Computer Corporation, 1994. URL: http://www.cryptosmith.com/docs/
mailguard.pdf.

[218] M. STIEGLER, A. H. KARP, K.-P. YEE, T. CLOSE, AND M. S. MILLER. Polaris:
virus-safe computing for Windows XP. Communications of the ACM, 49(9),
Sept. 2006. doi:10.1145/1151030.1151033.

[219] M. STIEGLER AND M. MILLER. A capability based client: the DarpaBrowser.
Combex Inc., BAA-00-06-SNK:1–101, June 2002.

[220] D. STINSON. Universal hashing and authentication codes. IN J. FEIGEN-
BAUM, editor, Advances in Cryptology — Proceedings of CRYPTO ’91, pages 74–
85. Springer, 1992. doi:10.1007/3-540-46766-1{_}5.

215

http://www.cl.cam.ac.uk/research/srg/netos/papers/www2011_geocascades.pdf
http://www.cl.cam.ac.uk/research/srg/netos/papers/www2011_geocascades.pdf
http://portal.acm.org/citation.cfm?id=1518701.1519003
http://portal.acm.org/citation.cfm?id=1518701.1519003
http://dx.doi.org/10.1145/361268.361275
http://dx.doi.org/10.1145/359168.359176
http://www.cryptosmith.com/docs/mailguard.pdf
http://www.cryptosmith.com/docs/mailguard.pdf
http://dx.doi.org/10.1145/1151030.1151033
http://dx.doi.org/10.1007/3-540-46766-1{_}5

BIBLIOGRAPHY

[221] I. STOICA, R. MORRIS, D. KARGER, M. F. KAASHOEK, AND H. BALAKRISH-
NAN. Chord: a scalable peer-to-peer lookup service for internet applications.
In SIGCOMM ’01: Proceedings of the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications. ACM, Aug. 2001.
doi:10.1145/383059.383071.

[222] N. TOLIA, M. KOZUCH, M. SATYANARAYANAN, B. KARP, T. BRESSOUD,
AND A. PERRIG. Opportunistic use of content addressable storage for dis-
tributed file systems. In Proceedings of the 2003 USENIX Annual Techni-
cal Conference, pages 127–140, 2003. URL: http://www.usenix.org/events/
usenix2003/tech/full_papers/tolia/tolia_html/.

[223] A. TOOTOONCHIAN, K. K. GOLLU, S. SAROIU, Y. GANJALI, AND A. WOL-
MAN. Lockr: social access control for web 2.0. In WOSN ’08: Proceed-
ings of the First Workshop on Online Social Networks. ACM, Aug. 2008. doi:
10.1145/1397735.1397746.

[224] V. TOUBIANA, A. NARAYANAN, D. BONEH, H. NISSENBAUM, AND S. BARO-
CAS. Adnostic: privacy preserving targeted advertising. In NDSS ’10: Pro-
ceedings of the Network and Distributed System Security Symposium, 2010. URL:
http://www.isoc.org/isoc/conferences/ndss/10/pdf/05.pdf.

[225] C. UNGUREANU, B. ATKIN, A. ARANYA, S. GOKHALE, S. RAGO,
G. CAŁKOWSKI, C. DUBNICKI, AND A. BOHRA. HydraFS: a high-throughput
file system for the HYDRAstor content-addressable storage system. In FAST
2010: Proceedings of the 2010 USENIX Conference on File and Storage Technolo-
gies. USENIX Association, Feb. 2010. URL: http://static.usenix.org/event/
fast10/tech/.

[226] C. VANCE AND R. N. M. WATSON. Security enhanced BSD. Technical report,
Network Associates Laboratories, July 2003. URL: http://www.trustedbsd.
org/sebsd-july2003.pdf.

[227] D. WAGNER AND D. TRIBBLE. A security analysis of the Combex
DarpaBrowser architecture. Technical report, 2002. URL: http://combexin.
temp.veriohosting.com/papers/darpa-review/security-review.pdf.

[228] S. D. WARREN AND L. D. BRANDEIS. The right to privacy. Harvard Law Re-
view, 4(5):193–220, Dec. 1890. URL: http://www.jstor.org/stable/1321160.

216

http://dx.doi.org/10.1145/383059.383071
http://www.usenix.org/events/usenix2003/tech/full_papers/tolia/tolia_html/
http://www.usenix.org/events/usenix2003/tech/full_papers/tolia/tolia_html/
http://dx.doi.org/10.1145/1397735.1397746
http://dx.doi.org/10.1145/1397735.1397746
http://www.isoc.org/isoc/conferences/ndss/10/pdf/05.pdf
http://static.usenix.org/event/fast10/tech/
http://static.usenix.org/event/fast10/tech/
http://www.trustedbsd.org/sebsd-july2003.pdf
http://www.trustedbsd.org/sebsd-july2003.pdf
http://combexin.temp.veriohosting.com/papers/darpa-review/security-review.pdf
http://combexin.temp.veriohosting.com/papers/darpa-review/security-review.pdf
http://www.jstor.org/stable/1321160

BIBLIOGRAPHY

[229] M. WEIR, S. AGGARWAL, M. COLLINS, AND H. STERN. Testing metrics for
password creation policies by attacking large sets of revealed passwords. In
CCS ’10: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security. ACM, Oct. 2010. doi:10.1145/1866307.1866327.

[230] A. WHITTEN. Making security usable. PhD thesis, Carnegie Mellon University,
2004. URL: http://gaudior.net/alma/MakingSecurityUsable.pdf.

[231] A. WHITTEN AND J. D. TYGAR. Why Johnny can’t encrypt: a usability eval-
uation of PGP 5.0. In Proceedings of the 8th USENIX Security Symposium, 1999.
URL: http://usenix.org/events/sec99/whitten.html.

[232] Z. WILCOX-O’HEARN AND B. WARNER. Tahoe: the least-authority filesys-
tem. In StorageSS ’08: Proceedings of the 4th ACM International Workshop on Stor-
age Security and Survivability. ACM, Oct. 2008. doi:10.1145/1456469.1456474.

[233] G. WONDRACEK, T. HOLZ, E. KIRDA, AND C. KRUEGEL. A practical at-
tack to de-anonymize social network users. In SP 2010: Proceedings of the
31st IEEE Symposium on Security and Privacy, pages 223–238, 2010. doi:
10.1109/SP.2010.21.

[234] F.-L. WONG AND F. STAJANO. Multi-channel protocols. IN B. CHRISTIAN-
SON, B. CRISPO, J. A. MALCOLM, AND M. ROE, editors, SPW ’07: Proceed-
ings of the Fifteenth International Workshop on Security Protocols, pages 112–127.
Springer, 2007. doi:10.1007/978-3-540-77156-2.

[235] A. WOOL. A note on the fragility of the "Michael" message integrity code.
IEEE Transactions on Wireless Communications, 3(5):1459–1462, 2004. doi:10.
1109/TWC.2004.833470.

[236] T. WU. The secure remote password protocol. In NDSS ’98: Proceedings of the
Network and Distributed System Security Symposium, 1998. URL: http://www.
isoc.org/isoc/conferences/ndss/98/wu.pdf.

[237] W. XU, X. ZHOU, AND L. LI. Inferring privacy information via social rela-
tions. In DEBSM 2008: Data Engineering for Blogs, Social Media, and Web 2.0,
pages 525–530, 2008. doi:10.1109/ICDEW.2008.4498373.

[238] J. YAN, A. BLACKWELL, R. J. ANDERSON, AND A. GRANT. The memorability
and security of passwords – some empirical results. Technical Report UCAM-

217

http://dx.doi.org/10.1145/1866307.1866327
http://gaudior.net/alma/MakingSecurityUsable.pdf
http://usenix.org/events/sec99/whitten.html
http://dx.doi.org/10.1145/1456469.1456474
http://dx.doi.org/10.1109/SP.2010.21
http://dx.doi.org/10.1109/SP.2010.21
http://dx.doi.org/10.1007/978-3-540-77156-2
http://dx.doi.org/10.1109/TWC.2004.833470
http://dx.doi.org/10.1109/TWC.2004.833470
http://www.isoc.org/isoc/conferences/ndss/98/wu.pdf
http://www.isoc.org/isoc/conferences/ndss/98/wu.pdf
http://dx.doi.org/10.1109/ICDEW.2008.4498373

BIBLIOGRAPHY

CL-TR-500, University of Cambridge, Sept. 2000. URL: http://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-500.pdf.

[239] J. YAN, A. BLACKWELL, R. J. ANDERSON, AND A. GRANT. Password mem-
orability and security: empirical results. IEEE Security and Privacy Magazine,
2(5):25–31, 2004. doi:10.1109/MSP.2004.81.

[240] S. YARDI, N. FEAMSTER, AND A. BRUCKMAN. Photo-based authentication
using social networks. In WOSN ’08: Proceedings of the First Workshop on Online
Social Networks. ACM, Aug. 2008. doi:10.1145/1397735.1397748.

[241] K.-P. YEE. Aligning security and usability. IEEE Security and Privacy Magazine,
2(5):48–55, 2004. doi:10.1109/MSP.2004.64.

[242] C. YONG, W. JIANGJIANG, M. SONGZHU, W. ZHIYING, J. MA,
R. JIANGCHUN, AND Y. KE. Mailbook: privacy-protecting social network-
ing via email. In ICIMCS ’11: Proceedings of the Third International Confer-
ence on Internet Multimedia Computing and Service. ACM, Aug. 2011. doi:
10.1145/2043674.2043700.

[243] H. YU, P. GIBBONS, AND M. KAMINSKY. SybilLimit: a near-optimal social
network defense against Sybil attacks. In SP 2008: Proceedings of the 29th IEEE
Symposium on Security and Privacy, 2008. doi:10.1109/SP.2008.13.

[244] H. YU, M. KAMINSKY, AND P. GIBBONS. SybilGuard: defending against Sybil
attacks via social networks. In SIGCOMM 2006: Proceedings of the ACM SIG-
COMM 2006 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2006. URL: http://portal.acm.org/citation.
cfm?id=1159913.1159945.

[245] J. ZHAN. Secure collaborative social networks. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 40(6):682–689, 2010. doi:
10.1109/TSMCC.2010.2050879.

[246] E. ZHELEVA AND L. GETOOR. To join or not to join: the illusion of privacy
in social networks with mixed public and private user profiles. In WWW ’09:
Proceedings of the 18th International World Wide Web Conference. ACM, Apr. 2009.
Poster. doi:10.1145/1526709.1526781.

[247] Y. ZHU, Z. HU, H. WANG, H. HU, AND G.-J. AHN. A collaborative frame-
work for privacy protection in online social networks. In CollaborateCom

218

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-500.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-500.pdf
http://dx.doi.org/10.1109/MSP.2004.81
http://dx.doi.org/10.1145/1397735.1397748
http://dx.doi.org/10.1109/MSP.2004.64
http://dx.doi.org/10.1145/2043674.2043700
http://dx.doi.org/10.1145/2043674.2043700
http://dx.doi.org/10.1109/SP.2008.13
http://portal.acm.org/citation.cfm?id=1159913.1159945
http://portal.acm.org/citation.cfm?id=1159913.1159945
http://dx.doi.org/10.1109/TSMCC.2010.2050879
http://dx.doi.org/10.1109/TSMCC.2010.2050879
http://dx.doi.org/10.1145/1526709.1526781

BIBLIOGRAPHY

2010: Proceedings of the 6th International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing, pages 1–10, 2010. URL: http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5766999.

[248] J. L. ZITTRAIN. The future of the Internet (and how to stop it). Yale University
Press, 2008. URL: http://www.worldcat.org/isbn/978-0-300-15124-4.

219

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5766999
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5766999
http://www.worldcat.org/isbn/978-0-300-15124-4

C
OTHER REFERENCES

STANDARDS AND SPECIFICATIONS

[249] Trusted computer system evaluation criteria. Department of Defense, Dec.
1985. 5200.28-STD. URL: http://csrc.nist.gov/publications/history/
dod85.pdf.

[250] New I/O APIs for the Java platform, May 2002. URL: http://www.jcp.org/
en/jsr/detail?id=51.

[251] ECMAScript language specification. ECMA, June 2011. ECMA-262.
URL: http://www.ecma-international.org/publications/standards/Ecma-
262.htm.

[252] Facebook Query Language (FQL) [online]. Jan. 2012. URL: https://
developers.facebook.com/docs/reference/fql/.

[253] Graph API [online]. June 2012. URL: https://developers.facebook.com/
docs/reference/api/.

[254] V. APPARAO, S. BYRNE, M. CHAMPION, S. ISAACS, A. LE HORS, G. NICOL,
J. ROBIE, P. SHARPE, B. SMITH, J. SORENSEN, R. SUTOR, R. WHITMER, AND

C. WILSON. Document Object Model (DOM) level 1 specification. W3C:
World Wide Web Consortium, Oct. 1998. REC-DOM-Level-1-19981001. URL:
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.

[255] T. BERNERS-LEE, R. FIELDING, AND L. MASINTER. Uniform Resource Iden-
tifier (URI): generic syntax. RFC 3986 (Standard), Jan. 2005. URL: http:
//www.ietf.org/rfc/rfc3986.txt.

[256] T. BERNERS-LEE, L. MASINTER, AND M. MCCAHILL. Uniform Resource
Locators (URL). RFC 1738 (Proposed Standard), Dec. 1994. Obsoleted by

220

http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://www.jcp.org/en/jsr/detail?id=51
http://www.jcp.org/en/jsr/detail?id=51
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://developers.facebook.com/docs/reference/fql/
https://developers.facebook.com/docs/reference/fql/
https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/reference/api/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

OTHER REFERENCES

RFCs 4248, 4266, updated by RFCs 1808, 2368, 2396, 3986, 6196, 6270. URL:
http://www.ietf.org/rfc/rfc1738.txt.

[257] N. BORENSTEIN AND N. FREED. MIME (Multipurpose Internet Mail Exten-
sions): mechanisms for specifying and describing the format of Internet mes-
sage bodies. RFC 1341 (Proposed Standard), June 1992. Obsoleted by RFC
1521. URL: http://www.ietf.org/rfc/rfc1341.txt.

[258] D. CROCKFORD. The application/json media type for JavaScript Object No-
tation (JSON). RFC 4627 (Informational), July 2006. URL: http://www.ietf.
org/rfc/rfc4627.txt.

[259] S. JOSEFSSON. The Base16, Base32, and Base64 data encodings. RFC 4648 (Pro-
posed Standard), Oct. 2006. URL: http://www.ietf.org/rfc/rfc4648.txt.

[260] R. MOATS. URN syntax. RFC 2141 (Proposed Standard), May 1997. URL:
http://www.ietf.org/rfc/rfc2141.txt.

[261] G. MOHR. MAGNET, June 2002. URL: http://magnet-uri.sourceforge.net/
magnet-draft-overview.txt.

[262] M. MYERS, R. ANKNEY, A. MALPANI, S. GALPERIN, AND C. ADAMS. X.509
Internet public key infrastructure Online Certificate Status Protocol — OCSP.
RFC 2560 (Proposed Standard), June 1999. Updated by RFC 6277. URL: http:
//www.ietf.org/rfc/rfc2560.txt.

[263] C. NEUMAN, T. YU, S. HARTMAN, AND K. RAEBURN. The Kerberos network
authentication service (V5). IETF, July 2005.

[264] C. NEUMAN, T. YU, S. HARTMAN, AND K. RAEBURN. The Kerberos network
authentication service (V5). RFC 4120 (Proposed Standard), July 2005. Up-
dated by RFCs 4537, 5021, 5896, 6111, 6112, 6113. URL: http://www.ietf.
org/rfc/rfc4120.txt.

[265] M. SIRBU. Content-type header field for Internet messages. RFC 1049 (His-
toric), Mar. 1988. URL: http://www.ietf.org/rfc/rfc1049.txt.

221

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1341.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc2141.txt
http://magnet-uri.sourceforge.net/magnet-draft-overview.txt
http://magnet-uri.sourceforge.net/magnet-draft-overview.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc1049.txt

OTHER REFERENCES

NEWS ORGANIZATIONS AND PRESS RELEASES

[266] U. S. to act to oust ship work slackers. New York Tribune, page 9, Sept.
1918. URL: http://chroniclingamerica.loc.gov/lccn/sn83030214/1918-
09-22/ed-1/seq-9/.

[267] Forbes, 143:288, 1989. URL: http://books.google.co.uk/books?id=
iOkdAQAAMAAJ.

[268] Public safety minister launches investigation into Facebook postings [on-
line]. Oct. 2007. CBC News. URL: http://www.cbc.ca/news/canada/british-
columbia/story/2007/10/02/bc-dayinvestigation.html.

[269] Student recruits unfit for service, say former border guards [online]. Oct.
2007. CBC News. URL: http://www.cbc.ca/canada/british-columbia/
story/2007/10/01/bc-borderguards.html.

[270] Facebook agrees to address Privacy Commissioner’s concerns, Aug. 2009. Of-
fice of the Privacy Commissioner of Canada. URL: http://www.priv.gc.ca/
media/nr-c/2009/nr-c_090827_e.cfm.

[271] Facebook announces privacy improvements in response to recommendations
by Canadian privacy commissioner, Aug. 2009. Facebook. URL: http://www.
facebook.com/press/releases.php?p=118816.

[272] E. BARNETT. Steve Jobs: ’I admire Facebook’s Mark Zuckerberg’ [online]. Oct.
2011. The Telegraph. URL: http://www.telegraph.co.uk/technology/steve-
jobs/8846021/Steve-Jobs-I-admire-Facebooks-Mark-Zuckerberg.html.

[273] J. CHENG. Over 3 years later, "deleted" Facebook photos are still on-
line [online]. Feb. 2012. Ars Technica. URL: http://arstechnica.com/
business/news/2012/02/nearly-3-years-later-deleted-facebook-photos-
are-still-online.ars.

[274] S. DIAZ. Sponsored Stories: Facebook’s effort to use your "likes" and more
in ads [online]. Jan. 2011. ZDNet. URL: http://www.zdnet.com/blog/btl/
sponsored-stories-facebooks-effort-to-use-your-likes-and-more-in-
ads/44014.

222

http://chroniclingamerica.loc.gov/lccn/sn83030214/1918-09-22/ed-1/seq-9/
http://chroniclingamerica.loc.gov/lccn/sn83030214/1918-09-22/ed-1/seq-9/
http://books.google.co.uk/books?id=iOkdAQAAMAAJ
http://books.google.co.uk/books?id=iOkdAQAAMAAJ
http://www.cbc.ca/news/canada/british-columbia/story/2007/10/02/bc-dayinvestigation.html
http://www.cbc.ca/news/canada/british-columbia/story/2007/10/02/bc-dayinvestigation.html
http://www.cbc.ca/canada/british-columbia/story/2007/10/01/bc-borderguards.html
http://www.cbc.ca/canada/british-columbia/story/2007/10/01/bc-borderguards.html
http://www.priv.gc.ca/media/nr-c/2009/nr-c_090827_e.cfm
http://www.priv.gc.ca/media/nr-c/2009/nr-c_090827_e.cfm
http://www.facebook.com/press/releases.php?p=118816
http://www.facebook.com/press/releases.php?p=118816
http://www.telegraph.co.uk/technology/steve-jobs/8846021/Steve-Jobs-I-admire-Facebooks-Mark-Zuckerberg.html
http://www.telegraph.co.uk/technology/steve-jobs/8846021/Steve-Jobs-I-admire-Facebooks-Mark-Zuckerberg.html
http://arstechnica.com/business/news/2012/02/nearly-3-years-later-deleted-facebook-photos-are-still-online.ars
http://arstechnica.com/business/news/2012/02/nearly-3-years-later-deleted-facebook-photos-are-still-online.ars
http://arstechnica.com/business/news/2012/02/nearly-3-years-later-deleted-facebook-photos-are-still-online.ars
http://www.zdnet.com/blog/btl/sponsored-stories-facebooks-effort-to-use-your-likes-and-more-in-ads/44014
http://www.zdnet.com/blog/btl/sponsored-stories-facebooks-effort-to-use-your-likes-and-more-in-ads/44014
http://www.zdnet.com/blog/btl/sponsored-stories-facebooks-effort-to-use-your-likes-and-more-in-ads/44014

OTHER REFERENCES

[275] D. GOLDMAN. Rapleaf is selling your identity [online]. Oct. 2010.
CNN Money. URL: http://money.cnn.com/2010/10/21/technology/rapleaf/
index.htm.

[276] D. GOODIN. Code for open-source Facebook littered with landmines [online].
Sept. 2010. The Register. URL: http://www.theregister.co.uk/2010/09/16/
diaspora_pre_alpha_landmines.

[277] T. HODGKINSON. Facebook IPO: Log off! Facebook is ruthlessly
selling your soul [online]. Feb. 2012. The Daily Mail. URL:
http://www.dailymail.co.uk/news/article-2095690/Facebook-IPO-Log-
Facebook-ruthlessly-selling-soul.html.

[278] J. A. KAPLAN. Facebook to sell YOUR posts to advertisers. Fox News, July
2012. URL: http://www.foxnews.com/tech/2011/01/26/facebook-friends-
used-ads.

[279] L. MAGID. Facebook details new privacy settings [online]. Dec. 2009.
CNet. URL: http://news.cnet.com/8301-19518_3-10411418-238.html?tag=
mncol;txt.

[280] C. MCCARTHY. Facebook backtracks on public friend lists [online]. Dec. 2009.
URL: http://news.cnet.com/8301-13577_3-10413835-36.html.

[281] J. C. PEREZ. Facebook will shut down Beacon to settle lawsuit [online]. Sept.
2009. PC World. URL: http://www.pcworld.com/article/172272/facebook_
will_shut_down_beacon_to_settle_lawsuit.html.

[282] E. STEEL AND G. A. FOWLER. Facebook in privacy breach. The
Wall Street Journal, Oct. 2010. URL: http://online.wsj.com/article/
SB10001424052702304772804575558484075236968.html.

FACEBOOK BLOG

[283] Canvas encryption proposal [online]. Oct. 2010. URL: https://developers.
facebook.com/docs/authentication/canvas/encryption_proposal/.

[284] C. ABRAM. Welcome to Facebook, everyone. [online]. Sept. 2006. URL: https:
//blog.facebook.com/blog.php?post=2210227130.

223

http://money.cnn.com/2010/10/21/technology/rapleaf/index.htm
http://money.cnn.com/2010/10/21/technology/rapleaf/index.htm
http://www.theregister.co.uk/2010/09/16/diaspora_pre_alpha_landmines
http://www.theregister.co.uk/2010/09/16/diaspora_pre_alpha_landmines
http://www.dailymail.co.uk/news/article-2095690/Facebook-IPO-Log-Facebook-ruthlessly-selling-soul.html
http://www.dailymail.co.uk/news/article-2095690/Facebook-IPO-Log-Facebook-ruthlessly-selling-soul.html
http://www.foxnews.com/tech/2011/01/26/facebook-friends-used-ads
http://www.foxnews.com/tech/2011/01/26/facebook-friends-used-ads
http://news.cnet.com/8301-19518_3-10411418-238.html?tag=mncol;txt
http://news.cnet.com/8301-19518_3-10411418-238.html?tag=mncol;txt
http://news.cnet.com/8301-13577_3-10413835-36.html
http://www.pcworld.com/article/172272/facebook_will_shut_down_beacon_to_settle_lawsuit.html
http://www.pcworld.com/article/172272/facebook_will_shut_down_beacon_to_settle_lawsuit.html
http://online.wsj.com/article/SB10001424052702304772804575558484075236968.html
http://online.wsj.com/article/SB10001424052702304772804575558484075236968.html
https://developers.facebook.com/docs/authentication/canvas/encryption_proposal/
https://developers.facebook.com/docs/authentication/canvas/encryption_proposal/
https://blog.facebook.com/blog.php?post=2210227130
https://blog.facebook.com/blog.php?post=2210227130

OTHER REFERENCES

[285] E. BEARD. A new data model [online]. Apr. 2010. URL: https://developers.
facebook.com/blog/post/378.

[286] D. FETTERMAN. Facebook Development Platform launches... [online]. Aug.
2006. URL: https://blog.facebook.com/blog.php?post=2207512130.

[287] P. FUNG. Public search listings on Facebook [online]. Sept. 2007. URL: https:
//blog.facebook.com/blog.php?post=2963412130.

[288] N. GUPTA. Facebook Platform roadmap update [online]. Aug. 2010. URL:
https://developers.facebook.com/blog/post/402.

[289] A. HAUGEN. New ways to find and engage with your favorite applica-
tions [online]. Oct. 2009. URL: https://blog.facebook.com/blog.php?post=
166797817130.

[290] A. HAUGEN. Answers to your questions on personalized Web tools [online].
Apr. 2010. URL: https://blog.facebook.com/blog.php?post=384733792130.

[291] A. HAUGEN. New ways to personalize your online experience [online]. Apr.
2010. URL: https://blog.facebook.com/blog.php?post=383515372130.

[292] R. C. HE. The Facebook open stream API [online]. Apr. 2009. URL: https:
//developers.facebook.com/blog/post/225.

[293] R. C. HE. New privacy controls for your applications [online]. Feb. 2010.
URL: http://blog.facebook.com/blog.php?post=311056167130.

[294] A. LI. Connecting to everything you care about [online]. Apr. 2010. URL:
http://blog.facebook.com/blog.php?post=382978412130.

[295] P. MCDONALD. Growing beyond regional networks [online]. June 2009. URL:
https://blog.facebook.com/blog.php?post=91242982130.

[296] A. MULLER. Updates on your new privacy tools [online]. Dec. 2009. URL:
https://blog.facebook.com/blog.php?post=197943902130.

[297] L. PEARLMAN. Facebook ads [online]. Nov. 2007. URL: https://blog.
facebook.com/blog.php?post=6972252130.

[298] D. PURDY. Moving to a modern platform [online]. Sept. 2011. URL: https:
//developers.facebook.com/blog/post/568/.

224

https://developers.facebook.com/blog/post/378
https://developers.facebook.com/blog/post/378
https://blog.facebook.com/blog.php?post=2207512130
https://blog.facebook.com/blog.php?post=2963412130
https://blog.facebook.com/blog.php?post=2963412130
https://developers.facebook.com/blog/post/402
https://blog.facebook.com/blog.php?post=166797817130
https://blog.facebook.com/blog.php?post=166797817130
https://blog.facebook.com/blog.php?post=384733792130
https://blog.facebook.com/blog.php?post=383515372130
https://developers.facebook.com/blog/post/225
https://developers.facebook.com/blog/post/225
http://blog.facebook.com/blog.php?post=311056167130
http://blog.facebook.com/blog.php?post=382978412130
https://blog.facebook.com/blog.php?post=91242982130
https://blog.facebook.com/blog.php?post=197943902130
https://blog.facebook.com/blog.php?post=6972252130
https://blog.facebook.com/blog.php?post=6972252130
https://developers.facebook.com/blog/post/568/
https://developers.facebook.com/blog/post/568/

OTHER REFERENCES

[299] A. RICE. A continued commitment to security [online]. Jan. 2011. URL:
http://blog.facebook.com/blog.php?post=486790652130.

[300] J. ROSENSTEIN. Opening up [online]. Nov. 2007. URL: https://blog.
facebook.com/blog.php?post=7057627130.

[301] R. SANGHVI. Facebook gets a facelift [online]. Sept. 2006. URL: https://
blog.facebook.com/blog.php?post=2207967130.

[302] R. SANGHVI. New tools to control your experience [online]. Dec. 2009. URL:
https://blog.facebook.com/blog.php?post=196629387130.

[303] M. E. SHARON. Who, what, when, and now... where [online]. Aug. 2010.
URL: https://blog.facebook.com/blog.php?post=418175202130.

[304] A. STEINBERG. FQL [online]. Feb. 2007. URL: https://blog.facebook.com/
blog.php?post=2245872130.

[305] B. TAYLOR. Applications ask, you receive: simplified permissions launch
[online]. June 2010. URL: https://blog.facebook.com/blog.php?post=
403443752130.

[306] B. TAYLOR. Bringing your friends to Bing: search now more social [online].
Oct. 2010. URL: https://blog.facebook.com/blog.php?post=437112312130.

[307] M. VERNAL. An update on encrypted UIDs [online]. Nov. 2010. URL: https:
//developers.facebook.com/blog/post/431/.

[308] M. VERNAL. An update on Facebook UIDs [online]. Oct. 2010. URL: https:
//developers.facebook.com/blog/post/422/.

[309] M. VERNAL. Encrypting Facebook UIDs [online]. Oct. 2010. URL: https:
//developers.facebook.com/blog/post/419.

[310] M. ZUCKERBERG. An open letter from Mark Zuckerberg [online]. Sept. 2006.
URL: https://blog.facebook.com/blog.php?post=2208562130.

[311] M. ZUCKERBERG. Calm down. Breathe. We hear you. [online]. Sept. 2006.
URL: https://blog.facebook.com/blog.php?post=2208197130.

[312] M. ZUCKERBERG. Thoughts on Beacon [online]. Dec. 2007. URL:
https://blog.facebook.com/blog.php?post=7584397130&fb_comment_id=
fbc_7584397130_17166601_10150192637137131#us14yl_1.

225

http://blog.facebook.com/blog.php?post=486790652130
https://blog.facebook.com/blog.php?post=7057627130
https://blog.facebook.com/blog.php?post=7057627130
https://blog.facebook.com/blog.php?post=2207967130
https://blog.facebook.com/blog.php?post=2207967130
https://blog.facebook.com/blog.php?post=196629387130
https://blog.facebook.com/blog.php?post=418175202130
https://blog.facebook.com/blog.php?post=2245872130
https://blog.facebook.com/blog.php?post=2245872130
https://blog.facebook.com/blog.php?post=403443752130
https://blog.facebook.com/blog.php?post=403443752130
https://blog.facebook.com/blog.php?post=437112312130
https://developers.facebook.com/blog/post/431/
https://developers.facebook.com/blog/post/431/
https://developers.facebook.com/blog/post/422/
https://developers.facebook.com/blog/post/422/
https://developers.facebook.com/blog/post/419
https://developers.facebook.com/blog/post/419
https://blog.facebook.com/blog.php?post=2208562130
https://blog.facebook.com/blog.php?post=2208197130
https://blog.facebook.com/blog.php?post=7584397130&fb_comment_id=fbc_7584397130_17166601_10150192637137131#us14yl_1
https://blog.facebook.com/blog.php?post=7584397130&fb_comment_id=fbc_7584397130_17166601_10150192637137131#us14yl_1

OTHER REFERENCES

[313] M. ZUCKERBERG. Building the social Web together [online]. Apr. 2010. URL:
https://blog.facebook.com/blog.php?post=383404517130.

[314] M. ZUCKERBERG. Giving you more control [online]. Oct. 2010. URL: https:
//blog.facebook.com/blog.php?post=434691727130.

[315] M. ZUCKERBERG. Making control simple [online]. May 2010. URL: https:
//blog.facebook.com/blog.php?post=391922327130.

OTHER WEBSITES

[316] A penny per match [online]. URL: https://www.rapleaf.com/pricing/.

[317] Amazon S3 pricing [online]. URL: http://aws.amazon.com/s3/pricing/.

[318] Google Apps service level agreement [online]. URL: http://www.google.com/
apps/intl/en/terms/sla.html.

[319] Rapleaf response for demo e-mail address [online]. URL: https:
//personalize.rapleaf.com/v4/dr?email=vlad@rapleafdemo.com&show_
available&format=html&api_key=05664e263f1481a7e9ed1e8b85e2790e.

[320] Suzanne Massie during the Reagan years [online]. URL: http://www.
suzannemassie.com/reaganYears.html.

[321] Amazon S3 service level agreement [online]. Oct. 2007. URL: http://aws.
amazon.com/s3-sla/.

[322] launchd(8), May 2009. URL: https://developer.apple.com/library/mac/
#documentation/Darwin/Reference/Manpages/man8/launchd.8.html.

[323] About /robots.txt [online]. Aug. 2010. URL: http://www.robotstxt.org/
robotstxt.html.

[324] Making search more secure [online]. Oct. 2011. URL: http://googleblog.
blogspot.co.uk/2011/10/making-search-more-secure.html.

[325] Security overview. Technical report, July 2011. URL: http://developer.
apple.com/library/mac/#DOCUMENTATION/Security/Conceptual/Security_
Overview/Concepts/Concepts.html.

226

https://blog.facebook.com/blog.php?post=383404517130
https://blog.facebook.com/blog.php?post=434691727130
https://blog.facebook.com/blog.php?post=434691727130
https://blog.facebook.com/blog.php?post=391922327130
https://blog.facebook.com/blog.php?post=391922327130
https://www.rapleaf.com/pricing/
http://aws.amazon.com/s3/pricing/
http://www.google.com/apps/intl/en/terms/sla.html
http://www.google.com/apps/intl/en/terms/sla.html
https://personalize.rapleaf.com/v4/dr?email=vlad@rapleafdemo.com&show_available&format=html&api_key=05664e263f1481a7e9ed1e8b85e2790e
https://personalize.rapleaf.com/v4/dr?email=vlad@rapleafdemo.com&show_available&format=html&api_key=05664e263f1481a7e9ed1e8b85e2790e
https://personalize.rapleaf.com/v4/dr?email=vlad@rapleafdemo.com&show_available&format=html&api_key=05664e263f1481a7e9ed1e8b85e2790e
http://www.suzannemassie.com/reaganYears.html
http://www.suzannemassie.com/reaganYears.html
http://aws.amazon.com/s3-sla/
http://aws.amazon.com/s3-sla/
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man8/launchd.8.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man8/launchd.8.html
http://www.robotstxt.org/robotstxt.html
http://www.robotstxt.org/robotstxt.html
http://googleblog.blogspot.co.uk/2011/10/making-search-more-secure.html
http://googleblog.blogspot.co.uk/2011/10/making-search-more-secure.html
http://developer.apple.com/library/mac/#DOCUMENTATION/Security/Conceptual/Security_Overview/Concepts/Concepts.html
http://developer.apple.com/library/mac/#DOCUMENTATION/Security/Conceptual/Security_Overview/Concepts/Concepts.html
http://developer.apple.com/library/mac/#DOCUMENTATION/Security/Conceptual/Security_Overview/Concepts/Concepts.html

OTHER REFERENCES

[326] Sponsored Stories guide. ads.ak.facebook.com, 2011. URL: http://ads.ak.
facebook.com/ads/FacebookAds/Sponsored_Stories_Guide_US.pdf.

[327] ï¿Œï¿ŒMicrosoft Exchange online dedicated plans version service level
agreement (SLA). pages 1–4, Oct. 2011.

[328] Amazon S3 price reduction [online]. Feb. 2012. URL: http://aws.typepad.
com/aws/2012/02/amazon-s3-price-reduction.html.

[329] android.app.Service, api level 15 edition, June 2012.

[330] Cloud Files pricing - online storage & CDN media delivery [online].
2012. URL: http://www.rackspace.com/cloud/cloud_hosting_products/
files/pricing/.

[331] Connect with Facebook [online]. 2012. URL: http://www.spotify.com/uk/
about/features/connect-with-facebook/.

[332] Draw Something [online]. 2012. URL: http://omgpop.com/drawsomething/.

[333] Facebook’s filing: the highlights [online]. Feb. 2012. URL: http://bits.
blogs.nytimes.com/2012/02/01/facebooks-filing-the-highlights/.

[334] FarmVille [online]. 2012. URL: http://company.zynga.com/games/farmville.

[335] Getting Tahoe-LAFS. trunk/docs/quickstart.rst, r5548 edition, June
2012. URL: https://tahoe-lafs.org/trac/tahoe-lafs/browser/trunk/
docs/quickstart.rst.

[336] Google App Engine pricing [online]. 2012.

[337] Pricing [online]. 2012. URL: http://www.netdna.com/pricing/.

[338] Securing your Twitter experience with HTTPS [online]. Feb. 2012. URL:
http://blog.twitter.com/2012/02/securing-your-twitter-experience-
with.html.

[339] K. ATKINSON. Spell checker oriented word lists (SCOWL), Jan. 2011. URL:
http://wordlist.sourceforge.net/.

[340] R. ATTERER. jigdo 0.6.1 - please test! [online]. Dec. 2001. URL: http://lists.
debian.org/debian-cd/2001/12/msg00059.html.

227

http://ads.ak.facebook.com/ads/FacebookAds/Sponsored_Stories_Guide_US.pdf
http://ads.ak.facebook.com/ads/FacebookAds/Sponsored_Stories_Guide_US.pdf
http://aws.typepad.com/aws/2012/02/amazon-s3-price-reduction.html
http://aws.typepad.com/aws/2012/02/amazon-s3-price-reduction.html
http://www.rackspace.com/cloud/cloud_hosting_products/files/pricing/
http://www.rackspace.com/cloud/cloud_hosting_products/files/pricing/
http://www.spotify.com/uk/about/features/connect-with-facebook/
http://www.spotify.com/uk/about/features/connect-with-facebook/
http://omgpop.com/drawsomething/
http://bits.blogs.nytimes.com/2012/02/01/facebooks-filing-the-highlights/
http://bits.blogs.nytimes.com/2012/02/01/facebooks-filing-the-highlights/
http://company.zynga.com/games/farmville
https://tahoe-lafs.org/trac/tahoe-lafs/browser/trunk/docs/quickstart.rst
https://tahoe-lafs.org/trac/tahoe-lafs/browser/trunk/docs/quickstart.rst
http://www.netdna.com/pricing/
http://blog.twitter.com/2012/02/securing-your-twitter-experience-with.html
http://blog.twitter.com/2012/02/securing-your-twitter-experience-with.html
http://wordlist.sourceforge.net/
http://lists.debian.org/debian-cd/2001/12/msg00059.html
http://lists.debian.org/debian-cd/2001/12/msg00059.html

OTHER REFERENCES

[341] E. BANGEMAN. Blu-ray’s DRM crown jewel tarnished with crack of BD+
[online]. Nov. 2007. URL: http://arstechnica.com/uncategorized/2007/11/
blu-rays-drm-crown-jewel-tarnished-with-crack-of-bd/.

[342] BLUE BEETLE. User-driven discontent [online]. Aug. 2010. URL: http://www.
metafilter.com/95152/Userdriven-discontent#3256046.

[343] J. BONNEAU. How privacy fails: the Facebook applications debacle [on-
line]. June 2009. URL: http://www.lightbluetouchpaper.org/2009/06/09/
how-privacy-fails-the-facebook-applications-debacle/.

[344] A. CHAUDHRY, A. MADHAVAPEDDY, C. ROSTOS, R. MORTIER, A. AUCI-
NAS, J. CROWCROFT, S. P. EIDE, S. HAND, A. W. MOORE, AND N. VALLINA-
RODRIGUEZ. Signposts. github.com, 2011. URL: https://github.com/avsm/
signpost.

[345] A. CHAUDHRY, A. MADHAVAPEDDY, C. ROSTOS, R. MORTIER, A. AUCINAS,
J. CROWCROFT, S. P. EIDE, S. HAND, A. W. MOORE, AND N. VALLINA-
RODRIGUEZ. Signposts: end-to-end networking in a world of middle-
boxes. SIGCOMM 2012 Poster & Demo Session, Aug. 2012. URL: http:
//conferences.sigcomm.org/sigcomm/2012/program.php.

[346] C. FLECK. Google+ = work friends, Facebook = family, Linkedin = busi-
ness contacts, Twitter = social bookmarks [online]. July 2011. URL:
http://blogs.citrix.com/2011/07/17/google-work-friends-facebook-
family-linkedin-business-contacts-twitter-social-bookmarks/.

[347] P. GANAPATI. Scribd Facebook instant personalization is a privacy night-
mare [online]. Sept. 2010. URL: http://www.wired.com/epicenter/2010/09/
scribd-facebook-instant-personalization/.

[348] C. LEE. The inetd super-server. URL: http://www.freebsd.org/doc/handbook/
network-inetd.html.

[349] J. LINFORD. 5 things to consider before taking up social media [on-
line]. URL: http://www.webpresence.tv/uk-blog/5-ways-social-media-
wont-fix-website-2/.

[350] C. MATYSZCZYK. Zuckerberg: I know that people don’t want privacy [on-
line]. Jan. 2010. URL: http://news.cnet.com/8301-17852_3-10431741-71.
html.

228

http://arstechnica.com/uncategorized/2007/11/blu-rays-drm-crown-jewel-tarnished-with-crack-of-bd/
http://arstechnica.com/uncategorized/2007/11/blu-rays-drm-crown-jewel-tarnished-with-crack-of-bd/
http://www.metafilter.com/95152/Userdriven-discontent#3256046
http://www.metafilter.com/95152/Userdriven-discontent#3256046
http://www.lightbluetouchpaper.org/2009/06/09/how-privacy-fails-the-facebook-applications-debacle/
http://www.lightbluetouchpaper.org/2009/06/09/how-privacy-fails-the-facebook-applications-debacle/
https://github.com/avsm/signpost
https://github.com/avsm/signpost
http://conferences.sigcomm.org/sigcomm/2012/program.php
http://conferences.sigcomm.org/sigcomm/2012/program.php
http://blogs.citrix.com/2011/07/17/google-work-friends-facebook-family-linkedin-business-contacts-twitter-social-bookmarks/
http://blogs.citrix.com/2011/07/17/google-work-friends-facebook-family-linkedin-business-contacts-twitter-social-bookmarks/
http://www.wired.com/epicenter/2010/09/scribd-facebook-instant-personalization/
http://www.wired.com/epicenter/2010/09/scribd-facebook-instant-personalization/
http://www.freebsd.org/doc/handbook/network-inetd.html
http://www.freebsd.org/doc/handbook/network-inetd.html
http://www.webpresence.tv/uk-blog/5-ways-social-media-wont-fix-website-2/
http://www.webpresence.tv/uk-blog/5-ways-social-media-wont-fix-website-2/
http://news.cnet.com/8301-17852_3-10431741-71.html
http://news.cnet.com/8301-17852_3-10431741-71.html

OTHER REFERENCES

[351] M. S. MILLER, M. SAMUEL, B. LAURIE, I. AWAD, AND M. STAY. Caja: safe
active content in sanitized JavaScript [online]. Jan. 2008. URL: http://google-
caja.googlecode.com/files/caja-spec-2008-01-15.pdf.

[352] A. NEWITZ. Defenses lacking at social network sites [online]. Dec. 2003. URL:
http://www.securityfocus.com/news/7739.

[353] A. PESLYAK. Getting around non-executable stack (and fix) [online]. Aug.
1997. URL: http://insecure.org/sploits/linux.libc.return.lpr.sploit.
html.

[354] S. PRATHER. Fire, ready, aim! [online]. July 2006. URL: http://peoplegen.
blogspot.co.uk/2006/07/fire-ready-aim.html.

[355] J. REIMER. New AACS cracks cannot be revoked, says hacker [online].
Apr. 2007. URL: http://arstechnica.com/gadgets/2007/04/aacs-cracks-
cannot-be-revoked-says-hacker/.

[356] S. SCHILLACE. Default https access for Gmail [online]. Jan.
2010. URL: http://gmailblog.blogspot.co.uk/2010/01/default-https-
access-for-gmail.html.

[357] F. A. STEVENSON. Cryptanalysis of Contents Scrambling System [on-
line]. Nov. 1999. URL: http://www.dvd-copy.com/news/cryptanalysis_of_
contents_scrambling_system.htm.

[358] Z. WILCOX-O’HEARN. convergent encryption reconsidered [online]. Mar.
2008.

229

http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://www.securityfocus.com/news/7739
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://peoplegen.blogspot.co.uk/2006/07/fire-ready-aim.html
http://peoplegen.blogspot.co.uk/2006/07/fire-ready-aim.html
http://arstechnica.com/gadgets/2007/04/aacs-cracks-cannot-be-revoked-says-hacker/
http://arstechnica.com/gadgets/2007/04/aacs-cracks-cannot-be-revoked-says-hacker/
http://gmailblog.blogspot.co.uk/2010/01/default-https-access-for-gmail.html
http://gmailblog.blogspot.co.uk/2010/01/default-https-access-for-gmail.html
http://www.dvd-copy.com/news/cryptanalysis_of_contents_scrambling_system.htm
http://www.dvd-copy.com/news/cryptanalysis_of_contents_scrambling_system.htm

	825.pdf
	Author Publications
	Table of Contents
	Introduction
	A socio-technical problem
	Jack
	CBSA
	Facebook
	Application developers
	Sophie

	Contributions
	Publications

	Background
	Definitions
	Problems
	Explicit expressions of user intent
	Multi-faceted identity
	High availability
	Untrusted infrastructure
	Social applications
	Cost
	Linkability and anonymity

	Related work
	Encryption within OSNs
	Distributed social networks
	Solutions out of context
	Privacy policy specification

	Antisocial networks
	User data privacy
	Forced open: evolving defaults in privacy settings
	Use of default settings
	A history of changing defaults

	Failed open: advertisers and private information
	Left open: application access to private user data

	Social graph privacy
	Public search listings
	Public listings model
	Graph data
	Approximations of graph characteristics
	Reachability and shortest paths
	Centrality and influence

	Related work
	Summary

	Summary of contributions

	Sharable storage
	Route of trust to root of trust
	Content-Addressed Store
	Immutable blocks
	Naming
	Structure
	Encryption

	Mutable names
	Filesystem
	A root by any other name
	Cross-filesystem sharing
	Writing to shared filesystems
	Garbage collection

	Cost
	Pre-cacheing and traffic analysis
	Covert communication
	Link hiding
	Message forwarding

	Related work
	Summary of contributions

	Distributed Social Applications
	Model of computation
	Securing user data
	Social DRM
	Footlights

	Front end
	Unprivileged application context
	Visual container
	Intra-application communication
	Static content

	Privileged supervisor

	Back end
	Applications
	Distribution
	Initialisation
	File services
	Ajax service

	Confinement
	Static content
	Kernel API
	Files and directories
	Powerboxes
	Synchronous communication

	Persistent key-value store

	Example applications
	Basic demo
	Malicious demo
	Tic-tac-toe
	Photos
	File manager

	Related work
	Summary of contributions

	Distributed authentication
	Problems
	The assertion problem
	Weak secrets
	Location independence
	Limited trust
	Plausible deniability

	Principals
	Insiders
	Outsiders

	Protocols
	Trusted third party
	Semi-trusted storage
	Secret sharing
	Collision-rich password hashing
	Large-M attack
	Impostor identity disclosure attack

	Collision-rich identity hashing

	Passwords and probabilities
	Uniform distribution
	Non-uniform distribution
	Outsider dictionary attack
	Uniform password distribution
	Non-uniform password distribution

	Insider dictionary attack
	Uniform password distribution
	Non-uniform password distribution

	Summary

	Revocation
	Related work
	Summary of contributions

	Conclusions
	Problems
	Footlights
	Future work
	Summary

	Content Delivery Networks
	Bibliography
	Other References

