
Technical Report
Number 776

Computer Laboratory

UCAM-CL-TR-776
ISSN 1476-2986

System tests from unit tests

Kathryn E. Gray, Alan Mycroft

March 2010

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2010 Kathryn E. Gray, Alan Mycroft

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Large programs have bugs; software engineering practices reduce the number of
bugs in deployed systems by relying on a combination of unit tests, to filter out
bugs in individual procedures, and system tests, to identify bugs in an integrated
system.

Our previous work showed how Floyd-Hoare triples, {P}C{Q}, could also be
seen as unit tests, i.e. formed a link between verification and test-based validation.
A transactional-style implementation allows test post-conditions to refer to values
of data structures both before and after test execution. Here we argue that this
style of specifications, with a transactional implementation, provide a novel source
of system tests.

Given a set of unit tests for a system, we can run programs in test mode on
real data. Based on an analysis of the unit tests, we intersperse the program’s
execution with the pre- and post-conditions from the test suite to expose bugs or
incompletenesses in either the program or the test suite itself. We use the results
of these tests, as well as branch-trace coverage information, to identify and report
anomalies in the running program.

3

1 Introduction: The continuing trouble with tests

Tests find bugs; developing and executing tests improves the robustness of real programs.
But test specifications themselves are typically programs that may contain errors and
omissions. Uncovering these bugs, and any program errors that are obscured, can be
considerably difficult.

This effect is compounded when multiple programmers combine their isolated sub-
systems to create a product. Each developer may provide a set of unit tests, which lay
out the necessary initial conditions and correctness conditions for an individual method.
But if the integrated program calls a method without respecting the expected initial
conditions, the resulting error may occur within a third method with no clear connection
to the misused method. In principle system tests or integration tests can catch these
errors, but many such errors evade these tests into releases. This paper demonstrates
that unit-test specifications can provide an additional source of system tests and thereby
increase the reliability of deployed systems.

Unit tests alone cannot expose all errors in a system, particularly ones arising from
interactions between program units developed by different individuals. Such errors may
only arise during full system executions – with shared data, shared program control,
non-emblematic data usage, and undocumented requirements. For a minimal example,
consider a priority-queue implementation using a sorted-list representation and the two
methods insert and max. The max implementation returns the head of the list l, with pre-
condition ordered(l) and a code-coverage-complete test-suite. The insert implementation
is incorrect and is structurally the same as cons, but with pre- and post-conditions of
ordered(l). A code-coverage-complete test-suite contains two cases – insert(3, []) and
insert(4, [3]). However, evaluating the program max(insert(4, insert(5, [])))

incorrectly returns 4. At first glance, max appears to be at fault. However, the error
is within insert, hidden by its inadequate test-suite. In this minimal example, a sim-
ple code review can quickly uncover the problem, but similar errors arise in real-world
implementations that are not so amenable to review.

With increased support in the language and runtime system for test specifications,
we can identify situations like this by assessing correctness during system-wide execution
interspersed with evaluation of test conditions executed under isolation so that side-effects
during test-condition evaluation are suppressed from mainline code execution. We draw
on ideas from logic and formal specification to create unit tests (which resemble Floyd-
Hoare triples with pre-conditions, a command, and post-conditions) and system tests.
When proving correctness for a set of related procedures using logical specifications, the
pre- and post-conditions propagate correctness information to call sites within other pro-
cedures. Similarly, a program running in test mode can use unit tests to ensure that the
correctness conditions hold during whole program execution. Test mode, a specialized
program execution mode, uses the pre- and post-conditions from the unit-test evaluation,
along with collected execution data, to identify faults in both the set of tests for the
program and in the program.

In our previous work [11], we introduced a domain-specific language for unit-test
specifications in Java—TestJava—that relied on compile-time intervention to create a
transactional execution for assessing method-level correctness. Transactions in our previ-
ous system caught modifications so that test specifications for imperative methods could

4

consider data functionally. We build on this technique to show that combining unit tests
with transactional executions can be used to automatically collect test information during
system integration.

Due to the possibility of test specification errors, and the exploratory nature of tests
during test-driven development, not all tests executed during test mode will have clear
successes or failures. Instead we supply error reports which indicate the possibilities of
errors, such as a circumstance where the pre-conditions from a particular unit-test speci-
fication are satisfied but the execution-path data for the unit test and system execution
vary—indicating that the test suite has not fully tested this method. We do not terminate
execution for test failures. With our error reports, programmers can explore modifications
to test conditions in the whole program without forcibly halting a program—which may
produce the correct results despite failing one or more unit-test specifications.

We introduce test mode via an operational semantics in Sections 4 and 5. This se-
mantics relies on a formalization of our previous unit-test support, presented in Section 3,
which we augment with formal pre-conditions introduced in Section 2. Both unit test-
ing and test-mode execution with transactions intervene in the runtime operations of a
tested program, we show that these relations are weakly bisimilar to reductions of stan-
dard Java in Section 8.1 and so do not impact program correctness. Section 9 describes
implementation techniques to support test-mode execution.

2 Unit tests with formal conditions: TestJava

Unit tests that follow the SUnit1 philosophy [3], embed pre- and post-conditions into
a standard programming language. In a unit-test specification, the correctness of one
method is assessed under a precise initial condition. The pre-conditions (which includes
method parameters) for a unit test may be partially implicit. As an example, a method
direction may return “left” for inputs less than 0, “right” for inputs greater than 0, and
“straight” for 0. A set of unit tests for direction may only test three concrete values (e.g.
-1, 0, and 1) without stating the general ranges. Such a concrete test tends to reduce the
benefit of test specifications as documentation, and in integration and regression testing.

We provide an extension to our unit-test specification language, TestJava [11], that
identifies pre- and post-conditions with logic-based syntax and supports generalized pa-
rameters. As with our previous language for post-conditions, we build on the syntax of
the Java Modeling Language [14] and the ideas of Hoare-triples for formal test specifica-
tions. With formal pre-conditions, test-mode execution can use unit tests to assess the
correctness of executing methods.

TestJava provides constructs for organizing unit tests and tests for an entire class, as
well as individual test specifications. We present our syntax, reduced for a formal model,
in Fig. 1. An individual unit-test specification follows the form of a Hoare triple: (pre)

requiredBy call() ensure (post). The old and modifies conditions can only occur
in post-conditions. The requirement bindings use = and < in our model.

1These comprise most unit tests.

5

defT ::= test cid1 { testcases }

testcase ::=
| testcasemid { stmtTBlock }

stmtTBlock ::=
| exprT ;
| declT stmtTBlock

opT ::= = | <

declT ::= type id = exprT ;
| requirement type id opT exprT ;

exprT ::= new cid
| exprT .fid
| exprT .mid(exprT1 .. exprTn)
| instanceof(exprT cid)
| exprT1 op exprT2

| (exprT1) requiredBy expr ensure (exprT2)
| old(id)
| modifies(id .fid)
| this

| id
| value

Figure 1: TestJava (model) grammar

A single test for the direction method outlined above is

requirement Guide g = new Guide();

requirement int d = new Random().get();

(d<0) requiredBy g.direction(d) ensure (result.equals("left"))

The result variable binds the value generated by direction() and is always available in
the post-condition. When a declT binding uses the requirement attribute, unit-testing
reduction annotates the bound value with a data structure to collect runtime information.
Our model requires variables used within a unit-test specification to be specified with the
requirement attribute, a full system could use static fields as well. This annotation
also provides a means for identifying the reachability of necessary values that are not
observably reachable through a method’s parameters (including this).

If we extend our test example to include external parameters and state, we may add set
of maps to the guide and a current position modified by the method. Thus our unit-test
specification is now

requirement Map ukmap = new BritishRoadMap();

requirement Guide g = new Guide();

requirement int d = new Random().get();

...

(ukmap.hasPosition(g.pos) && d<0) requiredBy

g.direction(d)

ensure (result.equals("left") && ukmap.leftOf(old(g).pos, g.pos))

As readers, we assume that the Map object ukmap is used within the direction() method
but the test specification does not indicate how the method accesses ukmap since the
object is neither a parameter nor referenced by a field in g. Section 4 addresses how our
system identifies an appropriate value for test-mode validation of such a pre-condition.
The provided old predicate, introduced in our prior work, refers to the Guide object as
it was before direction().

In creating unit-test specifications with generalized correctness conditions, requirement
bindings should be able to represent inequalities, ranges, excluded sequences, and sets of
predicates that define a parameter’s or field’s bounds. However, for conciseness, this pa-
per only considers a single inequality binding (<). Although a set of predicates could be

6

used to specify object requirements, we presently only model specifications that bind an
object using =. For unit-test reduction, inequality specifications generate random values,
within the bounds, which could be used to validate a single test specification numerous
times. Despite the opportunity for developing general conditions, we assume that many
developers will continue to begin with concrete test specifications. Section 6 presents
our strategy for automatically generating general conditions for use in test mode, to pro-
vide more accurate test results for debugging and suggest robust test suites for future
validation.

Note that unit-test specifications can be embedded within the pre- and post-conditions
of another unit-test specification. Building on our example, if the Map implementation
requires access to an external resource, such as a network socket, method calls in Map may
rely on having acquired the socket, and for correct behavior must close it when finished.

((!ukmap.connected) requiredBy ukmap.open() ensure (ukmap.connected)

&& P) requiredBy ukmap.findPath() ensure (Q &&

(ukmap.connected) requiredBy ukmap.close() ensure (!ukmap.connected))

The unit-test specification on the first line states a pre-condition for findPath() as well
as opening a connection for the unit-test evaluation. Similarly, the unit-test specifica-
tion on the third line provides a post-condition while also closing the connection. The
test represents a set of implications similar to the logical implication that (preopen ⇒open

postopen)⇒path (preclose ⇒close postclose) In test mode, such specifications provide tempo-
ral correctness specifications, discussed further in Section 7.

3 Validation with unit tests

For unit-test validation, each unit test reduces in isolation with respect to other spec-
ifications for the same or other methods. The actions of one method call should not
impact the actions of a second call where the two are not explicitly related. We achieve
this isolation, in the presence of mutation, by using transactional object representations.
Previously [11], we explained our representation, snapshots, with a compilation technique.
We now provide an operational semantics for our unit-test validation, augmented with
support for the pre-conditions introduced in Section 2, which allows us to demonstrate
that unit-test reduction and test-mode reduction do not alter the meaning of the tested
program.

The operational semantics for a subset of Java, including statements and mutation,
resembles existing Java semantics [6, 9, 12]. We use an evaluation-context small-step
semantics with the relation 〈E[expr], store〉 → 〈E[expr ′], store ′〉, which requires compila-
tion to resolve super calls to class names and replace field accesses with accessor method
calls.2 Figure 2 presents our source-level syntax, where test specification syntax, defTs,
is in Fig. 1. The src annotations in methods and branching stmt forms model the source
location of the code, i.e. line number and file, for use in execution traces; the const value
represents integer constants. The evaluation context grammar is straightforward except
for unit-test specifications, which do not evaluate subterms. The semantics resolves vari-
ables using value substitution.

2Our full semantics is available at www.cl.cam.ac.uk/∼keg29/testing.

7

prog ::= defs defTs expr def ::= class cid1 extends cid2 { fields fieldAccs methods }

method ::= type mid(type1 id1 .. typen idn) { src1 stmtBlock src2 }

src ::= 〈Representation of file-line source position.〉

stmtBlock ::=
| stmt
| stmt stmtBlock

stmt ::= return expr ;
| if expr {src1 stmtBlock1} else {src2 stmtBlock2}
| while (expr) {src1 stmtBlock} src2

| expr ;

expr ::= new cid
| expr .fid@get()
| expr .fid@set(expr ′)
| expr .mid(expr1 .. exprn)
| this.cid .mid(expr1 .. exprn)
| instanceof(expr cid)
| expr1 op expr2

| this

| id
| value

value ::= true

| false

| const
| null

type ::=
| cid
| bool

| int

Figure 2: Modeled source program syntax. We represent repetition with a plural form of
a term, i.e. methods represents 0 or more occurrences of method ; we use stmtBlock instead
of stmts to simplify related reduction rules.

store ::= (const , heap)

heap ::= ǫ
| heap + loc 7→ objectVal

objectVal ::= null

| loc
| (cid (fid

0
value0) .. (fidn valuen))

| (snapshot cid fieldTableList locList loc)
| (snapshot cid fieldTableList locList loc req)

Figure 3: Runtime structures for test execution

Stores are represented by pairs (z, h), seen in Fig. 3, where h is a heap (mapping
locs to object values) and z is a counter incremented by new. The counter in our store
representation is used to tag heap locations arising from new, and allows us to show
that two stores are isomorphic, see Def 8.1, in lieu of keeping a shared set of variable
roots. During reduction, we extend our set of values with objectVal to represent locations,
objects, and transactional objects (snapshots). Unit test reduction uses three relations:
−−→
unit

to reduce testcase implementations and construct test results; →u to reduce the

unit-tested expr ; and →c to reduce pre- and post-conditions while collecting test data.
In unit-test reduction local variables, instances of declT, with a requirement attribute

embed the value in a req wrapper, shown in Fig. 4 rule reqOb.3 Before reducing a unit-
test specification, the req wrappings are removed from parameters, and the req tag is
removed from heap-stored snapshots accessible through the parameter’s fields using a →֒
relation that builds a new store without the tag. Thus only requirement bindings that

3We specify our rules with Ott [18], for machine-readability and automatic formatting.

8

defs ⊢ 〈stmtTBlock , store, testReport〉 −−→
unit

〈stmtTBlock ′, store ′, testReport ′〉

defs ⊢ 〈E[exprT], store, 〉−−→
unit

→〈E[value], store ′, testSpecResults〉

defs ⊢ 〈requirement type id = exprT ; stmtTBlock , store, testReport〉 −−→
unit

〈stmtTBlock [(req id (eq value) value) / id], store ′, testReport ′〉

req

defs ⊢ 〈E[exprT], store, 〉−−→
unit

→〈E[loc], store ′, testSpecResults〉

store ′(loc) : (cid fieldVals) loc ′ /∈ store ′

value = (req id (eq loc ′) loc ′)
store ′ = (const , heap)
store ′′ = (const , heap + loc ′) 7→ (snapshot cid ǫ ǫ loc req)

defs ⊢ 〈requirement cid ′ id = exprT ; stmtTBlock , store, testReport〉 −−→
unit

〈stmtTBlock [value / id], store ′′, testReport〉

reqOb

Figure 4: Reduction relation for unit-test validation

are not reachable are tagged.
Evaluation of the unit test-specification expression, Fig. 5 conducts the primary work

of unit testing. Reduction first evaluates the pre-condition using a →c relation, which
reduces exprT conditions while collecting runtime values to be used in compiling the con-
dition for test-mode reduction. When the pre-condition reduces to false, the expression
reduces to false. After executing the method call, the post-conditions evaluate with the
same information collecting relation →c, with the method result substituted in for a re-
sult variable. Unit test expressions embedded in pre- or post-conditions evaluate using an
equivalent →c reduction rule, but must be evaluated with the rules which collect runtime
information instead of the current relation. The absObj function collects additional data
for test mode and is described in Section 6.1.1

When reducing the method call in testR, we use a reduction relation→u that extends
standard Java reduction to support snapshots. Figure 6 presents representative rules for
accessing and modifying fields through a snapshot. A fieldTable is a mapping from fids
to values; 7→ represents a write, and the (fid : value) syntax represents a field which
has been read by the method but not modified. To capture modifications that occur in
objects referred to through fields, all accessed objects whether modified or simply read
embedded into snapshots and stored in the fieldTable. As shown in setSnap writes
do not impact the object location, and from getSnap3 reads use the fieldTable where
applicable. When a write removes a location from the fieldTable, the loc is stored in the
locList (see setSnap2) so that the snapshot can be properly committed.

4 Using unit tests as system integration tests

We model system execution as a sequence of definitions followed by a single method call,
an instance of prog in Fig. 2. Test mode execution uses the same expression as system
execution, while inserting test conditions for each method called. When method calls

9

defs ⊢ 〈E[exprT], store, testSpecResults〉 −−→
unit

〈E[exprT ′], store ′, testSpecResults ′〉

defs ⊢ 〈exprT , store〉 →c 〈true, store1, condition〉
defs ⊢ 〈E[expr], store1, ǫ〉→→u〈E[(req id (restrict) loc)], store2, trace1〉
store2 • (req id (restrict) loc) →֒ store3 • loc ′ • restrict ′

defs ⊢ 〈E[expr ′

n], store3, ǫ〉→→u〈E[value ′

n], store4, trace2〉
n

store4 • value ′

n →֒ store5 • value ′′

n • restrict ′′n
n

defs ⊢ 〈E[loc ′.mid(value ′′

n

n
)], store5, ǫ〉→→u〈E[value], store6, trace〉

defs ⊢ 〈exprT2 [value / result], store6〉 →c 〈value2, store7, condition ′〉

absObj(condition, condition ′, loc ′ : restrict ′ value ′

n : restrict ′′n
n
, store7) =

restrict ′′′ value ′′′

n

n
, condition ′′, condition ′′′

defs ⊢ 〈E[(exprT) requiredBy expr .mid(expr ′

n

n
) ensure (exprT2)],

store, testSpecResults〉 −−→
unit

〈E[value2], commit(store7),

cid mid restrict ′′′ (value ′′′

n

n
) condition ′′ condition ′′′ trace value4

testSpecResults〉

testR

Figure 5: Reduction of unit-test specification expressions

occur in sequence within the body of an outer method, the post-conditions of the first
method feed into the establishment of the pre-conditions of the following method. If
conditions fail, test reports provide the method and conditions responsible.

Unlike program verification, test-based validation does not expect to fully determine
program correctness. Programmers may test a subset of relevant properties and still
desire meaningful results. Due to exploratory development, a unit-test specification may
use concrete values instead of general conditions, (e.g. the test may specify f(10) = 15
when f(n) < n+2 holds.) Therefore for system-level test-based validation, we need more
varied responses than success and failure. A test-mode execution results in a set of test
results, as well as the result of evaluating the expression. The set of possible test results
include the following seven outcomes:

Success All executed methods had matching pre-conditions, where the appropriate post-
condition succeeds.

Path Success At least one executed method had no conclusively matching pre-condition,
but followed a path consistent with a predicted pre-condition.

Untested At least one executed method had no test information.

Incorrect call At least one executed method had no matching pre-condition from path-
exhaustive tests.

Untested Path At least one executed method had no matching pre-condition, and ex-
ecution path was inconsistent with tested paths.

Path Anomaly At least one executed method had a matching pre-condition, but exe-
cution path was inconsistent with pre-condition path.

10

defs ⊢ 〈E[expr], store, trace〉 →u 〈E[expr ′], store ′, trace ′〉

store(loc) : (snapshot cid fieldTable locList loc ′) fid /∈ fieldTable
defs ⊢ 〈E[loc ′.fid@get()], store〉 →→ 〈E[primVal], store〉
store ′ = store[loc.fid : primVal]

defs ⊢ 〈E[loc.fid@get()], store, trace〉 →u 〈E[primVal], store ′, trace〉
getSnap

store(loc) : (snapshot cid fieldTable locList loc ′) fid /∈ fieldTable
defs ⊢ 〈E[loc ′.fid@get()], store〉 →→ 〈E[loc ′′], store〉
store(loc ′′) : (cid ′ fieldVals) loc ′′′ /∈ store
store ′ = store + loc ′′′ 7→ (snapshot cid ′ ǫ ǫ loc ′′)
store ′′ = store ′[loc.fid : loc ′′′]

defs ⊢ 〈E[loc.fid@get()], store, trace〉 →u 〈E[loc ′′′], store ′′, trace〉
getSnap2

store(loc) : (snapshot cid fieldTable locList loc ′) fieldTable(fid) : value

defs ⊢ 〈E[loc.fid@get()], store, trace〉 →u 〈E[value], store ′, trace〉
getSnap3

store(loc) : (snapshot cid fieldTable locList loc ′) fid /∈ fieldTable

defs ⊢ 〈E[loc.fid@set(value)], store, trace〉 →u

〈E[value], store[loc.fid ←֓ value], trace〉

setSnap

store(loc) : (snapshot cid fieldTable locList loc ′) fieldTable(fid) : loc ′′

store ′ = store[loc ←֓ (snapshot cid fieldTable loc ′′ : locList loc ′)

defs ⊢ 〈E[loc.fid@set(value)], store, trace〉 →u

〈E[value], store ′[loc.fid ←֓ value], trace〉

setSnap2

Figure 6: Access and mutation of snapshot-protected objects

Failed Test At least one executed method had a matching pre-condition, and corre-
sponding post-condition failed.

Several conditions include path consistency as well as the results of evaluating test con-
ditions. With the possibility of too-specific or unsatisfiable pre-conditions, we must either
report limited test results or seek alternative sources for assessing acceptable behavior.
We choose to provide additional test results by building potential test conditions based on
runtime values and coverage data for the tested program. For this, we gather control-flow
traces during unit evaluation for comparison during test mode. This is represented with
the trace state variable of Fig. 6.

The trace data structure contains a sequence of the src labels stored within methods
and branching statements. When a src location is visited and is already within trace, we
produce a branched trace starting from src that contains sub traces visited subsequently.
We collapse branch traces when all contained srcs are identical; we merge a branch when
control resumes in sync. Entry and exit to methods and while loops are used to identify
re-synced execution.

The →c relation, Fig. 7, collects runtime values for conditions in unit-test validation.

11

defs ⊢ 〈exprT , store〉 →c 〈exprT
′, store ′, condition ′〉

defs ⊢ 〈exprT , store〉 →c 〈loc, store ′, condition〉
defs ⊢ 〈E[loc.fid], store ′〉 →→ 〈E[value], store ′〉

defs ⊢ 〈exprT .fid , store〉 →c 〈value, store ′, acc condition fid〉
checkAccess

store(loc) : (snapshot cid fieldTable locList loc ′)

defs ⊢ 〈old((req id (restrict) loc)), store〉 →c 〈loc ′, store, old(id)〉
checkOld

store(loc) : (snapshot cid fieldTable locList loc ′)
fieldTable[fid] : (fid 7→ value)

defs ⊢ 〈modifies((req id (restrict) loc).fid), store〉 →c

〈true, store, modifies(id .fid)〉

checkModifies

store(loc) : (snapshot cid fieldTable locList loc ′)
fieldTable[fid] : (fid : value)

defs ⊢ 〈modifies((req id (restrict) loc).fid), store〉 →c

〈false, store, modifies(id .fid)〉

checkModifiesF

Figure 7: Building pre- and post-condition information for test-mode during unit testing

This condition structure contains variable references, concrete values, and abstract object
representations. This data is used to compile the pre- and post-conditions for a method.
Section 6 presents this compilation, while Section 5 presents the operation of test mode.

4.1 Producing test reports

Three of our seven test reports are easy to assess. When a single pre-condition and
implied post-condition succeeds, the test report is success. Equally trivially, when a single
pre-condition succeeds and implied post-condition fails, the test report is failure. If no
methodT exists, then the test report is not tested. For multiple matched pre-conditions,
we generate a test report for each outcome and do not consider multiple successful pre-
conditions an error on its own.

More interesting results are generated when no pre-condition is conclusively satisfied.
If all pre-conditions fail, then either we have an untested path or an illegal call. Which
report applies relies on an annotation in methodT that specifies if the unit tests cover
the control flow graph of the method. If all pre-conditions are inconclusive and cannot
be resolved after execution, we consider the current trace. For any pre-condition with a
matching test-mode trace, we report path success for this condition. When possible, we
evaluate the implied post-conditions, combining path success with success.

If a pre-condition is successful, but the traces do not match, we report a path anomaly.
A path anomaly indicates the pre-condition(s) did not identify the control-flow path and
may be insufficient in establishing correctness.

12

progC ::=
| defs snapShotDefs expr

snapShotDef ::=
| snap cid { condResults methodTs }

methodT ::=
| type mid(type ′

0
id0 .. type ′

n idn) { testBranchs }

testBranch ::=
| restrict preCondition condition trace

Figure 8: Test mode syntax

5 Operational semantics of test mode

A test-mode reduction consists of reducing a single expression, using both class definitions
and a set of snap definitions generated from unit test data, see Fig. 8. Each snap “class”
models a class in defs that was validated during unit-test reduction; and each methodT in
a snap contains the pre- and post-conditions for the corresponding tested method in class.
A snap definition contains the method definitions for a snapshot, as a class definition
contains the methods for an object. The testRs encode the results from test validation,
with an individual testR representing the possible outcomes outlined in Section 4. A
test suite for a particular progC, Fig. 8, is the set of methodTs used in a test-mode
reduction of the method called in progC ; this set can be used to determine regression
test requirements when defs is modified. As with unit-test reduction, most rules of our
→T relation remove test-specific information from the current state and reduce under the
Java → rules. Figure 9 presents two highly relevant reduction rules for test mode; the
field access reductions strongly resemble those from unit-test reductions.

All objects in test mode are embedded within a snapshot immediately after allocation,
see Fig. 9 rule newTM. The test-mode snapshot uses a nested transaction, represented
as a sequential list of fieldTables, as test conditions are evaluated before and after each
method call. Consider an execution where a method, direction(), contains a call to
another method currLoc(); if the post-condition of currLoc() requires that the method
have no side-effect, then side-effects from direction should not be mixed with side-
effects from currLoc(). Nested transactions allow each method call to observe mutations
in isolation.

A method call in test mode evaluates pre-conditions for the method before invocation,
and then evaluates the appropriate post-conditions to build a test report for the call,
see Fig. 9 rule callTM. If the call raises a null exception (the only exception possible
in our language), reduction immediately halts with the error. We present method call
reduction in the context of the direction() method example in Section 2. We assume
a programmer has written two additional unit-test specifications to cover the remaining
possible results, and that the method parameter is 5. Each unit-test specification has
been compiled into a testBranch specification within the direction methodT definition.
A testBranch includes an implied pre-condition, restrict, for this, implied pre-conditions
for each of the parameters, and a compiled version of the pre- and post-conditions; implied
pre-conditions are compiled from the requirement bindings of Fig. 1. A ⇓s relation takes
these implicit and explicit pre-conditions and returns any test branches that are satis-

fied or inconclusive. For direction(), the test branch whose pre-condition requires a
parameter greater than 0 is returned.

Before dispatching to the method body for direction, for each parameter (and this)

13

defs snapShotDefs ⊢ 〈E[expr], traces, store, testRs〉 →T 〈E[expr ′], traces ′, store ′, testRs ′〉

class cid extends cid1 { typen fidn ;
n
fieldAccs methods } ∈ defs

loc /∈ heap loc ′ /∈ heap

heap ′ = heap + loc 7→ (cid (fidn defValn)
n
)

heap ′′ = heap ′ + loc ′ 7→ (snapshot cid ǫ ǫ loc)

defs snapShotDefs ⊢ 〈E[new cid], traces, const . heap, testRs〉 →T

〈E[loc ′], traces, const + 1 . heap ′′, testRs〉

newTM

store(loc) : (snapshot cid fieldTableList locList loc ′)

snap cid { · · · type mid(type ′

n idn

n
) { testBranchs } · · · } ∈ snapShotDefs

class cid{ · · · type mid(typen idn

n
) {src stmtBlock src ′} · · · } ∈ defs

defs store ⊢ loc value ′

n

n
: testBranchs ⇓s

restricti (value ′′

n

n
)i conditioni condition ′

i tracei

i

store1 = takeSnap(loc value ′

n

n
, store)

traces1 = traceCheck(src enter, traces)

defs snapShotDefs ⊢ 〈ES[stmtBlock], src tracei
i
traces1, store1, testRs〉→→T

〈value, trace trace ′

i

i
traces2, store1, testRs ′〉

traces3 = traceCheck (src ′ exit , traces2)

defs store2 ⊢ loc value ′

n

n
: conditioni condition ′

i trace
′

i ⇓r testRi

i

store3 = commit(loc value ′

n

n
, store2)

defs snapShotDefs ⊢ 〈E[loc .mid (value ′

n

n
)], traces, store, testRs〉 →T

〈E[value], traces3, store3, testRs ′ testRi

i
〉

callTM

Figure 9: Test mode method call

14

store(loc) : (snapshot cid fieldTable locList loc ′ req)
reset(fieldTable, loc ′, store) = const . heap
store ′ = const . heap[loc] ←֓ (snapshot cid ǫ loc ′)
trace ′ = trace : src (req id)

class cid { · · · type mid (typenidn

n
) { src stmtBlock src ′ } · · · } ∈ defs

defs ⊢ 〈ES[stmtBlock [loc / this] [value ′

n/idn]
n
], store ′, trace ′〉→→u

〈value, store ′′, trace ′〉

defs ⊢ 〈E[(req id (restrict) loc) .mid (value ′

n

n
)], store, trace〉 →u

〈E[value], store ′′, trace ′′ : src ′〉

callReq

Figure 10: Capturing the first access of a non-reachable requirement

a new fieldTable is appended onto the fieldTableList using the takeSnap function. The
trace(s) for the selected testBranch(s) are appended to the front of the list of traces under
consideration, and the opening src tag is used to create a trace for the current invocation.
The existing traces under consideration, placed into the state by previous pre-conditions,
are compared with the current src for a match and tagged if they do not match; each
traced statement performs a similar comparison and a second comparison is done when
the method returns.

After reducing the method body to a value, the post-condition relation ⇓r considers the
selected testBranch(s) to evaluate the post-conditions, using the value and the collected
traces. If direction() follows its specification, our result is "right". However, if the
trace(s) considered during reduction do not match the execution path taken, then the
generated test result is a path anomaly. The next commit pushes writes made in the
outermost transaction fieldTable to the next table, removes the table, and commits the
snapshots of locList locations as well (where locLists is similarly a list of lists). Then the
value is replaced into the context to continue program reduction.

In this discussion, we ignored our example test conditions’ use of the Map object,
ukmap. This value is necessary for the correct reduction of direction(), but test-mode
execution has not been explicitly provided a value to consider. Since statically analyzing
the program to identify the correct dynamically accessible value is too cost-prohibitive, we
use the execution path data from unit testing to locate the correct value where possible.
A src in the trace can be augmented with a flag during unit-test reduction that indicates
the use of the needed value, here ukmap.

Recall that during unit-test reduction, evaluating a requirement added a req flag to
a snapshot, Fig. 4. Any snapshot accessed during the test with such a flag is necessary
for the test conditions but not accessed through a parameter. At the first such access in
a unit-test reduction, the snapshot flag is removed and the trace is appended with a flag
to mark the location, (req id). Figure 10 presents method call reduction on a required
value.

Test mode reduction, using traceCheck overloaded to accept loc, collects the current
location at a req flag for use in test conditions. Thus our initial evaluation of testBranchs
for direction() cannot conclusively satisfy the given pre-condition as reduction is nec-
essary to locate the object for the hasPosition() predicate. Inconclusive pre-conditions

15

are treated as successful except when generating test reports. After reduction, if the
trace contains an ukmap bound object, the pre-condition can be re-evaluated in the post-
condition relation.

Unit test reduction does not necessarily attach an appropriate flag to a trace, despite
encountering an appropriate snapshot. The identification of the object must be conclusive
for the pre-condition check to be meaningful. Therefore, if the path taken to the object
is not clearly repeatable, the tag must not be appended. If the annotation is the unique
difference between two sub-traces of a branch point, the annotation is omitted. When
this occurs, any test condition using this binding can never be conclusively satisfied.

6 Compiling conditions

The test conditions used during test mode follow directly from the pre- and post-conditions
specified for unit testing. However, when unit-test specifications contain tested methods
that receive object parameters, contain conditions that refer to local variables, or refer
to concrete values, compilation is necessary to transform the conditions so that they can
evaluate in a different context.

During compilation we can also examine test conditions that contain non-general con-
ditions and attempt to produce an equivalent condition which is more general. Our gener-
ated conditions may reflect program behavior better than the provided unit-test condition,
as we can modify the specification based on evidence from test-mode reductions. This
can ease the transition between a developmental, exploratory test suite, including con-
crete values and results, and a rigorous, generalized test suite used for mature validation
and eventual regression testing.

6.1 Building test conditions for test mode

Some test conditions, such as those of the Map object ukmap in Section 2 rely on predicates
over the same object that is the target of the tested method—i.e. they rely on the current
object. Compiling such test conditions for test mode is trivial, replace the local variable
reference for the object to the object embedded within each snapshot.

When local bindings are used in parameter lists and test-conditions, such as the pa-
rameter in our example, compilation redirects references to the appropriate parameter
variable within the methodT body. Binding declarations for these parameters may use
inequality bindings, tying the parameter to a random value. The < specification in a
binding requires that, as a pre-condition for the test-mode execution, the actual method
parameters fit within this bound as well as any other pre-condition clauses.

Object references passed in as parameters (including the implicit this parameter)
may contain field references which specify an inexact bound on the value. For example
in the unit-test specification

requirement int timeOut < 100; requirement Map ukmap = new Map();

... ukmap.timer = timeOut ...

(!ukmap.connected) requiredBy ukmap.open() ensure (ukmap.connected)

An additional pre-condition on the form of the Map object is necessary to capture the
implicit requirement on the timer field. For such conditions, parameter checking on object

16

representations ensures that an object conforms to an abstract shape representation of
the object encountered during unit testing.

6.1.1 Abstract object representation

An object abstraction records the runtime type of the object, as well as the declared
type, and requirements for field values. The value bound to a requirement identifier is
embedded within a special req object, see Fig. 4, with a notation of the restriction for the
value. For our model, this restriction is either equality or <. When a unit-test specification
expression is reduced, Fig. 5, the →֒ relation which removes bf require wrappings and flags
from the parameters also builds an initial abstraction of objects. Numeric fields in this
abstract representation contain the relevant req wrapper.

For fields with object types, the abstract representation could contain another ab-
stract object representation recursively building another full object representation. In
many circumstances, this naive representation would collect too much information that
we may not desire (such as concrete file descriptors or irrelevant large data structures).
Instead the initial representation stores the req wrapping of the object location and we
delay further abstraction for the absObj function that runs after the method call. The
contextual information from the test conditions and the snapshot representations may
suggest unimportant information within the object.

Any fields, or subfields, which were not accessed during the execution of the method
are likely to be unimportant for the test and so do not require representation within
the abstract object. Additionally fields directly probed within the pre-conditions can
be ignored in the abstract representation, relying on the programmer’s conditions for
correctness. For an object field that is accessed but where its fields are not accessed, the
abstraction stores the runtime type and checks for non-null values.

These abstractions may still produce unwieldy representations, particularly for large
recursive data structures operated over by recursive methods. Therefore we impose a
cutoff depth for field access of n (we use n = 3 in our investigations). This cutoff is
ignored when post-condition accesses or requirement specifications require a larger depth.

6.2 Building generalized test conditions

During program development test specifications often include concrete pre- and post-
conditions, so that method calls during system execution fail to satisfy a pre-condition
of any unit test. Such unit-test specifications aid in the design and implementation of
methods. Considering a test for a method to add an element to a List

requirement List i = ...;

(i.writable()) requiredBy i.add(4) ensure (i.length == 1)

The typical reader of this specification probably concludes that add does not always set
length to 1 despite the specification, but during test-mode reduction this post-condition
will rarely succeed. Test mode should permit system-wide executions while implemen-
tations are in development to aid in incremental integration and test-based exploration.
With generalized test conditions, test mode can provide more information in these cir-
cumstances than full failure (or illegal calls in the case of pre-conditions).

17

We must take care, however, that concrete condition which do encode full correctness
are retained. To preserve these situations, when only one unit-test specification exists for
a method, no assumed conditions are generated. With more unit-test specifications, we
compare the specifications to construct a set of constraints which defines the allowable
calling contexts for the method.

6.2.1 Building numeric pre-conditions

With numeric parameters, or field values, compilation attempts to generate a set of ac-
ceptable value ranges for the method based on the observed values and any provided
pre- or post-conditions for use in an assumed condition. First we rewrite the set of test
conditions into a canonical logical form to identify uses of the same identifier within the
test conditions. Then we consider each numeric value in turn.

We refer to the variable under consideration as r. Each condition using r contains the
value for r used during evaluation of that condition and each condition can examine the
trace for references to r. We sort the values of r from lowest to highest, including any
uses in pre-conditions with inequality operations. The assumption is made that each test
specification illustrates a branching point in the tested method.

If the smallest value for r is below an inequality specification value, then the equality
condition is retained. Otherwise, the bottom value is used as a potential upper-bound to
the minimum represented number. Similarly if the largest value for r is above an inequal-
ity specification, the equality is treated as a strict upper-bound without modifications,
otherwise an inequality predicate is generated as a lower-bound to the maximum repre-
sented number. The other cases select the arithmetic mean. If r is fixed for the tests,
then no generalization occurs.

Traces for the different test specifications are also analyzed. When multiple test spec-
ifications have followed isomorphic traces, these specifications are considered together
before applying the values for r in the over all ranking. If r varied during these execu-
tions, then a range is established for these test specifications that encompasses all numbers
encountered.

All generalized conditions are tagged, with the original condition retained, for use
during test-mode reduction. During test mode, the result of generated conditions is less
conclusive than those written by the programmer. Since the condition may not fully
reflect the correctness condition, success and failure are not clear. Modifications to the
pre-condition based on observed behavior may be necessary when the condition passes
but the generated trace does not match, or the post-condition fails. The current trace is
compared to other test specification traces for the method; if a match is found, the new r
is used to refine the pre-condition and a path success occurs. When no conditions based
on r succeed, the traces are considered and r is used to generalize the pre-condition for
any matching trace.

When a generated condition is used within test mode, the test result includes the
generalized pre-condition used. This can aid the programmer in inserting the condition
into the test specification.

18

6.2.2 Generalizing object abstractions

Conditions for numeric fields within an object abstraction can be easily generalized fol-
lowing the same strategy outlined above. Further generalizations can be made to build
acceptable sets of object types which are subtypes of the declared type for a field.

7 Nested test conditions and temporal properties

At the end of Section 2, we introduced nested unit-test specification expressions with an
example that opened a socket in the pre-condition, used the socket during the method,
then closed it afterwards. Such test specifications can be used to represent temporal safety
and (some forms of) liveness properties. In unit-test reduction, the unit-test specification
expressions in the pre- and post-conditions simply call the specified methods. Test mode
reduction cannot call these methods; their side-effects may alter the semantics of the
program.

Instead, any test specification expression within a pre- or post-condition clause is lifted
from the enclosing expression during compilation. In its place we insert a call to check a
stored result of evaluating the unit-test specification. For a pre-condition, this call uses a
unique identifier in the appropriate condResults table of a snapShotDef, Fig. 8, to extract
a result. For a post-condition, this call must delay resolution of the post-condition until
(conservatively) program termination, when a similar unique identifier can be used.

In the context of our example, when the open method is called for an object, the result
of the test condition is stored in the condResults table of the Map class. The table uses
a unique identifier, generated during compilation for the test specification, and the loc of
the current object to retrieve the condition. When running the method findPath, we use
the location and identifier to retrieve the result from the table; if no entry is found the
pre-condition fails. The post-condition produces an inconclusive result to be checked at
program termination; at this point, if close for the object has not been evaluated with
a successful result, the test fails. The location portion of the key is obtained through the
same mechanisms we employ to access any object used in a test condition.

In a real implementation, we do not advocate storing all objects in the test results
while executing the program. Updates could be encoded as call backs that resolve the
post-condition as soon as the test is conducted.

Once a stored condition is evaluated, the result may never be recalculated. Thus if the
post-conditions of a nested pre-condition are no longer valid when accessed, our semantics
will not catch this program error. Further specification constraints can ensure that such
conditions are rechecked if necessary to eliminate inaccurate results.

8 Correctness and Bounds

Our technique for deriving system test results relies on modifying the operational se-
mantics of both unit-test execution and program evaluation. We now provide evidence
that these modifications do not alter the result of program reduction. Additionally, our
techniques store program traces and additional data from test executions; we show that
this collection process is bounded in the complexity of the program and will not generate
unlimited data.

19

8.1 Testing does not interfere with program correctness

Each of our three operational semantics evaluate programs in the presence of a store; there-
fore to consider whether our testing semantics respect the intention of the programmer,
we must consider whether two stores contain the same values. Stores map generated loca-
tions to object values, where the new operation selects any location that is not presently
used within the store. There is no guarantee that any of the semantic rules select the
same location when running equivalent new operations, and we do not wish to impose
such a restriction on the store representation as this would not model an implementa-
tion. Instead, we track the program-order of evaluation of new expressions and create a
mapping of locations to this program order using tags.

Definition 8.1. Isomorphic store

store ∼= store ′ iff i = j ∧ heap ∼= heap ′

where store = i.heap, store ′ = j.heap ′

and

heap ∼= heap′ iff

∀loci, locj. i = j ∧ (store(loci) : (cid fieldVals))⇒

store ′(locj) : (cid fieldVals ′)∧

(∃loc′. (store ′(loc′) : (snapshot cid fieldTable locList locj)∧

reset(fieldTable, locList , locj , store
′))⇒ fieldVals ∼= fieldVals ′)

and
n = m ∧ fieldVals ∼= fieldVals ′

(fid locn)fieldVals ∼= (fid locm)fieldVals ′

fieldVals ∼= fieldVals ′

(fid primVal)fieldVals ∼= (fid primVal)fieldVals ′

In each semantics, the store counter is increased only when extending the store with
an additional location due to the evaluation of a new expression. And only these locations
are tagged with the counter of their program order; no operational rule inspects the tag of
a location so evaluation is not dependent on these tags. Store isomorphism relies on the
reset function to update snapshot field values, which might contain cycles. The reset

implementation updates the snapshot objects referred to by the locListbefore committing
the updates of the current fieldTable. If a field wrote to a loc containing a snapshot,
then reset extracts the snapshot’s embedded loc ′ and stores this reference in fid for the
object. We rely on a ∀ to reset the referenced snapshot; thus avoiding cycles.

We can show that two programs that begin with isomorphic stores reduce to two new
states which also have isomorphic stores. We use the following definitions to show that
test-mode reduction preserves the meaning of a program.

Definition 8.2. reduce = 〈prog, store〉

Definition 8.3. testMode = 〈progC , storet, traces, testRs〉

20

The test mode program, progC , and the original program, prog, are related by ∼ when
the defs and expr of the unreduced progC are textually equivalent to the corresponding
portions of the unreduced prog.

Definition 8.4. Test mode Equivalence

reduce ≈ testMode ⇒

if prog.expr = primVal ∧ progC .expr ′ = primVal ∧ store ∼= store t

if prog.expr = loci ∧ progC .expr ′ = locj ∧ i = j ∧ store ∼= storet

if reduce → reduce ′ ∧ prog ∼ progC ∧ store ∼= store t

then ∃testMode ′. testMode→→T testMode ′ ∧ reduce ′ ≈ testMode ′

if testMode →T testMode ′ ∧ store ∼= storet

then ∃reduce ′. reduce→→reduce ′ ∧ reduce ′ ≈ testMode ′

Theorem 8.1. reduce ≈ testMode is a weak bi-simulation.
Proof sketch by co-induction on → and →T

Most cases follow trivially. The test mode semantics rules for most expressions and
statements erase traces and testRs from the current state and apply the→ reduction. By
inspection we know that no rules except new reduction increment or use the store counter.
Both relations rely on the same evaluation context grammar, which we use to show the
program order is preserved; thus a loc introduced by either new rule is tagged with i.

Interesting cases arise with field accesses and method calls.
For a field read through a snapshot at loc, we generate store ′ by committing storet.

storet
∼= store, so fid from loc ′ in store ′ (where loc ′ is the embedded location for loc) is

isomorphic to field with → in store. By the definition of commit, the value read from
storet is equal to that read from store ′. Field modification follows similarly. Both rely on
lemma for commit showing that committing retains only the last modification of a field
and does not omit any modified fields.

Method calls in test mode use multiple relations before and after invoking the method
body, the sole action of→ method call reduction. Each relation requires a lemma proving
that the resulting store is isomorphic to the original store and that primitive values are
preserved. These follow a straightforward induction on their respective relations. Both
method calls reduce in the same number of statement reductions from the body.

Definition 8.5. reduceE = 〈E[expr], store〉

Definition 8.6. unitTest = 〈E[expr], storeu, trace〉

Definition 8.7. Unit test Equivalence

reduceE ≈u unitTest ⇒

if expr ∈ primVal ∧ expr ′ ∈ primVal ⇒ expr = expr ′ ∧ store ∼= storeu

if expr = loci ∧ expr ′ = locj ⇒ i = j ∧ store ∼= storeu

if reduceE → reduceE ′ ∧ store ∼= storeu

then ∃unitTest ′. unitTest→→uunitTest ′ ∧ reduceE ′ ≈u unitTest ′

if unitTest →u unitTest ′ ∧ store ∼= storeu

then ∃reduceE ′. reduceE→→reduceE ′ ∧ reduceE ′ ≈ unitTest ′

21

Theorem 8.2. reduceE ≈u unitTest is a weak bi-simulation.
Proof sketch by co-induction on → and →u

This proof is similar to test-mode equivalence. However, for →u to begin reduction
with an isomorphic storeu, all object allocation for the test call must occur within →u

and not within the test specification. This can be achieved by creating an auxiliary
object that builds the necessary data and supplies the properly annotated locations to
the test specification expression. This does not reflect standard test development practice,
but could be generated through an encoding of non-conforming programs. With a more
flexible store isomorphism, we believe this restriction would not be necessary.

8.2 Trace complexity

Trace size can impact performance and data use, so restricting the growth of a trace
increases the likelihood that a test execution will not negatively impact the ability of
the program to run in a reasonable time and available space. As discussed previously,
traces are reduced to limit the size of the data structure required and provide a flexible
representation of the traversed program while retaining the correctness of the program
flow. We use cyclomatic complexity [15] of the program as a bound on the size of our
trace collection.

Definition 8.8. Cyclomatic complexity[15]
Let G be the control-flow graph of the program, N be the nodes or basic blocks of G,

E be the number of edges or branching points of G, and P be the connected components
of G.

Then M , the cyclomatic complexity of the program, is M = E −N + 2P .

Used in coverage analysis [20], cyclomatic complexity represents the number of distinct
program paths in a program that a test suite achieving full coverage must follow. Note
that our trace representation is also a graph of the basic blocks and branches within a
program, where each src depicts an edge of the graph.

Theorem 8.3. Trace upper bound
If g = controlFlowGraph(mid) ∧ 〈E[loc.mid()], store, ǫ〉→→u〈E[value], store ′, t〉 then

cyclomatic(t) ≤ cyclomatic(g)
Proof sketch by induction on structure of method.

8.3 Required value identification

Since we use trace annotations to recover traditionally unreachable objects, from the
perspective of the method caller, we require confirmation that the annotation leads to a
single value accessed at a uniquely distinguishable position. To gain this confidence, we
examine the creation of the trace and its subsequent structure to establish the uniqueness
of the annotation.

Theorem 8.4. Unique introduction of req

〈E[expr .mid()], store, ǫ〉→→u〈E[value], store ′, trace〉 ∧ (req id) ∈ trace ⇒ trace =
trace ′ : src(req id) : trace ′′ ∧ (req id) /∈ trace ′ ∪ trace ′′

22

Proof sketch by induction on →u.
flatten(trace ′) = t⇒ stepsTo(t, (req id)) == stepsTo(trace ′, (req id))
Proof sketch by induction over trace structure.

The first property demonstrates that if a (req id) annotation exists, then one, and
only one, annotation for id is collected in a trace.

The flatten operation reduces iterations in a trace that can be construed as “counting”
the times around the loop. The req annotation must exist along a path that can be
generally repeated and identified, and cannot specify the nth identical iteration of a loop
to extract the value (as the value of n may vary on different executions). If the number of
steps taken to the annotation on both the flattened and original trace are the same, then
we must be traversing a unique path through the program and can identify the value.

9 Implementation

The semantics of Section 5 presents a view of test mode with little consideration of per-
formance and other practical issues. In making a realistic implementation, performance
and code-rewriting concerns require conservative optimizations. An implementation may
not be able to report the theoretical maximum test errors when test overhead degrades
performance unacceptably. However, with a flexible implementation, the performance
degradation versus test results can be adjusted for differing systems and testing require-
ments by limiting the completeness of traces and the depth of object abstractions.

9.1 Representing snapshots and redirecting method calls

The snapshot class definitions presented in Fig. 8, which provide test-counterparts to
method definitions, can be represented as classes which extend the tested class and over-
ride the specified methods. This follows the strategy we used previously in implementing
transactional support for imperative methods. A call to an overridden method that con-
tains test information must perform the semantic equivalent of callTM reduction for
test mode.

The method body for test-mode snapshots calls a test engine representation which
stores the pre-conditions for each method in a data base, and returns a set of accesses for
the relevant post-conditions and required values. Each parameter, the embedded object,
and any static variables known to be accessed by the method must have its snapshot
nesting increased by one. Then the actual called method is invoked with the protected
parameters and embedded object. After a successful return, the post-conditions selected
by the test engine are checked through an appropriate method call, and the current nesting
level of the transactions is committed before the value (where appropriate) is returned.

A Java method may not terminate naturally, and may instead be prematurely ter-
minated with exceptions. We do not represent exceptions in the model to simplify the
presentation, however this control flow change can be supported by our techniques. When
exceptions may occur, we wrap the method call in a try block; since runtime exceptions
are always possible, we pessimistically always require a try block. The commit for the
method must occur in a finally block, to ensure that modifications are preserved for sub-
sequent use. In our full post-condition specification language, we allow programmers to

23

check for exceptions as outlined in our previous work [11]. Only those post-conditions
from the selected set containing these specifications are checked within the catch block of
the expected exception. Each catch block must re-throw the exception.

In our unit-test implementation, we injected all objects into a snapshot at the method
call boundaries for the tested method, or on their first read through an existing snapshot.
For test mode, we can either perform this lazy building of snapshots, where nesting may
first require inserting the object into a snapshot, or we can redirect constructor calls using
an aspect-like rewriting of the program.

Super method calls, which do not dispatch through an object, may not therefore
encounter test-method redirection. This must be solved by injecting an appropriate redi-
rection through an aspect rewriting of such calls. Alternately, we must can these test calls
and allow errors arising on super call boundaries to be ignored during system integration.

9.2 Trace implementation and trapping requirements

Traces are represented as objects, instances of a Trace class, with local state and hash
tables tracking the previously visited locations. In collecting traces for the unit test,
we require a globally visible data structure to collect the current trace which can be
extracted and stored with the pre-condition. These traces must be serializable so that
they can persist across multiple executions of the program. For test mode, there is only
one trace to be collected of the program, which also must exist in a globally accessible
static variable.

For method call traces, the source location for the entry and exit points could be
controlled by the test method wrappers. However, this can cause a super call to be
skipped, as discussed above. To capture branching behavior and super calls, we must
insert calls to the tracing utility into each method, if branch, and looping construct.
These modifications can be made through either using a test-aware compiler or on-the-fly
rewriting of the byte codes.

In our theoretical model, upon entering a loop we stored the different (previously un-
seen) paths taken on each repetition. This may be too high a storage complexity for some
programs. To optimize this situation, we can switch to more standard coverage storage
within a loop or recursive method while retaining path information externally. However,
this optimization reduces the percentage of required variables that can be identified with
tracing and reduces the number of conclusive successful tests; so the optimization may be
undesirable.

As in the operational semantics, variables declared with a requirement attribute are
embedded into a specialized snapshot representation. For each required variable that
is not a parameter, field of a parameter or static variable, we generate a requirement
snapshot class that extends the appropriate snapshot class. These classes override each
of the methods and field accessors in the snapshot to pass a flag, with an identifier, to
the global trace object which identifies the access, when a local flag indicates this has not
occurred before. After passing the access to the trace object, the local flag is set to false.
The trace stores the located object and the identifier with the current position.

Upon reaching this position again during test-mode execution, the trace captures the
current value and stores it for access during the post-condition execution. Each call to
the trace object must provide an instance of the current object for all instance methods

24

to accommodate retrieving accessible values.

10 Related work: tests vs contracts

With pre- and post-condition validation combined with program execution, our system is
reminiscent of traditional contract systems[17, 2, 5]. Influenced by test-driven develop-
ment, we treat tests as a tool for exploring and guiding program development as well as
validating correctness. Test executions are a distinct phase of development and execution,
and tests are not part of the program. As such, test-mode execution differs from contract
and assertion systems in four main ways.

A series of unit-test specifications express a conjunction of atomic Floyd-Hoare formu-
lae: {P1}c{Q1} ∧ · · · {Pn}c{Qn}. However, many contract specifications are limited to a
single pre- and post-condition pair (a notable exception is Ciao Prolog [16]). The above
conjunction can be weakened to the Floyd-Hoare formula {P1 ∨Pn}c{Q1 ∨Qn}, but with
reduced expressivity as the relationship between Pi and Qi is now lost; this weakening
risks missing bugs identified by the original unit tests.

Contracts, though used to aid testing [4, 1], expect conditions to be clearly satisfied
and typically halt execution if assertions fail. Although this identifies the source of sys-
tem integration errors, such as those discussed in our introductory example, halting the
program limits the amount of information to guide further development. If the program
produces a valid result for the end user despite failing test specifications, then the pro-
grammers can determine if the test suite is in error instead of assuming the program does
not work.

Since test-mode execution is not part of standard system execution, it is acceptable
for tests to negatively impact performance to gather more information. And with tests
existing outside the program, the test specification language will not impact existing pro-
grams or program deployment. Contracts and assertions must typically consider tradeoffs
between increased costs and improved safety. The performance and memory overheads of
transactional snapshots and trace-based correctness assessments may not be acceptable
outside of a dedicated test-execution environment.

Finally, contracts and assertions evaluate correctness conditions immediately. As we
show in Section 7, test specifications do not require this immediacy and thus can be used
to gather non-localized correctness information.

Contracts can also be attached to individual objects or functions [7, 8]. These correct-
ness properties are linked only to the particular value, not to the method definition. This
usage of contracts is dissimilar to test specifications, which seek more general guarantees.

10.1 Other related work

Traditional coverage-based testing analysis [10] provides a metric for test quality. How-
ever, these metrics only identify untested paths in the program and do not consider the
quality of a test otherwise. Even with full test coverage, errors can arise in system inte-
gration due to insufficient specifications in the co-operating unit tests.

Tools that examine execution paths during development can guide programmers in
creating sufficient specifications [19, 13]. However, while these techniques help identify the
specifications necessary for covering the program and satisfying the correctness conditions,

25

they do not demonstrate where correctness conditions are insufficient in an integrated
system. By combining our approach with a similar technique to consider execution paths
in an assisted environment, it may be possible to provide greater support for exploratory
development with continuous condition checking.

11 Conclusions

The prevalence of unit testing and importance of test-driven development in building
reliable software is growing. Yet bugs can be obscured by incorrect or non-exhaustive
test specifications that build false confidence in the sub-systems of a program. With
test mode, we expand the utility of unit tests to uncover software bugs and explore the
reliability of system integration.

Our design and formalization lay the ground work for building stronger tools for test
development. TestJava gives programmers a formal language for specifying test specifi-
cations without modifying existing test development strategies, and test mode provides
greater confidence from unit tests along with information to assist in writing more rigor-
ous correctness conditions. Test mode and test-mode equivalence also demonstrate that
test executions can safely capture and defer program behavior without loss of confidence
in the results.

While our model lacks real-world programming constructs such as exceptions and
arrays, these features do not require significant modifications to the evaluation and data-
capturing constructs we describe here. Extending support for multi-threaded programs
should benefit from our prevalent use of transactions, but will require more work to
properly specify correctness. In our forthcoming implementation, we add support for
more specifications than represented here, including allowing predicates in requirement
specifications as well as universal quantification over types, with concrete values optionally
specified.

References

[1] M. Barnett, M. Fähndrich, P. de Halleux, F. Logozzo, and N. Tillman. Exploiting
the synergy between automated-test-generation and programming-by-contract. In
ICSE, 2009.

[2] D. Bartezko, C. Fischer, M. Moller, and H. Wehrheim. Jass — Java with assertions.
In Workshop on Runtime Verification, 2001.

[3] K. Beck. Simple smalltalk testing with patterns. The Smalltalk Report, 1994.

[4] Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The
JML and JUnit way. In Proc. ECOOP, 2002.

[5] L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime assertion
checking in software development. ACM Software Engineering Notes, 31, 2006.

[6] S. Drossopoulou, S. Eisenbach, and S. Khurshid. Is the Java type system sound?
Theory and Practice of Object Systems, 5, 1999.

26

[7] R. B. Findler and M. Felleisen. Contract soundness for object-oriented languages. In
Proc. OOPSLA, 2001.

[8] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In Proc. ACM
International Conference on Functional Programming, Oct. 2002.

[9] M. Flatt, S. Krishnamurthi, and M. Felleisen. A Programmer’s Reduction Semantics
for Classes and Mixins. In Formal Syntax and Semantics of Java, volume 1523 of
LNCS. Springer, 1999.

[10] C. Gaston and D. Seifert. Evaluating Coverage Based Testing, chapter 11. Springer,
2005.

[11] K. E. Gray and A. Mycroft. Logical testing: Hoare-style specification meets exe-
cutable validation. In FASE, 2009.

[12] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal Core Calculus
for Java and GJ. In Proc. OOPSLA, 1999.

[13] L. Jiang and Z. Su. Profile-guided program simplification for effective testing and
analysis. In Proc. ACM Conference on Foundations of Software Engineering, 2008.

[14] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A Notation for Detailed Design,
chapter 12. Kluwer, 1999.

[15] T. J. McCabe. A complexity measure. IEEE Trans on Software Engineering, SE-2,
1976.

[16] E. Mera, P. Lopez-Garćıa, and M. Hermenegildo. Integrating software testing and
run-time checking in an assertion verification framework. In Intern. Conf. on Logic
Programming, 2009.

[17] D. S. Rosenblum. A practical approach to programming with assertions. IEEE Trans.
on Software Engineering, 21, 1995.

[18] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnǐsa.
Ott: effective tool support for the working semanticist. In Proc. ACM International
Conference on Functional Programming, 2007.

[19] N. Tillmann and J. de Halleux. Pex – white box test generation for .NET. In Tests
and Proofs, 2008.

[20] A. H. Watson and T. J. McCabe. Structured testing: A testing methodology using
cyclomatic complexity metric. In NIST Special Publication 500-235, 1996.

27

