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Abstract— Joint diagonalisation (JD) is a technique
used to estimate an average eigenspace of a set of
matrices. Whilst it has been used successfully in
many areas to track the evolution of systems via their
eigenvectors; its application in network analysis is novel.
The key focus in this paper is the use of JD on matrices
of spanning trees of a network. This is especially useful
in the case of real-world contact networks in which a
single underlying static graph does not exist. The average
eigenspace may be used to construct a graph which
represents the ‘average spanning tree’ of the network or
a representation of the most common propagation paths.
We then examine the distribution of deviations from
the average and find that this distribution in real-world
contact networks is multi-modal; thus indicating several
modes in the underlying network. These modes are
identified and are found to correspond to particular
times. Thus JD may be used to decompose the behaviour,
in time, of contact networks and produce average static
graphs for each time. This may be viewed as a mixture
between a dynamic and static graph approach to contact
network analysis.

Keywords. Social networks, joint diagonalisation,
graph analysis, spanning tree, human contact networks

I. I NTRODUCTION

Understanding the dynamic structure of contact net-
works is critical for designing dynamic routing algo-
rithms [11], epidemic spreading [16] and message
passing algorithms [10].

Time dependent networks are characterised by time
dependant paths which are characterised by the order
in which the paths occur. For example, a path between
3 nodesA !B !C does not imply a reverse path
exists;A !B !C provides no information about
how C may communicate withA. However, in many
applications a static graph is constructed which repre-
sents typically the proportion of time a link was seen
between two nodes. These static graphs often lose the
time information which is critical in contact networks.
However, at aspecific timeand from aspecific node
there is a single static network representing the paths
between the root node and the rest of the network.

JD is used in this paper to look for commonalities
in these specific static networks and to provide an
averagestatic network where appropriate. That is, we
are looking formodesof operation in contact networks.

Joint Diagonalisation (JD) is a technique that is used
to track the changes in eigenspace (i.e. eigenvectors
and eigenvalues) of a system (see Section III for exam-
ples). Eigenvectors and eigenvalues play an important
role in static network/graph analysis as they can be
used to determine the centrality of nodes; communities
and settling times among other things [1]. However, to
the best of our knowledge tracking eigenspace evolu-
tion has not been applied to contact/time dependent
networks previously. This paper examines the use of
JD in network analysis.

II. RELATED WORK

Joint diagonalisation has been used in many appli-
cations where the evolution of a system can be tracked
smoothly via its eigenspace. For example, Macagnano
et al. [12] present an algorithm for localisation of
multiple objects given partial location information.
As time evolves the location of the objects changes
smoothly which may be seen through the evolution of
the eigenvectors of a distance matrix. Other examples
include blind beam forming [4] and blind source sep-
aration [20].

Sun et al. [19] use tensor analysis to examine time
dependent networks. A tensor is multi-dimensional
matrix (for example a set of adjacency matrices) which
are essentially reduced using PCA to acore tensor.
This technique is similar in spirit to that presented
here, the difference is that we are looking to reduce a
set of spanning trees representing propagation through
a network; propagation information being preserved.

Scellato et al. [18] examine the different character-
istics of contact networks as they evolve over time.
However, the analysis there is based on forming static
graphs by amalgamating all links seen in an interval
of time. This may introduce connections which in



Fig. 1. A simple graph and its 6 spanning trees. (The numbers represent the root nodes and probability of observing the tree ex: 1,6,2,3
are the root nodes for the third tree and this tree is observedwith probability 4/14)

fact are unordered. Graph measures (e.g. the clustering
coefficient) are then measured from these graphs and a
time series analysis of these follows. In contrast, here
the amalgamation is dependent of the contact network
itself.

Riolo et al. [16] investigate time dependent epidemic
networks with a view to constructingtransmission
graphs, directed graphs which indicate the direction
of transmission of a disease through a network. While
the aim in this paper is similar, the methodology used
is significantly different as they examine one time
infections in real networks.

III. T HEORETICAL BACKGROUND

We begin by defining snowball sampling which
consists of selecting a root node randomly in the net-
work with uniform probability and performing aBreath
First Search(BFS) from this node (i.e. determining a
set of shortest paths from the source node to every
other node in the network). This produces a spanning
tree, H, whereH is a subset of the original graph
G(V,E), whereV andE denote the vertex and edge
sets respectively, andjV j= N denotes the number of
nodes. We call the starting node theobserveror root
and H, the sample. Figure 1 shows a simple graph
which will be used for demonstration purposes. In the
first sample node 5 is selected at random and a shortest
path first search results in the first tree in Figure 1. In
this simple graph there are 6 spanning trees shown in
Figure 1. Note that the distribution of spanning trees
in this network are not uniform but biased. That is,
traffic generated uniformly from each node results in
non-uniform percolation across the network.

Next we develop a centrality measure which is
based on standard eigenvector centrality. Eigenvector
centrality [14] is defined by letting the centrality of
nodei equal the average of the centrality of all nodes
connected to it:

xi =
1

λ

N∑

j=1

Ai,jxj (1)

whereAi,j is elementi, j of the (possibly weighted)
adjacency matrix andλ is the largest eigenvalue of
Ai,j as can be seen by rewriting Equation 1 in matrix
notation as:

X =
1

λ
AX (2)

The eigenvector corresponding toλmax gives the
eigenvector centrality of nodei.

Given M samples of a network,H1 . . . HM , the
question now arises; how can these be combined to
give a matrix that reflects the sampling bias. We
propose using a method known as joint diagonalisation
which produces an average eigenspace of the samples.
Specifically, we seek an orthogonal matrix such that:

Hi = UCiU
T 8i (3)

If U corresponds to the eigenvectors ofHi then Ci

is diagonal however no matrixU exists in which all
Ci are diagonal (except for the trivial case in which
all Hi are equal). Joint diagonalisation seeks average
eigenvectors̄U such that the sum of squares of the off
diagonal elements ofCi are minimised. Specifically:

Ū = argmin
U

off2(
M∑

j=1

Ci) (4)

where off2 is the sum of the off diagonal elements
squared, called thedeviationof Hi from H̄, δi :

δi = off2(Ci) =
∑

k 6=j

jC
k,j
i j2 (5)

whereCk,j
i is thekth row andjth column ofCi. As

shown in [21] and [3] Equation 4 may be minimised
efficiently by a sequence of Givens rotations; conver-
gence and stability properties are proven in [2].

Given the average eigenstructure of the sample ma-
trices an average sampling matrix may be constructed
from the eigenvector decomposition as:

H̄ = UC̄UT (6)
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Fig. 2. The average sampling graph corresponding toH̄.

Where H̄ is a matrix in which the entries represent
the average weight of the links as observed by the
samples in the network (in a least squares sense) and
C̄ is the average of diagonals ofHi projected ontoŪ ;
i.e. the average eigenvalues. A sample based centrality
may then be constructed from̄H using the standard
eigenvector centrality; i.e. by using the eigenvector of
H̄ corresponding to the maximum eigenvalue.

A. Simple examples.

Using the graph shown in Figure 1, 100 samples
are taken by randomly choosing a root node and
constructing a spanning tree from each. These are
then jointly diagonalised producing the eigenvectors
shown in Table I. The sampling centrality is the first
eigenvector (column 1).

TABLE I

THE AVERAGE EIGENVECTOR, U FROM THE GRAPH INFIGURE 1.

1 2 3 4 5 6 7
0.3095 0.74 -0.34 -0.29 0.13 -0.35 0.14
0.6780 -0.00 0.70 -0.19 -0.09 0.00 -0.09
0.3370 0.00 -0.26 0.47 -0.73 0.00 0.26
0.3357 0.00 -0.26 0.45 0.28 0.00 -0.73
0.3095 -0.07 -0.34 -0.29 0.13 0.81 0.14
0.1634 -0.00 0.14 0.54 0.57 0.00 0.58
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Fig. 3. The simple graph used in example 2.

Fig. 4. H̄ for example 2 (Note: the red box contains the node
number and the sampling centrality).

It is instructive to view the eigenvector reconstruc-
tion of H̄ which is formed from the eigenvectors in
Table I via Equation 6.H̄ is drawn in Figure 2. Note
thatH̄ is a complete weighted graph; weights assigned
to non-existent links are low and are a consequence of
taking an average of many graphs. The edge between
nodes 3 and 4 has a weight of0.7857 � 11

14
, i.e. the

proportion of trees that use that link (see Figure 1).
H̄ represents the sample biased weight of this link; a
nice result. There are two reasons why these numbers
are not exactly the same; the first is that, as always,
there is a slight error introduced when using empirical
sampling. The second is that thēH is based on the
average eigenspace of a set of sampling trees; this is
not the same as simply taking the proportion of times
a link has been observed.

Fig. 5. H̄ for example 2 with a preference for routes 6↔4.

The second example deals with a preferred route.
Figure 3 shows a graph with a bridge formed from
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nodes 6$4 and 5$3 ; these nodes are critical in
joining the two parts of the graph.

Figure 4 shows the weighted graph created by sam-
pling as above1. The second stage involves creating
a preferred route by removing 80% of trees that use
the link between 5$3. The resultant average graph is
shown in Figure 5. As can be seen the weight attached
to link 5$3 is greatly reduced (from 0.9 to 0.2).

Thus far we have only dealt with samples taken
on static graphs. However, joint diagonalisation is
particularly well suited to contact networks. In these
networks there is no underlying static graph as such,
but rather a set of contacts that are time dependent. By
flooding these networks spanning trees may be formed
and combined by the use of JD. The next section details
these real-world data sets.

IV. DATA SET DETAILS

In this paper, we use four experimental datasets
gathered by the Haggle Project [7], referred to asCam-
bridge, Infocom06; one dataset from the MIT Reality
Mining Project [6], referred to asMIT. Previously, the
characteristics of these datasets such as inter-contact
and contact distribution have been explored in several
studies [9], to which we refer the reader for further
background information. These three datasets cover a
rich diversity of environments, ranging from a quiet
university town (Cambridge), with an experimental
period from a few days (Infocom06) to one month
(MIT).

Experimental data set Cambridge Infocom06 MIT
Device iMote iMote Phone

Network type Bluetooth Bluetooth Bluetooth
Duration (days) 11 3 246

Granularity (seconds) 600 120 300
Number of Devices 36 78 97
Number of contacts 10,873 191,336 54,667

Average # Contacts/pair/day 0.345 6.7 0.024

TABLE II

CHARACTERISTICS OF EXPERIMENTAL DATA SETS

• In Cambridge, the iMotes were distributed mainly
to two groups of students from University of
Cambridge Computer Laboratory, specifically un-
dergraduate year1 and year2 students, and also
some PhD and Masters students. This dataset
covers 11 days.

• In Infocom06, the trace contains 78 participants.
Among 78 participants, 34 form 4 subgroups by
academic affiliations.

• In MIT, 100 smart phones were deployed to stu-
dents and staff at MIT over a period of 9 months.
These phones were running software that logged
contacts with other Bluetooth enabled devices

1Links with low weights are removed for clarity.

by doing Bluetooth device discovery every five
minutes. 1 month of data is used here to maintain
the consistency of users.

The three experiments are summarised in Table II
and the trace data can be downloaded at CRAWDAD
database [5].

V. RESULTS

The results below examine the 3 data sets separately
highlighting the features of each. Finally a synthetic
contact network with known characteristics is con-
structed and JD used to extract these characteristics.
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Fig. 6. A typical flooding tree; as seen from node 20.

Next the distribution of the sample start times is
examined Figure 9. As can be seen the 5 modes
correspond to different times in the data set. Modes
1 and 5 cover the first half of the data while modes 2
then 3 and then 4 become dominant in that succession.

A. Cambridge data

Figure 6 shows a typical sampling tree for the
Cambridge data set. Node 20 initiates a message and
it is passed around the contact network; first to nodes

24261430  1  4 10  5 1915  6 20171823  9 33  2 35  3 16362521  7  8 11292712342832132231
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Fig. 7. Community based on Fiedler clustering (Cambridge data
set).
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Fig. 9. Distribution of times by mode.

16 and 6 and from there to the rest of the network. For
this experiment ten thousand such trees are generated2

with the messages starting at a random times and from
a random node (uniformly distributed). These are then
combined using Joint Diagonalization to form̄H.

The average graph,̄H, for this data set isrepresented
in Figure 10(a). This representation shows all links in
the weighted shortest paths of̄H3. As can be seen the
nodes split into two groups as expected. These groups
may be represented by a standard dendrogram based on
Fiedler vector clustering [8] as shown in Figure 7. The
groups seen here correspond closely to those found on
the same data set in [23].

The results so far have examined the average be-
haviour of the contact network which is interesting in

2A large sample size is used here to negate random effects.
However, similar results are found for much smaller sample sizes.

3We found this to be the clearest means of representing a complete
weighted graphs.
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Fig. 11. Mean number of nodes susceptible to disease after timet
(Root infection starts at time 250. Inset focuses on the startof the
infection.).

itself. However, by examining the distribution of devia-
tions,δi, from the average a more interesting behaviour
may be observed. Figure 8 shows the distribution of
δi, i = 1 . . . 10, 000. As can be seen the distribution is
multi-modal; i.e. the underlying process/contact net-
work has different modes of operation. A Gaussian
mixture model [13] is used to determine the different
modes as shown in Figure 8. 5 different modes are
identified. This is particularly useful as it allows
the network to be characterized by different modes of
behaviour at different times.̄H for the overall data set
and for each mode are shown in Figure 10. Mode one
shows a highly structured network corresponding to the
day when the groups are well defined byclass year(i.e.
year 1 and year 2). This structure then becomes less
well defined as time moves on. Mode 5 is particularly
interesting as there is an obvious bridge formed by
nodes 3 and 20. This mode covers the night time and

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18
19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50 51

52
53

54

55

56

57

58

59 60

61

62

63

64

65

66

67

68

69

70

71

72

73 74
75

76

77

78

79

80

81

82

83

84 85

86

87

88

89

90

91

Fig. 12. Graph of shortest paths in̄H; overall. (MIT).

7



Fig. 10. Graph of shortest paths in̄H for overall and 5 modes. (Cambridge data set; the size of a node is proportional to the sum of
weights incident on that node)
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Fig. 13. Community based on Fiedler clustering (MIT data set).

nodes 3 and 20 are possibly staff who interact with the
students in the morning4. UsingH̄ as an indicator, this
implies that a disease spread at this time from nodes
3 and 20 should have the fastest infection rate. Note
that mode 1 is still dominant in this period; this mode
is essentially being suspended overnight (due to few
contacts) with the spanning trees being completed in
the morning.

To test the infection rate, an SIR model is con-
structed5 and a disease is spread through the contact
network starting at time index 250. The simulation
is repeated 30 times for each node and the results
bootstrapped to give estimates of the mean number of
people susceptible (i.e. those that have not received the
disease) at time,t, S(t). Figure 11 shows the results
of these simulations and as can be seen the number

4We cannot be sure as the data has been anonymised.
5Probability of infection 0.5; infection time Poisson distributed

with mean 80 time steps, 800 mins.
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Fig. 14. Distribution ofδi (MIT).
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of susceptible people falls most rapidly for infections
started at nodes 3 and 20, as expected.

B. MIT data

The results from the MIT data set show a different
type of behaviour. There are two main groups (Fig-
ure 12) the largest of which can be further subdivided
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into three smaller groups (Figure 13).
The distribution ofδi is shown in Figure 14 and

two main modes are identified from this. The MIT
data set spans a month of data and recurring patterns
emerge from the data as shown in Figure 15. This
is particularly interesting as it introduces the concept
of being able to forecast the behaviour of a group at
regular intervals and design strategies for those specific
modes.

C. INFOCOM ’06 data

The Infocom data is summarised in Figure 16 and
follows the behaviour typically expected at a confer-

ence. Four modes are identified (Figure 16(a)) which
correspond to four periods in time (Figure 16(b)). The
first mode to occur is mode 3 showing much mixing
between the delegates (Figure 16(e)). This is probably
the delegates meeting for coffee before the conference
begins. This is then followed by two periods of struc-
tured graphs (i.e. presentations; Figures 16(c,d)) ending
with a period of mixing (Figures 16(f)).

D. Synthetic contact network

The first network created in this section is a purely
random contact network in which 5% of 50 nodes
are connected at random in each time step. Figure 18
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structure in the graph.̄H has been thresholded using a value of 0.1 (H̄ < 0.1 7−→ 0).

shows the distribution ofδi for this network is uni-
modal as expected; there is only one underlying pro-
cess. The distribution also follows aΓ distribution6.

The second network is more complicated and in-
volves generating four different behaviours for a con-
tact network termedgenerators. A generator consists of
a static underlying topology representing a set of possi-
ble contacts. These links are transformed into contacts
by using a Lévy walk (as justified in [9] [15]); a set
of times are generated from a power law distribution
and used to demarcate when a contact takes place.
The generator used is switched every 700 time units as
shown by the mode indicator in Figure 20. Specifically,
the first generator employs a Waxman topology [22]
(α = 0.5,β = 0.3)7. The second generator is also a

6δi is a squared quantity which should follow a similar distribution
to a sample variance; i.e.δi ∼ χ2. The Γ distribution is a
generalisation of theχ2 distribution and so is used.

7Waxman topology:p(u ↔ v) = αe−βd whereα and β are
parameters of the model. The nodes are distributed randomly on a
grid and the distance between them isd.
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Fig. 18. Distribution ofδi (Random network).

Waxman model withα = 0.7,β = 0.3. The third and
fourth generators are (GLP) generalised linear prefer-
ential topologies based on preferential attachment [17].

As can be seen 3 modes are detected in the data
(Figure 19). These correspond with the generator times
for 2 of the modes (Figure 20). However, mode 3
incorporates both generator 3 and generator 4. This
occurs as generator 3 and 4 are quite similar (both
based on GLP).

The samples in mode 3 may be examined separately
using JD to produce thesubmodesseen in Figure 21
occurring at the times seen in Figure 21. As can be
seen these submodes are generators 3 and 4. Thus the
algorithm has successfully recovered the modes in the
data. At this point we make a note on the transition
between the modes. It is interesting that this transition
is not crisp even though the switching between modes
is. This is because a spanning tree may begin in one
mode but the message may end in the next mode.
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VI. CONCLUSIONS

This paper presented a method for extracting dif-
ferent modes of operation for contact networks. In the
real-world contact networks examined, several interest-
ing features where extracted including detection of a
bridge in the Cambridge data set. The MIT data set in
contrast, showed a repetitive behaviour which is useful
for prediction of network behaviour; for example in
advance of an infection. The INFOCOM data set
clearly showed the behaviour typical of a conference.
In producing an average graph based on samples of a
network, the order of contacts has been preserved and
in addition the correlation between contacts has been
preserved. For example aggregation based purely on
counting the number of times a link is present does
not take into account the fact that links may typically
be presenttogether; i.e. the time based correlation be-
tween links. By using spanning trees the methodology
takes advantage of a sampling mechanism present in
many real-world networks; it might not be possible to
record all contacts but it is often possible to flood a
message in a network and record the paths taken. It
is hoped that in future this technique will aid in the

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

1

2

3

4

5

6

7

8
x 10

−4

Time

f(
t)

Group2

 

 

Mode indicator

Sub Mode 1

Sub Mode 2

Fig. 22. Distribution of times by mode; submode. (Synthetic)

design of time specific algorithms for time dependent
networks.
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