
Technical Report
Number 808

Computer Laboratory

UCAM-CL-TR-808
ISSN 1476-2986

Resource-sensitive synchronisation
inference by abduction

Matko Botinčan, Mike Dodds,
Suresh Jagannathan

January 2012

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2012 Matko Botinčan, Mike Dodds, Suresh Jagannathan

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Resource-Sensitive Synchronization Inference

by Abduction

Matko Botinčan Mike Dodds Suresh Jagannathan

Abstract

We present an analysis which takes as its input a sequential program, augmented
with annotations indicating potential parallelization opportunities, and a sequen-
tial proof, written in separation logic, and produces a correctly-synchronized par-
allelized program and proof of that program. Unlike previous work, ours is not
an independence analysis; we insert synchronization constructs to preserve relevant
dependencies found in the sequential program that may otherwise be violated by a
näıve translation. Separation logic allows us to parallelize fine-grained patterns of
resource-usage, moving beyond straightforward points-to analysis.

Our analysis works by using the sequential proof to discover dependencies be-
tween different parts of the program. It leverages these discovered dependencies to
guide the insertion of synchronization primitives into the parallelized program, and
to ensure that the resulting parallelized program satisfies the same specification as
the original sequential program, and exhibits the same sequential behaviour. Our
analysis is built using frame inference and abduction, two techniques supported by
an increasing number of separation logic tools.

1 Introduction

Automatically verifying the safety properties of shared-memory concurrent programs re-
mains a challenging problem. To be useful in practice, proof tools must (a) explore a po-
tentially large number of interleavings, and (b) construct precise flow- and path-sensitive
abstractions of a shared heap.

Just as significantly, verification complexity is often at odds with the straightforward
intentions of the programmer. Low-level concurrency control abstractions such as locks
obfuscate higher-level notions such as atomicity and linearizability, likely to be exploited
by the programmer when writing programs. While attempts to incorporate these notions
directly into programs have met with some success—for example, in software transactional
memory [20], there remains a substantial burden on the programmer to ensure programs
can be partitioned into easily-understood atomic and thread-local sections. Automated
proof engines used to verify program correctness must also assimilate this knowledge
to ensure proof-search focusses on relevant behaviour (e.g., serializability), and eschews
irrelevant details (e.g., thread-local state) [17]; the alternative, expressing such distinctions
in programmer-supplied specifications, is too often onerous to be acceptable in practice.
In any case, the inherent complexity of dealing with concurrency, both for the programmer
and for the verifier, unfortunately remains.

3

In many cases concurrency is an optimization, rather than intrinsic to the behaviour
of the program. That is, a concurrent programs is often intended to achieve the same
effect of a simpler sequential counterpart. Consequently, an attractive alternative to con-
structing a concurrent programming is to automatically synthesise one. In this approach,
the programmer writes a sequential program; the program is automatically transformed
into a concurrent one exhibiting the same behaviour [4, 3, 5, 16]1. In this context, the
verification problem becomes significantly more tractable. Understanding and verifying
the concurrent program reduces to first verifying the sequential program, and second,
verifying the parallelising transformation.

We propose a program analysis and transformation that yields a parallelized program,
guided by a safety proof of the original sequential program. To guide the transforma-
tion, we assume that the programmer annotates points in the sequential program where
concurrency can be profitably exploited, without supplying any additional concurrency
control or synchronization. The result of the transformation is a concurrent program
with corresponding behaviour, and a safety proof for the concurrent program; in this
sense, parallelized programs are verified by construction. While our analysis is driven by
a safety proof, parallelization protects all behaviours, not just those specified in the proof.
Thus we can apply our approach to complex algorithms without needing to verify total
functional correctness.

Our transformation ensures that behaviour is preserved by requiring that the con-
current program respects sequential data-dependencies. In other words, the way threads
access and modify shared resources never results in behaviour that would not be possible
under sequential evaluation. To enforce these dependencies, the transformation injects
barriers, signalling operations that regulate when threads are allowed to read or write
shared state. These barriers can be viewed as resource transfer operations which acquire
and relinquish access to shared resources such as shared-memory data structures and
regions when necessary.

Our analysis is built on separation logic [31]. By tracking how resources are demanded
and consumed within a separation logic proof, we can synthesize barriers to precisely
control access to these resources. Our approach critically relies on frame inference and
abduction [9], two techniques that generate fine-grained information on when resources
are necessary and when they are redundant. This information enables optimizations that
depend on deep structural properties of the resource—for example, we can split a linked
list into dynamically-sized segments and transmit portions between threads piece-by-piece.

Our analysis thus enforces sequential order over visible behaviours, while allowing
parallelization where it has no effect on behaviour. Insofar as our technique safely trans-
forms a sequential program into a concurrent one, it can also be viewed as a kind of
proof-directed compiler optimization. Notably, our transformation is not based on an
independence analysis—our focus is not to identify when two potentially concurrent code
regions do not interfere; instead, our analysis injects sufficient synchronization to ensure
relevant sequential dependencies are preserved, even when regions share state and thus
potentially interfere.

Contributions.

1This approach is commonly known as deterministic parallelism, although our approach does not, in
fact, require that the input sequential program is deterministic.

4

1. We present an automated technique to synthesize a parallel program given a partially-
specified sequential program augmented with annotations indicating computations
that are candidates for parallelization. The provided specifications are used to define
relevant loop invariants.

2. We leverage abduction and frame inference to define a path- and context-sensitive
program analysis capable of identifying per program-point resources that are both
redundant—these are resources that would no longer be used by the thread executing
this computation; and, needed—these are resources that would be required by any
thread that executes this computation, but which is not known to have been released
at this point.

3. We use information from the above analysis to inject grant and allowed barriers into
the original program; their semantics enable resource transfer from redundant to
needed resource points. The analysis also constructs a safety proof in separation
logic which validates the correctness of the barrier injections.

4. We prove that our transformation is specification-preserving: the parallelized pro-
gram is guaranteed to satisfy the same specification as the sequential program.
Moreover, for terminating programs that do not dispose memory, we also show that
the transformed program preserves the behaviour of the original. Complete proofs
and other supporting material can be found in appendices.

Paper structure. An overview of the approach and motivating examples are given in
§2. Issues that arise in dealing with loops and recursive datatypes (such as lists) are
discussed in §3. The analysis and transformation are formalized in §4 and §5. Behaviour
preservation results are discussed in §6. Observations about the interplay between analysis
precision and the predicates available in defining specifications are given in §7. §8 discusses
related work.

2 Overview

The objective of our analysis is to take a sequential program (with annotations indicating
where concurrency may be exploited), and to produce a parallelized program that con-
forms to the same specification. To do this, we insert synchronization barriers enforcing
those sequential dependencies that can affect the observable behaviour of the program.

Our analysis uses separation logic to capture and manipulate these dependencies. The
programmer must provide a proof of safety for the sequential program. This proof is used
to drive the parallelization process, allowing our analysis to calculate precisely which
resources can be accessed in parallel, and which must be accessed sequentially, in order
to preserve salient sequential dependencies.

2.1 Parallelization and Parallel-for

We assume that the portions of a program that can be parallelized will be written as
parallel-for loops, pfor. The intended semantics of a parallel-for loop is that every it-
eration will run in parallel, but that the behaviour will be identical to running them in

5

global *x, *y;

void main() {

local i, n;

n = nondet();

x = alloc();

y = alloc();

pfor(i=1;i++;i<n){

f(i);

}

}

void f(i){

local v=*x;

if (v>=i) {

g(y, v);

}

else {

g(x, 0);

}

}

void g(*p, v){

*p = v;

}

Figure 1: A simple parallel program that operates over shared locations x and y. The
number of concurrent iterations performed is chosen nondeterministically to represent the
act of receiving values from some unknown process or user interaction.

sequence; this semantics provides a simple but useful form of data parallelism in which
concurrently executing computations may nonetheless have access to shared state.

For example, consider the program shown in Fig. 1. How can we parallelize this
program without introducing any unwanted new behaviours, i.e., behaviours not possible
under sequential execution? Näıvely, we might simply run every iteration of the pfor in
parallel, without synchronization. That is:

f(1) || f(2) || ...

In some cases, this parallelization is good, and introduces no new observable behaviours
(e.g., if v is greater than n). But, under others, the second call to f() may write to a
memory location that is subsequently read by the first call to f(), violating intended
sequential ordering. For example, consider the case when v is initially 1 and n is 2;
sequential execution would produce a final result in which the locations pointed to by x

and y resp. are 0 and 1, while executing the second iteration before the first would yield
a result in which the location pointed to by y remains undefined.

To be sure that no new observable behaviour is introduced, we must ensure that:

• no iteration can read from a location that was already written to by a later iteration.

• no iteration can write to a location that was already read from or written to by a
later iteration.

In order to enforce this behaviour, we must introduce a mechanism to force later iterations
to wait for earlier ones.

Note, crucially, that later iterations need not always wait for earlier ones—synchronization
is only needed when reads and writes to a particular memory location could result in out-
of-order behaviour. We want to enforce salient dependencies, while allowing beneficial
race-free concurrency.

2.2 Dependency-Enforcing Barriers

Our analysis inserts barriers into the parallelized program requiring logically later itera-
tions to wait for earlier ones. We introduce grant(), a barrier that signals to subsequent

6

f1(i){

local v=*x;

if (v>=i) {

grant(wx);

ga1(y, v);

}

else {

grant(wy);

gb1(x, 0)

}

}

ga1(*p, v){

*p=v;

grant(wy);

}

gb1(*p, v){

*p=v;

grant(wx);

}

f2(i){

wait(wx);

local v=*x;

if (v>=i) {

ga2(y, v);

}

else {

gb2(x, 0);

wait(wy);

}

}

ga2(*p, v){

wait(wy);

*p=v;

}

gb2(*p, v){

*p=v;

}

Figure 2: Parallelization of f(). Only synchronization barriers between the first and
second iterations are shown.

iterations that a resource can safely be accessed, and wait(), a barrier that blocks until
the associated resource becomes available from preceding iterations [16].

How can we use these barriers to enforce sequential dependencies in the example
program? The exact pattern of parallelization depends on the granularity of our paral-
lelization analysis. In the best case, there are no dependencies between iterations (e.g.,
each iteration operates on a different portion of a data structure). In this case, we need
no barriers, and all iterations run independently. However, our example program shares
the locations x and y, meaning barriers are required. In the worst case, each iteration
of the pfor begins with a call to wait() and ends with a call to grant()—this would
enforce sequential ordering on the iterations.

A better (although still relatively simple) parallelization is shown in Fig. 2. To simplify
the presentation, we only show the synchronization barriers between the first and second
iterations of pfor. We write f1 for the first iteration, and f2 for the second. (Our
full analysis generates a single version of f() with sufficient barriers to run an arbitrary
number of iterations in parallel. See §2.6 for a description.)

Two channels, wx and wy, are used to signal between f1 and f2—wx (resp. wy) is used
to signal that the later thread can read and write to the heap location referred to by x

(resp. y). The function g() has different resource requirements depending on its calling
context. Consequently, we have specialized it to embed appropriate barriers depending
on its context.

7

Our analysis inserts barriers so that an iteration of the parallel-for only calls grant()
on a signal when the associated resource will no longer be accessed. Similarly, it ensures
that an iteration calls wait() to acquire the resource before the resource is accessed.

How does our analysis generate these synchronization barriers? The example we have
given here is simple, but in general our analysis must cope with complex dynamically-
allocated resources such as linked lists. It must deal with the partial ownership (for
example, read-access), and with manipulating portions of a dynamic structure (for ex-
ample, just the head of a linked list). We therefore need a means to express complex
(dynamic) patterns of resource management and transfer.

To achieve this, our analysis assumes a sequential proof, written in separation logic,
rather than just an undecorated program. This proof need not capture full functional
correctness—it is sufficient just to prove memory-safety. We exploit the dependencies
expressed within this proof to determine the resources that are needed at a program point,
and when they can be released. Our analysis inserts barriers to enforce the sequential
dependancies represented in this proof. As our proof system is sound, these dependencies
faithfully represent those in the original sequential program.

2.3 Resources, Separation and Dependency

At the heart of our analysis is automated reasoning using concurrent separation logic [31,
27]. Separation logic is a Hoare-style program logic for reasoning about mutable, allocat-
able resources. A separation logic proof of a program C establishes a specification

{P} C {Q}

This can be be read as saying: “the program C, if run in a resource satisfying P , will
not fault, and will give a resource satisfying Q if it terminates”. In general, a resource
can be anything for which ownership can be partitioned (‘separated’) between different
threads [11]. In practice, resources are most often heap-allocated structures such as lists,
trees, locks, etc, where separation corresponds to disjointness between underlying heap
addresses.

An essential feature of separation logic is that specifications are tight. This means
that all of the resources accessed by a program C must be described in its precondition
P , or acquired through explicit resource transfer. No other resources will be accessed
or affected by C when executed from a resource satisfying P . The tight interpretation
is essential for our analysis. Suppose we prove a specification for a program (or portion
thereof); resources outside of the precondition cannot affect the program’s behaviour, and
consequently can be safely transferred to other threads.

One result of this tight interpretation is the frame rule, which allows a small specifi-
cation to be embedded into a larger context.

{P} C {Q}

{P ∗ F} C {Q ∗ F}
Frame

Here ∗ is the separating conjunction. An assertion P ∗F is satisfied if P and F hold, and
the portions of the state they denote do not overlap.

The concurrent counterpart of the frame rule is the parallel rule. This allows two
threads that access non-overlapping resources to run in parallel, without affecting each

8

other’s behaviour.

{P1} C1 {Q1} {P2} C2 {Q2}

{P1 ∗ P2} C1‖C2 {Q1 ∗Q2}
Parallel

The parallel rule enforces the absence of data-races between C1 and C2. The two threads
can consequently only affect each other’s behaviour by communicating through race-free
synchronization mechanisms, such as locks or barriers.

Automatic inference. Automated reasoning in separation logic revolves around two
kinds of inference questions. The first, frame inference, calculates the portion of a formula
S which is ‘left over’, once another formula P has been satisfied. We call this remainder
F? the frame, and write the inference question as follows:

S ⊢ P ∗ [F?]

(Throughout the paper, we use square brackets to indicate the portion of the entailment
that is to be computed.)

The second kind of inference question, abduction, calculates the ‘missing’ formula that
must be combined with a formula S in order to satisfy some other formula P . We call
this formula A? the antiframe, and write the inference question as follows:

S ∗ [A?] ⊢ P

Frame inference and abduction form the basis of symbolic execution in separation logic [2,
9]. Intuitively, frame inference lets us reason forwards, while abduction lets us reason
backwards. Frame inference can work out which portions of the state will (and will not)
be affected by the command, while abduction can work out what extra resources are
necessary to execute the command safely.

Suppose we have a symbolic state represented by an assertion S, and a command c
with specification {P} c {Q}. If we calculate the frame in S ⊢ P ∗ [F?], the symbolic state
after executing c must be Q ∗ F?. The tight interpretation of triples is necessary for this
kind of reasoning. Because a specification must describe all the resources affected by a
thread, any resources in the frame must be unaffected. Conversely, if we calculate the
antiframe S ∗ [A?] ⊢ P , it must be the case that before executing c, we must first acquire
the additional resource A? (as well as S).

Redundant and needed resources. The tight interpretation means that a proof in
separation logic expresses all resources modified by each individual command. Because
separation logic ensures race-free behaviour, a proof also expresses all the resources that
can affect the observable behaviour of each individual command in the program. Our
parallelization analysis uses this to calculate resources that are redundant and those that
are needed during the execution of the program.

We use frame inference to determine redundant resources—resources that will not be
accessed in a particular portion of the program, and which can thus be safely transferred
to other threads. Conversely, we use abduction to determine needed resources—resources
that must be held for a particular portion of the program to complete, and which must
thus be acquired before the program can proceed safely.

9

In our analysis, we generally calculate the redundant resource from the current pro-
gram point to the start of the subsequent iteration. This resource can be transferred to
the subsequent iteration using a grant() barrier. We generally calculate the needed re-
source from the end of the previous iteration to the current program point. This resource
must be acquired from the previous iteration using a wait() barrier before execution can
proceed further.

Note that these two resources need not be disjoint. A resource may be used early in an
iteration, in which case it will be both needed from the previous iteration to the current
point, and redundant from the current point up to the next iteration. Note also that
redundant and needed resources need not cover the entire state—some resource described
in the proof may never be accessed or modified by the program.

2.4 Algorithm Overview

The user supplies a sequential program which makes use of the pfor parallel-for construct,
as well as a sequential proof written in separation logic establishing the memory-safety of
the program. The high-level structure of our algorithm is then as follows:

1. The resource usage analysis phase uses abduction and frame inference to discover
redundant and needed resources for different portions of the program.

2. The parallelising transformation phase consists of two parts:

(a) The resource matching phase matches redundant resources in one iteration of
the parallel-for with needed resources in the subsequent iteration.

(b) The barrier insertion phase converts the sequential program into a concurrent
program and inserts grant() and wait() barriers consistent with the discov-
ered resource-transfer.

The result is a parallelized program, and its separation logic proof.

2.5 Resource Usage Analysis

The resource usage analysis takes as its input the program, and a separation logic proof
for the program for some specification. Consider once again the functions f() and g(),
which we introduced at the start of this section. Let us assume the programmer proves
the following specification:

{x 7→ x ∗ y 7→ y} f(i) {(x ≥ i ∧ x 7→ x ∗ y 7→ x) ∨ (x 7→ 0 ∗ y 7→ y)}

Fig. 3 shows an outline proof of this specification.
For each program point, the resource usage analysis computes a pair of assertions:

the needed resource and the redundant resource (see Fig. 4). The needed resource is
the portion of the sequential precondition required to reach the program point without
faulting; the redundant resource is the portion of the resource held in the sequential proof
that is unnecessary for reaching the end of the function. In other words, needed assertions
at program point p denote resources that are needed from the beginning of the function

10

{

x 7→ x ∗ y 7→ y
}

void f(i) {
{

x 7→ x ∗ y 7→ y
}

local v = *x;
{

v = x ∧ x 7→ x ∗ y 7→ y
}

if (v >= i) {
{

v = x ∧ v ≥ i ∧ x 7→ x ∗ y 7→ y
}

g(y, v);

}

else {
{

v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y
}

g(x, 0);

}

}
{

(x ≥ i ∧ x 7→ x ∗ y 7→ x) ∨ (x 7→ 0 ∗ y 7→ y)
}

{

p 7→ ∧ v = v
}

void g(*p, v) {
{

p 7→ ∧ v = v
}

*p = v;

}
{

p 7→ v
}

Figure 3: Proofs of functions f() and g().

up to (but not including) p; redundant assertions denote resources that are not required
from p to the end of the function.

For example, in f the needed resource at the start of the else-branch of the conditional
is:

x < i ∧ x 7→ x

This asserts that the thread reaching this point still requires access to x, provided v < i.
According to the sequential proof in Fig. 3, the program actually holds the resource:

v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y

To calculate the redundant resource, we ask the following frame-inference question, com-
puting the frame F?.

v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y ⊢ x < i ∧ x 7→ x ∗ [F?]

The resulting redundant resource is as follows:

F? : v = x ∧ x < i ∧ y 7→ y

This asserts that a thread executing this function will no longer require access to y at this
point, whenever v < i.

2.6 Generalizing to n Threads

Our analysis can handle an unbounded number of loop iterations running in parallel.
Fig. 5 shows the final parallelization of our example, generalized to deal with an arbitrary
number of iterations.

A pfor is translated to a sequential for loop, in which each iteration forks a new copy
of the parallelized loop body. Resources are transferred between the threads in order

11

void f(i) {

n:
{

emp
}

r :
{

x < i ∧ y 7→ y
}

local v = *x;

n:
{

x 7→ x
}

r :
{

x ≥ i ∧ x 7→ x) ∨ (x < i ∧ y 7→ y)
}

if (v >= i) {

n:
{

x ≥ i ∧ x 7→ x
}

r :
{

x ≥ i ∧ x 7→ x
}

g(y, v); −→ void g(*p, v) {

n:
{

x ≥ i ∧ x 7→ x
}

r :
{

x ≥ i ∧ x 7→ x
}

*p = v;

n:
{

x ≥ i ∧ x 7→ x ∗ y 7→ y
}

r :
{

x 7→ x ∗ y 7→ y
}

}

}

else {

n:
{

x < i ∧ x 7→ x
}

r :
{

v = x ∧ x < i ∧ y 7→ y
}

g(x, 0); −→ void g(*p, v) {

n:
{

x < i ∧ x 7→ x
}

r :
{

v = x ∧ x < i ∧ y 7→ y
}

*p = v;

n:
{

x < i ∧ x 7→ x
}

r :
{

x 7→ x ∗ y 7→ y
}

}

}

n:
{

(x ≥ i ∧ x 7→ x ∗ y 7→ y) ∨ (x < i ∧ x 7→ x)
}

r :
{

x 7→ x ∗ y 7→ y
}

}

Figure 4: Redundant and needed resources in the function f(). Function g() is inlined,
as its resource usage depends on the calling context.

12

of thread-creation. That is, the nth iteration of the pfor acquires resources from the
logically-preceding (n− 1)th iteration, and releases resources to the logically (n+ 1)th
iteration. This ordering is implemented through shared channels—a thread shares with
its predecessor a set of channels for receiving resources, and with its successor a set of
channels for sending resources.

The number of threads—and so, the required number of
channels—is potentially decided at run-time. Consequently, channels are dynamically
allocated in the main for-loop using the newchan() operation [16]. Each iteration cre-
ates a set of new channels, and passes the prior and new set to the forked thread. The
parallelized version of f (Fig. 5) now takes four channel arguments, a pair of each for
x and y. The prior channels are used for resource transfer with the logically-preceding
thread (here wx, wy), and the new channels are used to communicate resource transfer
with the logically-following thread (here, wx’, wy’).

Our analysis generates two versions of function g, specialized to the two contexts in
which it is invoked. Function ga executes when v >= i. Here, the executing thread
needs write access to y, which it acquires by calling wait(wyp). Function gb needs write
access to x, but it runs in a context where the resource x has already been acquired.
Consequently, it need not call wait(). Both versions release a resource to the following
thread using grant() before returning.

3 Loops and Recursive Data Structures

Up to this point, we have dealt with channels transferring single heap locations injected
into straight-line code. Our analysis can in fact handle more complicated heap-allocated
data-structures such as linked lists, and control-flow constructs such as loops. To il-
lustrate, consider the example program sum_head(n) shown (and verified) in Fig. 6.
sum_head(n) sums the values stored in the first n elements of the list, then zeros the
rest of the list.

An important feature of our approach is that the input safety proof need not specify
all the relevant sequential properties; all sequential dependencies are enforced. Thus we
can see sum_head as representative of the class of algorithms that traverse the head of a
list, then mutate the tail. With minor modifications, the same proof pattern would cover
insertion of a node into a list, or sorting the tail of the list.

Consider two calls to this function within a parallel-for:

void main(){

pfor(i=1; i++; i<3){

n=nondet(); sum_head(n);

}

}

As above, for the sake of exposition we specialize the first and second iterations of the
pfor loop, calling them sum_head1 and sum_head2. Our analysis generalizes to n itera-
tions exactly as described in §2.6. The barriers injected into sum_head must enforce the
following properties:

13

void main() {

local i, n = nondet();

x = alloc(); y = alloc();

chan wx’, wy’;

chan wx = newchan(); chan wy = newchan();

grant(wx); grant(wy);

for (i = 0; i++; i < n) {

wx’ = newchan(); wy’ = newchan();

fork(f(i, wx, wy, wx’, wy’));

wx = wx’; wy = wy’;

}

wait(wx); wait(wy);

}

f(i, wxp, wyp, wx, wy){

wait(wxp);

local v = *x;

if (v >= i) {

grant(wx);

ga(y, v, wy);

}

else {

wait(wyp);

grant(wy);

gb(x, 0, wx);

} }

ga(*p, v, wyp, wy){

wait(wyp);

*p = v;

grant(wy);

}

gb(*p, v, wx){

*p = v;

grant(wx);

}

Figure 5: Parallelization of our running example generalized to deal with n threads.
Channels are used to signal availability of resources from one thread to another.

14

lnode *hd;
{

hd 7→ h ∗ lseg(h, nil)
}

sum_head(n) {

local i, sum, x;

int i = 1;

int sum = 0;

x = *hd;
{

hd 7→ x ∗ lseg(x, nil)
}

// entailment on lseg predicate
{

hd 7→ h ∗ lseg(h, x) ∗ lseg(x, nil)
}

while(x!=nil && i!=n) {
{

hd 7→ h ∗ lseg(h, x) ∗ ∃v, y. x.val 7→ v ∗ x.nxt 7→ y ∗ lseg(y, nil)
}

sum += x.val;

i++;

x = x.nxt;

}
{

hd 7→ h ∗ lseg(h, x) ∗ lseg(x, nil)
}

while(x!=nil) {
{

hd 7→ h ∗ lseg(h, x) ∗ ∃v, y. x.val 7→ v ∗ x.nxt 7→ y ∗ lseg(y, nil)
}

x.val = 0;

x = x.nxt;

}

}
{

hd 7→ h ∗ lseg(h, nil)
}

Figure 6: Separation logic proof of sum_head, a list-manipulating program whose auto-
mated parallelization requires reasoning over complex assertions and predicates.

15

sum_head1(n){

i = 1;

sum = 0;

x = *hd;

while(x!=nil && i!=n){

sum+=x.val;

i++;

x = x.nxt;

}

*xpr = x;

grant(i1);

while(x!=nil){

x.val = 0;

x = x.nxt;

}

grant(i2);

}

sum_head2(n){

i = 1;

sum = 0;

wait(i1);

x = *hd;

while(x!=nil && i!=n){

if(x==*xpr) wait(i2);

sum +=x.val;

i++;

x = x.nxt;

}

while(x!=nil){

if(x==*xpr) wait(i2);

x.val = 0;

x = x.nxt;

}

}

Figure 7: Parallelization of sum_head for two threads.

• sum_head2 must not write to a list node until sum_head1 has finished both writing to
and reading from it. Consequently, if n2 < n1, sum_head2 must wait for sum_head1
to finish summing the values stored in the first n1 nodes before writing to them.

• sum_head2 must not read from a list node until sum_head1 has finished writing to
them. Consequently, sum_head2 must wait for sum_head1 to finish zeroing the value
stored in a node before reading from the node.

This example is substantially more subtle than our earlier one, requiring more than a
simple points-to analysis, because the list is not divided into statically-apparent reachable
segments. In the worst case, a wait() at the start of sum_head2() and a grant() at
the end of sum_head1() enforces sequential order. However, by reasoning about the
structure of the manipulated list using the safety proof given in Fig. 6, our approach can
do considerably better.

The parallelization synthesized by our analysis is shown in Fig. 7 (the general k-thread
version is shown in Fig. 8). This parallelization divides the list into two segments, consist-
ing of the portions read and written to by sum head1(). A shared heap-location xpr stores
the starting address of the portion written by sum_head1(). The thread sum_head2() uses
xpr to control when to access the second segment of the list2. We discuss how the analysis
materializes xpr below.

Handling dynamic structures means dealing with allocation and disposal. Fortunately,
separation logic handles both straightforwardly. Updates to the data-structure and ob-
ject allocation are by assumption reflected in the invariants of the original sequential
proof. Thus updates and allocations are also reflected in the invariants which our analysis
constructs to represent the contents of channels. However, introducing allocation and

2For simplicity, here we write sum head2 with wait controlled by conditionals. The actual transfor-
mation performs syntactic loop-splitting to avoid the need to modify the loop invariant. Details are given
in §5.2.

16

void main() {

local i, k = nondet();

x = alloc(); y = alloc();

chan i1, i2;

chan i1p = newchan();

chan i2p = newchan();

grant(i1p); grant(i2p);

for (i = 0; i++; i < k) {

xft = alloc();

i1 = newchan(); i2 = newchan();

fork(sum_head(n,i1p,i2p,

i1,i2,xpr,xft));

xpr = xft;

i1p = i1; i2p = i2;

}

wait(i1p); wait(i2p);

}

sum_head(n,i1p,i2p,i1,i2,xpr,xft){

i = 1;

sum = 0;

x = *hd;

wait(i1p);

while(x!=nil && i!=n){

if(x==*xpr) wait(i2p);

sum+=x.val;

i++;

x = x.nxt;

}

*xft = x;

grant(i1);

while(x!=nil){

if(x==*xpr) wait(i2p);

x.val = 0;

x = x.nxt;

}

grant(i2);

}

Figure 8: Generalised parallelisation of sum_head for k threads.

disposal affects the behaviour-preservation result discussed in §6; this result ensures the
program behaviour is unaffected by the translation (i.e. the translation enforces deter-
ministic parallelism).

Reasoning about list segments. We assume that our separation logic domain in-
cludes the predicate lseg(x, t), which asserts that a segment of a linked list exists with
head x and tail-pointer t. We define lseg as the least separation logic predicate satisfying
the following recursive equation3:

lseg(x, t) , x = t ∧ emp ∨
∃v, y. x.val 7→ v ∗ x.nxt 7→ y ∗ lseg(y, t)

We assume that the programmer proves the following specification for the sequential
version of sum_head:

{hd 7→ h ∗ lseg(h, nil)} sum_head(n) {hd 7→ h ∗ lseg(h, nil)}

This specification is trivial: all it says is that executing sum_head beginning with a list
segment, results in a list segment. Fig. 6 shows a proof of this specification.

We run our resource-usage analysis over the program to determine redundant and
needed resources. Consider the following loop from the end of sum_head1:

3Our analysis depends strongly on the choice of these basic predicates. See §7 for a discussion of
alternatives to lseg.

17

...

while(x!=nil) {

x.val = 0; x = x.nxt;

}

Our analysis reveals that only the resource defined by lseg(x, nil) is needed from the start
of this loop to the end of the iteration. Comparing this resource to the corresponding
invariant in the sequential proof reveals that the resource ∃h. hd 7→ h∗ lseg(h, x) is redun-
dant at this point. This assertion represents the segment of the list that has already been
traversed, from the head of the list to x.

Materialization and barrier injection. Notice that the assertions generated by our
analysis are partly expressed in terms of the local variable x, which may change during
execution. In order to safely transfer these assertions to subsequent iterations of the pfor,
we need them to be globally accessible and invariant. To satisfy this goal, we could simply
existentially quantify the offending variable, x, giving a redundant invariant

∃h, y. hd 7→ h ∗ lseg(h, y)

However, such a weakening loses important information, in particular the relationship
between the necessary resource, the list segment from x and the tail of the list. To retain
such dependency relationships, our analysis materializes the current value of x into a
location xpr shared between sum_head1 and sum_head2. An assignment is injected into
sum_head1 at the start of the second loop:

...

*xpr = x;

while(x!=nil) {

...

After the assignment to xpr, the redundant state can now be described as follows:

∃h, y. hd 7→ h ∗ lseg(h, y) ∗ xpr
1/2
7−→ y

Here we use fractional permissions in the style of [6] to allow a location to be shared

between threads. The assertion xpr
1/2
7−→ y represents fractional, read-only permission

on the shared location xpr. This helps in binding together the head of the list and the
remainder of the list when they are recombined.

When traversing the list, sum_head2 compares its current position with xpr. If it
reaches the pointer stored in xpr, it must wait to receive the second, remainder segment
of the list from sum_head1.

18

4 Technical Background

4.1 Programming Language and Representation

We assume the following heap-manipulating language4:

e ::= x | nil | t(ē) | . . . (expressions)

b ::= true | false | e = e | e 6= e | . . . (booleans)

a ::= . . . (atomic commands)

C ::= C; C | ℓ : skip | ℓ : a | ℓ : x := f(ē) | ℓ : return e
| ℓ : if(b) {C } else {C } | ℓ : while(b) {C }

P ::= global r̄; (f(x̄) {local ȳ; C })+

To simplify the exposition slightly, we assume a fixed input program P of the following
form:

mainP() { pfor(C1;C2; b) { work(); } }

Our parallelization approach generates a new program Ppar that allows safe execution of
(a transformed version of) work in separate threads. We denote by Func ∋ {main, work}
the set of functions declared in a program P.

Labelling of commands. Every command C ∈ Cmd in the program is indexed by
a unique label ℓ ∈ Label; function identifiers are also treated as labels. We identify a
particular command by its label, and when needed denote by cmd(ℓ) the command at the
label ℓ. The set of all labels occurring in C is given by Lbs(C). The left-hand side of Fig.
9 shows a labelling of the functions f and g.

Commands within a block (function, if-else or while) form a sequence identified by
the sequence of the corresponding labels. Functions pred, succ : Label ⇀ Label return the
label of the previous (the next, resp.) command in the sequence. For ℓ corresponding to
a function name, a function call or a while loop, the predecessor of the first command
and successor of the last command in the block are denoted by ℓs and ℓe, respectively.
For ℓ corresponding to if-else, ℓts (ℓte) and ℓfs (ℓfe) are labels of the predecessor of the
first (the successor of the last) commands in the if and else branches, respectively.

Given labels ℓ and ℓ′ within the same block, we say that ℓ < ℓ′ if ∃n ≥ 1 such that
ℓ′ = succn(ℓ). Let ℓ↑ and ℓ↓ denote the smallest (resp. largest) label in the block containing
ℓ. Let [ℓ, ℓ′〉 denote the sequence of labels between ℓ inclusively and ℓ′ exclusively, and let
P[ℓ,ℓ′〉 stand for the corresponding program fragment. Analogously, we define 〈ℓ, ℓ′〉 and
P〈ℓ,ℓ′〉.

Program representation. A program is represented via a control-flow graph with
Label as the set of nodes and as the set of edges all (ℓ, ℓ′) such that ℓ corresponds to a label
of a function call and ℓ′ ∈ 〈ℓs, ℓe〉, or ℓ corresponds to if-else and ℓ′ ∈ 〈ℓts, ℓ

t

e〉 ∪ 〈ℓfs, ℓ
f

e〉.
A path delimiter is a finite sequence of nodes in the control-flow graph. Intuitively, a
path delimiter represents the sequence of function calls and conditionals that need to be
traversed in order to reach a particular assertion. Due to the structure of our analysis,
we are only interested in the set of path delimiters in the function work, denoted by AP.

4To avoid introducing an extra construct, we define for(C1;C2; b){C3} as C1; while(b){C2;C3}.

19

void f(int i){

ℓ1 : int v = *x;

ℓ2 : if (v >= i){

ℓ3 : g(y, v);

}

else{

ℓ4 : g(x, 0);

}

}

void g(int* p,

int v){

ℓ5 : *p = v;

}

fs : x 7→ x ∗ y 7→ y

ℓ1 : x 7→ x ∗ y 7→ y

ℓ2 : v = x ∧ x 7→ x ∗ y 7→ y

ℓ3 : v = x ∧ v ≥ i ∧ x 7→ x ∗ y 7→ y

ℓ4 : v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y

fe : (x ≥ i ∧ x 7→ x ∗ y 7→ x)∨
(x < i ∧ x 7→ 0 ∗ y 7→ y)

gs : p 7→ ∧ v = v

ℓ5 : p 7→ ∧ v = v

ge : p 7→ v

Figure 9: Left: labels for commands in f and g. Right: associated assertions in the
sequential proof.

We often want to manipulate and compare path delimiters. For γ = ℓ1 . . . ℓn ∈ AP, we
write γ[i] to denote ℓi, γ[i..j] to denote ℓi . . . ℓj and |γ| to denote the length n. For path
delimiters γ and γ′, γ f γ′ denotes their longest common prefix, i.e., for k = |γ f γ′| we
have ∀j ≤ k, γ f γ′ = γ[j] = γ′[j] and if |γ|, |γ′| > k then γ[k + 1] 6= γ′[k + 1]. We define
a partial order ≺ on AP as follows. We say that γ ≺ γ′ iff γf γ′ = γ and |γ| < |γ′|, or for
k = |γ f γ′| we have |γ|, |γ′| > k and γ[k + 1] < γ′[k + 1]. We say that γ � γ′ iff γ ≺ γ′

or γ = γ′.

Lemma 1. (AP,�) is a lattice with the least element works and the greatest element
worke.

For Γ ⊆fin AP we define max(Γ) as max(Γ) := {γ ∈ Γ | ¬∃γ′ ∈ Γ . γ ≺ γ′}. We define
min(Γ) analogously.

4.2 Assertion Language and Theorem Prover

Assertions in our approach are expressed using a class of separation logic formulae called
symbolic heaps. A symbolic heap ∆ is a formula of the form ∃x̄ .Π ∧ Σ where Π (the pure
part) and Σ (the spatial part) are defined by:

Π ::= true | e = e | e 6= e | p(e) | Π ∧ Π

Σ ::= emp | x 7→ e | lseg(e, e) | s(e) | Σ ∗ Σ

Here x̄ are logical variables, e ranges over expressions, p(e) is a family of pure (first-order)
predicates (such as e.g., arithmetic inequalities, etc), and s(e) a family of other spatial
predicates (such as e.g., doubly-linked lists, trees, etc) besides points-to and linked-list
predicates previously discussed. We refer to the pure and the spatial part of ∆ as ∆Π and
∆Σ. We denote set of all quantifier-free first-order formulae built in the same way as Π
but also allowing the ∨ connective by Π∨.

During our analysis, we often need to substitute variables, for example when recasting
an assertion into a different calling context. If ̺ = x̄ 7→ ē is a mapping from variables in

20

x̄ to ē then by ∆[̺] we denote the formula obtained by simultaneously substituting every
occurrence of xi in ∆ with the corresponding ei. We denote by δ−1 the inverse variable
mapping, if δ is injective5.

The set of all symbolic heaps is denoted by SH. We represent a disjunction of symbolic
heaps as a set and interchangeably use the ∪ and ∨ operators. The set of all disjunctive
symbolic heaps is P(SH). We overload the ∧ and ∗ operators in a natural way: for
∆i = Πi ∧Σi, i = 1, 2, we define ∆1 ∗∆2 = (Π1 ∧Π2) ∧ (Σ1 ∗ Σ2), Π ∧∆i = (Π ∧Πi) ∧Σi

and Σ ∗ ∆i = Πi ∧ (Σ ∗ Σi). Operators ∧ and ∗ distribute over ∨, thus we allow these
operations on disjunctive heaps just as if they were on symbolic heaps and furthermore
use the same notation ∆ to refer to both symbolic and disjunctive symbolic heaps.

We assume a sufficiently powerful (automated) prover for separation logic that can
deal with three types of inference queries:

• ∆1 ⊢ ∆2 ∗ [∆F] (frame inference): given ∆1 and ∆2 find the frame ∆F such that
∆1 ⊢ ∆2 ∗ ∆F holds;

• ∆1 ∗ [∆A] ⊢ ∆2 (abduction): given ∆1 and ∆2 find the “missing” assumption ∆A

such that ∆1 ∗ ∆A ⊢ ∆2 holds;

• ∆1 ∗ [∆A] ⊢ ∆2 ∗ [∆F] (bi-abduction): given ∆1 and ∆2 find ∆A and ∆F such that
∆1 ∗ ∆A ⊢ ∆2 ∗ ∆F holds.

As before, square brackets denote the portion of the entailment that should be computed.
We sometimes write [] for a computed assertion that is existentially quantified and will
not be reused.

None of these queries has a unique answer in general. However, for our analysis any
answer is acceptable (though some will give rise to a better parallelization than the others).
Existing separation logic tools generally provide only one answer.

4.3 Sequential Proof

We assume a separation logic proof of the program P, represented as a map P : Label →
P(SH). Intuitively, assertions in the proof have the property that for any label ℓ executing
the program from a state satisfying P(ℓ) up to some subsequent label ℓ′ will result in a
state satisfying P(ℓ′), and will not fault.

More formally, we assume functions Pre,Post : Label ⇀ P(SH) associating labels of
atomic commands and function calls with their pre- and post-condition, respectively, and
a function Inv : Label ⇀ P(SH) associating while labels with loop invariants. We also
assume Ω, a mapping from labels to variable substitutions such that Ω(l) = x̄ 7→ x̄′ maps
formal variables x̄ in the specification assertion to actual variables x̄′ in the proof assertion.
Finally, we assume a function F : Label ⇀ P(SH) giving the framed portion of the state.
We write ∆[Ω(l)] to represent the heap constructed by applying the substitutions defined
by Ω(l) to the assertion ∆.

5In our framework, substitutions are always guaranteed to be injective because the variables being
substituted correspond to heap locations and channel resources whose denotations are guaranteed to be
distinct; if the substitution involves values, then they must be implicitly existentially quantified, and can
therefore be assumed to be distinct.

21

Then at each label ℓ we have P(ℓ) ⊢ Pre(ℓ)[Ω(ℓ)] ∗ F(ℓ) and Post(ℓ)[Ω(ℓ)] ∗ F(ℓ) ⊢
P(succ(ℓ)). If ℓ is a while label then Pre(ℓ) and Post(ℓ) are replaced by Inv(ℓ).

This structure means that the proof is modular, i.e., each atomic command, function
and loop is given a specification “in isolation”, without a reference to the particular
context in which the specification is being used. The right-hand side of Fig. 9 shows a
proof for the functions f and g which is in this form. Our approach is agnostic to the
method by which the proof P is created: it can be discovered automatically (e.g., by a
tool such as Abductor [9]), prepared by a proof assistant, or written manually.

Proof assertions inlining. The proofP assumes use of a modular specification for each
function. However, our analysis needs to refer to the assertions in the local function with
respect to the variables of the caller, all the way up to the top-most work function. We
therefore define a process for lifting local assertions with respect to their global contexts.

For γ ∈ AP such that |γ| = n and ℓ1, . . . , ℓn are the labels corresponding to the function
calls (in the order of occurrence as in γ) we define the lifted (“inlined”) proof assertion
P(γ) as

F(ℓ1) ∗ (F(ℓ2) ∗ ... (F(ℓn) ∗P(γ[m])[Ω(ℓn)])[Ω(ℓn−1)]...)[Ω(ℓ1)]

Intuitively, the assertion P(γ) represents the “global” proof state at γ (including the
framed portions) in terms of work’s variables.

Finally, let pc : AP ⇀ Π∨ represent the path constraint associated with each path
delimiter. The path constraint at γ comprises the pure part of P(γ) corresponding to the
assumptions from the conditionals encountered on the way from works to γ. The path
constraint may be extracted directly from the proof or computed by some other means.

5 Parallelization Algorithm

We now formally define our parallelization algorithm. The goal of our approach is to
construct a parallelized version of the input program P. In particular, our approach
generates a new function work′ in Ppar (invoking possibly transformed callees) such that

mainPpar
() {

// initial channel creation.

for(C1;C2; b) {
// channel creation.

fork(work′, . . .);

}
// channel finalization.

}

has the same behaviour as the original mainP.

5.1 Resource Usage Analysis

Our approach to parallelization traverses the program by referring to a finite prefix-
and <-closed subset of path delimiters P ⊆fin AP. This subset reflects the portions of

22

Algorithm 1 Computing locally needed resources using backward symbolic execution.

function Needed-Loc((ℓ′, ℓ′′) : Label× Label,∆: P(SH))
ℓ := ℓ′′

while ℓ 6= ℓ′ do
ℓ := pred(ℓ)
if cmd(ℓ) matches if(b) {C } else {C ′ } then

∆ := P(ℓ)Π ∧
(

Needed-Loc((ℓts, ℓ
t

e),∆) ∪Needed-Loc((ℓfs, ℓ
f

e),∆)
)

if cmd(ℓ) matches while(b) {C } then

Inv(ℓ)[Ω(ℓ)] ∗ [∆A] ⊢ ∆ ∗ []
∆ := P(ℓ)Π ∧ (Inv(ℓ)[Ω(ℓ)] ∗ ∆A)

else

Post(ℓ)[Ω(ℓ)] ∗ [∆A] ⊢ ∆ ∗ []
∆ := P(ℓ)Π ∧ (Pre(ℓ)[Ω(ℓ)] ∗ ∆A)

return ∆

the program that are path- and context-sensitive targets of parallelization. The set P

provides precise control over which functions the analysis should address, but how this
set is chosen is not considered here. Function invocations whose successors are not in P

are treated as a single operation with effects defined by their specification.
The goal of resource usage analysis is to compute the maps:

redundant : P× P ⇀ P(SH)

needed : P× P ⇀ P(SH)

For p, q ∈ P such that p ≺ q, redundant(p, q) gives the resources that are guaranteed to
not be accessed by the program between p and q. In parallelization, these are resources
that can safely be transferred to other parallel threads. For p ≺ q, needed(p, q) gives
the resources that might be accessed during execution from p to q. In parallelization,
these are the resources that must be acquired before execution of the current thread can
proceed.

The function Needed-Loc (Alg. 1) uses backward symbolic execution to compute
needed resources between pairs of path delimiters (ℓ′, ℓ′′) in the same function block. It
uses the pure parts of the sequential proof to guide the abductive inference. Since we al-
ready have function summaries and loop invariants in the sequential proof, Needed-Loc

gives a symbolic heap sufficient to execute the fragment P[ℓ′,ℓ′′〉.

Lemma 2. Needed-Loc(ℓ′, ℓ′′) is a sufficient precondition for P[ℓ′,ℓ′′〉.

Proof. Follows from the disjunctive version of the frame rule:

{P}C {
∨

i∈I Qi} ∆ ∗
∨

j∈J ∆A
j ⊢ P ∗

∨

k∈K ∆F
k

{
∨

j∈J (∆ ∗ ∆A
j)}C {

∨

i∈I,k∈K(Qi ∗ ∆F
k)}

and Hoare’s rule of composition.

The function Needed(γe, γs) (Alg. 2) lifts Needed-Loc to the context-sensitive inter-
procedural level. Given two assertion points represented as path delimiters γs and γe,

23

Algorithm 2 Computing needed resources.

function Needed(γs : P, γe : P)
k := |γe|
∆ := P(γe)
while k > |γs f γe|+ 1 do

̺ := Ω(γe[1..k])
∆ := Needed-Loc((γe[k]↑, γe[k]),∆[̺−1])[̺]
k := k − 1
if cmd(γe[k]) is function call then

∆ := ∆[Ω(γe[k])
−1]































A

̺ := Ω(γs[1..k])
∆ := Needed-Loc((γe[k], γs[k]),∆[̺−1])[̺]
while k < |γs| do

if cmd(γs[k]) is function call then
∆ := ∆[Ω(γs[k])]

k := k + 1
̺ := Ω(γs[1..k])
∆ := Needed-Loc((γs[k], γs[k]↓),∆[̺−1])[̺]































B

return ∆

Needed(γe, γs) works by successively pushing backwards an assertion ∆ from γe to γs.
The algorithm operates in two phases. In phase A, it steps backwards from γe towards the
outermost calling context in the function-invocation hierarchy. This context, represented
as the longest common prefix of γs and γe, is the dominator of the two functions in which
γs and γe are found in the function call graph. Phase B of the algorithm keeps stepping
backwards, but proceeds inwards into the function-invocation hierarchy towards γs. Both
phases of the algorithm use Alg. 1 to compute the needed resources in-between function
call boundaries: in phase A we establish the needed assertions from the dominating point
to γe, and in phase B from γs to the dominating point.

Since the invariants of the input proof are written in terms of the outermost calling
context, comparing locally-computed specifications with these invariants requires the local
specifications to be recast in terms of the outer context. In the first line of phase A we
construct a variable substitution ̺ that recasts the assertion in terms of the calling context
at the start of γe. The second line constructs ∆[̺−1]—the running state recast in terms
of γe’s starting context; this is typically the context defined by the work() function used
in a pfor command. Needed-Loc constructs a new needed state up to the start of the
current block. Finally, ̺ recasts the resulting state back into the current context. When
a function call is reached, we unwind the variable substitution by one call since we now
have moved from the callee’s context to a caller’s. Operations in phase B are similar.

The results computed byNeeded are tabulated as follows. IfP(γs) ⊢ Needed(γs, γe)∗
[], then needed(γs, γe) := P(γs)

Π ∧ Needed(γs, γe); otherwise, needed(γs, γe) := P(γs).

Lemma 3. needed(γs, γe) is a sufficient precondition to execute P from γs to γe.

In order to be able to use the needed map further in the algorithm we must ensure
that it grows monotonically, i.e., that ∀γ, γ′, γ′′ ∈ P such that γ ≺ γ′ ≺ γ′′ we have
needed(γ, γ′′) ⊢ needed(γ, γ′) ∗ []. If the underlying theorem prover behaves consistently

24

Algorithm 3 Computing redundant resources

function Redundant(γs : P, γe : P)
P(γs) ⊢ Needed(γs, γe) ∗ [∆R]
return ∆R

fe

ℓ1 x < i ∧ y 7→ y

ℓ2
(v = x ∧ v ≥ i ∧ x 7→ x)
∨ (v = x ∧ v < i ∧ y 7→ y)

ℓ2ℓ3 v = x ∧ v ≥ i ∧ x 7→ x
ℓ2ℓ3ge v = x ∧ v ≥ i ∧ x 7→ x ∗ y 7→ y
ℓ2ℓ4 v = x ∧ v < i ∧ y 7→ y
ℓ2ℓ4ge v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y

Figure 10: redundant map with respect to fe.

with respect to failing and precision this property always holds. However, we can also
make an additional check and insert assertions from the sequential proof as needed.

The redundant resource between two path delimiters is the portion of the inlined
proof-state in P that is not required by the needed map. In Alg. 3 we calculate this by
frame inference.

Lemma 4. If P(γs) ⊢ redundant(γs, γe)∗ [∆] then ∆ is a sufficient precondition to execute
P from γs to γe.

Consider the functions f and g from §2. Fig. 9 shows the labels and sequential proof for
these functions. The map obtained by Needed is shown in Fig. 1. Fig. 10 shows the map
computed by Redundant with respect to path delimiter fe. The full set of intermediate
assertions are shown in two tables in Appendix C.

5.2 Parallelising Transformation

We now describe a parallelising transformation based on our resource-usage analysis. The
construction proceeds in two phases. First, we compute an idealized resource transfer
between threads. Then we inject grant and wait barriers to realise this resource transfer.
The resource transfer mechanism transfers a resource from one invocation of the work

function to another.
This parallelising transformation can be viewed as just one application of the resource-

usage analysis; more optimized proof-preserving parallelising transformations are certainly
possible. Our overall goal is to describe a framework for a resource-sensitive dependency-
preserving analysis.

Conditions on released and acquired resources. In the first phase we determine
resources that should be released and acquired at particular points in the parallelized
program. Released resources cannot be revoked, i.e., each released resource should be
included in the redundant map from the point of the release to the end of the work

function—this way we know the resource will not be needed further. Acquired resources

25

ℓ2 ℓ2ℓ3 ℓ2ℓ3ge ℓ2ℓ4 ℓ2ℓ4ge fe

ℓ1 x 7→ x x ≥ i ∧ x 7→ x x ≥ i ∧ x 7→ x ∗ y 7→ y x < i ∧ x 7→ x x < i ∧ x 7→ x
(x ≥ i ∧ x 7→ x ∗ y 7→ y)

∨ (x < i ∧ x 7→ x)

ℓ2 v = x ∧ v ≥ i v = x ∧ v ≥ i ∗ y 7→ y v = x ∧ v < i v = x ∧ v < i ∧ x 7→ x
(v = x ∧ v ≥ i ∗ y 7→ y)

∨ (v = x ∧ v < i ∧ x 7→ x)

ℓ2ℓ3 v = x ∧ v ≥ i ∗ y 7→ y v = x ∧ v ≥ i ∗ y 7→ y

ℓ2ℓ3ge v = x ∧ v ≥ i

ℓ2ℓ4 v = x ∧ v < i ∗ x 7→ x v = x ∧ v < i ∗ x 7→ x

ℓ2ℓ4ge v = x ∧ v < i

Table 1: needed map (some entries omitted).

26

are held by the executing thread until released. Resources that are acquired along a
sequence of path delimiters should contain what is prescribed by the needed map between
each of the path delimiters.

We represent the result of this phase of the algorithm via the following maps:

• resource : ResId → P(SH), denoting resource identifiers that identify released and
acquired resources;

• released : P ⇀ ResId× Subst, representing resources that are going to be released at
a path delimiter together with the variable substitution applied at that point;

• acquired : P ⇀ ResId, representing resources that are going to be acquired at a path
delimiter.

We require the following well-formedness properties:

1. ∀γ ∈ dom(released) . ∀γ′ ≻ γ . released(γ) = (r, ρ) → (redundant(γ, γ′) ⊢ resource(r)[ρ]∗
[]);

2. ∀γ ∈ P .⊛r∈dom(resource){resource(r) | ∃γ′ ≺ γ ∧ acquired(γ′) = r} ⊢ needed(γ, worke)∗
[];

3. ∀γ ∈ dom(released) . ⊛r∈dom(resource) {resource(r) | ∃γ′ ≺ γ ∧ acquired(γ′) = r} ⊢
released(γ) ∗ [].

The first property states we can release only resources that are not needed between the
given path delimiter and any subsequent one. The second property states that the re-
sources needed at a path delimiter must have already been acquired. The third property
states that only the resources that have been previously acquired can be released.6

In general, there are many solutions satisfying properties 1–3. For instance, there is
always a trivial solution that acquires needed(works, worke) before the first command and
releases it after the last, causing each invocation of work to be blocked until the preceding
invocation finishes the last command. Of course, some solutions are better than others.

Computing released and acquired maps. Algorithm 4 constructs released, acquired
and resource maps satisfying properties 1–3. Each iteration of the algorithm heuristically
picks a needed resource, and then iteratively searches for matching redundant resource
along all paths. The algorithm maintains a set C of all path delimiters up to which no
more resources are needed. It terminates once no unsatisfied needed resources remain
(line 3).

At the start of the main loop (line 4) the algorithm picks a still-needed resource
between a path delimiter in C and some further path delimiter. The picking of the needed
resource is governed by a heuristic function choose, for which we make no assumption.
The choose function serves as a proxy for external knowledge about likely points for
parallelization.

6We could relax the third requirement if we extended our barriers to support renunciation [16], the
ability to release a resource without first acquiring it. Renunciation allows a resource to ‘skip’ iterations,
giving limited out-of-order signalling. We believe it would be straightforward to fold such techniques into
the analysis, although such extensions are outside the focus of this paper.

27

Algorithm 4 Computing released and acquired resources.

1: N := needed; R := redundant

2: C := max{γ ∈ P | N (works, γ) = emp}
3: while C 6= {worke} do

4: ΣR := N (choose({(γ, γ′) | γ ∈ C, γ′ ∈ P}))Σ

5: ̺ := x̄ 7→ x̄′, where x̄′ fresh
6: Σ′

R := ΣR[̺]
7: Cr := min

{

γ ∈ P R(γ, worke)
Σ ⊢ Σ′

R ∗ [] ∧ ∃γ′ ∈ C. γ′�γ
}

8: if
∨

γ∈Cr
pc(γ) ⇔ true then

9: r := fresh resource id
10: resource(r) := Σ′

R

11: for all γ ∈ Cr do
12: released(γ) := (r, ̺)
13: for all γ′ s.t. γ � γ′ do

14: R(γ′, worke)
Σ ⊢ ΣR ∗ [∆]

15: R(γ′, worke) := ∆

16: for all γ ∈ C do

17: acquired(γ) := r
18: for all γ′, γ′′ s.t. γ � γ′ � γ′′ do

19: N (γ′, γ′′) ∗ [] ⊢ Σ′
R ∗ [∆]

20: N (γ′, γ′′) := ∆

21: C := max{γ′ | ∃γ ∈ C .N (γ, γ′) = emp}

The key step of the algorithm is performed on line 7:

Cr := min
{

γ ∈ P R(γ, worke)
Σ ⊢ Σ′

R ∗ [] ∧ ∃γ′ ∈ C. γ′�γ
}

Here R(γ, worke) is the redundant resource from γ to the end of the work function and
Σ′

R is the candidate resource that we want to acquire. The constructed set Cr is a set of
path delimiters along which we can satisfy the candidate needed resource. In line 8, the
algorithm checks that Cr covers all paths by checking the conjunction of path constraints
is tautologous.

Resources stored in needed contain path constraints (and other conditions on local
variables) embedded in the pure part of the symbolic heap. Since we can transfer re-
sources between different path delimiters, we only take the spatial part of the resource
into consideration when asking entailment questions; this is denoted by a superscript Σ.
Moreover, since the acquired resource is being sent to a different function invocation, we
substitute a fresh set of variables (line 5).

The remainder of the algorithm is devoted to constructing the new resource (line 10),
and with updating released (lines 11–15), acquired (lines 16–20), and C (line 21).

Lemma 5. Maps resource, released and acquired computed by Algorithm 4 satisfy proper-
ties 1–3.

Consider our running example. If choose picks (ℓ1, ℓ2) in the first iteration and (ℓ2ℓ3, ℓ2ℓ3ge)
in the second iteration, then the end result of Alg. 4 is resource = {r1 7→ (x 7→ x), r2 7→
(y 7→ y)}, released = {ℓ2ℓ3 7→ (r1, ∅), ℓ2ℓ4ge 7→ (r1, ∅), ℓ2ℓ3ge 7→ (r2, ∅), ℓ2ℓ4 7→ (r2, ∅)} and
acquired = {ℓ1 7→ r1, ℓ2ℓ3ℓ5 7→ r2, ℓ2ℓ4 7→ r2}.

28

Inserting grant and wait barriers. In this phase we transform the sequential program
P into a parallel program Ppar by inserting grant and wait barriers. The inserted barriers
realise resource transfer defined by the maps released and acquired.

We generate the parallel function work′(ī
(p)
r , īr, env

(p), env) in Ppar as follows:

1. To each r ∈ ResId we assign a unique channel name ir. Denote by i
(p)
r the corre-

sponding channel of the previous thread in the sequence.

2. Let env be an associative array that for each channel maps (escaped) local variable
names to values. Let env(p) be such map from the previous thread in the sequence.
env and env(p) are used for materialization.

3. For each γ = ℓ1 . . . ℓn ∈ dom(released) ∪ dom(acquired) let ℓk1 , . . . ℓkm be the labels
in γ corresponding to function calls. Then for each γj := ℓ1 . . . ℓkj we create in Ppar

an identical copy f′ of the function f called at ℓkj and replace the call to f with the
call to f′. Let us denote by tr(γ′) the path delimiter in Ppar corresponding to γ′ after
this transformation has been applied for all γ ∈ dom(released) ∪ dom(acquired).

4. For each γ ∈ dom(acquired) such that acquired(γ) = r we insert a wait barrier

wait(i
(p)
r) between path delimiters tr(pred(γ)) and tr(γ).

5. For each γ ∈ dom(released) such that released(γ) = (r,), between path delimiters
tr(pred(γ)) and tr(γ) we insert a sequence of assignments of the form env(ir)[”y”] :=
y for every local variable y, followed by a grant barrier grant(ir).

Each invocation of work creates a fresh set of local variables that are bound to the scope
of the function. However, some resources must be expressed in terms of function-local
variables. Parallelization must take account of this. If the structure of a resource de-
pends on local variables from a previous invocation, this must be encoded explicitly by
materialising the variables of the previous invocation.

The main function mainPpar
in Ppar first creates the set of “dummy” channels; then in

the while loop repeatedly creates a set of new channels for the current iteration, forks a
new thread with work′ taking the channels from the previous iteration as ī

(p)
r and from

the current iteration as īr, and at the end of the loop body assigns the new channels to
the previous channels; and, after the while loop completes waits on the channels in the
last set.

We generate the parallel proof Ppar from the sequential proof P using the following
specifications from [16]:

{emp} i := newchan() {req(i, R) ∗ fut(i, R)}
{req(i, R) ∗ R} grant(i) {emp}

{fut(i, R)} wait(i) {R}

Each variable R in Ppar associated with channel ir is instantiated with the corresponding
resource resource(r). The predicates req and fut track the ownership of the input and
output ends of the channel. To reason about threads, we use the standard separation
logic rules for fork-join disjoint concurrency (e.g., as in [18]).

Theorem 6. Ppar is a proof of the parallel program Ppar, and defines the same specification
for mainPpar

as P does for mainP.

29

Loop-splitting. The approach presented so far treats a loop as a single command with
a specification derived from its invariant. Acquiring or releasing resources within a loop
is subtle, as it changes the sequential loop invariant. It is not clear how to handle this in
full generality, so we take a pragmatic approach that performs heuristic loop-splitting.

The example in §3 uses two channels to transfer the segment of the list traversed after
the first and the second while loop, respectively. The resource released via channel i1
in Fig. 7 is hd 7→ h ∗ lseg(h, xpr). In the following iteration, the needed resource for
the whole loop is hd 7→ h ∗ lseg(h, x). If we try to match released against needed, the
entailment R(γ, worke)

Σ ⊢ Σ′
R ∗ [] in Algorithm 4 will fail. This is because the value of

x is unknown at the start of the loop, meaning we cannot establish whether the released
resource will cover the needed resource.

One way to resolve this would be to acquire the entire list before the first loop, but
this would result in a very poor parallelization. Instead, we modify the structure of the
loop to expose the point at which the second list segment becomes necessary:

1. We split the spatial portion of the resource needed by the whole loop into a “dead”
(already traversed) and a “live” (still to be traversed) part. In our example, hd 7→
h∗ lseg(h, x) would be the “dead” and lseg(x, nil) the live part. This kind of splitting
is specific to some classes of programs, e.g., linked list programs that do not traverse
a node twice.

2. We match the resource against the “dead” part of the loop invariant and infer
the condition under which the two resources are the same. In our example, the
entailment between the two resources holds if x = xpr. This condition can be
inferred by asking a bi-abduction question R(γ, worke)

Σ ∧ [c] ⊢ Σ′
R ∗ [] with the

pure abducted fact c.

Now we can syntactically split the loop against the inferred condition c = (x = xpr) and
obtain a transformed version that ensures that after entering the true branch of the if

statement the condition c holds. The transformation of our example is shown in Fig 11.
Formally, we define splitting of a command (comprising possibly multiple loops)

against a condition c as follows (to simplify, we assume here that every command ends
with skip):

function Split(C : Cmd, c : Π∨)
match C with

| while(b) {C ′ }; C ′′ →
while(b ∧ ¬c′) {C ′ };
if(b ∧ c′) {C ′; while(b) {C ′ }; C ′′ }
else {Split(C ′′, c) }

| C ′; C ′′ → C ′; Split(C ′′, c)

| skip → skip

The condition c′ is obtained from c by replacing a reference to every primed variable y′ by

a reference to env(p)(i
(p)
r)[”y”], where ir is the channel name associated to the resource. It

is not difficult to see that the accompanying proof of C can be split in a proof preserving
way against c. This transformation can either be applied to P between the resource-usage
analysis and parallelization, or embedded within Alg. 4.

30

...

xpr:=envp(i1)["x"];

while(x!=nil&&i!=n&&x!=xpr){

sum+=x.val;

i++;

x:=x.nxt;

}

if(x!=nil&&i!=n&&x==xpr){

sum+=x.val;

i++;

x:=x.nxt;

while(x!=nil&&i!=n){

sum+=x.val;

i++;

x:=x.nxt;

}

// remainder skipped.

...

else{

...

Figure 11: Loop-splitting for the sum_head example.

5.3 Implementation

We have validated our parallelization algorithm by crafting a prototype implementation
on top of the existing separation logic tool, coreStar [7]. While our implementation is
not intended to provide full end-to-end automated translation, it is capable of validating
the algorithms on the examples given in the paper, and automatically answering the
underlying theorem proving queries.

Our parallelization algorithm does not assume a shape invariant generator, except
possibly to help construct the sequential proof. Soundness is independent of the “clean-
liness” of the invariants (the analysis will always give a correct result, in the worst case
defaulting to sequential behaviour). Our examples in coreStar [7] have been validated us-
ing automatically-generated invariants. Other efforts [9] indicate that bi-abduction works
well with automatically-generated invariants produced by shape analysis, even over very
large code bases.

6 Behaviour Preservation

A distinctive property of our parallelization analysis is that it enforces sequential data-
dependencies in the parallelized program even if the safety proof does not explicitly rea-
son about such dependencies. The result is that our analysis preserves the sequential
behaviour of the program: any behaviour exhibited by the parallelized program is also a
behaviour that could have occurred in the original sequential program. However, there
are important caveats relating to termination and allocation.

Termination. If the original sequential program does not terminate, our analysis may

31

introduce new behaviours simply by virtue of running segments of the program that would
be unreachable under a sequential schedule. To see this, suppose we have a pfor such that
the first iteration of the loop will never terminate. Sequentially, the second iteration of the
loop will never execute. However, our parallelization analysis will execute all iterations of
the loop in parallel. This permits witnessing behaviours from the second (and subsequent)
iterations. These behaviours were latent in the original program, and become visible only
as a result of parallelization.

Allocation and disposal. If the program both allocates and disposes memory, the
parallelized program may exhibit aliasing that could not occur in the original program.
To see this, consider the following sequential program:

x=alloc(); y=alloc(); dispose(x).

For simplicity, we have avoided re-structuring the program to use data parallelism via
pfor—this example could easily be encoded as such, however. Parallelization might give
us the following program:

(x=alloc(); grant(wx); y=alloc()) || (wait(wx); dispose(x))

This parallelized version of the program is race-free and obeys the required sequential or-
dering on data. Depending upon the implementation of the underlying memory allocator,
however, x and y may be aliased if the dispose operation was interleaved between the
two allocations. Such aliasing could not happen in the original non-parallelized version.

Either kind of new behaviour might result in further new behaviours—for example,
we might have an if-statement conditional on x==y in the second example above. These
caveats are common to our analysis and others based on separation logic—for example,
see the similar discussion in [12].

Proving behaviour preservation. We now sketch a behaviour preservation result (a
detailed proof is given in Appendix). The theorem defines preservation in terms of an
interleaved operational semantics for a core language, similar to the one described in §4.1,
additionally equipped with threads, and operations on channels (such as grant and wait).
Data-races are interpreted as faults in this semantics. We prove our result for a sequential
thread t possibly executing concurrently with other sequential threads—this degenerates
into the purely sequential case when there are no other runnable threads. Because t is
sequential, it does not call fork; we also assume that it is guaranteed to terminate, and
that it never disposes memory based on the caveats discussed above.

Theorem 7. Let t be a sequential thread, and let tpar be a corresponding parallelized
version, equipped with thread creation operations, and synchronization actions that enforce
sequential dependencies among the child threads it creates. Let Kpar be a terminating non-
faulting (i.e., data-race free) trace of an execution of tpar. There exists a corresponding
trace K derived by substituting corresponding operations in t for tpar such that: (1) K and
Kpar begin in the same state; (2) for every thread t′ 6= t in K, K and Kpar exhibit identical
thread-local behaviour; and (3) the terminal state of thread t in Kpar is a substate of the
corresponding state in K.

32

Proof sketch. We show that, under the assumption that forked child threads never wait
for channels granted by their parent or later-forked child threads, any terminating non-
faulting trace Kpar can be reordered into a sequentialized trace Kseq with the same thread-
local behaviour. By sequentialized, we mean that forked children must execute to com-
pletion before their parents can be scheduled.

We establish a simulation invariant between executions of tpar decorated with arbitrary
calls to newch, wait, grant and fork, and executions of t↓par identical to tpar except with
all such constructs erased. The invariant establishes that every non-faulting sequentialized
trace Kseq of tpar simulates some trace K of t↓par.

We tie this result to our analysis by observing that parallelization only inserts the
four constructs newch, wait, grant and fork (leaving aside issues of loop-splitting and
materialization). As a result, t↓par = t. We also show that the way we insert signals ensures
that they are ordered with respect to thread creation, as assumed in the previous step.

This establishes a behaviour-preservation result for non-faulting traces, but paralleliza-
tion might introduce faults. However, parallelized programs are verified using separation
logic, meaning we can assume that they do not fault when executed in a state satisfying
the precondition. This completes the proof.

One attractive property is that this proof does not place any explicit requirements on the
positioning of barriers—it is sufficient that we can provide a separation-logic proof for
tpar. The caveat on memory disposition manifests in the way we establish our simulation
invariant, which necessarily assumes newly allocated data is always “fresh” and thus
does not alias with any accessible heap-allocated structure. The caveat on termination is
necessary to ensure we can suitably reorder forked threads to yield a sequentialized trace.

In addition to inserting barriers, our analysis mutates the program by materialising
thread-local variables and splitting loops. Both of these can be performed as mutations
on the initial sequential program, and neither affect visible behaviour. Loop-splitting
is straightforwardly semantics-preserving, while materialized variables are only used to
control barrier calls.

Theorem 7 guarantees that parallelisation does not introduce deadlocks; otherwise the
simulation relation would not exist. The ordering on barriers ensures that termination in
the sequential program is preserved in the resulting parallel program.

7 Refining the Predicate Domain

The structure of the sequential proof affects the success of parallelization in two ways.
First, the loop invariants may allow the analysis to verify a parallelized program when it
would otherwise have failed. Second, the choice of predicate domain controls how much
information about resource-usage is available to the analysis. Intuitively, enriching the
domain may permit a finer-grained splitting of resources, allowing redundant resources to
be identified earlier or missing resources later.

To see how the choice of abstract domain influences precision and effectiveness of the
analysis, consider the example discussed in §3; there, we parallelized sum_head using the
list segment predicate lseg. An alternative predicate is lsegni(h, t, n, i), which extends lseg
with a parameter n ∈ Z recording the length of the list segment, and with a parameter
i ∈ (0, 1] recording the permission on the list segment. If i = 1 the thread has read-write

33

access; otherwise it has read access only. We define lsegni as the least predicate satisfying
the following equation:

lsegni(x, t, n, i) , (x = t ∧ n = 0 ∧ emp) ∨

(∃v, y. x.val
i
7−→ v ∗ x.nxt

i
7−→ y ∗ lsegni(y, t, n−1, i))

The equivalence lseg(h, t) ⇐⇒ ∃n. lsegni(h, t, n, 1) would allow the analysis to exploit
this finer-grained predicate even if the sequential proof is written using the coarse-grained
lseg predicate.

Function sum_head only writes to the list after traversing n nodes. Consequently, it
needs only non-exclusive, read-only access to the first n nodes. (Or the entire list, if the
list is shorter than n nodes long.) We can extend our resource usage analysis to deal with
this richer predicate such that it identifies the following as a sufficient precondition for
the entire sum_head function:

hd
j
7−→ h ∗

(

(∃t. lsegni(h, t, n, i) ∗ lseg(t, nil)) ∨

(∃n′. lsegni(h, nil, n′, i) ∧ n′ < n)

)

Without the lsegni predicate, this precondition could not be expressed. The availability
of lsegni would also allow the analysis to discover that this resource is redundant at the
start of sum_head:

∃h, i, j. hd
j
7−→ h ∗ (lsegni(h, t, n, i) ∨ (∃n′. lsegni(h, nil, n′, i) ∧ n′<n))

When sum_head(n) is called in a parallel-for, the subsequent call to sum_head can im-
mediately read from the first n nodes of the list. Applying our analysis using the lsegni

predicate yields the the two-thread parallelization shown in Fig. 12. i1 signals that the
first n nodes can be read by the subsequent iteration of sum_head. Similar to the trans-
formation discussed in §3, grant calls can be inserted on i2 to signal that the subsequent
iteration can write to the first n nodes; and on i3 to signal that the entire list can be
written to. Because this parallelization calls grant() earlier than the parallelization dis-
cussed earlier, it can consequently extract more parallelism from the original sequential
program.

As this discussion reveals, our analysis is generic in the choice of abstract domain; any
separation logic predicate could be used in place of lseg, for example. However, the success
of automated parallelization is highly dependent on the power of the entailment prover in
the chosen domain. The lseg domain is one of the best-developed in separation logic, and
consequently automated parallelization is feasible using tools such as coreStar [7]. Other
domains (such as trees) are far less developed.

8 Related Work

Resource-usage inference by abduction. We have defined an interprocedural, control-
flow-sensitive analysis capable of determining the resource that will (and will not) be ac-
cessed between particular points in the program. At its core, our analysis uses abductive
reasoning [9] to discover redundancies—that is, state used earlier in the program that
will not be accessed subsequent to the current program point. Using abduction in this

34

sum_head1(n){

*npr = n;

grant(i1);

i = 1;

sum = 0;

x = *hd;

while(x!=nil && i!=n){

sum += x.val;

i++;

x = x.nxt;

}

*xpr = x;

grant(i2);

while(x!=nil){

x.val = 0;

x = x.nxt;

}

grant(i3);

}

sum_head2(n){

i = 1;

sum = 0;

wait(i1);

x = *hd;

while(x!=nil && i!=n){

if(n==*npr) wait(i2);

sum += x.val;

i++;

x = x.nxt;

}

wait(i2);

while(x!=nil){

if(x==*xpr) wait(i3);

x.val = 0;

x = x.nxt;

}

}

Figure 12: Improved parallelization of sum_head.

way was first proposed in [14], where it is used to discover memory leaks, albeit without
conditionals, procedures, loops, or code specialization.

In [10], abduction is used to infer resource invariants for synchronization, using a
process of counterexample-driven refinement. Our approach similarly infers resource in-
variants, but using a very different technique: invariants are derived from a sequential
proof, and we also infer synchronization points and specialise the program to reveal syn-
chronization opportunities.

Behaviour-preserving parallelization. We expect our resource-usage analysis can
be used in other synchronization-related optimizations, but in this paper, we have used
it as the basis for a parallelising transformation. This transformation is in the style of
deterministic parallelism [4, 5, 3, 8]—although our approach does not, in fact, require
determinacy of the source program. In this vein, our transformation ensures that every
behaviour of the parallelized program is a behaviour of the source sequential program
(modulo the caveats about allocation and termination discussed in §6).

Previous approaches to deterministic parallelism operate without the benefit of a high-
level specification. This places a substantial burden on the analysis and runtime to safely
extract information on resource usage and transfer—information that is readily available
in a proof. As a result, these analyses tend to be much more conservative in their treatment
of mutable data. Our proof-based technique gives us a general approach to splitting
mutable resources; for example, by allowing the analysis to perform ad-hoc list splitting,
as we do with sum_head.

Our approach transforms a sequential for-loop by running all the iterations in paral-
lel and signalling between them. This idea has been proposed previously, for example in
numerical computation [32]. The novelty in our approach lies in inferring synchronization

35

over (portions of) complex mutable data-structures. Alternatively, we could have used
a more irregular concurrency annotation, for example safe futures [26], or an unordered
parallel-for, as in the Galois system [29]. In the former case, our resource-usage anal-
ysis would be mostly unchanged, but our parallelized program would construct a set of
syntactically-distinct threads, rather than a pipeline of identical threads. Removing or-
dering between iterations, as in the latter case, would mean replacing ordered grant-wait
pairs with conventional locks, and would introduce an obligation to show that locks were
always acquired together, as a set.

Proof-driven parallelization. A insight central to our approach is that a separation
logic proof expresses data dependencies for parts of a program, as well as for the whole
program. These internal dependencies can be used to inject safe parallelism. This insight
is due to [30, 12] and [23], both of which propose parallelization analyses based on sep-
aration logic. The analyses proposed in these papers are much more conservative than
ours, in that they discover independence which already exists between commands of the
program. They do not insert synchronization constructs, and consequently cannot enforce
sequential dependencies among concurrent computations that share and modify state. In-
deed, [30] does not consider any program transformations, since the goal of that work is
to identify memory separation of different commands, while [23] expresses optimizations
as reordering rewrites on proof trees.

Bell et. al [1] construct a proof of an already-transformed multithreaded program
parallelized by the DSWP transformation [28]. This approach assumes a specific pattern
of (linear) dependencies in the while-loop consistent with DSWP, a specific pattern of
sequential proof, and a fixed number of threads. In our sum_head example, the outer-
most (parallelising) loop contains two successive inner loops, while the example in Fig.
2 illustrates how the technique can deal with interprocedural and control-flow sensitive
dependencies. In both cases, the resulting parallelization is specialized to inject synchro-
nization primitives to enforce sequential dependencies. We believe examples like these do
not fall within the scope of either DSWP or the proof techniques supported by [1].

Outside separation logic, Deshmukh et. al [13] propose an analysis which augments
a sequential library with synchronization. This approach takes as input a sequential
proof expressing the correctness criteria for the library, and generates synchronization
ensuring this proof is preserved if methods run concurrently. A basic assumption is that
the sequential proof represents all the properties that must be preserved. In contrast,
we also preserve sequential order on access to resources. Consequently, Deshmukh et al.
permit parallelizations that we would prohibit, and can introduce new behaviours into the
parallelized program. Another difference is that [13] derives a linearizable implementation
given a sequential specification in the form of input-output assertions; because they do
not consider specialization of multiple instances of the library running concurrently, it
is unclear how their approach would deal with transformations of the kind we use for
sum_head.

Separation logic and concurrency. Separation logic is essential to our approach. It
allows us to localise the behaviour of a program fragment to precisely the resources it
accesses. Our proofs are written using concurrent separation logic [27]. CSL has been
extended to deal with dynamically-allocated locks [18, 22, 24], re-entrant locks [19], and

36

primitive channels [21, 1, 33, 25]. Sequential tools for separation logic have achieved
impressive scalability—for example [9] has verified a large proportion of the Linux kernel.
Our work can be seen as an attempt to leverage the success of such sequential tools. Our
experiments are built on coreStar [7, 15], a language-independent proof tool for separation
logic.

The parallelization phase of our analysis makes use of the specifications for paralleliza-
tion barriers proposed in [16]. That paper defined high-level specifications representing
the abstract behaviour of barriers, and verified those specifications against the barriers’
low-level implementations. However, it assumed that barriers were already placed in the
program, and made no attempt to infer barrier positions. In contrast, we assume the high-
level specification, and define an analysis to insert barriers. The semantics of barriers used
in that paper and here was initially proposed in [26].

Acknowledgements

This work was supported by the Gates trust, by EPSRC grant EP/H010815/1, and by
NSF grant CCF-0811631. Thanks to Dino Distefano, Matthew Parkinson, Mohammad
Raza, John Wickerson and the anonymous reviewers for comments and suggestions.

References

[1] Christian J. Bell, Andrew Appel, and David Walker. Concurrent Separation Logic
for Pipelined Parallelization. In SAS, pages 151–166, 2009.

[2] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular au-
tomatic assertion checking with separation logic. In FMCO, pages 115–137, 2005.

[3] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Core-
Det: A Compiler and Runtime System for Deterministic Multithreaded Execution.
SIGPLAN Not., 45(3):53–64, 2010.

[4] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe multi-
threaded programming for C/C++. In OOPSLA, pages 81–96, 2010.

[5] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. A Type and Effect System for Deterministic Parallel Java. In
OOPSLA, pages 91–116, 2009.

[6] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Per-
mission Accounting in Separation Logic. In POPL, pages 259–270, 2005.

[7] Matko Botinčan, Dino Distefano, Mike Dodds, Radu Griore, Naudžiūnienė, and
Matthew Parkinson. coreStar: The Core of jStar. In Boogie, pages 65–77, 2011.

[8] Jacob Burnim and Koushik Sen. Asserting and Checking Determinism for Multi-
threaded Programs. Commun. ACM, 53:97–105, June 2010.

37

[9] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Composi-
tional Shape Analysis by Means of Bi-Abduction. In POPL, pages 289–300, 2009.

[10] Cristiano Calcagno, Dino Distefano, and Viktor Vafeiadis. Bi-abductive Resource
Invariant Synthesis. In APLAS, pages 259–274, 2009.

[11] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local Action and Ab-
stract Separation Logic. In LICS, pages 366–378, 2007.

[12] Byron Cook, Stephen Magill, Mohammad Raza, Jiri Simsa, and Satnam Singh. Mak-
ing Fast Hardware with Separation Logic, 2010. Unpublished, http://cs.cmu.edu/

~smagill/papers/fast-hardware.pdf.

[13] Jyotirmoy V. Deshmukh, G. Ramalingam, Venkatesh Prasad Ranganath, and Kapil
Vaswani. Logical Concurrency Control from Sequential Proofs. In ESOP, pages
226–245, 2010.

[14] Dino Distefano and Ivana Filipović. Memory Leaks Detection in Java by Bi-abductive
Inference. In FASE, pages 278–292, 2010.

[15] Dino Distefano and Matthew J. Parkinson J. jStar: Towards Practical Verification
for Java. In OOPSLA, pages 213–226, 2008.

[16] Mike Dodds, Suresh Jagannathan, and Matthew J Parkinson. Modular Reasoning
for Deterministic Parallelism. In POPL, pages 259–270, 2011.

[17] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A Calculus of Atomic Actions. In
POPL, pages 2–15, 2009.

[18] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv.
Local Reasoning for Storable Locks and Threads. In APLAS, pages 19–37, 2007.

[19] Christian Haack, Marieke Huisman, and Clément Hurlin. Reasoning about Java’s
Reentrant Locks. In APLAS, pages 171–187, 2008.

[20] Tim Harris, Jim Larus, and Ravi Rajwar. Transactional Memory, 2nd edition.
Morgan-Claypool, 2010.

[21] C. A. R. Hoare and Peter W. O’Hearn. Separation Logic Semantics for Communi-
cating Processes. ENTCS, 212:3–25, 2008.

[22] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle semantics
for concurrent separation logic. In ESOP, 2008.

[23] Clément Hurlin. Automatic Parallelization and Optimization of Programs by Proof
Rewriting. In SAS, pages 52–68, 2009.

[24] Bart Jacobs and Frank Piessens. Modular full functional specification and verifica-
tion of lock-free data structures. Technical Report CW 551, Katholieke Universiteit
Leuven, Dept. of Computer Science, 2009.

38

[25] K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free Channels and Locks. In
ESOP, pages 407–426, 2010.

[26] A. Navabi, X. Zhang, and S. Jagannathan. Quasi-static Scheduling for Safe Futures.
In PPoPP, pages 23–32. ACM, 2008.

[27] Peter W. O’Hearn. Resources, Concurrency and Local Reasoning. TCS, 375:271–307,
2007.

[28] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic
Thread Extraction with Decoupled Software Pipelining. In MICRO, pages 105–118,
2005.

[29] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Has-
saan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario
Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The Tao of Parallelism in Algo-
rithms. In PLDI, pages 12–25, 2011.

[30] Mohammad Raza, Cristiano Calcagno, and Philippa Gardner. Automatic Paralleliza-
tion with Separation Logic. In ESOP, pages 348–362, 2009.

[31] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
In LICS, pages 55–74, 2002.

[32] Peiyi Tang, Peiyi Tang, John N. Zigman, and John N. Zigman. Reducing Data
Communication Overhead for DOACROSS Loop Nests. In International Conference
on Supercomputing, pages 44–53, 1993.

[33] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Tracking Heaps That Hop
with Heap-Hop. In TACAS, pages 275–279, 2010.

A Semantics

In this section, we define an annotated operational semantics for our core programming
language. Our semantics makes several simplifying assumptions: (1) We forbid disposal,
and so can assume that allocation always gives fresh locations. This restriction is intro-
duced because full memory allocation (with memory disposition and reuse) may allow
parallelisation to introduce new behaviours (see §6); (2) to simplify the presentation, our
semantics does not include function definitions or calls.

The operational semantics has two levels, a labelled thread-local semantics (‘ ’), and
a global semantics (‘Z=⇒’) defined in terms of the local semantics. Every transition in the
global semantics corresponds to a transition for some thread in the local semantics. Our
semantics is annotated in the sense that it keeps track of the resources that are associated
with threads and channels. These distinctions would not be present in the operational
semantics of the real machine.

39

Thread-local semantics. The semantics assumes the following basic sets: Prog, pro-
grams; Tid, thread identifiers, ordered by <; Cid, channel identifiers; Var, variable names;
Loc, heap locations; Val, primitive values (which include locations). We assume that the
sets Tid, Cid and Loc are infinite, and that Tid ⊎ Cid ⊎ Loc ⊆ Val.

The thread-local semantics, given in Fig. 13, is defined by a labelled transition relation
 ∈ P(TState× TState× Label), with TState defined as follows:

σs ∈ Stack : Var ⇀ Val

σh ∈ Heap : Loc ⇀ Val

σ ∈ LState : Stack× Heap

(ωw, ωg) ∈ CState : P(Cid)× P(Cid)

TState : Prog × LState× CState×P(Tid)

The semantics associates each thread with a resource which can be safely manipulated
by that thread. Globally-visible events, meaning forking, creating channels, granting and
waiting, and heap allocation are modelled by labels on the thread-local transition relation.
These labels are used to ensure that global events are propagated to all threads. The set
of labels, Label, is defined as follows:

Label , ({fork } → Tid× Prog × LState× CState)

⊎ ({newch} → Cid)

⊎ ({wait, grant} → Cid× Heap)

⊎ ({alloc} → Loc)

The rules use a join operator on heaps ⊕ : Heap×Heap by union of functions, defined
only if the two heaps’ domains are disjoint. The join operator⊕ : LState×LState ⇀ LState

is defined as identity on stacks and join on heaps:

σ ⊕ σ′ , (σs, σh ⊕ σ′
h) if σs = σ′

s

A local state in LState consists of a stack mapping variables to values and a heap
mapping locations to values. Note that we do not support address arithmetic. A channel
state in CState consists of a pair of sets, respectively recording the channels the thread can
wait for and grant on. A thread state in TState consists of a program (i.e. command),
a local state, a channel state, and a set of thread identifiers of child threads.

The semantics assumes a set of primitive commands Prim : P(LState × LState). We
assume for any command c ∈ Prim that:

• For any states σ1 and σ2 such that (σ1 ⊕ σ2, σ
′) ∈ c, if there exists a transition

(σ1, σ
′
1) ∈ c then σ′

1 ⊕ σ2 = σ′.

• For any transition (σ, σ′) ∈ c and state σ2, if σ⊕σ2 is well-defined, then there exists
a transition (σ ⊕ σ2, σ

′′) ∈ c and σ′′ = σ′ ⊕ σ2.

• For any states σ1 and σ2, if there exists no σ′ such that such that (σ1 ⊕ σ2, σ
′) /∈ c,

then (σ1, σ
′) /∈ c.

40

(σ, σ′) ∈ c

(c, σ, ω, γ) (skip, σ′, ω, γ)

¬∃σ′. (σ, σ′) ∈ c

(c, σ, ω, γ) abort

σ, ω 6|= P ∗ true

(fork[P]C, σ, ω, γ) abort

σ′, ω′ |= P σ = σ′ ⊕ σ′′ ω = ω′ ⊎ ω′′ t fresh

(fork[P]C, σ, ω, γ)
fork (t,C,σ′,ω′)

 (skip, σ′′, ω′′, γ ⊎ {t})

newch fresh

(x := newch ,σ, ω, γ)
newch (s)
 (skip, (σs[x 7→ s], σh), (ωw ⊎ {s}, ωg ⊎ {s}), γ)

σ, (∅, ∅) 6|= P ∗ true

(grant[P]E, σ, ω, γ) abort

[[E]]σs
= s s ∈ ωg σ = σ′ ⊕ σ′′ σ′, (∅, ∅) |= P

(grant[P]E, σ, ω, γ)
grant (s,σ′)
 (skip, σ′′, (ωw, ωg \ {s}), γ)

[[E]]σs
= s s ∈ ωw

(waitE, σ, ω, γ)
wait (s,σ′)
 (skip, σ ⊕ σ′, (ωw \ {s}, ωg), γ)

(C, σ, ω, γ) (C ′, σ′, ω′, γ′)

(C;C ′′, σ, ω, γ) (C ′;C ′′, σ′, ω′, γ′) (skip;C, σ, ω, γ) (C, σ, ω, γ)

(C, σ, ω, γ) abort

(C;C ′, σ, ω, γ) abort

[[B]]σs
= tt

(if (B)C1 elseC2, σ, ω, γ) (C1, σ, ω, γ)

[[B]]σs
= ff

(if (B)C1 elseC2, σ, ω, γ) (C2, σ, ω, γ)

[[B]]σs
= tt

(while (B)C, σ, ω, γ) (C;while (B)C, σ, ω, γ)

[[B]]σs
= ff

(while (B)C, σ, ω, γ) (skip, σ, ω, γ)

l /∈ dom(σh)

(x := alloc, σ, ω, γ)
alloc(l)
 (skip, (σs[x 7→ l], σh ⊎ [l 7→ 0]), ω, γ)

Figure 13: Annotated thread-local operational semantics.

41

Besides capturing a semantic relation between local states, primitive commands also
have a syntactic representation (e.g. , the name of the command itself). We overload these
notions in the rules to allow us flexibility in characterizing effects without having to choose
a fixed command set a priori. It is straightforward to define an interpretation function
that maps the nominal representation of a command with its relational definition.

The effect of evaluating primitive command c in state 〈c, σ, ω, γ〉 is a new state
〈skip, σ′, ω, γ〉 if (σ, σ′) ∈ c. If command c can effect no transition from local state
σ, the thread aborts.

A thread may fork a child. We associate a syntactic assertion P with a fork command
that captures the resources required by the child thread. (The existence of a syntactic sep-
aration logic proof means we can always annotate a fork command with such assertions.)
If the assertion is not satisfiable within the current local state (i.e. , σ, ω 6|= P ∗ true), the
thread aborts. Otherwise, we can partition the state, associating the resources (memory
and channels) needed by the forked thread (denoted as σ′ and ω′ in the rule) from those
required by the parent. The effect annotation fork (t, C, σ′, ω′) records this action. We
assume that the fresh thread identifier t created on each fork invocation is strictly greater
(with respect to <) than previous ones.

Creating a new channel augments the set of channel identifiers for both wait and
grant actions.

In order for a thread to grant resources to another thread, the assertion that defines
the structure of these resources must hold in the current local state; note that the only
resources that can be propagated along channels are locations and values in the thread’s
local state—channel identifiers can only be distributed at fork-time. If the assertion
indeed holds, then the resources it describes can be transferred on the channel. This
semantics ensures all concurrently executing threads operate over disjoint portions of
shared memory. The semantics of wait transfers a set of resources to the executing
thread whose composition is determined by the assertion on the corresponding grant

that communicates on channel s. The rules for sequencing and loops are standard.
Memory allocation annotates the transition with an allocation label alloc(l) for fresh

location l.

Global semantics. The global semantics is defined as a transition relation Z=⇒ ∈
P(GState× GState), with GState defined as follows:

δ ∈ TMap : Tid ⇀ TState

η ∈ CMap : Cid ⇀ Heap ⊎ {△,▽}

κ ∈ GState : TMap× CMap× P(Loc)

The rules of the global semantics are given in Fig. 14. Every transition in the global
semantics corresponds to a transition for some thread t in the local semantics. The global
semantics models the pool of active threads with a thread-map in TMap, and models the
resources held by channels with a channel-map in CMap. The set of locations in P(Loc)
represents unallocated locations in the heap. Because we never return locations to this
set, all allocated locations are fresh.

Given a channel map η ∈ CMap, a given channel s ∈ dom(η) can be either allocated
but unused, denoted by η(s) = △, in use, denoted by η(s) ∈ Heap, or finalised, denoted by

42

(C, σ, ω, γ) (C ′, σ′, ω′, γ′)

([t 7→ C, σ, ω, γ] ⊎ δ, η,L) Z=⇒ ([t 7→ C ′, σ′, ω′, γ′] ⊎ δ′, η,L)

(C, σ, ω, γ)
fork (t2,C2,σ2,ω2)

 (C ′, σ′, ω′, γ′)

([t1 7→ C, σ, ω, γ] ⊎ δ, η,L) Z=⇒ ([t1 7→ C ′, σ′, ω′, γ′] ⊎ [t2 7→ C2, σ2, ω2, ∅] ⊎ δ, η,L)

(C, σ, ω, γ)
newch (s)
 (C ′, σ′, ω′, γ′) s /∈ dom(η)

([t 7→ C, σ, ω, γ] ⊎ δ, η,L) Z=⇒ ([t 7→ C ′, σ′, ω′, γ′] ⊎ δ, η ⊎ [s 7→ △],L)

(C, σ, ω, γ)
grant (s,σ)
 (C ′, σ′, ω′, γ′) η(s) = △

([t 7→ C, σ, ω, γ] ⊎ δ, η,L) Z=⇒ ([t 7→ C ′, σ′, ω′, γ′] ⊎ δ, η[s 7→ σ],L)

(C, σ, ω, γ)
wait (s,σ)
 (C ′, σ′, ω′, γ′) η(s) = σ

([t 7→ C, σ, ω, γ] ⊎ δ, η,L) Z=⇒ ([t 7→ C ′, σ′, ω′, γ′] ⊎ δ, η[s 7→ ▽],L)

(C, σ, ω, γ)
alloc(l)
 (C ′, σ′, ω′, γ′) l ∈ L

([t 7→ C, σ, ω, γ] ⊎ δ, η,L) Z=⇒ ([t 7→ C ′, σ′, ω′, γ′] ⊎ δ, η,L \ {l})

(C, σ, ω, γ) abort

([t 7→ C, σ, ω, γ] ⊎ δ, η,L) Z=⇒ abort

Figure 14: Annotated global operational semantics.

η(s) = ▽. Once finalised, a channel identifier cannot be reused (fortunately we have an
infinite supply of fresh channel identifiers). The semantics enforces consistency between
calls to wait, grant and newchan. A thread can only take a local transition acquiring
or releasing a resource if it is consistent with the global channel map.

Thread-local steps are mirrored in the global semantics by updating the state of the
thread in the thread map. A fork operation augments the thread map by associating the
thread identifier with a new thread-local configuration whose components are specified on
the local transition. Creating a new channel is permissible only if the channel identifier
does not already exist. A grant action is allowed if the channel is unused; after the
action the channel is associated with the heap resources provided by the grant. A wait

action is allowed if the resources demanded by the wait are provided by the channel (via
a grant); if so, the channel becomes finalized. Allocation removes the location from the
set of available locations.

Definition 8. For a global state κ = 〈δ, η,L〉 and thread t ∈ dom(δ) such that δ(t) =
〈C, σ, (ωw, ωg), γ〉, we define waits(κ, t) , ωw and grants(κ, t) , ωg.

Definition 9 (well-formedness). A global state κ = 〈δ, η,L〉 is well-formed if:

1. The set of all heap locations either allocated and referred to in δ and η is disjoint
from L, the set of unallocated heap locations.

2. The thread-local states in δ and states stored in the channel map η can be joined
using ⊕ to give a well-defined state. Note that, as ⊕ is associative and commutative,

43

this state is unique, and also that any pair of states from δ and η can be joined to
give a well-defined result.

3. For any channel c ∈ Cid, there exists at most one thread t1 such that c ∈ grants(κ, t1)
and at most one thread t2 such that c ∈ waits(κ, t2). If c ∈ grants(κ, t1), then
η(c) = △. If c ∈ waits(κ, t2), then η(c) ∈ Heap ⊎ {△}.

Well-formedness expresses fundamental linearity assumptions on states and channels;
essentially, it ensures elements of the state can be owned by only one thread at once.

Lemma 10. The global transition relation Z=⇒ preserves well-formedness.

Assumption 1. We assume all global states are well-formed, unless explicitly stated
otherwise.

Definition 11 (trace). A trace is a (finite or infinite) sequence of global states K =
κ0κ1 . . . such that for every i, κi Z=⇒ κi+1. A finite (infinite) trace is called terminating
(nonterminating).

Definition 12 (child thread, thread order). Each local state 〈C, σ, ω, γ〉 includes the set
γ of forked child thread identifiers. For convenience, we define child(κ, t) as the set of
children for thread t in global state κ.

The children of a thread are ordered (under relation <), with the ordering following
the order in which they were created. That is, suppose we have a trace K with initial state
〈δ, η,L〉 such that c1, c2 /∈ dom(δ). Given an arbitrary state κi ∈ K, if {c1, c2} ∈ child(κ, t)
and c1 < c2, then c1 was created earlier in the trace than c2.

We denote by Z=⇒∗ the reflexive transitive closure of the global transition relation. We

sometimes write ‘
t

Z=⇒’ to denote a global transition resulting from the thread t taking a
step, and call it a transition over thread t.

Definition 13 (sequentialised trace). We define the sequentialised transition relation

Z=⇒s ⊆ Z=⇒ as the transition relation in which a step κ
t

Z=⇒ κ′ can only be taken if all
threads in child(κ, t) have reduced to skip. We say that a trace K is sequentialised with
respect to t if every transition over thread t is in Z=⇒s. We denote this transition relation
by Z=⇒s(t).

B Soundness of Analysis

In this section we prove the soundness of our analysis, i.e., that our parallelising transfor-
mation does not introduce any new behaviours to the system. The proof of the behaviour
preservation (Theorem 25) is based on a simulation argument: each trace of the par-
allelised program must correspond to a trace of the sequential program and preserve as
an invariant a given binary relation between states of the parallelised and the sequential
program. The proof is structured as follows:

1. We establish a simulation invariant between the parallelised program and the se-
quential program in two steps: first for a program decorated with calls to grant,
wait and newch and a program with these calls erased (Lemma 14), and then

44

for a program additionally decorated with fork calls and a fork-erased program
(Lemma 15). The combined invariant relates every nonfaulting sequentialised trace
of the fully decorated program with a trace of the sequential program. By sequen-
tialised, we mean that forked children must execute to completion before their parent
threads can be scheduled (Def. 13).

2. We show that, under the assumption that forked child threads never wait for chan-
nels granted by their parent or later-forked child threads, any terminating nonfault-
ing trace of the parallelised program can be reordered into a sequentialised trace
with the same thread-local behaviour. This is established by showing that traces
of the program parallelised by our analysis have signalling barriers aligned with
the thread ordering (Lemma 21), and that any such trace can be reordered into a
sequentialised trace (Lemma 20).

3. Previous steps establish good behaviour for non-aborting traces. Inserting grant,
wait, newch and fork may introduce aborts. However, we also verify our mutated
program in separation logic. This establishes, for every state satisfying the program
precondition, that the program cannot abort.

We start with a lemma that establishes a simulation invariant between a program
decorated with calls to grant, wait and newch and a program with these calls replaced
with skip.

Lemma 14 (wait, grant, newch insertion). Let J−K↓ch be a program transformation
which replaces calls to newch, grant and wait with skip. Let κ = 〈δ, η,L〉 and κ′ be
global states. We say that the invariant I(t, κ, κ′) is satisfied if:

• The thread identifier t is in dom(δ).

• For δ(t) = 〈C, σ, ω, γ〉, the program C executed by t does not contain fork.

• The thread waits for all channels it grants on, i.e., ωg ⊆ ωw, and all channels in
ωw \ ωg have already been granted on but are not yet finalised, i.e., ∀c∈ωw\ωg

. η(c) /∈
{▽,△}.

• Let σch , �c∈ωw\ωg
. η(c) be all resources the thread does not grant but waits for.

Then there exists η′ ⊆ η such that κ′ = 〈δ[t 7→ 〈JCK↓ch, σ ⊕ σch, (∅, ∅), γ〉], η′,L〉 and
for all channels c held by threads other than t, η′(c) = η(c).

For any states κ, κ′, κ2, if I(t, κ, κ
′) and κ Z=⇒ κ2, then there exists a state κ′

2 such that
κ′ Z=⇒∗ κ′

2 and I(t, κ2, κ
′
2). This property can be alternatively represented by the following

diagram:

κ
I(t)
−→ κ′

Z=
⇒

Z=
⇒

∗

κ2
I(t)
−→ κ′

2

Intuitively, the invariant I expresses the simulation relation between programs containing
wait, grant and newch (left-hand side of the diagram), and the equivalent program
without them (right-hand side).

45

Proof. There are two cases: either κ Z=⇒ κ2 is a transition over t, or it is a transition
over some other thread t′ 6= t. If κ Z=⇒ κ2 is a transition over t, we proceed by structural
induction over C.

• C is a primitive command in Prim. In this case, the result holds by the assumption
of behavioural monotonicity for primitive commands.

• C is a grant or wait for some channel c. In both of these cases, the corresponding
command JCK↓ch will be skip. Consequently the transition κ′ Z=⇒ κ′

2 will be a
τ -transition, meaning κ′ = κ′

2.

By assumption, the join of the thread-local state σ and state σch stored in accessible
channels in κ is equal to the thread-local state in κ′. Calling a grant takes some
local state and pushes it into a channel, which preserves this property. Similarly
calling a wait pulls some state out of an accessible channel and into local state,
which also preserves the property.

• C is a newch. In this case, the corresponding command also be a skip, so κ′ = κ′
2.

The effect of newch will be to initialise a fresh channel not already in η, and
add these channels to the channel state for κ2. These channels are erased by the
invariant, so the property is preserved.

• C is alloc. The set L of unallocated locations is the same in κ and κ′. Consequently,
if a location can be allocated in κ, it can also be allocated in κ′.

• C is a sequential composition, loop, or conditional. The result follows trivially by
appeal to the induction hypothesis.

Suppose now that the transition is over some other thread t′ 6= t. By assumption (the
third property of I), we know that the channels erased by the invariant are not shared
with any other thread. We can therefore establish straightforwardly that such a transition
must be replicated exactly between κ′ and κ′

2. The invariant is not disturbed, because it
does not mutate the content of other threads.

The following lemma establishes a simulation invariant between a program containing
calls to fork and a program with these calls replaced with skip.

Lemma 15 (fork insertion). Let J−K↓fk be a program transformation which replaces calls
to fork with skip. We say that the invariant J(t, κ, κ′) is satisfied if:

• The thread identifier t is in dom(δ).

• For δ(t) = 〈C, σ, ω, γ〉, any calls to fork in C do not themselves include calls to
fork.

• Let σfk = � {σc | c ∈ child(t) ∧ δ(c) = 〈Cc, σc, ωc, γc〉} be thread-local states and
ωfk =

⊎

{ωc | c ∈ child(t) ∧ δ(c) = 〈Cc, σc, ωc, γc〉} channel states of forked child
threads conjoined. By the well-formedness condition on global states (Assumption 9),
both of these must be well-defined.

• There exists at most one child thread c ∈ child(t) such that δ(c) = 〈Cc, σc, ωc, γc〉
and Cc 6= skip.

46

• Either of the following two cases holds:

– If ∀c ∈ child(t). δ(c) = 〈skip, σc, ωc〉, then κ′ = 〈δ[t 7→ 〈JCK↓fk, σ ⊕ σfk, ω ⊎
ωfk〉], η,L〉.

(In other words, all child threads of t have terminated, and the main thread
corresponds to the original sequential state.)

– If ∃!c ∈ child(t). δ(c) = 〈Cc, σc, ωc, γc〉 ∧ Cc 6= skip, then C = skip;C1 and
κ′ = 〈δ[t 7→ 〈Cc; JC1K

↓
fk, σ ⊕ σfk, ω ⊎ ωfk, ∅〉], η,L〉.

(In other words, there exists exactly one unterminated child thread, and join
of the states of the child threads and main thread correspond to the original
sequential state.)

For any states κ, κ′, κ2, if J(t, κ, κ
′), and κ Z=⇒s(t) κ2, then there exists a state κ′

2 such
that κ′ Z=⇒∗ κ′

2 and J(t, κ2, κ
′
2). This property can be alternatively represented by the

following diagram:

κ
J(t)
−→ κ′

Z=
⇒

s(t)

Z=
⇒

∗

κ2
J(t)
−→ κ′

2

The invariant J expresses the simulation relation between programs containing fork (left-
hand side of the diagram) and the equivalent program without it (right-hand side).

Proof. Unlike with Lemma 14, there are three cases: either κ Z=⇒s(t) κ2 is a transition
over t; or it is a transition over some member of the set child(t); or the transition is over
some other, unrelated thread. First suppose that the transition is over t. We proceed by
structural induction on C:

• C ∈ Prim. By assumption, any behaviour in a small state σ will be reflected in a
big one, which suffices to ensure that the invariant holds.

• C is alloc. The set L of unallocated locations is the same for κ and κ′. By the
same argument as Lemma 14, the same allocation step is therefore possible in both
global states.

• C is wait or grant. By the well-formedness assumption, resources held by channels
must be disjoint from those held by other threads. This suffices to ensure that
wait and grant transitions can take place identically in the corresponding fork-
free program.

• C is fork. This will correspond to a τ -transition in the fork-erased program. Be-
cause the transition over the program with fork is sequentialised with respect to
t, the transition can only be over t if all the children of t have reduced to skip.
Calling fork pushes some state to the child thread, and results in exactly one active
(non-skip) child thread.

• C is a loop, conditional, sequential composition. Property holds by appeal to the
induction hypothesis.

47

Now suppose the transition is over some thread c ∈ child(t). By assumption (the fourth
property of J), there can be at most one such thread. The state held by the child thread
must be a substate of that held in the fork-free program. Consequently, an almost
identical structural induction argument suffices to show that the simulation property
holds.

Finally, suppose that the transition is over some other thread t′ that is neither t nor
a child of t. Such threads cannot be affected by the behaviour of t and its children.
It is straightforward to show that any transition for the program can take place in the
corresponding fork-free program.

The previous two lemmas combined establish an invariant relating nonfaulting sequen-
tialised traces of the parallelised program with traces of the sequential program. It remains
to show that terminating nonfaulting traces of the parallelised program can be reordered
into sequentialised traces with the same thread-local behaviour. We do this by introducing
a well-founded order on traces in which sequentialised traces are minimal elements, and
showing that each signal-ordered trace (i.e., having its signalling barriers aligned with the
thread ordering) can be reordered to a behaviourally equivalent trace smaller with respect
to the well-founded order, eventually leading to a behaviourally equivalent sequentialised
trace.

Definition 16. We say that traces K1 and K2 are behaviourally equivalent if, for each
thread identifier t, the sequence of transitions over t in K1 and K2 are identical.

We first show that consecutive transitions of two different threads can be reordered if
the second thread does not wait for any channel that the first thread grants on. We use
this property in the subsequent lemma to inductively construct a behaviourally equivalent
sequentialised trace.

Lemma 17 (trace reordering). Suppose we have a two-step trace:

K = 〈δ1, η1,L1〉
t1Z=⇒ 〈δ2, η2,L2〉

t2Z=⇒ 〈δ3, η3,L3〉

such that t1 6= t2, and that t1, t2 ∈ dom(δ1). Let δ1(t1) = 〈C, σ, ω, γ〉 and δ1(t2) =
〈C ′, σ′, ω′, γ′〉. Suppose that t2 does not wait for any channel that t1 grants on, i.e., that
ωg ∩ω′

w = ∅ holds. Then there exists a thread environment η′, an unallocated set L′, and
a two-step trace:

K′ = 〈δ1, η1,L1〉
t2Z=⇒ 〈δ1[t2 7→ δ3(t2)], η

′,L′〉
t1Z=⇒ 〈δ3, η3,L3〉

The new trace K′ is behaviourally equivalent (Def. 16) to K.

Proof. We proceed by case-splitting on the shape of transitions over t1 and t2:

• One or both of the transition are thread-local (i.e. do not result in a labelled
transition in the thread-local semantics). It is straightforward to see that neither
transition can affect the other one, and the rearrangement result follows trivially.

• One or both of the transitions is a fork. The effect of such a transition is localised
to the parent and newly-created child thread. By assumption, neither thread was
created by either of these transitions. The rearrangement result follows straightfor-
wardly.

48

• One or both transitions is a newch. Channels can only be transferred by fork, and
by assumption, neither transition created either of the threads. Consequently the
effect of a newch call is confined to the local thread.

• Both transitions are wait (resp. grant). The threads could only affect one another
if both waited (resp. granted) on the same channel, but this is ruled out by the
well-formedness assumption that each end of each channel is held by at most one
thread.

• One transition is a wait and the other is a grant. Once again, the threads could
only affect one another if they waited and granted on the same channel. However,
by assumption of the lemma, the thread t1 cannot grant on any channel on which
t2 can wait. By the structure of the semantics, the transition t1 cannot wait for a
channel that is subsequently granted. So this case cannot occur.

• One or both transitions are a alloc. If one operation is a alloc and the other another
command, the threads trivially cannot affect one another. If both transitions are
alloc, the locations allocated must be distinct, and the transitions again can be
exchanged straightforwardly.

The constructed trace K′ is trivially behaviourally equivalent to K, since the thread-local
actions for each thread are identical.

Definition 18 (signal order). We describe a trace K as signal-ordered with respect to t
if t is a thread identifier such that for all states κ = 〈δ, η,L〉 ∈ K:

∀c ∈ child(κ, t). ∀k ∈ waits(κ, c).

((∃c′ ∈ child(κ, t). c′ < c ∧ k ∈ grants(κ, c′)) ∨ (η(k) /∈ {⊥,▽,△}))

(In other words, if a child of t can wait on a channel k, some earlier child must be able
to grant on it, or the channel must already be filled.)

Definition 19 (degree of sequentialisation). Let K be a trace. If K is not sequentialised
with respect to t, let c ∈ child(t) be the earliest thread in the child order with an unse-
quentialised transition (that is, for all other children c′ with unsequentialised transitions,
c′ > c). Now, let F be the number of transitions from the originating fork transition
for c and the end of the trace. Let K be the number of transitions over c after the first
unsequentialised transition. Let D be the number of intervening transitions between the
originating fork and the first unsequentialised transition.

We call such a tuple (F,K,D) the degree of sequentialisation with respect to t. We
order such tuples lexicographically, with left-to-right priority, and lift this order to give a
partial order on traces <t. This order on traces is well-founded, with sequentialised traces
occupying the minimum position in the order.

Using the ordering on traces introduced in Definition 19 we now show that a trace that
is signal-ordered with respect to a thread t can be reordered to a behaviourally equivalent
trace that is sequentialised with respect to t.

Lemma 20 (sequentialisation). Let K be a trace such that

49

• K is signal-ordered with respect to t; and

• Let κ = 〈δ, η,L〉 be the final state in K and let t′ be the maximum thread in child(κ, t)
with transitions in K. For all threads t′′ ∈ child(κ, t) such that t′′ < t′, . δ(t′′) =
〈skip, σ, ω, γ〉 for some σ, ω, γ. (Note this holds automatically if K is terminating.)

Then there must exist a trace K′ sequentialised with respect to t such that K is behaviourally
equivalent to K′.

Proof. We show that any out-of-order trace K can be reordered by applying Lemma 17,
to give a behaviourally equivalent trace with a lower degree of sequentialisation w.r.t. t.

Consider a trace K that is signal-ordered but not sequentialised. Let t2 be the earliest
thread in the child order for t that has an unsequentialised transition. By the assumption
that the transition is unsequentialised, the preceding transition in the trace must be
on some other thread t1 6= t2, and must not be the fork that created the out-of-order
transition. Note that t1 also must not be some child of t earlier in the child order—
otherwise the transition over t1 would be the earliest out-of-order transition.

By the definition of signal-ordering we know that wait(κ, t2)∩grant(κ, t1) = ∅. Conse-
quently, we can apply Lemma 17, and push the transition over t2 earlier than the transition
over t1. Call the resulting trace K′′.

By Lemma 17, K′′ is behaviourally equivalent to K. As a trivial consequence, K′′ is
also signal-ordered. As a deeper consequence, K′′ <t K (with respect to the order given
in Def. 19). There are three cases:

• The transition shifts left, but is still unsequentialised. The number of intervening
transitions from the originating fork decreases, while the other two measures are
unchanged.

• The left shift means the transition is sequentialised, but more transitions over the
same thread are unsequentialsed. The number of transitions from the first unse-
quentialised transition decreases, while the distance from the initial fork to the end
of the thread is unchanged.

• The left shift means all transitions for the thread are sequentialised. The next target
thread must be later in the child order, meaning it is later in the trace. The number
of transitions from the initial fork to the end of the thread decreases.

As the order is well-founded, by repeatedly applying the lemma, we get a behaviourally-
equivalent trace that is sequentialised w.r.t. t.

We now establish that the pattern of barriers that we insert into the program during our
parallelisation analysis results in a trace that is signal-ordered. Recall from §5 that the
parallelised program constructed by our analysis has the following form7:

7Recall also that we define for in terms of while.

50

ci := newch();

grant(ci);

C1;

while(B) {

C2;

cj := newch();

fork[P](C3);

ci := cj;

}

wait(ci);

Here we assume that we only need a single active pair of channels ci/cj—the argument
generalises straightforwardly to the case with n channels. In addition, we assume the
sub-programs C1 and C2 do not include wait, grant, newch and fork, and that they do
not assign to the variables ci and cj.

The assertion P is defined so that: P ⊢ fut(ci, P1) ∗ req(cj, P2) ∗ F , for some P1, P2

and F ; and F 0 fut(x, P ′) and F 0 req(x, P ′) for any x and P ′. (In other words, the
forked thread can only wait for ci and grant on cj.)

Lemma 21 (construction of signal-ordered traces). Let κ = 〈δ, η,L〉 be a state and t a
thread identifier such that δ(t) = 〈C, σ, (∅, ∅), ∅〉 and C matches the standard form for
parallelised programs, described above. Let K be a trace with initial state κ. Then K is
signal-ordered with respect to t.

Proof. We establish this property by defining an invariant L(κ):

• Let κ = 〈δ, η,L〉 and δ(t) = 〈C, σ, ω, γ〉.

• There exists a channel c1 such that σs(ci) = c1, and waits(κ, t) = {c1}.

• Either η(c1) /∈ {⊥,▽,△}, or ∃t′ ∈ child(κ, t). c1 ∈ grants(κ, t′).

We now show that signal-ordering holds for every step of the semantics, and that the
invariant holds for any state immediately preceding the execution of an iteration of the
main while-loop; that is, at any point when C = while(B){ ... }; wait(ci);.

• Suppose we execute from the beginning of the program (the first command in C1)
to the beginning of the first iteration while. It is simple to see by inspection of
the semantics that the resulting state κ will satisfy the invariant L. We create the
channel c1, and the call to grant ensures η(c1) is associated with some state, as
required by the invariant.

• Now suppose we execute a single iteration of the loop: that is, we assume the boolean
condition B holds, and apply the appropriate rule in the operational semantics. The
invariant cannot be disturbed by other running threads, because by definition they
can only call grant on the channel c1.

By assumption, the sub-program C2 cannot disturb the invariant. We call newch,
which creates a channel c2, associated with the variable cj. Now we observe that,
by the structure of P call to fork creates a thread t′ with waits(κ, t′) = {c1} and
grants(κ, t′) = {c2}. As a result, in the resulting state waits(κ, t) = {c2}. The final
assignment associates c2 to ci, which reestablishes the invariant.

51

Each step in this execution satisfies signal-ordering. By induction this completes the
proof.

In Lemma 21 we assumed a specific program form constructed by the parallelising
transformation from §5.2. However, the soundness proof could be adapted to hold for
other parallelisation backends. As long as the analysis generates a parallelised program
with traces that are signal-ordered we could establish an analogue of Lemma 21 and
proceed with other steps of the soundness proof in the same way.

Lemma 22 (synchronisation erasure). Let C be a sequential program, and Cpar be a

program resulting from applying our parallelisation analysis. Then C = JJCparK
↓
fkK

↓
ch, where

the (syntactic) equality of programs is defined up to insertion/erasure of skip statements—
that is syntactic manipulation using the identity C = C; skip.

Proof. Our analysis only inserts channels and calls to fork. The result follows trivially.

Lemma 23 (materialised variables). Materialising local variables, as described in §3, has
no effect on the operational behaviour of a program.

Proof. Let C be a program, and let C ′ be a corresponding program in which the local
variables are materialised. Let K be a trace in which the program C is executed. When
inserted, the materialised variables are written but not read (they are subsequently used
in conditionals after loop-splitting). Therefore, there must be a trace K′ in which C ′ is
substituted for C, which is identical to K aside from the materialised variables.

Lemma 24 (loop-splitting). Loop-splitting, as described in §5.2, has no effect on the
operational behaviour of the program.

Proof. By the fact that either a conditional or its negation must hold, and a straightfor-
ward appeal to the semantics of loops.

Finally, we prove the main theorem stating the soundness of our parallelisation anal-
ysis.

Theorem 25 (parallelisation soundness). Let C be a sequential program, and let Cpar be
the program resulting from applying our parallelisation analysis to C (including variable
materialisation and loop-splitting). Let K be a nonfaulting terminating trace with initial
state κ = 〈δ, η,L〉, and let t be a thread identifier such that δ(t) = 〈Cpar, σ, (∅, ∅), ∅〉. Then
there exists a trace K′′ with initial state κ′′ = 〈δ[t 7→ 〈C, σ, (∅, ∅), ∅〉], η,L〉 such that:

1. For all thread identifiers t′ defined in K′′ such that t 6= t′, their thread-local behaviour
in K is identical to K′′.

2. Let κΩ be the final state in K, and κ′′
Ω the final state of K′′. Let σ be the local state

associated with thread t in κΩ and σ′′ the corresponding state associated with t in
κ′′. There exists a state σ′ such that σ ⊕ σ′ = σ′′.

Proof. By Lemma 21 the trace K must be signal-ordered with respect to t. Therefore by
Lemma 20 there exists a behaviourally-equivalent trace Kseq that is sequentialised with
respect to t. Because t has no child threads in κ, we can choose Kseq such that κ is also
its initial state.

52

We now show that there exist traces K′ and K′′, such that transitions in K are related
to K′ by the invariant J(t) (Lemma 15) and transitions in K′ are related to K′′ by the
invariant I(t) (Lemma 14).

We proceed by induction on the length of a prefix of Kseq. By Lemma 22, C =

JJCparK
↓
fkK

↓
ch. From this, it is straightforward to see that there exists a state κ′ = 〈δ[t 7→

〈JCparK
↓
fk, σ, (∅, ∅), ∅〉], η,L〉 such that J(t, κ, κ′) and I(t, κ′, κ′′).

Assume traces K′ and K′′ exist for the first n transitions of Kseq. Let κn be the final
state in this prefix. By assumption there exist states κ′

n and κ′′
n such that J(t, κn, κ

′
n) and

I(t, κ′
n, κ

′′
n). Now show that for the next transition κn Z=⇒s(t) κn+1 there exist transitions

κ′
n Z=⇒∗ κ′

n+1 and κ′′
n Z=⇒∗ κ′′

n+1 such that J(t, κn+1, κ
′
n+1) and I(t, κ′

n+1, κ
′′
n+1). This can

be visualised by the following diagram:

κn
J(t)
−→ κ′

n

I(t)
−→ κ′′

nZ=
⇒

s(t)

Z=
⇒

∗

Z=
⇒

∗

κn+1
J(t)
−→ κ′

n+1

I(t)
−→ κ′′

n+1

This is an immediate consequence of Lemmas 14 and 15.
By induction, this suffices to establish the existence of the trace K′′. Corresponding

thread-local behaviour for threads t′ 6= t, and corresponding final state for thread t follow
immediately from the definitions of I(t) and J(t).

This result also holds if our analysis performs variable materialisation and loop-
splitting—to show this, we need only appeal to Lemma 23 and Lemma 24.

Corollary 26. If the chosen post-condition in the proof of the program is precise, then
the result of parallelisation is an equality, not a sub-state.

Proof. Consequence of the fact that at most one sub-state of a given state can satisfy a
precise assertion.

B.1 Termination

In this section we prove that our analysis cannot introduce nontermination to the paral-
lelised program.

Lemma 27 (ensuring grant). Let Cpar be a program resulting from applying our par-
allelisation analysis to some sequential program C. Let K be a trace with initial state
κ = 〈δ, η,L〉, such that δ(t) = 〈Cpar, σ, (∅, ∅), ∅〉. For all states in κ′ = 〈δ, η,L〉 ∈ K
and all children c ∈ child(κ′, t) if c has terminated in κ′ (i.e. reduced to skip) then
grants(κ′, c) = ∅.

Proof. Consequence of the fact that in our analysis, each grant is injected along every
control-flow path. Consequently, a terminating thread must call grant for every channel
to which it has access.

Lemma 28 (trace extension). Let K be a trace that is signal-ordered with respect to t,
and let κ = 〈δ, η,L〉 be the final state of K. Let t′ be the minimum child of t such that

δ(t′) = 〈C, σ, ω, γ, 〉 and C 6= skip. Then there exists a nonfaulting transition κ
t′

Z=⇒ κ′.

53

Proof. By examination of the thread-local semantics, we can see that only calls to wait

can block without faulting. For all other commands, either the thread can take a step, or
it faults immediately. Consequently, the lemma reduces to asking whether every call to
wait in the thread t′ can take a step.

wait can only block if some prior thread has not called grant on some channel. By
the definition of signal-ordered (Def. 18), the channels for which t′ can wait must either
contain state, or must be held by some child thread earlier in the order. By assumption,
we know that all earlier threads have terminated, so by Lemma 27, we know that no
thread holds a pending grant. Consequently, the channel must contain state, and wait

can take a step.

Lemma 29 (trace erasure). Let K be a trace that is signal-ordered with respect to t, and
let κ = 〈δ, η,L〉 be the final state of K. Let t′ be the maximum child of t in dom(δ). Then
there exists a trace K′ such that K′ has no transitions over t′, and all threads other than
t′ have identical behaviour in K and K′.

Proof. By induction over the number of transitions over t in the trace. identify the final

transition over t′ in K, κn
t′

Z=⇒ κn+1. We erase this transition, and then re-execute the
remainder of the transitions from the trace. By the definition of signal-order (Def. 18) no
other child thread can call wait on any channel held by t. Consequently, we must be able
to run the same sequence of thread-local actions after erasing the transition. By applying
this process, we can erase all transitions over t′.

Theorem 30 (termination). Let C be a sequential program, and let Cpar be a program
resulting from applying our parallelisation analysis to C. If C is guaranteed to terminate,
then so is Cpar.

Proof. If C is terminating, then for any initial state, there must be a maximum number
of steps that the thread t running C can take. To prove the theorem, we prove the
contrapositive result: given that Cpar does not terminate, we can construct a trace for
Cseq where t takes more than this number of steps.

Suppose we have an initial state κ = 〈δ, η,L〉 such that δ(t) = 〈Cpar, σ, (∅, ∅), ∅〉.
Suppose that κ can result in a nonterminating trace over t—that is, given any arbitrary
bound n, there exists a trace with initial state κ and more than n steps over t and its
child threads.

Construct a sequential state κseq = 〈δ[t 7→ 〈Cpar, σ, (∅, ∅), ∅〉], η,L〉, and identify a
bound q such that no trace starting with κ′′ can take more than q steps over t. Choose a
trace K with initial state κ such that t and its children take more than q steps, excluding
synchronisation (that is, calls to fork, newch, signal and wait). Note that by Lemma
21, K is signal-ordered.

Now we rearrange K to give a sequentialised trace of length greater than q.

• By applying Lemma 28, we extend the trace until the first n children of t together
take more than q non-synchronisation steps, and all children but the nth have
terminated.

• By applying Lemma 29, we erase the (n+1)th to maximum child threads of t, along
with associated calls to fork from t.

54

The resulting trace K has more than q non-synchronisation transitions from t and its
first n children, and in the final state κ′, all but the nth child thread have terminated.
By applying Lemma 20, we can construct a trace K′′ that has equivalent thread-local
behaviour, and that is sequentialised with respect to t.

We observe that, by Lemma 22, C = JJCparK
↓
fkK

↓
ch. By applying Lemmas 14 and 15,

construct a trace Kseq with initial state κseq. The invariants in Lemmas 14 and 15 only
erase synchronisation transitions. Consequently, the resulting sequential trace has more
than q transitions over the thread t. This contradicts our assumption, and completes the
proof.

C Fully-tabulated Intermediate Assertions

Fig. C and Fig C show the needed and redundant maps computed by the resource-usage
analysis for the example discussed in §5.1.

55

ℓ2 ℓ2ℓ3 ℓ2ℓ3ℓ5 ℓ2ℓ3ge ℓ2ℓ4 ℓ2ℓ4ℓ5 ℓ2ℓ4ge fe

ℓ1 x 7→ x x ≥ i ∧ x 7→ x x ≥ i ∧ x 7→ x x ≥ i ∧ x 7→
x ∗ y 7→ y

x < i ∧ x 7→ x x < i ∧ x 7→ x x < i ∧ x 7→ x (x ≥ i ∧ x 7→
x ∗ y 7→ y) ∨
(x < i ∧ x 7→
x)

ℓ2 v = x ∧ v ≥ i v = x ∧ v ≥ i v = x ∧ v ≥
i ∗ y 7→ y

v = x ∧ v < i v = x ∧ v < i v = x ∧ v <
i ∧ x 7→ x

(v = x ∧ v ≥
i ∗ y 7→ y) ∨
(v = x ∧ v <
i ∧ x 7→ x)

ℓ2ℓ3 v = x ∧ v ≥ i v = x ∧ v ≥
i ∗ y 7→ y

v = x ∧ v ≥
i ∗ y 7→ y

ℓ2ℓ3ℓ5 v = x ∧ v ≥
i ∗ y 7→ y

v = x ∧ v ≥
i ∗ y 7→ y

ℓ2ℓ3ge v = x ∧ v ≥ i

ℓ2ℓ4 v = x ∧ v < i v = x ∧ v <
i ∗ x 7→ x

v = x ∧ v <
i ∗ x 7→ x

ℓ2ℓ4ℓ5 v = x ∧ v <
i ∗ x 7→ x

v = x ∧ v <
i ∗ x 7→ x

ℓ2ℓ4ge v = x ∧ v < i

Table 2: needed map computed by the algorithm Needed. (not shown trivial entries; empty entry means not defined)

56

ℓ2 ℓ2ℓ3 ℓ2ℓ3ℓ5 ℓ2ℓ3ge ℓ2ℓ4 ℓ2ℓ4ℓ5 ℓ2ℓ4ge fe

ℓ1 y 7→ y (x ≥ i ∧ y 7→
y) ∨ (x < i ∧
x 7→ x ∗ y 7→
y)

(x ≥ i ∧ y 7→
y) ∨ (x < i ∧
x 7→ x ∗ y 7→
y)

x < i ∧ x 7→
x ∗ y 7→ y

(x ≥ i ∧ x 7→
x ∗ y 7→ y) ∨
(x < i ∧ y 7→
y)

(x ≥ i ∧ x 7→
x ∗ y 7→ y) ∨
(x < i ∧ y 7→
y)

(x ≥ i ∧ x 7→
x ∗ y 7→ y) ∨
(x < i ∧ y 7→
y)

x < i ∧ y 7→ y

ℓ2 v = x ∧ x 7→
x ∗ y 7→ y

v = x ∧ x 7→
x ∗ y 7→ y

(v = x ∧ v ≥
i ∧ x 7→ x) ∨
(v = x ∧ v <
i ∧ x 7→ x ∗
y 7→ y)

v = x ∧ x 7→
x ∗ y 7→ y

v = x ∧ x 7→
x ∗ y 7→ y

(v = x ∧ v ≥
i ∧ x 7→ x ∗
y 7→ y) ∨ (v =
x ∧ v < i ∧
y 7→ y)

(v = x ∧ v ≥
i ∧ x 7→ x) ∨
(v = x ∧ v <
i ∧ y 7→ y)

ℓ2ℓ3 v = x ∧ v ≥
i ∧ x 7→ x ∗
y 7→ y

v = x ∧ v ≥
i ∧ x 7→ x

v = x ∧ v ≥
i ∧ x 7→ x

ℓ2ℓ3ℓ5 v = x ∧ v ≥
i ∧ x 7→ x

v = x ∧ v ≥
i ∧ x 7→ x

ℓ2ℓ3ge v = x ∧ v ≥
i ∧ x 7→ x ∗
y 7→ y

ℓ2ℓ4 v = x ∧ v <
i ∧ x 7→ x ∗
y 7→ y

v = x ∧ v <
i ∧ y 7→ y

v = x ∧ v <
i ∧ y 7→ y

ℓ2ℓ4ℓ5 v = x ∧ v <
i ∧ y 7→ y

v = x ∧ v <
i ∧ y 7→ y

ℓ2ℓ4ge v = x ∧ v <
i ∧ x 7→ x ∗
y 7→ y

Table 3: redundant map computed by the algorithm Redundant. (not shown trivial entries; empty entry means not defined)

57

