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Summary

The advance of multi-core architectures signals the end of universal speed-up of software

over time. To continue exploiting hardware developments, effort must be invested in pro-

ducing software that can be split up to run on multiple cores or processors. Many solutions

have been proposed to address this issue, ranging from explicit to implicit parallelism,

but consensus has yet to be reached on the best way to tackle such a problem.

In this thesis we propose a profiling-based interactive approach to program parallelisation.

Profilers gather dependence information on a program, which is then used to automat-

ically parallelise the program at source-level. The programmer can then examine the

resulting parallel program, and using critical path information from the profiler, identify

and refactor parallelism bottlenecks to enable further parallelism. We argue that this is

an efficient and effective method of parallelising general sequential programs.

Our first contribution is a comprehensive analysis of limits of parallelism in several bench-

mark programs, performed by constructing Dynamic Dependence Graphs (DDGs) from

execution traces. We show that average available parallelism is often high, but realising

it would require various changes in compilation, language or computation models. As

an example, we show how using a spaghetti stack structure can lead to a doubling of

potential parallelism.

The rest of our thesis demonstrates how some of this potential parallelism can be realised

under the popular fork-join parallelism model used by Cilk, TBB, OpenMP and others.

We present a tool-chain with two main components: Embla 2, which uses DDGs from

profiled dependences to estimate the amount of task-level parallelism in programs; and

Woolifier, a source-to-source transformer that uses Embla 2’s output to parallelise the

programs. Using several case studies, we demonstrate how this tool-chain greatly facili-

tates program parallelisation by performing an automatic best-effort parallelisation and

presenting critical paths in a concise graphical form so that the programmer can quickly

locate parallelism bottlenecks, which when refactored can lead to even greater poten-

tial parallelism and significant actual speed-ups (up to around 25 on a 32-effective-core

machine).
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Chapter 1

Introduction

The prevalence of multi-core processors poses a huge challenge to the programming re-

search community. On one hand, processor clock speeds have stopped rising as processor

manufacturers find it increasingly difficult to dissipate heat from faster processors. While

still increasing transistor counts in accordance with Moore’s Law, manufacturers have

kept processor clock speeds almost constant in the 2-3.5 GHz interval. Instead, they have

begun to put multiple processing units, or cores, on the same chip. Instead of exponential

growth in processor clock speeds, we are seeing a (rather slower) exponential growth in

the number of cores on a processor.

On the other hand, most programs today are still sequential and single-threaded. This

means that while historically these programs have been able to benefit in performance

more or less directly without refactoring or even recompilation when run on a newer and

faster processor, in the multi-core world this free performance gain no longer applies. The

‘free lunch’ is over [90].

In order to meet this challenge, programs must now be parallel, or multi-threaded, to stand

any chance of benefiting from multi-core processors. Sequential applications must be par-

allelised, or written anew in a parallel language. There are generally two approaches to

program parallelisation: with explicit parallelism, programmers are responsible for speci-

fying where and how parallelism in the program is to be exploited. The problem, however,

is that parallel programming is generally difficult—despite the availability of parallel lan-

guages since the early days of computing, most programmers are not familiar with parallel

programming paradigms. As a result, programmers may specify parallelism incorrectly,

causing concurrency bugs while missing valid parallelism opportunities elsewhere. This

is compounded by the non-determinacy of parallel programs—the interleaving of threads

is now heavily dependent on the state of the execution environment, and can be different

for different runs. This makes concurrency-debugging much more difficult, as concurrency

bugs may not be reproducible.

11
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Specification
Design

// Algorithm
Implementation

// Program
Compilation

// Executable

Figure 1.1: Software Development Process

The other approach—implicit parallelism—places the burden on the compiler. Static

analysis is performed over the program, and safe opportunities for parallelism are iden-

tified. The programmer can write programs sequentially as before, and the compiler

automatically generates parallel code. The problem with this is that, while complex and

sophisticated static analyses have been developed to identify parallelism in programs, es-

pecially in loops, these techniques work well only in certain classes of programs, mainly

array-based ones. In most pointer-based programs with irregular control flow, static anal-

ysis has so far been unable to discover much parallelism.

Faced with this problem, many turn instead to dynamic analysis, i.e. profiling programs

and gathering information about their execution. This provides information about what

actually happens rather than what may happen, as is the case in static analysis. The major

downside to this is that dynamic analysis normally cannot cover all possible execution

scenarios, which means that optimisations based only on dynamic analysis may not be

safe when the optimised program is executed using new inputs.

Furthermore, a major challenge in extracting parallelism from sequential programs is the

removal of unnecessary sequentialising dependences. The software development process

can be thought of as a series of conversions, as illustrated in Figure 1.1. One usually begins

with a specification, a written document detailing desired outcomes. From the specifica-

tion a human designs an algorithm, a general strategy for achieving what the specification

requires. The algorithm is then implemented in a program, using a programming language.

This program is then compiled into an executable binary that can be directly executed on

a machine. Each conversion, from specification to algorithm, from algorithm to program,

or from program to executable, involves design choices that have to be made, some of

which have great consequences for the resulting dependences and resulting parallelism.

For instance, as we shall see in Chapter 3, artificial dependences on the stack pointer are

introduced by the compiler in the conversion from program to executable. By modifying

the compiler these dependences can be removed resulting in greater parallelism. However,

it is much more difficult for the compiler to identify unnecessary dependences introduced

during the conversion from algorithm to program.

In this thesis therefore, we explore a semi-automatic or interactive approach to program

parallelisation. Dynamic and static analyses gather information that is used to auto-

matically parallelise a program, using language extensions to specify parallel tasks. The

programmer can then check that the resulting parallel program is safe and correct. Fur-
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thermore, the programmer can use the information gathered by the profiler to identify

bottlenecks—dependences in the program that inhibit further parallelism. They can then

refactor the bottleneck code in the sequential program to enable further parallelism to be

discovered and exploited, and then rerun the analyses and parallelisations to get a more

parallel program. Such refactoring represents a change of design choices in the conversion

process either from algorithm to program or from specification to algorithm. While the

former case might simply involve moving a single statement, the latter typically requires

much more thought and consideration—parallel versions of sequential algorithms often

merit doctoral theses of their own!

The main advantage is that by making the parallelisation visible and comprehensible

to the programmer, the programmer and compiler can work together to parallelise a

program better than either of them can do on their own in a short amount of time. The

machine makes a best effort parallelisation, focusing the programmer on the harder areas

that require refactoring. Not only so, but the programmer is also able to parallelise the

program without coding in a parallel language. Manual code changes only need to be

applied to the sequential version of the program.

This parallelisation, based as it is on dynamic analysis, is not guaranteed to be safe when

run on inputs other than the profiled one. This is because a dependence may arise for some

inputs but not others. However, in practice, this is usually not too great a problem. Past

research has shown that if we can find inputs to cover all of the code, then we can find most

of the dependences as well. Nonetheless, to guarantee safety, systems in the past have

been created that insert run-time checks at appropriate points so that the program either

crashes or recovers from unexpected dependences (e.g. thread-level speculation schemes)

instead of silently producing wrong answers. We note this as a potential feature which

has not been implemented in our system, which currently relies only on the programmer

to guarantee correctness.

We begin this thesis with a survey of existing work in parallel programming (Chapter 2).

We then examine limits of parallelism at all levels in certain sequential benchmarks, and

see how they vary from one program to another, and under various models (Chapter 3).

Chapter 4 aims to focus only on parallelism that is realisable on multi-cores, especially

ignoring fine-grained instruction-level parallelism that is already exploited in VLIW and

superscalar processors. We show how our profiling tool, Embla 2, can be used by pro-

grammers to understand and exploit the potential for parallelism in their programs. Next

(Chapter 5) we show how we can automate the process of using profiler results to paral-

lelise a sequential program, as we have implemented in Woolifier. Embla 2 and Woolifier

together form a useful tool-chain that can significantly facilitate program parallelisation

for the programmer. We demonstrate this in Chapter 6, focusing on how the critical

path information directs the programmer on to the parallelism bottlenecks, which when

parallelised would give the greatest performance improvement. We give a final evaluation
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and conclusion in Chapter 7.

Below are the main contributions of this thesis:

• We use a unified framework to analyse limits of parallelism in entire programs, under

dependence models differing in optimisation techniques required to achieve them.

(Chapter 3).

• We extend a Valgrind-based dependence profiler, Embla, to construct a tool, Em-

bla 2, that provides an estimate of potential speed-up for parallelisation using frame-

works such as Cilk and OpenMP. Embla 2 can also perform reduction variable

recognition and a novel Markov-chain-based granularity analysis.

• Embla 2 also produces a concise graphical representation of critical paths that allow

programmers to easily locate parallelism bottlenecks.

• We present Woolifier, a source-to-source compiler that transforms sequential pro-

grams into parallel ones that use nested fork-join parallelism, allowing us to realise

some of the speed-up as estimated by Embla 2.

• We demonstrate how Embla 2 and Woolifier can be used as a tool-chain for inter-

active parallelisation. Using several case studies, we show how, with the aid of our

tool-chain, good speed-ups can be achieved in many programs with little program-

mer effort.



Chapter 2

Survey of existing work

Due to the understandable enormous research interest into the problem of program par-

allelisation, there has been a huge body of literature dedicated to it. As a result, we

concentrate our survey of existing work on research closest to our approach, while giving

only a sampling of references in other related areas.

2.1 Automatic parallelisation—static and safe

We begin by examining attempts to analyse sequentially written programs to extract par-

allelism automatically, without assistance from the programmer. The greatest challenge

in program parallelisation is dependence analysis—correctly identifying which instruc-

tions are dependent on each other, that is, the semantics of the program will be different

if their order of execution were reversed. If two statements contain instructions that are

dependent on each other, then they cannot be executed concurrently, as otherwise non-

deterministic behaviour will result based on the interleaving of the instructions—this is

known as a race condition.

Dependence analysis is an established area of program analysis, not only for program

parallelisation but for many compiler optimisations. There are two types of dependences:

control dependence, which occurs when whether one instruction is executed depends on

the result of another, typically a conditional branch or indirect jump; and data depen-

dence, which occurs when two instructions access a common resource (register or memory

location), and at least one of them writes to it.

Control dependences in a program can generally (except for indirect branches) be worked

out precisely (in the syntactic not semantic sense), as in the Program Dependence Graph

[27]. Deriving precise data dependences (and control dependences for indirect branches)

is much harder, with many static analyses overestimating by a great margin. The main

problem is potential aliasing, when different pointers point to the same location. Consider

15



16 2.1. AUTOMATIC PARALLELISATION—STATIC AND SAFE

1 void f(int *a, int *b) {

2 *a = 23;

3 *b = *b + 45;

4 }

Figure 2.1: Aliasing illustrated—if a and b alias then line 3 depends on line 2

for (i=0; i<n; i++) {

tmp = i*i+34;

a[i] = tmp * tmp;

}

(a) Example of a privatisable variable. There

is a write-after-read dependence between itera-

tions of the loop, which can be removed if tmp

is privatised.

for (i=0; i<n; i++) {

acc += i*3 - 4;

}

(b) Example of a reduction operation. There

is a read-after-write dependence between loop

iterations, but this is unnecessary as the final

value of acc is the same regardless of the order

of execution.

Figure 2.2: Examples of privatisation and reduction operations.

the example program in Figure 2.1. Line 3 depends on line 2 only if a==b, which depending

on the context may always, never or sometimes be the case. While interprocedural analysis

can deal with simple cases with scalar variables, when arrays and pointer arithmetic are

introduced the problem becomes more difficult, especially for non-scientific applications.

Kennedy and Allen’s book [42] details analyses in this area.

Some dependences are in fact easily removable. For instance, many write-after-read and

write-after-write dependences between loop iterations can be removed by privatisation—

using a separate location to store the value of a variable in each iteration. Reduction

operations are another source of unnecessary dependences. These are accumulation op-

erations on variables where the order in which instances of the associative reduction

operation are executed makes no difference to the final value of the accumulator (and in-

termediate values of the variable are not used). Examples of privatisation and reduction

operations are shown in Figure 2.2.

There are a number of parallelising compilers that try to remove these dependences.

The most notable are Polaris [10] from the University of Illinois and SUIF [35] from

Stanford University. They employ advanced interprocedural scalar and array dependence

analysis, as well as privatisation and reduction-operation recognition, to parallelise loops,

i.e. allowing different iterations to run in parallel.

Parallelism from parallel execution of loop iterations is known as DOALL parallelism.

Further parallelism can be extracted if we look beyond DOALL loops, and allow the
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compiler to schedule instructions in a function on to different threads. Girkar and Poly-

chronopoulos [31] lay down a detailed theoretical basis for this by specifying exactly when

an instruction can be executed before another. Ottoni et al. present compilers that exploit

this with Decoupled Software Pipelining [68] and GREMIO [67], both of which involve

instruction rescheduling based on program dependences.

Recently there has been interest in using separation logic, an extension of Hoare logic

that allows us to easily reason about sections of memory in isolation, to determine more

precise dependences [77] for pointer-based programs, at which traditional analyses have

not been very successful. Research to automatically parallelise real-world programs using

separation logic is ongoing.

2.2 Dependence profiling—seeing what actually hap-

pens

Static analysis can generally give us only an over-approximation of what may happen

at run-time. Experience shows that such over-approximation is often quite large. This

means that valid opportunities for optimisation are often missed. Because of this, many

turn to using dynamic analysis, in particular profiling, to find out what actually happens

during execution, rather than what may happen. The flip side is of course that the results

of dynamic analysis are dependent on inputs, so unless the program takes no inputs or we

can exhaustively try all possible inputs, program transformations based only on the results

of profiling may not be safe. In other words, profiling generally gives us an underestimate

of what may happen. Nevertheless, if we can have inputs we deem representative, then

the results of dynamic analysis can still give us information about the program that we

may never get with only static analysis.

Agrawal and Horgan [1] present a Dynamic Dependence Graph, a variant of the Program

Dependence Graph where there is a node for each occurrence of a statement in the pro-

gram’s execution history, in the context of program slicing and debugging. This graph

gathers only the execution history, while still using dependences from the static Program

Dependence Graph. With more general programs with arrays, however, we need to profile

also the memory locations accessed by each statement, in order to find out exactly which

statement is dependent on which.

Dependence profiling has been used to study limits of parallelism in programs, performed

by finding the critical path in a Dynamic Dependence Graph. One such profiling tool is

Nethercote and Mycroft’s Redux [62]. Because in every path in the DDG each operation

must be executed after those preceding it and before those following it, and that the critical

path is the longest path in the DDG, the length of the critical path represents the minimum
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time required to execute a program in parallel while respecting all dependences. Several

studies [99, 47, 7, 72, 86, 95] work at the instruction level, finding the limits of parallelism

under various models of execution, some more realistic than others. Some studies look

also at how the limits change given a limited number of threads, using measures such as

smoothability [91] and slack [76].

In work by Petersen and Padua [70], dependences obtained using various static analyses

are compared with those observed at run-time. When DDGs are constructed using these

dependences, parallelism figures based on profiling are sometimes found to exceed those

based on static analyses by two orders of magnitude, illustrating the benefits of profiling

over static analysis.

The limits of parallelism in the works above encompass all levels from instruction-level

upwards. However, in practice parallelism that is too fine-grained cannot be exploited

by using multiple cores. An independent thread that is only a few instructions long, if

scheduled in parallel on a separate core, will cause performance to degrade rather than

improve, due to the overheads of task creation, communication and cache misses. Fur-

thermore, fine-grained instruction-level parallelism (ILP) is already being well exploited

on single superscalar or Very Long Instruction Word (VLIW) processors, Consequently,

several other studies have attempted to exclude ILP from their parallelism figures, focus-

ing on coarser-grained parallelism. Some [48, 103, 46] look at loop-level parallelism—the

gain that may result by executing loop iterations fully or partly in parallel with each

other. Others [64, 66, 45] focus on function-level parallelism—the gain that may result by

executing function calls in parallel with the code before, the code after, or other function

calls.

There are many other uses of dependence profiling other than estimating parallelism.

Other approaches measure the distances spanned by dependences [104], probabilities of

dependences occurring [18], and dependence density [97].

2.3 Thread-level speculation—best of both worlds?

A popular way to use profiling output while ensuring safety is to speculatively execute

code above a safety net. Code is executed assuming certain dependences do not arise.

This assumption is checked at run-time and if it turns out to be false the offending code

is rolled back and rerun, this time respecting the new dependences. This is of course not

without cost, and is beneficial only if dependence violations are rare. Much research has

studied ways to pick good candidates for speculation.

Thread-level speculation (TLS) schemes range from being software-based to hardware-

based. Software-based schemes [102, 19, 65, 23, 9, 80] require no change in hardware, but



CHAPTER 2. SURVEY OF EXISTING WORK 19

are generally prohibitively slow; hardware-based systems [41, 17, 40, 54, 87, 96] have all

been implemented so far in simulators only—no processors with TLS support have yet

been manufactured.

TLS schemes also differ in how they choose candidate threads. Most focus on loops

[19, 65, 17, 87, 80], while others look at function calls [102, 9], and some use both [54].

Still others split instructions into threads in a more unrestricted manner [41, 23, 40, 96].

Another dimension in which they differ is how speculative state is stored in memory.

Garzarán et al. [30] provides a taxonomy of approaches to memory management in TLS

schemes.

On a related note, ‘safe’ speculative task execution that does not require a rollback has

been explored in the lazy functional language context. It has been found that speculative

evaluation of a thunk—a task from which the result may or may not be required—i.e.

a type of control speculation, improves performance even on a single processor due to

reduced memory traffic [24]. On multiple processors the performance gain is even greater

[36].

2.4 Parallel programming languages

We turn our attention now to explicit parallelism, where the programmer specifies sources

of parallelism in the language. We examine below a selection of the most popular paral-

lel programming languages and task libraries, which generally span the two paradigms,

message passing and shared-memory.

The message passing paradigm stems from a class of programming models that have

emerged since the late 1970s centring around the concept of concurrent processes com-

municating through channels. As such interaction by one process with another is made

explicit. Hoare’s Communicating Sequential Processes [39] and Milner’s Calculus of Com-

municating Systems [59] are the seminal works in this area, influencing later works such

as π-calculus [60] and join-calculus [28]. Language implementations of these concepts

include Occam [79], Erlang [6] and MPI [85].

In the message-passing model, we generally have a number of concurrent processes. Each

process has its own local memory, and data can only be shared between processes using

explicit message passing. Programs can be written in the “Single Program, Multiple Data”

[22] pattern, where the same program is executed by multiple processes, each identified by

its unique process identifier. This identifier can be used by one process to send messages

to other processes, and for deciding which part of the data to operate on, as well as which

part of the program to actually execute.

The advantage of message passing is that as communication between processes is explicit,

it is easier to reason about possible interactions between processes and a program written
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in the message-passing paradigm is less likely to contain unintentional races due to acci-

dental sharing. However, the concept of message passing is generally alien to programmers

who are used to writing sequential software.

The second paradigm, known as the shared-memory model, is generally more familiar to

programmers. In a typical shared-memory model concurrent threads access a common

memory address space, communicating via shared variables used as locks, semaphores,

etc., or abstractions such as transactional memory [38]. To ensure a gentle learning

curve for programmers common implementations are generally in the form of libraries for

popular languages or modest language extensions. (Some [12, 14] argue that the latter is

a safer approach, as it allows the compiler to reason about concurrency simply by syntax

analysis.)

OpenMP [21] is an extension to C and FORTRAN, where all parallelism is expressed

through directives and library calls. It is implemented in all widely used C/FORTRAN

compilers. The main parallel constructs provided are parallel for-loops, allowing for par-

allel reduction operations (e.g. for sum, maximum and minimum operations), and syn-

chronisation barriers, where threads wait for each other before proceeding. Thus it is easy

to specify loop-level parallelism in OpenMP.

Java (versions 5+) provides concurrency under the Master/Worker model. One can define

classes which implement the Callable interface, instances of which represent a unit of

work to be executed by a thread. Collections of these Callable objects can then be

passed to a master or ExecutorService, which is responsible for creating worker threads

and allocating units of work to each thread, either statically or dynamically.

Cilk [89] is a language extension to C that allows asynchronous procedure calls. One of its

strengths is its simple interface, which allows programmers to easily fork (spawn) a new

thread to execute a procedure call, and then join (sync) it back together when required.

Cilk++ [51] adds support for C++ and parallel for-loops.

One feature of shared-memory models is that they give the programmer no control over

where the data is located in memory. While this abstraction might make programming

simpler, it may not be so desirable with Non-Uniform Memory Architectures, where the

address space is global but some areas in memory are closer to a core than others. The par-

titioned global address space (PGAS) model is an attempt to bridge the shared-memory

and message-passing models by using a global but non-uniform memory model. A promi-

nent example of a language using this model is X10 [16], in which code executing at a

certain place—abstraction for a computing node, e.g. a processor—can access variables

in local memory directly but must explicitly communicate1 with remote places to access

variables there.

1This is only a syntactic requirement—the compiler can of course optimise this.
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The examples above are merely a representative sample of the tools and libraries available

for explicit parallelism, but serve to illustrate the diversity of opinions that exist regarding

the best model for parallel computation, from shared memory to message passing, from

functional languages to imperative ones, and from libraries to syntactic constructs.

2.5 Interactive parallelisation—semi-automatic par-

allelisation with human input

Given the problems with automatic parallelisation above, and the overheads of thread-

level speculation, another approach has been to involve the programmer in the paralleli-

sation process. Many tools have been created over the years to assist the programmer in

this respect. The obvious advantage is that the programmer can provide domain knowl-

edge that the compiler cannot deduce. At the same time, care must be taken so that the

programmer is not burdened with work that can be automated.

Earlier tools focus mainly on loops, and typically work by showing statically analysed

dependences to the programmer. The ParaScope Editor [43] and PAT [84] are editors

that display dependences in FORTRAN programs and assist the programmer in paral-

lelising DOALL loops, flagging specific dependences as ignorable and refactoring loops

to increase parallelism. The Parafrase-2-based Graphic Parallelizing Environment [15]

displays dependences in a hierarchical manner, making it easier to parallelise a program

based on its control structures.

More recently interactive parallelisation tools also employ profiling to gather informa-

tion. The SUIF Explorer [52] performs both static and dynamic analyses on a program,

automatically parallelising coarse-grained loops that are safely parallelisable. From the

remaining loops, profiling identifies the significant ones, on which program slicing is ap-

plied to identify statements that stop a loop from being parallelisable. Tournavitis et al.

[93] present a framework which mark parallelisable loops based on profiled dependences,

displaying them to the user for approval. Machine learning is then used to decide on the

most profitable loop scheduling policy for each loop, which is architecture-dependent.

A few tools ask the user to identify where parallelism may be found. In work by Thies

et al. [92], the programmer specifies potential pipeline boundaries for software pipeline

parallelism, which are then checked by a profiler. Several thread-level speculation systems

[73, 58, 98] also require user input to identify good candidates for speculation, possibly

aided by profiling.

Some forms of user input are more unconventional. Most automatic parallelisation tools

aim to preserve sequential equivalence—the parallelised code must, given the same in-

put, produce exactly the same output as the original sequential program. Bridges et al.
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[13], however, argue that in some cases multiple outputs are acceptable to the user, who

should be allowed to specify sources of legal non-determinism. In particular, they propose

two annotations of sequential code, which effectively allow the compiler to extract more

parallelism by ignoring certain dependences:

1. the Y-branch, a branch that can be taken with a specified probability irrespective

of whether the corresponding conditional evaluates to true. The authors give an

example of a dictionary for a compressor program that needs to be refreshed every

so often.

2. the commutative annotation on functions, which inform the compiler that calls to

these functions can be executed in any order even though dependences may exist

between them. A common example is the random number generator function.



Chapter 3

How much parallelism is out

there?—finding limits of parallelism

3.1 Introduction

As we have seen, many attempts have been made to extract parallelism out of a sequential

program [10, 42, 68, 67]. When we are trying to parallelise a sequential program, one

question that would be useful is, how parallel can this program possibly be? If we have

made some gains in performance with our existing techniques, how much scope is there for

further improvement? Thus we begin by performing a limit study on existing programs.

There have been several studies on the limits of parallelism in a sequential program,

typically performed in one of two ways. The first is to re-schedule each dynamic instruction

at the earliest cycle possible in a simulator, using the execution trace of a previous run,

and deriving the average number of instructions per cycle for the schedule [99, 47, 72].

The other is to construct Dynamic Dependence Graphs (DDGs) from the execution trace,

from which the average “width” is calculated [7, 86]. The results from either method

give a theoretical upper bound on the amount of average parallelism available in general

programs, so that we have an idea of how much room there is for further improvement

of parallelising compilers. Although both methods should give the same results, we have

chosen the latter as it allows more flexibility to transform the graph in ways not possible

with the former.

We evaluate the available average parallelism of benchmarks under several models, which

differ by the types of dependences considered and graph transformations applied, simu-

lating the effects of possible compiler optimisations. The results allow us to measure the

effects different types of dependences have on available parallelism.

We find that when we consider only true dependences—the essence of the underlying

algorithm—the figures for average parallelism for many benchmarks are over 100. In

23
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$4 := add $5, $6

$2 := sub $3, $4

(a) True dependence

$6 := add $5, $4

$4 := sub $2, $3

(b) Anti-dependence

$4 := add $5, $6

$4 := sub $2, $3

(c) Output dependence

beq $2, $3, L

$4 := add $5, $6

L: ...

(d) Control dependence

Figure 3.1: Examples of the different types of dependences

addition, we argue that certain parallelism-limiting dependences are compiler-induced

artifacts, and removing them would increase potential parallelism. For instance, certain

name dependences on a linear execution stack can be removed if a spaghetti stack is

used instead. Thus one of our models simulates the effects of using a spaghetti stack on

available parallelism. This removes inter-frame name dependences and breaks long true-

dependence chains on the stack pointer register. We find that for some benchmarks this

results in a doubling of average parallelism. Taking this idea further, we find that if we

consider the extreme (and less realistic) case where all address calculations are disregarded

potential parallelism in some programs increases by up to an order of magnitude (details

on page 28).

3.2 Deriving limits of parallelism

3.2.1 Types of dependences

In our analysis we consider the parallelisation problem as one of minimising total execution

time, counted as the number of instruction cycles, given the constraints imposed by its

dependences. Instructions that are independent of each other can be executed in parallel.

Parallelisation therefore involves exposing such independence and removing or minimising

certain dependences to allow more independent code to be exposed. We consider four

types of dependences—as illustrated in Figure 3.1.

• True (Read-after-Write) dependences occur when one instruction uses a value pro-

duced by a previous instruction, and are generally considered to make up the essence

of an algorithm. Most would consider true dependences irremovable without changes

on the algorithmic level. In fact, as we will see later, true dependences are some-

times introduced at the assembly level instead by the compiler and may be removed

by modifying the compiler rather than the algorithm itself.



CHAPTER 3. HOW MUCH PARALLELISM IS OUT THERE?—FINDING LIMITS

OF PARALLELISM 25

• Anti- (Write-after-Read) and Output (Write-after-write) dependences, collectively

known as name dependences, occur due to the reuse of registers and memory loca-

tions. No value is passed from the source instruction to the target instruction, but

if two instructions which have such a dependence between them are executed out of

order, use of incorrect values by an instruction may result. One way to remove such

dependences is to remap locations. For registers this means mapping the register in

the target instruction to a different register if there is no true dependence from an

earlier instruction. In fact, register renaming is already performed in many modern

processors (e.g. x86) and accordingly we ignore anti- and output dependences on

registers in all of our analyses. The renaming of memory locations, however, is in

general more difficult, as it may not be possible to work out the memory location

accessed by an instruction until the instruction is executed. Privatisation and Single

Static Assignment transformations are special cases of memory renaming, typically

done at compile-time, but generally only work on the execution stack.

• Control dependences occur when an instruction’s execution is conditional on the

result of a previous instruction, for example after a branch instruction. Control

dependences cannot be removed easily, because like true dependences they capture

some aspect of the essence of a program. Consider for instance the role of the control

dependence in y = x?23:42;, which can be mapped to y = (x&23)|((˜x)&42);

(assuming false is represented by 0 and true by -1), showing the similarity to

true dependences. However, effects of control dependences may be reduced by such

techniques as speculative execution, where the result of an instruction is computed

but not committed until we know it is safe to do so.

By considering different subsets of these dependences, we find out the effects each type

of dependence has on available parallelism. Different models attempt, in varying degrees

of vigour, to remove dependences that may be considered compiler artifacts, leaving only

those that are essential to the underlying algorithm of the original program. Ultimately

the aim is to explore the level of parallelism if all compiler-induced dependences are

removed.

We do not view the results of this study as definitive limits—in particular we do not say

that these limits are practically achievable. For example, as we aim to evaluate limits of

parallelism in an architecture-independent way, we do not consider any overheads related

to threading and inter-processor communication which will impact speed-up in practice.

Parallelism-enhancing effects of value prediction [53] are also beyond the scope of our

study in this chapter.
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#1 lui : 0

#2 ori : 5

#5 mul : 5 #6 addi : 4

#8 mul : 20

#7 bgtz : 0

#9 addi : 3

#3 lui : 0

#4 ori : 1

#11 mul : 60

#10 bgtz : 0

#12 addi : 2

#13 bgtz : 0

#14 mul : 120 #15 addi : 1

#16 bgtz : 0

#17 mul : 120 #18 addi : 0

#19 bgtz : 0

Figure 3.2: An example of a DDG for the calculation of the factorial of 5. Dashed

edges denote control dependences—solid edges denote true dependences. Nodes with no

outgoing edges (the mul and bgtz nodes in the bottom) are considered results of the

calculation.

3.2.2 Dynamic Dependence Graphs

Dependences described above can be used to create a Dynamic Dependence Graph (DDG)

[7], in which a node represents the execution of an instruction, and edges represent the

dependences between instructions. Figure 3.2 shows an example of a simple DDG. Con-

sider an idealised machine model where each instruction takes one cycle, but cannot be

executed until all the instructions it depends on have been executed. Assume also that

there is an unlimited number of processors with zero inter-processor communication over-

heads. The minimum execution time under this model is the number of instructions in

the longest chain of dependences, or in other words the critical path. Average parallelism,

measured in instructions-per-cycle, is then calculated as the total number of instructions

(graph size) divided by the minimum execution time (length of critical path), which can

be viewed informally as the average width of the DDG.

We begin with a model that considers all dependences, and then progressively remove

certain types of dependences, to evaluate the effects they have on parallelism. In addition

to removing control and name dependences, we also consider the effects of removing
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void main() {

foo();

bar();

}

(a) Code for two procedure calls inside main in C

1: jal foo # main: call foo()

2: addiu $sp,$sp,-32 # foo: decrement stack pointer (new frame)

3: addu $fp,$0,$sp # copy stack pointer to frame pointer

... <code for foo()>..

4: addu $sp,$0,$fp # copy frame pointer to stack pointer

5: addiu $sp,$sp,32 # increment stack pointer (discard frame)

6: jr $ra # return to main()

7: jal bar # main: call bar()

8: addiu $sp,$sp,-32 # bar: decrement stack pointer (new frame)

9: addu $fp,$0,$sp # copy stack pointer to frame pointer

... <code for bar()>...

10: addu $sp,$0,$fp # copy frame pointer to stack pointer

11: addiu $sp,$sp,32 # increment stack pointer (discard frame)

12: jr $ra # return to main()

r

r

r

r

r

r

r

r

?

?

?

?

?

?

?

(b) Instruction trace of the execution of main in MIPS assembly

Figure 3.3: An illustration of the true dependence chain on the stack pointer.

certain classes of true dependences, in particular those involved in address calculations.

Consider the general calling convention of a C program with a downward-growing exe-

cution stack. At the heart is a register ($sp in MIPS) that stores the stack pointer, the

address of the current top of the execution stack. As a function is called, a new frame

is pushed on to the stack, and the stack pointer is decremented (assuming a downward-

growing stack) to point to the new top of the stack; as the function returns, the frame

is popped and the stack pointer is incremented to restore it to the original value. If we

have two function calls, as in Figure 3.3, true dependences on the stack pointer would

prevent these two calls from executing concurrently on this stack pointer, because the

second call requires the value of the stack pointer, which would have been decremented

and then incremented back by the first procedure call. In the DDG this would show up as

a decrement-increment-decrement-increment sequence of operations on the stack pointer,

thus linearising the calls.

It can be argued however, that this dependence is only an artifact of the linear execution

stack data structure introduced by the compiler, rather than part of the essence of the

original algorithm used by the programmer. Indeed, if a linear stack is replaced by a
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spaghetti stack (also known as heap-allocated stack frames [5] or cactus stack [32]), such

dependences can be eliminated, along with name dependences between different stack

frames.

The stack pointer is just one example of address calculations that are only compiler

artifacts rather than an essential part of the algorithm. Another example is the heap

memory allocator, which typically updates some internal data structure (such as a linked

list) every time it is called, giving rise to true dependences between calls, even though

commuting the orders of these calls would make no difference to the semantics of the

program (assuming sufficient memory is available). Thus taking the idea of removing

compiler artifacts one step further, we consider the effects of removing address calculations

from the graph altogether. This would show the amount of parallelism available in a world

where memory address values do not have to be calculated at run-time, but can rather

be pre-determined statically (as in a language with non-recursive static stack allocation

such as FORTRAN). It can be argued that such a measure is unrealistic, given that

some address calculations are in fact an integral part of an algorithm, e.g. radix sort.

Nonetheless, it still provides an estimate of the upper bound of parallelism (albeit not the

tightest one) if compiler (and certain run-time) artifacts are removed or replaced by data

structures (such as the spaghetti stack) which are less parallelism-limiting.

3.3 Implementation

We examined the execution of programs taken mostly from the MiBench [34] suite. We

chose this because while they provide a representative sample of real world applications,

many of them also have data sets small enough for our analysis—the technology used in

this chapter enables us only to examine program traces up to a few tens of millions of

instructions long—and we prefer to analyse each program execution in its entirety. In

addition we also analysed the synthetic benchmarks Whetstone [20] and Dhrystone [101].

The programs were compiled into MIPS binaries on Linux using gcc with uClibc as the

standard library. The binaries were then run on a MIPS simulator (we used the GNU

simulator provided by MIPS Technologies [61] and QEMU [8], a uni-processor emulator

capable of emulating most Linux system calls.) The simulators have been configured or

adjusted to output a trace detailing the opcode of each instruction, as well as the names

of registers and addresses of memory locations that it has read from and written to. This

trace is then analysed to build the DDGs.

We built DDGs under several models which differed by the types of dependences they con-

sidered, as well as the graph transformations applied, as detailed below, and summarised

in Table 3.1. Critical paths were then extracted from the graphs, enabling us to calculate

the limits of parallelism as we have seen. Note that when we consider control dependences



CHAPTER 3. HOW MUCH PARALLELISM IS OUT THERE?—FINDING LIMITS

OF PARALLELISM 29

Model True deps Name deps Control deps

Spaghetti

stack

Ignoring addr

calcs

TruNamCtl X X X

TruCtl X X

TruNam X X

Tru X

TruNamSp X X X

TruSp X X

TruNoAddr X X

Table 3.1: Table comparing the seven models used in our analysis

in our models, every instruction is made dependent on the most recent branch or indirect

jump instruction. As we shall see later, this is an over-approximation of static control

dependences, which cannot be deduced simply from the execution trace as control merge

points are invisible on execution traces.

TruNamCtl This is the most restrictive (or pessimistic) model. We include in the graph

all true dependences for registers and memory locations. We also include name de-

pendences for memory locations (but not registers, as it is relatively straightforward

for register renaming to be performed in a modern processor, provided there are

enough registers). Finally control dependences are also included, meaning that ev-

ery instruction is dependent on the most recent branch or indirect jump instruction.

This has the effect of limiting parallelism largely to within a dynamic basic block1.

TruCtl Name dependences for memory locations are ignored, simulating the effects of

perfect memory renaming.

TruNam Control dependences are excluded instead (e.g. by perfect branch and jump

prediction), allowing parallelism beyond basic blocks to be exhibited.

Tru Only true value dependences are considered here, the “essence” of the program.

TruNamSp Here we model what happens when a spaghetti stack is deployed, in order

to reduce compiler-induced dependences on the stack pointer. Two transformations

are applied to the graph. The first transformation removes all inter-frame name

dependences on the stack, as these different frames which used to occupy the same

area on the stack would now occupy different areas in the heap. In the second trans-

formation, every instruction that decrements the stack pointer (i.e. pushes a new

1A dynamic basic block is defined as the sequence of instructions between two branch/indirect jump

instructions. As opposed to static basic blocks, the target of a branch not taken does not begin a new

basic block.
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Figure 3.4: Parallelism of various benchmarks under the seven models

activation frame on to the stack) has been replaced with a malloc frame pseudo-

instruction. Unlike the original instruction, the new malloc frame instruction has

no true dependence on the previous value of the stack pointer, but simply returns

the address of a free area in the heap that can be used as a new stack frame, thus

breaking true dependence chains on the stack pointer. We ignore the overhead that

this instruction might cause in practice, and assume this instruction takes one cycle,

just like all other instructions.

TruSp In this model we look at the effect of a spaghetti stack on the DDG when only

true dependences are considered.

TruNoAddr In this model, we remove from the graph nodes involved in address com-

putation, in other words, nodes producing values that ultimately contribute to the

address component of a memory load or store instruction. Note that although this

model subsumes the TruSp model, removing nodes has the effect of reducing the

graph size, so if the critical path is not affected significantly by this transformation,

the average parallelism could in fact decrease slightly compared to TruSp, even if

the program runs faster overall. If address calculations made up a large part of the

critical path, however, parallelism would rise.

3.4 Results

Figure 3.4 shows the results of our analysis under the seven models, from which we focus

on specific areas to draw several observations.

3.4.1 Effects of control dependences

By comparing the TruNamCtl and TruCtl models with TruNam and Tru respectively

in Figure 3.4, we see that parallelism is severely restricted in the presence of control



CHAPTER 3. HOW MUCH PARALLELISM IS OUT THERE?—FINDING LIMITS

OF PARALLELISM 31

dependences. This is because in effect they largely prevent code from different basic blocks

from being executed in parallel, leaving only intra-(dynamic) basic block parallelism. With

control dependences (the TruNamCtl and TruCtl models) most benchmarks only exhibit

average parallelism (instructions per cycle) of less than ten, on which the removal of

anti- and output dependences have no effect. This generally confirms Wall’s findings [99],

although due to slight differences in parameters and benchmarks exact comparisons are

not possible. In fact a lot of this mostly intra-basic block, instruction-level parallelism,

is already exploited in multiple-issue processors. In order to extract more significant

amounts of implicit parallelism, therefore, we need to look beyond basic block boundaries

for parallelism at a coarser granularity.

Fortunately there are already techniques which allow us to safely violate some of these

control dependences, resulting in potential parallelism higher than what is suggested here.

The first of these is the successful use of branch prediction in computer hardware, which

results in high rates of correct prediction (at least 80% and often over 95%) with relatively

straightforward schemes [83]. Branch prediction allows instructions following a branch

instruction to be scheduled before the branch instruction itself, with the results of such

speculative instructions discarded if the prediction turns out to be wrong. Nevertheless,

even perfect branch prediction would not be able to eliminate all control dependences, as it

tends to apply only locally—in other words, the window size2 is still limited. This means

that instructions that are more than a few branches away cannot be scheduled before

all these branches even in the absence of other dependences. Thread-level speculation

allows us to speculate at a coarser granularity, but at the same time the overheads and

misspeculation penalties are higher.

Secondly, it can also be argued that some inter-basic block parallelism can be extracted

statically while preserving real control dependences. Recall that in our analysis, we make

the over-approximation that every instruction is assumed to be control-dependent on the

last branch or indirect jump instruction. However, control merge points, which are not

visible on the execution trace, may actually eliminate some control dependences. Consider

a program of the form if S1 then { S2 } else { S3 } S4. While in our analysis S2,

S3 and S4 would all be dependent on S1, we note that S4 would actually be executed

regardless of which way the branch went, and therefore can be executed before the result

of S1 is known. Recognising merge points require static analysis such as that used by

the Program Dependence Graph [27], and it will be interesting to extend our analysis to

examine the increase in parallelism resulting from its use. However, past research suggests

the impact of such static analysis is limited in this respect, especially regarding general

non-numeric applications [47, 88].

2In hardware scheduling, the window size is the maximum number of pending instructions that are

considered for scheduling at any one time.
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3.4.2 Effects of name dependences

We see the effects of name dependences by comparing the TruNam model with the Tru

model. The picture is rather mixed. Some programs exhibit a great increase in parallelism,

up to 16 times for gsm.encode, while others (e.g. rijndael, sha and stringsearch) seem largely

unaffected. We conclude from this that for certain programs removing name dependences

by memory renaming would be important for parallelisation. However, some dependences,

e.g. on privatisable variables, are more easily removed than others. A useful extension to

this chapter could look at categorising these name dependences based on how they could

be removed.

3.4.3 True dependences only

As mentioned earlier, while control dependences can be speculated away, and anti- and

output dependences can be reduced with register and memory renaming and other com-

piler optimisations, true dependences represent the true essence of a program and gener-

ally cannot be removed. The Tru model should therefore give us a picture of the limits

imposed on parallelism by the algorithm only. Figure 3.4 shows that under this model,

many programs exhibit average parallelism of over 100. This is much greater than speed-

ups reported for existing implementations of parallelising compilers, which tend mostly

to be in single figures [10, 42, 68, 67], showing that there is still a big gap between the

amount of speed-up we can achieve with current parallelisation techniques and what is

theoretically possible. This gap means that there is still much potential parallelism to be

exploited, even if such high parallelism may not be achievable without drastic changes to

the compilation method, programming language or even model of computation.

3.4.4 Removing compiler-induced dependences

We argue that even some of the true dependences are only compiler artifacts and do not

constitute the essence of the underlying algorithm as specified by the programmer. One

example of this is the use of the execution stack and the stack and frame pointers, as

described earlier. By comparing models TruNam and Tru with TruNamSp and TruSp

respectively, we see how the limits of parallelism change when a spaghetti stack is used

instead of a linear one. Figure 3.5 shows graphically the effect this replacement has on

the DDG of a synthesised program with two identical procedure calls. With just a linear

stack, the sub-graph of the first procedure call is vertically above that of the second, while

with a spaghetti stack, the sub-graphs of the calls are now side by side, making the critical

path roughly half as long.
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(a) (b)

Figure 3.5: Shape of Dynamic Dependence Graph of a program with two identical pro-

cedure calls (a) without and (b) with the “spaghetti stack” transformation. Note the

relative width (average parallelism) and depth (length of critical path) of the two graphs.

Our results in Figure 3.4 again show a mixed picture with this optimisation. For some

benchmarks (jpeg.decode, sha, susan), the spaghetti stack makes no difference at all to the

available parallelism. For some others (dhrystone, gsm.decode), parallelism only increases

with the spaghetti stack when we consider only true dependences—name dependences on

the heap and within the same frame would otherwise remain as the bottleneck, preventing

the spaghetti stack from affecting the overall parallelism. But for the remaining (rijndael,

gsm.encode, jpeg.encode, stringsearch, whetstone) we have a twofold increase in parallelism

even if we still consider anti- and output dependences on the heap. This is good news as

it shows that even under more realistic assumptions a relatively straightforward change

to the compiler can still result in a doubling of available parallelism. It needs to be

noted however that this model was used under the assumption that each malloc frame

instruction, like all other instructions modelled, takes one cycle to execute, and does not

cause other dependences. In practice it is likely that this instruction will take much longer,

and depending on its implementation may necessitate new instructions not modelled in

our graphs.

Finally, by comparing the Tru and TruNoAddr models in Figure 3.4 we see the effects

of ignoring address calculations by removing from the graph all instructions the results

of which are subsequently used anywhere as addresses for memory accesses. In some

cases (most notably gsm and stringsearch) this has resulted in an increase of an order of

magnitude over the Tru model. In other cases there is in fact a slight drop in parallelism,

showing that the drop in the critical path length was not great compared to the drop in

overall graph size. Generally, however, we see high average parallelism, rising above 1000

in some cases.
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3.5 Related Work

Wall [99] produced a comprehensive study on the limits of instruction-level parallelism in

SPEC benchmarks. Using an oracle based on the execution trace of a benchmark program,

he used a greedy algorithm to schedule each instruction at the earliest possible cycle. He

examined the effects on available parallelism of popular optimisations, such as memory

disambiguation, register renaming and branch prediction, as well as practical limits on

window size (the maximum number of instructions considered for scheduling at any one

time) and cycle width (the maximum number of instructions that can be scheduled to run

in the same cycle). He found that branch and jump prediction resulted in the highest gain

in parallelism in programs, followed by register renaming and memory disambiguation. He

also discovered that parallelism was significantly limited when window size was restricted,

meaning that much of the parallelism related to instructions that were very far apart.

While Wall’s concluding view on available parallelism was ambivalent, we believe that by

shifting the focus from instruction-level parallelism in superscalar processors to coarser-

grained parallelism in multi-core processors, new possibilities can be explored which had

been thought difficult to achieve at the time. This is our aim in this chapter, and we

explore this further in the rest of the thesis. Our work extends the scope of Wall’s study,

for instance by also renaming memory locations and considering compiler artifacts.

Lam and Wilson [47] examined in more detail the effects of control dependences on paral-

lelism. Using a similar method to Wall’s they looked at parallelism when using a mixture

of control dependence analysis, multiple flows of control and speculative execution. Anti-

and output dependences were ignored, as were true dependences on the stack pointer

and those on call/return instructions. Their conclusions underlined the importance of

speculating on control dependences to realising sufficient parallelism.

Austin and Sohi [7] were one of the first to use Dynamic Dependence Graphs (DDGs)

of assembly instructions to study limits of parallelism. Their study largely assumed

control dependences were perfectly resolved, and focused on the effects of anti- and output

dependences on available parallelism. They found that register renaming alone resulted in

good levels of parallelism, but more is exposed when memory locations are also renamed.

They also obtained a profile of the parallelism of the program over its run-time, and found

that parallelism is often unevenly distributed and bursty. Our Dynamic Dependence

Graphs are similar to the ones used there, but we have extended their analysis by also

examining control dependences and address-related true dependences.

Postiff et al. [72] ran a similar analysis using Wall’s method, ignoring control dependences.

They reached similar conclusions to Austin and Sohi regarding register and memory re-

naming. However, they also looked at true dependences on the stack pointer, and found

significant gains in parallelism in some cases when they are eliminated. Our methodology

of using DDGs is different, but our results generally agree with theirs. Our work also
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extends this one by considering control dependences and examining the effects of ignoring

all address-related true dependences (not just on the stack pointer).

Stefanović and Martonosi [86] also created DDGs to look at the effects of eliminating

address calculations. This was done by removing loads and stores from the graph, re-

placing them with an edge that goes directly from the producer instruction of the value

to the consumer instruction. Instructions from which values are used only as addresses

to loads and stores are also removed. They reported vast improvements in parallelism in

some cases, but slight deterioration in others where address calculations do not form long

dependence chains. Our TruNoAddr model is similar to this analysis, with the exception

that only address calculation instructions are removed and not loads and stores, as we

reason that loads and stores are still required even if we can now statically determine

addresses rather than calculating them at run-time. The results of their study parallel

our results for this model.

As can be seen, much work has been done on limits of parallelism. We claim that this

chapter is a unified study that explores ideas in the models presented in these previous

studies, allowing like-for-like comparison between such models.

In addition to finding limits of parallelism, several studies have also investigated its appli-

cability to limited processors. A new parameter is added to the model that restricts the

number of instructions that can be scheduled in each cycle (known as cycle width in [99]).

If parallelism is evenly distributed throughout the program, then possible speed-up will

remain about the same as cycle width is reduced. If on the other hand parallelism is con-

centrated in one section then overall speed-up can fall quickly with cycle width. Theobald

et al. [91] introduced the concept of smoothability, which is the new limit of parallelism

given a cycle width equal to the original (infinite cycle-width) limit of parallelism, as a

proportion of the original. Rauchwerger et al. [76] used another measure known as slack,

defined as the average distance between an instruction in a greedy schedule and the same

instruction in a lazy schedule.

3.6 Conclusions

This chapter examined the limits of parallelism in benchmark programs, and the effects of

various types of dependences on them, by constructing Dynamic Dependence Graphs from

execution traces. As with previous studies that we extend, we find that control depen-

dences form the biggest obstacle to realising more than a modest amount of parallelism

(above single figures). By disregarding control dependences the available parallelism is

much greater, even more so when memory locations are renamed to remove anti- and out-

put dependences. In fact, we find that parallelism for many programs exceeds 100 when

only true dependences are considered. We have also looked at true dependences on the
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stack pointer, reasoning that these are not an essential part of an algorithm but are only

compiler-induced, i.e. there is more parallelism in source code than in assembly code. By

using a spaghetti stack to remove some of these dependences, we double available paral-

lelism in some programs. It would be interesting to scale up our experimental framework,

in order to extend our analysis from the embedded benchmarks of MiBench into server

benchmarks. Another direction, which we will take in the next chapter, is to explore how

much of the parallelism is coarse-grained enough for profitable exploitation in multi-core

processors. We view our findings with qualified optimism, in that while the limits of par-

allelism are generally quite high, achieving it in practice is not straightforward, and will

require significant changes to the current method of compilation, programming language

or even model of computation. Nevertheless, we find that in most of these benchmark

programs much parallelism is there—the challenge is to find better ways to exploit it.



Chapter 4

Separating the wheat from the

chaff—estimating task-level

parallelism

4.1 Introduction

In the last chapter we have observed that there is much potential parallelism in most

programs. Our goal for the rest of our thesis is to realise some of this potential parallelism

in multi-core processors. Using ideas from the last chapter, we have developed a tool-

chain for interactive parallelisation. In this chapter, we present the first component of this

tool-chain: Embla 2, a tool that estimates the amount of potential task-level parallelism

in a program and presents valuable information for actual parallelisation.

We begin this chapter by noting that not all of the parallelism discovered in our last

chapter is exploitable by multi-core processors. In particular, parallelism at the instruction

level, where only short chains of several instructions are independent from each other at a

time, cannot be applied to multi-core processors, as communication between cores would

take at least tens of cycles, meaning performance gains from parallelism would be vastly

eclipsed by the extra overheads involved in splitting up the work. Instead, instruction-

level parallelism is already well exploited with superscalar and VLIW technologies, and it

is neither necessary nor desirable to have such parallelism exploited with multiple cores.

For multi-core processors we need parallelism at a coarser granularity—threads hundreds

if not thousands of instructions long that make the overheads of parallelisation worth-

while. In this chapter, we attempt to separate the wheat (coarse-grained or thread-level

parallelism) from the chaff (fine-grained or instruction-level parallelism) by restricting

ourselves to a certain class of parallelism, namely Nested Function-level Fork-join Paral-

lelism, in which function calls/returns are used to delineate tasks. While this is by no

37
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means the only class of coarse-grained parallelism available, it is chosen for the following

reasons:

• As a programming abstraction, functions generally represent a reasonable amount

of work.

• As programming language constructs, functions require minimal syntactic restruc-

turing to exploit—all the code in the thread is already gathered in one place.

• Functions have a single entry point and return address, facilitating task creation.

• Partly due to reasons above, many popular parallel programming environments,

such as Cilk [11], Java [49], TBB [78] and TPL [50], use this as one of their main

task models.

Parallel loops, another useful source of coarse-grained parallelism, are also incorporated

into our models as an option. Naturally other legitimate sources of coarse-grained paral-

lelism will be left out, such as pipeline parallelism, the extent of which we estimate with

another variant model.

Our primary objective in this chapter is to construct a tool which, when given a se-

quential program and an input, can estimate the amount of parallelism that would be

available if the program were to be parallelised using language constructs such as those

in OpenMP [21] or Cilk [11]. It can be considered as the degree of speed-up we might

expect to get without major structural refactoring. We validate our results against timing

measurements of explicitly parallel Cilk programs.

As in the previous chapter, the tool works by profiling data and control dependences.

However, here the dependences are mapped back to source code using debugging infor-

mation. Such functionality is provided by Embla [26], a Valgrind-based [63] profiler which

captures and outputs source-level data dependence information. Our tool extends Embla

and is accordingly named Embla 2. Our extensions can be summarised as: capturing

control dependences, discounting spurious dependences due to heap reuse (Section 4.3.2),

construction of Dynamic Dependence Graphs and output of critical paths (Section 4.3.3),

loop recognition (Section 4.3.4), reduction variable recognition (Section 4.3.5) and gran-

ularity analysis (Section 4.3.6). Embla 2 contains about 6000 lines of C code (compared

to 4000 lines for the original Embla).

The focus of traditional studies of parallelism limits [99, 100] is typically on hardware

support for some model of parallel execution. As such parameters such as the amount of

hardware resources (buffer space, functional units, etc.) are varied. Our focus is rather

on explicit parallelisation of the program source code, and we therefore use a different set

of parameters to vary and different constraints for parallelisation. The aim is to address
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the question, “Will techniques such as thread-level speculation or parallel for-loops make

much difference to the possible speed-up when parallelising this program?” Section 4.2

discusses our parallelisation models in depth.

We have used Embla 2 to investigate the potential for parallelisation of three collections

of programs: the SPEC CPU 2000 integer programs, MiBench and the example programs

in the Cilk 5.4.6 distribution. While the first two collections contain sequential programs,

the last one is made up of explicitly parallel programs in the Cilk 5 language. These have

the property that eliding the parallel constructs leaves correct sequential code, allowing

us to run Embla 2 on that code as validation of our approach. We can thus contrast

programs from these different sources as well as show the behaviour of our different models.

Section 4.4 reports the results of these experiments.

The contributions can be summarised as follows:

• Dependences output by Embla 2 assist the programmer in parallelisation by identi-

fying appropriate source-level synchronisation points. We show how synchronisation

points identified in serial elisions of example Cilk programs by Embla 2 match those

in the original hand-parallelised programs (Section 4.4.1). In Chapter 5 we show

how this parallelisation can be automated.

• By mapping dynamic dependences back to program source, Embla 2 gives a realistic

estimate of potential speed-up for parallelisation using frameworks such as Cilk and

OpenMP. Previous studies that we know of [45, 100, 66] have only considered

speculative task-level parallelism—we give potential speed-ups for programs both

with and without the use of thread-level speculation. Using Embla 2 we present

estimates of potential parallelism in various example programs and benchmarks

(Sections 4.4.2 and 4.4.4).

• Critical paths output by Embla 2 can be used to identify at source-level bottlenecks

that restrict the level of potential parallelism. In Chapter 6 we illustrate this using

examples from various benchmark suites, and suggest refactorings or algorithmic

changes to increase potential parallelism.

4.2 Task Models

Embla 2 uses task models designed to reflect existing and potential capabilities of popular

parallel programming environments. We begin by describing our baseline task model,

before detailing how other variant models deviate from it. In our model each function

call is spawned as a task at its call site. The calling thread can then continue to execute

statements that follow the function call without waiting for the call to return, until control
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p();

q();

r();

spawn p();

spawn q();

sync;

spawn r();

Figure 4.1: An example of function-call spawning and synchronisation, using Cilk-like

syntax

reaches a statement that has a dependence on the call. At this point the calling thread

must synchronise on the task, i.e. wait for the task to complete before going any further.

As an example of this, consider the program fragment in Figure 4.1 (left): Suppose that

the calls to p() and q() are independent, but that the call to r() depends on the earlier

calls. Then the call to p() can be executed in parallel with the call to q(), as shown

on the right. Here we assume the availability of the constructs spawn to start the call in

parallel and sync to synchronise on all previously spawn’ed tasks (cf. Cilk).

As in Cilk, there is an additional requirement that each function call must synchronise on

all tasks it has spawned before returning, meaning that tasks must properly nest. Such

a design choice may result in some potential parallelism being lost—a task spawned by

function f() may only have a dependence on it long after f() has returned, but under

our model this task must be synchronised on before f() returns. However, it preserves

program modularity by ensuring that each task is responsible for synchronising on the

tasks it has spawned.

We assume the underlying machine has an unlimited number of processors with zero

overheads for spawning and synchronisation. All instructions, including memory access,

are assumed to take one cycle. This means that the estimate derived in this model is an

architecture-independent upper bound.

So how do we calculate the potential parallelism for a program under this model? As in

Chapter 3, we do this by constructing a Dynamic Dependence Graph for each function

call, an example of which is shown in Figure 4.2. But here the DDG is a directed acyclic

graph G = (V, E) where each node v ∈ V corresponds to an instantiation, or execution,

of a line1 of the function, and an edge (u, v) ∈ E means that u must be completed before

v can begin. Edges u→ v are inserted for:

1. Data dependences, which as before can be read-after-write, write-after-read or write-

after-write, between an instruction in the dynamic call tree of u to one in that of

v (as observed by the original Embla infrastructure described above). Write-after-

read and write-after-write dependences on the stack are ignored (these tend to be on

1We would like to have a node corresponding to each execution of a statement instead, but the gcc

debug tables that Embla uses are per-line not per-statement.
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1: #include <stdlib.h>

2: #include <stdio.h>

3:

4: static void inc(int *p)

5: {

6: *p=*p+1;

7: }

8:

9: int f(int argc, char **argv)

10: {

11: int *q=NULL,n=0;

12:

13: q = (int*) malloc( sizeof(int) );

14: inc(q);

15: inc(&n);

16: inc(q);

17: printf( "%d\n", *q+n );

18: q = (int*) malloc( sizeof(int) );

19: return q==NULL;

20: }

r

r

r

r

r

r

r

r

Figure 4.2: Example dependence graph from Embla

easily privatisable variables), as well as all dependences between known commutative

library functions, e.g. malloc.

2. Control dependences between u and v.

3. Dependences related to the parallelisation model, that is, the restructuring of the

code that we allow. E.g. to enforce the requirement that only function calls can be

spawned as tasks, there is an incoming edge to each node from the last executed

node that does not contain a function call. This effectively linearises the graph

except at function call spawns, the only points where forks are allowed.

The cost of a node v, cost(v), is the minimum time required to execute the instantiation

under our model. This is essentially the number of instructions executed on that line,

with the additional requirement that if one of the instructions is a function call, then the

length of the critical path of that call is included in the cost of the node. The critical path

CP is the path in G with the largest total cost. The amount of potential parallelism for a

function call is then the cost of serial execution divided by the length of the critical path.

The potential parallelism of a program is simply that of its main function.

In addition to the baseline model, we alter certain parameters to create variant models, in
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void g1(int *a) {

...

*a = ...; // Writes to *a

}

void g2(int *b) {

... = *b; // Reads from *b

...

}

int f(int *a, int *b) {

int x;

g1(a);

g2(b);

}

int main(int argc, char *argv[]) {

int x=0, y=1;

f(&x, &y);

f(&x, &x);

}

Figure 4.3: Program illustrating the difference between aggregated and exact data depen-

dences

order to explore how potential parallelism changes with respect to different design choices,

compiler optimisations or run-time techniques. These are described below:

Exact data dependences By default, data dependences are aggregated per source line

over a program’s execution and then applied to all instantiations of the line. In other

words, in the Dynamic Dependence Graphs every instantiation of a line is dependent on

instantiations of the same set of lines. This models the parallelism that is possible by

inserting synchronisation points in source code, necessitating the same synchronisation

point for all instantiations. A variant is to use exact dependences by allowing each instan-

tiation of the same line to have its own set of dependences as observed during execution2,

modelling the effects of dynamic techniques such as thread-level speculation (TLS), in the

ideal case where the continuation of each task instantiation runs in parallel with the task

right up until the point where a conflict would have been detected.

2Cf. the difference between context-sensitive and context-insensitive static analysis.
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The difference between the two can be illustrated in the program in Figure 4.3, where

there is a dependence between the calls to g1 and g2 in f only when a and b alias. A

model using aggregated data dependences would ascribe that dependence to all calls to

f, resulting in no parallelism. This reflects the fact that we cannot statically parallelise

the calls to g1 and g2 as that would lead to a race condition in the second call of f. With

exact dependences however, the dependence would only apply in the second call to f,

resulting in some parallelism in the first call. This reflects that with TLS, we can attempt

to run g1 and g2 in parallel, which results in potential parallelism in the first call to f,

at the expense of a possible performance penalty of a rollback in the second call.

Control dependences When it is not known whether a line will be executed until the

execution of another (typically a branch), the former line is said to be control-dependent on

the latter, and must not begin execution until the latter has completed. In our tool, control

dependences are calculated by constructing Control Dependence Graphs [27]. However,

our model also allows control dependences to be excluded. This in effect gives us the

parallelism achievable with perfect (100% accuracy) control speculation. Previous stud-

ies on branch prediction and control speculation [83, 47] suggest that simple prediction

algorithms can result in high accuracies for many programs, meaning that a model with

control speculation is reasonable.

Loop iterations as tasks In addition to function calls, loops are generally considered

to be another source of task-level parallelism, and are the primary parallel programming

construct in OpenMP [21]. As mentioned, there is an option to parallelise loops in Em-

bla 2, where an established algorithm [2] is used to identify natural loops. Each instance

of a natural loop is spawned as a task, which in turn spawns individual iterations of the

loop as tasks just like function calls. Updates to the loop index, which are outside the

task boundaries, are still serialised.

Reduction operations Reductions are accumulation operations on variables such as

for (i=0; i<N; i++) acc += f(i);, where the order in which instances of the asso-

ciative reduction operation (+) are executed makes no difference to the final value of the

accumulator3. Embla 2 includes a helper program that statically identifies and annotates

reduction operations in loops, dependences between which can be safely ignored to enable

greater parallelism.

Spawn hoisting Another way of enabling further parallelism is by spawning tasks

earlier (a form of code motion optimisation). In this variant, function calls are spawned

3Floating point arithmetic are not strictly associative, but are considered so in Embla 2 as in most

cases different orders of application lead to insignificant differences in the results.
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// Unrelated work

...

/*spawn*/ f();

(a) Original program ex-

tract

/*spawn*/ f();

// Unrelated work

...

(b) With spawn hoisting

Figure 4.4: An example of spawn hoisting

as early as dependences allow, rather than only when control in the calling thread reaches

the call site (the default). It can be thought of as moving the function call higher.

This is illustrated in Figure 4.4, where in the original program, the call to f() follows

some unspawned statements unrelated to f(). Under the baseline model, f() can only be

spawned when control reaches its call site, i.e. after the unrelated work has been executed,

resulting in no parallelism. With spawn hoisting, however, f() can be spawned before

the unrelated work is executed, so that they can be executed together. Spawn hoisting is

modelled by relaxing constraint 3 on page 41 so that the incoming edge is only inserted

to each node that does not contain a function call.

Line-level parallelism By only considering function calls and potentially loop itera-

tions as tasks, other forms of task-level parallelism are naturally excluded, namely those

that are not delineated by function calls/returns or loop boundaries. Examples include

pipeline and DOACROSS parallelism, as well as parallelism between arbitrary portions

of code that could only be exploited with code refactoring or transformations. To see

how much more parallelism there is, we introduce a variant model where all lines can

be spawned, regardless of whether they contain function calls. This is modelled by not

applying constraint 3 at all. Note however that while this allows us to see more paral-

lelism, some of the extra parallelism discovered will be too fine-grained to be exploitable.

Nonetheless, the remainder could well be coarse-grained enough to be profitably exploited

by refactoring certain lines into a new task.

Granularity filtering On the other hand, there is no guarantee every function call is

coarse-grained enough that the program is sped up when it is parallelised. Inter-processor

communication and the overheads involved in spawning, scheduling and synchronising on

a task can lead to inferior performance if task granularity is too small. Thus, in reality,

some function calls are better off inlined (run sequentially) than spawned. This leads

to the question of how much parallelism is left if we do not spawn tasks that are too

fine-grained. We answer this question by only allowing a function call to be spawned

if its profiled mean size is above a specified granularity threshold. Again this is done

by altering constraint 3 such that there is an incoming edge to each node from the last
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executed node that does not contain a function call with a mean size above the threshold.

We detail how we obtain mean task sizes in Section 4.3.6.

However, this extension was not applied to spawned loop iterations, because of the way

many parallel task libraries execute parallel for-loops. Instead of spawning each iteration

as a separate task, they usually use divide-and-conquer to recursively partition the itera-

tion space in half, spawning each half as a task. This continues until the iteration space

is small enough, at which point the partition is executed sequentially.

This means that parallel for-loops with small bodies can still be beneficially executed in

parallel, as iterations can be lumped together into one big task (often known as a chunk).

(In fact, many recursive divide-and-conquer functions can be parallelised this way also.)

Embla 2 could be modified to model iteration-lumping as a potential extension, but we

feel that the difference in results would be small.

4.3 Implementation

This section provides details on how various aspects of Embla 2 have been implemented.

Embla 2 is based on the data dependence profiler Embla [26], which computes static data

dependence information. Both Embla and, because of its heritage, Embla 2 are based on

the Valgrind binary instrumentation framework [63]. Neither tool uses the source code

of the program under investigation, which makes them relatively language independent,

with one caveat: if used in a managed code environment such as .NET or a Java virtual

machine, they profile the virtual machine rather than the program running on top of it.

While the tools work entirely on machine code, they report results in terms of the source

code of the program, using debugging information to bridge the gap. However, since they

do not know about the code generator, it is necessary to separate dependences arising

from the program from dependences arising from artifacts in the code generator, such as

register spills and reloads, that should not affect the dependences reported or the critical

path measurements.

We use the following strategy to make clear the connection between the instruction level

(which the tools see) and the source level (which the user cares about) without being

confused by artifacts of the code generator: run the tools on code compiled with register

allocation turned off and record only dependences through memory, not through registers.

This works well for languages (or implementations) that adhere to the rule that the

abstract program state should be in memory at sequence points in the code. This is the

case for instance for C.

While this strategy only gives safe information about subprograms compiled without

optimisation, it still allows parts of the program untouched by the parallelising transfor-
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Input/Output Parameter name Description Required for

Input --dep-file List of control and data de-

pendences

Aggregated dependences

Input --hidden-func-file List of commutative func-

tions (e.g. malloc)

Ignoring dependences between commu-

tative functions (this file is supplied for

all our models)

Input --loop-file Line numbers of loops Spawning loop iterations

Input --task-size-file Mean sizes of tasks Granularity filtering

Output --trace-file Profiled data dependences Subsequent run with aggregated data

dependences

Output --edge-file Profiled control flow Loop identification and control depen-

dence identification

Output --critpath-file Critical paths Programmer perusal (see Chapter 6)

Output --lengths-file Profiled lengths of lines Subsequent granularity analysis

Output --task-size-out-file Profiled mean sizes of tasks

and their continuations

Granularity filtering

Table 4.1: Input and output file parameters for Embla 2

mations to be optimised, so for instance pre-compiled libraries can be handled. Memory-

based dependences between these and the rest of the code are correctly tracked and any

register-based dependences (return values and possibly arguments) will be reflected in

memory in the unoptimised code.

Our strategy suffers from two drawbacks. Firstly, by using debugging information we

are only able to attribute dependences to different source lines rather than statements or

function calls. Furthermore, by profiling unoptimised binaries our calculations become less

accurate as performance predictions for the eventual optimised programs. An alternative

approach is to insert instrumentation at a higher level representation of the program,

such as on the abstract syntax tree. However, this approach would require customising a

compiler. Also, pre-compiled libraries can no longer be profiled.

Table 4.1 lists the different input and output file parameters supplied to Embla 2. Different

subsets of parameters may be passed to Embla 2 depending on the functionality required

by the various models. Embla 2 may need to be run several times in order to obtain

a parallelism estimate under certain models. For instance, for aggregated dependences

Embla 2 must be run twice, first to gather dependences over the whole program’s exe-

cution (producing --trace-file and --edge-file as outputs), then again to construct

Dynamic Dependence Graphs and perform critical path analysis (using --dep-file as

input). The only file required for all of our models is --hidden-func-file, which con-

tains a list of commutative functions (mostly ones used for memory management, e.g.

malloc and free, but the list can also be extended by the programmer).

As a dependence profiler that instruments every memory access instruction, Embla 2

does incur a significant overhead. When run on an x86 desktop, using Embla 2 to collect

dependences causes an average of 1500x slowdown of the profiled program, while critical

path analysis causes around 700x. Valgrind itself, on which Embla 2 is based, causes an
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Figure 4.5: Part of the execution tree of the program in Figure 4.3

average slowdown of 8x. It is hoped that further optimisations can bring overheads down.

4.3.1 Computing data dependences

We now describe in brief how Embla maps instruction-level data dependences back to

source code. Further details can be found in [26]. Under Valgrind’s binary instrumentation

framework, Embla tracks data dependences between executed instructions, which are

then mapped back to pairs of source lines within the same function. These instructions

might not be directly part of the function, but could instead be part of other functions

transitively called by the function. For instance, in Figure 4.3 the instructions causing

the dependence are part of the bodies of g1 and g2, respectively. However, Embla instead

maps the dependence to the calls to g1 and g2 in the definition of f.

To do this, Embla uses two main data structures: an execution tree, which is a dynamic call

tree with individual instructions as leaf nodes (part of the execution tree for the program

in Figure 4.3 is shown in Figure 4.5), and a memory table, which maps memory addresses

to nodes in the execution tree that performed the most recent write (for RAW and WAW

dependences) and all reads since that write (for WAR dependences). For each memory

access instruction executed, Embla uses the memory address to look up the dependence

source nodes in the memory table. For each source node, the Nearest Common Ancestor

(NCA) node (node A in the example) is then located by traversing upwards through the

execution tree. The dependence is then attributed to the two children of the NCA that

are respectively ancestors of the source and target instructions (nodes B and C in the

example). Line numbers of these two nodes are provided by debugging information.

4.3.2 Discounting spurious dependences due to memory reuse

In order to only capture relevant dependences we must also identify and discount spurious

dependences due to memory reuse. These occur both in the execution stack, as we have

seen in Chapter 3 with the effects of spaghetti stacks, as well as on the heap, due to freed

memory that is reallocated.

For the former, Embla keeps track of the value of the stack pointer, which points to the

top of the execution stack, over execution. For each dependence observed, Embla checks
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Figure 4.6: Figure showing our optimisation for DDG edges. The solid edges represent

the critical path edges for each node, which are stored. The dashed edges represent edges

not in the critical path for any node, and so are discarded.

if the stack pointer has crossed the address concerned in the time between the source

instruction and the target instruction. If so, the dependence is discounted.

As for the heap, calls to memory allocation functions (malloc, calloc and memalign)

are instrumented to record the size of memory requested and the address of the allocated

memory returned. If subsequently this address is passed to free, then the memory table

entries for the corresponding addresses are cleared. The realloc function is treated as

memory allocation, deallocation or both, depending on its actual behaviour.

4.3.3 Constructing the Dynamic Dependence Graph

Under Embla 2, whenever a new instruction with a different line number from the last

is executed, a new node is created in the Dynamic Dependence Graph corresponding to

the new line instantiation. For each function call, a new DDG is initialised; similarly the

DDG is finalised at the corresponding function return.

For exact data dependences, edges are inserted into the DDG between nodes that corre-

spond to the source and target nodes in the execution tree, as dependences arise. For

aggregated data dependences, a prior run of Embla 2 collects all data dependences as pairs

of line numbers. Then in the second run, for each node n corresponding to line l, edges

are inserted to n from all instantiations of lines on which l is dependent in the current

DDG.

In order to save memory space, we note that for critical path analysis it is not necessary

to store all the edges in a DDG. It suffices for each node to have a pointer to one other

node, corresponding to the predecessor on the longest path so far terminating at the node

(the critical path for that node). Figure 4.6 illustrates this with an example. For each new

dependence, if the new source node has a longer critical path than the existing one, then
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for (i=0; i<N; i++) {

task1();

task2();

}

Figure 4.7: An example loop with DOACROSS parallelism

the pointer is changed to point to this new node; otherwise no changes need to be made.

This optimisation is correct as edges are always only added to the latest node, meaning

that critical paths of existing nodes remain fixed once we move on to a new node. When

the function call returns, the longest critical path of all the nodes becomes the critical

path of the DDG.

4.3.4 Loop recognition

Embla can output a list of all line-level control flow edges, which can be used to construct

Control Flow Graphs (CFGs) for each function. Using these CFGs, single-entry/single-

exit loops are identified using the natural loop identification algorithm described in [2]

among other places. The decision to use Embla output to construct CFGs was mostly

for convenience—static analysis could have been used to construct CFGs, but this would

make little difference to our final results.

However, it is in fact not always profitable to spawn loop iterations, as it precludes

DOACROSS or pipeline parallelism. Consider the loop in Figure 4.7, where there are

dependences between calls to task1 and between calls to task2 as well as from task1 to

task2 but crucially not from task2 to task1. Hence there are loop-carried dependences.

If loop iterations were spawned as tasks, each iteration would have to have completed

execution serially before the next iteration could begin. However, if the iterations were

not spawned, then each call to task2 could in fact be spawned and not synchronised

on until after the call to task1 in the next iteration, allowing us to overlap these two

calls and get parallelism. Thus, we have introduced a further model where only iterations

of parallel loops, i.e. those with no loop-carried dependences as observed by Embla, are

spawned.

4.3.5 Reduction variable recognition

In order to recognise reduction operations, a static analysis is performed on program

source and annotations are added to these operations. We do this by using the ROSE

source-to-source compiler framework [82], with which we search for variables x in loops

that satisfy the following requirements:
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1. x is of scalar type.

2. x is not aliased (address-taken).

3. x is declared outside the loop (not privatised).

4. All occurrences of x in the loop are of the form x = x ⊕ expr , where ⊕ can be

addition, subtraction, multiplication or a primitive bitwise or logical operator (all

associative), but must remain the same throughout the loop. x must also not occur

inside expr . Alternatively if all occurrences of x in the loop are of the form x = expr

(where x does not occur inside expr) this is an assignment reduction operation and

is also permitted4.

Once these reduction variables have been identified, macros are wrapped around all re-

duction operations, which when expanded place client requests before and after the oper-

ation. Client requests are series of instructions that do nothing except notify the Valgrind

run-time system. This way, Embla 2 knows when an instruction belongs to a reduction

operation, and can tag its entry in the memory table. When a dependence is encoun-

tered of which both the source and target entries are tagged, this dependence can be

disregarded.

4.3.6 Granularity analysis

In order to filter out tasks that are too fine-grained, we need to find out the sizes of

function calls. We did that by extending Embla to record mean serial lengths of function

calls, measured in terms of the total number of instructions, just as for the critical path.

Due to the instrumentation infrastructure of Embla, we record lengths on the source-line

level, but record separate figures for a line depending on whether it calls a function at

run-time. This deals with the case if (...) f(); where every call to f() is large—if

many instantiations of this line do not in fact call f() then the overall mean length may

still be small, even though if and when we call f() the task will be sufficiently coarse-

grained. We define mean task length as the mean serial length of a line when counting

only instantiations that actually call a function at run-time.

We then extended Embla to take into account the granularity of a function call, such that

only function calls with a granularity above a certain threshold are spawned. Analogous

to the “Aggregated data dependences” model, either all or none of the instantiations of

each line are spawned, based on the average granularity. This reflects what happens when

we specify at source level whether to spawn or inline a function call. We do not consider

run-time techniques to dynamically decide whether to spawn a function.

4This can be thought of as another associative operator ⊕ defined as x⊕ y ≡ y.
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A näıve approach would be to define granularity simply as mean task length. The problem

with this, however, is that it would still not be beneficial for a very long task to be spawned

if it is to be synchronised soon after. Another way to see this is to consider a spawn as

a fork operation that creates two tasks—the function call and the continuation—and a

synchronisation as a joining of these two tasks. To gain useful parallelism it is necessary

for both the function call and the continuation to be sufficiently long. We must therefore

introduce another measure, the mean continuation length, or the expected amount of work

between the task and the first synchronisation point encountered.

In order to derive mean continuation lengths we first need to identify synchronisation

points for each function call, which would require dependence information from a previous

run of Embla 2. Having identified synchronisation points, we then need to work out the

mean number of instructions between each function call and the first synchronisation

point encountered. We have thus further extended Embla to profile such information in

a new prior run.

As an alternative to an extra run of Embla 2 we can also estimate this figure proba-

bilistically based on information already gathered by Embla—the mean lengths of each

line (both when it calls a function at run-time and when it does not), the Control Flow

Graph (extended to give the number of times each edge is taken during profiling), and

the dependence information. This estimate must take into account the different possible

control paths in the continuation, and the relative frequencies of these paths.

Let L be the set of source lines in the program. For each line l ∈ L, take nl to be the

total number of instantiations of l and cl to be the cost, or mean run-time length over all

instantiations of l measured in terms of number of instructions.

Let E ⊆ L× L be the set of control flow edges in the program. For each edge (i, j) ∈ E,

we define nij to be the number of times the edge is taken as profiled. Then the probability

that an edge (i, j) is taken (given control reaches line i) is derived by:

pij =
nij

ni

Let s be a line with a function call. To estimate the mean continuation length of the task

at s we first define Ls→ ⊆ L as:

Ls→ = {l ∈ L | ∃ path P from s to l and ∀m ∈ P \ {l}. m is not dependent on s}

Under the simplifying assumption that the probability of a control flow edge being taken

is independent of prior control flow—the Markov property—we have a Markov chain where

Ls→ is the set of states, and P ≡ (Pij) is the transition probability matrix. Line s is the

starting state, and at each step, the chain moves from state i to state j with probability

Pij.
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292: void extract_links(int index, int cost) {

293: /* generate the list of all links of the indexth parsing of the sentence */

294: /* for this to work, the hash table must have already been built with a */

295: /* call to count(cost). */

296:

297: Disjunct * dis;

298: int total, c=0;

299: N_links = 0;

300: total = 0;

301:

302: initialize_links();

303:

304: for (dis = sentence[0].d; dis != NULL; dis = dis->next) {

305: if (dis->left == NULL) {

306: c = magic(0, N_words, dis->right, NULL, cost);

307: total += c;

308: if (total > index) break;

309: }

310: }

311: if (total > index) {

312: list_links(dis, NULL, 0, N_words, dis->right, NULL, cost, index-total+c);

313: } else {

314: c = magic(0, N_words, NULL, NULL, cost);

315: total += c;

316: list_links(NULL, NULL, 0, N_words, NULL, NULL, cost, index-total+c);

317: }

318: }

q

q

Figure 4.8: Example function from 197.parser and its dependences

For each line i that does not depend on s the transition probabilities are:

∀j ∈ Ls→. Pij = pij

Function exits and lines that depend on s are absorbing states—for each absorbing state

i the transition probabilities are:

∀j ∈ Ls→. Pij =

{

1 if i = j

0 otherwise

Let Q be the submatrix of P formed by taking only the rows and columns for non-

absorbing (a.k.a. transient) states. Let I be the identity matrix with the same dimensions

as Q. Further let c be the vector of mean run-time lengths of non-absorbing states, i.e.:

∀i ∈ non-absorbing states of Ls→. ci = ci

It can be shown [33] that the vector t of expected total costs incurred before an absorbing

state is reached, starting from non-absorbing states, can be calculated as the solution to

(I−Q)t = c, and therefore the expected run-time length from the spawn at line s until

the first synchronisation point (excluding the length of the function call itself), in other

words the mean continuation length, is ts − cs.
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As an example, take the initialize links() function call on line 302 of extract-links.c

from the SPECint benchmark 197.parser. The conditional on line 311 always evaluates to

true during profiling, and only line 312 is dependent on this call in this function. There-

fore, L302→ = {302, 304, 305, 306, 307, 308, 311, 312}. Only line 312 is an absorbing state,

so matrix Q would have 7 rows and columns, and c would have 7 rows.

Q =



























302 304 305 306 307 308 311

302 1

304 1

305 1

306 1

307 1

308 1
2

1
2

311
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302 53

304 5

305 4

306 197

307 2

308 3

311 3



























(Row and column labels denote line numbers.) Solving for (I−Q)t = c, we have:

t =



























302 478

304 425

305 420

306 416

307 219

308 217

311 3



























Here t302 is 478, and so the expected continuation length for this task is t302 − c302 =

478− 53 = 425 instructions.

While actual execution of a program is deterministic and not probabilistic—strictly speak-

ing the Markov property does not hold because in theory control flow history can deter-

mine with certainty the next edge to be taken in the Control Flow Graph—we argue that

it may still model reality in most cases. We will evaluate the accuracy of our probabilistic

model by comparing mean continuation lengths calculated probabilistically with the mean

continuation lengths as profiled by Embla 2 (see Section 4.4.5).

4.4 Results and Evaluation

In this section we present some outputs of Embla 2 to demonstrate both how Embla 2

can be used and how much potential parallelism it has found in different programs.
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Program Description Parameters

cholesky Matrix decomposition size=256, nonzeros=1000

cilksort Merge sort size=100000

fft Fourier transform size=512*512

fib Näıve Fibonacci calculation n=30

heat Differential equation solver nx=ny=512, nt=1

lu Matrix decomposition n=256

magic Magic squares search n=4

matmul Matrix multiplication n=128

plu Matrix decomposition n=128

strassen Matrix multiplication n=512

Table 4.2: Description and parameters for Cilk 5.4.6 examples used

384: spawn cilksort(A,tmpA,quarter);
385: spawn cilksort(B,tmpB,quarter);
386: spawn cilksort(C,tmpC,quarter);
387: spawn cilksort(D,tmpD,size-3*quarter);
388: sync;

389:
390: spawn cilkmerge(A,A+quarter-1,B,B+quarter-1,tmpA);
391: spawn cilkmerge(C,C+quarter-1,D,low+size-1,tmpC);
392: sync;

393:
394: spawn cilkmerge(tmpA,tmpC-1,tmpC,tmpA+size-1,A);

q

q

q

q

q

q

q

Figure 4.9: An extract from cilksort and its corresponding relevant dependences

We begin our demonstration of Embla 2 with example Cilk programs packaged with the

5.4.6 release of Cilk, as described in Table 4.25—programs known to have lots of task-level

parallelism. Furthermore, the nature of Cilk means that these programs can be translated

into semantically equivalent programs in ordinary C (known as serial elisions) simply by

stripping the Cilk keywords6. We thus have a set of C programs and their manually-

parallelised counterparts to compare with the parallelism discovered by Embla 2.

4.4.1 Finding optimal task synchronisation points

Programmers can use aggregated dependences discovered by Embla 2 to realise the par-

allelism discovered using a language like Cilk, where function calls are spawned as tasks

and later joined (or synchronised), by synchronising on previously spawned tasks just

before the first line dependent on them. As an example, Figure 4.9 shows an extract from

5We have omitted programs that use the inlet, abort and SYNCHED keywords, as their translation

into ordinary C is not straightforward.
6Namely, cilk, spawn and sync.
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the cilksort program, along with aggregated dependences discovered by Embla 2 on the

program’s serial elision. By spawning function calls and synchronising before the first line

that depends on previously spawned tasks, we arrive at the Cilk program with optimal

parallelism, which in this case is the same as the original program. An algorithm for au-

tomating this process is described in the next chapter. However, the programmer should

be aware that as with all dynamic analyses, these dependences are based on running the

program on sample inputs only and so the parallelisation may not be safe for all possible

inputs. Nevertheless, previous work [26] has shown a correlation between dependence

coverage and code coverage, meaning that by using inputs that can exercise all branches

in the code one can generally get most if not all possible dependences.

4.4.2 Amount of parallelism discovered

Figure 4.10(a) compares (on a logarithmic scale) the amount of parallelism found by

Cilk’s timing infrastructure (averaged over 60 runs) to that found by Embla 2 on their

serial elisions. For this comparison we use our baseline model, with aggregated data

dependences, no loop parallelisation or spawn hoisting—the closest model we have to

Cilk’s. The graph shows that Embla 2 is able to find all of the task-level parallelism in

most of the original Cilk programs. One notable exception is magic, and this is because the

Cilk program uses an implicit inlet7 at the statement count += spawn execute(...);,

which is not a feature of our baseline model. Later we show how, by extending our

model with loop-level parallelism and reduction recognition, Embla 2 also discovers the

parallelism here.

For a few examples Embla 2 can discover more parallelism than explicitly specified in the

original Cilk program. We found several functions called synchronously that could have

been spawned, as well as C library function calls that can be spawned with the addition

of simple wrappers.

4.4.3 Effects of optimisations

We now look more closely at the variant optimisation models described in Section 4.2 to

see whether they affect potential parallelism in these programs. As it is impractical to

explore all possible combinations of parameters we only present here the results of using

models that differ from the baseline for one parameter, while acknowledging that these

parameters are by no means orthogonal.

Exact data dependences In most programs in the Cilk test suite the difference be-

tween this model and the baseline is negligible. This suggests that for such programs most

7In Cilk an inlet is a block of code that is executed atomically after a task completes.
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Figure 4.10: Parallelism of Cilk programs (note logarithmic scale)

of the potential parallelism is statically achievable—run-time techniques such as thread-

level speculation (TLS) would give few performance benefits. One exception is lu, which

gives an almost-fourfold speed-up over the baseline. This is because in one nested loop

the dependence for a certain task on itself exists only between iterations of the outer loop

but not of the inner loop. With aggregated dependences this results in all instantiations

of the task being serialised, while with exact dependences instantiations from the same

iteration of the outer loop can still be parallelised. While TLS would address this issue,

a cheaper method is to parallelise the inner loop—part of the speed-up seen in the third

column for lu in Figure 4.10(b) can be attributed to this task.

Control dependences In all the programs in the Cilk test suite parallelism is virtually

unchanged, compared to the baseline figures in Figure 4.10(a), when control dependences

are ignored, meaning that for these programs control speculation does not have any effect

on available parallelism. This is in contrast to the limits of parallelism from Chapter 3,

where the removal of control dependences resulted in a gain of parallelism of an order of

magnitude. One of the reasons for this difference is that even when control dependences

are ignored, our model’s restriction that a task is only spawned when control reaches its

call site, as well as the enforcement for nestedness, are preventing us from seeing the gains

reported in the last chapter. Furthermore, these programs mainly work on arrays and

have little irregular control flow, meaning that control dependences are not so much of a

hindrance here.

Loops Looking at the first and third columns of Figure 4.10(b), which compares the

potential parallelism of Cilk programs without and with spawning loop iterations, we

can see that the use of parallel for-loops benefits most of the programs considered here,

especially matmul, which sees around a 64-fold increase in parallelism. This confirms the
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view that the use of parallel for-loops is an excellent way to express task-level parallelism,

in addition to spawning function calls. In fact, some parallel programming environments

(e.g. Cilk++ [51]) optimise parallel for-loops by deriving loop induction variables by

divide-and-conquer instead of linearly, meaning that actual parallelism may be even higher

than these figures (as Embla 2 preserves linear increments of induction variables). Embla 2

not only finds the amount of loop-level parallelism in a program, but can be used to

easily identify candidate loops for parallelisation. This can simply be done by searching

through the dependences output by Embla 2 for dependences between iterations of the

loop concerned. If there are no such dependences, then the loop can be parallelised.

Reduction operations When the dependences between reduction operations are dis-

counted, the parallelism of magic vastly increases from under 2 to 376. This means that a

parallel reduction mechanism, such as Cilk’s implicit inlets, hyperobjects in Cilk++ and

similar operations in OpenMP, is essential for the program’s parallelism potential to be

realised.

Spawn hoisting With these Cilk programs, we find that spawn hoisting has a negli-

gible effect on potential parallelism, as parallelism measurements with spawn hoisting is

almost the same as those for the baseline in Figure 4.10(a). This suggests that, perhaps

unsurprisingly, most function calls in these Cilk example programs are already spawned

at the earliest possible point, and little further hoisting is possible.

Line-level parallelism The amount of line-level parallelism in these programs is shown

in the second columns of Figure 4.10(b). We can see that for most of these programs

the amount of line-level parallelism is around twice or more that of function-call-level

parallelism. This is mostly due to simple statements performing arithmetic operations

inside a function call or loop that can run in parallel. Each of these operations takes a

small number of cycles, which means that it is not viable for each of these to be spawned.

As mentioned, some of this fine-grained (mostly instruction-level) parallelism is realised

already in existing superscalar processors. Nevertheless, operations may be grouped and

extracted into tasks that are sufficiently large to see performance gains.

4.4.4 Parallelism in other benchmarks

We also ran the same analysis using Embla 2 on some of the benchmark programs in the

SPEC CPU 2000 [37] (with the MinneSPEC reduced data input set [44]) and MiBench [34]

suites, the results of which are displayed in Table 4.3. As before, the baseline model uses

aggregated data dependences, and considers only function-call-level parallelism without
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Baseline

Exact

data

deps

Ignoring

control

deps

Spawning

all loops

Spawning

parallel

loops

Spawn

hoisting

Spawn

hoisting

and ignor-

ing control

deps

Line-

level Everything

SPECint 2000

164.gzip 2% 2% 2% 34% 28% 2% 3% 61% 113%

175.vpr place 4% 4% 4% 10% 5% 5% 12% 227% 373%

175.vpr route 35% 35% 35% 27% 43% 43% 50% 162% 234%

176.gcc 23% 35% 31% 29% 33% 29% 54% 165% 391%

181.mcf 116% 118% 150% 41% 120% 116% 163% 517% 1519%

186.crafty 9% 9% 14% 18% 20% 10% 29% 222% 496%

197.parser 8% 9% 14% 9% 8% 11% 245% 31% 310%

252.eon cook 122% 136% 179% 80% 133% 153% 235% 197% 343%

252.eon kajiya 110% 125% 191% 82% 122% 141% 260% 178% 364%

252.eon rushmeier 128% 155% 197% 84% 143% 162% 259% 204% 404%

253.perlbmk 1% 1% 1% 1% 1% 4% 4% 63% 74%

254.gap 6% 7% 7% 10% 10% 10% 15% 59% 106%

255.vortex 20% 23% 20% 19% 19% 31% 33% 104% 115%

300.twolf 10% 16% 11% 30% 16% 12% 35% 131% 237%

SPECfp 2000

171.swim 15% 15% 15% 1882% 1486% 15% 15% 1722% 5964%

172.mgrid 1% 1% 1% 6176% 5951% 1% 1% 3187% 7176%

173.applu 4% 4% 4% 572% 549% 7% 27% 237% 2205%

178.galgel 11% 11% 11% 328% 550% 14% 14% 174% 372%

179.art 0% 0% 0% 47% 36% 5% 5% 220% 772%

187.facerec 6% 6% 6% 243% 268% 6% 6% 91% 94%

188.ammp 45% 46% 63% 13% 42% 47% 67% 167% 328%

189.lucas 4% 4% 4% 50% 80% 4% 4% 324% 326%

191.fma3d 2% 2% 2% 3% 3% 3% 3% 5% 5%

200.sixtrack 0% 0% 0% 1% 1% 1% 1% 79% 79%

MiBench

basicmath 15% 15% 15% 13% 15% 15% 15% 15% 15%

bitcount 5% 128% 5% 22% 5% 5% 5% 43% 258%

blowfish.decode 143% 143% 143% 3% 143% 143% 143% 170% 170%

blowfish.encode 145% 145% 145% 3% 145% 145% 145% 168% 168%

dijkstra 0% 0% 0% 0% 0% 1% 2% 4% 5%

FFT 4% 6% 4% 17% 9% 4% 4% 13% 19%

FFT.inverse 7% 9% 7% 34% 16% 7% 7% 24% 38%

gsm.decode 10% 10% 10% 10% 15% 10% 10% 38% 422%

gsm.encode 4% 4% 4% 16% 13% 4% 4% 437% 727%

jpeg.decode 63% 63% 63% 6% 64% 64% 64% 479% 698%

jpeg.encode 34% 36% 34% 85% 86% 35% 36% 499% 793%

mad 39% 40% 39% 52% 49% 44% 49% 390% 462%

patricia 16% 17% 16% 13% 16% 20% 26% 21% 26%

qsort 0% 0% 0% 0% 0% 1% 1% 2% 2%

sha 16% 16% 16% 16% 18% 16% 16% 36% 107%

stringsearch 85% 85% 86% 29% 102% 85% 87% 102% 102%

susan.corners 0% 0% 0% 1246% 1045% 0% 0% 1967% 2167%

susan.edges 0% 0% 0% 1148% 904% 0% 0% 2271% 3108%

susan.smoothing 0% 0% 0% 19% 0% 0% 0% 127% 39530%

tiff2bw 4% 4% 4% 11% 4% 4% 4% 49% 49%

tiff2rgba 0% 7% 0% 0% 0% 1% 1% 1% 7%

Table 4.3: Parallelism of benchmark programs, expressed in terms of percentage speed-up

loop parallelisation or spawn hoisting. Most models are self-explanatory. The Everything

model in the final column considers all possible optimisations—line-level parallelism, ex-

act data dependences and ignoring control dependences8. From Table 4.3 we make the

following observations:

• In general, we see that few benchmarks exhibit the level of parallelism seen in the

Cilk examples. In fact, none of these benchmarks exhibit parallelism of over 3 (i.e.

over 200%) under the baseline model, suggesting that spawning existing function

calls alone is insufficient to effectively parallelise them.

8Spawn hoisting and spawning loop iterations are subsumed by the line-level model.
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Figure 4.11: Mean run-time lengths of function calls

• There are, however, some benchmarks with a significant amount of loop-level par-

allelism, such as those from the SPEC floating point benchmark suite. The susan

benchmarks from MiBench also exhibit lots of loop-level parallelism. These pro-

grams perform image smoothing, corner detection and edge detection on an image,

and are data-parallel—the same computation is performed on each pixel in the im-

age and the results for each pixel are independent of each other. This is reflected

in our results, which show that using the small inputs, both susan.corners and su-

san.edges have potential parallelism of over 12 when loop iterations are spawned.

This is not the case for susan.smoothing, however, as we will explain in Chapter 6.

• For some programs, e.g. 252.eon, spawning loop iterations actually results in a lower

level of parallelism than the baseline. As explained earlier, this is because the

baseline allows for partial overlap between loop iterations (a.k.a. software pipelining)

whereas spawning loop iterations is an all or nothing proposition; the iterations are

either completely independent or completely serial.

• Most programs do exhibit a significant amount of line-level parallelism, showing

that function-level and loop-level parallelism are not the only forms of parallelism in

these programs. Whether any of this extra parallelism that is excluded by our other

models is actually exploitable on multi-core processors requires further investigation.

4.4.5 Granularity analysis

We now show the results of our granularity analysis, beginning with the mean lengths of

all function calls in our benchmark programs. Figure 4.11 shows the sorted mean lengths

of function calls. The graph appears to show three straight line regions, starting off with

a gentle slope, getting steeper around 100, and then dropping abruptly after 10000. One

straight line would suggest a power law of lnk = constant , with n being the rank of the
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Figure 4.12: Sensitivity to granularity of speed-up for Cilk benchmarks

function call when sorted by length, l its length averaged over program execution, and k

the scaling constant. The slightly convex shape suggests that there are more big functions

and fewer small functions than we would expect from a power law. But this can in fact

be explained by arguing that programmers do not tend to write functions unless they

do a significant amount of work—single-line functions should be rare as programmers

would tend to inline them9. Nevertheless, a trend line on the graph shows k, the scaling

constant, to be around 2.5.

We turn to the two methods of calculating mean continuation length. Over all the bench-

mark programs we find that in around 10% of cases the difference between the expected

continuation length calculated probabilistically and one profiled by Embla 2 is above 100

instructions; the difference is over 1000 instructions in just over 5% of function calls.

This suggests that our probabilistic model is accurate in most cases, although in a small

number of cases the difference can be large.

To see the effects of limiting spawnable tasks to those with mean granularity—defined as

the smaller of mean task length and mean continuation length—above a certain threshold,

we have extended Embla to read in the results of granularity analysis. The threshold is

configured with a run-time option, and the speed-ups, normalised to the speed-up for a

threshold of 0 (i.e. no tasks are filtered), are seen in Figures 4.12 to 4.15. These figures use

the profiled continuation lengths, but the figures for probabilistically derived continuation

lengths are very similar.

From these graphs we see varied results. While for a small number of programs par-

allelism is not affected at all, most programs are sensitive to granularity filtering. For

some programs parallelism collapses quickly when the threshold is raised, while for oth-

ers the drop is much more gradual. Overall, from these graphs we do see that many

tasks are fine-grained, meaning that low task-spawning overheads are essential. It is also

9Accessor methods in object-oriented languages are a notable exception, but most of our benchmarks

are non-OO imperative programs.
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Figure 4.13: Sensitivity to granularity of speed-up for MiBench programs
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Figure 4.14: Sensitivity to granularity of speed-up for SPEC 2000 integer benchmarks

interesting to see the differences between different types of programs. Parallelism for

programs considered more regular or array-based—Cilk example programs, the SPEC

floating point benchmarks and some of the MiBench benchmarks—drops off at a higher

granularity threshold than more irregular or pointer-based programs—those in the SPEC

integer benchmarks and the rest of the MiBench suite. This suggests that the main tasks

of regular programs are generally coarser-grained than those of irregular programs.
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4.5 Related work

Various languages and libraries have been created to allow easy expression of task-level

parallelism. Cilk(++)’s [11, 51] model of fork/join parallelism matches our function-

spawning model most closely, although a Cilk sync always joins with all tasks spawned in

the current procedure activation rather than being able to pick a specific task to join as

in our model. While OpenMP [21] originally focused almost exclusively on loops, version

3.0 adds support for function-level parallelism. Other notable examples offering similar

functionality include Java’s concurrency library [49], Intel’s TBB [78] and Microsoft’s

TPL [50]. SMPSs [69] uses a related model where the programmer specifies dependences

rather than synchronisation points.

Several studies have been done on limits of instruction-level parallelism (e.g. [99]), but

fewer have tried to separate out task-level parallelism from instruction-level parallelism.

Kreaseck et al. [45] explored limits of speculative task-level parallelism by executing func-

tion calls early, similar to the way we hoist spawns. They have however imposed the

restriction that spawned function calls must be joined at their original call sites, which is

a restriction we have felt to be unnecessary, and thus have not imposed in our analysis10.

In our model function calls can be joined as late as dependences allow (but always before

the parent call returns). Other studies [100, 66] have shown that data-value prediction,

especially in regard to return values, is effective at increasing task-level parallelism. This

is something we wish to consider further in the future.

Embla’s source-level profiling algorithm [26] has been used elsewhere to discover depen-

dences and assist programmers with parallelisation. Most systems [103, 93, 48] are con-

cerned with the parallelisation of loops only. The Alchemist tool [104] uses it to select

good task candidates for thread-level speculation. Nguyen et al. [64] use it to detect

function-level parallelism, but uses a more restrictive parallelisation model that is based

on Scheme. We believe Embla 2 is the first that can assist in parallelising function calls

as well as loops, while providing a realistic estimate of potential speed-up.

There are parallels between Embla 2 and on-the-fly data race detection [57, 81]. Both

use instrumentation to infer properties of the program through dynamic analysis. The

main difference is that while race detection seeks to find unsafe parallelism (i.e. bugs) in

an explicitly multi-threaded program, Embla 2 seeks to find potential safe parallelism in

a sequentially written program11.

There has been much research into automatic parallelisation [42, 10], most of which uses

10However, it would be straightforward to model this by extending our “Spawn hoisting” model. We

simply insert in the DDG an incoming edge to each node that does not contain a function call from the

last executed node that does contain a function call.
11With the usual caveat that dynamic analysis can only give approximations as program execution is

input-dependent. To guarantee safety a safety mechanism (e.g. thread-level speculation) is required.
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only static analysis. However, the lack of precision when statically analysing dependences

remains a barrier, something which dynamic analysis tools such as Embla 2 can address.

The downside is that the resulting parallelisation may not be valid for runs not covered

by the training set of input data. A hybrid approach would therefore be best.

Work by Aleen and Clark [3] finds commutative functions in user code by symbolically

executing each function f twice using two randomly generated inputs, I1 and I2. Func-

tion f is said to be commutative if f(I1); f(I2) and f(I2); f(I1) result in memory layouts

indistinguishable using any subsequent I/O. Consecutive calls to commutative functions

can then be executed in parallel, but mutual exclusion locks may be required. By identify-

ing commutative functions in user code, this approach helps to remove more unnecessary

dependences, which can lead to greater parallelism being discovered. However, as with

other static analyses this approach suffers from a lack of precision. Also, the costs of

locks required to execute commutative functions in parallel may wipe out any potential

performance gains from parallelisation.

Some of the speculative task-level parallelism uncovered by Embla 2 can be exploited with

thread-level speculation (TLS) (e.g. [87]), although we have observed this is not needed

for the Cilk test suite programs. One important factor affecting the performance of TLS

is selecting good candidate threads for speculation, as frequent rollbacks would offset any

gains in parallelism [54]. We believe that Embla 2 can be used to identify good candidates,

as it allows us to look at the frequencies at which potential dependences materialise.

As to the use of Markov chains to model control flow, Ramalingam [75] used Markov chains

constructed from Control Flow Graphs with edge probabilities to perform probabilistic

data flow analysis. Mehofer and Scholz [56] extended this to make probabilities for each

edge conditional on the previous edge taken. This same extension may be applied to our

probabilistic model for estimating task granularity to improve its accuracy.

4.6 Conclusions

This chapter has presented Embla 2, a tool designed to aid program parallelisation by

estimating and locating potential parallelism in programs as well as pinpointing bottle-

necks. It works by profiling dependences and mapping them back to program source. The

underlying model of parallelism treats each function call as a spawnable task, which is

synchronised on as late as dependences allow. Variants of this model allow us to esti-

mate the potential benefits of parallel for-loops and optimisations such as spawn hoisting,

parallel reduction operations and thread-level data dependence and control speculation.

We have shown that Embla 2 is able to discover all of the plentiful declared parallelism

in most example Cilk programs, and even to find parallelism in places not explicitly par-

allelised. Having run the same analyses over benchmark programs from the SPEC CPU
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2000 and MiBench suites, we observed that most of them do not exhibit the same amount

of task-level parallelism as the Cilk examples. This suggests that most general-purpose

programs tend to have little potential parallelism which is exploitable by spawning func-

tion calls and loops. However, critical paths output by Embla 2 can help the programmer

locate parallelism bottlenecks, which when refactored may greatly improve the parallelism

of a program. This will be explored in Chapter 6.

Our model of nested function-level parallelism may not be the only practical task model.

For instance, it is possible to remove the constraint that tasks must be properly nested,

by allowing tasks to be synchronised anywhere within the program rather than only in

the parent task. Loss of program modularity and clarity may result, which is why not

many languages allow this. It would nevertheless be of interest to estimate how much

parallelism is gained by removing this constraint.

One future enhancement to Embla 2 is the addition of thread-spawning overheads to our

cost model. This would give us an even more realistic estimate of potential speed-up.

Related to this is the ability to aggregate small threads into a bigger thread in order to

save overheads.

Embla 2 forms the first major component of our interactive parallelisation framework. In

the following chapters we describe the rest of the framework and demonstrate how they

combine to help programmers parallelising legacy sequential applications using parallel

programming environments like Cilk.



Chapter 5

Completing the production

line—automating task-level

parallelisation

Following on from the dependence profiling that Embla 2 provides, our next step is to

derive a parallelisation which, in an ideal world, would have the same speed-up as the

parallelism estimate Embla 2 gives. By construction the Nested Function-level Fork-join

Parallelism model that Embla 2 uses is very similar to the task models of programming

languages like Cilk(++)[11, 51], TBB[78] and others. This chapter looks at how se-

quential programs can be transformed into parallel programs in these languages using

profiled dependences. We introduce the second component of our interactive parallelisa-

tion tool-chain, named Woolifier. Woolifier implements algorithms to convert sequential

C programs into Wool (Section 5.1) and Cilk/Cilk++ (Section 5.2), along with useful ex-

tensions (Sections 5.3 and 5.4). We evaluate our Woolifer implementation in Section 5.5.

5.1 Wool

Wool[25] is a macro-based task library for C designed by Karl-Filip Faxén at the Swedish

Institute of Computer Science. Tasks are essentially spawnable functions, and are defined

and used with the following macros.

• TASK n(return type, f, arg1 type, arg1 name, ..., argn type, argn name) cre-

ates the signature of a task named f . The body of the task definition is the same

as for a normal function.

• SPAWN(f, arg1, ..., argn) spawns a task instance of f . Code following the SPAWN

can be run while the task is still being executed.

65



66 5.1. WOOL

int fib(int n) {

if (n<2) {

return n;

} else {

int x,y;

x = fib(n-1);

y = fib(n-2);

return x+y;

}

}

(a) Original function

TASK_1(int, fib, int, n) {

if (n<2) {

return n;

} else {

int x,y;

SPAWN(fib, n-1);

y = CALL(fib, n-2);

x = SYNC(fib);

return x+y;

}

}

(b) In Wool

Figure 5.1: A sequential Fibonacci function and its parallelisation in Wool.

• SYNC(f) joins on the most recently spawned task, which must be an instance of f

(Parameter f is redundant in näıve semantics but enables more optimisation). Code

following the SYNC cannot be run until execution of the task has been completed.

SYNC returns the (possibly void) value returned by the task.

• CALL(f, arg1, ..., argn) calls task f synchronously just as in sequential code. It

returns only when execution of the task has been completed. It is semantically

equivalent to a SPAWN followed immediately by a SYNC but is slightly faster in the

implementation. The use of CALL is sometimes known as task inlining, as the practice

of executing a task in the same thread to avoid spawning overheads is analogous to

the practice of inlining a function to avoid function-call overheads.

• LOOP BODY n(loop name, body size, idx type, idx name, arg1 type, arg1 name,

..., argn type, argn name) defines the loop body of a parallel for-loop (much like

how TASK n defines a task), indexed by the variable idx name. Loop bodies must

be defined like stand-alone functions in Wool. body size is provided to Wool as an

indicator of the likely granularity of each loop iteration, and is used to derive the

value of the chunk size parameter in Algorithm 1.

• FOR(loop name, idxbegin, idxend, arg1, ..., argn) executes a parallel for-loop of

the given LOOP BODY n (just as SPAWN spawns a task instance), with one iteration

for each integral value of idx in the range [idxbegin , idxend ).

Figure 5.1 shows a simple example of a Fibonacci program that uses Wool macros.
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We can see that Wool’s task model closely matches that of Embla 2. Similar to Embla 2’s

baseline model, only function calls can be spawned. As in Embla 2, Wool enforces nested1

parallelism—all tasks spawned by each function must be synchronised on before the func-

tion may return, or else errors may result. Wool also allows the spawning of loop bodies

for parallel for-loops, mirroring Embla 2’s “Spawning loop iterations” model. In addition,

both Embla 2 and Wool assume no inter-task communication, except at task spawning

and joining2.

Nevertheless, there are minor differences which must be taken into account when Woo-

lifying a program with Embla 2’s results.

The first is the restrictive nature of SYNC, which can only synchronise on the last spawned

task. This means that SYNCs must be ordered so that tasks are synchronised on in a

last-in-first-out order (in addition to the above requirement for all tasks spawned by each

function to be synchronised on before the function may return), and that at run-time there

must be as many SYNCs as there are SPAWNs. While such a design lends itself to efficient

implementation, it could be difficult to program, as the number of spawns at run-time

may be variable, and care must be taken to ensure that the same number of SYNCs are

called to avoid undefined behaviour. Embla 2, on the other hand, allows spawned tasks

to be synchronised on in any order.

Thus to accommodate Embla 2’s more flexible model, we extended Wool to allow arbitrary

synchronisation orders. This is done by introducing the concept of handles, which are

simply linked lists of spawned tasks. A handle is usually defined at the beginning of a

function, and every SPAWN must now be associated with a handle. SYNCs now also require

a handle, and simply traverses the handle’s linked list of spawned tasks, synchronising on

each of them in turn. As a result, each SYNC may synchronise on zero, one or multiple

tasks. A necessary consequence of this is that SYNCs no longer return the result of the

task. Instead, destinations must be specified when spawning non-void tasks. Figure 5.2

shows some example usage of handles.

Increased flexibility might come at a cost to performance. The original Wool program

uses a simple LIFO task queue—SPAWNs push tasks on to the queue and SYNCs pop from

it. In our extension, synchronisation is no longer guaranteed to be on the task at the top

of the queue and so can no longer pop from it. Instead, space on the task queue can only

be reclaimed when a task returns—the programmer is required to ensure that all tasks

spawned by a function have been synchronised on before returning. However, empirical

evidence shows that the performance cost is negligible—for Woolifications of serial elisions

1With respect to the dynamic call tree, the execution of a task must be nested within the execution

of its parent.
2One can always implement inter-task communication in Wool with concurrent data structures, but

this is not expected to play a big part in most Wool programs, where tasks are generally expected to be

isolated.
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TASK_1 (long, primal_net_simplex, network_t *, net) {

HANDLE (handle_1);

HANDLE (handle_0);

...

while (!(opt != 0L)) {

SYNC (update_tree, handle_1);

if (bea = CALL (primal_bea_mpp, m, arcs, stop_arcs, &red_cost_of_bea)) {

...

iminus = CALL (primal_iminus, &delta, &xchange, iplus, jplus, &w);

if (!iminus) {

...

if (delta != 0L)

VOID_SPAWN (primal_update_flow, handle_0, iplus, jplus, w);

} else {

...

VOID_SPAWN (update_tree, handle_1, !xchange,

new_orientation, delta, new_flow, iplus, jplus,

iminus, jminus, w, bea, red_cost_of_bea,

((flow_t) (net->feas_tol)));

...

if (!((*iterations - 1) % 20)) {

SYNC (update_tree, handle_1);

*checksum += CALL (refresh_potential, net);

...

}

}

} else {

opt = (1);

}

}

SYNC (update_tree, handle_1);

*checksum += CALL (refresh_potential, net);

CALL (primal_feasible, net);

CALL (dual_feasible, net);

SYNC (primal_update_flow, handle_0);

return 0;

}

Figure 5.2: Extract from an example Woolified function from 181.mcf from SPECint 2000,

illustrating the use of handles (highlighted in bold)
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of Cilk’s example programs, the difference in performance between our extended version

of Wool and the original is insignificant.

Another minor difference is with the restrictions Wool places on parallel for-loops, in

that it must be a natural loop with an incrementable loop index (integer or pointer)

and a range that is known at the start of the loop. This is required due to its divide-

and-conquer implementation (see Algorithm 1), which is more efficient generally than

sequentially spawning each iteration.

Algorithm 1 Wool’s Divide-and-conquer Algorithm for executing parallel for-loops

procedure Parallel forall(loopbody, start, finish, chunk size)

if finish− start ≤ chunk size then

for i = start to finish− 1 do

loopbody(i)

end for

else

mid← start + ⌊finish−start

2
⌋

spawn Parallel forall(loopbody, mid, finish, chunk size)

call Parallel forall(loopbody, start, mid, chunk size)

sync

end if

end procedure

This restriction, however, necessarily precludes parallel loops where the range is unknown

at the start of the loop. A classic example is a loop that updates every element in a

linked list. Embla 2’s model allows this kind of DOALL parallelism, but such a loop

cannot be implemented with Wool’s parallel for-all loops. Our initial solution is to revert

to spawning the loop body for every iteration. The drawback of this approach is firstly

that spawns and joins are sequentialised, leading to O(n) overhead time requirement

rather than O(log(n)) (for unlimited processors). Secondly, it is more difficult to coalesce

consecutive loop iterations for fine-grained loop bodies, meaning that if the loop body is

small parallelising it could degrade rather than improve performance. Later (Section 5.4)

we describe how granularity analysis can be used to filter out such loops.

Finally neither Wool nor Cilk allows library functions to be spawned directly. However,

this can be easily solved by providing a task library of spawnable wrappers. Library

functions that hold internal data structures though may need to be modified to ensure

thread safety (e.g. with a global lock), if they are not already thread-safe.

Once these differences have been resolved, how can a C program be transformed into a

Wool program, or Woolified? The algorithms for transforming function calls and loops

are described in Algorithms 2 and 3 respectively. The first algorithm utilises a subroutine
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Algorithm 2 Algorithm for Woolifying function calls

procedure Insert syncs(line, spawn)

for all unvisited successors of line, s do

if s is either dependent on spawn or is an exit then

add SYNC(spawn) before s if one is not already there

else

Insert syncs(s, spawn)

end if

end for

end procedure

procedure Spawn tasks(program)

for all function calls in program, c do

if all successors of c are either dependent on c or exits then

replace c with synchronous call, CALL(c)

else

replace c with asynchronous call, SPAWN(c)

Insert syncs(c, c)

end if

end for

end procedure

Algorithm 3 Algorithm for Woolifying loops

procedure Parallelise loops(program)

for all loops identified in program, loop do

guard←guard of loop

body ←body of loop

if guard is not dependent on body and body is not dependent on itself then

if loop is canonical then

outline body into LOOP BODY n construct

replace site of entire loop with FOR construct

else

outline body into a TASK, f

replace site of body with an asynchronous call, SPAWN(f)

add SYNC(f) after the loop

end if

end if

end for

end procedure
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for placing joins at a synchronisation frontier, the set of latest points in the program

where the joins must occur in order for dependences to be respected. Formally, consider

the Control Flow Graph for a function, CFG = (V, Ec), where each node v ∈ V is a

source line in the function, and Ec ⊆ V ×V represents the possible flows of control in the

function. The successor function succ : V → P(V ) is defined as v ∈ succ(u) iff (u, v) ∈ Ec .

Consider also a dependence graph DG = (V, Ed), where (u, v) ∈ Ed iff v depends on u.

Then a synchronisation frontier of a node u is defined as the set SF (u) ⊆ V such that

v ∈ SF (u) iff (i) either (u, v) ∈ Ed or v is an exit (i.e. succ(v) = ∅), and (ii) there exists a

path P from u to v in CFG such that for all nodes w in P except u and v, (u, w) /∈ Ed.

In practice some details need to be considered when inserting SYNCs at the correct place,

as we are working on the line-by-line level. For instance when the line before which we

need to insert a SYNC is a loop header, we need to consider whether the SPAWN is before or

inside the loop. If it is before the loop, then the SYNC should be placed before the entire

loop; if it is inside the loop, then the SYNC should be placed inside the loop body.

Algorithm 3 describes how to Woolify a loop. The main requirement for a parallel loop is

that there is no inter-iteration (or loop-carried) dependence. The loop header (the guard)

can be dependent on itself, and the loop body can be dependent on the guard, but the

guard cannot be dependent on the loop body. However, as mentioned, we need to check

if the loop is canonical, i.e. of the form:

for (i=... ; i < 〈loop-invariant expression〉; i++) {...}

This ensures that the loop satisfies the requirement for Wool to run it as a DOALL loop.

Otherwise we must spawn each iteration individually.

Note that while our implementation uses profiled dependences, the algorithms do not

depend on how the dependences are derived. Thus, the dependences could equally have

been statically determined. As we have said earlier, while static analysis generally gives

a safe estimate of all potential dependences, it tends to be too conservative and deduce

dependences that rarely or never arise in practice. Embla 2 on the other hand finds

dependences dynamically, but dependences found may not include all dependences that

could arise in any execution. In such a case the programmer should check that the

parallelisations are indeed safe, or else a safety net such as a run-time dependence check

and rollback mechanism is required, such as the ones used in thread-level speculation

schemes [80, 88].

5.2 Cilk and Cilk++

Cilk [11] is a language extension of C that is very much similar to Wool in its task

model. The main differences are mostly syntactical: a task is defined by placing the cilk
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cilk int fib(int n) {

if (n<2) {

return n;

} else {

int x,y;

x = spawn fib(n-1);

y = spawn fib(n-2);

sync;

return x+y;

}

}

(a) Cilk

int fib(int n) {

if (n<2) {

return n;

} else {

int x,y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

}

(b) Cilk++

Figure 5.3: Parallelisation of Fibonacci function in Cilk and Cilk++.

keyword in front of a function definition, and SPAWN(f, arg1, ..., argn) becomes spawn

f(arg1, ..., argn). All tasks must be spawned—even if they must be synchronised on

immediately after. Cilk does not have primitives for DOALL loops.

Cilk++ [51] is a commercialisation of Cilk by Leiserson which is now owned by Intel.

Apart from minor syntactic changes, and the fact that tasks do not now have to be

spawned, Cilk++ introduces support for DOALL loops, as well as hyperobjects, which

we will discuss later. Figure 5.3 shows example programs in Cilk and Cilk++.

One of the more important differences between Wool and Cilk/Cilk++ is in how tasks

are synchronised. In Cilk/Cilk++ a sync will synchronise on all tasks spawned by the

current task. The advantages of such a design decision are its simplicity for programmers

and that it lends itself well to an efficient implementation. In terms of expressiveness,

however, it does not give the programmer control over synchronising on individual tasks

that Wool gives. There is also an implicit sync before each function return.

The insertion of synchronisation points must therefore now take into account all tasks

spawned in the same function. As a result, a synchronisation point placed at one spawn’s

synchronisation necessarily but prematurely synchronises on all other tasks that have yet

to be synchronised. This on the other hand might make insertion of synchronisation points

later on unnecessary. To find the optimal synchronisation points, given spawn points3,

we define recursively the set of open spawn points—lines at which tasks may have been

spawned that may not yet be synchronised on:

3Not spawning certain tasks might allow other tasks to be synchronised later and lead to better

performance. This is however beyond the scope of the thesis.
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1: int f(void) {
2: int i, x=0, y=0, z=0;
3: for (i=0; i<10; i++) {
4: x = g(y);
5: y = g(z);
6: z = g(x);
7: }
8: return x+y+z;
9: }

q

q

q

q

q

(a) Dependences between lines

1: int f(void) {
2: int i, x=0, y=0, z=0;
3: for (i=0; i<10; i++) {
4: cilk_sync; x = cilk_spawn g(y);
5: y = cilk_spawn g(z);
6: cilk_sync; z = cilk_spawn g(x);
7: }
8: return x+y+z;
9: }

(b) Potential (non-optimum) placement of cilk syncs

Figure 5.4: Example of a program where non-greedy Cilkification might not terminate

open spawns(n) =











is spawn(n) if n is preceded by a cilk sync

is spawn(n) ∪
⋃

p∈pred(n)

open spawns(p) otherwise

is spawn(n) =







{n} if n contains a cilk spawn

∅ otherwise

The new algorithm, which uses a forward data-flow analysis to insert synchronisations, is

described in Algorithm 4. It is an iterative algorithm, but is greedy in the sense that once

a cilk sync is inserted it is not removed later even if rendered redundant by another

cilk sync. One could modify the algorithm to permit the removal of cilk syncs if

they become redundant. However, doing this näıvely can cause non-termination in the

Cilkification algorithm. Consider the program in Figure 5.4(a). Each of the calls to g can

be spawned, but there is no optimum correct placement of cilk syncs, in that wherever

the cilk syncs are placed, there will be one before a line n that does not depend on any

of the lines in
⋃

p∈pred(n)

open spawns(p) (such as the cilk sync on line 4 in Figure 5.4(b)).

A Cilkification algorithm that permits the removal of cilk syncs when they become sub-

optimal may not terminate in this case, unless a mechanism is included to detect infinite

looping and stop the algorithm in pathological cases.

5.3 Reduction operations

We now look at how we can extend our Woolification algorithm to reflect optimisation

models described in the last chapter, beginning with reduction operations. Recall that a

reduction variable is one that acts as an accumulator, i.e. its value can only be used as

an argument to an associative operator, the result of which is written to the accumulator
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Algorithm 4 Algorithm for Cilkifying function calls

procedure Insert syncs(spawns)

for all lines in function, line do

open spawns[line]← ∅

end for

syncs← ∅

worklist← spawns

while worklist is non-empty do

line← remove top of worklist

if line /∈ syncs then

if line is dependent on any line in
⋃

p∈pred(line)

open spawns[p] then

insert a cilk sync before line

syncs← syncs ∪ {line}

open spawns[line]← is spawn(line)

else

open spawns[line]← is spawn(line) ∪
⋃

p∈pred(line)

open spawns[p]

end if

if open spawns[line] has changed then

worklist← worklist ∪ succ(line)

end if

end if

end while

for all lines in syncs, line do

add cilk sync before line

end for

end procedure

procedure Spawn tasks(program)

spawns← ∅

for all function calls in program, c do

if not all successors of c are either dependent on c or exits then

replace c with asynchronous call, cilk spawn c

spawns← spawns ∪ {c}

end if

end for

Insert syncs(spawns)

end procedure
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itself. More formally, for a variable x to qualify as a reduction variable there must exist a

monoid (T,⊕, e), where T is a set, ⊕ is an associative binary operation⊕ : T×T → T , and

e is an identity element with respect to ⊕. x ∈ T and is only used in this form: x← x⊕E,

where E is an expression not containing x. In our implementation T is typically the set

of possible values for numerical types, ⊕ is addition, subtraction, multiplication or a

primitive bitwise or logical operator, or the assignment reduction operation defined as

x⊕ y ≡ y.

In fact, the assignment reduction operation on its own, however, does not have an identity

element e such that ∀x.x ⊕ e = x. To address this we must alter the monoid to (T ∪

{⊥},⊕,⊥), where ⊕ is now defined as:

x⊕ y =







x if y = ⊥

y otherwise

If the only dependences between iterations of a loop are on reduction variables, then

the loop can still be parallelised given a special mechanism to safely accumulate these

reduction variables. This is actually quite straightforward given the divide-and-conquer

approach used by Cilk++ and Wool to execute DOALL loops. When we split the range

into half, we pass the current value of the reduction variable into the left child and pass

the identity value into the right child. Each child then updates its own copy and returns

the final value. When we join the two children, we simply apply the reduction operation

to the two children’s final values and return the result.

Cilk++ provides this functionality in the form of reducer hyperobjects [29]—C++ classes

with overloaded operators that allow them to be used as normal variables but at the same

time guarantee correct parallel execution. These reducers work across task spawns and

synchronisations, not just parallel for-loops. For the sake of simplicity, however, in Wool

we introduce reduction variables for use with for-loops only.

Here we describe how we extended Wool to support the parallelisation of reduction oper-

ations in a way similar to Cilk++’s hyperobjects. As Wool is based on C macros rather

than C++, we did not have overloading or template functionality available to us, and

thus the syntax we introduced was more clumsy, but the underlying mechanism is simi-

lar. Reducer definitions are introduced with a REDTYPEDEF n macro, which defines a new

struct type containing all the reduction variables a loop contains, as well as identity and

reduction functions for this new type. Algorithm 1 is now extended to deal with reducers

in Algorithm 5. The programmer must also copy initial values into the reducer before

the loop and copy the final values back out afterwards, using the COPYIN and COPYOUT

macros respectively.

After this was implemented in Wool, we extended our Woolification algorithm to allow

parallelisation of for-loops if the only loop-carried dependences are on reduction variables.
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for( arc = net->arcs; arc != (arc_t *)stop; arc++ ) {

if( arc->flow ) {

if( !(arc->tail->number < 0 && arc->head->number > 0) ) {

if( !arc->tail->number ) {

operational_cost += (arc->cost - net->bigM);

fleet++;

} else

operational_cost += arc->cost;

}

}

}

Figure 5.5: Loop with reduction variables from 181.mcf

REDTYPEDEF_2(redtype_14,

long, fleet, PLUS,

cost_t, operational_cost, PLUS);

REDLOOP_BODY_1(OUT_14, SMALL_BODY, redtype_14, arc_t*, arc, network_t*, net) {

if (arc->flow) {

if (!(arc->tail->number < 0 && arc->head->number > 0)) {

if (!arc->tail->number) {

DEREF(operational_cost) += (arc->cost - net->bigM);

DEREF(fleet) += 1;

} else {

DEREF(operational_cost) += arc->cost;

}

}

}

}

...

redtype_14 OUT_14_reducer;

COPYIN(redtype_14, &OUT_14_reducer, fleet, operational_cost);

FOR(OUT_14, &OUT_14_reducer, net->arcs, (arc_t *) stop, net);

COPYOUT(redtype_14, &OUT_14_reducer, &fleet, &operational_cost);

Figure 5.6: Parallelisation of Figure 5.5 in Wool
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Algorithm 5 Extending Wool’s parallel for-loops to deal with reductions (reducer is

passed by reference)

procedure Par forall with reduce(loopbody, reducer, start, finish, chunk size)

if finish− start ≤ chunk size then

for i = start to finish− 1 do

loopbody(i, reducer)

end for

else

reducer′ ← identity element

mid← start + ⌊finish−start

2
⌋

spawn Par forall with reduce(loopbody, reducer′, mid, finish, chunk size)

call Par forall with reduce(loopbody, reducer, start, mid, chunk size)

sync

reducer← reduce(reducer, reducer′)

end if

end procedure

As mentioned in Chapter 4, Embla 2 can mark out such dependences. Figures 5.6 and 5.7

show the parallelisation in Cilk++ and Wool with reducers (with manual renaming and

formatting to improve readability) of an example loop from 181.mcf in the SPEC 2000

integer benchmarks, shown in Figure 5.5.

5.4 Granularity filtering

All implementations of task-parallel libraries or languages have overheads when spawning

and synchronising on a task, and as a result tasks that are too fine-grained will cause

performance to degrade rather than improve as speed-up due to parallel execution is

eclipsed by overheads. To ensure optimal performance we therefore need to identify and

inline fine-grained tasks, even though dependences might allow them to be spawned in

our original Woolification/Cilkification algorithms. In the previous chapter we have seen

how Embla 2’s parallelism estimate changes with increasing spawn threshold. We now

apply the same threshold to our Woolification algorithm—i.e. only statically spawn a task

if the smaller of its mean length and mean continuation length (which we shall call mean

task size) is above a certain threshold.

There are drawbacks to simply only using a granularity threshold. In particular we

envisage two common scenarios:

1. Task sizes vary over the course of the program’s execution. As it is not necessarily

true that performance gain/loss is proportional to task size, the mean task size
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inline void OUT_14(network_t *net,arc_t *arc,

cilk::reducer_opadd<long>&fleet,

cilk::reducer_opadd<cost_t> &operational_cost) {

if (arc->flow) {

if (!(arc->tail->number < 0 && arc->head->number > 0)) {

if (!arc->tail->number) {

operational_cost += (arc->cost - net->bigM);

fleet += 1;

} else {

operational_cost += arc->cost;

}

}

}

}

...

cilk::reducer_opadd<long> fleet_red;

cilk::reducer_opadd<cost_t> operational_cost_red;

cilk_for (arc_t *arc = (net->arcs); arc != ((arc_t *)stop); arc++) {

OUT_14(net,arc,fleet_red,operational_cost_red);

}

operational_cost += operational_cost_red.get_value();

fleet += fleet_red.get_value();

Figure 5.7: Parallelisation of Figure 5.5 in Cilk++

may not be the best representative of whether the overall effect of spawning a task

would be beneficial. A common case of wide task size variance is with recursive

functions, e.g. implementations of divide-and-conquer algorithms. To truly decide

the profitability of spawning a task it may be necessary to run the programs with

and without inlining and compare run-times. A better alternative is to predict at

run-time whether a certain instance of a task should be spawned or inlined. This

argues for an extension of Wool in the form of SPAWNIF(f, condition, arg1, ...,

argn) that only spawns if condition evaluates to true, and inlines otherwise. For

quicksort, condition could be that the number of elements is greater than 100. The

condition is provided by the programmer, but it would be straightforward to extend

a profiler to provide assistance.

2. Task sizes may also vary for different inputs. If the training data set supplied to

Embla 2 is too small, it might lead to certain tasks being deemed too fine-grained

by our Woolification algorithm, when normal data sets would ensure that the tasks
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#include "cilk.h"

#include <stdlib.h>

void f (int n)

{

int i;

int y;

for (i = 0; i < n; i++) {

y |= i;

}

}

int cilk_main(int argc, char* argv[])

{

int x = atoi(argv[1]);

long long int r = 0x100000000 / x;

int i;

for (i=0; i<r; i++) {

cilk_spawn f(x);

f(x);

cilk_sync;

}

return 0;

}

Figure 5.8: Benchmark program to determine suitable spawn threshold in Cilk++ syntax.

The programs for Cilk and Wool are similar.

are sufficiently coarse-grained. Again the SPAWNIF construct could be useful in this

instance.

Nevertheless, we believe that for most cases mean task size is a good indicator of potential

performance gain/loss.

5.4.1 Getting the right threshold

To begin with, we needed to determine how big the threshold should be. If it is too small,

then overheads of smaller tasks will hinder performance; if it is too large, then oppor-

tunities for parallelism may be unnecessarily lost. We developed a benchmark program,

shown in Figure 5.8, that can help us with this. In this program, the function f(n) is a
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(c) Wool on SPARC

Figure 5.9: Normalised running times of benchmark program as task size changes

computation-intensive task, the length of which is set by a command line argument. This

program repeatedly forks and joins two identical instances of f(n). By contrasting the

running times of this program when run on one and two processors we can find out the

point at which it is more beneficial to run tasks in parallel.

Figure 5.9 shows the running times of our benchmark program on three different language-

architecture combinations, all normalised to seq, the running times when the program is

run sequentially without spawning any tasks. The p1 line shows the running times when

the program does spawn and synchronise on tasks but is run on a single processor; the

p2 line shows the running times when the program spawns and synchronises on tasks and

is run on two processors. The x64 (64-bit x86) machine contains an Intel Core 2 Quad

processor clocked at 2.40GHz, running Linux kernel version 2.6.23. The SPARC machine

is a Sun SPARC Enterprise T5140 Server with 128 hardware threads, running Solaris 10

8/07.

From these results we can draw a number of observations.
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• For very small task sizes p1 is significantly slower than seq, as the overheads of

spawning a task dominate over the cost of executing the task body itself. For tasks

larger than 100 x86 instructions the difference between the two becomes insignifi-

cant.

• For small task sizes p2 is much slower than p1, showing that the overheads of stealing

and later synchronising on a task are even greater than those of spawning.

• There are two humps on the p2 curve for Cilk++ on x64, which is strange as it

seems that increasing granularity may in fact degrade performance. We have not

been able to examine the Cilk++ internals in detail for us to attribute this anomaly.

• The most important result to take from this is where the p2 line crosses the seq/p1

lines, as that is the point at which spawning a task becomes beneficial. For Wool

on x64, that happens at around 1500 x86 instructions; for Wool on SPARC, it is

around 800 x86 instructions. This suggests a lower communication-to-computation

cost ratio for the SPARC. For Cilk++ on x64, however, the crossing point is much

higher, suggesting much higher spawning and stealing overheads for Cilk++.

Our observations show that the thresholds are highly dependent on language implemen-

tation as well as architecture. It also demonstrates the importance of not spawning tasks

that are too small, as they can seriously degrade performance.

5.4.2 Loop granularity

Recall that DOALL loops are implemented in Wool and Cilk++ with divide-and-conquer,

as seen in Algorithm 1. This means that the chunk size parameter can still be set

appropriately to combine short loop iterations into more coarse-grained tasks. We have

seen just now how to find a task threshold—the minimum mean number of instructions

in a task for its parallelisation to be profitable. We can use this threshold to derive

granularity simply by:

chunk size =
threshold

loop body length

This will ensure that the mean length of each task spawned for this loop is greater than

the threshold.

5.5 Evaluation

We have implemented our Woolification and Cilkification algorithms in Woolifier, a source-

to-source transformer based on the ROSE framework [82]. We now present the results of
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Figure 5.10: Actual speed-ups of Woolified programs from SPEC and MiBench compared

with Embla 2’s estimates

Woolifying some benchmark programs, which we compare with the parallelism estimates

given by Embla 2. Each program was profiled with a training input, and the results were

used by our Woolification algorithm to convert the C program into Wool, using Wool’s

support for parallel tasks and DOALL loops with reduction operations. The granularity

filter was set at 1500 x86 instructions. Actual speed-ups were obtained by timing the

sequential and parallel programs on a Sun SPARC Enterprise T5140 Server with 128

hardware threads, running Solaris 10 8/07. This machine consists of two UltraSPARC

T2 processors, each with eight cores running on a clock speed of 1.2 GHz. Each core has

two instruction pipelines, but supports eight threads, which time-share the two pipelines.

This means that effectively there are around 32 cores4. To the operating system, however,

the 128 threads appear as individual processors. There is a 24 KB level-1 cache for each

core, and a 4 MB level-2 cache shared by all cores on a processor. Each speed-up figure

is calculated using the mean execution time over three runs. The execution times have a

standard deviation of around 5% on average.

From Figures 5.10 and 5.11, which show the actual speed-ups of various programs com-

pared with Embla 2’s estimates, we make the following observations:

• As expected, there is a correlation between Embla 2’s estimates and actual speed-

ups. The maximum speed-up factor was around 25 (achieved by heat), which is

reasonable given the effective number of cores in the system is around 32.

• Not only so, but we notice also that speed-up factors fall after reaching a peak

as the number of workers is increased. On closer inspection, we observe that the

4Nevertheless, if instructions from the different threads on the same core can be perfectly scheduled

in between each other’s memory stalls, then a speed-up of above 32 is possible.
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Figure 5.11: Actual speed-ups of Woolified programs from Cilk’s example distribution

compared with Embla 2’s estimates

less parallelism there is in a program, the lower the number of workers at which

performance peaks. We believe it is partly because of competition for execution

time between threads on the same core. When there is little parallelism, only a few

threads are doing useful work, while most others are busy looking for non-existent

work to steal. These non-working threads take up valuable execution time on the

core that could otherwise have been used by the working threads.

• Sometimes actual speed-up factors and Embla 2’s parallelism estimates do not corre-

late as well as one would expect. This is because smaller inputs are used for Embla 2

than for timing Woolified programs. For programs such as plu, where the amount

of parallelism increases with input size, figures for actual speed-up can exceed Em-

bla 2’s estimates. Conversely, for the susan benchmarks, the amount of parallelism

actually falls as input size increases, which explains why the actual speed-up figures

are not as high as Embla 2’s estimates would suggest. A potential enhancement

to our work here would run Embla 2 on a program using inputs of various sizes,

in order to obtain a better prediction of actual speed-up for the program given an

input of a certain size.

• For short-running programs where execution times were short (under one second),

such as stringsearch and fib, performance vastly degrades as the number of proces-

sors is increased, as worker initialisation costs, which increase with the number of

processors, dominate the execution times.
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5.6 Future Work

5.6.1 Spawn hoisting

Another optimisation that can be applied to our Woolification algorithm is spawn hoisting.

(As there was little change in parallelism found by Embla 2 for spawn hoisting, this has

not been implemented.) Recall spawn hoisting is a type of code motion where we move

a task spawn statement to as early a point as possible in order to increase potential

parallelism. It can be seen as the reverse of synchronisation-point insertion, described

earlier, which tries to insert a synchronisation point at as late a point as possible. So here

instead of searching forward for lines that depend on the spawned task, we now search

backwards for lines on which the spawned task depend.

There is one significant difference, however. In our synchronisation-point insertion algo-

rithm there needs not be a one-to-one run-time correspondence between synchronisation

and spawning. We are free to synchronise on the same task at multiple program points

because as long as the task is synchronised on at least once the semantics is preserved—

synchronising on a task that either has not been spawned or has already been synchronised

on is semantically equivalent to a no-op. Similarly, multiple tasks can be synchronised on

at one synchronisation point.

With spawn hoisting, however, a one-to-one run-time correspondence between the hoisted

spawn and the original call site is essential5. In other words, the hoisted task should only

be spawned if and only if it would necessarily have been called at the original site, and

the number of times the hoisted task would be spawned is the same as the number of

times it would have been called at the original site. This condition is sometimes known

as execution equivalence [54].

5.6.2 Thread-level speculation

Another potential but unimplemented extension is to add support for thread-level spec-

ulation to Wool. This would be useful for two reasons. Firstly parallelisations based on

profiling are input-dependent and therefore are not guaranteed to be safe for all inputs.

Thread-level speculation is one way to guarantee safety. Secondly some dependences may

occur so infrequently during execution that it may be beneficial to obtain greater paral-

lelism by speculatively executing a task, only rolling back the task when the dependence

actually materialises. As noted in Chapter 2, while software-based TLS is prohibitively

slow, hardware-based TLS is still not available in current processors. One compromise is

to have a system that tracks memory accesses but simply exits with an error instead of

5In the absence of speculation.
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rolling back the task whenever a dependence violation is observed. This alerts the pro-

grammer to a concurrency bug, which can then be fixed in the program (e.g. by rerunning

the program under Embla 2 with the offending data input).

5.7 Related Work

Work on automatic parallelisation has been summarised in Chapter 2. Most however only

look at parallelising DOALL loops and not function calls.

Podobas et al. [71] present a comparison of task-creation and synchronisation overheads

of task libraries including Wool, Cilk++ and various OpenMP implementations, using

a number of microbenchmarks and applications. In this study, Wool generally has the

lowest overheads, with an overhead of 19 instructions per task for inlined tasks, and 2200

instructions per task for stolen tasks on two cores. It notes also, however, that task

creation and synchronisation overheads increase as the number of cores is increased.

There has also been work to relieve the programmer or profiler from setting the value of

chunk size in Algorithm 1. Tzannes et al. [94] have implemented a scheme that decides

at run-time whether to further sub-divide and spawn the iteration range based on the

current status of the task queue. When run on a processor prototype, their Lazy Binary

Splitting scheme outperforms the static profile-directed scheme by an average of around

20%.

Another approach to identifying unprofitable spawns is auto-tuning. The PetaBricks

system [4] compares the relative performance of using different algorithms and parameters

at each level of data granularity, producing a program that switches between alternative

algorithms at run-time based on certain parameters to achieve better performance. This

approach can be applied here, where we use auto-tuning to set the chunk size parameter

as well as the condition parameter in the SPAWNIF construct suggested in Section 5.4.

5.8 Conclusions

This chapter has described the Woolification process as implemented in our Woolifier,

where we use dependence information to transform a sequential program into a Wool

program that maximises parallelism. We described the steps needed to reconcile Wool’s

task model with that of Embla 2’s, and the algorithms for C-to-Wool and C-to-Cilk trans-

formations, including those for filtering tasks that are too fine-grained. Our evaluations

show that our automatically parallelised programs achieve reasonable speed-ups. In most

cases Embla 2’s estimates are never attained, but this is expected as Embla 2’s model as-

sumes zero overheads in the task library, instant memory access and an unlimited number
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of processors. The large gap in parallelism between Cilk’s example programs and most

SPEC and MiBench benchmark programs in Chapter 4 is mirrored in the performance

figures here. We therefore require more than automatic parallelisation in these cases. In

the following chapter we will look at how Embla 2 and our Woolifier can be used as part

of an interactive parallelisation tool-chain, which performs a best-effort parallelisation,

and focuses the programmer on the bottlenecks that require manual changes.



Chapter 6

Pushing the

boundary—demonstrating the

tool-chain for interactive

parallelisation

As we mentioned in the Introduction, a major challenge in program parallelisation is

the removal of unnecessary sequentialising artifacts in the conversion process as shown

in Figure 6.1. In the previous chapters we have looked at how we can reverse the ef-

fects of artifacts introduced by compilation, and in some specific cases, implementation

(e.g. reduction operation recognition). Our results in Chapter 4 suggest that while the

example programs from Cilk have lots of inherent task-level parallelism (the programs

were implemented with task-level parallelism in mind), most general-purpose programs

tend to have little and cannot be transformed into highly concurrent programs simply by

spawning existing function calls and loops. To address this issue, Embla 2 outputs the

critical path of each function call, allowing us to examine the bottlenecks that prevent

greater parallelism from being realised. These bottlenecks could be due to artifacts of

implementation or design, or (more rarely we believe) the inherently sequential nature

of the specification itself. Here we demonstrate the use of critical path information to

locate and characterise bottlenecks in some of the simpler examples and suggest possible

refactorings or algorithmic changes that would increase parallelism.

Specification
Design

// Algorithm
Implementation

// Program
Compilation

// Executable

Figure 6.1: Software Development Process
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Critical Path
BC
EDGF

Manual refactoring

��

Sequential Program // Embla 2
��

//

BC
GF //

Woolifier // Parallel Program

Figure 6.2: Our tool-chain for program parallelisation

Embla 2’s profiler outputs all line instantiations in each critical path, the cost of each

instantiation, and the length of the critical path itself. As the size of each Dynamic

Dependence Graph, and consequently its critical path, is proportional to the number of

line instantiations, the critical path can contain many line instantiations and be very

long. We have implemented in Embla 2 a small script that can turn this into a more

accessible, graphical representation of the critical path. We aggregate all critical paths

for each static function call in the source over program execution in a graph, giving us one

graph per function call site. In this graph, each node represents a different source line in

the function, marked with line number and its cost averaged over all instantiations of this

line. Edges between nodes denote dependences in the critical paths, each labelled with

the number of times that dependence occurs in the critical paths. This is more concise

as the number of nodes in this graph is bounded by the number of lines in the function

definition, and the number of edges by the square of that (but is normally much lower).

Figure 6.3(a) gives an example.

The graph can also be viewed as a deterministic finite state machine, with nodes being

states and edges being transitions labelled with the line number of the edge’s target1.

This finite state machine could then generate all critical paths for a static function call

in the program’s execution.

6.1 Case Studies

Figure 6.2 illustrates how the tool-chain we have developed, comprising of Embla 2 (Chap-

ter 4) and Woolifier (Chapter 5), can be used as an interactive and iterative program

parallelisation aid. We demonstrate this process with a number of case studies based on

benchmark programs, focusing on the manual refactoring performed to achieve greater

estimated and actual parallelism. The critical paths in this chapter are all generated

1Strictly speaking a deterministic finite state machine must have one transition for every state and

symbol. But our graph can be augmented to satisfy this requirement simply by adding a new rejecting

state and directing all missing transitions to this state.
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sha_driver.c:24 - Callee file = sha.c, Length = 16139892

Line 197
Cost:326

Line 198
Cost:413746

1x

38x

Line 200
Cost:3460

1x

(a) Graphical representation of

critical path for a call to the

sha stream function

191 void sha_stream(SHA_INFO *sha_info, FILE *fin)

192 {

193 int i;

194 BYTE data[BLOCK_SIZE];

195

196 sha_init(sha_info);

197 while ((i = fread(data, 1, BLOCK_SIZE, fin)) > 0) {

198 sha_update(sha_info, data, i);

199 }

200 sha_final(sha_info);

201 }

(b) Source for sha stream function in sha.c

Figure 6.3: Critical Path Analysis of sha

using an Embla 2 model that considers aggregated data and control dependences, spawns

parallel loops with support for parallel reduction operations, and a granularity filter with

the threshold set to 1500 x86 instructions, modelling Wool’s (augmented) capabilities.

6.1.1 sha

Sha, or Secure Hash Algorithm, is a program that computes a 160-bit hash value from

the contents of an input file. Even under our ‘Line-level parallelism’ model, Embla 2

reports a critical path of length of around 16 million instructions out of the total work

of around 22 million, resulting in a parallelism estimate of only 1.36. Figure 6.3 illus-

trates part of our analysis, using critical paths, into the reason for the lack of inherent

parallelism there. Most of the critical path (16,139,892 instructions) can be attributed

to a function call on line 24 in the file sha driver.c. By examining the critical path

of this line (Figure 6.3(a)), we see that the critical path consists mainly (38 times) of

dependences between instantiations of line 198 in sha.c, which have an average cost of

413,746 instructions. These correspond to calls to sha update in the program source

(Figure 6.3(b)).

Further examination of sha update reveals that the function takes the existing hash value

(the digest) and derives a new hash value which replaces it. Consequently, each call to

this function must depend on the last as it requires the digest computed by the last call.

We conclude that the serialisation of these iterations are necessary by design, suggesting

that in order to increase the amount of parallelism, the underlying algorithm must be

modified, e.g. by dividing the file into blocks and computing independent digests for each

block, which are then combined into one final digest. Actual design of an alternative
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algorithm for secure hashing is a non-trivial process, and is well beyond the scope of our

study.

6.1.2 susan.smoothing

Not all the changes required are as drastic, however. As mentioned in Section 4.4, su-

san.smoothing is a data-parallel image smoothing application. But unlike susan.corners

and susan.edges, little potential parallelism is found here even when loop iterations are

spawned. Under the Embla 2 model with aggregated data and control dependences, reduc-

tion recognition and loop-iteration spawning, the parallelism figure is 1.002 (47.6M/47.5M).

Most of the critical path can be attributed to the function call to susan smoothing, the

critical path of which is shown in Figure 6.4. From this we deduce that the main compo-

nents are the loops, in order of significance, on lines 675-679 (1.6 million iterations in the

critical path), 674-681 (108,000 iterations), 667-687 (7220 iterations) and 660-662 (225

iterations). The first three of these are in fact nested within each other.

Examination of these loops reveals that the dependences are due to several variables that

are incremented by a fixed amount during each iteration, otherwise known as induction

variables. By expressing these variables as linear functions of the index variables instead,

we break these loop-carried dependences and the critical path drops under the same model

dramatically to around 19,000, giving a parallelism estimate of 2490.

This improvement is reflected (though not on the same scale) in actual performance. The

sequential version takes over 23 seconds to transform a 3MB image, while the refactored

and Woolified program takes 0.93 second on the SPARC machine, corresponding to a

speed-up of over 25.

6.1.3 181.mcf

181.mcf is a benchmark in the SPEC 2000 integer benchmark suite that performs single-

depot vehicle scheduling. It takes as input start and end times of timetabled trips and

the cost of going from the end of one trip to the start of another. The algorithm used

is a variant of the Network Simplex algorithm. This algorithm represents the problem

as finding an optimal spanning tree in a graph. Beginning with a feasible spanning tree,

it repeatedly replaces an edge in the tree with another not in the tree to get a better

solution, until none can be found, at which point the tree is optimal. This algorithm is

inherently sequential at the top level, as each iteration simply builds on the result of the

last. But at lower levels (within each iteration) we can still make some gains with the

help of our parallelisation tool-chain.

Without modifications to the program, Embla 2 finds very little parallelism there, giving

an estimate of only 1.01. In the output of feeding the program to our parallelisation
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susan-red.c:2272 - Callee file = susan-red.c, Length = 47445037

Line 608
Cost:7

Line 626
Cost:2

1x

Line 631
Cost:2

1x

Line 632
Cost:14

1x

Line 636
Cost:1

1x

Line 637
Cost:8

1x

Line 643
Cost:12

1x

Line 647
Cost:169

1x

Line 648
Cost:1811

1x

Line 650
Cost:2

1x

Line 654
Cost:4

1x

Line 655
Cost:3

1x

Line 656
Cost:239

1x

Line 657
Cost:2

1x

Line 658
Cost:4

1x

Continued on the right...

1x

Continued from the left...

Line 659
Cost:4

1x

Line 660
Cost:4

15x

Line 666
Cost:5

1x15x

Line 661
Cost:82

225x

Line 667
Cost:5

95x

Line 750
Cost:2

1x

Line 662
Cost:5

225x

225x

95x

Line 668
Cost:1

7220x

Line 669
Cost:1

7220x

Line 670
Cost:2

7220x

Line 671
Cost:17

7220x

Line 672
Cost:9

7220x

Line 673
Cost:3

7220x

Line 674
Cost:4

7220x

Line 675
Cost:4

108300x

Line 683
Cost:3

7220x

Line 676
Cost:5

1624500x

Line 681
Cost:2

108300x

Line 684
Cost:2

7220x

Line 677
Cost:13

1624500x

108300x

Line 678
Cost:2

1624500x

Line 679
Cost:4

1624500x

1624500x
Line 687
Cost:23

7220x

7220x

Figure 6.4: Critical path for a call to the susan smoothing function
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tool-chain, no function calls became successfully parallelised—either because the tasks or

their continuations are too short, or because they were not executed at all in the profile

run. Several loops were parallelised, however, but most have small loop bodies. When

run on the SPARC machine (with 4 workers) with a larger input, there is a speed-up of

around 2% compared to sequential execution.

The first thing we did was to canonicalise as many parallel loops as possible, as only

canonical for-loops2 can be converted into divide-and-conquer style DOALL loops. Most

parallel loops could be easily canonicalised, except two loops in treeup.c, which climb

up a tree from a node, following parent pointers. As the bodies of these two loops are

too small, they were not parallelised at all. However, this resulted in little change, with

speed-up remaining at around 2%.

We now look at the critical paths to see where they can be shortened. There are two ways

to shorten the critical path—one is to break the chain by removing a critical dependence;

the other is to reduce the cost of a critical node by recursively shortening the critical

path in the function called by that node. Note however that one cannot tell exactly how

much the critical path can be shortened as a result without rerunning the program under

Embla 2, as a non-critical dependence may become critical if we remove a dependence or

reduce the size of a node in a critical path.

We begin at the function call to global opt, which has a critical path length of almost

70M. The critical paths produced by Embla 2 are shown in Figure 6.5. With an average

cost of 31.7 million instructions and occurring twice in the critical path, giving a total

contribution of 63.5 million instructions to the critical path, line 27 is the costliest node

by far, followed by line 32. Little can be done at this level to cut any dependence, as the

second iteration needs to use the input of the first, so we focus on the costliest nodes,

lines 27 and 32, and look at their critical paths.

We begin with line 27 of mcf-red.c. Figure 6.6 shows the critical paths produced by

Embla 2 for this line, from which we see that the main component of the critical path

is the loop on lines 40-84. This is the bulk of the main loop of the network simplex

algorithm. As each iteration seeks to improve on the result of the previous iteration,

parallelising this loop would involve major algorithmic changes, perhaps involving a new

mathematical theory. Instead, we again focus on the costliest nodes and see whether we

can reduce their cost. The costliest nodes are line 41, which has a cost of around 21000

but is in the critical path over 2500 times; and line 88, with a cost of around 37000 and

is in the critical path over 130 times.

We first look at line 41, which is a call to the function primal bea mpp. This is the

function that looks at candidate edges to insert into the tree. The critical paths produced

2Recall a canonical for-loop is of the form

for (i=... ; i < 〈loop-invariant expression〉; i++) {...}.
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mcf-red.c:75 - Callee file = mcf-red.c, Length = 69401392

Line 27
Cost:31774578

Line 29
Cost:957

2x

Line 30
Cost:118468

2x

Line 32
Cost:2806197

Line 34
Cost:2

2x

Line 37
Cost:2

2x

Line 20
Cost:3

Line 22
Cost:1

1x

Line 23
Cost:2

1x

2x

Line 46
Cost:973

1x

2x

2x

Figure 6.5: Critical Path for mcf-red.c:75 - global opt()

by Embla 2 are shown in Figure 6.7, and it can be seen that the main components are the

loops on lines 102-109 and 118-125 (both loops are in the critical path 100,000s of times).

To find out why these loops are not parallel in their current form, we turn to the source

code.

Figure 6.8 shows the source code for these two loops. The main data structure used here

is an array called perm, that stores candidate arcs (or edges). This array works as a

stack, with variables next and basket size pointing at the top element at any time.

Every new element is inserted to the right of the last inserted element. Both loops are

trying to find candidate arcs: the first loop looks at candidate arcs from the last iteration

to see if they are still eligible, and if so pushes them on to the stack; the second takes

regular samples of arcs, again to append on to the array those that are eligible. It can be

seen that the reason the loops are not automatically parallelisable by our tool-chain is the

dependences on the variables next and basket size that index into perm. A number of

possible solutions present themselves, each with overheads involved:
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mcf-red.c:27 - Callee file = psimplex-red.c, Length = 31774576

Line 18
Cost:5

Line 21
Cost:1

2x

Line 31
Cost:3

2x

Line 32
Cost:3

2x

Line 34
Cost:3

2x

Line 37
Cost:3

2x

Line 38
Cost:3

2x

Line 39
Cost:3

2x

Continued on the right...

2x

Continued from the left...

Line 40
Cost:2

2x

Line 99
Cost:37170

2x

Line 41
Cost:21191

136x

Line 101
Cost:55391

2x

Line 42
Cost:5

2663x

Line 97
Cost:1

2x

Line 45
Cost:3

2663x

2x

Line 50
Cost:3

2472x

Line 46
Cost:3

191x

Line 51
Cost:3

2472x

Line 47
Cost:4

191x

Line 53
Cost:1

191x

Line 54
Cost:174

2663x

2472x

Line 55
Cost:2

2663x

Line 65
Cost:3

2663x

Line 70
Cost:3

1973x

Line 66
Cost:2

690x

Line 71
Cost:3

2663x

Line 67
Cost:2

690x

Line 68
Cost:2

690x

690x

Line 72
Cost:5

2663x

Line 75
Cost:1

747x

Line 73
Cost:2

1916x

Line 76
Cost:3

747x 1916x

Line 77
Cost:7

191x

Line 79
Cost:2

2472x

Line 80
Cost:4

191x 2472x

Line 81
Cost:2

2164x

Line 83
Cost:1

499x

Line 84
Cost:464

2164x 499x

2529x

Line 88
Cost:37801

134x

Line 89
Cost:4

134x

134x

Figure 6.6: Critical Path for mcf-red.c:27 - primal net simplex(&net)
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psimplex-red.c:41 - Callee file = pbeampp-red.c, Length = 21181

Line 104
Cost:18

Line 105
Cost:21

249319x

Line 106
Cost:1

249319x

Line 124
Cost:4

Line 125
Cost:9
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Line 130
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Line 133
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Line 138
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Line 120
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Line 102
Cost:5
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262226x
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2663x
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Line 139
Cost:4

Line 140
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2663x

Line 141
Cost:2

2663x

Line 122
Cost:3

Line 123
Cost:4

125443x

125445x

Line 107
Cost:4

Line 108
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249319x

Line 109
Cost:9

249319x

Line 121
Cost:21

125443x
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Line 87
Cost:3

Line 93
Cost:3

2665x

2663x

Loop 22
Cost:1209

2x

2x

249319x

2663x

249319x

2663x

Figure 6.7: Critical Path for psimplex-red.c:41 - primal bea mpp(...)
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102 for (((i = (2)) , (next = (0))); (i <= (100)) && (i <= basket_size); i++) {

103 arc = (( *(perm[i])).a);

104 red_cost = bea_compute_red_cost(arc);

105 if (bea_is_dual_infeasible(arc,red_cost) != 0) {

106 next++;

107 ( *(perm[next])).a = arc;

108 ( *(perm[next])).cost = red_cost;

109 ( *(perm[next])).abs_cost = ((red_cost >= (0))?red_cost : -red_cost);

110 }

111 }

...

118 for (; arc < stop_arcs; arc += nr_group) {

119 if ((arc -> ident) > (0)) {

120 red_cost = bea_compute_red_cost(arc);

121 if (bea_is_dual_infeasible(arc,red_cost) != 0) {

122 basket_size++;

123 ( *(perm[basket_size])).a = arc;

124 ( *(perm[basket_size])).cost = red_cost;

125 ( *(perm[basket_size])).abs_cost = ((red_cost >= (0))?red_cost : -red_cost);

126 }

127 }

128 }

Figure 6.8: Code for two loops in pbeampp-red.c from 181.mcf

1. Change the loop into a DOALL loop, implemented by divide-and-conquer, in which

every iteration gets an array cell—i.e. the array index variable is incremented at

every iteration regardless of whether an arc is stored there. Effectively this makes

next and basket size induction variables. The result is a fragmented array, which

needs to be compacted afterwards. We introduce a parallel reduction operation that

compacts the elements at the joining stage of divide-and-conquer. Thus parallelism

is introduced at the expense of extra work in compaction.

2. Change the perm array into a linked list structure. The index variable is no longer

required, as new elements can simply be appended to the list. As list appending is

a simple reduction operation, the loops are now parallelisable. One problem with

this approach is that the first loop can no longer be canonical (without adding

significant work), as it must now traverse an unindexed linked list. This means

that the first loop, though parallelisable, cannot be implemented by divide-and-

conquer in Wool as it stands. At the same time, the loop body is too fine-grained

for each iteration to be spawned as a task, and therefore the loop must remain

sequentially executed. Also, calls to malloc and free are required for each cell,

creating additional overheads.

3. Notice that the array is sorted later on in the function, and therefore the order in

which arcs are appended does not in fact matter. However, many arcs do compare

equal, meaning the result could be different from the sequential version, although
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Method Embla 2’s estimate Actual speed-up

1 1.56 22%

2 1.18 -17%

3 1.77 13%

Table 6.1: Parallelism results for the three methods of refactoring the loops in Figure 6.8

still valid. By making the index variable increments atomic operations and marking

them as commutative3, the loop becomes parallelisable. However, atomic operations

are generally expensive, and prone to contention between threads.

To see which method is best, we implemented and evaluated each of the methods by feed-

ing the refactored programs through our tool-chain. The results are shown in Table 6.1.

Looking at Embla 2’s estimates it would appear that method 3 gives the shortest critical

path, but it does not take into account locking and contention costs due to the atomic

operation. When parallelised, it is in fact method 1 that gives the best speed-up on the

SPARC, with a speed-up of 22% over sequential execution using 8 worker threads.

From line 41 we turn to line 88 in psimplex-red.c, the other costly node in the critical

path of mcf-red.c:27. The critical paths from Embla 2 are shown in Figure 6.9, from

which we can see lines 51-72 are the most significant.

The code for these lines are shown in Figure 6.10. The two inner loops work together

to perform a depth-first tree traversal, updating the potential of each node using the

potential of its parent. While the loops are not parallelisable in their present form, we

note that depth-first tree traversal can be implemented instead using divide-and-conquer.

However, children of each node are stored in linked lists, giving rise to two problems: the

first is that there is a checksum accumulator for the whole tree, and while adding to the

checksum is a reduction operation as we have seen it is not easy to implement efficient

divide-and-conquer style reduction for linked lists. Secondly the tree can be very flat,

giving rise to lots of small tasks that are too small to give any performance gains. Indeed,

this second factor means that even if we are only spawning tasks at the top level of the

tree, the task granularity is still too small—average task size reported by Embla 2 is

around 200-300. (This again shows the usefulness of Embla 2 in helping the programmer

make parallelisation decisions.) Thus, these loops must remain unparallelised.

Returning to the critical path for the call to global opt in Figure 6.5, we look at the

second costliest node there—line 32. The critical paths from Embla 2 are shown in

Figure 6.11, in which the main component is the loop on lines 175-190. This loop iterates

through a linked-list-like structure and either does nothing, or appends an arc to an array,

3Recall that this makes Embla 2 ignore dependences between instantiations of these operations.
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psimplex-red.c:88 - Callee file = mcfutil-red.c, Length = 37792

Line 67
Cost:2

Line 72
Cost:3

55008x

Line 68
Cost:2

79126x

Line 65
Cost:4

55008x

Line 69
Cost:1

79126x

Line 53
Cost:10

Line 60
Cost:2

67483x

Line 61
Cost:3

134134x

Line 63
Cost:2

79260x

Line 50
Cost:3

134x

Line 66
Cost:3

134134x79126x

Line 48
Cost:2

Line 49
Cost:5

134x

134x

Line 77
Cost:2

Line 44
Cost:3

Line 45
Cost:1

134x

134x

Line 51
Cost:2

79260x

Line 76
Cost:1

134x

134134x

79260x

Line 52
Cost:4

134134x134x

Line 57
Cost:9

Line 58
Cost:1

66651x

66651x

Line 40
Cost:3

Line 41
Cost:3

134x

134x

134134x

67483x 66651x

Figure 6.9: Critical Path for psimplex-red.c:88 - primal bea mpp(...)

or replaces an arc. Examination of the code suggests that the sequentialising dependences

are inherent in the algorithm, and that only a change in algorithm can make this loop

parallelisable.

We have shown here how we examined the most critical nodes, with the help of Embla 2,

and raised both Embla 2’s estimated parallelism (from 1.01 to 1.56) and actual speed-

up on a multi-core machine (from 2% to 22%). Not all critical nodes were successfully

parallelised, but we did succeed in refactoring two significant loops to achieve this speed-
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50 while(node != root){

51 while(node != (0)){

52 if ((node -> orientation) == (1))

53 node -> potential = ((( *(node -> basic_arc)).cost) + (( *(node -> pred)).potential));

54 else

55 /* == DOWN */

56 {

57 node -> potential = ((( *(node -> pred)).potential) - (( *(node -> basic_arc)).cost));

58 checksum++;

59 }

60 tmp = node;

61 node = (node -> child);

62 }

63 node = tmp;

64 {

65 while((node -> pred) != (0)){

66 tmp = (node -> sibling);

67 if (tmp != (0)) {

68 node = tmp;

69 break;

70 }

71 else

72 node = (node -> pred);

73 }

74 }

75 }

Figure 6.10: Code for loops in mcfutil-red.c from 181.mcf

up.

6.1.4 179.art

Art is a benchmark program from the SPEC2000 floating point suite. It implements an

image-recognition neural network, which is first trained to recognise certain objects, in

this case a helicopter and an aeroplane, and is then tasked with finding such objects in a

new image.

For the unmodified version of the program, Embla 2 gives an estimate of parallelism of

5.49. When automatically Woolified, the program speeds up by a factor of 3.7 with 64

workers. The critical path length for our training data set is 1.5 billion instructions, most

of which can be attributed to line 1089 in scanner-red.c, with a cost of around 5 million

instructions and around 250 occurrences in the critical paths. The critical path produced

by Embla 2 for this line is depicted in Figure 6.12. The main component of this critical

path is the loop on lines 401-460. The guard condition of this loop is dependent on a

variable assigned to in the loop body, meaning that the loop is inherently sequential and

not easily parallelisable. However, we can focus on two nodes: loop 50, which has an

average cost of around 430,000 but occurs around 1300 times in the critical path; and line
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mcf-red.c:32 - Callee file = implicit-red.c, Length = 2806194

Line 132
Cost:3

Line 135
Cost:1

2x

Line 136
Cost:1

2x

Line 138
Cost:1

2x

Line 139
Cost:2

2x

Line 141
Cost:1

2x

Line 151
Cost:3

2x

Line 152
Cost:7

2x

Line 158
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2x

Line 159
Cost:3

2x

Line 160
Cost:3

2x

Line 161
Cost:10

2x

Line 163
Cost:1

2x

Continued on the right...

2x

Continued from the left...

Line 164
Cost:4

2x

Line 165
Cost:5

1000x

Line 193
Cost:2

2x

Line 166
Cost:6

1000x

Line 194
Cost:3

1x

Line 216
Cost:3

1x

Line 167
Cost:3

1000x

Line 169
Cost:4

1000x

Line 171
Cost:3

1000x

Line 172
Cost:9

1000x

Line 173
Cost:3
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Line 174
Cost:4

1000x

Line 175
Cost:2
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1000x

Line 176
Cost:3

249500x

Line 177
Cost:7

249500x

Line 181
Cost:17

47736x

Line 178
Cost:3

201764x

Line 182
Cost:2

47736x

Line 179
Cost:1

201764x

201764x

Line 190
Cost:3

23869x

Line 183
Cost:2
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47736x

Line 185
Cost:2
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Line 195
Cost:7

1x

Line 217
Cost:2

2x

Line 196
Cost:3

1x

Line 197
Cost:2

1x

Line 204
Cost:3

1x

Line 205
Cost:2
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Line 213
Cost:6

1x

Line 206
Cost:2
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Line 214
Cost:6

1x

Line 207
Cost:5
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Line 208
Cost:4

23867x

Line 209
Cost:5

23867x

Line 210
Cost:4
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23867x

1x

Figure 6.11: Critical Path for mcf-red.c:32 - price out impl(&net)
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scanner-red.c:1089 - Callee file = scanner-red.c, Length = 5079409

Line 380
Cost:3

Line 395
Cost:1

254x

Line 396
Cost:40123

254x

Line 397
Cost:2

254x

Line 398
Cost:1

254x

Line 399
Cost:3

254x

Line 400
Cost:1

254x

Continued on the right...

254x

Continued from the left...

Line 401
Cost:5

254x

Line 403
Cost:4

1368x

Line 467
Cost:160246

254x

Loop 51
Cost:40057

1368x

Line 470
Cost:6

254x

Line 408
Cost:46

1368x

Loop 54
Cost:40020

1368x

Line 413
Cost:4

1368x

Loop 49
Cost:40073

1368x

Line 427
Cost:46

1368x

Loop 55
Cost:40020

1368x

Line 431
Cost:4

1368x

Line 432
Cost:4

1368x

Line 433
Cost:1

1368x

Loop 48
Cost:40111

1368x

Line 446
Cost:2

1368x

Line 448
Cost:46

1368x

Loop 56
Cost:40021

1368x

Loop 50
Cost:430038

1368x

Line 459
Cost:1

Line 460
Cost:4

1368x

1368x

Line 461
Cost:24

2736x 2720x

Line 462
Cost:2

16x

16x

Line 473
Cost:1267457

254x

1368x

Figure 6.12: Critical path for scanner-red.c:1089 - train match(0)
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scanner-red.c:LoopBody50 - Callee file = scanner-red.c, Length = 430028

Line 456
Cost:39

Line 455
Cost:4

27360000x 27360000x

Line 453
Cost:12

Line 454
Cost:11

2736x

2736x

Figure 6.13: Critical path for loop 50 in scanner-red.c

455 for (ti = 0; ti < numf1s; ti++)

456 Y[tj].y += ((f1_layer[ti].P) * ((bus[ti])[tj]));

Figure 6.14: Code for a loop in scanner-red.c from 179.art

473, which has an average cost of around 1.2 million and occurs around 250 times in the

critical path. We focus on the critical paths of each in turn.

The fact that Embla 2 represents loop 50 by a single node means that this loop is spawned

as a separate task. As the model we are using spawns only DOALL loops, this means

that this loop is parallelisable as it is. However, even when it is parallel, the cost of the

loop (being roughly the critical path length of one iteration of the loop) is still significant.

Thus we examine the body of the loop to find out why. Figure 6.13 shows the critical path

of the body of loop 50 as produced by Embla 2. The main component here is the inner

loop on lines 455-456, shown in Figure 6.14. Examining the loop shows that each time

the loop is executed an amount is added to Y[tj].y. As the address of Y[tj].y remains

constant throughout the loop, this field in effect acts as an accumulator for a reduction

operation. However, as this is a field rather than a local variable, the operation has not

been recognised as a reduction operation4. By reducing a local variable inside the loop

instead, and copying the final value of this local variable into the Y[tj].y immediately

after the loop, we make the addition operation a suitable reduction operation, making this

inner loop parallelisable. This results in an increase in both Embla 2 estimated parallelism

(from 5.49 to 8.51) as well as actual speed-up on the SPARC (from a factor of 3.7 to 4.8

with 64 workers).

We now turn to line 473 (Figure 6.15), the other significant line in Figure 6.12. We focus

on the main component of the call on that line, which is loop 58. Again, although loop 58

is parallelisable as it is, its single-iteration cost is still significant, and therefore we look

at the critical path of its body, as shown in Figure 6.16, to find the bottleneck. The main

component of the critical path there is the inner loop on lines 189-200.

4Recall our requirement for a reduction variable to be of scalar type.
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scanner-red.c:473 - Callee file = scanner-red.c, Length = 1267456

Line 173
Cost:4

Line 176
Cost:2

254x

Loop 58
Cost:1267443

254x

Line 206
Cost:3

254x

Line 168
Cost:4

254x

Figure 6.15: Critical path for scanner-red.c:473

scanner-red.c:LoopBody58 - Callee file = scanner-red.c, Length = 1267439

Line 180
Cost:1

Loop 60
Cost:40116

254x

Line 189
Cost:4

254x

Line 190
Cost:13

Line 191
Cost:82

2540000x

Loop 61
Cost:22

2540000x

Line 200
Cost:1

2495689x

44311x

2495689x

2540000x

Figure 6.16: Critical path for loop 58 in scanner-red.c
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189 for (j = 0; j < numf1s; j++) {

190 temp = ((bus[j])[i]);

191 (bus[j])[i] += ((g(i) * ((f1_layer[j].P) - ((bus[j])[i]))) * delta_t);

192 if ((fabs((temp - ((bus[j])[i]))) <= er) && (resonant != 0)) {

193 #ifdef DEBUG

194 #endif

195 resonant = 1;

196 }

197 else {

198 #ifdef DEBUG

199 #endif

200 resonant = 0;

201 }

202 }

Figure 6.17: Code from scanner-red.c

Figure 6.17 shows the code for this inner loop. From it we see that the reason the loop

as it stands is not parallelisable is the presence of a read-after-write dependence on a

global variable, resonant, which can be written to in one iteration and read in the next

iteration. The key observation here is that the read is not required—resonant is only

ever assigned 0 or 1, and once it is 0, it will remain so for the remainder of the loop. In

other words, the effect of the loop is to set resonant to 0 if for any iteration (fabs((temp

- ((bus[j])[i]))) <= er) is true (and 1 otherwise). We can thus transform the loop

body by removing the second condition on line 192 and the assignment on line 195. The

only use of resonant that remains is the write on line 200, making it an eligible assignment

reduction variable. Making this change raises Embla 2’s parallelism estimate to around

12.3, and actual speed-up to around 5.8 with 64 workers.

Thus we have again shown how effectively Embla 2 has focused our attention on the

parallelism bottlenecks with critical paths, and what sorts of refactoring are required to

increase parallelism.

6.1.5 Other examples

Applying the same analysis to other examples, we find that input/output forms a large

part of several benchmarks. In dijkstra, for example, a tenth of the program’s sequential

execution time is taken up by calls to scanf. In FFT (MiBench), printing the results

takes up around 80% of processing time. As input/output is unparallelisable without

significant re-implementation, Amdahl’s law would mean that the maximum speed-up,

even if we were able to parallelise the rest of the program perfectly, would still be low.

This suggests that for some of the benchmarks examined, a parallel implementation of

input/output would be very useful.
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6.2 Related work

Tools that display programs along with statically and dynamically analysed dependences

to the user have been discussed in Chapter 2. Here we focus on work that tries to manually

parallelise programs, especially those that overlap with our own case studies.

Prabhu and Olukotun [73, 74] present how they manually parallelised loops in several

SPEC 2000 applications using profiled thread-level speculation, in particular achieving

47% speed-up with 181.mcf and 135% speed-up with 179.art. Zhong et al. [105] have au-

tomated some of the common transformations applied by Prabhu and Olukotun, achieving

40% speed-up with 181.mcf and around 790% speed-up with 179.art. Bridges et al. [13] use

a software pipelining model, coupled with thread-level speculation, to parallelise SPEC

2000 applications. They report a speed-up from simulation of 184% for 181.mcf.

Our case studies differ from all of these in two important ways. Firstly, instead of reporting

simulation results, we report actual speed-ups by timing the sequential and parallelised

versions of the programs on a real multi-core processor, along with a more architecture-

independent ‘limit’ provided by Embla 2. Secondly, we have not used thread-level specu-

lation in our parallelisation. This allows us to produce parallel programs that can run on

existing commodity hardware. Nevertheless, we believe that if thread-level speculation

support is added to our framework, speed-ups for these programs could increase further.

In addition, we believe that we are the first to implement and use critical path informa-

tion to find parallelism bottlenecks. Prior work generally only used relative sequential

execution times of loops to determine what parts of the program to examine. However,

the results of using relative sequential execution times do not depend on whether those

parts are already parallelisable. With critical paths, we can focus immediately on the

parts of the program that are not automatically parallelisable.

6.3 Conclusions

This chapter has shown how a parallelisation tool-chain consisting of Embla 2 and Woo-

lifier can aid program parallelisation by making a best-effort automatic parallelisation and

producing an easy-to-understand representation of critical paths that focuses the program-

mer on parallelism bottlenecks. We have also shown the kinds of program refactoring at

the bottlenecks that can significantly increase parallelism in the programs. From our case

studies these refactorings are mostly alternative implementations of the same algorithm,

e.g. moving induction variable increments out of the loop (susan.smoothing), and removing

unnecessary reads of variables (179.art). Some involve minor algorithmic changes, e.g. the

compaction method for 181.mcf, while for others (e.g. sha) major algorithmic redesigns

are required which are beyond the scope of our work.
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While some of the refactorings, such as that of the induction variable in susan.smoothing,

can be performed by a compiler, in general most artifacts of program implementation can

only be removed by the programmers themselves (e.g. 181.mcf). By automating everything

that does not require the programmer’s input, and by highlighting time-critical sections of

the program which need programmer rewriting, we have made interactive parallelisation

more efficient.



Chapter 7

Conclusions

We began this thesis by describing the challenge faced by the software community from

the advance of multi-core processors. Throughout this thesis, we then described our

approach to tackling this problem, namely profiling-based interactive parallelisation. We

first looked at the amount of parallelism inherent in benchmark programs, before focusing

on Nested Function-level Fork-join Parallelism that is the basis of many popular parallel

languages and task libraries.

Our approach to interactive parallelisation centres around a tool-chain with two major

components: Embla 2, a tool that profiles dependences in a sequential program and

derives an estimate of the amount of parallelism that could be achieved with fork-join

parallelism; and Woolifier, a source-to-source program paralleliser that aims to realise the

parallelism found by Embla 2. Using Embla 2 we showed that the amount of potential

parallelism differs widely from program to program. Profiling results of Embla 2 are

then fed to Woolifier, which transforms the program using a parallel language or task

library, performing optimisations such as parallelising reduction operations and inlining

fine-grained tasks. Finally, we showed how critical paths output by Embla 2 can be used

by the programmer to quickly focus on parallelism bottlenecks that need to be refactored

in order to get greater parallelism. We saw that by refactoring these bottlenecks we

achieved significant gains in actual speed-up.

Our aim was to automate the parallelisation process as much as we can, and present critical

path information to focus the programmer on bottlenecks in the program for manual

refactoring. Sometimes the refactorings can in fact be automated by the compiler, and

there is certainly scope for extending our Woolifier to perform more parallelism-enhancing

transformations. However, we have also seen in many cases that programmer intervention

is required, either in the form of a reworking of the implementation of the same algorithm,

or in a new more parallel algorithm altogether.

Our approach is mainly based on profiling, which by nature can be very input-dependent.

In particular, the absence of a certain dependence in a particular profile run does not mean

107
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that no such dependence exists for any input. With our tool-chain the responsibility is

left with the programmer to verify the safety of the parallelised programs, and in our

experience we have had to manually hoist synchronisation points in a small number of

cases due to certain dependences not materialising in the profile runs. Regarding this

weakness we make the following points:

• When dependences are missed by a profiler, it is normally either because a certain

control path was not taken in a profile run, or that the input data was too small.

Thus we should ensure that a large enough data set is used for profiling, and can

enlist the help of a test coverage tool to ensure all areas of code are covered.

• Dependence information can be extracted by static rather than dynamic analysis.

We know that static analysis can often over-approximate, giving dependences that

may never occur in practice. However, it would be very interesting to see how

different statically analysed dependences would be to those produced by Embla 2,

given recent advances in alias analysis and separation logic.

• Another technique to mitigate this problem is the use of run-time memory monitor-

ing, as employed by thread-level speculation frameworks. Dependences are tracked

at run-time, and when they are observed to be violated the relevant tasks are rolled

back and re-executed in the right order. However, overheads associated with such a

mechanism are high, potentially wiping out all the potential performance gains from

parallelism. We propose a lighter weight version which simply exits with an error

when a dependence violation is observed, saving the overheads required to keep past

memory states to roll back a task.

We believe the techniques used by our tool-chain are useful to programmers trying to

parallelise large legacy systems, especially those with which they may be unfamiliar. Our

tool-chain may also be useful for programmers with little knowledge of parallel languages

developing new programs, as the development process does not require parallel program-

ming at all—all the refactorings are done on the sequential code.

Our opinion, however, is that it is better for programmers to consider parallelism right

from the beginning and program in a parallel language. This is because, as we have

noted, each conversion in the development process, from specification to algorithm, from

algorithm to program, and from program to executable, can introduce artifacts that un-

necessarily restrict parallelism. Our tool-chain certainly does well in removing some of

these restrictions, but it is much better for these restrictions not to have been introduced

in the first place. We believe a paradigm shift in software design is required—just as

programmers in the past adapted to object-oriented principles when faced with increas-

ing size and complexity of software projects, so they must now be familiar with design
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patterns in parallelism in order to adapt to the world of multi-core processors and other

parallel computer architectures. How to achieve this, though, would be the subject of

another thesis.
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