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Mitigating I/O latency in SSD-based Graph Traversal

Amitabha Roy, Karthik Nilakant, Valentin Dalibard, and Eiko Yoneki
University of Cambridge Computer Laboratory
Cambridge, United Kingdom

Abstract

Mining large graphs has now become an important aspect of many applgatiean
cent interest in low cost graph traversal on single machines has lead ¢torikuction
of systems that use solid state drives (SSDs) to store the graph. An $3i2 eccessed
with far lower latency than magnetic media, while remaining cheaper than main memory
Unfortunately SSDs are slower than main memory and algorithms running brsgstems
are hampered by large 10 latencies when accessing the SSD. In thiswapegsent two
novel techniques to reduce the impact of SSD |0 latency on semi-externabmgraph
traversal. We introduce a variant of the Compressed Sparse Row (@&t that we call
Compressed Enumerated Encoded Sparse Offset Row (CEESORJGEEIS particularly
efficient for graphs with hierarchical structure and can reduce taeesgequired to repre-
sent connectivity information by amounts varying from 5% to as much as TE&ESOR
allows a larger number of edges to be moved for each unit of 10 transferthe SSD to
main memory and more effective use of operating system caches. Oundssmutribution
is a runtime prefetching technique that exploits the ability of solid state drivesrtice
multiple random access requests in parallel. We present a novel Run 3&DdPrefetcher
(RASP). RASP is capable of hiding the effect of IO latency in single ttedaplaph traver-
sal in breadth-first and shorted path order to the extent that it improvasidre time for
large graphs by amounts varying from 2.6X-6X.

Introduction

Mining graph structured data is becoming increasingly irtggd for numerous applications;
ranging across the domains of social networks, bioinfoiceasecurity and many more. A

basic problem with mining graph structured data is thatale& bf locality in such data coupled
with their large size renders building systems that itemater large graphs with reasonable
performance a challenging task [1]. The lack of localityoatseans that traditional abstractions

such as map-reduce [2] do not work well with graph structuieta.

This lack of locality has lead to the assumption that pracgskrge graphs necessarily re-
quires them to be loaded entirely in main memory. Recentlydvew researchers are starting

to explore the possibility of mining graphs on single congpsitwith limited amounts of main
memory. This is a very attractive proposition for mainstnegraph mining without large bud-

gets, a mode of thinking to which we subscribe. Existingeayst [3, 4] that have been built
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to make graph mining practical on single machines advocsitggusolid-state drives to store
graph data. Solid state drives (SSD) are far cheaper (am ofdeagnitude) than main memory
and provide far lower latency than traditional magnetic mebNevertheless IO latency remains
a determinant of performance on such systems with the paatity during graph traversal
rendering main-memory caches of data stored on the SS[eait.

The approach taken by Pearce et. al. [3] uses the fact th@iaahy5SD can service multiple
random access requests in parallel. This is exploited byitm@éaded algorithms to issue a
request from each thread with the aim of hiding 10 latency iamgroving overall throughput.
Unfortunately the design and implementation of multitliedgraph algorithms is difficult, ne-
cessitating complex solutions [5, 6, 7, 8]. On the other hiwedapproach of Kyrola et. al. [4]
uses special on-disk representations and limits usageqieeséal iteration over vertices to
make lower latency sequential IO more dominant. This paedurunning simple breadth-first
traversal on their system. Breath-first traversal is thesbasmany popular graph algorithms
such as shortest paths, connected components and heseigtah and it is used in many im-
portant applications in analysing graphs [9]. This papenasivated by the question of whether
low cost machines can be combined wsimple single-threaded graph travers&Ve therefore
explore the potential for mitigating 10 latency gingle-threadedyraph traversal. Our tech-
niques are easily extensible to multithreaded and asynolograph algorithms, which one
may view as a composition of single threads issuing 10 reigues

Our solution trades main memory capacity for 1O latency.e@ia graph consisting of a set of
verticesl” and edged?; we placeO( V') sized data structures in main memory while leaving
O(F) sized data on disk. Although this needs more memory than elypakternal memory
algorithm, the memory requirements are still capped atoregsle levels, while reducing 10
latency considerably. For example, we run a single sourcdest path traversal over a dataset
from Twitter [10] containing approximately 52 million veres and 1.6 billion edges on a single
machine. We placed 2.74 GB of vertex map data in main mematyedinan additional 2 GB of
main memory as cache. This 4.74 GB of required main memoryadsmtrast to approximately
33 GB of edge related data on the SSD. Further, even in thedas®e a single machine cannot
accommodate this data in main memory, splitting the gragr avset of machines can easily
bring the footprint of data structures within reach for etlem largest of graphsyhile keeping
the overall amount of main memory needed within a reasonalilgdt \We also note that this
assumption is explicitly present in Pearce et. al.'s wotkJBere they term such a distribution of
graph data as “semi-external memory”. The same assumgst@isao implicit in Kyrola et. al.'s
GraphChi [4] that requires enough main memory to hold all thiglmbours of any vertex, this
can easily be seen to translatg20 1V ) main memory requirements for high degree vertices.

Our baseline system is shown in Figure 1. We are concernddtiawersing large graphs in
various vertex orders: sequential, breadth-first and eabgath on a single machine. The most
relevant components of our system are a CPU, RAM and persisterage in the form of
an SSD. During graph traversal, we plagé V' ) amount of data in expensive main memory
together with a small constant sized cache; leaghid@” ) amount of data on the cheaper SSD.
In this context, our paper makes two novel contributions:

1. We propose a variant of the widely used Compressed Spars€é@®R) format that we
call Compressed Enumerated Encoded Sparse Offset Row (CEESBER$OR consists
of anO( V') sized row index that we place in memory and a compreésefl ) offset
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Figure 1: System Overview

vector that we place onthe SSD. CEESOR is targeted at gragihnesrarchical structure
and can reduce the space required to represent the edgertipared to CSR by amounts
varying from 5% to as much as 76%. Reducing the amount of spseded to represent
each edge on the SSD means that each 10 operation can brintaigea number of
edges and each cached page contains a larger number of giggs directly reducing
the amount of 10 needed.

. Prefetch data from the edge list on the SSD before it iseokebhis improves the hit rate
seen by algorithms in the small cache and thereby reducesribant of 10 latency dur-
ing graph traversal. This isdependentf the structure of the graph making it applicable
even when graphs lack hierarchical structure [11]. We presenovel Run Along SSD
Prefetcher (RASP) that prefetches data for vertices belf@gdre needed during traver-
sal. RASP places key data structures (of size proportiorthetaumber of vertices) from
the underlying graph iterator in main memory. For example,pgrform breadth-first
search (BFS) on a power-law graph with 6 billion edges, usisgg GB of RAMinclud-
ing a 2 GB OS cache. RASP improved the hit rate in the OS cache witessing 41
GB of edge data placed on the SSD from 25% to 91%. This in tuduaed the run time
of BFS from 6 hours to under 1.5 hours, an improvement of overldX§eneral, we are
able to speed up a set of basic graph algorithms by amountsgdrom 2.6X to 6X.

We now begin by describing CEESOR in Sections 2 to 4. We theractexise the SSD as
an 10 device in Section 5 before describing RASP in Section é.tiWgn individually evaluate
CEESOR and RASP in Section 7 before discussing related wor&atidh 8 and concluding.

2 CEESOR

CEESOR is based on the Compressed Sparse Row (CSR) format. Qyigiesigned for
storing sparse matrices, CSR is also often used to store jheeady matrix of sparse graphs.
We consider a grapty = (V, E') with an enumeration of the verticds: V' 1.V ([ is
bijective) that produces for each vertexan identifying number (v). The adjacency matrix
of the graphG = (V,E)isaV V matrix A ¢ with Ag(i,j) = 1iff (I71(i),17'(j)) E
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Figure 2: Example of CSR format

with A (i, 7) = 0 otherwise. The adjacency matrix is also sparse and ofteodedcusing the
Compressed Sparse Row (CSR) format.

The CSR format consists of two components: the row index ahdrooindex. The row index
of A is a vectorRg of size V' with R[] being the index of the first non-zero element of
row i in the column index. The column index of; is a vectorCy of size E which is a
row-wise listing of the column numbers of those elementdin which are non-zero. We note
that the traditional CSR format includes an auxiliary valeeter paired with the column index
that actually stores the values in the sparse matrix. Simeadjacency matrix is binary, we
dispense with the value vector in the representation asalve vs implicitly alwaysl .

Figure 2 illustrates how a directed graph of 3 nodes is storedSR format. It should be
evident that we can recover the original adjacency matarfthe CSR format. It should also
be evident that CSR permits direct access to the set of naighlod a vertex through the row
index and iteration over that set. The termination poinhefiterator is determined by looking
up the start of the next row fromil;. We aim to replicate this functionality in CEESOR.

Our starting point for the design of CEESOR is the assumptiahtheO( V' ) sized R fits
in main memory. We therefore focus our efforts with CEESOReamtucing the size of the?
sizedC that is stored on the SSD.

2.1 Hierarchy and Clustering

A significant feature of many real world graphs is hierarcimg/ar clustering as noted by
Clauset et. al. [12]. A key feature of such graphs is that teetrof vertices can be parti-
tioned into subsets such that a majority of the edges aredegtwertices in the same subset.
Clauset et. al. specifically point to ecological niches ind@ebs, modules in biochemical net-
works and communities in social networks. Figure 3 showsrdhgfic example of a graph
with both hierarchy and clustering. In the case of multildverarchies or subclusters within
a larger cluster each of these subsets may be further pagitti CEESOR is a variant of CSR
specifically designed to take advantage of such clustenddhe&rarchy.

CEESOR allows exploiting hierarchy and clustering to redinesize of the column index

that must be accessed from external storage. However, weddimralso ensure that CEESOR
remains competitive to CSR for graphs that do not exhibitcstme, such as random graphs. It
is therefore not exclusively suitable for graphs with hiehg but rather provides the means to
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Figure 3: Hierarchy in Graphs (a synthetic example)
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Figure 4. Example of CEESOR format

exploit hierarchy when it is available.

2.2 CEESOR

CEESOR replaces the column ind@x of the CSR representation with a sign vecterand an
offset vectorO. For any edge we denote’[e], S¢[e] andOg[e] to be be the corresponding
entries for that edge in each of those vectors. For every edge(u,v), we setOgle] =
I(v) I(u);andS ¢[i] = 1iff (I(v) I(u)) > 0 or O otherwise. We therefore represent
entries in the column index by the combination of an offset arsign bit. Figure 4 shows how
the graph from Figure 2 is represented in CEESOR.

CEESOR is designed with the goal of exploiting hierarchy dndtering. If vertices were to
be assigned an enumeration that ensures that the partigscsibed in the previous section are
separatelyenumerated (a problem we consider in Section 3), we are ldft w « being a
small quantity that we then appropriately encode at a lowst.cThis allows us to effectively
exploit graph structure with CEESOR.

2.3 Graphs Without Structure

Before proceeding further, it is important to consider theecavhere the graph does not have
hierarchical structure or clusters. How badly might CEES@®Rqvm in comparison to the
widely used CSR format in this case ? We analyse this situdyoronsidering the case of a
random graplty = (V, E') where every possible edge has an equal probability of beiesept
(the Erdds-Réyni model [13]). We consider the informatibaetretic minimum cost of:
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1. EncodingC; considering vertices as symbols.

2. Encoding) considering the absolute offsets as symbols plbg for the corresponding
entry inSg.

For a random graph, the frequencies of all vertices in terinttssar occurrence i’ is a-priori

the same and when normalised eqqﬁs For a large number of such random graphs with the
same number of vertices and fixed encoding for entrigsjnthe average cost of representing
an entry is bounded below by Shannon’s source coding thefiréni5] as (note: log to base 2
unless otherwise specified):

Vi

> -log(V ) =log( V") @

=1

This means that we cannot represent entrigsqrusing less thatog V' bits on average.

In the case of CEESOR we need to consider the average costiofgsémtries inO; and the
sign bit for edges. In the case Of; the critical observation here is that for an edge= (u, v)
inarandom graphQ[e] = I(v) I(u) is skewed in favour of smaller valugSiven that every
edge is equiprobable: the number of edges) where I(v) I(u) =1is V 1, whilethe
number of edges wheré(v) I(u) = V 1is exactly one. Generalising, the number of
edges wherel (v) I(u) =k, k [1.(V 1)]is V k. We note here that the number of
edges with smaller offsets are more frequent even in randaphgr Shannon’s source coding
theorem now gives the average cost of encoding an entfy.iras (setting the symbol to
representV i and adding one for the sign bit):

vi-1 . V)
1+Z i —log[~2~ (; 2)
1 |V]-1
—log(V )+log(V 1) WZuog(i) (3)

Comparing equation 3 to equation 1, the overhead per entdy;iandS¢; taken together is:

log(V 1) ﬁ Z i log(i)

2

Using the approximation of sums using integrals [16](e eslihse of the natural logarithm):

Vi-1

V|—1
( ! ) Z i log(i) ﬁ/o z log(x) dx

=(1 V)UOQ(V 1) 0.5log(e)]



] 1% \ Overhead\

10| 0.290
100| 0.118
1,000| 0.073
10,000| 0.054

100,000| 0.043
1,000,000 0.036

Table 1: Theoretical Overhead for CEESOR on random graphs

Hence, the overhead is bounded by:

og(V 1) (1 %)[Iog(v 1) 0.5l0g(e)]

log( V' 1) 0.5log(e)

= 0.5log(e) + 7

Hence, the overhead expressed as a fraction of the baselRed&$is bounded by:

0.5log(e) + [log( V' 1) 0.5log(e)]/ V
log( V')

The bound on the overhead drops with an increasing numbegrttes as shown in Table 1.
For large random graphs therefore the overhead is boundeg@bly to under 5%.

2.4 Encoding CEESOR Column Indices

We encode entries in the CEESOR offset and sign vectors soeapkoit low-valued offsets.
We use a variable-length encoding that is decodable withalitttionary. We assume that there
are no self loops and hence no absolute offsets of zero. Wilbedater how self-loops may
be handled in CEESOR.

We represent an absolute offsetising the minimum possiblg bits where(2® 1) o.
Clearly the most significant bit cannot be zero. Given a lisbftsets Algorithm 1 describes
the encoding process. We arrange the offsets in increasiteg and therefore also in order of
increasing bit countWe emit these in big-endian order with additiofdbits separating entries
where the number of bits needed for representation incsease

Algorithm 2 describes the decoding process. Note that theridhm represents one step in an
iterator that is used to scan the edges connected to a vertex. We schih skream correspond-
ing to entries inD¢. At any instant we maintain the current size of entries,eaasing by one
whenever we see a leading zero.

Finally, R, contains abit-level index into Og, which is now a bit-stream. For convenience
we interleave the bits frony into Og. We do this by placingS:[i] at the end of the bits
representin@[:]. This extra bit is read by the decoder immediately afterirep@;|i], before
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Figure 5: CEESOR examples after encoding

Algorithm 1 Encoding CEESOR entries
Require: L is the list of offsets to be emitted
sort L
bits := 1
while L is not emptydo
entry := offset at head of L
if (2P 1) < offsetthen
Emit0
bits := bits + 1
else
Emit entry in big-endian (leading bit first)
remove entry from L

proceeding further. For illustration, we show the encodethfof the CEESOR representation
in Figure 4 in Figure 5.

In the case of CSR (CEESOR), we put the sizedCs (encodedO and Si) in external
memory while retaining thd” sizedR in main memory. Our implementation uses 64 bits for
each entry in the row-indeR.. To support self-loops we reserve the topmost bit of thexnde
to indicate a self loop. Hena@y; is limited t02% bits = 32 petabytes.

This encoding chosen for CEESOR further inflates the ovesheaer CSR shown in Table 1.
However, we show in our evaluation in Section 7 that CEESORaseroptimal that CSR for

Algorithm 2 Decoding CEESOR entries
Require: L is the list of bits to be decoded
Require: size is the current decoding size
while bit at head of L is Glo
Size :=size +1
remove bit at head of L
entry ;= ‘size’ bits at head of L interpreted in big-endian
remove ‘size’ bits from head of L
return entry
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all the graphs we have considered.

3 \Vertex Enumeration in CEESOR

It is evident that the efficiency of CEESOR depends on the eratioa of vertices. Enumera-
tions that place connected vertices close together leatbtesavith smaller values for offsets. In
this section we consider a heuristic for achieving bettenggrations for graphs with clustering
and hierarchy, the target for efficiency with CEESOR.

The cost we wish to minimise is that of offsetsi.. For a graplG = (V, E), the cost in bits of
the entries ir0, disregarding the encoding overhead of separator zeralitsthe interleaved
sign bit is:

E(u,v)GE( lOg I(U) I(U) + ]')

We wish to minimise this cost by choosing an appropriate esration/(v). We note that the
closely related problem of minimising:

Z(u,v)eE I(U) I(u)

is known to be NP-hard (the minimum linear arrangement @bl Although we have not
proved that minimising CEESOR is also NP-hard, we use a h&ufe minimising the cost
rather than attempting to find provably efficient algoritH8mce our objective with CEESOR is
graphs with hierarchy, a possible heuristic to do this igolyaa graph clustering algorithm and
recursively enumerate each cluster separately. Howeéweinput edge list is a large external
memory file and this makes most clustering algorithms vemyeasive in terms of 10. We
instead chose to design our own enumeration, which is basé¢kdeocombination of a depth-
first traversal of the graph and a heuristic to pick nodesrongeration. The driving intuition is
to try to enumerate connected vertices close together soragtmise the cost of representing
that edge in CEESOR.

Given a graplts we traverse it in depth first search (DFS) ortteating the graph as undirected
This produces a forest of DFS spanning trees over the graphakesO(V + FE ) time
andO( V') space. During this DFS enumeration, we also store, for eadiex; the number
of vertices covered by the DFS subtree rooted at it. We calttre weight of the subtree
rooted at that vertex. We then enumerate each tree in thetfeeparately. Clearly there is
nothing to be gained by enumerating them together, since thee no edges between trees
whose representation cost could be minimised.

Consider a DFS tre€ with rootr and weighto(r). An example of such a DFS tree is shown in
Figure 6. The solid edges are part of the spanning tree wieleldashed edges (each connected
to some vertex within the respective spanning sub-treesyeat: It is important to note that the
nature of depth first search results in there beingedges present between nodes in different
subtrees Therefore- is a bridge node removing which would cause subtrees belkmbi#come
disconnected (as can be seen from the example in Figure 6Ehddse to enumerate each of
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Figure 6: A DFS Spanning Tree

the subtrees completely and separately. This is in factesedirategy if we ignore the presence
of r. Our strategy of partitioning the graph around bridge naeh as is also driven by the
observation that bridge nodes connestativelydensely connected clusters in many real-world
graphs.

The next aspect is to choose the order in which we want to eraiesubtrees. Our strategy is
to always consider the heaviest subtree first. Starting fr@rheaviest subtree ensures that any
large connected components deeper in the DFS hierarchyamdiced in a subtree are enu-
merated first. They do not then contribute to the representabst of edges from into other
subtrees as these edges do not need to cross over the virticedirst subtree enumerated.

The final aspect is choosing exactly when to enumerate ttie- @®there are possibly multiple

edges fromr into each of the subtrees. We attempt to pla@ the mid-point of the enumer-

ation. This minimises the cases where an edgat of » has a higher value for the offset than
half the number of vertices in the entire DFS tree.

In summary, our enumeration heuristic starting from the €8 in the example is as follows:
we completely (recursively) enumerate subtrees bel¢Wl to Tn) one by one until the com-
bined weight of the enumerated subtrees is greater tharuat gy (r) /2, We then enumerate
r and then continue enumerating the remaining subtrees bieldve always consider the heav-
iest subtree first (this costs at mést £ ) time orO( V' ) space) but consider all other subtrees
in the order obtained from DFS over the existing graph.

4 Converting CSR to CEESOR

Our toolchain converts graphs from CSR to CEESOR. We requirenthé graph to be either
undirected or available in bidirectional form so that we n@at it as undirected for building
the DFS tree. This sometimes necessitated an extra stepversion.

Two steps in the CSR to CEESOR conversion are of concern widrdeg overall conversion
time. The first is the generation of the DFS trees. This leadartdom access over the edge list
and is the most time consuming step. We perform this stepitkgepe column vector of the
CSR file on SSD and the row index in memory. The slowest SSD we Wwavked with has a
latency of 75us for a random read. This means that a deptlsdiasch can process about a mil-
lion edges in 75 seconds and a billion edges in 21 hours. WWethat conversion is a one-time
cost to pay and the costs would be significantly lower withsselaSSD or by loading the graph
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in the RAM of a large cluster for conversion. Also the CEESORmat allows the addition
or deletion of vertices and edges, with representationieffoy degrading as a function of the
number of added edges. The other step of concern in this amds the sorting of offsets in
order to emit them in increasing order into CEESOR (AlgorithmWe do this using counting
sort [16] withO(log V' ) space and( V log V' ) complexity overall. The overall complexity
of the conversion from CSR to CEESOR is therefoXeV log V' + E ) considering both the
O(V + E)enumeration and( V log V' ) sorting cost during encoding. It is accomplished
usingO( V') space. The offsets, encoding and enumeration aspects of @EEBE&: its essen-
tial differences from CSR and hence the name Compressed Eatedéincoded Sparse Offset
Row.

5 SSD IO Characteristics

Solid state drives are persistent storage devices tha d&da using non-volatile flash memory
(usually NAND flash) rather than on magnetic media like tiadal hard drives. SSDs contain
no moving parts and this makes them fundamentally differet@rms of 10 characteristics from

traditional magnetic drives. From the perspective of gferfor graphs, two characteristics of
SSDs are of particular interest:

 Like magnetic media, SSDs provide far better throughpdtlewer latency for servicing
sequential requests as opposed to random access ones.iffEnental performance in
fact is one of the key focus areas for closely related work sicGraphChi [4].

» Unlike magnetic media, SSDs can service multiple randooess requests in parallel
without suffering degradation in the latency of servicimgidividual request. We refer
to this in the paper as the number of inflight requests (alfeyned to in literature as the
queue depth).

A useful model for understanding the 10 characteristics2iDSis Little’s Law [17]. This views
the SSD as a black box. If we then assume fkias the number of outstanding requests to the
SSD, R is the average response time for servicing a requesiasthe throughput obtained in
terms of requests per unit time, Little’s Law says that aadyestate:

N =AR

The throughput X) from an SSD therefore depends on the number of inflight relguand
the average latency of servicing a request. Our objectitle RASP in the next section is to
maximise the throughput from the SSD. In our current impletagon, we have little control
over latency as that is determined by the software stackl@&8D controller itself. We use
Linux without tuning, depending on its virtual memory sufitgyn for buffering. However,
we have direct control over the number of in-flight requeStwarting from a small number of
inflight requests &), throughput generally increases with an increasing vafu®’. In this
situation latency holds roughly constant as the SSD is abgetvice requests in parallel and
gueuing delays in the software stack are minimal. The thipugreaches a maximum after
which queuing delays primarily due to the inability of the[5® respond to requests leads to

13
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Figure 7. SSD 10 throughput

latency growing with the number of inflight requests. Thipséhe available throughput from
the SSD.

We have used a Samsung™512 GB SSD for the experiments in dper.p We used the
Fl exi bl e | O[18] benchmarking tool to obtain the response curve forughput (measured
in kilobytes of data read per second) with a varying numbenfiight requests for that SSD.
Figure 7 shows how throughput varies in a manner consistghtlwitle’s Law, as the number
of inflight requests for 4KB pages is increased. That figuse ahows that sequential accesses
can be serviced with a higher throughput than random acgesse

There is therefore a certain number of in-flight requests lgeds to maximum throughput
from the SSD. This number is different for random 10 as opddeesequential 10 (as Figure 7
shows). At this optimum point, the SSD is able to supply a p#800000 KB/s for sequential

accesses and 225000 KB/s for random accesses. The objetctive @R)un (A)head (S)SD

(P)refetcher (RASP) in the next section is to ensure thandute execution of graph algo-
rithms, the number outstanding requests to the CEESOR fitedrethe SSD is maintained at
this optimum number for each type of 10.

6 RASP

We now discuss our Run Ahead SSD Prefetcher (RASP). RASP takastade of SSDs to
service multiple requests in parallel. It aims to reduce t@lsduring semi-external memory
traversal of large graphs by prefetching data into main mgrhefore it is needed. We begin
this section by providing an overview of RASP. We then prowaheimplementation sketch
detailing how the prefetcher works. Finally, we discuss RSP can be integrated with
different types of graph algorithms.

6.1 Overview

RASP is based on the observation that a large majority of gadgdrithms are built around
different kinds of iterators. Informally an iterator for @aagh consists of a current verteX(
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Algorithm 3 RASP Prefetcher
Require: v is the current position of the vertex iterator
Require: IFT is the inflight-target
Require: | ssued is a constant sized hash of issued requests
Needed := Runahead(IFT)
for all = in Needed considered in ordedo
if z /I ssued then
Issue prefetch request for CEESOR page of
Add z to Issued

internal state.{) and the graph being iterated a@)( An iterator therefore may be represented
by the triple< v, S, G >. The current vertex is simply the projectiafex< z, S,G >) = z.

An iterator supports the next function Néxtv, S,G >) =< v/, 5", G >. RASP depends on
the iterator beingeparable from the grapiThis means that there exists a runahead fundtion
and an integek(S) > 0 such thati k(S) : R (< v,5 >) = menexNext (< v, S, G >)).
The runahead function is therefore able to determine thenagcessed, without reference to
the graphG. A simple example of this is breadth-first search (BFS) iterabver the vertices
of a graph. The set of vertices to be accessed next is heldlif@dueue that can be consulted
to determine the next set of vertices to be accessed witkference to the graph.

RASP contains two components:

1. Prefetch: Given a sequence of vertices to be accessesl assat of requests for the
corresponding CEESOR pages to the SSD to achieve the optif8aatign 5) number
of inflight requests. The prefetcher calls the runahead compt (described next) with a
target”'.

2. Runahead: The runahead component computes the resuk ofithhead function to
determineat mostthe nextT” vertices: R ™" (5):1)(< v, S >) . It returns arordered
list.

6.2 Prefetch

The prefetcher is responsible for issuing requests to the I&8ed on the Runahead function
and is parameterised by the inflight target (IFT). We idgrttie sequential and random inflight
targets from the response curve described in the previati®se The prefetching algorithm
used in RASP is shown in Algorithm 3.

The RASP prefetcher is based on the simple observation thatiggn of the graph algorithmis
synchronous and therefore stalls on an 10. Hence, startingthe current position of the vertex
iterator (where the algorithm is likely stalled) the prefetr issues requests for the n&&T
number of needed vertices from the CEESOR file. It maintairessé for these issued requests.
A new request is issued only if it does not match one of thel I&Strequests. Since the iterator
only makes progress when data is returned from the CEESORhigesimple scheme ensures
that the number of inflight requests is maintained &t .

The prefetcher calls the runahead component (describdtkindxt subsection) to provide it
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conmponents = 0; for(i=0;i<vertices;i++) {
if(!vertices[i].visited) {

conponent s++; 3
bf s_queue. push_end(i); 4
visited[i]=TRUE; 5

whi | e(! bf s_queue. enpty(9) {
v = bfs_queue. pop_front();
CEESOR_FOREACH_NEI GHBOUR( v, Xx) {
If(lvisited(x)) { o
bf s_queue. push_end(x);
visited[ x] = TRUE:
111} 2

Figure 8: Connected components for an undirected graph

with enough vertices to issud-T requests to the SSD. There are two key problems in deciding
how many vertices of lookahead are needed to satisfy thefoeeéd T requests to the SSD:

1. Multiple vertices can map to the same page in the CEESORniildhance they coalesce
to one IFT request. This problem is easily handled by havregrtinahead component
filter out vertices from the target that can be coalesced attier requests by virtue of
mapping to the same page in the CEESOR file. We have implem#mnsddtering in our
system.

2. Depending on the locality of the CEESOR file it is possibleréguests in the IFT budget
to hit the operating system cache. This results in undesatibn of SSD bandwidth. The
only way to get around this problem is to further filter thosetices that are already in
the cache, something that we have not implemented in thisrpap

6.3 Run-ahead

We now discuss the run-ahead component, which is resperfsibbomputing Lookahead. In
this paper, we discuss lookaheads for three types of itesraive use the example of discov-
ering connected components using breadth-first searchrsimoigure 8 for illustration. That
example contains two iterators: the first is a simple seqaigtgrator over the vertices at Line
2 while the second is a breadth-first iterator at Liffes 8. We discuss each of these in turn
followed by a simple extension to the breadth-first seamtator, the priority queue iterator.

6.3.1 Sequential Iterator:

The sequential iterator iterates over the vertices in turherefore, given the current vertex
numberv the next vertex is simply + 1. The runahead function therefore is simgy(<

v, S >) = I(v) + ¢ (wherel(v) is the vertex number corresponding to vertgx k(S) is just
the remaining number of vertices to iterate over.
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6.3.2 Breadth-first Iterator:

The breadth-first iterator is somewhat more complicateohfaocrunahead perspective. We note
that the state of the iterator is maintained in a queue ofoestto be visited and this queue is
accessed in First In First Out (FIFO) order. If the size ofdheue isk then the next vertices
are simply the nexk elements of the queue in order. Therefé(e&) is the size of the FIFO
queue encapsulated by the ststand R’ (< v, S >) is simply thei! element of the FIFO queue
encapsulated i

6.3.3 Priority Queue Iterator:

Workloads such as single-source shortest path (SSSP) feé6¢ssentially like breadth-first
search but replace the FIFO queue with a priority queue dfces. Each vertex is assigned
a (changing) weight from the time when it is discovered andipthe priority queue to when
it is finally removed at the point where it has the minimum virtigmong all elements in the
priority queue. The fact that weight can change during etxecuenders it difficult to come
up with Ri(< v, S >) without reference to the underlying graph However agood approxi-
mationis to ignore changes to the weights in the priority queue a#evate over it. We then
pick the topk elements from the priority queue whekds much smaller than the number of
elements in the priority queue. This approximation dep@mdhe topk elements not changing
during the next: steps of the iterator, an assumption that tends to hold iatiseaas weight
updates are bounded below by the weight of the vertex tham®ved from the priority queue.

There are a number of priority queue data structures thawvaélection of the tog elements.

A simple solution is to fixk and then use a sorted array for the togertices while the remaining
vertices are maintained in a standard heap, keeping astimptaunds the same as a heap for
all the elements. Since RASP is clearbferant of incorrect vertex selection by the runahead
componentwe use an even simpler approximation in our implementativa use a binary
heap (of dynamic sizeS ) stored in an array (of sizé” ) and consider the topuin (7, S )
elements of the array for each requestfovertices from the prefetch component. We show in
our evaluation that inspite of these approximations, RAS®iges good speedups for SSSP.

6.4 Handling Multiple Iterators

We use two prefetchers, one for sequential iterators andttiex for random access iterators.
This is driven by the observation that SSDs demonstrate difigrent 10 characteristics for
sequential reads as compared to random reads and therefarsena different prefetcher for
each type, with a different setting for the inflight targdtT{) for each. We allow the operating
system scheduler to divide available 10 bandwidth betwhesd two types of request streams.

We handle multiple instances of the same type of iteratorditpning the quota of inflight
requests between them. The allocation depends on thegesttarators. We allocate the entire
IFT budget first to the innermost iterator and then move upcalingleftoverinflight request
budgets to the next outer iterator. For two iterators at Hmaeslevel, we allocate equally to
the two,interleaving prefetch requests from each iteratdhe rationale behind this allocation
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strategy is to prefetch pages from the CEESOR file in the ordesich they are required by
the synchronously executing graph algorithm.

Multiple iterators of the same type occur in this paper wiBS®. We store edge weights in
a separate file and therefore we have two iterators at the Emlewith SSSP, one reading
the structure from the CEESOR file and the other reading edgghtgerom the property file.
Following the strategy outlined above, we allocate halhef =T budget for the random access
prefetcher to the CEESOR file and the other half to the progitety

6.5 Costs and Limitations

In order for RASP to successfully hide 10 latency it is impattthatthe internal state of the
iterator can be maintained entirely in main memone note that the iterator state in all the
examples given above are of si2¢ V' ) and our underlying assumption in this paper is that we
are willing to pay the cost of storing such data structurea@in memory.

RASP works for a large number of algorithms but is not a catthedution. The most serious
limitation of RASP is that it is not applicable to those algimms where the iterator is not
separable from the graph thereby precluding the construcif a runahead function for the
iterator. An example of such an algorithm is Depth First SedDFS). DFS uses a stack of
vertices, with the next vertex to be explored begsmgme neighbour of the vertex at the top of
the stack There is therefore no way to determine the next set of \egtioc be accessed without
reference to the CEESOR file; rendering RASP ineffective fobDIVe note however that DFS
can be restructured to work with RASP. It is possible to stbeertextl FT neighbours along
with a vertex in the stack, which can be used to compute thaheed in RASP. This would of
course inflate the main memory cost of the algorithm by a @mgactor.

Another important limitation for RASP is the need for coneumtraccess to iterator state. We
use a separate thread for prefetching in order that the mesad running the graph algorithm
is not slowed down. Hence, the prefetch thread must reaaltdiestate in order to compute
runahead simultaneously with the main algorithm thread ifyimg) it. There are a number
of well known techniques for concurrent access to data &tres that can be used for safely
interleaving access for both threads. In our case the deydtave statically allocated( V')
sized structures (such as the queue in the BFS example oeR8yuvWe appropriately initialise
these structures and allow the runahead to travenathbut synchronisatiaon This leads to
the runahead working on an inconsistent snapshot. Howev&MRlerates approximations
to the runahead function and therefore our design tradeshsynisation overheads for wasted
prefetch bandwidth.

7 Evaluation

We have implemented CEESOR and RASP as C libraries that ardoysggorithms and itera-
tors written in C. We use a system with a 3.2Ghz Intel™i7 CPU hadi12 GB Samsung™SSD
characterised in Section 5. We describe the precise merootgrints of our benchmarks later
in this section. The overall amount of main memory in our eystvas 32 GB, too small to fit
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all our graphs. In the interests of portability and simpjicive chose to use the virtual memory
subsystem of the stock Linux 3.2 kernel running on the system cache by memory mapping
the CEESOR file. Prefetch requests were issued via the sthpdar x_f advi se interface
using theW LLNEED hint. We did no tuning of the (Ubuntu 12.04) system other ttigabling
operating system readahead for the SSD as it caused thenkeasgstem without RASP to
perform poorly. We did so in the interests of a fair quantifma of the speedups due to RASP.

7.1 CEESOR

We begin by evaluating CEESOR on a range of graphs shown ie 2abljudge its efficiency at
representing edge-list data. We tried to pick as many diffegraphs as possible to demonstrate
the general applicability of CEESOR.

The first eight are the largest real-world graphs availabkaeé online Stanford Large Network
Dataset Collection [19]dfter eliminating isolated verticgs In addition we also consider the
DIMACS [20] road network of the entire United States. The Teritdata set was available
online [21] and we used the connectivity information froratttata set. The scale-free (power-
law) graph was generated using the Graph500 tool [22] whasdifiis based on a recursive
matrix generator [23]. We modified the generator slightlptiwput edges to external memory.
It would otherwise buffer the entire graph in main memory,ckhis unfeasible for the size
of the graphs we wished to consider. We also enabled a prdeessnoothing the degree
distribution of vertices in the generated graph to ensuaevle had a true scale-free graph. We
wrote our own generator for generating random Erdds-Réyapltg, while the Watts-Strogatz
graph was generated using SNAP [24].

We compare CEESOR to plain CSR using the following metrics.

1. Bits per edge with CEESOR [Bits(CEESOR)]: This is the actuallmemof bits per edge
in the CEESOR representation after the enumeration usinglglogithm of Section 3.

2. Bits per edge with CSR [Bits(CSR)]: We assume a fixed length septation using
log(V') bits for each entry in the column index. Note that this is a eetrat unfair
point of comparison as it restricts additions to the CSR farwiaile there is no such
problem with CEESOR.

Table 2 clearly illustrates the efficiency of CEESOR for theaas graphs in our data sdh

all cases CEESOR is more efficient than CBRe reduction in the size of edge data (stored on
external memory in our case) varies from 5% to as much as 78%ADS shows the largest
reduction in size. This is not surprising as the road netwsrk grid-like graph with a large
amount of clustering, that is automatically detected ampdicgted by the enumeration algorithm.
Geographically close road junctions (vertices) are assigrearby enumerations leading to their
connecting edges (roads) being represented with smaéitefféinally, CEESOR outperforms
CSR even for random graphs (Erdds-Réyni) confirming the aisdlySection 2.2.
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Graph VIE Bits(CEESOR)| Bits(CSR)| Saving
amazon0601 403,394/244,308 13.04 19 31.36%
ca-HepPh 89,209/118,489 10.26 17 39.65%
cit-Patents 6,009,555/16,518,947 18.22 23 20.78%
p2p-Gnutella31 62,586/147,892 11.73 16 26.69%
soc-LiveJournal 4,847,571/42,851,237 18.45 23 19.78%
soc-sign-epinions 131,828/711,210 14.27 18 20.72%
web-Google 916,428/4,322,051 11.47 20 42.65%
wiki-Talk 2,394,385/4,659,565 17.61 22 19.95%
DIMACS-USA 23,947,347/28,854,312 5.84 25 76.64%
Twitter (TW) 52,579,682/1,614,106,187  23.3752 26 10.10%
Erdds-Réyni (ER) | 20,000,000/1,999,990,173  23.4907 25 6.04%
Scale-free (SF) | 134,217,728/6,652,662,596 25.645 27 5.02%
Watts-Strogatz (WS) 20,000,000/1,999,995,087 20.3891 25 18.44%

Table 2: CEESOR Efficiency

7.2 RASP

We implemented breadth-first, SSSP and sequential itsrtoevaluating RASP. For the SSSP
iterator, we added a property file with random floating-peidge weights in the range, V')
for the graphG = (V, E'). We used these iterators in turn to implement the followighiook
single-threaded algorithms:

» Page-Rank We compute the page-rank of a graph: the probability foheasrtex that
random walk will reach that vertex. This is a well known me{25] that we compute
using an iterative approach where each vertex propagateartent probability to all its
neighbours. We implement page-rank using a sequentiataethat is repeatedly run till
convergence.

» Breadth-first Search (BFS) Visit every vertex in breadth first order starting from a-ran
domly chosen source vertex. This is just the breadth-fesaior.

 Single source shortest path (SSSPompute the length of the shortest path from a
randomly chosen source vertex to every other node in thehgr88SP is implemented
using the SSSP iterator.

In addition to these three algorithms we also implementédisas to the problems of Maximal
Independent Set, computing conductance over graphs, mniocost spanning trees and the A*
heuristic search algorithm. We found that in each caser;, fegformance was identical to one
of the three algorithms above. This is unsurprising as tlosist of the same basic iterators
and are 10 bound. We therefore report only the basic algosthsted above.

We use the four largest graphs in our data set which are thlaggraphs in Table 2 to evaluate
RASP. Since our objective is to provide an 10 workload we arefchto remove sources of
variation in the runtime that are not attributable to IO pemfiance. For BFS and SSSP we
try every possible start vertex in an enclosing sequerndegdtor, reporting the overall runtime.
This ensures that the entire CEESOR file on SSD is accesseadlesgof the randomly chosen
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Main Memory Speedup over CSR

Graph BFS [ SSSP| Pagerank Cache| CEESOR| Edge weight-g = seesrbagerank
Twitter (TW) || 1.18| 2.74 | 157 | 2 9.16 2405 | 1.40| 1.08| 115
Erdds-Réyni (ER) | 0.45| 1.04| 060 | 2 | 1140 | 29.80 |1.00] 1.00| 1.00
Scale-free (SF) | 3.00| 7.00 4.00 2 41.27 99.13 1.10| 1.05 1.00

Watts-Strogatz (WS) 0.45| 1.04 | 060 | 2 9.96 29.80 | 153| 1.03| 126

Table 3: Memory footprint in Gigabytes and speedup over CSR

RASP Speedup

Pagerank
SSSP
6 BFS o—

Time(baseline)/Time(RASP)

TW WS SF ER

Figure 9: RASP Speedups for CEESOR

start vertex. For pagerank we fix the number of iterationsvat th ensure a consistent 1O
workload. We converted the only undirected graph, Wattegféitz, into a directed one. The
largest component in this converted graph traversed by BESS&SP is 18,954,432 vertices
out of 20,000,000, ensuring we remained close to the urtdaestructure.

Table 3 shows theuntime memory footprints for all the combinations of graphs anddben
marks that we have run. In all cases, we limit the availablenorg for the OS cache (that
caches pages from the SSD) to exactly 2 GB. This includes dpaaperating system data
structures, the kernel and application images. The sumeohtimbers in any row, with the
exception of the last two entries is therefore greciseamount of RAM used during the ex-
ecution. The table underlines a key design philosophy af plaper: more bulky)( E ) data
resides on the SSD while small@x V' ) data is placed in main memory.

Switching to the CEESOR format from CSR provided both spacegawas well as translating
to reduced IO as each 10 operation brings in a larger numbeigéds; effectively inflating SSD
bandwidth. The last three columns of Table 3 show the speedibiained by switching from
CSR to CEESOR. The largest speedups are for the two graphs edpgediave structure: the
real world Twitter graph and the Watts-Strogatz graph.

We now focus on evaluating RASP by considering our baselibe the algorithm running over
the CEESOR file without RASP.

The results of running the algorithms with and without RASE ssmmarised in Figure 9.
RASP speeds up the execution of single-threaded graph thgarithat are mostly 10 bound
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OS Cache Hit Rate (baseline)

1
Pagerank
SSSP L]
BFS ——
0.8
0.6
©
T 04
0.2

™ WS SF ER

Figure 10: OS Cache Hit Rate CEESOR without RASP
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Figure 11: OS Cache Hit Rate CEESOR with RASP

by amounts varying from 2X to 6X. The speedup originates freducing the 10 latency due
to improved utilisation of the SSD bandwidth, starting freymchronous single-threadegdaph
algorithms.

The basic driver for this improved performance is reducetaténcy. Accesses to the CEESOR
file now see hits in the operating systems cache as necessarhas already been prefetched
by RASP. This is illustrated in Figures 10 and11l. We definaiteg over all neighbours of a
vertex as one access to the CEESOR file. We divide the numbeajof page faults by this
metric to obtain the miss rate. The hit rate is improved abersibly by prefetching. The lowest
final hit rate is with SSSP. This is due to the lookahead bemggmproximation as described
in Section 6.3.3, although this can be mitigated with datacstire improvements described in
that section. RASP uses the available bandwidth of the SSPprédetching, this is shown in
Figures 12 and 13. The increased read throughput from thess$plies the demand from
the prefetcher. Finally, the high baseline hit rate of pagkiis due to its sequential nature that
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SSD Read KB/s (baseline)
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Figure 12: SSD Read Throughput CEESOR without RASP
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Figure 13: SSD Read Throughput CEESOR with RASP

completely uses all data on a fetched page before movingetaghkt. Table 4 shows absolute
runtimes for the largest graph in our data set (6 billion ejige

It is interesting to contrast other results in the single Inmae category with ours. Bader et.
al. [26] report on breadth-first search on a scale free grapghMbillion edges in 2.5 seconds
on a Cray MTA-2. In comparison our system performs breadgtggarch of 1 billion edges in
0.21 hours or about 300 times slower. On the other hand otersysosts under $2500 while a
Cray MTA-2 would be in the region of millions of dollars: abdl@00 times more expensive.
Graphchi [4] achieves a single page rank iteration on thdt@wgraph with an SSD in 158

seconds in comparison to our 180 seconds. We note howeweththareport main memory

usage of 8 GB compared to only 3.57 GB in our case.

Our results also illustrate the limitations of our curremplementation of RASP. Some of the
requests from the prefetcher are already in cache leadimgasted SSD bandwidth. Conse-
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Algorithm || Base (hr.)) RASP (hr.)| £(S) 1000
BFS 6.32 1.28 75%
SSSP 15.67 3.75 75%
Pagerank 3.98 1.50 N/A

Table 4. Absolute Runtimes for Scale-free Graph

guently the hit rate does not touch 100% even with accurateloead in BFS.

There is however enough parallelism exposed by the lookhh&a Table 4 shows, for 75%

of the time the runahead can access more than 1000 vertibesmEans that there is enough
scope for filtering out prefetch requests for pages alreaadyache. This is something that our
current implementation does not include as Linux does notige a low latency mechanism

for querying the contents of the operating system cache thenuser program. This can easily
be remedied in a graph processing system with its own buféerager.

8 Related Work

Researchers have also explored distributed graph progessiway to scale graph processing
algorithms for large data sets. Notable among these appesas the Bulk Synchronous Pro-
cessing (BSP) style of approaches adopted by systems suckged R7]. These approaches
partition the graph among multiple machines and synchrsigawpdate properties of vertices
at each computation step. Also in the category of distribatgproaches are graph databases
and graph query platforms such as Trinity [28], Neo4j [29] &typerGraphDB [30]. Many of
these systems load the entire graph into main memory prigrdcessing.

Due to their generic nature both CEESOR and RASP can individbal incorporated into
systems that store the graph in main memory and/or make usaltthreading. CEESOR can
be used to reduce the footprint of graphs regardless of whegemay be stored. RASP can
also be used to prefetch graphs into shared last level caoh@&mon on many multicores today
to alleviate the cost of cache misses even in main-memortithmeladed graph algorithms.

Another key area of related work is graph compression. CEE&@Rpts to compress the edge
list of graphs with structure. On a similar note, researsleare exploited specific structures of
real-world graphs such as web graphs to design compredgioritams for them [31, 32]. We
also exploit structure inherent in the graph to reduce tlresmeeded to represent it. Unlike
the other approaches thougie can access the adjacency list of a vertex without referemnce t
other vertices or dictionariesThis is key to reducing IO latency; the other approachesladvou
have required multiple references for decompression llyerereasing 10 latency but possibly
providing better compression than CEESOR. Further, CEESOPRosispseamless updates as
the in memory index consists of pointers and individual egljey lists can be copied or updated.
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9 Conclusion

This paper has presented two novel techniques: CEESOR and. RAHSOR is a variant of
CSR that reduces the amount of space needed to represengthéstadf a graph; and RASP
is a runtime SSD prefetcher for graphs that have hitherta beasidered to have poor locality.
We have demonstrated that CEESOR can significantly reducgptee required to represent
graph edges and RASP can lead to large speedups and higlekitaigh even small memory
caches. Both CEESOR and RASP are basic building blocks in I@vgraph processing sys-
tems that we currently use as well as in systems we are bgi[@8]. We are investigating low
cost graph partitioning algorithms [34] and adapting agpnation algorithms for the related
minimum linear arrangement problem [35] for even more edficienumeration in CEESOR.
We are also exploring automating RASP by integrating it inbondin specific languages for
graphs [36] as well as removing operating system relatecheagls currently present in our
implementation.
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