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Abstract— Joint diagonalisation (JD) is a technique JD is used in this paper to look for commonalities
used to estimate an average eigenspace of a set ofn these specific static networks and to provide an
matrices. Whilst it has been used successfully in 4eragestatic network where appropriate. That is, we

many areas to track the evolution of systems via their looking f desof tion i tact network
eigenvectors; its application in network analysis is novel. are 1ooking fomodesor operation in contact Networks.

The key focus in this paper is the use of JD on matrices  Joint Diagonalisation (JD) is a technique that is used
of spanning trees of a network. This is especially useful to track the changes in eigenspace (i.e. eigenvectors
in the case of real-world contact networks in which a and eigenvalues) of a system (see Section Ill for exam-
single underlying Séat'c gra(tjprl does ”ft ei('St' The ﬁ"erﬁ.gi ples). Eigenvectors and eigenvalues play an important
eigenspace may be used to construct a graph whic : : :

represents the ‘average spanning tree’ of the network or role in static n_etwork/graph _analys's as they Can_ _be
a representation of the most common propagation paths. used to determine the Ceﬂtrallty of nodes; communities
We then examine the distribution of deviations from and settling times among other things [1]. However, to
the average and find that this distribution in real-world  the best of our knowledge tracking eigenspace evolu-
contact networks is multi-modal; thus indicating several tion has not been applied to contact/ime dependent

modes in the underlying network. These modes are twork . v Thi . th f
identified and are found to correspond to particular Networks previously. IS paper examines the use o

times. Thus JD may be used to decompose the behaviour,JD in network analysis.
in time, of contact networks and produce average static
graphs for each time. This may be viewed as a mixture Il. RELATED WORK

between a dynamic and static graph approach to contact  jgint diagonalisation has been used in many appli-
network analysis. . .
cations where the evolution of a system can be tracked
Keywords. Social networks, joint diagonalisation, Smoothly via its eigenspace. For example, Macagnano
graph analysis, spanning tree, human contact networks et al. [12] present an algorithm for localisation of
multiple objects given partial location information.
. INTRODUCTION As time evolves the location of the objects changes

Understanding the dynamic structure of contact netmoothly which may be seen through the evolution of
works is critical for designing dynamic routing algo-the eigenvectors of a distance matrix. Other examples
rithms [11], epidemic spreading [16] and messageaclude blind beam forming [4] and blind source sep-
passing algorithms [10]. aration [20].

Time dependent networks are characterised by timeSun et al. [19] use tensor analysis to examine time
dependant paths which are characterised by the ordpendent networks. A tensor is multi-dimensional
in which the paths occur. For example, a path betweematrix (for example a set of adjacency matrices) which
3 nodesA B ( does not imply a reverse path are essentially reduced using PCA tocare tensor.
exists;A B C provides no information about  This technique is similar in spirit to that presented
how C may communicate wittA. However, in many here, the difference is that we are looking to reduce a
applications a static graph is constructed which repreet of spanning trees representing propagation through
sents typically the proportion of time a link was seea network; propagation information being preserved.
between two nodes. These static graphs often lose theScellato et al. [18] examine the different character-
time information which is critical in contact networks.istics of contact networks as they evolve over time.
However, at aspecific timeand from aspecific node However, the analysis there is based on forming static
there is a single static network representing the patgsaphs by amalgamating all links seen in an interval
between the root node and the rest of the networkf time. This may introduce connections which in
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Fig. 1. A simple graph and its 6 spanning trees. (The numbergsept the root nodes and probability of observing the tred 6,2,3
are the root nodes for the third tree and this tree is obsemigrdprobability 4/14)

fact are unordered. Graph measures (e.g. the clusterimgere A; ; is element:, j of the (possibly weighted)

coefficient) are then measured from these graphs anddjacency matrix and\ is the largest eigenvalue of

time series analysis of these follows. In contrast, her; ; as can be seen by rewriting Equation 1 in matrix

the amalgamation is dependent of the contact netwonktation as:

itself. X = lAX 2)

Riolo et al. [16] investigate time dependent epidemic A

networks with a view to constructingransmission The eigenvector corresponding td,,,, gives the

graphs directed graphs which indicate the directioigenvector centrality of node

of transmission of a disease through a network. While Given M/ samples of a networkH, ... H,, the

the aim in this paper is similar, the methodology useguestion now arises; how can these be combined to

is significantly different as they examine one timgjive a matrix that reflects the sampling bias. We

infections in real networks. propose using a method known as joint diagonalisation
lIl. THEORETICAL BACKGROUND which produces an average eigenspace of the samples.

We begin by defining snowball sampling WhiChSpemflcally, we seek an orthogonal matrix such that:

consists of selecting a root node randomly in the net- H, =UC;UT i (3)

work with uniform probability and performing Breath

First Search(BFS) from this node (i.e. determining alf U corresponds to the eigenvectors &f then C;

set of shortest paths from the source node to evelfydiagonal however no matrik’ exists in which all

other node in the network). This produces a spannitig are diagonal (except for the trivial case in which

tree, H, where H is a subset of the original graphall H; are equal). Joint diagonalisation seeks average

G(V, E), whereV and E denote the vertex and edgeeigenvectord/ such that the sum of squares of the off

sets respectively, and’ = N denotes the number of diagonal elements of’; are minimised. Specifically:

nodes. We call the starting node thbserveror root M

and H, the sample Figure 1 shows a simple graph U= argminoﬁ'g(z Ci) (4)

which will be used for demonstration purposes. In the U

first sample node 5 is selected at random and a shortest ) )

path first search results in the first tree in Figure 1. iffhere offz is the sum of the off diagonal elements

this simple graph there are 6 spanning trees shown§Auared, called theeviationof H; from H, ¢;

Figure 1. Note that the distribution of spanning trees _ _ kg 2

in this network are not uniform but biased. That is, 0 = off2(Cy) = Z ¢i ®)

traffic generated uniformly from each node results in

non-uniform percolation across the network. WhereCik’j is the k** row andj* column of C;. As
Next we develop a centrality measure which ighown in [21] and [3] Equation 4 may be minimised

based on standard eigenvector centrality. Eigenvecificiently by a sequence of Givens rotations; conver-

centrality [14] is defined by letting the centrality ofgence and stability properties are proven in [2].

node: equal the average of the centrality of all nodes Given the average eigenstructure of the sample ma-

connected to it: trices an average sampling matrix may be constructed

N from the eigenvector decomposition as:

Z Ai (1)

j=1

j=1

k]

Ty =

> =

H=UCU" (6)
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WhereH is a matrix in which the entries represent:ig. 4. H for example 2 (Note: the red box contains the node

the average weight of the links as observed by t

wélmber and the sampling centrality).

samples in the network (in a least squares sense) and

C is the average of diagonals &f; projected ontd/;
i.e. the average eigenvalues. A sample based centr
may then be constructed frotH using the standard

_ It is instructive to view the eigenvector reconstruc-

alith of # which is formed from the eigenvectors in

Table | via Equation 6/ is drawn in Figure 2. Note

eigenvector centrality; i.e. by using the eigenvector qf,5; 7 js a complete weighted graph: weights assigned

H corresponding to the maximum eigenvalue.

A. Simple examples.

Using the graph shown in Figure 1, 100 Samp|é§0p0rti0n of trees that use that link (See Figure l)
are taken by random|y Choosing a root node anH represents the Sample biased Welght of this ||nk, a
constructing a spanning tree from each. These dﬂ@e result. There are two reasons why these numbers
then jointly diagonalised producing the eigenvector@® not exactly the same; the first is that, as always,
shown in Table I. The sampling centrality is the firsthere is a slight error introduced when using empirical

eigenvector (column 1).

TABLE |
THE AVERAGE EIGENVECTOR U FROM THE GRAPH INFIGURE 1.
1 2 3 4 5 6 7
0.3095 | 0.74 | -0.34 | -0.29 | 0.13 | -0.35 | 0.14
0.6780 | -0.00 | 0.70 | -0.19 | -0.09 | 0.00 | -0.09
0.3370 | 0.00 -0.26 0.47 | -0.73 | 0.00 0.26
0.3357 | 0.00 -0.26 0.45 0.28 0.00 | -0.73
0.3095 | -0.07 | -0.34 | -0.29 | 0.13 | 0.81 | 0.14
0.1634 | -0.00 | 0.14 | 0.54 | 0.57 | 0.00 | 0.58

Fig. 3. The simple graph used in example 2.

to non-existent links are low and are a consequence of
taking an average of many graphs. The edge between
nodes 3 and 4 has a weight 0f7857 %, i.e. the

sampling. The second is that thé is based on the
average eigenspace of a set of sampling trees; this is
not the same as simply taking the proportion of times
a link has been observed.
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Fig. 5. H for example 2 with a preference for routes+@.

The second example deals with a preferred route.
Figure 3 shows a graph with a bridge formed from



nodes 64 and 53 ; these nodes are critical in by doing Bluetooth device discovery every five
joining the two parts of the graph. minutes. 1 month of data is used here to maintain
Figure 4 shows the weighted graph created by sam- the consistency of users.
pling as above The second stage involves creating The three experiments are summarised in Table Il
a preferred route by removing 80% of trees that usghd the trace data can be downloaded at CRAWDAD
the link between 3. The resultant average graph is database [5].
shown in Figure 5. As can be seen the weight attached
to link 5 3 is greatly reduced (from 0.9 to 0.2). V. RESULTS
Thus far we have only dealt with samples taken The results below examine the 3 data sets separately
on static graphs. However, joint diagonalisation ibighlighting the features of each. Finally a synthetic
particularly well suited to contact networks. In thesgontact network with known characteristics is con-
networks there is no underlying static graph as sucstructed and JD used to extract these characteristics.
but rather a set of contacts that are time dependent. Rv
flooding these networks spanning trees may be form
and combined by the use of JD. The next section deta
these real-world data sets.

IV. DATA SET DETAILS

In this paper, we use four experimental datase
gathered by the Haggle Project [7], referred tdCasn-
bridge, Infocom06 one dataset from the MIT Reality
Mining Project [6], referred to aMIT. Previously, the
characteristics of these datasets such as inter-cont
and contact distribution have been explored in sevel
studies [9], to which we refer the reader for furthe
background information. These three datasets covel
rich diversity of environments, ranging from a quie.
university town Cambridg®, with an experimental
period from a few daysliifocom0§ to one month

Fig. 6. A typical flooding tree; as seen from node 20.

MIT). L . .
(MIT) Next the distribution of the sample start times is
Experimental data set | Cambridge| Infocom06 | MIT examined Figure 9. As can be seen the 5 modes
N Sve\/lkcif BIIM?teth BIIMC:tem BIPh?neth correspond to different times in the data set. Modes
etwor e etoo! etoo etoo! . .
Duration (0ays) o) 'S e 1 and 5 cover the first half of the data while modes 2
Granularity (seconds) 600 120 300 then 3 and then 4 become dominant in that succession.
Number of Devices 36 78 97
Number of contacts 10,873 191,336 54,667
Average # Contacts/pair/day  0.345 6.7 0.024

A. Cambridge data

Figure 6 shows a typical sampling tree for the
Cambridge data set. Node 20 initiates a message and
it is passed around the contact network; first to nodes

TABLE Il
CHARACTERISTICS OF EXPERIMENTAL DATA SETS

« In Cambridge the iMotes were distributed mainly
to two groups of students from University of
Cambridge Computer Laboratory, specifically un-
dergraduate yearl and year2 students, and also
some PhD and Masters students. This dataset
covers 11 days. il

« In InfocomO06 the trace contains 78 participants.
Among 78 patrticipants, 34 form 4 subgroups by st
academic affiliations.

e In MIT, 100 smart phones were deployed to stu- i
dents and staff at MIT over a period of 9 months.
These phones were running software that logged LLCLILLCLL UL LI CL DL L EL L]

contacts with other Bluetooth enabled devices
Fig. 7. Community based on Fiedler clustering (Cambridge data

Links with low weights are removed for clarity. set).
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(Root infection starts at time 250. Inset focuses on the sfathe
infection.).

itself. However, by examining the distribution of devia-
tions,d;, from the average a more interesting behaviour
may be observed. Figure 8 shows the distribution of
0;,%=1...10,000. As can be seen the distribution is
multi-modal; i.e. the underlying process/contact net-
work has different modes of operation. A Gaussian
mixture model [13] is used to determine the different
modes as shown in Figure 8. 5 different modes are
identified.  This is particularly useful as it allows
the network to be characterized by different modes of
behaviour at different timesd for the overall data set
and for each mode are shown in Figure 10. Mode one
shows a highly structured network corresponding to the
day when the groups are well defineddigiss yealri.e.
year 1 and year 2). This structure then becomes less
well defined as time moves on. Mode 5 is particularly
interesting as there is an obvious bridge formed by

16 and 6 and from there to the rest of the network. Fé&}odes 3 and 20. This mode covers the night time and
this experiment ten thousand such trees are genérated
with the messages starting at a random times and frc™

a random node (uniformly distributed). These are the

combined using Joint Diagonalization to forfh.

The average grapti/, for this data set isepresented

in Figure 10(a). This representation shows all links i
the weighted shortest paths Af. As can be seen the
nodes split into two groups as expected. These grou
may be represented by a standard dendrogram basec
Fiedler vector clustering [8] as shown in Figure 7. Th-
groups seen here correspond closely to those found

the same data set in [23].

The results so far have examined the average k
haviour of the contact network which is interesting ir

A large sample size is used here to negate random effec
However, similar results are found for much smaller sample sizes

3We found this to be the clearest means of representing a camplet

weighted graphs.
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Fig. 12. Graph of shortest paths if; overall. (MIT).
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nodes 3 and 20 are possibly staff who interact with the
students in the mornirigUsing H as an indicator, this
implies that a disease spread at this time from nodes = ]
3 and 20 should have the fastest infection rate. Note ]
that mode 1 is still dominant in this period; this mode
is essentially being suspended overnight (due to few
contacts) with the spanning trees being completed in
the morning.

To test the infection rate, an SIR model is con-
structed and a disease is spread through the contact Fig. 15. Distribution of times by mode. (MIT)
network starting at time index 250. The simulation
is repeated 30 times for each node and the results
bootstrapped to give estimates of the mean number aff susceptible people falls most rapidly for infections
people susceptible (i.e. those that have not received #tarted at nodes 3 and 20, as expected.
disease) at timet, S(t). Figure 11 shows the results
of these simulations and as can be seen the numiier MIT data

1500 2000 2500 3000
Time

4We cannot be sure as the data has been anonymised. The results from the MIT data set show a different

SProbability of infection 0.5; infection time Poisson dibtited type of behaviour. Therg are two main grouDs_(_Fig'
with mean 80 time steps, 800 mins. ure 12) the largest of which can be further subdivided
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Fig. 16. Infocom06 results. (a) Distribution éf. (b) Distribution of times by mode. (c-fi7 for each mode.

into three smaller groups (Figure 13). ence. Four modes are identified (Figure 16(a)) which

The distribution of§; is shown in Figure 14 and correspond to four periods in time (Figure 16(b)). The
two main modes are identified from this. The MITfirst mode to occur is mode 3 showing much mixing
data set spans a month of data and recurring pattebrgween the delegates (Figure 16(e)). This is probably
emerge from the data as shown in Figure 15. Thike delegates meeting for coffee before the conference
is particularly interesting as it introduces the conceftegins. This is then followed by two periods of struc-
of being able to forecast the behaviour of a group &tred graphs (i.e. presentations; Figures 16(c,d)) ending
regular intervals and design strategies for those specifiéth a period of mixing (Figures 16(f)).

modes.
D. Synthetic contact network

C. INFOCOM "06 data The first network created in this section is a purely
The Infocom data is summarised in Figure 16 andhndom contact network in which 5% of 50 nodes
follows the behaviour typically expected at a conferare connected at random in each time step. Figure 18
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Fig. 17. (a) The generating graph for submode @) A shortest path graph for submodg. Zc) A spy plot of the generating graph (.)
and H (o)**. (Synthetic dataj The size of a node is proportional to the sum of weights incident on that.ri¢drhe rows
and columns have been permuted using approximate minimum degreehtiglitighe preferential attachment community
structure in the graphiZ has been thresholded using a value of GL< 0.1 — 0).

shows the distribution of; for this network is uni- Waxman model withoe = 0.7,8 = 0.3. The third and
modal as expected; there is only one underlying prdsurth generators are (GLP) generalised linear prefer-
cess. The distribution also follows B distributiorf.  ential topologies based on preferential attachment [17].

volves generating four different behaviours for a co Figure 19). These correspond with the generator times

tact network termedenerators A generator consists of 1of 2 of the modes (Figure 20). However, mode 3
a static underlying topology representing a set of posélln_corporates both generatc(;r 3 and ggnergtqlr 4. th
ble contacts. These links are transformed into conta(gggzgsoisgfg)e rator 3 and 4 are quite similar (bot
by using a Lévy walk (as justified in [9] [15]); a set '
of times are generated from a power law distribution The samples in mode 3 may be examined separately
and used to demarcate when a contact takes plagsing JD to produce thsubmodeseen in Figure 21
The generator used is switched every 700 time units ascurring at the times seen in Figure 21. As can be
shown by the mode indicator in Figure 20. Specificallgeen these submodes are generators 3 and 4. Thus the
the first generator employs a Waxman topology [22]Igorithm has successfully recovered the modes in the
(o = 05,3 = 0.3)". The second generator is also alata. At this point we make a note on the transition
between the modes. It is interesting that this transition
65, is a squared quantity which should follow a similar distribat g not crisp even though the switching between modes
to a sample variance; i.ef; ~ x2. The I' distribution is a . .. . L
generalisation of the?2 distribution and so is used. is. This is because a spanning tree may begin in one

"Waxman topologyp(u + v) = ae P4 wherea and 3 are mode but the message may end in the next mode.
parameters of the model. The nodes are distributed randomly on a
grid and the distance between themdis

The second network is more complicated and i';t_ As can be seen 3 modes are detected in the data

i ! ! ! ! ! ! ! ! .
I Data Al

= = =[(2820.0.2) Mode 1

Mode 2

— — —Mode 3
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01r

Fig. 18. Distribution ofs; (Random network). Fig. 19. Distribution ofé; (Synthetic).
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VI. CONCLUSIONS [3]

This paper presented a method for extracting dif-
ferent modes of operation for contact networks. In thd4]
real-world contact networks examined, several interesis
ing features where extracted including detection of a
bridge in the Cambridge data set. The MIT data set i
contrast, showed a repetitive behaviour which is usef
for prediction of network behaviour; for example in
advance of an infection. The INFOCOM data setl’]
clearly showed the behaviour typical of a conference: 8]
In producing an average graph based on samples of[@
network, the order of contacts has been preserved and
in addition the correlation between contacts has been
preserved. For example aggregation based purely [an]
counting the number of times a link is present does
not take into account the fact that links may typically
be presentogether i.e. the time based correlation be-
tween links. By using spanning trees the methodolod}!
takes advantage of a sampling mechanism present in
many real-world networks; it might not be possible tgL2]
record all contacts but it is often possible to flood a
message in a network and record the paths taken. It
is hoped that in future this technique will aid in thg13]

11

Fig. 22.

] N. Eagle and A. Pentland.
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design of time specific algorithms for time dependent
networks.
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