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Abstract

Two main technologies are available to design and represent freeform surfaces: Non-
Uniform Rational B-Splines (NURBS) and subdivision surfaces. Both representations
are built on uniform B-splines, but they extend this foundation in incompatible ways,
and different industries have therefore established a preference for one representation
over the other. NURBS are the dominant standard for Computer-Aided Design, while
subdivision surfaces are popular for applications in animation and entertainment.
However there are benefits of subdivision surfaces (arbitrary topology) which would
be useful within Computer-Aided Design, and features of NURBS (arbitrary degree
and non-uniform parametrisations) which would make good additions to current
subdivision surfaces.

I present NURBS-compatible subdivision surfaces, which combine topological
freedom with the ability to represent any existing NURBS surface exactly. Subdivi-
sion schemes that extend either non-uniform or general-degree B-spline surfaces have
appeared before, but this dissertation presents the first surfaces able to handle both
challenges simultaneously. To achieve this I develop a novel factorisation of knot
insertion rules for non-uniform, general-degree B-splines.

Many subdivision surfaces have poor second-order behaviour near singularities.
I show that it is possible to bound the curvatures of the general-degree subdivision
surfaces created using my factorisation. Bounded-curvature surfaces have previously
been created by ‘tuning’ uniform low-degree subdivision schemes; this dissertation
shows that general-degree schemes can be tuned in a similar way. As a result, I present
the first general-degree subdivision schemes with bounded curvature at singularities.

Previous subdivision schemes, both uniform and non-uniform, have inserted knots
indiscriminately, but the factorised knot insertion algorithm I describe in this disserta-
tion grants the flexibility to insert knots selectively. I exploit this flexibility to preserve
convexity in highly non-uniform configurations, and to create locally uniform regions
in place of non-uniform knot intervals. When coupled with bounded-curvature modifi-
cations, these techniques give the first non-uniform subdivision schemes with bounded
curvature.

I conclude by combining these results to present NURBS-compatible subdivision
surfaces: arbitrary-topology, non-uniform and general-degree surfaces which guarantee
high-quality second-order surface properties.
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1Introduction

This dissertation is concerned with the design of freeform surfaces. These surfaces are typically
smooth, but also have a shape which can be controlled by a designer. They are therefore more
flexible than surfaces such as the natural quadrics (spheres, planes, circular cylinders and cones),
but can also be smoother than surfaces which are formed as a composition of smaller primitives.
Freeform surfaces have become increasingly important over the last fifty years, and are now used
in fields as diverse as automotive and aeronautical engineering, ship-building, consumer product
design, animated films and special effects, and even architecture and sculpture (see Figure 1.1).

One of the key challenges for Computer-Aided Design (CAD) is to provide ways of designing
and representing freeform surfaces. In other words, to take some instructions from a designer that
specify a shape, and then generate a smooth surface that meets the specification. The designer can

© Todd Randall Jordan (see page 6 for details)

Figure 1.1: The ‘Cloud Gate’ sculpture in Millennium Park, Chicago. This is a freeform surface which has
been physically realised in highly-reflective metal, highlighting the smoothness of the surface.
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1. Introduction

Figure 1.2: Example NURBS surface. NURBS and subdivision surfaces are both designed using an interface
where the smooth surface (shown here in blue) approximates a given control mesh (in red).

specify a shape in several ways, but one that has become popular is using control points connected
together as a mesh (see Figure 1.2). The designed surface approximates the given control mesh,
whilst guaranteeing a certain level of smoothness. In some cases the required level of smoothness
can also be part of the surface specification. For freeform surfaces which are designed in this way,
there are two main competing representations: Non-Uniform Rational B-Splines (NURBS) and
subdivision surfaces.

1.1NURBS and subdivision surfaces

Both of these representations were first described in the late 1970s, and are now mature technolo-
gies which are used extensively in current applications. However, they were developed to offer
a designer different freedoms. In short, NURBS offer control over the surface parametrisation
and smoothness, while subdivision surfaces give freedom from topological constraints (see Chap-
ter 2 for details). This has led different industries to establish a preference for one of the two
representations; NURBS are the dominant standard for CAD and engineering applications, while
subdivision surfaces are very popular for use in films and computer games.

Subdivision surfaces did not become widely used until the 1990s, by which time NURBS were
already established as the industry standard for CAD. For purposes such as character anima-
tion [20], however, subdivision surfaces provide significant gains over a NURBS representation,
as they remove the need for time-consuming ‘stitching’ of separate surface patches. It is therefore
natural to ask whether CAD applications could also benefit from using subdivision surfaces. In
fields such as product design, the need for the flexibility of subdivision has only grown more
urgent in recent years, as products have taken on smoother and more freeform shapes.

Unfortunately, subdivision surfaces present an unwelcome compatibility hurdle for CAD
vendors. In contrast to the younger entertainment industry, CAD packages must provide access
to a huge volume of existing and historical data, almost all of which uses NURBS to represent
freeform surfaces. Until the work described in this dissertation, however, subdivision surfaces

16



1.2. An arbitrary topology superset of NURBS

Biquadratic and bicubic
uniform B-spline surfaces

NURBS
Subdivision

surfaces

NURBS-compatible
subdivision surfaces

Figure 1.3: The incompatibility between NURBS and existing subdivision surfaces. In this figure arrows
represent subset relations, showing that NURBS and the most popular subdivision schemes extend
uniform biquadratic and bicubic B-splines in different ways. This dissertation describes NURBS-
compatible subdivision surfaces, the first superset of NURBS without topological constraints.

have always been incompatible with NURBS, by which I mean that they are unable to represent
a general NURBS surface without approximation. We can visualise this incompatibility by
considering the class of surfaces which are contained in both representations (see Figure 1.3):
existing subdivision surfaces are a superset (providing added flexibility) of only a subset of NURBS
(in general the uniform, low-degree subset).

1.2An arbitrary topology superset of NURBS

This dissertation shows that the compatibility hurdle can be overcome, by demonstrating a way to
construct NURBS-compatible subdivision surfaces. This is a class of surfaces that contains NURBS
as a proper subset, and can therefore represent any existing NURBS surface exactly. However,
the new surfaces are also free of topological constraints, which is the key flexibility enabled by
a subdivision surface representation. In discussing the potential for subdivision surfaces within
CAD, Ma [48] anticipates exactly this development:

“Ultimately a further generalization like NURBS for the CAD and graphics com-
munity and further standardization are expected. Such a unified generalization
should cover all what [sic] we can do with NURBS, including the exact definition
of regular shapes such as sphere, cylinder, cone, and various general conical shapes
and rotational geometry.”

There are two main respects in which subdivision surfaces have failed to represent the full
generality of NURBS:

• they are uniform, rather than the more general non-uniform, and

• they are not defined for arbitrary degree.

17



1. Introduction

These therefore become the two main challenges for us to overcome in constructing NURBS-
compatible subdivision surfaces. In addition to Ma, Gonsor and Neamtu [32] explore the
usefulness of subdivision to CAD, and their conclusions include a call for subdivision surfaces
that allow non-uniform parametrisations. The work described here is therefore rooted firmly in
the demands of industry.

1.3Thesis

The fine detail of a standardised subdivision representation, such as the one that Ma expects, may
not match the schemes in this dissertation. Indeed, there are likely to be several places where this
new representation requires further analysis and research. However, I will demonstrate that

• it is possible to create subdivision schemes that generalise NURBS, thereby extending
NURBS to arbitrary topologies, and that

• the generalisation can produce surfaces with a similar quality to the state of the art in
subdivision representations.

Apart from presenting a solution to current problems in industry, I believe the generalisation
is also interesting from a theoretical point of view. NURBS and subdivision surfaces have existed
for over thirty years and have their foundations in exactly the same B-spline theory, but this work
is the first time we are able to combine, comprehensively, the benefits of the two. In addition to
this unification I also make the following contributions:

• a new factorisation of non-uniform B-spline knot insertion rules (§3.3): the first such
factorisation to allow selective knot insertion,

• a new understanding of the link between the subdominant eigenvalue of a bounded-
curvature subdivision scheme and the influence that an extraordinary vertex exerts on the
limit surface (§5.5),

• a hypothesis proposing a connection between the stability of a subdivision scheme’s natural
configuration, and the quality of surfaces produced by that scheme (§5.3),

• the first arbitrary-degree subdivision schemes with bounded curvature (Chapter 5),

• a strategy for inserting knots into non-uniform subdivision surfaces (§4.3) which, when
combined with the previous result, gives the first non-uniform subdivision schemes with
bounded curvature.

These contributions draw heavily on previous work, in particular where subdivision schemes have
made a step towards NURBS-compatibility by tackling each of the main challenges from §1.2
separately. In the next chapter I describe the B-spline background, and the previous work, in
greater detail.
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2Background

This chapter describes the invention of NURBS and subdivision surfaces, starting from the common
foundation of B-splines. Despite the importance of B-splines, the development of these surface
representations is still only a small part of the history of CAD. For a broader view of this history,
see Farin’s summary [26].

2.1B-splines

The word ‘spline’ originally referred to a thin strip of wood which was controlled using heavy
spline weights (see Figure 2.1). To specify a particular curve, a designer used the weights to
force points along the spline to pass through certain positions. The resistance of the spline to
this deformation produces a smooth curve: the shape with minimal bending energy given the
constraints set by the weights. This curve could then be traced onto a design lying underneath the
whole arrangement.

Even before the computerisation of this type of design work, there were many applications for
mathematical methods to smoothly interpolate data, just as the traditional spline interpolates the
positions set by the spline weights. Schumaker [86] provides several references to early work in

© Edson International (see page 6 for details)

Figure 2.1: A traditional spline used for drawing smooth curves. The wooden spline is bent into shape using
spline weights.

19



2. Background

Degree 1
Degree 2
Degree 3
Degree 4
Degree 5
Degree 6

Figure 2.2: Uniform B-spline basis functions from degree 1 to 6. As degree increases, the basis functions
become smoother and have a larger support, but each basis function still has only local influence
over a curve or surface.

this field. However, Schoenberg [85] was the first to explicitly draw the analogy with a wooden
spline when he coined the name ‘B-spline’ to stand for basis spline. Schoenberg used this name
to refer to a class of basis functions (see Figure 2.2 for some examples), which can be linearly
combined to form a smooth spline function. In fact within CAD, ‘B-spline’ has come to refer to
an element in the span of this basis, which means we have to use the redundant name ‘B-spline
basis’ for the basis itself.

B-splines are piecewise polynomial1: they consist of separate sections of polynomial joined
together at positions called knots. The joins are constructed to be as smooth as possible: degree
d B-splines have d − 1 continuous derivatives across each knot. Given these constraints, the
basis functions are uniquely defined by the property of minimal support (see, e.g. de Boor [16]),
which in practice means that they make it possible to construct a long, smooth curve while still
allowing a designer to modify only a small region at a time. This property is known as local
control. As computers started to be used for the design of curves and surfaces, the smoothness and
support properties made B-splines the subject of considerable theoretical interest. Local control,
for example, was not available from the Bézier-Bernstein basis which was also popular at the time.
However, B-splines were initially difficult to use in practical applications because the available
evaluation algorithms were numerically unstable. Cox [13] and de Boor [14] independently
addressed this shortcoming by providing a stable evaluation algorithm which bears their names,
and Riesenfeld [72] recognised that this allowed B-splines to become a powerful method for
representing freeform shapes.

Within CAD, B-splines are used to construct parametric1 curves and surfaces, which is far
more flexible than using functions defined directly on an axis line or plane. We therefore obtain a
shape as a function φ : Rp → Rn where p is equal to 1 for curves and 2 for surfaces. Each basis
function is associated with a coefficient in Rn, and the resulting position in space is known as a

1Ramshaw [67] points out that each of the adjectives parametric, piecewise and polynomial represents a design
decision which can be separately motivated.
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2.1. B-splines

1

(a) The uniform case. Here each basis function is an
identical translated copy of all the others.

1

(b) An example non-uniform case. In this example every
basis function is unique.

Figure 2.3: Cubic B-spline basis functions for two different knot vectors. Figure 2.4 shows example B-spline
curves defined on these bases.

(a) The uniform case. (b) An example non-uniform case.

Figure 2.4: Cubic B-splines using the same control points, but two different knot vectors. Each B-spline
consists of two segments of cubic polynomial. The basis functions associated with the control
points are shown in Figure 2.3.

control point. This setup gives a mathematical framework for designing smooth shapes where,
in the curve case, the control points act as a close analogue of the traditional spline weights.
The main difference is that, in general, the resulting shapes approximate their control points
rather than interpolate them. This can be motivated by the fact that B-splines hold desirable
mathematical properties, such as possessing non-negative basis functions, which are not available
to interpolating splines.

2.1.1Knot vectors: uniform and non-uniform

The collection of knots for a B-spline is known as its knot vector. To continue the analogy with a
wooden spline, this corresponds to the list of positions for spline weights when measured along
the spline. A non-uniform B-spline can have these knots almost arbitrarily positioned, whereas
for a uniform B-spline, they must be equally spaced. All knot vectors with equal spacing are shifts
and scales of each other. The effect of shifting or scaling every knot is to transform the parameter
space which is used as the domain of φ, but has no effect on its image, and describing a B-spline
as uniform is therefore sufficient to characterise its knot vector completely. Figure 2.3 shows
example uniform and non-uniform B-spline bases.

Non-uniform knot vectors are useful for several practical applications. In Figure 2.4(b), for
example, non-uniform knots have been used to make a B-spline interpolate its control polygon’s
end points. This setup is popular as it allows a designer to accurately position a B-spline’s
boundary, but the required knot vector uses multiple (i.e. coincident) knots, which is only possible
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2. Background

Figure 2.5: Chaikin’s algorithm to construct a uniform quadratic B-spline. Each step of Chaikin’s algorithm
‘cuts the corners’ of the control polygon. This figure shows three steps of Chaikin’s algorithm
followed by the limit curve: a uniform quadratic B-spline.

with a non-uniform knot vector. Multiple knots can also be used in the interior of a curve or
surface, where the result is that continuity is reduced (by a specified amount) at a particular
knot. Non-uniform knot vectors also allow a parametrisation to be more evenly distributed
over freeform geometry, by allocating larger amounts of parameter space to longer sections of
a curve or surface. This can be important when fitting B-splines to measured values which are
not evenly spaced [58]. In a similar way, where short-wavelength features are created as part of
a long-wavelength shape, the representation is more efficient and more easily modifiable if the
control mesh is denser in areas of greater curvature variation. In this case, higher quality results
are obtained by using a non-uniform knot vector that respects the control mesh spacing [32].

2.1.2NURBS

By the 1970s, CAD was an important part of the design process used in industry, but there
was no standardised representation for freeform curves and surfaces. This made it difficult to
transfer designs between different systems. Boeing, for example, used two systems with completely
incompatible representations: one based on B-splines and the other based on conic sections [26].
This could make it frustratingly difficult for different parts of a design team to work together.

Versprille [97] noticed that rational B-splines provided a way of unifying the majority of
these different representations, as rational polynomials are able to reproduce conic sections
without approximation. His ideas were developed by Piegl and Tiller [95] and the unification
became known as NURBS: ‘Non-Uniform Rational B-Splines’. NURBS were therefore created
for the same reason as their generalisation described in this dissertation: to bring a wide range of
freeform surfaces together in a standard representation. This vision was fulfilled, as IGES (the
‘Initial Graphics Exchange Specification’) made NURBS the lingua franca for freeform curves and
surfaces in 1983 [57].
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2.2. Uniform subdivision surfaces

2.1.3Uniform B-spline subdivision

Just as B-splines were starting to find their place within CAD, Chaikin [11] found a fresh way of
generating and analysing them. He showed that a tangent-continuous freeform curve could be
generated from a control polygon by a recursive ‘corner cutting’ procedure (Figure 2.5) which,
unknown to Chaikin, de Rham [19] had investigated nearly thirty years earlier. Riesenfeld [73]
and Forrest realised that this process generated a uniform quadratic B-spline, which was already
well understood. However, Chaikin’s fresh perspective was that these curves, which held useful
properties, could be generated without any reference to the closed-form representation at all.

In fact the subsequent analysis showed that Chaikin’s algorithm was generating the familiar
control polygons for a given B-spline curve, but on a denser set of knots at each iteration. It
became clear that inserting knots into a B-spline knot vector resulted in simple geometric rules
that found a new control polygon from the existing one, and that it was possible to use the limit
of this sequence of polygons as a way of defining the curve itself. This was immediately useful for
practical applications, and is the idea that launched subdivision surfaces several years later (§2.2).

2.1.4Knot insertion

Once Chaikin had shown that uniform B-splines could be subdivided, increasing the density of
knots in the knot vector, there was a natural gap for the same result on non-uniform B-splines.
This problem became known as ‘knot insertion’, but could equally be called ‘non-uniform B-spline
subdivision’, as it is completely analogous to the uniform case. Furthermore, these non-uniform
knot insertion rules are the foundation of non-uniform subdivision surfaces (§2.3), just as the
uniform knot insertion rules (§2.1.3) are the starting point for the creation of uniform subdivision
surfaces (§2.2).

Given a control polygon, a knot vector and a refined knot vector, a knot insertion algorithm
returns the new control polygon that defines exactly the same B-spline but on the denser knot
vector. This problem was tackled several times in different ways: Sablonniere [82] showed how
to compute the required change of basis in specific scenarios, and Boehm’s algorithm [8] allows
one knot to be inserted at a time using a minimal amount of computation [9]. Cohen et al.
independently developed the Oslo algorithm [12], which considers the general case where an
arbitrary number of knots are inserted at once.

2.2Uniform subdivision surfaces

The previous section described how B-splines, with associated tools like knot insertion, came to be
the dominant standard for freeform curves and surfaces. The main remaining sticking point was
that B-spline surfaces are topologically limited. The generalisation from B-spline curves to surfaces
uses a tensor-product construction, resulting in a rectangular parameter space and a surface which
is topologically equivalent to a plane (e.g. Figure 1.2). Closing (i.e. looping) the parameter space
makes it possible to create a surface that is topologically an open cylinder or a torus, but a single
B-spline patch cannot represent a surface of any higher genus.

This nullifies one of the main advantages of B-splines: the ability to handle large surfaces that
would require separate pieces using the earlier technologies of the conic section or Bézier basis.
The limitation on B-spline topology means that multiple patches are needed to represent surfaces
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2. Background

Figure 2.6: A variant of Catmull-Clark subdivision acting on a cube. This figure shows the control mesh after
the first three subdivision steps, and the smooth limit surface.

of the complexity which is required in practice. Where separate B-spline surfaces meet, they must
be manually ‘stitched’ together, and the seams do not have the same continuity guarantees which B-
splines provide for the rest of the surface. In the specific cases where the surfaces have compatible
knot vectors, these guarantees can instead be achieved by careful positioning of the control points
on either side of each seam. However, numerical inaccuracy means that the composite surfaces
are often not even continuous at the seams, let alone smooth.

The popularity of subdivision surfaces stems from their ability to remove these topological
limitations. This section gives an overview of the key developments in this field; for a more
comprehensive history see Sabin [76].

2.2.1Generalising knot insertion

Subdivision surfaces work by viewing knot insertion as the primary definition of a surface, which
is exactly the idea behind Chaikin’s algorithm (§2.1.3). This means that the surface is defined by
an iterative process; a control mesh is replaced with a denser mesh by calculating new points as a
function of the old points2. This denser mesh is subdivided in turn, and the infinite sequence of
meshes converges to a smooth limit surface (see Figure 2.6): the subdivision surface defined by the
original control mesh.

It might seem at first that we have not gained anything by using this definition. If the function
that calculates new points from old ones uses the subdivision rules derived from B-spline knot
insertion, for example, then we already know an analytic form of the limit surface; at each step,
knot insertion gives the control mesh for exactly the same B-spline surface as we started with,
just on a denser knot vector. However, the freedom we have introduced is that we can allow the
subdivision rules to vary where the connectivity of the control mesh differs from the regular case.
Allowing irregular connectivity is the key to creating surfaces of arbitrary topology.

We can therefore understand subdivision schemes in terms of two properties:

• the rules that are used to insert points where the mesh is regular (which are often derived
from knot insertion),

• how those rules are generalised to allow for meshes with irregular connectivity.

The first of these is the most important for understanding the broad behaviour of a scheme, and
the rest of this section introduces subdivision schemes for important types of regular refinement.
We shall consider the second property more carefully in Chapters 4 and 5.

2For the majority of subdivision schemes this function is linear in the control points, but nonlinear subdivision is
also an active area of research. See, for example, Sabin and Dodgson [80], Wallner and Dyn [99], Schaefer et al. [84]
and Dyn et al. [23]. In this dissertation, however, I focus exclusively on the linear setting.
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2.2. Uniform subdivision surfaces

© Blender Foundation (see page 6 for details)

Figure 2.7: Animated characters created using Catmull-Clark subdivision surfaces.

2.2.2Schemes based on B-splines

The first subdivision surfaces generalised knot insertion rules for a simple but important class
of B-splines: those defined on uniform knot vectors, for low degrees. Doo [22] was the first to
consider modifications to Chaikin’s algorithm to create uniform biquadratic subdivision surfaces,
and Catmull and Clark [10] considered similar modifications to knot insertion rules for uniform
bicubic B-splines (Figure 2.6). At the same time, Doo and Sabin [21] described how subdivision
surfaces can be analysed using diagonalisation, so these early subdivision schemes became known
as ‘Catmull-Clark’ and ‘Doo-Sabin’.

Subdivision surfaces remained largely an academic curiosity for nearly two decades, but
the late 1990s saw a surge of interest because the size of computer memories and the speed of
processors made it tractable to compute the subdivided control meshes directly3. Subdivision
surfaces were also used in a successful high-profile experiment at Pixar by De Rose et al. [20],
which resulted in Pixar converting all their modelling and animation tools to use a subdivision
surface representation [106]. Other animation companies soon followed, and Catmull-Clark
subdivision surfaces are now the standard representation for animated characters used in films
(Figure 2.7).

2.2.3Schemes not based on B-splines

The Doo-Sabin and Catmull-Clark subdivision schemes are based on tensor-product B-splines and
therefore operate on quadrilateral meshes. They refine a control mesh as shown in Figures 2.8(a)

3In fact as a result of the increased interest in subdivision, Stam [90] showed that subdivision surfaces can be
evaluated efficiently (without an exponential cost), so this explanation now appears spurious. However, computational
considerations were widely believed to count against subdivision surfaces before Stam’s insight.
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2. Background

and (b) respectively. Nearly ten years after these first schemes were introduced, Loop [46] filled a
natural gap for a subdivision scheme which instead uses triangular control meshes. The refinement
pattern for Loop’s scheme is shown in Figure 2.8(e), and Dyn et al. [25] used the same type of
refinement to create the first surface subdivision scheme where the limit surface interpolates a
given control mesh rather than approximating it.

Catmull-Clark and Loop continue to be the most important subdivision schemes for use in
practice; both create surfaces that are C2 continuous apart from isolated singularities which arise
from irregularities in the control mesh , where both schemes are C1. It might appear that these
early schemes cover the feasible space of regular grid refinement, but researchers have also found
interesting subdivision schemes with refinement patterns that incorporate a rotation of the grid
directions. In particular, this includes the Simplest scheme by Peters and Reif [53], the

√
3 scheme

by Kobbelt [41] and the 4-8 scheme by Velho and Zorin [96].
The schemes shown in Figures 2.8(c) to (f) are based on a variety of surface types: Loop,

Simplest and 4-8 all generalise knot insertion rules for box splines, a class of smooth functions
which is closely related to B-splines4. The Butterfly scheme generalises an important interpolatory
subdivision scheme for curves [24], and the

√
3 scheme creates a novel surface with C2 continuity

in regular regions but a fractal support for each basis function [35]. However, none of these
surfaces can be represented by NURBS, so no modifications to these schemes would be able to
create NURBS-compatible subdivision surfaces. In §2.2.4 and the rest of this dissertation, we
return to subdivision schemes that generalise tensor-product B-splines.

2.2.4Refine and smooth

At the same time as the first research on knot insertion (§2.1.4), which produced the Oslo
algorithm [12] and Boehm’s algorithm [8] for inserting knots into non-uniform B-splines, Lane and
Riesenfeld [42] showed that in a specific uniform case, knot insertion is susceptible to an important
and useful factorisation. Consider Chaikin’s algorithm, which is a special case of the Lane-
Riesenfeld algorithm, and which we can write as

P2i =
3
4

Qi +
1
4

Qi+1 , P2i+1 =
1
4

Qi +
3
4

Qi+1 for i ∈ Z

Here a new set of points Pi is constructed from the old set Qi. Lane and Riesenfeld showed that
this calculation can be broken into two stages:

P1
2i = Qi , P1

2i+1 =
1
2

Qi +
1
2

Qi+1 (2.1)

followed by

P2
i =

1
2

P1
i +

1
2

P1
i+1

In fact by replacing this last expression with the recurrence

Pd+1
i =

1
2

Pd
i +

1
2

Pd
i+1 (2.2)

the Lane-Riesenfeld algorithm can compute a uniform subdivision step, that inserts a new knot
into the centre of every existing knot interval, for B-splines of any degree d. Taubin [94] called

4The ‘4-3’ scheme by Peters and Shiue [55] is also based on box splines.
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2.2. Uniform subdivision surfaces

(a) Doo-Sabin [21]. (b) Catmull-Clark [10]. (c) Simplest [53]. (d) 4-8 [96].

(e) Loop [46], Butterfly [25]. (f)
√

3 [41].

Figure 2.8: Regular refinement patterns for important subdivision schemes. Original edges are drawn in
black where they form part of the refined pattern, or in grey where they do not.

these refinement and smoothing stages5 and Vouga and Goldman [98], among others, note that
the refinement stage (2.1) can be replaced by

P0
2i = Qi , P0

2i+1 = Qi

since (2.1) is then given by one application of the smoothing stage (2.2).
The Lane-Riesenfeld algorithm is a very efficient way of inserting knots in this uniform, global

case; for tensor-product surfaces, unfactorised knot insertion has complexity quadratic in degree,
whereas computation required for the Lane-Riesenfeld algorithm grows only linearly. However,
for subdivision surfaces that allow irregular control meshes, the fact that the Lane-Riesenfeld
algorithm keeps all computation local also confers an important benefit. The generalisation to
irregular connectivity discussed in §2.2.1 requires that we consider all possible mesh configurations,
and without the Lane-Riesenfeld algorithm the number of cases to consider grows exponentially
with degree. By using repeated applications of the fixed-width affine combination given in (2.2),
however, the number of special cases is kept constant.

Several researchers have created arbitrary-degree subdivision surfaces by generalising the
Lane-Riesenfeld algorithm and making use of this property. Prautzsch [62] and Warren and
Weimer [103] described the natural ‘midpoint’ generalisation, and Zorin and Schröder [105]
showed that the resulting subdivision surfaces are C1 at singularities for degrees ≤ 9. Stam [91]
and Stewart and Foisy [93] addressed some practical considerations by describing variants where
the topology of the mesh is invariant under smoothing, and Prautzsch and Chen [63] proved C1

5Taubin [94] actually uses the terms refinement and smoothing steps, while other researchers (e.g. Bajaj et al. [4])
have called the same operations ‘splitting’ and ‘averaging’ rules. I follow Taubin’s terminology, except for calling the
factorised components stages to distinguish them from the subdivision step that they are part of.
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2. Background

continuity at all degrees ≥ 2. In regular regions, all of these schemes generate tensor-product
B-splines of any specified degree d, and are therefore Cd−1.

2.3Non-uniform subdivision surfaces

By supporting arbitrary-topology surfaces, subdivision schemes remove the need for the error-
prone ‘stitching’ of B-spline patches discussed in §2.2. However, the schemes that I have discussed
so far can only do so in the limited context of a uniform parametrisation. These schemes therefore
have none of the benefits of non-uniform knot vectors described in §2.1.1. NURBS, on the other
hand, do support non-uniform parametrisations, and so any method purporting to remove the
need for NURBS stitching must also be able to represent non-uniform B-splines.

Some researchers have analysed non-uniform subdivision schemes which are capable of gen-
erating not only the B-splines, but also a wide class of other curves. De Boor [15], for example,
proved convergence for an arbitrary ‘corner cutting’ procedure, and Gregory and Qu [33] gave
conditions that produce smooth (C1) curves from the same general framework. Warren [102]
pushed this even further, to consider Ck continuity for arbitrary k. However, we do not need this
level of generality for compatibility with NURBS, and knot insertion for non-uniform B-splines is
already well understood (§2.1.4). The difficulty lies in generalising these knot insertion rules to
surfaces defined on irregular meshes: exactly the question raised in §2.2.1.

2.3.1NURSS

Sederberg et al. [89] were the first to describe non-uniform subdivision surfaces that tackle this
problem, using schemes they named ‘NURSS’: Non-Uniform Recursive Subdivision Surfaces.
They gave knot insertion rules that specialise to the Doo-Sabin and Catmull-Clark rules in the
uniform case, but can also represent non-uniform biquadratic or bicubic B-splines exactly. Qin and
Wang [66] pointed out that the resulting subdivision surfaces have some shortcomings around
vertices with high valency6, at least for the biquadratic case, but Wang et al. [100, 101] attempted
to provide efficient evaluation methods for the NURSS schemes nevertheless. Müller et al. [51] also
addressed evaluation of a non-uniform Catmull-Clark scheme by using a different generalisation,
which makes it possible to evaluate the limit surface of their scheme at any given vertex.

Sederberg et al. [88] developed the NURSS construction even further by allowing a control
mesh to contain T-junctions. They called the resulting surfaces T-splines. Like the work in this
dissertation and the earlier NURSS, T-splines maintain backwards-compatibility with NURBS [87],
but T-junctions are not necessary for that compatibility as they are not supported by NURBS. In
fact the combination with T-splines required a restriction on the NURSS knot vectors (see §4.1
for details), but compatibility with bicubic NURBS was, again, unaffected by this restriction.

2.3.2Specialised applications

Karčiauskas and Peters [39] also created a non-uniform scheme for subdivision surfaces, but for a
very specific purpose: modifying the speed at which the subdivision process converges towards an
extraordinary vertex. Their scheme is otherwise identical to Catmull-Clark, in the regular regions
of the surface, and is therefore able to represent only uniform B-splines.

6The valency of a vertex is the number of edges connected to it.
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NURBS

NUBS

UBS

Low-degree
NUBS

Low-degree
UBS

1978 Catmull-Clark [10]
1978 Doo-Sabin [21]

1998 NURSS [89]
2003 Müller et al. [51]

1998 Prautzsch [62]
2001 Warren and Weimer [103]
2001 Zorin and Schröder [105], 2001 Stam [91]
2004 Stewart and Foisy [93]
2009 Prautzsch and Chen [63]

Non-uniform, high-degree
subdivision surfaces

NURBS-compatible
subdivision surfaces

Quadratic
and cubic

General
degree

Regular surfaces Subdivision surfaces

Figure 2.9: An overview of subdivision surfaces based on B-splines. This diagram shows classes of surfaces
with subset relations between them (where represents⊂). The acronym NURBS is shortened
to NUBS: ‘Non-Uniform B-Splines’ and UBS: ‘Uniform B-Splines’. No previous subdivision
scheme provides an arbitrary-topology superset of NURBS.

2.4Summary
Figure 2.9 summarises the relationships between the main subdivision schemes that generalise
B-spline surfaces. The diagram shows that all previous subdivision schemes have provided a
superset (allowing arbitrary topology) of only a subset of NURBS (a subset that is restricted to be
uniform, or low degree, or both). This dissertation, by contrast, introduces NURBS-compatible
subdivision surfaces: the first arbitrary-topology superset of NURBS. The two main barriers to
achieving this are:

• non-uniform parametrisations, and

• providing a general-degree representation.

These challenges have been tackled separately in previous work, but a superset of NURBS must
incorporate both at the same time. The other requirement for a superset of NURBS is a rational
representation (see §2.1.2), but this is straightforward [89]: rational control points can be
projected into R4, subdivided, and then projected back into R3. The following chapters therefore
address the two main challenges, above, by describing a subdivision scheme that can handle them
both simultaneously.
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3Non-uniform refine and smooth

This chapter presents research that has also been published in the following papers:

T. J. Cashman, N. A. Dodgson and M. A. Sabin. Selective knot insertion for symmetric,
non-uniform refine and smooth B-spline subdivision. Computer Aided Geometric
Design, 26(4):472–479, 2009.

T. J. Cashman, N. A. Dodgson and M. A. Sabin. A symmetric, non-uniform, refine
and smooth subdivision algorithm for general degree B-splines. Computer Aided
Geometric Design, 26(1):94–104, 2009.

T. J. Cashman, N. A. Dodgson and M. A. Sabin. Non-uniform B-Spline Subdivision
Using Refine and Smooth. In 12th IMA Conference on the Mathematics of Surfaces,
volume 4647 of Lecture Notes in Computer Science, pages 121–137. Springer, 2007.

The rules for subdivision surfaces are derived from knot insertion (§2.2.1), and NURBS-compatible
subdivision surfaces must be both non-uniform and defined for arbitrary degree. The rules for
NURBS-compatible schemes must therefore generalise non-uniform general-degree B-spline knot
insertion. This is exactly the work described in §2.1.4: both Boehm [8] and the Oslo algorithm [12]
give rules for B-spline knot insertion in this general setting.

However, recall from §2.2.4 that for high degrees, it is not feasible to use an unfactorised knot
insertion algorithm directly, as there are too many mesh configurations to consider; the number of
cases grows exponentially with degree. A refine-and-smooth factorisation keeps this number of
cases constant, and is more efficient: for surfaces, the computation required for knot insertion rises
quadratically with degree for unfactorised algorithms but linearly for refine and smooth. To create
non-uniform general-degree subdivision schemes, a refine-and-smooth factorisation is therefore
essential. Other subdivision schemes based on arbitrary-degree B-splines [62, 63, 91, 93, 103, 105]
generalise the Lane-Riesenfeld algorithm [42], but this is restricted to uniform knot insertion.
For a scheme that can represent all NURBS surfaces, and hence must handle non-uniform knot
vectors, we need a similar refine-and-smooth factorisation but for non-uniform knot insertion.

Previous work has tackled this problem for specific non-uniform configurations. Goldman and
Warren [30] modified the Lane-Riesenfeld algorithm for knots in geometric sequence (whereas a
uniform knot vector has knots in arithmetic sequence), and Plonka [60] found a factorisation for
knots at uniform positions but with a given multiplicity. However, we need an algorithm that is
not restricted to any specific arrangement of knots. This is the problem I address in this chapter.

3.1Limitations and requirements

Before attempting to find a non-uniform analogue of the Lane-Riesenfeld algorithm, we need to
establish our requirements for the factorisation. This is important, as this section will show that a
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3. Non-uniform refine and smooth

natural set of expectations from the uniform case leads to an overconstrained problem, and we
must therefore impose fewer properties on the non-uniform algorithm than in the uniform case.
First I define the notation that we will need to describe these requirements precisely.

We have a B-spline of degree d that we wish to subdivide. The B-spline is defined by its knot
vector, t, and its control points. We must specify a new knot vector u for the subdivided version,
and the knot insertion algorithm then determines the location of the new control points. Let the
subdivision matrix of degree d that transforms B-splines on t into B-splines on u be Sd. Knot
insertion is simply a change of basis [47], and if Bn,d,γ(x) is the nth B-spline basis function of
degree d on knot vector γ, then Sd is the basis transformation matrix that gives the co-ordinates
of each B j,d,t(x) relative to the Bi,d,u(x):

B j,d,t(x) = ∑
i

Sd
i jBi,d,u(x).

A knot insertion algorithm therefore calculates new control points as a weighted sum of existing
control points. Sd

i j is the weight7 that multiplies the jth control point in contribution to the ith
new control point.

We are seeking to preserve some properties of the Lane-Riesenfeld algorithm from the uniform
case, but will need to relax others to allow for non-uniform knot vectors. So consider the
following list of properties, all of which apply to the Lane-Riesenfeld algorithm, and which we
might consider retaining in a non-uniform analogue:

A. For any degree d, there are smoothing matrices M0, M1, . . . , Md−1 such that

Sd = Md−1 Md−2 . . . M0 S0.

B. Furthermore, for each 0 < δ < d, Mδ−1 Mδ−2 . . . M0 S0 = Sδ.

C. Each M is a band matrix of bandwidth two.

Although these three properties apply in the uniform case, there is an immediate problem in
applying them to a non-uniform analogue, which is the phase shift in a knot vector when d
changes from odd to even or vice versa. When d is odd (the primal case), control points are aligned
with knots, but when d is even (the dual case), control points are aligned with knot intervals. So to
be meaningful for non-uniform knot vectors, we must amend these properties to stay in either the
primal or dual case respectively. We can do so by combining pairs of smoothing stages together:

A. For any degree d, there are smoothing matrices Nd mod 2, N2+d mod 2 . . . , Nd−2 such that

Sd = Nd−2 Nd−4 . . . Nd mod 2 Sd mod 2.

B. Furthermore, for each 0 < δ < d such that d− δ is even,

Nδ−2 Nδ−4 . . . Nδ mod 2 Sδ mod 2 = Sδ .

C. Each N is a band matrix of bandwidth three.

7The original description of the Oslo algorithm [12] uses the notation α jk(i) for Sk−1
i j .
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Of these, properties A and C are important for the factorisation to be useful: A states that the
algorithm must compute the same knot insertion result as the unfactorised algorithm, and C gives
the local affine combinations that were the reason for seeking a factorisation in the first place.
Property B is less crucial, but is nevertheless an elegant property of the Lane-Riesenfeld algorithm
that we might hope to maintain in a non-uniform analogue. This property states that to compute
knot insertion for quintic B-splines, for example, we first compute the linear case (d = 1), and
then the cubic (d = 3), and finally the control points for the quintic case (d = 5).

To study the implications of property B, consider a very limited case: knot insertion on a
uniform knot vector, but with one new knot positioned arbitrarily in each knot interval. Let ri

give the position of the new knot in the interval [ ti ti+1 ], i.e. ri = (u2i+1 − ti)/(ti+1 − ti) and let
ri = 1− ri. Then the section of S3 which computes the three points centred around u2i+1 is

s̃3 =
1
6


(1 + ri−1)ri 4 + 2ri−1ri ri−1(1 + ri) 0

0 2 + 2ri 2 + 2ri 0

0 (1 + ri)ri+1 4 + 2riri+1 ri(1 + ri+1)


Property B requires that N3 takes an affine combination of these three rows to form a single

row of S5:

s̃5 =
1
60

(
(2 + ri−1)×
(1 + ri)ri+1

3(ri−1riri+1 + riri+1 +
2ri−1 + 2ri + 2ri+1 + 6)

3(ri−1riri+1 + ri−1ri +
2ri−1 + 2ri + 2ri+1 + 6)

(2 + ri+1)×
(1 + ri)ri−1

)

That is, we require N3 to have a 1× 3 block ñ such that s̃5 = ñs̃3 and ∑i ñi = 1.
In this case, ñ is fixed by the pattern of zeros in s̃3: ñ1 must be s̃5

1/s̃3
11 and ñ3 must be

s̃5
4/s̃3

34. The remaining coefficient, ñ2, is then determined by the requirement for ñ to be an affine
combination. It is not guaranteed, however, that this value for ñ will indeed give s̃5 = ñs̃3. If we
examine either the second or the third column (if the relationship holds for one then it must also
for the other, since all rows sum to 1), then we find the following restriction on the ri:

4r3
i − 3r2

i (ri−1 + 1 + ri+1) + 2ri(2ri−1 + 1 + ri−1ri+1)− ri−1ri+1 − 2ri−1 = 0 (3.1)

Therefore if a factorisation satisfies property B, then in this case setting the position of two new
knots, which fixes ri−1 and ri, means that ri+1 is already determined as the solution to (3.1). This
constraint is shown in Figure 3.1, which shows that for some values of (ri−1, ri), ri+1 is not merely
fixed, but has no solution at all such that 0 ≤ ri+1 ≤ 1.

This simple example shows that we should not expect to be able to maintain property B in the
non-uniform case. In Chapter 4, we will need the flexibility to be able to insert knots at any given
position, and this example shows that property B is too tight a constraint for this level of freedom.
The remainder of this chapter therefore considers non-uniform analogues of the Lane-Riesenfeld
algorithm which hold only properties A and C of the three.

3.2Polar form

A powerful tool for analysing B-splines is the polar form or ‘blossom’. This form will prove
instrumental in finding a refine-and-smooth factorisation of non-uniform B-spline knot insertion.
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Figure 3.1: The constraints placed by property B on quintic knot insertion. This contour plot shows the value
of ri+1, as constrained by ri−1 and ri, if we seek a non-uniform refine-and-smooth factorisation
that preserves property B from page 32. The shaded region gives 0 ≤ ri+1 ≤ 1 and therefore
shows the possible values for (ri−1, ri) for a factorisation which is constrained in this way.

B(4)
B(7)

B(8)
B(9)

B(13)
B(15)

b(1, 3, 4)

b(3, 4, 7) b(4, 7, 8)

b(7, 8, 9)

b(8, 9, 13)

b(9, 13, 15) b(13, 15, 16)

b(15, 16, 19)

Figure 3.2: The polar form of a B-spline. This figure shows a cubic non-uniform B-spline, B, defined on the
knot vector [1, 3, 4, 7, 8, 9, 13, 15, 16, 19]. The control points are given by the polar form, b,
where the arguments (of which there are three, because B is cubic) are consecutive values from
the knot vector.
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3.2. Polar form

The term blossom was introduced by Ramshaw [67], who described many implications of viewing
a polynomial with this framework, although he later discovered [68] that both de Casteljau [18]
and de Boor [17] had independently arrived at the same concept.

Vouga and Goldman [98] provide the following summary. The polar form of a degree-d
polynomial B(t) is the unique polynomial in d variables8 b(v1, v2, . . . , vd) which satisfies these
three properties:

• symmetric:
b(vσ1, vσ2, . . . , vσd) = b(v1, v2, . . . , vd) for any permutation, σ , of {1, 2, . . . , d}.

• multiaffine:
b((1−α)v11 +αv12, v2, . . . , vd) = (1−α)b(v11, v2, . . . , vd) +αb(v12, v2, . . . , vd).

• diagonal:
b(t, t, . . . , t) = B(t).

As a consequence of satisfying these three properties, the polar form also holds the property
illustrated in Figure 3.2: if Pi is the ith control point of a B-spline B(t) with knot vector t, then
Pi = b(ti+1, . . . , ti+d). Vouga and Goldman [98] called this the dual function property, as it can
be derived [43] using the dual functionals developed by de Boor and Fix [16].

3.2.1Knot insertion

The polar form allows us to reduce B-spline knot insertion to a graph reachability problem. We
have a set of starting nodes: the control points of a B-spline. By the dual function property, these
points are given by the polar form evaluated on consecutive knots in the original knot vector t.
We also have a set of end nodes: the control points of the same B-spline, but on a subdivided
knot vector. Again, using the dual function property, we know that these points are given by the
polar form evaluated on consecutive knots in the refined knot vector u. Using the multiaffine
property we can combine any two nodes which share d− 1 polar arguments to generate new
nodes which evaluate the polar form at new positions. The symmetry property means that it does
not matter which d− 1 arguments are shared. The goal of this process is to provide a path, by
taking multiaffine combinations, from the start to the end nodes.

Goldman [31] shows that many knot insertion algorithms (including Boehm’s algorithm [8]
and the Oslo algorithm [12]) fit into this common framework. The polar form is not the only
way of deriving knot insertion rules, however: Vouga and Goldman [98] show that in general the
Lane-Riesenfeld algorithm does not take a path through polar evaluations in the way described
above. The polar form has, nevertheless, proved to be a useful and powerful way to analyse knot
insertion, particularly in the non-uniform case.

3.2.2Schaefer’s algorithm

We are now ready to return to the problem posed at the start of this chapter: finding a refine-
and-smooth factorisation of knot insertion rules for non-uniform general-degree B-splines. We
know that we should not expect the factorisation to hold property B from §3.1, and the polar

8Ramshaw [68] introduced the term polar arguments for the d values at which a polar form is evaluated.
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3. Non-uniform refine and smooth

?

?

Figure 3.3: The need for a symmetric algorithm. An asymmetric algorithm requires a consistent orientation
for mesh edges, but this is impossible to achieve for some vertex valencies. In this example, no
orientation for the red edge is consistent with its parallel edges.

form provides us with a framework in which to search for a solution. In fact Schaefer and
Goldman [83] recently described a knot insertion algorithm, derived using the polar form, which
fits this specification exactly. However, Schaefer’s algorithm is asymmetric: smoothing stages are
dependent on the direction in which control points are indexed. The process of knot insertion
is independent of this direction, and therefore so is the end result of this factorisation. Using
Schaefer’s approach, however, the results of intermediate smoothing stages are dependent on an
arbitrary orientation.

To operate directly on a mesh, Schaefer’s algorithm therefore requires each edge to have an
orientation which is consistent with parallel edges. Figure 3.3 shows this is not possible to achieve
for a mesh with arbitrary connectivity. In addition to the requirements we found in §3.1, we
therefore need to add one more: the factorisation must be symmetric (independent of orientation),
so that it is unaffected by this orientation problem.

3.3Symmetric algorithm
The remainder of this chapter describes my solution to this set of requirements. The algorithm
I developed has the additional benefit of allowing selective knot insertion, where knots are
inserted in some knot intervals but not others. The earlier factorisations (Schaefer’s algorithm [83]
for non-uniform knot insertion, and Lane-Riesenfeld [42] for the uniform case) both require
a new knot to be inserted in every existing knot interval. Where original knots are multiple,
the subdivision process therefore increases multiplicity, which is undesirable. The factorisation
described here avoids this problem by allowing a selection of knot intervals to remain unchanged
in the subdivided B-spline.

The factorisation is described here for the univariate case, where a B-spline curve is specified
using a control polygon. For a surface controlled by a mesh with regular connectivity, the
bivariate case is simply the tensor product of the rules described here. In Chapter 4, I consider the
generalisation to surfaces with irregular connectivity.
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3.3. Symmetric algorithm

3.3.1Problem statement

As before, let B be a B-spline of degree d with a knot vector t. We want to calculate the control
points for B on a new knot vector. To provide access to all the required knots in a single object,
let u = (u j), j ∈ Z be a non-decreasing sequence that contains both the old knot vector and the
new9. u is indexed using Z, an uninterrupted interval on Z. To provide the freedom to choose
whether a new knot is inserted in any given interval, we need an explicit list of the original
knots. Therefore let Y be the indexing set for t, where Y ⊂ Z and, since t is a subsequence of u,
t = (u j), j ∈ Y. For example, if we have five knots and wish to insert knots in every interval, then
Z = {1, 2, 3, 4, 5, 6, 7, 8, 9} and Y = {1, 3, 5, 7, 9}. If, however, we did not want a new knot in
the third of the four intervals, then Z = {1, 2, 3, 4, 5, 6, 7, 8} and Y = {1, 3, 5, 6, 8}.

By allowing selective knot insertion, this formulation allows us to subdivide B with multiple
knots in t without increasing knot multiplicity. There are, however, restrictions on Y in order to
ensure that this works correctly, and there are end conditions to consider, discussion of which I
defer to §3.3.7. The restrictions on Y are:

• Y has the same bounds as Z (i.e. Y and Z are either unbounded below, or share a common
minimum, and likewise for the upper bound),

• at most one new knot is inserted between adjacent old knots (i.e. ∀ j ∈ Z \ Y, j + 1 ∈ Y
and j− 1 ∈ Y).

This general setup allows for several specific scenarios:

• to insert a knot into every non-zero knot interval: j, j + 1 ∈ Y if and only if u j = u j+1,

• to increase multiplicity: u j = uk where j ∈ Y and k /∈ Y,

• to retain a non-zero knot interval: j, j + 1 ∈ Y for u j 6= u j+1.

We can insert more than one knot in an interval by using more than one complete subdivision
step.

3.3.2Overview

Like Schaefer’s algorithm [83], this factorisation is best expressed in terms of the polar form of a
B-spline. The key idea is a recipe for the polar arguments at every point Pσ

i of every stage σ of
a refine-and-smooth algorithm. σ grows by steps of 2, so for a degree d algorithm there will be
dd/2e stages. The recipe states that the arguments should include only the new knots that fall
in a σ-sized region of u, centred at i (see Figures 3.4 and 3.5). The polar arguments outside this
region must belong to t. As σ grows to d, this region grows to include d consecutive values in the
new knot vector, and so the points Pd

i are control points on the subdivided B-spline. For example,
for even degree, at σ = 0, all knots are in t, the original knot vector. At each stage, zero, one or
two new knots are added by the process described below, until at the final stage (σ = d), all polar
arguments are uninterrupted sequences on the new knot vector, u.

9Away from boundaries, u is precisely the knot vector for the subdivided B-spline, as subdivision can only insert
knots, not remove them. At the boundaries, however, u may contain some extra knots that do not appear in the knot
vector of the subdivided B-spline. I consider this detail in §3.3.7.
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Figure 3.4: Knot insertion order for non-uniform symmetric refine and smooth. As σ increases, the polar
arguments of a point Pσ

i include all the knots in an increasing region of u. This is summarised
above for d odd (top) and d even (bottom). A new knot (k /∈ Y) is inserted when σ is equal to the
value above the knot uk. Figure 3.5 shows this process for an example where d is odd.

We can formalise this recipe by defining cenσ
i (Z) to contain the σ indices in Z centred around

i. Note that there are two cases here: either d is odd, σ is odd, and i is an element of Z. Or else
d is even and σ is even, in which case i must lie between two elements of Z, because the control
points of even-degree B-splines align with knot intervals, not with knots themselves. In either case,
we now have that the polar arguments of Pσ

i are

u j, where j ∈ cend
i (Y ∪ cenσ

i (Z)) (3.2)

See Figure 3.5 for an example of the polar arguments specified in this way as a point moves
through the sequence of smoothing stages. In §3.3.6, I show that (3.2) is a self-consistent strategy
which shares data along a polygon in the correct way, and Figures 3.8, 3.9 and 3.10 give examples
which show how adjacent points interact under this algorithm; in each case the polar arguments
of every point are specified by (3.2). First, however, I expand on this definition to show how the
algorithm can be implemented.

3.3.3The refine stage

The refine stage operates on the original control points Q and builds the sequence of points P0
i (for

even d) or P1
i (for odd d). The two cases must be handled separately so that subsequent smoothing

stages can symmetrically examine two knots at a time.

Even d

When σ = 0, cenσ
i (Z) = ∅ and so from (3.2), the polar arguments of P0

i are u j for j ∈ cend
i (Y).

But these knots are consecutive in t, and so each point in P0 is a control point on the original
B-spline. Specifically, P0

i is equal to the point in Q corresponding to the knot interval which
contains the interval indexed by i. After the refine stage, P0 therefore contains two copies of any
control points which correspond to knot intervals where knots are inserted.

Odd d

From (3.2) when σ = 1 we have that the polar arguments of each point P1
i are the d knots from t

centred around i, but including ui even if i /∈ Y. That is, the polar arguments of P1
i are

u j, where j ∈ cend
i (Y ∪ { i }) (3.3)
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ti−6 ui−5 ti−4 ui−3 ti−2 ui−1 ti ui+1 ti+2 ui+3 ti+4 ui+5 ti+6

σ = 1

σ = 3

σ = 5

σ = 7

Figure 3.5: Polar arguments for a point through the sequence of refine and smooth stages. This figure
shows subdivision at degree 7, where diamonds mark the knots which are included in the polar
arguments of Pσ

i at each stage σ . Knots denoted ti indicate that i ∈ Y, and red rectangles mark
the region cenσ

i (Z) from equation (3.2). This region indexes two additional knots in each stage
until, when σ = d, it indexes all d knots surrounding i.

There are two cases: either i ∈ Y, or i /∈ Y. If i ∈ Y, then (3.3) is again a collection of d consecutive
knots from t. For convenience, we can index the points Q such that Qi is the point corresponding
to the knot ui. Then we directly obtain P1

i = Qi.
If i /∈ Y, we need an affine combination of the two points Qi−1 and Qi+1 (note that i−1, i +1 ∈

Y because of our restrictions on Y). If α = min(cend
i−1(Y)) and δ = max(cend

i+1(Y)), then

P1
i =

uδ − ui

uδ − uα
Qi−1 +

ui − uα

uδ − uα
Qi+1. (3.4)

From the multiaffine property of the polar form, and the fact that Qi−1 and Qi+1 share d− 1
polar arguments, (3.4) inserts the knot ui as a polar argument for P1

i , as required by (3.3).
After the refine stage, P1 contains an additional point on every edge which corresponds to a

knot interval where a knot is inserted.

3.3.4A smoothing stage

Each smoothing stage produces the points Pσ from the sequence of points Pσ−2, where the polar
arguments of each point Pσ−2

i include the σ − 2 knots surrounding i. In order for each Pσ
i to

contain the correct set of polar arguments, we must take affine combinations of points in Pσ−2

to insert 0, 1, or 2 new knots. I distinguish between four possible actions, shown in Figure 3.6,
where β = min(cenσ

i (Z)) and γ = max(cenσ
i (Z)).

Where α and δ appear, they are, respectively, the least and greatest indices of the polar
arguments for a point: α = min(cend

i (Y ∪ cenσ−2
i (Z))) and δ = max(cend

i (Y ∪ cenσ−2
i (Z))).

These values can either be stored for each i, or calculated on-the-fly. The four cases are:

(a) No new knots

This action is illustrated in Figure 3.6(a). If β,γ ∈ Y, then Pσ−2
i already contains all the polar

arguments in a σ-sized region of u. We can therefore directly copy Pσ−2
i to Pσ

i .
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Figure 3.6: The four smoothing actions that form a point Pσ
i . Points are shown with their polar arguments,

and tα and tδ indicate knots uα and uδ with α,δ ∈ Y. Within each diagram, Φ denotes the same
collection of (not necessarily consecutive) knots; typically uβ and uγ will be placed somewhere in
the interior of the knots Φ. For (a), |Φ| = d. For (b) and (c), |Φ| = d− 1 and for (d), |Φ| = d− 2.

(b) New knot with index less than i

In this scenario we have γ ∈ Y but β /∈ Y. The polar arguments for Pσ−2
i therefore already

contain uγ, but we need an affine combination to insert the knot uβ. The coefficients that multiply
Pσ−2

i and Pσ−2
i+1 are shown in Figure 3.6(b).

Note that in moving from Pσ−2
i to Pσ

i , the knot that is displaced from the polar arguments
is tα: the knot with the least index. This property holds for each action in Figure 3.6; where a
knot is inserted, it replaces a knot from t on the same side of i. The replaced knot is also always
further from i than the new knot. From this, we can conclude that inserting all the new knots in a
d-sized region of u (when σ = d) results in polar arguments that are consecutive in u, which is the
condition for Pd to be the control points after subdivision.

(c) New knot with index greater than i

This action is illustrated in Figure 3.6(c), and is completely symmetrical to the previous case. Here
we have β ∈ Y but γ /∈ Y, and an affine combination of Pσ−2

i−1 and Pσ−2
i inserts the knot uγ.

(d) New knots on both sides of i

Here we have β and γ /∈ Y, and so the smoothing action must introduce both uβ and uγ into the
polar arguments for Pσ

i . The required affine combination is shown in Figure 3.6(d).
This calculation uses three points, and so in the notation of property C from page 32, the

result is a smoothing matrix with bandwidth three. However, we can factorise action (d) into
three affine combinations of two points in order to keep smoothing as local as possible. This splits
a single smoothing matrix of bandwidth three into two smoothing matrices, each of bandwidth
two. To do so, we choose a pivot, x, and replace

Pσ
i =

tδ − uγ

tδ − tα
Pσ−2

i−1 +
uγ − uβ

tδ − tα
Pσ−2

i +
uβ − tα
tδ − tα

Pσ−2
i+1
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with the calculations

D =
tδ − uγ

tδ − x
Pσ−2

i−1 +
uγ − x
tδ − x

Pσ−2
i

E =
x− uβ

x− tα
Pσ−2

i +
uβ − tα
x− tα

Pσ−2
i+1

Pσ
i =

tδ − x
tδ − tα

D +
x− tα
tδ − tα

E.

To maintain non-negative weights, x must lie between uβ and uγ. For example we could set x
equal to the mean of the knot interval indexed by i (when d is even), or ui (when d is odd).

3.3.5Examples

To illustrate the above algorithm, consider the example shown in Figure 3.7, where d = 5. I will
continue to write b(·) for the polar form of B, and use Z = {3, . . . , 17}, with

Y = 3 4 6 7 8 10 12 14 15 17
Z \Y = 5 9 11 13 16

u = 0 0 2 4 4 4 8 12 14 16 17 18 18 19 20

Since d is odd, the refine stage produces P1. Figure 3.8 shows the algorithm in full, and here I
consider two example points. 8 ∈ Y, so P1

8 = Q8 = b(u6, u7, u8, u10, u12). On the other hand,
11 /∈ Y, so P1

11 is an affine combination of Q10 and Q12:

P1
11 =

u15 − u11

u15 − u7
Q10 +

u11 − u7

u15 − u7
Q12

= b(u8, u10, u11, u12, u14)

As these two points progress through the smoothing stages, we find that

P3
8 = b(u6, u7, u8, u9, u10),

inserting u9 using the affine combination in Figure 3.6(c). Since P3
8 has polar arguments consecutive

in Z, we know that it is already a control point on the subdivided B-spline, and so inevitably P5
8 =

P3
8 as in Figure 3.6(a). For the point centred on u11, we have P3

11 = P1
11 = b(u8, u10, u11, u12, u14)

since 10, 12 ∈ Y, also using the action from Figure 3.6(a). For P5
11, however, we find that both 9

and 13 /∈ Y, so P5
11 = b(u9, u10, u11, u12, u13) using the action in Figure 3.6(d). This also results

in polar arguments with indices that are consecutive in Z, as required.
Figures 3.9 and 3.10 show the patterns that arise in the unselective case where a new knot is

inserted in every existing knot interval. Where d is odd, as in Figure 3.9, the algorithm uses only
the actions shown in Figure 3.6(a) and (d). Conversely when d is even, as in Figure 3.10, we only
require the actions shown in Figure 3.6(b) and (c).

3.3.6Proof

In §3.3.3 and §3.3.4, we considered a point Pσ
i as σ increases to d, and showed that the refine

and smooth stages result in a control point on the subdivided B-spline. So far, however, I have not
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(a) Refine stage. (b) First smoothing stage. (c) Second smoothing stage. (d) Subdivided B-spline.

Figure 3.7: An example factorisation for a non-uniform quintic B-spline with multiple knots. This figure shows the example from §3.3.5; points marked with
stars are passed to the next stage. A knot is inserted in every non-zero interval: before subdivision, the knot vector is [0, 0, 4, 4, 4, 12, 16, 18, 18,
20] and afterwards, it is [0, 2, 4, 4, 4, 8, 12, 14, 16, 17, 18] (the truncation is explained in §3.3.7).
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∂ t3t4t6t7t8 t4t6t7t8t10 t6t7t8t10t12 t7t8u9t10t12 t7t8t10t12t14 t8t10u11t12t14 t8t10t12t14t15 t10t12u13t14t15 t10t12t14t15t17 ∂
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Figure 3.8: The example from §3.3.5 in full; see Figure 3.7 for an example application. At the bottom are the input points Q, above which are P1, P3, and
finally the output P5. Points are represented as a list of arguments to the polar form b of B.
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Q3 Q5 Q7 Q9

t1t3u4t5t7 t1t3t5t7t9 t3t5u6t7t9 t3t5t7t9t11 t5t7u8t9t11

t1t3u4t5t7 t3u4t5u6t7 t3t5u6t7t9 t5u6t7u8t9 t5t7u8t9t11

t3u4t5u6t7 u4t5u6t7u8 t5u6t7u8t9

Figure 3.9: Refine-and-smooth factorisation for odd d in the unselective case. This figure shows the computa-
tion of three new points when d = 5 (quintic), ignoring end conditions.

justified the polar arguments for Pσ−2
i−1 and Pσ−2

i+1 shown in Figure 3.6. In this section I address the
omission, thereby proving that the actions described in §3.3.4 mesh together correctly as i varies
along a polygon.

Assume that the polar arguments of all points Pσ−2
i contain the σ − 2 knots surrounding

i. §3.3.4 showed that this property holds for Pσ , with a region of size σ , as long as we can
show that the polar arguments take the form shown in Figure 3.6. There is nothing to prove
for Figure 3.6(a), and we will consider just the cases in Figure 3.6(b) and (d). The proof for
Figure 3.6(c) is completely symmetrical to that for 3.6(b).

New knot with index less than i

First, note that the polar arguments for Pσ−2
i contain all the knots with indices in the range

cenσ−2
i (Z). The equivalent range for Pσ−2

i+1 is cenσ−2
i+1 (Z). These ranges overlap on σ − 3 values,

and the polar arguments of both points therefore contain the knots indexed by the overlap. At the
ends of these ranges are min(cenσ−2

i (Z)) and max(cenσ−2
i+1 (Z)), and if either of these indices is

not in Y (i.e. indexes a new knot), then that knot will not appear in the polar arguments of one
of the points. On the other hand, if both min(cenσ−2

i (Z)) and max(cenσ−2
i+1 (Z)) ∈ Y, then the

knots indexed by these values will appear in both sets of polar arguments.
Now observe that, since we are performing the action in Figure 3.6(b), we already know that

γ ∈ Y and γ = max(cenσ
i (Z)) = max(cenσ−2

i+1 (Z)). We also know that β = min(cenσ
i (Z)) /∈ Y

and so our restrictions on Y enforce that β + 1 ∈ Y and β + 1 = min(cenσ−2
i (Z)). Therefore

the polar arguments of Pσ−2
i and Pσ−2

i+1 overlap on d− 1 knots Φ, differing only in the knot with
lowest index tα, and the knot with the highest index tδ. So the polar arguments do, in fact, take
the form shown in Figure 3.6(b).

New knots on both sides of i

Here we have that β /∈ Y and γ /∈ Y. β = min(cenσ
i (Z)) ∈ cenσ−2

i−1 (Z), so uβ is certainly one of
the polar arguments for Pσ−2

i−1 . The same argument shows that uγ is a polar argument for Pσ−2
i+1 .
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3. Non-uniform refine and smooth
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Figure 3.10: Refine-and-smooth factorisation for even d in the unselective case. This figure shows the
computation of two new points when d = 6 (sextic), ignoring end conditions.

If we can show that the polar argument with minimum index is the same for Pσ−2
i−1 and Pσ−2

i ,
and that the polar argument with maximum index is the same for Pσ−2

i and Pσ−2
i+1 , then it will

necessarily follow that all three sets of polar arguments share d− 2 knots Φ.
We know from (3.2) that we can find the index of the smallest polar argument in Pσ−2

i by
selecting the 1 + (d−σ)/2 largest value in Y which is smaller than min(cenσ−2

i (Z)). Furthermore,
β = min(cenσ−2

i−1 (Z)) /∈ Y. So the sets {y ∈ Y : y < β + 1} and {y ∈ Y : y < β} are identical.
Therefore the 1 + (d−σ)/2 largest value smaller than min(cenσ−2

i−1 (Z)) is the same as that less
than min(cenσ−2

i (Z)). The polar arguments for Pσ−2
i−1 and Pσ−2

i therefore share a minimum-index
knot tα. Naturally, we can apply a symmetrical argument to show a common maximum-index
knot tδ for Pσ−2

i and Pσ−2
i+1 .

We can therefore justify the polar arguments in Figure 3.6, which validates the affine combina-
tions I used in §3.3.4 and proves that the algorithm works correctly if we are far enough from
any bounds of Z. It remains to show that the algorithm handles end conditions correctly.

3.3.7End conditions

The bounds on the domain of the B-spline (where they exist) are ua and ub, where a is the dth
smallest index in Y and b is the dth largest. Therefore any point that has polar arguments with
indices entirely below a, or above b, should be discarded so that the limit curve remains invariant.
The knot vector of B after subdivision can therefore be shorter than u. With u as in §3.3.5, for
example, we have a = 8 and b = 10, with the knot vector after subdivision {u4, . . . , u14} ⊂ u.

The domain of the B-spline also allows us to specify the number of points which must be
computed in the refine stage. For even degree, the refine stage builds P0

i , where i starts by indexing
the interval which begins at the value d/2 smallest in Y. Similarly, the final i indexes the interval
which ends at the value d/2 largest in Y. This is the largest possible range which maintains a polar
argument with index in [a b] for all points in P0. In the same way, when d is odd, i ranges from
the dd/2eth smallest index in Y to the dd/2eth largest.
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3.4. Summary

Although these definitions guarantee that points are valid in P1 or P0, we now need to establish
which points are discarded after smoothing. Each smoothing stage may, potentially, result in
another point at each end with polar arguments indexed outside of the valid range. Fortunately
there is a simple implementation which handles this complication automatically. We start by
defining a boundary marker point, ∂, and append it to the results of the refine stage. For the
example from §3.3.5, the result of the refine stage is then

{ ∂ P1
6 P1

7 P1
8 P1

9 P1
10 P1

11 P1
12 P1

13 P1
14 ∂ }.

Now we simply define an affine combination of points, (1− x)P1 + xP2 to be equal to ∂

whenever10 P1 = ∂ or P2 = ∂. For our running example, P3
14 = ∂ (see Figure 3.8), because the

affine combination used to form P3
14 takes a contribution from P1

15 = ∂. Note that this action
(shown in Figure 3.6(b)) would otherwise displace t10 from this point’s polar arguments, which
would subsequently be indexed entirely above b = 10 and so P3

14 cannot be a control point on
the subdivided B-spline. After the next smoothing stage, we similarly have P5

13 = ∂, and also note
that P5

13 is not one of the required control points.
In fact this implementation works because the actions in Figure 3.6 take a contribution from

Pσ−2
i+1 whenever the minimum index is increased (potentially above b). If Pσ

i would have polar
arguments indexed entirely above b, then the same must be true of Pσ−2

i+1 , and so Pσ−2
i+1 = ∂ gives

Pσ
i = ∂. In the same way, the actions take a contribution from Pσ−2

i−1 whenever the maximum
index in the polar arguments of Pσ

i potentially drops below a.
This factorisation therefore neatly handles multiple knots using a single framework without

any special cases. In particular, this includes Bézier end conditions (where there are knots of
multiplicity d terminating t and u), which are widely used for the boundary of B-spline curves
and surfaces.

3.4Summary

The factorisation described in §3.3 provides a solution to the problem posed at the start of this
chapter, as it allows non-uniform general-degree knot insertion to be computed using a refine-and-
smooth factorisation in the spirit of the Lane-Riesenfeld algorithm. Unlike the Lane-Riesenfeld
algorithm, the affine combinations used by smoothing stages depend on the knot values and
may therefore vary both along a polygon and between stages. Like Schaefer’s algorithm, this
factorisation also does not produce the control polygons for lower-degree B-splines as the result
of intermediate smoothing stages. §3.1 showed that this property limits the possible knot vectors,
whereas the algorithm described in §3.3 does not constrain the choice of knots. New knots may
be placed at the midpoints of existing intervals, such that the knot vector tends towards piecewise
uniformity, or using any other criteria. Furthermore, the intervals for insertion may be chosen as
well as the new knot values.

The work in this chapter therefore lays the univariate foundations for NURBS-compatible
subdivision surfaces, and is trivially extended to a tensor-product form that can be applied to
regular meshes. For irregular meshes that can contain extraordinary vertices, we need to consider
generalisations of this tensor-product form. This is the focus of Chapters 4 and 5.

10This is true for any x, including x = 0 or x = 1, as the boundaries are not affected by the values of the knots in t,
but only by their indices in Y.
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4Extraordinary vertices

This chapter presents research that has also been published in the paper:

T. J. Cashman, U. H. Augsdörfer, N. A. Dodgson and M. A. Sabin. NURBS with
Extraordinary Points: High-degree, Non-uniform, Rational Subdivision Schemes.
ACM Transactions on Graphics, 28(3):#46, 1–9, 2009.

Chapter 3 described a refine-and-smooth factorisation for B-spline knot insertion in a non-uniform,
general-degree setting. This factorisation makes it possible, for the first time, to create non-uniform
general-degree subdivision surfaces, thereby extending NURBS to arbitrary topologies. To do so,
this chapter generalises the knot insertion rules I presented in §3.3 to take account of irregular
mesh connectivity.

The refinement patterns for even- and odd-degree B-splines, shown in Figures 2.8(a) and (b)
respectively, lead to the two different types of irregularity shown in Figure 4.1. The dual refinement,
where degree is even, leads to extraordinary faces, which have fewer or greater than four edges.
The primal refinement, where degree is odd, leads to extraordinary vertices, which are connected
to fewer or greater than four edges. In both cases, the extraordinary element is preserved by each
subdivision step, and is therefore present in the limit surface as a singularity surrounded by regular
spline surface [54]. In practice, the primal case is the most important of the two, as odd degrees
are used more often than even [91]. There are several factors which contribute to this preference:

(a) Even degree. (b) Odd degree.

Figure 4.1: Example refinement patterns for irregularities in the control mesh. As in Figure 2.8, original edges
are drawn in black where they form part of the refined pattern, or in grey where they do not.
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4. Extraordinary vertices

• many applications evaluate a function of surface normals; reflections in a surface are one
example. For such first-order functionals to give a smooth result, the surface itself must be
curvature continuous, and cubic is the lowest degree at which this continuity is available.

• primal refinement aligns B-spline patches with the control mesh, which can simplify the
handling of boundaries.

• primal subdivision schemes are a better fit with graphics cards and displays, which can
seamlessly handle high-valency vertices but require many-sided polygons to be tessellated.

• designers are likely to be more familiar with the primal case from using the popular cubic
B-splines, and might therefore choose to stay in the primal setting where possible.

This chapter and the next will therefore focus solely on NURBS-compatible subdivision schemes
for odd degrees11. This dissertation does not contain a complete solution for the even-degree case,
but I describe some preliminary work on this subproblem in §6.4.

The Catmull-Clark subdivision scheme [10] generalises bicubic B-splines and therefore uses the
primal refinement pattern shown in Figure 4.1(b), which preserves extraordinary vertices rather
than extraordinary faces. However, Catmull-Clark subdivision allows extraordinary faces to be
included in a control mesh by using the first subdivision step to insert an extraordinary vertex
in the interior of each extraordinary face; the new extraordinary vertices are then preserved by
subdivision instead. Primal schemes with extraordinary faces do not fit well with the generali-
sation of knot vectors I present in §4.1, however, and also lead to inferior surface quality [92].
Furthermore, extraordinary faces are not necessary to achieve the goal of NURBS-compatible
subdivision surfaces, as NURBS control meshes use only four-sided faces, and so extraordinary
faces are not needed to represent existing NURBS surfaces exactly. Extraordinary faces are not
required to create arbitrary-topology surfaces, either, as extraordinary vertices are sufficient to
grant topological freedom. Therefore I do not consider extraordinary faces further; §6.5 describes
the future work that would be required to include them.

In summary, this dissertation makes two restrictions on NURBS-compatible subdivision
schemes, by considering only:

• subdivision at odd degrees, rather than even,

• control meshes without extraordinary faces.

As a result, the subdivision schemes use exactly the refinement pattern shown in Figure 4.1(b): the
control mesh is permitted to include extraordinary vertices, but all faces must be four-sided. This
chapter generalises the knot insertion rules described in §3.3 for control meshes of this type.

4.1Incorporating knot intervals
The knot insertion algorithm described in §3.3 requires an original knot vector and a refined
version as part of its input. In the bivariate case, we need to provide these knot vectors for each of
the two orthogonal directions in which the surface is subdivided. Before we can generalise the
knot insertion rules to irregular meshes, we therefore need a way to specify these knot vectors on
a mesh containing extraordinary vertices.

11However, the algorithm given in §4.3 is also applicable for even degrees.
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4.2. Generalised knot insertion

k1

k2

k3 k4 k5

k5
k4

k3

k6

k7

k8

k9

k10

k8

k7

k6

k10

k9

k2

k1

Figure 4.2: Local knot vectors for a mesh containing extraordinary vertices. Every face has a local knot vector
in two directions, which we can construct by following a strip of quadrilateral faces. For the
shaded face, knot spacings in the blue direction are {k1, k2, k3, k4, k5} and in the red direction
are {k6, k7, k8, k9, k10}. This example collects knot vectors at the length required for subdivision
at degree 5.

I use the same formulation as Sederberg et al. [89], which works from the observation that we
can specify the knot vector for an odd-degree B-spline curve by annotating each edge of a control
polygon with the interval between adjacent values in the knot vector. We can use the same idea to
annotate edges of the control mesh with knot intervals in the bivariate case (see Figure 4.2).

If a NURBS control mesh is annotated in this way, then the tensor-product structure of the
surface means that every quadrilateral face has equal knot intervals on opposite edges. Another
formulation of the same property is that every face occupies a rectangle in parameter space. There
have been previous attempts to create NURBS-like formalisms without this constraint. When
Sederberg et al. [89] created NURSS (§2.3.1), they removed this property and instead allowed
every edge to be annotated separately. The surfaces created by Müller et al. [51] offer the same
freedom; they call any quadrilateral that does not occupy a rectangle in parameter space an
augmented face. To create T-splines, however, Sederberg et al. [88] disallowed augmented faces in
order to permit T-junctions in a control mesh.

For a superset of NURBS, we do not need the level of generality provided by NURSS, where
every edge is allocated a separate knot interval. I therefore make the same restriction as T-splines
and NURBS: that opposite edges of a face must be annotated with equal knot spacings. The result
is that knot intervals are defined for a whole strip of quadrilateral faces rather than for a single
edge. It is possible that this restriction could be lifted by future work (see §6.5), but the experience
of Sederberg et al. suggests that it may introduce an unacceptable level of complexity to do so.

4.2Generalised knot insertion

The knot insertion algorithm from §3.3 holds property C on page 32, so each affine combination
takes contributions from direct neighbours only. We can therefore visualise the effect of a
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4. Extraordinary vertices

a b c

Pσ

Pσ+2

(a) A smoothing stage on a single control point in the
univariate knot insertion algorithm, where a + b +
c = 1. Contributions come only from the point and
its two immediate neighbours.

a b
2

b
2 c

Pσ

Pσ+2

(b) We can consider the contributions from each side
of a point separately, by using only half weights
for each of the contributions from the predecessor
point.

Figure 4.3: Calculating univariate smoothing stages one edge at a time. Each of the actions in Figure 3.6 can
be expressed in the form shown in (a), and can therefore be calculated using the four contributions
shown in (b).

(a) In regular regions. (b) Around a vertex of valency 3.

Figure 4.4: Calculating bivariate smoothing stages one face at a time. There are contributions to a vertex
from each of the surrounding faces. The weights in each face are taken from the tensor product
of Figure 4.3(b); the pairs of contributions shown in red define the influence of edge-connected
vertices and the contributions shown in blue combine to give the influence of a vertex on its
successor. In a NURBS mesh, shown in (a), these 16 weights sum to 1 and compute the same
affine combination as the tensor product of Figure 4.3(a).
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Figure 4.5: An example refine stage for degree 3. The interval k3 has a knot inserted at its midpoint and other
intervals are unmodified. The knot insertion algorithm therefore introduces vertices , along
the subdivided interval, and this figure shows the unnormalised weights used to form the central
vertex . The fractions that involve ki are from the curve case (§3.3.3), the factors of one half are
because I treat each side of each edge separately, as in Figure 4.3(b), and the multiplier, β3

5, is
required to get bounded curvature in the bivariate case, as explained in Chapter 5.
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4.3. Knot insertion strategy

smoothing stage on a single point as shown in Figure 4.3(a), although either (or both) of the
weights a and c may be zero. Figure 4.3(b) shows that we can consider the same smoothing
operation one edge at a time. This observation allows us to generalise the factorisation to
meshes that can contain extraordinary vertices, as in the surface case we can calculate the affine
combinations of smoothing stages one face at a time. The weights used in the affine combinations
are defined using the tensor product of univariate knot insertion when considered one edge at
a time, as shown in Figure 4.3(b). For a NURBS control mesh, each smoothing stage calculates
weights in the four faces surrounding a vertex, as shown in Figure 4.4(a). These weights combine
to give the tensor product of a smoothing stage in the form shown in Figure 4.3(a), as required
for NURBS knot insertion.

The same idea allows us to calculate the refine stage one face at a time, generalising the refine
stage to irregular meshes, too. Again, we have the local knot vectors described in §4.1, and need
to generalise the tensor product of the refine stage for odd degrees (§3.3.3). We must therefore
introduce vertices on existing edges and within existing faces. In the face case, the new vertex
position is given by the tensor product of univariate refinement in the two directions. In the edge
case, the two univariate contributions are split into four: two on each side of the edge. Figure 4.5
shows an example of how these contributions can be applied to a bivariate case.

Where a mesh is irregular, this generalisation leads to points where the sum of contributing
weights is not equal to one. For invariance under solid-body transformations12, however, it is
important that every combination is affine, and must therefore use weights that sum to one. Like
Augsdörfer et al. [2], we can ensure this is true by normalising each affine combination using
the sum of contributing weights. This is necessary at extraordinary vertices, since a vertex of
valency n receives 4n contributions instead of 16. The multipliers I use for bounded curvature (see
Chapter 5) make it necessary to normalise every affine combination that has a contribution from
an extraordinary vertex. Normalisation is also sometimes necessary along the rays which emanate
from extraordinary vertices, because the two sides of the ray can use different knot vectors. It is
therefore easiest to normalise every affine combination, regardless of position in the mesh. This
also handles faces with more than one extraordinary corner without special cases, making it easier
to implement the scheme.

4.3Knot insertion strategy

Combining the knot insertion algorithm described in §3.3 and its generalisation in §4.2 with local
knot vectors from §4.1, we are able to create non-uniform general-degree subdivision schemes,
thus tackling the two main challenges described in §2.4. For regular meshes, inserting knots
with the resulting framework is identical to NURBS knot insertion, and therefore produces a
NURBS limit surface13. As knot insertion is a local operation, the same is true at any region of a
control mesh that is far enough from extraordinary vertices to be isolated from their effect. In
these regions the NURBS limit surface is unique, and is therefore independent of the sequence of
inserted knots.

12Invariance under solid-body transformations is usually the motivation for taking only affine combinations, but
doing so actually grants invariance under all affine transformations, including shears.

13Under knot insertion a regular mesh will converge to the NURBS surface, which has a known closed form, if the
limiting collection of knots is dense in the parameter space. This is true for any reasonable knot insertion strategy.
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4. Extraordinary vertices

(a) Projection of the control mesh onto the xy-plane. All z co-ordinates are zero apart from the single
point , which is elevated. All knot intervals have the same size apart from the interval assigned to the
edges drawn in red, which is fifty times larger than the others.

(b) Overview. (c) Closer view of the ‘fold’ on the left-hand side of (b).

Figure 4.6: Failure of the direct midpoint knot insertion strategy. This degree 5 surface was generated using
the control mesh shown in (a) by inserting knots into the midpoint of every interval. This results
in an undesirable fold in the surface. See Figure 4.7 for an improved result, created using the
knot insertion strategy described in §4.3.

(a) Overview. (b) A similar view to Figure 4.6(c).

Figure 4.7: Removing the problem highlighted by Figure 4.6. This degree 5 surface was defined using the
control mesh shown in Figure 4.6(a), but using the knot insertion strategy described in §4.3. The
resulting surface is convex, like the control mesh.
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4.3. Knot insertion strategy

Figure 4.8: Knot vectors can be independent of knot intervals in vertex-connected faces. Two knot vectors
are used to position the new point ; the red knot vector is calculated from the knot intervals
assigned to the edges drawn in red, and the blue knot vector from the knot intervals assigned
to the edges drawn in blue. The point is therefore positioned independently of the large knot
interval to the right of the extraordinary vertex, where the strip of edges is drawn in green. This
creates the problem shown in Figure 4.6 if knots are inserted in the centre of every knot interval.

Around extraordinary vertices, however, the limit surface is created as a result of generalised
knot insertion: it is not known in advance. The sequence in which knots are inserted is therefore
important. Previous non-uniform subdivision schemes [51, 89] have inserted a new knot at the
midpoint of every existing knot interval. This produces an unnecessary number of knots at any
multiple knot, as Miura and Masuda [49] observed, but the knot insertion algorithm described
in §3.3 is selective, and so we could remove this disadvantage by choosing not to subdivide zero
knot intervals, and subdivide only every non-zero knot interval at its midpoint instead.

Unfortunately, this natural insertion strategy has shortcomings, as shown in Figure 4.6, where
a convex control mesh results in a limit surface with a concave fold. The variation-diminishing
property of B-splines guarantees that this can never occur using NURBS surfaces on a regular
mesh. It is therefore highly undesirable for the inclusion of extraordinary vertices in a control
mesh to result in this effect. The problem arises because a large knot interval, adjacent to a
high-valency vertex, has no influence on the local knot vectors which are constructed on the other
side of the extraordinary vertex (see Figure 4.8 for an example). The knot insertion strategy
described in this section is able to alleviate this problem by taking account of the relative sizes
of knot intervals when selecting which knots to insert; as a result, we obtain the surface shown
in Figure 4.7 instead of the one shown in Figure 4.6. The knot insertion strategy works in two
phases:

• subdividing large intervals first, and then

• creating uniform extraordinary regions.

4.3.1Subdividing large intervals first

The problem shown in Figure 4.6 results from inserting a knot into a small knot interval while
there are relatively large knot intervals nearby. If every vertex has valency three or four, then each
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4. Extraordinary vertices

(a) Subdivide every interval. (b) Subdivide where ki > 1
2 max(k). (c) Subdivide where ki ≥ 2κ.

Figure 4.9: The effect of three different knot insertion strategies. The surfaces in this figure are shown with
reflection lines and are all the result of subdivision at degree 7 from the non-uniform control
mesh shown in Figure 6.1(a). The naïve strategy (a) results in folds: the same problem as shown
in Figure 4.6. Strategies (b) and (c), described in §4.3.1, both remove this problem, but (c) gives
fairer reflection lines where three knot intervals of different sizes interact in the lower-left corner.

face receives information on the parametric size of adjacent faces when constructing local knot
vectors. For meshes containing vertices of higher valency, however, Figure 4.8 shows that this is
not true, and so we need to account for knot intervals that are close in the mesh but distant in size.
One way to do this is to avoid inserting a knot into smaller intervals altogether. If a subdivision
step never inserts a knot into a small knot interval while there are large knot intervals in the mesh,
then there is no possibility that any individual face will suffer from being isolated from a large
knot interval in an adjacent face. This first phase of the knot insertion strategy therefore uses early
steps to subdivide only large knot intervals, leaving smaller intervals unmodified. A subdivision
step replaces any subdivided knot interval with two smaller intervals, and so it is possible, by
this process, to make all knot intervals approximately the same size. See Figure 4.10(b) for an
example.

To make this precise, let the set of knot intervals be k = {ki}. A natural strategy then inserts a
new knot in the centre of only those knot intervals ki where ki > 1

2 max(k). This brings a unified
treatment to multiple knots, as at any given step, knot intervals ki ≤ 1

2 max(k) are considered
‘too small’ to be subdivided. A multiple knot, given by ki = 0 for some i, is then the limiting case
that is considered too small at every subdivision step, no matter how small the value of max(k).
Figure 4.9(b) shows a surface created from a non-uniform control mesh by following this strategy.

If, instead, we are willing to treat multiple knots as a special case, then I find that a subtly
different strategy gives slightly fairer surfaces. We can evaluate the fairness of a surface using
curvature variation, as visualised by the relative spacing of reflection lines drawn on the surface.
Using the definition of an artifact given by Sabin and Barthe [77], we would like to remove
features of the surface which occur at a higher frequency than the edges in the control mesh, as
these features cannot be controlled by altering the position of the control points. The alternative
strategy, which I describe below, results in the surface shown in Figure 4.9(c), removing the sharp
change of curvature visible in the lower-left corner of Figure 4.9(b).

Separating zero knot intervals from others may be a reasonable concession, as multiple knots
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4.3. Knot insertion strategy

reduce continuity and are therefore deliberately introduced to achieve particular results: they
do not arise accidentally. This alternative strategy starts by establishing the minimum non-zero
interval κ = min({ki : ki > 0}). We want to ensure that

max(k) < 2κ (4.1)

If this is not the case, we can use a limited subdivision step that inserts knots only into in-
tervals which are 2κ or greater. Subdividing each interval at its midpoint gives a total of
blog2(max(k)/κ)c subdivision steps to achieve the condition (4.1).

Comparing Figure 4.9(c) with 4.9(b), note that the condition (4.1) can give slightly fairer
results than subdividing knot intervals where ki > 1

2 max(k). However, both of the strategies in
this section subdivide large knot intervals first. Therefore both methods remove the concave folds
from Figure 4.9(a), which shows the poor surface which results from inserting a knot into the
centre of every interval.

4.3.2Creating uniform extraordinary regions

The problem shown in Figure 4.6 is macroscopic: it appears at the scale of the first subdivision
step. The first phase of our knot insertion strategy, subdividing large intervals first, is able to
avoid problems of this type. Once knot intervals are regularised to approximately the same size,
however, we can turn our attention to the effect of extraordinary vertices at smaller scales. To make
guarantees on the behaviour of these extraordinary regions, subdivision theory uses eigenanalysis
on a local subdivision matrix (see §5.1). This analysis requires a stationary configuration: a
subdivision matrix that is identical at every subdivision step, and the most natural way to achieve
a stationary matrix is to create a region of the control mesh with uniform knot intervals. I
therefore use this second phase of the knot insertion strategy to insert knots uniformly around
extraordinary vertices, while subdividing other intervals at their midpoint. Creating uniform
extraordinary regions in this way is crucial for the bounded-curvature properties I consider in
Chapter 5, including the proof of C1 continuity I discuss in §5.6.

To create uniform extraordinary regions, we need to surround every extraordinary vertex
with at least one layer of evenly spaced knots. Once the first layer of uniform knots has been
created, a further s subdivision steps will create a total of at least 2s uniform layers. No matter
how high the degree (and hence, how large the subdivision matrix), the limit surface around each
extraordinary vertex will therefore always be determined by uniform subdivision rules, as long
as we can create this first uniform layer. In the simplest case, we can achieve this in just one
subdivision step: consider a single extraordinary vertex of valency n surrounded by regular mesh,
and let the knot intervals surrounding the extraordinary vertex be k1 to kn. Then we can insert
knots into each interval ki to create a layer of uniform knots at a distance min({k1, . . . , kn})/2
away from the extraordinary vertex. Figure 4.10(c), for example, shows a single subdivision step
which introduces a layer of uniform knots in this way.

In the general case, where there are multiple extraordinary vertices in an arbitrary configu-
ration, we may need two subdivision steps before every extraordinary vertex is surrounded by
the first uniform layer. Figure 4.11 shows that the uniform knot insertion for one extraordinary
vertex may impact on another. In fact, wherever extraordinary vertices appear on the same side of
a strip of quadrilateral faces, they must insert knots at the same distance away in order to achieve
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4. Extraordinary vertices

(a) Initial configuration.

(b) After subdividing large knot intervals first (§4.3.1). The
knot shown in red is inserted in the first subdivision
step; those shown in blue are inserted in the second.

(c) The knots inserted in the subdivision step which creates
uniform extraordinary regions (§4.3.2).

Figure 4.10: The knot insertion strategy in §4.3 for an example non-uniform configuration. The size of knot
intervals is represented geometrically by using the length of associated edges.

uniform knot spacing. This is a result of the decision (in §4.1) to maintain the NURBS constraint
that opposite edges of a face share the same knot interval. Each knot interval can have at most
one knot inserted per subdivision step and, like NURBS, knots are inserted along the entire length
of the interval. Creating uniform knot spacing for one extraordinary vertex may, therefore, have
an impact on the knot spacing surrounding another extraordinary vertex which is distant in the
control mesh.

To address these mutual dependencies, we must find a way of passing information between
extraordinary vertices which appear on the same side of a strip of quadrilateral faces. For another
way of formulating this relationship, consider n rays of edges emanating from an extraordinary
vertex of valency n. Let each ray pass over four-valent vertices by always taking the edge directly
opposite the vertex. These rays terminate if they reach a boundary or another extraordinary vertex,
but otherwise they continue indefinitely (see Figure 4.12 for an example). Any extraordinary
vertices which are connected by such an emanating ray are mutually constrained to achieve
uniform knot spacing at the same distance away. We can define a set of equivalence classes for
extraordinary vertices connected by emanating rays, and represent the classes using a disjoint set
data structure [28] with associated find and union operations. We already require data structures
which represent each of the knot intervals in the mesh, and these objects are ideally positioned
to merge any equivalence classes which are connected by an emanating ray. This results in the
algorithm shown in Figure 4.13, which calculates the membership of the classes in a single pass
through points in the mesh. The equivalence classes are unaffected by subdivision, so they need
only be calculated once, and we only have to consider vertices that appear in the input control
mesh.
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4.3. Knot insertion strategy

Figure 4.11: The interaction of multiple extraordinary vertices while creating uniform regions. In this figure,
knot interval size is symbolised geometrically; black edges indicate original knots, and we insert
the red knots in the next subdivision step. Note that the uniform spacing for the extraordinary
vertex on the right is influenced by the intervals surrounding the vertex on the left. There is also
a conflict in the central knot interval, as the knots shown using dashed green lines cannot both
be inserted in the first subdivision step.

Figure 4.12: An equivalence class contains extraordinary vertices connected by emanating rays. For this
example, the two extraordinary vertices marked (with emanating rays drawn in red) are in the
same equivalence class, as are the two vertices marked (with emanating rays drawn in green).

Once calculated, the equivalence classes can be used to insert knots at a distance which achieves
uniform spacing for all members of the class. However, Figure 4.11 shows that two or more
extraordinary vertices, on opposite sides of a knot interval, might make conflicting requests for
where a knot should be inserted. In this case, I use a first subdivision step to insert a knot between
the two positions. As the knot interval is then split, there can be no conflict in the subsequent
subdivision steps.

Uniform knot spacing around extraordinary vertices is thus guaranteed in at most two steps.
In summary, the second phase of our knot insertion strategy is:

• for each equivalence class, establish the minimum of the knot intervals that surround
extraordinary vertices within it,

• for each extraordinary vertex, request that knots be inserted into surrounding intervals at
half of the minimum interval for the class,

• for each knot interval, subdivide at the midpoint, or at the mean of the requested positions,
if there are insertion requests.

This algorithm is given as pseudocode in lines 7 to 16 of Figure 4.14.
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4. Extraordinary vertices

foreach extraordinary vertex v do1

equivalence class ev ← { v }2

foreach extraordinary vertex v do3

foreach adjacent knot interval k do4

if the side of k where v appears is associated with an equivalence class f then5

Union(ev, f )6

else7

Associate the side of k where v appears with ev8

Figure 4.13: Algorithm to assign each extraordinary vertex to an equivalence class.

initialize equivalence classes using the algorithm shown in Figure 4.131

foreach subdivision step do2

// Knot insertion strategy
if max(k) ≥ 2κ then3

foreach knot interval k where k ≥ 2κ do4

subdivide k at its midpoint5

else6

foreach equivalence class ei do7

κi ← min(knot intervals surrounding points in ei)8

foreach extraordinary vertex v in equivalence class ei do9

foreach knot interval surrounding v do10

make insertion request at a distance 1
2κi from v11

foreach knot interval k do12

if k has insertion requests then13

subdivide k at mean of requested positions14

else15

subdivide k at its midpoint16

// Subdivide mesh based on inserted knots
foreach quadrilateral face f with knot intervals ki and k j do17

if ki and k j both subdivided then18

compute refine stage for new point within f19

if ki or k j is subdivided then20

make contributions for new points on edge of f21

for σ ← 1 to degree step 2 do22

foreach quadrilateral face f do23

make contributions for smoothing stage σ within f24

foreach 3-valent vertex v do25

compute final position of v26

Figure 4.14: Pseudocode for non-uniform general-degree subdivision. The final phase of subdivision (modi-
fying the position of 3-valent vertices) is described in §5.4.
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4.4. Summary and discussion

We cannot use the method described here if there is a multiple knot (i.e. a zero knot interval)
adjacent to an extraordinary vertex. Such a configuration makes it impossible to create uniform
knot spacing using knot insertion, so the guarantees on surface continuity provided in Chapter 5
cannot apply in this case. Where uniform spacing is achievable, however, recall that additional
subdivision steps insert knots into the centres of the surrounding intervals. This creates a growing
region of uniformity around each extraordinary vertex, so the behaviour of the limit surface at
these points is determined by uniform rules. Therefore Chapter 5 (which modifies the uniform
case for bounded curvature), and in particular §5.6 (which discusses a proof that the uniform
rules create C1 surfaces), applies to any non-uniform configuration with non-zero knot intervals
adjacent to extraordinary vertices.

4.4Summary and discussion
Figure 4.14 summarises the generalisation described in this chapter, and the knot insertion
strategy described in §4.3. By moving away from inserting a knot into every existing interval,
the knot insertion strategy allows non-uniform behaviour away from extraordinary vertices, yet
takes advantage of the well-understood and higher-quality surfaces that result from uniform
extraordinary regions. This is the first subdivision scheme that attempts to build such a transition,
and it is clear that the strategy presented here improves significantly on the naïve approach of
subdividing every non-zero knot interval (see Figures 4.6, 4.7 and 4.9).

However, inserting knots in a way that depends on the size of knot intervals has a notable
disadvantage: the surface is no longer a continuous function of its knot specification. In particular,
for the strategy in §4.3, a single knot interval that steadily increases in size may give a discontinu-
ous deformation of the surface whenever that size crosses a power of 2 as a multiple of the other
knot intervals. NURBS surfaces, by contrast, are a continuous function of their knot specification.
Therefore if the growing knot interval has no influence over extraordinary regions, then the surface
will still deform continuously. Around extraordinary vertices, however, the surface is dependent
on the sequence of inserted knots (see §4.3 and further discussion in §6.3). It therefore no longer
holds that the surface is a continuous function of its knot specification, despite the fact that this
property holds for both NURBS surfaces and earlier non-uniform subdivision schemes [51, 89].

This chapter recommends a knot insertion strategy that gives the best results in the experiments
I have conducted. However, Figure 4.9 shows that three different generalisations of NURBS knot
insertion can give three different limit surfaces from the same control mesh. This raises the
question of how we should choose which surface represents the best result. The definition of an
artifact given by Sabin and Barthe [77] is one way to precisely formulate the set of surface features
we want to avoid: those which appear at a higher frequency than the control mesh, as features of
this frequency cannot be removed by modifying the position of the control points. There is also
strong evidence that minimising curvature variation creates appealing surfaces (see Moreton [50],
for example). Ultimately, however, choosing which of the surfaces in Figure 4.9 is most preferable
is an aesthetic judgement. Farin and Sapidis [27] recognise that there is no perfect mathematical
formulation of this quality. They quote Pierre Bézier, who said:

“From an industrial viewpoint, a curve or a surface is nice if and only if it looks
nice to the chairman of the board, the sales manager, the head stylist, and the
prospective customer.”
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4. Extraordinary vertices

An accurate and objective measure of surface fairness is difficult, if not impossible, to achieve.
Even for researchers who hope to provide a qualitative measure of the aesthetic quality of a
surface, such as Joshi [36], this is a current area of research in its own right. I therefore do not
claim to have found the optimum knot insertion strategy, and it is possible that ideas such as
the strategy shown in Figure 4.9(b), which I believe gives inferior results, may still be worth
investigating in future work.

There are also areas where the knot insertion strategy that I have recommended could be
improved. A natural development would be to make the condition (4.1) local rather than
global. A knot interval would then only be considered too large if there was an interval of half
the size sufficiently nearby (where this distance depends on degree). This modification would
allow normal midpoint subdivision for knot intervals which increase gradually across a surface,
without compromising continuity around extraordinary vertices. Other disadvantages include
the observation, in §4.3.2, that we can make no guarantees on surface continuity if zero knot
intervals lie adjacent to extraordinary vertices. Extraordinary regions are affected by the sequence
of inserted knots, so we are also unable to insert an arbitrary knot while maintaining an invariant
limit surface. None of these limitations affect compatibility with NURBS, but they allow room
for further analysis and improvement.

Despite these shortcomings, the outcome of this chapter is that almost all non-uniform
configurations are able to transition to a uniform configuration around extraordinary vertices,
and do so without adversely affecting surface smoothness. Any improvements to the uniform case
therefore benefit most non-uniform surfaces as well. Chapter 5 examines this uniform case in
greater detail, building on top of the generalisation in this chapter to guarantee C1 continuity, and
the best possible second-order behaviour for a subdivision scheme of this type.
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5Bounded curvature

This chapter presents research that has also been published in the following papers:

T. J. Cashman, U. H. Augsdörfer, N. A. Dodgson and M. A. Sabin. NURBS with
Extraordinary Points: High-degree, Non-uniform, Rational Subdivision Schemes.
ACM Transactions on Graphics, 28(3):#46, 1–9, 2009.

U. H. Augsdörfer, T. J. Cashman, N. A. Dodgson and M. A. Sabin. Numerical
Checking of C1 for Arbitrary Degree Subdivision Schemes based on Quadrilateral
Meshes. In 13th IMA Conference on the Mathematics of Surfaces, volume 5654 of
Lecture Notes in Computer Science, pages 45–54. Springer, 2009.

Subdivision schemes based on tensor-product B-spline surfaces benefit from many of the favourable
properties of B-splines. Those which generalise degree d B-splines, for example, have d − 1
continuous derivatives almost everywhere. The only points which do not automatically inherit
the continuity of the regular case are the singularities in the surface. For the odd degree schemes
described in Chapter 4, each singularity is the limit of an extraordinary vertex through the infinite
sequence of subdivision steps. Here surface continuity is harder to both achieve and analyse, and
the popular subdivision schemes (including Catmull-Clark [10] and Loop [46]) are only C1 at
these isolated points.

Research to understand the singularities of subdivision surfaces began in one of the earliest
papers in the field: Doo and Sabin [21] gave necessary conditions for both C1 and C2 continuity.
However, the theory required for a thorough analysis is far from trivial, and it took another twenty
years before the continuity of subdivision schemes was fully understood. This chapter starts by
giving an overview of the mathematical tools that have been developed in this area, as well as
some of the ways that they have been employed to improve the smoothness of subdivision surfaces
in extraordinary regions. I then apply these methods to the NURBS generalisation discussed in
Chapter 4, to create arbitrary-degree subdivision surfaces with bounded curvature. This class
of surfaces has not appeared before, even in the uniform case, but the knot insertion strategy
described in §4.3 means that almost all non-uniform configurations can also benefit from the
modifications I describe here.

5.1Continuity of subdivision surfaces

As in §3.1, we can write the linear map computed by a subdivision step as a matrix. If we
consider the action of a subdivision step on the whole control mesh, then this matrix is taller
than it is wide, as each step increases the density of the mesh. However, the subdivision rules
compute only local affine combinations, so at each step we can consider a fixed number of vertices
around an extraordinary vertex to obtain a square subdivision matrix S. If a subdivision scheme
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5. Bounded curvature

is stationary, then S is constant for each subdivision step. For an initial control mesh Q, the
singularity in the limit surface is then given by S∞Q, and Doo and Sabin [21] observed that we
can infer properties of S∞ using a diagonalisation of S. If a subdivision scheme is also uniform
then the same subdivision rules apply in every part of the mesh, and around an extraordinary
vertex of valency n, the action of a subdivision step therefore has a rotational symmetry of order
n. Doo and Sabin showed that in this case, a Discrete Fourier Transform (DFT) can simplify the
analysis further, as Ŝ, the DFT of S, is a block diagonal matrix. We can therefore decompose a
subdivision step into blocks Ŝω, each of which acts on the ωth Fourier component of the input
data, Q̂ω. Note that after a finite number of subdivision steps, the NURBS-compatible subdivision
scheme described in Chapter 4 meets the above criteria: it is both stationary and uniform. This is
a result of the knot insertion strategy which creates uniform extraordinary regions (§4.3.2).

With this view of a subdivision scheme, one property arises immediately from the fact that
subdivision rules are affine combinations (i.e. take weighted means). Each row of S therefore
sums to one, and so the vector of ones, 1, is an eigenvector with eigenvalue 1 (i.e. S1 = 1). This
eigencomponent appears in Ŝ0, as 1 is a constant (zero frequency) vector, and so we say that it
has Fourier index 0. An eigenbasis function is the limit of applying a subdivision scheme to an
eigenvector V , and clearly the eigenbasis function corresponding to this unit eigenvalue is the
constant unit function.

To analyse a scheme any further, we must first place some constraints on S. In §3.1, I
established a set of properties that apply to uniform refine-and-smooth knot insertion, and that we
could also retain in a non-uniform analogue. When examining the singularities of a subdivision
scheme, we have a similar task: we want to find properties of the regular (n = 4) case, that we
can retain for extraordinary vertices (arbitrary n). It is therefore useful to ask how diagonalisation
and the DFT can help us to understand the regular case. If we consider S for n = 4 and degree
cubic or higher, some important properties that arise from this analysis are:

• The unit eigenvalue is dominant, and the next largest eigenvalue is double. This corre-
sponds to the fact that the space of bivariate linear functions has dimension two.

• The subdominant eigenvalue λ has Fourier index ±1; the rotational symmetry which
allowed us to use the DFT means that λ appears with equal value in both Ŝ1 and Ŝ−1.

• The space of bivariate quadratic functions has dimension three, and there are therefore
three eigencomponents that form a corresponding basis. These eigencomponents capture
quadratic properties of the limit surface at the singularity S∞Q.

• One of these eigencomponents has Fourier index 0. The associated eigenvalue, which we
shall write as µ0, is subdominant in Ŝ0 (recall that the dominant eigenvalue in Ŝ0 is the
unit eigenvalue).

• The other two quadratic eigencomponents correspond to the dominant eigenvalues in Ŝ±2;
we shall write their value as µ2. As for λ, this eigenvalue is double as a result of rotational
symmetry.

• All other eigenvalues are strictly less than the eigenvalues µ0 and µ2.
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5.1. Continuity of subdivision surfaces

In this chapter, I consider only schemes with subdivision matrices which retain these six properties
for arbitrary n. It is possible, with more care, to analyse subdivision schemes which do not retain
these properties [54], but we do not need that level of generality here. It therefore simplifies the
discussion to assume that these six properties hold.

For the specific case when n = 4, we can also find several properties which some or all of the
schemes I consider in this chapter are unable to retain. For example, in the regular case the double
subdominant eigenvalue λ is always equal to 1

2 . Furthermore, the subsubdominant eigenvalue
is triple, as µ0 and µ2 are equal to a common value µ = λ2 = 1

4 . When n = 4, the eigenbasis
function associated with µ0 is a quadratic cup (an elliptic paraboloid), and the eigenbasis functions
associated with µ2 are orthogonal quadratic saddles (hyperbolic paraboloids). In summary, when
n = 4 and degree is at least cubic, the eigenvalues of S in decreasing order are:

1,

λ︷︸︸︷
1
2 , 1

2 ,

µ︷ ︸︸ ︷
1
4 , 1

4 , 1
4 , . . . other values < 1

4 (5.1)

When degree is quadratic, the first six eigenvalues of S in the regular case are the same as in (5.1).
However, quadratic B-splines are only C1: they do not have a continuous second derivative, and as
a result the µ eigenvalues are not dominant with respect to the remaining eigencomponents. The
Doo-Sabin subdivision scheme [21] generalises biquadratic B-splines to arbitrary topology while
maintaining these first six eigenvalues, and thereby achieves an optimal spectrum for arbitrary
n. Doo and Sabin hypothesised that it might be possible to create a bicubic subdivision scheme
that maintained exactly the spectrum (5.1). They also showed that the Catmull-Clark scheme [10]
fails to do so, and instead has three different values for λ2, µ0 and µ2 wherever n 6= 4. The result
is that although the Catmull-Clark scheme has a continuous first derivative, in general the surface
has a divergent second derivative at every singularity where n > 4: curvature grows without
bound through the infinite sequence of subdivision steps.

5.1.1Proving C1

Ball and Storry [6] attempted to bring the spectrum of the Catmull-Clark subdivision matrices
closer to the regular case, and identified [5] the importance of the subdominant eigenvectors for
tangent-plane continuity. They coined the name natural configuration for the mesh created by
taking co-ordinates from the two eigenvectors corresponding to λ, and showed that, in the limit,
the configuration of points around a singularity will always be an affine transform of this natural
configuration.

However, Ball and Storry, like Doo, Sabin [21] and Loop [46] before them, relied on properties
of the eigenvalues to verify C1 continuity, and neglected to prove conditions on the eigenbasis
functions. Reif [69] showed that this meant the previous analyses were incomplete, and proposed
a new set of criteria for proving not only tangent-plane continuity, but also regularity, a condition
which guarantees that the surface is free of local self-intersections. He introduced the name
characteristic map for the function from a mesh-based parameter space to R2 that evaluates the
two eigenbasis functions corresponding to λ. This characteristic map is therefore the ‘surface’ that
results from applying a subdivision scheme to Ball and Storry’s natural configuration14. Reif then

14The natural configuration exists in a range of possible sizes, depending on how large a neighbourhood of points is
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5. Bounded curvature

showed that the characteristic map can be used as a parametrisation of a subdivision surface near
singularities, and concluded that a subdivision scheme is regular if

• the subdominant eigenvalue λ < 1,

• the subsubdominant eigenvalue is strictly less than λ, and also

• the characteristic map is regular and injective.

These conditions have become the standard measure of C1 continuity for subdivision surfaces, as
any scheme that fails to be regular would not be usable in practice.

5.1.2Bounded curvature

Sabin [74] and Reif [70] independently showed that no modification of the Catmull-Clark subdi-
vision rules, thus producing a different S, would allow the Catmull-Clark scheme to create C2

surfaces15. This was an important result, as the regular regions of Catmull-Clark surfaces are
curvature continuous, and so Ball and Storry, among others, had hoped that modifying the rules
might allow the singularities to hold the same level of continuity.

Although a modified subdivision matrix cannot allow the Catmull-Clark scheme to create
non-degenerate C2 surfaces, the second derivative can still exhibit a range of possible behaviours
at singularities. Sabin et al. [81] summarise the most important options, including the situation
where a subdivision matrix has the eigenvalues:

1, λ, λ,

µ︷ ︸︸ ︷
λ2, λ2, λ2, . . . other values < λ2 (5.2)

That is, µ0 = µ2 = λ2. This gives the subdivision scheme a property known as bounded
curvature. It is a necessary condition for nontrivial curvature continuity [64] but it is not sufficient.
Guaranteeing C2 continuity, just as for C1 continuity, requires analysis of the eigenbasis functions:
in this case those corresponding to the subsubdominant eigenvalues. However, subdivision
schemes with bounded curvature do preserve curvatures in both of the quadratic eigencomponents
through subdivision. This avoids several undesirable outcomes:

• If µ < λ2, then the surface has a flat spot, as the quadratic components shrink faster than
the square of the linear components.

• If µ > λ2, then the surface has divergent curvature, as the quadratic components shrink
slower than the square of the linear components.

• If µ0 > µ2, then the surface has prescribed positive Gaussian curvature for almost all initial
control meshes, as the hyperbolic quadratic components shrink faster than the elliptic
component.

considered when constructing the subdivision matrix. The limit surface for the smallest possible natural configuration
is just a single point: the singularity. For the natural configuration to give a non-degenerate characteristic map, we
must therefore take one more ring of points around an extraordinary vertex than this minimum number.

15These results apply specifically to subdivision schemes that can hold the same range of quadratic shapes as the
regular points of a surface, a property that Zorin [104] calls ‘2-flexibility’. As we shall see in §5.1.3, it is possible
to create modifications of Catmull-Clark that are technically C2, by creating a ‘flat spot’, of zero curvature, at each
singularity. However, these surfaces have artifacts that are too severe for most practical purposes.
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5.1. Continuity of subdivision surfaces

• If µ2 > µ0, then the surface has prescribed negative Gaussian curvature for almost all initial
control meshes, as the elliptic quadratic component shrinks faster than the hyperbolic
components.

Bounded-curvature schemes, by contrast, allow extraordinary regions to hold an arbitrary non-
zero curvature, just as in regular regions. However, if the eigenbasis functions for the quadratic
components are not, in fact, quadratic surfaces (as is the case for any modifications to the Catmull-
Clark subdivision rules where n 6= 4), then curvature at the singularity S∞Q is undefined within
bounds that depend on both S and Q [56].

Karčiauskas et al. [40] show that the unmodified Catmull-Clark scheme has λ2 < µ0 < µ2 at
valencies greater than four, leading to a limit surface which is always hyperbolic, irrespective of
the control mesh Q. Several researchers have addressed this shortcoming with bounded-curvature
variants of Catmull-Clark; Sabin [74] was the first to do so, and several more bounded-curvature
schemes are discussed in §5.1.4. The modifications described in this chapter also lead to a
bounded-curvature variant of Catmull-Clark in the special case where degree is 3 and knot vectors
are uniform. Although this dissertation is only concerned with subdivision schemes generalising
tensor-product B-splines, the above analysis also applies to triangular control meshes. Holt [34]
and Loop [45] both presented bounded-curvature schemes for this type of refinement.

5.1.3C2 schemes

Reif’s proof [70], showing that low-degree stationary subdivision schemes cannot produce surfaces
with nontrivial C2 continuity, motivated schemes which achieve curvature continuity by dint
of either degenerate surfaces, or more complicated constructions. Prautzsch and Umlauf [65]
presented an example of the former. They modified Catmull-Clark rules to produce a subdivision
matrix where µ0 < λ2 and µ2 < λ2. The quadratic components therefore decay fast enough that
they are absent from the singularity, and the resulting flat surface is trivially curvature continuous.
However, flat spots at each singularity make this solution unacceptable for many applications.
This includes applications where reflections are important, such as car bodies, since flat spots will
typically make it impossible to create a smooth, even flow of reflection lines.

Another way of circumventing the barrier to C2 continuity is to use higher-degree B-splines.
Both Prautzsch [61] and Reif [71] presented constructions with Ck singularities, for arbitrary k,
by using B-spline patches of degree 2k + 2. This is the lowest degree at which it is possible for
a stationary, uniform subdivision scheme to have a Ck limit surface, but for C2 continuity this
already requires bisextic patches, and the minimum degree increases rapidly with k.

Zulti et al. [107] were able to achieve C2 continuity in a theoretical case where there is only
one extraordinary vertex in the control mesh. This is an interesting theoretical result, but not
useful in practice. Levin [44] and Zorin [104] modified the Catmull-Clark and Loop schemes,
respectively, to create C2 surfaces by smoothly blending the subdivision surface with another,
best-fit C2 surface. Karčiauskas and Peters [37] used a similar idea, except instead of blending the
fitted surface directly, they used it as a guide to direct a subdivision surface into a fairer shape.
They called the resulting algorithm guided subdivision. Myles [52] was also able to achieve C2

low-degree subdivision surfaces for a particular ‘polar’ patch layout, by using subdivision rules
which increase the valency of a polar vertex at every subdivision step.
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5. Bounded curvature

One of the main objections to these C2 constructions is the additional complexity which
is required to implement and use them. Several of the ideas above, such as Levin’s blended
surfaces [44], could also be applied to NURBS-compatible subdivision schemes once uniform
knot spacing has been created around extraordinary vertices. In this dissertation, however, I have
chosen to remain in the simpler setting of stationary subdivision matrices.

5.1.4Tuning

Previous work has also investigated to what extent subdivision surfaces can be improved whilst
remaining within the constraints of stationary subdivision. Barthe and Kobbelt [7] treated
subdivision weights as degrees of freedom in a nonlinear optimisation. They manipulated the
subdivision matrix by minimising an energy which favoured desirable properties for the matrix
eigenstructure, including bounded curvature. They coined the name tuning for this kind of
subdivision rule optimisation.

Karčiauskas et al. [40] analysed subdivision schemes in terms of shape charts, which test a
set of representative meshes for hybrid shapes. These are subdivision surfaces which contain
both positive and negative Gaussian curvature in every infinitesimal region of a singularity.
Augsdörfer et al. [2] and Ginkel and Umlauf [29] used a variant of these charts to tune schemes
for bounded curvature: Augsdörfer et al. sought to minimise the range of the curvature bounds,
while Ginkel and Umlauf tried to eliminate hybrid shapes by minimising cases where the bounded
range includes both positive and negative curvatures.

There are different approaches to tuning, which are separated largely by how many subdivision
weights a tuning procedure is permitted to alter. Barthe and Kobbelt modified every weight in
affine combinations where a new vertex is influenced by an extraordinary vertex, but Augsdörfer
et al. used the restricted setup known as mask tuning. Here only the influence of an extraordinary
vertex is modified: the weights on contributions from all regular vertices stay the same. This
requires affine combinations to be normalised, so that the weights in each combination still sum
to one. However, mask tuning has the advantage that early subdivision steps, where extraordinary
vertices may be close in the control mesh, can be handled using a single implementation without
special cases. A vertex which receives contributions from two extraordinary vertices simply uses a
different denominator to normalise the affine combination.

5.2Existing high-degree schemes

This chapter provides the first bounded-curvature subdivision surfaces that generalise arbitrary-
degree B-splines. Existing arbitrary-degree subdivision surfaces [62, 63, 91, 93, 103, 105], which
I discussed in §2.2.4, all have either zero or unbounded curvature at singularities. These schemes
generalise the Lane-Riesenfeld midpoint smoothing operator, and mostly do so by using smoothing
stages that replace every face with its centroid. We can use the tools described in §5.1 to analyse
the second-order behaviour of these centroid-averaging schemes: Table 5.1 gives the ratios µ0/λ2

and µ2/λ2 for the first five odd degrees at a selection of valencies. For bounded curvature, both
ratios must be equal to 1, but this only occurs in the regular case, where n = 4. In the irregular
case, the table illustrates that

• the curvatures are further from bounded as valency increases,
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µ0/λ2 µ2/λ2

n d = 3 d = 5 d = 7 d = 9 d = 11 d = 3 d = 5 d = 7 d = 9 d = 11

3 1.487 1.550 1.567 1.574 1.578 0.906 0.974 0.987 0.991 0.994
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.827 0.797 0.785 0.779 0.775 1.124 1.060 1.040 1.030 1.024
6 0.744 0.699 0.681 0.671 0.665 1.220 1.123 1.087 1.070 1.058
7 0.698 0.644 0.622 0.610 0.602 1.289 1.177 1.133 1.108 1.093
8 0.669 0.611 0.586 0.572 0.563 1.339 1.221 1.172 1.144 1.126

Table 5.1: The ratios µ0/λ2 and µ2/λ2 for centroid-averaging schemes.

(a) Cup configuration. (b) Saddle configuration.

Figure 5.1: Eigenbasis functions for the centroid-averaging schemes at degree 9 and valency 8. The functions
are rendered as surfaces and viewed using reflection lines. Reflection lines are a function of the
surface normal and therefore ‘amplify’ second-order surface properties into first-order effects.
Here λ = 0.661, which gives λ2 = 0.437. µ0 = 0.25 < λ2, so the eigenbasis function
generalising a quadratic cup has a flat spot at the singularity. µ2 = 0.5 > λ2, so the eigenbasis
functions generalising quadratic saddles have unbounded curvature.

• curvatures in the cup (µ0) component diverge for valency three and tend to zero for
valencies greater than four,

• curvatures in the saddle (µ2) components tend to zero for valency three and diverge for
valencies greater than four,

• as degree increases, curvatures in the cup component grow or shrink at a faster rate
(second-order behaviour worsens), but curvatures in the saddle components do so at a
slower rate (second-order behaviour improves).

Figure 5.1 gives the eigenbasis functions corresponding to µ0 and µ2 in the particular case of
degree nine and valency eight. This figure shows the undesirable flat spot for the cup component
and unbounded curvature for the saddles.
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5.3Bounded curvature for saddle components

We are now ready to return to the main theme of this chapter: modifying the NURBS-compatible
subdivision schemes described in Chapter 4 to hold the bounded-curvature property. Like Augs-
dörfer et al. [2], we would like to limit the modifications we make to mask tuning, the technique
described in §5.1.4, as this allows adjacent extraordinary vertices to be handled in a unified frame-
work. Our goal is therefore to modify the influence of an extraordinary vertex on surrounding
vertices in order to achieve the eigenspectrum (5.2).

The refine-and-smooth factorisation described in Chapter 3 uses local affine combinations, so
an extraordinary vertex contributes to vertices in only three different positions: to itself, to vertices
which are edge-connected, and to those which are face-connected. Mask tuning therefore allows
for at least three modified weights for these three different types of contribution. In addition,
where degree is greater than three, we could modify the weights of each smoothing stage separately,
but we have only two bounded-curvature equations to satisfy, so this is an unnecessary number
of degrees of freedom. To keep the problem manageable, here I have chosen to further limit the
mask tuning to just three parameters, no matter how high the degree.

Previous work on mask tuning [2, 79] uses constant parameters that set the weight of contribu-
tions from an extraordinary vertex. However the knot insertion algorithm described in §3.3 uses
weights that change between smoothing stages and with degree, even for uniform knot intervals.
For degree seven and valency four, for example, the weight of a vertex on its successor is

(1
6

)2

in the first smoothing stage and
(3

4

)2
in the last. If the tuning for arbitrary n is to generalise the

four-valent case, we therefore cannot use a constant parameter to set the weight of contributions
from an extraordinary vertex directly: for the degree seven example, such a parameter would have
to be equal to both

(1
6

)2
and

(3
4

)2
at the same time. Instead, therefore, I use constant multipliers

to modify the regular weight of the extraordinary vertex in a given affine combination. This
formulation generalises the four-valent case, since the regular weights are restored by setting every
multiplier equal to one. For degree d and valency n, the multipliers are:

• αd
n, for contributions to the extraordinary vertex itself,

• βd
n, for contributions to edge-connected vertices,

• γd
n, for contributions to face-connected vertices.

I use the same multipliers for both the refine and smoothing stages. In the refine stage, this means
that the weight of an extraordinary vertex is multiplied by βd

n for contributions to new vertices
on adjacent edges (e.g. Figure 4.5), and by γd

n for contributions to new vertices in adjacent faces.
Note that αd

4 = βd
4 = γd

4 = 1 for valency four at any degree d (i.e. the mask tuning does not
modify the four-valent weights), as the regular uniform case is already curvature-continuous.

We are interested in the Fourier blocks Ŝ0, for µ0, Ŝ1, for λ, and Ŝ2, for µ2. However, the
extraordinary vertex appears explicitly only in Ŝ0: where ω > 0, symmetry dictates that the
extraordinary vertex is always implicitly located at the origin. Therefore α has no effect on the
blocks Ŝ1 and Ŝ2, and the condition λ2 = µ2 must be achieved using only β and γ. This condition
does not uniquely determine β and γ, however: Figure 5.2 shows a range of solutions which all
satisfy λ2 = µ2. We therefore need a way of resolving this additional degree of freedom.
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5.3. Bounded curvature for saddle components

Figure 5.2: Five different bounded-curvature settings for β5
8 and γ5

8. This figure shows natural configurations
for each possibility; each one satisfies the saddle bounded-curvature condition λ2 = µ2. As two
multipliers are available to satisfy one equation, there is a remaining degree of freedom which
controls the relative sizes of β and γ, changing the shape of the natural configuration.

Augsdörfer et al. found that for bounded-curvature schemes, there is a correlation between
the value of λ and the shape of a natural configuration, in the sense shown in Figure 5.2. They
also found that the amount of variation in Gaussian curvature for the extraordinary regions of
a surface is heavily dependent on this degree of freedom. I therefore expect NURBS-compatible
subdivision schemes which produce good-quality, fair surfaces to have natural configurations with
a similar shape to these earlier results. However, Augsdörfer et al. found solutions with minimum
variation in Gaussian curvature through a complicated optimisation; I found that I could produce
similar results with a much simpler heuristic.

The heuristic is based on the observation that, when n = 4, the natural configuration is
exactly the result of sampling the characteristic map at evenly spaced values. Subdividing the
natural configuration results in a denser uniform sampling, so the positions of existing vertices are
unchanged. However, when n 6= 4, this property no longer holds: it is possible for a subdivision
step on the natural configuration to modify the positions of existing vertices. As the natural
configuration is an eigenvector, a subdivision step simply scales the mesh by the corresponding
eigenvalue λ. Therefore the subdivided position of each point p(u,v), with co-ordinates (u, v)
measured from the extraordinary vertex, is given by λp(2u, 2v). Let the stability of a natural
configuration be a measure of how close these positions are to each other for each point p. We
could use a sum of squared distances, for example. Then I propose the following hypothesis,
which was developed jointly with Malcolm Sabin:

The stability of a subdivision scheme’s natural configuration is inversely correlated
with the amount of curvature variation in extraordinary regions.

(5.3)

This hypothesis has not yet been thoroughly tested (see the discussion of future work in §6.5).
However, resolving the degree of freedom shown in Figure 5.2 by selecting the most stable natural
configuration does lead to solutions which are close to those found by Augsdörfer et al., in both the
value of λ and the shape of the natural configuration. This is evidence in support of the hypothesis
(5.3). Using stability as a heuristic also produces surfaces which are good enough for our purposes
as a demonstration of NURBS-compatible subdivision; the resulting bounded-curvature schemes
certainly have much less curvature variation than the Catmull-Clark scheme, for example (see
Figure 5.10).

We have only one degree of freedom with which to choose the most stable natural configuration,
so there is a conflict between stability for the vertices lying along edges, and those lying diagonally
across faces. Choosing to make edge-connected vertices stable is equivalent to setting β from the
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5. Bounded curvature

(a) Stable along edges, but not diag-
onally across faces.

(b) Stable diagonally across faces,
but not along edges.

(c) The equal-shape condition, as an
approximation to stability.

Figure 5.3: Finding an approximation to a stable natural configuration. We have only one degree of freedom
to make the natural configuration as stable as possible, so we cannot make all the 1-ring vertices
stable. This figure shows natural configurations for degree 3 and valency 8, accompanied by
subdivided (i.e. scaled by λ) configurations in red.

n β3
n β5

n β7
n β9

n

3 1.2560 1.1370 1.1204 1.1172
5 0.6499 0.7919 0.8152 0.8339
6 0.4364 0.6048 0.6417 0.6770
8 0.2321 0.3604 0.3979 0.4421

20 0.0343 0.0578 0.0664 0.0790

n γ3
n γ5

n γ7
n γ9

n

3 1.4012 1.1003 1.0758 1.0608
5 0.6224 0.7727 0.8228 0.8466
6 0.4115 0.5638 0.6420 0.6813
8 0.2164 0.3098 0.3870 0.4289

20 0.0317 0.0430 0.0605 0.0695

Table 5.2: βd
n and γd

n at a selection of valencies and with d ranging from 3 to 9.

stability condition, and then using γ to achieve λ2 = µ2. Conversely, we could set γ to achieve
stability for face-connected vertices, and then use β to satisfy the saddle bounded-curvature
condition. However, these choices, as shown in Figure 5.3, are both detrimental to the stability of
the natural configuration in the direction we ignore. Instead, therefore, I have chosen to set β and
γ simultaneously to satisfy two conditions:

• that λ2 = µ2, and

• that the quadrilateral in the first ring of the natural configuration is similar to the quadri-
lateral formed by the corresponding vertices in the second ring.

The result of these conditions is that the edge-connected and face-connected vertices in the natural
configuration are not completely stable when n 6= 4, as a subdivision step alters their positions.
However, any modification acts equally, scaling by the same value, across the whole of the first ring.
I believe this is a good approximation to a stable natural configuration, which should therefore
give surfaces with a small amount of curvature variation in extraordinary regions, assuming the
hypothesis (5.3).

We are now ready to find βd
n and γd

n for each odd d and n ≥ 3. To do so, we must compute
eigenvalues of a subdivision matrix whose size increases with degree. For high degrees, the
matrices are so large that it is impractical to find an exact solution in symbolic form, even using
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Figure 5.4: Bounded-curvature solutions for αd
n, βd

n and γd
n. Valency ranges from 3 to 20. The multipliers

are plotted for degree, d, equal to 3 , 5 , 7 and 9 with a linear scale (left), and
a logarithmic scale (right). Note that αd

4 = βd
4 = γd

4 = 1 by definition, as the regular case is
curvature-continuous and hence already satisfies the bounded-curvature equations λ2 = µ0 = µ2.
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5. Bounded curvature

n α3
n α5

n α7
n α9

n

3 1.3333 1.3333 1.3333 1.3333
5 2.6079 8.0641 13.574 19.510
6 4.6412 15.560 29.347 45.446
8 9.9085 34.571 68.153 108.89

20 73.691 269.09 536.37 866.17

Table 5.3: αd
n at a selection of valencies and with d ranging from 3 to 9. The values for αd

3 are explained in
§5.4.2.

a DFT and considering each block separately. I therefore use a nonlinear equation solver on
floating-point values. The equation solver does not form part of an implementation, as the values
αd

n, βd
n and γd

n can be stored in a lookup table. This process therefore has no impact on the speed
at which NURBS-compatible subdivision surfaces can be computed. Figure 5.4 and Table 5.2
show the resulting solutions for degrees 3 to 9 and valencies up to 20.

5.4Bounded curvature for cup component

Once β and γ have been fixed in the way described in §5.3, we can use their values to compute
Ŝ0 as a function of α. We already know λ, as Ŝ1 depends on only β and γ. We can therefore use
an equation solver for floating-point values, just as in §5.3, to find the value for α that satisfies
the bounded-curvature condition µ0 = λ2. The use of floating-point arithmetic means that these
solutions are only approximate, but I ensure that λ2 differs from both µ0 and µ2 by no more than
10−12, with subdivision matrices calculated to double precision and with floating-point eigenvalue
routines. These values are close enough to be considered equal for any practical purpose. To see
this, note that λ2s, µs

0 and µs
2 are the scaling factors after s subdivision steps which, for bounded

curvature, must be equal. If these values differ, then the quadratic eigencomponents decay at
a different rate, leading to zero or unbounded curvature. However, 1− λ2 � 10−12, even for
very large n, and so any disparity between the scaling factors grows many orders of magnitude
slower, with s, than the rates at which the eigencomponents themselves shrink. The fact that
the values are not exactly equal therefore has no measurable effect on the limit surface. The
equation-solving procedure to find αd

n works for any n > 4, and Figure 5.4 and Table 5.3 show
some of the resulting values.

The logarithmic plots in Figure 5.4 (right) also show that an implementation would not
necessarily need to store the values of αd

n, βd
n and γd

n for large n in order to be able to support
high valencies. Although we do not have algebraic expressions for the multipliers, we know
from simpler cases [79] that the values are rational functions of powers of n and cos(2π/n). As
n → ∞, cos(2π/n) → 1, and so for high valency we expect the values of the multipliers to be
approximately polynomial in n. Figure 5.4 shows that this is the case: for high valency, β and γ

are close to a constant multiple of n−2 and similarly, α is close to a constant multiple of n2. The
combination of a lookup table, for low n, and a polynomial model, for high n, would therefore
allow an implementation to handle vertices of any valency.

When n = 3, however, using α to satisfy the condition λ2 = µ0 gives solutions for αd
3 that are

negative, as shown in Figure 5.5(a). Most approximating subdivision schemes hold the property
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(a) Degree 3: the required value for α3
3 is negative.
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(b) Degree 5: there is no solution such that µ0 = λ2.

Figure 5.5: Problems that arise when trying to use α to satisfy λ2 = µ0 for n = 3. These graphs show how
µ0 varies with α, as well as the target value λ2 . For both graphs, α is plotted for a
range whose minimum is the value which causes the denominator in an affine combination to
become zero. Values for α which are less than this are not feasible, as normalising by a negative
denominator creates an eigencomponent with an eigenvalue greater than 1.

that every affine combination uses non-negative weights, and the surface therefore lies inside the
convex hull of the control points. This is useful for finding the solution to intersection queries,
for example. A negative value for αd

3 does not necessarily invalidate this convex hull property:
in the uniform case, the subdivision matrix S may still consist entirely of non-negative entries,
in which case the convex hull property still holds for the subdivision step as a whole. However,
we are interested in using these multipliers for both uniform and non-uniform configurations,
and if a multiplier is negative then there may be a configuration of non-uniform knots that does
give negative entries for S. To guarantee the convex hull property for the general case, including
non-uniform knot intervals, it is therefore important to use only non-negative multipliers.

In addition, Figure 5.5(b) shows that when n = 3, there are some degrees with no bounded-
curvature solution at all. We therefore need to treat the valency three case separately. The
remainder of this section summarises some approaches to solving this problem, starting with a
collection of possible solutions that all have notable disadvantages. These negative results help
to inform a list of requirements that any modification for valency three must fulfil. I conclude
this section with a simple modification for valency three that allows for λ2 = µ0 = µ2, granting
bounded curvature, at all degrees and valencies. This modification also retains the convex hull
property for degrees 3 to 13.

5.4.1Negative results

In §5.3, I restricted mask tuning to use just three parameters, no matter how high the degree.
However, as discussed above, this setup proves to be too constrained for a bounded-curvature
solution when n = 3, so instead we could consider separate multipliers for each refine and
smoothing stage. The additional freedom obtained in this way does allow us to find a bounded-
curvature solution for degree five and valency three, which is the case shown in Figure 5.5(b)
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5. Bounded curvature

(a) The natural configuration obtained using the
same multipliers for the refine and smoothing
stages.

(b) The natural configuration that results from mod-
ifying the refine stage to satisfy the condition
λ2 = µ0.

Figure 5.6: Modifying the refine stage to achieve bounded curvature for degree 5 and valency 3. Both of
these natural configurations satisfy the equal shape condition shown in Figure 5.3(c), but the
modifications to the refine stage, shown in (b), adversely affect the stability of vertices in the
second ring of vertices around the extraordinary vertex.

to have no bounded-curvature solution using only three multipliers. However, there are several
disadvantages to this modification:

• The bounded-curvature condition λ2 = µ0 still requires negative values for α. This is
true at degree three, for example, as the refine-and-smooth factorisation alternates, at
odd degrees, between the actions shown in Figures 3.6(a) and 3.6(d) (see Figure 3.9 for
an example of this structure). This means that at degree three, contributions weighted by
β and γ appear in the refine stage but not in the first and only smoothing stage. Using
separate multipliers for each stage therefore grants no additional freedom for this case:
there are still just three parameters α3

3, β3
3 and γ3

3 to use in tuning the scheme for bounded
curvature. We therefore find the same negative solution for α3

3 shown in Figure 5.5(a).

• Figure 5.6 shows that the natural configuration at degree five and valency three is poten-
tially less stable if different multipliers are used in the refine and smoothing stages.

• Using separate multipliers for each stage introduces an unmanageable number of parame-
ters at high degrees.

• Using separate multipliers for the refine stage but the same values for all smoothing stages
would still allow the solution shown in Figure 5.6(b), and brings the number of parameters
down to just five. However, the influence of the refine stage becomes weaker after each
smoothing stage. There are therefore cases (e.g. degree nineteen and valency three) which
have no bounded-curvature solution with three multipliers, and also have no bounded-
curvature solution if we allow a modified refine stage.
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5.4. Bounded curvature for cup component

This approach is therefore not a good way to achieve bounded curvature for valency three.
Furthermore, this investigation raises the possibility that, in attempting to find bounded-curvature
solutions when n = 3, we might modify the blocks Ŝω for ω 6= 0, thus altering the natural
configuration from the result in §5.3. The results from §5.3 are simple to implement and hold
good theoretical properties, so we would like any future modifications to modify only the block
Ŝ0. In the degree five case, for example, this means that the subdivision scheme must retain the
natural configuration shown in Figure 5.6(a).

At the start of §5.3, I also limited the bounded-curvature modifications to mask tuning. Relax-
ing this constraint therefore offers another possibility for resolving the problems we encounter
when n = 3. The more general framework, which was used by Barthe and Kobbelt [7], is called
stencil tuning, and allows the weight of any contribution to be modified, not merely the extraordi-
nary vertex. Consider the problematic case shown in Figure 5.5(b): degree five and valency three.
If we modify only the block Ŝ0, then instead of one parameter α, we have a bivariate barycen-
tric space (e, f ) which determines the new position of the extraordinary vertex. The triangle
e > 0, f > 0, e + f < 1 is the set of values which uses positive weights in this affine combination,
and therefore retains the convex hull property. Unfortunately, this set does not contain a value
where λ2 = µ0, so the additional freedom does not help us to find a bounded-curvature solution
in this case.

As a result of these investigations, I believe that for a bounded-curvature version of NURBS-
compatible subdivision which retains the convex hull property, the structure of the affine combina-
tions given by the regular case is too tight a constraint. The solution I present in §5.4.2 therefore
modifies this structure. In my first attempt to do so, I achieved bounded-curvature solutions in
the uniform case, but omitted to consider the generalisation to non-uniform knot vectors. The
result was that the position of a three-valent vertex was always modified during a subdivision step,
even if no knots were inserted near that vertex. This is clearly undesirable, as the knot insertion
strategy I presented in §4.3 relies on the fact that the surface is purely a function of inserted knots.
It therefore requires regions of the mesh where no knots are inserted to be unmodified during a
subdivision step, and so this experience adds an additional requirement for the bounded-curvature
modifications at valency three.

Requirements

We can now compile a full list of those requirements; we are looking for a modification of the
subdivision rules in the regular case, which, when n = 3:

• results in a subdivision matrix that satisfies the bounded-curvature condition λ2 = µ0,

• maintains, from the mask tuning described in §5.3, the Fourier blocks Ŝω where ω 6= 0
(thus keeping the same values for λ, µ2, and the same natural configuration as the solutions
found there),

• only modifies the position of a point if a knot is inserted in the domain of its basis function,

• maintains the convex hull property by using only non-negative weights.
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f1

f2

f3

e1

e2

e3

v

Figure 5.7: Final affine combination used to position 3-valent vertices for bounded curvature. Red lines
indicate knots which have been inserted in this subdivision step (as an illustration, I show a case
where no knot has been inserted into the interval on the right). The extraordinary vertex, in the
centre, takes a new position calculated from the existing position v , the points ei which are
edge-connected at the end of the subdivision step, and the points fi which are in the positions
which were face-connected at the start of the subdivision step.

5.4.2Additional smoothing stage

Here I describe a modification which meets all of the above requirements for a useful range of
degrees from 3 to 13. For degree greater than 13, we can satisfy the first three requirements but
require affine combinations with negative weights in order to do so.

The problem at valency three, as shown in Figure 5.5, is that the quadratic cup eigencomponent
fails to shrink fast enough. Instead of using a negative weight for the contribution from an
extraordinary vertex to its successor, however, we can shrink µ0 by letting the extraordinary vertex
receive contributions from vertices that are farther away than in the regular case. This is because
vertices which are farther away in the mesh are also farther away from the extraordinary vertex in
the eigenvector corresponding to µ0 (see Figure 5.8 for an example). Allowing the extraordinary
vertex to be influenced by more distant vertices therefore makes it possible to shrink µ0 without
using negative weights.

By taking contributions from vertices which are farther away than in the regular case, the
basis functions of some vertices gain a larger support. This may be undesirable16, but for most
applications, the convex hull property is likely to be more important. In fact the modification
described here allows for a trade-off between the two properties, so different applications could
make different decisions about the relevant priorities. It would be possible, for example, to meet
all of the above requirements at degrees even greater than 13, if we were also willing to allow a
greater increase in support.

The modification introduces an additional, final smoothing stage, affecting only three-valent
vertices (see Figure 5.7). We need to take a contribution from vertices that are sufficiently far away
from the extraordinary vertex to shrink µ0 at a rate of λ2, but we also want to avoid complications
arising from arbitrary connectivity. My solution is therefore to take fi, the vertices which were
face-connected to the extraordinary vertex at the start of the subdivision step. In the uniform

16§6.3 discusses a disadvantage that arises from this increase in support near surface boundaries.
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5.5. Polar artifacts

δ3 δ5 δ7 δ9 δ11 δ13

0.0013 0.0813 0.1915 0.3537 0.5732 0.8550

Table 5.4: Values for δd to achieve bounded curvature for valency three.

case, the fi therefore lie at the corners of the two rings of faces surrounding an extraordinary
vertex. If a face has not been subdivided in one direction or both, however, they will be more
closely connected. In Figure 5.7, for example, f1 and f3 are only a knight’s move away from the
extraordinary vertex. I also use ei, the vertices connected to the extraordinary vertex by edges,
and the position, v, of the three-valent extraordinary vertex before this final smoothing stage. The
new position of the extraordinary vertex, ṽ, is then given by

ṽ = ρ v + (1− ρ)

[
(1− δd)

3

∑
i=1

1
3 ei + δd

3

∑
i=1

1
3 fi

]

where ρ is the product, over every smoothing stage, of the normalised weight in the contribution
from the extraordinary vertex to its successor. Including ρ allows us to satisfy the third requirement
in the list above: if a three-valent vertex has no knots inserted into the domain of its basis function
then ρ = 1, and therefore ṽ = v as required.

This final smoothing stage makes it possible to solve λ2 = µ0 using the same numerical solver
as when finding αd

n for n > 4, but varying δd instead of αd
3 (see Table 5.4). Note that every affine

combination in the univariate knot insertion algorithm from Chapter 3 uses non-negative weights.
The same is therefore true of the tensor product, and of the modifications for bounded curvature,
as the multipliers αd

n, βd
n and γd

n are all non-negative. Therefore 0 ≤ ρ ≤ 1, as ρ is the product of
non-negative weights, and if 0 ≤ δd ≤ 1, then the NURBS-compatible schemes hold the convex
hull property.

In solving λ2 = µ0, we find 0 ≤ δd ≤ 1 for the six degrees where d ranges from 3 to 13: the
resulting values are given in Table 5.4. With the inclusion of an additional smoothing stage, αd

3

has relatively little effect, as the position of the extraordinary vertex is largely determined by the
value of δd. However, we do want to make sure that δ3 ≥ 0, and therefore I set αd

3 = 4
3 for all

d as a useful simplification that achieves this. When knot vectors are uniform, this value scales
contributions from three-valent points to their successors so that the total unnormalised weight is
the same as in the regular, four-valent case.

5.5Polar artifacts

An observation from the bounded-curvature multipliers graphed in Figure 5.4 is that αd
n takes

on large values for high n. These values arise because the eigenvector corresponding to the µ0

eigenvalue becomes increasingly ‘pointed’ as n grows. An example is shown in Figure 5.8, which
plots the eigenvector corresponding to µ0 as the z co-ordinates of a control mesh which uses the
natural configuration in the xy-plane. Sabin [75] called this control mesh the quadratic natural
configuration, by analogy to Ball and Storry’s (linear) natural configuration. A high value for α

is necessary to maintain this pointed shape during the course of a subdivision step, and if there
are multiple smoothing stages (when d is large), α must be even higher, as shown in Figure 5.4.
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Figure 5.8: The quadratic natural configuration for bounded-curvature subdivision schemes. This figure
shows a side view of the quadratic natural configuration corresponding to µ0 for degree five and
valency eight. An elliptic paraboloid through the origin is drawn in red, for comparison, to show
that this eigenvector is far from satisfying the ‘local quadratic precision’ condition of Barthe and
Kobbelt [7].

However, it is not immediately obvious to what extent the shape of this eigenvector, and hence a
high value for α, is desirable or necessary.

Indeed, Barthe and Kobbelt [7] explicitly tried to optimise the quadratic natural configuration
to be a mesh which is sampled from an elliptic paraboloid: the surface shown in red in Figure 5.8.
They called this goal ‘local quadratic precision’. Prautzsch and Reif [64] showed that if a scheme
is C2, then the eigenbasis functions associated with the quadratic eigencomponents must be in
the span of quadratic functions on the characteristic map. However, this condition applies to
the eigenbasis functions, not the eigenvectors, and my results show that for stationary bounded-
curvature subdivision schemes, the eigenvector may need to hold a shape which is significantly
different from a sampled quadratic surface.

The requirement for a pointed shape in this eigenvector comes from a high value for λ. Where
λ > 1

2 , Sabin and Barthe [77] described the effect in extraordinary regions as a polar artifact: the
faces surrounding such an extraordinary vertex shrink slower than faces in the regular regions of
the surface, leading to a poor approximation if the subdivided control mesh is used as a way to
render the limit surface [3]. Sabin and Barthe [77] and Augsdörfer et al. [3] stress that the polar
artifact is not a property of the limit surface. However, the observations in this section allow us to
clarify that a high value for λ does affect the limit surface, in that it alters the function which gives
the limit surface from a control mesh. Where λ > 1

2 , any bounded-curvature scheme will produce
a limit surface which, for convex shapes, is farther from the extraordinary vertex than in the
regular case. This is because the only way to maintain the appropriate quadratic scaling λ2 = µ0

is to have an extraordinary vertex which is offset farther from the limit surface, as shown in
Figure 5.8. An artifact is defined [77] as a feature of the limit surface which cannot be controlled
by moving the control points. For bounded-curvature subdivision, the polar artifact can, therefore,
appear as a ‘true’ limit-surface artifact. For example, there is no way to control how closely a
subdivision surface defined by a cube mesh approximates a sphere, without increasing the number
of control points (possibly using a subdivision step). Using a bounded-curvature subdivision

78



5.6. Proving C1 continuity

Figure 5.9: Characteristic rings resulting from bounded-curvature modifications. Characteristic rings [54] are
shown at valencies three and five to eight (left to right) and degrees three, five and seven (top to
bottom). In each case, the rings are shown by drawing the boundaries of B-spline patches, where
the first sector is drawn in red.

scheme, the limit-surface approximation is likely to be worse than the Catmull-Clark algorithm,
as the three-valent corners of the cube have a greater influence over the limit surface than the
regular points that are introduced during subdivision.

Understanding this effect also explains the results of Karčiauskas and Peters [38], who show
that on near-elliptic data, the bounded-curvature schemes of Augsdörfer et al. [2] are notably
flatter than we might expect around high-valency singularities. Karčiauskas et al. [40] made the
same observation for the limit surface of Sabin’s bounded-curvature scheme [74] on a very similar
control mesh. However, from this section, we know that in order to produce an approximately
quadratic shape from bounded-curvature stationary subdivision schemes which have λ > 1

2 , the
required control mesh is not, in fact, a sampled quadratic, but is instead a pointed shape, such as
the example shown in Figure 5.8.

5.6Proving C1 continuity

This chapter has focused on the second-order properties of NURBS-compatible subdivision, but
we have not yet verified that the schemes, as modified for bounded curvature, have good first-order
behaviour. We would like to verify that the schemes are tangent-plane continuous and regular
for all d and n. The knot insertion strategy in Chapter 4 creates a region of uniformity around
every extraordinary vertex surrounded by non-zero knot intervals. As I explained in §5.1, the
continuity of the limit surface is therefore determined by a stationary subdivision matrix, and we
can use eigenanalysis to prove that bounded-curvature NURBS-compatible schemes produce C1

regular surfaces. Doing so requires a proof that Reif’s conditions [69] hold (see §5.1.1). This
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5. Bounded curvature

(a) Control mesh shown in the two different views which are used to render the surfaces below.

(b) Catmull-Clark [10]. Note the unbounded curvature at singularities corresponding to 12-valent vertices.

(c) NURBS-compatible subdivision, degree 3.

(d) NURBS-compatible subdivision, degree 9.

Figure 5.10: Surfaces defined by a control mesh with 12-valent vertices. Each surface is rendered with
vertices projected to the limit surface; (c) and (d) use exact evaluation [90] to sample the limit
surface in the region of the 12-valent extraordinary vertices. The rightmost images in (b), (c) and
(d) are rendered using reflection lines to highlight the differences between the three surfaces.
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5.7. Summary

section summarises work which provides this proof for 3 ≤ d ≤ 19 and 3 ≤ n ≤ 50. The work
was completed in collaboration with others, in particular Ursula Augsdörfer, who implemented
the proof using a strategy that I helped to formulate.

Reif’s conditions [69] require that the characteristic map is regular and injective. However,
researchers have found this hard to prove rigorously (e.g. [41]), and so for specific cases, Peters and
Reif [54] provide equivalent conditions which are easier to verify. We used Theorem 5.25
from their monograph [54]. The subdivision matrices derived from the modifications in this
chapter satisfy the conditions of this theorem, as they are flip-symmetric, shift-invariant, and the
subdominant eigenvalues have Fourier index ±1. The final precondition of the theorem is that the
derivatives of the characteristic ring do not overlap. A characteristic ring is the building block
of Reif’s characteristic map (see Figure 5.9 for examples). The characteristic map is composed
of an infinite sequence of nested rings, each of which is a scaled copy of the characteristic ring.
We want to verify that, in each part of this ring, the derivatives with respect to the two B-spline
parameter values lie in non-overlapping cones. Due to symmetry, however, we need only check
that the derivatives in one direction of the first sector (drawn red in Figure 5.9) lie in the same
quadrant [54]. This is enough to prove that the characteristic ring is regular and injective, and
thus that the schemes are C1 and regular.

The characteristic ring is made up of B-spline patches of the degree of the scheme. Using the
convex hull property of B-splines, we can therefore prove this condition on the derivatives using
the first differences of vertices in the natural configuration. For high valencies or high degrees,
however, these differences may form only a loose bound on the B-spline derivatives, and hence fail
to provide the required proof. In these cases, we can obtain a tighter bound by using subdivision
steps to bring the first differences closer to the derivative; the required subdivision steps use only
uniform B-spline knot insertion, so the Lane-Riesenfeld algorithm [42] provides a straightforward
way to compute the subdivided vertices for arbitrary degree. Dr Augsdörfer has verified this
condition [1], and hence proved C1 continuity, for degree from 3 to 19 and valency from 3 to 50.
The trends suggest that no problem is likely to occur at higher valencies and degrees.

5.7Summary

This chapter has shown that we can modify NURBS-compatible subdivision schemes to have
bounded curvature at all degrees and valencies, and simultaneously retain the convex hull property
for degrees 3 to 13. At valency three these modifications require a small increase in the support
of surrounding basis functions. This is the first time that arbitrary-degree subdivision schemes
have been tuned for bounded curvature. The resulting schemes offer additional smoothness at
higher degrees, which is the property of B-splines shown in Figure 2.2, without the second-order
problems exhibited by previous arbitrary-degree schemes, which are shown in Figure 5.1 and
described in §5.2.

Figure 5.10 shows the effect of the bounded-curvature modifications on a control mesh con-
taining a high-valency vertex. Subdivision surfaces, such as the example shown in Figure 5.10(b),
typically suffer from poor shape around points with high valency. Figure 5.10(c) shows that the
bounded-curvature modifications produce a much smoother shape, even at low degree, compared
to schemes with divergent curvature. We can also increase the degree to obtain a yet smoother
surface: the degree nine surface in Figure 5.10(d) shows even less curvature variation.
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5. Bounded curvature

Recall that although these bounded-curvature solutions apply only to uniform knot intervals,
almost all non-uniform configurations are also able to benefit from bounded-curvature extraordi-
nary regions. This is a result of the knot insertion strategy in Chapter 4, which creates uniform
knot intervals around each extraordinary vertex. This chapter has therefore shown how to create
NURBS-compatible subdivision schemes which provide the best possible curvature behaviour for
stationary subdivision schemes, demonstrating the thesis that I introduced in §1.3.
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6Conclusion

Chapters 3, 4 and 5 describe a class of NURBS-compatible subdivision surfaces. These surfaces
are able to reproduce any odd-degree NURBS surface exactly, and can also represent surfaces
of arbitrary topology by allowing a control mesh to include extraordinary vertices. They are
therefore a candidate to fulfil Ma’s vision [48], introduced in §1.2, of a subdivision representation
that is able to offer the complete set of NURBS features.

6.1Contributions

The main contribution of this dissertation is a surface representation that unifies NURBS and
subdivision surfaces. In pursuit of that goal I have also made several other contributions:

• In Chapter 3, I described a symmetric refine-and-smooth factorisation for non-uniform
B-spline knot insertion. The only alternative factorisation for general non-uniform knot
vectors is Schaefer’s algorithm [83]. Schaefer’s algorithm is asymmetric, however, which
makes it unsuitable for use on subdivision surfaces (see §3.2.2).

• This is the first refine-and-smooth factorisation that is able to accommodate selective knot
insertion, where some knot intervals are left unmodified. This property is important in
order to elegantly handle multiple knots.

• In §4.3, I observed that a large disparity in knot intervals can be detrimental to the shape
of a non-uniform subdivision surface, and developed a knot insertion strategy that militates
against the worst behaviour.

• In §5.3, I hypothesised a connection between the stability of a subdivision scheme’s natural
configuration and the quality of surfaces produced by that scheme. This may lead to a new
measure by which subdivision schemes can be evaluated.

• In §5.5, I explained that for bounded-curvature subdivision schemes, contrary to previous
expectations [7], a high subdominant eigenvalue λ necessarily implies that an extraordinary
vertex exerts a weaker influence on the limit surface.

• As a consequence of Chapters 4 and 5, I have developed the first non-uniform subdivi-
sion surfaces with bounded curvature at singularities. Previous non-uniform subdivision
schemes [51, 89] are based on the Catmull-Clark [10] behaviour where each singularity
has either zero or unbounded curvature [40].
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Control mesh Degree 3 Degree 5 Degree 7 Degree 9

Table 6.1: Surfaces with three different knot configurations (top to bottom) at degrees 3 to 9 (left to right). Each surface is drawn with reflection lines and is
defined by the control mesh shown on the left. In each row, the knot intervals shown in red are five times larger than the others; the first row shows
the uniform case. Note the widening influence of a knot interval as degree increases. The six surfaces which are both high-degree and non-uniform
(bottom-right) cannot be generated by any previous subdivision scheme.
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6.2. Applications

• Chapter 5 also gives the first arbitrary-degree uniform subdivision surfaces with bounded
curvature at singularities. Previous arbitrary-degree subdivision schemes [62, 63, 91, 93,
103, 105] all have either zero or unbounded curvature at singularities (see §5.2).

6.2Applications

Table 6.1 and Figure 6.1 show example NURBS-compatible subdivision surfaces at a range of
degrees and with various knot configurations. An immediate application of these surfaces is that
users need no longer be presented with mutually exclusive surface primitives for NURBS and
Catmull-Clark subdivision surfaces. Instead, software applications that allow freeform surface
design using quadrilateral control meshes can use NURBS-compatible subdivision surfaces to
present a unified interface to users, granting control which is familiar from NURBS (non-uniform
parametrisations at arbitrary degree) alongside the flexibility of arbitrary topology, which is
familiar from subdivision.

The availability of non-uniform parametrisations may be useful wherever subdivision surfaces
are textured (for example, procedurally) using the piecewise parametrisation associated with
the control mesh. Like NURBS, the class of surfaces presented here allows each face to be
parametrised by a rectangle, rather than the unit square. A chordal parametrisation, for example,
assigns knot intervals to the geometric length of the associated control mesh edges. Figure 6.2
shows that this parametrisation can reduce the distortion of textures by increasing the regularity
of the parametrisation’s projection onto the surface. Gonsor and Neamtu [32] also highlight that,
for a fair surface, it is important to use non-uniform parametrisations for control meshes with
vertices which are non-uniformly spaced.

Yet another use for non-uniform parametrisations is to allow good control of the boundaries
of subdivision surfaces. §3.3.7 described how to handle boundaries in the curve case and this is
easily transferred to surfaces. As a result, we can use multiple knots to create surfaces which meet
a univariate B-spline curve at the boundary, whilst providing good control of both tangent and
curvature. Existing boundary conditions, such as duplicating control points to gain a clamped
surface, suffer from zero Gaussian curvature at the boundary [78].

Figure 5.10 and Table 6.1 show that NURBS-compatible subdivision surfaces may also be
useful where high-quality surfaces are required, as they offer the possibility of using higher degrees
to increase fairness. The disadvantages of doing so apply to B-splines in general: there is a greater
computational cost, increased shrinkage when comparing the limit surface to the control mesh,
and control points have a less local influence over the surface. However, I believe that even in the
completely uniform case, the degree 5 surfaces are an interesting alternative to Catmull-Clark. The
computational cost is only slightly higher (being degree 5 rather than degree 3), and the resulting
surfaces strike a good balance between respecting the shape of the control mesh and reducing
curvature variation. In addition, the surfaces at degree 5 provide sound theoretical properties,
such as C4 continuity in regular regions, and bounded curvature at singularities.

Returning to the motivation I gave in §1.1, I anticipate that the main use for these surfaces
will be within CAD. Here NURBS-compatibility is particularly crucial, because of the importance
of the NURBS representation to the current set of CAD tools, and because of the large volume of
existing freeform data that already uses NURBS. Within CAD, NURBS-compatible subdivision
surfaces may prove useful as a direct replacement for NURBS, as I suggested at the start of
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6. Conclusion

(a) Control mesh. (b) Degree 3.

(c) Degree 7. (d) Degree 7, non-uniform knots.

Figure 6.1: The same control mesh subdivided in three different configurations. All surfaces have topological
genus 3. In regular regions, the degree 3 surface (b) is C2, and the degree 7 surfaces (c) and (d)
are C6. No previous subdivision scheme or NURBS surface patch can represent the surface (d).
The knot intervals modified to give (d) are shown in (a); the red interval is ten times greater than
the unmarked intervals, and the green interval is four times greater. Comparing (d) with (c), note
that in this case the non-uniform intervals change the whole surface, because the influence of a
knot interval grows with degree for both NURBS and NURBS-compatible subdivision surfaces.

(a) Uniform parametrisation. (b) Chordal parametrisation.

Figure 6.2: Non-uniform knot intervals affect the projection of a surface’s parametrisation. Both (a) and (b)
show a cuboid subdivided at degree three, with subdivision surfaces drawn with isoparameter
lines. Setting knot intervals to chord length increases the regularity of the parametrisation on the
surface (b).
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6.3. Limitations

this section. However, they could also play a more subservient role, by addressing the gaps
and inaccuracies in NURBS models that result from stitching multiple NURBS patches together.
Sederberg et al. [87] were able to repair the intersection of two NURBS surfaces by converting
NURBS into T-splines, merging to form a watertight surface, and then exporting the resulting
surface back into NURBS. It is possible that NURBS-compatible subdivision surfaces could be used
in a similar way, particularly where multiple NURBS surfaces are intended to meet at a common
point. For any number of surfaces other than four, it is not possible to represent this union as
a single NURBS patch that guarantees good continuity properties. However, we could follow a
similar strategy to Sederberg et al. [87] by converting the NURBS surfaces into NURBS-compatible
subdivision surfaces. As this class is a superset of NURBS (see Figure 2.9), the conversion does
not introduce any error, irrespective of the degree of the NURBS patches or the value of the knot
intervals. The subdivision surfaces could then be merged to improve the surface smoothness
across boundaries and at the singularity, using knot insertion to create compatible knot vectors if
required. This process necessarily modifies the input to increase continuity, but the modification
could be constrained to lie within a user-specified tolerance. The resulting NURBS-compatible
subdivision surface would be watertight and, assuming there are non-zero knot intervals adjacent
to the extraordinary vertex, would have bounded curvature at the singularity.

Furthermore, NURBS-compatible subdivision surfaces can be exported as NURBS surfaces
to within any given deviation tolerance: the regular regions of the surface are already NURBS
patches, and the extraordinary regions can be represented as a nested series of spline rings. This
approximation can be brought arbitrarily close to the target subdivision surface, by increasing
the number of spline rings that are exported. Finally, a finite cap is used to fill the remaining
region near the singularity. There are many possible finite fillings: one possibility is Prautzsch’s
freeform splines [61], which would allow any required level of continuity. As a whole, this pipeline
therefore offers a way of taking any number of degree-d NURBS patches, which may not even
meet with C0 continuity, and returning a replacement set of patches which meet Cd−1 across edges
and have, at least, bounded curvature at the singularity. This could prove to be a useful tool for
the repair of CAD models.

6.3Limitations

Karčiauskas et al. [40] note that bounded-curvature schemes can suffer from a lack of fairness.
This effect seems to be visible in the degree 3 surfaces of Table 6.1, since the reflection lines are
not as smooth as a Catmull-Clark surface on the same data (Figure 6.3). I believe this is another
consequence of observations in §5.5, as the 3-valent vertices have λ < 1

2 and the limit surface is
therefore pulled closer to the 3-valent corners than for Catmull-Clark17. At degree 5 and higher,
however, the reflection lines shown in Table 6.1 compare favourably with those in Figure 6.3.

§4.4 also gives several limitations of the knot insertion strategy I described in §4.3, which
creates uniform extraordinary regions from almost all non-uniform configurations. In summary,
these limitations are:

• The surface is a discontinuous function of its knot intervals, as a result of the first part of
the strategy which subdivides large intervals first (§4.3.1).

17At 3-valent singularities a Catmull-Clark surface holds zero, rather than bounded, curvature
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6. Conclusion

(a) Control mesh. (b) Catmull-Clark surface with reflection lines.

Figure 6.3: The Catmull-Clark surface defined on the control mesh used in Table 6.1.

• The comparison between knot interval sizes, as described in §4.3.1, is global, although
large knot intervals have no effect on distant small intervals. The comparison could
therefore be localised without adversely affecting surface smoothness.

• It is not possible to create uniform extraordinary regions where there is a zero knot
interval adjacent to an extraordinary vertex. Surface singularities that lie on multiple knots
therefore have no continuity guarantees: neither the proof of C1 regularity (§5.6) nor the
curvature bounds from §5.3 and §5.4 can apply.

A further limitation, although not specifically of the knot insertion strategy, relates to the ability
to selectively insert knots. The possibility of leaving knot intervals unmodified, as a result of the
algorithm in §3.3, is crucial to the knot insertion strategy in §4.3 and to handling multiple knots
effectively. For NURBS surfaces, knots can be inserted selectively without side effects, as knot
insertion does not alter the limit surface. Subdivision surfaces do not have the same property,
however, so the similarity to NURBS knot insertion partially breaks down in extraordinary regions.
It is hard to see how this limitation could be overcome without providing a finite collection of
patches to fill the extraordinary region, with parametrisations that match the boundary curves.
Existing methods to provide such a finite filling for non-uniform surfaces (as presented by Piegl and
Tiller [59], for example) are only able to provide weak or approximate guarantees on continuity.

Another limitation is introduced by my decision (in §4.1) to require that opposing edges of
every face have equal knot intervals. This means that, like NURBS, the chordal parametrisation
shown in Figure 6.2(b) can only be assigned exactly when the edges in an entire strip of faces
have equal geometric lengths. This is unlikely to be the case for many control meshes designed
in practice, and in these cases a chordal parametrisation can therefore only be approximated (by
taking an average of the lengths of the edges in each strip, for example).

Finally, there is an unintended consequence of the additional smoothing stage for valency
three (§5.4.2) when a 3-valent point appears close to a surface boundary. Using the method
described in §3.3.7, a 3-valent vertex may attempt to receive contributions from a point marked
as outside the boundary, and which would have had no influence on the extraordinary vertex
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6.4. Even degrees

in the regular case. The result is that the surface is curtailed around the 3-valent vertex in a
counter-intuitive way, since all other bounded-curvature modifications maintain the structure of
the regular affine combinations, and only modify the associated weights. It might be possible
to cater for this scenario by simply ignoring contributions from points marked as outside the
boundary which would have no influence over a 3-valent vertex in the regular case. The weights
on other contributions would then have to be scaled to normalise the affine combination. This
may have undesirable consequences, however, for the shape of the surface in the region of such
3-valent vertices; further work is required to assess whether this straightforward modification
offers the best possible solution.

6.4Even degrees

The odd-degree NURBS-compatible surfaces described in this dissertation have a natural counter-
part for even degrees, by using the refinement pattern shown in Figure 4.1(a) rather than 4.1(b).
For this type of refinement, every vertex is 4-valent, but it is possible to introduce extraordinary
faces, which have a number of edges other than four.

The knot insertion algorithm described in §3.3 caters for even degrees using the same frame-
work as for odd degrees. Furthermore, the set of knot intervals, when degree is even, has the same
primal structure as the odd-degree case: knot intervals are associated with a strip of edges, rather
than a strip of faces, and so they diverge at the singularities of the surface in exactly the same way.
Therefore I anticipate that the knot insertion strategy described in §4.3 would apply equally to
even-degree schemes. The two missing components for a complete even-degree solution are:

• A way to generalise the tensor product of univariate knot insertion when there are extraor-
dinary faces (i.e. the even-degree counterpart of calculating refine-and-smooth stages one
face at a time, as described in §4.2).

• Bounded-curvature modifications for even-degree schemes (i.e. the even-degree counterpart
of §5.3 and §5.4).

As I explained in §5.1, the Doo-Sabin subdivision scheme [21] has an optimal eigenspectrum,
in that the first six eigenvalues, ordered by magnitude, are the same for all valencies. The continuity
at singularities is therefore exactly the same as for regular faces: the surface is C1 wherever B-spline
patches meet. The Doo-Sabin scheme generalises biquadratic B-splines, and so in the uniform case
when degree is 2, we would like to use exactly the Doo-Sabin weights.

The Doo-Sabin scheme also hints at a way to tackle the first of the missing components
above, as the weights within an extraordinary face are generalised from the regular case using the
projection of an appropriately-sized circle. We can use the same idea to formulate a generalisation
for arbitrary weights, where the weights are derived instead from the knot insertion algorithm
in §3.3.

However the main hurdle to overcome, in creating an analogue for even degrees, is tuning
the schemes for bounded curvature. Where degree is even, it is faces that have arbitrary valency,
and yet the knot insertion algorithm acts on vertices. This creates a mismatch which I believe
would prove hard to reconcile in a solution as elegant as the odd degree case. Furthermore, the
tuning in Chapter 5 works well because we have an extraordinary vertex, which for dominant
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6. Conclusion

Degree 2 Degree 3 Degree 4 Degree 5

Table 6.2: Natural configurations for both odd- and even-degree bounded-curvature schemes. The column
for degree 2 shows the natural configurations for the Doo-Sabin scheme [21].
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6.5. Future work

eigencomponents is located at the singularity, with which to control the position of vertices along
edges and across faces. For even degrees, there is no centrally-located position to use as an anchor
for this kind of modification, and weight tuning is therefore much less successful.

Despite these challenges, a preliminary investigation has discovered a way to obtain bounded
curvature at degrees 2, 4, 6 and 8, and at valencies 3 to 20. Figure 6.2 shows natural configurations
for some of these modifications, with the odd-degree bounded-curvature schemes for comparison.
I used five tunable parameters to achieve this for even degrees, instead of the three required
for odd degrees. These correspond to mask-tuning parameters which play a similar role to
α, β and γ introduced in Chapter 5, as well as two new values which only alter the weights
of contributions within an extraordinary face. These parameters accommodate the Doo-Sabin
weights as a particular case, which I used as the bounded-curvature modifications for degree 2.
However, there are several questions surrounding the derivation of these parameters:

• Are five parameters truly necessary for good bounded-curvature solutions?

• Are there any guides, similar to the stability heuristic used in §5.3, that can help us to select
bounded-curvature modifications with a small amount of curvature variation? Ideally, we
would like to draw on the experience of a thorough analysis of curvature variation, just as
the stability heuristic draws on the work of Augsdörfer et al. [2].

• Can we constrain the set of modifications so that there is only one possible value for each
parameter at each degree and valency? The modifications used to generate Figure 6.2 used
parameters that were chosen from a narrow set rather than uniquely determined.

Furthermore, the modifications that I have developed so far lead to an implementation which is
relatively complicated compared to the odd-degree case. For a worthy even-degree analogue, all
these issues require further analysis and improvement.

6.5Future work

As well as the even-degree case, there are several other areas where future work could focus atten-
tion. The shortcomings of the current knot insertion strategy (summarised in §6.3) suggest that
there may be an alternative strategy that achieves the same goals without as many disadvantages.
In particular, it might be possible to provide better solutions where zero knot intervals appear
adjacent to extraordinary vertices. In certain cases, multiple knots can reasonably reduce the level
of continuity at singularities, as they always do so in regular regions. Particularly at high degrees,
however, it is counter-intuitive for a solitary double knot to remove even C1 continuity; in regular
regions, increasing the multiplicity to k only reduces the continuity to Cd−k. By handling such
configurations as a special case, we might be able to provide continuity guarantees even in the
presence of multiple knots, as long as the multiplicity is not too high.

There might also be the potential for more extensive changes. Instead of constraining faces to
occupy a rectangle in parameter space, Sederberg et al. [89] and Müller et al. [51] used a more
general framework where each edge can be assigned a knot interval independently. Müller et
al. [51] used the name augmented faces for faces associated with a non-rectangular parameter
space. Future work could consider a generalisation of the local knot vectors (which are collected
as shown in Figure 4.2) in order to incorporate augmented faces as part of NURBS-compatible
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subdivision surfaces. With this generalisation in place, it might also be possible to incorporate
extraordinary faces into odd-degree surfaces, or extraordinary vertices into the even-degree case.

In addition to extensions of the current representation, by improving the handling of multiple
knots or including even degrees and augmented faces, there is also scope for greater analysis of
the surfaces in their current form. It would be useful, for example, to investigate further the
hypothesis (5.3) that I introduced in §5.3. If it holds, then this would become a useful heuristic
for evaluating current subdivision schemes and designing new ones. If it proves to be unfounded,
however, then we may learn how the current bounded-curvature solutions for NURBS-compatible
subdivision schemes could be improved.

Finally there are applications for these schemes, such as the NURBS repair pipeline I described
in §6.2, which are excellent candidates for future work. Testing NURBS-compatible subdivision
on real-world data may highlight changes which would be necessary for the schemes to be useful
in production, and this dissertation is certainly not the final word on NURBS-compatibility. I
have shown, however, that NURBS and subdivision surfaces need not be seen as worlds apart,
and that NURBS surfaces can be freed, in all their generality, from the topological restrictions that
they have always held.
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