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Abstract

This report demonstrates a technique for proving the anonymity guarantees of communication systems,
using a mechanised theorem-prover. The approach is based on Shannon’s theory of information and
can be used to analyse probabilistic programs. The information-theoretic metrics that are used for
anonymity provide quantitative results, even in the case of partial anonymity. Many of the developments
in this text are applicable to information leakage in general, rather than solely to privacy properties. By
developing the framework within a mechanised theorem-prover, all proofs are guaranteed to be logically
and mathematically consistent with respect to a given model. Moreover, the specification of a system can
be parameterised and desirable properties of the system can quantify over those parameters; as a result,
properties can be proved about the system in general, rather than specific instances.

In order to develop the analysis framework described in this text, the underlying theories of infor-
mation, probability, and measure had to be formalised in the theorem-prover; those formalisation are
explained in detail. That foundational work is of general interest and not limited to the applications
illustrated here. The meticulous, extensional approach that has been taken ensures that mathematical
consistency is maintained.

A series of examples illustrate how formalised information theory can be used to analyse and prove
the information leakage of programs modelled in the theorem-prover. Those examples consider a number
of different threat models and show how they can be characterised in the framework proposed.

Finally, the tools developed are used to prove the anonymity of the dining cryptographers (DC) pro-
tocol, thereby demonstrating the use of the framework and its applicability to proving privacy properties;
the DC protocol is a standard benchmark for new methods of analysing anonymity systems. This work
includes the first machine-assisted proof of anonymity of the DC protocol for an unbounded number of
cryptographers.
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Chapter 1

Introduction

“The only truly secure system is one that is powered off, cast in a block of concrete and

sealed in a lead-lined room with armed guards — and even then I have my doubts.”

– Gene Spafford

The overall aim of this text is to present a mathematically rigorous framework for analysing the
anonymity and information leakage properties of software systems. This chapter motivates the need
for such a framework and provides a high-level background on anonymous communications and formal
methods for security analysis. Finally, the specific contributions developed in this text are outlined.

1.1 Anonymous communications

Privacy and anonymity are essential to society in both the physical and the electronic domain. Anonymous
police tips and witness protection programs are common in the physical realm and provide beneficial
services. Similarly, the Internet can provide an electronic medium for free expression, but not if users
can be identified and censored by totalitarian governments. There have been many attempts to provide
anonymous electronic communication systems [38, 52, 125, 126], but the problem is challenging and
remains open. Danezis has recently written a thorough and up-to-date historical review [37] of research
on anonymity and privacy-enhancing technologies (PETs). A concise review of important milestones in
this area follows.

Early research on anonymity in electronic communication began in 1981 when Chaum proposed the
mix as a means of preventing an attacker from linking the sender and recipient of a message [24]. His
initial design pooled incoming messages, encrypted with layers of public-key cryptography, and then
decrypted and reordered those messages before delivering them, thereby obfuscating the correspondence
between incoming and outgoing messages. Despite the age of this area of research and the relative
ease with which one can obtain some degree of anonymity in the physical world, achieving the same on
electronic networks remains a challenging problem.

Current research on anonymity covers a broad spectrum ranging from electronic voting to systems
for anonymous web-browsing and email. For example, Novak, et al. used statistical analysis of language
style to break the psuedonymity of postings on electronic message boards. Similarly, Rao and Rohatgi
determined that Internet users can be identified by their web-browsing patterns [123] and Bissias, et al.
demonstrated that such analysis can be performed even on encrypted streams [13]. Chaum, et al. have
designed specialised techniques for verifiable electronic elections [23]. Despite sharing common goals,
the techniques used in different areas of anonymity research can vary greatly; in this document, focus is
placed on applications such as systems for anonymous web-browsing and email, rather than e-voting and
similar topics.

Since the conception of the mix, numerous systems have been designed with the aim of providing
anonymity to communication partners. In 1988 Chaum proposed a system based on anonymous broadcast,
dining cryptographer networks [22], and a number of modern systems have been based on that intuition
as well [64]. Many other systems based on mix networks have been proposed, along with a wide range of
mixes using different message pooling and delaying strategies and various attack detection and defense

11



12 Chapter 1. Introduction

mechanisms. Dı́az provides a good overview of mix types [49], a number of attacks on mixes are presented
by Serjantov [137], and an attack detection and prevention mechanism for mixes was proposed by Danezis
and Sassman [39]. Anonymous communication systems can generally be divided into those which demand
low latency, needed for interactive applications like web-browsing, and those with high latency, suitable
for applications such as email. Most mix-based specifications have a high latency and thus are applicable
for remailers and other systems where immediacy of response is not necessary. Mixmaster [108] and its
successor Mixminion [38] are both anonymous remailer systems that have been deployed. Onion Routing
[67, 147] and its successor Tor [52] are both examples of circuit-based low-latency systems that have been
implemented. With more than 100,000 users, Tor is the most widely deployed low-latency anonymous
communication system. Most low-latency systems don’t involve any explicit mixing, but instead rely on
messages being rerouted through a number of forwarding nodes before reaching their destinations. Some
low-latency, peer-to-peer systems have been developed, such as Crowds [125] and MorphMix [126], which
attempt to eliminate the need for any trusted servers and provide greater scalability.

The number of attacks devised against anonymous communication systems is even greater than the
number of system designs. Though unproven, it is generally believed that an attacker who can observe the
entire network over a sufficient period of time can always link the origin and destination of messages with
near certainty, unless the system can provide constant-bandwith traffic. Constant-bandwidth solutions are
prohibitively expensive or inefficient for all but a small class of users, thus attacks and defenses target
adversaries whose resources limit them to observing/controlling only some portion of the network. For
many widely deployed systems, this seems to be a reasonable assumption. Attacks on mixes themselves
are typically mounted by preventing messages from entering the mix or flooding the mix with dummy
traffic [137], while attacks on mix networks proceed by trying to infer or observe the path a message has
taken through the network by compromising mixes or using statistical analysis of observations. Similarly
for other systems, attacks proceed by attempting to direct the routing of a message through specific
compromised nodes [149], by linking observed messages through statistical traffic analysis [36, 110, 124],
or by otherwise compromising or inferring the entire path of the message. In order to maintain efficiency,
low-latency systems generally can only defend against a weaker attacker than high-latency systems,
but the techniques used in each are often similar. Another important consideration when designing
anonymous communications systems is perfect forward secrecy, ensuring that the system cannot be forced
to link communication partners after their communication has ended. In the United Kingdom, defending
anonymity systems against attacks using legal compulsion has become a topic of increasing interest in
light of the the Regulation of Investigatory Powers Act [33].

1.1.1 Quantifying Anonymity

When analysing anonymous communications systems, it is useful to measure the degree of anonymity
a system provides and the conditions under which it is ensured. Throughout research on the subject,
anonymity has proved to be difficult to define and many definitions have been suggested. Pfitzmann and
Köhntopp [120] attempted to standardise definitions by proposing the following:

”Anonymity is the state of being not identifiable within a set of subjects, the anonymity
set. The anonymity set is the set of all possible subjects who might cause an action. . . .
Anonymity is the stronger, the larger the respective anonymity set is and the more evenly
distributed the sending or receiving, respectively, of the subjects within that set is.”

Quantifying anonymity using the size of the anonymity set has been a part of this line of research from
very early on, but it is easy to think of settings in which it is not a good metric. The difficulty is
deciding what it means to be “identifiable” within the anonymity set. For example, if we have a large
group of suspects, one of which we suspect with a very high probability while suspecting the rest with a
very low probability, then this might be considered less anonymous than a small group in which all are
equally suspect. Despite this shortcoming, using the size of the anonymity set as a metric makes sense
in historical context. One of the first problems proposed in the field was Chaum’s dining cryptographers
problem [22]. As this problem was initially presented, all the members of the anonymity set were equally
likely to have performed the action, so size of anonymity set is a sensible metric.

Introducing probability into the definition of anonymity allows for a variety of anonymity degrees to
be defined. The following four degrees appear regularly throughout the literature [125, 140, 74]:
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Definition 1 (beyond suspicion/total anonymity). Given that the adversary can determine a particular
action has occurred, the individual in question is no more likely to have been the actor than anyone else.

Definition 2 (probable innocence/partial anonymity). Given that the adversary can determine a par-
ticular action has occurred, the individual in question is no more likely to have been the actor than to not
have been the actor.

Definition 3 (possible innocence/weak anonymity). Given that the adversary can determine a particular
action has occurred, there is some possibility that the individual in question was not the actor i.e. the
certainty of the individual being the actor is not 100%.

Definition 4 (α-anonymity). Given that the adversary can determine a particular action has occurred,
the individual in question is suspected with probability less than α, for some α ≤ 1.

Definitions 2 and 3 can be generalised using α-anonymity as 0.5-anonymity1 and 1.0-anonymity re-
spectively. The term partial anonymity is used ambiguously throughout the literature, taking many
different meanings; in this text, that term will refer to any scenario which is neither the ideal case of an
even distribution over all suspects nor the worst case of a single user suspected with probability 1.

What is sufficiently anonymous in one situation may be completely useless in another. In some cases,
the degree of anonymity required may depend on the legal system under which the user is placed. If
the burden of proof falls to the prosecution and an individual is assumed innocent until proved guilty
“beyond a reasonable doubt”, then possible innocence may be sufficient — otherwise, it is possible that
only total anonymity will protect the user.

The definitions for degrees of anonymity discussed above have done much to clarify the terminology,
but do not ease the difficulty of comparing the relative anonymity provided by two different systems or
two configurations of the same system. Recently Serjantov and Danezis [136] and independently Dı́az,
et al. [50] addressed this issue by proposing an information-theoretic metric for anonymity. This metric
uses entropy to quantify the extent that actions are “evenly distributed”, which you may recall from
Pfitzmann and Köhntopp’s definition presented earlier. The definition for this metric, as presented by
Serjantov and Danezis, is summarised below.

Definition 5 (Entropy-based metric for anonymity). For a finite set of users Ψ and a finite number
of roles R, let U be an attacker’s a posteriori probability distribution for a user being assigned a role
with respect to a particular message. Let U be restricted to U : Ψ × R → [0, 1] such that for each
r ∈ R,

∑

u∈Ψ U(u, r) = 1. For a given role r, let pu = U(u, r). Define the effective size S of the
anonymity set, for a particular role, to be equal to the entropy of the distribution and use this as a metric
for the strength of anonymity provided.

S = −
∑

u∈Ψ

pu log2(pu)

Recently, a number of information-theoretic metrics based on entropy have been suggested for mea-
suring anonymity. Chatzikokolakis [18] has examined the use of such metrics, including the measure of
(conditional) mutual information adopted in this text. Informally, Iµ(O;A|L), the conditional mutual
information of O and A given L, measures the number of bits one can learn about A by observing O
with knowledge of L; in the case of anonymity, A is a random variable over the possible identities of an
actor, O is a random variable over the visible outputs of a system, and L is a random variable over the
visible inputs to the system. A detailed presentation of this measure will be developed over the course of
subsequent chapters.

Though purely probabilistic definitions provide strong metrics for anonymity, Halpern and O’Neill [74]
identify a class of situations that they do not effectively capture. It is not always realistic to expect that
an attacker’s a priori probability for attributing an action to a user is the same for all users. For example,
an attacker might attribute a message written in Russian to a Russian with much higher probability
than to a Spaniard, but this information is not part of the operation of the system. Though the system
cannot change the a priori beliefs of the attacker, the user would like to know that the system does not
leak any additional information. Halpern and O’Neill address this situation by proposing a definition for
conditional anonymity within a runs-and-traces framework. That definition is summarised below:

1This is a slight mismatch of the notation, as Definition 2 allows a probability of suspicion ≤ 0.5 to be considered
anonymous, while 0.5-anonymity requires a strict <.
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Definition 6 (Conditional anonymity). Let i ∈ Ψ be a user, j ∈ Ψ be the attacker, a be an action,
and α = P (a attributed to i | j observes some x ∈ Ψ\{j} has performed a) be j’s a priori probability of
attributing a to i given he knows someone other than himself has performed a. The user i is conditionally
anonymous with respect to j and a if, for all runs of the system in which j observed that a was performed
by some y ∈ Ψ\{j}, j’s a posteriori probability of attributing a to i is equal to α i.e. j’s beliefs regarding
the likelihood of i performing a are not changed by his observation of any possible run of the system in
which a occurs.

The anonymity metrics above are very strong in their ability to represent varying degrees of anonymity,
but do not easily capture our intuition of anonymity as an attacker’s knowledge (or lack thereof). Such an
epistemic definition allows for intuitive specifications of anonymity properties of systems to be analysed.
Halpern and O’Neill used a modal logic of knowledge to represent an attacker’s knowledge as the sequence
of observable actions performed in a run of the system. Syverson and Stubblebine [148] presented one
explicitly epistemic approach based on an extension of the basic S5 axioms characterising knowledge.
Both approaches allow statements about the anonymity of a system to be easily and clearly made, but
have the major drawback of being able to deal only with total anonymity i.e. they can only determine that
a system provides perfect anonymity or does not. This shortcoming is implicit in the view of knowledge
as “all-or-nothing”.

There are several common points that must be specified when defining anonymity for any of the
approaches presented. The anonymity provided by a system must be with respect to a particular attacker
who may be active (can inject messages/tamper with traffic/etc.) or passive (can only observe) and local
(only has access to some subset of the network/system) or global (has access to the entire network/system).
The attacker may also control some set of the users of the system in addition to traffic on the links
between users. Finally, we must specify whose anonymity is being protecting. Returning to Pfitzmann
and Köhntopp’s [120] definitions:

Definition 7 (Sender anonymity). Sender anonymity is the property that no message can be linked to
any sender and no sender can be linked to any message

Definition 8 (Receiver anonymity). Receiver anonymity is the property that no message can be linked
to any receiver and no receiver can be linked to any message.

Definition 9 (Relationship anonymity). Relationship anonymity is the property that, though we may be
able to link messages to senders and messages to receivers, we cannot link any sender and receiver as
communicating with each other. Relationship anonymity is also often referred to as unlinkability.

1.1.2 Analysis Approaches

Realistic anonymity systems are unlikely to provide perfect anonymity, therefore analysis must be prob-
abilistic in order to gain useful information about the partial anonymity a system may provide. Since
by-hand analysis of realistic anonymity systems can quickly become intractable or error-ridden, various
attempts have been made to automate this analysis. One of the first such attempts was Schneider and
Sidiropoulos’ [133] use of CSP and the tool FDR to prove a finite instance of the dining cryptogra-
phers problem [22]. Morgan has recently used an extension of the Guarded Command Language with
“ignorance-preserving refinement” to the same effect [109]. Both approaches capture only total anonymity
and did not include any notion of probability. Recently, Deng et al. [40] used PCTL and the probabilis-
tic model-checker PRISM [82] to do a similar analysis of the dining cryptographers problem using a
probabilistic definition of anonymity. They also examined a slightly modified version of the problem in
which total anonymity is not preserved. Shmatikov [140, 141] also used PCTL and PRISM to analyse
the Crowds [125] system and identified an attack. Dingledine et al. used PCTL and PRISM to compare
free-route and cascade mix topologies with synchronous batching [53]. A more detailed review of research
on techniques for analysing anonymity systems can be found in Section 5.6.

1.2 Formal methods for security analysis

Gene Spafford once said [44],
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“The only truly secure system is one that is powered off, cast in a block of concrete and sealed
in a lead-lined room with armed guards – and even then I have my doubts.”

While some, if not most, of the security community will agree with this sentiment, it does not negate
the desire to develop technologies that increase the security of systems along with methods to analyse
and quantify the relative security of those technologies. As privacy-enhancing technologies (PETs) are
developed, the need arises for methods to analyse and quantify the relative privacy guarantees of various
PETs. It is important that these methods of analysis are quantitative, rather than a boolean result of
“secure” or “insecure”, because many deployable PETs must make concessions for the sake of efficiency
and do not guarantee absolute privacy. Pioneering work done independently by both Serjantov and
Danezis [136] and Dı́az et al. [50] proposed the use of entropy as a metric for privacy, thereby linking
Shannon’s information theory [138] to quantitative analysis of privacy. Their work has had a great impact
on the field and most quantitative privacy analysis is now rooted in information theory. Subsequent work
in this area, such as Chatzikokolakis’ use of Bayes risk [18], has offered a variety of related metrics for
privacy based on information theory.

In the past, various products of formal methods research, such as theorem-provers and model-checkers,
have fruitfully been applied to security analysis. Paulson developed the technique of using a theorem-
prover to formalise security protocols and to perform inductive proofs of security for those protocols [119].
Model-checking has been widely used both for finding bugs in security protocols and for verifying finite
instances of security protocols; Lowe’s use of FDR to find a bug in the Needham-Schroeder protocol [94]
is a well-known example. Each of these analysis techniques has its relative advantages and disadvantages.
Model-checking requires less human effort because it is fully automatic, once a system and its desired
properties are formalised. However, model-checking is typically limited to small, finite instances of a sys-
tem due to a state explosion that renders larger instances intractable. Clearly, verification of a particular
instance of the system does not necessarily provide any guarantees about the system generally. This
makes model-checking techniques more applicable for bug-finding in security systems than for proving
security guarantees.

Theorem-proving usually requires a greater amount of human effort than model-checking, because
proofs are not automatic and require interaction with the theorem-proving system; nevertheless, this
additional effort can be worthwhile. The advantage of theorem-proving is that proofs can be quantified
on the parameters of the system, allowing for a proof of security for the system generally rather than
for a particular finite instance. This advantage of theorem-proving is exemplified by the proof of privacy
of the dining cryptographers protocol discussed in Chapter 5, which is valid for an unbounded number
of protocol participants. While theorem-proving aims for proofs of correctness rather than bug-finding,
an unsuccessful proof attempt will provide insight into the reason that the system fails. The further
advantage of interactive theorem-proving over pen-and-paper proofs is that proofs are guaranteed to be
correct up to the assumptions of the model. Recent work by Blanchet [14] has focused on bridging the
gap between the computational-complexity proofs used by cryptographers and the assumption of perfect
cryptographic primitives commonly used in formal methods proofs.

I do not claim that a machine-assisted proof is an absolute guarantee of security. Any proof of security
is only valid up to the level of abstraction at which the system is modelled, a point widely noted in the
literature where security and formal methods research intersect. However, LCF-style theorem-provers,
such as the HOL4 system used in this work, do guarantee the logical consistency of all proofs they
produce [68]. This is achieved by using a small logical core from which all theorems must be derived
using basic inferences rules. A substantial body of mathematical theory has been formalised in HOL4 over
the course of its development. Since pen-and-paper proofs are often long, complicated, and error-prone,
the guarantee of correctness provided by using a theorem-prover is invaluable, particularly for security
applications. Gordon [68] provides a nice historical overview and introduction to the LCF philosophy
and HOL theorem-proving.

Historically, formal analysis of security-sensitive systems has been evenly divided between the camps
of model-checking and theorem-proving, but the privacy domain seems to be an exception. Model-
checking techniques have been widely used to analyse various PETs, for example Shmatikov et al.’s use
of PRISM [141] to analyse the Crowds protocol [125]. Yet, the work of Kawabe et al. [86] is the only
use of theorem-proving techniques for formal privacy analysis that I am aware of, other than my own
work. This text aims to continue filling that void in research on formal methods for privacy analysis,
as Kawabe has begun to do. In spirit this work belongs both to the branch of PETs research begun by
Serjantov, Danezis, and Dı́az and to the branch of formal methods work begun by Paulson. Recent work
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by Malacaria et al. proposed an information-theoretic approach to analysing the information leakage in
programs [99] and that work serves as inspiration for the formalised analysis technique presented here.
Overall, mathematical and logical rigour have trumped ease of implementation in this work, but some
tool support and automation have also been developed for ease of use.

1.3 Overview of technique

This section provides a brief look ahead at the framework for analysing anonymity systems that forms
the core of this text. We will begin by examining a number of goals for that framework, which have
motivated key choices in the developments presented later.

1.3.1 Motivating goals

Systems proposed for anonymous web-browsing or email often rely on subtle details and are deployed in
complex dynamic environments, rendering it difficult to analyse or prove exactly how much anonymity
they provide. Analysis of anonymity systems has improved through the development of probabilistic
metrics for measuring anonymity [50, 136] and the use of automated tools suitable for reasoning about
probabilities [140]. With the development of new techniques, further analysis of anonymity systems will
increase understanding of how different systems perform in varying settings, identify potential attacks on
systems, and provide direction for the development of future systems.

From the outset, one of the primary requirements for the techniques developed in this text was
that they be sufficiently formal to provide a high assurance of mathematical and logic consistency for
any proofs developed. In a security-sensitive setting, this level of assurance is necessary for proofs to
be considered beneficial. An additional objective for the framework was the ability to prove general
properties of systems, parameterised on various settings (e.g. the number of participants in the dining
cryptographers protocol) — not just for small instances of the system. The first objective suggests the
use of a model-checking or theorem-proving approach, while the second objective narrows that choice to
the use of an interactive theorem-prover. The historical importance of both model-checking and theorem-
proving in security analysis, coupled with the scarcity of research using theorem-provers in the privacy
domain, supports the decision to use an interactive theorem-prover.

Since most deployed anonymity systems must compromise between efficiency and perfect security,
techniques for analysing those systems must be capable of examining partial-anonymity. Moreover,
in order to compare different PETs and environments, it is important that they are examined using
quantitative metrics for anonymity. Finally, many PETs make use of probabilistic behaviour in order to
achieve their results, so an appropriate analysis framework must also be able to capture that probabilistic
behaviour. All of those requirements, together with the recent research on anonymity metrics discussed
above, suggest the use of an information-theoretic metric for anonymity, specifically conditional mutual
information. Since the analysis framework needed to incorporate probability theory, I decided to use the
HOL4 theorem-prover, for which a formalisation of probability theory already existed. Unfortunately,
that formalisation ultimately needed to be redeveloped in a more general form, as is explained in Chapter
2. A thorough introduction to the HOL4 system will not be undertaken here, but such a tutorial can be
found elsewhere [117] along with complete documentation for the system [114, 115, 116]. In most cases,
knowledge of HOL4 syntax should not be needed to understand this text, but a glossary of such notation
has been provided in Appendix A for convenience.

Finally, it is essential that the framework allow for easy and intuitive specification of systems and
minimise the effort of interactive proofs, whenever possible. The first of these requirements motivated the
decision to model systems as HOL functions, directly in the logic of the theorem-prover. That approach
makes it much easier to define models of systems and prove basic correctness properties about them.
In addition, automation and tool support have been developed to ease the difficulty of proofs using the
framework.

1.3.2 Contributions

The developments presented in this thesis contribute to a number of distinct lines of research. The foun-
dational work in Chapter 2 contributes to the theorem-proving community by providing a more general
formalisation of measure and probability theories and the first formalisation of Lebesgue integration in
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the HOL4 system. Those formalisations provide a basis for a wide range of future developments and
some researchers (e.g. Hasan et al.) have already begun to build upon them, but those applications have
not yet been completed and published. Building from the formalisations in Chapter 2, the formalisa-
tion of information theory developed in Chapter 3 is the first formalisation of information theory to be
developed in a theorem-prover. That work also presents countless opportunities for new applications of
theorem-proving in a variety of domains (e.g. coding theory).

The framework for analysing information leakage presented in Chapter 4 is the first of its kind. The
major innovation it provides over previous theorem-proving approaches is the use of quantitative metrics
for leakage, based on Shannon’s information theory. This allows for reasoning about partial information
leakage. While model-checkers have been used for quantitative analysis of information leakage, they are
generally limited to small instances of a system. In contrast, the theorem-proving approach presented in
Chapter 4 can use parameterised specifications and inductive techniques to prove properties for all con-
figurations of a system. The automation and tool support developed in conjunction with that framework
is a major contribution to its usability.

The proof of the dining cryptographers protocol in Chapter 5 is novel on two fronts. For one, it is
the first machine-checked proof of anonymity of the dining cryptographers protocol, for an unbounded
number of participants. Secondly, it is the first use of a theorem-prover in the anonymity domain that
allows for specification of probabilistic systems and a quantitative metric for anonymity. That case study
exhibits the applicability of the framework in Chapter 4 to proofs of privacy and anonymity, including
partial anonymity.



Chapter 2

Probability, Measure, and
Integration

“You cannot avoid measure theory”

– David Williams, Probability with Martingales

The primary objective for the work in this thesis was to develop a framework for quantifying the
amount of private or identifying information leaked by a piece of software. The method for that analysis
(Chapter 4) is based on Shannon’s theory of information, which I have formalised in a higher-order logic
theorem-prover (Chapter 3). Beginning with the decision to structure this work within a theorem-prover,
I resolved that mathematical rigour would trump expediency whenever both could not be achieved; the
work in this chapter is a direct result of that decision. Information theory builds directly upon probability
theory, which is inextricably connected to measure and integration theories. These three theories must
be formalised before information theory can be developed in the theorem-prover.

2.1 Motivation

As David Williams notes in Probability with Martingales, “you cannot avoid measure theory” in a math-
ematically rigourous treatment of probability theory. Measure theory is necessary for two reasons. Most
importantly, it ensures mathematical consistency of the formalised definitions for probability theory. If
measure theory were not used, inconsistencies based on the Banach-Tarski paradox could be introduced.
Banach and Tarski [154] proved that it is possible to define a non-measurable set if the axiom of choice
is assumed. A non-measurable set is a set for which no measure can be defined without resulting in a
contradiction; non-measurable sets are outside the scope in which probability theory operates. Since the
axiom of choice is assumed for most of conventional mathematics, as well as higher-order logic, Banach
and Tarski’s paradox must be considered. If we were to define a probability measure outright and then
apply this definition to a non-measurable set, an inconsistency would arise. Any proofs involving such a
definition would be meaningless, because a contradiction could be derived from the definition itself.

In order to avoid the Banach-Tarski paradox and ensure the correctness of proofs that use the for-
malisations in this text, probability measures must not be applied to non-measurable sets. This can
be achieved by defining probability theory as an extension of measure theory; this theory defines the
sets that are measurable with respect to a given measure. Constructing new definitions incrementally
as extensions of others prevents inconsistencies and maintains a straightforward correspondence between
formalised theories and textbook definitions.

Another motivation for using measure theory in this chapter is to provide a mathematical link between
definitions involving discrete probability measures and continuous probability measures. This unification
of discrete and continuous probability under one general theory was a driving force behind the develop-
ment of Kolmogorov’s measure-theoretic treatment in the first half of the twentieth century [89]. Prior to
his work, probability theory was marginalised by many mathematicians as lacking mathematical rigour.
Using measure theory, definitions can be formalised that generalise the discrete and continuous cases,
providing a concrete connection between the two.

18
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General definitions also have practical implications for formalisation work. Often, they are easier
to work with because mechanised proofs involving such definitions are not complicated by unnecessary
details. On numerous occasions, I have struggled with a mechanised proof only to find that it could be
proved easily in a more general form and then applied to the particular case of interest. By using more
general definitions, the formalisation developed in the theorem-prover can be applied to a wider range of
future uses.

Let’s revisit Williams’s quote from Probability with Martingales, this time in its entirety:

“You cannot avoid measure theory: an event in probability is a measurable set, a random
variable is a measurable function on the sample space, the expectation of a random variable
is its integral with respect to the probability measure; and so on.”

Williams’s words accurately capture the inseparability of the topics of probability, measure, and integra-
tion that form the core of this chapter. Some definitions in a measure-theoretic treatment of probability
theory are constructed using (Lebesgue) integration. For example, both expectation and conditional
expectation are defined using the Lebesgue integral and are needed to define concepts in information
theory. Thus, just as measure theory must be formalised before information theory, so must integration
theory.

The work presented here is not the first effort to formalise probability theory in a theorem-prover
nor has the importance of measure and integration theories gone unnoticed in previous work. However,
the formalisations in this chapter offer significant advantages over previous developments. In the next
section, we will examine these contributions in comparison with past work.

2.2 Related work and novel contributions

Hurd’s formalisations of measure and probability theories in HOL4 [84] and Richter’s formalisation of
Lebesgue integration in the Isabelle theorem-prover [128] have served as a guide for the work presented
below. Also noteworthy are Bia las’s and Nȩdzusiak’s [11, 12, 111, 112] formalisations of measure theory
and probability theory in the Mizar theorem-prover, Hasan’s [79, 78] extensions of Hurd’s work to include
expected value, Harrison’s [77] formalisation of the gauge integral in HOL4, and Lester’s work on topology
in the PVS system [93].

2.2.1 Hurd’s measure and probability theories in HOL4

Hurd [84] developed a formalisation of measure theory in HOL4, upon which he constructed definitions
for probability spaces and functions on them. Hurd then used his formalisation to verify the correctness of
probabilistic algorithms; his most interesting application was the verification of the Miller-Rabin primality
test.

While Hurd’s work [84] was a major milestone for machine-verification of probabilistic algorithms, the
scope of that work was limited. He formalised many definitions from probability theory and proved im-
portant results about independent functions on probability spaces. Despite these contributions, his work
did not include some probability-theoretic concepts needed to define information theory. For example,
Hurd proved that the probability of the empty event is 0, the probability of the set of all events is 1,
and a probability measure is countably additive. However, he did not formalise definitions for random
variables, expectation, or conditional expectation.

Hurd’s formalisations restrict the measure and probability spaces that can be constructed. A measure
or probability space is a triple (S, S, µ) consisting of a set called the space (S), a set of subsets of the
space known as the measurable-sets or events (S), and a (probability) measure (µ). Hurd’s definitions do
not explicitly include the space, which he specifies implicitly as the universal set of the appropriate HOL
type. The universal set of a HOL type α is defined as

UNIV = {x : α | ⊤},

i.e. all the elements of type α. Hurd’s formalisations are restricted to probability and measure spaces of
the form (UNIV, S, µ). In fact, he formalised measure and probability spaces as pairs (S, µ); the space on
which they are defined is implied by the HOL type of the pair. This approach does not allow measure
and probability spaces where S is not the universal set of a HOL type.
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As mentioned above, one of the primary motivations for using measure theory was to generalise
the definitions for continuous and discrete probability-measures under a single theory.1 By formalising
probability theory as an extension of measure theory, such general definitions can be used in the theorem-
prover. These definitions can then be proved equivalent to simpler definitions for discrete (i.e. countable)
and continuous spaces. This approach has been taken below so that simpler definitions can be used where
applicable.

Although similar equivalences can be proved in Hurd’s formalisation, they cannot be used easily. For
example, one might be interested in a probability space (S, S, µ), where S is a countable set of elements of
HOL type α. If the universal set of α is countable, then a definition involving (S, S, µ) can be simplified to
its countable form. Although S is countable, the universal set of α might not be.2 In these cases, Hurd’s
formalisation makes it difficult to simplify a definition to its countable form. Before such a reduction can
be applied, a new HOL type must be defined for the elements of S. This requires a considerable effort,
so it is not feasible to undertake for each countable space of interest. For example, in order to define a
HOL type for a countable subset of the reals, it is necessary to redefine arithmetic operations on this set
and prove properties of these operations. These complications are avoided in the formalisation below,
because spaces are explicitly specified.

The formalisations of measure theory and probability theory presented in this chapter are modeled
after Hurd’s restricted formalisations. Some of Hurd’s definitions and proofs could be generalised with
only minor modifications; however, many of Hurd’s proofs were not valid for the general case and had to be
replaced. Despite overlap with Hurd’s work, the formalisations presented here broaden the applicability
of formal methods to probabilistic algorithms and ease the difficulty of that analysis.

2.2.2 Richter’s integration theory in Isabelle/HOL

Recall that Lebesgue integration is needed to define a number of concepts in probability theory. Amongst
these are expectation and conditional expectation, which feature heavily in subsequent chapters. Richter
[128] formalised Lebesgue integration in the Isabelle/HOL theorem-prover. The formalisation of Lebesgue
integration developed below is modelled after his work.

Unfortunately, Richter’s formalisations are insufficient for the applications in this text on several
accounts. Richter’s work was guided by Hurd’s and suffers from the same restrictions. In addition, his
work allows only integration of functions that are measurable from the real numbers to the real numbers.
The applications below require integration of functions from an arbitrary HOL type to the real numbers.
Finally, Richter developed his formalisation in the Isabelle/HOL system, while the work in this text uses
the HOL4 system; translation between the two systems is nontrivial.

Thus, a formalisation of Lebesgue integration that generalises Richter’s had to be developed in HOL4.
This approach allows equivalences to be proved between the general definition of the Lebesgue integral
and simpler forms for specific classes of spaces. These simplifications are new contributions to the
formalisation of Lebesgue integration. Furthermore, the work presented below is the only formalisation
of Lebesgue integration that has been developed in the HOL4 system.

2.2.3 Bia las and Nȩdzusiak’s probability theories in Mizar

Bia las and Nȩdzusiak developed the first formalisations of measure theory and probability theory, using
the Mizar theorem-prover [11, 12, 111, 112]. Their pioneering work marked the introduction of proba-
bility theory into the theorem-proving domain and has provided insight and inspiration for subsequent
developments in this line of research, such as Hurd’s HOL formalisation of probability theory [84].

2.2.4 Hasan’s expectation in HOL4

Building upon Hurd’s work, Hasan [78, 79] formalised definitions of expected value for discrete and
continuous probability distributions. He then used his formalisations to prove properties of various
probability distributions such as the Bernoulli distribution. Hasan’s definitions of expected value were
restricted to the discrete space of the natural numbers (a countable HOL type) and the continuous space

1Measure theory even generalises measures that are neither continuous, nor discrete, nor a mixture of the two.
2For instance, α might be the real numbers or tuples representing program executions as in Chapter 4.
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of the real numbers. His formalisations were not particularly affected by the limitations of Hurd’s because
he was only considering spaces that are the universal set of a HOL type.

Hasan did not formalise a general definition of expected value using Lebesgue integration, so he could
not formalise a mathematical connection between his definitions for the discrete case and the continuous
case. The formalisations developed below generalise his by allowing arbitrary spaces (rather than only
the naturals or the reals) and by defining expected value using Lebesgue integration; this definition
generalises those for the discrete and continuous cases.

Hasan’s work devoted to proving properties of well-known probability distributions is tangential to
aims of this text; however, his proofs could be reproduced using the more general framework developed
in this chapter.

2.2.5 Harrison’s gauge integral in HOL4

Harrison’s formalisation of the real numbers in HOL4 [77] included a definition of the gauge integral for
functions over the reals. His formalisation is not sufficiently general for the work in this chapter, which
requires a definition of integration for functions from an arbitrary type to the real numbers. Moreover,
Lebesgue integration is the natural choice for developing probability theory from measure theory and is
used in most textbooks [54, 100, 155]. Thus, the Lebesgue integral has been selected for the formalisa-
tions developed below. Future work could include a proof of equivalence between the formalisation of
integration in this chapter and Harrison’s, when considering bounded real-valued functions on bounded
intervals.3

2.2.6 Lester’s topology and probability in PVS

Also noteworthy is Lester’s work on topology in the PVS theorem-prover [93]. Lester developed formal-
isations for measure theory and Lebesgue integration in PVS. He then built on that work to formalise
some portion of probability theory. At the time that the formalisations in this chapter were completed, I
was unaware of Lester’s work. There is some overlap between his formalisations and the work presented
here. However, a number of important contributions of this chapter do not appear in Lester’s work;
amongst these are the formalisation of conditional expectation and proofs of equivalence between general
definitions and simpler definitions for discrete spaces.

It is difficult to say precisely how much Lester’s work overlaps with the formalisations developed below.
One difficulty in comparing these two formalisations is that different approaches were taken for each. In
this chapter, measures must be finite-valued (i.e. take values from the reals), but measurable functions
are real-valued and may take negative values. Lester allowed measures to be infinite (i.e. take values from
the reals, extended with positive and negative infinity elements), but required measurable functions to
be positive. Below, we will see that Lester’s restrictions simplified the formalisation process; however,
some generality was lost because functions taking both positive and negative values cannot be integrated.
Whether Lester’s restriction to positive measurable-functions or my restriction to finite measures is a
greater limitation would depend on the specific application. Another difficulty in comparing Lester’s
work with this chapter is that a different proof-assistant was used for each (PVS and HOL4 respectively).

⋆ ⋆ ⋆

The remainder of this chapter describes the formalisation of measure theory, Lebesgue integration, and
probability theory, within the context of the HOL4 theorem-prover. Measure theory will be examined
first, followed by Lebesgue integration, and ultimately probability theory. In general, the presentation
will progress from the simplest to the most complex definitions for each theory. A number of properties
of these formalisations have been proved in the theorem-prover, some of which appear in this chapter.
These proofs should reassure the reader that the formalisations behave as expected and appropriately
capture the textbook definitions. All of the HOL definitions and theories mentioned in this text can be
found in the appendices and the full HOL4 theory files are freely available on the internet [].

Definitions from measure, integration, and probability theories will be reviewed prior to their formal-
isations in order to facilitate easier reading. However, these definitions will not be discussed in great
detail; more detailed presentations can be found in standard textbooks on those subjects. Doob’s and

3Under these conditions, Lebesgue and gauge integrability are equivalent.
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Williams’s books are an excellent starting point [54, 155]. Doob focuses more on the development of
measure theory with applications to probability theory. Williams emphasises probability theory with
a basis in measure theory. In general, the definitions from measure theory, Lebesgue integration, and
probability theory found in this chapter are Doob’s [54] restated to respect the notational conventions
used here.

The presentation of the formalisations in this chapter avoids any unnecessary details about their
implementation in the HOL4 theorem-prover. However, implementation details are included where nec-
essary or of particular interest. In such cases, sufficient explanation is provided for someone unfamiliar
with the syntax of HOL4. A glossary of HOL4 notation can be found in Appendix A.

2.3 Measure theory formalised in HOL4

This section is devoted to the formalisation of measure theory in higher-order logic, upon which the formal-
isations of Lebesgue integration (Section 2.4) and probability theory (Section 2.5) are built. Knowledge
of this section will aid in understanding subsequent sections. As mentioned above, the formalisations
developed here are modeled after and generalise Hurd’s [84].

2.3.1 Subset classes and σ-algebras

Our investigation of measure theory in HOL begins with a study of important classes of subsets of a
space. Before identifying particular classes of subsets, it is necessary to characterise what it means for
a set to be a class of subsets of a particular space. To that end, we will review a definition for a subset
class and then examine the formalisation of that definition in HOL.

Definition 10 (subset class). S is a subset class of a space S iff all the elements of S are subsets of S.

The formalisation of Definition 10 in higher-order logic is straightforward as can be seen below.

Formalisation 1 (subset class).

subset class sp sts = ∀ x. x IN sts ⇒ x SUBSET sp.

We will now review a textbook definition for an important type of subset class known as an algebra;
afterwards we will examine the formalisation of this definition in higher-order logic.

Definition 11 (algebra). A class S of subsets of a space S define an algebra iff

(i) S contains the empty set,
(ii) S is closed under complementation (within S), and
(iii) S is closed under finite unions.

Note that conditions (ii) and (iii) together are equivalent to condition (ii) and the condition that S

is closed under finite intersections. Thus, an algebra is necessarily closed under both finite unions and
finite intersections. Definition 11 has been formalised in higher-order logic as

Formalisation 2 (algebra).

algebra (sp, sts) = subset class sp sts ∧
{} IN sts ∧ (∀ s. s IN sts ⇒ sp DIFF s IN sts) ∧
(∀ s t. s IN sts ∧ t IN sts ⇒ s UNION t IN sts),

where {} represents the empty set and DIFF and UNION are the set-difference and -union operations
respectively. Note that within a space S, the complement of a set s ⊆ S is the difference of S and s.

A simple line-by-line comparison reveals that Formalisation 2 captures Definition 11. The first line
of the formalisation captures the implicit condition in Definition 11 that sp and sts form a subset
class. A straightforward correspondence between textbook definitions and their formalisations has been
maintained wherever possible.

Let’s digress for a moment to examine a concrete example of Hurd’s restriction on spaces in his formal-
isation of measure theory [84]. As explained in Section 2.2, the differences between Hurd’s formalisations
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and those in this chapter are subtle, but they have a substantial impact on the respective formalisations.
Hurd’s formalisation requires that all spaces considered are the universal set of some HOL type (i.e. the
set of all elements of that type). For example, Hurd’s formalisation of Definition 11 above is

algebra sts = {} IN sts ∧

(∀ s. s IN sts ⇒ COMPL s IN sts) ∧

(∀ s t. s IN sts ∧ t IN sts ⇒ s UNION t IN sts),

where COMPL s is the set-complementation operation equal to UNIV DIFF s.4 Notice that Hurd’s formal-
isation does not require that sts is a class of subsets of UNIV. That requirement is trivially true in his
formalisation because all sets of a given type are subsets of the universal set of that type.

We now continue looking at important classes of subsets by reviewing a definition for a σ-algebra
followed by its formalisation in higher-order logic.

Definition 12 (σ-algebra). A subset class S of a space S defines a σ-algebra iff (S, S) defines an algebra
and S is closed under countable (possibly infinite) unions.

Formalisation 3 (σ-algebra).

sigma algebra (sp, sts) = algebra (sp, sts) ∧
(∀ c. countable c ∧ c SUBSET sts ⇒ BIGUNION c IN sts),

where BIGUNION S is the union operation applied over the elements of a set of sets S and is equivalent to
the mathematical notation

⋃

x∈S x.

For a space S, (S, {∅, S}) is the smallest σ-algebra and (S,P(S)) the largest, where ∅ and P(S) denote
the empty set and the powerset of S respectively.

Typically, σ(S, G) is used to denote the smallest σ-algebra defined on a space S and containing a
generating set of subsets G. The function constructing this smallest σ-algebra can be defined in HOL as
follows:

Formalisation 4 (σ(S, G)).

sigma (sp, sts) = (sp, BIGINTER {s | sts SUBSET s ∧ sigma algebra (sp, s)}),

where BIGINTER s is the set of elements that are in all the sets in s.

The following reassuring property has been proved about sigma in HOL4:

∀ sp sts. subset class sp sts ⇒ sigma algebra (simga (sp, sts))

i.e. sigma (sp, sts) defines a σ-algebra assuming sts is a class of subsets of sp.

2.3.2 Measure spaces

One of the most important developments presented in this section is the HOL definition of a measure
space. Before the definition of a measure space can be formalised, it is first necessary to formalise the
properties of positivity and countable additivity, which measure spaces must satisfy. We now review
definitions for those properties and then examine their formalisations in higher-order logic.

Definition 13 (positivity). Let S be a class of subsets of space S containing the empty set and λ a
function from S to R. Then λ is positive with respect to (S, S) iff λ(s) ≥ 0 for any s ∈ S and λ(∅) = 0.

Formalisation 5 (positivity).

positive (sp, sts, lambda) =
(lambda {} = 0) ∧ (∀ s. s IN sts ⇒ 0 ≤ lambda s).

4i.e. the difference between the universal set of the type of s and s
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Definition 14 (countable additivity). Let S be a class of subsets of space S and let S contain the empty
set. Let λ be a function from S to R. Then λ is countably additive with respect to (S, S) iff

lim
n→∞

n
∑

j=0

λ(sj) → λ(
⋃

i

si),

for any sequence s0, s1, . . . of elements of S such that
⋃

i si ∈ S and all sj and sk are disjoint when j 6= k.

Formalisation 6 (countable additivity).

countably additive (sp, sts, lambda) =
∀ (f : num → sts). (∀ m n. m 6= n ⇒ DISJOINT (f m) (f n)) ∧

BIGUNION (IMAGE f (UNIV : num → bool)) IN sts ⇒
(lambda ◦ f) sums

(lambda (BIGUNION (IMAGE f (UNIV : num → bool)))),

where IMAGE f s is the set of values taken by f when applied to the elements of s, ◦ is the function
composition operation, and g sums c is equivalent to the mathematical notation limn→∞(

∑n
i=0 g(i)) → c.

The correspondence between Definition 13 and Formalisation 5 is apparent. Definition 14 is more
complicated, so Formalisation 6 requires careful examination. Note that, a sequence of sets si can be
characterised by a function f from N to the elements of si, assuming that si is countable and its elements
are disjoint; this function f maps the natural numbers to unique elements of si. This approach has been
used to implicitly represent a countable sequence of sets in Formalisation 6.

At last we are ready to examine the HOL formalisation of a measure space; we begin by reviewing a
textbook definition for measure spaces.

Definition 15 (measure space). Let S be a class of subsets of S such that (S, S) defines a σ-algebra and
let λ be a function from S to R. Then (S, S, λ) defines a measure space iff λ is positive and countably
additive with respect to (S, S). Equivalently, one can state that (S, S) is λ-measurable.

S is referred to as the space of the measure space, S as the measurable sets of the measure space, and
λ as the measure of the measure space.

Building on the formalisations developed above, it is straightforward to capture Definition 15 in a
HOL formalisation.

Formalisation 7 (measure space).

measure space (sp, sts, lambda) = sigma algebra (sp, sts) ∧
positive (sp, sts, lambda) ∧ countably additive (sp, sts, lambda).

Rather confusingly, the term measurable space is used synonymously with the term σ-algebra in most
textbooks. This is something of a misnomer as there is not necessarily a measure λ such that (S, S, λ)
is a measure space, for an arbitrary σ-algebra (S, S). For example, Vitali’s theorem5 demonstrates the
existence of non-measurable sets in the space (R,P(R)), assuming the axiom of choice. Since a set and
its powerset form a σ-algebra, it follows that there are σ-algebras which lack a well-defined measure.
Nonetheless, the term measurable space will be used here in the usual textbook sense, but the reader
should remember that this is a necessary (but not sufficient) condition for the existence of a measure on
a space.

2.3.3 Measurable functions

We complete our exploration of measure theory in HOL4 by studying definitions for measurable func-
tions and measure-preserving functions. These properties are important for the definitions of Lebesgue
integration (Section 2.4) and random variables (Section 2.5).

5Vitali’s theorem implies that a measure returning the length of an open interval cannot be defined on (R,P(R)), when
the axiom of choice is assumed.
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Definition 16 (measurable function). Let (S′, S′) and (S, S) be measurable spaces. Let f [s] denote the
image of a function f on a set s and f−1[s] denote the inverse image of f on s i.e. {y | ∃x. x ∈ s∧f(x) =
y} and {x | f(x) ∈ s} respectively. A function f from S into S′ is measurable with respect to (S, S)
and (S′, S′) iff f−1[s′] ∈ S for any s′ ∈ S

′. Often, f is referred to as a measurable function from (S, S)
into (S′, S′).

Notice that, as with the standard usage of the term measurable space, a function may be measurable
from one space to another without guaranteeing the existence of appropriate measures for those spaces.

Formalisation 8 (measurable function).

measurable (sp, sts) (sp′, sts′) f = sigma algebra (sp, sts) ∧
sigma algebra (sp′, sts′) ∧ (∀ x. x IN sp ⇒ f x IN sp′) ∧
(∀ s′. s′ IN sts′ ⇒ ((PREIMAGE f s′) INTER sp) IN sts),

where INTER is the set-intersection operation and PREIMAGE f s denotes f−1[s].

Now lets look at the translation of Definition 16 into higher-order logic. Recall from above that a
space is measurable if and only if it defines a σ-algebra. Thus, the first two conditions of Formalisation 8
correspond to the requirement in Definition 16 that both of the spaces involved are measurable. The next
condition corresponds to the requirement that the function is from the one space into the other. The final
condition is the property required of the inverse-image of the function by the definition. In Formalisation
8, the inverse image of function f on set s′ is intersected with space sp, but no such intersection occurs
in Definition 16. This intersection is needed because HOL4 functions are total and f maps every value of
the appropriate HOL type (including those outside of sp) to a value of the appropriate HOL type (which
may or may not be in sp′). The third condition of the formalisation ensures that f maps values in sp into
sp′, but there may still be values outside of sp which f maps into sp′. In the mathematical definition, a
function from S to S′ is only defined on S, so the intersection with S is unnecessary; in the formalisation,
however, the inverse image of f must be intersected with the space sp in order to consider only values in
sp. The inverse image of f must be intersected with the space sp in Formalisation 9 for the same reason
as in Formalisation 8.

Definition 17 (measure-preserving). Let (S, S, λ) and (S′, S′, λ′) be measure spaces and f a measurable
function from (S, S) into (S′, S′). Then f is measure preserving with respect to (S, S, λ) and (S′, S′, λ′)
iff λ(f−1[s′]) = λ′(s′), for any s′ ∈ S′.

Formalisation 9 (measure-preserving).

measure preserving (sp, sts, lambda) (sp′, sts′, lambda′) f =
measure space (sp, sts, lambda) ∧
measure space (sp′, sts′, lambda′) ∧
measurable (sp, sts) (sp′, sts′) f ∧
(∀ s′. s′ IN sts′ ⇒
(lambda ((PREIMAGE f s′) INTER sp) = lambda′ (s′))).

Finally, lets examine a definition of the Borel space and measurability thereupon.

Definition 18 (Borel space). Let B be the sets of open (or equivalently closed) intervals of the real
numbers. The Borel space of real numbers is the smallest σ-algebra generated by B, namely σ(R, B).

Formalisation 10 (Borel space).

borel space = sigma UNIV (IMAGE (λa. {x | x ≤ a}) UNIV).

The σ-algebra generated by the Borel sets of real numbers is of particular importance for real-valued
measurable functions. Borel-measurability of a set implies its Lebesgue measurability, which is useful
when proving integration properties for real-valued functions.

Definition 19 (Borel-measurable). A function f is Borel-measurable with respect to a space (S, S) iff it
is measurable from (S, S) onto the Borel space.
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Formalisation 11 (Borel-measurable).

borel measurable (sp, sts) f = measurable (sp, sts) borel space f.

This concludes our study of measure theory formalised in higher-order logic. The majority of the effort
in formalising the definitions above was devoted to proving that they satisfy appropriate properties. The
proofs of those theorems are not included in this text, but the statement of each in HOL4 notation can
be examined in Appendices B and C.

2.4 Lebesgue integration formalised in HOL4

We will now focus on Lebesgue integration formalised in higher-order logic. Recall from Section 2.2.2
that this formalisation must be applicable to measurable functions from a space of an arbitrary type to
a space that is a subset of the real numbers. Since the formalisation of measure theory in Section 2.3
defined measures to be real-valued (rather than using the extended reals or hyper reals), the integrals in
this section are necessarily finite-valued; in the case of integrals diverging to positive or negative infinity,
the integral is undefined.6 This restriction to finite-valued measures was also adopted in the work of Hurd
[84] and Richter [128] and still allows for a broad range of applications. In the formalisations below, the
Lebesgue integral is defined using positive simple functions, as is done in standard textbooks [54, 100, 155]
and in Richter’s work. Positive simple functions are also frequently referred to as step functions.

2.4.1 Indicator functions and positive simple functions

We begin our study of Lebesgue integration in HOL by reviewing definitions for indicator functions and
positive simple functions, which are needed to define the Lebesgue integral.

Definition 20 (indicator function). The indicator function of a set A, denoted by 1A, is a real-valued
function defined to be

1A(a) =

{

1 (a ∈ A)
0 (a /∈ A)

Formalisation 12 (indicator function).

indicator fn A = λa. if a IN A then 1 else 0.

We now move on to review the definition of a positive simple function and its integral with respect to
a measure space. Afterwards we will look at the formalisation of these definitions in higher-order logic.

Definition 21 (positive simple function). Let (S, S, λ) be a measure space. A function f is a positive
simple function or step function with respect to (S, S, λ) iff it can be defined as a linear combination
of indicator functions of a finite number of disjoint elements of S with strictly positive coefficients i.e.

f = λx.

n
∑

i=0

ci(1ai
(x)),

for some finite set of indices i ∈ {0, . . . , n}, a set of coefficients ci satisfying

∀i ∈ {0, . . . , n}. 0 < ci,

and a set of measurable sets of (S, S, λ), ai, satisfying

(∀i ∈ {0, . . . , n}. ai ∈ S) ∧ (∀i, j ∈ {0, . . . , n}. i 6= j ⇒ ai ∩ aj = ∅).

Equivalently, the coefficients ci above can be required to be non-negative, rather than strictly positive, and
the measurable sets ai required to form a partition of S i.e.

⋃n
i=0 ai = S.

The integral of a positive simple function f, defined by coefficients ci and measurable sets ai, on space
S with respect to its measure λ is defined as

∫

S

f dλ =

n
∑

i=0

ci(λ(ai)).

6Strictly speaking, functions in HOL4 cannot have an undefined value and are instead assigned the value of an arbitrary
constant ARB.
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The HOL definition of a positive simple function below uses the second representation from Definition
21, allowing the coefficients to be non-negative and requiring the measurable sets to form a partition of
the measure space. This form simplifies the proofs of some basic properties of positive simple functions;
Richter [128] used the same approach.

Formalisation 13 (positive simple function).

pos simple fn (sp, sts, lambda) f s a c = (∀ x. 0 ≤ f x) ∧
(∀ x. x IN sp ⇒ (f x = SIGMA (λ i. c i ∗ (indicator fn (a i) x)) s)) ∧
(∀ i. i IN s ⇒ a i IN sts) ∧ (∀ i. 0 ≤ c i) ∧
FINITE s ∧ (∀ i j. i IN s ∧ j IN s ⇒ DISJOINT (a i) (a j)) ∧
(BIGUNION (IMAGE a s) = sp),

where (sp, sts, lambda) is a measure space, f is the function in question, s is a set of natural numbers
representing the indices, a is a function from natural numbers to sets representing the measurable sets ai,
and c is a function from natural numbers to the real numbers representing the coefficients ci. SIGMA f s

is equivalent to
∑

x∈s f(x), where s is a finite set.

The first condition in Formalisation 13 ensures that f takes only non-negative values.7 This condition
is implicit in the positivity of the measure λ and the non-negativity of the coefficients ci in Definition 21.
The second condition requires that the values taken by f on sp are defined by a linear combination of the
coefficients and the indicator functions of the measurable sets. The rest of the conditions are respectively:
the a i’s are in sts, the coefficients are non-negative, the set of indices is finite, the a i’s are disjoint for
different indices, and finally the a i’s form a partition of sp.8

Building on the formalised definition of a positive simple function, the integral thereof has been defined
in HOL as follows.

Formalisation 14 (integral of a positive simple function).

pos simple fn integral (sp, sts, lambda) s a c =
SIGMA (λ i. c i ∗ lambda (a i)) s.

Note that there is no explicit reference to the function that is being integrated; instead it is represented
through an index set, coefficients, and measurable sets. The representation of a positive simple function f
by a set of coefficients and measurable sets is not necessarily unique i.e. there may be many combinations
of coefficients and measurable sets that are equivalent. Moreover, the integral of f is unique regardless
of which representation is used to compute it. Thus, the integral of f can be referred to directly, without
making explicit reference to sets and coefficients.

Following Richter’s [128] lead, the set of integrals of a function f has been formalised, allowing the
integral of f to be referred to directly. The set of integrals of f contains a single unique element when f
is a positive simple function and is empty otherwise. Below we will examine the HOL definitions for the
set of representations of a positive simple function and the set of integrals of a particular positive simple
function.

Formalisation 15 (set of representations of a positive simple function).

psfs (sp, sts, lambda) f =
{(s, a, c) | pos simple fn (sp, sts, lambda) f s a c}.

Formalisation 16 (set of integrals of a positive simple function).

psfis (sp, sts, lambda) f =
IMAGE (λ (s, a, c). pos simple fn integral (sp, sts, lambda) s a c)

(psfs (sp, sts, lambda) f).

7Although only the values f takes on sp are of concern, f must be a total function in HOL4 and might take negative
values when applied outside of sp. For the sake of convenience f is required to be non-negative for all inputs; this is done
without any loss of generality. The same approach is taken with the second condition in the formalisation.

8More precisely, the final condition is that the union of the a i’s is sp which together with their disjointness makes them
a partition.
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Before moving on to look at integration for positive measurable functions, we will briefly review some
useful and reassuring properties that have been proved about the formalisations developed above.

HOL Theorem 1 (uniqueness). The integral of a positive simple function is unique regardless of the
choice of representation using coefficients and measurable sets.

∀ m f a b. measure space m ∧ a IN psfis m f ∧ b IN psfis m f ⇒ (a = b).

HOL Theorem 2 (additivity). The integral of the function defined by adding two positive simple func-
tions is the addition of their integrals.

∀ m f g a b. measure space m ∧ a IN psfis m f ∧ b IN psfis m g

⇒ a + b IN psfis m (λ x. f x + g x).

Note that this property can be generalised to any finite linear combination of positive simple functions;
this generalised additivity property has also been proved.

HOL Theorem 3 (multiplicativity). The integral of the function defined by multiplying a positive simple
function f by a non-negative constant c is the integral of f multiplied by c.

∀ m f a c. measure space m ∧ a IN psfis m f ∧ 0 ≤ c

⇒ c ∗ a IN psfis m (λ x. c ∗ (f x)).

HOL Theorem 4 (monotonicity). If f is a positive simple function which is pointwise less than or equal
to another positive simple function g, then the integral of f is less than or equal to the integral of g.

∀ m f g a b. measure space m ∧ a IN psfis m f ∧ b IN psfis m g ∧
(∀ x. f x ≤ g x) ⇒ a ≤ b.

HOL Theorem 5 (commonality). If f and g are positive simple functions on the same measure space
m, then there is a set of measurable sets of m which, paired with a set of coefficients for f and a set of
coefficients for g, can be used to characterise both f and g. The statement of this theorem in HOL4 is
omitted here for the sake of brevity, but can be found in Appendix D as psfis present.

Theorem 1 (convergence of integrals of positive simple functions). Consider a measure space (S, S, λ)
and a non-negative function f from S to R. Let {fi} be a pointwise monotone-increasing sequence of
positive simple functions such that

∀ x ∈ S. lim
i→∞

fi(x) → f(x).

If limi→∞

∫

S
fi dλ → r for some r, then for any positive simple function g such that ∀x. g(x) ≤ f(x)

∫

S

g dλ ≤ r.

In terms of subsequent developments in this chapter, Theorem 1 is the most important property that
has been proved about integration for positive simple functions. Since the statement of that theorem is
intricate and the proof lengthy, it appears here only in mathematical notation; the statement of Theorem
1 in HOL notation can be found in Appendix D under the name psfis mono conv mono.

2.4.2 Integration of positive measurable functions

Having looked at integration for positive simple functions in the previous section, the next step towards
Lebesgue integration for measurable functions is integration of positive measurable functions. We will now
review a textbook definition for the integral of a positive measurable function, followed by its formalisation
in higher-order logic.
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Definition 22 (integral of a positive measurable function). Let (S, S, λ) be a measure space, (S′, S′) a
measurable space, and f a non-negative real-valued function that is measurable from (S, S) to (S′, S′). If
there exists a pointwise monotone-increasing sequence of positive simple functions {fi} such that the fi

converge pointwise to f i.e.

∀ x ∈ S. lim
i→∞

fi(x) → f(x)

and the sequence of integrals of the fi’s converges to a value y i.e.

lim
i→∞

∫

S

fi dλ → y,

then the integral of f on S with respect to λ is defined to be y:

∫

S

f dλ = y.

Notice that
∫

S
f dλ is not defined for all f because a convergent sequence of step functions and a

corresponding convergent sequence of integrals might not exist for a particular f . Such is the case when
the integral of f diverges to positive or negative infinity. As with step functions, the set of integrals of a
positive measurable function f has been formalised, allowing the integral of f to be referred to directly,
without explicitly mentioning the sequence of approximating step functions. The set of integrals of f
contains a single unique element when the integral exists and is empty otherwise.

Formalisation 17 (integral of a positive measurable function).

nnfis (sp, sts, lambda) f =
{y | ∃fi xi. mono convergent fi f sp ∧

∀n. (xi n) IN psfis (sp, sts, lambda) (fi n) ∧
xi → y}.

As with the integrals of step functions, the uniqueness, multiplicativity, additivity, and monotonicity
of the integrals of non-negative measurable functions has been formalised. These theorems are not stated
here as they are very similar to HOL Theorems 1–4, but they can be found in Appendix D as nnfis uniqe,
nnfis times, nnfis add, and nnfis mono.

Building on Theorem 1 above, the Beppo-Levi monotone convergence theorem has been proved. This
theorem is of great importance for subsequent formalisations, most notably for the proof simplifying the
definition of Lebesgue integration for discrete spaces. The statement of this theorem is presented below
in mathematical notation for the sake of brevity and readability; see Appendix D for the statement in
HOL notation as nnfis mon conv.

Theorem 2 (Beppo-Levi monotone convergence theorem). Let (S, S, λ) be a measure space and f be a
non-negative function from S to R. Let {fi} be a pointwise monotone-increasing sequence of non-negative
functions converging pointwise to f , i.e.

∀ x ∈ S. lim
i→∞

fi(x) → f(x),

for which the integrals of all the fi’s exist and the sequence of integrals of the fi’s converges to a value y
i.e.

lim
i→∞

∫

S

fi dλ → y,

then
∫

S

f dλ = y.

If a sequence of non-negative functions converge to a function f and their integrals converge to a value
y, then Theorem 2 guarantees that the integral of f exists and is y.



30 Chapter 2. Probability, Measure, and Integration

2.4.3 Lebesgue integration of measurable functions

Having studied integration of positive simple functions and positive measurable functions above, we can
now take the final step and examine the Lebesgue integral of a measurable function. We will now review
a textbook definition of this integral.

Definition 23 (Lebesgue integral of a measurable function). Let (S, S, λ) be a measure space, (S′, S′)
a measurable space, and f a real-valued measurable function from (S, S) to (S′, S′). Let f+(x) =
max(f(x), 0) and f−(x) = max(−f(x), 0) i.e. f+ and f− are the positive and negative portions of f
respectively. Note that f(x) = f+(x) − f−(x) and f+ and f− are both non-negative functions. Define
the integral of f on S with respect to λ to be

∫

S

f dλ =

∫

S

f+ dλ −

∫

S

f− dλ.

Note that the integral of f is well-defined iff f+ and f− are both measurable from (S, S) to (S′, S′) and
their integrals both exist.

Seeing as the integral of a measurable function is simply the difference of the integrals of its positive
and negative portions, it can be defined easily in terms of Formalisation 17.

Formalisation 18 (Lebesgue integral of a measurable function).

integral (sp, sts, lambda) f =
@x. x IN nnfis (sp, sts, lambda) (pos part f) −
@y. y IN nnfis (sp, sts, lambda) (neg part f),

where @x. P x is the Hilbert’s choice operator equivalent to “any x for which P x holds” and pos part f

and neg part f are the functions representing the absolute value of the positive and negative portions of
f respectively.

Formalisation 18 is undefined if the integral of either the positive or the negative portion of the
function is infinite. In practice this is not often a limitation. To compare, Lester’s formalisation [93]
allows infinite values, but his formalisation stops with something akin to Formalisation 17 and does
not allow for integration of functions taking both positive and negative values, which are commonly of
interest.

Definition 23 generalises simpler definitions for finite and countable discrete spaces; Formalisation 18
has been proved equivalent to those simpler forms in the theorem-prover. Before looking at those proofs,
let’s examine HOL definitions of those simplified forms of the integral.

Formalisation 19 (integral of a measurable fn. on a countable, discrete space).

countable space integral (sp, sts, lambda) f =
let e = enumerate (IMAGE f sp) in

suminf (λ i. e i ∗ lambda (PREIMAGE f {e i} INTER sp)),

where enumerate s is a bijection from the natural numbers to the elements of set s; enumerate s is
well-defined only when s is a countably-infinite set. suminf f is the infinite summation of a real-valued
function f on the natural numbers and is equivalent to the mathematical notation

∑∞
i=0 f(i) when this

sum converges and is undefined otherwise.

Because enumerate in Formalisation 19 is only well-defined on countably-infinite sets, it is necessary
to formalise a separate definition for finite sets using a simpler finite summation.

Formalisation 20 (integral of a measurable fn. on a finite discrete space).

finite space integral (sp, sts, lambda) f =
SIGMA (λ r. r ∗ lambda (PREIMAGE f {r} INTER sp)) (IMAGE f sp).

Clearly, it is simpler and more intuitive to define integration as a summation (as in Formalisations 19
and 20) than as a difference of limits of sums of approximating functions (as in Formalisation 18). Let’s
take a look at the HOL theorems showing the equivalence of the general defintion of Lebesgue integration
to its simplified forms for discrete spaces; those proof are a useful contribution of this section and allow
many general definitions in Section 2.5 to be simplified when considering discrete probability spaces.
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HOL Theorem 6 (equivalence of Forms. 18 and 20 for finite, discrete spaces).

∀ (sp, sts, lambda) f. measure space (sp, sts, lambda) ∧
f IN borel measurable (sp, sts) ∧ FINTE sp ⇒
(integral (sp, sts, lambda) f =
finite space integral (sp, sts, lambda) f),

Notice that the function f is required to be borel-measurable for the equivalence above to hold. This
does not pose any limitation because the existence of the the integral of f implies its borel-measurability.9

Now let’s look at the case of countably-infinite spaces.

HOL Theorem 7 (equivalence of Forms. 18 and 19 for countable, discrete spaces).

∀ (sp, sts, lambda) f p n. measure space (sp, sts, lambda) ∧
f IN borel measurable (sp, sts) ∧ countable (IMAGE f sp) ∧
¬FINITE (IMAGE (pos part f) sp) ∧ ¬FINITE (IMAGE (neg part f) sp) ∧
(λ r. r ∗ lambda (PREIMAGE (pos part f) {r} INTER sp)) ◦

(enumerate (IMAGE (pos part f) sp)) sums p ∧
(λ r. r ∗ lambda (PREIMAGE (neg part f) {r} INTER sp)) ◦

(enumerate (IMAGE (neg part f) sp)) sums n ⇒
(integral (sp, sts, lambda) f = p− n),

where sums f r denotes that the infinite summation of f (as defined by suminf) converges to r and ◦
denotes the function composition operator.

A number of useful properties of the Lebesgue integral have been proved in HOL. An example of one
such useful property is that the integral of the indicator function of a measurable set is the measure of
that set. The statement of that theorem in HOL4 and in mathematical notation can be found below.

HOL Theorem 8 (integral of the indicator fn. of a measurable set).

∀ (sp, sts, lambda) s. measure space (sp, sts, lambda) ∧ s IN sts ⇒
(integral (indicator fn s) = lambda s).

Equivalently in mathematical notation: Let (S, S, λ) be a measure space.

∀ a ∈ S.

∫

S

1a dλ = λ(a).

2.4.4 Radon-Nikodým derivatives

The Radon-Nikodým derivative of one measure with respect to another measure is needed to define some
of the information-theoretic concepts that will be presented in Chapter 3. Let’s review a definition of the
Radon-Nikodým derivative and then examine its formalisation in higher-order logic.

Definition 24 (Radon-Nikodým derivative). Let (S, S, µ) and (S, S, ν) be measure spaces. Notice that µ
and ν are measures on the same space. Define the Radon-Nikodým derivative of ν with respect to
(S, S, µ) to be the borel-measurable function f on S such that

∀ a ∈ S. ν(a) =

∫

a

f(a)dµ,

where the integral above is a Lebesgue integral. The function f , representing the Radon-Nikodým derivative
of ν with respect to µ, is often denoted by dν

dµ
.

Formalisation 21 (Radon-Nikodým derivative).

RN deriv (sp, sts, mu) nu =
@f. measure space (sp, sts, mu) ∧ measure space (sp, sts, nu) ∧

f IN borel measurable (sp, sts) ∧
∀ a. a IN sts ⇒

(integral (sp, sts, mu) (λ x. f x ∗ indicator fn a x) = nu a),

9The theorem stating that integrability implies borel-measurability can be found in Appendix D as
integral borel measurable.
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where @x. P x denotes the Hilbert’s choice operator; recall that @x. P x can be read informally as “any x

such that P x”.

The Radon-Nikodým theorem guarantees the existence of such a derivative and its uniqueness, up to
µ-null sets10, for any absolutely continuous ν. More details about the Radon-Nikodým theorem can be
found in standard textbooks addressing measure and integration [54, 100, 155]. The proof of that theorem
is nontrivial and best left until a larger body of integrability theorems have been proved. However, the
reduction of Formalisation 21 needed for the developments in Chapter 3 does not rely on a general proof
of the Radon-Nikodým theorem. In the case of finite, discrete spaces, the R.-N. derivative of two measures
of a non-null set reduces to a division of the two measures. This reduction is stated more rigourously
below.

HOL Theorem 9 (Radon-Nikodým derivative of finite, discrete spaces).

∀ sp sts mu nu. FINITE sp ∧ measure space (sp, sts, mu) ∧
measure space (sp, sts, nu) ∧
(∀ x. (mu {x} = 0) ⇒ (nu {x} = 0)) ⇒
(∀ x. x IN sp ∧ (mu {x} 6= 0) ⇒

(RN deriv (sp, sts, mu) nu x = nu {x}/mu {x})).

This reduction of the Radon-Nikodým derivative of ν with respect to µ to ν(x)
µ(x) is a nice justification of

typical denotation as dν
dµ

(x).

2.4.5 Product measures

The concept of a product measure on a product space is needed for some definitions from information
theory. This topic really belongs under the domain of measure theory (Section 2.3), but its presentation
has been delayed until now because Lebesgue integration is required. A thorough formalisation of theo-
rems relating to product measures is not in the scope of the present work and is left as a useful area for
future work. We will now review a general definition of product measure spaces, followed by the HOL
formalisation of that definition and theorems needed in subsequent chapters.

Definition 25 (product measure space). Let (S1, S1, µ1) and (S2, S2, µ2) be measure spaces. Let S =
S1×S2 be the space defined by the cross product of S1 and S2 and S be the class of subsets in the smallest
σ-algebra generated by the cross products of sets in S1 and S2 respectively. If µ is a measure on (S, S)
such that

∀a1 ∈ S1 a2 ∈ S2. µ(a1 × a2) = µ1(a1)µ2(a2),

then (S, S, µ) is a product measure space and µ is its product measure.

A product measure µ for two measure spaces (S1, S1, µ1) and (S2, S2, µ2) can be constructed as

µ(a) =
∫

S1
(λx1. µ2((λx2. (x1, x2))−1[a])) dµ1

=
∫

S2
(λx2. µ1((λx1. (x1, x2))−1[a])) dµ2,

where (λ x2. (x1, x2))−1[a] denotes the inverse image of (λ x2. (x1, x2)) on a. The existence and uniqueness
of the product measure are guaranteed by the Fubini-Lebesgue theorem. A detailed presentation of the
Fubini-Lebesgue theorem can be found in standard textbooks covering measure theory and integration
[54, 100, 155]. The construction of the product measure described above can be defined in higher-order
logic using the formalisation of Lebesgue integration developed earlier.

Formalisation 22 (product measure).

prod measure (sp1, sts1, mu1) (sp2, sts2, mu2) =
(λ a. integral (sp1, sts1, mu1)

(λ x1. mu2 (PREIMAGE (λ x2. (x1, x2)) a))).

Building on this definition, product measure spaces can be formalised in HOL as follows.

10sets which are not measurable with respect to µ or whose measure is zero
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Formalisation 23 (product measure space).

prod measure space (sp1, sts1, mu1) (sp2, sts2, mu2) =
(sp1 CROSS sp2,
subsets (sigma (sp1 CROSS sp2) (prod sets sts1 sts2)),
prod measure (sp1, sts1, mu1) (sp2, sts2, mu2)).

A general proof of the Fubini-Lebesgue theorem is outside the scope of the present work and will not
be undertaken here. However, the equivalence of the product measure to the product of the respective
measures has been proved for a class of finite, discrete spaces. The statement of that theorem and that
the product measure space forms a valid measure space for that class of spaces can be found in Appendix
D as finite POW prod measure reduce and measure space finite prod measure POW1 respectively.

2.5 Probability theory formalised in HOL4

2.5.1 A general formalisation of probability theory

Many of the foundational definitions in probability theory are simply specific instances of corresponding
definitions in measure theory. By building on the formalisation of measure theory presented in Section
2.3, it is straightforward to generalise Hurd’s formalisation of probability theory in HOL. This section
examines such a formalisation. The specialisation of a measure space to define a probability space serves
as a natural starting point. Thus, we will begin by reviewing a textbook definition for a probability space
and then studying the HOL formalisation of that definition.

Definition 26 (probability space). Let (S, S, µ) be a measure space. (S, S, µ) is a probability space
iff µ(S) = 1. For a probability space (S, S, µ), we refer to S, S, and µ respectively as the space, events,
and probability function of (S, S, µ).

Definition 26 can be formalised as extension of the HOL definition for measure spaces (Formalisation
7).

Formalisation 24 (probability space).

probability space (sp, sts, mu) =
measurable space (sp, sts, mu) ∧ (mu (sp) = 1).

The restriction on Hurd’s formalisation of probability spaces [84] is precisely his restriction on measure
spaces carried forward; that restriction was explained in detail in Sections 2.2 and 2.3 and will not be
readdressed here.

One of the most important properties that can hold between two events in a probability space is
independence; much of Hurd’s formalisation work focused on independence results for events and functions
on probability spaces. We will now look at a HOL definition for the independence of two events; first we
review a textbook definition of this property.

Definition 27 (independent events). Let (S, S, µ) be a probability space. Then s ∈ S and s′ ∈ S are
independent events of (S, S, µ) iff

µ(s ∩ s′) = (µ(s))(µ(s′)).

Note that s∩s′ is guaranteed to be an event of (S, S, µ), when s and s′ are both events of (S, S, µ), because
(S, S) defines a σ-algebra and therefore S is closed under intersection.

Formalisation 25 (independent events).

indep (sp, sts, mu) s s′ =
s IN sts ∧ s′ IN sts ∧ (mu (s INTER s′) = mu s ∗ mu s′),

assuming probability space (sp, sts, mu) holds.

This concludes our look at HOL formalisations generalising Hurd’s for probability theory. As with
measure theory, the majority of the effort was not devoted to formalising the definitions, but to proving
that they satisfy appropriate properties. That effort does not appear here; however, those theorems can
be found in HOL notation in Appendix E.
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2.5.2 Extensions to the formalisation of probability theory

Hurd’s formalisations [84] did not include a number of basic definitions from probability theory that are
needed for information theory. For example, he did not formalise a general measure-theoretic definition
of expected value, which would have required him to formalise Lebesgue integration. Having examined a
generalisations of Hurd’s constructions for probability theory, we will now move on to study extensions
including definitions from probability theory that are necessary for the development of information theory
in Chapter 3.

In the formalisations below, general measure-theoretic definitions have been used in order to maintain
flexibility for future applications and to provide a mathematically sound basis. Wherever practical, the
general definitions have been proved equivalent to simpler forms for discrete probability spaces. Although
the general measure-theoretic definitions are sufficient by themselves, these proofs make the formalisation
much easier to use by replacing more complex constructs (e.g. Lebesgue integration) with simpler ones
(e.g. summation) where possible.

Discrete probability spaces are sufficient for the intended applications of this work, so focus has been
placed on developments for those spaces. Users of the formalisation benefit from the simplifications
that have been proved, without a loss of generality and applicability to continuous spaces and other
more unusual spaces. Furthermore, probability spaces with a finite space are sufficient for the eventual
applications of this work (Chapters 4 and 5). As discussed in Section 2.4, technical details of the HOL4
formalisations require separate reductions for finite and countably-infinite, discrete probability spaces.
This can be seen as a useful feature, allowing finite (rather than infinite) summations to be used in
definitions for finite spaces. Considering the overall aims of this text, the presentation below will focus on
developments for finite, discrete probability spaces in greater detail than for countably-infinite probability
spaces; however, both formalisations will be explained thoroughly.

We begin our investigation of the extensions to the constructions of Section 2.5.1 by reviewing a
textbook definition for a random variable followed by the formalisation of that definition in higher-order
logic.

Definition 28 (random variable). Let X be a measurable function from (S, S) to (S′, S′). If (S, S) is
equipped with a probability measure µ, i.e. (S, S, µ) is a probability space, then X is called a random
variable on (S, S, µ).

Assuming the appropriate measurability requirements hold, the joint random variable of two random
variables X and Y is the function mapping an input to the pair of values taken by X and Y for that input
i.e.

(X ,Y)(x) = (X (x),Y(x)).

Typically, (X ,Y) is used to denote the joint random variable of X and Y, emphasising that it takes a
pair of values.

Definition 28 is formalised simply by referring to a measurable function as a random variable in
probability-theoretic contexts.

Formalisation 26 (random variable).

random variable X (sp, sts, mu) (sp′, sts′) =
prob space (sp, sts, mu) ∧ X IN measurable (sp, sts) (sp′, sts′).

The class of Borel-measurable real-valued random variables is of particular importance, so a definition
for that class of random variable has also been formalised. A specific formalisation for joint random
variables is unnecessary; the joint random variable of X and Y can be define simply as (λ x. (X x, Y x)).

Formalisation 27 (real-valued random variable).

real random variable X (sp, sts, mu) =
prob space (sp, sts, mu) ∧ X IN borel measurable (sp, sts).

All random variables implicitly define a probability measure over the σ-algebra onto which they are
measurable. This measure is known as the distribution or law of the random variable and lies at the core
of many of the definitions that follow. We will now review a general definition for the distribution of a
random variable and then examine some specific definitions for discrete and continuous random variables.
We will then go on to study the HOL construction for those definitions.
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Definition 29 (distribution of a random variable). Let X be a random variable from a probability space
(S, S, µ) to a σ algebra (S′, S′). The distribution of X is defined to be

P(X ∈ A) = µ(X−1[A]),

for any A ∈ S′. Note that (S′, S′, (λ A. P(X ∈ A))) is a probability space. Thus, P(X ∈ A) intuitively
defines the probability of X taking a value in A. The distribution of X is often denoted by PX .

In the case that X is a discrete random variable taking values {x0, x1, . . .}, the term probability
mass function (pmf) is used to refer to P(X = xi) = P(X ∈ {xi}). If X is a continuous, real-valued
random variable, the term cumulative distribution function (cdf) is used to refer to P(X ≤ x) =
P(X ∈ {y | y ≤ x}). The probability density function (pdf) of X is defined to be P(a ≤ X ≤
b) = P(X ∈ {y | a ≤ y ≤ b}), when it exists. The pdf of a random variable can be defined as the
Radon-Nikodým derivative of its distribution with respect to some reference measure.

Recall that for a probability space (S, S, µ), ∀ A ∈ S. µ(A) =
∫

S
1A dµ. (HOL Theorem 8). Thus,

P(X ∈ A) =

∫

S

1X−1[A] dµ =

∫

S′

1A d(λ A. P(X ∈ A)).

Formalisation 28 (distribution of a random variable).

distribution (sp, sts, mu) X Y = (λ A. mu (PREIMAGE X A INTER sp)).

For convenience the distribution of a joint random variable has also been formalised.

Formalisation 29 (distribution of a joint random variable).

joint distribution (sp, sts, mu) X =
(λ A. mu (PREIMAGE (λ x. (X x, Y x)) A INTER sp)).

The statement of HOL theorems showing that the distribution of a random variable defines a prob-
ability measure on its range space along with the relationships of the distribution to the Lebesgue in-
tegral outlined at the end of Definition 29 can be found in Appendix E as distribution prob space,
distribution lebesgue thm1, and distribution lebesgue thm2 respectively.

Having examined the definition of a random variable and its distribution, we now move on to the
notion of the expected value or expectation of a random variable. It is here that we will see the efforts of
Section 2.4 come to fruition. Let us begin by reviewing the definition of the expected value of a random
variable.

Definition 30 (expected value). The expected value or expectation of a real-valued random variable
X on probability space (S, S, µ) is the Lebesgue intregral of X on S with respect to µ:

E(X ) =

∫

S

X dµ.

If X is a discrete random variable taking values {x0, x1, . . .}, then the expected value of X is typically
expressed in the simpler form

E(X ) =
∑

xi

(xi)P(X = xi).

Intuitively, E(X ) is the mean of the values taken by X on S, weighted by their respective probabilities.

The HOL formalisation of Definition 30 is simply a matter of referring to the Lebesgue integral as
expectation in probability-theoretic contexts.

Formalisation 30 (expected value).

expectation = integral.

The practice of proving simplifying equivalences for HOL constructions has been carried forward to
the definition of expectation; this includes a proof that the formalisation captures the intuitive notion of
expectation for discrete random variables.
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HOL Theorem 10 (reduction of expecation of a r.v. on a finite space).

∀ (sp, sts, mu) X. real random variable X (sp, sts, mu) ∧ FINITE sp ⇒
(expectation (sp, sts, mu) X =
SIGMA (λ r. r ∗ distribution (sp, sts, mu) X {r}) (IMAGE X sp)).

This theorem captures the simplification of expectation to the intuitive notion of expectation for a discrete
random variable presented at the end of Definition 30. The proof follows from HOL Theorem 6 and basic
definitions.

One of the final extensions to the formalisation of probability theory that we will examine is the con-
ditional expectation of a random variable. This construction will not be used for information-theoretic
definitions in Chapter 3, so it is not developed in as much detail; however there are many useful applica-
tions for conditional expectation, which motivate a brief presentation of its formalisation. We will begin
by reviewing a definition of conditional expectation and other notions of conditional probability based
thereupon. We will then proceed to study their development in HOL.

Definition 31 (conditional expectation). Let X and Y be real-valued random variables from a probability
space (S, S, µ) to σ-algebras (S′, S′) and (S′′, S′′) respectively. Let A ⊆ S be a class of subsets of S. The
conditional expectation of X with respect to A, E(X|A), is defined to be the borel-measurable random
variable f from S to R such that

∀a ∈ A.

∫

S

(λx. f(x)1a(x)) dµ =

∫

S

(λx. X (x)1a(x)) dµ.

The conditional expectation of X given Y forms a random variable on (S′′, S′′, PY) and is defined
by

E(X|Y) = E(X|Y−1[S′′]).

If X and Y are discrete random variables taking values {x0, x1, . . .} and {y0, y1, . . .} respectively, then the
conditional expectation of X and Y can be expressed in the simpler form

E(X|Y = yj) =
∑

xi

(xi)P(X = xi|Y = yj).

Finally, the conditional probability of an event e1 ∈ S given an event e2 ∈ S can be defined most
generally in terms of conditional expectation as P(e1|e2) = E(1e1 |e2).

The definitions for conditional expectation and conditional probability have been formalised in HOL4
as follows:

Formalisation 31 (conditional expectation of a random variable and a set).

conditional expectation (sp, sts, mu) X A =
@f. real random variable f (sp, sts, mu) ∧

∀ a. a IN A ⇒
(integral (sp, sts, mu) (λx. f x ∗ indicator fn a x) =
integral (sp, sts, mu) (λx. X x ∗ indicator fn a x)).

Recall that @x. P x denotes the Hilbert’s choice operator, where @x. P x can be read informally as “any
x such that P x”.

Formalisation 32 (conditional expectation of two random variables).

rv conditional expectation (sp, sts, mu) (sp′, sts′) X Y =
conditional expecation (sp, sts, mu) X

(IMAGE (λa. (PREIMAGE Y a) INTER sp) sts′).

Formalisation 33 (conditional probability).

conditional prob (sp, sts, mu) e1 e2 =
conditional expecation (sp, sts, mu) (indicator fn e1) e2.
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2.6 Summary

This chapter has explained formalisations for measure theory, Lebesgue integration, and probability
theory, within the framework of the HOL4 theorem-prover. This work surpasses previous related work in a
number of respects. Firstly, the HOL constructions make explicit the space involved in various definitions,
allowing general measure-theoretic definitions to be formalised and then proved equivalent to simpler
definitions for discrete or continuous spaces. The formalisation presented above also extends previous
work by including additional definitions and theorems, such as the development of conditional expectation,
product measures, and Radon-Nikodým derivatives. The constructs developed in this chapter serve as
essential groundwork for the development of information theory in Chapter 3.



Chapter 3

Information, Entropy, and
Uncertainty

“Information is the resolution of uncertainty.”

– Claude. E. Shannon, A mathematical theory of communication

3.1 Background

While working at Bell Labs, Claude E. Shannon published a technical report which began the branch
of applied mathematics now known as information theory. Shannon’s report [138] provided a theory for
reasoning about the transmission of signals over a noisy channel, i.e. one which is capable of losing or
distorting the flow of information. He argued that the signals transmitted over a noisy channel could
be viewed as uncertain events in the sense of probability theory. Shannon then established that the
entropy of the distribution over possible transmissions determines the minimum number of bits needed
(on average) in order to transmit on a given channel without loss of information. That development,
known as Shannon’s source coding theorem, is one of the two most important results from Shannon’s 1948
report. The second of these two results is Shannon’s noisy channel coding theorem, which is concerned
with rates of transmission. With that theorem, Shannon defined the (average) maximum rate at which
transmissions can be made over a noisy channel without losing information; that maximum rate is referred
to as the channel capacity.

Considering his place of employment, it seems natural that Shannon should have been interested in
developing a theory about transmissions over unreliable media for potential applications to telephony
and other communications technologies. Such a theory should prove useful when working to improve
the robustness and reliability of communications systems. Not surprisingly, there are a great number of
applications of information theory in the domain of coding theory, which is the application area closest
to Shannon’s original aims. The development of error-correcting codes is an excellent example. Error-
correcting codes are used to encode a piece of information with sufficient redundancy such that errors
introduced by noise during transmission can be detected and corrected with a high probability. There
are numerous applications for error-correcting codes ranging from those that many people encounter
unknowingly in their daily lives (e.g. the encoding of data on compact discs so they can withstand
minor scratches without loss of information) to far more exotic applications (e.g. NASA’s deep-space
telecommunications). Hamming’s book [75] provides an excellent introduction to coding theory and its
many applications.

3.2 Motivation

Diverging from Shannon’s initial aims, information theory has applications in a wide range of fields in-
cluding that of computer security analysis. Within that domain, Shannon’s source coding theorem is
often used contrary to its original use; rather than using his theorem to determine how much redundancy
is necessary to overcome some amount of noise (i.e. randomness) in a transmission, it can be used to

38
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determine how much randomness must be present in a transmission in order to ensure that an eavesdrop-
per cannot determine the information transmitted significantly better than random guessing. A closely
related application of information theory is its use for analysis of information flow in computer software.
Examples of this type of utilisation are Denning’s seminal work on security models for information flow
[42], subsequent work by Gray [72] and McLean [106] on the non-interference of programs, and Millen’s
work on covert (side-channel) information flow [107]. These uses of information theory make it a valuable
tool for reasoning about the potential for leakage of sensitive information in a computer system. It is this
application of information theory to information leakage analysis that motivates the HOL formalisation
of information theory presented in this chapter; the application of those developments to information
leakage analysis warrants the space of its own chapter (Chapter 4). The advantage of formalising in-
formation theory in a theorem-prover is that any proofs or analysis performed using such a framework
can be guaranteed to be logically and mathematically consistent by the mechanised proof-assistant as
discussed in Section 1.2.

3.3 Related work and novel contributions

Below we will examine the formalisation of Shannon’s information theory in higher-order logic, developed
in the context of the HOL4 theorem-prover. To the best of my knowledge, this is the only formalisation
of information theory that has been developed in a theorem-prover. As such is the case, all of the for-
malisation work in this chapter represents a novel contribution. This is not to say that any new theory
is developed here; information theory has become mature and well developed in the nearly sixty years
since Shannon’s initial report. The work presented in this chapter involves the formalisation of stan-
dard textbook definitions in a higher-order logic theorem-prover; however, this constitutes a significant
contribution in that it provides a rigorous framework in which information theory can be applied and
analyzed, whatever the application domain. One such application will be presented in Chapter 4, where
the formalisations developed here are used to construct a framework for reasoning about information
leakage. There are numerous uses for information theory and as a result there is a large body of work
on the application of information theory to various domains. A thorough review of that body of litera-
ture is outside of the scope of the present text; however, previous work applying information theory to
the domains of anonymous communications and information leakage is discussed in Sections 1.1 and 4.5
respectively.

The formalisation of probability theory studied in Section 2.5 serves as the starting point for the
formalisation of information theory developed in this chapter. Familiarity with the content of Chapter 2 is
assumed, but an understanding of probability and measure theories is sufficient to understand most of the
work below, with the exception of some of the technicalities of the HOL4 constructions. Definitions from
information theory will be reviewed briefly, prior to their formalisations, in order facilitate easier reading;
more detailed presentations of those definitions can be found in introductory textbooks on information
theory [34, 69]. In general, the definitions from information theory presented in this chapter are Gray’s
definitions [69] restated to respect the notational conventions used here, so credit should be directed
where due; however, the formalisations of those definitions are my own contribution. The presentation
of the HOL definitions examined below generally aims to be independent of their implementation in the
HOL4 theorem-prover; implementation details are included whenever they are of particular interest or are
necessary for the reader’s understanding. Where such is the case, the definitions are explained sufficiently
such that prior knowledge of HOL4 syntax is not needed to understand them.

The next section of this chapter is intended to provide an intuitive introduction of information-
theoretic concepts. If you have a strong background in information theory, you may wish to proceed
directly to Section 3.5, where the HOL formalisations of information-theoretic definitions are examined.
As definitions are encountered, useful properties that have been proved about them in HOL4 will also
be presented. Showing that the formalisations maintain appropriate properties reinforces the equivalence
between standard textbook definitions and the HOL definitions.

3.4 A gentle introduction to information theory

This section provides a gentle introduction to information theory, emphasising an intuitive understanding
of information-theoretic concepts rather than a high degree of precision. The lack of rigour in this section
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will be more than made up for by the formal definitions provided in Section 3.5. Where applicable,
specific definitions for the case of finite, discrete spaces will be studied in order to aid understanding.

3.4.1 Information

Before addressing more sophisticated concepts, we must begin by examining the most fundamental no-
tion of information theory, the definition of information itself. In this text, the term information is
used specifically to refer to the information learned through the occurrence of an event sampled from a
probability space, which is equipped with a corresponding probability distribution.

To demonstrate with a concrete example, lets look at Shannon’s original application domain: tele-
phony. Consider that there is a system for transmitting information, such as a string with paper cups at
each end. A child named Sebastian at one end of the string is trying to use this channel to communicate
a secret word to a child named Rupert, who is at the other end of the string. The children have agreed
that the word will be spelled out letter by letter, but sometimes their low fidelity telephone makes it
difficult for Rupert to determine which letter he has heard.

Being both an eager and a clever child, Rupert would like to learn the secret word as quickly and as
accurately as possible. He also knows that certain letters occur more frequently in words than others;
thus, he considers it more probable the he will hear a letter which occurs in words more often. If the first
letter Rupert hears is “E”, a letter which occurs frequently, then he has not learned very much about
the secret word, because there are many words that start with the letter “E”. Conversely, if he were to
here he letter “Z”, a letter which occurs infrequently, he would have learned a great deal about the secret
word, because there are relatively few words beginning with the letter “Z”.

In this simplistic example, there is a probability distribution over the letters of the Roman alphabet
implied by the frequency of use of individual letters; an event consists of Sebastian saying a particular
letter. Examining this example, it is clear that the information of each event, sampled from the distri-
bution over the letters, represents how much is learned through that observation. Also, note that the
information of an event is related to a number of other concepts. For instance, the information of a
particular event is related to its uncertainty. If an event is certain to occur (i.e. has probability 1), then
no information is gained by observing that event. On the contrary, if a very unlikely event is observed,
much information is received. Thus, the information of an event is inversely related to its probability.

Now let’s take a slightly more formal approach and review a standard definition of the information of
an event from a probability space.

Definition 32 (information). Let (S, S, µ) be a probability space and let e be an event of (S, S, µ) i.e.
e ∈ S. The information of event e is defined to be − logb(µ(e)).

Note that the base of the logarithm, b, in the definition of information is left undetermined. The
correct choice of base is dependent on the application. In the case of a discrete probability space, where
information is to be measured in binary digits (bits), log2 is the natural choice. Also, observe that
information is undefined for events with probability 0. This corresponds to intuition about the definition
of information: what can be learned from the observation of an event that will never occur?

Recall from Chapter 2, that real-valued random variables induce a probability distribution over the val-
ues they take. Information is itself a real-valued random variable on (S, S, µ). Thus, one may equivalently
refer to the information of a random variable X taking value in A, which is by definition − logb(P(X ∈ A)).

Having reviewed the definition of the information of an event in a probability space, we can now move
on to more complex concepts from information theory.

3.4.2 Entropy

The entropy of a probability distribution is one of the core notions of information theory. You might be
familiar with the use of the term entropy to describe the amount of disorder in a physical system (e.g.
the second law of thermodynamics). This usage is analogous to information-theoretic entropy and serves
as a useful starting pointing for an intuitive understanding.1 Entropy captures the average amount of
uncertainty as to which outcome will occur from a particular probability distribution: the greater the
uncertainty the higher the entropy. Conversely, a probability distribution with one certain event (i.e. an

1An in depth discussion relating physical entropy and information-theoretic entropy is outside the scope of this text;
some general textbooks touch upon the subject and there are also texts devoted primarily to that purpose [63, 73].
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event with probability 1) has zero entropy i.e. contains no uncertainty. Alternatively, if all the events are
evenly distributed (i.e. equiprobable), then the entropy of the distribution is maximal. Entropy can also
be seen as a measure of the uniformity of a distribution.

Informally, the entropy of a distribution can be defined as the mean information of its events, weighted
by their respective probabilities. In the case of a standard, discrete space with events {e0, . . . , en} and
probability measure µ, the entropy of µ is

Hµ = −
n

∑

i=0

µ(ei) log(µ(ei)),

i.e. the expected value of the information of the events. In the case of an absolutely continuous distribu-
tion, the probability of each singleton event is 0; thus the entropy of such a distribution, even if a limiting
definition is used, will always be zero. As a result, entropy can only be seen as a measure of uncertainty
in the case of discrete distributions. Despite this shortcoming, other measures based on entropy (such as
mutual information) are meaningful even in the case of continuous distributions.

As with information, it is common to refer to the entropy of a discrete random variable.2 The entropy
of a random variable X is simply the entropy of the probability distribution induced by X i.e. HPX

, where
PX is used to denote the distribution of X .

3.4.3 Conditional entropy

Conditional entropy is a useful stepping stone to defining mutual information, a concept which will feature
heavily in the remainder of the chapter.

Informally, the conditional entropy of a random variable X , with respect to another random variable
Y, measures the mean uncertainty of the outcome of X , given that the outcome of Y is known. To some
extent, conditional entropy is a measure of the independence of X and Y. For example, the conditional
entropy of random variable X conditioned on itself is zero, because X is completely determined by itself;
thus there is no uncertainty about the outcome of X given knowledge of the outcome of X . On the other
hand, if X and Y are independent, then knowledge of the outcome of Y does not change one’s uncertainty
about the outcome of X ; thus, the conditional entropy of X given Y is simply the entropy of X .

In the case that X and Y are random variables taking values {x0, . . . , xm} and {y0, . . . , yn} respec-
tively, then the conditional entropy of X with respect to Y can be defined by

H(X|Y) = −
m

∑

i=0

n
∑

j=0

P(X = xi;Y = yj) log
(P(X = xi;Y = yj)

P(Y = yj)

)

,

i.e. as the expected value, with respect to the joint probability mass function (pmf) of X and Y, of the
information of the conditional pmf of X and Y.

3.4.4 Mutual information

The mutual information of two random variables X and Y measures the correlation of X and Y: the
greater the correlation, the greater the mutual information. Informally, the mutual information of X and
Y can be seen as measuring the amount of information that can be learned about X by observing Y and
vice versa. Mutual information can be defined using entropy and conditional entropy as

I(X ;Y) = H(X ) − H(X|Y) = H(Y) − H(Y|X ) = I(Y;X ).

This formulation aligns with the initial intuitive definition of mutual information provided above; it could
be read as, “the correlation of X and Y is the uncertainty about the outcome of X minus the uncertainty
about the outcome of X given knowledge of Y i.e. how much observation of Y reduces the uncertainty of
the outcome of X . Equivalently, mutual information can be defined directly as

I(X ;Y) =

m
∑

i=0

n
∑

j=0

P(X = xi,Y = yj) log
( P(X = xi,Y = yj)

P(X = xi)P(Y = yj)

)

,

2More precisely, it is the entropy of the probability space implicitly defined by a random variable and its distribution.
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when X and Y are finite, discrete random variables taking values {x0, . . . , xm} and {y0, . . . , yn} respec-
tively.

Notice that mutual information is symmetric. Also, take note that the entropy of a random variable
X can be defined as the self mutual information of X i.e. H(X ) = I(X ;X ); in the first formulation, this
follows directly from the fact that the conditional entropy of a random variable with respect to itself
is always zero (or equivalently in the second formulation, from the fact that the joint distribution of a
random variable with itself is simply the distribution of that random variable). The fact that entropy
can be defined using mutual information will be used in Section 3.5 for the formalisation of entropy in
higher-order logic.

3.4.5 Conditional mutual information

We conclude our informal investigation of information theory by examining the concept of conditional
mutual information. The conditional mutual information of random variables X and Y, with respect
to random variable Z, measures the correlation of X and Y given knowledge of the outcome of Z.
Conditional mutual information can be defined using conditional entropy as

I(X ;Y|Z) = H(X|Z) − H(X|(Y,Z))

or equivalently using mutual information as

I(X ;Y|Z) = I(X ; (Y,Z)) − I(X ;Z),

where (Y,Z) denotes the joint random-variable defined by Y and Z. Informally, the conditional mutual
information of X and Y with respect to Z can be seen as the amount that knowledge of the outcome of
Y reduces one’s uncertainty about the outcome of X , given that the outcome of Z is already known.

Having completed our brief introduction to information theory, we will now take a more rigourous
approach and begin to study the formalisation of information theory in higher-order logic.

3.5 Information theory formalised in HOL4

In this section, we will examine the formalisation of information theory in HOL4, which builds on the
formalisations for probability theory developed in Chapter 2. Before doing so, it is worth revisiting some
of the underlying decisions made for the formalisations of Chapter 2 that are pertinent to the work
appearing below.

Firstly, recall that the real numbers were used in the developments of Chapter 2, rather than the
extended reals (i.e. the real numbers extended to include elements for positive and negative infinity).
The repercussions of that decision are that any definition involving an integration (or equivalently an
infinite summation) is undefined in the case that the integral (or sum) diverges to infinity. One advantage
of this design decision is that arithmetic is greatly simplified, as one need not be concerned with difficulties
such as the undefinedness of the sum of positive and negative infinity.

Additionally, a powerful approach of formalising general measure-theoretic definitions of probability-
theoretic notions was used in Chapter 2. These general definitions can then be proved equivalent to simpler
forms for the continuous and discrete case, thereby providing a mathematically rigorous connection
between the simpler definitions and allowing them to be used in place of the general definition. This
practice has been carried forward to the formalisations for information theory and the same benefits are
received.

In The Mathematical Theory of Communication, Shannon [139] wrote

“We will not attempt, in the continuous case, to obtain our results with the greatest generality,
or with the extreme rigour of pure mathematics, since this would involve a great deal of abstract
measure theory and would obscure the main thread of the analysis.”

Although Shannon’s initial report on information theory gave birth to the subject in a remarkably mature
form, the lack of definitions generalising the cases of discrete and absolutely continuous random variables
could be seen as a major shortcoming of his work [138, 139]. Fortunately, in the nearly sixty years
since Shannon’s report was first published, a great deal of work has been done to generalise Shannon’s
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information theoretic concepts and the ergodic theories that underpin his coding theories. The research
of Kolmogorov [90] and of Pinkser [122] are two such examples. A thorough review of the development of
information theory is outside of the scope of the present text; however, Gray [69] provides a nice overview
of major developments in information theory in the prologue of his book on the subject.

In the HOL development of information theory presented below, I have not aimed for the greatest
possible generality because the additional complications are not justified by the applications in subse-
quent chapters. However, the formalisations are sufficiently general to account for standard, discrete
and absolutely continuous random variables, providing a solid grounding for information theory in the
formalisation of probability theory developed above and a strong connection between definitions for the
discrete and continuous cases. Thus, the definitions below are more general than in Shannon’s original
presentation, as can be deduced from his words in the preceding paragraph. As in Chapter 2, the general
definitions have been proved equivalent to simpler forms for finite random variables, allowing for eas-
ier use of the formalisations; similar reductions could be proved for countably-infinite, discrete random
variables and absolutely-continuous random variables.

As mentioned above, finite, discrete random variables are sufficient for the applications presented
in Chapters 4 and 5. Thus, emphasis has been placed on simplifying proofs for that class of random
variables. Although the focus of the presentation is on finite, discrete random variables, this is without a
loss of generality for the definitions and their applicability to countably-infinite, discrete random variables
and absolutely-continuous random variables.

Having dispensed with preliminary discussion and equipped with the HOL definitions for probability
theory from Chapter 2, we can now begin to investigate the formalisation of information theory in HOL4.

3.5.1 Kullback-Leibler divergence

As hinted at in Section 3.4, the formalisation of information-theoretic concepts in this chapter will begin
with the definition of mutual information; entropy and conditional mutual information can then be
defined. Mutual information will be defined in terms of Kullback-Leibler divergence, as is done in standard
textbooks on information theory [34, 69]. Thus, we will begin our study of information theory formalised
in higher-order logic by reviewing a standard definition of Kullback-Leibler divergence.

Informally, the Kullback-Leibler divergence of two probability distributions can be seen as a measure of
the difference or distance between the two distributions. Taking a slightly more rigourous view, Kullback-
Leibler divergence is not actually a distance or a metric, because it neither is symmetric nor satisfies the
triangle inequality. Without further delay, we will now review a formal definition of Kullback-Leibler
divergence.

Definition 33 (Kullback-Leibler divergence). Let (S, S, µ) and (S, S, ν) be measure spaces. Define the
Kullback-Leibler divergence of µ from ν with respect to (S, S) as

Db(µ‖ν) =

∫

S

logb

(dν

dµ

)

dµ,

where the integral above is the Lebesgue integral with respect to (S, S, µ) and dν
dµ

denotes the Radon-

Nikodým derivative of ν with respect to (S, S, µ).

Recall from above that Kullback-Leibler divergence is not symmetric, so it is not necessarily the case
the Db(µ‖ν) = Db(ν‖µ). Also note that the base of the logarithm, b, in the definition above is left
undetermined. The correct choice of base is dependent on the application. In the case of a discrete
probability space, where information is to be measure in binary digits (bits), log2 is the natural choice.

When developing the HOL definition for Kullback-Leibler divergence, I decided to formalise Definition
33 directly, rather than defining a more general measure of divergence3 and then defining the Kullback-
Leibler divergence as a limit of the more general measure. A more general approach is not need for any
of the applications in this text, so the additional complications of such could not be justified. Building
on the HOL definitions presented in Chapter 2, it is a relatively straightforward matter to translate
Definition 33 into higher-order logic.

3For example, the Rényi measure [127] of divergence generalises Kullback-Leibler divergence.
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Formalisation 34 (Kullback-Leibler divergence).

KL divergence b (sp, sts) mu nu =
integral (sp, sts, mu) (λx. logr b ((RN deriv (sp, sts, nu) mu) x)),

Note that the HOL definition of Kullback-Leibler divergence has retained the generality of an arbitrary
base for the logarithm as in Definition 33 above. In the applications of this formalisation in Chapters
4 and 5, the base 2 will always be used. As a result, a body of theorems relating to properties of log2

have been proved in HOL4 in order to support this formalisation. One aspect of that work which was
surprisingly challenging was the proof of the (positive) concavity of the natural logarithm function, which
involved use of Harrison’s formalisation of gauge integration. That proof, though necessary to establish
bounds on entropy via Jensen’s inequality, is tangential to the work presented here and so is omitted for
the sake of brevity.

We can now move on to study the HOL definition of mutual information, the keystone to the formal-
isation of information theory.

3.5.2 Mutual information

By defining mutual information in terms of Kullback-Leibler divergence, the definition can be made
sufficiently general to account for the cases of both discrete and absolutely continuous random variables.
Recall from Section 3.4.4 that the mutual information of two random variables X and Y measures the
correlation of X and Y. Informally, this is a measure of how much can be learned about X by observing
Y (and vice versa, because mutual information is symmetric).

Definition 34 (Mutual information). Let (S, S, µ) be a probability space and X and Y be random variables
from (S, S) to (S′, S′) and (S′′, S′′) respectively. Let PX , PY , PXY denote the distribution of X , the
distribution of Y, and their joint distribution. Let SX × SY denote the product space of (S′, S′, PX ) and
(S′′, S′′, PY) and PX×Y denote the product measure of SX × SY . Define the mutual information of X
and Y using Kullback-Leibler divergence with respect to SX × SY as

Ib(X ;Y) = Db(PXY‖PX×Y).

In the case that X and Y are discrete random variables taking values {x0, . . . , xm} and {y0, . . . , yn}
respectively, the definition of mutual information above can be reduced to

Ib(X ;Y) =

m
∑

i=0

n
∑

j=0

P(X = xi,Y = yj) logb

( P(X = xi,Y = yj)

P(X = xi)P(Y = yj)

)

,

as in Section 3.4.4.

Having developed HOL definitions for product measures in Chapter 2 and Kullback-Leibler divergence
in Section 3.5.1, the formalisation of Definition 34 in HOL becomes a straightforward translation.

Formalisation 35 (Mutual information).

mutual information b (sp, sts, mu) (sp′, sts′) (sp′′, sts′′) X Y =
let (psp, psts, pmu) =

prod measure space (sp′, sts′, distribution p X)
(sp′′, sts′′, distribution p Y)

in

KL divergence b (psp, psts) (joint distribution p X Y) pmu.

Now that we have a general formalisation of mutual information, it would be useful to be able to
simplify this general definition to the finite, discrete form specified after Definition 34; such an equivalence
has been proved in HOL4.
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HOL Theorem 11 (Reduction of mutual info. for finite, discrete spaces).

∀ b sp mu X Y. FINITE sp ∧
random variable X (sp, POW sp, mu) (IMAGE X sp, POW (IMAGE X sp)) ∧
random variable Y (sp, POW sp, mu) (IMAGE Y sp, POW (IMAGE Y sp)) ⇒
(mutual information b (sp, POW sp, mu)

(IMAGE X sp, POW (IMAGE X sp))
(IMAGE Y sp, POW (IMAGE Y sp))
X Y =

SIGMA (λ(x, y). joint distribution (sp, POW sp, mu) X Y {(x, y)} ∗
logr b (joint distribution (sp, POW sp, mu) X Y {(x, y)} /

(pmf (sp, POW sp, mu) X {x} ∗
pmf (sp, POW sp, mu) Y {y})))

((IMAGE X sp) CROSS (IMAGE Y sp)).

The proof of the theorem above follows from the reductions of the Lebesgue integral from Section 2.4,
properties of the product measure, properties of finite summations, and the basic definitions. In particular,
some of the most important lemmas for the proof can be found in the appendices as the HOL theorems
measure space finite prod measure POW2 in Appendix D and
finite marginal product space POW in Appendix E.

Note that the symmetry of the formalisation of mutual information follows directly from the theorem
above, the commutativity of set intersection, and commutativity of multiplication.

While the proof of the theorem above was routine, it did require a considerable effort. Fortunately,
since all other information-theoretic definitions have been formalised in terms of mutual information,
the effort necessary for additional equivalence proofs was greatly decreased. This is can be seen in the
formalisation of entropy that we will now examine.

3.5.3 Entropy

This subsection presents a HOL definition for the entropy of a probability distribution, one of the core
notions of information theory. Recall from Section 3.4.2 that the entropy of a random variable is a
measure of the uncertainty of its outcome, or equivalently, of the uniformity of the distribution over its
outcomes. Informally, the entropy of a distribution is the mean information of its events, weighted by
their respective probabilities. Also remember that the entropy of a random variable can be defined as the
self mutual information of the random variable, as was explained in Section 3.4.2. We will now review a
more rigourous definition of the entropy of a random variable.

Definition 35 (entropy). Let (S, S, µ) be a probability space and X be a random variable from (S, S) to
(S′, S′). Define the entropy of X with respect to a base b to be

Hb(X ) = Ib(X ;X ).

In the case that X is a discrete random variable taking values from {x0, . . . , xn}, the definition of
entropy given above can be reduced to

Hb(X ) =

n
∑

i=0

P(X = xi) logb(P(X = xi)),

as in Section 3.4.2.
It is worthwhile examining some properties of the bounds on the entropy of a finite, discrete random

variable, as this provides some intuition as to the meaning of entropy. Consider a random variable X
which takes values {x1, . . . , xn}, each with non-zero probability i.e. P(X = xi) > 0 for any i such that
1 ≤ i ≤ n. The entropy of X with respect to a base b lies in the range

0 ≤ Hb(X ) ≤ logb n.

These are in fact strict bounds, as the entropy of X can take both the value 0 and the value logb n
depending on the distribution induced by X . The entropy of X is zero iff there is an xi that occurs with
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probability 1 i.e. is certain. Equivalently, in mathematical notation,

(Hb(X ) = 0) = (∃i. 1 ≤ i ≤ n ∧ P(X = xi) = 1).

On the other hand, the entropy of X is logb n iff the xi’s are uniformly distributed i.e. occur with equal
probability. Equivalently, in mathematical notation,

(Hb(X ) = logb n) = (∀i ∈ {1, . . . , n} j ∈ {1, . . . , n}. P(X = xi) = P(X = xj)).

Without further delay, let’s move on to the definition of entropy in higher-order logic. This formulation
constitutes a simple translation of Definition 35 using Formalisation 35.

Formalisation 36 (entropy).

entropy b (sp, sts, mu) (sp′, sts′) X =
mutual information b (sp, sts, mu) (sp′, sts′) (sp′, sts′) X X.

As with the other HOL definitions developed above, it is useful to prove an equivalence reducing the
definition for entropy to the simpler form given below Definition 35; such a reduction has been proved in
HOL4 and the statement of that theorem follows.

HOL Theorem 12 (Reduction of entropy for finite, standard spaces).

∀ b sp mu X. FINITE sp ∧
random variable X (sp, POW sp, mu) (IMAGE X sp, POW (IMAGE X sp)) ⇒
(entropy b (sp, POW sp, mu) (IMAGE X sp, POW (IMAGE X sp)) X =
−SIGMA (λx. distribution (sp, POW sp, mu) X {x} ∗

logr b (distribution (sp, POW sp, mu) X {x})
(IMAGE X sp)).

This captures the intuitive definition of entropy as mean information.

When formalising textbook definitions in a theorem-prover, it is common practice to prove some well-
known properties for each definition as a sanity check for the formalisation; if the formalisation satisfies a
number of properties satisfied by the definition, some reassurance is provided that it properly captures the
definition. To this end, the bounds on entropy for finite, discrete spaces mentioned above have been proved
in HOL, along with proofs showing that the general definitions reduce to the simpler definitions under
appropriate conditions. The statement of those theorems in HOL notation can be found in Appendix F
as finite entropy certainty eq 0, finite entropy le card, and finite entropy uniform max; they
are omitted here for the sake of space. The most interesting of those proofs was the proof of the upper
bound on entropy, which required a proof of Jensen’s inequality4 and the (positive) concavity of the
natural logarithm. An outline of the HOL proof of this upper bound would read much the same as in
standard textbooks on information theory [34].

3.5.4 Conditional mutual information

Conditional mutual information is the most complicated of the information-theoretic notions addressed
here, but it will also be the most important for the developments in Chapter 4. The conditional mutual
information of random variables X and Y, with respect to random variable Z, can be seen as a measure
of the correlation of X and Y, given knowledge of the outcome of Z. Recall the definition for conditional
mutual information given in Section 3.4.5 as a difference of mutual information:

I(X ;Y|Z) = I(X ; (Y,Z)) − I(X ;Z),

4Jensen’s inequality guarantees that, for a probability space (S, S, µ), a function g that is integrable with respect to
(S, S, µ), and a convex measurable function on the reals φ

φ

„

Z

S

g dµ

«

≤

Z

S

φ ◦ g dµ.

The inequality is reversed in the case that φ is concave. More details on Jensen’s inequality can be found in standard texts
on measure theory and probability [54].
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where (Y,Z) denotes the joint random variable defined by Y and Z. This definition of conditional
mutual information, which is based on Kolmogorov’s formula5, has been used as the basis for the HOL
formalisation presented below.

Notice that the definition of conditional mutual information above is only well-defined when it is not
indeterminate, e.g. ∞−∞. In the framework of the HOL definitions developed above, this means that
conditional mutual information will be well-defined only when both of the mutual information values
in the definition are well-defined (i.e. any integrals involved converge and both values are finite). As
was explained for the formalisation of the Lebesgue integral in Chapter 2, this is a slight restriction of
the mathematical definition in which only one side of the difference needs to be finite. This is a direct
result of using the real numbers (without the inclusion of an infinity element) for the formalisation and
is beneficial in that indeterminacy is not a concern.

Up to this point, the definitions used for the formalisations in this chapter have closely followed those
from Gray’s book [69]; the definition of conditional mutual information above diverges from Gray. Gray
presents that definition as an alternative but chooses instead to define conditional mutual information
directly using Kullback-Leibler divergence. The definition based on Kolmogorov’s formula is less gen-
eral than Gray’s precisely because the result might be indeterminate, as discussed above; however, this
generality is not required for my applications. Gray’s definition [69] can be stated roughly as

I(X ;Y|Z) = D(PXYZ‖PX×Y|Z),

where PXYZ and PX×Y|Z denote the marginal distribution and the conditional product measure of X ,
Y, and Z respectively. The conditional product measure used in Gray’s definition does not seem be
a feature in standard texts on measure, probability, or information theories and so its precise meaning
is not obvious.6 Thus, it seems safer to use the definition of conditional mutual information based on
Kolmogorov’s formula for the formalisation below. Furthermore, defining conditional mutual information
using mutual information allows theorems about mutual information to be reused when proving properties
of conditional mutual information.

With out further delay we will now examine a more rigourous version of the definition of conditional
mutual information chosen above.

Definition 36 (conditional mutual information). Let (S, S, µ) be a probability space. Let X , Y, and Z
be random variables from (S, S) to (S′, S′), (S′′, S′′), and (S′′′, S′′′) respectively. Define the conditional
mutual information of X and Y, with respect to Z and some base b, as

Ib(X ;Y|Z) = Ib(X ; (Y,Z)) − Ib(X ;Z),

where (Y,Z) denotes the joint random variable defined by X and Y.

In the case that X , Y, and Z are discrete random variables taking values {x0, . . . , xm}, {y0, . . . , yn},
and {z0, . . . , zr} respectively, the definition of conditional mutual information above can be reduced to

Ib(X ;Y|Z) = −
m

∑

i=0

r
∑

k=0

PXZ(xi, zk) logb

(PXZ(xi, zk)

PZ(zk)

)

− −
m

∑

i=0

n
∑

j=0

r
∑

k=0

PXYZ(xi, yj , zk) logb

(PXYZ(xi, yj , zk)

PYZ(yj , zk)

)

= Hb(X|Z) − Hb(X|Y,Z),

as in Section 3.4.5.
As with entropy, conditional mutual information can be defined in HOL relatively easily, since mutual

information has already been formalised.

5Gray [69] states Kolmogorov’s formula as

I(X ;Y|Z) + I(Y ;Z) = I(Y ; (X ,Z)).

6A recent paper by Swart [146] does attempt to precisely define this concept of conditional product measures; however,
it is generally good practice to use well established definitions when constructing formalisations.
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Formalisation 37 (Conditional mutual information).

conditional mutual information b (sp, sts, mu) (sp′, sts′)
(sp′′, sts′′) (sp′′′, sts′′′)
X Y Z =

let (psp, psts, pmu) =
prod measure space (sp′′, sts′′, distribution p Y)

(sp′′′, sts′′′, distribution p Z)
in

mutual information b (sp, sts, mu)
(sp′, sts′) (psp, psts) X (λx. (Y x, Z x)) −

mutual information b (sp, sts, mu) (sp′, sts′) (sp′′′, sts′′′) X Z.

Just like the other definitions above, the HOL formalisation of conditional mutual information has
been proven equivalent to the simplified form for finite, discrete spaces given at the end of its mathematical
definition. The statement of this theorem in higher-order logic follows.

HOL Theorem 13 (Reduction of conditional mutual information).

∀ b sp mu X Y Z. FINITE sp ∧
random variable X (sp, POW sp, mu) (IMAGE X sp, POW (IMAGE X sp)) ∧
random variable Y (sp, POW sp, mu) (IMAGE Y sp, POW (IMAGE Y sp)) ∧
random variable Z (sp, POW sp, mu) (IMAGE Z sp, POW (IMAGE Zl sp)) ⇒
(conditional mutual information b (sp, POW sp, mu)

(IMAGE X sp, POW (IMAGE X sp))
(IMAGE Y sp, POW (IMAGE Y sp))
(IMAGE Z sp, POW (IMAGE Z sp))
X Y Z =

−SIGMA (λ(x, z). joint distribution (sp, POW sp, mu) X Z {(x, z)} ∗
logr b (joint distribution (sp, POW sp, mu)

X Z {(x, z)} /
distribution (sp, POW sp, mu) Z {z}))

((IMAGE X sp) CROSS (IMAGE Z sp)) −
−SIGMA (λ(x, y, z). joint distribution (sp, POW sp, mu)

X (λx. (Y x, Z x)) {(x, y, z)} ∗
logr b (joint distribution (sp, POW sp, mu)

X (λx. (Y x, Z x)) {(x, y, z)} /
distribution (sp, POW sp, mu)

(λx. (Y x, Z x)) {(y, z)}))
((IMAGE X sp) CROSS (IMAGE (λx. (Y x, Z x)) sp))).

The proof of HOL Theorem 13 was surprisingly lengthy and tedious, mostly due to the nested sum-
mations involved and obligations to prove properties of various distributions and summations thereof;
the proof was greatly aided by the use of HOL Theorem 11.

3.6 Summary

This chapter explained the formalisation of information theory in HOL. The definitions used above were
sufficiently general to characterise both the discrete and absolutely continuous case. Furthermore, each
of these general definitions has been proved to reduce to a simpler definition for the case of finite, discrete
spaces; similar proofs for the continuous and other cases could be proved in the future. This formalisation
of information theory in a mechanised theorem-prover allows mathematically rigorous, machine-verified
analysis to be performed using information theory. The developments in this chapter serve as necessary
groundwork for the framework presented in Chapter 4.



Chapter 4

Programs, Probabilism, and
Information Leakage

“Security isn’t a dirty word, Blackadder. . .

Leak is a positively disgusting word.”

– Stephen Fry as General Melchett, Blackadder Goes Forth

The primary contribution of this chapter is to demonstrate how the formalisation of information theory
developed in Chapter 3 can be used to reason about the quantity of sensitive information that is leaked
by a program. Two of the core requirements for that proof framework are that it quantifies the amount of
information leaked and that it can be applied to programs exhibiting probabilistic behaviour; both of those
requirements will be motivated below. Throughout this chapter, examples will be used to motivate the
formalised definition of information leakage. Those examples also exhibit the flexibility of the framework
and the range of scenarios in which it can be applied. In addition to examining formalised definitions for
information leakage, we will also look at some concrete examples of those HOL formalisations in use and
tool support that simplifies the proofs. The examples in this chapter will be followed by their formalised
versions; the simple correspondence between these examples and formalisations, as well as their ease of
proof using the tool support developed, will demonstrate that formal analysis need not be inherently
difficult or arcane.

4.1 Motivation

Controlling and tracking the flow of information is a very old concern, predating the digital era. The
techniques used to address these issues have changed greatly as technologies have developed, but the
underlying goals remain the same. Since many of these developments have been motivated by military
applications, let’s consider the evolution of information control within military contexts to gain insight
into the primary concerns and techniques relating to information flow.

Imagine the dilemma of an emperor who must communicate orders over vast distances while main-
taining control over who has access to what information. He can easily dispatch a messenger to the edge
of his lands, but there is always a risk that the messenger will be seized and confidential messages will
fall into the hands of an enemy. The information could be protected using physical strength by sending a
convoy to defend the messenger, but that approach is costly and a strong enemy might still overpower the
convoy. Alternatively, confidential information could be sent in a form that can be understood only by
the intended recipients. Then, the enemy gains nothing by capturing a messenger; even if he is tortured,
he cannot reveal anything about the message he carries. Such cryptographic approaches to controlling
information flow have been used for centuries1 and remain one of the primary techniques today.

1In his biography of Julius Caesar (100 BC – 44 BC), Suetonius explained a simple cipher that the emperor used to
communicate military plans to his generals [92]; the name “Caesar Cipher” remains associated with this type of cipher.
The approach Caesar used was to shift each letter in his message forward three letters in the alphabet, with the end of the
alphabet wrapping around to cover the beginning. Caesar’s is the first recorded use of this type of shift cipher, but earlier
examples of message encryption do exist.

49
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Jump forward nearly two millennia to the Cold War Era and the size of military organisations has
grown tremendously, as has the quantity of information that must be managed. Deciding access rights on
an individual basis between each person and piece of information had become impossible, so NATO coun-
tries began using multi-level security classifications for information control. This approach allows each
piece of information to be classified once, based on its sensitivity, and each individual to be classified once,
based on their trustworthiness. Information at a specified level (e.g. “Secret”) was only to be accessed
by an individual of equal or higher level (e.g. “Secret” or “Top Secret”). Advantages and disadvantages
of this approach, as well as alternatives and historical perspective, can be found in Anderson’s book [5].

Moving on to the present day, the advent of modern computers and telecommunications technologies
has given rise to numerous means of storing and disseminating information. As a result, new techniques
for controlling the flow of information have been developed: the more sophisticated the underlying tech-
nologies, the more advanced the techniques. The ways in which information is gathered and used have
also changed and concern about information flow is no longer limited to military manoeuvres.

Corporations hold vast quantities of sensitive information about their customers and their own trade
secrets. For example, the research and development team at a company may want to share some features
of a product with the marketing team, without revealing how those features are implemented. The
research team might be concerned that the salespeople will accidently leak those details when pitching the
product. Government organisations also store vast amounts of information for non-military applications.
One example is the use of national databases to store health records. These databases have enormous
potential for privacy violations and proper access control is not easy to achieve. For example, researchers
would like to use these records to correlate certain factors with the incidence of a given disease, but only
a few factors are needed to identify an individual from their record, even if names and similar identifiers
are removed. Denning [43] and others began studying this area of information inference in the 1970’s.2

Their work serves as a foundation for the framework developed in this chapter. An excellent introduction
to issues of information control for health records, as well as data de-identification, can be found in
Anderson’s book [5]; he also presents details about issues of deploying national health databases [4].

One difficulty when controlling information flow is that some amount of flow may be necessary.
Consider the case of password checkers; rejecting a login attempt leaks something about the correct
password (i.e. the password is not the guess). This kind of information leakage is inherent in the system
and cannot be avoided. The medical records example is more difficult. Researchers need any correlations
in the data to be statistically significant, yet the probability of compromising the identity of a patient
must be very low. How this balance might be achieved is not obvious and privacy-preserving data mining
remains an active area of research; Evfimievski [56] presents a number of current issues in that area.

Another difficulty when attempting to prevent information leakage is the possibility of covert channels,
hidden ways of communicating information. Covert channels could be used by a malicious insider to
transfer data from a high-security area to a low-security area. This might be high-tech (e.g. setting the
lock value on a publicly visible file) or low-tech (e.g. leaving a desk lamp on at night). Since it is difficult
to eliminate covert channels altogether, the rate of leakage for these channels is often of primary concern.
For example, the desk lamp channel is capable of transmitting one bit per night; whether or not this
constitutes a risk would depend on the situation. A nice overview of covert channels and research in that
area can be found in Anderson’s book [5].

Given the complexity of modern solutions to controlling information flow, it is important to have ways
of rigorously analysing the amount of control offered by those systems. Despite the many complications
for managing information flow mentioned above, nearly all scenarios can be characterised as the transfer of
some information from an acceptable location, which we’ll call high security, to an unacceptable location,
which is low security. Any flow of information from high to low constitutes information leakage. Since
partial leakage may or may not be acceptable, a framework for analysis should quantify information
leakage, rather than simply stating whether or not it can occur. Many algorithms, particularly those that
involve information hiding, use randomness to achieve the desired results; thus, it is also beneficial for a
framework to be applicable to systems involving probabilistic behaviour.

2Their original concerns were similar, but applied to census data rather than health records.
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4.2 Information leakage formalised in HOL4

In this chapter, information leakage will be characterised by a flow of information from variables spec-
ified as high security to variables that are low security. Intuitively, a program leaks information if an
attacker, who knows or can control the low-security inputs to the program, can infer something about
the high-security inputs by observing the program’s outputs. Recall the definition of conditional mutual
information from Section 3.4.5: I(X ;Y|Z) measures how much information can be learned about Y by ob-
serving X (and vice versa), given that the value taken by Z is known. Notice that I(O;H|L) captures the
intuitive definition of information leakage given above, assuming that O, H, and L are random variables
ranging over possible program outputs, high-security inputs, and low-security inputs respectively. The
amount of information that can be learned about H by observing O, given that the attacker knows or can
control L, is precisely I(O;H|L). This is the formulation of information leakage used by Clark et al. [29]
for deterministic programs and will be adopted in this chapter for that scenario. The distributions of H
and L capture the likelihood of different sets of inputs. For a deterministic program M, the distribution
of O is completely determined by M and the distributions of H and L.

This simple two-level approach is sufficient to characterise multi-level systems, since the amount of
flow can be determined pointwise between each layer. Similarly, this approach can be used to analyse
the security of multi-lateral data sharing between different departments or functional units, rather than
between varying levels of classification. Again, leakage can be examined pointwise between each depart-
ment, with high representing the department leaking information and low representing the department
receiving that information.

4.2.1 Adding probabilistic behaviour

As mentioned earlier in this chapter, it is often desirable or necessary to introduce probabilistic behaviour
into algorithms, particularly those involving some amount of information hiding. The dining cryptogra-
phers protocol (Chapter 5) is an excellent example of this, since it involves a number of coin tosses and
its correctness relies on the randomness of those coin tosses. Fortunately, it is not difficult to introduce
probabilistic nondeterminism to the model of information leakage developed so far.

Programs involving probabilistic behaviour can be modelled by including a third “random” portion of
input state, in addition to the high and low-security portions. These inputs resolve the nondeterminism in
a given run of the program and the distribution over possible random inputs characterises the probabilistic
behaviour of the program. Let’s look at an example of this sort of translation. High-security variables
will be denoted by an overline and low-security variables by an underline, such as high and low. The
probabilistic algorithm

if heads then out := high else out := low,

which uses a coin flip and has one high-security input and one low-security input, can be modelled as the
deterministic algorithm

if r = 1 then out := high else out := low,

which has an additional random input r taking the value 1 with probability 1
2 . Note that, in the case of

a probabilistic assignment within a loop, a separate random input is required for each cycle of the loop.
The simple extension of the input state outlined above is all that is needed to model probabilistic

behaviour in programs being analysed. However, it remains to be decided what role the random portion
of the input state should play in the evaluation of information leakage. We will now examine a number
of factors that affect this decision.

Two views on probabilism in information-leakage

There are two possible views of probabilistic behaviour that correspond to different types of systems and
threat models. One possibility is that the attacker cannot directly observe the resolution of nondeter-
minism in a particular run of the system, but knows that it will follow a given distribution. For example,
the attacker knows that a coin is flipped and it will come up heads or tails with equal probability, but
he cannot observe the outcome of the coin flip for a given execution of the program. In this case, we will
consider the random inputs to the program to be hidden from the attacker. Alternatively, the resolution
of the probabilism in a particular execution could be visible to the attacker. In that case, he can observe
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whether heads or tails has been flipped, but still cannot influence the outcome of the flip; the random
input continues to follow the appropriate distribution and cannot be affected by the attacker.

In the sample probabilistic program above, the attacker learns all or none of the secret with equal
probability, assuming that high and low cannot take the same value. Notice that the visibility of the
outcome of the coin toss does not affect the leakage in that case. Leakage and lack thereof occur with
equal probability, as long as the attacker cannot influence the outcome of the coin flip. In this text we
will assume that the attacker cannot affect the function of programs in that way. (If such behaviour
is possible, then such “random” inputs should really be modelled as low-security inputs over which the
attacker has control.) Knowledge of the outcome of the coin flip is not needed for the attacker to obtain
the secret in this program. However, there are cases where the security of the secret depends on the
resolution of probabilistic behaviour being hidden from the attacker. One such example (Example 6) is
provided in Section 4.4.

If the outcome of the coin flip is not visible to the attacker and high and low can take the same value,
then the situation is slightly more complicated. In this case, the secret is only leaked when the output
does not match the low input, the frequency of which is determined by the distribution over input states.
There is no additional confusion when high and low can take the same value and the coin flip is visible,
because the attacker knows which path of execution has been taken.

Let’s look at a simpler example to clarify the difference between visible and hidden probabilistic
behaviour. Consider the program

if r = ⊤ then out := high else out := ¬high,

where the variables are boolean and r and high are evenly distributed. If the outcome of the coin flip
(i.e. the value assigned to r) is know to the attacker, the entire secret is leaked. Otherwise, the attacker
learns nothing about the secret.

Having examined two possible views of probabilistic behaviour, information leakage for probabilistic
programs must be defined, taking into account those two options. Malacaria [99] defined information
leakage for programs involving probabilistic nondeterminism as

I(O;H|(L,R)),

where R is a random variable ranging over possible values for the random portion of the input state.
Malacaria’s work does not consider the distinction between visible and hidden random inputs, which
is crucial in the present discussion. Recall the informal definition of conditional mutual information:
I(X ;Y|Z) measures how much can be learned about Y by observing X , given knowledge of Z. Malacaria’s
definition of leakage captures the case of visible probabilistic behaviour i.e. how much can be learned about
the high-security inputs by observing the outputs, given knowledge of both the low and random inputs.
Thus, the definition of leakage as I(O;H|(L,R)) will be used for the case of programs exhibiting visible
probabilistic behaviour. In practice, this can also be achieved by including such visible random inputs as
part of the low inputs and using the definition of leakage as I(O;H|L).

If a program involves hidden probabilistic behaviour, Malacaria’s definition will overestimate the
leakage; this will be demonstrated with Example 6 in Section 4.4. Instead, I propose that leakage for
programs exhibiting hidden probabilistic behaviour should be defined as

I(O;H|L)

i.e. the same definition as for deterministic programs, which is not conditioned on the random inputs.
This definition captures the meaning of the resolution of probabilistic behaviour being hidden; I(O;H|L)
measures how much can be learned about the high-security inputs by observing the outputs, given
knowledge of the low inputs (but not of the random inputs). As was mentioned above, visible random
inputs can be modelled by simply including them with the low-security state. Thus, the definition of
leakage as I(O;H|L) is sufficiently flexible to capture both visible and hidden probabilistic behaviour and
even programs involving both. Since the probabilistic behaviour in the case study in Chapter 5 is of the
hidden sort, such probabilism will be of primary concern in this chapter in preparation for that example.

Having defined information leakage using conditional mutual information above and formalised a
definition of conditional mutual information in Chapter 3, most of the work in formalising a definition of
information leakage is already done. However, a number of decisions must be made about how to model
programs that are to be analysed for information leakage. We’ll now look at a number of these issues,
beginning with modelling program state.
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4.2.2 Modelling program state

Programs that are to be analysed can be seen as transforming some initial program state to a final
program state; these states characterise the values of all the program variables at a particular time in the
program execution cycle. Program states can be modelled as mappings from variable names to values.
For example, a high security program state, in which program variables h1 and h2 are assigned the values
0 and 1 respectively, can be modelled as the mapping 〈h1 7→ 0, h2 7→ 1〉. Translating this concept into
a HOL formalisation, program states have been modelled as HOL functions from variable names of type
string to values of an arbitrary type α, which can be instantiated as desired. More formally, the HOL
type : α state has been defined as

α state = string → α.

Recall, that HOL functions must be total, so the functions characterising program states are necessar-
ily total. As a result, states are infinite and must assign a value to every possible string-named variable.
In practice, this is not a serious problem, since a default value can be assigned to all program variables
that are not of interest. For example, the real-valued program state 〈low 7→ 3.5〉 can be captured by the
HOL function (λs. if s = “low” then 3.5 else 0), which has type : real state and assigns the default
value 0 to any program variable that is not of interest. This approach keeps the number of states to be
considered finite, whenever there are a finite number of variables and values of interest.

4.2.3 Formalising program definitions

Prior to the research presented in this text, I developed a technique for analysing information leakage
using a formalisation of the probabilistic Guarded Command Language (pGCL) [105] embedded in HOL4
by Hurd [85].3 That approach seemed promising in theory, but in practice the embedded language and
semantics became overly cumbersome in the theorem-proving environment. For example, it took me
nearly a year to prove basic correctness and termination properties of the dining cryptographers case
study (Chapter 5) using the pGCL approach; all of those proofs are necessary groundwork before proofs
about information leakage can be undertaken.

As a result of my experience using formalised pGCL, I decided that programs to be analysed for
information leakage should be modelled directly as HOL functions. This approach greatly reduces the
difficulty in proving properties of modelled programs. For example, the correctness proofs for the dining
cryptographers protocol took about a week’s time when the protocol was modelled directly as a HOL
function; that is a stark contrast to the year taken to prove the same correctness properties and termi-
nation using pGCL embedded in HOL4. As an added benefit of modelling programs as HOL functions,
termination can generally be proved automatically by the HOL4 system; this was the case for the dining
cryptographers case study.

Programs were described above as transforming an initial program state into a final program state.
Let’s take a closer look at how that concept is captured when formalising programs as HOL functions.
Recall, that program variables must be specified to be of one of three types: high-security, low-security,
or random. This can be achieved by dividing the program state into three separate parts: the high-
security state, the low-security state, and the random state, each mapping variable names to values.
Thus, programs have been modelled as HOL functions from a triple of states, representing the high,
low, and random input states, to a low-security output state. Formally, the HOL types for program
input-states, : prog state, and programs, : prog have been defined as

(α, β, γ) prog state = (α state) ∗ (β state) ∗ (γ state)

and

(α, β, γ, δ) prog = (α, β, γ) prog state → δ state,

where α ∗ β denotes the type of pairs of the form (x : α, y : β).
By explicitly including the type of each program variable, this approach maintains flexibility and

eliminates ambiguity. Let’s look at an example of how a program updating its state would be formalised.

3The probabilistic Guarded Command Language is an extension of Dijkstra’s Guarded Command Language [51] to
include probabilistic assignment; it is a simple Turing-complete language which is capable of modelling probabilistic and
nondeterministic behaviour, as well as non-termination.
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A program that updates the low-security input state, to map a variable named l1 to the value 3, and
then outputs the updated low-security state would be formalised as the HOL function

(λ(high, low, random). (λs. if s = “l1” then 3 else low s)).

This strategy of updating the low-security state and then outputting the updated state seems the usual
behaviour that one would wish to model. Notice that the same variable name can be used for high-security,
low-security, and random program variables. Since the appropriate part of the state must be mentioned
when referencing program variables, this is not a problem. For example, low “l1” and high “l1” cannot
be confused in that the first must be a program variable in the low-security state and the second in
the high-security state. This technique of splitting the state is much more flexible and robust than any
relying on a single state and naming conventions.

Bounds and rates of leakage for non-terminating looping constructs were one of the primary contribu-
tions of Malacaria’s recent work [99]. Since HOL functions must be proved to terminate, one limitation
of modelling programs as HOL functions is that non-terminating programs cannot be analysed; such
analysis would require an embedding similar to the work with pGCL described above. Considering the
benefits of modelling programs as HOL functions mentioned earlier, I decided that this limitation to
terminating programs was acceptable.

4.2.4 Random variables over portions of program states

Recall the definition of information leakage decided upon above: I(O;H|L). Having decided upon a
method for formalising programs and program states, only the random variables O,H and L remain to
be defined before formalising the definition of leakage. Since the input state is divided into its high-
security, low-security, and random components, H and L are defined simply by identifying the correct
portion of the input state.

Formalisation 38 (Random variable on high-security input states).

H = (λ((h, l), r). h),

where h : α state, l : β state, and r : γ state.

Formalisation 39 (Random variable on low-security input states).

L = (λ((h, l), r). l),

where h : α state, l : β state, and r : γ state.

Similarly, a random variable on the random input state can be defined. This is required for analysis
of programs involving only visible probabilistic behaviour using the definition I(O;H|(L,R)) as discussed
above.

Formalisation 40 (Random variable on random input states).

R = (λ((h, l), r). r),

where h : α state, l : β state, and r : γ state.

Finally, a program modelled as a HOL function as described above defines the random variable on
low-security program outputs, so an explicit definition of O is unnecessary.

4.2.5 Formalised information leakage

Using the random variables defined above and the formalisation of conditional mutual information from
Chapter 3 (Formalisation 37), the definition of information leakage as I(O;H|L) can easily be formalised
in HOL.
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Formalisation 41 (Info. leakage of programs with hidden probabilism).

leakage (sp, sts, mu) f =
conditional mutual information 2 (sp, sts, mu)

(IMAGE f sp, POW (IMAGE f sp))
(IMAGE H sp, POW (IMAGE H sp))
(IMAGE L sp, POW (IMAGE L sp))
f H L,

where (sp, sts, mu) is a probability space, as formalised in Chapter 2, characterising the probability dis-
tribution over input states. The constant factor 2 in the definition identifies the base for the logarithm in
the conditional mutual information. Reasons for this choice of base were presented in Chapter 3.

Formalisation 41 defines leakage for programs exhibiting hidden probabilistic behaviour and will be
of primary concern in the rest of this text; however, a similar formalisation for programs exhibiting only
visible probabilistic behaviour has been included below for the sake of completeness.

Formalisation 42 (Info. leakage of programs with visible probabilism).

visible leakage (sp, sts, mu) f =
conditional mutual information 2 (sp, sts, mu)

(IMAGE f sp, POW (IMAGE f sp))
(IMAGE H sp, POW (IMAGE H sp))
(IMAGE (λs. (L s, R s)) sp, POW (IMAGE (λs. (L s, R s)) sp))
f H (λs. (L s, R s)),

where (λs. L s, R s) is the joint random variable defined by L and R.

4.3 Assistance for information leakage analysis in HOL4

The decision to model programs as HOL functions greatly simplifies the modelling step for information
leakage analysis. However, there are other task that must be undertaken. The foremost of these is mod-
elling the distribution on input states. Formidable examples will probably require a substantial amount
of effort to define the probability space characterising the distribution on initial states; furthermore, the
space defined must be proved to form a probability space in accordance with the formalised definition.

Fortunately, it is possible to define different classes of probability spaces that characterise different
distributions over input states. This is beneficial because the class of spaces as a whole can be proved to
define proper probability spaces; in future applications, the class can be instantiated with a particular
distribution and the proof does not need to be repeated.

One of the most useful classes of input distributions is the uniform distribution on inputs, in which
all input states (from a set of valid states) are equally likely. The class of uniform input distributions
has been formalised in HOL and support has been developed to ease proofs of information (non)-leakage
involving such distributions. We will now examine some of those developments.

The techniques examined below are not limited to the uniform distribution and similar assistance could
be formalised for other distributions; I have focused on the uniform distribution in this text because of
its wide range of uses and specifically for its use in the dining cryptographers case study (Chapter 5).

4.3.1 unif prog space

Consider a situation where there are sets of valid high, low, and random input states that are deemed
possible inputs to a particular program. Let’s call these sets high, low, and random respectively. Assume
that any initial program state that is composed of a high-security input state from high, a low security
input state from low, and a random input from random is valid. If any valid initial state is equally likely,
i.e. the initial states are uniformly distributed, then each initial program state has a probability of

1

(|high|)(|low|)(|random|)
,
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where |S| denotes the cardinality of set S. Since the probability of all initial states is a constant value, the
definition of information leakage can be optimised to a simpler form for this class of input distribution.

The probability space that captures the uniform distribution on initial states outlined above has been
formalised in HOL, taking high, low and random as parameters. That formalisation is presented below
in two steps: first, the uniform point distribution on valid program inputs, then the probability space for
that distribution.

Formalisation 43 (Uniform point distribution on initial states).

unif prog dist high low random =
(λs. if s IN high CROSS low CROSS random then

1/(&(CARD(high CROSS low CROSS random)))
else 0),

where &n converts a natural number n into the equivalent real number. The function unif prog dist

takes a value of type prog state and returns a real number.

Formalisation 44 (Uniform probability space for initial states).

unif prog space high low random =
(high CROSS low CROSS random,
POW (high CROSS low CROSS random),
(λs. SIGMA (unif prog dist high low random) s)).

The probability space characterising the uniform distribution on initial program states, unif prog space,
has been defined on the space high× low× random and the set of events P(high× low× random), with
S × R denoting the set cross product operation and P(S) the powerset of S. This specifies that any
set of initial program states S ⊆ (high × low × random) is an event and has a well-defined probability.
Since the initial program states are evenly distributed, any set of states S ⊆ (high× low × random) has
probability

|S|

(|high|)(|low|)(|random|)
.

The space defined by unif prog space high low random has been proved to form a valid probability
space, assuming that high, low, and random are finite and that their cross product is a non-empty set; the
statement of that theorem in HOL notation can be found in Appendix G as prob space unif prog space.
That proof allows programs involving a uniform input distribution to be specified and analysed more
easily. Using unif prog space to specify a space with a uniform distribution, the resulting space has
already been proved to define a proper probability space. Moreover, the probability of a set of states S
in unif prog space has been proved to be (CARD S)/(CARD high ∗ CARD low ∗ CARD random), as explained
in the preceding paragraph; that HOL theorem appears in Appendix G as prob unif prog space.

4.3.2 Simplified leakage computation for unif prog space

As discussed earlier, the definition of information leakage for programs using the unif prog space dis-
tribution can be optimised to allow simpler proofs. First of all, unif prog space defines a finite, discrete
probability space, so the conditional mutual information in Formalisation 41 can be simplified according
to HOL Theorem 13. The definition can be reduced further by simplifying the probabilities involved;
recall that the probability of any state is a constant value determined by the cardinality of the valid input
sets. This reduces the definition of information leakage for programs using unif prog space to the form
specified by unif prog space leakage computation reduce in Appendix G.

The simplifications mentioned above greatly reduce the effort needed to prove the information leakage
of programs modelled in HOL. In the case of more sophisticated examples involving inductive proofs,
that means that the interactive proofs are less difficult. In the case of simple examples, the proofs can
be dispatched with a single application of a HOL4 conversion that I have developed, followed by a few
lines of script to simplify an equality involving arithmetic and log2; the HOL4 conversion automatically
simplifies the leakage quantity down to an arithmetic expression, provided with appropriate lemmas about
the program and its inputs. While this tool support is not fully automatic and requires the user to supply
several inputs, it makes it much easier to calculate and prove the quantity of information leakage when
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compared to a pen-and-paper approach. For instance, the examples in Section 4.4 were proved using
this automated approach. Those proofs each involved between two and eight lines of proof script, which
could easily be written in ten minutes or less. For those simple examples, the time for the proofs to be
performed by the system was a minute or less for each, once the proof scripts were written.

A similar approach was used to prove the non-leakage of the dining cryptographers protocol (Chapter
5), for the case of three cryptographers. That example is much more complex than any of the examples
in this chapter and the HOL system takes about eighteen minutes to process that proof; it is quite likely
that such an approach would become intractable for larger examples. Despite that limitation, the ability
to calculate the information leakage of a program modelled in HOL, even for small example cases, is useful
for gaining insight into the leakage characteristics of a particular program. Even the simple examples we
will examine in this chapter quickly become tedious to prove and the analysis error-prone when done on
paper. In comparison, the computation in HOL is painless.

While the simple examples in this chapter could easily processed by the proof system without much
tool support, the dining cryptographers example is more complicated and required more care in order
to mechanise the computation using the proof system. The application of this automated approach for
proving information leakage to the dining cryptographers protocol motivated a number minor tool devel-
opments; these made the computation easier and more efficient and reduced the amount of interaction
that was necessary. That tool assistance is general and should be useful for many future applications.

4.4 Formalised information leakage examples

Let’s apply the definition of information leakage developed above to some simple examples in order to gain
intuition about the definition; some of the examples below were inspired by those found in Denning’s book
[43]. High-security variables will be denoted by an overline and low-security variables by an underline,
such as high and low.

Example 1 (Total leakage of addition). Consider the program

M1 ≡ out := high + low

which has a high-security input high, a low-security input low, and a low-security output out.

Each portion of the program state has only one variable (high, low, and out respectively). As a result,
the probability of a random variable over one of those portions of the program state taking a particular
value is simply the probability of the corresponding program variable taking that value. For example,
P(H = 〈high 7→ 1〉) is equivalent to P(high = 1), where 〈high 7→ 1〉 is used to represent the high-security
input state which has one variable high that is assigned the value 1. This simplification of notation will
be used when a portion of the state contains a single program variable.

Assume that the distribution on the high and low security input states is such that

P(high = i) =

{

1
4 0 ≤ i ≤ 3
0 otherwise,

P(low = i) =

{

1
4 0 ≤ i ≤ 3
0 otherwise.

The distribution over out is implicitly defined by these two distributions and M1.

Using the definition of information leakage above and Definitions 36 and 34 for conditional mutual
information and mutual information, the leakage of M1 for the distributions on high and low given above
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is
I(O;H|L) = I(O; (H,L)) − I(O;L)

=
∑6

o=0

∑3
h=0

∑3
l=0 P(out = o; (high, low) = (h, l))

(

log2
P(out=o;(high,low)=(h,l))

P(out=o)P((high,low)=(h,l))

)

−
∑6

o=0

∑3
l=0 P(out = o; low = l) log2

(

P(out=o;low=l)
P(out=o)P(low=l)

)

= 1
16 (0 + 32)

= 2.

The result is that M1 leaks 2 bits of the secret. Since the secret is the value of high, which can be
captured in 2 bits, M1 leaks all of the secret. Knowing the result of an addition (out) and one of its
operands (low), the other operand (high) is completely determined. This intuition aligns with the leakage
result above.

Now let’s look at how Example 1 can be formalised and proved in HOL using the tools developed in Sec-
tion 4.3. The first step is to model the programM1 as a HOL function of type (num, num, num, num) prog.

M1 = (λs : ((num, num, num) prog state).
(λs′. if s′ = “out” then

(H s “high”) + (L s “low”)
else 0))

The next step is to define the probability space characterising the distribution on inputs. Since the
distribution in Example 1 is uniform, unif prog space can be used to define the probability space. First,
the sets of valid high, low, and random inputs need to be defined. These will be defined inductively, so
the optimisations described in Section 4.3.2 can be used for the leakage proof.

high 0 = {(λs. if s = “high” then 0 else 0)} ∧
high (SUC n) = (λs. if s = “high” then SUC n else 0) INSERT (high n)

low 0 = {(λs. if s = “low” then 0 else 0)} ∧
low (SUC n) = (λs. if s = “low” then SUC n else 0) INSERT (low n)

random = {(λs. 0)}

Notice how the default value 0 has been used for variables not used in the program, thereby keeping the
number of valid states finite. Similarly, since there are no random inputs, a default random input that is
everywhere 0 has been used.

The goal to be proved, stating the quantity of information leakage for M1, is
leakage (unif prog space (high 3) (low 3) random) M1 = 2. The first step of the proof is to prove two
lemmas used for testing equality between input states; they are lem1

∀s n. ((λs′. (if s′ = s then n else 0)) = (λs′. 0)) = (n = 0)

and lem2
∀s n m. ((λs′. (if s′ = s then n else 0)) =

(λs′. (if s′ = s then m else 0))) =
(n = m),

which were proved automatically by the Metis tool in the HOL4 system. The next step for the proof is
to define how the HOL tool for leakage computation should unfold the definitions for the input states.
Since this is an easy example, a single simplification with arithmetic rules and the definitions and lemmas
above is sufficient for any of the input three states:

example1 conv = SIMP CONV arith ss [high, low, random, lem1, lem2].
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The next step is to define how the tool can decide the (in)equality of different inputs to and outputs from
the program. In this case, example1 conv is also sufficient for this purpose for the three input states and
the outputs.

At last, the HOL4 conversion to compute the quantity of information leakage can be used:

LEAKAGE COMPUTE CONV (“high 3”, “low 3”, “random”)
[high, low, random, lem1, lem2]
[M1, H def, L def, FST, SND]
example1 conv example1 conv example1 conv

example1 conv example1 conv example1 conv

example1 conv.

The arguments to the tool are: three terms defining the high, low, and random input states; two lists of
lemmas to be used in relation to the inputs and the program definition; three conversions to unwind the
definitions of the high, low, and random input states; four conversions for determining (in)equality of the
high, low, and random input states and the output states.

Using LEAKAGE COMPUTE CONV reduces the goal to

inv 16 ∗ (0− (−lg 4 + (−lg 4 + (−lg 4 + (−lg 4 + (−lg 4 + (−lg 4

+(−lg 4 + (−lg 4 + (−lg 4 + (−lg 4 + (−lg 4 + (−lg 4 + (−lg 4

+(−lg 4 + (−lg 4 + −lg 4)))))))))))))))) = 2.

The simplifier can then prove the lemma lg 4 = 2, given a few lemmas about logarithms. Rewriting with
that lemma and some basic properties of real arithmetic, the goal becomes

32/16 = 2.

Finally, by instantiating a lemma about real division, the goal is proved. �

Knowing that the bitwise exclusive-or (XOR) operation is used in cryptrographic algorithms, one
might try to eliminate the leakage in Example 1 by changing the addition to bitwise XOR. The following
example illustrates the insecurity of that näıve approach.

Example 2 (Total leakage of bitwise exclusive-or). Consider the program

M2 ≡ out := high⊕ low

where ⊕ represents the bitwise exclusive-or operation.

Assume that the distribution on the high and low security input states is the same as in Example 1.
The distribution over out is implicitly defined by M2 and the distribution over the inputs.

It is again the case that I(O;H|L) = 2, even though the addition in Example 1 has been replaced
with bitwise exclusive-or. As with addition, knowing the result of a bitwise exclusive-or and one of its
operands, the other operand is completely determined.

Now let’s look at how this example can be modelled in HOL; proofs will not be presented for this or
any of the remaining examples, as they are very similar to the proof in Example 1. The program M2
can be modelled as the HOL function

M2 = (λs : ((num, num, num) prog state).
(λs′. if s′ = “out” then

w2n((n2w(H s “high”))??(n2w(L s “low”)))
else 0)),

where n2w and w2n respectively turn a natural number into the corresponding bit string (n-bit word) and
back again and ?? is the bitwise XOR operation on n-bit words. The lists of valid inputs are the same as
in Example 1 and the goal is nearly the same except with M2 substituted for M1. �

The leakage in the examples above may seem trivially obvious, so let’s move on to an example with
a more subtle leakage.
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Example 3 (Partial leakage of bitwise exclusive-or). Consider the program

M3 ≡ out := h1 ⊕ h2

which has two high-security inputs h1 and h2, no low-security inputs, and a low-security output out.
Assume that the distribution on the high security input states is such that

P(h1 = i, h2 = j) =

{

1
16 0 ≤ i, j ≤ 3
0 otherwise,

The distribution over out is implicitly defined by this distribution and M3.
As in the examples above, it is again the case that I(O;H|L) = 2. However, the secret is the value

of h1 and h2, each of which is two bits, so this constitutes leakage of three quarters of the secret. This
may seem counterintuitive, since one can not determine the value of either of the operands in a bitwise
exclusive-or from the result thereof. However, a great deal is leaked about the values of h1 and h2
together, namely which bits of each are the same and which are different. Initially, an attacker knows
there are 16 possible assignments of h1 and h2, but with knowledge of their exclusive-or, he can eliminate
three quarters of those possibilities.

The program M3 can be modelled in HOL as

M3 = (λs : ((num, num, num) prog state).
(λs′. if s′ = “out” then

w2n((n2w(H s “h1”))??(n2w(H s “h2”)))
else 0)),

which is quite similar to M2. This time, the sets of valid high, low, and random inputs must be redefined
in accordance with the description above. They are modelled in HOL, with the high inputs defined in
two stages, as

h1 0 = {(λs. if s = “h1” then 0 else 0)} ∧
h1 (SUC n) = (λs. if s = “h1” then SUC n else 0) INSERT (h1 n)

h2 l 0 = IMAGE (λs. (λs′. if s′ = “h2” then 0 else s s′)) l ∧
h2 l (SUC n) = (IMAGE (λs. (λs′. if s′ = “h2” then (SUC n) else s s′)) l)

UNION (h2 l n)

high n = h2 (h1 n) n

low = {(λs. 0)}

random = {(λs. 0)}. �

The first step in defining the high inputs uses the function h1 to inductively define a set states with
valid assignments for the variable “h1”. In the second step, the function h2 inductively constructs the
set of valid high inputs by including each of the states generated by h1, updated with each of the valid
assignments of the variable “h2”.

Later on we’ll look at an example of a probabilistic algorithm involving bitwise exclusive-or that does
not result in any information leakage. For now, let’s look at one more example that uses addition.

Example 4 (Partial-leakage of addition). Consider the program

M4 ≡ out := h1 + h2

which has two high-security inputs h1 and h2, no low-security inputs, and a low-security output out. As-
sume that the distribution on the high-security input states is the same as in Example 3. The distribution
over out is implicitly defined by this distribution and M4.

The calculation of information leakage for M4 provides a slightly cryptic value: I(O;H|L) = 1
8 (26 −

3 log2 3) ≈ 2.66. This is equivalent to a leakage between 2 and 3 bits; the reason that a non-integer value
can result is that the relative probability of different inputs is taken into account in addition to their
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resulting leakage. (Recall that the intuitive definitions of many of the information-theoretic concepts in
Chapter 3 involve a weighted average).

To gain some insight into this result, let’s look at some of the possible inputs, their relative probabil-
ities, and the resulting leakages. In the case that out = 0, all 4 bits of the secret are leaked, since h1 and
h2 must both be 0. However, this output has a probability of only 1

16 , corresponding to the probability

of the single input that can cause it. On the other hand, if out = 4, then 8 of the 16 assignments of h1
and h2 are possible, resulting in half of the secret (2 bits) being leaked. Since half of the possible inputs
result in this output, the probability of this leakage is 1

2 . In between these two extremes, it might be the
case that out = 1. Then one of inputs must be 1 and the other 0, so the only bit that is not leaked is
which value is which. The probability of this output is 1

8 , since there are two possible inputs that can
result in it.

The program M4 can be formalised in HOL as

M4 = (λs : ((num, num, num) prog state).
(λs′. if s′ = “out” then

(H s “h1”) + (H s “h2”)
else 0)),

The distribution over inputs is modelled the same as in Example 3. �

4.4.1 Handling intermediate values

Up until this point, we have only considered programs that involve a single assignment to any program
variable. If multiple (overwriting) assignments to a variable occur in a program to be analysed, some
decisions must be made about the attacker model being considered. On the one hand, the program could
be viewed as a black box; the attacker can observe the inputs entering and the outputs leaving, but
cannot observe intermediate values, even for low-security variables. Alternatively, the attacker could be
allowed to see all the intermediate values taken by low-security variables during program execution, but
not the intermediate values of high-security variables. To gain some understanding of the importance of
this distinction, let’s look at another example.

Example 5 (Leakage through an intermediate value). Consider the program

M5 ≡ out := high;
out := low,

where a semicolon denotes sequential composition.

Only a quick examination of M5 is needed to see that the attacker learns all of the secret if he can
observe the intermediate value of out after the first assignment. However, he learns nothing about the
secret if he can only see the final value of out. This is the case regardless of the distribution on low and
high (assuming high can take more than one value i.e. is not already known certainly). �

As Example 5 illustrates, careful consideration is necessary when deciding how to handle intermediate
values, since the same program can leak all or none of the secret depending on the choice of viewpoint. It
is important to recognise that neither view is universally correct; each corresponds to different capabilities
of a potential attacker. The correct choice is the one that reflects the capabilities of the attacker and
system considered. An incorrect choice will result either in an overestimation of leakage or in potential
leakage going unidentified.

The approach to characterising information leakage outlined above is sufficiently flexible to model
both views of intermediate values with little additional effort. Use of the framework as demonstrated
in the examples above already captures the black box approach to intermediate values. For example,
analysis that does not consider intermediate values would be performed by modelling M5 in HOL as
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follows.
assign1 = (λs : ((num, num, num) prog state).

(λs′. if s′ = “out” then

(H s “high”)
else 0))

assign2 = (λs : ((num, num, num) prog state).
(λs′. if s′ = “out” then

(L s “low”)
else 0))

M5 = (λs : ((num, num, num) prog state).
assign2 ((H s, assign1 s), R s))

For the input distribution defined in Example 1, M5 has been proved non-leaking.
Using the same framework, knowledge of intermediate values can be modelled by changing all assign-

ments in a program from overwriting operations to operations that add the current value of the variable
to a list of values taken by that variable. For example, M5 could be changed to

M5′ ≡ out := (HD(high)) :: out;
out := (HD(low)) :: out,

where h :: tl adds the element h to the front of list tl and HD selects the first element from a list. No-
tice that only the current value of a variable, i.e. the one at the front of the list, should be added
to the list of another variable when an assignment occurs. The final value of out in M5′, out =
[low, high, initial value of out], reflects all the intermediate values taken by out. Thus, the same defi-
nition for information leakage applied to M5 and M5′ would capture their respective non-leakage and
total leakage, corresponding to the differing views of attacker capabilities. Where initialisation of out is
not necessary or appropriate, its initial value can be set to the nil list. This method of handling different
views of intermediate values is extremely flexible and can even be used to model situations in which some
intermediate values should be considered visible and others hidden; care should be taken in such complex
scenarios in order to maintain a consistent handling of those variables/values that should be considered
visible and those that should not.

Considering intermediate leakage, the program M5′ would be formalised in HOL as follows.

state update name value = (λs. (λn. if n = name then value else s n))

state append name value = (λs. state update name

((if value = [] then [] else [HD value]) + +(s name)) s)

assign1′ = (λs. state update “out” (H s “high”) (L s))

assign2′ = (λs. state append “out” (L s “low”) (L s))

M5′ = (λs : ((num, num, num) prog state).
assign2′ ((H s, assign1′ s), R s))

Since the HOL function HD is only well-defined for non-empty lists, the behaviour in M5′ must be
modelled using the if-then construction and the list concatenation function ++ as seen above. The input
states must also be redefined so the states are num list-valued rather than num-valued.

high 0 = {(λs. if s = “high” then [0] else [])} ∧
high (SUC n) = (λs. if s = “high” then [SUC n] else []) INSERT (high n)

low 0 = {(λs. if s = “low” then [0] else [])} ∧
low (SUC n) = (λs. if s = “low” then [SUC n] else []) INSERT (low n)

random = {(λs. [])}

This formalisation captures the case of intermediate information leakage in M5 and M5′ has been proved
to leak 2 bits, i.e. all of the secret, for the input distribution modelled above.
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4.4.2 Security through hidden probabilistic behaviour

Example 6 (Non-leakage of bitwise exclusive-or). Consider the program

M6 ≡ out := h ⊕ r

which has one high-security input h, a random input r, no low-security inputs, and a low-security output
out.

Assume that the distribution on the high-security and random input states is such that

P(h = i, r = j) =

{

1
16 0 ≤ i, j ≤ 3
0 otherwise,

The distribution over out is implicitly defined by this distribution and M6.
If the outcome of r is considered to be visible to the attacker, the program is equivalent to M2 from

Example 2 and all 2 bits of the secret are leaked. In contrast, if the value taken by r in a particular
execution of M6 cannot be observed by the attacker, then no information about h is leaked.

This example is worth remembering because it is analogous to the use of bitwise exclusive-or in the
dining cryptographers protocol studied in Chapter 5; an understanding of Example 6 provides useful
insight into the reason for the correctness of the dining cryptographers protocol.

The scenario involving M6 and the distribution outlined above can be modelled in HOL as follows.

M6 = (λs : ((num, num, num) prog state).
(λs′. if s′ = “out” then

w2n ((n2w (H s “h”))??(n2w (R s “r”)))
else 0)).

The sets of inputs are formalised as

high 0 = {(λs. if s = “h” then 0 else 0)} ∧
high (SUC n) = (λs. if s = “h” then SUC n else 0) INSERT (high n)

low = {(λs. 0)}

random 0 = {(λs. if s = “r” then 0 else 0)} ∧
random (SUC n) = (λs. if s = “r” then SUC n else 0) INSERT (random n)

In the event that r is deemed hidden, then the goal to be proved is very similar to the form in Example
1,

leakage (unif prog space (high 3) (low 3) random) M6 = 0.

This non-leakage of M6, when r is deemed hidden, has been proved using the HOL4 tool. Similarly, the
total leakage of M6, when r is visible, has been proved in HOL4; that goal is the same as for the hidden
case except that leakage is replaced by visible leakage and the quantity is 2 rather than 0. �

4.4.3 What is being leaked?

The primary aim of the work presented in this chapter is to quantify the amount of information leaked
by a program. Underlying the framework discussed above is the assumption that any leakage of high-
security information is equally disastrous, so it is not of importance which particular pieces of information
are leaked, only the quantity. However, there may be some cases were it is desirable to determine if a
particular piece of information has been leaked. This type of analysis can be accommodated within the
approach presented above by isolating the high-security input of interest and treating other high-security
inputs as hidden random inputs. To see how this can be used, let’s revisit Example 3.

Recall the program in Example 3

M3 ≡ out := h1 ⊕ h2,

which has two high-security inputs h1 and h2. Assuming that h1 and h2 take values from {0, . . . , 3}
with equal probability, M3 leaks two bits of the secret; an attacker can eliminate three quarters of the
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possible assignments of h1 and h2 because they do not yield the appropriate exclusive-or. Despite this
leakage, the individual values of h1 and h2 are not leaked. In order to prove that this is the case, the
amount of h1 leaked by M3 and the amount of h2 leaked by M3 can be proved separately. This is done
as described above. To isolate h1 as the only high input and calculate how much of it is leaked, the other
high-security inputs (h2) are modelled as hidden random inputs. This makes M3 equivalent to M6,
which does not leak any information. Similarly, h2 can be isolated in order to prove that its value is not
leaked by M3.

It may seem counterintuitive that a program which does not leak the value of either of the two
secret inputs still leaks half of the secret. As mentioned, this is because information is leaked about
the relationship between these two values. There is no universally correct decision as to whether such
information is sufficient to mount an attack, so the leakage results would have to be considered within
the particular context. However, there are numerous examples of xor-ciphers being broken because of
reuse of a key, demonstrating that such leakage can be significant. One such example is the breaking of
the German Lorenz Cipher by analysts at Bletchley Park during WWII [81]; that attack on the cipher
system was possible because the same key was reused once to transmit very similar messages.

The framework in this chapter provides a flexible setting to investigate and prove the information
leakage of a program; where more detail is needed or desired, one can determine the information leaked
about particular variables using the technique explained in this section.

4.4.4 Information flow from low to high-security

Another possible type of leakage results from an assignment from a low-security variable to a high-security
variable. Let’s examine this more carefully by studying another example.

Example 7 (Information flow from low to high).

M7 ≡ high := low;
out := low.

�

Whether M7 is a security violation or not depends again on the threat model. If one is concerned
with intermediate and final values of high, then the program would leak information, since the attacker
knows the final value of high. For example, if high were a password, then setting the password to a known
value might be sufficient for the attacker’s purposes, even if the initial value of high is never obtained by
the attacker. On the other hand, if the attacker’s objective is to obtain the initial value of high that was
input, then M7 does not leak any information.

Information flow from low inputs to high intermediate values can be modelled in a similar manner
to the intermediate flow from high to low studied earlier. Again, one must consider the capabilities of
the attacker modelled and how intermediate values should be handled. Even though intermediate values
of the high-security variables are not know to an attacker, they may still be a concern. This issue is
illustrated by the following example.

Example 8 (Intermediate information flow from low to high security). Consider the program

h1 := low;

h1 := h2.

If the attacker can halt or delay the execution of the program after the first assignment, then he knows
the value of h1 at that time and can make use of that knowledge; however, if this is not within the
attacker’s power, then the program leaks nothing about the initial value of h1 and its final value remains
unknown, since the value of h2 is unknown. �

If intermediate values for high are to be considered, i.e. the attacker could halt or delay execution of
the program after a particular instruction, then the values taken by the high-security variables should
be treated as a list, just as intermediate values of low security variables were handled above. If only the
initial and final values of high-security variables are a concern, then only that pair of values should be
considered; assignments would be treated as updates (rather than additions to a list), as is done for low
security variables when not considering intermediate values. In order to model information flow from low
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to high security, the random variable H needs to be redefined to range over the lists of values (or pairs of
final and initial values) taken by the high-security variables, rather than initial values only. This would
involve modelling programs as HOL functions from a triple of states, representing the high, low, and
random input states, to a pair of states representing the resulting high and low security output states; a
random output state would not needed because the random state is inherently read-only and should not
be updated by programs. Leakage from low to high security will not be considered in the remainder of
this text, but has been mentioned since the framework can easily be adapted to accommodate it.

4.5 Related work and novel contributions

There is a vast amount of literature on the topic of information leakage and a complete survey is not
possible within the scope of this chapter. In the following review, emphasis will be placed on early
foundational work and those developments encountered in a linear progression from the field’s inception
to the research presented in this chapter.

4.5.1 Towards probabilistic, quantitative analysis

Some of the earliest work in the area of information flow and leakage was Denning’s [43] work on
information inference using census data. Building on the work of Denning and others, Goguen and
Meseguer [65, 66] provided the first definitions for information leakage as (non)-interference in determin-
istic state machines. Subsequent formative research on information leakage and non-interference can be
divided into two primary categories: nondeterminism [101, 103, 145, 156, 157] and probabilistic behaviour
[71, 72, 70, 106, 132, 153], as in information theory. Gray [71, 72, 70] and McLean [106] conducted some
of the most important early work on information leakage in the probabilistic setting. The framework de-
veloped in this chapter is quantitative rather than qualitative in order to provide meaningful analysis in
the case of partial leakage. Millen’s work [107] was foundational for quantitative analysis of information
leakage; subsequent work in the area includes that of Clark et al. [28] and Di Pierro et al. [121].

4.5.2 Formal methods

A substantial amount of work has been done applying formal methods to information leakage using
process algebras [3, 58, 59, 60, 130, 129, 131]; unfortunately, none of that work was quantitative or
probabilistic. However, there has been noteworthy work in that area providing quantitative analysis.
Lowe has consistently pioneered the use of model-checkers for formal analysis of security properties and
his work on information leakage [95, 96, 97, 98] is no exception. Lowe used the process algebra CSP to
model information flow in systems and automated that analysis using the model-checker FDR. While
his approach was quantitative and based on information theory, it was strictly nondeterministic and did
not allow for analysis of probabilistic algorithms. Another piece of work that includes tool support for
verification is the PicNIc project by Crafa et al. [35]. Their tool uses models in the π-calculus and allows
for qualitative non-intereference to be automatically checked for finite systems.

The framework presented in this chapter is the first that has been developed for analysing information
leakage within a theorem-prover. Furthermore, this is the first tool-assisted framework that allows for
a quantitative, probabilistic approach to information leakage. The use of automatic model-checkers in
previous frameworks has limited their applicability to finite-state systems. In contrast, the mechanised
proof approach developed above is viable for infinite-state systems. A more detailed comparison of
model-checking and theorem-proving approaches is provided in Chapter 1.

4.5.3 Programming language approaches

Clark, Hunt, and Malacaria [28, 29, 30, 99] have developed language-based analysis for information leakage
using Shannon’s information theory. Much of their work has focused on quantitative analysis for programs
involving probabilistic nondeterminism; that work has been one of the major sources of inspiration for the
framework developed in this chapter and a number of features have been borrowed from their approach.
Recently, they have developed a semantics-based approach to characterising information leakage for a
simple Turing-complete language including while loops [29, 99]; that work included analysis of rates and
bounds on leakage in loops, even loops that may not terminate.
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One of the major criticisms of Clark’s approach is that the intermediate values of high and low
security variables are not considered when calculating leakage, only their initial and final values. This
makes it unsuitable for analysis of timing attacks, except for global timing attacks. Though modelled
after Clark’s work, the framework presented above overcomes this weakness and allows intermediate
values to be considered in the leakage computation if desired. Aiming to address the weakness in their
analysis, Clark and Hunt [27] have recently developed an approach for analysing information leakage in
an interactive setting; unfortunately, that approach is restricted to qualitative analysis and deterministic
programs. O’Neill et al. [118] have done similar work to develop a method of qualitative analysis in the
interactive setting; their analysis differs from Clark and Hunt’s in that it is valid for programs involving
both probabilistic and nondeterministic operations.

Bossi et al. [16] have also taken a language-based approach to information leakage. They developed a
framework for qualitative analysis of information flow based on bisimulation; they then went on to define
proof techniques for this approach, leveraging the Tarski decidability of first-order formulae on the real
numbers.

An alternative approach has been developed by McIver and Morgan [104] which uses the probabilistic
Guarded Command Language. The strength of their framework is that intermediate values of high and
low variables are kept track of and the security of the high variables is maintained, though their values
may change during program execution; there approach allows for probabilistic algorithms, but the analysis
is qualitative and cannot be used to reason about partial leakage.

Clarkson et al. [31] have proposed that information leakage should be not be based on the reduction
of uncertainty in an attacker’s beliefs, when attacker is making (possibly incorrect) assumptions about
the distribution of inputs. They argue that leakage should be based on the amount of change in the
attacker’s beliefs rather than the uncertainty. Their belief-based approach differs from all the others
mentioned in this section. The strength of any analysis taking this view would seem heavily dependent
on how accurately the prospective attacker’s beliefs can be predicted.

At the more applied end of the spectrum, Hansen and Probst [76] have looked at using information
flow analysis to verify non-interference of Java Card bytecode. Their approach allowed for qualitative
analysis based on observational equivalence, using a simple language modelling the Java Card bytecode
language.

4.5.4 Computational-complexity approaches

Recent work by Backes and Pfitzmann [6, 7, 8] has provided a means for quantitative analysis of informa-
tion flow in a reactive setting. Their proofs are of the pen-and-paper variety, but they allow for polynomial
time complexity-theoretic proofs as typically used by cryptographers. This approach makes their frame-
work particularly suited for proofs involving real cryptographic algorithms and helps to bridge the gap
between formal analysis and deployed systems. Backes considers the introduction of information-theoretic
analysis to their framework as future work [6]. A computational-complexity approach to verification in
an interactive theorem-prover has not been undertaken, so using a framework similar to Backes’s would
be premature. However, Blanchet [14] has recently developed a tool for automatic proof of security pro-
tocols in the computational-complexity model. It would be interesting to see if such an approach could be
developed within the framework of an interactive theorem-prover and then to develop Backes’s theories
on non-interference in that setting.

4.6 Summary

This chapter explained how the formalisation of information theory from Chapter 3 can be used to analyse
the information leakage of programs modelled as HOL functions. The framework outlined is sufficiently
general to model various scenarios and threat models, a number of which were discussed above.

The decision to model programs as HOL functions is important, because it allows for more natural
specification and proof. Additionally, this approach allows automated tools to be developed to minimise
the amount of interaction required for simple examples. To demonstrate these benefits, some tool support
has been developed for the case of uniformly distributed inputs and applied to a number of examples.
These examples and their formalisations demonstrated use of the proof framework.

The work in this chapter will be the foundation for the proof of the dining cryptographers protocol in
Chapter 5. That chapter examines the use of the framework developed here to prove a well-known case
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study. Looking in detail at the example in Chapter 5, the application of the theory in this chapter will
become more concrete.

A number of scenarios and threat models were considered above, but one question that was not
addressed is how encryption can be handled in that analysis. This is because most encryption algorithms
are not information-theoretically secure4 — there is necessarily a correspondence between the inputs and
outputs allowing for subsequent decryption; the security of many modern encryption algorithms relies on
this correspondence being difficult to compute. As a result, encryption cannot be generalised easily in the
information-theoretic setting: either the information-theoretic properties need to be specified in detail
in order to appropriately model a particular algorithm, or else the requirements will be too severe to be
satisfied by the implemented encryption algorithm. Nonetheless, the analysis approach in this chapter has
numerous applications that do not involve encryption and can still be used in settings involving simple
encryption techniques such as XOR. This can be seen in the examples in this chapter and the case study
in Chapter 5. Futhermore, information-theoretic analysis of encryption algorithms themselves represents
a potential application for the techniques presented in this chapter.

4Shannon’s work [138] shows that an information-theoretically secure encryption algorithm requires a key the length of
the plain text e.g. a one time pad.



Chapter 5

Anonymity, Cryptographers, and
Gastronomy

“When I get a little money I buy books; if any is left, I buy food. . . ”

– Desiderius Erasmus

The advent of systems for anonymous electronic communication has created a need for formal methods
of analysing the relative strength of those systems. This chapter will demonstrate how privacy guarantees
can be seen as information non-leakage properties. The framework presented in Chapter 4 can then be
used to prove the amount of anonymity provided by a system. After a brief discussion of these basic
ideas, the remainder of this chapter will be devoted to proving the anonymity guarantees of Chaum’s
dining cryptographers (DC) protocol [22]. Using the framework from Chapter 4, the DC protocol has
been proved to preserve total anonymity for an unbounded number of participants. This case study
illustrates a practical application of the formalisations developed earlier in this text.

5.1 Motivation

Since it was first proposed in 1988, the dining cryptographers protocol has been one of the most frequently
used examples for tools aimed at analysing privacy or anonymity guarantees [10, 18, 26, 41, 40, 74, 80, 91,
109, 133, 152]; this continues to be the case with recent research [18, 26, 41, 80, 91, 109]. The simplicity of
this mature and well-understood protocol, as well as the wide range of tools that have been applied to it,
make it an ideal benchmark. Using the DC protocol as a common case study ensures that the capabilities
and limitations of different approaches to analysis are assessed with respect to a common basis. This
guarantees that any differences exhibited are a result of the analysis approach rather than the choice of
example. That is not to say that more sophisticated examples are not important, since they demonstrate
the scalability of an analysis approach. However, the dining cryptographers remains the quintessential
example and first proof of concept for any approach to analysing privacy or anonymity properties.

5.2 Anonymity as information non-leakage

While the contribution might seem trivial in retrospect, treating privacy and anonymity in terms of
information leakage is of great practical benefit; that insight allows developments from the more mature
area of information leakage to be applied to privacy. In this chapter, the framework developed in Chapter
4 will be adopted for information leakage analysis. By modelling any identity-linked values used in a
system as high-security inputs, the information flow of the system captures the extent to which privacy
or anonymity is compromised. Recall from Chapter 4 that the information leakage of a program quantifies
how many bits of the high-security inputs are leaked by the outputs — in this case, how many bits of
identifying information are leaked.

Though it may not be possible to characterise all systems by modelling identifying information as
high-security inputs, that approach is sufficiently flexible to address many of the major system designs in
the literature. This can be seen with the dining cryptographers example in the remainder of this chapter,
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where the identity of the cryptographer that has paid is treated as a high-security input. Mix networks
can be analysed by treating the mapping between messages, senders, and receivers as a high-security
input and the messages entering, being rerouted, and ultimately delivered as the visible outputs of the
system; the view of the attacker can be specified by which links between mixes are treated as visible
outputs. A similar approach could be taken to analysing a system like Crowds [125]. As discussed earlier
in this text, handling encryption is a difficult issue in information-theoretic analysis; however, it is worth
noting that those difficulties are not inherent to the treatment of anonymity properties as information
leakage.

Without further delay, we will now move on to examine a concrete application of the ideas developed
above to the dining cryptographers protocol. First we’ll look at a simple explanation of that protocol.

5.3 The dining cryptographers protocol

In Chaum’s original presentation of the dining cryptographers problem [22], a group of cryptographers
sit down to dinner and are immediately informed by the Mâıtre d’hôtel that the bill has already been
paid. They come to the conclusion that either one of their party has paid, or the bill has been paid by
some external agency such as the US National Security Agency (NSA). They would like to determine
which of these has occurred while preserving the anonymity of the payer, in the event that one of the
cryptographers has paid. The following solution, known as the dining cryptographers (DC) protocol, is
suggested. Each cryptographer flips a fair coin under the table and shares the outcome of the coin flip
with the cryptographer to his left. All the cryptographers then announce whether or not the coins they
saw matched; if one of the cryptographers has paid, then he should announce the opposite of what he has
actually seen. If the number of “don’t match” announcements is odd, then one of the cryptographers has
paid. This can be expressed mathematically as each cryptographer announcing the bitwise exclusive-or
(XOR) of the two coins he has seen (his own and that of the cryptographer to the right) and whether or
not he has paid. The result is then computed as the XOR of the announcements; if the XOR of these
announcements is true, then one of the cryptographers has paid, otherwise some outside agency has paid.
Figure 5.1 shows a sample execution of the protocol in which one of the cryptographers has paid.

Figure 5.1: An execution of the dining cryptographers protocol.

In its original form, the DC protocol might seem quite restricted in applicability, but it can be
generalised to more useful forms. For instance, the ring structure imposed by the cryptographers sit-
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ting around a table can be relaxed to an arbitrary graph structure. Moreover, repeated execution of
the protocol serves as the basis for an anonymous broadcast protocol — each iteration of the protocol
anonymously broadcasts one bit.1

The anonymity of the dining cryptographers protocol relies on the fairness of the coins and properties
of XOR; Chaum proved the total anonymity guarantee of the protocol in his original presentation. Note
that the probabilistic behaviour inherent in the coin flipping of the DC protocol is that which was classified
as hidden probabilism in the previous chapter — the coins are flipped under the table where they cannot
be observed.

5.4 The dining cryptographers protocol in HOL4

Before analysing the anonymity of the dining cryptographers protocol, it is first necessary to model the
protocol as a HOL function of the type specified in Chapter 4. The HOL definition of the protocol has
been constructed inductively and has been parameterised on the number of cryptographers and whether
or not the NSA has paid; this allows properties of the protocol to be proved for an unbounded number
of cryptographers and is the most natural way of specifying the protocol in HOL. The protocol has been
modelled specifically for the original case of a ring-structured network and has not been generalised to
arbitrary graphs.2

Taking the outcome of the cryptographers’ coin flips as “random” inputs to the system, the protocol
can be seen as having two stages — the cryptographers make their announcements based on the results
of the coin flips and then compute the outcome of the protocol based on those announcements. Below
we will examine how each of these stages can be defined as HOL functions and then composed to form
the entire protocol.

All of the values involved in the protocol are boolean (eg. heads/tails and paid/didn’t pay), so the
states of the system have been modelled as mappings from string-type variable names to boolean values.
The system takes as its input three states: a high input state describing who has paid, a low input state
that is not used, and a random input state containing the results of the cryptographers’ coin flips. The
output state of the system includes the announcement of each cryptographer as well as the result of the
protocol.

5.4.1 Setting the cryptographers’ announcements

Let’s look at how the first stage of the protocol, setting the cryptographers’ announcements, has been
modelled in HOL. The output state of this stage is simply the low input state updated to include each
cryptographer’s announcement; those values are stored in variables “announces 0”, . . . , “announces n”,
where there are n + 1 cryptographers. As a convention, the n + 1 cryptographers have been indexed
0, . . . , n. The announcement of cryptographer i + 1 is computed as the exclusive-or of his own coin toss
(variable “coin (i + 1)” in the random input state), his neighbour’s coin toss (“coin i” in the random
input state), and whether or not he has paid (“pays (i+1)” in the high input state). Thus, cryptographer
0 looks at his own coin and that of cryptographer n in order to complete the ring. The HOL function
modelling this stage of the protocol is defined inductively — first the base case of cryptographer 0 and
then the step case of cryptographer i + 1.

1The situation is slightly more complex as some overhead is required to ensure that two “cryptographers” aren’t trying
to broadcast a message at the same time; a simplistic approach, allowing messages to be broadcast simultaneously, would
result in garbled transmissions.

2A formal proof of anonymity for the case of arbitrary graphs is a difficult problem; mechanising such a proof would first
require some amount of graph theory to be formalised.
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Formalisation 45 (setting the cryptographers’ announcements).

set announcements high low random n 0 s =
if (s = “announces 0”) then

(high “pays 0”) xor (random “coin 0”) xor (random “coin n”)
else low s

set announcements high low random n (SUC i) s =
if (s = “announces (SUC i)”) then

(high “pays (SUC i)”) xor

(random “coin (SUC i)”) xor (random “coin i”)
else (set announcements high low random n i) s

where high, low, and random are the input states, n + 1 is the number of cryptographers, and i + 1 is
the index of the cryptographer whose announcement is being set. The variable s is a string-type variable
name — the result of set announcements high low random n i is an updated output state that takes a
variable name s and returns its value in the updated state.

5.4.2 Computing the outcome

Having updated the output state to include each cryptographer’s announcement, the next step is to
compute the result of the protocol: whether one of the cryptographers has paid or not. This is done by
XOR-ing all of the cryptographers’ announcements together. The HOL definition is formalised in two
steps: the result is computed and then the variable “result” in the output state is updated to that
value. It is easier to define this stage of the protocol in two steps in HOL, because it is more natural to
define the XOR-ing of the announcements inductively.

Formalisation 46 (XOR-ing the cryptographers’ announcements).

XOR announces low 0 = low “announces 0”
XOR announces low (SUC i) = (low “announces (SUC i)”) xor

(XOR announces low i)

The HOL function XOR announces low n computes the XOR of the cryptographers’ announcements,
assuming low is a state containing those announcements in variables “announces 0”, . . . , “announces n”
and there are n + 1 cryptographers.

Formalisation 47 (setting the result of the protocol).

compute result low n s =
if (s = “result”) then XOR announces low n else low s

The HOL function compute result updates the output state such that the variable “result” contains
the value computed by XOR announces.

5.4.3 Putting it all together

The final step in formalising the dining cryptographers protocol is to compose the functions set announcements

and compute result correctly to create the whole protocol. Having already defined the two stages of the
protocol, this is a simple task, but some care is needed to ensure that the right indices are used for each
of the stages. Since the protocol is only valid for three or more cryptographers, it has been parameterised
such that the number of cryptographers can only be set to an appropriate value.

Formalisation 48 (the dining cryptographers protocol in HOL).

dcprog (SUC (SUC (SUC n))) =
(λ((high, low), random). compute result

(set announcements high low random (SUC (SUC n)) (SUC(SUC n)))
(SUC (SUC n))

The HOL function dcprog (SUC (SUC SUC n)) defines the dining cryptographers protocol for n + 3

cryptographers, where 0 ≤ n. This function takes an input of type bool prog state — a triple of high, low
and random input states — and returns a low-security output state of type bool state.
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5.4.4 Defining the distribution on input states

Having formalised a HOL definition of the DC protocol above, all that remains to be done before analysing
the protocol is to formalise the distribution over combinations of high, low, and random input states.
Assuming that the attacker has no additional clues, he will consider any of the cryptographers to be
equally likely to have paid. Therefore, the high input states should be distributed evenly over each of the
cryptographers paying. Similarly, the coins are meant to be fair, so any assignment of heads and tails to
the coin flips in the random input state should be equally likely. There aren’t any low inputs, so a default
low input state can be specified. Since the distribution on input states is uniform over combinations
from (finite) sets of valid states, the probability space characterising that distribution can be formalised
using unif prog space from Chapter 4; this requires the sets of valid high, low, and random inputs to
be defined in the theorem-prover.

Let’s start by looking at the set of valid high-security input states. Assuming that there are n

cryptographers and one of the cryptographers has paid, a valid high-security input state is a state for
which one (and only one) of the variables “pays 0”, . . . , “pays (n− 1)” is set to be true; as a convention,
all other variables are initialised to false. In the case that the NSA has paid, the convention will be to
set “pays n” to be true and all other variables to be false.

The set of valid high-security input states is defined in two stages. First the case when one of the
cryptographers has paid is formalised, followed by a parameterised definition including the case when the
NSA has paid. Recall from Chapter 4 that it is useful to define the sets of valid inputs inductively, as
this makes it easier to automatically compute the information-leakage of a program.

Formalisation 49 (valid high states when a cryptographer has paid).

dc high states set 0 = {(λs. s = “pays 0”)}
dc high states set (SUC i) = (λs. s = “pays (SUC i)”)

INSERT (dc high states set i)

Assuming that one of the cryptographers has paid, Formalisation 49 defines the set of valid high-
security input states corresponding to the different possible assignments of the payer. The overall set of
valid high-security input states, including the case when the NSA has paid, is formalised as follows.

Formalisation 50 (the set of valid high-security input states).

dc high states nsapays (SUC (SUC n)) =
if nsapays then {(λs. s = “pays (SUC (SUC n))”)}
else dc high states set (SUC n)

Since there aren’t any low-security inputs to the protocol, the set of valid low-security inputs can
simply be defined to be a single default value; here the state mapping all variables to false has been
chosen.

Formalisation 51 (the set of valid low-security input states).

dc low states = {(λs. ⊥)}

Finally, the set of valid random inputs must be formalised. Assuming there are n cryptographers, this
consists of the set of states with each of the possible assignments of the variables “coin 0”, . . . , “coin (n−
1)” and all other variables set to a default value; false has been chosen as the default value to maintain
the convention in this chapter. The formalisation of this set of input states is defined much the same as
for the high-security inputs.

Formalisation 52 (the set of valid random input states).

dc random states 0 = {(λs. s = “coin 0”); (λs.⊥)}
dc random states (SUC i) =

(IMAGE (λs. (λx. if x = “coin (SUC i)” then ⊤ else s x))
(dc random states i)) UNION

(IMAGE (λs. (λx. if x = “coin (SUC i)” then ⊥ else s x))
(dc random states i))
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The probability distribution on input states has been defined using a uniform distribution, specifically
using the unif prog space described in Chapter 4. This ensures that the assumption of fair coins is
modelled appropriately as well as the assumption that any of the cryptographers is considered equally
likely to have paid. Having defined the sets of valid high, low, and random input states, formalising the
probability space is a simple task, but care is required so that the appropriate indices are used for each
definition.

Formalisation 53 (the distribution on input states).

dc prog space (SUC (SUC n)) nsapays =
unif prog space (dc high states nsapays (SUC (SUC n)))

dc low states

(dc random states (SUC n))

Formalisations 48 and 53, respectively defining the dining cryptographers protocol and the distribution
on inputs, together characterise the HOL model of the DC protocol.

5.5 Proof of the dining cryptographers protocol in HOL4

Chaum’s original presentation of the DC protocol [22] included informal, pen-and-paper proofs of total
anonymity both from the perspective of an outside observer and from the perspective of one of the
cryptographers. Since then, there have been numerous proofs of Chaum’s result. Some of those extend
his results to include different graph structures [18], while others mechanise the analysis using model-
checking approaches [133] or demonstrate variations that exhibit partial leakage [40].

The proof outlined in Section 5.5.1 is the first machine-checked proof of the DC protocol for an
unbounded number of cryptographers. It focuses on anonymity from the perspective of an outside observer
and is based on the techniques developed earlier in this chapter and in Chapter 4. Previous machine-
assisted proofs using model-checking have been limited to specific instances of the protocol, rather than
general proofs.

In Section 5.5.2 we will see how the tools developed in Chapter 4 can be used to automate the proof of
anonymity for small instances of the protocol. Anonymity against a corrupt cryptographer and variations
on the protocol involving biased coins are examined in Section 5.5.3.

5.5.1 Interactive, parameterised proof of anonymity

Before undertaking any proofs about the anonymity properties of the DC protocol, basic correctness
properties of the HOL model of the protocol must be proved.

Proofs of correctness properties

To begin, some basic properties of the sets of valid input states need to be formalised. Examples of such
properties are the cardinalities of the sets and that they are finite and non-empty. The statements of
those properties in HOL notation can be found in Appendix H and their proofs are straightforward. Since
the sets of high and random input states were defined inductively, it is also useful to formalise theorems
stating the membership criteria for those sets. In the case of the high-security inputs that theorem is
formalised as follows:

∀n x. x IN (dc high states set n) =
∃i. i ≤ n ∧ (x = (λs. s = “pays i”)).

The theorem characterising the membership criteria for the set of random input states is very similar
and can be found in Appendix H as IN dc random states; each of those theorems can be proved easily
by induction.

The next step is to formalise correctness properties of the HOL model of the protocol. Naturally, the
first of these relate to the initial announcement-setting stage of the protocol, as captured by Formalisation
45. For example,

∀h l r n i. i ≤ (SUC (SUC n)) ⇒
(set announcements h l r (SUC (SUC n)) (SUC (SUC n)) “announces 0”
= (h “pays 0”) xor (r “coin 0”) xor (r “coin (SUC (SUC n))”))



74 Chapter 5. Anonymity, Cryptographers, and Gastronomy

states that the updated output state returned by set announcementsmaps the variable “announces 0” to
the XOR of the values of “coin 0” and “coin n+2” from the random input state and the value of “pays 0”
from the high input state, assuming there are n+3 cryptographers. Other theorems capture that the value
of variable “anounces i”, for 0 < i ≤ n, is updated appropriately and all other variables remain mapped
to the same value as in the low input state. Those theorems appear as dc set announcements result1

– dc set announcements result6 in Appendix H; again, the proofs are routine.
Moving on, the correctness of Formalisation 46, which XORs the cryptographers announcements to

compute the result, was proved to behave as desired (dc XOR announces result1 – dc XOR announces result5).
The culmination of these proofs captures that the appropriate result of the protocol execution is stored
in the output variable “result” and the rest of the output variables are unchanged by the final stage of
the protocol (dcprog result1 – dcprog result6). Emphasis has been placed on results for executions
of the protocol when one of the cryptographers has paid; no anonymity guarantees are required when the
NSA has paid, so that scenario is of less interest.

Proofs of key lemmas

With the necessary correctness properties of the protocol formalised, we can move on to the more inter-
esting proof of total anonymity. The crux of that proof lies in two lemmas establishing the number of
different outputs produced by the protocol and the number of random input states that can result in a
particular output, given certain high and low input states. Let’s look at the development of those results
in some detail.

The first critical lemma states that the cardinality of the set of outputs produced by the protocol is
2n, assuming there are n + 1 cryptographers. An informal argument for this is as follows: Assuming one
of the cryptographers has paid, the variable “result” in the output is set to true, the bitwise XOR of
the variables “announces 0”, . . . , “announces n” in the output is also true, and other variables take the
value false by default; these properties are all supported by the correctness results discussed earlier. Since
the value of “result” is fixed, the only variation in the output states must come from the assignment
of the “announces 0”, . . . , “announces n” variables. Elementary combinatorics tells us that there are 2n

ways that boolean-valued variables “announces 0”, . . . , “announces n− 1” can be assigned. Once those
values are set, there is only one assignment of “announces n” that will result in the bitwise XOR of the
announcements being true, namely the inverse of the bitwise XOR of “announces 0”, . . . , “announces n−
1”.

The proof of this lemma proceeds in several stages. Firstly, the membership criteria for the set of
valid output states described above must be formalised. This results in a proof that

∀n. (IMAGE (dcprog (SUC (SUC (SUC n))))
((dc high states ⊥ (SUC (SUC (SUC n))) CROSS dc low states)
CROSSdc random states (SUC (SUC n))) =

{s | (s “result” = XOR announces s (SUC (SUC n)) ∧
XOR announces s (SUC (SUC n)) ∧
∀x. (x 6= “result”)∧ (∀i. i ≤ (SUC (SUC n)) ⇒ (x 6= “announces i”))

⇒ ¬ s x}.

The next step is to inductively define how the set of valid outputs can be constructed; the inductive
definition of this set makes it much easier to prove its cardinality. Then an equivalence must be proved
between the inductively defined set of outputs and the set of outputs produced by the protocol. Finally,
these lemmas can be put together to prove a theorem stating the cardinality of the set of outputs.

HOL Theorem 14 (cardinality of the set of valid outputs).

∀n. CARD (IMAGE (dcprog (SUC (SUC (SUC n))))
((dc high states ⊥ (SUC (SUC (SUC n))) CROSS dc low states) =

2 pow (SUC (SUC n)).

The second critical lemma states that, for any valid output state and high and low input states, there
are precisely two random input states that could produce that output. Informally, the argument is as
follows: There is a choice between two ways to assign the value of the first “coin” variable in the random
input state. Once, this coin’s value has been set, the values of the adjacent coins are already determined
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because they must XOR together with the value of the “pays” variables (whose values are already fixed
in the high input state) to produce the right announcement from the output state. This assignment
propagates to each coin in turn such that the values of all the coins are determined simply by fixing the
value of one of the coins.

The first step in the HOL proof of this lemma is to formalise the conditions under which an assign-
ment of the “coin” variables is valid with respect to a given high input state (i.e. selection of which
cryptographer has paid) and output state (i.e. assignment of the “announces” variables). This property
is defined inductively as follows.

Formalisation 54 (validity of a coin assignment w.r.t. a payer and output).

valid coin assignment r out h n 0 =
(r “coin 0′′ =
(r “coin (SUC (SUC n))) xor (XOR announces out 0) xor (0 ≥ h))

valid coin assignment r out h n (SUC i) =
(r “coin (SUC i)′′ =
(r “coin (SUC (SUC n))) xor (XOR announces out (SUC i)) xor

((SUC i) ≥ h))

where h is the index of the payer and there are n + 3 cryptographers.

The inductive definition above is then proved equivalent to a more natural definition in set notation
(valid coin set eq valid coin assignment in Appendix H). Next, a function is defined that produces
a correct assignment of the coin variables for a given payer and output; the parameter choice below
selects whether the first coin should be set to true or false in that assignment of the coins variables.

Formalisation 55 (generating a coin assignment given a payer and output).

coin assignment out h n choice 0 =
(λs. if s = “coin 0” then

choice xor (XOR announces out 0) xor (0 ≥ h)
else ⊥)

coin assignment out h n choice (SUC i) =
(λs. if s = “coin (SUC i)” then

choice xor (XOR announces out (SUC i)) xor ((SUC i) ≥ h)
else coin assignment out h n choice i s)

The set of valid random input states for a given payer and output is the two element set containing
coin assignment out p n ⊤ (SUC(SUC n)) and coin assignment out p n ⊥ (SUC(SUC n)).

Formalisation 56 (a valid random input state given a payer and output).

coin assingment set out p n =
{coin assignment out p n ⊤ (SUC(SUC n));
coin assignment out p n ⊥ (SUC(SUC n))}

Finally, the set generated by coin assingment set is proved equivalent to the set of random input
states satisfying valid coin assignment, for a given output state and payer (valid coin assignment eq 2 element set

in Appendix H). The number of random input states that can generate a given output from a given high
input state follows directly from the lemmas and definitions above.

Proof of total anonymity

Using the correctness results mentioned earlier and the critical lemmas explained above, the most inter-
esting aspects of the anonymity proof for the DC protocol are complete. The rest of proof relies upon
lemmas relating to the unif prog space developed in Chapter 4 and properties of summations of real-
valued functions over finite sets; these portions of the proof are straightforward, albeit requiring a fair
amount of effort. We’ll now examine a high-level outline of the anonymity proof as a whole.

The goal of the total-anonymity proof is that the there is no information leakage for the model of
the protocol and distribution on inputs described above, whenever one of the cryptographers has paid.
Formally,

∀n. leakage (dc prog space (n + 3) ⊥) (dcprog (n + 3) = 0.
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The first step of the proof is to expand the definition of information leakage to a simplified form specifically
for the unif prog space (using the lemma unif prog space leakage computation reduce in Appendix
G). After further simplification with lemmas about the cardinalities of the high, low, and random input
sets (n + 3, 1, and 2n+3 respecitively), the goal becomes

2
n+3

n+3

(

SIGMA (λ(out, h, l). (λx. (x)
(

lg
(

x
2n+3

))

)

(SIGMA (λr. if dcprog (n + 3) ((h, l), r) = out

then 1 else 0)
(dc random states (n + 2))))

(IMAGE (λs. (dcprog (n + 3) s, FST s))
(dc high states set (n + 2) × dc low states

× dc random states (n + 2)))−
SIGMA (λ(out, l). (λx. x

(

lg
(

x
(n+3)(2n+3)

))

)

(SIGMA (λ(h, r). if dcprog (n + 3) ((h, l), r) = out

then 1 else 0)
(dc high states set (n + 2)
× dc random states (n + 2))))

(IMAGE (λs. (dcprog (n + 3) s, SND(FST s)))
(dc high states set (n + 2) × dc low states

× dc random states (n + 2)))
)

= 0,

where some mathematical notation has been used for easier reading. It is sufficient to prove that the two
summations in the goal above are equal.

A close examination of the inner summation of the first sum reveals that it is equivalent to the
cardinality of the set of random input states that produce output out with high input state h and low
input state l. Recall from the critical lemmas discussed above that the cardinality of that set is 2, for
any valid choice of out, h, and l. Thus, the first sum is reduced to

SIGMA (λ(out, h, l). (2)
(

lg
( 2

2n+3

))

) . . .

Since the function being summed is a constant value, the summation reduces to that constant times the
cardinality of the set over which the function is being summed. The first sum then becomes

(

(2)
(

lg
(

2
2n+3

))

)

(CARD (IMAGE (λs. (dcprog (n + 3) s, FST s))

(dc high states set (n + 2) × dc low states

× dc random states (n + 2))).

The inner summation of the second sum in the goal is equivalent to the number of pairs of high and
random input states that yield output out for low input l. Using the critical lemmas described above,
there are n+ 3 valid high input states and for each of these there are 2 random inputs that yield output
out; thus, the inner summation is equal to 2n+3. The second outer summation can now be reduced as
was the first, because the function being summed is constant-valued. This results in the following goal:

(
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)

(CARD (IMAGE (λs. (dcprog (n + 3) s, FST s))

(dc high states set (n + 2) × dc low states

× dc random states (n + 2))) =
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))

)

(CARD (IMAGE (λs. (dcprog (n + 3) s, SND(FST s)))

(dc high states set (n + 2) × dc low states

× dc random states (n + 2))).

The set on the left side of the equation above is the set of triples of the form (out, h, l), where out is
a valid output of the protocol produced by high and low inputs h and l and some valid random input.
From the key lemmas above, we know that there are 2n+2 possible outputs and that any of the n + 3

combinations of high and low inputs can produce any one of those outputs; thus, the cardinality of the
set is (n + 3)(2n+2). The set on the right side of the equation above is the set of pairs of valid outputs
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and low inputs producing those outputs. Since there is only one low input and it can produce any of
the outputs, the cardinality of the set is simply that of the set of valid outputs: 2n+2. The rest of the
proof follows by arithmetic and properties of log2. Though the proof steps may seem simple, substantial
effort is required for each step in order to manipulate the sets and summations involved using appropriate
lemmas.

5.5.2 Automatic computation of leakage for finite instances

The automation developed in Chapter 4 for proving information-leakage has been used to automatically
prove the anonymity of the DC protocol for the case of three cryptographers. That proof requires
about 15 lines of script to define HOL conversions for unrolling the definitions of the input states and
deciding equivalence between states. The system takes approximately 18 minutes to complete the proof.
The efficiency of this automation certainly cannot compare to that of model-checking approaches and it
probably won’t scale to significantly larger instances of the protocol. Nevertheless it has its use. If one
intends to prove the information leakage of some program using a theorem-prover, he might first want to
gain some intuition by checking small instances of the program using a model-checker. The automation
developed here provides this automatic computation of leakage using the model of the program already
present in the theorem-prover; this reduces the effort required, since the program does not need to be
remodelled.

5.5.3 Proofs of variations of the protocol

Having examined a general proof of the DC protocol for any number of participants, it is worth considering
some variations on the protocol. Due to time constraints, the proofs of these variations are only for the
case of three cryptographers, but they could be extended to larger cases or more general proofs. For the
sake of brevity, these additional examples are not presented in detail, but the definitions and theorems
can be found in Appendix H.

Proof of anonymity against an insider

The proof of the DC protocol explained above only considered an outside observer in the threat model.
It might also be desirable to see if there is any leakage of anonymity given the knowledge of one of the
cryptographers. This can easily be modelled by making one pair of coins (i.e. the knowledge of one of the
cryptographers) a low-security input rather than a random input. Since the ring structure in the protocol
is symmetric and the numbering of the cryptographers/coins is arbitrary, it is possible to pick coin 0 and
coin n to be visible and this is equivalent to picking any of the other pairs of coins. The total anonymity
of the protocol, even with knowledge of one of the coins, can be proved more-or-less automatically as
described in Section 5.5.2.

Partial leakage through biased coins

Another variation on the protocol is to consider a corrupt cryptographer, who injects biased coins into
the protocol in an attempt to gain information about who has paid. Deng et al. [40] have used the
probabilistic model-checker PRISM to show that a partial loss of anonymity can result from the use of
biased coins in the DC protocol. I have proved that no leakage occurs if the attacker is able to bias only
one of the coins he sees, but a partial leakage occurs if he is able to bias the outcome of the coin he does
not see. This demonstrates the applicability of the techniques in this text to analysing partial anonymity.

5.6 Related work and novel contributions

This section provides an overview of prominent work at the intersection of formal methods and anonymous
communications. Particular focus will be placed on approaches providing tool support, but important
pen-and-paper work will also be discussed; any tool-support for the methods following will be specifically
mentioned. A great deal of work has been done to understand various systems for anonymous communi-
cations by informally reasoning through as many potential attacks as possible; while very fruitful, that
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work will not be addressed here. An overview of anonymous communication in general can be found in
Chapter 1.

5.6.1 Formal definitions of anonymity

One of the earliest formal treatments of anonymity properties was Schneider and Sidiropoulos’s [133] trace-
based approach using CSP. That work could not be used to reason about partial vulnerabilities, but could
be applied to programs exhibiting nondeterministic behaviour. Their approach is also noteworthy because
the analysis was mechanised using the model-checker FDR; however, the use of a model-checker limits
its applicability to specific instances of systems. Schneider and Sidiropoulos illustrated their technique
by applying it to the dining crytographers protocol for the cases of three and four cryptographers and to
some variants of the protocol involving two-headed coins.

Syverson and Stubblebine were also forerunners in formalising anonymity, but used epistemic logic
[148]. Their approach was also possibilistic rather than probabilistic and all-or-nothing rather than quan-
titative. They demonstrated their approach on a model of the Anonimizer web proxy. Recently, Garcia
et al. [62] have also proposed an epistemic approach to formalising anonymity, defining the anonymity
of a system in terms of observational equivalence between runs of the system. Similarly, their method is
possibilistic rather than probabilistic and all-or-nothing rather than quantitative. They used the Crowds
system and Onion Routing as examples for their approach.

In their description of the Crowds system, Reiter and Rubin [125] were among the first to observe
that there can be varying levels of anonymity, which can be used to quantify the amount of anonymity
provided by a system. Later, Pfitzmann and Köhntopp [120] attempted to standardise the terminology
for those levels of anonymity and different metrics for measuring them.

Serjantov and Danezis [36, 134, 136] and Dı́az et al. [45, 50] revolutionised the formalisation of
anonymity by proposing the use of information-theoretic metrics to measure anonymity; specifically
they suggested the use of entropy as a measure of anonymity.3 Their work serves as inspiration for
the information-theoretic approach taken in this text. Variants of their metrics have been suggested for
specific scenarios and threat models [55, 150, 151]. Steinbrecher and Köpsell [144] and Berman et al.
[9] have extended this line of work to include information-theoretic definitions for unlinkability in addi-
tion to anonymity; Franz et al. [61] have developed a definition of unlinkability that captures contextual
information.

Recently, Chatzikokolakis [18, 19, 20] advanced the use of information-theoretic metrics for anonymity
by examining a number of metrics other than entropy, such as mutual information, channel capacity, and
Bayes risk. His work is closely related to that presented in this text, but was more concerned with
investigating possible metrics for anonymity and efficient means of computing or approximating those
metrics. Clauß and Schiffer [32] have investigated the selection of different information-theoretic metrics
for entropy varying depending on threat model and whether the application layer or network layer is being
considered. They provide a comparison of Rényi entropy and Shannon entropy as measures of anonymity
and suggest models in which each is more appropriate. Recently, Smith [143] has also proposed the use of
Rényi entropy rather than Shannon entropy for measuring information flow, when considering an attacker
that makes only a single guess at the secret.

Hughes and Shmatikov [83] proposed a formalisation for anonymity based on the concept of a function
view, representing partial knowledge of a function. Their approach is closely related to the epistemic
approach of Syverson and Stubblebine and work involving observational equivalence. As with most
epistemic approaches, their framework is limited to possibilistic rather than probabilistic definitions of
anonymity.

Halpern and O’Neill [74] were the first to provide a formalisation of anonymity capable of dealing
with probabilistic definitions. That advancement made it possible for them to formalise definitions for the
varying levels of anonymity suggested by Reiter and Rubin, Pfitzmann and Köhntopp, and others. How-
ever, they did not consider any information-theoretic metrics for anonymity. Their approach was based
on the runs and systems framework and they used the dining cryptographers protocol as a case study.
Halpern and O’Neill [74] also provide an excellent comparison of their work with previous formalisations
and strong motivation for the use of probabilistic rather than possibilistic definitions of anonymity.

3Serjantov and Danezis and Dı́az et al. developed their definitions independently, but they were published at nearly the
same. Their definitions of anonymity are nearly identical except for a normalisation factor.
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Mauw et al. [102] developed a formal model of Onion Routing in a process-algebraic setting. They
used a possibilistic metric for anonymity, defining anonymity in terms of trace equivalence. Also amongst
process-algrebraic treatments is Bhargava and Palamidessi’s [10] formalisation of the dining cryptogra-
phers protocol in the probabilistic π-calculus. The framework they developed is suitable for analysis of
models involving both probabilistic and nondeterministic behaviour. Their analysis was by-hand, but
they noted that a model-checker for the probabilistic π-calculus is under development. Deng et al. [41]
have used a probabilistic version of the process algebra CCS to analyse the dining cryptographers pro-
tocol using an information-theoretic definition of anonymity. Their analysis was without tool support,
but they intend to develop support via integration with the PRISM model-checker. Chothia [25] used
the π-calculus with an approach based on bi-simulation to analyse the anonymous file-sharing system
MUTE, which resulted in the identification of a bug. That work did not include any tool support, but
he has shown how his approach can be automated using the µCRL tool [26].

Camenisch and Lysyanskaya [17] have developed a formalisation of anonymity in the Universally-
Composable framework and demonstrated their approach by modelling Onion Routing; this approach
allows for proofs of anonymity that are similar to how proofs for cryptographic protocols are often
handled, reducing a given security property to a set of assumptions under which it is guaranteed to hold.

Morgan [109] has proposed a treatment of anonymity and privacy based on abstraction and refinement.
He suggests an epistemic approach, modelling properties as Hoare triples. Morgan’s approach uses a
possibilistic rather than probabilistic definition of anonymity and he demonstrated his technique using
the dining cryptographers protocol as a case study.

While not strictly “formal methods”, there has been a sizeable amount of work devoted to developing
general mathematical models of mix networks and their components. Dı́az and Serjantov [49] developed a
mathematical model for mixes, generalising all possible mixing strategies. That model allows for rigorous
comparison of different mixing strategies [45, 46, 47, 48, 135]. Newman et al. [113] have developed a
holistic model of mix networks for the purposes of analysing the affects of traffic analysis prevention
mechanisms, such as dummy traffic. Their work focuses on the security of the network as a whole rather
than from the viewpoint of a particular participant. Kesdogan et al. [88] have developed a model for mix
networks involving a changing set of participants.

5.6.2 Tool-supported analysis of anonymity systems

Kawabe et al. [86] were the first to use theorem-proving in the anonymity domain and theirs is the only use
in that domain apart from my own. They have taken a trace-based approach to formalising anonymity,
modelling systems as I/O automata. The definition they propose for trace anonymity is based on the
indistinguishability of traces in which different users have acted and is similar to observational equivalence.
Kawabe et al. provide a pen-and-paper proof that trace anonymity is equivalent to the existence of a
suitable forward/backward simulation; they then used the Larch Prover [2] in the IOA Toolkit [1] to
prove the existence of appropriate simulations for some simple examples, thereby demonstrating their
trace anonymity. Since then, they have extended their framework to include stronger threat models than
a simple eavesdropper, such as a corrupt insider [87]. They demonstrated those extensions using the
Crowds system as a case study.

When compared with my own work, a major drawback of Kawabe’s initial approach to theorem-
proving anonymity is that it cannot be applied to probabilistic systems. More recently, Hasuo and Kawabe
[80] have proposed a probabilistic definition of trace anonymity, which can be applied to systems exhibiting
probabilistic and nondeterministic behaviour, but cannot currently be applied to systems exhibiting both.
That definition takes into account an attacker’s a priori distribution on states (i.e. his initial suspicions)
and is similar to Bhargava and Palamidessi’s [10] definition of conditional anonymity. One difference
between Hasuo and Kawabe’s work and my own is that their definition for probabilistic anonymity is
qualitative and mine is quantitative; by using information-theoretic metrics, my approach characterises
the degree to which anonymity is preserved or violated, rather than solely stating whether anonymity
is maintained. Appealing to coalgebraic theory, Hasuo and Kawabe proved that probabilistic trace
anonymity is equivalent to the existence of an appropriate forward/backward probabilistic simulation
and proved the anonymity of the dining cryptographers protocol (for the case of three cryptographers)
by exhibiting such a simulation. Unfortunately, all of the work involving their probabilistic variant of
trace anonymity was of the pen-and-paper variety; it is not clear if Kawabe’s approach using the IOA
Toolkit and Larch Prover can be used for their probabilistic definition of anonymity.
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The work presented in this text and the efforts of Kawabe et al. [86, 87] constitute the only tool support
for analysing anonymity properties using a theorem-prover. Most of the tool-supported applications of
formal methods to anonymity systems make use of model-checkers. The earliest such example is Schneider
and Sidiropoulos’s [133] use of the model-checker FDR on their formalisation of the dining cryptographers
protocol; that work was described in more detail in the previous subsection. One of the most noteworthy
uses of model-checkers on anonymity systems was Shmatikov’s [140, 141] use of the probabilistic model-
checker PRISM on a model of the Crowds system; he identified an attack on the system that had not
been previously noticed. Deng et al. [40] have used PRISM to analyse the dining cryptographers protocol
and variations thereof involving biased coins for the case of three cryptographers. Van der Meyden and
Su [152] have analysed the dining cryptographers protocol using symbolic model-checking techniques and
an epistemic definition of anonymity; in contrast to the two previous approaches using PRISM, their
definition of anonymity was possibilistic rather than probabilistic. Chothia et al. [26] used the µCRL
tool to check the anonymity of the dining cryptographers protocol and the FOO 92 voting system; their
analysis also used possibilistic rather than probabilistic metrics for anonymity and was based on bi-
simulation rather than trace equivalence. One major innovation of that work was that the checking could
be distributed over multiple machines, allowing them to check the dining cryptographers protocol for as
many as 17 cryptographers, which was a record at that time. Finally, Legay et al. [91] have used the
automated equivalence checker APEX to analyse the dining cryptographers protocol; this alternative to
model-checking offers a huge performance benefit,4 but the equivalence-based approach does not allow
for a probabilistic definition of anonymity. There have also been a number of uses of ad hoc simulations
to aid in understanding of various anonymous communications systems [15, 57, 142].

5.7 Summary

This chapter explained how anonymity guarantees can be proved in an interactive theorem-prover using
the framework developed in Chapter 4. This approach builds from the observation that anonymity and
privacy guarantees can be treated as information non-leakage properties. The usefulness of the techniques
developed in this text was demonstrated by proving the total anonymity of the dining cryptographers
protocol, which is a standard benchmark. This is the first machine-checked proof of the DC protocol
for an unbounded number of participants. Proofs for small instances of the protocol can be generated
automatically using the tools explained in Chapter 4. Finally, the applicability of those techniques to
partial anonymity was demonstrated by applying them to variations on the DC protocol involving biased
coins.

4Legay et al. [91] claim that, on the same system, PRISM takes over an hour to verify the case of 10 cryptographers
while APEX can complete the case of 100 cryptographers in 25 seconds.
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Summary

“The temple bell stops

but I still hear the sound

coming out of the flowers”

– Bashō

The main purpose of this text was to demonstrate a framework for analysing and proving the privacy
guarantees of communications systems. The overall approach was to treat privacy guarantees as informa-
tion (non)-leakage properties, using the metric of conditional mutual information from Shannon’s theory
of information. That analysis was formalised within an interactive theorem-prover in order to provide a
high assurance of mathematical and logic consistency for all proofs.

In order to take an information-theoretic approach to measuring information leakage, the theories
of measure, probability, and information had first to be formalised in the theorem-prover. Though
formalisations for measure and probability theories already existed in the HOL4 system, the formalisations
presented in this text improve upon previous work; by using more general formalisations for probability
and measure theories, quantities such as expectation can be defined generally, linking both the discrete and
continuous cases under one unifying theory. That undertaking required the formalisation of Lebesgue
integration, for which no prior formalisation existed in HOL4. Similarly, Chapter 3 presents the first
formalisation of information theory in an interactive theorem-prover.

Chapter 4 showed how information leakage can be measured for programs modelled as HOL functions,
using the formalisation of conditional mutual information developed earlier. A number of examples were
used to illustrate the applicability of the framework to different threat models and to algorithms exhibiting
partial information leakage. That work provides the first framework for proving information leakage
guarantees using a theorem-prover and information-theoretic metrics capable of handling partial leakage.
Tool support and automation were implemented to reduce the effort required to prove information-leakage
properties.

Finally, the dining cryptographers protocol was used as a case study to illustrate the applicability of
the framework to proving privacy guarantees of systems. The DC protocol serves as a classic benchmark
for analysing anonymity and privacy properties. The proof explained in Chapter 5 is both the first
machine-checked proof of the DC protocol for an unbounded number of cryptographers and the first
application of an interactive theorem-prover in the privacy/anonymity domain for probabilistic systems
and quantitative metrics. A number of variations on the protocol were discussed to illustrate different
threat models and the framework’s applicability to systems providing partial anonymity.

6.1 Future Work

As with any project there are countless small extensions and improvements I would have liked to make,
but there simply wasn’t enough time. Those present numerous opportunities for future improvements.
More importantly, I see a number of potential areas for large-scale research projects building upon this
work.

Beginning with the fundamentals, my new formalisations for probability, measure, and Lebesgue inte-
gration present a number of opportunities for formal methods work on probabilistic algorithms. Verifying

81
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software and systems exhibiting random behaviour involving continuous distributions is an active area of
research and Hasan et al. have already begun building on my formalisation of Lebesgue integration to ver-
ify expectation properties of typical continuous random variables; no reference is provided for that work
because it is ongoing and has not yet been published. There is much work that can be done proceeding
along that path. Another piece of work would be to formalise an equivalence between my formalisation
of the Lebesgue integral and Harrison’s formalisation [77] of the gauge integral.

Since Chapter 3 presents the first formalisation of Shannon’s theory of information in an interactive
theorem-prover, it too presents a range of opportunities for future work. While the definitions from
Shannon’s theory were formalised in Chapter 3 along with a number of useful lemmas, Shannon’s coding
theorems were not proved. Formalising a number of key results from Shannon’s 1948 report [138] would
extend the domain in which a theorem-prover can be used for formal analysis. For example, proofs about
coding algorithms could then be performed; those could have various applications such as error-correcting
codes and compression algorithms.

The framework for proving information leakage properties presented in Chapter 4 could also be applied
to some more examples. At the same time, it would be useful to develop additional tool support. As was
mentioned earlier, most encryption algorithms do not provide information-theoretically perfect security
and as a result their behaviour is difficult to generalise in an information-theoretic setting. Proving the
information-theoretic properties of specific encryption algorithms is a challenging area of open research;
the work presented in this text could form a foundation for formalising information-theoretic proofs about
encryption algorithms. Once properties of a particular encryption scheme are proved, information leakage
could be analysed for systems making use of that encryption algorithm.

As discussed earlier, a number of different information-theoretic metrics for anonymity have been
suggested in recent literature, each being most appropriate in a certain scenario. Some such examples are
channel capacity [18], Bayes risk [21], and the use of Rényi entropy rather than Shannon entropy [143].
Formalising those metrics for anonymity should be a straightforward extension of the work presented
here, but would provide a useful contribution for future analysis.

Finally, I demonstrated my approach to proving privacy and anonymity guarantees using the dining
cryptographers protocol as a case study; however, the long term aim for this work is to analyse deployed
systems for anonymous communications. With the groundwork done, it would be interesting to see what
can be proved about deployed privacy-enhancing technologies like Crowds and Tor.
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Glossary of HOL4 notation

HOL4 notation Description Mathematical notation

{} empty set ∅
[] nil/empty list
l1 + +l2 list concatenation
hd :: tl list construction
(f ◦ g) x function composition f(g(x))
BIGINTER S set intersection

⋂

x∈S x
BIGUNION S set union

⋃

x∈S x
COMPL S set complementation S
R CROSS S Cartesian product of sets R × S
R DIFF S set difference R − S or R \ S
DISJOINT R S disjoint sets R ∩ S = ∅
enumerate S enumeration of countable set
IMAGE f S function image f [S] =

⋃

x∈S f(x)
x IN S set membership x ∈ S
x INSERT S set construction {x} ∪ S
R INTER S set intersection R ∩ S
logr b r logarithm logb r
POW S powerset P(S) or 2S

PREIMAGE f S inverse-function image f−1[S] = {x | f(x) ∈ S}
set l defines a set based on list l
R SUBSET S subset R ⊆ S
SIGMA f S finite summation

∑

x∈S f(x)
SUC n successor of a natural number n + 1
suminf f infinite summation limn→∞

∑n
i=0 f(i)

f sums r infinite summation limn→∞

∑n
i=0 f(i) → r

sup S supremum of set sup S
R UNION S set union R ∪ S
(UNIV : α → bool) universal set U or {x : α | ⊤}
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measureTheory

[additive_def] Definition

|- !m.

additive m =

!s t.

s IN measurable_sets m /\ t IN measurable_sets m /\

DISJOINT s t ==>

(measure m (s UNION t) = measure m s + measure m t)

[algebra_def] Definition

|- !a.

algebra a =

subset_class (space a) (subsets a) /\ {} IN subsets a /\

(!s. s IN subsets a ==> space a DIFF s IN subsets a) /\

!s t.

s IN subsets a /\ t IN subsets a ==> s UNION t IN subsets a

[closed_cdi_def] Definition

|- !p.

closed_cdi p =

subset_class (space p) (subsets p) /\

(!s. s IN subsets p ==> space p DIFF s IN subsets p) /\

(!f.

f IN (UNIV -> subsets p) /\ (f 0 = {}) /\

(!n. f n SUBSET f (SUC n)) ==>

BIGUNION (IMAGE f UNIV) IN subsets p) /\

!f.

f IN (UNIV -> subsets p) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

BIGUNION (IMAGE f UNIV) IN subsets p

[countably_additive_def] Definition

|- !m.

countably_additive m =

!f.

f IN (UNIV -> measurable_sets m) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

BIGUNION (IMAGE f UNIV) IN measurable_sets m ==>

84
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measure m o f sums measure m (BIGUNION (IMAGE f UNIV))

[countably_subadditive_def] Definition

|- !m.

countably_subadditive m =

!f.

f IN (UNIV -> measurable_sets m) /\

BIGUNION (IMAGE f UNIV) IN measurable_sets m /\

summable (measure m o f) ==>

measure m (BIGUNION (IMAGE f UNIV)) <= suminf (measure m o f)

[increasing_def] Definition

|- !m.

increasing m =

!s t.

s IN measurable_sets m /\ t IN measurable_sets m /\

s SUBSET t ==>

measure m s <= measure m t

[indicator_fn_def] Definition

|- !s. indicator_fn s = (\x. (if x IN s then 1 else 0))

[inf_measure_def] Definition

|- !m s.

inf_measure m s =

inf

{r |

?f.

f IN (UNIV -> measurable_sets m) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

s SUBSET BIGUNION (IMAGE f UNIV) /\ measure m o f sums r}

[lambda_system_def] Definition

|- !gen lam.

lambda_system gen lam =

{l |

l IN subsets gen /\

!s.

s IN subsets gen ==>

(lam (l INTER s) + lam ((space gen DIFF l) INTER s) = lam s)}

[m_space_def] Definition

|- !sp sts mu. m_space (sp,sts,mu) = sp

[measurable_def] Definition

|- !a b.

measurable a b =

{f |

sigma_algebra a /\ sigma_algebra b /\
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f IN (space a -> space b) /\

!s. s IN subsets b ==> PREIMAGE f s INTER space a IN subsets a}

[measurable_sets_def] Definition

|- !sp sts mu. measurable_sets (sp,sts,mu) = sts

[measure_def] Definition

|- !sp sts mu. measure (sp,sts,mu) = mu

[measure_preserving_def] Definition

|- !m1 m2.

measure_preserving m1 m2 =

{f |

f IN

measurable (m_space m1,measurable_sets m1)

(m_space m2,measurable_sets m2) /\ measure_space m1 /\

measure_space m2 /\

!s.

s IN measurable_sets m2 ==>

(measure m1 (PREIMAGE f s INTER m_space m1) = measure m2 s)}

[measure_space_def] Definition

|- !m.

measure_space m =

sigma_algebra (m_space m,measurable_sets m) /\ positive m /\

countably_additive m

[outer_measure_space_def] Definition

|- !m.

outer_measure_space m =

positive m /\ increasing m /\ countably_subadditive m

[positive_def] Definition

|- !m.

positive m =

(measure m {} = 0) /\

!s. s IN measurable_sets m ==> 0 <= measure m s

[sigma_algebra_def] Definition

|- !a.

sigma_algebra a =

algebra a /\

!c.

countable c /\ c SUBSET subsets a ==> BIGUNION c IN subsets a

[sigma_def] Definition

|- !sp st.

sigma sp st =
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(sp,BIGINTER {s | st SUBSET s /\ sigma_algebra (sp,s)})

[smallest_closed_cdi_def] Definition

|- !a.

smallest_closed_cdi a =

(space a,

BIGINTER {b | subsets a SUBSET b /\ closed_cdi (space a,b)})

[space_def] Definition

|- !x y. space (x,y) = x

[subadditive_def] Definition

|- !m.

subadditive m =

!s t.

s IN measurable_sets m /\ t IN measurable_sets m ==>

measure m (s UNION t) <= measure m s + measure m t

[subset_class_def] Definition

|- !sp sts. subset_class sp sts = !x. x IN sts ==> x SUBSET sp

[subsets_def] Definition

|- !x y. subsets (x,y) = y

[ADDITIVE] Theorem

|- !m s t u.

additive m /\ s IN measurable_sets m /\

t IN measurable_sets m /\ DISJOINT s t /\ (u = s UNION t) ==>

(measure m u = measure m s + measure m t)

[ADDITIVE_INCREASING] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m /\

additive m ==>

increasing m

[ADDITIVE_SUM] Theorem

|- !m f n.

algebra (m_space m,measurable_sets m) /\ positive m /\

additive m /\ f IN (UNIV -> measurable_sets m) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

(sum (0,n) (measure m o f) =

measure m (BIGUNION (IMAGE f (count n))))

[ALGEBRA_ALT_INTER] Theorem

|- !a.

algebra a =
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subset_class (space a) (subsets a) /\ {} IN subsets a /\

(!s. s IN subsets a ==> space a DIFF s IN subsets a) /\

!s t.

s IN subsets a /\ t IN subsets a ==> s INTER t IN subsets a

[ALGEBRA_COMPL] Theorem

|- !a s. algebra a /\ s IN subsets a ==> space a DIFF s IN subsets a

[ALGEBRA_DIFF] Theorem

|- !a s t.

algebra a /\ s IN subsets a /\ t IN subsets a ==>

s DIFF t IN subsets a

[ALGEBRA_EMPTY] Theorem

|- !a. algebra a ==> {} IN subsets a

[ALGEBRA_FINITE_UNION] Theorem

|- !a c.

algebra a /\ FINITE c /\ c SUBSET subsets a ==>

BIGUNION c IN subsets a

[ALGEBRA_INTER] Theorem

|- !a s t.

algebra a /\ s IN subsets a /\ t IN subsets a ==>

s INTER t IN subsets a

[ALGEBRA_INTER_SPACE] Theorem

|- !a s.

algebra a /\ s IN subsets a ==>

(space a INTER s = s) /\ (s INTER space a = s)

[ALGEBRA_SPACE] Theorem

|- !a. algebra a ==> space a IN subsets a

[ALGEBRA_SUBSET_LAMBDA_SYSTEM] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m /\

increasing m /\ additive m ==>

measurable_sets m SUBSET

lambda_system (m_space m,POW (m_space m)) (inf_measure m)

[ALGEBRA_UNION] Theorem

|- !a s t.

algebra a /\ s IN subsets a /\ t IN subsets a ==>

s UNION t IN subsets a

[CARATHEODORY] Theorem
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|- !m0.

algebra (m_space m0,measurable_sets m0) /\ positive m0 /\

countably_additive m0 ==>

?m.

(!s.

s IN measurable_sets m0 ==>

(measure m s = measure m0 s)) /\

((m_space m,measurable_sets m) =

sigma (m_space m0) (measurable_sets m0)) /\ measure_space m

[CARATHEODORY_LEMMA] Theorem

|- !gsig lam.

sigma_algebra gsig /\

outer_measure_space (space gsig,subsets gsig,lam) ==>

measure_space (space gsig,lambda_system gsig lam,lam)

[CLOSED_CDI_COMPL] Theorem

|- !p s.

closed_cdi p /\ s IN subsets p ==> space p DIFF s IN subsets p

[CLOSED_CDI_DISJOINT] Theorem

|- !p f.

closed_cdi p /\ f IN (UNIV -> subsets p) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

BIGUNION (IMAGE f UNIV) IN subsets p

[CLOSED_CDI_DUNION] Theorem

|- !p s t.

{} IN subsets p /\ closed_cdi p /\ s IN subsets p /\

t IN subsets p /\ DISJOINT s t ==>

s UNION t IN subsets p

[CLOSED_CDI_INCREASING] Theorem

|- !p f.

closed_cdi p /\ f IN (UNIV -> subsets p) /\ (f 0 = {}) /\

(!n. f n SUBSET f (SUC n)) ==>

BIGUNION (IMAGE f UNIV) IN subsets p

[COUNTABLY_ADDITIVE] Theorem

|- !m s f.

countably_additive m /\ f IN (UNIV -> measurable_sets m) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

(s = BIGUNION (IMAGE f UNIV)) /\ s IN measurable_sets m ==>

measure m o f sums measure m s

[COUNTABLY_ADDITIVE_ADDITIVE] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m /\



90 Appendix B. measureTheory

countably_additive m ==>

additive m

[COUNTABLY_SUBADDITIVE] Theorem

|- !m f s.

countably_subadditive m /\ f IN (UNIV -> measurable_sets m) /\

summable (measure m o f) /\ (s = BIGUNION (IMAGE f UNIV)) /\

s IN measurable_sets m ==>

measure m s <= suminf (measure m o f)

[COUNTABLY_SUBADDITIVE_SUBADDITIVE] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m /\

countably_subadditive m ==>

subadditive m

[INCREASING] Theorem

|- !m s t.

increasing m /\ s SUBSET t /\ s IN measurable_sets m /\

t IN measurable_sets m ==>

measure m s <= measure m t

[INCREASING_ADDITIVE_SUMMABLE] Theorem

|- !m f.

algebra (m_space m,measurable_sets m) /\ positive m /\

increasing m /\ additive m /\

f IN (UNIV -> measurable_sets m) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

summable (measure m o f)

[INF_MEASURE_AGREES] Theorem

|- !m s.

algebra (m_space m,measurable_sets m) /\ positive m /\

countably_additive m /\ s IN measurable_sets m ==>

(inf_measure m s = measure m s)

[INF_MEASURE_CLOSE] Theorem

|- !m s e.

algebra (m_space m,measurable_sets m) /\ positive m /\ 0 < e /\

s SUBSET m_space m ==>

?f l.

f IN (UNIV -> measurable_sets m) /\

s SUBSET BIGUNION (IMAGE f UNIV) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

measure m o f sums l /\ l <= inf_measure m s + e

[INF_MEASURE_COUNTABLY_SUBADDITIVE] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m /\
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increasing m ==>

countably_subadditive (m_space m,POW (m_space m),inf_measure m)

[INF_MEASURE_EMPTY] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m ==>

(inf_measure m {} = 0)

[INF_MEASURE_INCREASING] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m ==>

increasing (m_space m,POW (m_space m),inf_measure m)

[INF_MEASURE_LE] Theorem

|- !m s x.

algebra (m_space m,measurable_sets m) /\ positive m /\

increasing m /\

x IN

{r |

?f.

f IN (UNIV -> measurable_sets m) /\

s SUBSET BIGUNION (IMAGE f UNIV) /\ measure m o f sums r} ==>

inf_measure m s <= x

[INF_MEASURE_NONEMPTY] Theorem

|- !m g s.

algebra (m_space m,measurable_sets m) /\ positive m /\

s IN measurable_sets m /\ g SUBSET s ==>

measure m s IN

{r |

?f.

f IN (UNIV -> measurable_sets m) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

g SUBSET BIGUNION (IMAGE f UNIV) /\ measure m o f sums r}

[INF_MEASURE_OUTER] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m /\

increasing m ==>

outer_measure_space (m_space m,POW (m_space m),inf_measure m)

[INF_MEASURE_POS] Theorem

|- !m g.

algebra (m_space m,measurable_sets m) /\ positive m /\

g SUBSET m_space m ==>

0 <= inf_measure m g

[INF_MEASURE_POS0] Theorem

|- !m g x.
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algebra (m_space m,measurable_sets m) /\ positive m /\

x IN

{r |

?f.

f IN (UNIV -> measurable_sets m) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

g SUBSET BIGUNION (IMAGE f UNIV) /\ measure m o f sums r} ==>

0 <= x

[INF_MEASURE_POSITIVE] Theorem

|- !m.

algebra (m_space m,measurable_sets m) /\ positive m ==>

positive (m_space m,POW (m_space m),inf_measure m)

[IN_MEASURABLE] Theorem

|- !a b f.

f IN measurable a b =

sigma_algebra a /\ sigma_algebra b /\

f IN (space a -> space b) /\

!s. s IN subsets b ==> PREIMAGE f s INTER space a IN subsets a

[IN_MEASURE_PRESERVING] Theorem

|- !m1 m2 f.

f IN measure_preserving m1 m2 =

f IN

measurable (m_space m1,measurable_sets m1)

(m_space m2,measurable_sets m2) /\ measure_space m1 /\

measure_space m2 /\

!s.

s IN measurable_sets m2 ==>

(measure m1 (PREIMAGE f s INTER m_space m1) = measure m2 s)

[IN_SIGMA] Theorem

|- !sp a x. x IN a ==> x IN subsets (sigma sp a)

[LAMBDA_SYSTEM_ADDITIVE] Theorem

|- !g0 lam l1 l2.

algebra g0 /\ positive (space g0,subsets g0,lam) ==>

additive (space g0,lambda_system g0 lam,lam)

[LAMBDA_SYSTEM_ALGEBRA] Theorem

|- !g0 lam.

algebra g0 /\ positive (space g0,subsets g0,lam) ==>

algebra (space g0,lambda_system g0 lam)

[LAMBDA_SYSTEM_CARATHEODORY] Theorem

|- !gsig lam.

sigma_algebra gsig /\

outer_measure_space (space gsig,subsets gsig,lam) ==>
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!f.

f IN (UNIV -> lambda_system gsig lam) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

BIGUNION (IMAGE f UNIV) IN lambda_system gsig lam /\

lam o f sums lam (BIGUNION (IMAGE f UNIV))

[LAMBDA_SYSTEM_COMPL] Theorem

|- !g0 lam l.

algebra g0 /\ positive (space g0,subsets g0,lam) /\

l IN lambda_system g0 lam ==>

space g0 DIFF l IN lambda_system g0 lam

[LAMBDA_SYSTEM_EMPTY] Theorem

|- !g0 lam.

algebra g0 /\ positive (space g0,subsets g0,lam) ==>

{} IN lambda_system g0 lam

[LAMBDA_SYSTEM_INCREASING] Theorem

|- !g0 lam.

increasing (space g0,subsets g0,lam) ==>

increasing (space g0,lambda_system g0 lam,lam)

[LAMBDA_SYSTEM_INTER] Theorem

|- !g0 lam l1 l2.

algebra g0 /\ positive (space g0,subsets g0,lam) /\

l1 IN lambda_system g0 lam /\ l2 IN lambda_system g0 lam ==>

l1 INTER l2 IN lambda_system g0 lam

[LAMBDA_SYSTEM_POSITIVE] Theorem

|- !g0 lam.

positive (space g0,subsets g0,lam) ==>

positive (space g0,lambda_system g0 lam,lam)

[LAMBDA_SYSTEM_STRONG_ADDITIVE] Theorem

|- !g0 lam g l1 l2.

algebra g0 /\ positive (space g0,subsets g0,lam) /\

g IN subsets g0 /\ DISJOINT l1 l2 /\

l1 IN lambda_system g0 lam /\ l2 IN lambda_system g0 lam ==>

(lam ((l1 UNION l2) INTER g) =

lam (l1 INTER g) + lam (l2 INTER g))

[LAMBDA_SYSTEM_STRONG_SUM] Theorem

|- !g0 lam g f n.

algebra g0 /\ positive (space g0,subsets g0,lam) /\

g IN subsets g0 /\ f IN (UNIV -> lambda_system g0 lam) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

(sum (0,n) (lam o (\s. s INTER g) o f) =

lam (BIGUNION (IMAGE f (count n)) INTER g))
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[MEASUBABLE_BIGUNION_LEMMA] Theorem

|- !a b f.

sigma_algebra a /\ sigma_algebra b /\

f IN (space a -> space b) /\

(!s. s IN subsets b ==> PREIMAGE f s IN subsets a) ==>

!c.

countable c /\ c SUBSET IMAGE (PREIMAGE f) (subsets b) ==>

BIGUNION c IN IMAGE (PREIMAGE f) (subsets b)

[MEASURABLE_BIGUNION_PROPERTY] Theorem

|- !a b f.

sigma_algebra a /\ sigma_algebra b /\

f IN (space a -> space b) /\

(!s. s IN subsets b ==> PREIMAGE f s IN subsets a) ==>

!c.

c SUBSET subsets b ==>

(PREIMAGE f (BIGUNION c) = BIGUNION (IMAGE (PREIMAGE f) c))

[MEASURABLE_COMP] Theorem

|- !f g a b c.

f IN measurable a b /\ g IN measurable b c ==>

g o f IN measurable a c

[MEASURABLE_COMP_STRONG] Theorem

|- !f g a b c.

f IN measurable a b /\ sigma_algebra c /\

g IN (space b -> space c) /\

(!x.

x IN subsets c ==>

PREIMAGE g x INTER IMAGE f (space a) IN subsets b) ==>

g o f IN measurable a c

[MEASURABLE_COMP_STRONGER] Theorem

|- !f g a b c t.

f IN measurable a b /\ sigma_algebra c /\

g IN (space b -> space c) /\ IMAGE f (space a) SUBSET t /\

(!s. s IN subsets c ==> PREIMAGE g s INTER t IN subsets b) ==>

g o f IN measurable a c

[MEASURABLE_DIFF_PROPERTY] Theorem

|- !a b f.

sigma_algebra a /\ sigma_algebra b /\

f IN (space a -> space b) /\

(!s. s IN subsets b ==> PREIMAGE f s IN subsets a) ==>

!s.

s IN subsets b ==>

(PREIMAGE f (space b DIFF s) = space a DIFF PREIMAGE f s)

[MEASURABLE_I] Theorem
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|- !a. sigma_algebra a ==> I IN measurable a a

[MEASURABLE_LIFT] Theorem

|- !f a b.

f IN measurable a b ==>

f IN measurable a (sigma (space b) (subsets b))

[MEASURABLE_POW_TO_POW] Theorem

|- !m f.

measure_space m /\ (measurable_sets m = POW (m_space m)) ==>

f IN measurable (m_space m,measurable_sets m) (UNIV,POW UNIV)

[MEASURABLE_POW_TO_POW_IMAGE] Theorem

|- !m f.

measure_space m /\ (measurable_sets m = POW (m_space m)) ==>

f IN

measurable (m_space m,measurable_sets m)

(IMAGE f (m_space m),POW (IMAGE f (m_space m)))

[MEASURABLE_PROD_SIGMA] Theorem

|- !a a1 a2 f.

sigma_algebra a /\ FST o f IN measurable a a1 /\

SND o f IN measurable a a2 ==>

f IN

measurable a

(sigma (space a1 CROSS space a2)

(prod_sets (subsets a1) (subsets a2)))

[MEASURABLE_RANGE_REDUCE] Theorem

|- !m f s.

measure_space m /\

f IN measurable (m_space m,measurable_sets m) (s,POW s) /\

~(s = {}) ==>

f IN

measurable (m_space m,measurable_sets m)

(s INTER IMAGE f (m_space m),

POW (s INTER IMAGE f (m_space m)))

[MEASURABLE_SETS_SUBSET_SPACE] Theorem

|- !m s.

measure_space m /\ s IN measurable_sets m ==> s SUBSET m_space m

[MEASURABLE_SIGMA] Theorem

|- !f a b sp.

sigma_algebra a /\ subset_class sp b /\ f IN (space a -> sp) /\

(!s. s IN b ==> PREIMAGE f s INTER space a IN subsets a) ==>

f IN measurable a (sigma sp b)

[MEASURABLE_SIGMA_PREIMAGES] Theorem
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|- !a b f.

sigma_algebra a /\ sigma_algebra b /\

f IN (space a -> space b) /\

(!s. s IN subsets b ==> PREIMAGE f s IN subsets a) ==>

sigma_algebra (space a,IMAGE (PREIMAGE f) (subsets b))

[MEASURABLE_SUBSET] Theorem

|- !a b.

measurable a b SUBSET measurable a (sigma (space b) (subsets b))

[MEASURABLE_UP_LIFT] Theorem

|- !sp a b c f.

f IN measurable (sp,a) c /\ sigma_algebra (sp,b) /\

a SUBSET b ==>

f IN measurable (sp,b) c

[MEASURABLE_UP_SIGMA] Theorem

|- !a b.

measurable a b SUBSET measurable (sigma (space a) (subsets a)) b

[MEASURABLE_UP_SUBSET] Theorem

|- !sp a b c.

a SUBSET b /\ sigma_algebra (sp,b) ==>

measurable (sp,a) c SUBSET measurable (sp,b) c

[MEASURE_ADDITIVE] Theorem

|- !m s t u.

measure_space m /\ s IN measurable_sets m /\

t IN measurable_sets m /\ DISJOINT s t /\ (u = s UNION t) ==>

(measure m u = measure m s + measure m t)

[MEASURE_COMPL] Theorem

|- !m s.

measure_space m /\ s IN measurable_sets m ==>

(measure m (m_space m DIFF s) =

measure m (m_space m) - measure m s)

[MEASURE_COUNTABLE_INCREASING] Theorem

|- !m s f.

measure_space m /\ f IN (UNIV -> measurable_sets m) /\

(f 0 = {}) /\ (!n. f n SUBSET f (SUC n)) /\

(s = BIGUNION (IMAGE f UNIV)) ==>

measure m o f --> measure m s

[MEASURE_COUNTABLY_ADDITIVE] Theorem

|- !m s f.

measure_space m /\ f IN (UNIV -> measurable_sets m) /\



97

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

(s = BIGUNION (IMAGE f UNIV)) ==>

measure m o f sums measure m s

[MEASURE_DOWN] Theorem

|- !m0 m1.

sigma_algebra (m_space m0,measurable_sets m0) /\

measurable_sets m0 SUBSET measurable_sets m1 /\

(measure m0 = measure m1) /\ measure_space m1 ==>

measure_space m0

[MEASURE_EMPTY] Theorem

|- !m. measure_space m ==> (measure m {} = 0)

[MEASURE_PRESERVING_LIFT] Theorem

|- !m1 m2 a f.

measure_space m1 /\ measure_space m2 /\

(measurable_sets m2 = subsets (sigma (m_space m2) a)) /\

f IN measure_preserving m1 (m_space m2,a,measure m2) ==>

f IN measure_preserving m1 m2

[MEASURE_PRESERVING_SUBSET] Theorem

|- !m1 m2 a.

measure_space m1 /\ measure_space m2 /\

(measurable_sets m2 = subsets (sigma (m_space m2) a)) ==>

measure_preserving m1 (m_space m2,a,measure m2) SUBSET

measure_preserving m1 m2

[MEASURE_PRESERVING_UP_LIFT] Theorem

|- !m1 m2 f.

measure_space m1 /\

f IN measure_preserving (m_space m1,a,measure m1) m2 /\

sigma_algebra (m_space m1,measurable_sets m1) /\

a SUBSET measurable_sets m1 ==>

f IN measure_preserving m1 m2

[MEASURE_PRESERVING_UP_SIGMA] Theorem

|- !m1 m2 a.

measure_space m1 /\

(measurable_sets m1 = subsets (sigma (m_space m1) a)) ==>

measure_preserving (m_space m1,a,measure m1) m2 SUBSET

measure_preserving m1 m2

[MEASURE_PRESERVING_UP_SUBSET] Theorem

|- !m1 m2.

measure_space m1 /\ a SUBSET measurable_sets m1 /\

sigma_algebra (m_space m1,measurable_sets m1) ==>

measure_preserving (m_space m1,a,measure m1) m2 SUBSET

measure_preserving m1 m2
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[MEASURE_REAL_SUM_IMAGE] Theorem

|- !m s.

measure_space m /\ s IN measurable_sets m /\

(!x. x IN s ==> {x} IN measurable_sets m) /\ FINITE s ==>

(measure m s = SIGMA (\x. measure m {x}) s)

[MEASURE_SPACE_ADDITIVE] Theorem

|- !m. measure_space m ==> additive m

[MEASURE_SPACE_REDUCE] Theorem

|- !m. (m_space m,measurable_sets m,measure m) = m

[MEASURE_SPACE_SUBSET] Theorem

|- !s s’ m.

s’ SUBSET s /\ measure_space (s,POW s,m) ==>

measure_space (s’,POW s’,m)

[MONOTONE_CONVERGENCE] Theorem

|- !m s f.

measure_space m /\ f IN (UNIV -> measurable_sets m) /\

(!n. f n SUBSET f (SUC n)) /\ (s = BIGUNION (IMAGE f UNIV)) ==>

measure m o f --> measure m s

[OUTER_MEASURE_SPACE_POSITIVE] Theorem

|- !m. outer_measure_space m ==> positive m

[POW_ALGEBRA] Theorem

|- algebra (sp,POW sp)

[POW_SIGMA_ALGEBRA] Theorem

|- sigma_algebra (sp,POW sp)

[SIGMA_ALGEBRA] Theorem

|- !p.

sigma_algebra p =

subset_class (space p) (subsets p) /\ {} IN subsets p /\

(!s. s IN subsets p ==> space p DIFF s IN subsets p) /\

!c.

countable c /\ c SUBSET subsets p ==> BIGUNION c IN subsets p

[SIGMA_ALGEBRA_ALGEBRA] Theorem

|- !a. sigma_algebra a ==> algebra a

[SIGMA_ALGEBRA_ALT] Theorem
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|- !a.

sigma_algebra a =

algebra a /\

!f.

f IN (UNIV -> subsets a) ==>

BIGUNION (IMAGE f UNIV) IN subsets a

[SIGMA_ALGEBRA_ALT_DISJOINT] Theorem

|- !a.

sigma_algebra a =

algebra a /\

!f.

f IN (UNIV -> subsets a) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

BIGUNION (IMAGE f UNIV) IN subsets a

[SIGMA_ALGEBRA_ALT_MONO] Theorem

|- !a.

sigma_algebra a =

algebra a /\

!f.

f IN (UNIV -> subsets a) /\ (f 0 = {}) /\

(!n. f n SUBSET f (SUC n)) ==>

BIGUNION (IMAGE f UNIV) IN subsets a

[SIGMA_ALGEBRA_COUNTABLE_UNION] Theorem

|- !a c.

sigma_algebra a /\ countable c /\ c SUBSET subsets a ==>

BIGUNION c IN subsets a

[SIGMA_ALGEBRA_ENUM] Theorem

|- !a f.

sigma_algebra a /\ f IN (UNIV -> subsets a) ==>

BIGUNION (IMAGE f UNIV) IN subsets a

[SIGMA_ALGEBRA_FN] Theorem

|- !a.

sigma_algebra a =

subset_class (space a) (subsets a) /\ {} IN subsets a /\

(!s. s IN subsets a ==> space a DIFF s IN subsets a) /\

!f.

f IN (UNIV -> subsets a) ==>

BIGUNION (IMAGE f UNIV) IN subsets a

[SIGMA_ALGEBRA_FN_DISJOINT] Theorem

|- !a.

sigma_algebra a =

subset_class (space a) (subsets a) /\ {} IN subsets a /\

(!s. s IN subsets a ==> space a DIFF s IN subsets a) /\

(!s t.
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s IN subsets a /\ t IN subsets a ==>

s UNION t IN subsets a) /\

!f.

f IN (UNIV -> subsets a) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

BIGUNION (IMAGE f UNIV) IN subsets a

[SIGMA_ALGEBRA_SIGMA] Theorem

|- !sp sts. subset_class sp sts ==> sigma_algebra (sigma sp sts)

[SIGMA_POW] Theorem

|- !s. sigma s (POW s) = (s,POW s)

[SIGMA_PROPERTY] Theorem

|- !sp p a.

subset_class sp p /\ {} IN p /\ a SUBSET p /\

(!s. s IN p INTER subsets (sigma sp a) ==> sp DIFF s IN p) /\

(!c.

countable c /\ c SUBSET p INTER subsets (sigma sp a) ==>

BIGUNION c IN p) ==>

subsets (sigma sp a) SUBSET p

[SIGMA_PROPERTY_ALT] Theorem

|- !sp p a.

subset_class sp p /\ {} IN p /\ a SUBSET p /\

(!s. s IN p INTER subsets (sigma sp a) ==> sp DIFF s IN p) /\

(!f.

f IN (UNIV -> p INTER subsets (sigma sp a)) ==>

BIGUNION (IMAGE f UNIV) IN p) ==>

subsets (sigma sp a) SUBSET p

[SIGMA_PROPERTY_DISJOINT] Theorem

|- !sp p a.

algebra (sp,a) /\ a SUBSET p /\

(!s. s IN p INTER subsets (sigma sp a) ==> sp DIFF s IN p) /\

(!f.

f IN (UNIV -> p INTER subsets (sigma sp a)) /\ (f 0 = {}) /\

(!n. f n SUBSET f (SUC n)) ==>

BIGUNION (IMAGE f UNIV) IN p) /\

(!f.

f IN (UNIV -> p INTER subsets (sigma sp a)) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

BIGUNION (IMAGE f UNIV) IN p) ==>

subsets (sigma sp a) SUBSET p

[SIGMA_PROPERTY_DISJOINT_LEMMA] Theorem

|- !sp a p.

algebra (sp,a) /\ a SUBSET p /\ closed_cdi (sp,p) ==>

subsets (sigma sp a) SUBSET p
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[SIGMA_PROPERTY_DISJOINT_LEMMA1] Theorem

|- !a.

algebra a ==>

!s t.

s IN subsets a /\ t IN subsets (smallest_closed_cdi a) ==>

s INTER t IN subsets (smallest_closed_cdi a)

[SIGMA_PROPERTY_DISJOINT_LEMMA2] Theorem

|- !a.

algebra a ==>

!s t.

s IN subsets (smallest_closed_cdi a) /\

t IN subsets (smallest_closed_cdi a) ==>

s INTER t IN subsets (smallest_closed_cdi a)

[SIGMA_PROPERTY_DISJOINT_WEAK] Theorem

|- !sp p a.

algebra (sp,a) /\ a SUBSET p /\ subset_class sp p /\

(!s. s IN p ==> sp DIFF s IN p) /\

(!f.

f IN (UNIV -> p) /\ (f 0 = {}) /\

(!n. f n SUBSET f (SUC n)) ==>

BIGUNION (IMAGE f UNIV) IN p) /\

(!f.

f IN (UNIV -> p) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>

BIGUNION (IMAGE f UNIV) IN p) ==>

subsets (sigma sp a) SUBSET p

[SIGMA_REDUCE] Theorem

|- !sp a. (sp,subsets (sigma sp a)) = sigma sp a

[SIGMA_SUBSET] Theorem

|- !a b.

sigma_algebra b /\ a SUBSET subsets b ==>

subsets (sigma (space b) a) SUBSET subsets b

[SIGMA_SUBSET_MEASURABLE_SETS] Theorem

|- !a m.

measure_space m /\ a SUBSET measurable_sets m ==>

subsets (sigma (m_space m) a) SUBSET measurable_sets m

[SIGMA_SUBSET_SUBSETS] Theorem

|- !sp a. a SUBSET subsets (sigma sp a)

[SMALLEST_CLOSED_CDI] Theorem

|- !a.

algebra a ==>
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subsets a SUBSET subsets (smallest_closed_cdi a) /\

closed_cdi (smallest_closed_cdi a) /\

subset_class (space a) (subsets (smallest_closed_cdi a))

[SPACE] Theorem

|- !a. (space a,subsets a) = a

[SPACE_SIGMA] Theorem

|- !sp a. space (sigma sp a) = sp

[SPACE_SMALLEST_CLOSED_CDI] Theorem

|- !a. space (smallest_closed_cdi a) = space a

[STRONG_MEASURE_SPACE_SUBSET] Theorem

|- !s s’.

s’ SUBSET m_space s /\ measure_space s /\

POW s’ SUBSET measurable_sets s ==>

measure_space (s’,POW s’,measure s)

[SUBADDITIVE] Theorem

|- !m s t u.

subadditive m /\ s IN measurable_sets m /\

t IN measurable_sets m /\ (u = s UNION t) ==>

measure m u <= measure m s + measure m t

[UNIV_SIGMA_ALGEBRA] Theorem

|- sigma_algebra (UNIV,UNIV)

[finite_additivity_sufficient_for_finite_spaces] Theorem

|- !s m.

sigma_algebra s /\ FINITE (space s) /\

positive (space s,subsets s,m) /\

additive (space s,subsets s,m) ==>

measure_space (space s,subsets s,m)

[finite_additivity_sufficient_for_finite_spaces2] Theorem

|- !m.

sigma_algebra (m_space m,measurable_sets m) /\

FINITE (m_space m) /\ positive m /\ additive m ==>

measure_space m



Appendix C

borelTheory

[measure] Parent theory of "borel"

[string] Parent theory of "borel"

[borel_measurable_def] Definition

|- !a. borel_measurable a = measurable a borel_space

[borel_space_def] Definition

|- borel_space = sigma UNIV (IMAGE (\a. {x | x <= a}) UNIV)

[mono_convergent_def] Definition

|- !u f s.

mono_convergent u f s =

(!x m n. m <= n /\ x IN s ==> u m x <= u n x) /\

!x. x IN s ==> (\i. u i x) --> f x

[real_rat_set_def] Definition

|- real_rat_set =

IMAGE (\(a,b). & a / & b) (UNIV CROSS UNIV) UNION

IMAGE (\(a,b). ~(& a / & b)) (UNIV CROSS UNIV)

[IN_BOREL_MEASURABLE] Theorem

|- !f s.

f IN borel_measurable s =

sigma_algebra s /\

!s’.

s’ IN subsets (sigma UNIV (IMAGE (\a. {x | x <= a}) UNIV)) ==>

PREIMAGE f s’ INTER space s IN subsets s

[NON_NEG_REAL_RAT_DENSE] Theorem

|- !x y. 0 <= x /\ x < y ==> ?m n. x < & m / & n /\ & m / & n < y

[REAL_RAT_DENSE] Theorem

|- !x y. x < y ==> ?i. i IN real_rat_set /\ x < i /\ i < y
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[affine_borel_measurable] Theorem

|- !m g.

measure_space m /\

g IN borel_measurable (m_space m,measurable_sets m) ==>

!a b.

(\x. a + g x * b) IN

borel_measurable (m_space m,measurable_sets m)

[borel_measurable_SIGMA_borel_measurable] Theorem

|- !m f s.

measure_space m /\ FINITE s /\

(!i.

i IN s ==>

f i IN borel_measurable (m_space m,measurable_sets m)) ==>

(\x. SIGMA (\i. f i x) s) IN

borel_measurable (m_space m,measurable_sets m)

[borel_measurable_const] Theorem

|- !s c. sigma_algebra s ==> (\x. c) IN borel_measurable s

[borel_measurable_eq_borel_measurable] Theorem

|- !m f g.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

g IN borel_measurable (m_space m,measurable_sets m) ==>

{w | w IN m_space m /\ (f w = g w)} IN measurable_sets m

[borel_measurable_ge_iff] Theorem

|- !m.

measure_space m ==>

!f.

f IN borel_measurable (m_space m,measurable_sets m) =

!a. {w | w IN m_space m /\ a <= f w} IN measurable_sets m

[borel_measurable_gr_iff] Theorem

|- !m.

measure_space m ==>

!f.

f IN borel_measurable (m_space m,measurable_sets m) =

!a. {w | w IN m_space m /\ a < f w} IN measurable_sets m

[borel_measurable_indicator] Theorem

|- !s a.

sigma_algebra s /\ a IN subsets s ==>

indicator_fn a IN borel_measurable s

[borel_measurable_le_iff] Theorem
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|- !m.

measure_space m ==>

!f.

f IN borel_measurable (m_space m,measurable_sets m) =

!a. {w | w IN m_space m /\ f w <= a} IN measurable_sets m

[borel_measurable_leq_borel_measurable] Theorem

|- !m f g.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

g IN borel_measurable (m_space m,measurable_sets m) ==>

{w | w IN m_space m /\ f w <= g w} IN measurable_sets m

[borel_measurable_less_borel_measurable] Theorem

|- !m f g.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

g IN borel_measurable (m_space m,measurable_sets m) ==>

{w | w IN m_space m /\ f w < g w} IN measurable_sets m

[borel_measurable_less_iff] Theorem

|- !m.

measure_space m ==>

!f.

f IN borel_measurable (m_space m,measurable_sets m) =

!a. {w | w IN m_space m /\ f w < a} IN measurable_sets m

[borel_measurable_neq_borel_measurable] Theorem

|- !m f g.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

g IN borel_measurable (m_space m,measurable_sets m) ==>

{w | w IN m_space m /\ ~(f w = g w)} IN measurable_sets m

[borel_measurable_plus_borel_measurable] Theorem

|- !m f g.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

g IN borel_measurable (m_space m,measurable_sets m) ==>

(\x. f x + g x) IN

borel_measurable (m_space m,measurable_sets m)

[borel_measurable_square] Theorem

|- !m f g.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) ==>

(\x. f x pow 2) IN

borel_measurable (m_space m,measurable_sets m)

[borel_measurable_sub_borel_measurable] Theorem
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|- !m f g.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

g IN borel_measurable (m_space m,measurable_sets m) ==>

(\x. f x - g x) IN

borel_measurable (m_space m,measurable_sets m)

[borel_measurable_times_borel_measurable] Theorem

|- !m f g.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

g IN borel_measurable (m_space m,measurable_sets m) ==>

(\x. f x * g x) IN

borel_measurable (m_space m,measurable_sets m)

[countable_real_rat_set] Theorem

|- countable real_rat_set

[mono_convergent_borel_measurable] Theorem

|- !u m f.

measure_space m /\

(!n. u n IN borel_measurable (m_space m,measurable_sets m)) /\

mono_convergent u f (m_space m) ==>

f IN borel_measurable (m_space m,measurable_sets m)

[sigma_algebra_borel_space] Theorem

|- sigma_algebra borel_space

[sigma_ge_gr] Theorem

|- !f A.

sigma_algebra A /\

(!a. {w | w IN space A /\ a <= f w} IN subsets A) ==>

!a. {w | w IN space A /\ a < f w} IN subsets A

[sigma_gr_le] Theorem

|- !f A.

sigma_algebra A /\

(!a. {w | w IN space A /\ a < f w} IN subsets A) ==>

!a. {w | w IN space A /\ f w <= a} IN subsets A

[sigma_le_less] Theorem

|- !f A.

sigma_algebra A /\

(!a. {w | w IN space A /\ f w <= a} IN subsets A) ==>

!a. {w | w IN space A /\ f w < a} IN subsets A

[sigma_less_ge] Theorem
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|- !f A.

sigma_algebra A /\

(!a. {w | w IN space A /\ f w < a} IN subsets A) ==>

!a. {w | w IN space A /\ a <= f w} IN subsets A
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lebesgueTheory

[RN_deriv_def] Definition

|- !m v.

RN_deriv m v =

@f.

measure_space m /\

measure_space (m_space m,measurable_sets m,v) /\

f IN borel_measurable (m_space m,measurable_sets m) /\

!a.

a IN measurable_sets m ==>

(integral m (\x. f x * indicator_fn a x) = v a)

[countable_space_integral_def] Definition

|- !m f.

countable_space_integral m f =

(let e = enumerate (IMAGE f (m_space m)) in

suminf

((\r. r * measure m (PREIMAGE f {r} INTER m_space m)) o e))

[finite_space_integral_def] Definition

|- !m f.

finite_space_integral m f =

SIGMA (\r. r * measure m (PREIMAGE f {r} INTER m_space m))

(IMAGE f (m_space m))

[integrable_def] Definition

|- !m f.

integrable m f =

measure_space m /\ (?x. x IN nnfis m (pos_part f)) /\

?y. y IN nnfis m (neg_part f)

[integral_def] Definition

|- !m f.

integral m f =

(@i. i IN nnfis m (pos_part f)) - @j. j IN nnfis m (neg_part f)

[mon_upclose_def] Definition

108
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|- !u m. mon_upclose u m = mon_upclose_help m u m

[mon_upclose_help_def] Definition

|- (!u m. mon_upclose_help 0 u m = u m 0) /\

!n u m.

mon_upclose_help (SUC n) u m =

upclose (u m (SUC n)) (mon_upclose_help n u m)

[mono_increasing_def] Definition

|- !f. mono_increasing f = !m n. m <= n ==> f m <= f n

[neg_part_def] Definition

|- !f. neg_part f = (\x. (if 0 <= f x then 0 else ~f x))

[nnfis_def] Definition

|- !m f.

nnfis m f =

{y |

?u x.

mono_convergent u f (m_space m) /\

(!n. x n IN psfis m (u n)) /\ x --> y}

[nonneg_def] Definition

|- !f. nonneg f = !x. 0 <= f x

[pos_fn_integral_def] Definition

|- !m f.

pos_fn_integral m f =

sup {r | ?g. r IN psfis m g /\ !x. g x <= f x}

[pos_part_def] Definition

|- !f. pos_part f = (\x. (if 0 <= f x then f x else 0))

[pos_simple_fn_def] Definition

|- !m f s a x.

pos_simple_fn m f s a x =

(!t. 0 <= f t) /\

(!t.

t IN m_space m ==>

(f t = SIGMA (\i. x i * indicator_fn (a i) t) s)) /\

(!i. i IN s ==> a i IN measurable_sets m) /\ (!i. 0 <= x i) /\

FINITE s /\

(!i j. i IN s /\ j IN s /\ ~(i = j) ==> DISJOINT (a i) (a j)) /\

(BIGUNION (IMAGE a s) = m_space m)

[pos_simple_fn_integral_def] Definition
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|- !m s a x.

pos_simple_fn_integral m s a x =

SIGMA (\i. x i * measure m (a i)) s

[prod_measure_def] Definition

|- !m0 m1.

prod_measure m0 m1 =

(\a. integral m0 (\s0. measure m1 (PREIMAGE (\s1. (s0,s1)) a)))

[prod_measure_space_def] Definition

|- !m0 m1.

prod_measure_space m0 m1 =

(m_space m0 CROSS m_space m1,

subsets

(sigma (m_space m0 CROSS m_space m1)

(prod_sets (measurable_sets m0) (measurable_sets m1))),

prod_measure m0 m1)

[psfis_def] Definition

|- !m f.

psfis m f =

IMAGE (\(s,a,x). pos_simple_fn_integral m s a x) (psfs m f)

[psfs_def] Definition

|- !m f. psfs m f = {(s,a,x) | pos_simple_fn m f s a x}

[upclose_def] Definition

|- !f g. upclose f g = (\t. max (f t) (g t))

[IN_psfis] Theorem

|- !m r f.

r IN psfis m f ==>

?s a x.

pos_simple_fn m f s a x /\

(r = pos_simple_fn_integral m s a x)

[borel_measurable_mon_conv_psfis] Theorem

|- !m f.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

(!t. t IN m_space m ==> 0 <= f t) ==>

?u x.

mono_convergent u f (m_space m) /\ !n. x n IN psfis m (u n)

[countable_space_integral_reduce] Theorem

|- !m f p n.

measure_space m /\ positive m /\

f IN borel_measurable (m_space m,measurable_sets m) /\
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countable (IMAGE f (m_space m)) /\

~FINITE (IMAGE (pos_part f) (m_space m)) /\

~FINITE (IMAGE (neg_part f) (m_space m)) /\

(\r.

r * measure m (PREIMAGE (neg_part f) {r} INTER m_space m)) o

enumerate (IMAGE (neg_part f) (m_space m)) sums n /\

(\r.

r * measure m (PREIMAGE (pos_part f) {r} INTER m_space m)) o

enumerate (IMAGE (pos_part f) (m_space m)) sums p ==>

(integral m f = p - n)

[finite_POW_RN_deriv_reduce] Theorem

|- !m v.

measure_space m /\ FINITE (m_space m) /\

measure_space (m_space m,measurable_sets m,v) /\

(POW (m_space m) = measurable_sets m) /\

(!x. (measure m {x} = 0) ==> (v {x} = 0)) ==>

!x.

x IN m_space m /\ ~(measure m {x} = 0) ==>

(RN_deriv m v x = v {x} / measure m {x})

[finite_POW_prod_measure_reduce] Theorem

|- !m0 m1.

measure_space m0 /\ measure_space m1 /\ FINITE (m_space m0) /\

FINITE (m_space m1) /\

(POW (m_space m0) = measurable_sets m0) /\

(POW (m_space m1) = measurable_sets m1) ==>

!a0 a1.

a0 IN measurable_sets m0 /\ a1 IN measurable_sets m1 ==>

(prod_measure m0 m1 (a0 CROSS a1) =

measure m0 a0 * measure m1 a1)

[finite_integral_on_set] Theorem

|- !m f a.

measure_space m /\ FINITE (m_space m) /\

f IN borel_measurable (m_space m,measurable_sets m) /\

a IN measurable_sets m ==>

(integral m (\x. f x * indicator_fn a x) =

SIGMA (\r. r * measure m (PREIMAGE f {r} INTER a)) (IMAGE f a))

[finite_space_POW_integral_reduce] Theorem

|- !m f.

measure_space m /\ (POW (m_space m) = measurable_sets m) /\

FINITE (m_space m) ==>

(integral m f = SIGMA (\x. f x * measure m {x}) (m_space m))

[finite_space_integral_reduce] Theorem

|- !m f.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

FINITE (m_space m) ==>
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(integral m f = finite_space_integral m f)

[indicator_fn_split] Theorem

|- !r s b.

FINITE r /\ (BIGUNION (IMAGE b r) = s) /\

(!i j.

i IN r /\ j IN r /\ ~(i = j) ==> DISJOINT (b i) (b j)) ==>

!a.

a SUBSET s ==>

(indicator_fn a =

(\x. SIGMA (\i. indicator_fn (a INTER b i) x) r))

[integral_add] Theorem

|- !m f g.

integrable m f /\ integrable m g ==>

integrable m (\t. f t + g t) /\

(integral m (\t. f t + g t) = integral m f + integral m g)

[integral_borel_measurable] Theorem

|- !m f.

integrable m f ==>

f IN borel_measurable (m_space m,measurable_sets m)

[integral_cmul_indicator] Theorem

|- !m s c.

measure_space m /\ s IN measurable_sets m ==>

(integral m (\x. c * indicator_fn s x) = c * measure m s)

[integral_indicator_fn] Theorem

|- !m a.

measure_space m /\ a IN measurable_sets m ==>

(integral m (indicator_fn a) = measure m a) /\

integrable m (indicator_fn a)

[integral_mono] Theorem

|- !m f g.

integrable m f /\ integrable m g /\

(!t. t IN m_space m ==> f t <= g t) ==>

integral m f <= integral m g

[integral_times] Theorem

|- !m f a.

integrable m f ==>

integrable m (\t. a * f t) /\

(integral m (\t. a * f t) = a * integral m f)

[integral_zero] Theorem

|- !m. measure_space m ==> (integral m (\x. 0) = 0)
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[markov_ineq] Theorem

|- !m f a n.

integrable m f /\ 0 < a /\

integrable m (\x. abs (f x) pow n) ==>

measure m (PREIMAGE f {y | a <= y} INTER m_space m) <=

integral m (\x. abs (f x) pow n) / a pow n

[measure_space_finite_prod_measure_POW1] Theorem

|- !m0 m1.

measure_space m0 /\ measure_space m1 /\ FINITE (m_space m0) /\

FINITE (m_space m1) /\

(POW (m_space m0) = measurable_sets m0) /\

(POW (m_space m1) = measurable_sets m1) ==>

measure_space (prod_measure_space m0 m1)

[measure_space_finite_prod_measure_POW2] Theorem

|- !m0 m1.

measure_space m0 /\ measure_space m1 /\ FINITE (m_space m0) /\

FINITE (m_space m1) /\

(POW (m_space m0) = measurable_sets m0) /\

(POW (m_space m1) = measurable_sets m1) ==>

measure_space

(m_space m0 CROSS m_space m1,

POW (m_space m0 CROSS m_space m1),prod_measure m0 m1)

[measure_split] Theorem

|- !r b m.

measure_space m /\ FINITE r /\

(BIGUNION (IMAGE b r) = m_space m) /\

(!i j. i IN r /\ j IN r /\ ~(i = j) ==> DISJOINT (b i) (b j)) /\

(!i. i IN r ==> b i IN measurable_sets m) ==>

!a.

a IN measurable_sets m ==>

(measure m a = SIGMA (\i. measure m (a INTER b i)) r)

[mon_upclose_psfis] Theorem

|- !m u.

measure_space m /\ (!n n’. ?a. a IN psfis m (u n n’)) ==>

?c. !n. c n IN psfis m (mon_upclose u n)

[mono_increasing_converges_to_sup] Theorem

|- !f r.

(!i. 0 <= f i) /\ mono_increasing f /\ f --> r ==>

(r = sup (IMAGE f UNIV))

[nnfis_add] Theorem

|- !f g m a b.

measure_space m /\ a IN nnfis m f /\ b IN nnfis m g ==>
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a + b IN nnfis m (\w. f w + g w)

[nnfis_borel_measurable] Theorem

|- !m f a.

measure_space m /\ a IN nnfis m f ==>

f IN borel_measurable (m_space m,measurable_sets m)

[nnfis_dom_conv] Theorem

|- !m f g b.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) /\

b IN nnfis m g /\ (!t. t IN m_space m ==> f t <= g t) /\

(!t. t IN m_space m ==> 0 <= f t) ==>

?a. a IN nnfis m f /\ a <= b

[nnfis_integral] Theorem

|- !m f a.

measure_space m /\ a IN nnfis m f ==>

integrable m f /\ (integral m f = a)

[nnfis_minus_nnfis_integral] Theorem

|- !m f g a b.

measure_space m /\ a IN nnfis m f /\ b IN nnfis m g ==>

integrable m (\t. f t - g t) /\

(integral m (\t. f t - g t) = a - b)

[nnfis_mon_conv] Theorem

|- !f m h x y.

measure_space m /\ mono_convergent f h (m_space m) /\

(!n. x n IN nnfis m (f n)) /\ x --> y ==>

y IN nnfis m h

[nnfis_mono] Theorem

|- !f g m a b.

measure_space m /\ a IN nnfis m f /\ b IN nnfis m g /\

(!w. w IN m_space m ==> f w <= g w) ==>

a <= b

[nnfis_pos_on_mspace] Theorem

|- !f m a.

measure_space m /\ a IN nnfis m f ==>

!x. x IN m_space m ==> 0 <= f x

[nnfis_times] Theorem

|- !f m a z.

measure_space m /\ a IN nnfis m f /\ 0 <= z ==>

z * a IN nnfis m (\w. z * f w)
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[nnfis_unique] Theorem

|- !f m a b.

measure_space m /\ a IN nnfis m f /\ b IN nnfis m f ==> (a = b)

[pos_part_neg_part_borel_measurable] Theorem

|- !f m.

measure_space m /\

f IN borel_measurable (m_space m,measurable_sets m) ==>

pos_part f IN borel_measurable (m_space m,measurable_sets m) /\

neg_part f IN borel_measurable (m_space m,measurable_sets m)

[pos_part_neg_part_borel_measurable_iff] Theorem

|- !f m.

measure_space m ==>

(f IN borel_measurable (m_space m,measurable_sets m) =

pos_part f IN borel_measurable (m_space m,measurable_sets m) /\

neg_part f IN borel_measurable (m_space m,measurable_sets m))

[pos_psfis] Theorem

|- !r m f. measure_space m /\ r IN psfis m f ==> 0 <= r

[pos_simple_fn_integral_REAL_SUM_IMAGE] Theorem

|- !m f s a x P.

measure_space m /\

(!i. i IN P ==> pos_simple_fn m (f i) (s i) (a i) (x i)) /\

FINITE P ==>

?s’ a’ x’.

pos_simple_fn m (\t. SIGMA (\i. f i t) P) s’ a’ x’ /\

(pos_simple_fn_integral m s’ a’ x’ =

SIGMA (\i. pos_simple_fn_integral m (s i) (a i) (x i)) P)

[pos_simple_fn_integral_add] Theorem

|- !m f s a x g s’ b y.

measure_space m /\ pos_simple_fn m f s a x /\

pos_simple_fn m g s’ b y ==>

?s’’ c z.

pos_simple_fn m (\x. f x + g x) s’’ c z /\

(pos_simple_fn_integral m s a x +

pos_simple_fn_integral m s’ b y =

pos_simple_fn_integral m s’’ c z)

[pos_simple_fn_integral_indicator] Theorem

|- !m A.

measure_space m /\ A IN measurable_sets m ==>

?s a x.

pos_simple_fn m (indicator_fn A) s a x /\

(pos_simple_fn_integral m s a x = measure m A)

[pos_simple_fn_integral_mono] Theorem
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|- !m f s a x g s’ b y.

measure_space m /\ pos_simple_fn m f s a x /\

pos_simple_fn m g s’ b y /\ (!x. f x <= g x) ==>

pos_simple_fn_integral m s a x <=

pos_simple_fn_integral m s’ b y

[pos_simple_fn_integral_mono_on_mspace] Theorem

|- !m f s a x g s’ b y.

measure_space m /\ pos_simple_fn m f s a x /\

pos_simple_fn m g s’ b y /\

(!x. x IN m_space m ==> f x <= g x) ==>

pos_simple_fn_integral m s a x <=

pos_simple_fn_integral m s’ b y

[pos_simple_fn_integral_mult] Theorem

|- !m f s a x.

measure_space m /\ pos_simple_fn m f s a x ==>

!z.

0 <= z ==>

?s’ b y.

pos_simple_fn m (\x. z * f x) s’ b y /\

(pos_simple_fn_integral m s’ b y =

z * pos_simple_fn_integral m s a x)

[pos_simple_fn_integral_present] Theorem

|- !m f s a x g s’ b y.

measure_space m /\ pos_simple_fn m f s a x /\

pos_simple_fn m g s’ b y ==>

?z z’ c k.

(!t.

t IN m_space m ==>

(f t = SIGMA (\i. z i * indicator_fn (c i) t) k)) /\

(!t.

t IN m_space m ==>

(g t = SIGMA (\i. z’ i * indicator_fn (c i) t) k)) /\

(pos_simple_fn_integral m s a x =

pos_simple_fn_integral m k c z) /\

(pos_simple_fn_integral m s’ b y =

pos_simple_fn_integral m k c z’) /\ FINITE k /\

(!i j.

i IN k /\ j IN k /\ ~(i = j) ==> DISJOINT (c i) (c j)) /\

(!i. i IN k ==> c i IN measurable_sets m) /\

(BIGUNION (IMAGE c k) = m_space m) /\ (!i. 0 <= z i) /\

!i. 0 <= z’ i

[pos_simple_fn_integral_unique] Theorem

|- !m f s a x s’ b y.

measure_space m /\ pos_simple_fn m f s a x /\

pos_simple_fn m f s’ b y ==>

(pos_simple_fn_integral m s a x =

pos_simple_fn_integral m s’ b y)
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[psfis_REAL_SUM_IMAGE] Theorem

|- !m f a P.

measure_space m /\ (!i. i IN P ==> a i IN psfis m (f i)) /\

FINITE P ==>

SIGMA a P IN psfis m (\t. SIGMA (\i. f i t) P)

[psfis_add] Theorem

|- !m f g a b.

measure_space m /\ a IN psfis m f /\ b IN psfis m g ==>

a + b IN psfis m (\x. f x + g x)

[psfis_borel_measurable] Theorem

|- !m f a.

measure_space m /\ a IN psfis m f ==>

f IN borel_measurable (m_space m,measurable_sets m)

[psfis_equiv] Theorem

|- !f g a m.

measure_space m /\ a IN psfis m f /\ (!t. 0 <= g t) /\

(!t. t IN m_space m ==> (f t = g t)) ==>

a IN psfis m g

[psfis_indicator] Theorem

|- !m A.

measure_space m /\ A IN measurable_sets m ==>

measure m A IN psfis m (indicator_fn A)

[psfis_intro] Theorem

|- !m a x P.

measure_space m /\ (!i. i IN P ==> a i IN measurable_sets m) /\

(!i. 0 <= x i) /\ FINITE P ==>

SIGMA (\i. x i * measure m (a i)) P IN

psfis m (\t. SIGMA (\i. x i * indicator_fn (a i) t) P)

[psfis_mono] Theorem

|- !m f g a b.

measure_space m /\ a IN psfis m f /\ b IN psfis m g /\

(!x. x IN m_space m ==> f x <= g x) ==>

a <= b

[psfis_mono_conv_mono] Theorem

|- !m f u x y r s.

measure_space m /\ mono_convergent u f (m_space m) /\

(!n. x n IN psfis m (u n)) /\ (!m n. m <= n ==> x m <= x n) /\

x --> y /\ r IN psfis m s /\

(!a. a IN m_space m ==> s a <= f a) ==>

r <= y
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[psfis_mult] Theorem

|- !m f a.

measure_space m /\ a IN psfis m f ==>

!z. 0 <= z ==> z * a IN psfis m (\x. z * f x)

[psfis_nnfis] Theorem

|- !m f a. measure_space m /\ a IN psfis m f ==> a IN nnfis m f

[psfis_nonneg] Theorem

|- !m f a. a IN psfis m f ==> nonneg f

[psfis_present] Theorem

|- !m f g a b.

measure_space m /\ a IN psfis m f /\ b IN psfis m g ==>

?z z’ c k.

(!t.

t IN m_space m ==>

(f t = SIGMA (\i. z i * indicator_fn (c i) t) k)) /\

(!t.

t IN m_space m ==>

(g t = SIGMA (\i. z’ i * indicator_fn (c i) t) k)) /\

(a = pos_simple_fn_integral m k c z) /\

(b = pos_simple_fn_integral m k c z’) /\ FINITE k /\

(!i j.

i IN k /\ j IN k /\ ~(i = j) ==> DISJOINT (c i) (c j)) /\

(!i. i IN k ==> c i IN measurable_sets m) /\

(BIGUNION (IMAGE c k) = m_space m) /\ (!i. 0 <= z i) /\

!i. 0 <= z’ i

[psfis_unique] Theorem

|- !m f a b.

measure_space m /\ a IN psfis m f /\ b IN psfis m f ==> (a = b)

[upclose_psfis] Theorem

|- !f g a b m.

measure_space m /\ a IN psfis m f /\ b IN psfis m g ==>

?c. c IN psfis m (upclose f g)
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probabilityTheory

[conditional_expectation_def] Definition

|- !p X s.

conditional_expectation p X s =

@f.

real_random_variable f p /\

!g.

g IN s ==>

(integral p (\x. f x * indicator_fn g x) =

integral p (\x. X x * indicator_fn g x))

[conditional_prob_def] Definition

|- !p e1 e2.

conditional_prob p e1 e2 =

conditional_expectation p (indicator_fn e1) e2

[distribution_def] Definition

|- !p X.

distribution p X = (\s. prob p (PREIMAGE X s INTER p_space p))

[events_def] Definition

|- events = measurable_sets

[expectation_def] Definition

|- expectation = integral

[indep_def] Definition

|- !p a b.

indep p a b =

a IN events p /\ b IN events p /\

(prob p (a INTER b) = prob p a * prob p b)

[indep_families_def] Definition

|- !p q r.

indep_families p q r = !s t. s IN q /\ t IN r ==> indep p s t

119
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[joint_distribution_def] Definition

|- !p X Y.

joint_distribution p X Y =

(\a. prob p (PREIMAGE (\x. (X x,Y x)) a INTER p_space p))

[p_space_def] Definition

|- p_space = m_space

[possibly_def] Definition

|- !p e. possibly p e = e IN events p /\ ~(prob p e = 0)

[prob_def] Definition

|- prob = measure

[prob_preserving_def] Definition

|- prob_preserving = measure_preserving

[prob_space_def] Definition

|- !p. prob_space p = measure_space p /\ (measure p (p_space p) = 1)

[probably_def] Definition

|- !p e. probably p e = e IN events p /\ (prob p e = 1)

[random_variable_def] Definition

|- !X p s.

random_variable X p s =

prob_space p /\ X IN measurable (p_space p,events p) s

[real_random_variable_def] Definition

|- !X p.

real_random_variable X p =

prob_space p /\ X IN borel_measurable (p_space p,events p)

[rv_conditional_expectation_def] Definition

|- !p s X Y.

rv_conditional_expectation p s X Y =

conditional_expectation p X

(IMAGE (\a. PREIMAGE Y a INTER p_space p) (subsets s))

[ABS_1_MINUS_PROB] Theorem

|- !p s.

prob_space p /\ s IN events p /\ ~(prob p s = 0) ==>

abs (1 - prob p s) < 1
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[ABS_PROB] Theorem

|- !p s.

prob_space p /\ s IN events p ==> (abs (prob p s) = prob p s)

[ADDITIVE_PROB] Theorem

|- !p.

additive p =

!s t.

s IN events p /\ t IN events p /\ DISJOINT s t ==>

(prob p (s UNION t) = prob p s + prob p t)

[COUNTABLY_ADDITIVE_PROB] Theorem

|- !p.

countably_additive p =

!f.

f IN (UNIV -> events p) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

BIGUNION (IMAGE f UNIV) IN events p ==>

prob p o f sums prob p (BIGUNION (IMAGE f UNIV))

[EVENTS] Theorem

|- !a b c. events (a,b,c) = b

[EVENTS_ALGEBRA] Theorem

|- !p. prob_space p ==> algebra (p_space p,events p)

[EVENTS_COMPL] Theorem

|- !p s.

prob_space p /\ s IN events p ==> p_space p DIFF s IN events p

[EVENTS_COUNTABLE_INTER] Theorem

|- !p c.

prob_space p /\ c SUBSET events p /\ countable c /\

~(c = {}) ==>

BIGINTER c IN events p

[EVENTS_COUNTABLE_UNION] Theorem

|- !p c.

prob_space p /\ c SUBSET events p /\ countable c ==>

BIGUNION c IN events p

[EVENTS_DIFF] Theorem

|- !p s t.

prob_space p /\ s IN events p /\ t IN events p ==>

s DIFF t IN events p

[EVENTS_EMPTY] Theorem
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|- !p. prob_space p ==> {} IN events p

[EVENTS_INTER] Theorem

|- !p s t.

prob_space p /\ s IN events p /\ t IN events p ==>

s INTER t IN events p

[EVENTS_SIGMA_ALGEBRA] Theorem

|- !p. prob_space p ==> sigma_algebra (p_space p,events p)

[EVENTS_SPACE] Theorem

|- !p. prob_space p ==> p_space p IN events p

[EVENTS_UNION] Theorem

|- !p s t.

prob_space p /\ s IN events p /\ t IN events p ==>

s UNION t IN events p

[INCREASING_PROB] Theorem

|- !p.

increasing p =

!s t.

s IN events p /\ t IN events p /\ s SUBSET t ==>

prob p s <= prob p t

[INDEP_EMPTY] Theorem

|- !p s. prob_space p /\ s IN events p ==> indep p {} s

[INDEP_REFL] Theorem

|- !p a.

prob_space p /\ a IN events p ==>

(indep p a a = (prob p a = 0) \/ (prob p a = 1))

[INDEP_SPACE] Theorem

|- !p s. prob_space p /\ s IN events p ==> indep p (p_space p) s

[INDEP_SYM] Theorem

|- !p a b. prob_space p /\ indep p a b ==> indep p b a

[INTER_PSPACE] Theorem

|- !p s. prob_space p /\ s IN events p ==> (p_space p INTER s = s)

[POSITIVE_PROB] Theorem

|- !p.
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positive p =

(prob p {} = 0) /\ !s. s IN events p ==> 0 <= prob p s

[PROB] Theorem

|- !a b c. prob (a,b,c) = c

[PROB_ADDITIVE] Theorem

|- !p s t u.

prob_space p /\ s IN events p /\ t IN events p /\

DISJOINT s t /\ (u = s UNION t) ==>

(prob p u = prob p s + prob p t)

[PROB_COMPL] Theorem

|- !p s.

prob_space p /\ s IN events p ==>

(prob p (p_space p DIFF s) = 1 - prob p s)

[PROB_COMPL_LE1] Theorem

|- !p s r.

prob_space p /\ s IN events p ==>

(prob p (p_space p DIFF s) <= r = 1 - r <= prob p s)

[PROB_COUNTABLY_ADDITIVE] Theorem

|- !p s f.

prob_space p /\ f IN (UNIV -> events p) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

(s = BIGUNION (IMAGE f UNIV)) ==>

prob p o f sums prob p s

[PROB_COUNTABLY_SUBADDITIVE] Theorem

|- !p f.

prob_space p /\ IMAGE f UNIV SUBSET events p /\

summable (prob p o f) ==>

prob p (BIGUNION (IMAGE f UNIV)) <= suminf (prob p o f)

[PROB_COUNTABLY_ZERO] Theorem

|- !p c.

prob_space p /\ countable c /\ c SUBSET events p /\

(!x. x IN c ==> (prob p x = 0)) ==>

(prob p (BIGUNION c) = 0)

[PROB_EMPTY] Theorem

|- !p. prob_space p ==> (prob p {} = 0)

[PROB_EQUIPROBABLE_FINITE_UNIONS] Theorem

|- !p s.

prob_space p /\ s IN events p /\
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(!x. x IN s ==> {x} IN events p) /\ FINITE s /\

(!x y. x IN s /\ y IN s ==> (prob p {x} = prob p {y})) ==>

(prob p s = & (CARD s) * prob p {CHOICE s})

[PROB_EQ_BIGUNION_IMAGE] Theorem

|- !p.

prob_space p /\ f IN (UNIV -> events p) /\

g IN (UNIV -> events p) /\

(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\

(!m n. ~(m = n) ==> DISJOINT (g m) (g n)) /\

(!n. prob p (f n) = prob p (g n)) ==>

(prob p (BIGUNION (IMAGE f UNIV)) =

prob p (BIGUNION (IMAGE g UNIV)))

[PROB_EQ_COMPL] Theorem

|- !p s t.

prob_space p /\ s IN events p /\ t IN events p /\

(prob p (p_space p DIFF s) = prob p (p_space p DIFF t)) ==>

(prob p s = prob p t)

[PROB_FINITELY_ADDITIVE] Theorem

|- !p s f n.

prob_space p /\ f IN (count n -> events p) /\

(!a b. a < n /\ b < n /\ ~(a = b) ==> DISJOINT (f a) (f b)) /\

(s = BIGUNION (IMAGE f (count n))) ==>

(sum (0,n) (prob p o f) = prob p s)

[PROB_INCREASING] Theorem

|- !p s t.

prob_space p /\ s IN events p /\ t IN events p /\ s SUBSET t ==>

prob p s <= prob p t

[PROB_INCREASING_UNION] Theorem

|- !p s f.

prob_space p /\ f IN (UNIV -> events p) /\

(!n. f n SUBSET f (SUC n)) /\ (s = BIGUNION (IMAGE f UNIV)) ==>

prob p o f --> prob p s

[PROB_INDEP] Theorem

|- !p s t u.

indep p s t /\ (u = s INTER t) ==>

(prob p u = prob p s * prob p t)

[PROB_LE_1] Theorem

|- !p s. prob_space p /\ s IN events p ==> prob p s <= 1

[PROB_ONE_INTER] Theorem

|- !p s t.
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prob_space p /\ s IN events p /\ t IN events p /\

(prob p t = 1) ==>

(prob p (s INTER t) = prob p s)

[PROB_POSITIVE] Theorem

|- !p s. prob_space p /\ s IN events p ==> 0 <= prob p s

[PROB_PRESERVING] Theorem

|- !p1 p2.

prob_preserving p1 p2 =

{f |

f IN

measurable (p_space p1,events p1) (p_space p2,events p2) /\

measure_space p1 /\ measure_space p2 /\

!s.

s IN events p2 ==>

(prob p1 (PREIMAGE f s INTER p_space p1) = prob p2 s)}

[PROB_PRESERVING_LIFT] Theorem

|- !p1 p2 a f.

prob_space p1 /\ prob_space p2 /\

(events p2 = subsets (sigma (m_space p2) a)) /\

f IN prob_preserving p1 (m_space p2,a,prob p2) ==>

f IN prob_preserving p1 p2

[PROB_PRESERVING_SUBSET] Theorem

|- !p1 p2 a.

prob_space p1 /\ prob_space p2 /\

(events p2 = subsets (sigma (p_space p2) a)) ==>

prob_preserving p1 (p_space p2,a,prob p2) SUBSET

prob_preserving p1 p2

[PROB_PRESERVING_UP_LIFT] Theorem

|- !p1 p2 f.

prob_space p1 /\

f IN prob_preserving (p_space p1,a,prob p1) p2 /\

sigma_algebra (p_space p1,events p1) /\ a SUBSET events p1 ==>

f IN prob_preserving p1 p2

[PROB_PRESERVING_UP_SIGMA] Theorem

|- !p1 p2 a.

prob_space p1 /\

(events p1 = subsets (sigma (p_space p1) a)) ==>

prob_preserving (p_space p1,a,prob p1) p2 SUBSET

prob_preserving p1 p2

[PROB_PRESERVING_UP_SUBSET] Theorem

|- !p1 p2.

prob_space p1 /\ a SUBSET events p1 /\
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sigma_algebra (p_space p1,events p1) ==>

prob_preserving (p_space p1,a,prob p1) p2 SUBSET

prob_preserving p1 p2

[PROB_REAL_SUM_IMAGE] Theorem

|- !p s.

prob_space p /\ s IN events p /\

(!x. x IN s ==> {x} IN events p) /\ FINITE s ==>

(prob p s = SIGMA (\x. prob p {x}) s)

[PROB_REAL_SUM_IMAGE_FN] Theorem

|- !p f e s.

prob_space p /\ e IN events p /\

(!x. x IN s ==> e INTER f x IN events p) /\ FINITE s /\

(!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y)) /\

(BIGUNION (IMAGE f s) INTER p_space p = p_space p) ==>

(prob p e = SIGMA (\x. prob p (e INTER f x)) s)

[PROB_SPACE] Theorem

|- !p.

prob_space p =

sigma_algebra (p_space p,events p) /\ positive p /\

countably_additive p /\ (prob p (p_space p) = 1)

[PROB_SPACE_ADDITIVE] Theorem

|- !p. prob_space p ==> additive p

[PROB_SPACE_COUNTABLY_ADDITIVE] Theorem

|- !p. prob_space p ==> countably_additive p

[PROB_SPACE_INCREASING] Theorem

|- !p. prob_space p ==> increasing p

[PROB_SPACE_POSITIVE] Theorem

|- !p. prob_space p ==> positive p

[PROB_SUBADDITIVE] Theorem

|- !p s t u.

prob_space p /\ t IN events p /\ u IN events p /\

(s = t UNION u) ==>

prob p s <= prob p t + prob p u

[PROB_UNIV] Theorem

|- !p. prob_space p ==> (prob p (p_space p) = 1)

[PROB_ZERO_UNION] Theorem
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|- !p s t.

prob_space p /\ s IN events p /\ t IN events p /\

(prob p t = 0) ==>

(prob p (s UNION t) = prob p s)

[PSPACE] Theorem

|- !a b c. p_space (a,b,c) = a

[distribution_lebesgue_thm1] Theorem

|- !X p s A.

random_variable X p s /\ A IN subsets s ==>

(distribution p X A =

integral p (indicator_fn (PREIMAGE X A INTER p_space p)))

[distribution_lebesgue_thm2] Theorem

|- !X p s A.

random_variable X p s /\ A IN subsets s ==>

(distribution p X A =

integral (space s,subsets s,distribution p X) (indicator_fn A))

[distribution_prob_space] Theorem

|- !p X s.

random_variable X p s ==>

prob_space (space s,subsets s,distribution p X)

[distribution_x_eq_1_imp_distribution_y_eq_0] Theorem

|- !X p x.

random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

(distribution p X {x} = 1) ==>

!y. ~(y = x) ==> (distribution p X {y} = 0)

[finite_expectation] Theorem

|- !p X.

FINITE (p_space p) /\ real_random_variable X p ==>

(expectation p X =

SIGMA (\r. r * distribution p X {r}) (IMAGE X (p_space p)))

[finite_expectation1] Theorem

|- !p X.

FINITE (p_space p) /\ real_random_variable X p ==>

(expectation p X =

SIGMA (\r. r * prob p (PREIMAGE X {r} INTER p_space p))

(IMAGE X (p_space p)))

[finite_marginal_product_space_POW] Theorem

|- !p X Y.

(POW (p_space p) = events p) /\
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random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

random_variable Y p

(IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) /\

FINITE (p_space p) ==>

measure_space

(IMAGE X (p_space p) CROSS IMAGE Y (p_space p),

POW (IMAGE X (p_space p) CROSS IMAGE Y (p_space p)),

(\a. prob p (PREIMAGE (\x. (X x,Y x)) a INTER p_space p)))

[finite_marginal_product_space_POW2] Theorem

|- !p s1 s2 X Y.

(POW (p_space p) = events p) /\

random_variable X p (s1,POW s1) /\

random_variable Y p (s2,POW s2) /\ FINITE (p_space p) /\

FINITE s1 /\ FINITE s2 ==>

measure_space

(s1 CROSS s2,POW (s1 CROSS s2),joint_distribution p X Y)

[prob_x_eq_1_imp_prob_y_eq_0] Theorem

|- !p x.

prob_space p /\ {x} IN events p /\ (prob p {x} = 1) ==>

!y. {y} IN events p /\ ~(y = x) ==> (prob p {y} = 0)
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[KL_divergence_def] Definition

|- !b s u v.

KL_divergence b s u v =

integral (space s,subsets s,u)

(\x. logr b (RN_deriv (space s,subsets s,v) u x))

[conditional_mutual_information_def] Definition

|- !b p s1 s2 s3 X Y Z.

conditional_mutual_information b p s1 s2 s3 X Y Z =

(let prod_space =

prod_measure_space (space s2,subsets s2,distribution p Y)

(space s3,subsets s3,distribution p Z)

in

mutual_information b p s1

(p_space prod_space,events prod_space) X (\x. (Y x,Z x)) -

mutual_information b p s1 s3 X Z)

[entropy_def] Definition

|- !b p s X. entropy b p s X = mutual_information b p s s X X

[mutual_information_def] Definition

|- !b p s1 s2 X Y.

mutual_information b p s1 s2 X Y =

(let prod_space =

prod_measure_space (space s1,subsets s1,distribution p X)

(space s2,subsets s2,distribution p Y)

in

KL_divergence b (p_space prod_space,events prod_space)

(joint_distribution p X Y) (prob prod_space))

[finite_conditional_mutual_information_reduce] Theorem

|- !b p X Y Z.

(POW (p_space p) = events p) /\

random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

random_variable Y p
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(IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) /\

random_variable Z p

(IMAGE Z (p_space p),POW (IMAGE Z (p_space p))) /\

FINITE (p_space p) ==>

(conditional_mutual_information b p

(IMAGE X (p_space p),POW (IMAGE X (p_space p)))

(IMAGE Y (p_space p),POW (IMAGE Y (p_space p)))

(IMAGE Z (p_space p),POW (IMAGE Z (p_space p))) X Y Z =

~SIGMA

(\(x,z).

joint_distribution p X Z {(x,z)} *

logr b

(joint_distribution p X Z {(x,z)} /

distribution p Z {z}))

(IMAGE X (p_space p) CROSS IMAGE Z (p_space p)) -

~SIGMA

(\(x,y,z).

joint_distribution p X (\x. (Y x,Z x)) {(x,y,z)} *

logr b

(joint_distribution p X (\x. (Y x,Z x)) {(x,y,z)} /

distribution p (\x. (Y x,Z x)) {(y,z)}))

(IMAGE X (p_space p) CROSS

IMAGE (\x. (Y x,Z x)) (p_space p)))

[finite_entropy_certainty_eq_0] Theorem

|- !b p X.

(POW (p_space p) = events p) /\

random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

FINITE (p_space p) /\

(?x. x IN IMAGE X (p_space p) /\ (distribution p X {x} = 1)) ==>

(entropy b p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) X =

0)

[finite_entropy_le_card] Theorem

|- !b p X.

1 <= b /\ (POW (p_space p) = events p) /\

random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

FINITE (p_space p) ==>

entropy b p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) X <=

logr b

(&

(CARD

(IMAGE X (p_space p) INTER

{x | ~(distribution p X {x} = 0)})))

[finite_entropy_reduce] Theorem

|- !b p X.

(POW (p_space p) = events p) /\

random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

FINITE (p_space p) ==>
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(entropy b p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) X =

~SIGMA

(\x. distribution p X {x} * logr b (distribution p X {x}))

(IMAGE X (p_space p)))

[finite_entropy_uniform_max] Theorem

|- !b p X.

(POW (p_space p) = events p) /\

random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

FINITE (p_space p) /\

(!x y.

x IN IMAGE X (p_space p) /\ y IN IMAGE X (p_space p) ==>

(distribution p X {x} = distribution p X {y})) ==>

(entropy b p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) X =

logr b (& (CARD (IMAGE X (p_space p)))))

[finite_mutual_information_reduce] Theorem

|- !b p s1 s2 X Y.

(POW (p_space p) = events p) /\

random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

random_variable Y p

(IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) /\

FINITE (p_space p) ==>

(mutual_information b p

(IMAGE X (p_space p),POW (IMAGE X (p_space p)))

(IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) X Y =

SIGMA

(\(x,y).

joint_distribution p X Y {(x,y)} *

logr b

(joint_distribution p X Y {(x,y)} /

(distribution p X {x} * distribution p Y {y})))

(IMAGE X (p_space p) CROSS IMAGE Y (p_space p)))

[finite_mutual_information_reduce2] Theorem

|- !b p s1 s2 X Y Z.

(POW (p_space p) = events p) /\

random_variable X p

(IMAGE X (p_space p),POW (IMAGE X (p_space p))) /\

random_variable Y p

(IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) /\

random_variable Z p

(IMAGE Z (p_space p),POW (IMAGE Z (p_space p))) /\

FINITE (p_space p) ==>

(mutual_information b p

(IMAGE X (p_space p),POW (IMAGE X (p_space p)))

(IMAGE Y (p_space p) CROSS IMAGE Z (p_space p),

POW (IMAGE Y (p_space p) CROSS IMAGE Z (p_space p))) X

(\x. (Y x,Z x)) =

SIGMA

(\(x,y,z).
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joint_distribution p X (\x. (Y x,Z x)) {(x,y,z)} *

logr b

(joint_distribution p X (\x. (Y x,Z x)) {(x,y,z)} /

(distribution p X {x} *

distribution p (\x. (Y x,Z x)) {(y,z)})))

(IMAGE X (p_space p) CROSS

(IMAGE Y (p_space p) CROSS IMAGE Z (p_space p))))
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leakageTheory

[H_def] Definition

|- !s. H s = FST (FST s)

[L_def] Definition

|- !s. L s = SND (FST s)

[R_def] Definition

|- !s. R s = SND s

[leakage_def] Definition

|- !p f.

leakage p f =

conditional_mutual_information 2 p

(IMAGE f (p_space p),POW (IMAGE f (p_space p)))

(IMAGE H (p_space p),POW (IMAGE H (p_space p)))

(IMAGE L (p_space p),POW (IMAGE L (p_space p))) f H L

[unif_prog_dist_def] Definition

|- !high low random.

unif_prog_dist high low random =

(\s.

(if s IN high CROSS low CROSS random then

1 / & (CARD (high CROSS low CROSS random))

else

0))

[unif_prog_space_def] Definition

|- !high low random.

unif_prog_space high low random =

(high CROSS low CROSS random,POW (high CROSS low CROSS random),

(\s. SIGMA (unif_prog_dist high low random) s))

[visible_leakage_def] Definition

|- !p f.
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visible_leakage p f =

conditional_mutual_information 2 p

(IMAGE f (p_space p),POW (IMAGE f (p_space p)))

(IMAGE H (p_space p),POW (IMAGE H (p_space p)))

(IMAGE (\s. (L s,R s)) (p_space p),

POW (IMAGE (\s. (L s,R s)) (p_space p))) f H (\s. (L s,R s))

[prob_space_unif_prog_space] Theorem

|- !high low random.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

prob_space (unif_prog_space high low random)

[prob_unif_prog_space] Theorem

|- !high low random P.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) /\

P SUBSET high CROSS low CROSS random ==>

(prob (unif_prog_space high low random) P =

& (CARD P) / & (CARD high * CARD low * CARD random))

[unif_prog_space_highlow_distribution] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

!h l.

h IN high /\ l IN low ==>

(distribution (unif_prog_space high low random)

(\x. (H x,L x)) {(h,l)} =

1 / & (CARD high * CARD low))

[unif_prog_space_highlowrandom_distribution] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

!h l r.

h IN high /\ l IN low /\ r IN random ==>

(distribution (unif_prog_space high low random)

(\x. (H x,L x,R x)) {(h,l,r)} =

1 / & (CARD high * CARD low * CARD random))

[unif_prog_space_leakage_LIST_TO_SET_computation_reduce] Theorem

|- !high low random f.

ALL_DISTINCT high /\ ALL_DISTINCT low /\ ALL_DISTINCT random /\

~(high = []) /\ ~(low = []) /\ ~(random = []) ==>

(leakage (unif_prog_space (set high) (set low) (set random)) f =

1 / & (LENGTH high * LENGTH low * LENGTH random) *

(REAL_SUM

(MAP

(\x.

(\(out,h,l).
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(\s. s * lg (1 / & (LENGTH random) * s))

(REAL_SUM

(MAP

(\r. (if f ((h,l),r) = out then 1 else 0))

random))) x)

(MAKE_ALL_DISTINCT

(MAP (\s. (f s,FST s))

(LIST_COMBS (LIST_COMBS high low) random)))) -

REAL_SUM

(MAP

(\x.

(\(out,l).

(\s.

s *

lg (1 / & (LENGTH high * LENGTH random) * s))

(REAL_SUM

(MAP

(\(h,r).

(if f ((h,l),r) = out then 1 else 0))

(LIST_COMBS high random)))) x)

(MAKE_ALL_DISTINCT

(MAP (\s. (f s,SND (FST s)))

(LIST_COMBS (LIST_COMBS high low) random))))))

[unif_prog_space_leakage_computation_reduce] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(leakage (unif_prog_space high low random) f =

1 / & (CARD high * CARD low * CARD random) *

(SIGMA

(\x.

(\(out,h,l).

SIGMA (\r. (if f ((h,l),r) = out then 1 else 0))

random *

lg

(1 / & (CARD random) *

SIGMA (\r. (if f ((h,l),r) = out then 1 else 0))

random)) x)

(IMAGE (\s. (f s,FST s)) (high CROSS low CROSS random)) -

SIGMA

(\x.

(\(out,l).

SIGMA (\(h,r). (if f ((h,l),r) = out then 1 else 0))

(high CROSS random) *

lg

(1 / & (CARD high * CARD random) *

SIGMA

(\(h,r). (if f ((h,l),r) = out then 1 else 0))

(high CROSS random))) x)

(IMAGE (\s. (f s,SND (FST s)))

(high CROSS low CROSS random))))

[unif_prog_space_leakage_lemma1] Theorem
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|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(SIGMA

(\x.

(\(x,z).

joint_distribution (unif_prog_space high low random) f

L {(x,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f L {(x,z)} * & (CARD low))) x)

(IMAGE (\s. (f s,SND (FST s)))

(high CROSS low CROSS random)) =

SIGMA

(\x.

(\(x,z).

1 / & (CARD high * CARD low * CARD random) *

SIGMA (\(h,r). (if f ((h,z),r) = x then 1 else 0))

(high CROSS random) *

lg

(1 / & (CARD high * CARD low * CARD random) *

SIGMA (\(h,r). (if f ((h,z),r) = x then 1 else 0))

(high CROSS random) * & (CARD low))) x)

(IMAGE (\s. (f s,SND (FST s)))

(high CROSS low CROSS random)))

[unif_prog_space_leakage_lemma2] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(SIGMA

(\x.

(\(x,y,z).

joint_distribution (unif_prog_space high low random) f

(\x. (H x,L x)) {(x,y,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\x. (H x,L x)) {(x,y,z)} *

& (CARD high * CARD low))) x)

(IMAGE (\s. (f s,FST s)) (high CROSS low CROSS random)) =

SIGMA

(\x.

(\(out,h,l).

1 / & (CARD high * CARD low * CARD random) *

SIGMA (\r. (if f ((h,l),r) = out then 1 else 0))

random *

lg

(1 / & (CARD high * CARD low * CARD random) *

SIGMA (\r. (if f ((h,l),r) = out then 1 else 0))

random * & (CARD high * CARD low))) x)

(IMAGE (\s. (f s,FST s)) (high CROSS low CROSS random)))

[unif_prog_space_leakage_lemma3] Theorem

|- !high low random f.
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FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(SIGMA

(\x.

(\(x,z).

joint_distribution (unif_prog_space high low random) f

L {(x,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f L {(x,z)} * & (CARD low))) x)

(IMAGE (\s. (f s,SND (FST s)))

(high CROSS low CROSS random)) =

1 / & (CARD high * CARD low * CARD random) *

SIGMA

(\x.

(\(out,l).

SIGMA (\(h,r). (if f ((h,l),r) = out then 1 else 0))

(high CROSS random) *

lg

(1 / & (CARD high * CARD random) *

SIGMA (\(h,r). (if f ((h,l),r) = out then 1 else 0))

(high CROSS random))) x)

(IMAGE (\s. (f s,SND (FST s)))

(high CROSS low CROSS random)))

[unif_prog_space_leakage_lemma4] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(SIGMA

(\x.

(\(x,y,z).

joint_distribution (unif_prog_space high low random) f

(\x. (H x,L x)) {(x,y,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\x. (H x,L x)) {(x,y,z)} *

& (CARD high * CARD low))) x)

(IMAGE (\s. (f s,FST s)) (high CROSS low CROSS random)) =

1 / & (CARD high * CARD low * CARD random) *

SIGMA

(\x.

(\(out,h,l).

SIGMA (\r. (if f ((h,l),r) = out then 1 else 0))

random *

lg

(1 / & (CARD random) *

SIGMA (\r. (if f ((h,l),r) = out then 1 else 0))

random)) x)

(IMAGE (\s. (f s,FST s)) (high CROSS low CROSS random)))

[unif_prog_space_leakage_reduce] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\
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~(high CROSS low CROSS random = {}) ==>

(leakage (unif_prog_space high low random) f =

SIGMA

(\x.

(\(x,y,z).

joint_distribution (unif_prog_space high low random) f

(\x. (H x,L x)) {(x,y,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\x. (H x,L x)) {(x,y,z)} *

& (CARD high * CARD low))) x)

(IMAGE (\s. (f s,FST s)) (high CROSS low CROSS random)) -

SIGMA

(\x.

(\(x,z).

joint_distribution (unif_prog_space high low random) f

L {(x,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f L {(x,z)} * & (CARD low))) x)

(IMAGE (\s. (f s,SND (FST s)))

(high CROSS low CROSS random)))

[unif_prog_space_low_distribution] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

!l.

l IN low ==>

(distribution (unif_prog_space high low random) L {l} =

1 / & (CARD low))

[unif_prog_space_lowrandom_distribution] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

!l r.

l IN low /\ r IN random ==>

(distribution (unif_prog_space high low random)

(\x. (L x,R x)) {(l,r)} =

1 / & (CARD low * CARD random))

[unif_prog_space_visible_leakage_LIST_TO_SET_computation_reduce] Theorem

|- !high low random f.

ALL_DISTINCT high /\ ALL_DISTINCT low /\ ALL_DISTINCT random /\

~(high = []) /\ ~(low = []) /\ ~(random = []) ==>

(visible_leakage

(unif_prog_space (set high) (set low) (set random)) f =

~(1 / & (LENGTH high * LENGTH low * LENGTH random)) *

REAL_SUM

(MAP

(\x.

(\(out,l,r).
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(\s. s * lg (1 / & (LENGTH high) * s))

(REAL_SUM

(MAP (\h. (if f ((h,l),r) = out then 1 else 0))

high))) x)

(MAKE_ALL_DISTINCT

(MAP (\s. (f s,SND (FST s),SND s))

(LIST_COMBS (LIST_COMBS high low) random)))))

[unif_prog_space_visible_leakage_computation_reduce] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(visible_leakage (unif_prog_space high low random) f =

~(1 / & (CARD high * CARD low * CARD random) *

SIGMA

(\x.

(\(out,l,r).

SIGMA (\h. (if f ((h,l),r) = out then 1 else 0))

high *

lg

(1 / & (CARD high) *

SIGMA (\h. (if f ((h,l),r) = out then 1 else 0))

high)) x)

(IMAGE (\s. (f s,SND (FST s),SND s))

(high CROSS low CROSS random))))

[unif_prog_space_visible_leakage_lemma1] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(SIGMA

(\x.

(\(x,z).

joint_distribution (unif_prog_space high low random) f

(\s. (L s,R s)) {(x,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\s. (L s,R s)) {(x,z)} *

& (CARD low * CARD random))) x)

(IMAGE (\s. (f s,SND (FST s),SND s))

(high CROSS low CROSS random)) =

SIGMA

(\x.

(\(x,z).

1 / & (CARD high * CARD low * CARD random) *

SIGMA (\h. (if f ((h,FST z),SND z) = x then 1 else 0))

high *

lg

(1 / & (CARD high * CARD low * CARD random) *

SIGMA

(\h. (if f ((h,FST z),SND z) = x then 1 else 0))

high * & (CARD low * CARD random))) x)

(IMAGE (\s. (f s,SND (FST s),SND s))

(high CROSS low CROSS random)))
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[unif_prog_space_visible_leakage_lemma2] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(SIGMA

(\x.

(\(x,y,z).

joint_distribution (unif_prog_space high low random) f

(\s. (H s,L s,R s)) {(x,y,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\s. (H s,L s,R s)) {(x,y,z)} *

& (CARD high * CARD low * CARD random))) x)

(IMAGE (\s. (f s,FST (FST s),SND (FST s),SND s))

(high CROSS low CROSS random)) =

SIGMA

(\x.

(\(out,h,l,r).

1 / & (CARD high * CARD low * CARD random) *

(if f ((h,l),r) = out then 1 else 0) *

lg

(1 / & (CARD high * CARD low * CARD random) *

(if f ((h,l),r) = out then 1 else 0) *

& (CARD high * CARD low * CARD random))) x)

(IMAGE (\s. (f s,FST (FST s),SND (FST s),SND s))

(high CROSS low CROSS random)))

[unif_prog_space_visible_leakage_lemma3] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(SIGMA

(\x.

(\(x,z).

joint_distribution (unif_prog_space high low random) f

(\s. (L s,R s)) {(x,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\s. (L s,R s)) {(x,z)} *

& (CARD low * CARD random))) x)

(IMAGE (\s. (f s,SND (FST s),SND s))

(high CROSS low CROSS random)) =

1 / & (CARD high * CARD low * CARD random) *

SIGMA

(\x.

(\(out,l,r).

SIGMA (\h. (if f ((h,l),r) = out then 1 else 0)) high *

lg

(1 / & (CARD high) *

SIGMA (\h. (if f ((h,l),r) = out then 1 else 0))

high)) x)

(IMAGE (\s. (f s,SND (FST s),SND s))

(high CROSS low CROSS random)))
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[unif_prog_space_visible_leakage_lemma4] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(SIGMA

(\x.

(\(x,y,z).

joint_distribution (unif_prog_space high low random) f

(\s. (H s,L s,R s)) {(x,y,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\s. (H s,L s,R s)) {(x,y,z)} *

& (CARD high * CARD low * CARD random))) x)

(IMAGE (\s. (f s,FST (FST s),SND (FST s),SND s))

(high CROSS low CROSS random)) =

0)

[unif_prog_space_visible_leakage_reduce] Theorem

|- !high low random f.

FINITE high /\ FINITE low /\ FINITE random /\

~(high CROSS low CROSS random = {}) ==>

(visible_leakage (unif_prog_space high low random) f =

SIGMA

(\x.

(\(x,y,z).

joint_distribution (unif_prog_space high low random) f

(\s. (H s,L s,R s)) {(x,y,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\s. (H s,L s,R s)) {(x,y,z)} *

& (CARD high * CARD low * CARD random))) x)

(IMAGE (\s. (f s,FST (FST s),SND (FST s),SND s))

(high CROSS low CROSS random)) -

SIGMA

(\x.

(\(x,z).

joint_distribution (unif_prog_space high low random) f

(\s. (L s,R s)) {(x,z)} *

lg

(joint_distribution (unif_prog_space high low random)

f (\s. (L s,R s)) {(x,z)} *

& (CARD low * CARD random))) x)

(IMAGE (\s. (f s,SND (FST s),SND s))

(high CROSS low CROSS random)))
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dining cryptosTheory

[XOR_announces_def] Definition

|- (!low.

XOR_announces low 0 = low (STRCAT "announces" (toString 0))) /\

!low i.

XOR_announces low (SUC i) =

low (STRCAT "announces" (toString (SUC i))) xor

XOR_announces low i

[biased_dc_prog_space2_primitive_def] Definition

|- biased_dc_prog_space2 =

WFREC (@R’. WF R’)

(\biased_dc_prog_space2 a.

case a of

0 -> ARB

|| SUC 0 -> ARB

|| SUC (SUC n) ->

I

(biased_high_states (SUC (SUC n)) CROSS

biased_low_states CROSS

biased_random_states (SUC (SUC n)),

POW

(biased_high_states (SUC (SUC n)) CROSS

biased_low_states CROSS

biased_random_states (SUC (SUC n))),

(\s.

SIGMA

(biased_dist2 (biased_high_states (SUC (SUC n)))

biased_low_states

(biased_random_states (SUC (SUC n)))) s)))

[biased_dc_prog_space_primitive_def] Definition

|- biased_dc_prog_space =

WFREC (@R’. WF R’)

(\biased_dc_prog_space a.

case a of

0 -> ARB

|| SUC 0 -> ARB

|| SUC (SUC n) ->
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I

(biased_high_states (SUC (SUC n)) CROSS

biased_low_states CROSS

biased_random_states (SUC (SUC n)),

POW

(biased_high_states (SUC (SUC n)) CROSS

biased_low_states CROSS

biased_random_states (SUC (SUC n))),

(\s.

SIGMA

(biased_dist (biased_high_states (SUC (SUC n)))

biased_low_states

(biased_random_states (SUC (SUC n)))) s)))

[biased_dist2_def] Definition

|- !high low random.

biased_dist2 high low random =

(\s.

(if R s (STRCAT "coin" (toString (SUC 0))) then

1 / 2 * unif_prog_dist high low random s

else

3 / 2 * unif_prog_dist high low random s))

[biased_dist_def] Definition

|- !high low random.

biased_dist high low random =

(\s.

(if L s = (\s. s = STRCAT "coin" (toString 0)) then

1 / 2 * unif_prog_dist high low random s

else

3 / 2 * unif_prog_dist high low random s))

[biased_high_states_def] Definition

|- !n. biased_high_states n = insider_high_states_set n

[biased_low_states_def] Definition

|- biased_low_states =

{(\s. s = STRCAT "coin" (toString 0)); (\s. F)}

[biased_random_states_def] Definition

|- (biased_random_states 0 = {(\s. F)}) /\

!n.

biased_random_states (SUC n) =

IMAGE

(\s x.

(if x = STRCAT "coin" (toString (SUC n)) then T else s x))

(biased_random_states n) UNION

IMAGE

(\s x.

(if x = STRCAT "coin" (toString (SUC n)) then F else s x))

(biased_random_states n)
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[coin_assignment_def] Definition

|- (!out h n choice.

coin_assignment out h n choice 0 =

(\s.

(if s = STRCAT "coin" (toString 0) then

choice xor XOR_announces out 0 xor ~(0 < h)

else

F))) /\

!out h n choice i.

coin_assignment out h n choice (SUC i) =

(\s.

(if s = STRCAT "coin" (toString (SUC i)) then

choice xor XOR_announces out (SUC i) xor ~(SUC i < h)

else

coin_assignment out h n choice i s))

[coin_assignment_set_def] Definition

|- !out p n.

coin_assignment_set out p n =

{coin_assignment out p n T (SUC (SUC n));

coin_assignment out p n F (SUC (SUC n))}

[compute_result_def] Definition

|- !low n s.

compute_result low n s =

(if s = "result" then XOR_announces low n else low s)

[dc_high_states_curried_def] Definition

|- !x x1. dc_high_states x x1 = dc_high_states_tupled (x,x1)

[dc_high_states_set_def] Definition

|- (dc_high_states_set 0 = {(\s. s = STRCAT "pays" (toString 0))}) /\

!n.

dc_high_states_set (SUC n) =

(\s. s = STRCAT "pays" (toString (SUC n))) INSERT

dc_high_states_set n

[dc_high_states_tupled_primitive_def] Definition

|- dc_high_states_tupled =

WFREC (@R’. WF R’)

(\dc_high_states_tupled a.

case a of

(nsapays,0) -> ARB

|| (nsapays,SUC 0) -> ARB

|| (nsapays,SUC (SUC n)) ->

I

(if nsapays then

{(\s. s = STRCAT "pays" (toString (SUC (SUC n))))}

else
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dc_high_states_set (SUC n)))

[dc_low_states_def] Definition

|- dc_low_states = {(\s. F)}

[dc_prog_space_curried_def] Definition

|- !x x1. dc_prog_space x x1 = dc_prog_space_tupled (x,x1)

[dc_prog_space_tupled_primitive_def] Definition

|- dc_prog_space_tupled =

WFREC (@R’. WF R’)

(\dc_prog_space_tupled a.

case a of

(0,nsapays) -> ARB

|| (SUC 0,nsapays) -> ARB

|| (SUC (SUC n),nsapays) ->

I

(unif_prog_space

(dc_high_states nsapays (SUC (SUC n)))

dc_low_states (dc_random_states (SUC n))))

[dc_random_states_def] Definition

|- (dc_random_states 0 =

{(\s. s = STRCAT "coin" (toString 0)); (\s. F)}) /\

!n.

dc_random_states (SUC n) =

IMAGE

(\s x.

(if x = STRCAT "coin" (toString (SUC n)) then T else s x))

(dc_random_states n) UNION

IMAGE

(\s x.

(if x = STRCAT "coin" (toString (SUC n)) then F else s x))

(dc_random_states n)

[dc_random_witness_def] Definition

|- (!x.

dc_random_witness x 0 =

(\s.

(if s = STRCAT "coin" (toString 0) then

~x (STRCAT "announces" (toString 0))

else

F))) /\

!x i.

dc_random_witness x (SUC i) =

(\s.

(if s = STRCAT "coin" (toString (SUC i)) then

~XOR_announces x (SUC i)

else

dc_random_witness x i s))
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[dc_valid_outputs_def] Definition

|- !n.

dc_valid_outputs n =

{s |

(s "result" = XOR_announces s n) /\ XOR_announces s n /\

!x.

~(x = "result") /\

(!i. i <= n ==> ~(x = STRCAT "announces" (toString i))) ==>

~s x}

[dc_valid_outputs_list_primitive_def] Definition

|- dc_valid_outputs_list =

WFREC (@R’. WF R’)

(\dc_valid_outputs_list a.

case a of

0 -> ARB

|| SUC 0 -> ARB

|| SUC (SUC 0) -> ARB

|| SUC (SUC (SUC n)) ->

I

(MAP

(\l s.

(s = "result") \/

(if

s =

STRCAT "announces" (toString (SUC (SUC n)))

then

~XOR_announces l (SUC n)

else

l s)) (n_minus_1_announces_list (SUC n))))

[dcprog_primitive_def] Definition

|- dcprog =

WFREC (@R’. WF R’)

(\dcprog a.

case a of

0 -> ARB

|| SUC 0 -> ARB

|| SUC (SUC 0) -> ARB

|| SUC (SUC (SUC n)) ->

I

(\((high,low),random).

compute_result

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) (SUC (SUC n))))

[insider_dc_prog_space_curried_def] Definition

|- !x x1.

insider_dc_prog_space x x1 = insider_dc_prog_space_tupled (x,x1)

[insider_dc_prog_space_tupled_primitive_def] Definition
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|- insider_dc_prog_space_tupled =

WFREC (@R’. WF R’)

(\insider_dc_prog_space_tupled a.

case a of

(0,nsapays) -> ARB

|| (SUC 0,nsapays) -> ARB

|| (SUC (SUC n),nsapays) ->

I

(unif_prog_space

(insider_high_states nsapays (SUC (SUC n)))

insider_low_states

(insider_random_states (SUC n))))

[insider_dcprog_primitive_def] Definition

|- insider_dcprog =

WFREC (@R’. WF R’)

(\insider_dcprog a.

case a of

0 -> ARB

|| SUC 0 -> ARB

|| SUC (SUC 0) -> ARB

|| SUC (SUC (SUC n)) ->

I

(\((high,low),random).

compute_result

(insider_set_announcements high low random

(SUC (SUC n)) (SUC (SUC n))) (SUC (SUC n))))

[insider_high_states_curried_def] Definition

|- !x x1.

insider_high_states x x1 = insider_high_states_tupled (x,x1)

[insider_high_states_set_def] Definition

|- (insider_high_states_set 0 = {}) /\

!n.

insider_high_states_set (SUC n) =

(\s. s = STRCAT "pays" (toString (SUC n))) INSERT

insider_high_states_set n

[insider_high_states_tupled_primitive_def] Definition

|- insider_high_states_tupled =

WFREC (@R’. WF R’)

(\insider_high_states_tupled a.

case a of

(nsapays,0) -> ARB

|| (nsapays,SUC 0) -> ARB

|| (nsapays,SUC (SUC n)) ->

I

(if nsapays then

{(\s. s = STRCAT "pays" (toString (SUC (SUC n))))}

else

insider_high_states_set (SUC n)))
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[insider_low_states_def] Definition

|- insider_low_states =

{(\s. s = STRCAT "coin" (toString 0)); (\s. F)}

[insider_random_states_def] Definition

|- (insider_random_states 0 = {(\s. F)}) /\

!n.

insider_random_states (SUC n) =

IMAGE

(\s x.

(if x = STRCAT "coin" (toString (SUC n)) then T else s x))

(insider_random_states n) UNION

IMAGE

(\s x.

(if x = STRCAT "coin" (toString (SUC n)) then F else s x))

(insider_random_states n)

[insider_set_announcements_curried_def] Definition

|- !x x1 x2 x3 x4 x5.

insider_set_announcements x x1 x2 x3 x4 x5 =

insider_set_announcements_tupled (x,x1,x2,x3,x4,x5)

[insider_set_announcements_tupled_primitive_def] Definition

|- insider_set_announcements_tupled =

WFREC

(@R’.

WF R’ /\

(!n random low high s.

~(s = STRCAT "announces" (toString (SUC 0))) ==>

R’ (high,low,random,n,0,s) (high,low,random,n,SUC 0,s)) /\

!n random low high i s.

~(s = STRCAT "announces" (toString (SUC (SUC i)))) ==>

R’ (high,low,random,n,SUC i,s)

(high,low,random,n,SUC (SUC i),s))

(\insider_set_announcements_tupled a.

case a of

(high,low,random,n,0,s) ->

I

(if s = STRCAT "announces" (toString 0) then

high (STRCAT "pays" (toString 0)) xor

low (STRCAT "coin" (toString 0)) xor

random (STRCAT "coin" (toString n))

else

low s)

|| (high,low,random,n,SUC 0,s) ->

I

(if s = STRCAT "announces" (toString (SUC 0)) then

high (STRCAT "pays" (toString (SUC 0))) xor

random (STRCAT "coin" (toString (SUC 0))) xor

low (STRCAT "coin" (toString 0))

else
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insider_set_announcements_tupled

(high,low,random,n,0,s))

|| (high,low,random,n,SUC (SUC i),s) ->

I

(if

s = STRCAT "announces" (toString (SUC (SUC i)))

then

high (STRCAT "pays" (toString (SUC (SUC i)))) xor

random (STRCAT "coin" (toString (SUC (SUC i)))) xor

random (STRCAT "coin" (toString (SUC i)))

else

insider_set_announcements_tupled

(high,low,random,n,SUC i,s)))

[n_minus_1_announces_list_def] Definition

|- (n_minus_1_announces_list 0 =

[(\s. s = STRCAT "announces" (toString 0)); (\s. F)]) /\

!n.

n_minus_1_announces_list (SUC n) =

MAP

(\s x.

(if x = STRCAT "announces" (toString (SUC n)) then

T

else

s x)) (n_minus_1_announces_list n) ++

MAP

(\s x.

(if x = STRCAT "announces" (toString (SUC n)) then

F

else

s x)) (n_minus_1_announces_list n)

[set_announcements_def] Definition

|- (!high low random n s.

set_announcements high low random n 0 s =

(if s = STRCAT "announces" (toString 0) then

high (STRCAT "pays" (toString 0)) xor

random (STRCAT "coin" (toString 0)) xor

random (STRCAT "coin" (toString n))

else

low s)) /\

!high low random n i s.

set_announcements high low random n (SUC i) s =

(if s = STRCAT "announces" (toString (SUC i)) then

high (STRCAT "pays" (toString (SUC i))) xor

random (STRCAT "coin" (toString (SUC i))) xor

random (STRCAT "coin" (toString i))

else

set_announcements high low random n i s)

[valid_coin_assignment_def] Definition

|- (!r out h n.

valid_coin_assignment r out h n 0 =
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(r (STRCAT "coin" (toString 0)) =

r (STRCAT "coin" (toString (SUC (SUC n)))) xor

XOR_announces out 0 xor ~(0 < h))) /\

!r out h n i.

valid_coin_assignment r out h n (SUC i) =

(r (STRCAT "coin" (toString (SUC i))) =

r (STRCAT "coin" (toString (SUC (SUC n)))) xor

XOR_announces out (SUC i) xor ~(SUC i < h)) /\

valid_coin_assignment r out h n i

[CARD_DISJOINT_UNION] Theorem

|- !P Q.

FINITE P /\ FINITE Q /\ DISJOINT P Q ==>

(CARD (P UNION Q) = CARD P + CARD Q)

[CARD_dc_high_states_set] Theorem

|- !n. CARD (dc_high_states_set n) = SUC n

[CARD_dc_low_states] Theorem

|- CARD dc_low_states = 1

[CARD_dc_random_states] Theorem

|- !n. CARD (dc_random_states n) = 2 ** SUC n

[CARD_dc_set_cross] Theorem

|- 1 /

&

(CARD

(IMAGE (\s. (FST s,SND s,dcprog (SUC (SUC (SUC 0))) s))

(dc_high_states_set (SUC (SUC 0)) CROSS

dc_low_states CROSS dc_random_states (SUC (SUC 0))))) =

1 / 24

[CARD_dc_valid_outputs] Theorem

|- !n.

CARD

(IMAGE (\(h,r). dcprog (SUC (SUC (SUC n))) ((h,(\s. F)),r))

(dc_high_states F (SUC (SUC (SUC n))) CROSS

dc_random_states (SUC (SUC n)))) =

2 ** SUC (SUC n)

[IN_dc_high_states_set] Theorem

|- !n x.

x IN dc_high_states_set n =

?i. i <= n /\ (x = (\s. s = STRCAT "pays" (toString i)))

[IN_dc_random_states] Theorem

|- !n s.
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s IN dc_random_states n =

!x. ~(?i. i <= n /\ (x = STRCAT "coin" (toString i))) ==> ~s x

[biased_dc3_leakage_result] Theorem

|- leakage (biased_dc_prog_space (SUC (SUC 0)))

(insider_dcprog (SUC (SUC (SUC 0)))) =

0

[biased_dc3_leakage_result2] Theorem

|- leakage (biased_dc_prog_space2 (SUC (SUC 0)))

(insider_dcprog (SUC (SUC (SUC 0)))) =

3 / 4 * lg 3 - 1

[biased_dc_prog_space2_def] Theorem

|- biased_dc_prog_space2 (SUC (SUC n)) =

(biased_high_states (SUC (SUC n)) CROSS biased_low_states CROSS

biased_random_states (SUC (SUC n)),

POW

(biased_high_states (SUC (SUC n)) CROSS biased_low_states CROSS

biased_random_states (SUC (SUC n))),

(\s.

SIGMA

(biased_dist2 (biased_high_states (SUC (SUC n)))

biased_low_states (biased_random_states (SUC (SUC n))))

s))

[biased_dc_prog_space2_ind] Theorem

|- !P. P (SUC 0) /\ P 0 /\ (!n. P (SUC (SUC n))) ==> !v. P v

[biased_dc_prog_space_def] Theorem

|- biased_dc_prog_space (SUC (SUC n)) =

(biased_high_states (SUC (SUC n)) CROSS biased_low_states CROSS

biased_random_states (SUC (SUC n)),

POW

(biased_high_states (SUC (SUC n)) CROSS biased_low_states CROSS

biased_random_states (SUC (SUC n))),

(\s.

SIGMA

(biased_dist (biased_high_states (SUC (SUC n)))

biased_low_states (biased_random_states (SUC (SUC n))))

s))

[biased_dc_prog_space_ind] Theorem

|- !P. P (SUC 0) /\ P 0 /\ (!n. P (SUC (SUC n))) ==> !v. P v

[card_dc_high_states_set3] Theorem

|- & (CARD (dc_high_states_set (SUC (SUC 0)))) = 3

[coin_out_of_range_eq_zero_dc_random_states] Theorem



152 Appendix H. dining cryptosTheory

|- !n s.

s IN dc_random_states n ==>

!i. n < i ==> ~s (STRCAT "coin" (toString i))

[compute_result_alt] Theorem

|- !low n.

compute_result low n =

(\s. (if s = "result" then XOR_announces low n else low s))

[dc3_leakage_result] Theorem

|- leakage (dc_prog_space (SUC (SUC (SUC 0))) F)

(dcprog (SUC (SUC (SUC 0)))) =

0

[dc_XOR_announces_result1] Theorem

|- !high low random n i.

i <= SUC (SUC n) /\ high (STRCAT "pays" (toString i)) /\

(!j. ~(j = i) ==> ~high (STRCAT "pays" (toString j))) ==>

!k.

k < i ==>

(XOR_announces

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) k =

random (STRCAT "coin" (toString k)) xor

random (STRCAT "coin" (toString (SUC (SUC n)))))

[dc_XOR_announces_result2] Theorem

|- !high low random n i.

i <= SUC (SUC n) /\ high (STRCAT "pays" (toString i)) /\

(!j. ~(j = i) ==> ~high (STRCAT "pays" (toString j))) ==>

(XOR_announces

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) i =

~(random (STRCAT "coin" (toString i)) xor

random (STRCAT "coin" (toString (SUC (SUC n))))))

[dc_XOR_announces_result3] Theorem

|- !high low random n i.

i <= SUC (SUC n) /\ high (STRCAT "pays" (toString i)) /\

(!j. ~(j = i) ==> ~high (STRCAT "pays" (toString j))) ==>

!k.

i <= k /\ k <= SUC (SUC n) ==>

(XOR_announces

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) k =

~(random (STRCAT "coin" (toString k)) xor

random (STRCAT "coin" (toString (SUC (SUC n))))))

[dc_XOR_announces_result4] Theorem
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|- !high low random n i.

i <= SUC (SUC n) /\ high (STRCAT "pays" (toString i)) /\

(!j. ~(j = i) ==> ~high (STRCAT "pays" (toString j))) ==>

XOR_announces

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) (SUC (SUC n))

[dc_XOR_announces_result5] Theorem

|- !high low random n.

high IN dc_high_states F (SUC (SUC (SUC n))) ==>

XOR_announces

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) (SUC (SUC n))

[dc_high_states_def] Theorem

|- dc_high_states nsapays (SUC (SUC n)) =

(if nsapays then

{(\s. s = STRCAT "pays" (toString (SUC (SUC n))))}

else

dc_high_states_set (SUC n))

[dc_high_states_ind] Theorem

|- !P.

(!nsapays. P nsapays (SUC 0)) /\ (!nsapays. P nsapays 0) /\

(!nsapays n. P nsapays (SUC (SUC n))) ==>

!v v1. P v v1

[dc_high_states_set_finite] Theorem

|- !n. FINITE (dc_high_states_set n)

[dc_high_states_set_not_empty] Theorem

|- !n. ~(dc_high_states_set n = {})

[dc_leakage_result] Theorem

|- !n.

leakage (dc_prog_space (SUC (SUC (SUC n))) F)

(dcprog (SUC (SUC (SUC n)))) =

0

[dc_low_states_not_empty] Theorem

|- ~(dc_low_states = {})

[dc_prog_space_F_set_thm] Theorem

|- !n.

dc_prog_space (SUC (SUC n)) F =

unif_prog_space (dc_high_states_set (SUC n)) dc_low_states

(dc_random_states (SUC n))
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[dc_prog_space_T_set_thm] Theorem

|- !n.

dc_prog_space (SUC (SUC n)) T =

unif_prog_space

{(\s. s = STRCAT "pays" (toString (SUC (SUC n))))} {(\s. F)}

(dc_random_states (SUC n))

[dc_prog_space_def] Theorem

|- dc_prog_space (SUC (SUC n)) nsapays =

unif_prog_space (dc_high_states nsapays (SUC (SUC n)))

dc_low_states (dc_random_states (SUC n))

[dc_prog_space_ind] Theorem

|- !P.

(!v5. P (SUC 0) v5) /\ (!v3. P 0 v3) /\

(!n nsapays. P (SUC (SUC n)) nsapays) ==>

!v v1. P v v1

[dc_random_states_not_empty] Theorem

|- !n. ~(dc_random_states n = {})

[dc_set_announcements_result1] Theorem

|- !h l r n i.

i <= SUC (SUC n) ==>

(set_announcements h l r (SUC (SUC n)) i

(STRCAT "announces" (toString 0)) =

h (STRCAT "pays" (toString 0)) xor

r (STRCAT "coin" (toString 0)) xor

r (STRCAT "coin" (toString (SUC (SUC n)))))

[dc_set_announcements_result2] Theorem

|- !h l r n.

set_announcements h l r (SUC (SUC n)) (SUC (SUC n))

(STRCAT "announces" (toString 0)) =

h (STRCAT "pays" (toString 0)) xor

r (STRCAT "coin" (toString 0)) xor

r (STRCAT "coin" (toString (SUC (SUC n))))

[dc_set_announcements_result3] Theorem

|- !h l r n m i.

SUC i <= m /\ m < SUC (SUC (SUC n)) ==>

(set_announcements h l r (SUC (SUC n)) m

(STRCAT "announces" (toString (SUC i))) =

h (STRCAT "pays" (toString (SUC i))) xor

r (STRCAT "coin" (toString (SUC i))) xor

r (STRCAT "coin" (toString i)))

[dc_set_announcements_result4] Theorem
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|- !h l r n i.

SUC i < SUC (SUC (SUC n)) ==>

(set_announcements h l r (SUC (SUC n)) (SUC (SUC n))

(STRCAT "announces" (toString (SUC i))) =

h (STRCAT "pays" (toString (SUC i))) xor

r (STRCAT "coin" (toString (SUC i))) xor

r (STRCAT "coin" (toString i)))

[dc_set_announcements_result5] Theorem

|- !h l r n m s.

m <= SUC (SUC n) /\

(!i. i <= m ==> ~(s = STRCAT "announces" (toString i))) ==>

(set_announcements h l r (SUC (SUC n)) m s = l s)

[dc_set_announcements_result6] Theorem

|- !h l r n.

set_announcements h l r (SUC (SUC n)) (SUC (SUC n))

(STRCAT "announces" (toString (SUC (SUC n)))) =

h (STRCAT "pays" (toString (SUC (SUC n)))) xor

r (STRCAT "coin" (toString (SUC (SUC n)))) xor

r (STRCAT "coin" (toString (SUC n)))

[dc_states3_cross_not_empty] Theorem

|- ~(dc_high_states_set (SUC (SUC 0)) CROSS dc_low_states CROSS

dc_random_states (SUC (SUC 0)) =

{})

[dc_states_cross_not_empty] Theorem

|- !n.

~(dc_high_states_set (SUC (SUC n)) CROSS dc_low_states CROSS

dc_random_states (SUC (SUC n)) =

{})

[dc_valid_outputs_eq_outputs] Theorem

|- !n.

IMAGE (\(h,r). dcprog (SUC (SUC (SUC n))) ((h,(\s. F)),r))

(dc_high_states F (SUC (SUC (SUC n))) CROSS

dc_random_states (SUC (SUC n))) =

dc_valid_outputs (SUC (SUC n))

[dc_valid_outputs_list_def] Theorem

|- dc_valid_outputs_list (SUC (SUC (SUC n))) =

MAP

(\l s.

(s = "result") \/

(if s = STRCAT "announces" (toString (SUC (SUC n))) then

~XOR_announces l (SUC n)

else

l s)) (n_minus_1_announces_list (SUC n))
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[dc_valid_outputs_list_ind] Theorem

|- !P.

P (SUC (SUC 0)) /\ P (SUC 0) /\ P 0 /\

(!n. P (SUC (SUC (SUC n)))) ==>

!v. P v

[dcprog_def] Theorem

|- dcprog (SUC (SUC (SUC n))) =

(\((high,low),random).

compute_result

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) (SUC (SUC n)))

[dcprog_ind] Theorem

|- !P.

P (SUC (SUC 0)) /\ P (SUC 0) /\ P 0 /\

(!n. P (SUC (SUC (SUC n)))) ==>

!v. P v

[dcprog_result1] Theorem

|- !high low random n.

dcprog (SUC (SUC (SUC n))) ((high,low),random) "result" =

XOR_announces

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) (SUC (SUC n))

[dcprog_result2] Theorem

|- !high low random n x.

~(x = "result") ==>

(dcprog (SUC (SUC (SUC n))) ((high,low),random) x =

set_announcements high low random (SUC (SUC n)) (SUC (SUC n))

x)

[dcprog_result3] Theorem

|- !high low random n i.

XOR_announces (dcprog (SUC (SUC (SUC n))) ((high,low),random))

i =

XOR_announces

(set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) i

[dcprog_result4] Theorem

|- !high low random n.

XOR_announces (dcprog (SUC (SUC (SUC n))) ((high,low),random))

(SUC (SUC n)) =

dcprog (SUC (SUC (SUC n))) ((high,low),random) "result"

[dcprog_result5] Theorem
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|- !high low random n.

high IN dc_high_states F (SUC (SUC (SUC n))) ==>

dcprog (SUC (SUC (SUC n))) ((high,low),random) "result"

[dcprog_result6] Theorem

|- !high low random n i.

dcprog (SUC (SUC (SUC n))) ((high,low),random)

(STRCAT "announces" (toString i)) =

set_announcements high low random (SUC (SUC n)) (SUC (SUC n))

(STRCAT "announces" (toString i))

[insider_dc3_leakage_result] Theorem

|- leakage (insider_dc_prog_space (SUC (SUC (SUC 0))) F)

(insider_dcprog (SUC (SUC (SUC 0)))) =

0

[insider_dc_prog_space_F_set_thm] Theorem

|- !n.

insider_dc_prog_space (SUC (SUC n)) F =

unif_prog_space (insider_high_states_set (SUC n))

insider_low_states (insider_random_states (SUC n))

[insider_dc_prog_space_def] Theorem

|- insider_dc_prog_space (SUC (SUC n)) nsapays =

unif_prog_space (insider_high_states nsapays (SUC (SUC n)))

insider_low_states (insider_random_states (SUC n))

[insider_dc_prog_space_ind] Theorem

|- !P.

(!v5. P (SUC 0) v5) /\ (!v3. P 0 v3) /\

(!n nsapays. P (SUC (SUC n)) nsapays) ==>

!v v1. P v v1

[insider_dcprog_def] Theorem

|- insider_dcprog (SUC (SUC (SUC n))) =

(\((high,low),random).

compute_result

(insider_set_announcements high low random (SUC (SUC n))

(SUC (SUC n))) (SUC (SUC n)))

[insider_dcprog_ind] Theorem

|- !P.

P (SUC (SUC 0)) /\ P (SUC 0) /\ P 0 /\

(!n. P (SUC (SUC (SUC n)))) ==>

!v. P v

[insider_high_states_def] Theorem

|- insider_high_states nsapays (SUC (SUC n)) =
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(if nsapays then

{(\s. s = STRCAT "pays" (toString (SUC (SUC n))))}

else

insider_high_states_set (SUC n))

[insider_high_states_ind] Theorem

|- !P.

(!nsapays. P nsapays (SUC 0)) /\ (!nsapays. P nsapays 0) /\

(!nsapays n. P nsapays (SUC (SUC n))) ==>

!v v1. P v v1

[insider_set_announcements_alt] Theorem

|- !high low random n i.

(insider_set_announcements high low random n 0 =

(\s.

(if s = STRCAT "announces" (toString 0) then

high (STRCAT "pays" (toString 0)) xor

low (STRCAT "coin" (toString 0)) xor

random (STRCAT "coin" (toString n))

else

low s))) /\

(insider_set_announcements high low random n (SUC 0) =

(\s.

(if s = STRCAT "announces" (toString (SUC 0)) then

high (STRCAT "pays" (toString (SUC 0))) xor

random (STRCAT "coin" (toString (SUC 0))) xor

low (STRCAT "coin" (toString 0))

else

insider_set_announcements high low random n 0 s))) /\

(insider_set_announcements high low random n (SUC (SUC i)) =

(\s.

(if s = STRCAT "announces" (toString (SUC (SUC i))) then

high (STRCAT "pays" (toString (SUC (SUC i)))) xor

random (STRCAT "coin" (toString (SUC (SUC i)))) xor

random (STRCAT "coin" (toString (SUC i)))

else

insider_set_announcements high low random n (SUC i) s)))

[insider_set_announcements_def] Theorem

|- (!s random n low high.

insider_set_announcements high low random n 0 s =

(if s = STRCAT "announces" (toString 0) then

high (STRCAT "pays" (toString 0)) xor

low (STRCAT "coin" (toString 0)) xor

random (STRCAT "coin" (toString n))

else

low s)) /\

(!s random n low high.

insider_set_announcements high low random n (SUC 0) s =

(if s = STRCAT "announces" (toString (SUC 0)) then

high (STRCAT "pays" (toString (SUC 0))) xor

random (STRCAT "coin" (toString (SUC 0))) xor

low (STRCAT "coin" (toString 0))
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else

insider_set_announcements high low random n 0 s)) /\

!s random n low i high.

insider_set_announcements high low random n (SUC (SUC i)) s =

(if s = STRCAT "announces" (toString (SUC (SUC i))) then

high (STRCAT "pays" (toString (SUC (SUC i)))) xor

random (STRCAT "coin" (toString (SUC (SUC i)))) xor

random (STRCAT "coin" (toString (SUC i)))

else

insider_set_announcements high low random n (SUC i) s)

[insider_set_announcements_ind] Theorem

|- !P.

(!high low random n s. P high low random n 0 s) /\

(!high low random n s.

(~(s = STRCAT "announces" (toString (SUC 0))) ==>

P high low random n 0 s) ==>

P high low random n (SUC 0) s) /\

(!high low random n i s.

(~(s = STRCAT "announces" (toString (SUC (SUC i)))) ==>

P high low random n (SUC i) s) ==>

P high low random n (SUC (SUC i)) s) ==>

!v v1 v2 v3 v4 v5. P v v1 v2 v3 v4 v5

[new_dc3_leakage_result] Theorem

|- leakage (dc_prog_space (SUC (SUC (SUC 0))) F)

(dcprog (SUC (SUC (SUC 0)))) =

0

[prob_space_biased_dc_prog_space23] Theorem

|- prob_space (biased_dc_prog_space2 (SUC (SUC 0)))

[prob_space_biased_dc_prog_space3] Theorem

|- prob_space (biased_dc_prog_space (SUC (SUC 0)))

[set_announcements_alt] Theorem

|- !high low random n i.

(set_announcements high low random n 0 =

(\s.

(if s = STRCAT "announces" (toString 0) then

high (STRCAT "pays" (toString 0)) xor

random (STRCAT "coin" (toString 0)) xor

random (STRCAT "coin" (toString n))

else

low s))) /\

(set_announcements high low random n (SUC i) =

(\s.

(if s = STRCAT "announces" (toString (SUC i)) then

high (STRCAT "pays" (toString (SUC i))) xor

random (STRCAT "coin" (toString (SUC i))) xor

random (STRCAT "coin" (toString i))
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else

set_announcements high low random n i s)))

[valid_coin_assignment_eq_2_element_set] Theorem

|- !n p out.

p <= SUC (SUC n) /\

out IN

IMAGE (\(h,r). dcprog (SUC (SUC (SUC n))) ((h,(\s. F)),r))

(dc_high_states F (SUC (SUC (SUC n))) CROSS

dc_random_states (SUC (SUC n))) ==>

({r |

r IN dc_random_states (SUC (SUC n)) /\

valid_coin_assignment r out p n (SUC (SUC n))} =

coin_assignment_set out p n)

[valid_coin_set_eq_valid_coin_assignment] Theorem

|- !n p out.

p <= SUC (SUC n) /\

out IN

IMAGE (\(h,r). dcprog (SUC (SUC (SUC n))) ((h,(\s. F)),r))

(dc_high_states F (SUC (SUC (SUC n))) CROSS

dc_random_states (SUC (SUC n))) ==>

({r |

r IN dc_random_states (SUC (SUC n)) /\

(dcprog (SUC (SUC (SUC n)))

(((\s. s = STRCAT "pays" (toString p)),(\s. F)),r) =

out)} =

{r |

r IN dc_random_states (SUC (SUC n)) /\

valid_coin_assignment r out p n (SUC (SUC n))})
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the 26th IFIP WG 6.1 International Conference on Formal Techniques for Networked and Dis-
tributed Systems, volume 4229 of Lecture Notes in Computer Science, pages 115–130, Paris, France,
September 2006. Springer, Berlin.

[26] Tom Chothia, Simona Orzan, Jun Pang, and Mohammad Torabi Dashti. A framework for automat-
ically checking anonymity with µCRL. In Ugo Montanari, Donald Sannella, and Roberto Bruni,
editors, Proceedings of the 2nd Symposium on Trustworthy Global Computing, volume 4661 of Lec-
ture Notes in Computer Science, pages 301–318, Lucca, Italy, November 2006. Springer, Berlin.

[27] David Clark and Sebastian Hunt. Non-interference for deterministic interactive programs. In Pier-
paolo Degano, Joshua Guttman, and Fabio Martinelli, editors, Proceedings of the 5th International
Workshop on Formal Aspects in Security and Trust, volume 5491 of Lecture Notes in Computer
Science, pages 50–66, Malaga, Spain, October 2008. Springer, Berlin.



BIBLIOGRAPHY 163

[28] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative analysis of the leakage of
confidential data. In Alessandra Di Pierro and Herbert Wiklicky, editors, Proceedings of the ACM
Workshop on Quantitative Aspects of Programming Languages, volume 59 of Electronic Notes in
Theoretical Computer Science, pages 238–251, Firenze, Italy, September 2001. Elsevier.

[29] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified interference for a while language.
In Antonio Cerone and Alessandra Di Pierro, editors, Proceedings of the 2nd Workshop on Quanti-
tative Aspects of Programming Languages, volume 112 of Electronic Notes in Theoretical Computer
Science, pages 149–166, Barcelona, Spain, March 2004. Elsevier.

[30] David Clark, Sebastian Hunt, and Pasquale Malacaria. A static analysis for quantifying information
flow in a simple imperative language. Journal of Computer Security, 15(3):321–371, August 2007.

[31] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in information flow. In
Proceedings of the 18th IEEE Workshop on Computer Security Foundations, pages 31–45, Aix-en-
Provence, France, June 2005. IEEE Computer Society, Los Alamitos, California, USA.

[32] Sebastian Clauß and Stefan Schiffner. Structuring anonymity metrics. In Proceedings of the 2nd
ACM Workshop on Digital Identity Management, pages 55–62, Alexandria, Virginia, USA, Novem-
ber 2006. ACM Press, New York, New York, USA.

[33] Richard Clayton and George Danezis. Chaffinch: Confidentiality in the face of legal threats. In
Fabien A. P. Petitcolas, editor, Proceedings of the 5th International Workshop on Information
Hiding, volume 2578 of Lecture Notes in Computer Science, pages 70–86, Noordwijkerhout, The
Netherlands, January 2002. Springer, Berlin.

[34] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley and Sons,
Inc., 1991.

[35] S. Crafa, M. Mio, M. Miculan, C. Piazza, and S. Rossi. PicNIc - pi-calculus non-interference
checker. In Jonathan Billington, Zhenhua Duan, and Maciej Koutny, editors, Proceedings of the
8th International Conference on Application of Concurrency to System Design, pages 33–38, Xi’an,
China, June 2008. IEEE Press.

[36] George Danezis. Better Anonymous Communications. PhD thesis, University of Cambridge, Cam-
bridge, United Kingdom, July 2004.

[37] George Danezis and Claudia Diaz. A survey of anonymous communication channels. Technical
Report MSR-TR-2008-35, Microsoft Research, Cambridge, United Kingdom, January 2008.

[38] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a Type III anony-
mous remailer protocol. In Proceedings of the 2003 IEEE Symposium on Security and Privacy,
pages 2–15, Berkeley, California, USA, May 2003. IEEE Computer Society, Los Alamitos, Califor-
nia, USA.

[39] George Danezis and Len Sassaman. Heartbeat traffic to counter (n-1) attacks: Red-green-black
mixes. In Pierangela Samarati and Paul Syverson, editors, Proceedings of the 2003 ACM Workshop
on Privacy in the Electronic Society, pages 88–93, Washington, DC, USA, October 2003. ACM
Press, New York, New York, USA.

[40] Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Weak probabilistic anonymity. In Michael
Backes and Andre Scedrov, editors, Proceedings of the International Workshop on Security and
Concurrency, volume 180 of Electronic Notes in Theoretical Computer Science, pages 55–76, San
Francisco, California, USA, August 2005. Elsevier.

[41] Yuxin Deng, Jun Pang, and Peng Wu. Measuring anonymity with relative entropy. In Theo
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[91] Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell. On automated verification of
probabilistic programs. In C. R. Ramakrishnan and Jakob Rehof, editors, Proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 4963 of Lecture Notes in Computer Science, pages 173–187, Budapest, Hungary, March
2008. Spinger, Berlin.

[92] Albert C. Leighton. Secret communication among the greeks and romans. Technology and Culture,
10(2):139–154, 1969.

[93] David R Lester. Topology in PVS: continuous mathematics with applications. In John Rushby
and Natarajan Shankar, editors, Proceedings of the 2nd Workshop on Automated Formal Methods,
pages 11–20, Atlanta, Georgia, November 2007. ACM Press, New York, New York, USA.

[94] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Tiziana Margaria and Bernhard Steffen, editors, Proceedings of the 2nd International Workshop on
Tools and Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture Notes
in Computer Science, pages 147–166, Passau, Germany, March 1996. Springer, Berlin.

[95] Gavin Lowe. Quantifying information flow. In Proceedings of the 15th IEEE Computer Security
Foundations Workshop, pages 18–31, Cape Breton, Nova Scotia, Canada, June 2002. IEEE Com-
puter Society, Los Alamitos, California, USA.

[96] Gavin Lowe. Defining information flow quantity. Journal of Computer Security, 12(3–4):619–653,
2004.

[97] Gavin Lowe. Semantic models for information flow. Theoretical Computer Science, 315(1):209–256,
May 2004.

[98] Gavin Lowe. On information flow and refinement-closure. In Proceedings of the 7th International
Workshop on Issues in the Theory of Security, Braga, Portugal, March 2007.

[99] Pasquale Malacaria. Assessing security threats of looping constructs. In Proceedings of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
225–235, French Riviera, Nice, France, January 2007. ACM Press, New York, New York, USA.

[100] Paul Malliavin. Integration and Probability, volume 157 of Graduate Texts in Mathematics. Springer-
Verlag, New York, New York, USA, 1995.

[101] Heiko Mantel. Unwinding possibilistic security properties. In Frédéric Cuppens, Yves Deswarte,
Dieter Gollmann, and Michael Waidner, editors, Proceedings of the 6th European Symposium on
Research in Computer Security, volume 1895 of Lecture Notes in Computer Science, pages 238–254,
Toulouse, France, October 2000. Spinger, Berlin.

[102] S. Mauw, J. H. S. Verschuren, and E.P. de Vink. A formalization of anonymity and onion routing.
In Pierangela Samarati, Peter Ryan, Dieter Gollmann, and Refik Molva, editors, Proceedings of
the 9th European Symposium on Research in Computer Security, volume 3193 of Lecture Notes in
Computer Science, pages 109–124, Sophia Antipolis, France, September 2004. Spinger, Berlin.

[103] Daryl McCullough. Specifications for multi-level security and a hook-up property. In Proceedings
of the 1987 IEEE Symposium on Security and Privacy, pages 161–166, Oakland, California, USA,
April 1987. IEEE Computer Society Press, Washington, DC, USA.



168 BIBLIOGRAPHY

[104] Annabelle McIver and Carroll Morgan. A probabilistic approach to information hiding. In Annabelle
McIver and Carroll Morgan, editors, Programming Methodology, Monographs in Computer Science,
pages 441–460. Springer-Verlag, New York, New York, USA, 2003.

[105] Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for Probabilistic Systems.
Monographs in Computer Science. Springer-Verlag, New York, New York, USA, 2005.

[106] John McLean. Security models and information flow. In Proceedings of the 1990 IEEE Computer
Society Symposium on Research in Security and Privacy, pages 180–187, Oakland, California, USA,
May 1990. IEEE Computer Society Press, Los Alamitos, California, USA.

[107] Jonathan K. Millen. Covert channel capacity. In Proceedings of the 1987 IEEE Symposium on
Security and Privacy, pages 60–66, Oakland, California, USA, April 1987. IEEE Computer Society
Press, Washington, DC, USA.
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