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Mitigating I/O latency in SSD-based Graph Traversal

Amitabha Roy, Karthik Nilakant, Valentin Dalibard, and Eiko Yoneki
University of Cambridge Computer Laboratory

Cambridge, United Kingdom

Abstract

Mining large graphs has now become an important aspect of many applications. Re-
cent interest in low cost graph traversal on single machines has lead to theconstruction
of systems that use solid state drives (SSDs) to store the graph. An SSD can be accessed
with far lower latency than magnetic media, while remaining cheaper than main memory.
Unfortunately SSDs are slower than main memory and algorithms running on such systems
are hampered by large IO latencies when accessing the SSD. In this paperwe present two
novel techniques to reduce the impact of SSD IO latency on semi-external memory graph
traversal. We introduce a variant of the Compressed Sparse Row (CSR)format that we call
Compressed Enumerated Encoded Sparse Offset Row (CEESOR). CEESOR is particularly
efficient for graphs with hierarchical structure and can reduce the space required to repre-
sent connectivity information by amounts varying from 5% to as much as 76%.CEESOR
allows a larger number of edges to be moved for each unit of IO transfer from the SSD to
main memory and more effective use of operating system caches. Our second contribution
is a runtime prefetching technique that exploits the ability of solid state drives to service
multiple random access requests in parallel. We present a novel Run AlongSSD Prefetcher
(RASP). RASP is capable of hiding the effect of IO latency in single threaded graph traver-
sal in breadth-first and shorted path order to the extent that it improves iteration time for
large graphs by amounts varying from 2.6X-6X.

1 Introduction

Mining graph structured data is becoming increasingly important for numerous applications;
ranging across the domains of social networks, bioinformatics, security and many more. A
basic problem with mining graph structured data is that the lack of locality in such data coupled
with their large size renders building systems that iterateover large graphs with reasonable
performance a challenging task [1]. The lack of locality also means that traditional abstractions
such as map-reduce [2] do not work well with graph structureddata.

This lack of locality has lead to the assumption that processing large graphs necessarily re-
quires them to be loaded entirely in main memory. Recently however, researchers are starting
to explore the possibility of mining graphs on single computers with limited amounts of main
memory. This is a very attractive proposition for mainstream graph mining without large bud-
gets, a mode of thinking to which we subscribe. Existing systems [3, 4] that have been built
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to make graph mining practical on single machines advocate using solid-state drives to store
graph data. Solid state drives (SSD) are far cheaper (an order of magnitude) than main memory
and provide far lower latency than traditional magnetic media. Nevertheless IO latency remains
a determinant of performance on such systems with the poor locality during graph traversal
rendering main-memory caches of data stored on the SSD ineffective.

The approach taken by Pearce et. al. [3] uses the fact that a typical SSD can service multiple
random access requests in parallel. This is exploited by multithreaded algorithms to issue a
request from each thread with the aim of hiding IO latency andimproving overall throughput.
Unfortunately the design and implementation of multithreaded graph algorithms is difficult, ne-
cessitating complex solutions [5, 6, 7, 8]. On the other handthe approach of Kyrola et. al. [4]
uses special on-disk representations and limits usage to sequential iteration over vertices to
make lower latency sequential IO more dominant. This precludes running simple breadth-first
traversal on their system. Breath-first traversal is the basis of many popular graph algorithms
such as shortest paths, connected components and heuristicsearch and it is used in many im-
portant applications in analysing graphs [9]. This paper ismotivated by the question of whether
low cost machines can be combined withsimple single-threaded graph traversal. We therefore
explore the potential for mitigating IO latency insingle-threadedgraph traversal. Our tech-
niques are easily extensible to multithreaded and asynchronous graph algorithms, which one
may view as a composition of single threads issuing IO requests.

Our solution trades main memory capacity for IO latency. Given a graph consisting of a set of
verticesV and edgesE; we placeO(jV j) sized data structures in main memory while leaving
O(E) sized data on disk. Although this needs more memory than a purely external memory
algorithm, the memory requirements are still capped at reasonable levels, while reducing IO
latency considerably. For example, we run a single source shortest path traversal over a dataset
from Twitter [10] containing approximately 52 million vertices and 1.6 billion edges on a single
machine. We placed 2.74 GB of vertex map data in main memory and left an additional 2 GB of
main memory as cache. This 4.74 GB of required main memory is in contrast to approximately
33 GB of edge related data on the SSD. Further, even in the casewhere a single machine cannot
accommodate this data in main memory, splitting the graph over a set of machines can easily
bring the footprint of data structures within reach for eventhe largest of graphs,while keeping
the overall amount of main memory needed within a reasonable budget. We also note that this
assumption is explicitly present in Pearce et. al.’s work [3] where they term such a distribution of
graph data as “semi-external memory”. The same assumption is also implicit in Kyrola et. al.’s
GraphChi [4] that requires enough main memory to hold all the neighbours of any vertex, this
can easily be seen to translate toO(jV j) main memory requirements for high degree vertices.

Our baseline system is shown in Figure 1. We are concerned with traversing large graphs in
various vertex orders: sequential, breadth-first and shortest-path on a single machine. The most
relevant components of our system are a CPU, RAM and persistentstorage in the form of
an SSD. During graph traversal, we placeO(jV j) amount of data in expensive main memory
together with a small constant sized cache; leavingO(jEj) amount of data on the cheaper SSD.
In this context, our paper makes two novel contributions:

1. We propose a variant of the widely used Compressed Sparse Row(CSR) format that we
call Compressed Enumerated Encoded Sparse Offset Row (CEESOR).CEESOR consists
of anO(jV j) sized row index that we place in memory and a compressedO(jEj) offset
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Figure 1: System Overview

vector that we place on the SSD. CEESOR is targeted at graphs with hierarchical structure
and can reduce the space required to represent the edge-listcompared to CSR by amounts
varying from 5% to as much as 76%. Reducing the amount of space needed to represent
each edge on the SSD means that each IO operation can bring in alarger number of
edges and each cached page contains a larger number of graph edges, directly reducing
the amount of IO needed.

2. Prefetch data from the edge list on the SSD before it is needed. This improves the hit rate
seen by algorithms in the small cache and thereby reduces theamount of IO latency dur-
ing graph traversal. This isindependentof the structure of the graph making it applicable
even when graphs lack hierarchical structure [11]. We present a novel Run Along SSD
Prefetcher (RASP) that prefetches data for vertices before they are needed during traver-
sal. RASP places key data structures (of size proportional tothe number of vertices) from
the underlying graph iterator in main memory. For example, we perform breadth-first
search (BFS) on a power-law graph with 6 billion edges, using just 5 GB of RAMinclud-
ing a 2 GB OS cache. RASP improved the hit rate in the OS cache when accessing 41
GB of edge data placed on the SSD from 25% to 91%. This in turn reduced the run time
of BFS from 6 hours to under 1.5 hours, an improvement of over 4X. In general, we are
able to speed up a set of basic graph algorithms by amounts varying from 2.6X to 6X.

We now begin by describing CEESOR in Sections 2 to 4. We then characterise the SSD as
an IO device in Section 5 before describing RASP in Section 6. We then individually evaluate
CEESOR and RASP in Section 7 before discussing related work in Section 8 and concluding.

2 CEESOR

CEESOR is based on the Compressed Sparse Row (CSR) format. Originally designed for
storing sparse matrices, CSR is also often used to store the adjacency matrix of sparse graphs.
We consider a graphG = (V,E) with an enumeration of the verticesI : V !f1..jV jg(I is
bijective) that produces for each vertexv an identifying numberI(v). The adjacency matrix
of the graphG = (V,E) is aV �V matrix A G with AG(i, j) = 1 iff (I−1(i), I−1(j)) 2E
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Figure 2: Example of CSR format

with AG(i, j) = 0 otherwise. The adjacency matrix is also sparse and often encoded using the
Compressed Sparse Row (CSR) format.

The CSR format consists of two components: the row index and column index. The row index
of AG is a vectorRG of sizejV jwith RG[i] being the index of the first non-zero element of
row i in the column index. The column index ofAG is a vectorCG of sizejEjwhich is a
row-wise listing of the column numbers of those elements inAG, which are non-zero. We note
that the traditional CSR format includes an auxiliary value vector paired with the column index
that actually stores the values in the sparse matrix. Since the adjacency matrix is binary, we
dispense with the value vector in the representation as the value is implicitly always1.

Figure 2 illustrates how a directed graph of 3 nodes is storedin CSR format. It should be
evident that we can recover the original adjacency matrix from the CSR format. It should also
be evident that CSR permits direct access to the set of neighbours of a vertex through the row
index and iteration over that set. The termination point of the iterator is determined by looking
up the start of the next row fromRG. We aim to replicate this functionality in CEESOR.

Our starting point for the design of CEESOR is the assumption that theO(jV j) sizedRG fits
in main memory. We therefore focus our efforts with CEESOR on reducing the size of thejEj

sizedCG that is stored on the SSD.

2.1 Hierarchy and Clustering

A significant feature of many real world graphs is hierarchy and/or clustering as noted by
Clauset et. al. [12]. A key feature of such graphs is that theirset of vertices can be parti-
tioned into subsets such that a majority of the edges are between vertices in the same subset.
Clauset et. al. specifically point to ecological niches in foodwebs, modules in biochemical net-
works and communities in social networks. Figure 3 shows a synthetic example of a graph
with both hierarchy and clustering. In the case of multilevel hierarchies or subclusters within
a larger cluster each of these subsets may be further partitioned. CEESOR is a variant of CSR
specifically designed to take advantage of such clustering and hierarchy.

CEESOR allows exploiting hierarchy and clustering to reducethe size of the column index
that must be accessed from external storage. However, we aimed to also ensure that CEESOR
remains competitive to CSR for graphs that do not exhibit structure, such as random graphs. It
is therefore not exclusively suitable for graphs with hierarchy but rather provides the means to
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Figure 3: Hierarchy in Graphs (a synthetic example)
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Figure 4: Example of CEESOR format

exploit hierarchy when it is available.

2.2 CEESOR

CEESOR replaces the column indexCG of the CSR representation with a sign vectorSG and an
offset vectorOG. For any edgee we denoteCG[e], SG[e] andOG[e] to be be the corresponding
entries for that edge in each of those vectors. For every edgee = (u, v), we setOG[e] =
jI(v) �I(u)j; andS G[i] = 1 iff (I(v) �I(u)) > 0 or 0 otherwise. We therefore represent
entries in the column index by the combination of an offset and a sign bit. Figure 4 shows how
the graph from Figure 2 is represented in CEESOR.

CEESOR is designed with the goal of exploiting hierarchy and clustering. If vertices were to
be assigned an enumeration that ensures that the partitionsdescribed in the previous section are
separatelyenumerated (a problem we consider in Section 3), we are left with jv �ujbeing a
small quantity that we then appropriately encode at a lower cost. This allows us to effectively
exploit graph structure with CEESOR.

2.3 Graphs Without Structure

Before proceeding further, it is important to consider the case where the graph does not have
hierarchical structure or clusters. How badly might CEESOR perform in comparison to the
widely used CSR format in this case ? We analyse this situationby considering the case of a
random graphG = (V,E) where every possible edge has an equal probability of being present
(the Erdõs-Réyni model [13]). We consider the information-theoretic minimum cost of:
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1. EncodingCG considering vertices as symbols.

2. EncodingOG considering the absolute offsets as symbols plus1 bit for the corresponding
entry inSG.

For a random graph, the frequencies of all vertices in terms of their occurrence inCG is a-priori
the same and when normalised equals1

|V |
. For a large number of such random graphs with the

same number of vertices and fixed encoding for entries inCG, the average cost of representing
an entry is bounded below by Shannon’s source coding theorem[14, 15] as (note: log to base 2
unless otherwise specified):

|V |
∑

i=1

1

jV j
log(jV j) = log(jV j) (1)

This means that we cannot represent entries inCG using less thanlogjV jbits on average.

In the case of CEESOR we need to consider the average cost of storing entries inOG and the
sign bit for edges. In the case ofOG the critical observation here is that for an edgee = (u, v)
in a random graph,O[e] = jI(v)�I(u)jis skewed in favour of smaller values.Given that every
edge is equiprobable: the number of edges(u, v) wherejI(v) �I(u)j= 1 is jV j�1, while the
number of edges wherejI(v) �I(u)j= jV j�1 is exactly one. Generalising, the number of
edges wherejI(v) �I(u)j= k, k 2[1..(jV j�1)] is jV j�k. We note here that the number of
edges with smaller offsets are more frequent even in random graphs. Shannon’s source coding
theorem now gives the average cost of encoding an entry inOG as (setting theith symbol to
representjV j�i and adding one for the sign bit):

1 +

|V |−1
∑

i=1

i
(

|V |
2

) log[

(

|V |
2

)

i
] (2)

= log(jV j) + log(jV j�1) �
1

(

|V |
2

)

|V |−1
∑

i=1

i log(i) (3)

Comparing equation 3 to equation 1, the overhead per entry inOG andSG taken together is:

log(jV j�1) �
1

(

|V |
2

)

|V |−1
∑

i=1

i log(i)

Using the approximation of sums using integrals [16](e is the base of the natural logarithm):

1
(

|V |
2

)

|V |−1
∑

i=1

i log(i) �
1

(

|V |
2

)

∫ |V |−1

0

x log(x) dx

= (1 �
1

jV j
)[log(jV j�1) �0.5log(e)]
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jV j Overhead

10 0.290
100 0.118

1,000 0.073
10,000 0.054

100,000 0.043
1,000,000 0.036

Table 1: Theoretical Overhead for CEESOR on random graphs

Hence, the overhead is bounded by:

log(jV j�1) �(1 �
1

jV j
)[log(jV j�1) �0.5log(e)]

= 0.5log(e) +
log(jV j�1) �0.5log(e)

jV j

Hence, the overhead expressed as a fraction of the baseline CSR cost is bounded by:

0.5log(e) + [log(jV j�1) �0.5log(e)]/jV j

log(jV j)

The bound on the overhead drops with an increasing number of vertices as shown in Table 1.
For large random graphs therefore the overhead is bounded acceptably to under 5%.

2.4 Encoding CEESOR Column Indices

We encode entries in the CEESOR offset and sign vectors so as toexploit low-valued offsets.
We use a variable-length encoding that is decodable withouta dictionary. We assume that there
are no self loops and hence no absolute offsets of zero. We describe later how self-loops may
be handled in CEESOR.

We represent an absolute offseto using the minimum possibleb bits where(2b �1) � o.
Clearly the most significant bit cannot be zero. Given a list ofoffsets Algorithm 1 describes
the encoding process. We arrange the offsets in increasing order and therefore also in order of
increasing bit count. We emit these in big-endian order with additional0 bits separating entries
where the number of bits needed for representation increases.

Algorithm 2 describes the decoding process. Note that the algorithm represents one step in an
iterator that is used to scan the edges connected to a vertex. We scan the bit stream correspond-
ing to entries inOG. At any instant we maintain the current size of entries, increasing by one
whenever we see a leading zero.

Finally, RG contains abit-level index intoOG, which is now a bit-stream. For convenience
we interleave the bits fromSG into OG. We do this by placingSG[i] at the end of the bits
representingOG[i]. This extra bit is read by the decoder immediately after readingOG[i], before
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Figure 5: CEESOR examples after encoding

Algorithm 1 Encoding CEESOR entries
Require: L is the list of offsets to be emitted

sort L
bits := 1
while L is not emptydo

entry := offset at head of L
if (2bits �1) < offsetthen

Emit 0
bits := bits + 1

else
Emit entry in big-endian (leading bit first)
remove entry from L

proceeding further. For illustration, we show the encoded form of the CEESOR representation
in Figure 4 in Figure 5.

In the case of CSR (CEESOR), we put thejEj sizedCG (encodedOG andSG) in external
memory while retaining thejV jsizedRG in main memory. Our implementation uses 64 bits for
each entry in the row-indexRG. To support self-loops we reserve the topmost bit of the index
to indicate a self loop. HenceOG is limited to263 bits = 32 petabytes.

This encoding chosen for CEESOR further inflates the overheads over CSR shown in Table 1.
However, we show in our evaluation in Section 7 that CEESOR is more optimal that CSR for

Algorithm 2 Decoding CEESOR entries
Require: L is the list of bits to be decoded
Require: size is the current decoding size

while bit at head of L is 0do
size := size + 1
remove bit at head of L

entry := ‘size’ bits at head of L interpreted in big-endian
remove ‘size’ bits from head of L
return entry

10



all the graphs we have considered.

3 Vertex Enumeration in CEESOR

It is evident that the efficiency of CEESOR depends on the enumeration of vertices. Enumera-
tions that place connected vertices close together lead to edges with smaller values for offsets. In
this section we consider a heuristic for achieving better enumerations for graphs with clustering
and hierarchy, the target for efficiency with CEESOR.

The cost we wish to minimise is that of offsets inOG. For a graphG = (V,E), the cost in bits of
the entries inOG, disregarding the encoding overhead of separator zero bits, and the interleaved
sign bit is:

Σ(u,v)∈E(blogjI(v) �I(u)jc+ 1)

We wish to minimise this cost by choosing an appropriate enumerationI(v). We note that the
closely related problem of minimising:

Σ(u,v)∈EjI(v) �I(u)j

is known to be NP-hard (the minimum linear arrangement problem). Although we have not
proved that minimising CEESOR is also NP-hard, we use a heuristic for minimising the cost
rather than attempting to find provably efficient algorithm.Since our objective with CEESOR is
graphs with hierarchy, a possible heuristic to do this is to apply a graph clustering algorithm and
recursively enumerate each cluster separately. However, the input edge list is a large external
memory file and this makes most clustering algorithms very expensive in terms of IO. We
instead chose to design our own enumeration, which is based on the combination of a depth-
first traversal of the graph and a heuristic to pick nodes for enumeration. The driving intuition is
to try to enumerate connected vertices close together so as to minimise the cost of representing
that edge in CEESOR.

Given a graphG we traverse it in depth first search (DFS) ordertreating the graph as undirected.
This produces a forest of DFS spanning trees over the graph and takesO(jV j+ jEj) time
andO(jV j) space. During this DFS enumeration, we also store, for each vertex, the number
of vertices covered by the DFS subtree rooted at it. We call this the weight of the subtree
rooted at that vertex. We then enumerate each tree in the forest separately. Clearly there is
nothing to be gained by enumerating them together, since there are no edges between trees
whose representation cost could be minimised.

Consider a DFS treeT with rootr and weightw(r). An example of such a DFS tree is shown in
Figure 6. The solid edges are part of the spanning tree while the dashed edges (each connected
to some vertex within the respective spanning sub-trees) are not. It is important to note that the
nature of depth first search results in there beingno edges present between nodes in different
subtrees. Thereforer is a bridge node removing which would cause subtrees below itto become
disconnected (as can be seen from the example in Figure 6). Wechoose to enumerate each of
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Figure 6: A DFS Spanning Tree

the subtrees completely and separately. This is in fact the best strategy if we ignore the presence
of r. Our strategy of partitioning the graph around bridge nodessuch asr is also driven by the
observation that bridge nodes connectrelativelydensely connected clusters in many real-world
graphs.

The next aspect is to choose the order in which we want to enumerate subtrees. Our strategy is
to always consider the heaviest subtree first. Starting fromthe heaviest subtree ensures that any
large connected components deeper in the DFS hierarchy and contained in a subtree are enu-
merated first. They do not then contribute to the representation cost of edges fromr into other
subtrees as these edges do not need to cross over the verticesin the first subtree enumerated.

The final aspect is choosing exactly when to enumerate the root r as there are possibly multiple
edges fromr into each of the subtrees. We attempt to placer at the mid-point of the enumer-
ation. This minimises the cases where an edgee out of r has a higher value for the offset than
half the number of vertices in the entire DFS tree.

In summary, our enumeration heuristic starting from the DFStree in the example is as follows:
we completely (recursively) enumerate subtrees belowr (T1 to Tn) one by one until the com-
bined weight of the enumerated subtrees is greater than or equal tow(r)/2, We then enumerate
r and then continue enumerating the remaining subtrees belowit. We always consider the heav-
iest subtree first (this costs at mostO(jEj) time orO(jV j) space) but consider all other subtrees
in the order obtained from DFS over the existing graph.

4 Converting CSR to CEESOR

Our toolchain converts graphs from CSR to CEESOR. We require theinput graph to be either
undirected or available in bidirectional form so that we maytreat it as undirected for building
the DFS tree. This sometimes necessitated an extra step in conversion.

Two steps in the CSR to CEESOR conversion are of concern with regard to overall conversion
time. The first is the generation of the DFS trees. This leads to random access over the edge list
and is the most time consuming step. We perform this step keeping the column vector of the
CSR file on SSD and the row index in memory. The slowest SSD we have worked with has a
latency of 75us for a random read. This means that a depth-first search can process about a mil-
lion edges in 75 seconds and a billion edges in 21 hours. We note that conversion is a one-time
cost to pay and the costs would be significantly lower with a faster SSD or by loading the graph
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in the RAM of a large cluster for conversion. Also the CEESOR format allows the addition
or deletion of vertices and edges, with representation efficiency degrading as a function of the
number of added edges. The other step of concern in this conversion is the sorting of offsets in
order to emit them in increasing order into CEESOR (Algorithm1). We do this using counting
sort [16] withO(logjV j) space andO(jV jlogjV j) complexity overall. The overall complexity
of the conversion from CSR to CEESOR is thereforeO(jV jlogjV j+ jEj) considering both the
O(jV j+ jEj) enumeration andO(jV jlogjV j) sorting cost during encoding. It is accomplished
usingO(jV j) space. The offsets, encoding and enumeration aspects of CEESOR are its essen-
tial differences from CSR and hence the name Compressed Enumerated Encoded Sparse Offset
Row.

5 SSD IO Characteristics

Solid state drives are persistent storage devices that store data using non-volatile flash memory
(usually NAND flash) rather than on magnetic media like traditional hard drives. SSDs contain
no moving parts and this makes them fundamentally differentin terms of IO characteristics from
traditional magnetic drives. From the perspective of storage for graphs, two characteristics of
SSDs are of particular interest:

• Like magnetic media, SSDs provide far better throughput and lower latency for servicing
sequential requests as opposed to random access ones. This differential performance in
fact is one of the key focus areas for closely related work such as GraphChi [4].

• Unlike magnetic media, SSDs can service multiple random access requests in parallel
without suffering degradation in the latency of servicing an individual request. We refer
to this in the paper as the number of inflight requests (also referred to in literature as the
queue depth).

A useful model for understanding the IO characteristics of SSDs is Little’s Law [17]. This views
the SSD as a black box. If we then assume thatN is the number of outstanding requests to the
SSD,R is the average response time for servicing a request andλ is the throughput obtained in
terms of requests per unit time, Little’s Law says that at steady state:

N = λR

The throughput (λ) from an SSD therefore depends on the number of inflight requests and
the average latency of servicing a request. Our objective with RASP in the next section is to
maximise the throughput from the SSD. In our current implementation, we have little control
over latency as that is determined by the software stack and the SSD controller itself. We use
Linux without tuning, depending on its virtual memory subsystem for buffering. However,
we have direct control over the number of in-flight requests.Starting from a small number of
inflight requests (N ), throughput generally increases with an increasing valueof N . In this
situation latency holds roughly constant as the SSD is able to service requests in parallel and
queuing delays in the software stack are minimal. The throughput reaches a maximum after
which queuing delays primarily due to the inability of the SSD to respond to requests leads to
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Figure 7: SSD IO throughput

latency growing with the number of inflight requests. This caps the available throughput from
the SSD.

We have used a Samsung™512 GB SSD for the experiments in this paper. We used the
Flexible IO [18] benchmarking tool to obtain the response curve for throughput (measured
in kilobytes of data read per second) with a varying number ofinflight requests for that SSD.
Figure 7 shows how throughput varies in a manner consistent with Little’s Law, as the number
of inflight requests for 4KB pages is increased. That figure also shows that sequential accesses
can be serviced with a higher throughput than random accesses.

There is therefore a certain number of in-flight requests that leads to maximum throughput
from the SSD. This number is different for random IO as opposed to sequential IO (as Figure 7
shows). At this optimum point, the SSD is able to supply a peakof 300000 KB/s for sequential
accesses and 225000 KB/s for random accesses. The objective of the (R)un (A)head (S)SD
(P)refetcher (RASP) in the next section is to ensure that during the execution of graph algo-
rithms, the number outstanding requests to the CEESOR file held on the SSD is maintained at
this optimum number for each type of IO.

6 RASP

We now discuss our Run Ahead SSD Prefetcher (RASP). RASP takes advantage of SSDs to
service multiple requests in parallel. It aims to reduce IO stalls during semi-external memory
traversal of large graphs by prefetching data into main memory before it is needed. We begin
this section by providing an overview of RASP. We then providean implementation sketch
detailing how the prefetcher works. Finally, we discuss howRASP can be integrated with
different types of graph algorithms.

6.1 Overview

RASP is based on the observation that a large majority of graphalgorithms are built around
different kinds of iterators. Informally an iterator for a graph consists of a current vertex(v),
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Algorithm 3 RASP Prefetcher
Require: v is the current position of the vertex iterator
Require: IFT is the inflight-target
Require: Issued is a constant sized hash of issued requests
Needed := Runahead(IFT)
for all x in Needed considered in orderdo

if x /2Issued then
Issue prefetch request for CEESOR page ofx
Add x to Issued

internal state (S) and the graph being iterated on (G). An iterator therefore may be represented
by the triple< v, S,G >. The current vertex is simply the projectionπvertex(< x, S,G >) = x.

An iterator supports the next function Next(< v, S,G >) =< v′, S ′, G >. RASP depends on
the iterator beingseparable from the graph. This means that there exists a runahead functionR
and an integerk(S) > 0 such that8i �k(S) : R i(< v, S >) = πvertex(Nexti(< v, S,G >)).
The runahead function is therefore able to determine the next k accessed, without reference to
the graphG. A simple example of this is breadth-first search (BFS) iteration over the vertices
of a graph. The set of vertices to be accessed next is held in a FIFO queue that can be consulted
to determine the next set of vertices to be accessed without reference to the graph.

RASP contains two components:

1. Prefetch: Given a sequence of vertices to be accessed issue a set of requests for the
corresponding CEESOR pages to the SSD to achieve the optimum (Section 5) number
of inflight requests. The prefetcher calls the runahead component (described next) with a
targetT .

2. Runahead: The runahead component computes the result of the runahead function to
determineat mostthe nextT vertices:fR min(k(S),T )(< v, S >)g. It returns anordered
list.

6.2 Prefetch

The prefetcher is responsible for issuing requests to the SSD based on the Runahead function
and is parameterised by the inflight target (IFT). We identify the sequential and random inflight
targets from the response curve described in the previous section. The prefetching algorithm
used in RASP is shown in Algorithm 3.

The RASP prefetcher is based on the simple observation that execution of the graph algorithm is
synchronous and therefore stalls on an IO. Hence, starting from the current position of the vertex
iterator (where the algorithm is likely stalled) the prefetcher issues requests for the nextIFT
number of needed vertices from the CEESOR file. It maintains a hash for these issued requests.
A new request is issued only if it does not match one of the lastIFT requests. Since the iterator
only makes progress when data is returned from the CEESOR file,this simple scheme ensures
that the number of inflight requests is maintained atIFT.

The prefetcher calls the runahead component (described in the next subsection) to provide it

15



components = 0; for(i=0;i<vertices;i++) {1

if(!vertices[i].visited) {2
components++; 3

bfs_queue.push_end(i); 4

visited[i]=TRUE; 5

while(!bfs_queue.empty()) {6

v = bfs_queue.pop_front();7

CEESOR_FOREACH_NEIGHBOUR(v, x) {8

if(!visited(x)) { 9

bfs_queue.push_end(x);10

visited[x] = TRUE;11

}}}}} 12

Figure 8: Connected components for an undirected graph

with enough vertices to issueIFT requests to the SSD. There are two key problems in deciding
how many vertices of lookahead are needed to satisfy the needfor IFT requests to the SSD:

1. Multiple vertices can map to the same page in the CEESOR file and hence they coalesce
to one IFT request. This problem is easily handled by having the runahead component
filter out vertices from the target that can be coalesced withother requests by virtue of
mapping to the same page in the CEESOR file. We have implementedthis filtering in our
system.

2. Depending on the locality of the CEESOR file it is possible for requests in the IFT budget
to hit the operating system cache. This results in underutilisation of SSD bandwidth. The
only way to get around this problem is to further filter those vertices that are already in
the cache, something that we have not implemented in this paper.

6.3 Run-ahead

We now discuss the run-ahead component, which is responsible for computing Lookahead. In
this paper, we discuss lookaheads for three types of iterators. We use the example of discov-
ering connected components using breadth-first search shown in Figure 8 for illustration. That
example contains two iterators: the first is a simple sequential iterator over the vertices at Line
2 while the second is a breadth-first iterator at Lines7 -8. We discuss each of these in turn
followed by a simple extension to the breadth-first search iterator, the priority queue iterator.

6.3.1 Sequential Iterator:

The sequential iterator iterates over the vertices in turn.Therefore, given the current vertex
numberv the next vertex is simplyv + 1. The runahead function therefore is simplyRi(<
v, S >) = I(v) + i (whereI(v) is the vertex number corresponding to vertexv). k(S) is just
the remaining number of vertices to iterate over.
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6.3.2 Breadth-first Iterator:

The breadth-first iterator is somewhat more complicated from a runahead perspective. We note
that the state of the iterator is maintained in a queue of vertices to be visited and this queue is
accessed in First In First Out (FIFO) order. If the size of thequeue isk then the nextk vertices
are simply the nextk elements of the queue in order. Thereforek(S) is the size of the FIFO
queue encapsulated by the stateS andRi(< v, S >) is simply theith element of the FIFO queue
encapsulated inS.

6.3.3 Priority Queue Iterator:

Workloads such as single-source shortest path (SSSP) [16] are essentially like breadth-first
search but replace the FIFO queue with a priority queue of vertices. Each vertex is assigned
a (changing) weight from the time when it is discovered and put in the priority queue to when
it is finally removed at the point where it has the minimum weight among all elements in the
priority queue. The fact that weight can change during execution renders it difficult to come
up withRi(< v, S >) without reference to the underlying graphG. However agood approxi-
mation is to ignore changes to the weights in the priority queue as weiterate over it. We then
pick the topk elements from the priority queue wherek is much smaller than the number of
elements in the priority queue. This approximation dependson the topk elements not changing
during the nextk steps of the iterator, an assumption that tends to hold in practise as weight
updates are bounded below by the weight of the vertex that is removed from the priority queue.

There are a number of priority queue data structures that allow selection of the topk elements.
A simple solution is to fixk and then use a sorted array for the topk vertices while the remaining
vertices are maintained in a standard heap, keeping asymptotic bounds the same as a heap for
all the elements. Since RASP is clearlytolerant of incorrect vertex selection by the runahead
component, we use an even simpler approximation in our implementation: we use a binary
heap (of dynamic sizejSj) stored in an array (of sizejV j) and consider the topmin(T, jSj)
elements of the array for each request forT vertices from the prefetch component. We show in
our evaluation that inspite of these approximations, RASP provides good speedups for SSSP.

6.4 Handling Multiple Iterators

We use two prefetchers, one for sequential iterators and theother for random access iterators.
This is driven by the observation that SSDs demonstrate verydifferent IO characteristics for
sequential reads as compared to random reads and therefore we use a different prefetcher for
each type, with a different setting for the inflight target (IFT) for each. We allow the operating
system scheduler to divide available IO bandwidth between these two types of request streams.

We handle multiple instances of the same type of iterator by partitioning the quota of inflight
requests between them. The allocation depends on the nesting of iterators. We allocate the entire
IFT budget first to the innermost iterator and then move up allocatingleftover inflight request
budgets to the next outer iterator. For two iterators at the same level, we allocate equally to
the two,interleaving prefetch requests from each iterator. The rationale behind this allocation
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strategy is to prefetch pages from the CEESOR file in the order in which they are required by
the synchronously executing graph algorithm.

Multiple iterators of the same type occur in this paper with SSSP. We store edge weights in
a separate file and therefore we have two iterators at the samelevel with SSSP, one reading
the structure from the CEESOR file and the other reading edge weights from the property file.
Following the strategy outlined above, we allocate half of the IFT budget for the random access
prefetcher to the CEESOR file and the other half to the propertyfile.

6.5 Costs and Limitations

In order for RASP to successfully hide IO latency it is important thatthe internal state of the
iterator can be maintained entirely in main memory. We note that the iterator state in all the
examples given above are of sizeO(jV j) and our underlying assumption in this paper is that we
are willing to pay the cost of storing such data structures inmain memory.

RASP works for a large number of algorithms but is not a catch-all solution. The most serious
limitation of RASP is that it is not applicable to those algorithms where the iterator is not
separable from the graph thereby precluding the construction of a runahead function for the
iterator. An example of such an algorithm is Depth First Search (DFS). DFS uses a stack of
vertices, with the next vertex to be explored beingsome neighbour of the vertex at the top of
the stack. There is therefore no way to determine the next set of vertices to be accessed without
reference to the CEESOR file; rendering RASP ineffective for DFS. We note however that DFS
can be restructured to work with RASP. It is possible to store the nextIFT neighbours along
with a vertex in the stack, which can be used to compute the runahead in RASP. This would of
course inflate the main memory cost of the algorithm by a constant factor.

Another important limitation for RASP is the need for concurrent access to iterator state. We
use a separate thread for prefetching in order that the main thread running the graph algorithm
is not slowed down. Hence, the prefetch thread must read iterator state in order to compute
runahead simultaneously with the main algorithm thread modifying it. There are a number
of well known techniques for concurrent access to data structures that can be used for safely
interleaving access for both threads. In our case the iterators have statically allocatedO(jV j)
sized structures (such as the queue in the BFS example of Figure 8). We appropriately initialise
these structures and allow the runahead to traverse itwithout synchronisation. This leads to
the runahead working on an inconsistent snapshot. However RASP tolerates approximations
to the runahead function and therefore our design trades synchronisation overheads for wasted
prefetch bandwidth.

7 Evaluation

We have implemented CEESOR and RASP as C libraries that are usedby algorithms and itera-
tors written in C. We use a system with a 3.2Ghz Intel™i7 CPU and the 512 GB Samsung™SSD
characterised in Section 5. We describe the precise memory footprints of our benchmarks later
in this section. The overall amount of main memory in our system was 32 GB, too small to fit
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all our graphs. In the interests of portability and simplicity, we chose to use the virtual memory
subsystem of the stock Linux 3.2 kernel running on the systemas a cache by memory mapping
the CEESOR file. Prefetch requests were issued via the standard posix_fadvise interface
using theWILLNEED hint. We did no tuning of the (Ubuntu 12.04) system other thandisabling
operating system readahead for the SSD as it caused the baseline system without RASP to
perform poorly. We did so in the interests of a fair quantification of the speedups due to RASP.

7.1 CEESOR

We begin by evaluating CEESOR on a range of graphs shown in Table 2 to judge its efficiency at
representing edge-list data. We tried to pick as many different graphs as possible to demonstrate
the general applicability of CEESOR.

The first eight are the largest real-world graphs available in the online Stanford Large Network
Dataset Collection [19] (after eliminating isolated vertices). In addition we also consider the
DIMACS [20] road network of the entire United States. The Twitter data set was available
online [21] and we used the connectivity information from that data set. The scale-free (power-
law) graph was generated using the Graph500 tool [22] which itself is based on a recursive
matrix generator [23]. We modified the generator slightly tooutput edges to external memory.
It would otherwise buffer the entire graph in main memory, which is unfeasible for the size
of the graphs we wished to consider. We also enabled a processfor smoothing the degree
distribution of vertices in the generated graph to ensure that we had a true scale-free graph. We
wrote our own generator for generating random Erdõs-Réyni graphs, while the Watts-Strogatz
graph was generated using SNAP [24].

We compare CEESOR to plain CSR using the following metrics.

1. Bits per edge with CEESOR [Bits(CEESOR)]: This is the actual number of bits per edge
in the CEESOR representation after the enumeration using thealgorithm of Section 3.

2. Bits per edge with CSR [Bits(CSR)]: We assume a fixed length representation using
dlog(V )ebits for each entry in the column index. Note that this is a somewhat unfair
point of comparison as it restricts additions to the CSR format while there is no such
problem with CEESOR.

Table 2 clearly illustrates the efficiency of CEESOR for the various graphs in our data set.In
all cases CEESOR is more efficient than CSR. The reduction in the size of edge data (stored on
external memory in our case) varies from 5% to as much as 76%. DIMACS shows the largest
reduction in size. This is not surprising as the road networkis a grid-like graph with a large
amount of clustering, that is automatically detected and exploited by the enumeration algorithm.
Geographically close road junctions (vertices) are assigned nearby enumerations leading to their
connecting edges (roads) being represented with small offsets. Finally, CEESOR outperforms
CSR even for random graphs (Erdõs-Réyni) confirming the analysis in Section 2.2.
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Graph jV j/jEj Bits(CEESOR) Bits(CSR) Saving
amazon0601 403,394/244,308 13.04 19 31.36%

ca-HepPh 89,209/118,489 10.26 17 39.65%
cit-Patents 6,009,555/16,518,947 18.22 23 20.78%

p2p-Gnutella31 62,586/147,892 11.73 16 26.69%
soc-LiveJournal 4,847,571/42,851,237 18.45 23 19.78%

soc-sign-epinions 131,828/711,210 14.27 18 20.72%
web-Google 916,428/4,322,051 11.47 20 42.65%
wiki-Talk 2,394,385/4,659,565 17.61 22 19.95%

DIMACS-USA 23,947,347/28,854,312 5.84 25 76.64%

Twitter (TW) 52,579,682/1,614,106,187 23.3752 26 10.10%
Erdõs-Réyni (ER) 20,000,000/1,999,990,173 23.4907 25 6.04%

Scale-free (SF) 134,217,728/6,652,662,596 25.645 27 5.02%
Watts-Strogatz (WS) 20,000,000/1,999,995,087 20.3891 25 18.44%

Table 2: CEESOR Efficiency

7.2 RASP

We implemented breadth-first, SSSP and sequential iterators for evaluating RASP. For the SSSP
iterator, we added a property file with random floating-pointedge weights in the range[0, jV j)
for the graphG = (V,E). We used these iterators in turn to implement the following textbook
single-threaded algorithms:

• Page-Rank: We compute the page-rank of a graph: the probability for each vertex that
random walk will reach that vertex. This is a well known metric [25] that we compute
using an iterative approach where each vertex propagates its current probability to all its
neighbours. We implement page-rank using a sequential iterator that is repeatedly run till
convergence.

• Breadth-first Search (BFS): Visit every vertex in breadth first order starting from a ran-
domly chosen source vertex. This is just the breadth-first iterator.

• Single source shortest path (SSSP): Compute the length of the shortest path from a
randomly chosen source vertex to every other node in the graph. SSSP is implemented
using the SSSP iterator.

In addition to these three algorithms we also implemented solutions to the problems of Maximal
Independent Set, computing conductance over graphs, minimum cost spanning trees and the A*
heuristic search algorithm. We found that in each case, their performance was identical to one
of the three algorithms above. This is unsurprising as they consist of the same basic iterators
and are IO bound. We therefore report only the basic algorithms listed above.

We use the four largest graphs in our data set which are the last four graphs in Table 2 to evaluate
RASP. Since our objective is to provide an IO workload we are careful to remove sources of
variation in the runtime that are not attributable to IO performance. For BFS and SSSP we
try every possible start vertex in an enclosing sequential iterator, reporting the overall runtime.
This ensures that the entire CEESOR file on SSD is accessed regardless of the randomly chosen
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Graph
Main Memory

Cache CEESOR Edge weight
Speedup over CSR

BFS SSSP Pagerank BFS SSSP Pagerank
Twitter (TW) 1.18 2.74 1.57 2 9.16 24.05 1.40 1.08 1.15

Erdõs-Réyni (ER) 0.45 1.04 0.60 2 11.40 29.80 1.00 1.00 1.00
Scale-free (SF) 3.00 7.00 4.00 2 41.27 99.13 1.10 1.05 1.00

Watts-Strogatz (WS) 0.45 1.04 0.60 2 9.96 29.80 1.53 1.03 1.26

Table 3: Memory footprint in Gigabytes and speedup over CSR
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Figure 9: RASP Speedups for CEESOR

start vertex. For pagerank we fix the number of iterations at five to ensure a consistent IO
workload. We converted the only undirected graph, Watts-Strogatz, into a directed one. The
largest component in this converted graph traversed by BFS and SSSP is 18,954,432 vertices
out of 20,000,000, ensuring we remained close to the undirected structure.

Table 3 shows theruntimememory footprints for all the combinations of graphs and bench-
marks that we have run. In all cases, we limit the available memory for the OS cache (that
caches pages from the SSD) to exactly 2 GB. This includes spacefor operating system data
structures, the kernel and application images. The sum of the numbers in any row, with the
exception of the last two entries is therefore thepreciseamount of RAM used during the ex-
ecution. The table underlines a key design philosophy of this paper: more bulkyO(jEj) data
resides on the SSD while smallerO(jV j) data is placed in main memory.

Switching to the CEESOR format from CSR provided both space savings as well as translating
to reduced IO as each IO operation brings in a larger number ofedges; effectively inflating SSD
bandwidth. The last three columns of Table 3 show the speedups obtained by switching from
CSR to CEESOR. The largest speedups are for the two graphs expected to have structure: the
real world Twitter graph and the Watts-Strogatz graph.

We now focus on evaluating RASP by considering our baseline tobe the algorithm running over
the CEESOR file without RASP.

The results of running the algorithms with and without RASP are summarised in Figure 9.
RASP speeds up the execution of single-threaded graph algorithms that are mostly IO bound
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Figure 10: OS Cache Hit Rate CEESOR without RASP
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Figure 11: OS Cache Hit Rate CEESOR with RASP

by amounts varying from 2X to 6X. The speedup originates fromreducing the IO latency due
to improved utilisation of the SSD bandwidth, starting fromsynchronous single-threadedgraph
algorithms.

The basic driver for this improved performance is reduced IOlatency. Accesses to the CEESOR
file now see hits in the operating systems cache as necessary data has already been prefetched
by RASP. This is illustrated in Figures 10 and11. We define iterating over all neighbours of a
vertex as one access to the CEESOR file. We divide the number of major page faults by this
metric to obtain the miss rate. The hit rate is improved considerably by prefetching. The lowest
final hit rate is with SSSP. This is due to the lookahead being an approximation as described
in Section 6.3.3, although this can be mitigated with data structure improvements described in
that section. RASP uses the available bandwidth of the SSD forprefetching, this is shown in
Figures 12 and 13. The increased read throughput from the SSDsupplies the demand from
the prefetcher. Finally, the high baseline hit rate of pagerank is due to its sequential nature that
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Figure 12: SSD Read Throughput CEESOR without RASP
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Figure 13: SSD Read Throughput CEESOR with RASP

completely uses all data on a fetched page before moving to the next. Table 4 shows absolute
runtimes for the largest graph in our data set (6 billion edges).

It is interesting to contrast other results in the single machine category with ours. Bader et.
al. [26] report on breadth-first search on a scale free graph with 1 billion edges in 2.5 seconds
on a Cray MTA-2. In comparison our system performs breadth-first search of 1 billion edges in
0.21 hours or about 300 times slower. On the other hand our system costs under $2500 while a
Cray MTA-2 would be in the region of millions of dollars: about1000 times more expensive.
Graphchi [4] achieves a single page rank iteration on the Twitter graph with an SSD in 158
seconds in comparison to our 180 seconds. We note however that they report main memory
usage of 8 GB compared to only 3.57 GB in our case.

Our results also illustrate the limitations of our current implementation of RASP. Some of the
requests from the prefetcher are already in cache leading towasted SSD bandwidth. Conse-
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Algorithm Base (hr.) RASP (hr.) k(S) �1000
BFS 6.32 1.28 75%
SSSP 15.67 3.75 75%

Pagerank 3.98 1.50 N/A

Table 4: Absolute Runtimes for Scale-free Graph

quently the hit rate does not touch 100% even with accurate lookahead in BFS.

There is however enough parallelism exposed by the lookahead. As Table 4 shows, for 75%
of the time the runahead can access more than 1000 vertices. This means that there is enough
scope for filtering out prefetch requests for pages already in cache. This is something that our
current implementation does not include as Linux does not provide a low latency mechanism
for querying the contents of the operating system cache fromthe user program. This can easily
be remedied in a graph processing system with its own buffer manager.

8 Related Work

Researchers have also explored distributed graph processing as a way to scale graph processing
algorithms for large data sets. Notable among these approaches is the Bulk Synchronous Pro-
cessing (BSP) style of approaches adopted by systems such as Pregel [27]. These approaches
partition the graph among multiple machines and synchronously update properties of vertices
at each computation step. Also in the category of distributed approaches are graph databases
and graph query platforms such as Trinity [28], Neo4j [29] and HyperGraphDB [30]. Many of
these systems load the entire graph into main memory prior toprocessing.

Due to their generic nature both CEESOR and RASP can individually be incorporated into
systems that store the graph in main memory and/or make use ofmultithreading. CEESOR can
be used to reduce the footprint of graphs regardless of wherethey may be stored. RASP can
also be used to prefetch graphs into shared last level cachescommon on many multicores today
to alleviate the cost of cache misses even in main-memory multithreaded graph algorithms.

Another key area of related work is graph compression. CEESORattempts to compress the edge
list of graphs with structure. On a similar note, researchers have exploited specific structures of
real-world graphs such as web graphs to design compression algorithms for them [31, 32]. We
also exploit structure inherent in the graph to reduce the space needed to represent it. Unlike
the other approaches though,we can access the adjacency list of a vertex without reference to
other vertices or dictionaries. This is key to reducing IO latency; the other approaches would
have required multiple references for decompression thereby increasing IO latency but possibly
providing better compression than CEESOR. Further, CEESOR supports seamless updates as
the in memory index consists of pointers and individual adjacency lists can be copied or updated.
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9 Conclusion

This paper has presented two novel techniques: CEESOR and RASP. CEESOR is a variant of
CSR that reduces the amount of space needed to represent the edge list of a graph; and RASP
is a runtime SSD prefetcher for graphs that have hitherto been considered to have poor locality.
We have demonstrated that CEESOR can significantly reduce thespace required to represent
graph edges and RASP can lead to large speedups and high hit-rates with even small memory
caches. Both CEESOR and RASP are basic building blocks in low-cost graph processing sys-
tems that we currently use as well as in systems we are building [33]. We are investigating low
cost graph partitioning algorithms [34] and adapting approximation algorithms for the related
minimum linear arrangement problem [35] for even more efficient enumeration in CEESOR.
We are also exploring automating RASP by integrating it into domain specific languages for
graphs [36] as well as removing operating system related overheads currently present in our
implementation.
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