
Technical Report
Number 816

Computer Laboratory

UCAM-CL-TR-816
ISSN 1476-2986

Verification of security protocols
based on multicast communication

Jean E. Martina

March 2012

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2012 Jean E. Martina

This technical report is based on a dissertation submitted
February 2011 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Clare College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Over an insecure network, agents need means to communicate securely. To these means
we often call security protocols. Security protocols, although constructed over the ar-
rangement of simple security blocks, normally target the yielding of complex goals. They
seem simple at a first glance, but hide subtleties that allow them to be exploited.

One way of trying to systematically capture such subtleties is through the usage of
formal methods. The maturity of some methods for protocol verification is a fact today.
But these methods are still not able to capture the whole set of security protocols being
designed. With the convergence to an on-line world, new security goals are proposed and
new protocols need to be designed. The evolution of formal verification methods becomes
a necessity to keep the pace with this ongoing development.

This thesis covers the Inductive Method and its extensions. The Inductive Method
is a formalism to specify and verify security protocols based on structural induction and
higher-order logic proofs. The account of our extensions comes to enable the Inductive
Method to reason about non-Unicast communication and threshold cryptography.

We developed a new set of theories capable of representing the entire set of known
message casting frameworks. Our theories enable the Inductive Method to reason about a
whole new set of protocols. We also specified a basic abstraction of threshold cryptography
as a way of proving the extensibility of the method regarding new cryptographic primitives.
We showed the feasibility of our specifications by revisiting a classic protocol, now verified
under our framework. Secrecy verification under a mixed environment of Multicast and
Unicast was also done for a Byzantine security protocol.

4

Contents

1 Introduction 9

1.1 Motivation . 13
1.1.1 Develop the Expressiveness of the Inductive Method 14
1.1.2 Lack of Proper Tools for Multicast Protocol Verification 15
1.1.3 Byzantine Security . 16

1.2 Contribution . 17
1.2.1 Event model for Multicast, Broadcast and Unicast 17
1.2.2 Implementation of a base formalism for secret sharing 17
1.2.3 Initial Verification of the FR-Auction Protocol 18

1.3 Notation . 18
1.3.1 Protocol Notation . 18
1.3.2 Logical Notation . 20

1.4 Thesis Outline . 20
1.4.1 Chapter 2: Unicast Protocol Verification 20
1.4.2 Chapter 3: Security Multicast Protocol Verification 21
1.4.3 Chapter 4: Secret Sharing Formalisation 21
1.4.4 Chapter 5: Verifying a Byzantine Security Protocol Based on Mul-

ticast . 21
1.4.5 Chapter 6: Final Remarks . 21

2 Unicast Protocol Verification 23

2.1 Building Blocks for Security Protocols . 24
2.2 Protocol Attacks . 27

2.2.1 Protocol Goals . 27
2.2.2 Threat Model and the Spy . 28
2.2.3 Classical Attack examples . 30

2.3 Formal Methods for Protocol Verification 33
2.3.1 Belief Logics . 34
2.3.2 State Exploration . 34

2.3.2.1 Early Attempts . 35
2.3.2.2 Model Checking . 35
2.3.2.3 Strand Space Models . 36

2.3.3 Theorem Proving . 37
2.3.3.1 Higher-Order Logic . 38
2.3.3.2 First-Order Logic . 38

2.4 In-depth view of the Inductive Method . 41
2.4.1 Theories and Definitions . 42

5

2.4.1.1 Agents . 43

2.4.1.2 Cryptographic Keys . 44

2.4.1.3 Compromised Agents . 46

2.4.1.4 Messages . 47

2.4.1.5 Events . 47

2.4.1.6 Threat Model Support and Initial Knowledge 48

2.4.1.7 Knowledge Representation and Extension 50

2.4.1.8 Operators . 51

2.4.1.9 A Protocol Model . 54

2.4.1.10 Traces . 56

2.4.2 Verification of Security Protocol Goals 57

2.4.2.1 Goal availability . 58

2.4.2.2 Reliability . 58

2.4.2.3 Regularity . 60

2.4.2.4 Authenticity . 61

2.4.2.5 Unicity . 62

2.4.2.6 Confidentiality . 63

2.4.2.7 Authentication . 64

2.4.2.8 Key Distribution . 66

2.5 Considerations . 66

3 Security Multicast Protocol Verification 69

3.1 General Multicast Protocols . 70

3.1.1 Unreliable Multicast . 71

3.1.2 Reliable Multicast . 72

3.1.3 Atomic Multicast . 73

3.2 Inductive Method extensions for Security Multicast Protocols 73

3.2.1 Extending Peers’ Knowledge set for Multicast Communications . . 75

3.2.2 Extending Used set for Multicast Communications 77

3.2.3 Basic Lemmas . 78

3.2.4 General Re-Interpretation of Security Goals under Multicast 82

3.3 Verification of a Classic Unicast Protocol 83

3.3.1 Revisiting Needham-Schroeder Shared Key 84

3.3.2 Needham-Schroeder Shared Key Multicast Modelling 85

3.3.3 Needham-Schroeder Shared Key Multicast Verification 88

3.3.3.1 Regularity . 88

3.3.3.2 Reliability . 89

3.3.3.3 Authenticity . 90

3.3.3.4 Unicity . 92

3.3.3.5 Confidentiality . 92

3.3.3.6 Authentication and Key Distribution 93

3.3.4 Considerations of Needham-Schroeder Shared Key Multicast Veri-
fication . 95

3.4 Conclusions . 95

6

4 Secret Sharing Formalisation 97

4.1 Access Structures . 100
4.2 Threshold Secret Sharing Schemes . 101

4.2.1 Shamir’s Scheme . 102
4.2.2 Blakley’s Scheme . 103

4.3 Verifiable Threshold Secret Sharing Schemes 104
4.3.1 Feldman’s scheme . 104
4.3.2 Pedersen’s scheme . 105
4.3.3 Publicly Verifiable Secret Sharing Schemes 105

4.4 Formalisation of Threshold Cryptography 106
4.4.1 Basic Lemmas . 109
4.4.2 Summary . 111

5 Verifying a Byzantine Security Protocol Based on Multicast 113

5.1 The Franklin-Reiter Sealed-Bid Auction Protocol 114
5.1.1 Threat Model and Claimed Properties 115
5.1.2 Multicast Implementation Assumptions 116
5.1.3 Electronic Money Abstraction . 117
5.1.4 Verifiable Signature Sharing . 118
5.1.5 Protocol Description . 118
5.1.6 Enabling Anonymity . 120
5.1.7 Known Issues . 121

5.2 Modelling the Franklin-Reiter Auction Protocol 121
5.2.1 Auxiliary Definitions . 121
5.2.2 Protocol Specification . 123

5.2.2.1 Bid Casting . 124
5.2.2.2 Bid Closure . 125
5.2.2.3 Bid Opening . 126
5.2.2.4 Bid Validation . 127
5.2.2.5 Winner Declaration . 128

5.3 Verifying Frank-Reiter Auction Protocol 129
5.3.1 Proofs regarding the set of bids . 129
5.3.2 Proofs regarding keyfree . 131
5.3.3 General Validity Proofs . 132
5.3.4 Interpreting of Findings . 134

5.4 Considerations . 134

6 Final Remarks 137

Bibliography 150

7

8

—The beginning of wisdom, is the definition of terms.

(Socrates)

1
Introduction

Cryptography as such is not enough to guarantee security in communications. The way we
use cryptography is as important as the strength of the cryptographic algorithms. With
this assertion, we start a thesis that is meant to talk about how to verify that we have
correctly combined cryptographic primitives to achieve security goals in communications.
We will talk about security communication protocols or simply security protocols applied
to multicasting communication.

A security protocol is a set of rules we establish to communicate achieving secu-
rity goals. Security goals are normally stated as integrity, confidentiality and authen-
tication, but they are not limited to that. To better explain the importance of se-
curity protocols we can draw parallels with other day-by-day security issues we face.

Figure 1.1: A very secure Bike sculpture a

aPhoto from Dustin Sacks under Creative Com-
mons Licensing

To do so, we will borrow the clever exam-
ple from Casimier Cremers [48] where he
traces the parallels between a real world
protocol to secure a bicycle and an elec-
tronic communications protocol to secure
digital assets.

We can compare a security protocol for
protecting the access to our bank accounts
over the internet to a lock and chain we use
to secure our bike from being stolen. We
know that to achieve a good security level,
we need good components in our security
scheme. But we also know that we can buy
the best lock available in town, and use it
with the hardest chain we can find, but it
still may be insufficient. The security of
our bikes will be defined not just by the
qualities of our tools, but in the way we

9

use them.

For example, if we attach our bike to something loose, even the best lock and the
hardest chain are prone to fail. Our bikes can get stolen because we do not understand
thetools’ security requirements and we do not verify that they are available, or that they
were fulfilled before claiming it was secure. Another example is attaching our bike by the
front wheel. Although we verified the requirement of not attaching the bike to something
loose, we misunderstood the threat model. The thief can steal it by detaching the frame
from the front wheel. In this case we considered the threat as having the bike stolen as a
whole, and did not take into consideration it could be disassembled and partially taken.

Another issue that affects how security requirements are met is how difficult it is to the
user to implement the security device, or how difficult it can be to assure the requirements
were met. Figure 1.1 shows us a secure bike, but we clearly see that an extremely secure
setup implies into usability drawbacks. Secure communication protocols can suffer from
similar downsides.

Having good cryptographic primitives is definitely necessary to achieve a security goal.
But using them properly is as important. Understanding their requirements and the threat
model they are subject to is paramount. Security protocols suffer from similar flaws to
the ones explained in our bike example.

We can have a very strong protocol to guarantee confidentiality, integrity and authen-
tication when accessing websites over the Internet. But, if we fail to verify the certificate
that introduces the peer identity we are connecting to, something bad can happen. If we
do not verify the existence of a pre-requisite for the protocol’s security prior to its run,
we may not be able to achieve its security goals. In fact, we can be assuring confiden-
tiality, integrity and authentication with the wrong peer, giving him credentials to access
our data which could be our bank account. In this scenario, the attack can be called a
phishing scam.

We also have cases of security protocols that were designed to one threat model and
in reality were subject to another. The bike example becomes illustrative. Any security
protocol’s properties should be verified against a reasonable threat model. The threat
model we design and verify our protocols against should reflect the threat model from
the environment which the protocol will execute from. Failure to do so can leave us with
ill-designed security protocols that have inherent failures. We cite the classical case of the
Needham-Schroeder Public Key distribution protocol [93, 77] as an example. The protocol
is secure under the threat model that no internal peer acts maliciously. When we change
the rules over which the protocol should execute, we inherently change the achievability
of its security goals. This is the problem found by Lowe in his classical paper on model
checking security protocols [77].

The above examples show that guaranteeing the security of communication protocols
is not an easy task. The main challenges for providing such security guaranties are:
the number of variables involved, the possibly infinite combinations of situations in any
execution, and to understand how the threat model influences the achievement of the
security guaranties.

To properly discuss security protocols we need first to get their definition right. Secu-
rity protocols for computer networks are sequences of steps peers must take to achieve a
security goal. In each step we are exchanging messages between the involved peers. These
messages may contain identifications, shared secrets, cryptographic keys, session identi-

10

fication, freshness components, the concatenation of all the above and more. Message
exchange is helped by the usage of cryptographic primitives to establish the existence of
desired security properties. Everything in the context of security protocols must be done
keeping in mind the threat model the protocol is subject to. Security protocols are dis-
tributed computations capable of being run in parallel by an unlimited number of peers,
including attackers and malicious internals.

Threat model is necessary for the verification of any security claim by any protocol.
Without a reasonable threat model, any protocol can be claimed correct. A widely ac-
cepted threat model for security protocol analysis is the one proposed by Dolev and Yao
[51]. In this threat model we have a powerful attacker that controls the communication
traffic selectively. He is able to overhear, intercept, and synthesise any message. He is
only limited by the constraints of the cryptographic methods used. This attacker model
seems reasonable for most applications of security protocols over the Internet.

Some research effort has focus on giving the attacker a more realistic shape. Some
extensions to the Dolev-Yao model concern the attackers’ cryptanalysis powers [1, 14].
It is claimed that doing so would enable the analysis to capture other security protocol
subtleties, especially in the choice of cryptographic primitives. We also see research about
extending the attacker model without opening the black box of cryptography. Among
them we have the Rational Attacker [10] where different attackers collude on the basis
of cost/benefit decisions whether to follow or not to follow the protocol. The General
Attacker [10], drops the cost/benefit decision from the Rational Attacker. The General
Attacker’s differentiation from a Dolev-Yao is that each peer acts for his own sake. And
the Multi-Attacker [11], where each principal behaves as a Dolev-Yao attacker, but they
will never reveal their long-term secrets to other peers.

Protocol design and verification has been a well researched topic for a long time now.
The protocol design area is very active in designing novel and complex protocols to achieve
new security goals imposed by the information revolution we live in. The protocol verifi-
cation area has also been active, since protocol designers often fail to enforce the goal they
claim to achieve. For the sake of exemplifying such failures, we can cite the recent dis-
coveries on widely deployed and extensively verified protocols, such as the re-negotiation
flaws discovered in SSL/TLS [39] or also cite classical cases, such as, Lowe’s attack [77]
on Needham-Schroeder protocol.

During the initial phase of protocol verification in the 1980’s and mid-1990’s, protocol
verification was carried out informally. Informal verification was important because it
taught us the importance of understanding the semantics behind the protocols’ messages.
Due to its informality it is often easier to find and understand minor flaws by using such
techniques. No complicated or extensive reasoning is usually involved, what makes the
outcome easy to understand. This is still a usual way of starting the evaluation process
for security protocols.

From mid-1990’s, we started seeing an increased interest on the usage of formal tools
to help the verification of security protocol models [86]. We can cite efforts such as: Bur-
rows et al. Belief Logic [38], which first represented formally the beliefs that peers running
the protocol can derive during the execution. The Bellare and Rogaway provable security
study [27], where the security requirements are met provided the assumptions about the
adversary’s access to the system are satisfied, and some clearly stated assumptions about
the hardness of certain computational tasks hold. Abadi and Gordon’s spi-calculus [2]

11

which is a security tailored version of the popular π-calculus [90], where processes commu-
nicate through different security channels. Ryan and Schneider’s state enumeration [111],
which apply the well known process calculus CSP [68] to security protocol verification.

This thesis will focus on the usage of the Inductive Method [101, 20], a formalism
that allows us to prove the existence of security properties via structural induction over
an unbounded protocol model. The Inductive Method is assisted by a very powerful tool
called Isabelle/HOL [97] which is an interactive theorem prover for Higher Order Logic.
One of the main advantages of Isabelle/HOL is its generality. This generality enables us to
easily extend the modelling infrastructure to verify novel protocols, something normally
constrained in specialised tools [79, 87, 8, 91, 116, 107]. The usage of Higher Order
Logic allows to quantify over predicates and functions and allows us to type our functions
helping us to picture protocols in a realistic and strict way.

Protocol verification techniques have been aimed to the verification of security pro-
tocols based on Unicast. The scenarios depicted by most tools are based on an idea of
one-to-one peer communication. Under this model, the establishment of security goals is
based on the controlled distribution of knowledge between a pair of peers under the threat
of an attacker. This knowledge distribution is normally aided by standard cryptographic
primitives, such as shared key and public key cryptography. Verification under a Unicast
framework assures that only the two peers acquire the knowledge carried by one message
in the presence of a powerful attacker.

But from the protocol designers’ point of view, under the necessity of achieving novel
security goals imposed by the natural evolution of our networked environment, Unicast
and standard cryptographic operations are not enough. Nowadays the establishment of
multi-party security goals is a necessity, and this certainly changes the way we design
protocols. We have seen in the last decades the creation of a new class of protocols
based on unicast, multicast, broadcast and a mixture of the three modes being developed.
We can cite numerous examples, such as protocols to assure secrecy on one-to-many
communications [65], protocols to guarantee authenticity in one-to-many communications
[60, 125], key distribution in one-to-many communications [66, 32], and protocols that
deal with novel security goals such as Byzantine agreement [47, 69, 12, 127], multi-party
computation [33] and digital-rights management [37, 103].

The challenge of verifying such novel protocols based on one-to-many communications
is at least threefold. By changing the communication model from a one-to-one commu-
nication to a one-to-many communications, we inherently change the way we understand
protocol execution. The linearity of protocol execution traces is lost and we need a rein-
terpretation, since the sending of a single message now changes the knowledge-set of many
peers. We also have the challenge of developing models for novel cryptographic primitives.
The usage of one-to-the-many communication model asks for support of primitives that
deal with thresholds [40]. For example, a necessity for achieving goals such as secrecy
under Byzantine agreement scenarios, requires the existence of security primitives based
on threshold cryptography. And third, we need to reinterpret the output of the verifica-
tion process. Under the one-to-many communication scenario, our security requirements
tend to demand more fine grained evaluation. For example, the existence of an attacker
model similar to the Multi-Attacker [11] becomes much more appealing for non-unicast
communications.

On the verification of novel protocols, our effort in this thesis is to verify security pro-

12

tocols based on multicast communication. More specifically, we would like to deal with
protocols that implement a Byzantine agreement model of security [58]. The Byzantine
agreement model [76] allows arbitrary behaviour of a certain fraction of peers in our dis-
tributed protocol models while still achieving the protocol’s security goals. This is one of
the preconditions for a secure multi-party computation [61], where a set of processes want
to compute a deterministic function of all their inputs without trusting each other, and in
this sense it exhibits Byzantine behaviour. The verification of Byzantine Security Proto-
cols involves the creation of support infrastructure, such as a one-to-many communication
model and the modelling of threshold security primitives.

Our aims in this thesis are to enable the Inductive Method to verify protocols based
on one-to-many communication by implementing a new message model, extending its
support for new cryptographic primitives and do an initial verification of secrecy for a
Byzantine agreement protocol based on multicast communication.

The structure of this chapter includes the motivation of our work (§1.1) followed by
a statement of our contribution to knowledge (§1.2). We then follow introducing the
notations used (§1.3) and outlining the remaining chapters (§1.4).

1.1 Motivation

The main motivation for this thesis is to further develop the Inductive Method introduced
by Paulson [101] in the late 1990’s. The main idea behind the Inductive Method is
the usage of structural induction to reason about properties of security protocols. A
protocol model is a set of traces generated by an inductive description of protocol events
and messages, for which, we prove the existence of the desired security properties. By
the definition of induction, the verification process is carried out over arbitrary many
executions and agents, all in the presence of a standardised (but powerful) attacker model.
Proofs are based on how acquisition of knowledge by the peers is performed and on the
property being verified.

During the study of the Inductive Method to verify novel security protocols, the lack of
tools and methods that could encompass the use of multicast primitives became evident.
Although multicast was always advertised as a scheme for better network resources usage
[105], we see interest in it from the security community. Initially with protocols for secure
content delivery [37, 103], and later on in protocols that involve Byzantine security [76].

Entering the area of Byzantine Security Protocols, we see the necessity of protocol
verification tools and methods that support advanced security primitives. Most methods
and tools [86, 22] are constrained to the usual public and shared key cryptography, lack-
ing support for new primitives that can deal with the problem of peers being partially
corruptible. As examples of such primitives, we can cite verifiable secret sharing [45, 54],
signature sharing schemes [57, 41] and most threshold-based mechanisms [70].

Below we will try to better cover the motivation details. Sub-section 1.1.1 will give a
better overview of the current state of the Inductive Method. Sub-section 1.1.2 will look
over the motivation for better multicast communication support in protocol verification
methods. Finally sub-section 1.1.3 discusses the increasing interest in Byzantine secu-
rity and how the support for the needed primitives, event model and message model is
important for protocol verification’s future.

13

1.1.1 Develop the Expressiveness of the Inductive Method

As already stated, the Inductive Method developed by Paulson is a very powerful and
extendable tool [101]. During the 1990’s Paulson worked on developing the basis for the
method’s mechanics, which included the definition of the operational semantics behind
the tool and the basic lemmas targeting the verification of classical protocols [100].

Paulson initially created a set of general theories for agents, messages, events and an
extended formalisation of the attacker, here known as the Spy. He also proved the basic
lemmas needed for the method to be usable. He used the method to prove a few classic
security protocols which showed the method’s potential [101]. Clearly the unbounded
agent population and its ability to interleave an arbitrary number of protocol sessions
were crucial features.

Later Bella worked on extending the Inductive Method by expanding the size of the
protocols it was capable of verifying [18]. He worked on the basis that Paulson’s work
needed a bigger challenge. He successfully verified using the method a great range of real
security protocols [23, 24, 19, 26, 25], such as the Kerberos family of protocols, smart-card
protocols, electronic commerce protocols, and protocols that deal with accountability.

In his work [20], Bella introduced a new range of extensions to the Inductive Method,
which showed its extension capabilities. His main contributions to the method are the
discrete modelling of timestamps, the extension of the agent model for a smart-card
scenario, the verification of novel goals such as accountability and the description of Goal
Availability. Goal availability prescribes that the protocol guarantees should be based
on assumptions that the protocol participants can verify by themselves during protocol
execution [18, 20]. Goal availability is a key principle underlying the Inductive Method.

The motivation of this thesis is to propose extensions to the Inductive Method on
event modelling and cryptographic primitive definition.

Under the area of event modelling, we have seen an increasing number of tools and
methods working under the same assumption of a unicast only world [86, 22], despite
increasing interest in the use of multicast and broadcast primitives in security protocol
designs. Another motivation is that unicast and broadcast are extremes for multicast
communication. They are extremes in the sense that a unicast communication can be
represented by a multicast with a multicast group of size one. In parallel, broadcast
communication can be represented by a multicast with a multicast group comprising of
all peers present in the network. A generic model is possible and feasible. These changes
in the event model can bring a new class of protocols to be verified by the Inductive
Method.

Our motivation is to create a generic event model capable of representing multicast
and broadcast as well as unicast. We propose a new theory representing events based
in a multicast scenario and use it to verify protocols under the unicast framework for
backward compatibility. We also plan to show its usability in a multicast scenario.

Under the area of cryptographic primitives, we see other methods and tools being
easily adaptable and extensible to such new definitions [31, 48], but no effort was ever
made with the Inductive Method to prove its extensibility in this area. The novelty
introduced by the usage of multicast communication in security protocols also introduces
the need for modelling new cryptographic primitives [70]. To make the Inductive Method
more accessible and a real world working tool, it needs the ability to implement novel
cryptographic primitives.

14

Our motivation is to construct in the Inductive Method support for threshold cryp-
tography, specifically secret sharing and verifiable signature sharing. It should be done in
a less intrusive way, so that it can be embedded into the protocols we are designing when
needed.

By having support for a new event model and new cryptographic primitives, we can
verify a larger set of security protocols. This push in the Inductive Method can help the
security verification community to address the problem by also extending other tools and
methods.

1.1.2 Lack of Proper Tools for Multicast Protocol Verification

Security protocol design until the beginning of the last decade was only focused on the
development of protocols based on a one-to-one communication. Since the execution of
experiments with the MBONE Network [75] and the increasing commercial availability
of multicast, security protocol’s designers started exploring new techniques based on one-
to-many communication methods to achieve novel security goals. Due to the intrinsic
complexity introduced by one-to-many communication systems, protocol designers had
to experiment with new cryptographic tools to solve these new problems.

We saw the creation of a series of new protocols to achieve goals already explored
under one-to-one communication. As examples we can cite protocols to assure secrecy
[65], to guarantee authenticity [60, 125], and to distribute keys [66, 32]. These revisits to
already well understood security goals were done to accommodate the new environment
imposed by one-to-many communications. Since the guarantees are not given on a pair
based situation, new considerations have been raised and addressed. We also saw the
creation of new security protocols that yielded novel security goals, such as Byzantine
agreement [47, 69, 12, 127], multi-party computation [33] and digital-rights management
[37, 103].

Protocol verification on the other hand, evolved in a much slower and unfocused way.
We saw efforts being made with different tools and methods to verify multicast security
protocols, but they always hit some constraint which would be easily addressable by the
Inductive Method. As examples we can cite the attempt done with the NRL Protocol
Analyser [87], which suffers from state explosion problems and a poor cryptographic
extensibility issue [88]. Other problems using a calculus approach can be seen on Anastasi
et. al. [5]. Attempts of using SAT engines such as the Alloy Analyser [74] also hit issues
regarding state explosion [122].

On the other hand, we saw a great deal of work being done on a method directly
derived from the Inductive Method to extend it towards multicast protocol verification
[118]. We can cite the work from Steel and Bundy [119, 118] using the automated inductive
counterexample finder CORAL [120]. CORAL is a first order version of the Paulson/-
Bella Inductive Method used to search counterexamples to the security properties under
consideration. As a search tool, CORAL does not assert the existence of properties in
protocols, but simply tries to find common errors in protocol design.

CORAL being a lightweight version of the Inductive Method uses first order logics and
lacks a strict typing system. Even though it is able to bring new light to the verification
of multicast based security protocols. We believe the extension of the Inductive Method
towards a one-to-many communication model is capable of capturing new insights into

15

protocol verification, now under the scenario of multicast and broadcast communication.

Our motivation, as previously stated, is the creation of a robust events theory for the
Inductive Method that can encompass the verification of unicast, multicast and broadcast
security protocols under the same infrastructure. We should be able to verify protocols
that use one-to-many communications and re-interpret their results under the existing
framework of the Inductive Method. This ultimately can help us to advance understanding
of the suitability of new attacker models and also the formalisation of novel security goals.

1.1.3 Byzantine Security

With the evolution of the Internet and the creation of an environment based on a scheme
where no one can be one hundred per cent trusted, we see the increased interest for
protocols that are able to cope with partial corruption of peers and still achieve its goals.
Such protocols are based on the idea of Byzantine Agreement Security [59].

In the original Byzantine Generals Problem [76] the participants are generals of the
Byzantine army who want to agree of whether to attack an enemy town or not. The
generals are either loyal or traitors. Traitors can act in arbitrary ways, and, for example,
they can send conflicting messages or fail to participate in the decision process. This
model is very handy to help us model the actual framework over which the Internet
works: We cannot trust our peers and we cannot trust the network.

Byzantine agreement security introduces new challenges to the protocol design and
verification process. Novel goals can be achieved by using Byzantine Security Protocols,
such as, reliability of the information dispersed among peers and the availability of the
information under corrupted schemes. Reliability is normally achieved by sending the in-
formation to multiple peers by using multicasting techniques. But, the original Byzantine
Generals problem does not account for secrecy since its main goals are to achieve reliabil-
ity and availability. This is one of the main concerns when designing security protocols
based on Byzantine agreement [12, 59].

Secrecy of one peer’s information is not useful for an attacker, since the protocol is
built to cope with this corruption up to a threshold. On the other hand, secrecy of group
based information must be handled by non-standard cryptographic primitives based on
thresholds, such as secret-sharing [70] and verifiable signature sharing [57]. The usage of
such cryptographic primitives brings new challenges to protocol verification.

Our motivation regarding Byzantine Security Protocols is to be able to verify protocols
with an arbitrary number of corrupted peers and assert the existence of basic security
properties, such as integrity and secrecy, using new cryptographic primitives. We are not
focusing now on the establishment of the novel verification goals, but on the impact of
changing the underlying casting primitive has on achieveing reliability and secrecy.

We have chosen the Franklin-Reiter Secure Auction Service [58] as test bed for our
proposed innovations, because of its composition as a true Byzantine agreement secu-
rity protocol. It uses multicast and unicast for achieving reliability, secret sharing and
verifiable signature sharing for achieving integrity and secrecy, as well as it introduces
novel security goals for future experimentation, such as partial-secrecy and a weak form
of anonymity.

16

1.2 Contribution

Our contribution can be classified in three main groups: The extension of the Inductive
Method to enable the usage of a one-to-many event model (§1.2.1), the specification of a
base formalism to encapsulate new cryptographic primitives (§1.2.2) and the verification
of partial secrecy under a mixed event model Byzantine Security scenario (§1.2.3).

1.2.1 Event model for Multicast, Broadcast and Unicast

As observed by Bella [20], the Inductive Method turns out to be easily extendible. The
extension of the event model takes into account that communication was not done anymore
on a one-to-one fashion. This new direction brought us challenges in terms of the already
available infrastructure in the Inductive Method.

We were able to implement a usable multicast theory that is capable of implementing
protocols based on the three known methods of communication. This extension enables
us to reason about different classes of multicast. With it we were able to represent Atomic
and Reliable multicasts, as defined in Section 3.1.

We also did one experiment to corroborate our objective of creating a new underlying
event framework that was capable of representing all the communication casting methods
available today. We revisited Needham-Schroeder Shared Key Protocol re-specified under
the new event framework. The result of this experiment corroborated that it is not
unreasonable, for the sake of broader coverage, to impose to the Inductive Method the
usage of the new events framework as a standard. It does not further complicate the
method, but simply requires some intermediate commands under Isabelle/HOL to achieve
the goals.

Another achievement of our research is the modelling of protocols that operate under
different message casting frameworks in different phases. We did that with the Franklin-
Reiter Sealed Bid Auction Protocol and we were able to integrate both casting frameworks
under the same knowledge distribution model. This brings the Inductive Method to a
new scope of coverage in terms of what protocols can be specified and verified by it.

1.2.2 Implementation of a base formalism for secret sharing

The addition of new cryptographic primitives under the Inductive Method is not straight-
forward and generally breaks the compatibility with past verifications done with it. Our
main contribution was the extension of the Inductive Method to accept primitives based
on threshold cryptography by shielding them with nonce proprieties and developing a ba-
sic abstract model of their operation. In this sense we were able to extend the method by
adding such new cryptographic primitives by just dividing the space occupied by nonce
and taking into consideration that the secret sharing mechanisms we opted to develop are
computationally secure, as is all cryptography in the Inductive Method.

The novelty introduced regards also the experimentation within the Inductive Method
with non standard cryptographic primitives and its application under a protocol verifi-
cation scenario. Some other efforts tried to formalise and propose some verification for
stand-alone secret sharing [126].

We must stress that our study is not thorough nor complete, but a starting point
for the representation of such new class of security primitives. The representation of

17

the mechanics behind access structures present in the variety of threshold schemes was
not achieved, but is clearly the next step to be done in extending the Inductive Method
towards new security primitives.

1.2.3 Initial Verification of the FR-Auction Protocol

As our main target in this thesis was the specification of a capable and workable multicast
theory, doing the initial verification of security protocols that demanded the usage of
such a specification was important. We opted for doing an initial secrecy verification of
threshold cryptography components in a protocol that made use of Byzantine agreement
and a dual message casting framework.

As our contribution under this topic, we can cite the specification and verification
of partial confidentiality under a mixed unicast-multicast environment that was achieved
for the Franklin-Reiter sealed bid auction protocol. We did a full specification of the
Franklin-Reiter sealed bid auction protocol under our new proposal of multicast events for
the Inductive Method, and made use of our initial specification of threshold cryptography
mechanisms. In the verification side, we proved some reliability lemmas, and the partial
secrecy required for the shared components. We also introduced the required formalisation
to deal with unbounded bid-sets present in each session of the protocol.

We are not claiming to achieve a complete and thorough verification of the Franklin-
Reiter sealed bid auction protocol, but establishing the basic properties needed for the
verification of secrecy in components being shared under the threshold cryptography pro-
posed specification and under a multicast environment.

1.3 Notation

To be able to properly discuss properties on security protocols, we must establish the
basis for the notation representing them in this thesis. The notations we chose to adhere
started with the early paper from Needham and Schroeder [93] and were refined over
time. For the sake of easier readability for people interested in the Inductive Method,
the notation will be kept similar to that used by Paulson [101] and Bella [20] in previous
works, extending it where needed.

1.3.1 Protocol Notation

The traditional protocol description method cited above consists of describing each step of
the protocols in one line. Each line is numbered and shows the direction of the information
flow, which is generally from left to right. The sender is named on the left of the operation
and the receiver is named on the right.

Each step is composed of three fields: the numbering separated by a ”dot” from the
message type/flow direction, which is separated by a semicolon ”:” from the message
payload. Components in the message payload are separated by a comma ”, and grouped
using fat braces ”{|” and ”|}”. Fat Braces are generally used by the operation of a function
of a cryptographic primitive over the grouped message components

Protocols throughout this thesis will be presented in a similar way as the example
protocol shown in Figure 1.2.

18

1. A −→ B : A,Na

2. A
B
 BG : λX.{|A,Na|}eKX

3. B
R
 M : λX.{|Na, {|Nb|}sK−

B
|}eKX

Figure 1.2: Example notation protocol

This protocol consists of three steps in a mixed unicast, broadcast and multicast
environment. In the first step, using the standard known notation, agent A sends to
agent B using the flat arrow ”−→”, a two component message composed by his identity
A concatenated with a special number Na. Na is a nonce generated by A. By definition
a nonce is a random number that is used only once. In the context of security protocols
it may confirm the freshness of a message in relation to when the nonce was generated.
It also plays an important role in session control and authentication in the protocol.

The second step shows a broadcast message from agent A to the broadcast Group
BG. The message is the compact representation of the actual transmitted data. The
broadcast message is represented by the curly arrow with the letter ”B” on the top,

E.g. ”
B
 ”. In this message we see the application of the function λX.{|A,Na|}eKX

to
all the components in the payload and where X represents each Agent member of the
group. The application of this function represents the individual view of each Agent X
belonging to the Broadcast Group BG. We could read this step as: Agent ”A” sends a
broadcast message to the broadcast group BG containing his own identity and a nonce
Na, individually encrypted to each broadcast group member’s public encryption key eKX .

On the third step we see Reliable multicast from the Agent B to the multicast group
M. Multicast messages are represented by the use of a curly arrow with its type written on

the top of the arrow. For example, an Unreliable multicast is shown as ”
U
 ”, a Reliable

multicast as ”
R
 ”, and an Atomic multicast as ”

A
 ”. The payload field follows the

same structure as in the broadcast message, which makes the message in step three read
as follows: Agent B sends a Reliable multicast to the multicast group M, where by the
application of the function λX.{|Na, {|Nb|}sK−

B
|}eKX

to all the components in the payload
and where X represents each Agent member of the group, the nonce Na concatenated
with the nonce Nb signed with the private signing key of B is sent individually encrypted
to each member of the multicast group using each member’s public encryption key eKX .

As noted by Bella [20], this notation is only fully understandable when put in the
context of the threat model it is being used with. In the threat model generally used by
protocol designers [51], the Spy can intercept all messages and prevent their delivery. He
can tamper with the messages by looking over everything he has enough knowledge to
open. The Spy can also generate new messages from what he knows or has. The attacker
cannot break cryptographic algorithms by the use of brute force or cryptanalysis. Bella’s
work [20] also focused on the idea of message reception and the derivable knowledge in
it, which is not represented by this notation.

19

1.3.2 Logical Notation

As this work consists of applied logical expressions, it is important to describe the English
equivalent for each logical symbol being used throughout the thesis. The idea is to help
the reader into grasping the logical symbols when they are not written in plain English.
They should be read as:

Logical Context Symbol Reads in English
conjunction ∧ ”and”
disjunction ∨ ”or”
negation ¬ ”not”
equality = ”is equal to”

disequality 6= ”is not”
equivalence ⇐⇒ ”in and only if”

meta-level implication [| . . . |] =⇒ . . . ”if . . . then . . . ”
existential quantification ∃ ”for some”
universal quantification ∀ ”for any”

set membership ∈ ”is in”
negation of set membership /∈ ”is not in”

subset condition ⊂ ”is a subset of”
set-theoretic union ∪ ”the union of”

Table 1.1: Logical Notation

English and the logical symbols will be interchangeable in the text, the English prefer-
ably used for the sake of comprehension and the symbols for the sake of compact repre-
sentation. As the Isabelle theorem prover offers support for the mathematical symbols
internally through the use of UTF-8 characters [97], most theorems output from it will
use the symbolic notation.

1.4 Thesis Outline

We briefly sketch the organisation of the thesis, and summarise the contributions made
in each chapter.

1.4.1 Chapter 2: Unicast Protocol Verification

In Chapter 2 we present the current state of protocol verification techniques. We list the
available methods, dividing them into informal and formal approaches, giving brief de-
scriptions of their evolution and relation. We also classify these methods by construction,
trying to give some interpretation on their advantages and disadvantages for the formal
specification and verification process. Finally we close the chapter with a deep presenta-
tion of the Inductive Method. The main contributions are a fresh literature review of the
area of protocol verification and an up-to-date presentation of the Inductive Method.

20

1.4.2 Chapter 3: Security Multicast Protocol Verification

Chapter 3 starts presenting multicast Communications and its definitions. We also survey
the area in terms of multicast security protocols and the new interpretation of security
requirements for them. We then present our specification in Isabelle/HOL of a multicast
event model that is capable of representing unicast and broadcast communications. We
adhere to the idea that ”unicast and broadcast are extremes for multicast communica-
tion”. The main lemmas to support this model are also discussed. We conclude the
chapter with a revisited verification of Needham-Schroeder’s Shared Key Protocol [93],
now implemented using the new multicast event model. The main contributions in this
chapter are the literature review and survey regarding the multicast security protocols
and the Inductive Method’s extension to support such protocols.

1.4.3 Chapter 4: Secret Sharing Formalisation

In chapter 4 we start presenting Threshold Cryptography mechanisms, focusing especially
on secret-sharing and verifiable signature sharing. We introduce the reader to a literature
review of these primitives and draw our approach in their basic functionality specification.
We then discuss how to extend the Inductive Method’s message model without breaking
backwards compatibility. The formalisation of such novel primitives is necessary for the
initial verification of the Franklin-Reiter Auction Protocol [58] examined in Chapter 5.
The main contributions of this chapter are the study of novel cryptographic primitives
needed by Byzantine security systems and its impact on the Inductive Method’s message
model, together with a simple and initial specification of such primitives in Isabelle/HOL.

1.4.4 Chapter 5: Verifying a Byzantine Security Protocol Based

on Multicast

Chapter 5 has as its core the verification of the Franklin-Reiter Auction Protocol [58]. We
start discussing the importance of Byzantine Security Protocols and their close relation
to multicast specification and novel cryptographic primitives. We then show the protocol
specification and its semantics, focusing in the new multicast model proposed in Chapter
3. We then present some initial validation proofs, focusing on the new challenges imposed
by the usage of a multicast model in terms of concluding the proofs. We then discuss the
reinterpretation of findings tracing parallels with the unicast world, trying to show the
increased representation brought by the multicast model.

1.4.5 Chapter 6: Final Remarks

Finally Chapter 6 discusses the goals achieved in the thesis, giving emphasis on the
reinterpretation of the idea of traces and how security guaranties can be assessed in the
new environment. We also discuss potential outcomes in protocol verification of the
modified threat model imposed by any multicast security protocol. We discuss some
future outcomes from our work, such as the inherent need for new threat models and the
addressing of novel security goals imposed by the new threat models and the variety of
message casting models.

21

22

—Two monologues do not make a dialogue.

Jeff Daly

2
Unicast Protocol Verification

During the last thirty years we have seen a lot of effort being put into designing security
protocols. Due to their intrinsic complexity it is usual to have problems with the claims
such protocols make in terms of security properties they achieve. This happens since it is
not always clear or straightforward to understand or believe that a protocol achieves such
goals. We start this chapter revising the literature and the method we will use through-
out this thesis stating that analysing such claims demands a thorough approach to the
problem. We can also state that the design of security protocols is error-prone, especially
because it is very difficult to anticipate what is achievable by an attacker interacting
through an unbounded number of protocol runs, collecting information and sometimes
even acting honestly. Keeping this inherent complexity in mind, this chapter has the aim
of doing a survey on the state of protocol design and protocol verification today. We
named this chapter as Unicast protocol verification because our idea is to summarise all
efforts done so far by revisiting the basis of our research. We also would like to clearly
show the novelty of our research.

To properly understand the basis of our research we will be first establishing the
principles for security protocols and how they are represented and designed (§2.1). Then
we will be taking a look into protocol attacks (§2.2), which are the non adherence of the
protocol to its claimed security properties. To be able to understand attacks, we need
to characterise what are protocol goals and what they mean in the context of security
protocol design and verification (§2.2.1). Protocol goals are only applicable if we define
an attacker and a threat model, which characterise the environmental threats protocols
are subject to (§2.2.2). We will see that the adherence to a threat model is paramount to
the verification of any claim, since the threat model is what shapes the vulnerabilities to
an attack. Understanding the attacker and the threat model we will look over classical
attacks to protocols (§2.2.3) which will give us the basis to enter the discussion why we
should formalise and verify them.

At the formal verification section (§2.3) we will be first discussing how the thorough
review brought by formal methods can help the verification process of security protocols

23

and why it is not only a recommended, but also a mandatory step in protocol design. To
help the understanding of the effort made so far in terms of formalisation and verification
of security protocols we will be looking to the approaches developed over time, trying
to address the problem imposed by the triad of limitations we have in the verification
process for security protocols. The triad can be defined as the limitation in the number of
agents, the limitation in number of parallel sessions and the limitation in the amount of
data principals can acquire during infinite runs. In this section we will be looking over the
initial ideas of formalisation of security protocols (§2.3.1) and into the two main branches
of protocol verification, which are State Exploration (§2.3.2) with its promising Model
Checking (§2.3.2.2) and Strand Spaces (§2.3.2.3), and onto Theorem Proving (§2.3.3),
showing the advantages and disadvantages of using either Higher-Order Logic (§2.3.3.1),
and First-Order Logic (§2.3.3.1).

Finally this chapter will also cover a detailed review of Paulson’s Inductive Method
(§2.4), which was chosen to be the target for the work proposed in this thesis for not suf-
fering the triad of limitations stated above. We will explore Paulson’s Inductive Method
construction by looking over the theories and definitions that make up the method (§2.4.1).
The method is composed by different development branches. We will cover all the speci-
fication and assembly of the method within its main branch. With the method specified
we will be looking over Bella’s Goal availability (§2.4.2.1) principle since it is key for the
statement of meaningful verification lemmas, as well as it can help us to uncover more
subtleties of protocol properties by a thorough approach. Then we will be looking over
the verification process in the Inductive Method (2.4.2). We will try to cover all the
protocol goals discussed before giving the reader examples of how to state formally these
properties, including or not the principle of Goal Availability.

We will conclude the chapter with a discussion of how the verification of security
protocols stands today, trying to give our view and bring some extra motivation for
the extension of the inductive method. We will try also to prepare the reader for our
contribution, making a summary of what was achieved before our contribution.

2.1 Building Blocks for Security Protocols

The best way of starting to describe the problem of designing security protocols is giving
context to small operational problems we have. Let’s suppose Alice wants to send her
friend Bob an encrypted message using an insecure network. Alice and Bob have access
to cryptographic functions. These functions are key-operated and considered perfectly
secure form their point of view. This is the general setup for the design of a security
protocol.

Contextualising, a cryptographic function operates by taking a plain text P and a key
K and transforming these parameters into a ciphered text C by the usage of transforma-
tions and permutations. The ciphered text C is unintelligible to anyone overseeing the
medium, and the process of applying this function in this direction is called encryption.
Upon receiving the ciphertext C, Bob can reverse the cryptographic function by feeding it
with the ciphertext C and the inverse of key K, normally written K−1. The result of the
application of the cryptographic function in this direction is the recovery of the plaintext
P back as Alice meant it to be. This last process of using the cryptographic function is
called decryption.

24

Cryptographic functions can be classified according to the way they do their encryption
and decryption regarding the usage of keys. If keys in both sides of the encryption/de-
cryption process are different we call the function asymmetric cryptographic function. A
symmetric cryptographic function is a function where K = K−1. It is the same in both
sides of the encryption-decryption process. The availability of such cryptographic func-
tions is vast, and the assertion of security properties for them is a science in itself. We
can cite examples such as DES [92], AES [55], RSA [106] and Elgamal [52].

The usage of cryptographic functions clearly requires one preparation step before their
use: key provisioning. As seen before we consider a cryptographic function secure, but its
security is not only determined by the neatness of the operations that happen inside the
cryptographic primitive, but is directly related to how we manage the key used to configure
such functions. In a symmetric scenario, a key provisioned for communication between
Alice and Bob will be conventionally called KAB. The provisioning of such key can be
done in various ways. This can be by previous in-person encounter, by the delegation
from a trusted third party, by an agreement or by a key establishment protocol. The
asymmetric scenario requires Alice and Bob to have a key pair. In such key pair, Alice
and Bob will have a key each that they will keep secure and we call this a private key.
They will also have a key that is derived from the first one that they openly publish and
we call this a public key.

Although a naive comparison between both types of encryption functions can state
that asymmetric cryptographic functions brings us more capabilities in terms of properties
we can represent with them, they suffer some drawbacks. Asymmetric cryptographic
functions, also known as public key cryptography, require much larger key sizes due to
their construction principles, and also are much more computationally intensive due to the
sort of operations happening within the cryptographic function boundaries. Symmetric
cryptographic functions, or shared key cryptography, on the other hand, use smaller key
sizes to achieve the same robustness and are much less computationally intensive than
public key cryptography. A general aim is to try to get the best of each breed of functions.
We want fast operations and at the same time the possibility of representing the complex
and important properties required by the real world complexities. The existence of two
different types of encryption schemes with complementing features and drawbacks results
ultimately in compositional schemes. Security communication protocols are one example
of such compositional schemes, where we try to achieve a security goal using the least
resources.

As discussed before, security protocols aim to allow two or more principals to establish
a security goal. The properties we normally desire in such protocols include from authen-
tication, confidentiality, integrity to non-repudiation, privacy and accountability. These
properties are normally limited only by the necessity we have in the real world of them.

Cryptographic protocols were first proposed by Needham and Schroeder in their semi-
nal 1978 paper [93]. They were trying to address the key establishment problems explained
above by proposing two different protocols for interactive secure communication. One was
developed using a symmetric cryptography and a trusted third party and a second one
was developed based on public key cryptography and no external arbitration. They were
also responsible for proposing the notation which was explained previously in Section 1.3.

To help exemplifying why secure protocol design and ultimately secure protocol ver-
ification are intrinsically complex activities we will use Needham-Schroeder Public Key

25

protocol (NSPK) as an example. The aim of this protocol is to establish mutual authen-
tication and key distribution between the parts executing the protocol by using public
key cryptography. The protocol assumes each peer already possesses a key pair which the
public component is available to all participants, including the attacker. The protocol
runs like this:

1. A → B : {|Na,A|}pubKB

2. B → A : {|Na,Nb|}pubKA

3. A → B : {|Nb|}pubKB

Figure 2.1: Needham-Schroeder Public Key Protocol

Figure 2.1 can be informally described by the following three points, being one for
each message of the protocol:

1. Alice wants to initiate a session with Bob, and to do so she generates a random
number only she knows and that will be used only once. She then sends this ”number
usable only once” (Nonce) to Bob concatenated with her identity and wrapped by
encryption with Bob’s public key.

2. Bob then receives message one and is able to decrypt it using his private key. He
learns then the nonce Alice sent and generates one of his own. He then sends a
new message containing Alice’s nonce concatenated with his own back to Alice. All
message components are wrapped by encryption with Alice’s public key.

3. Alice receives message two and is able to decrypt it using her private key. She then
checks that the nonce in it is indeed the nonce she generated. She knows that only
Bob could have returned it, because she used it only in the composition of the first
message that was wrapped with encryption under Bob’s public key. Alice will then
use the nonce from Bob to create message three. Since Bob used that nonce only
on message two, and it was encrypted under Alice’s public key, he knows it could
have come from Alice and that she learned that value.

After the protocol run, both Alice and Bob know the nonces Na and Nb and can use
them for further encrypted communication, since they believe the other side also learnt
it. NSPK was designed to establish mutual authentication and key distribution, but not
just this, it also demonstrate aliveness and provides freshness. If Alice receives a message
encrypted with the nonce Nb she believes not only that it came from Bob but that it was
sent after the generation of her nonce.

Although the idea of accepting a nonce as fresh and secure based on the fact that
only the intended recipient could have read the originating transmission seems sound,
we will see that this protocol is flawed. In the next section (§2.2) we will talk about
protocol attacks and what exactly is claimed in terms of security, specially taking into
consideration protocol goals (§2.2.1). We will later see how the attacker is shaped and
placed within the communication infrastructure (§2.2.2) so that we can understand the
usual threat model protocols are subject to.

26

2.2 Protocol Attacks

The properties we want our protocols to have are known as protocol goals. Such goals
are achieved or not depending on the threat model we use our protocols with. The
relation between protocol goals and threat models is very intimate, since under a weak
and unrealistic threat model, any protocols has their goals valid. This is why they are
presented under the same umbrella of protocol attacks.

2.2.1 Protocol Goals

Protocol goals are the properties we would like our protocols to achieve during their
execution. The range of goals we normally have in security protocols is broad, so we try
to exemplify some here:

• Freshness concerns the time of creation for a message or component in a protocol.
The understanding of freshness is important in protocols because it will help us to
avoid attacks regarding the timing of messages. It does not depend on other security
goals, since the achievement of such property is made by checking that the exact
component was not used before in the protocol lifespan or that it is still valid under
our conditions.

• Confidentiality concerns the controlled disclosure of information. In security pro-
tocols’ terms we can state a component has confidentially if the Spy, or any other
non intended recipient, does not learn the value of such component by any means
during the protocol’s run.

• Authentication relates the origin of a message or component with a certain agent
within the protocol. Authentication is intrinsically related to Integrity, which by
itself, is related to freshness. We cannot achieve Authentication of a message or
component if it was tampered with or if it is out of date.

• Key Distribution concerns the knowledge of an agreed key by two agents after a
protocol run. In other terms, key distribution is achieved when, after the run of a
protocol, the involved agents learnt, and know that their peers also learnt, a key for
further secure communication.

• Non-Repudiation concerns the impossibility of a peer to plausibly deny the partic-
ipation in a protocol run and in the achievement of another goal. This property is
very important especially because it directly relates to the binding of actions of a
peer in the achievement of a goal.

• Privacy is a property that regards the deniability on the participation in a protocols
run and the impossibility of relating the peer participation with its identity if he
does not want so. Privacy can be seen as the counter property for Non-Repudiation.

The above list is not exhaustive. Also the exact meaning of these high-level goals is
open to a certain amount of interpretation. This makes the achievement of some of these
properties an exercise of interpretation and adaptation of the claim. There has been some
effort in the precise statement of such properties, since this helps the understanding and

27

the confirmation of claims security protocols have. We can cite work from Lowe [78],
Goolmann [62] and Bella [20].

Understanding goals we want security protocols to achieve is paramount for verifying
any claims protocol designers make regarding their creations. This understanding coupled
with the understanding of threat models protocols are subject to are key to verify any
claim.

2.2.2 Threat Model and the Spy

The threat model can be seen as the environment where we are claiming our security
properties to hold in a security protocol. A threat model is generally related to the
idea of a potential attacker to our protocols and his capabilities. Such a Spy, as we can
also call the attacker, was first mentioned in the classical Needham-Schroeder paper [93].
Needham and Schroeder made assumptions about the behaviour of principals executing
the protocols and the potential attacker they were aiming to protect against. Later this
definition became a central point in discussing if the protocols were correct or not, and
definitely demonstrated how the security claims and their verification are tied to the
threat model to which they are subject.

Needham and Schroeder made assumptions that are commonly accepted by the secu-
rity community, are up to date and usable even with the new shape the Internet gave to
computer networks. Their assumptions are:

• Cryptography in security protocols is perfect and not breakable by the use of brute
force or cryptanalysis.

• The attacker can manipulate all communication paths. He can oversee all traffic as
well as, delay, prevent delivery and fake messages of his own using all resources his
has available, with exception to cryptanalysis powers what would be contrary the
first point.

• Principals on the network other than the attacker are following the protocols, and
security protocols do not force all the communication to be carried out in a secure
fashion.

Under the evolution of computer networks we see new additions to bring the threat
model closer to the real threat protocols would be subject to. Dolev and Yao [51] for-
malised their attacker with the previous capabilities but added some further important
assumptions:

• The attacker can break down messages up to their atomic components and decrypt
all encrypted messages to which he possesses the key.

• The attacker can forward encrypted messages he cannot read.

• The attacker can be an internal agent to the protocol that engages in a run to learn
information and use it later to leverage gain.

28

The threat model known as Dolev-Yao is today the standard in terms of security
protocols research. From the Dolev-Yao threat model we see the spark of two different
research lines. The first research line agrees with the threat model in terms of architecture
and tries to extend it with probabilistic and cryptanalysis powers. Their main motivation
is that by doing such extensions the threat model would depict an even more realistic
threat scenario. This has been focus of interest since Bellare and Rogaway’s [27] worked
on computational complexity and the threat model.

The second line of interest in threat modelling description believes that subtleties of
protocols attacks can still be discovered by rearranging the power distribution between
the omnipresent and all-powerful Dolev-Yao attacker and other potentially interested
subjects. This new line of research brings us more realistic scenarios from protocols to
adhere in the sense threat today is different from the cold war one historically embedded
in the Dolev-Yao.

We tend to focus more on this second line of research since it is easier to implement
into the symbolic protocols analysis, which this thesis focuses. An example is the BUG
threat model [21], where the agents participating in the protocol are divided in three
groups: the Good, the Bad and the Ugly. They are agents that follow, subvert or change
behaviour respectively during the protocol execution. The BUG threat model is important
because of its novelty in having attackers not sharing their knowledge and changing their
behaviour during the run. As direct derivations from the BUG threat model we can also
cite the Rational Attacker [10] where the agents make cost/benefit decisions on when to
behave or not, and the General Attacker [10] where the cost/benefit function is dropped,
but principals still do not collude as in the original Dolev-Yao. Finally in recent research
[11] we have the introduction of the Multi-Attacker, which is a variant of the BUG family
where each principal may behave as a Dolev-Yao attacker but will never share his long
term secrets with other agents.

The advantages of evolving the original Dolev-Yao attacker into forms like the BUG
family of threat models is that these properties are more adequate to their actual execution
environment. The possibility of retaliation or anticipation attacks as suggested by Arsac
ET al. [11] justifies the consideration of such new threat models.

As one of the focuses of this thesis is the understanding how Multicast communica-
tion affects security protocols, the evaluation against some of these novel threat models
was considered. Especially regarding the evolution of the Dolev-Yao towards the Multi-
Attacker. The scenario of a Multi-Attacker could bring insights on how the knowledge is
distributed in a Multicast setup among peers. If we assume a Multi-Attacker threat model
then the reflection of knowledge between peers during Multicast that will be explained
in Section 3.2.1 makes sense. We did not implement the Multi-Attacker threat model
because we dropped the implementation of the reflection of knowledge, as will be later
explained.

Summarising, understanding protocol goals and threat models is key to understand-
ing attacks on security protocols. Although simple in description, a threat model hides
subtleties that can validate or invalidate most claims made regarding the achievement of
security goals. Attacks can be seen as the marriage between weak goal achievements and
misunderstanding of the correct threat model. In the next section we will be covering
some of the attacks discovered against classical protocols.

29

2.2.3 Classical Attack examples

To exemplify why the understanding of security goals and their threat models is important
to the analysis of claims made by protocol designers, we show probably the most notorious
attack ever. This attack was discovered 16 years after the original publication of the
protocol and was only feasible because of a change in the threat model.

We will cover the attack found by Gavin Lowe [77] in 1995 on the Needham-Schroeder
Public Key Protocol, which we previously described in Figure 2.1. The attack is only
possible because of a change in the threat model originally conceived by Needham and
Schroeder. In this new threat model we accept that a dishonest player can be considered
as an honest player by other principals. In other terms, we consider a corrupted internal
as part of our threat model.

1. A → C : {|Na,A|}pubKC

1’. CA → B : {|Na,A|}pubKB

2’. B → CA : {|Na,Nb|}pubKA

2. C → A : {|Na,Nb|}pubKA

3. A → C : {|Nb|}pubKC

3’. CA → B : {|Nb|}pubKB

Figure 2.2: Needham-Schroeder Public Key Protocol with Lowe’s Attack

A corrupted internal being a plausible assumption, we see that when Alice starts a
run with the attacker Charlie, he starts a parallel run of the protocol with Bob. In this
parallel session he masquerades as Alice and will use Alice as an oracle to decrypt Bob’s
messages. Figure 2.2 shows the interleaved sessions, which are differentiated by the prime
’ symbol. As a notational syntax, when we use CA we indicate Charlie impersonating
Alice in the protocol.

The attack is valid because at the end of this sequence of events Bob believes he carried
out a complete run of the protocol with Alice, when in fact he has not. Now Charlie can
use the values of the nonces Na and Nb to impersonate Alice to Bob. As Lowe suggest,
the following message is valid:

CA → B : {|Na,Nb, transfer thousands of £ to C |}pubKB

Although not designed to be a banking protocol it shows clearly a flaw in authentica-
tion. This attack at time of discovery caused a lot of controversy, especially due to the
fact Lowe changed the threat model to make it plausible. The attack was widely accepted
because the threat model used clearly showed the limitations of the protocol in a real
threat scenario where the attacker can in fact be an internal.

The second protocol in Needham-Schroeder’s paper [93], shown in Figure 2.3 , was
also subject to an attack [50]. Denning and Sacco showed the presence of a freshness
problem or replay attack. This happens when the attacker re-sends a message an honest
agent sent earlier and proceeds with the protocol.

The Needham-Schroeder Shared Key protocol starts with Alice sending a message to
a trusted third party called Steve, where she indicates she wants to talk to Bob. She
includes in this first message a nonce generated by herself plus her identity and Bob’s

30

1. A → S : {A,B,Na}
2. S → A : {|Na,B,KAB, {|KAB, A|}KB

|}KA

3. A → B : {|KAB, A|}KB

4. B → A : {|Nb|}KAB

5. A → B : {|Nb − 1|}KAB

Figure 2.3: Needham-Schroeder Shared Key Protocol

identity. On message two, Steve will reply Alice with an encrypted message using the key
he shares with Alice containing her freshness value Na, the identity of Bob and a fresh
session key Alice can use to talk with Bob. Steve also sends a certificate to Alice which
she will forward to Bob. The certificate is encrypted under the key Bob shares with Steve,
and is also wrapped by the first encryption layer with Alice.

Alice then unwraps the first layer of encryption, learns the fresh session key and
forwards the certificate to Bob in message three. Upon reception, Bob learns the session
key Steve generated for him and Alice. He then generates a nonce for himself, and encrypts
it under the session key he now shares with Alice. He then sends message four. When
Alice receives message four she then decrypts it with the sessions key, modifies the nonce
sent by Bob in a pre-determined fashion and re-encrypts again with the session key. She
then sends to Bob message 5.

After the protocol run is concluded, Alice and Bob know the session key generated
by Steve and believe the aliveness of each other by the reply of their nonces. However,
Denning and Sacco [50] were able to show that the protocol is susceptible to a replay
attack. Suppose now an attacker called Charlie has obtained the session key KAB. The
protocol has no restriction on the lifetime of session keys, so this should be an allowed
supposition in any future point in time. If this happens, we would need to setup new
session keys. Charlie can now fool Bob into using that key for a new conversation span
and masquerade as Alice by the sequence of messages shown in Figure 2.4.

3. CA → B : {|KAB, A|}KB

4. B → CA : {|Nb|}KAB

5. CA → B : {|Nb − 1|}KAB

Figure 2.4: Needham-Schroeder Shared Key Protocol

Charlie does not need to know Bob’s long term key shared with Steve to be able
to create message three, and he just replays it as Alice must have sent it as a genuine
message three earlier. Then at the end of this sequence, Bob believes a full run of the
protocol run has happened again and accepts KAB as a valid new session key.

The fix proposed by Denning and Sacco regarded the substitution of nonces by times-
tamps in the Needham-Schroeder version so that sessions keys could be expired based on
an agreed duration for them. Needham and Schroeder suggest their own fix by involving
an extra handshake at the beginning to avoid the clock synchronisation problems [94].
Although Denning and Sacco version is the basis for the well-known Kerberos family of

31

protocols, the issue of synchronised clocks remains controversial, especially since Gong
[63] exhibited the risks of relying on that.

Our third and last example of classical protocol attacks is the simplified version of the
shared key protocol proposed by Otway and Rees [98] which was designed deliberately
to avoid replay attacks. The main difference of this protocol from Needham-Schroeder’s
Shared Key one is that Alice is required to inform Bob of her wish to communicate in
message one before interacting with the trusted third party Steve. In this way both peers
were involved with obtaining the session key. The protocol is shown in Figure 2.5

1. A → B : N,A,B, {|Na,N,A,B|}KA

2. B → S : N,A,B, {|Na,N,A,B|}KA
, {|Nb,N,A,B|}KB

3. S → B : N, {|Na,KAB|}KA
, {|Nb,KAB|}KB

4. B → A : N, {|Na,KAB|}KA

Figure 2.5: Otway-Rees Protocol

Now three nonces are used: one to assure Alice of Bob’s identity (Na), one to assure
Bob of Alice’s identity (Nb) and one to identify the run of the protocol (N). In the first
message, Alice generates the session identifier nonce N and her nonce Na. She sends these
and Bobs identity in the clear, plus a certificate containing all the unencrypted data, plus
her identification nonce, now encrypted under the key she shares with Steve. Message
two shows Bob generating his own identification nonce (Nb), and generating a certificate
of himself to forward Steve using the same syntax Alice used. He will then transmit the
message composed by the session nonce, Alice’s identity, his identity, the certificate from
Alice received from message one and his own certificate encrypted with the key he shares
with Steve.

When Steve receives message two, he learns from the outer unencrypted part the keys
he needs to use to decrypt the certificates. He then generates a fresh session key for Alice
and Bob to communicate (KAB), and generates two certificates: One for Alice containing
her identification nonce and the session key encrypted under the key he shares with Alice,
and an equivalent certificate containing Bob’s identification nonce and the session key,
now encrypted under the key he shares with Bob. Steve then sends message three, which
is composed of the session identification nonce and the two certificates. In message four,
upon receipt of message three Bob learns the session key and forwards Alice’s certificate
together with the session identification nonce.

1. A → CB : {Na,A,B, {|Na,A,B|}KA
}

1’. C → A : {Nc,C,A, {|Nc,C,A|}KC
}

2’. A → CS : {Nc,C,A, {|Nc,C,A|}Kc
, Na′{|Nc,C,A|}KA

}
2”. CA → S : {Nc,C,A, {|Nc,C,A|}Kc

, Na{|Nc,C,A|}KA
}

3”. S → CA : {Nc, {|Nc,KCA|}KC
, {|Na,KCA|}KA

}
4. CB → A : {Na, {|Na,KCA|}KA

}

Figure 2.6: Otway-Rees Simplified Protocol Attack

32

Burrows ET al. [38] later suggested the same guarantees could be achieve by a protocol
that used only two nonces, and mistakenly suggested that Nb need not to be encrypted.
Mao and Boyd [80] and later Paulson [101] found attacks in the simplified version. Paulson
showed that the version that encrypted Nb was secure with respect to the assumptions,
but found an authenticity flaw when the nonce N was substituted by only Na in the
protocol. Paulson’s attack on the simplified version is shown in Figure 2.6

The attack discovered by Paulson (Figure 2.6) starts when Alice tries to start a session
with Bob, but the message is intercepted by Charlie, who learns the identification nonce
for that session (Na). Charlie will then start a new session with Alice as shown in message
1’. Alice believes Charlie is an honest agent and will forward the certificate provided by
Charlie as a request to Steve, the trusted party, now adding a new identification nonce
(Na’). Charlie again intercepts the message. Charlie now (2”) mixes up the message Alice
tried to send before to Steve and that contained Na, and tricks Steve. Steve is fooled (3”)
and sends Charlie the old identification nonce (Na), now encrypted under the long term
key Steve shares with Alice. Charlie now can masquerade (4) as Bob.

Seeing the sort of attacks in classical protocols we discussed above we can conclude
that the achievement of protocol goals directly depends on the threat models as discussed
before. The classical example of Lowes attack on Needham-Schroeders Public key protocol
demonstrates such an important relation.

Finally the attack from Paulson on the simplified version of Otway-Rees reinforces the
importance we should give to details. On the same note, Paulson shows us a very complex
attack that may never be found on a trial and error basis, showing the need for thorough
techniques for protocol verification. Taking this into consideration we will see in the next
sections the methods developed for the formal analysis of protocols. We will try to group
them and outline what they support and what their qualities and drawbacks are.

2.3 Formal Methods for Protocol Verification

These attacks demonstrate how tricky it is to design security protocols. They are dis-
tributed computations running in a hostile environment. One of the main innovations
in computer security and security protocols in the last two decades has been the use of
formal methods to address the complexity involved.

Formal methods for protocol verification normally work with abstract protocol models
based on how cryptographic primitives and computer networks work. Even with a great
level of abstraction to simplify the task of verifying a real world example, the problem of
verifying if a security protocol provides the desired security properties is undecidable [108].
Trying to overcome this undecidability, researchers have applied a series of techniques:
term rewriting, model checking, theorem proving and modal logics among other things.

During the development of such methods and tools for security protocol verification,
designers are faced with a triad of limitations that need to be imposed to treat the
inherently unbounded complexity of secure distributed execution.

Having this in mind we will start looking over the three classes of methods. This will
help us to better understand how the methods operate and how efficient they are. We must
remember that efficiency is not measured only by the triad of limitations stated before,
but by a series of factors, like learning curve, automation and capacity for representation
of novel problems.

33

An early attempt on formalising security protocols was suggested by Dolev and Yao
[51] in their seminal paper, where the system was modelled as a machine used by the
intruder to generate words. Their Spy model became later the standard into security
protocol verification, but the fact that the Spy did not start with private information was
a serious drawback. They presented several algorithms to their proposed system trying to
capture certain classes of protocols, but failed in proving any authenticity and freshness,
due to the fact the model was not capable of representing the storing of data by peers
executing the protocols.

2.3.1 Belief Logics

Belief Logic is normally considered the first attempt towards the solution of the security
protocols’ verification problem. Burrows, Abadi and Needham [38] demonstrate the usage
of a logic based on beliefs. With it we can compute what an agent would infer by the
usage of formulae. BAN logic, as it became known, allowed for short and abstract proofs
regarding security protocols and sparked a series of research on other more powerful
methods.

BAN logic is simple. It is based on simple execution rules, it is reasonably easy
to understand and it is capable of representing most protocol constructions. Although
simple, BAN logic can be used to prove a variety of properties in security protocols. The
fact BAN logic does not consider an intruder on the network and do consider all agents
honest makes it very weak in proving any property related to confidentiality. The main
weaknesses regarding BAN logic came after it was used to detect flaws in several protocols,
but clearly missed some important problems. Some protocols which were claimed to be
correct under BAN logic were shown to be deeply flawed [95]. To these claims the authors
argued that they were violations in the basic assumptions of the logic especially that, no
message should give away secret keys. Later it was highlighted by Meadows [87] that this
could not be a valid assumption since it would conflict with the assumptions of the widely
accepted Dolev-Yao threat model.

With the popularity of BAN logic a series of attempts to fix its problems were tried.
Most of the propositions were by creating extensions to its initial propositions. Extensions
generated some new logics, such as BGNY [35] and some automated implementation, such
as Schumman’s [113] using the theorem prover SETHEO. But they generally traded BAN’s
simplicity for coverage or suffered the same drawbacks as the original work from Burrows,
Abadi and Needham. A clear advantage of using it with an automated tool, such as the
one proposed by Schumman, was that when a proof attempt was not achievable, this
would often indicate that an attack could be present.

2.3.2 State Exploration

In the State Exploration approaches we can state that a protocol is normally verified
and characterised by the set of all possible traces it can yield. The idea behind these
approaches is that the verification will explore all possible paths the execution of a protocol
can take and assure that all conditions specified hold in each step. One clear limitation of
state exploration approaches is the infinite search spaces for agents, runs and knowledge
space. Principals can engage in a number of protocol runs, and simultaneously be in

34

different roles, and the attacker can generate an infinite number of different messages.

We will see below that most state exploration techniques use theoretical results to avoid
exploring the entire state space. Most of these theoretical techniques are corroborated by
works like Syverson ET al. [121] which proves that, whenever there is an attack present
in a protocol, there is an attack where compromised principals only sends valid protocol
messages. Another work by Rusinowitch and Turani’s [109] shows that whenever there is
an attack in a given security protocol there is at least one of polynomial size for bounded
number of sessions and players.

One of the main advantages of state exploration approaches are their expressiveness
and automation. Also a lot of attention is attracted because these approaches normally
detect the lack of certain properties to which they normally can construct attacks. These
attacks are verifiable by the counterexamples they generate from failed traces. In the next
section we will be seeing some initial attempts of state exploration approaches (§2.3.2.1)
and then look deeper into the two main strains for state exploration, which are Model
Checking (§2.3.2.2) and Strand Spaces when automated by computerised tools (§2.3.2.3).

2.3.2.1 Early Attempts

As already stated, the earliest attempt for verifying security protocols can be credited to
Dolev and Yao [51], who tried some state exploration techniques. However the approach
only considered the verification of secrecy and accounted for a few cryptographic primi-
tives. It came to be important to the field of verification of security protocols mainly by
its proposed threat model.

Clearly due to its limitations it was largely ignored in terms of the verifications at-
tempted by them and remained for over ten years under the shadows together with the
whole field of security protocol verification. Although BAN-type logics were very popular
in 1990s, just after 1995 that the protocol verification field came to light again, especially
with efforts from Lowe, Meadows and Paulson. With the problem revived, other methods
and approaches started to come to light, as we will see in the next sections.

2.3.2.2 Model Checking

The successful use of model checking can be credited to Gavin Lowe [77], who approached
the problem of verifying security protocols taking into considerations Hoare’s calculus of
Communication Sequential Processes (CSP) [68]. To verify a protocol, Lowe decided to
model every entity in the communication system by creating a CSP model for the agents
taking part in the protocol, the attacker using a Dolev-Yao fashion and the underlying
communication network. He then applied a standard CSP theory of traces to conduct a
deep analysis.

In his attack into Needham-Schroeder’s Public Key protocol, he experimented with
Failures Divergences Refinement (FDR), a model checker to verify CSP programs. Al-
though powerful, the task of producing a CSP description for a given protocol is time
consuming and requires a high level of skill. He then developed Casper [79], which trans-
lates a standardised protocol description for a security protocol into a CSP model that
can be then used with FDR. His results were encouraging for many other researchers, and
sparked the construction of specialised tools for security protocol verification.

35

Another important model checking approach is the one by Basin [16], who combines
complementary aspects of model checking with those introduced by Paulson in theorem
proving approaches (see Section 2.3.3). The approach consists in dealing with the state
explosion problem by implementing lazy data types. By using lazy data types without
evaluating their arguments, he could represent and compute terms regarding infinite data
sets.

The motivation from Paulson’s work [101] brings Basin to use trace-based interleaving
semantics for modelling security protocols, which are formalised as infinite trees with the
branches being traces. Adding a tree’s child node corresponds to extending the trace,
capturing then a protocol execution step or an action from the attacker. If there is an
attack it is located in some node of the tree but this node can be arbitrarily deep. Finding
it can be a problem in this lazy data type approach. To make the search less problematic,
Basin uses some heuristics to simplify it. One is to prune traces that contain spurious
events, such as messages that do not obey the rules on how the security protocol executes.
Another one is to assign higher priority to events involving the start of a new execution
or for an intervention from the attacker.

Basin et al. [15] evolved this approach to a tool called On-The-Fly Model-Checker
(OFMC), which combines the lazy data type proposed initially with a set of symbolic
techniques. This tool helps to narrow the search in a demand-driven way towards the
attacker actions, which reduces the search space drastically without losing any attacks.
The model that OFMC uses to describe protocols and to analyse them is based on a
two level specification language similar to a byte-code execution. We have a high-level
specification language called HLPSL where the main protocol descriptions are made.
Then there is a low-level specification language called IF (Intermediate Format) where
the verification takes place. This two level scheme was developed under the AVISPA
project. The AVISPA project supports the integration of four back-end search engines:
the On-The-Fly Model-Checker [15], the Constraint-Logic-Based Attack Searcher [44], the
SAT-based Model-Checker [9] and the Tree Automata based of Automatic Approximations
for the Analysis of Security Protocols [34]

In fact the results brought by experimenting OFMC with the AVISPA-built library of
protocols [8] showed that it is capable of finding attacks present in real protocols as well
as to discovering new paths to the previously known attacks [17]. It is fast in determining
validity or giving a counter example for almost all protocols in the library. The main
drawback of OFMC is its incapability of verifying group security protocols.

Model checkers have been very successful in the verification of security protocols de-
spite their clear limitations on addressing the problem without limits. Their success is
mostly justified by their targeting into find security bugs, which are then easily demon-
strable in real world examples by following the execution path taken to achieve the in-
consistency.

2.3.2.3 Strand Space Models

As already stated before, the main motivation of model checking approaches is to search
if in the execution space there exists a state that violates any of the established security
goals of the protocols being verified. Model checkers aim mostly to find bugs, not to claim
a protocol correct. Motivated by this limitations of model checking, Fabrega, Herzog and
Guttman [53] proposed the strand space model. In the strand space model, a strand is

36

a sequence of events an agent can execute within the protocol description and a strand
space is the set of strands that represent all the behaviour present within the protocol,
both honest agents and the attacker. As strand spaces were designed as a ”hand-proof”
method some would argue that they are no state exploration tools, but when automated
this method behaves similarly to state exploration ones.

A strand space is a graphical collection of strands that represent the relations between
agents during protocol execution. The strand is composed of events that can be either the
sending or receiving of messages. These are graphically represented as nodes. In a strand
space model, we have two types of strands, those of honest agents containing the agent’s
actions in one particular run of the protocol, and those from the attacker representing
all the actions he is capable of doing. The attacker has capabilities defined by the threat
model such as interceptions, fabrications and rearrangement message parts. If agents are
involved in several parallel runs, each one will generate a new strand. Attacker’s actions
can be created by the connection of many different strands. The verification of a strand
space model also has the notion of bundle. A bundle is a finite acyclic sub graph of the
strand space, to which properties are proven upon using induction. These proofs were
originally carried out by pen and paper, which made it very demanding.

Song [116] created an automated tool for automatically checking security protocols,
which is called Athena. Athena uses techniques from both model-checking and theorem
proving to extend the strand space model so that it is both automatic and able to prove
correctness of security protocols with arbitrary numbers of agents and runs. Athena in-
cludes optimisations to improve efficiency, such as the use of a pruning procedure based on
novel theorems and an automatic evaluator for well-formed formulas. Although promis-
ing, Athena does not have guaranteed termination, which is only achievable by limiting
the size of message terms or the number of parallel runs.

Strand spaces provide a simple and graphic way of expressing the relationship between
different parts of a protocol and can produce efficient verification by the usage of auto-
mated proof techniques. The main drawbacks of strand space models are inflexibility,
especially if compared with Paulson’s inductive method [101] and the necessity of impos-
ing limitations in order to speed up the automated verification process and to guarantee
termination. Also, it cannot generate attack counter examples.

The field of state exploration is probably one of the most active in verifying properties
in security protocols. As seen above, we have different techniques that normally work with
a goal of detecting protocol flaws, aiming to explore the execution space in them. We
will see below a different approach, not based on exploring states, but into constructing
logical proofs regarding security protocol’s properties.

2.3.3 Theorem Proving

The main goal of theorem proving techniques is to produce formal proofs of a given
specification, based on a set of logical axioms and a set of inference rules. Theorem proving
approaches can be divided in to two main groups: Interactive (§2.3.3.1) approaches,
typically based on Higher-Order Logic , which can inductively simulate an infinite number
of agents and protocol sessions, but requires user guidance for achieving the proofs, and
automatic approaches, based on First-Order Logic (FOL) (§2.3.3.2), which sacrifice some
of the expressiveness of types and quantification in order to acquire automation, making

37

them attractive to quickly generate attacks, or counter-examples, for the properties being
verified.

2.3.3.1 Higher-Order Logic

The verification of security protocols using theorem provers in Higher-Order Logic is due
to Paulson [101]. He introduced the inductive method of protocol verification where
protocols are formalised in typed higher-order logic as being an inductively defined set
of all possible execution traces. An execution trace is a list of all possible events in
a given protocol. Events can be described as the sending or receiving of messages, as
well as off-protocol gathered knowledge. The attacker is specified following Dolev-Yao’s
propositions. The attacker, or Spy as it is represented in the method, has his knowledge
derived and extended by two operators called synth and analz. Operator analz represents
all the individual terms that the attacker is able to learn using his capabilities defined by
the threat model within the protocol model, and synth represents all the messages he can
compose with the set of knowledge he possesses.

Protocols are defined as inductive sets constructed over abstract definitions of the
network and cryptographic primitives. Proofs about protocol’s properties are written as
lemmas. Lemmas are constructed taking what properties we desire to achieve within the
set of all admissible traces, and are typically proven inductively. This framework is built
over induction, which makes the model and all its verifications potentially infinite, giving
us a broad coverage and a lot of flexibility. This approach was already used to prove a
series of classical protocols [99, 101] as well as some well-known industry grade protocols,
such as the SET online payment protocol, Kerberos and SSL/TLS [26, 23].

Some of the criticisms about Paulson’s Inductive method concern the difficulty in
achieving proofs, the lack of automation and also the very steep learning curve. But
Paulson’s formalism is very expressive and capable of capturing a good model for most
security protocols. It is especially appealing because it deals naturally with arbitrary
number of agents, parallel runs and components in the knowledge set of agents.

As this approach is the focus of this thesis, we will describe it in a much deeper way.
We will describe the method in Section 2.4 and the verification process in Subsection
2.4.2. The justification for its choice is three-fold: The method is malleable enough to
enable experimentation with novel concepts and doesn’t suffer the triad of limitations
explained above. Finally the main criticism it faces was easy to overcome since we have
local expertise available to guide us.

2.3.3.2 First-Order Logic

One of the the first attempts of using automated theorem proving to verify security pro-
tocols properties was performed by Meadows [87] with the NRL Protocol Analyser. The
NRL Protocol Analyser is a tool built on Prolog, specially tailored to verify security pro-
tocol properties. The NPA, as it became known, aims to prove that a number of protocol
states are reachable and by that to satisfy authentication and key distribution proper-
ties for a given principal. NPA was used to find several attacks into protocols, such as
in Simmon’s Selective Broadcast Protocol [115], Neuman-Stubblebine Re-authentication
protocol [96] and Aziz-Diffie Wireless Communication protocol [13].

38

Although NPA is based on a subset of first-order logic it is very interactive, which
makes it as complex to use as an interactive theorem prover. Also to be able to gather
significant results it requires a savvy user to guide the tool in the search for a proof.
Other problems regard the non guaranteed termination and its incapability of converting
a protocol description into a set of term-rewriting rules.

Weidenbach [124] developed a method based on Paulson’s Inductive Method that re-
duces the problems from higher-order logic to first-order logic. He keeps the same induc-
tive representation proposed by Paulson but gains the automation from first-order theorem
proving tools. Weidenbach’s approach is based on monadic Horn clauses. Monadic Horn
clauses are a fragment of first-order logic that is expressive enough to allow infinite in-
ductive models, but contain at most one positive literal. All the predicates take only one
argument. The method is implemented by first converting the protocol descriptions and
its associate requirements into first-order monadic Horn formulae. These formulae are
passed to SPASS, a first-order logic theorem prover that will saturate the results trying
to prove any flaws. The outcomes of a verification using Weidenbach’s method either
terminates if the saturation happens meaning the protocol properties and description
given to SPASS yield no security breach, or it terminates with a counterexample. These
counterexamples show the saturation failure and normally consists of a valid non minimal
attack path.

The method developed by Weidenbach has successfully been used to find new attacks in
protocols, including the Neumann-Stubbline protocol [124]. We discovered and attack of
our own within the Brazilian Electronic Bill of Sale protocol [104, 82], which we examined
during some initial experimentations with inductive modelling for security protocols. Our
remark from this experimentation is that Weidenbach’s method can be seen as a reasonable
teaching tool to Paulson’s Inductive Method. For novice users it can teach the basis of
the inductive verification process due to its very close relation, but without suffering
from some major drawbacks regarding the strictness of the higher-order description and
the lack of automation. The criticism for Weidenbach’s method come from his original
attacker model being weaker than the standard Dolev-Yao, but this is easy to overcome as
we noted in our analysis [82]. A second criticism is that it is not as expressive as Paulson’s
inductive method because it does not enforce types and does not provide quantification.
It is not clear for example if the approach used for modelling time-stamps in Paulson’s
inductive method would work in Weidenbach’s model.

Blanchet [31] developed an approach based on Horn clauses for verifying secrecy prop-
erties in security protocols. It takes a specification using spi-calculus [2] which is auto-
matically translated into a set of Horn clauses. These Horn clauses are then passed to
a first-order prover that will assert it’s properties. Similarly to Weidenbach’s approach,
Blanchet can also generate a counter example which can be used to recreate the steps
needed to achieve a successful attack within the real protocol. Blanchet’s innovation
concerns the input using spi-calculus and the way he treats freshness within protocol
messages.

The method is mainly focused on secrecy and authentication, but we have seen cases
where properties like privacy, traceability and verifiability were also considered. The main
advantages of Proverif [31], the tool Blanchet implemented, is its capability of working
with unbounded numbers of parallel sessions, the safety of always finding a violation of
secrecy and its automation and ease of use. The main drawbacks of Blanchet’s method

39

are its assumption of a bounded number of agents, the yielding of false positives especially
due to how freshness is modelled, and its incapability of counting messages on channels,
what makes extremely difficult to use it for time-stamp based protocols.

Another first-order logic method is by Cohen [46]. Cohen’s method is based on the
verification of invariants using first-order logic with the formalisation of the protocol as a
transitions system. Each state represents the set of transitions that have been executed
and the set messages that had been sent onto the network. The system then constructs
first-order invariants capturing the properties we want to assert. One of the main char-
acteristics of the method’s implementation in TAPS [46] is its capacity to generating
a number of protocol invariants from a protocol description. These invariants are then
used to establish the security goals automatically. TAPS has been used to verify a large
number of security protocols [46], and its small user interaction is one of its main advan-
tages, especially if compared to similar methods focused on proving invariants, such as
Paulson’s. Critics on this method normally point to its inability of generating counterex-
amples, or attacks. Although controversial, some critics say that, by not requiring user
input, it undermines the understanding of flaws the protocol can have as it does not add
to the learning of the process as other tools do.

Finally, we come to Graham Steel’s method, another first order variation of Paulson’s
inductive method. Steel’s approach is targeted to address the verification of group pro-
tocols. This method is focused into capturing the verification of group protocols where
an arbitrary number of peers may be involved in a single protocol run, as defined by
Meadows [88]. He proposes a scheme based on proof by consistency aided by a first-order
logical framework.

The method proposed by Steel, being a first-order variant of Paulson’s, specifies a
protocol as an inductive data type, which captures all possible traces. Axioms specify
how the trace will be expanded, either by agents following the protocol or by the Spy.
The model captures the possibility of having an undetermined number of agents to get
involved in one or more protocol runs. They may play any role and are able to issue an
arbitrary number of fresh components. The Spy and the protocol are specified as Horn
clauses and the negated property is passed to the first-order theorem prover. The output
is either a counterexample or saturation in a similar fashion to Weidenbach’s approach.
The focus of Steel’s approach is finding bugs or attacks.

There are some similarities between Steel’s verification objectives and mine. To clarify
the similarities and differences, Steel is focused on group protocols where an arbitrary
number of participants may be involved in a single run, but still under the same message
framework of Unicast. Our work in different in the way it implements capabilities for other
types of message casting techniques and we are focused on the original ideas of Paulson’s
inductive method. Also our main focus is to prove correctness rather than finding attacks.

Having reviewed the main methods in protocol verification up to date in the Unicast
world, we will cover now an in-depth overview of Paulson’s inductive method. His method
is the basis to most of approaches based on theorem proving and is one of the few that have
no restrictions on the triad of limitations we stated above. It is able to verify properties
in protocols with and unbounded number of player and sessions, as well as an unlimited
knowledge set for the attacker. In the next section we will be looking for its construction
and the verification process it demands. We will also briefly look over the principle of
Goal Availability, which generally shapes the statement of properties for verification.

40

2.4 In-depth view of the Inductive Method

Paulson’s inductive method is the approach of choice for this thesis. It suffers the fewest
drawbacks while addressing the triad of complexities we stated in Section 2.3. We can
also cite the extensibility of the method, the influence the method imposes into other
methods as seen in the above section, and the availability of local expertise to help us
through the process.

The idea of this section is to bring to the reader an up-to-date summary of how the
inductive method was at the beginning of the developments that lead to this thesis. We
don’t want to be complete in our coverage, but complementary to other descriptions
[101, 20]. The text for the next sections will have its structure heavily based on Bella’s
[20] own review for his book which takes into consideration the method as it was at the
beginning of his proposed extensions. We will try to create an updated summary so
that the reader can understand the basis over which we built our approach to address
multicast protocol verification. We need to start giving the due credit to Paulson and
Bella for all the ideas below. For a complete understanding of the mechanics behind the
Inductive Method we recommend reading Isabelle/HOL tutorial and chapter 3 of Bella’s
book into formal correctness of security protocols [20], as they produce deeper views into
the method’s basis.

Paraphrasing Bella [20], we start by stating that Paulson’s Inductive Method, or just
the Inductive Method, is a natural way of constructing a process to help with the ver-
ification of security protocols. This will inherently happen while the protocol is being
extended by parallel and potentially infinite executions and in the presence of an at-
tacker. The inductive method [101] addresses the security protocol verification problem
in a completely unbounded fashion. It does so by representing the protocol models and
operational functions using structural induction, where properties are asserted inductively
and verified by inductive proofs over a completely inductive model.

We can split the verification process using the Inductive Method into two phases: The
first phase concerns the protocol specification and the infrastructure representation which
is needed for representing protocol’s execution for the purpose of verification. The second,
called properties verification phase, proofs are built for the desired properties yielded by
the protocols over the specification.

Induction in the specification phase defines the interactions a protocol can create to
generate all the possible extensions achievable by protocol execution. As an inductive
set definition, it takes into consideration all the actions the involved peers including the
attacker can take during protocol execution. The execution is not bounded in the number
of parallel sessions, the number of agents or size of the knowledge set for each agent.
The verification phase consists of translating the security requirements into lemmas or
theorems that can be proven by induction. Actions are not mandated to happen due to
the structural induction nature of the specification. The method is mechanised using the
generic theorem prover Isabelle/HOL [97]. This is not a requirement, since the method is
tool independent, and could be done even with pen and paper.

Isabelle/HOL is an interactive theorem prover which can be used to assist a great
range of formalisation efforts. It requires user guidance to achieve formal proofs of the
specified formalisation goals. Its support for higher-order logic allows it to quantify over
functions, predicates and sets. Isabelle/HOL is equipped with a set of logical resolution

41

tools that assist the user into demonstrating proofs with speed, consistency and accuracy.
Among these automations, we must cite its simplifier, which implements term rewriting
and arithmetic resolution, and its classical reasoner, which implement automated methods
for logical resolution.

In the last years, Isabelle/HOL has been heavily updated and integrated with other
theorem provers to assist it with even more automation. We must cite especially the
existence of Sledgehammer [89], which is a resolution tool in Isabelle that converts the
problems being analysed in Isabelle/HOL into first-order logic and passes the goal anal-
ysed to be automatically proved using a FOL automatic theorem prover. In case of success,
the proof is reconstructed in Isabelle automatically and accounted for the higher-order
resolution. Its consistency is checked using the higher-order logic framework.

In Isabelle/HOL, we start our formalisation with abstract definitions of our problems
and properties. We follow with the verification of our properties by stating theorems,
which are demonstrated using proof commands available with Isabelle. Our proof com-
mands can be direct calls to the simplifier or to the classical reasoner, where we guide
the tool with our proof sketch. As already noted by Bella [20], this process is difficult
and demands a great effort in terms of user interaction with the tool. But, despite these
drawbacks the difficulty of creating a sound proof in Isabelle/HOL demands from the
user a deep understanding of the properties being proven. This normally will increase the
confidence that the process is correct. In our case of security protocol verification, this
is an important factor in favour of the inductive method: it not only is able to prove a
protocol correct but also demand a deep understanding of what has been done.

Isabelle/HOL being a generic tool for specification and verification, which includes a
repository of already verified theories. Theories are files where we find a specification
followed by proof scripts that demonstrate properties present in them. Theories can be
reused by an inheritance scheme and their development can be absorbed into extending or
specialising a specification into the properties we want to demonstrate. Most theories we
see in Isabelle/HOL inherit the specification of the Higher-Order Logic system Isabelle
implements. The Isabelle/HOL distribution library has formalisations on a variety of
fields, such as lambda-calculus, Java source and byte-code and aspects of UNIX file system
security. This gives us ready-to-use tools in specifications and verifications we want to
conceive.

We will see bellow how the inductive method is implemented and how it is mechanised
using Isabelle/HOL. We will cover all its construction and the specification and verification
process for security protocols. We will try to cover the description using examples of
protocols verified with the inductive method.

2.4.1 Theories and Definitions

The theories implementing the Inductive Method and are structured into different files
according to what is being specified and verified. The method starts with the theory
Message.thy, which specifies how the messages exchanged in security protocols are con-
structed, as well as the main operators we use within the method. Message.thy inherits
its properties from the Main theory which implements the specification of the Higher-
Order formalism in Isabelle/HOL. Other important theories are Event.thy, which inherits
from Message.thy and accounts for the specification of the communication layer with the

42

sending, receiving and noting events for example. We also have Public.thy which inherits
from Event.thy, which despite the narrowly chosen name, accounts for the specification
of symmetric and asymmetric cryptographic primitives.

These three theories are the core of the Inductive Method within Isabelle/HOL. But
we must also note that specialised theory variants exist in the method. Bella’s smart-
card verification [20] produced a family of theories that inherit from Message.thy and
implement the intrinsic of smart-card events (EventSC.thy) taking into consideration the
existence of channels between the cardholder and the smart-card for example. Theory
Smartcard.thy, inherits from EventSC.thy, and account for the characteristics of some
cryptographic keys specific to smart-cards protocols’ modelling. Our work in this thesis
will similarly create a new family of theories for the verification of non Unicast-only
security protocols. Theory EventMC.thy inherits from Message.thy and for threshold
cryptographic primitives PublicSS.thy inheriting from EventMC.thy.

Security protocols are specified using the infrastructure described above. We will
choose a theory corresponding to the cryptographic implementation and communication
scheme we need. From that point we will start the description of our protocol using the
syntax that we will define below.

We will not follow the exact structure of the theory files, but will try to rearrange the
descriptions in a more didactic way. The sections below will show the definitions for the
data types present in the method. We will also discuss the implementation of the threat
model, the operators, how a classical protocol is modelled and the idea of trace. After
that we will discuss the verification phase (§2.4.2) passing before through the principle of
Goal Availability (§2.4.2.1).

2.4.1.1 Agents

As noted early by Paulson [101], the modelling of an unlimited-size population of agents is
essential. The implementation is done by establishing a bijection between the population
of agents and the set of natural numbers. Agents definition is introduced as shown in
Definition 1.

Definition 1. Agent datatype definition

datatype

agent = Friend nat

| Server

| Spy

Definition 1 shows the categorisation of agents into three distinct classes. First we have
the definition of a friendly agent by the bijection explained above. This implies that for
any given natural number there exists a related agent in the system. The second category
regards the trusted third party normally used in symmetric key protocols to which we
share our long-term keys. Finally we have the attacker, which is categorised separately.
The Spy, how the attacker is named in the inductive method, is here represented as a single
entity which shows a clear derivation of the all-powerful omnipresent attacker model from
the Dolev-Yao threat model [51].

As noted by Bella [20], this scenario captures classical protocol specifications. In his
verification of the Kerberos family of protocols, he did experiment with extending the data

43

type but eventually modelled his extra trusted servers as normal agents that could not be
corrupted by assumption. In fact his approach suggests that the definition of agents in
the inductive model could only need the differentiation from agents following the protocol
and the Spy. This would incur in an initialisation overhead when using trusted third
parties to give them the long term keys knowledge and the refinement of lemmas to cope
with this new specification, but would enable us to easily generalise the model.

The specification of the Spy makes sense when regarding the Dolev-Yao model, which
is a standard attacker model for protocol verification nowadays. The existence of a sin-
gle attacker entity denotes this clear relation between the method and the Dolev-Yao
attacker.

2.4.1.2 Cryptographic Keys

The specification of cryptographic keys in the Inductive Method starts with the introduc-
tion of a free type key as a derivation of the type nat. We start specifying cryptographic
keys with the definition for long term keys usually shared with a trusted third party in
symmetric cryptography based protocols. The specification of the function shrK is shown
on Definition 2.

Definition 2. shrK function definition

consts

shrK :: "agent => key"

specification (shrK)

inj shrK: "inj shrK"

As we can see in Definition 2, a shared key is specified as an injective function taking
an agent and returning a key. If both keys are equal we call the cryptography symmetric,
if they are different we call the cryptography asymmetric as we already covered in this
thesis. To specify this operation we have the declaration of the function inky as shown in
Definition 3.

Definition 3. invKey function definition

consts

invKey :: "key => key"

specification (invKey)

invKey [simp]: "invKey (invKey K) = K"

invKey symmetric: "all symmetric --> invKey = id"

The function invKey from Definition 3 is a function from data type key to key specified
by two rules. The first rule is a simplification one that says that the double application
of the function brings us back to the original value. The second rule establishes true if
the function invKey is equal to its identity.

By having an inversibility function for keys, we can establish a set that will help us
to distinguish between the different categories of keys. We will define a key set for all
symmetric keys calling it symKeys. Definition 4 show its specification.

Definition 4. symKeys set definition

44

constdefs

symKeys :: "key set"

"symKeys == K. invKey K = K"

The symmetric key set is defined as containing all keys where the inverse of the key by
the application of the function invKey is itself. This set helps us to identify the symmetric
and asymmetric key being used. But it is also important to help identifying the session
keys being used in the protocols we are verifying. By statingK ∈ symKeys ∧ K /∈ range
shrK we can create a second class of symmetric keys that are not long-term so that it
represents sessions keys in our protocols being verified. We will use a similar approach
later in our definition of threshold cryptography.

To establish that our long-term keys are symmetric we assert an axiom.

Definition 5. Axiom for symmetric usage of shared keys

axioms

sym shrK [iff]: "shrK X ∈ symKeys"

We define asymmetric keys in term of the public keys since they are available for all
agents during a protocol run. We will derive the notion of private keys by the usage of
the function invKey. Definition 6 shows us the specification for the publicKey function.

Definition 6. publicKey definition

datatype

keymode = Signature | Encryption

consts

publicKey :: "[keymode,agent] => key"

specification (publicKey)

injective publicKey:

"publicKey b A = publicKey c A’ ==> b=c & A=A’"

The publicKey function is defined as from a pair keymode and agent into a key. The
data type keymode is defined as having the values for Signature and Encryption. This is
done so that we can differentiate later during protocol verification the intended use for
an asymmetric key. The specification of the publicKey function is done by an injective
definition that if the public key for an agent in a key mode is equal to a public key of
another agent in a different key mode, this implies that both agents and modes are the
same. This is done so that we can trust no agent will have a key equal to some other
agent’s.

Another important assertion is that no private key is equal to a public key for an
agent. This is done by the axiom shown in Definition 7.

Definition 7. privateKey axiom definition

axioms

privateKey neq publicKey [iff]:

"privateKey b A 6= publicKey c A’"

45

To make our public key cryptography specification more usable in the way we imple-
mented it, and for the sake of minimising the effort on using the specification we define
some abbreviations. The abbreviations help us so that we can refer to our asymmetric
keys in an easier way while still using the full extension of the specification.

We have the abbreviations for PubEK and PubSK, which expand to public encryption
and signature keys respectively. We also have the abbreviation for privateKey which
inverts the key of an agent in the desired key mode. Then we have the abbreviations for
priEK and priSK, which represent the private keys for encryption and signature. Finally,
when we refer to a public (pubK) or private (priK) key without referring to their key
operation mode, we will be referring to encryption by default.

2.4.1.3 Compromised Agents

To be able to implement a threat model within the inductive method we need to introduce
support for the identification of corrupted principals. The inductive method comes with
two major representations for compromised agents. Definition 8 shows us the specification
of the set of bad agents.

Definition 8. bad set definition

consts

bad :: "agent set"

specification (bad)

Spy in bad [iff]: "Spy ∈ bad"

Server not bad [iff]: "Server /∈ bad"

The set of bad agents is specified by the explicit inclusion of the Spy, and by the explicit
exclusion of the trusted third party the Server in this case. During the application of
the method we can explicitly assert the membership or not for the agents running the
protocol. We will see later that an agent belonging to the set bad means that he shares
his long-term secrets with the Spy. Sharing long-term secrets with the Spy does not only
mean to give away secrets at start, but also to give access to the Spy to other secrets
learnt during protocol execution.

Although this representation seems enough, Bella [20] noted that some refinement was
required for the verification of accountability protocols. As we will see next (§2.4.1.6), the
membership of an agent to the set bad automatically gives the Spy access to all this private
information, including the agent’s long-term shared and private keys. The Spy than can
use such keys to acquire knowledge and participate in the protocols impersonating the
bad agent.

A subtle change is necessary to represent the non-repudiation required for account-
ability protocols. Paraphrasing Bella [20] once more, the signature of compromised agents
is worthless, but the Spy’s own signature is still valid when he is acting as himself. For
encompassing such subtlety, Bella specified the set broken, as shown on Definition 9.

Definition 9. broken set definition

constdefs

broken :: "agent set"

"broken == bad - {Spy}

46

If an agent is in the set broken the Spy has access to his keys and confidential material,
but clearly this agent is not the Spy. By having this refinement we can create assertions
for our goals where the Spy is only acting as himself, although he has access to other peers’
confidential material. Thus we can state the lack of trust peers may have on each other.
We also used broken to specify the compromised servers in the Frank-Reiter sealed-bid
auction protocol.

2.4.1.4 Messages

Pragmatically defining, messages are the composite payload events will carry.

Definition 10. msg datatype definition

datatype

msg = Agent agent

| Number nat

| Nonce nat

| Key key

| MPair msg msg

| Hash msg

| Crypt key msg

The data type msg from Definition 10 introduces seven different constructors for mes-
sages’ payloads. We have the constructor for a Agent identification that requires a variable
of the type agent which we defined in section 2.4.1.1. We have a constructor Number and
a constructor Nonce, both taking natural numbers as variables. The constructor for Num-
ber, which was introduced by Bella for the modelling of timestamps, represents guessable
numbers in the protocols. The constructor Nonce represents the unguessable numbers.
Constructor Key takes a variable key, which was defined in section 2.4.1.2 as a free type.

The recursive MPair constructor takes two messages as parameters and will concate-
nate them into one message. To help the specification of complex protocols, the MPair
constructor has an annotated syntax. A pairing of two messages is done by enclosing
the message in fat brackets, like in ”{|x, y|}”. We also have a commutative rule that is
defined by ”{|x, y, z|}” == ”{|x, {|y, z|}|}”.

The other two constructors in data type msg, regard the presentation of basic cryp-
tographic operations. Before describing them, we must stress that the representation of
cryptography in the inductive method is perfect. We treat cryptography as fully oper-
ational black box. The constructor Hash represents the usage of one-way functions we
may have in our protocol specification. But its abstract definition is achieved only by the
method’s operators (§2.4.1.8).

The final constructor is Crypt, which takes as variables a key and a message. It can
be used to represent symmetric and asymmetric encryption, as well as to represent digital
signatures. Its definition is abstractly done in the description of the method’s operators
(§2.4.1.8) similarly to the Hash constructor. The existence of the Crypt constructor will
limit the operations an agent can perform based on the set of keys he knows.

2.4.1.5 Events

An event is an action from an agent that will inherently change the state of his knowledge
or that of other agents. Originally the definition from the data type event accounted for

47

two types of events, the sending of a message by one agent to another agent (Says), and
the capacity of an agent of taking notes of knowledge acquired off-protocol either by hints
or by calculation is expressed by the constructor Notes. We can see the actual definition
for the data type events on Definition 11.

Definition 11. event datatype definition

datatype

event = Says agent agent msg

| Gets agent msg

| Notes agent msg

We also see on Definition 11 the existence of the constructor Gets, an introduction by
Bella [20] to account for message reception. During his work Bella realised that guarantees
should be available for agents to derive them from available facts. This required the
refinement of the data type event to account for lost messages and for their reception.

Bella also did the verification of smart-card protocols that required the extension of
the data type event to account to other subtleties of events happening in this specific
domain. To help us demonstrate how easy it is to create a parallel strain for the inductive
method we will show Definition 12 for the data type events for smart-cards.

Definition 12. eventSC datatype definition

datatype

event = Says agent agent msg

| Gets agent msg

| Notes agent msg

| Inputs agent card msg

| C Gets card msg

| Outpts card agent msg

| A Gets agent msg

The changes in the data type events to account for smart-card protocols takes into
consideration another channel of communication: the one between the card and its owner.
Four new constructors were included, one sending and one receiving each side of the duplex
communication. Constructor Inputs accounts for the channel from the Agent to the card,
constructor C Gets accounts for card reception from Agent to cad. Constructor Outpts
accounts for messages from the card to the agent owning it, and constructor A Gets
accounts for reception from the agent for a message casted by the card in this channel.

This extension by Bella was extremely useful to our work presented later (§3.2), espe-
cially showing the potential of capturing new details when changing the event model.

2.4.1.6 Threat Model Support and Initial Knowledge

To be able to support threat modelling in the inductive method we need to define the
threat model we adhering to. The inductive method is originally based on the Dolev-Yao
threat model [51]. As we already discussed (§2.2.2), the Dolev-Yao threat model accounts
for a standard attacker that oversees the network and can selectively interfere with it.

1. The Spy is a legitimate agent

48

2. The Spy controls the network traffic

3. The Spy can perform any message operation except cryptanalysis

We see the Spy as an internal user of our security protocol trying to act maliciously.
This is what enables Lowe’s attack on the Needham-Schroeder Public Key Protocol and
is a widely accepted premise when designing security protocols. This characteristic of the
threat model is supported by the way we formalise agents (§2.4.1.1) and cryptographic
keys (§2.4.1.2), followed by the way we introduce the specification for security protocols
in section 2.4.1.9.

To be able to address characteristic number two, we need to add support for the
agents to store their knowledge gathered at start and during the execution of the protocol
(§2.4.1.7). This is especially true for the Spy. For that, we need to specify what each
agent starts with in a protocol run. For that we introduce the function initState as shown
on Definition 13.

Definition 13. initState definition

consts

initState :: "agent => msg set"

Although for the threat model per se the only important definition is the Spy’s we will
define it for all agents. The idea of the function initState is to receive an agent and return
a message set that corresponds to his initial knowledge prior to the run of the protocols.
To be able to do that, we need to specify what knowledge each agent starts with.

The Server starts any protocol runs knowing all long-term shared keys present on the
environment, through the image over the range of the function shrK. This is then unified
with his own private keys for encryption and signature. Finally we unify the previous
output with the range of all public keys available, either the ones for encryption and for
signature verification. With that the agent Server has his initial knowledge composed.

An agent in the agent population starts the protocol run with knowledge of his own
private keys for encryption and signature, as well as the long-term shared keys he has
with the Server. To that set we unify the range of all public keys available, either the
ones for encryption and for signature verification from all other agents, Spy and Server
included.

As we introduced before (§2.4.1.3) we can identify the compromised agents by their
membership to the bad set. As this membership is static so that an agent cannot move
between being compromised and not compromised, we can propose the specification of
the Spy initial knowledge set as shown on Definition 14.

Definition 14. Spy agent initial knowledge definition

primrec

initState Spy:

"initState Spy =

(Key ‘ invKey ‘ pubEK ‘ bad) ∪
(Key ‘ invKey ‘ pubSK ‘ bad) ∪
(Key ‘ shrK ‘ bad) ∪
(Key ‘ range pubEK) ∪ (Key ‘ range pubSK)"

49

The Spy starts the protocol run knowing all secrets of agents belonging to the set bad.
The initial knowledge is represented by the unifications of the images of the inverses of
the public keys and the long-term shared keys for the bad set. This is then unified to
the range of all public keys available as we did for other agents. We do not need to give
explicit knowledge to the Spy for his own keys, since that, by the definition of the set bad,
the Spy is static a member.

To be able to cover the second characteristic of the Dolev-Yao threat model, we need to
account for the knowledge representation and extension for the Spy which will be shown
in Section 2.4.1.7. To address the third characteristic of the threat model, we need to
enable the Spy to analyse the traffic. This is shown in section 2.4.1.8.

2.4.1.7 Knowledge Representation and Extension

Bella proposed the extension of the method to account for each peers dynamic knowledge
gathering. This is represented by the function knows, as shown in Definition 15.

Definition 15. knows function definition

consts

knows :: "agent => event list => msg set"

primrec

knows Nil: "knows A [] = initState A"

knows Cons:

"knows A (ev # evs) =

(if A = Spy then

(case ev of

Says A’ B X => insert X (knows Spy evs)

| Gets A’ X => knows Spy evs

| Notes A’ X =>

if A’ ∈ bad then insert X (knows Spy evs)

else knows Spy evs)

else

(case ev of

Says A’ B X =>

if A’=A then insert X (knows A evs) else knows A evs

| Gets A’ X =>

if A’=A then insert X (knows A evs) else knows A evs

| Notes A’ X =>

if A’=A then insert X (knows A evs) else knows A evs))"

As per Definition 15 the function knows takes an agent and an event list as input
and returns a message set. If the event list is not empty, we then take the first element
of the list, and check if the agent involved in the event is the Spy or not. If the agent
is the Spy, in the case of an event Says, the Spy inserts the payload into his knows set.
If the event is a Gets, the function returns without extending the knowledge set for the
Spy. If we have an event of the type Notes, we check if the agent noting the message is
compromised. If yes, we add the noted event into the Spy’s knows set. If the agent in the

50

event we are dealing with is not the Spy, we will extend its knowledge if and only if the
agent is participating in the event in the appropriate manner.

With the specification of knowledge sets we can address fully the characteristic two for
the Spy of the Dolev-Yao threat model. In fact we can, by the inspection of the knowledge
the Spy acquired during the protocol run, represent the knowledge gathered from events
that happened in the protocol run from the point of view of an external observer. As
Bella pointed out [20], the knows function also represents each peer’s point of view of the
execution. This will help us also with the granularity needed to specify goals that can be
achieved based on the knowledge an agent acquired during the execution of the protocol,
fulfilling the principle of goal availability.

2.4.1.8 Operators

To address the third characteristic of the Spy in the Dolev-Yao threat model, we need
to enable the Spy to perform all the operations he can by the usage of knowledge he
had initially or that he acquired during the protocol runs. To be able to do that we
need to specify an inductive relation that enables agents to inspect the trace by breaking
up messages into their atomic components, an inductive relation that enable the agents
to have access to the information under the cryptographic restrictions we imposed, an
inductive relation that enables all the possible combinations of messages in his knowledge
to be re-composed, so that the Spy can attack the model with his full capabilities, and a
function that establishes freshness for components present in the trace of events. These
are the operators of the inductive method: parts, analz, synth, and used.

The inductive function that is capable of disassembling composed messages into its
atomic forms is called parts and is specified in Definition 16.

Definition 16. parts inductive set definition

inductive set

parts :: "msg set => msg set"

for H :: "msg set"

where

Inj [intro]: "X ∈ H ==> X ∈ parts H"

| Fst: "{|X,Y|} ∈ parts H ==> X ∈ parts H"

| Snd: "{|X,Y|} ∈ parts H ==> Y ∈ parts H"

| Body: "Crypt K X ∈ parts H ==> X ∈ parts H"

It enables us to inspect the knowledge of each player for any atomic message component
that we need to assert in our verification goals, independent of cryptographic restrictions.
The function parts takes as argument a message set and returning another message set
which includes the break down of all messages for a specific knowledge set to their atomic
parts.

The first step of the specification from Definition 16 takes into account the injectiveness
of a knowledge set into a parts set for that knowledge set. The second and third steps
of the specification takes into account the breakdown of composed messages. In fact it
disassembles the MPair constructor we used to compose the message to get the atomic
message components. Finally, the last part of the specification recovers the encrypted
components into their original form without respecting the cryptographic terms. We

51

don’t treat the break down of other constructors in the data type msg because they take
only one argument and are atomic.

The function parts enables us to reason about traces of events without cryptographic
boundaries. This type of inspection helps us specify lemmas regarding protocol wide
laws, such as Regularity lemmas (§2.4.2.2), or to establish the Unicity (§2.4.2.5) and
Authenticity (§2.4.2.4) properties of certain message components in the trace, regardless
of point of view.

To specify the requirement three of the Spy under the Dolev-Yao threat model we
have the function analz. Similarly to the inductive relation parts, it is defined taking as
argument a message set and returning another message set now including the break down
of messages for a specific knowledge set. The main difference of analz when compared to
parts is the cryptographic restriction that is imposed on it.

Definition 17. analz inductive set definition

inductive set

analz :: "msg set => msg set"

for H :: "msg set"

where

Inj [intro,simp] : "X ∈ H ==> X ∈ analz H"

| Fst: "{|X,Y|} ∈ analz H ==> X ∈ analz H"

| Snd: "{|X,Y|} ∈ analz H ==> Y ∈ analz H"

| Decrypt [dest]:

"[|Crypt K X ∈ analz H; Key(invKey K): analz H|] ==>

X ∈ analz H"

The last part of the specification decrypts the encrypted components with the cryp-
tographic restriction as for the threat model. Here we establish preconditions for the
extension of the analz set. These conditions are that we have a message X encrypted
with key K on the analz set, and we also have the inverse of key K in the same analz set,
then we can expand the analz set with X.

The function analz enables us to specify confidentiality (§2.4.2.6). By sequence it also
enables any other property that depends on confidentiality.

Although the inductive relation analz seems straightforward, its specification regarding
the existence of keys in the inductive set itself creates one of the biggest burdens when
establishing proofs that mention the relation analz . A usual way for sorting out such
added complexity is to eliminate analz using analz H ⊆ parts H. Sometimes this step is
not helpful and for that, in our experiments we had to come with a way of dividing the
analz set into two parts: one containing key related material and one not containing key
related material, so that we can use the above fact. This will be shown in detail on section
5.3.

Once the Spy has gathered and derived all possible knowledge he could from inspecting
the traffic from the network, he needs to be able to rearrange those broken-down com-
ponents into new messages to probe the protocol This is done by the inductive function
synth as specified in Definition 18.

Definition 18. synth inductive set definition

52

inductive set

synth :: "msg set => msg set"

for H :: "msg set"

where

Inj [intro]: "X ∈ H ==> X ∈ synth H"

| Agent [intro]: "Agent agt ∈ synth H"

| Number [intro]: "Number n ∈ synth H"

| Hash [intro]: "X ∈ synth H ==> Hash X ∈ synth H"

| MPair [intro]: "[|X ∈ synth H; Y ∈ synth H|] ==>

{|X,Y|} ∈ synth H"

| Crypt [intro]: "[|X ∈ synth H; Key(K) ∈ H|] ==>

Crypt K X ∈ synth H"

The synth function formalises the act of building new messages from previous knowl-
edge. It takes as argument a message set and returns another message set. It usually takes
as input a pre-processed event trace output from the other inductive relations defined so
far.

The first step in the specification regards the possibility of synthesising all messages
already in the knowledge set. If the knowledge set is in original form, this means a pure
replay capability to the Spy. If the knowledge set was broken down by parts or analz it
means the capability of replay and the re-sending of atomic parts. The second and third
step of the specification regards the adding to the synth set of the guessable components
for messages, which include all agent names and all guessable numbers. The fourth step of
the specification regards the availability of the hash function to all message components in
the synth set. The fifth step of the specification regards the possibility of pairing atomic
message components into unlimited size, meaning that all permutations of all sizes can
be yielded by the synth set. Finally we specify that in case keys are available, we can
synthesise the encryption of all available components in the synth set encrypted under
that key.

As we will see in Section 2.4.1.9, the Spy will use synth(analz(knows Spy)) to interfere
with the protocol using all his powers. Although the synth set contains all the possible
permutations using the knowledge gathered, the admissibility of messages the Spy can
send in a protocol is restricted by the protocol specification.

Another important property needed in protocol specifications is freshness. To capture
this property we specify the function used as shown.

Definition 19. used function definition

consts

used :: "event list => msg set"

primrec

used Nil: "used [] = (UN B. parts (initState B))"

used Cons: "used (ev # evs) =

(case ev of

Says A B X => parts {X} ∪ used evs

| Gets A X => used evs

| Notes A X => parts {X} ∪ used evs)"

53

The function used captures all components that already appeared in our execution
trace. It takes as input an event list and returns a message set. It is defined using
recursion. For an empty event trace used returns the initial knowledge all agents have
before execution. These components were used prior to the execution of our specified
protocol. For the non-empty trace we take the first event and check it against the tree
types of events available. In case the event is a Says event, we will apply the function
parts to the payload it is carrying and unify it with the used set. If the event is a Gets
event, we just return the used set, since we accounted for used components when they
were sent in the first place. Finally, when the event is of type Notes we apply the function
parts to the payload of the Notes event and unify if with the used set.

We are now able to specify protocols and use the above presented specifications to
help us capture the subtleties of the security protocols we want to verify. Next we will
show how an example protocol can be specified using the infrastructure available.

2.4.1.9 A Protocol Model

Having the infrastructure’s specification in place and understanding how it works, we can
now start writing the specification for an example protocol using the inductive method.
For that we came with a dummy example protocol as shown in Figure 2.7.

1. A → B : {|A,B,Na|}KB

2. B → A : {|Na,Nb,KAB|}KA

3. A → B : {|Nb}KAB

Figure 2.7: Example protocol

This protocol is composed by three message exchanges or events in the inductive
method terms. In the first event, agent A sends a message to agent B with her identity,
B’s identity and a freshly generated nonce Na. All this is encrypted using B’s public key
(pubK B) for confidentiality. At the second event B replies back to A, with A’s nonce Na,
with a freshly generated nonce from himself called Nb and a freshly generated session key
KAB, being all encrypted under A’s public key (pubK A) for confidentiality. On the third
event A sends it back to B encrypted under B’s public key (pubK B) to acknowledge the
reception of event two.

The objectives of this protocol are not important for now, as we want to concentrate on
its specification within the inductive method. The specification for the example protocol
is shown on Definition 20.

Definition 20. inductive definition of example protocol

inductive set example :: "event list set"

where

Nil: "[] ∈ example"

|Fake:"[|evsf ∈ example; X ∈ synth(analz (knows Spy evsf))|]

⇒ Says Spy B X # evsf ∈ example"

54

|EX1: "[|evs1 ∈ example; Nonce NA /∈ used evs1|]

⇒Says A B (Crypt (pubK B){|Agent A, Agent B, Nonce NA|}) #

evs1 ∈ example"

|EX2: "[|evs2 ∈ example; Nonce NB /∈ used evs2;

Key AB /∈ used evs1

Says A’ B (Crypt (pubK B){|Agent A, Agent B, Nonce NA|})
∈ set evs2|]

⇒Says B A (Crypt (pubK A) {| Nonce NA, Nonce NB, Key AB|})
evs2 ∈ example"

|EX3: "[|evs3 ∈ example;

Says A B (Crypt (pubK B){|Agent A, Agent B, Nonce NA|})
∈ set evs3;

Says B A (Crypt (pubK A) {| Nonce NA, Nonce NB, Key AB|})
∈ set evs3 |]

⇒Says A B (Crypt (Key AB){| Nonce NB|}) # evs3 ∈ example"

|Oops: "[|evso ∈ example;

Says B A (Crypt (pubK A) {| Nonce NA, Nonce NB, Key AB|})
∈ set evso|]

⇒ Notes Spy {|Nonce NA, Nonce NB, Key AB|}# evso ∈ example"

We start the specification of a protocol by creating an inductive definition for an
event list set that will model the protocol trace of events. This set will account for all
the possible messages a protocol can yield and normally will be named and seen as the
protocol model in the inductive method. As the protocol is represented as an inductive
set, each message will be represented by an inductive step, which will be augmented by
some threat model support.

The base inductive step, here called Nil, represents the initial empty trace. The step
Fake brings support for the threat model. The Fake step involves sending X generated
from the application of synth and analz to knows Spy evsf representing the knowledge of
the Spy. We must stress that the traces of events are constructed in reverse chronological
order.

The inductive step EX1 regards the first event of the protocol. It describes the pre-
conditions for extending the trace with the first message. These preconditions are that
the trace being extended is part of the protocol’s specification and that the nonce Na is
fresh and was not used before in the trace. If these preconditions are met, we add to
the head of the trace list an event Says from agent A to agent B containing a payload
encrypted under the public key of agent B (pubK B). The payload consists of agent’s A
identity, agent’s B identity and the fresh nonce Na. Note that there is no mandatory
firing of any rule within the inductive description, or any order imposition other than the
preconditions that are stated for the firing of any inductive step.

The next inductive step (EX2) regards the second event of the example protocol. Its
preconditions are that the trace is part of the inductive definition for the protocol, that
the nonce NB and the session key KAB are fresh and that there exists on the trace of
events a message with the syntax of message one addressed to agent B. The sender can be
anyone, even the Spy. If the preconditions are met, we extend the trace with the second

55

event of the example protocol by adding to the head of the trace an event Says from
agent B to agent A having a payload encrypted with the public encryption key of agent
A (pubK A). We are assuming the destination of message two is agent A, not because it
appeared as sender of message one, but because he was mentioned on its payload. This
is done to corroborate the threat model since we do not trust the network by definition.

The inductive step EX3 is the specification for event three. It is formalised with the
preconditions that the trace being extended is part of the inductive definition for the
protocol, that an event with syntax of message one was issued by agent A before in the
trace, an event with syntax of message two was issued in the trace mentioning the nonce
Na, which agent A put in message one and is addressed to him. If these preconditions
are met, we extend the trace by adding to its head an event with message three syntax.
Such event is a Says event from agent A to agent B containing the nonce NB encrypted
under the session key KAB.

Finally, the last step of the inductive definition regards the accidental loss of session
keys from any principal. This is an important step in key distribution protocols to help us
assert that the compromise of one session key does not affect others distributed later. The
last inductive step is called Oops and has as preconditions that it extends the inductive
definition and that message two appeared on the trace, so that a key was distributed in
the run of the protocol that just happened. If the preconditions are met, the Spy can put
on the head of the trace a Notes event, learning the nonce Na from agent A, the nonce
Nb from agent B and the session key KAB distributed in that run. Although it seems
strange to hand in session keys to the attacker deliberately, this step is very important to
detect the relation in compromising different session keys.

2.4.1.10 Traces

Before we start looking to the properties we can verify by using the inductive method we
must understand the concept of traces. Traces are event lists of arbitrary finite length that
represent the execution of parallel runs for a protocol specification. They are snapshots of
possible combinations our inductive definition can yield. They record the history of the
underlying network while a protocol is being run. Figure 2.8 shows an admissible trace
of the inductive definition for the example protocol.

Says Spy B (Crypt (Key AB){| Nonce NB|})
Notes Spy {|Nonce NA’, Nonce NB, Key AB|}
Says B A (Crypt (pubK A) {| Nonce NA’, Nonce NB’, Key AB|})
Says B C (Crypt (pubK C){|Agent B, Agent C, Nonce NB|})
Says A B (Crypt (pubK B){|Agent A, Agent B, Nonce NA’|})
Says A B (Crypt (pubK B){|Agent A, Agent B, Nonce NA|})

Figure 2.8: Trace for Example protocol

As we mentioned earlier, traces are built in reverse chronological order. This means
that older events come at the bottom while the newer ones come at the top. To help us
understanding the idea of traces we go through the trace shown in Figure 2.8. Starting
bottom up, we see Agent A sending a message with the syntax of message one for the
example protocol thus initiating a session. Then we see agent A sending a similar message

56

again, but now creating a new session which is identified by the different nonce Na’. The
third event in the trace shows a parallel session being started by agent B with agent C.
The fourth event shows agent B answering to the second session agent A requested, by
sending a message with the syntax of message two of the example protocol containing the
nonce Na’. Then we see the Spy learning the session key and nonce from B’s message
by the usage of an event Notes. The Spy then answers to agent B with an event Says
containing the syntax of message three of our example protocol.

We must remember that our inductive definition can generate traces that are of very
little importance, but still admissible. We can have traces such as sending repeated times
message one with different nonces without ever having a continuation in the protocol
execution, or the Spy can send all the initial knowledge prior to any message being sent.
These traces are admissible by our model but irrelevant for our verification towards secu-
rity goals.

As traces represent protocol execution, they will be of ultimate importance in any
verification effort we make with the inductive method. Sometimes the verification process
can be painful, especially due to mistakes in the specification which lead to the yielding
of non correct traces, as well as the lack of understanding of what is admissible as a trace
for a specified protocol. Having these challenges in mind, we will try to describe in the
next section how we specify and verify the protocol’s security properties.

2.4.2 Verification of Security Protocol Goals

The ultimate aim of protocol verification is to establish whether the required security
properties indeed hold for a realistic modelling and threat scenario. The inductive method
allows us to specify a security protocol without limiting the number of peers, parallel
runs or the size of the knowledge set for peers. But, to verify security properties in
communication protocols we need first to understand them in their essence.

Goals vary from simple key-agreement properties up to the correct execution of a
complex sealed-bid auction protocol. But to be able to express with precision a security
goal we need first to understand the concept of goal composability.

Goal composability can be understood as the use of simpler properties as building
blocks for more complex properties. We can exemplify this with a protocol that claims
to achieve Authentication. To be able to assert whether or not authentication is achieved
we must be able to break this goal into smaller ones.

We know that authentication can be further classified into different levels [78], but if
we want to assert only the aliveness of a peer, we know that this property is not achievable
by itself: we need first to assert other properties. In this example we need first to assert
properties regarding the regular behaviour of the involved peers, as well as to assert the
freshness of the execution. We need to lay the foundations in terms of properties it needs
as building blocks. The inductive method is unique in this sense, since to be able to prove
a complex goal we need to make available intermediate proofs for composing simpler
properties.

The Inductive Method inherently requires a backward proof style. We specify our
main goal for the protocol and then start proving the needed intermediary goals up to
the point we can achieve the initial proof.

If we want to achieve a proof of Authentication (§2.4.2.7) and or Key Distribution

57

(§2.4.2.8), we will inherently have to prove goals for Confidentiality (§2.4.2.6), Unicity
(§2.4.2.5), Regularity (§2.4.2.3) and Reliability (§2.4.2.2).

In the next subsections we will be discussing how general theorems regarding these
properties can be stated and proven, as well as taking a look on the main proof strategies.
We will also look into an important verification principle: Goal Availability (§2.4.2.1)
which helps us to establish theorems that can be verified by the peer that needed the
guarantees being yielded by the security properties.

2.4.2.1 Goal availability

Before going into proving protocol properties, we must first touch on how to state them.
Proving properties regarding security protocols is complex and labour intensive using the
inductive method. To avoid spending our resources into proving properties that are either
not meaningful or useful we must follow some goal specification principles.

Starting by Bella’s summary of the Goal availability principle [20] he says, ”Goal
availability tells us that formal guarantees must be studied from the agents’ viewpoints to
check if the peers can apply them within their minimal trust”. So the Goal Availability
principle is our way to address whether a security property being stated is meaningful
and is available for the peer needing such a guarantee. To be able to fully understand the
principle of Goal Availability we need to define some of its terms.

Minimal trust is the minimal set of facts available in the formalised environment for a
protocol, whose truth values an agent needed to know in order to derive the guarantees,
but which he cannot verify in practice. In lay terms, minimal trust is the set of knowledge
we cannot derive, but we have to believe.

Other important concepts for understanding Goal Availability are the ideas of an
available goal and an applicable guarantee. An available goal is a goal where there exists
an applicable guarantee in the protocol specification that confirms the goal to the peer
under the protocol specification. An applicable guarantee is established on the basis of a
guarantee an agent can verify within his own minimal trust.

The goal availability principle gives us the guidance on how to specify the properties
we want to verify. Furthermore, it enables us to have a thorough approach in how to
address the statement of such properties in a way that will enable us to find more subtle
problems while guaranteeing their meaningfulness. Although we recognise the importance
of this principle, some of the examples below lack that. Some are intrinsically complicated
to specify in term of the agents’ point of view, while others are simply more educational
than their Goal Availability ready counterparts. We also must understand that some
properties are just environmental and can only be seen by ”God’s eye”.

2.4.2.2 Reliability

Reliability lemmas are not proven to directly achieve any security property for any pro-
tocol, but to assert how reliable the modelling is regarding the system it represents. The
objective of such lemmas is to assert known systematic construction properties that must
hold for the protocol we are working on. Furthermore, they may represent system wide
rules that we can derive in order to help us with the verification process. These system
wide derivations are available for us to help with proving more complex protocol goals.

58

Some reliability lemmas are proven within the method, which makes them available
in all protocols we verify. They represent system wide rules that we can assert regarding
the inductive method infrastructure. There are numerous lemmas stating such reliability
properties already available in the inductive method implementation. We can technically
state that most of the theorems available in the theories Message, Events and Public,
which are the core of the inductive method main strain, are indeed reliability lemmas. To
elucidate their general form we will discuss some.

The operators of the inductive method, namely parts, analz and synth have some
useful properties that once proved help us to establish their usability in terms of real
representation they are supposed to represent. We can show a rule for the parts operator
that tells us that the atomic parts in the trace before its extension is a subset of the
atomic parts after the extension. This fact means that no parts of a message are left
behind when a trace is extended.

As stated before the number of reliability lemmas generically available within the
method is big. But not everything in terms of reliability can be generalised. Some relia-
bility lemmas are proven regarding protocol features that we want to show we captured
in our specification effort or that represent structural protocol features.

A possibility lemma states that we can achieve the execution of the last message in our
protocol. The usefulness of such lemma is twofold. First it helps us to capture specification
problems, such as preconditions that we did not correctly stated or that make the firing
of some rule unachievable. The second use for such lemma is the achievement of a weak
aliveness, since we can state that there is at least one trace that reaches the end of the
protocol. Lemma 1 show the Possibility lemma for the Needham-Schroeder Shared Key
Protocol, which we will use mostly throughout this section due to the the fact it is a well
known example for people studying security protocols.

Lemma 1. Possibility NSSK

[| A 6= Server; Key K /∈ used []; K ∈ symKeys |] ==>

∃N. ∃evs ∈ ns shared.

Says A B (Crypt K {|Nonce N, Nonce N|}) ∈ set evs

Proving such a possibility lemma is straightforward. We just need to join the protocol
rules in our inductive specification so that all their preconditions can be met. The proof
in this case involves some preparation steps and the application of the simplifier from
Isabelle/HOL.

Another form of reliability property regards stating that agents other than the Spy
follow the protocol rules. In reality all agents want to achieve their protocol goals. This
implies that if they are not the Spy or they are not colluding with the Spy they behave
following the rules the protocol established. One usual type of reliability proof for agents
in a shared key session key distribution protocol regards the establishment of the reliability
of the trusted third part. Lemma 2 shows us the reliability of the Server in the Needham-
Schroeder Shared Key Protocol.

Lemma 2. Says Server message form

"[|Says Server A (Crypt K’ {|N, Agent B, Key K, X|}) ∈ set evs;

evs ∈ ns shared|] ==>

K /∈ range shrK ∧
X = (Crypt (shrK B) {|Key K, Agent A|}) ∧ K’ = shrK A

59

Lemma 2 states that if a message sent from the server with syntax of message two
is in the trace of events, and the trace is generated by our inductive specification, then
the session key K is not on the range of long-term shared keys, and the certificate X has
the correct form by mentioning key K and agent A and being encrypted to be forwarded
to agent B, and finally that the server encrypted the whole message with the key of the
intended recipient, in this case A.

This lemma tells us that the Server, who by definition is not in the set bad, creates a
coherent protocol message following the agreed specification. Although this lemma states
the reliability of the server regarding the message composition, it does not state the
reliability of the property that sessions keys are fresh [20]. For that we need a new lemma
that states the freshness of sessions key based on the idea of event ordering introduced
by Bella with the function before and the usage of the function used. We will not cover
this reliability property in this thesis.

The variations of reliability properties that can be stated for specific protocols are vast
and cannot be enumerated exhaustively. Bella in his extensive research with the method
[20] produced some interesting examples regarding reliability properties, especially in the
smart-card and accountabilities scenarios.

The principle behind these properties is clear since we want them to establish rules
that show how reliable is our protocol specification regarding the real protocol. Such
properties tend also to be stated and proven so that we can reuse them in other more
complex properties such as Confidentiality and Authentication. So a rule of thumb for
the minimum properties that should be proven in this category is that we should state
and prove at least the properties we need to conclude the security goals of the protocol
being verified. This is normally achieved by the backwards proof strategy inherent to the
inductive method.

2.4.2.3 Regularity

Regularity properties are properties we specify regarding the rules for messages or message
components that appear in the trace of events. In general regularity lemmas are the bases
over where we state our authenticity and authentication properties. A simpler way of
stating what regularity lemmas are is stating that they represent any property that can
be asserted for a message by the fact that it appeared in the traffic. As an example we
can cite Lemma 3 for Lemma 2 above.

Lemma 3. NS3 msg in parts spies

Says S A (Crypt KA {|N, B, K, X|}) ∈ set evs ==>

X ∈ parts (knows Spy evs)

Lemma 3 states that in a message from an Agent S to an Agent A with the form
of message two in the Needham-Schroeder Shared Key protocol, the certificate X is in
the knowledge of the Spy. This fact has no novelty in itself, since by definition of parts
we know that it is true. This regularity lemma is very useful when we are trying to
prove properties regarding the certificate itself, since it transforms the event Says into
the existence of the encrypted certificate in the knowledge of the Spy.

Regularity properties are also very important to help us prove that messages can be
considered tamper-proof for authenticity and confidentiality properties. A specific type

60

of regularity property is key regularity, which states that if a long-term key, either shared
or private, is sent on the traffic this implies the agent owning that key is not behaving in
accordance with the protocol. An example of such key regularity property can be seen on
Lemma 4.

Lemma 4. Spy analz shrK

evs ∈ ns shared ==>

(Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)

Lemma 4 is the key regularity property for the Needham-Schroeder Shared Key pro-
tocol. Its proof is based on the fact that the only way for a long-term key to be sent on
traffic would by the rule Fake. In the inductive specification for the protocol, that means
that only the Spy would have done that. The importance of this lemma appears when
we want to prove communications are tamperproof by the usage of A’s secret key, since
that we can reduce the preconditions to A colluding with the Spy instead of looking for
his key on traffic.

The importance of this lemma according to Bella [20] lies on the fact it translates a
condition an agent cannot verify, such as his key long-term key being sent on the traffic,
to one he is able to verify which is his collusion with the Spy. This is of importance for
the goal availability principle as we saw before on section 2.4.2.1.

But the existence of key regularity properties in protocols is paramount since without
such guaranty we cannot establish most of the security goals for any given protocol.

2.4.2.4 Authenticity

Authenticity for a message is coupled with integrity. In general to consider a message
authentic means to confirm its originator, but authenticity is not a property that lives on
its own, as stated by Anderson [6]. Authenticity is entangled with integrity by the fact
that a message cannot be claimed authentic if it was modified in transit. Also to establish
whether a message has integrity we need to establish its last authorised modification,
what inherently leads back to the authorisation and to the confirmation of its originator.

Due to this intrinsic relation, in the inductive method, to assert a message has authen-
ticity means to assert it has integrity. It is also established that to confirm the authenticity
of a message we can establish it is tamperproof by the use of encryption. Authenticity
will hold if the keys used for encryption are not compromised in any form.

To state the authenticity of the certificate B receives in message three of Neeedham-
Schroeder Shared Key protocol, we need to assert it in terms of the integrity provided by
the encryption with shrK B, which is the key shared between B and the Server.

Lemma 5. B trusts NS3

[|Crypt (shrK B) {|Key K, Agent A|} ∈ parts (knows Spy evs);

B /∈ bad; evs ∈ ns shared|]

==> ∃NA. Says Server A (Crypt (shrK A) {|
NA, Agent B, Key K, Crypt (shrK B) {|

Key K, Agent A|}|}) ∈ set evs"

61

Lemma 5 only holds because of the assumption B /∈ bad, since this guarantees the
integrity of the certificate by not giving the Spy access to the shared key between B and
the Server. The proof of this lemma is straightforward since we will just prepare and
apply induction followed by referring to regularity lemmas 3 and 4.

Authenticity properties are affected by the principle of goal availability (§2.4.2.1). To
prove authenticity and integrity for a message over assumptions an agent cannot verify
is not useful. Sometimes domain specific issues can complicate proofs. We can have the
assertion of authenticity for a message encrypted under session keys, since their authentic-
ity is related to the authenticity of how they were distributed in the first place. Another
example is the authenticity of pair keys in the verification of Shoup-Rubin [20], where the
assumption of secure means affects the construction of the authenticity properties.

2.4.2.5 Unicity

Unicity properties are related to the freshness of components used in messages. Freshness
is normally asserted over nonces, timestamps and session keys so that we are able to know
that we are not being fooled into a replay and that no other runs of the protocol would
be able to receive the same session keys as we did.

In the inductive method, we represent freshness by asserting the uniqueness of such
message components within a context. From uniqueness we consider the binding of such
fresh components only to the singular context we first used and nowhere else. We have
two ways of expressing freshness by unicity in the inductive method. The original one
introduced by Paulson is demonstrated by Lemma 6.

Lemma 6. unique session keys

[|Says Server A (Crypt (shrK A)

{|NA, Agent B, Key K, X|}) ∈ set evs;

Says Server A’ (Crypt (shrK A’)

{|NA’, Agent B’, Key K, X’|}) ∈ set evs;

evs ∈ ns shared|] ==>

A=A’ ∧ NA=NA’ ∧ B=B’ ∧ X = X’

The original way of asserting the freshness of a nonce or a session key in the inductive
method was the establishment of a property like Lemma 6 for the required component.
Lemma 6 shows us the asserting of freshness for the session key generated by the trusted
third party in the Needham-Schroeder Shared Key protocol. This lemma is important
because it asserts the total reliability of the Server: he composes message two correctly
by always using fresh session keys. Lemma 6 states that if there are two events with the
syntax of message two where a key K appears, all other components must be the same.
The proof of Lemma 6 is simple. We prepare and apply the induction followed by the
Isabelle/HOL simplifier and classical reasoner. We should note that we do not need to
assert anything regarding the compromising of the agent Server because it is trusted by
definition.

Although the previous lemma is able to assert freshness of a session key by locking
it to a unique context, Bella noticed during his experimentations [20] that it allows the
multiple sending of message two in this case. This would not necessarily affect the security
of a protocol based on nonces, since this would account only by a retransmission based

62

in a correction from the transport layer for example. Although the usage of such type of
lemma in a protocol based on timestamps would lead to some inaccuracies regarding the
representation, since uncompromised agents would always send the correct timestamp.
To filter out this inaccuracy Bella proposed the creation of the predicate Unique.

Definition 21. definition of predicate Unique

definition

Unique :: "[event, event list] => bool" ("Unique on ")

where "Unique ev on evs =

(ev /∈ set (tl (dropWhile (%z. z 6= ev) evs)))"

The predicate Unique (Definition 21) is a predicate taking an event and an event list
returning true in case the event does not appear more that once in the event list. It is
implemented using some list processing functions. The dropWhile function will scan a
list until an element is found, while function tl will prune into shape the result for the set
membership application with the event we want to determine its uniqueness. An example
of the usage of the predicate Unique is shown in Lemma 7 where we rewrite the uniqueness
Lemma 6 to use the predicate.

Lemma 7. Unique session keys

evs ∈ ns shared ==>

Unique (Says Server A (Crypt (shrK A)

{|NA, Agent B, Key K, X|})) ∈ set evs

2.4.2.6 Confidentiality

Confidentiality is defined [51] as the non disclosure of secret components to agents not
intended to receive it. In the inductive method, confidentially is the asserted by the not
appearance of certain terms in the knowledge set for the Spy. This should not happen
after cryptographic analysis under the terms the Spy is allowed to operate by the threat
model. In other terms, we will consider the confidentiality argument being stated as X /∈
(analz(knows Spy evs)).

Confidentiality is one of the usual security properties we find in security protocols.
It will be the cryptographic basis we will build our other properties on top of. For
example, to be able to assert authentication, we generally need first to establish the
confidentiality argument for the components providing us with such authentication. To
exemplify a confidentiality property, we show the secrecy argument for the session key
being distributed in the Needham-Schroeder Shared Key protocol.

Lemma 8. secrecy lemma

[|Says Server A (Crypt (shrK A) {|NA, Agent B, Key K,

Crypt (shrK B) {|Key K, Agent A|}|}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns shared|] ==>

(∀NB. Notes Spy {|NA, NB, Key K|} /∈ set evs) -->

Key K /∈ analz (know Spy evs)"

63

Lemma 8 states that if evs is an admissible trace of the Needham-Schroeder shared
key protocol specification, and an event with the syntax of message two appears on the
trace for a key K where the agents A and B mentioned in such message are nor colluding
with the Spy, this implies that if the Spy did not learn the key by a leak with an Oops
event, the key K is not available to him.

Proving Lemma 8 requires the usual inductive strategies. They are followed by the
regularity arguments regarding message two and a simplification augmented with facts
regarding the analz operator idempotence properties. We are left with the sub goals
generated by the inductive steps from message three (NS3) and the Oops event. For both
we must use the argument for unicity of session keys (Lemma 6), and for the sub goal
from NS3 we must further refer to the authenticity argument for message NS21 and the
injectiveness of the operator analz so that they can be eliminated and the confidentiality
argument for session keys be achieved.

Conducting proofs regarding confidentiality properties is generally one of the most
difficult tasks we have when verifying a protocol. This happens due to the way the
analz operator is constructed. Its construction, as shown in Definition 17, helps us with
symbolic evaluation in all components of the list of events and rules them out if they do
not include any key material. When including key material, we are left with sub goals
that require us to prove the uncompromising of each key stated or the uncompromising
of its counterpart. Some of these key compromising lemmas are straightforward, while
some others are not. We will see that in our experimentation with non-Unicast events,
this issue with the construction of analz had to be addressed in a rather different way to
enable us to do symbolic evaluation of the terms and achieve proofs under the new event
model.

2.4.2.7 Authentication

Agent authentication is defined by ISO/IEC 9798-1 [72] as ”mechanisms (that) allow the
verification, of an entitys claimed identity, by another entity. The authenticity of the
entity can be ascertained only for the instance of the authentication exchange”. Agent
authentication is one of the main goals of security protocols and among the most important
theorems expressed with the inductive method.

But to thoroughly describe authentication we must first refer to Lowe’s hierarchy of
authentication specification [78]. Lowe defines four increasing levels of agent authenti-
cation. The levels suppose a protocol initiator A completing a session of the security
protocol with the responder B. If A is able to assert the aliveness of B this means that
she believes B has participated in the protocol. If A believes the weak agreement of B with
herself this means she believes B has been running the protocol with her. Non-injective
agreement of B with A on H means a weak agreement between A and B agreeing on
the set of message components H. Injective agreement of B with A on H means a non-
injective agreement that happened only once. The inductive method is able to verify and
distinguish between each one of these classes of authentication. The extension proposed
by Bella [20], such as message reception and the principle of Goal Availability, played a
very important role into establishing this.

Authentication in the inductive method can be interpreted as determining the true

1Not shown in this thesis

64

originator of the exchanged authentication token. One important definition for us to
assert the true creator of a message component X is the predicate Issues, which returns
true if an agent A issues another agent B with X and X never appeared on the trace
prior to that event.

Definition 22. definition of predicate Issues

definition

Issues :: "[agent, agent, msg, event list] => bool"

(" Issues with on ") where

"A Issues B with X on evs =

(∃Y. Says A B Y ∈ set evs & X ∈ parts {Y} &

X /∈ parts (knows Spy (

takeWhile (% z. z 6= Says A B Y) (rev evs))))"

Definition 22 creates a predicate that takes two agents, a message and an event list, and
returns a boolean representing if A is the true creator of the message and it was intended
to the agent B, which is the receiving counterpart. The predicate is implemented using a
syntax annotation to make it more readable and states that if there exists a Y that is the
payload of an event Says originating from agent A to the destination agent B to which
X belongs to its set of parts. The predicate will be true if this first argument is true and
also if X is not in the parts of the reversed trace under another Says event.

Knowing the true creator for a message component is the way the inductive method
uses to assert that some agent can authenticate another agent by the uniqueness of the
message he/she issued. To exemplify the usage of the predicate Issues we will look to
Lemma 9 which will assert the premises for us to authenticate B as the true creator for
message four in the Needham-Schroeder Shared Key protocol

Lemma 9. B Issues A

[| Says B A (Crypt K (Nonce Nb)) ∈ set evs;

Key K /∈ analz (knows Spy evs);

A /∈ bad; B /∈ bad; evs ∈ ns shared |]

==> B Issues A with (Crypt K (Nonce Nb)) on evs

Lemma 9 states that agent B authenticates himself to agent A using the session key
to encrypt his own nonce in message four, B has some preconditions. First there should
exist in the trace of events a message with the syntax of message four from agent B to
agent A with the payload being the nonce Nb encrypted with the session key K. Then the
key K should not be compromised being in the knowledge of the Spy, nor agents A or B
could be colluding with the Spy.

To prove this lemma in Isabelle/HOL we first need to expand the definition of the
predicate Issues. Then we eliminate the quantifiers and prepare and apply the induction
over the protocol specification. The proof follows by preparing the treatment of the cases
X /∈ analz (knows Spy evs) and applying simplification. We are left with three trivial sub
goals: one for the Fake case, one for message three and one for message four. The Fake
case is solved by the classical reasoner itself. Message three needs some information re-
garding the function takeWhile and explicit appeal to regularity and authenticity lemmas

65

regarding the Server behaviour and message two respectively. Sub goal for message four is
sorted out by the classical reasoner augmented with information regarding the takeWhile
function.

As shown in Lemma 9, the Inductive method is capable of verifying non-injective
agreement of B with A on Crypt K (Nonce Nb), which is one of the major goals of the
Needham-Schroeder Shared Key protocol. In this case, due to the modelling adopted and
the intrinsic characteristic of the protocol using nonces we cannot establish a stronger
class of authentication.

2.4.2.8 Key Distribution

Key distribution concerns the establishment that, whether, at the end of a protocol ses-
sion, the peers have sufficient evidence that they share a session key with the intended
peer. This is normally a major goal for a security protocol. Such evidence of agreement
in a session key is embedded by protocol designers using the distributed session key in
a challenge response. By doing that, each side infers that the other has knowledge of
the key distributed. Lemma 10 states such evidence for key distribution from agent A to
agent B in the Needham-Schroeder Shared Key protocol.

Lemma 10. A authenticates and keydist to B

[|Crypt K (Nonce NB) ∈ parts (knows Spy evs);

Crypt (shrK A) {|NA, Agent B, Key K, X|} ∈ parts (knows Spy evs);

Key K /∈ analz(knows Spy evs);

A /∈ bad; B /∈ bad; evs ∈ ns shared|]

==> B Issues A with (Crypt K (Nonce NB)) on evs"

This lemma strengthens the authentication lemma shown before (9). It also uses the
predicate Issues for determining the true creator of the payload for message four. As this
lemma is based on evidence agent A has regarding the execution of the protocol, it states
as preconditions that the payload of message four is in the trace of events and the payload
of message two is in the trace of events as well. Then the session key K should not be
known by the Spy by the use of his cryptographic powers over the trace of events, as well
as agents A and B not being colluding with the Spy. If these preconditions are met we
can assert that B is the true creator of the encryption of his nonce Nb with the session
K confirming the evidence that he has the key that was distributed during the protocol
run. This is guaranteed by the assumption from message two. Proving this lemmas is
straightforward since we can appeal to Lemma 9 for most of its resolution.

This lemma could be strengthened even further if we adopted the message reception
primitive introduced by Bella [20]. Instead of inspecting the trace with the predicate Issues
and the preconditions being asserted with trace inspection, we could assert that message
two and message four we received and that Crypt K (Nonce NB) is in the knowledge set
of agent A, a precondition easier for him to verify than the ones stated above.

2.5 Considerations

In this chapter, we reviewed the field of security communication protocols, focusing on
their design and verification areas. We started by covering the basic principles behind

66

protocol design. We covered the cryptographic basis and the way security protocols are
represented. We then overviewed the attacks these protocols normally suffer, focusing on
how their goals are defined and to which threat model they are normally subject to. Some
attacks on classical security communication protocols were studied.

On the protocol verification side, we covered why formalisation is the best way to
achieve a thorough review needed to confirm any claim made regarding the represented
protocols. We also introduced the various different approaches developed so far. These
approaches are focused on the Unicast message casting primitive and are divided in two
main strains: State Exploration and Theorem Proving. State Exploration techniques allow
us to easily find bugs in protocols, while Theorem Proving techniques help us assert the
existence of security properties in protocols. We also tried to cover some details of the
most important tools available for each approach.

We then focused on Paulson’s inductive method which is the method of choice for
this thesis. In the Inductive method overview we covered the construction of the basic
infrastructure it needs. We also covered how to specify the protocols for verification.
We briefly introduced the ideas behind traces of execution and the principle of Goal
Availability. We then characterised once more protocol goals and went through examples
of verification done with the inductive method and Isabelle/HOL for each one of the
examples.

With these concepts in mind and making the clear distinction that most of these
methods are not prepared for what we propose, we will bring in the next chapter our
first main contribution for this thesis. This contribution is the modelling of a new events
theory that is able to verify other message casting methods than Unicast. The novelty
is clear since none of the available tools today claim the verification of security protocols
under these different network casting frameworks.

67

68

— We have two ears and one mouth so that we can listen twice as

much as we speak.

Epictetus (AD 55-c.135)

3
Security Multicast Protocol Verification

Multicast was initially advertised as a scheme for better network resources usage [105] and
for maximising the user experience when receiving content that could be easily replicated.
Although Multicast infrastructure is today a reality its usage and application remains
stigmatised by these initial assumptions. Multicast had this first conception but we have
seen increasing interest in it from the security community. Initially with protocols for
secure content delivery [37, 103] trying to address specific multicast problem and later
on in protocols that involve Byzantine Agreement and Byzantine Security [76] taking the
advantages of the new message casting framework.

In the last two decades multicast evolved to fulfil more that its initial performance-
based aim. It is now being developed much more towards reliability. By increasing the
reliability of multicast based protocols, the number of applications that can benefit from it
is also increased. As examples we can cite the usage of multicast based communication in
the stock trading business. The versatility of the Multicast implementation is appraised by
the fact it is the basic building block we can use to construct all other message frameworks
known. Once the complexity of achieving properties such as reliability can be addressed for
a multicast framework, its application for other message casting frameworks is generally
straightforward.

In the security protocols side, we have seen new strains of protocols based on unicast,
multicast, broadcast and a mixture of the three modes. We can cite numerous examples,
such as protocols to assure secrecy on one-to-many communications [65], protocols to
guarantee authenticity in one-to-many communications [60, 125], key distribution in one-
to-many communications [66, 32], and protocols that deal with novel security goals such
as byzantine agreement [47, 69, 12, 127], multi-party computation [33] and digital-rights
management [37, 103].

The verification process for such protocols must match the development done by de-
signers. Some efforts were seen in the literature, but they generally have problems to
cope with the inherent complexity of one-to-many communication. One-to-many message
casting models inherently increase the size and complexity of the knowledge sets of peers

69

as well as the size of the representation of the execution, which are two of the limitations
explained in chapter 2. We have seen some efforts being made using model checking using
CSS based approaches [5, 64] as well as some using theorem proving, in particular using
the NPA approach [7] and using Graham Steel’s Coral [118].

The implementation aspects of what Steel did with Coral in the verification of mul-
ticast based security protocols confirm the great potential of the inductive method in
addressing the problem. Our aim, then, is to extend it to enable reasoning regarding the
multicast-based event primitive. Our main goals are to create a versatile event model that
can encompass multicast and all the other variations of message casting that multicast
can yield.

Our idea in this chapter is to do a brief review about general multicast protocols (§3.1),
and show the reader why it is a good strategy for augmenting the coverage of the inductive
method to have a Multicast-capable event theory. We will discuss the different types of
multicast frameworks security protocols normally require (§3.1.1, 3.1.2 and 3.1.3). Then
we will see our contributions in the extension of the inductive method towards having
a fully capable multicast event theory (§3.2). We will also introduce the basic lemmas
required to make the implementation usable. Then we will go over a verification of a
well known security protocol under our newly designed framework (§3.3), so that we can
corroborate its usage in different message casting scenarios. We also revisit this protocol
so that we can measure if the proposition of adapting the inductive method towards a
Multicast based event theory is feasible in terms of the effort introduced in the verification
process. We will conclude with an analysis of the new verification capabilities the inductive
method has after these extensions.

3.1 General Multicast Protocols

Multicast is a one-to-many message casting framework that was originally designed to
selectively deliver messages to specific nodes in a network while maximising efficiency,
avoiding replication of traffic. Multicast aims to use the network layer in a very efficient
way by requiring the source of the cast to issue the packet only once even if it needs to
be delivered to a large agent population. The network is in charge of doing the necessary
replication and enabling the delivery of the payload to all the agents within the multicast
group. The network layer is responsible for providing the infrastructure necessary for the
multicast to happen.

A multicast group is established by the creation of a multicast session, where an
initiator creates a session by obtaining a name space to it. In an IP network, it is a
specially reserved address, while in other networks, it is only a reserved name in the
namespace. After naming the session, the initiator will define its characteristics, which
can be the multicast type, scope and duration. With the announcement of the session,
peers may join or be added to the session. The network infrastructure needs to be informed
about the multicast group shape and form. With the session in place, we can start to
multicast to the group defined by the session we just created, knowing that our message
will be sent to the intended recipients in a very efficient way. Peers are allowed to leave
the session at any time, giving to the sessions a dynamic shape.

Normally, due to application constraints multicast is implemented in an unreliable
way. The usual application of transmitting data streams for content delivery [75] makes

70

efficiency the only objective of multicast session. This creates the requirement for a very
efficient transport layer which, to achieve that, cannot afford to create connection controls
for delivering packets reliably. This lack of reliability is defined by the loss, reordering
and multiple delivery of packets to the endpoints. The application layer is responsible for
dealing with these subtleties by reconstructing, reordering and dropping eventual data
stream problems.

Other applications require multicast to behave as a network layer where lossless trans-
mission, non-duplication of content and ordering need to be enforced. Security protocols
are generally among these applications. To be able to address that, we see the inception
of a classification for multicast, dividing them in three categories. The first class of mul-
ticast is the above explained unreliable multicast, where messages can be lost, permuted
and multiply delivered. Some security protocols can cope with these properties.

The second class of multicast is called Reliable Multicast. Reliable Multicast schemes,
which are the basis for Byzantine Agreement [76], ensures that to all honest members of a
given multicast group in the network will be delivered the same message, even in the face
of a hostile presence in the network layer and among the group of multicast initiators.
The loss of messages is prevented. Furthermore, it introduces the usage of novel transport
layers so that this guarantee can be achieved in the one-to-many scenario.

Atomic Multicast schemes are an extension to Reliable Multicast that enable honest
members to have messages delivered in the order that they were sent. Moreover, Atomic
Multicast schemes guarantee the delivery of messages only once. This category of multi-
cast is very difficult to achieve and normally yields a security protocol in itself, since it
requires the existence of some basic security properties, such as uniqueness and reliability.

In the next subsections we will be looking over the important characteristics of the
three classes of multicasts. We will try to capture their properties for a modelling of a
multicast framework in the inductive method. This will help us to extend the coverage of
the inductive method to novel protocols and novel security goals, paving the way for the
verification of Byzantine Agreement protocols based on Reliable Multicast. Subsection
3.1.1 will give us an overview of the properties for Unreliable Multicast and how should
we achieve that in the inductive method. Subsection 3.1.2 will enlist the properties of
Reliable multicast schemes and Subsection 3.1.3 will do the same for Atomic Multicast.

3.1.1 Unreliable Multicast

Unreliable multicast is the classical multicast framework for IP Multicast [105, 4] designed
to use the network infrastructure in an efficient way. The implementation of such Multicast
network base layer is based on the usage of very basic transport layers. The idea of the
unreliable multicast is the provision of the multicast naming framework, where sessions
can be established and where addresses for representing the various sessions can have the
translation from this meta destination into the peers that belong to the group.

An important characteristic of Unreliable multicast that will extend to the other classes
is that its operation does not require the issuer of the multicast communication to un-
derstand or know the addresses of the destination peers, since that is taken care of by
the network infrastructure. At the application level this knowledge can be a requirement.
In fact the purpose of unreliable multicast is solely to provide a way so that the sender
can send a single message that will be replicated when needed towards the destination

71

nodes. Our multicast representation will use a naming space for the multicast groups
being represented by an unlimited size list. This representation will enable us to abstract
to the sending peer the actual recipient peers. When necessary we can also make specific
mention to peers in the various concurrent sessions happening.

Unreliable multicast in the form of IP multicast is widely deployed in the Internet with
applications ranging from video-conferencing and video content distribution [103, 37] to
examples of low latency needed in business such as stock exchanges [84].

With a multicast infrastructure, we can capture the delivery of communication with
all the message casting 99frameworks known today in computer networks. A multicast
to a multicast group of size one is a proper representation for a Unicast. A multicast
to a group of size all is also a proper representation of a Broadcast. Multicast is so
versatile that istcan encompass even the very new message casts frameworks’ variations,
such as Anycast and Geocast. Anycast is a message delivery system that delivers contents
to be readable by a single peer among the ones belonging to the multicast group, it is
a one-to-one-of-many association [3]. Geocast is a specialised multicast that takes into
consideration the geographical availability of the receiving peers in a Multicast Group
[71]. In fact most security protocols based on Multicast require in fact the representation
of Anycast to be achievable.

Our aim in this thesis is to produce a new events theory model for the inductive method
that is capable of representing by multicast all the other network casting frameworks. As
we will show later in Section 3.2, this is achievable by embedding the representation of
the group within the message casting while enabling the capabilities of Anycasting by the
usage of a λ operator over the message payload. This is coupled with the above idea of
representing the multicast group as an unbounded list. To prove our concept is capable of
cross framework representation, we revisit the Needham-Schroeder Shared Key protocol
implemented by a message framework composed by a Multicast to a group of size one in
section 3.3.

3.1.2 Reliable Multicast

The aim of a reliable multicast scheme is to ensure that group members of a multicast
group receive the same message that was sent with no loss of packets. Ordering is not
part of the concept but is achieved by many implementations.

One of the main issues regarding the classification of reliable multicast schemes is the
definition of reliability. Reliability itself in this context means that to every packet sent
a packet will be received by an endpoint participating in the multicast session. But the
implementation of reliability is not so straightforward [56] since the implementation of
multicast does not require the sender to know each of the destination peers address and
does not enable the sender to authenticate any recipients.

Reliable Multicast can be achieved in the inductive method by the usage of a message
reception case in the inductive specification of a protocol, so that we can confirm the
reception of the the message by all the peers involved in the multicast session. We
modelled that in the inductive specification of the Franklin-Reiter Sealed Bid auction
protocols, but we did not use it in our verification, as we will show later in Chapter 5. We
opted not to create a specific reception constructor in the inductive method since we can
achieve a reliable multicast scheme by enforcing all the multicast session participants get

72

the information they need using the standard Gets constructor. This option was made to
avoid introducing new complexity to the verification.

3.1.3 Atomic Multicast

The aim of atomic multicast is to extend reliable multicast so that we can guarantee the
unicity and ordered delivery of messages to the multicast group [49]: delivery is guaranteed
and it is done only once.

Atomic multicast methods are important in theory but not in practice [49]. We have
a series of methods developed especially for atomic broadcast, which are a special case
for multicast, but very few of them are available in practice due to the non availability
of the preconditions needed to execute such protocols. This hinders the development of
novel protocols.

Having pointed out the characteristics for Multicast communication in the previous
sections, we will see next our implementation of a multicast support for the inductive
method. We will show our extensions and the inclusion of support facts to our implemen-
tation so that we can assure the coverage of our multicast implementation as suggested in
section 3.1.1. We will then show an example that corroborates that our implementation is
capable of representing all message casting frameworks known today by applying that to a
well known protocol (§3.3) to measure if it is feasible to change the message representation
framework for the inductive method so that more protocols can be specified.

3.2 Inductive Method extensions for Security Multi-

cast Protocols

The inductive method initially allowed only three formal events, which formalise the act
of sending, noting and receiving a message. The original implementation of the event
datatype can be seen in Definition 23.

Definition 23. Original event datatype definition

datatype

event = Says agent agent msg

|Gets agent msg

|Notes agent msg

The original definition for the event datatype (23) allow us only the formalisation of
three types of events. The first event formalises the act of an agent sending a message
to another agent through the use of the primitive Says. The second event, introduced by
Bella’s Goal availability and peers knowledge ideas [20] formalises the act of receiving a
message by an agent through the usage of the primitive Gets. And finally, the third event
formalises the act of an agent receiving information off-protocol, where he just writes
down this knowledge for future use through the usage of the primitive Notes.

The idea of Multicast communication explained in the previous section (3.1) allowed us
some choices in how to implement a Multicast event. In our first implementation attempt,
we tried implementing the Multicast communication as a series of Unicast communica-
tions from the sender to all recipients in the multicast group. Although this represented

73

clearly an extension to the model without interfering with the datatype structure in place,
it introduces a series of infidelities to the real implementation of Multicast and makes rea-
soning harder when identifying a specific Multicast message is a necessity.

Infidelities to the Multicast real implementation generally regarded the impossibility
of implementing different types of Multicasts as explained in Section 3.1, and the ability
of distinguishing a Multicast from a Unicast after the translation has happened. We
also had issues of fidelity with the idea of Multicast, where a message is sent once and
is received multiple times with a main goal of reducing network traffic or to enable the
replication of data. If implemented in this way, a Multicast would mean the sending
of multiple messages, what would make it different to the real implementation yielding
undesired properties.

Therefore we decided to implement an extended datatype event, creating a new prim-
itive Multicast that is able to represent a Multicast communication with fidelity and also
to encompass the possibility of implementing the cases for Unicast and Broadcast and the
other casting frameworks using the Multicast primitive.

Definition 24. Multicast event datatype definition

datatype

event = Says agent agens msg

|Multicast agent "(agent list)" "(agent => msg)"

|Gets agent msg

|Notes agent msg

The new datatype of events introduced in Definition 24 implements the same primitives
as the original event datatype shown on Definition 23. This is done for the sake of
compatibility with the actual Unicast protocol verification, meaning our theory can be
directly exchanged by the actual Events theory available with Isabelle/HOL distribution.
If you do not invoke the usage of any Multicast message, the verification should remain
mostly unchanged.

We add to the datatype event a new primitive Multicast, where an agent multicasts a
message to a multicast group. Our technical choice for representing the multicast group
by using an agent list is due to the fact that lists are a powerful representation in Is-
abelle/HOL and come with an extensive implementation. The idea of representing the
message as a function over agents has direct inspiration from the real Multicast commu-
nication and the necessity of implementing Anycast, as most security protocols requires
that. In a real scenario, a peer sends the same message to a group of receivers, and each
receiver is capable of interpreting the message in different ways, sometimes depending on
the knowledge he/she already has.

Another source of inspiration for letting each peer apply a function with his own
parameters is that this creates their own view of the message. By applying the function to
his own identity the agent is able to view the content directed to him. This implementation
follows the core idea of Goal Availability [20], since we are working on extending Agents’
knowledge independently. The implementation details will make the issue clear in the
next subsections (3.2.1 and 3.2.2) where we extend the knowledge of peers based on their
point of view inside or outside of the multicast group and the extension of the set of used
components allowing us to reason about the trace with all points of view added to it.

74

Although it seems contradictory to reject an implementation based on Unicast to
represent Multicast and implement a Multicast datatype capable of representing Unicast
and Broadcast, this implementation does not suffer the setbacks of the previous ideas.
We also wanted to create a generic implementation to corroborate our motivational idea
that Unicast and Broadcast are extremes for Multicast, setting Multicast as the base
implementation for verifying Security Protocols in the future.

In the next subsections we will show the extensions made in how peers acquire knowl-
edge (§3.2.1) and how we can have access to all derivations coming from the application
of the function to each peer’s point of view through the function used (§3.2.2). Following
on we will discuss the modification in previously available lemmas and the new lemmas
created to support the usage of our implementation (§3.2.3).

3.2.1 Extending Peers’ Knowledge set for Multicast Communi-

cations

Peer knowledge and the implementation of the set knows in the inductive method were
important additions to enable us to reason about key distribution and not just confi-
dentiality. The original implementation by Paulson [101] did not take into account the
knowledge each peer acquired during the various stages of execution. Its main concerns
regarded what the Spy was able to learn during the execution.

With the development of the idea that there ought to exist a formal guarantee that the
protocol’s goals are available to the peers in a realistic model [20] we have the necessity
of applying the inductive relation analz to peers other than the Spy. This made the
previous spies predicate obsolete and created the necessity of a broader function, now
known as knows. The knows function represents how the knowledge of each peer — the
Spy included — is expanded during the execution of the protocol and was the outcome of
Bella’s goal availability principle. Definition 25 shows our new specification for the knows
function.

Definition 25. Extended inductive relation representing Peer’s knowledge under Multi-
cast

consts

knows :: "agent => event list => msg set"

primrec

knows Nil: "knows A [] = initState A"

knows Cons: "knows A (ev # evs) =

(if A = Spy then

(case ev of

Says A’ B X => insert X (knows Spy evs)

| Multicast A’ B XF => (XF ‘ set B) ∪ (knows Spy evs)

| Gets A’ X => knows Spy evs

| Notes A’ X =>
if A’ ∈ bad then insert X (knows Spy evs)

else knows Spy evs)

else

(case ev of

Says A’ B X =>

75

if A’=A then insert X (knows A evs)

else knows A evs

| Multicast A’ B XF =>
if A’=A then (XF ‘ set B) ∪ (knows A evs)

else knows A evs

| Gets A’ X =>
if A’=A then insert X (knows A evs)

else knows A evs

| Notes A’ X =>
if A’=A then insert X (knows A evs)

else knows A evs))"

The inductive relation knows is now specified in 4 inductive cases in two steps. We
start our inductive definition with the specification of the base case knows Nil. In the
base step knows Nil the trace of events is empty and the knowledge of a peer is equal to
its initial knowledge prior to the execution of the protocol. When we move to the step of
a non-empty trace of events, we have two classes of peers and four cases each.

The Spy is able to learn differently than other peers. When he sees an event Says
sending X as a message, we extend his knowledge by inserting X to his knowledge set.
When he sees an event Multicast from a peer to a multicast group casting XF we add
to the knowledge of the Spy the image of the function XF over the set of peers in the
multicast group. When he sees a Gets event he learns nothing, because he already learnt
it at the sending event. When a peer learns a message X through the predicate Notes,
the Spy will learn the message X if the peer is corrupted.

The second class of peers regards all agents not colluding with Spy. When the peer
originates an event Says to another peer casting X as a message, we extend his knowledge
by inserting X. If he is not the originator we do nothing. When the peer issues event
Multicast to a multicast group casting XF, we add to his knowledge the image of the
function XF over the set of peers in the multicast group. When he Gets a message X
through the predicate Gets we insert X to his knows set. When he learns a message X
through the predicate Notes, we insert X to his knows set.

During the specification of the event datatype and the extension of the function knows,
we realised the existence of some subtleties regarding the Multicast constructor and its
reception, especially regarding knowledge gathering. Our initial design for the multicast
event implementation conceived the introduction of a predicate specifically to deal with
the reception of multicast messages.

Having a predicate GetsMC seemed attractive since a Multicast message conveys in-
formation regarding the knowledge other peers in the multicast group may have acquired.
As an example, when we receive a Multicast message addressed to a group composed of
us and another two peers, we don’t just learn the contents of the message conveyed by the
multicast, but also that the other two users may also have had their view of the message
contents and learned what we considered the public components in the message. This
idea can be extended even further, since the other two peers know that we may know the
information conveyed by the message.

The reflexion of the inductive relation knows would add a new dimension to peers
knowledge as the Multicast does to the event traces. We would stop having the linearity
connecting trace expansion and peer knowledge acquisition, and add new possibilities of

76

inferring other peers’ knowledge. The extension of the inductive relation knows to deal
with other peer’s knowledge is very attractive to use with novel threat models. We can,
for example, conjecture that this new peer’s knowledge acquisition model can enable us to
reason about the detection or not of retaliation attacks [11] in certain multicast scenarios.

We dropped the idea because gathering this information is difficult in practice because
multicast is supposed to hide group composition. This is even more problematic in an
environment where message reception cannot be guaranteed. The knowledge reflection
would be just as a hint of other peer’s knowledge and not a concrete fact. Another issue
was that we did not want to break backward compatibility by changing the shape of the
function knows and re-implement all the other affected definitions to accommodate this
change.

With the new definition of the function knows to encompass a Multicast primitive we
now can reason about knowledge acquired be the peers during the execution of Multicast
based protocols, as well as design the necessary lemmas to make the specification usable.
In section 3.2.3 we will describe the new lemmas that enable us to reason about the
constructor Multicast as we did with the constructor Says in the Unicast scenario.

3.2.2 Extending Used set for Multicast Communications

Another important extension to the Inductive method by the addition of the Multicast
predicate concerns to the extension of the used function which enablse us to reason about
freshness. Freshness is a necessity for reasoning about the unicity of certain messages. It
is also a key compositional property for reasoning about key distribution.

The used function forms the set of all message components that have already appeared
in the event trace plus all the information all peers initiated the protocol run with. Defini-
tion 26 shows the extended version of the function used, now encompassing the Multicast
primitive.

Definition 26. Extended function that represents used parts of messages under Multicast
environment

consts

used :: "event list => msg set"

primrec

used Nil: "used [] = (UN B. parts (initState B))"

used Cons: "used (ev # evs) =

(case ev of

Says A B X => parts {X} ∪ used evs

| Multicast A B XF => parts (XF ‘ set B) ∪
used evs

| Gets A X => used evs

| Notes A X => parts {X} ∪ used evs)"

The used function is specified in two inductive steps. The first inductive step used Nil
is the base case, where our event trace is empty. It is defined by the union of the application
of the function parts to the initial state of all peers. This definition allows us to consider
as used any information.

77

The second inductive step regards the components used during trace construction.
This inductive step has four cases, one for each event constructor present in the protocol
construction model. The first case regards the primitive Says, where the application of
the function parts on the message X is joined with the used set of the remaining events.
The second case regards the new addition of Multicast. In this case we apply the function
parts to the image of function XF over the set of peers in the multicast group B and join
the result with the set of remaining events. The third case regards the Gets primitive,
where no action is taken since the parts are already considered ”used” when sent. Finally
the fourth case regards the primitive Notes, where the content of what is being noted is
passed through the function parts and then joined with the other used components.

The extension of the used function is key for adding Multicast support to the inductive
method. Effectively the used set has been kept stable since the first implementations of
the inductive method [101], since the additions made for encompassing message reception
were only technical and did not change the set construction. Differently from knows,
the used function would not yield any new property by the adding of a message reception
primitive for Multicast messages, but the adding of the Multicast message primitive makes
the set potentially bigger and more complex to reason about.

In the next subsection (§3.2.3) we will introduce the new lemmas needed to reason
about the new additions made to the function knows and used.

3.2.3 Basic Lemmas

The basic lemmas for reasoning about the multicast primitives in the face of the extensions
introduced to the used and knows specification are presented. The introduction of such
lemmas comes from the existence of their Unicast counterparts, and is key for the usability
of the inductive method under the new Multicast environment.

Usually the construction of proofs regarding secrecy requires a reference to the knowl-
edge acquired during the execution of the protocol. It is also a necessity to supply the
theorem prover with some properties to guide it toward the proof path we intend. The
proof of Lemma 11 (Multicast implies knows Spy) helps us to express that if a message
XF was Multicasted to a multicast group B, then the image of the function XF over the
set B is a subset of the set of knowledge of the Spy in this trace.

Lemma 11. Multicast implies knows Spy

Multicast A B XF ∈ set evs =⇒ XF ‘ set B ⊆ knows Spy evs

The proof of Lemma 11 (Multicast implies knows Spy) is simple by induction over
the set evs followed by the simplifier added with the case split argument of the event
datatype.

Sometimes the argument of Lemma 11 (Multicast implies knows Spy) needs to be
applied to a specific recipient in the multicast group. This requirement yields Lemma
12 (Multicast implies in knows Spy). Lemma 12 (Multicast implies in knows Spy)
states that if XF is the payload of a Multicast from agent A to the multicast group B
and C is and agent belonging to the multicast group, then the application of the function
XF to C is in the knowledge of the Spy in the trace evs.

Lemma 12. Multicast implies in knows Spy

78

[[Multicast A B XF ∈ set evs; C ∈ set B]] =⇒ XF C ∈ knows Spy evs

Another case of the casting of a Multicast message into the network is the expansion
of the knowledge set of the sending peer A. Lemma 13 (Multicast implies knows) states
that if an agent A casts a Multicast message XF to a multicast group B then the image
of the function XF over the set B is a subset of the knowledge of peer A in the event
trace evs.

Lemma 13. Multicast implies knows

Multicast A B XF ∈ set evs =⇒ XF ‘ set B ⊆ knows A evs

Proof for Lemma 13 (Multicast implies knows) is similar to the one for Lemma 11
(Multicast implies knows Spy).

An important simplification rule regards the equivalence between the extension of the
trace and the extension of the Spy’s knowledge. This equivalence is shown in Lemma 14
(Know Spy Implies Multicast) which states that extending the knowledge of the Spy
by adding a Multicast message to the trace of events is equivalent to the union of the
image of the XF function over the set of peers in the multicast group with the knowledge
the Spy already has. The proof of Lemma 14 (Know Spy Implies Multicast) is done
solely by the simplifier.

Lemma 14. Know Spy Implies Multicast

knows Spy (Multicast A B XF # evs) = XF ‘ set B ∪ knows Spy evs

The knowledge set the Spy has regarding the trace before the casting of any Multicast
message is a subset of the knowledge the Spy has after extending the trace by casting
a Multicast message. Lemma 15 (Knows Spy subset knows Spy Multicast) expresses
the above property of the knows function. The existence of this fact to Isabelle/HOL is
important because it can help on the simplification of message dependencies regarding
the way subgoals are rewritten by the tool.

Lemma 15. Knows Spy subset knows Spy Multicast

knows Spy evs ⊆ knows Spy (Multicast A B XF # evs)

Proving Lemma 15 (Knows Spy subset knows Spy Multicast) is done automatically
by Isabelle/HOL’s auto tactic.

Lemma 16 (knows Multicast) is a generalised version to peers other than the Spy of
Lemma 11 (Multicast implies knows Spy). In fact it represents the lawful acquisition
of knowledge to any peer in the protocol execution when it casts a Multicast message.
Lemma 15 (Knows Spy subset knows Spy Multicast) states the equivalence between
extending the knowledge of peer A by extending trace adding a Multicast message with
the application of the union between the image of the function XF over the set B with
the previous knowledge of peer A. It is proven by applying simplification only.

Lemma 16. knows Multicast

knows A (Multicast A B XF # evs) = XF ‘ set B ∪ knows A evs

79

Lemma 17 (knows subset knows Multicast) is a generalised version of Lemma 15
(Knows Spy subset knows Spy Multicast) that establishes a fact for the legal execution
of the protocols for all peers. This lemma is important for clearing the rewriting done by
the theorem prover, and its proof is also done automatically by Isabelle/HOL.

Lemma 17. knows subset knows Multicast

knows A evs ⊆ knows A (Multicast A’ B X # evs)

The other technical lemmas that involve the extension of the inductive relation knows
relate the knowledge of the Spy with the events that appeared on the trace. This is
presented by Lemma 18. It states that if an element X is in the set of knowledge of the
Spy then there exists some A, some B, some C and a function XF for that and a Says
event mentioning X is on the trace, or an event with the primitive Multicast mentioning
the function XF is in the trace and the element X is in the image of the function XF
over the set C, or the element X was Noted from the trace by an event Notes X or the
element X was previously known by the Spy.

Lemma 18. knows Spy implies Says Multicast Notes InitState

X ∈ knows Spy evs =⇒
∃ A B C XF.

Says A B X ∈ set evs ∨
Multicast A C XF ∈ set evs ∧ X ∈ XF ‘ set C ∨
Notes A X ∈ set evs ∨ X ∈ initState Spy

The proof requires induction followed by using the simplifier extended with the case
spilt for the datatype event followed by the classical reasoner from Isabelle/HOL.

The second technical lemma regarding the relation of knowledge of an element with
trace inspection is applied to all peers other than the Spy. The introduction of such fact
is done by Lemma 19 (knows implies Says Multicast Gets Notes InitState). It states
that if an element X is in the set of knowledge of peer A over the trace evs, and this
agent is not the Spy, it implies that there exist some A, some B and a function XF so
that a Says event mentioning X is on the trace, or an event with the primitive Multicast
mentioning the function XF is in the trace and the element X is in the image of the
function XF over the set C, or a Gets event mentioning X is on the trace, or the element
X was Noted in the trace or the element X was previously known by the peer A.

Lemma 19. knows implies Says Multicast Gets Notes InitState

[[X ∈ knows A evs; A 6= Spy]]
=⇒ ∃ B C XF.

Says A B X ∈ set evs ∨
Multicast A C XF ∈ set evs ∧ X ∈ XF ‘ set C ∨
Gets A X ∈ set evs ∨ Notes A X ∈ set evs ∨
X ∈ initState A

The Proof is very similar to the one for 18.
Other technical lemmas are required for the extended used function. Lemma 20

(Multicast Implies Used), concerns the extension of the set used on the actual trace
of events when a Multicast message is casted in a protocol. If we have a Multicast from
agent A to the multicast group B with the payload XF then that the image of the function
XF over the set B is a subset of the set used in the current trace of events.

80

Lemma 20. Multicast Implies Used

Multicast A B XF ∈ set evs =⇒ XF ‘ set B ⊆ used evs

Proving Lemma 20 (Multicast Implies Used) requires the application of induction
over evs followed by the classical reasoner augmented with the case split for the event
datatype.

Lemma 21 (Multicast implies in Used) states that if we have a Multicast from agent
A to multicast group B with the payload XF and C is an agent of the multicast group B
then the function XF of C is in the set used for the trace evs.

Lemma 21. Multicast implies in Used

[[Multicast A B XF ∈ set evs; C ∈ set B]] =⇒ XF C ∈ used evs

To achieve the proof of Lemma 21 (Multicast implies in Used) we need to appeal to
Lemma 20 (Multicast Implies Used) and to the reversibility of the set image operator
which is not shown in this thesis.

Another important lemma is Lemma 22 (used Multicast), which states the equiva-
lence in the extension of the trace of events and the extension of the set of used. Proving
Lemma 22 requires only a call to the simplifier.

Lemma 22. used Multicast

used (Multicast A B XF # evs) = parts (XF ‘ set B) ∪ used evs

Leaving behind the more technical lemmas shown above and following to lemmas we
normally appeal to when trying to state proofs concerning protocol objectives, we follow
with the presentation of Lemma 23 (Multicast implies in parts spies). Although the
name of this lemma still carries the old naming scheme from the spies function before the
introduction of function knows, this lemma already takes into account the knows function
and is very important. It is useful for proving goals regarding Regularity, Unicity and
Authenticity.

Lemma 23 states that if the trace of events contains a Multicast event from agent A
to multicast group B with the payload function XF, and C is and agent of the multicast
group B, then the application of the payload function onto C is in the parts set for the
Spy’s knowledge over the trace.

Lemma 23. Multicast implies in parts spies

[[Multicast A B XF ∈ set evs; C ∈ set B]]
=⇒ XF C ∈ parts (knows Spy evs)

The proof requires us to appeal to Lemma 12 (Multicast implies in knows Spy) and
the injectiveness of parts .

To enable us to reason about Multicast and confidentiality goals we introduce facts
based on the function analz. Lemma 24 (Multicast implies analz Spy) is an important
fact regarding the expansion of the analz set during the cast of a Multicast event. It
states that if a Multicast event from agent A to the multicast group B with the payload
function XF is in the trace of events, this implies that the image of the function XF over
the set B is a subset of the set of message components the Spy can analyse from the trace.

81

Lemma 24. Multicast implies analz Spy

Multicast A B XF ∈ set evs =⇒ XF ‘ set B ⊆ analz (knows Spy evs)

Facts that involve the operator analz proofs tend to be intrinsically complicated. We
apply induction followed by the auto tactic augmenting the case split property of the
events datatype. We are left with three subgoals. They regard the expansion of the
knowledge set of the Spy after the unification with the image of function XF over the set
B. Two of these subgoals are trivial and can be proved by appeal to the fact analz insert
which states that ”c ∈ G =⇒ c ∈ analz (insert a G)” and the totality of function’s
images. The remaining subgoal requires an appeal the injectiveness of analz, the totality
of function’s images and to Lemma 11 (Multicast implies knows Spy) .

Another important strategy within Isabelle/HOL used with the Inductive Method re-
gards declaration of lemmas from previous facts. One Lemma produced by this technique
is 25 (Multicast imp parts knows Spy). This lemma is important when we have to rea-
son about the expansion of parts ’ image and the existence of atomic components of the
Multicast message in the parts set. It is a useful fact for goals regarding Regularity and
Unicity.

Lemma 25. Multicast imp parts knows Spy

[[Multicast A B XF ∈ set evs; C ∈ set B;

XF C ∈ parts (knows Spy evs) =⇒ PROP W]] =⇒ PROP W

Our final extension to the inductive method to enable it to reason about Mutlicast
events concerns to the expansion of the tactic synth analz mono contra. This tactic is
important for reasoning about theorems with the form X ∈ synth(analz(knows Spy evs))
=⇒ P, and to clear certain subgoals that involve the fake cases. Our addition to the tactic
was the inclusion of the Multicast processing in the function synth analz mono contra tac.

Following this explanation regarding the extensions needed to the inductive method
to enable it to reason about Multicast communication primitives, we will be briefly dis-
cussing the re-interpretation of security goals and the new shape of the inductive method’s
infrastructure under a Multicast environment.

3.2.4 General Re-Interpretation of Security Goals under Multi-

cast

Extending the Inductive method to accommodate a Multicast communication primitive,
requires the re-interpretation of how the method works and how some security goals should
be understood.

The first thing to bring to attention is the modification of the idea of trace of events.
Prior to the introduction of the Multicast primitive, we had the idea of a linear trace and
a linear expansion of the knows and used set. Following the ideas outlined by Bella [20]
and shown on Figure 3.1, a generic trace is a list of any length that is the parameter for
the modelling and verification of protocols properties.

Interpreting now the relation between trace expansion and the knows and used set
expansions in the case of the trace shown by Figure 3.1, we can see the linearity in both
expansions. For the sake of exemplifying, we know that the knows set for peer A is

82

Says Spy D {|Agent A, Nonce Nc|}

Notes Spy {|Nonce Nc, Key Kcb|}

Notes Spy {|Nonce Nc, Key Kcb|}

Says B C (Crypt (priSK B) {| Nonce Nc, Key Kcb|})

Gets B (Nonce Nc)

Says Spy D (Nonce Na’)

Says C B {| Agent C, Nonce Nc|}

Notes Spy (Nonce Na’)

Says A B {| Agent A, Nonce Na’|}

Says A B {| Agent A, Nonce Na|}

Figure 3.1: Linear trace example from Bella[20]

initialised before any message is sent with all prior knowledge A had. This is generally
composed by his own shared key and private keys as well as all the public keys (initState
definition 13). After the sending of the first message onto the trace, by the definition of
knows, the knowledge of peer A will be extended by inserting the payload of the message
to its knowledge set. And the same will happen for any Notes event.

After the extensions proposed by Bella [20], we see the knowledge set of a peer also
being extended by message reception event Gets. In this scenario, the peer receiving a
message from the network will insert its payload onto his own knowledge set. A very
similar procedure happens to the extension of the used set. To every message send onto
the trace we expect a linear expansion of the sets knows and used by the size of the
payload of the Says event.

We look closer to the relation happening in a one-to-many communication style we see
that this linearity is lost. We cast a Multicast event in the trace we are not extending the
knows and used set by exactly the payload of the message, but by the application of the
payload function over the list of agents in the multicast group. This inherently changes
the trace construction since we also do not have this conveying of knowledge between
two peers only. The inductive method is capable of coping with this immense potential
growth in the size of the trace information, which clearly corroborates our choice in using
it as the testbed for our implementation efforts.

Another important re-interpretation concerns the goal of Secrecy, due to the leakage of
information to peers by the usage of side-channels inherent to a Multicast implementation.
As mentioned earlier, with the exception of the multicast implementation being used in an
Anycast mode of operation we can argue that there is a side channel leaking information
that could be captured by the knowledge representation within the method. Although
the method is not prepared today to make use of this information, with the expansion of
it to encompass newer threat models, this can be important to represent knowledge that
could help us to protect or prepare better retaliation attacks.

3.3 Verification of a Classic Unicast Protocol

One of the main challenges of implementing Multicast support to the Inductive Method
was making it capable of covering the extreme cases. Following the idea that Unicast and

83

Broadcast are the extremes of a Multicast communication, in this section we show how
a Unicast protocol can have its properties verified using our Multicast implementation
in Unicast mode of operation. Unicast is achieved by sending a Multicast to a multicast
group of size one. We chose to do this demonstration using a classical protocol; Needham-
Schroeder Shared Key [93] .

The choice of Needham-Schroeder Shared Key protocol is justified by the fact it has
well known security goals and its verification was already very well covered elsewhere
[101]. Its authentication and key distribution goals made it well suited for our demon-
stration aims. Its proofs achieve key distribution and authentication of both peers with
the assistance of a trusted third party produce enough details to measure the effort needed
to use Multicast as the main event model in the Inductive Method.

In the next subsections we will cover the modifications in the Needham-Schroeder
Shared Key protocol to make it verifiable under the Multicast environment and the choices
made in this re-implementation (§3.3.1). Following the description of the changes (§3.3.2)
we will cover the verification process(§3.3.3), focusing on the challenges introduced in the
proof methods and how this impacts the outcomes and effort for the protocol verification
process.

3.3.1 Revisiting Needham-Schroeder Shared Key

We revisit the Needham-Schroeder Shared Key protocol to verify it under the Multi-
cast model. By doing this, we will be creating a new protocol variant called Needham-
Schroeder Shared Key Multicast Mode. This is achieved by substituting all the Unicast
primitives by Unreliable Multicast ones, thus, enabling the protocol to use our Multicast
implementation in the process.

As the unicast version of the protocol has been verified, no major attack was expected
to be found. Our main goal was to show that a Multicast implementation can be used
for Unicast, giving the basis to suggest it as the default implementation for the Induc-
tive Method. Our objective is to measure the new complexity introduced in the proof
construction process.

The classical Unicast protocol is then transformed to a Multicast variant as shown in
Figure 3.2.

1. A
U
 Server : λC.{|A,B,Na|}

2. Server
U
 A : λC.{|Na,B,KAB, {|KAB, A|}sKB

|}sKA

3. A
U
 B : λC.{|KAB, A|}sKB

4. B
U
 A : λC.{|Nb|}KAB

4. A
U
 B : λC.{|Nb − 1|}KAB

Figure 3.2: Needham-Schroeder Shared Key Multicast Implementation

Obvious choices in the translation were made, such as the usage of an Unreliable
Multicast, since the previous protocol verification scenario had the same constraint of
unreliability of Unicast. Note that we do not use functions to address the keys being used
to encrypt traffic, as it would be expected in a true multiple receiver Multicast protocol.

84

This is because there will be only one encryption. The choice was done for the sake of
fidelity with the real implementation of the protocol. The usage of these functions would
only impact in the proof strategy. The main change would be to use more aggressive
destruction rules for function congruence.

3.3.2 Needham-Schroeder Shared Key Multicast Modelling

The verification of the Needham-Schroeder Shared Key Multicast consists first of the
creation of a specification in Isabelle/HOL that represents the protocol defined in the
Figure 3.2. To start a constant ns shared MC is declared as an inductive set of lists of
events which represents the formal protocol model. This inductive set setup is shown in
Definition 27.

Definition 27. Inductive Definition of Needham-Schroeder Shared Key Distribution Pro-
tocol using Multicast Primitive - setup

inductive set ns shared MC :: "event list set"

where

We define the empty trace by the rule Nil, which sets the base of the induction.
The Spy ’s illegal activity is formalised by the rule FakeMC, which includes any forging

the Spy is able to perform from the knowledge acquired from the trace of events so
far. Rule FakeMC is a variant from the rule Fake from Unicast verification process.
It gives the Spy the power to multicast any message with components he learnt from
traffic analysis, to any multicast group present in the execution of the protocol. The
isabelle/HOL implementation of the rules Nil and FakeMC are shown in Definition 28.

Definition 28. Inductive Definition of Needham-Schroeder Shared Key Distribution Pro-
tocol using Multicast Primitive - Empty set and Fake Rules

Nil: "[] ∈ ns shared MC"

| Fakemc: " [[evsfmc ∈ ns shared MC;

XF ∈ synth(analz(spies evsfmc))]]
=⇒ Multicast Spy multicast group (λC. XF) #

evsfmc ∈ ns shared MC"

The protocol then starts with a phase composed by two messages where the agent A
will request the trusted third party Server to initialise a communication with the agent
B. During this phase, the Server will generate a session key to be used by agents A and
B and will give to A the means to proceed to the next phase.

To address this phase, our model is extended initially by the rule NS1. The only
precondition of the rule NS1 is that the session identifier NA was never used in the set of
traces of events, avoiding then the collision with a pre-existent session. If this precondition
is met we extend the trace of events by adding a Multicast message from the agent A to
the multicast group composed of the agent Server. The message carries agent’s A identity,
agent’s B identity, and the session identifier NA.

The next extension of the model is done by rule NS2. The preconditions of this rule
state that if the trace of events contains a message with the syntax of the message added

85

by the rule NS1, from any agent and addressed to the Server and the session key KAB
is indeed a session key and was never used before in the set of traces of events, we can
extend the actual trace. We then add to the trace of events a Multicast from the Server
to the multicast group composed solely of agent A, containing the identity of agent A,
the identity of agent B, the session identifier NA and a certificate for A to forward to B.
This certificate is composed by the session key KAB and the identity of A, encrypted with
the long-term shared key of the agent B. The whole message Multicasted by the Server
to agent A is encrypted under the long-term shared key of agent A.

The Isabelle/HOL implementation of rule NS1 and rule NS2 can be seen on Definition
29.

Definition 29. Inductive Definition of Needham-Schroeder Shared Key Distribution Pro-
tocol using Multicast Primitive - Rule NS1 and Rule NS2

| NS1: " [[evs1 ∈ ns shared MC; Nonce NA /∈ used evs1]]
=⇒ Multicast A [Server] (λC.
{|Agent A, Agent B, Nonce NA |}) # evs1 ∈ ns shared MC"

| NS2: " [[evs2 ∈ ns shared MC; Key KAB /∈ used evs2; KAB ∈ symKeys;

Multicast A’ [Server] (λC.
{|Agent A, Agent B, Nonce NA |}) ∈ set evs2]]

=⇒ Multicast Server [A] (λC.
(Crypt (shrK A)

{|Nonce NA, Agent B, Key KAB,

(Crypt (shrK B) {|Key KAB, Agent A |}) |}))

evs2 ∈ ns shared MC"

After agent A received from the Server the certificate and the session key necessary to
proceed the communication establishment, she forwards the certificate to agent B. Upon
receiving the certificate, agent B recognises it because it was encrypted with the key he
shares with the Server.

To test agent’s A aliveness and possession of the session key, agent B sends agent A a
message containing a freshness value encrypted with the session key. Upon receiving B ’s
message, agent A decrypts it with the session key. To prove the possession of the key and
his aliveness, agent A sends agent B a message with the freshness value modified in an
expected way and encrypted under the session key.

To cover the above steps our model is extended by the rule NS3. This rule has as
preconditions that the trace of events contains a Multicast event sent by some agent S to
agent A with the syntax of rule NS2, and that the trace of events contains a Multicast
event from agent A to the Server with the syntax of rule NS1. If these preconditions
are met we can extend the trace with the Multicast event from agent A to the multicast
group represented solely by agent B sending the certificate agent A received from agent S.
Deliberately we use agent S instead of agent Server, because we cannot know the message
indeed came from agent Server.

Our next extension to the model is rule NS4. The preconditions of rule NS4 are that
the freshness value NB was never used in the set of traces before, and the key K received
inside the certificate is indeed a session key. We also have a precondition that the trace
of events contains a Multicast from some agent A to some multicast group containing B

86

with a session key K and the identity of agent A encrypted under the shared key between
agent B and the Server. If the preconditions are met we can extend the trace of events
with a Multicast event from agent B to the group solely represented by agent A containing
the freshness value NB encrypted with the session key K.

The model is then extended to the last message of the protocol by rule NS5. The
preconditions of rule NS5 are that key K is a session key and the trace of events contain
a Multicast from an agent B’ to A with the syntax of rule NS4 and a Multicast message
from an agent S to a multicast group containing agent A with the syntax of rule NS2. If
the preconditions are met, we can extend the trace of events by adding a Multicast event
from agent A to the multicast group represented by agent B of the agreed modification
of the freshness value NB encrypted by the session key K.

The Isabelle/HOL implementation of rule NS3, rule NS4 and rule NS5 can be seen
on Definition 30.

Definition 30. Inductive Definition of Needham-Schroeder Shared Key Distribution Pro-
tocol using Multicast Primitive - Rule NS3, NS4 and NS5

| NS3: " [[evs3 ∈ ns shared MC; A 6= Server;

Multicast S [A] (λC. (Crypt (shrK A)

{|Nonce NA, Agent B, Key K, X |})) ∈ set evs3;

Multicast A [Server] (λC.
{|Agent A, Agent B, Nonce NA |}) ∈ set evs3]]

=⇒ Multicast A [B] (λC. X) # evs3 ∈ ns shared MC"

| NS4: " [[evs4 ∈ ns shared MC; Nonce NB /∈ used evs4; K ∈ symKeys;

Multicast A’ [B] (λC. (Crypt (shrK B){|Key K,Agent A |}))
∈ set evs4]]

=⇒ Multicast B [A] (λC. (Crypt K (Nonce NB)))

evs4 ∈ ns shared MC"

| NS5: " [[evs5 ∈ ns shared MC; K ∈ symKeys;

Multicast B’ [A] (λC. (Crypt K (Nonce NB))) ∈ set evs5;

Multicast S [A] (λC. (Crypt (shrK A)

{|Nonce NA, Agent B, Key K, X |}))

∈ set evs5]]
=⇒ Multicast A [B] (λC. (Crypt K {|Nonce NB, Nonce NB |}))
evs5 ∈ ns shared MC"

Finally we add to our definition the possibility of having session keys being compro-
mised by the Spy. Although this is not part of the standard protocol it is added to our
model to be able to show that the loss of control in one session does not represent prob-
lems to other concurrent sessions. The preconditions of rule Oops are that a Multicast
from an agent B to to a multicast group A is on the trace with the syntax of the rule
NS4 and a Multicast from the Server to the same multicast group A with the syntax of
rule NS2 are on the set of traces of events. If the preconditions are met, we add to the
knowledge of the Spy through a Notes event, the knowledge of the freshness value NA,
the freshness value NB and the session key K.

The Isabelle/HOL implementation of rule Oops can be seen on Definition 31.

87

Definition 31. Inductive Definition of Needham-Schroeder Shared Key Distribution Pro-
tocol using Multicast Primitive - Rule Oops

| Oops: " [[evso ∈ ns shared MC;

Multicast B [A] (λC. (Crypt K (Nonce NB))) ∈ set evso;

Multicast Server [A] (λC. (Crypt (shrK A)

{|Nonce NA, Agent B, Key K, X |})) ∈ set evso]]
=⇒ Notes Spy {|Nonce NA, Nonce NB, Key K |}
evso ∈ ns shared MC"

We should make clear that the protocol steps are represented by rules NS1, NS2, NS4,
NS4 and NS5.

In the next subsection, we will be looking over the verification process of the protocol
modelled here, and at the end of this chapter we will be analysing the outcomes of our
re-implementation.

3.3.3 Needham-Schroeder Shared Key Multicast Verification

In this subsection we will present the main guarantees proven for the Needham-Schroeder
Shared Key Multicast Protocol. Our main goal was not to find new attacks on the
modified version of the protocols, but to measure the effort needed to rebuild the tactics
for proving the new variant correct.

The term evs will always stand for a generic trace of the formal protocol model specified
in the previous section. We will be presenting the proof in a forward style, covering initially
subgoals of Regularity and Reliability, followed by Authenticity, Unicity, Confidentiality
and and Authentication. Finally we will show some of the newly introduced lemmas that
enabled us to reason about the previous properties using the Multicast variant of the
events model.

3.3.3.1 Regularity

An important regularity property present in the protocols is that the long term keys
shared between the Server and the general population of agents cannot appear on the
traffic. If this lemma appears, the protocol is not being followed and the player whose key
appeared is corrupted by the Spy. This is expressed by Lemma 26 (Spy Analz ShrK).

Lemma 26. Spy Analz ShrK

evs ∈ ns_shared_MC =⇒ (Key (shrK A) ∈ analz (knows Spy evs)) =

(A ∈ bad)

Lemma 26 (Spy Analz ShrK) is easily provable. We will appeal to Lemma 27 to enable
us to reason about the encrypted part of the rule NS3 and to Lemma 28 to reason about
the accidental loss of session keys. An important difference in terms of proof strategy in
this lemma is that we need to explicitly appeal to Lemma 28(Oops parts spies) to help
the classical reasoner to solve it.

Lemma 27. NS3 msg in parts spies

Multicast S [A] (λC. Crypt (shrK A) {|N, B, K, X |}) ∈ set evs

=⇒ X ∈ parts (knows Spy evs)

88

Lemma 28. Oops parts spies

Multicast Server [A] (λC. Crypt (shrK A) {|NA, B, K, X |}) ∈ set evs

=⇒ K ∈ parts (knows Spy evs)

Lemmas 27 (NS3 msg in parts spies) and 28 (Oops parts spies) now need the explicit
mention of Lemma 23 (Multicast implies in parts spies) instead of the sole use of the
classical reasoner, what is not essentially difficult to do.

In all three cases of Regularity, proof effort was very similar to doing the proof using
the Unicast implementation, and is easily sorted out by using the automation embedded
in Isabelle/HOL, especially the proof assistant Sledgehammer.

3.3.3.2 Reliability

As usual in key distribution protocols based on shared key cryptography, a relevant Lemma
regards the reliability of the Server since this property is for the distribution of session
keys. It is expressed by the Lemma 29 (Says Server Message Form).

Lemma 29. Says Server Message Form

[[Multicast Server [A] (λC. Crypt K’ {|N, Agent B, Key K, X |})
∈ set evs; evs ∈ ns_shared_MC]]
=⇒ K /∈ range shrK ∧
X = Crypt (shrK B) {|Key K, Agent A |} ∧ K’ = shrK A

The proof method for Lemma 29 (Says Server Message Form) is very close to its Uni-
cast counterpart. We first prepare and apply induction them we call the simplifier and
the classical reasoner. The main difference in the Multicast version of the proof is that
we need to give the classical reasoner knowledge of function congruence, and apply it
aggressively to converge to the proof.

Another important reliability lemma regards the tamper-proof evidence that the cer-
tificate agent A receives from the Server which he will forward to agent B. Lemma 30
(cert A Form) shows us this property.

Lemma 30. cert A Form

[[Crypt (shrK A) {|NA, Agent B, Key K, X |} ∈ parts (knows Spy evs);

A /∈ bad; evs ∈ ns_shared_MC]]
=⇒ K /∈ range shrK ∧ X = Crypt (shrK B) {|Key K, Agent A |}

Lemma 30 (cert A Form) is proven in the very same form its Unicast counterpart is.
We give to the classical reasoner Lemma 29 (Says Server Message Form) and Lemma 31
(A trusts NS2).

As with Regularity Lemmas, proving Reliability Lemmas using the Multicast events
theory is straigh forward. The usual main modification is the usage of function congruence
needed to reason about equalities in terms of the function present in each Multicast event.

89

3.3.3.3 Authenticity

Proving authenticity goals also means to prove a message is trusted by the receiving peer.
So, each sent message we should have a Lemma that stated its authenticity. This is true
in the Needham-Schroeder Shared Key Multicast protocol, with the exception of Message
One. This happens due to the fact message one does not use any sort of encryption, and
thus no authentication mechanism.

Lemma 31 (A trusts NS2) shows us that if a message with the syntax of Message two
was sent in the trace, it must have originated with the Agent Server.

Lemma 31. A trusts NS2

[[Crypt (shrK A) {|NA, Agent B, Key K, X |} ∈ parts (knows Spy evs);

A /∈ bad; evs ∈ ns_shared_MC]]
=⇒ Multicast Server [A] (λC.Crypt (shrK A){|NA,Agent B,Key K,X |})

∈ set evs

The proof is similar to its Unicast counterpart. We start both by preparing and
applying induction, followed by the appeal to Lemma 27 (NS3 msg in parts spies) to
enable us to reason about the encrypted part of message three. Lemma 31 (A trusts NS2)
now requires us to give the classical reasoner knowledge of function congruence, and apply
it aggressively to reason about the Multicast messages’ function equalities. We are then
left with rule FakeMC, which requires the appeal to Lemma 26 (Spy Analz ShrK).

Lemma 32 (B trusts NS3) produces similar guaranties as Lemma 31 (A trusts NS2).
In this case we assert that if a message component with the syntax of the certificate
forwarded in rule NS3 is in the trace, than that certificate originated with the Server.

Lemma 32. B trusts NS3

[[Crypt (shrK B) {|Key K, Agent A |} ∈ parts (knows Spy evs);

B /∈ bad; evs ∈ ns_shared_MC]]
=⇒ ∃ NA. Multicast Server [A]

(λC. Crypt (shrK A)

{|NA,Agent B,Key K,Crypt(shrK B){|Key K,Agent A |}|})
∈ set evs

The proof is similar to proving Lemma 31 (A trusts NS2). We start both by preparing
and applying induction, followed by the appeal to Lemma 27 (NS3 msg in parts spies).
We then apply the simplifier followed by the classical reasoner and we are then left with
rule FakeMC, which requires the appeal to Lemma 26 (Spy Analz ShrK).

Lemma 33 (A trusts NS4) regards the authenticity of Message NS4 to the receiving
peer A. It states that if a message component with the syntax of rule NS4 is in the
trace, a message component with the syntax of rule NS2 is in the trace, the confidential
information was not leaked by rule Oops, and both the sender and the receiver of the
message four are not colluding with the Spy, then message four indeed was generated by
agent B.

Lemma 33. A trusts NS4

90

[[Crypt K (Nonce NB) ∈ parts (knows Spy evs);

Crypt (shrK A) {|NA, Agent B, Key K, X |} ∈ parts (knows Spy evs);

∀ NB. Notes Spy {|NA, NB, Key K |} /∈ set evs; A /∈ bad; B /∈ bad;

evs ∈ ns_shared_MC]]
=⇒ Multicast B [A] (λC. Crypt K (Nonce NB)) ∈ set evs

The proof is closely related to its Unicast counterpart. The proof appeals to Lemma
31 (A trusts NS2) and to the fact the Spy cannot see the content of encrypted messages
(Spy not see encrypted key)1

We start both by preparing and applying induction, followed by the appeal to Lemma
27 (NS3 msg in parts spies). We then apply the simplifier followed by the classical rea-
soner. The remaining cases are sorted out by the usage of the analz mono contra tactic
and the simplifier and classical reasoner appealing aggressively to the function congruence
lemma. We are then left with the subgoals yielded by rule NS4, which can be proven by
appealing to Lemma 35 (unique session keys), Lemma 32 (B trusts NS3) and Lemma 11
(Multicast implies in parts spies).

Comparing the proof of Lemma 33 (A trusts NS4) with its Unicast counterpart, we can
see some complication arising due to the function used in the Multicast implementation.
But all the cases that were not straightforward could easily be solved with the help of the
proof assistant Sledgehammer.

Finally Lemma 34 (B trusts NS5) regards the authentication of agent A as the sender
of message five. If the message yielded by rule NS5 appears on the trace, the message
yielded by rule NS3 appears on the trace, no keys were leaked to the Spy through the
rule Oops, and both sender and receiver are not colluding with the Spy, then the message
yielded by rule NS5 in fact originated with the agent B.

Lemma 34. B trusts NS5

[[Crypt K {|Nonce NB, Nonce NB |} ∈ parts (knows Spy evs);

Crypt (shrK B) {|Key K, Agent A |} ∈ parts (knows Spy evs);

∀ NA NB. Notes Spy {|NA, NB, Key K |} /∈ set evs; A /∈ bad; B /∈ bad;

evs ∈ ns_shared_MC]]
=⇒ Multicast A [B] (λC. Crypt K {|Nonce NB, Nonce NB |}) ∈ set evs

The proof appeals to Lemma 32 (B trusts NS3) and the fact that the Spy cannot see
the session keys encrypted under long term keys (Spy not see encrypted key).

The proof relies on an intermediate lemma which is proven by preparing and applying
induction, followed by the appeal to Lemma 27 (NS3 msg in parts spies) as usual. The
proof is very similar to the proof of Lemma 33 (A trusts NS4), leaving us with the subgoal
yielded by the rule NS5.

The subgoal yielded by rule NS5, proved to be difficult to solve in comparison to its
Unicast version. We start appealing to Lemma 11 (Multicast implies in parts spies) and
then to the classical reasoner applying aggressive function congruence. This will yield
two new subgoals that are solved similarly. We divide each subgoal by the case of the
sender agent being colluding with the Spy, and then prove the first case appealing to
the fact that if the Spy is not able to see session keys encrypted under long-term shared

1This lemma is part of the basic theories of the inductive method and is not shown in here. Its proof
is available in the Isabelle/HOL distribution files

91

keys. Then to the agent to whom the long-term shared key belongs is colluding with the
Spy (Crypt Spy analz bad)2. The second case is solved as the Unicast counterpart by
appealing to Lemma 31 (A trusts NS2) and Lemma 35 (unique session keys).

Verifying authenticity properties using the Multicast event implementation added
some complications to proofs. In general these complications arise due to the way Multi-
cast is implemented using functions, and also because in some cases the classical reasoner
was not able to perform without the correct guidance.

3.3.3.4 Unicity

Unicity properties concern the creation and use of fresh values and their correct use by the
agents executing the protocol. They binds a fresh value to the message that originated it
and to other components present in this message.

In the Needham-Schroeder Shared Key Multicast Protocol we have a lemma for the
unicity of sessions keys distributed by the Server. Lemma 35 (unique session keys) states
that if a session key K is Multicasted by the Server, it is unique and bound to the other
values of the message. Clearly, a key K cannot be bound to two different sessions or
freshness values NA.

Lemma 35. unique session keys

[[Multicast Server [A] (λC. Crypt (shrK A)

{|NA, Agent B, Key K, X |}) ∈ set evs;

Multicast Server [A’] (λC. Crypt (shrK A’)

{|NA’, Agent B’, Key K, X’ |}) ∈ set evs;

evs ∈ ns_shared_MC]]
=⇒ A = A’ ∧ NA = NA’ ∧ B = B’ ∧ X = X’

The proof is very similar to its Unicast counterpart. We start by preparing and
applying induction, followed by a call to the simplifier and the classical reasoner, applying
function congruence. The main difference in the proofs is that to prove the subgoal yielded
by the rule NS2 we need to explicitly appeal to Lemma 27 (NS3 msg in parts spies).

Proving unicity under the Multicast event model is straightforward and easily achiev-
able, requiring minor guidance to the classical reasoner which was implicit in the Unicast
variant.

3.3.3.5 Confidentiality

Confidentiality of certain components is necessary for the protocol to achieve its goals.
The Needham-Schroeder Shared Key Multicast Protocol has an important confidentiality
lemma regarding the secrecy of the sessions keys distributed.

Lemma 36 (secrecy lemma) states that if the trace of events is extended by the message
yielded by rule NS2, and both the peers sharing the session key are not colluding with
the Spy, then the non-existence of a leak of information by the rule Oops implies that the
Spy does not know the session key K.

Lemma 36. secrecy lemma

2This lemma is part of the basic theories of the inductive method and is not shown in here. Its proof
is available in the Isabelle/HOL distribution files

92

[[Multicast Server [A]

(λC. Crypt (shrK A) {|NA, Agent B, Key K, Crypt (shrK B)

{|Key K, Agent A |}|}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns_shared_MC]]
=⇒ (∀ NB. Notes Spy {|NA, NB, Key K |} /∈ set evs) −→

Key K /∈ analz (knows Spy evs)

To prove the secrecy argument for the session keys (Lemma 36 (secrecy lemma)) we
do the usual induction preparation and induction application followed by the appeal to
Reliability arguments, such as Lemma 29 (Says Server Message Form). For the other sub-
goals, except the yielded by rule NS3, we appeal to Lemma 27 (NS3 msg in parts spies)
and Lemma 35 (unique session keys).

The proof for the subgoal yielded by rule NS3 requires Lemma 31 (A trusts NS2)
and the fact that the Spy is able to see session keys encrypted under shared keys, and
that the agent to whom the shared key belongs is colluding with the Spy. This is fol-
lowed by the appeal to Lemma 35 (unique session keys) and also to Lemma 11 (Multi-
cast implies in parts spies).

The proof of Confidentiality properties using the Multicast event model is considerably
more difficult that its Unicast counterpart. This happens because the classical reasoner
is able to sort out small issues using its internal rules. But, nevertheless, the use of the
Multicast event model requires clear understanding of some steps, such as the necessity
of appealing to Lemma 28 (Oops parts spies) to prove the subgoal yielded by rule NS2.

3.3.3.6 Authentication and Key Distribution

The ultimate goal of the Needham-Schroeder Shared Key Multicast Protocol is to allow
key distribution and authentication to the agents involved in protocol execution, even in
the presence of a powerful Spy.

To be able to establish mutual weak agreement with the protocols we need to trace back
the originator of the authenticator. To be able to do so, we need to add a new predicate
called Issues. It was already shown in the previous chapter, but this is a Multicast variant.

Definition 32. Definition of the predicate Issues

A Issues B with X on evs ≡
∃ Y. Multicast A [B] (λC. Y) ∈ set evs ∧

X ∈ parts {Y} ∧
X /∈ parts

(knows Spy (takeWhile (λz.z 6= Multicast A [B] (λC.Y)) (rev evs)))

As shown in Definition 32, we can assert the A Issues B with X if X is part of a
message multicasted from A to multicast group B and X never appeared in the trace
before this event. The implementation details of Issues requires the creation of a series of
technical lemmas to deal with the transposition of the trace with the operation takeWhile.
These lemmas are not discussed here.

The authentication and key distribution from agent A to agent B is stated by Lemma
37 (A authenticates and keydist to B). If the freshness value NB encrypted by the session
key K appears on the trace, the contents of message two encrypted under the long-term
shared key between agent A and Server also appears on the trace, the key K is not

93

available to the Spy and A and B are not colluding with the Spy, then B is the true
originator of NB encrypted by the session key K on the trace.

Lemma 37. A authenticates and keydist to B

[[Crypt K (Nonce NB) ∈ parts (knows Spy evs);

Crypt (shrK A) {|NA, Agent B, Key K, X |} ∈ parts (knows Spy evs);

Key K /∈ analz (knows Spy evs);

A /∈ bad; B /∈ bad; evs ∈ ns_shared_MC]]
=⇒ B Issues A with Crypt K (Nonce NB) on evs

Proving Lemma 37 (A authenticates and keydist to B) requires the appeal to Lemma
33 (A trusts NS4) and Lemma 31 (A trusts NS2), since the authenticity of what agent A
receives from the trace is important for asserting the authentication of the key distribution.

Treating the predicate Issues requires giving to the simplifier the lemmas regarding
transposition of the trace and giving the classical reasoner the function congruence lemma.
We are left with the subgoals yielded by the rule NS3 and rule NS4. The subgoal yielded
by rule NS3 is solved by appealing to Lemma 11 (Multicast implies in parts spies) and
to Lemma 30 (cert A Form). The other subgoal needs a special application of the trans-
position lemmas not covered here.

Mutual weak agreement demands proving the same guarantees we proved for A in
Lemma 37 (A authenticates and keydist to B) now to B. This is shown in Lemma 38
(B authenticates and keydist to A). It states that if the content of message five appears
on the trace, the certificate issued by the Server to B is on the trace, the key K is not
available to the Spy and agents A and B are not colluding with the Spy, then A is the
true originator of the message five on the trace.

Lemma 38. B authenticates and keydist to A

[[Crypt K {|Nonce NB, Nonce NB |} ∈ parts (knows Spy evs);

Crypt (shrK B) {|Key K, Agent A |} ∈ parts (knows Spy evs);

Key K /∈ analz (knows Spy evs);

A /∈ bad; B /∈ bad; evs ∈ ns_shared_MC]]
=⇒ A Issues B with Crypt K {|Nonce NB, Nonce NB |} on evs

To prove Lemma 38 (B authenticates and keydist to A) we have to appeal to Lemma
34 (B trusts NS5) and Lemma 32 (B trusts NS3). Similarly to the previous case with
Lemma 37 (A authenticates and keydist to B), we need to guarantee the authenticity of
what agent B sees on the trace to prove the key distribution goal.

The predicate issues requires us also to give to the simplifier the lemmas regard-
ing transposition of the trace and giving the classical reasoner the function congruence
lemma. To sort out the remaining subgoals we have to appeal to Lemma 11 (Multi-
cast implies in parts spies) and to Lemma 30 (cert A Form). We are then left with the
subgoal yielded by the rule NS5. This subgoal appeals to a special version of the trace’s
transposition lemma and a lemma not covered here called A trusts NS5, which is similar
to Lemma 34 (B trusts NS5) but with agent’s A guarantees.

The proofs regarding Lemma 37 (A authenticates and keydist to B) and Lemma 38
(B authenticates and keydist to A) are very similar to their Unicast counterparts and did
not demand the construction of any new proof strategy, except the usage of the function
congruence rule.

94

3.3.4 Considerations of Needham-Schroeder Shared Key Multi-

cast Verification

The Verification of the Needham-Schroeder Shared Key Multicast Protocol succeeded in
proving the same goals as the classical Needham-Schroeder Shared Key protocol, corrob-
orating the claim that the new construction of the Multicast event model is sufficient for
the verification of Unicast protocols.

The objective of this revisit to an already verified protocol is twofold. First was
the above stated claim of coverage of our new specification, and secondly there was the
intent of measuring the effort introduced in the adoption of a general Multicast model
for representing Unicast communications in the verification process of Security protocols.
The idea was to corroborate the claims that Unicast and Broadcast are extremes for
Multicast at the communication level, and to show our implementation was capable of
representing such detail.

Taking into consideration the verification process shown above, we can see that for the
verification of Regularity, Reliability, Unicity and Authentication/Key Distribution goals
in general terms did not add any new proof strategy effort, except the fact of adding the
required function congruence lemma needed for sorting out the equalities yielded by the
function on the Multicast events.

Authentication goals generally required a better understanding of the proof strategy
and a fierce guidance of the theorem prover to achieve the proofs. This happens due
to the way Multicast events are implemented using functions to derive the view of each
recipient of the multicast group.

As usual, Confidentiality goals involve complex proof strategies and complications
with the theorem prover. This is evidence that when using the Multicast event model
in comparison to the standard Unicast one. But we also can extract some new insights
that come with these complications, since it requires better understanding of the protocol
properties. Understanding these complications is required to guide the theorem prover
through. In a worst case scenario it helps the understanding of the proof by not concealing
the reasoning behind the automatic techniques of Isabelle/HOL.

Finally we can say that the increase in the effort for constructing the proof under a
Multicast event model in comparison to a Unicast one is moderate, which justifies an
implementation in a mixed environment using the Multicast primitives.

3.4 Conclusions

This chapter shows our main contribution for the extension of the inductive method. We
showed how the method can be extended by a new message framework and how it can
be used to represent all the other methods of message casting other than the Unicast
available before.

We started with a review of the different categories of multicast focusing on their core
properties that could be captured by our specification. We analysed the importance of
unreliable multicast had over time in to the delivery of novel security goals. We also
pointed that the establishment of Byzantine Agreement requires the reliability of the
multicast model.

From that point on, we described our modification in the event theory to enable the

95

reasoning regarding the Multicast event primitive and we showed our justification for the
choices we did in our implementation. Then, we proved some of the basic lemmas that were
derived from the Unicast implementation, so that we could make our new implementation
usable. We then do an analysis of the re-interpretation of some well established concepts
under the new Multicast framework.

Finally to corroborate our idea regarding the coverage of the Multicast implementation
regarding the other message casting frameworks, we revisit the verification of a well known
Unicast protocol under the new framework. We showed the specification and verification
for it, trying to pinpoint the difficulty brought by the new framework. We then finalised
by concluding that this newly introduced difficulty is small.

96

— To know that one has a secret is to know half the secret itself.

Henry Ward Beecher (1813 - 1887)

4
Secret Sharing Formalisation

Threshold security schemes are designed to provide resilience and controlled usage when
we deal with a secret. Our secrets normally are cryptographic keys, or passwords that
encrypt cryptographic keys, which must be controlled against malicious use or accidental
loss. These secrets when shared by a threshold scheme achieve such properties. Under
this scenario they can have a varied use such as providing privacy on electronic election
protocols [110], providing resilience and controlled access in Public Key Infrastructures
environments [83] and guaranteeing fair usage on dangerous weapons [6].

One way of implementing threshold schemes is by the use of secret sharing schemes.
In a secret sharing scheme we have at first a secret and a set of trustees to whom the
shares will be delegated. The original secret is not intended to be known by any of the
trustees, and the scheme should not to allow collusion among them to acquire it. From
this set of trustees we will derive our access structure based on our security policy and
will create the number of shares we need to proceed with the scheme. This phase can
include a trusted dealer or not depending on our needs. In the reconstruction phase, the
shares are joined until we reach the threshold, and the secret can be recovered.

An access structure for a secret sharing scheme is by definition all subsets of the
set of shares (trustees) that will trigger the reconstruction of the secret. Secret sharing
schemes can be categorised depending on their access structure and the randomness in-
cluded within the generated shares. In terms of introduced randomness within the shares,
we have two different classifications coming from Information Theory analysis; we have
unconditionally secure schemes, whose security is defined by having shares at least as
long as the secret, increasing the amount of randomness introduced in each share. The
second class, the not unconditionally secure schemes, have their shares not as long as the
secret, trading security for efficiency. Also by extension they introduce less randomness,
and they are not theoretically secure. They are still computationally secure, meaning
that they are protected not by their theoretical construction but by the impossibility of
computing all possibilities. Unconditionally secure schemes are normally considered in
cases where share size does not play an important role in the context.

97

Threshold security schemes can be further classified in groups depending on the func-
tionalities they yield. At first, we have those where we are interested only in the number
of participating trustees, and a trigger for reconstruction, such as the classical Shamir’s
(§4.2.1) and Blakley’s schemes (§4.2.2). Their main objective is to represent an access
structure, as will be explained to account for controlled release and redundancy. No care
is taken into how to manage the secret or the shares. In this scenario the only way of
knowing you still hold the secret is by triggering a reconstruction. And the only way
of redistributing shares is by re-sharing the secret with new parameters. These schemes
introduce a series of limitations regarding the lifecycle of the secret. We cannot assert
anything regarding shares compromised in previous runs since they can still trigger a valid
reconstruction, nor to tell that we can reconstruct the secret without actually doing so.

Trying to address some of the problems explained above we see the introduction of
verifiable secret sharing schemes by Chor ET al. [45]. They aim at guaranteeing that each
trustee receive a valid share providing a verification token. But Chor’s proposal suffers
a drawback that is its interactiveness for the verification. Moreover, the complexity of
the communication in the scheme is exponential over a series of nested broadcasts. Feld-
man [54] has proposed a non-interactive scheme for achieving verifiability on Shamir’s
scheme using a single broadcast for the verification function. Pedersen [102] later pro-
posed another version of verifiability for Shamir’s scheme also using a non-interactive
verification scheme, but now using information-theoretic security instead of the hardness
of the verification function.

Further extending the idea of verifiable secret sharing, Stadler [117] introduces publicly
verifiable secret sharing schemes. The verification of the share’s correctness regarding the
secrets can be done by anyone, and not only the participants. In the scheme proposed
by Schoenmakers [112], the shares corresponding to some secret S are encrypted by the
dealer using the public key of the shareholders, which are then broadcasted. In a general
setting, this brings the secret sharing setup very close to the proposition of public key
cryptography, where the shares do not need to be revealed to anyone to verify the existence
of the claimed secret.

Another major issue when using secret sharing schemes is the detection and identifi-
cation of cheaters that are trying to subvert the recovery of a shared secret by supplying
modified shares. Some schemes can detect cheating but not the party that cheated. This
is generally done by a combination of one-way functions and broadcasts. Detecting the
cheaters is harder, but some proposals exist to address this problem. In general the dealer
can broadcast digests of the shares, and in this case the cheater can be detected using the
public digests.

Finally some secret sharing schemes try to address the issue of changeability. Some-
times an explicit secret, such as a private key, must be re-shared according to a new access
structure. This accounts for individuals leaving the set of trustees, or new trustees coming
in, or a change of policy to the threshold for the secret. Changeability can be achieved by
using proactivity, where we renew the shares without changing the secret. This concept
was first defined by Herzberg ET al. [67]. The main advantage of proactivity is that even
if the adversary obtains some shares he cannot obtain any useful information about the
secret after the shares are renewed. The changeability of the threshold was discussed by
Martin ET al. [81], where they used the intrinsic characteristics of plane geometry from
Blakley’s to get the first points for the shares and change it from planes to achieve a

98

different threshold. Disenrollment of shares was discussed by Blakley ET al. [29] and by
Martin [81]. The general form of disenrollment regards the combination of verifiability
and changeability to enable the reconstruction of the secret and the re-sharing under the
newly defined set of trustees.

Seeing this complex scenario of how the different secret sharing mechanisms operate
and after a thorough research in their internal operation, we opted for an abstract mod-
elling that would enable us to capture the most distinct characteristics of the different
secret sharing schemes. We opted for implementing the abstract definition for secret
sharing schemes in the inductive method using a similar approach as the one taken for
public key cryptography. We divided the scheme into standard threshold secret sharing
schemes, where our main goal was to represent the sharing and recovery of shares as
done by Shamir and Blakley, and the publicly verifiable secret sharing schemes, where we
introduced the existence of a public component that can be used to verify the possibil-
ity of reconstruction of the secret. We did not take into consideration problems arising
from the identification of cheaters or the changeability of issue since they normally rep-
resent protocols themselves. This can be built upon our basic specification in the future
if necessary.

Regarding the specification within the inductive method we had initially two options
for the integration of secret sharing. The first and most complex one was the changing
of the msg data type to account for a constructor Share. From this perspective we would
have to build the infrastructure in a similar way as the one done for shared and public
key cryptography. The second one, shown, accounts for a simpler integration that does
not break backwards compatibility of the data type msg and that shields the shares
with nonce properties. This approach uses ideas from Bella [20] who in his work divided
the key space for his Kerberos specifications. This specification has some drawbacks
regarding knowledge distribution, but proved to be sufficient to achieve confidentiality
goals in the protocol scenarios we tested it with. Its specification and usage in Byzantine
protocol are shown. Although only the simpler approach is shown in this thesis we did
experimentations with the more complex one, but decided to drop it when our focus
shifted from a Secret Sharing specification to the provision of different message casting
frameworks.

This chapter started with the above summary regarding secret sharing and follows
with a deeper view into access structures (§4.1). Access structures play a very impor-
tant role in the way any threshold security scheme works and their understanding is
paramount to construct the abstract definitions. We then will look into classical secret
sharing schemes (§4.2) paying attention to the classical propositions from Shamir (§4.2.1)
and Blakley (§4.2.2). They account for our abstract definition of secret sharing without
verifiability. Similarly we will look deeper into verifiable secret sharing schemes (§4.3) and
into the propositions from Feldman (§4.3.1), Pedersen (§4.3.2) and Stadler (§4.3.3). In
our definition of secret sharing, verifiable secret sharing schemes will have a counterpart
that enables the verification of the possibility of reconstruction. Finally we will show our
specification of threshold cryptography that was used in the Franklin-Reiter sealed-bid
auction protocol (§4.4), which is based on the shielding of the shares with nonce properties
and the distribution on knowledge by the usage of Notes events.

99

4.1 Access Structures

In this thesis we only consider monotone access structures. These can be described by the
property that if a group of shares is able to reconstruct a secret, so can a larger group.
Monotonicity is important, since it controls the behaviour of the secret sharing scheme,
regarding the collection of more than t shares. It also establishes egalitarian importance
to each share we create and distribute, enabling us to keep also a monotone threat model,
which is already present in the inductive method.

Ito ET. al [73] defines that an access structure α must satisfy the following natural
condition:

∀B ∈ P ({1, 2, ..., n}))((∃A ∈ α)(A ⊆ B) ⇒ B ∈ α)

where the set of groups α ⊆ P ({1, 2, ..., n}), and where our users are labelled from 1, ..., n,
meaning that if a certain size group can recover a secret, a larger one also can. Later
Benaloh and Leichter [28] named this natural access structure monotone, and also defined
its counter property:

∀B ∈ P ({1, 2, ..., n}))((∃A ∈ α)(B ⊆ A) ⇒ B ∈ α)

meaning that if a certain sized group cannot recover a secret, neither can an even smaller
group.

Although we see the importance of non-monotone access structures in threshold cryp-
tography mechanisms, specifically to represent veto capabilities in protocols, we decided
not to cover them in our models and by extension in our specification efforts. The in-
troduction of non-monotone access structures imply the modification of the threat model
used by the inductive method (see Section 2.2.2). These modifications would break com-
patibility with actual proofs, since we would have to start establishing importance to
knowledge acquired by the Spy and specialise behaviour for that. This also would aug-
ment the capabilities of the Dolev-Yao [51] attacker, giving him capacities for creating
Denial-of-Service attacks, which is not achievable in a straightforward manner within the
actual inductive method. Non-monotonic access structures would imply a full redesign of
the threat model, which is way beyond the scope of the thesis.

Concerning monotone α access structures authorisation groups, Iftene [70] defines
them as:

Definition 33. α = αmin ∪ cl(αmin)

αmin are the minimal authorised groups in α access structures, which will represent
the minimal number of participants that can enable a reconstruction. It is shown in
Definition 34

Definition 34. αmin = {A ∈ α | ∀B ∈ α \ {A})(¬(B ⊆ A))}

The cl(αmin) to any αmin ⊆ P ({1, 2, ..., n}) is defined as:

Definition 35. cl(αmin) = {A ∈ P ({1, 2, ..., n})|(∃C ∈ αmin)(C ⊆ A)

The unauthorised access structure α is then specified by the set of the maximal unau-
thorised group:

100

Definition 36. αmax = {A ∈ α|(∀B ∈ α \ {A})(¬(A ⊆ B))}

The above definitions help us to precisely picture the peers that can participate in the
secret sharing reconstruction and those who cannot. The α set defines all the possible
authorised subsets that will trigger a reconstruction. αmin represents the threshold that
must be achieved for the reconstruction to take place, and cl(αmin) represents the closure
between αmin and α. To illustrate we present an example. It also shows that αmin 6= ∅,
since any group would be able to recover the secret. These structures are known as
Sperner Systems, and are out of our intended scope.

Lets consider our n = 4 and the α-access structure as α = {{1, 2}, {1, 2, 3}, {1, 2, 4},
{1, 2, 3, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}. From this n, α and the definitions we obtain that
αmin = {{1, 2}, {3, 4}}, α = {{1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}} and αmax

= {{1, 3}, {1, 4}, {2, 3}, {2, 4}}.
The example shows another implicit property called connection. The α-access struc-

ture is said to be connected, when any user i belongs to some minimal authorised group
[36]. Other properties regarding a α-access structure is its rank and co-rank, which are
defined as the maximum and minimum number of participants in a minimal authorised
group. If both are equal to some positive integer r we say that α is r-homogeneous, and
every minimal authorised group has exactly r members. The intersection number of α is
the maximum number of participants that will be in each two different minimal authorised
groups.

Understanding access structures is paramount for understanding any secret sharing
construction as well as their internal operation. With these basic concepts regarding
access structure laid down, we will look to implementations of access structures as se-
cret sharing mechanisms starting with the plain propositions of secret sharing scheme
made independently by Shamir and Blakley. We will see the evolution of such schemes
into verifiable ones and will conclude with our Isabelle/HOL specification of threshold
cryptography for the inductive method.

4.2 Threshold Secret Sharing Schemes

Threshold secret sharing schemes are those schemes where all participants have equal
importance and only the number of participants in the reconstruction phase is important.
In these schemes we divide our secret in n parts and establish a threshold k in our access
structure scheme that will re-enable the reconstruction in the presence of k shares. We
will define the access structure for (k, n)-threshold secret sharing schemes, as follows:

Definition 37. Let n ≥ 2 and 2 ≤ k ≤ n. The α-access structure is defined by

α = {A ∈ P ({1, 2, ..., n}) | |A| ≥ k}

We can easily obtain the other important properties defined so far (Definitions 34, 35,
36). We have αmin = {A ∈ P ({1, 2, ..., n}) | |A| = k}, αmax = {A ∈ P ({1, 2, ..., n}) |
|A| = k − 1}, and α = {A ∈ P ({1, 2, ..., n}) | |A| ≤ k − 1}.

From Definition 37, we can draw the next example:
If n = 4 and k = 3, the α-access structure following Definition 37 is

α = {{1, 2, 3}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}},

101

αmin = {{1, 2, 3}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4}},
α = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 2}, {2, 4}, {3, 4}} and
αmax = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 2}, {2, 4}, {3, 4}}.

The properties derived in the above example are constructed distributing the n ele-
ments in P permutations with P ≥ k size (α), P = k size (αmin), P ≤ k size (α) and
P = (k − 1) size (αmax).

Following this section, we will cover details on how different propositions cover the
above stated properties regarding threshold secret sharing schemes. We will cover the
classic methods independently created by Shamir (4.2.1) and Blakley (4.2.2) in 1978. In
Blakley’s approach our focus is to cover his view regarding the different attacks a threshold
scheme is subject to.

4.2.1 Shamir’s Scheme

Shamir’s scheme [114] has its mathematical base on a polynomial interpolation, where
given any k pairs (x1, y1), ..., (xk, yk), where xi 6= yi, then for all 1 ≤ i < j ≤ k, ∃!P (x) of
degree k − 1, such that P (xi) = yi for all 1 ≤ i ≤ k.

From that, the secret becomes the free coefficient of a random polynomial with degree
k−1. This operation happens over the field of positive integers modulo large primes. The
shares S1, ...Sn are generated from Si = P (xi), where xi, ...xn are distinct values. When
we have the set of shares {Si|i ∈ A} , and where |A| = k, the secret is easily obtained by
Lagrange’s polynomial interpolation formula.

S =
∑

i∈A

(Si ·
∏

j∈A\{i}

xj

xj − xi

)

When we have |A| > k shares, we can simply discard randomly any share that makes
|A| bigger than k, making reconstruction just from k shares. This is important: we
should not build proofs on who actually participated in the reconstruction, since that,
with Shamir’s scheme they are just discarded randomly, and cannot have participation
guaranteed just by the scheme.

Another important issue is about correctness of the secret, since the scheme cannot
detect any attack coming from one of the trustees giving back the wrong share, leading
to the reconstruction of the wrong value. We cannot detect who gave us the wrong share,
since the dealer does not keep them.

Shamir also proposed binding xi = i, ∀1 ≤ i ≤ n, making in this case the secret
reconstruction simplified to

S =
∑

i∈A

(Si ·
∏

j∈A\{i}

j

j − i
)

for any set of shares {Si|i ∈ A} , and where |A| = k. He also highlighted that his
scheme has some very interesting features. The size of the share is the same size of the
secret, making it theoretically secure. Shares can be added or excluded without affecting
the other shares, making such changes to the shares without changing the secret. This
feature will come to light later when we will discuss proactive secret sharing schemes and
how well Shamir’s proposal is adaptable to this approach.

102

4.2.2 Blakley’s Scheme

Blakley scheme [30] makes the secret an element of a vector space GF k
q , and the shares

are constructed as n distinct (k − 1)-dimensional hyperplanes that intersect at the secret
element. A (k − 1)-dimensional hyperplane can be defined as a set of the following form:

{(x1, ..., xk) ∈ GF k
q |α1 · x1 + ... + αk · xk = β},

where α1, ..., αk,β are random elements of the field GFq.
Although Blakley’s scheme is not perfect because any group of two or more share

holders together can know that the secret S is at the intersection of their shares (planes),
Blakley’s work [30] is important to our formalisation efforts. He defines very concisely a
threat model into which a normal threshold secret sharing scheme is inserted.

He starts by asking: ” What must the secret be guarded against?”, and comes with
at least three types of incident [30]:

• An abnegation incident : the access to the information is lost by losing access
to shares. We have less shares than k. Abnegation incidents can be sub-classified
in other three smaller groups:

– Destruction: the share is destroyed and its recovery is impossible, having as
an example the sudden death of a security officer holding it.

– Degradation: the security officer forgets how to access his share, and in the
event of request will produce any random data just to participate on the re-
construction. No bad intention is regarded in the action.

– Deflection: the security officer is compromised by the attacker and passes him
information about the share, neglecting to tell the organisation that his share
was compromised.

• A betrayal incident: the shares are in possession of the attacker, giving him
assurance of the share contents and precedence. This type of incident has also two
sub-classifications:

– Deflection: as shown before, but this time the leakage is complete in terms of
the share information.

– Dereliction: the security officer passes his share to the attacker, but collects it
back to avoid detection from the organisation. An example could be a share
restricted to a smart card.

• A combination incident: is an abnegation incident that is also a betrayal incident,
being the main type a defection.

Even though Blakley brings to light a threat model to secret sharing in his early paper,
he also states that his model does not take into account any malfeasance, misfeasance or
even nonfeasance from the internal security officer. This feature is present in the threat
model because it is a pre Dolev-Yao [51] paper, where the security community was not
fully aware of the role internal attacks play in any reasonable security policy.

103

He also considers how to recognise the right key when it comes out from the secret
sharing mechanism. He points out that when an attacker collects more than k shares
and each of the k-sized sets solves to the same secret, the attacker has assurance that he
has collected the right shares and the secret protected by them. Taking his example [30],
if we have n = 9 and k = 4, any set of k + 1 shares is enough to an attacker to have
certainty the secret was recovered, since we will be able to reconstruct the same share 5
times. Taking the attacks described by Blakley, we will need k + 2 to detect a betrayal
attack.

4.3 Verifiable Threshold Secret Sharing Schemes

One of the main problems of the standard threshold secret sharing schemes is that we
must consider the participating peers honest. To be able to operate with the threshold
properties even in the presence of a malicious dealer we must use a verifiable threshold
secret sharing scheme. A threshold secret sharing scheme can be called verifiable if it
includes some extra information that allows the peers involved in keeping the shares to
verify they keep a consistent secret.

The verifiability problem was first discussed by Chor ET al. [45], who introduced the
notion of verifiable secret sharing schemes where every user can verify that he or she has
a valid share for a specific run. The proposition from Chor ET al. is interactive and
makes use of nested broadcasts, which makes the communication exponentially complex.
Feldman [54] and later Pedersen [102] proposed new non-interactive verifiable schemes
that we will see in depth. The problem of cheating in the reconstruction phase by giving
to the dealer a deliberately corrupted share has been discussed by McEliece [85] and
Tompa [123]. Verifiable secret sharing schemes are also a solution for this problem, since
the shares presented during the reconstruction phase may be verified with respect to the
distribution phase.

We will cover in depth the proposition from Feldman for a verifiable scheme, fol-
lowed by the Pedersen proposal. Later we will cover Stadler’s proposition, augmented by
Schoenmakers’, for publicly verifiable secret sharing over which we based the second part
of our specification for threshold cryptography.

4.3.1 Feldman’s scheme

Trying to avoid the disadvantage concerning the interactiveness from Chor ET al., Feld-
man [54] proposed a non-interactive scheme for achieving verifiability in Shamir’s propo-
sition. The new scheme’s main idea is to use a one-way function f such that f(x + y) =
f(x) · f(y) and to broadcast f(a0), ..., f(ak−1), where P (x) = a0 + a1x + ... + ak−1x

k−1 is
the polynomial for Shamir’s scheme.

Feldman’s scheme starts with the generation of two primes, namely p and q, such that
q|(p− 1) and α ∈ Z∗

p is an element of order q. These numbers are made public. Following
that, the dealer generates a polynomial P (x) = a0 +a1x+ ...+ak−1x

k−1 over Zq such that
a0 = S and makes public αi = αai mod p for all 0 ≤ i ≤ k − 1 shares. The dealer will
then securely distribute the shares Ii = P (i) for all the trustees belonging to the access
structure. Each user then can verify the correctness of the received share Ii by testing
the following condition:

104

αIi mod p
?
=

k−1∏

j=0

αij

j mod p

The importance of understanding Feldman’s proposition to our abstract definition of
threshold cryptography in the inductive method regards the way it enables the verification
of the validity of shares by distributing extra information in a similar way public key
cryptography does. By doing it non-interactively, this gives us the insight on modelling
two different types of primitives, which later we extend to address publicly verifiable secret
sharing.

4.3.2 Pedersen’s scheme

One of the disadvantages of Feldman’s scheme is that the application of function f over S
is broadcasted, what makes the security of the scheme dependent on the hardness of the
inverting function f . Pedersen [102] proposed a different non-interactive and information-
theoretic secure verifiable variant of Shamir’s scheme.

Pedersen’ s scheme starts generating the primes p and q such that q|(p − 1), and
g, h ∈ Z∗

p which are elements of order q. These numbers are made publicly available. The
dealer then broadcasts E0 = gSht mod p, where t ∈ Zq. After that, the dealer generates
P (x) = S + P1x + ... + Pk−1x

k−1 and Q(x) = t + Q1x + ... + Qk−1x
k−1 over Zq. He will

then make public Ei = gPihQi mod p for all 1 ≤ i ≤ k − 1. Finally he securely distributes
the share Ii = (P (i), Q(i)) belonging to the i-trustee for all 1 ≤ i ≤ n. Each trustee then
can verify the correctness of the received share Ii by testing the following condition:

gSihti mod p
?
=

k−1∏

j=0

Eij

j mod p

The importance of understanding Pedersen’s scheme regards the introduction of in-
formation theoretic security. Our specification considers that sharing scheme as perfect,
like the other crypto specification within the inductive method specification. This point
should be called to attention since in the case of secret sharing schemes, we have indeed
functions that are not based on computational complexity, thus giving more fidelity to
our specification if compared to the standard cryptography one.

4.3.3 Publicly Verifiable Secret Sharing Schemes

Stadler’s [117] scheme introduces the idea that the correctness of the shares with respect
to the secret should be verifiable by everyone and not only by the participants. This
approach is called a publicly verifiable secret sharing scheme. The shares are encrypted
by the dealer for the secret S using the public keys of the trustees. The encrypted shares
ESi = eki

(Ii) for 1 ≤ i ≤ n are broadcasted and made available to anyone. A public
function is provided for testing the validity of the encrypted shares. If the broadcasted
shares pass the test, then their decryption will lead to the correct reconstruction of the
secret if the dealer was honest.

The verifiable secret sharing scheme as proposed by Stadler and perfected by Schoen-
makers [112] is composed of three phases: setup, distribution and reconstruction phase.

105

During the setup phase a group G of prime order q and some generators α and β of G
are generated and broadcasted by the dealer. Each of the trustees generates a secret key
ti ∈ Z∗

q and broadcasts yi = βti as its public key.
Starting the distribution phase, the dealer generates the polynomial P (x) = a0+a1x+

... + ak−1x
k−1 over Z∗

q such that a0 = s for some s ∈ Z∗
q and makes public αi = αai for all

0 ≤ i ≤ k − 1. The secret will be S = βs. The dealer will broadcast the encrypted shares
Yi = y

P (i)
i for all 1 ≤ i ≤ n. To demonstrate correctness of the encrypted shares the dealer

shows a proof of knowledge of the value P (i) such that Xi = αP (i) and Yi = y
P (i)
i , where

Xi =
∏k−1

j=0 αij

j for all 1 ≤ i ≤ n.
The reconstruction phase requires each trustee to use its own private key to transform

the encrypted share Ii = βP (i) by computing Ii = Y
t−1

i modq

i and to forward the value to the
dealer. A group of at least k trustees can recover the secret S by the following function:

S =
∏

i∈A

I
∏

j∈A {i}
j

j−i

i

Publicly verifiable secret sharing uses zero knowledge proofs to achieve an equivalent
security to public key cryptography while also adding the threshold mechanisms. The
importance of understanding publicly verifiable secret sharing schemes in our effort to
abstractly define threshold cryptography within the inductive method is that it enabled
us to refine our specification further regarding public shares. In our experimentations
with the full embedding of the secret sharing primitives in the inductive method, the
assumption of existence of such methods enables us to distribute the knowledge of public
shares in a very similar way as the method treats public cryptographic keys.

Having done a thorough review on secret sharing and its major properties we will
be showing in the next section our most simple specification that was used to verify
confidentiality in the Franklin-Reiter sealed-bid auction protocol. Our main goals in
this experiment were to produce a usable secret sharing abstract definition while not
changing the data type msg, and keeping backwards compatibility. We also did some
experimentation dividing the space for nonces.

4.4 Formalisation of Threshold Cryptography

Following the approach stated above, we decided for a specification of the threshold
cryptography in a simpler fashion for use with the sealed-bid auction protocol we verify
in Chapter 5. We opted for shielding all the threshold cryptography primitives as Nonces
when in transit between peers. Once peers are able to reconstruct the shares, we give them
the values recovered by the reconstruction process by the usage of a Notes event. We opted
for this specification instead of the full one based on changes in the msg data type because
our main focus shifted towards the verification of Multicast based protocols instead of
threshold cryptography. The specification of the threshold cryptography specification is
present in our own version of Public.thy called PublicSS.thy

Our specification for threshold cryptography starts with the specification of shares
as a specific class of non guessable numbers (nonces). By doing so we need to be able
to differentiate nonces into different classes, so that they have a different space in the
infinite set of possible nonces for shares and for nonces. Due to intrinsic issues regarding

106

the specification of the Franklin-Reiter Sealed-Bid Auction protocol, we are introducing
a new division in the nonce space so that we can differentiate nonces as freshness compo-
nents as well as shares and session identification components. In the sealed bid auction
protocol, the freshness of a bid is a function between the freshness of the casting itself
and the freshness of the specific session. Our division of the nonce space is done with the
declaration from Definition 38.

Definition 38. Secret sharing declaration

consts

sessionIDs :: "nat set"

shares :: "nat set"

Definition 38 simply creates two new constants typed to the set of natural numbers
so as nonces are in the inductive method specification. To be able to specify the disjoint
properties we need to create the different spaces in the already existing nonce space we
specify sessionIDs as shown in Definition 39.

Definition 39. Specification of sessionIDs function

specification(sessionIDs)

sessionIDs disj1 [simp]: "sessionIDs ∩ shares = {}"

Specifying the total disjunction for sessionIDs and shares is done by stating their
intersection is empty. With Definition 39 we have the possibility of having the division
of the nonce space into three parts. We have those nonces belonging to sessionIDs, like
Nonce X ∈ sessionIDs, those belonging to shares, like Nonce X ∈ shares and those not
belonging to either, like Nonce X /∈ sessionIDs ∧ Nonce X /∈ shares. This will help us
address a specific problem we face in the FR-Auction protocol, where session identification
must be repeated for the different bids.

With the disjoint classes for nonces specified, our next step is the definition of the
function for representing the threshold cryptographic primitives. We need to define the
important characteristics of threshold cryptography primitives. We opted for the specifi-
cation of two different types of threshold schemes, trying to capture in the most abstract
way their functionality. As our discussion showed before, having a specification that en-
ables us to represent all types of threshold cryptography is almost infeasible. We opted
then to implement a generic monotonic scheme that is capable of capturing the standard
schemes based on the initial ideas of Blakley and Shamir, and a secondary scheme that
is capable of abstracting the publicly verifiable secret sharing schemes, giving them a
publicly verifiable counterpart.

To achieve such specification we defined three functions, as shown in Definition 40. We
defined a function called share to represent the first class of primitives discussed above.
It takes as argument a reconstruction threshold, an agent list to which the shares will be
distributed, the agent to which this share belongs and the message we want to share with
the threshold mechanism. It returns a natural number that will be formalised as a nonce.
We also define a function to represent the second class of primitives, priv share. The
function priv share takes as arguments the same arguments as share: a reconstruction
threshold, an agent list to which the shares will be distributed, the agent to which this
share belongs to and the message we want to share into the threshold mechanism. It also

107

returns a natural number. We must note that this specification do model the information-
theoretically secure schemes precisely, since the share can be any natural number. It is
not constrained to be bigger or equal to the size of the secret. We also specified a function
invShare enabling us to relate the public counterpart of a share to its private one. It takes
a share as input and returns the counterpart for that share.

Definition 40. Secret sharing primitives declaration

consts

share :: "[nat => (agent list) => agent] => msg => nat"

priv share :: "[nat x (agent list) x agent] => msg => nat"

invShare :: "nat => nat"

The specification for the functions declared at Definition 40 is done separately. To
define the initial properties for the functions share and priv share we opted for an ax-
iomatic assertion, as shown in Definition 41. Both functions have similar properties and
we defined them on the relation between the sharing parameters and the message being
taken. So equal shares will have the same parameters as well as will be sharing the same
payload. The same is true for priv share.

Definition 41. axioms

axioms

share def [dest!]: "share p X = share q Y ==> (X = Y) ∧ (p = q)"

priv share def [dest!] : "priv share p X = priv share q Y ==>

(X = Y) ∧ (p = q)"

This approach is a set of simplifications from other experiments we carried. It enables
us to capture the essence of the threshold mechanisms. The imprecision concerns the
representation of some sharing schemes that if executed twice under the same parameters
will return different values for the shares. In our case to differentiate shares we take the
parameter and the payload. We cannot address this specificity some methods have. This
will make it extremely difficult for us to represent the re-issuing of shares in a related
manner.

The function used to relate the counterparts in the case of verifiable schemes is specified
as shown in Definition 42. The inversion of shares to their related counterparts is done by
specifying that the double application of the function invShare will yield back the value
given to the function initially. This idea was borrowed from the initial specification of
public key cryptography done within the inductive method.

Definition 42. Specification of InvShare function

specification(invShare)

invShare [simp]: "invShare (invShare S) = S"

Having the private counterpart of the verifiable threshold scheme representation avail-
able together with a function that is able to invert it, we can define its public counterpart.
The relation between the private and the public shares counterparts will by done by half-
step of the invShare function as shown by the abbreviation on Definition 43.

108

Definition 43. pub share definitions

abbreviation

pub share:: "[nat x (agent list) x agent] => msg => nat" where

"pub share p X == invShare (priv share p X)"

In this way we again simplify our specification stating that this relation is one-to-one,
as it is now always the case for the various methods.

A next step is to create the differentiation of the verifiable threshold schemes from
the non-verifiable ones, as well as creating the differentiation of public and private shares.
This is done by an axiomatic assertion as shown by Definition 44

Definition 44. axioms

axioms

pub share non priv share [iff]: "pub share p X 6= priv share p X"

share non priv share [iff]: "share p X 6= priv share p’ X’"

share non pub share [iff]: "share p X 6= pub share p’ X’"

The first axiom of Definition 44 states that a public share is different from its private
counterpart. By stating this relation we guarantee that although related by the function
invShare a public share cannot collide with its private counterpart. The other two axioms
regard the differentiation of verifiable and non-verifiable threshold mechanisms. The first
states that no private share is equal to a share, and the second states that no public share
is equal to a share.

Our final step in the specification of the threshold cryptography support we will need
for the verification of the Byzantine protocol in the next chapter is to determine the
membership of the three different share types to the shares set defined above. This is
done as shown by Definition 45.

Definition 45. Specification of shares functions

specification(shares)

shares share [iff]: "share p X ∈ shares "

shares priv share [iff]: "priv share p X ∈ shares "

shares pub share [iff]: "pub share p X ∈ shares "

A non-verifiable share is in shares, the private part of a verifiable share is in shares
and the public part of a verifiable share is also in shares. The set shares represents all
the shares available and is by definition disjoint from the session identification nonces as
done by Definition 39.

Having specified the basic support for the usage of threshold cryptography in the
inductive method, we now need to prove some lemmas to give to Isabelle/HOL’s classical
reasoner and simplifier the knowledge to treat the specification according to what we
need. The next subsection (§4.4.1) will show us such basic lemmas.

4.4.1 Basic Lemmas

The lemmas are the basic knowledge Isabelle/HOL requires to reason about the specifi-
cation we made in the previous section. Our idea here is to present them briefly so that

109

we can understand the reasoning behind what Isabelle/HOL will do with its automation
procedure.

We start the lemmas that allow Isabelle/HOL to infer the inequalities we axiomatically
made in Definition 44, and they are shown in Lemma 39. The idea of this set of lemmas
is to give Isabelle/HOL knowledge to quickly infer all the variations from Definition 44.
To do that, we directly state all the permutations and prove them using the axioms.

Lemma 39. Secret sharing abstract definition lemmas

lemma [iff]: "priv share p’ X’ 6= share p X"

lemma [iff]: "priv share p’ X 6= share p X"

lemma [iff]: "priv share p X 6= share p X"

lemma [iff]: "pub share p’ X’ 6= share p X"

lemma [iff]: "pub share p’ X 6= share p X"

lemma [iff]: "pub share p X 6= share p X"

lemma [iff]: "priv share p X 6= pub share p X"

Our next step is to prove lemmas regarding the specification made in Definition 39
for sessionIDs and shares. The disjoint specification over the range of possible nonces is
enough to prove Lemmas 40 and Lemma 40.

On Lemma 40 we give Isabelle/HOL the destruction rule that states the implication
that if X is in sessionIDs then it is not in shares. This lemma is proven by tactic auto.

Lemma 40. sessionIDs not shares

sessionIDs not shares [dest]: "X ∈ sessionIDs ==> X /∈ shares"

Conversely on Lemma 40 we prove the other side of the disjoint set, so that we can
give to Isabelle/HOL another destruction rule which states that if X is in shares it is not
in sessionIDs. Its proof is also done by tactic auto.

Lemma 41. shares not sessionIDs

shares not sessionIDs [dest]: "X ∈ shares ==> X /∈ sessionIDs"

Another important lemma regarding the disjoint specification is stated by Lemma 42.
As the space for sessionIDs is disjoint to the space for shares, if X is in one side and Y
in on the other side we can conclude the are not equal.

Lemma 42. not in shares not equal

not in shares not equal [simp]: "X ∈ shares ∧ Y ∈ sessionIDs ==>

X 6= Y "

Another set of simplification rules was proven so that we can make use of the speci-
fication from Definition 45. By being shares, a share, a private share and a public share
do not belong to sessionIDs. This is stated in each one of the three cases in Lemma 43,
Lemma 44 and Lemma 45.

Lemma 43. share not sessionIDs

share not sessionIDs [simp]: "share p X /∈ sessionIDs"

110

Lemma 44. priv share not sessionIDs

priv share not sessionIDs [simp]: "priv share p X /∈ sessionIDs"

Lemma 45. pub share not sessionIDs

pub share not sessionIDs [simp]: "pub share p X /∈ sessionIDs"

The Lemmas (43, 44 and 45) are proven bay appealing to Lemma 40 and to the
specification of share shown on Definition 45.

With this we concluded the specification of our threshold cryptography support. This
was intended to minimally specify threshold cryptography under the inductive method;
to properly claim support to it we need its full embedding within the data type msg. We
conducted this experimentation to detect how easy would it be to extend the method
without breaking backward compatibility, and it seemed to be reasonably easy. We fo-
cused on not addressing too much detail regarding these new cryptographic primitives
what made it easier.

We also must stress that with the shifted focus toward the specification of different
message casting support, we did not include in this specification the support for recon-
struction, since we used it only for proving confidentiality of the shares. The account
for threshold reconstruction was partially specified in our experimentations regarding the
changing of the data type msg.

4.4.2 Summary

We started with a thorough review of threshold cryptography mechanisms with a special
focus to secret sharing schemes. We defined the concept of access structures and nar-
rowed our scope to monotonic threshold mechanisms. We looked deeper into the classical
mechanisms introduced by Shamir and Blakley, trying to base our decision into specifying
threshold schemes in a parallel fashion to the standard cryptography already supported
by the inductive method. We also covered the different methods developed for verifiable
secret sharing, giving special focus to Feldman, Pedersen and Stadler. With this review
of the secret sharing constructions, we established the basis for abstractly specified secret
sharing support within the inductive method.

We then showed our specification in Isabelle/HOL for extending the inductive method
to support threshold cryptography. We opted for a simpler approach in which we divided
the nonce space for using nonces to shield the shares so that we could represent them in
transit between the peers. The reconstruction of such shares is given to the peers through
the usage of Notes events for the secret. We conclude our specification description by
showing some basic lemmas we gave to Isabelle/HOL to enable it to reason about our
definitions.

Summarising, in this chapter we showed a small contribution we had during the ver-
ification of a Byzantine security protocol based on multicast that required the support
for threshold cryptography. The threshold cryptography specification shown here is an
experiment we conducted with the sole purpose of proving confidentiality of the shares
for the Franklin-Reiter sealed-bid auction protocols.

111

112

— Distrust and caution are the parents of security.

Benjamin Franklin (1706-1790)

5
Verifying a Byzantine Security Protocol

Based on Multicast

Byzantine Agreement Protocols, or Byzantine Security Protocols, are designed to rep-
resent security a property in which achieving consensus is an important factor to the
achievement of the protocol’s security goals. Such properties concern either the ability
to resist corruption or loss of some information by peers in the protocol which provides
availability, or, to enable controlled release of information, where a consensus must be
reached prior to disclosure.

Such Byzantine Security Protocols are able to detect which nodes have been compro-
mised or failed, with a series of synchronised, secure rounds of message exchanges. These
message exchanges are generally done using more complex communication frameworks
than unicast, such as the different types of multicast. Also the provision of such con-
sensus properties are not trivial using standard cryptography, thus Byzantine Security
Protocols demand the introduction of novel cryptographic primitives, such as threshold
based cryptography schemes.

Our efforts shown in the previous chapters for extending the inductive method were
targeted to the verification of secrecy in a Byzantine Security Protocol. To be able to
properly represent protocols based on non-unicast communication and being capable of
supporting non-standard cryptographic primitives, we extended the inductive method as
shown in Chapters 3 and 4 . Although our focus is in the provision of a novel specification
for message exchanging in the inductive method, clearly our motivation comes from the
inability of verifying Byzantine Security Protocols with the inductive method prior to our
extensions.

This chapter makes use of the previous contributions to put in practice the verification
the Franklin-Reiter Sealed-Bid Auction Protocol [58]. It is based in the combination of
multicast and unicast, and makes use of non-standard cryptographic primitives based on
threshold cryptography.

This protocol was conceived to enable bidders to cast their bids, distributing them

113

among a pool of servers running the desired auction. Following the usual sealed-bid
approach, all bids are sent encrypted, and in this case divided so that no single server can
recover them. Once the bidding period closes, all correctly running servers will agree and
start the next stage of the protocol. They will then agree on the winner and will check
the availability of funds for the bidder to pay for the item. This is done using an off-line
electronic cash scheme. Once each server independently agreed the winner, they will send
the winning bidder a token for him to collect the item. Most of the cryptography used in
the system is novel and based on threshold schemes. The sealed-bid auction protocol can
be extended to provide anonymous bidding.

The setup of this protocol is Byzantine-secure because all the threshold mechanisms
used in the sharing of the bid, and in the achievement of consensus for the closure and
verification of the bids, can cope with partial corruption of peers. This protocol also
introduces an unusual construction: a mixture of different message casting frameworks.
This feature enables the check of our message casting specification, especially the correct
distribution of knowledge within different modes of operation.

This chapter is structured with this initial introduction followed by a deeper view of
the Franklin-Reiter sealed-bid auction protocol (§5.1). We describe the protocol by taking
a look in the threat model as well as the properties the authors claim they achieve (§5.1.1).
This section also contains three descriptions of the multicast assumptions taken by the
authors (§5.1.2), the electronic money abstraction tailored to the protocol (§5.1.3), and the
definition for a novel cryptographic primitive called verifiable signature sharing (§5.1.4),
as well as, the main protocol description (§5.1.5). The protocol description subsection
will show the messages we formalise later on, and it is followed by the description of the
extension in the sealed-bid auction protocol to enable anonymity (§5.1.6). This section
will end with some known issues we had already before the analysis (§5.1.7). Some of
these issues were pointed out by authors, other from observations of our own.

The second part of the chapter (§5.2) comprises the modelling and verification we
carried out using our specification of the sealed-bid auction protocol described in the first
part. We will first present the specification of some auxiliary functions we developed
to help us simplifying the reasoning (§5.2.1), which will be followed by the inductive
specification of the protocol (§5.2.2). We then start the verification process (§5.3), where
we first show the proofs constructed for the auxiliary function (§5.3.1) and follow on
showing the verification of some key properties of the protocol to exemplify the usage of
our multicast events theory (§5.3.3). Although we did not conclude the verification of the
sealed bid auction protocol, the process of specifying it and constructing proofs expose
some of its weaknesses (§5.3.4). We conclude the chapter with considerations regarding
this verification exercise (§5.4).

5.1 The Franklin-Reiter Sealed-Bid Auction Proto-

col

Franklin and Reiter [58] proposed in 1996 a protocol to enable the construction of a
distributed trusted service capable of executing sealed-bid auctions by using threshold
cryptography primitives and extended multicast properties. Their effort was based on
the view that some financial vehicles needed special requirements to be adequately im-

114

plemented electronically and these were not properly addressed until that moment.

They focused their study on sealed-bid auctions due to their importance in conduct-
ing business and buying processes for governments and organisations. They were also
motivated by the intrinsic novel security requirements. Among these we can cite the re-
quirements for fairness in the timing of closure and how winners are identified. These
protocols are also susceptible to attacks by corrupted internals leaking information dur-
ing the bid collection phase and needed to be protected by a threshold mechanism for
consensus.

Their objective was to provide a sealed-bid auction service that is guaranteed to declare
a winner, and also to collect payment from only that bidder, while guaranteeing that no
bid was revealed before the agreed bid opening time. Moreover, that the system should
be resilient to malfeasance of any auction house insider.

5.1.1 Threat Model and Claimed Properties

Sealed-bid auctions are composed of at least two different phases: a phase where bids are
made and sealed for future release, and another phase where the bids are revealed and
the winner is declared. During the first phase, an arbitrary number of bidders interested
in the item being bid upon can submit arbitrary many sealed bids to the auction. Once
the bidding phase is finished, we start the second phase where the bids are opened. The
winner is determined following the bidding rules, and the winner is announced. The
determination of the winner is done by rules pre-established for the auction taking place,
which generally is deterministic.

Sealed-bid auctions introduce a series of novel security properties that are brought to
the information security scenario by Franklin and Reiter’s protocol. Fairness requires the
secrecy of the bids prior to the closing of the bidding period. This makes the proposed
protocol very time oriented, since the time of disclosure of bids is crucial for determining
the winner. A second property for sealed-bid auctions is the non repudiation of the bids,
ensuring that the money promised in the bidding phase can be collected from the auction
winner. Also due to the secrecy requirements for the bids, while in the bid casting phase,
it is usually difficult to give the bidder confidence in the auction process without revealing
the bids, so a distributed trust system is paramount for any computational solution for
the problem.

The threat model for sealed-bid auctions is varied but certainly starts with the trust in
the auction house and inside peers. Any reasonable threat model to a sealed-bid auction
protocol should take into account attacks from insiders, collusion among peers up to a
certain degree and the fair treatment of all bids received. Moreover, if money is put
upfront, it is desirable that losing bids forfeits no money.

Franklin and Reiter [58] list in their paper some attacks sealed-bid auctions are subject
to, classified into three classes. We have the attacks that deal with timing. We can
exemplify them as the leakage when an internal collaborator opens the bids before the
closure time and sends the information of the minimum value for a last-minute winning
bid. Or an insider that manipulates the clock so that the auction closes prematurely
or after the expected time, giving unfair advantage to some colluder. Another class of
attacks concerns the integrity of the bid set, where the diversion of bids to other auctions
closing earlier can give an unfair advantage so that the amounts are revealed and the

115

subsequent auction can be won by a minimal price. Or the bid set can be manipulated
to invalidate the wining bid so that the colluder can win. And the third class concerns
the attacks after the winner is declared. In this scenario an insider can award the auction
item to a person other than the winner. Or an insider collects payment for the losing
bids, or even the winning bid defaults on the payment of the won bid and the auction
must be re-run.

The protocol proposed by Franklin and Reiter tries to address the above listed attacks
by introducing Byzantine fault tolerance, novel cryptographic techniques and novel secu-
rity components such as electronic money. We say that a peer is correct if it follows the
protocols, while if it is faulty nothing can be said about it. The properties claimed by
them for their sealed-bid auction protocol are divided into two classes. The first class,
called validity, contains the following claims:

1. The bidding phase will eventually close, but only after a correct auction server
decides it should be closed.

2. There is at most one winning bid in each auction, which is proclaimed by applying
the deterministic and publicly known rule to the correct bid received before the end
of the bidding phase.

3. The action house collects payment equal to the amount of the winning bid from the
winning bidder.

4. Correct losing bids should forfeit no money.

5. Only the winning bidder can collect the won item.

The second class of properties claimed by the authors regards secrecy and is shown
below:

1. The identity of a correct bidder and the amount he bids for an item are not revealed
to any party before the end of the bidding phase.

The authors also clearly state that the protocol is not resistant to price fixing by
bidders, where they collude off-protocol to cap the winning bid. They do not guarantee
that a bid will be included in the set of bids, since they have no control over interception
or delay for message at the network layer.

Central to our verification efforts are some of the concepts over which the sealed-
bid auction protocol was designed. As most of its claims concern validity properties,
our verification will not be able to analyse some security properties we intended when
choosing the protocol. Another important remark regarding the protocol design is the
lack of guarantees to the bidders that their bids will be counted and that their electronic
cash will not be misused.

5.1.2 Multicast Implementation Assumptions

The Franklin-Reiter protocol makes use of a series of different group multicast primitives.
They were one of the motivations for our multicast events theory specification proposed

116

on Chapter 3. Their definition of the different multicast primitives is slightly different
from those standard ones we built the message casting framework upon. We will briefly
cover them here.

The definition adopted by Franklin and Reiter [58] for unreliable multicast states that
if a peer S is correct then all members of the multicast group G will receive the same
sequence of unreliable multicasts from S. However, nothing can be said regarding a faulty
S. Their reliable multicast definition provides an extension of unreliable multicast that
delivers the same sequence of reliable multicasts to all members of G regardless of the
state of initiator S. However, reliable multicasts from different initiators can be received
in different orders at each member of G. Their atomic multicast definition extends their
reliable multicast one and strengthens it by ensuring that all correct members of G receive
exactly the same sequence of atomic multicasts regardless of the state of the sender. The
guarantees provided to members and non-members of G while in the initiator position for
a multicast are the same. The only difference is practical, since failure detection in the
case of atomic multicast cannot be achieved.

5.1.3 Electronic Money Abstraction

One of the novelties of the Franklin-Reiter protocol is the capability of verifying that the
bids do not default prior to issuing the token for the winning bidder. To enable such
capability, the protocol must make use of some form of digital cash scheme.

Digital cash schemes are sets of cryptographic protocols that enables a customer to
withdraw money from a bank in digital form. The customer then uses it to purchase
something, which enables the vendor to deposit the money in his account [42]. The
objectives behind these digital cash schemes are to ensure that the identity of the customer
is protected, providing a degree of anonymity. They must also enable parties only to accept
valid digital money and that the money cannot be forged or reused.

Digital cash schemes can be divided into those that operate on-line, meaning they
involve the active presence of the Bank to check the validity of the coins, and those said
to be off-line, where the Bank only participates in the issuing and collecting phases [43].
To further exemplify this classification, in an on-line scheme the vendor can query the
Bank for the validity of a coin regarding the property of it not being spent twice. Off-
line schemes normally come with the costumer’s identity embedded so that any double
spending can be detected by the Bank when the second copy of the coin is paid in.

Franklin and Reiter use offline cash schemes. In their paper [58] they create an ab-
straction for digital cash that is claimed to be workable with most off-line schemes. They
simply describe a digital coin as being a triple (v$, {|v$|}KrBank

, w$). In the triple, v$ is
the coin’s face description, {|v$|}KrBank

is the signature of the Bank that gives validity to
this face description and w$ is some auxiliary information that must be present with the
coin when it is used to a specific purchase.

The face description v$ will typically include the monetary value for the coin, as well
as the identity of the customer protected by an anonymity function, as described above.
The auxiliary information w$ is unique for any spending and will bring together with
freshness some type of hint that enables the Bank or the vendor to reveal the identity of
the double spender.

The Franklin-Reiter protocol requires the digital cash scheme to provide a function to

117

deterministically determine locally the validity of v$ and w$. For our specification efforts,
as we will show below, the coins will be treated only as nonces, and their validity will be
deterministically accepted to follow protocol execution. We will not address the presence
of the identity revealing bits on w$, and v$. We assume coin components to be unique
and non guessable, thus helping on the determinism of finding the winner.

5.1.4 Verifiable Signature Sharing

Verifiable signature sharing [57], or simply V ΣS, is a primitive that enables the holder
of a digitally signed message to share the signature among a group of peers so that they
can reconstruct the signature later, similarly to verifiable secret sharing primitives. At
the end of the sharing phase, the members can verify that they possess a valid share and
that the signature can be reconstructed even if the original signer or some trustees are
faulty. Faulty trustees gain no information regarding the original signature.

Although the Franklin and Reiter paper stresses the importance of the V ΣS to their
specification, in terms of our abstraction, V ΣS will be considered as a specific case of
verifiable secret sharing. Their concerns regarding the usage of verifiable secret sharing
in opposition to V ΣS are vague except for the technicalities presented. We nevertheless
recognise the existence and importance of such primitive to deal with signed documents
that need to be valid only in the future and the control of this release should be subject
to an agreement. Good examples of such are a will, or a “springing power of attorney”.

The distinction between V ΣS and verifiable secret sharing is mostly technical, and
their properties are very similar. In its ability of checking integrity of a secret that was
shared without the necessity of reconstruction, the V ΣS extends a verifiable secret sharing
scheme by broadcasting the result of its own computation.

5.1.5 Protocol Description

The protocol proposed by Franklin and Reiter is constructed using n auction servers, of
which t are assumed to operate faithfully. The parameter t is the threshold for the fault
tolerance mechanism. A maximum of t servers can be compromised and the service can
still run securely. In its conception the protocol is claimed to be Byzantine-failure secure.

A bidder submits a bid with the amount he wants to pay for the item by sharing a
digital coin (v$, {|v$|}KrBank

, w$) with this value among all servers hosting the auction. To
avoid the auction servers cheating, the coin values are split in different ways. The values
of v$ and w$ are split using a standard secret sharing mechanism using our fault tolerance
value of t as threshold. The signature of the face value for the coin {|v$|}KrBank

is shared
using a V ΣS also using t as threshold.

Once the bidding phase finishes, the servers in agreement will reconstruct the values
for v$ and w$ for all bids cast during the bidding phase and will independently determine
the winner. For the winning bid, the auction servers will perform a V ΣS verification to
see if the bid is valid and the money can be collected by reconstructing {|v$|}KrBank

. After
this verification, the auction servers can award a token to the winning bidder to collect
the item.

The original paper proposing the protocol [57] is difficult to parse and understand.
Also, there are a lot of implicit calculations that are to be assumed by the specification.

118

This is clearly a violation of the protocol design principles we discussed on Chapter 2,
which introduces some vulnerabilities. Nevertheless, we summarise the description of the
Franklin-Reiter sealed-bid auction protocol in Figure 5.1.

1. B
A
 SG : λX.{|aid, {|S(B, v$, w$)X , aid|}KrX

,
V ΣS pub({|v$|}KrBnk

),
{|V ΣS priv({|v$|}KrBnk

)X |}KrX
|}

2. Si
A
 SG : aid, close

3. Si
U
 SG : λXY.{|aid, S(Y, v$, w$)X |}

4. Si
R
 SG : λX.aid, V ΣS stat({|v$|}KrBnk

)X

5. Si → B : aid,B, {|aid,B|}KrSi

Figure 5.1: Franklin-Reiter Sealed-Bid Auction Protocol

The protocol execution starts with the bid casting phase by the issuing of message
one by the bidder. The bidder B in possession of a digital coin (v$, {|v$|}KrBank

, w$) will
issue an atomic multicast to the multicast group SG comprised of all the auction servers
participating of the auction. This multicast message starts with the auction identification
token aid. This will be followed by the n, t-sharing of the concatenation of his identity, the
face value of the coin, and the freshness value for the coin. Each share is encrypted to the
public key of each corresponding server in the multicast group SG. This share will be fol-
lowed by the public V ΣS of the Bank’s signature to the coin’s face V ΣS pub({|v$|}KrBnk

),
and the private V ΣS n, t-shared to all members of SG. The V ΣS-private shares will be
encrypted with the public key of each corresponding server in the multicast group SG.

After the bid casting phase finishes, each auction server Si in the multicast group SG
will multicast the second message to the group. This message simply states the auction
identification and the closing statement. After each auction server Si has received at least
t atomic multicasts stating the bidding phase is closed, no more bids are accepted. The
inclusion of this message in the protocol is controversial for having no security, but the
authors argue that due the implementation characteristics of atomic multicast, commu-
nication is authenticated within the multicast group.

After the closure of the bidding phase we start the bid opening phase. Each auction
server Si will multicast to the multicast group SG the auction identification aid and his
shares S(Y, v$, w$)X composed of the concatenation of the bidder’s identity, the face value
of the coin and the freshness function of the coin. After the reception of t multicasts, a
server can locally reconstruct each bid Y, v$, w$ and deterministically compute the winner.

With the winner locally determined, each auction server Si will reliably multicast to
the multicast group SG message four, which is composed of aid and the result of the
V ΣS verification of his share for the winning bid for the bank’s signature to the coin’s
face value v$. After the reception of t multicast messages an auction server can locally
decide whether the winning bid is valid.

The winner declaration phase consists of each auction server Si issuing a unicast
message to the winning bidder B. The message is composed of aid, the bidder’s identity
and the signature of the concatenation of these values by the auction server Si. A bidder
can collect the won item if he possesses t tokens signed by different auction servers.

119

Although the protocol takes care of checking the bank’s signature in the coin, coin
reconstruction and deposit is out of scope for the protocol. By using an off-line digital
cash scheme, the protocol provides a degree of anonymity against the detection of the
spending by the Bank. The authors propose an anonymity scheme to protect the bidder’s
anonymity against the auction house.

5.1.6 Enabling Anonymity

One interesting optional feature added to the Franklin-Reiter sealed-bid auction protocol
is that of accepting anonymous bids. As it already uses electronic money to provide
anonymity for the spending against the Bank which issued the coin, a desirable extension
would be to provide anonymity in the bidding against the auction house.

To prevent the release of the bidder’s identity to the auction house we simply substitute
the identity of the bidder B by the hash of a large random number H(r) generated
and known only to the bidder. This pseudonym will only impact in the modification of
messages one and five of the protocol as shown in Figure 5.2. To claim the item won by
the winner declaration message five, the bidder must show that he posseses the random
number r that will produce the pseudonym H(r).

1. B
A
 SG : λX.{|aid, {|S(H(r), v$, w$)X , aid|}KrX

,
V ΣS pub({|v$|}KrBnk

),
{|V ΣS priv({|v$|}KrBnk

)X |}KrX
|}

2. Si
A
 SG : aid, close

3. Si
U
 SG : λXY.{|aid, Y, v$, w$)X |}

4. Si
R
 SG : λX.{|aid, V ΣS stat({|v$|}KrBnk

)X |}KrX
|}

5. Si
B
 ALL : aid,H(r), {|aid,H(r)|}KrSi

Figure 5.2: Franklin-Reiter Sealed-Bid Auction Protocol with Anonymity

Message one in the Franklin-Reiter protocol with anonymity starts with the bidder B
possessing a digital coin (v$, {|v$|}KrBank

, w$) and being able to generate a long random
number r to be hashed and used as his pseudonym. He will then issue an atomic multicast
to the multicast group SG. His multicast message starts with aid followed by the n, t-
sharing of the concatenation of his pseudonym H(r), the face value of the coin, and the
freshness value with a reconstruction trigger t, encrypting each of the shares to the public
key corresponding to each server in the auction. This is followed by the public V ΣS
of the bank’s signature to the coin’s face V ΣS pub({|v$|}KrBnk

), and the private V ΣS
n, t-shared to all members of SG and encrypted as the same form of the other values.

Messages two, three and four remain the same. Message five will be converted into
a Broadcast from each of the auction servers Si. The message is composed by aid, the
bidders pseudonym H(r) and the signature of the concatenation of these by the auction
server Si. A bidder can collect the item if he possesses different signed tokens from more
than t auction servers and if he can show he knows r so that the winner’s pseudonym is
H(r).

120

While this measure seems to ensure that the auction server cannot identify the bidder,
some other steps are needed to guarantee that. Special attention should be drawn to the
digital cash scheme being used. Each coin embeds a function of the identity of the
costumer that can be obtained in the case of any double spending. The main precaution
B can take to avoid being identified is to never reuse any coin. This scheme provides only
a weak form of anonymity since any collusion between the auction house and the Bank
can reveal the identity of the bidder in most off-line digital cash schemes.

Although the idea of verifying anonymity properties is interesting, we decided not
to pursue it. The security goals claimed for the protocol are in general weak and do
not require the full capabilities of the method. It was also not clear at the time of the
development that anonymity could be stated in a meaningful way.

5.1.7 Known Issues

The protocol proposed by Franklin and Reiter puts little effort into providing guarantees to
all parties involved in the protocol execution. For the bidder, it provides no confirmation
that the bid was included in the auction or that the bid lost the auction. The author’s
justification is the use of atomic multicast. There is no explanation why the losing bids
are not notified, which makes the protocols unbalanced in terms of what is available to
each participating peer.

The authors considered a threshold signature scheme in which the cooperation of t
servers would be required to create the token representing the winner declaration, but
they dropped this implementation on the basis of complexity. This would have definitely
created a stronger version than a series of unicast. Their justification for opting out for
this scheme was based on the complexity of the operations with the available primitives
to enable such joint signatures. This would make the implementation of the system much
more computationally intensive, but at the same time would have given a full Byzantine-
failure safety to the protocol.

Another important issue that can be raised regarding the protocol, even before any
formal analysis of it, is the timeliness of the coin reconstruction. Problems regarding the
coin validity can arise between the time it was verified during the protocol execution and
the coin is paid to the vendor’s account, for example if the coin is used in another auction.
The authors note that the bidder can be identified for double spending, but this does not
avoid the fact that no money can be yielded to pay for the delivered item.

5.2 Modelling the Franklin-Reiter Auction Protocol

After reviewing the protocol threat model and requirements, we start with the verifica-
tion process by first specifying the protocols using the inductive method and the tool
Isabelle/HOL.

5.2.1 Auxiliary Definitions

To be able to specify the Franklin-Reiter protocol we need some auxiliary functions. The
first set of auxiliary functions we had to specify were those that made the specification
of some cryptographic operations simpler. As shown before in Chapter 2 the inductive

121

method uses Crypt to handle symmetric and asymmetric cryptographic operations. It also
has the definition for Hash. The Franklin-Reiter protocol makes use of digital signatures,
we decided to specify some syntactic translations for it. We borrowed this from Bella [20]
as shown on Definition 46.

Definition 46. Definition of translations for signatures

constdefs

sign :: "[key, msg] => msg"

"sign K X == {| X, Crypt K (Hash X) |}"
signOnly :: "[key, msg]=>msg"

"signOnly K X == Crypt K (Hash X)"

signCert :: "[key, msg]=>msg"

"signCert K X == {|X, Crypt K X |}"

Another important auxiliary definition concerns the creation of bid sets for all the
parallel auctions. When specifying the Frankiln-Reiter protocol, we noticed that the
shared token S(B, v$, w$) did not contain any information related to the auction taking
place. This makes the identification of bid replays very difficult. We defined the function
bids which takes as arguments aid and a trace of events evs and returns a set of triples
containing the bids as shown in Definition 47.

Definition 47. Definition of function bids

constdefs

bids :: "[nat,event list] ==> (agent*nat*nat) set"

"bids aid evs == { (B, v, w). ∃ multicast group t Bank.

Multicast B multicast group (λC. {|Nonce aid,

Crypt (pubK C)({|Nonce(share(nat t,multicast group,C)

{|Agent B, Nonce v, Nonce w|}), Nonce aid|}),
Nonce (pub share (nat t,multicast group,C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce(priv share(nat t,multicast group,C)

(signOnly(priSK Bank)(Nonce v))))|})∈ set evs}"

The specification of the function bids simply yields the set of all bids for an auction
by extracting the required information from the syntax of message one. It states that all
triples of bidder identity, coin face value and coin freshness values are included in the set
for that auction identification for all multicast groups, thresholds and Banks present in
the syntax of message one.

The third and final auxiliary definition is called keyfree. During the verification of
secrecy for the Franklin-Reiter protocol, we often were faced with sub goals with the form
X ∈ analz (G ∪ H). These goals are notoriously complex to address since they trigger
rule Decrypt from the analz function’s definition (Definition 17). The inductive function
keyfree is defined by the set of all messages that contains no keys. That is, all atomic
items belong to it and we can combine key-free messages to create bigger ones as shown
in Definition 48.

Definition 48. Definition of keyfree

122

inductive set

keyfree :: "msg set"

where

Agent: "Agent A ∈ keyfree"

| Number: "Number N ∈ keyfree"

| Nonce: "Nonce N ∈ keyfree"

| Hash: "Hash X ∈ keyfree"

| MPair: "[|X ∈ keyfree; Y ∈ keyfree|] ==> {|X,Y|} ∈ keyfree"

| Crypt: "[|X ∈ keyfree|] ==> Crypt K X ∈ keyfree"

The definition of keyfree is important because we can divide the set from function
analz into those having the constructor Key and those not having it. This enables us to
prove [|X ∈ analz (G ∪ H); G ⊂ keyfree|] ==>(X ∈ parts G ∪ analz H). This makes
contradictions easier since we can find them now over parts instead of analz.

5.2.2 Protocol Specification

The specification of the Franklin-Reiter Sealed-bid auction protocol starts, as usual, with
the definition of a constant naming the specification called fr. It is an inductive set of
lists of events which will represent the formal protocol model. We define the empty trace
by the rule Nil which sets the base of the induction. The Isabelle/HOL specification is
shown on Definition 49.

This protocol implements communication using multicast and unicast. For our pur-
pose, we opted for using separate primitives instead of using the multicast primitive in
unicast mode of operation as shown in Chapter 3. For that we had to formalise the Spy’s
illegal activity twice: one when he is acting under the unicast framework and another
when he is acting under the multicast framework. These rules enable the Spy to perform
his interferences in the protocol using both communication methods.

Rule Fake is the classical rule for Spy’s interference in the protocol which states that
the Spy is able to Say to any peer B the synthesis of all he can analyse from the trace
of events. Rule FakeMC is a multicast variant of the rule Fake which gives the Spy the
power to multicast any message with components he learnt from traffic analysis to any
multicast group of the protocol.

Definition 49. Inductive definition of Franklin-Reiter Protocol - Basic Steps

inductive set fr :: "event list set"

where

Nil: "[] ∈ fr"

| Fake: "[| evsf ∈ fr;

X ∈ synth (analz (knows Spy evsf)) |]

==> Says Spy B X # evsf ∈ fr"

| Fakemc: "[| evsfmc ∈ fr;

XF ∈ synth (analz (knows Spy evsfmc)) |]

==> Multicast Spy multicast group (λC. XF) # evsfmc ∈ fr"

| Reception: "[| evsr ∈ fr; Says A B X ∈ set evsr |]

123

==> Gets B X # evsr ∈ fr"

| ReceptionMC: "[| evsrmc ∈ fr;

Multicast A multicast group (λC. XF) ∈ set evsrmc;

B ∈ set multicast group |]

==> Gets B XF # evsrmc ∈ fr"

Although our initial specification took into account the reception of messages, due
to the characteristics of the protocol and the lack of proper information distribution to
all peers, its usage was hindered. The protocol provides very little information to the
bidder and due to the intrinsic characteristics of the communication and goals we were
verifying, we did not use the message reception framework in any lemma. Nevertheless
we implemented them here for the sake of completion.

Rule Reception is the classical inductive method’s reception rule which states that a
Says event was casted with B as its receiver, the event Gets to B for that message is
called. Analogously, rule ReceptionMC states that if B belong to a multicast group that
is the destination of a Multicast event from A, the event Gets to B is called as a function
of XF to B. This will confirm the reception of the multicast by agent B. Some tests we
did with message reception under multicast show the potential of the inductive method
in managing big loads of information. The specification of ReceptionMC clearly shows
the exponential explosion in terms of knowledge distribution when multicasting. To each
Multicast event, we have potentially infinite Gets events.

Still regarding to ReceptionMC event, one of our options in implementing the Franklin-
Reiter protocol was to assume all multicasts were atomic. By assuming that, no message
reception need to be performed because we assume all peers receive the message totally
when it was sent. This choice was based on simplifying the model.

5.2.2.1 Bid Casting

With the basic inductive method’s specification in place, we start now describing the
protocol messages by first capturing the bid casting phase. The specification of the first
message of the bid casting phase is shown below on Definition 50. Some of its preconditions
are merely technical.

Definition 50. Inductive definition of Franklin-Reiter Protocol : Bid Casting

| FR1: "[| evs1 ∈ fr; Nonce w /∈ used evs1; w 6= close;

w /∈ sessionIDs; w /∈ shares;

aid ∈ sessionIDs; v 6= close; v /∈ sessionIDs;

v /∈ shares; Nonce v /∈ used evs1;

Multicast S multicast group (λC. {|
Nonce aid, Number close|}) /∈ set evs1 |]

==> Multicast B multicast group (λC. {|Nonce aid,

Crypt (pubK C) (

{|Nonce (share (nat t, multicast group, C) {|
Agent B, Nonce v, Nonce w|}), Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(

124

Nonce (priv share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))))|})
Notes B {|Nonce aid, Nonce w, Nonce v|} # evs1 ∈ fr"

Definition 50 starts with inductive rule FR1, stating that the trace evs1 belongs to
the inductive set fr, the nonce w and the nonce v were not used in this trace before, are
not equal to the constant close, does not belong to sessionIDs and does not belong to
shares. We also require that the auction identification aid belongs to sessionIDs and that
message two closing the auction has not appeared in the trace. If these preconditions are
met, we extend the trace of events evs1 belonging to fr with message one.

Message one is a Multicast event from the bidder B to the multicast group of auction
servers. Its payload has the nonce aid as the session identification, followed by the bidder
B ’s identity concatenated with the digital coin v, and nonce w. The bidder’s identity, coin
description and coin function are shared to the multicast’s destinations with a threshold
t. Each share is encrypted with the intended destination’s key creating the sharing token
share (nat t, multicast group, C) {| Agent B, Nonce v, Nonce w|} which is shielded by
a nonce type before being encrypted. Then the coin’s digital signature’s public share is
included using a verifiable secret sharing scheme to the same group and threshold pa-
rameters as the initial sharing scheme. The public part pub share (nat t, multicast group,
C)(signOnly (priSK Bank)(Nonce v)) is shielded by a nonce type and added to the mes-
sage straight away. The private shares are encrypted with the intended destination’s key
creating the sharing token priv share (nat t, multicast group, C) (signOnly (priSK Bank)
(Nonce v)) this is shielded by a nonce type before being encrypted.

To finish the FR1 specification, we give the bidder B the knowledge of what he
included in the shares trough an event Notes. This is needed because parts and used do
not know about share. For this reason we need to explicitly give to B this knowledge
following our secret sharing specification shown on Chapter 4.

We must call to attention two important details of our specification. The first is the
fact that we don’t check freshness of aid. This happens because we want message FR1
to repeat for later bids. The second specification detail is that we only allow FR1 to
appear if no FR2 was ever casted. We try to preserve the consistency of the bid set after
auction closure. This does not act with fidelity with the protocol operation, since this
should only be happening after the threshold of messages was received. Again we opted
for the simplest specification, taking into account properties of atomic multicast and the
assumption that all servers following the protocol would close the auction at exactly the
same time. So the impact of these in this initial verification we conducted is marginal.

5.2.2.2 Bid Closure

After the bid casting phase, we have an event that indicates the closure of that phase.
Message two is specified as rule FR2 in our specification of the Franklin-Reiter protocol.

The preconditions of rule FR2 are that the trace of events evs2 extends the inductive
set fr for the protocol specification, that aid belongs to the set of sessionIDs, the auction
server S belongs to the multicast group and that we have at least one casted bid. This is
represented by the existence of message one in the trace of events. If these preconditions
are met we extend the trace of events evs2 with a multicast from the S to the multicast
group containing aid and the command close as shown in Definition 51.

125

Definition 51. Inductive definition of Franklin-Reiter Protocol : Bid Closure

| FR2: "[|evs2 ∈ fr; S ∈ set multicast group; aid ∈ sessionIDs;

Multicast B multicast group (λC. {|Nonce aid,

Crypt (pubK C) (

{|Nonce (share (nat t, multicast group, C) {|
Agent B, Nonce v, Nonce w|}), Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(

Nonce (priv share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))))|})
∈ set evs2 |]

==> Multicast S multicast group (λC.{|Nonce aid, Number close|})
evs2 ∈ fr"

Again in message two we had to take some decisions regarding our specification. Sim-
ilarly to message one, we did not implement any trigger and assumed the multicast as
being atomic. But here it is evident by a very strong assumption from the authors re-
garding their implementation of atomic multicast. As we explained above (§5.1.2) one of
their assumptions was that multicasts from within the group are authenticated. But as
our specification follows a broader definition of atomic multicast this was not available in
the specification we proposed. We took this specification decision bearing in mind that
this could clearly reveal some attacks the authors would refute on the basis of their very
strong assumption.

5.2.2.3 Bid Opening

Once no more bids can be cast in the auction and the auction servers agree that the
auction is closed, we should proceed to a phase where we open the bids to verify which
bidder cast the best bid. In the Franklin-Reiter protocol this is done by message three,
which is specified by our inductive rule FR3 as shown in Definition 52.

Definition 52. Inductive definition of Franklin-Reiter Protocol : Bid Opening

| FR3: "[| evs3 ∈ fr ; S ∈ set multicast group ; S /∈ bad;

aid ∈ sessionIDs; (B, v, w): bids aid evs3;

Multicast S multicast group (λC.
{| Nonce aid, Number close|}) ∈ set evs3 |]

==> Notes S {|Nonce aid, Nonce w, Nonce v|} #

Multicast S multicast group (λC. {|
Nonce aid,

Nonce (share (nat t, multicast group, S)

{|Agent B, Nonce v, Nonce w|})|}) # evs3 ∈ fr"

The preconditions for rule FR3 are that the trace of events evs3 is part of our inductive
specification for the protocol, that the auction server S is not compromised, that the
auction identifier aid is a session identification, that the triple (B, v, w) represents a valid
bid for the auction aid in the events trace evs3 and that the auction was closed by the
existence of message two in the trace.

126

If these preconditions are met we extend the trace evs3 with two events. A first
event Notes to the auction server S the values for aid, v and w followed by a Multicast
event from the auction server S to the multicast group running the auction service. The
payload of this message is composed of aid, plus the share the server holds for the bid
being broadcasted.

In the specification of rule FR3 we have also to stress some specification decisions. A
clear one is again the presence of our knowledge distribution scheme for the information
that was shared. In rule FR3 we extend the trace by a Multicast event and then we
extend it again with a Notes events. This is done for the sake of giving the servers
following the protocol the knowledge regarding the values of the bids they opened. Again
we oversimplify our specification by not implementing any triggered reconstruction and
assume all multicasts to be atomic. We also do not provide any guarantee that all bids
will be opened, which would be difficult to do with the inductive method because we
cannot force events to happen.

5.2.2.4 Bid Validation

Once the winning bid is found by all auction servers they will start the bid validation
phase. We will check the validity of the digital coin submitted with the bid. Message four
is represented in our specification by rule FR4 as shown on Definition 53.

The preconditions for firing rule FR4 are that the trace of events evs4 is part of the
inductive set describing the protocol specification, that aid is in the set of sessionIDs,
that the triple (B, v, w) is a valid bid within the auction aid in the trace evs4 and that
the nonces w and v are in the knowledge of the auction server S. If these preconditions
are met we extend the trace of events evs4 by adding an event Notes to the auction server
S for the bank’s digital signature for the coin’s face value. Then we add a Multicast event
from server S to the multicast group of servers running the auction containing aid and
his share of the digital signature for the coin of the winning bid.

Definition 53. Inductive definition of Franklin-Reiter Protocol : Bid Collection

| FR4: "[| evs4 ∈ fr; S ∈ set multicast group ;

aid ∈ sessionIDs; (B, v, w): bids aid evs4; S /∈ bad;

Nonce w ∈ knows S evs4; Nonce v ∈ knows S evs4; |]

==> Notes S (signOnly (priSK Bank) (Nonce v)) #

Multicast S multicast group (λC. {|
Nonce aid,

Nonce (priv share (nat t, multicast group, S)

(signOnly (priSK Bank) (Nonce v)))|}) # evs4 ∈ fr"

On rule FR4 ’s specification we have the same scenario as with FR3 where we have
a double extension of the trace representing that all servers multicast their shares and
that they were able to reconstruct the signature of the coin’s face value. Here we took
another simplification step within the original protocol description. Instead of implement-
ing the verifiable signature sharing proposed by the authors we decided to implement a
reconstruction using the casting of the private shares to the multicast group members.

This specification choice clearly weakened the protocol, since at this point one server
can collude with the attacker and deposit the coin for himself. But our choice is justified

127

beyond the plain simplification of the verification process, since the guarantees the original
protocol yields are just that the coin may be reconstructable at a later time, and not that
it is indeed reconstructable, since more than n − t server can be corrupted after the
protocol run.

Finally the justification for the changes in the rule FR4 is based on the fact that we
shifted our focus to the verification of the suitability of the multicast theory instead of
the full verification of the Franklin-Reiter protocol. We focused only in achieving the
verification of the secrecy property for the bids before closure time. This was enough to
validate the multicast events theory.

5.2.2.5 Winner Declaration

With the winning bid known and with its digital coin payable, we can now deliver to
the winner the tokens he needs to collect the item. Message five is a unicast from each
one of the servers that concluded the protocol execution to the winning bidder with the
winner declaration token. We specify message five from the Franklin-Reiter protocol as
our inductive rule FR5 .

The specification of rule FR5 starts with the precondition that the trace of events
evs5 is part of the inductive set describing the protocol specification, that aid is in the
set of sessionIDs, that the triple (B, v, w) is a valid bid within the auction aid in the
trace evs5 and that the nonces w, v and the digital signature for the coin’s face value
(signOnly (priSK Bank) (Nonce v)) are in the knowledge of the auction server S. If these
preconditions are met, the auction server S issues a unicast with the event Says to the
winning bidder B. The payload of this message is aid, the winners identification B and
the signature using the server’s private signature key to the previous content.

Definition 54. Inductive definition of Franklin-Reiter Protocol : Winner Declaration

| FR5: "[|evs5 ∈ fr; S ∈ set multicast group; aid ∈ sessionIDs;

S /∈ bad; w /∈ sessionIDs;

w /∈ shares; (B, v, w): bids aid evs5;

Nonce w ∈ knows S evs5; Nonce v ∈ knows S evs5;

(signOnly (priSK Bank) (Nonce v)) ∈ knows S evs5|]

==> Says S B {| Nonce aid, Agent B,

sign (priSK S) {| Nonce aid, Agent B |}|} # evs5 ∈ fr"

With the specification of message five we complete the protocol description. Note that
the specification of rule FR5 deliberately takes some steps to test our multicast specifi-
cation and the distribution of knowledge within the protocol. First, the pre-conditions to
the firing of FR5 are based on the knowledge of the auction server S acquired during the
previous phases and the contents of the bid set. Second, we deliberately did not represent
the unicast method using the Multicast event to be able to test the integration of our
specification with the original one in the inductive method.

Here we took similar specification decisions as we did in the previous messages. But
note that the trigger required for collecting the item in this message is left off-protocol
by the authors, which makes it difficult to verify the ability of collecting the item by the
winner.

128

With the basic specification for the Franklin-Reiter sealed-bid auction protocol in place
we will follow on doing the verification of the secrecy property for the bid casting phase.
But before doing that we will create some support lemmas for the auxiliary definitions.

5.3 Verifying Frank-Reiter Auction Protocol

We start first with the proofs regarding the auxiliary functions we defined to use with the
protocol specification. We proved some lemmas regarding function bids and keyfree to
verify their correct specification and to help us with the general validity proof regarding
the protocol specification.

5.3.1 Proofs regarding the set of bids

The lemma regarding the bids set establishes that to extend the set of bids we need the
existence of messages with syntax of the rule FR1 in the trace of events. In a more
pragmatic reading, it states that for all B, multicast group, t, Bank, v and w, the head of
the list of events different of message one implies that the set of bids of the trace of events
is equal to the set of bids of the tail of the trace of events. Elements different from the
Multicast on message one does not contribute to the list of bids. Its definition is shown
in Lemma 46 (bids not insert).

Lemma 46. bids not insert

∀ B multicast group t Bank v w.

ev 6= Multicast B multicast group (λC. {|
Nonce aid,

Crypt (pubK C) ({|Nonce (share (nat t, multicast group, C)

{|Agent B, Nonce v, Nonce w|}),
Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce(priv share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))))|}))
==> bids aid (ev # evs) = bids aid evs

The proof for Lemma 46 is straightforward and only requires unfolding definition
for bids and the call to the simplifier and classical reasoner. This fact is important to
eliminate messages that do not yield bids.

The next lemma regards the insertion of the triples (B, v, w) in the set of bids for a
given aid. If the set of bids for an auction aid in a trace with the head being the event
yielded by rule FR1, this is equal to inserting the triple (B, v, w) to the set of bids for
that trace. Its definition is shown in Lemma 47 (bids insert).

Lemma 47. bids insert

bids aid

(Multicast B multicast group (λC. {|
Nonce aid,

129

Crypt (pubK C)({|Nonce (share (nat t, multicast group, C)

{|Agent B, Nonce v, Nonce w|}),
Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce(priv share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))))|}))#evs)
= insert (B, v, w) (bids aid evs)

Proving Lemma 47 (bids insert) consists in calling the simplifier extended with the
definition for bids followed by the classical reasoner augmented with the function con-
gruence lemma to process the function in the multicast message. This fact is important
to reason about the equality between the trace and the triples representing the bid for a
given auction in a trace.

The next lemma regards the integrity of the bids set and the relation between the
coin and the bidder, especially that the bidder can cast a single valid bid to the auction.
Lemma 48 (bids simp) states that a triple (B, v, w) belonging to the set of bids of an
auction aid in a trace of events headed by the event yielded by rule FR1 implies that the
coin’s face value and freshness information are equal to those in the triple, or the triple
is in the tail of the trace.

Lemma 48. bids simp

(B, v, w) ∈ bids aid

(Multicast B multicast group (λC. {|
Nonce aid,

Crypt (pubK C)({|Nonce (share (nat t, multicast group, C)

{|Agent B, Nonce v’, Nonce w’|}),
Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v’))),

Crypt (pubK C)(Nonce(priv share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v’))))|}))#evs)
==> (v = v’ ∧ w = w’)| (B, v, w) ∈ bids aid evs"

Proving Lemma 48 (bids simp) is very similar to the proof of Lemma 47 (bids insert),
and consists in calling the simplifier extended with the definition for bids followed by the
classical reasoner augmented with the function congruence lemma to process the function
in the multicast message. This fact is important because it yields that a bidder can only
cast a single valid bid and that the digital cash information are tied to the bidder in the
bids set.

The next lemma lets us infer if there exists an event yielded by rule FR1 in the trace
of events, there will be a bid in the bid set for that message in the same trace. More
pragmatically the existence of the event Multicast yielded by FR1 implies that the triple
(B, v, w) is in the set bids for the aid mentioned in the message for the given trace. This
is shown in Lemma 49 (bidsI).

Lemma 49. bidsI

130

Multicast B multicast group (λC. {|
Nonce aid,

Crypt (pubK C)({|Nonce (share (nat t, multicast group, C)

{|Agent B, Nonce v, Nonce w|}),
Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce(priv share (nat t, multicast group, C)

(signOnly (priSK Bank)(Nonce v))))|}))∈ set evs)

==> (B, v, w) ∈ bids aid evs"

Proving Lemma 49 (bidsI) consists of unfolding the bids definitions and using the
tactic auto. The importance of this lemma regards the fact that it yields the direct
relation between the presence of message one of the protocol to a bid being in the bids
set for an auction aid. This fact is generally used when we want to reason about the bids
set from content of the trace.

Lemma 50 (bidsM) is the converse of Lemma 49 (bidsI). It shows the other direction
of the implication regarding the event yielded by FR1 and the presence of a bid triple in
the bids set. It states that if a triple (B, v, w) is in the bids set for an auction aid, this
implies that there exists a multicast group, a t and a Bank so that an event Multicast with
the syntax of the one yielded by rule FR1 is in the trace of events with the parameters
of the given triple.

Lemma 50. bidsM

(B, v, w) ∈ bids aid evs ==> ∃ multicast group t Bank.

Multicast B multicast group (λC. {|
Nonce aid,

Crypt (pubK C)({|Nonce (share (nat t, multicast group, C)

{|Agent B, Nonce v, Nonce w|}),
Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce(priv share (nat t, multicast group, C)

(signOnly (priSK Bank)(Nonce v))))|}))∈ set evs)

Proof for Lemma 50 (bidsM) requires the call for the classical reasoner augmented with
the definition of bids and the function congruence fact for dealing with the λ function
in the Multicast event. The fact yielded by Lemma 50 (bidsM) is important we want to
reintroduce the event that generated a bid triple in the bids set for a given auction.

5.3.2 Proofs regarding keyfree

As we explained above, the definition of function keyfree helps us to reason about messages
that do not include key material and help us to simplify arguments to analz. To make
it usable we had to prove a couple lemmas, in special those that helps us simplify the
argument of analz into parts because there are no keys in G to help decrypt messages in
H.

131

We start with Lemma 51 which is proven by appealing to the inductive definition of
parts and the tactic auto. We will use it later to prove Lemma 52

Lemma 51. parts keyfree

parts (keyfree) ⊆ keyfree

An important lemma that helps us to transform complex form of analz into sim-
pler instances of parts given that the first subset contains no key material is Lemma 52
(analz keyfree into Un).

Lemma 52. analz keyfree into Un

[|X ∈ analz (G ∪ H); G ⊆ keyfree|] ==> X ∈ parts G ∪ analz H

We prove Lemma 52 (analz keyfree into Un) by first applying induction followed by
the tactic auto, what will leave us with three sub goals. The first two goals concern the
decryption of Crypt K X ∈ parts G which are easily provable by appealing to parts.Body
in parts definition. The last sub goal regards Crypt K X ∈ analz G with Key (invKey K)
∈ parts G. Here we appeal to Lemma 51 (parts keyfree) and to the fact that no Key is in
keyfree, generated here by a inductive case command in Isabelle/HOL.

5.3.3 General Validity Proofs

As our main goals shifted from proving correctness of the Franklin-Reiter protocol to
the specification and investigations of suitability for a multicast event theory we present
some of the proofs about the protocol we produced. We stress that these proofs are
not the complete set we verified for the protocol. They are shown here to exemplify the
suitability of the multicast event theory in dealing with knowledge distribution and with
mixed environments of multicast and unicast. We focused on verifying the secrecy of the
bids and that the declared winner participated in the bid casting as ways of showing that
our multicast specification is usable and capable of representing real problems.

We will start by looking to Lemma 53 (bid secrecy), which concern the secrecy of v
the coin’s face value. Concomitantly we have other two lemmas in the similar form for w
and for {|v|}KrBank

. This lemma states that if an event with syntax of the one yielded by
rule FR1 is in the trace of events, and the bidder B is not colluding with the Spy and
the Spy is not in the multicast group of auction servers, then coin’s face value v is not in
the knowledge of the Spy.

Lemma 53. bid secrecy

[| Multicast B multicast group (λC. {|
Nonce aid,

Crypt (pubK C)({|Nonce (share (nat t, multicast group, C)

{|Agent B, Nonce v, Nonce w|}),
Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce(priv share (nat t, multicast group, C)

(signOnly (priSK Bank)(Nonce v))))|}))∈ set evs)

B /∈ bad; Spy /∈ set multicast group; evs ∈ fr |]

==> Nonce v /∈ analz (knows Spy evs)

132

Proving Lemma 53 (bid secrecy) is a tough exercise as usual for secrecy properties.
We start by using the usual proof method for secrecy lemmas by first preparing the
induction and applying it, followed by the simplifier. We are left with seven sub goals,
representing the two Fake rules and the five protocol steps. The Fake rule can be proven
appealing to fact Fake analz eq1 that states that X ∈ synth(analz H) ==> synth (analz
(insert X H)) = synth (analz H). The sub goals regarding messages two to five are proven
appealing to the fact that v /∈ sessionIDs and to the function congruence rule to eliminate
the λ expression in the multicast events. Proving the sub goal for message one involves
applying the tactic auto augmented with the destruction rule for function congruence as
usual for multicast messages. This yields seven new sub goals. The first one is proven
resorting to the fact that v /∈ sessionIDs. Another two of these sub goals are proven
appealing to analz into parts and shares shares discussed in Chapter 4. This is the fact
that all sharing primitives belong to the set shares. The next two sub goals are proven
by appealing to Multicast imp in parts spies, shown in chapter 3 and the fact that if v is
inside a share it belongs to the set used. The final two sub goals are proven appealing to
analz keyfree into Un shown above and the fact that v is not in sessionIDs.

Following to our next example, Lemma 54 (MSG5 imp MSG1) states that if the uni-
cast event Says yielded by rule FR5 is in the trace of events declaring B the winner of the
auction, this implies that B sent a Multicast event yielded by the rule FR1 casting his
bid to the auction servers in the multicast group running the auction aid. This lemma is
shown to illustrate the ability our new multicast events theory has to integrate different
message casting modes within the same protocol infrastructure.

Lemma 54. MSG5 imp MSG1

[|Says S B {|Nonce aid, Agent B,

sign (invKey (pubSK S)) {|Nonce aid, Agent B|}|} ∈ set evs;

S 6= Spy; evs ∈ fr|]

==> ∃XF multicast group Bank v w.

Multicast B multicast group (λC. {|
Nonce aid,

Crypt (pubK C)({|Nonce (share (nat t, multicast group, C)

{|Agent B, Nonce v, Nonce w|}),
Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce(priv share (nat t, multicast group, C)

(signOnly (priSK Bank)(Nonce v))))|}))∈ set evs)

The proof of Lemma 54 (MSG5 imp MSG1) involves the usual steps required to pre-
pare and apply the induction, followed by the application of tactic auto augmented with
the function congruence fact and the fact bidsM shown above.

Both lemmas shown here demonstrate the ability of integrating our multicast events
theory into the verification of mixed environment protocols such as the Franklin-Reiter
protocol. Especially the proofs such as the one for Lemma 53 (bid secrecy) show that
there is an increase in complexity in creating proofs for some goal such Secrecy. But this

1Not shown in this thesis

133

complexity is manageable and in general terms lets us follow the usual proof strategy as
in unicast.

On the other hand, a lemma such as Lemma 54 (MSG5 imp MSG1) shows us the
flexibility of our specification by letting us reason about peers knowledge regardless of
message casting framework we are using in a message. This example shows us that
constructing a mixed environment proof has the same complexity as constructing a single
framework one.

5.3.4 Interpreting of Findings

Although our verification about the Franklin-Reiter protocol was not thorough enough to
verify all claims made by the authors, it enabled us to systematically study some of the
constructions of the protocol and be able to informally find some design faults.

The first and main issue we detected with the protocol during our verification exercise
was the lack of availability to prove goals using the bidder’s point of view. The authors
seemed to worry about embedding novel mechanisms and forgot to make available to all
peers the information needed to build their conclusion over their minimal trust base. This
creates an unbalanced protocol in the sense that the goals are available to only one subset
of peers executing the protocol.

One clear example of this lack of balance in the protocol information flow lets us
conclude that the losing bidders cannot assert that they lost in a fair way. As there is
no message flowing back to the losing bidders informing them during the other phases of
the auction protocol, there is no way to prove that they lost fairly, using the principle of
Goal Availability.

Another point that our initial verification shows concerns the requirements of multi-
casts messages the protocol uses. The authors require their atomic multicast implemen-
tation to deliver authenticated messages. As this requirement is not a standard one in
protocol design, we had to assume that the Spy was not colluding with sending peers.
This makes our proof regarding Secrecy very weak taking into consideration the protocol’s
threat model.

5.4 Considerations

In this chapter we presented parts of our verification of the Franklin-Reiter sealed bid
auction protocol with the focus of showing the suitability of our new multicast events
theory being used in a mixed environment protocol. We first discussed the Franklin-
Reiter protocol and outlined its properties and threat model. We then went through its
assumptions and design, which include a scheme where mixed message frameworks are
used. We also presented the author’s proposal for protecting the bidder anonymity against
the auction house. We concluded this section outlining some known issues of the protocol

We followed with the specification in Isabelle/HOL using the inductive method for the
Franklin-Reiter protocol. We specified some auxiliary functions we designed to help us
with a more concise specification. We specified the protocol using the Inductive method.
Following the specification, we outlined the proofs for our auxiliary functions and showed
two main lemmas we proved regarding protocol properties. The objectives of those proofs

134

were to demonstrate the feasibility of using our new multicast events theory in the verifica-
tion of a real protocol. We concluded with some of the outcomes regarding the protocol’s
properties we learned with this exercise.

Our main contribution in this chapter, aside the initial verification of the Franklin-
Reiter protocol and showing the feasibility of our multicast events theory specification is
the study and creation of methods to simplify the reasoning about the predicate analz in
cases where no key material is involved.

135

136

— Success has always been easy to measure. It is the distance

between one’s origins and one’s final achievement.

Michael Korda

6
Final Remarks

Security protocols have been an active area for computer security research in the last
three decades. Together with their design strategies we had the necessity of understand-
ing them. They create a puzzle of different security pieces tied together to yield more
complex security properties. The need of understanding why some combinations of differ-
ent techniques are able to achieve bigger and more complex goals while some others does
not, lead to what we know today as protocol verification.

Informal verification tries to draw conclusions regarding security protocols based on
the capacity of humans in learning from their mistakes, follow their intuition and executing
empirical procedures. Although simple at a first glance, informal reasoning about security
protocols properties is difficult to conduct in a thorough manner. As the goals and
primitives become more complex, the verification process becomes unmanageable. The
limitations of informality are the thoroughness of the verification process and the size of
the protocols it can manage. These limitations are clear on their output, but nevertheless
they provide a very good first line of approach even today.

Trying to address the increase in goal complexity and to unveil hidden features of
informal reasoning, we saw the introduction of formal verification methods. Formal ver-
ification methods are approaches which deal with the problem of deciding whether a
protocol fulfils its goals by applying mathematical proofs of correctness. The Inductive
Method, the focus of this thesis, is a good example of formal verification procedure we can
apply today. Its strong mathematical basis makes it powerful and yet flexible. To answer
if a protocol holds the desired properties has been the aim of various formal methods for
protocol verification. As we have seen in Chapter 2, these methods started as execution
machines to represent protocols execution. Later we saw the introduction of logic for-
malisms tailored to address some of the most basic security goals. They introduced the
use of mathematical foundations to the process of analysing the achievability of security
properties by protocols. We also looked at the division of the protocol verification area
including the two main strains of Model Checking and Theorem Proving. With the usage
of generic tools or purpose built ones, the problem of protocol verification still remains

137

undecidable. The management of undecidability is done by limiting the complexity of the
verification process.

The Inductive Method was implemented over the Isabelle/HOL theorem prover, a
tool that shows few limitations to the verification process while being built over a generic
purpose system. This generality makes the inductive method a perfect test bed for novel
formal verification efforts, especially for security protocols. It was already used to prove a
series of classical protocols [99, 101] as well as some well-known industry grade protocols,
such as the SET online payment protocol, Kerberos and SSL/TLS [26, 23]. One of its
advantages is flexibility.

We also have seen the increased interest from protocol designers in the usage of novel
security primitives and communication methods. The information revolution we live today
requires the conversion of our everyday processes to their digital counterparts. This
information revolution inherently means the introduction of more complex goals and the
necessity of better exploring the infrastructure in place. From the protocol design point
of view, we have seen the introduction of several new protocols that cannot be properly
verified using the tools available today. As examples we can cite protocols that are based
on communication methods other than Unicast and protocols that use novel and complex
security primitives such as threshold cryptography. These new characteristics are present
today in a varied set of new security protocols, such as Election Protocols [110] that
make use of broadcasts and zero knowledge proofs, or even to the ongoing e-commerce
revolution with protocols for sealed-bid auctions [58].

Our contributions in this thesis comes to address some of the shortcomings for the
formal verification methods and in special from the Inductive Method. Our effort into
extending the Inductive Method was to enable it to reason about non-Unicast message
casting methods. Based on the assumption that other message casting methods are special
cases for multicast, we built a theory for representing multicast communication (Chapter
3). The central idea of building such theory was that we should have a more flexible
infrastructure for the inductive method to represent whole new classes of protocols. We
also did experimentation with our proposed design to show its backward compatibility
(Chapter 3) and its novel implementation capabilities (Chapter 5).

In the effort of expanding the inductive method to the verification of Byzantine secu-
rity protocols (Chapter 5), we studied the introduction of threshold security primitives
and the impact of these changes to the method. We implemented a basic formalism for
presenting secret sharing schemes (Chapter 4). We also investigated the impact of embed-
ding these primitives deeper within the method. To conclude, we used these primitives
for a verification of secrecy in a Byzantine Security Protocol for sealed-bid auctions.

As remarks of our work with the Inductive Method and its extension, we can verify
the veracity of some critics regarding the method. Its very steep learning curve and
the expensive human efforts for constructing some verification are clear drawbacks for
the method. In terms of learning curve, we detected that the time to train a security
researcher to understand the method and being capable of producing initial results is
on the range of 45 man-weeks. But, we also noticed that, the training for the Inductive
Method can be made easier by first appealing to first-order logic versions of it. First-order
versions of the inductive method help beginners to fix the concepts behind the inductive
definitions and assertions while hiding the complexity of higher-order inductive proofs.
During our learning process by using a first order method, we successfully discovered

138

attacks in two real world protocols.
Nevertheless the effort in producing Isabelle/HOL proofs is big for a protocol and in

average of ten weeks for a new protocol [20], the deep understanding of the protocols
constructions becomes evident to the person performing the verification. Although we
see a push in the security protocol verification community to button push tools to do
such verifications, by our experience, we believe that for capturing novel attacks and to
represent novel security protocol goals, we need powerful and yet extensible tools such as
the Inductive Method and the theorem prover Isabelle/HOL. Once these novelty points
were tested and understood, their embedding in the ”push button” tool is a matter of
time.

On the ongoing and future research of security protocol verification, we believe we
will see more demand for methods capable of being extended and capable of representing
the interesting subtleties of the ever new designs. Extensibility becomes a key issue to
this field because of the stability it already assumed. No major theoretical breakthrough
happened in the last decade. We see that the community will be working further in
having more and more coverage for verification methods regarding the security protocols
ever growing set.

On the aspects of our direct contributions to protocol verification, we envisage the
verification of election protocols as being the next big step. With the setup for supporting
Multicast and Broadcast it is possible for a whole new family of such protocols to be
verified by the Inductive Method. This will incur in the investigation of new security
goals such as Anonymity which is very much related to the notion of privacy such voting
protocols require.

We also must recall our effort in extending the cryptographic primitives. This study
may enable the inclusion of new primitives such as zero-knowledge proofs, what can
advance even more the verification of such novel election protocols. This area of crypto-
graphic primitives extensibility and coverage seems not very explored up to this date by
most methods.

Concluding this manuscript, we see that the extension of verification tools for evalu-
ating the security of protocols not based on Unicast will demand the revision of threat
models. We have seen lately some exercises into new abstract models for threats evolving
towards more real and asymmetric scenarios. In our experimentation with the non-Unicast
events, we have seen that knowledge is distributed to peers in a different ways as in Uni-
cast. This creates asymmetry of knowledge distribution, meaning for example that one
peer is able to infer other peers knowledge by knowing they belong or not to the multicast
group. It seems that scenarios where counter attacks are possible or avoidable can become
more important in the decision of the achievability for some security goals.

139

140

Bibliography

[1] Abadi and Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15, 2002.

[2] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148(1):1–70, 10 January 1999.

[3] J. Abley and K. Lindqvist. Operation of Anycast Services. Technical Report 4786,
Internet Engineering Task Force, December 2006.

[4] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper. IANA Guidelines for IPv4
Multicast Address Assignments. RFC 3171, Internet Engineering Task Force, Au-
gust 2001.

[5] Giuseppe Anastasi, Alberto Bartoli, Nicoletta De Francesco, and Antonella Santone.
Efficient verification of a multicast protocol for mobile computing. Comput. J,
44(1):21–30, 2001.

[6] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. Wiley, 1 edition, January 2009.

[7] Myla Archer. Proving correctness of the basic TESLA multicast stream authenti-
cation protocol with TAME*. In Workshop on Issues in the Theory of Security,
Portland, OR, 2002.

[8] Alessandro Armando, David Basin , Yohann Boichut, Yannick Chevalier, and al Et.
The AVISPA tool for the automated validation of internet security protocols and
applications. In Etessami Kousha and Rajamani Sriram, editors, Computer-Aided
Verification , Edinburgh, Scotland, UK, 06/07/05-10/07/05, pages 1–5. Springer-
Verlag, 2005.

[9] Alessandro Armando and Luca Compagna. SATMC: A SAT-based model checker for
security protocols. In José Júlio Alferes and João Alexandre Leite, editors, JELIA,
volume 3229 of Lecture Notes in Computer Science, pages 730–733. Springer, 2004.

[10] Wihem Arsac, Giampaolo Bella, Xavier Chantry, and Luca Compagna. Validating
security protocols under the general attacker. In Pierpaolo Degano and Luca Viganò,
editors, ARSPA-WITS, volume 5511 of Lecture Notes in Computer Science, pages
34–51. Springer, 2009.

[11] Wihem Arsac, Giampaolo Bella, Xavier Chantry, and Luca Compagna. Multi-
attacker protocol validation. Journal of Automated Reasoning, 45:1–36, 2010.

141

[12] Jian Yin Arun, Jian Yin, Arun Venkataramani, Lorenzo Alvisi, and Mike Dahlin.
Byzantine fault-tolerant confidentiality. In International Workshop on Future Di-
rections in Distributed Computing, pages 12–15, 2002.

[13] Ashar Aziz and Whitfield Diffie. Privacy and authentication for wireless local area
networks. IEEE Personnal Comm, 1(1):25–31, July 1993.

[14] Michael Backes and Birgit Pfitzmann. Relating symbolic and cryptographic secrecy.
In IEEE Symposium on Security and Privacy, pages 171–182. IEEE Computer So-
ciety, 2005.

[15] David Basin, Sebastian Möersheim, and Luca Viganò. An on-the-fly model-checker
for security protocol analysis. In Eight ESORICS, volume 2808 of Lecture Notes in
Computer Science, pages 253–270. Springer-Verlag, Berlin Germany, 2003.

[16] David A. Basin. Lazy infinite-state analysis of security protocols. In Rainer Baum-
gart, editor, CQRE, volume 1740 of Lecture Notes in Computer Science, pages
30–42. Springer, 1999.

[17] David A. Basin, Sebastian Mödersheim, and Luca Viganò. OFMC: A symbolic
model checker for security protocols. Int. J. Inf. Sec, 4(3):181–208, 2005.

[18] Giampaolo Bella. Inductive Verification of Cryptographic Protocols. PhD thesis,
University of Cambridge, March 2000.

[19] Giampaolo Bella. Inductive verification of smart card protocols. Journal of Com-
puter Security, 11(1):87–132, 2003.

[20] Giampaolo Bella. Formal Correctness of Security Protocols. Information Security
and Cryptography. Springer, 2007.

[21] Giampaolo Bella, Stefano Bistarelli, and Fabio Massacci. Retaliation: Can we live
with flaws? In Workshop on Information Security Assurance and Security, 2005.

[22] Giampaolo Bella, Cristiano Longo, and Lawrence C. Paulson. Is the verification
problem for cryptographic protocols solved? In Bruce Christianson, Bruno Crispo,
James A. Malcolm, and Michael Roe, editors, Security Protocols Workshop, volume
3364 of Lecture Notes in Computer Science, pages 183–189. Springer, 2003.

[23] Giampaolo Bella and Lawrence C. Paulson. Kerberos version IV: Inductive analysis
of the secrecy goals. Lecture Notes in Computer Science, 1485, 1998.

[24] Giampaolo Bella and Lawrence C. Paulson. Mechanising BAN Kerberos by the
inductive method. Lecture Notes in Computer Science, 1427, 1998.

[25] Giampaolo Bella and Lawrence C. Paulson. Accountability protocols: Formalized
and verified. ACM Trans. Inf. Syst. Secur., 9(2):138–161, 2006.

[26] Giampaolo Bella, Lawrence C. Paulson, and Fabio Massacci. The verification of an
industrial payment protocol: the set purchase phase. In 9th ACM conference on
Computer and communications security, pages 12–20, New York, NY, USA, 2002.
ACM Press.

142

[27] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology, volume 773 of Lecture Notes in
Computer Science, pages 232–249. Springer-Verlag, Berlin Germany, 1994.

[28] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and mono-
tone functions. In 8th Annual International Cryptology Conference on Advances in
Cryptology, pages 27–35, London, UK, 1990. Springer.

[29] Bob Blakley, G. R. Blakley, A. H. Chan, and J. L. Massey. Threshold schemes with
disenrollment. In Ernest F. Brickell, editor, Advances in Cryptology—CRYPTO ’92,
volume 740 of Lecture Notes in Computer Science, pages 540–548. Springer-Verlag,
1993, 16–20 August 1992.

[30] George R. Blakley. Safeguarding cryptographic keys. In National Computer Con-
ference, pages 313–317. AFIPS, 1979.

[31] Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules.
In 14th IEEE Computer Security Foundations Workshop, pages 82–96, Washington
- Brussels - Tokyo, June 2001. IEEE.

[32] Carlo Blundo, Alfredo De Santis, Ugo Vaccaro, Amir Herzberg, Shay Kutten, and
Moti Yong. Perfectly secure key distribution for dynamic conferences. Inf. Comput.,
146(1):1–23, 1998.

[33] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P.
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multiparty com-
putation goes live. In Roger Dingledine and Philippe Golle, editors, Financial
Cryptography, volume 5628 of Lecture Notes in Computer Science, pages 325–343.
Springer, 2009.

[34] Yohan Boichut, Pierre-Cyrille Héam, and Olga Kouchnarenko. Automatic verifica-
tion of security protocols using approximations. INRIA Technical Report, 2005.

[35] Steve Brackin. A HOL extension of GNY for automatically analyzing cryptographic
protocols. In 9th IEEE Computer Security Foundations Workshop, pages 62–77,
Washington - Brussels - Tokyo, June 1996. IEEE.

[36] Ernest F. Brickell and Daniel M. Davenport. On the classification of ideal secret
sharing schemes (extended abstract). In G. Brassard, editor, Advances in Cryptol-
ogy, volume 435 of Lecture Notes in Computer Science, pages 278–285. Springer-
Verlag, 1990, 1989.

[37] Ian Brown, Colin Perkins, and Jon Crowcroft. Watercasting: Distributed water-
marking of multicast media. In Luigi Rizzo and Serge Fdida, editors, Networked
Group Communication, volume 1736 of Lecture Notes in Computer Science, pages
286–300. Springer, 1999.

[38] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication.
ACM Trans. Comput. Syst., 8(1):18–36, 1990.

143

[39] Franco Callegati, Walter Cerroni, and Marco Ramilli. Man-in-the-middle attack to
the https protocol. IEEE Security and Privacy, 7:78–81, 2009.

[40] Ran Canetti, Juan A. Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and Benny
Pinkas. Multicast security: A taxonomy and some efficient constructions. In IN-
FOCOM, pages 708–716, 1999.

[41] Dario Catalano and Rosario Gennaro. New efficient and secure protocols for veri-
fiable signature sharing and other applications. Journal of Computer and System
Sciences, 61, 2000.

[42] David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Comm. of the ACM, 28(10), October 1985.

[43] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash (extended
abstract). In S. Goldwasser, editor, Advances in Cryptology, volume 403 of Lecture
Notes in Computer Science, pages 319–327. Springer-Verlag, 1990, 1988.

[44] Yannick Chevalier and Laurent Vigneron. Automated unbounded verification of
security protocols. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer
Aided Verification, volume 2404 of Lecture Notes in Computer Science, pages 324–
337. Springer-Verlag, July 27–31 2002.

[45] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable se-
cret sharing and achieving simultaneity in the presence of faults (extended abstract).
In 26th Annual Symposium on Foundations of Computer Science, pages 383–395,
Portland, Oregon, 21–23 October 1985. IEEE.

[46] Ernie Cohen. First-order verification of cryptographic protocols. Journal of Com-
puter Security, 11(2):189–216, 2003.

[47] Miguel Correia, Lau Cheuk Lung, Nuno Ferreira Neves, and Paulo Verissimo. Effi-
cient byzantine-resilient reliable multicast on a hybrid failure model. In Symposium
on Reliable Distributed Systems, pages 2–11, Osaka, Japan, October 2002. IEEE.

[48] Cas J. F. Cremers. Scyther - Semantics and Verification of Security Protocols. Ph.D.
dissertation, Eindhoven University of Technology, 2006.

[49] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multi-
cast algorithms: Taxonomy and survey. ACM Comput. Surv., 36:372–421, December
2004.

[50] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key distribution
protocols. Comm. ACM, 24(7):533–536, August 1981.

[51] Danny Dolev and Andrew C. Yao. On the security of public key protocols. Infor-
mation Theory, IEEE Transactions on, 29(2):198–208, Mar 1983.

[52] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, July
1985.

144

[53] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Why is a security protocol correct. In Conference on Security and Privacy,
pages 160–171. IEEE Press, May 1998.

[54] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th Symposium on Foundations of Computer Science (FOCS), pages 427–437.
IEEE Computer Society Press, 1987.

[55] FIPS. Advanced Encryption Standard (AES). National Institute for Standards and
Technology, pub-NIST:adr, November 2001.

[56] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCann, and Lixia Zhang. A
reliable multicast framework for light-weight sessions and application level framing.
Networking, IEEE/ACM Transactions on, 5(6):784 –803, December 1997.

[57] Matthew K. Franklin and Michael K. Reiter. Verifiable signature sharing. In Ad-
vances in Cryptology, 1995.

[58] Matthew K. Franklin and Michael K. Reiter. The design and implementation of a
secure auction service. IEEE Transactions on Software Engineering, 22(5):302–312,
1996.

[59] Felix C. Gärtner. Byzantine failures and security: Arbitrary is not (always) random.
Technical report, Swiss Federal Institute of Technology (EPFL), School of Computer
and Communication Sciences, 2003.

[60] Rosario Gennaro and Pankaj Rohatgi. How to sign digital streams. Inf. Comput.,
165(1):100–116, 2001.

[61] Shafi Goldwasser. Multi party computations: past and present. In sixteenth annual
ACM symposium on Principles of distributed computing, pages 1–6, New York, NY,
USA, 1997. ACM.

[62] Dieter Gollmann. On the verification of cryptographic protocols - A tale of two
committees. Electronic Notes in Theoretical Computer Science, 32, 2000.

[63] Li Gong. A security risk of depending on synchronized clocks. Operating Systems
Review, 26(1):49–53, 1992.

[64] Roberto Gorrieri, Fabio Martinelli, and Marinella Petrocchi. Formal models and
analysis of secure multicast in wired and wireless networks. J. Autom. Reasoning,
41(3-4):325–364, 2008.

[65] T. Hardjono and B. Weis. The Multicast Group Security Architecture. RFC 3740
(Informational), March 2004.

[66] H. Harney and C. Muckenhirn. RFC 2094: Group key management protocol
(GKMP) architecture, July 1997. Status: EXPERIMENTAL.

145

[67] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive
secret sharing, or: How to cope with perpetual leakage. In Don Coppersmith,
editor, Advances in Cryptology, volume 963 of Lecture Notes in Computer Science,
pages 339–352. Springer-Verlag, Berlin Germany, 1995.

[68] Charles A. R. Hoare. Communicating sequential processes. Prentice-Hall Interna-
tional, Englewood Cliffs, N.J, 1985.

[69] Dijiang Huang and Deep Medhi. A byzantine resilient multi-path key establishment
scheme and its robustness analysis for sensor networks. In 19th International Parallel
and Distributed Processing Symposium, Denver, CO, USA, April 2005.

[70] Sorin Iftene. Secret Sharing Schemes with Applications in Security Protocols. Tech-
nical Report TR 07-01, “Al.I.Cuza” University of Iaşi, Faculty of Computer Science,
2007.

[71] Tomasz Imielinski and Jorge Navas. GPS-Based Addressing and Routing. Technical
Report 2009, IETF, November 1996.

[72] ISO/IEC. Iso/iec 9798-1:2010 information technology – security techniques – entity
authentication – part 1: General. Technical report, International Organization for
Standardization, Geneva, Switzerland., 2010.

[73] Masahiko Ito, Akinori Saito, and Takao Nishizeki. Secret sharing scheme realizing
general access structure. In IEEE Globecom, pages 99–102, 1987.

[74] Daniel Jackson. Automating first-order relational logic. In David S. Rosenblum,
editor, 8th International Symposium on the Foundations of Software Engineering,
volume 25, 6 of ACM Software Engineering Notes, pages 130–139, NY, November 8–
10 2000. ACM Press.

[75] Jay A. Kreibich. The mbone: the internet’s other backbone. Crossroads, 2(1):5–7,
1995.

[76] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems, 4, 1982.

[77] Gavin Lowe. An attack on the needham-schroeder public key authentication proto-
col. Information Processing Letters, 56(3):131–136, November 1995.

[78] Gavin Lowe. A hierarchy of authentication specifications. In Computer Security
Foundations Workshop, 1997. Proceedings., 10th, pages 31 –43, June 1997.

[79] Gavin Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6(1-2):53–84, 1998.

[80] Wenbo Mao and Colin Boyd. Towards formal analysis of security protocols. In Pro-
ceedings of the Computer Security Foundations Workshop, pages 147–158, Wash-
ington - Brussels - Tokyo, June 1993. IEEE.

146

[81] Keith M Martin, Josef Pieprzyk, Rei Safavi-Naini, and Huaxiong Wang. Chang-
ing thresholds in the absence of secure channels. Australian Computer Journal,
31(2):34–43, 1999.

[82] Jean E. Martina and Luiz A. C. Boal. A formal analysis of the brazilian elec-
tronic bill of sale protocols. In Proceedings of the Brazilian Symposium on Informa-
tion and Computer System Security, Gramado, Brazil, Semptember 2008. Brazilian
Computer Society.

[83] Jean E. Martina, Tulio C. S. de Souza, and Ricardo F. Custódio. Openhsm: An open
key life cycle protocol for public key infrastructure’s hardware security modules. In
EuroPKI’07, LNCS. Springer-Verlag, 2007.

[84] Nicholas F. Maxemchuk and David H. Shur. An internet multicast system for the
stock market. Transactions on Comp. Systems, 19:2001, 2001.

[85] Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and Reed-Solomon
codes. Communications of the ACM, 24(9):583–584, September 1981.

[86] Catherine Meadows. Formal verification of cryptographic protocols: A survey. In
Proceedings of Asiacrypt 96, 1996.

[87] Catherine Meadows. The NRL protocol analyzer: An overview. Journal of Logic
Programming, 26(2):113–131, February 1996.

[88] Catherine Meadows. Extending formal cryptographic protocol analysis techniques
for group protocols and low-level cryptographic primitives. In Pierpaolo Degano,
editor, Workshop on Issues in the Theory of Security, University of Geneva, Switzer-
land, July 2000.

[89] Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for interactive
proof: First prototype. Inf. Comput, 204(10):1575–1596, 2006.

[90] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1980.

[91] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of cryp-
tographic protocols using mur-phi. In IEEE Symposium on Security and Privacy,
pages 141–151. IEEE Computer Society, 1997.

[92] National Bureau of Standards. FIPS Publication 46-1: Data Encryption Standard,
January 1988.

[93] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication
in large networks of computers. Commun. ACM, 21(12):993–999, 1978.

[94] Roger M. Needham and Michael D. Schroeder. Authentication revisited. ACM
Operating Systems Review, 21(1):7, January 1987.

[95] Dan M. Nessett. A critique of the Burrows, Abadi and Needham logic. ACM
Operating Systems Review, 24(2):35–38, 1990.

147

[96] Barry Clifford Neuman and Stuart G. Stubblebine. A note in the use of timestamps
as nonces. Operating Systems Review, 1993.

[97] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[98] Dave Otway and Owen Rees. Efficient and timely mutual authentication. ACM
Operating Systems Review, 21(1):8–10, January 1987.

[99] Lawrence C. Paulson. Mechanized proofs for a recursive authentication protocol. In
Proceedings of The 10th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1997.

[100] Lawrence C. Paulson. Mechanized proofs of security protocols: Needham-Schroeder
with public keys. Technical Report 413, University of Cambridge, Computer Labo-
ratory, January 1997.

[101] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

[102] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In J. Feigenbaum, editor, Advances in Cryptology, volume 576 of
Lecture Notes in Computer Science, pages 129–140. Springer-Verlag, 1992, 1991.

[103] Antonio Pinto and Manuel Ricardo. Smiz - secure multicast iptv with efficient
support for video channel zapping. In Proceedings of the NAEC 2008, Networking
and Electronic Commerce Research Conference 2008, Lake Garda, Italy, September
2008.

[104] Projeto NF-e. Manual de integra cão do contribuinte - padrões técnicos de comu-
nica cão. Technical Report 2.0.2, ENCAT, Junho 2007.

[105] B. Quinn and K. Almeroth. IP Multicast Applications: Challenges and Solutions.
RFC 3170 (Informational), September 2001.

[106] Ron L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[107] Andrew W. Roscoe. Modelling and verifying key-exchange protocols using CSP and
FDR. In CSFW, pages 98–107. IEEE CS, 1995.

[108] Andrew W. Roscoe. Intensional specifications of security protocols. In 9th IEEE
Computer Security Foundations Workshop, pages 28–38, Kenmare, Co. Kerry, Ire-
land, June 1996. IEEE Computer Society Press.

[109] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with a finite number
of sessions and composed keys is NP -complete. Theor. Comput. Sci., 299(1-3):451–
475, 2003.

148

[110] Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia.
Prêt à voter: a voter-verifiable voting system. IEEE Transactions on Information
Forensics and Security, 4(4):662–673, 2009.

[111] Peter Y. A. Ryan and Steve A. Schneider. An attack on a recursive authentication
protocol — A cautionary tale. Information Processing Letters, 65(1):7–10, January
1998.

[112] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its
application to electronic voting. In Michael Wiener, editor, Advances in Cryptology,
volume 1666 of Lecture Notes in Computer Science, pages 148–164. Springer-Verlag,
Berlin Germany, 1999.

[113] Johann Schumann. Automatic verification of cryptographic protocols with
SETHEO. In William McCune, editor, Proceedings of the 14th International Confer-
ence on Automated deduction, volume 1249 of LNAI, pages 87–100, Berlin, July 13–
17 1997. Springer.

[114] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[115] Gustavus J. Simmons. The subliminal channel and digital signatures. In Advances
in Cryptology, volume 209 of Lecture Notes in Computer Science. Springer Verlag,
1984.

[116] Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: A novel approach
to efficient automatic security protocol analysis. Journal of Computer Security,
9(1/2):47–74, 2001.

[117] Markus Stadler. Publicly verifiable secret sharing. In Ueli Maurer, editor, Advances
in Cryptology, volume 1070 of Lecture Notes in Computer Science, pages 190–199.
Springer-Verlag, Berlin Germany, 1996.

[118] Graham Steel and Alan Bundy. Attacking group multicast key management proto-
cols using coral. Electr. Notes Theor. Comput. Sci, 125(1):125–144, 2005.

[119] Graham Steel and Alan Bundy. Attacking group protocols by refuting incorrect
inductive conjectures. J. Autom. Reason., 36(1-2):149–176, 2006.

[120] Graham Steel, Alan Bundy, and Ewen Denney. Finding counterexamples to in-
ductive conjectures and discovering security protocol attacks. The AISB Journal,
1(2):169–182, 2002.

[121] Paul Syverson, Catherine Meadows, and Iliano Cervesato. Dolev-yao is no better
than machiavelli. In Pierpaolo Degano, editor, Workshop on Issues in the Theory
of Security, University of Geneva, Switzerland, July 2000.

[122] Mana Taghdiri and Daniel Jackson. A lightweight formal analysis of a multicast
key management scheme. In Hartmut König, Monika Heiner, and Adam Wolisz,
editors, FORTE, volume 2767 of Lecture Notes in Computer Science, pages 240–
256. Springer, 2003.

149

[123] Martin Tompa and Heather Woll. How to share a secret with cheaters. J. Cryptology,
1(2):133–138, 1988.

[124] Christoph Weidenbach. Towards an automatic analysis of security protocols in
first-order logic. In 16th International Conference on Automated Deduction, pages
314–328, London, UK, 1999. Springer-Verlag.

[125] Chung Kei Wong and Simon S. Lam. Digital signatures for flows and multicasts.
In IEEE/ACM Transactions on Networking, pages 502–513, 1998.

[126] Kok Meng Yew, M. Zahidur Rahman, and Sai Peck Lee. Formal verification of
secret sharing protocol using coq. In 5th Asian Computing Science Conference on
Advances in Computing Science, pages 381–382, London, UK, 1999. Springer-Verlag.

[127] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. Coca: A secure dis-
tributed online certification authority. ACM Trans. Comput. Syst., 20(4):329–368,
2002.

150

