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cUniversity of Cambridge Computer Laboratory, Cambridge, CB3 0FD, United Kingdom

We report a preliminary investigation on interactions between communities in a complex net-
work using the Ising model to analyse the spread of information among real communities. The
inner opinion of a given community is forced to change through the introduction of a unique
external source and we analyse how the other communities react to this change. We model two
conceptual external sources: namely, “Strong-belief”, and “propaganda”, by an infinitely strong
inhomogeneous external field and a finite uniform external field, respectively. In the former
case, the community changes independently from other communities while in the latter case
according also to interactions with the other communities. We apply our model to synthetic
networks as well as various real world data ranging from human physical contact networks to
online social networks. The experimental results using real world data clearly demonstrate two
distinct scenarios of phase transitions characterised by the presence of strong memory effects
when the graph and coupling parameters are above a critical threshold.

1. Introduction

The prevalence of portable wireless technologies (e.g. social network services) has given rise
to physical networks in the actual physical space along with online communications. The un-
derstanding of such pervasive network environment as one which is dynamic and pertaining
to human subjects is an open research area The social relationships and interactions between
human subjects bear significant impact to the design of such networks. Important results in
areas such as complex network theory [1] has given various insights into this new generation of
networks (i.e. social context).

A social network consists of a set of people forming socially “meaningful” relationships, such
as those of acquaintance or physical co-location. In our context, we concern relationships where
prominent patterns or information flow are observed. Studies has shown the various interesting
statistical properties in social networks such as the well known small-world property and power-
law degree distribution Notably, it is observed that human society (and in fact many other
real world networks) naturally divides into groups or clusters, often referred to as communities.
Community structure is an important attribute to the understanding of human social networks
and plays a pivotal role in almost all networks across disciplines. Not only does it help us to
understand the network itself, it is crucial in the design of strategies for information propagation
and leads to realistic modelling of opinion dynamics in social networks. Community detection
[20] aims to uncover efficiently the underlying community structure in a network.
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In our previous work, we investigated the community structure in networks of human con-
nectivity based on real world mobility traces [13,14,24] and in large-scale social networks [16].
Mostly, however, these approaches were empirical and heuristic-based focused on a single aggre-
gated static network structure (i.e. community). For dynamic graph mining, Berger-Wolf et. al.
show the study of community evolution based on node overlapping [2]. Further understanding
of network model is essential in that important properties of human contact networks – such
as community and weight of interactions – are important aspects of epidemics in information
spread.

We attempt to address analytically the following questions in this paper. How does a commu-
nity’s opinion influence other communities? How long does it take to propagate information from
one community to another? We explore an Ising model approach to understand the dynamics
of information flow such as rumour spreading between communities in a network.

The last decade has seen numerous proposed sophisticated dynamics [4], however, the Ising
model in all its variants has not been applied to social dynamics. To our knowledge, the Ising
approach has remained unexplored in networks exhibiting community structure. Our general
point of view is not far from that in [18]: in both approaches the external action of media or
random events surrounding a community of persons is encoded in a suitable external field. Apart
from the fact that in [18] the analysis is for one single community, the difference between the
two models is the fact that in ours the disorder concerns the couplings and the links, whereas
in [18] the source of the disorder lies in an additional external random field which mimics the
randomness of the coupling between the external medias and the persons. [6] analysed the
spread of a cultural treat: similar ideas were used for a case with n = 2, infinite connectivity,
and no disorder.

In the following section, we propose the simplest version of the Ising model and discuss a
simple example. We also show how to make the model more sophisticated towards more realistic
situations in later sections. We demonstrate the analysed results with various real world data
ranging from human physical contact networks to online social networks by applying the Ising
interaction model.

2. The Model

Consider a network with n communities, we attempt to analyse how a rumour spreads out
from, say, the community C(1), to the other communities C(l), l = 2, . . . , n (upper indices refer
to the community index). Any person (spin) can take just two values, “yes” or “no” (up or
down) according to an Ising variable σ. At any instant, the percentage of “yes” in C(l) is given
by (1 + s(l))/2, where s(l) is the meta-spin associated to C(l)

s(l) def
=

∑

i∈C(l) σi

N (l)
, l = 1, . . . , n, (1)

where N (l) is the size of C(l). Two important measures, especially for small samples, are the
average over the realisations of the spins σi (thermal averages, 〈σi〉), and the average over
the graph realisations (averaged over the disorder, σi). These two combined averages will be
indicated by m(l) and are the order parameters of the model:

m(l) = 〈s(l)〉, l = 1, . . . , n. (2)

We indicate by c(l,k) the matrix of the connectivities. In general, given a randomly chosen
vertex (person) i in C(l), c(l,k) represents the average number of spins of C(k) connected to i.
Note that c(l,k) and c(k,l) are not independent, in fact, from their definitions, it is easy to see
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that they must satisfy the following detailed balance

N (l)c(l,k) = c(k,l)N (k). (3)

We force the community C(1) to change m(1) through either one of two possible kinds of
sources acting solely on C(1): an infinitely strong and inhomogeneous external field, or a uniform
and finite external field. In the former case, the community C(1) will change independently
from the other communities, while in the latter case C(1) will change also according to the
interaction with the other communities. In both cases, physically, the source of this change can
be parameterised as a suitable external field h(1) (non homogeneous for the former case) acting
only on C(1), however, we do not need to specify h(1), nor the original source generating h(1)

which will evolve during some finite time interval, to which we are not interested either. Such
sources can represent, e.g., strong personal belief of the individuals of C(l) in the former case, or
the action of a media accessible only in C(1) in the second case. We denote these two possible
cases respectively by Strong-belief and Propaganda. Intermediate situations are of course also
interesting but in this work we will consider only the two aforementioned cases on the grounds
that: i) they are simpler than the general case, ii) the key properties of communication among
the communities remain valid in these simpler cases.

The change of opinions in C(1) affects the opinions in the other communities according to the
Ising model, i.e., persons accommodate their opinions in such a way to maximise the number of
weighted pairwise-agreements within (intra) each community and between (inter) each couple
of communities according to minimum of the following Hamiltonian

H = −
∑

l

∑

i,j∈C(l)

J
(l,l)
(i,j)σiσj −

∑

l<k

∑

i∈C(l),j∈C(k)

J
(l,k)
(i,j) σiσj , (4)

where J
(l,l)
(i,j) and J

(l,k)
(i,j) , for l, k = 1, . . . , n with l 6= k, are some intra and inter couplings, respec-

tively. More precisely, when the temperature T is finite, the ising configurations are distributed
around the zero-equilibrium ones (i.e., the configurations that give the minimum for H) accord-
ing to the Gibbs-Boltzamann distribution p ∝ exp(−H/T ).

3. Strong-belief case

3.1. Example with 2 communities at zero temperature

Suppose now we have n = 2 communities with connectivities c(l,k), l, k = 1, 2. All we want to
measure is how m(2), seen as a function of m(1), changes:

m(2) = m(2)(control parameters;m(1)). (5)

In the simplest version of the model with only positive couplings and at zero temperature (mean-
ing there are no thermal fluctuations), an effective field theory [21] provides us the following
system of equations
{

m(1) = tanh(c(1,1)m(1) + c(1,2)m(2) + external field),

m(2) = tanh(c(2,1)m(1) + c(2,2)m(2)).
(6)

As it is sufficient for us to know that there exists a suitable non-homogeneous external field
whose variation produces a variation of m(1) in all the range [−1, 1], we are not interested in
the specification the external field acting on C(1). We take into account only the fact that -
at zero temperature - any infinitesimal external field (uniform or not) acting on C(1) constrains
completely the spins of C(1), therefore the first equation of the system (6) gives a value for m(1)
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which is completely independent of both m(2) and the connectivities. We are therefore left with
a single equation for m(2) seen as a function of the independent variable m(1):

m(2) = tanh(c(2,1)m(1) + c(2,2)m(2)). (7)

The general structure of Eq. (7), with m(1) seen as an independent variable, is related to the
naive mean-field approximation See Section 6, also known as Curie-Weiss mean-field equation.
In our case, if we interpret m(1) as an external field, then from Eq. (7) we see that the total
external field acting on C(2) is amplified by the factor c(2,1).

From the solution of Eq. (7), by varying the control parameters c(2,1) and c(2,2), we can find
different possible scenarios. In particular, for c(2,2) < 1, the community C(2) needs a non-zero
value of c(2,1)m(1) in order to have a non-zero value of m(2), while for c(2,2) > 1 the community
C(2) is able to cooperate internally for a non-zero value of m(2) even without any external
solicitation coming from C(1) (c(2,1)m(1) = 0). The critical parameter c(2,2) = 1 coincides of
course with the the well known percolation threshold result of the Erdös-Rényi random graph
[9] valid for one single graph (or community), that soon we will see the generalisation to the
case of n communities with n > 2.

We report some examples in Figs. 1-3 (below the percolation threshold), and in Figs. 4-6
(above the percolation threshold). As it is evident from these figures, while the cases below the
percolation threshold give a regular function for m(2)(m(1)), we see that the cases above the
percolation threshold give a function m(2)(m(1)) with a discontinuity located at m(1) = 0 with
a jump of the order O(1) (a first-order phase transition). Furthermore, above the percolation
threshold, we see that there is an interval of values of m(1) centred in m(1) = 0 where there exist
2 solutions for m(2) with opposite signs. In the thermodynamic limit, only the solution having
Sign(m(2)) = Sign(m(1)) is stable (or more properly “leading”), while the other is a metastable
state that can survive only for a finite time interval. In terms of social dynamics, the presence of
a metastable state means that, when the persons have enough internal connectivity (c(2,2) > 1),
there is an inertia in changing their opinions, but when the inertia effect ends, an abrupt jump
toward the opposite opinion takes place.
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Figure 1. “Strong-belief” case. An example with n = 2, c(2,1) = 0.1, c(2,2) = 0.9.
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Figure 2. “Strong-belief” case. An example with n = 2, c(2,1) = 0.3, c(2,2) = 0.9.
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Figure 3. “Strong-belief” case. An example with n = 2, c(2,1) = 0.5, c(2,2) = 0.9.
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Figure 4. “Strong-belief” case. An example with n = 2, c(2,1) = 0.1, c(2,2) = 1.1.
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Figure 5. “Strong-belief” case. An example with n = 2, c(2,1) = 0.3, c(2,2) = 1.1.
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Figure 6. “Strong-belief” case. An example with n = 2, c(2,1) = 0.5, c(2,2) = 1.1.
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Figure 7. “Strong-belief” case. An example with n = 3, c(2,1) = c(3,1) = c(2,3) = c(3,2) = 0.1,
c(2,2) = 0.8, c(3,3) = 0.9. In this case det(1 − c) = 0.01 > 0.

3.2. Generalisation to an arbitrary number of communities and finite temperature

The generalisation of the above scheme to the case with n > 2 communities is straightforward.
For example, for n = 3, we have to solve the following system with respect to m(2) and m(3)

both seen as functions of m(1):
{

m(2) = tanh(c(2,1)m(1) + c(2,2)m(2) + c(2,3)m(3))

m(3) = tanh(c(3,1)m(1) + c(3,2)m(2) + c(3,3)m(2)).
(8)

In general, given n > 2 and the reduced matrix of the connectivities c with dimension (n −
1) × (n − 1), it easy to see that the corresponding reduced system of (n − 1) equations in the
unknowns (n−1) order parameters m(2), . . . , m(n), admits a non zero solution even for m(1) = 0
as soon as the following condition is satisfied

max {Eigenvalues of c} > 1, (9)

which in particular implies that the percolation critical surface is given by

det (1 − c) = 0. (10)

Eq. (10) generalises the percolation threshold of the Erdös-Rényi random graph to the case of
n − 1 generic interacting graphs. When we are above such a critical surface means that, for
example, one community is able to cooperate internally as in the previous case (n = 2) so that
spins get aligned even without any external field. However, now (n > 2), it can also happen that
two or more communities cooperate synergically by exploiting their inter-couplings; in other
words, in the thermodynamic limit, a giant connected component can appear also as a result of
a mutual cooperation among more communities. Mathematically speaking, this is a consequence
of the fact that Eq. (10) is a single algebraic equation in n− 1 unknowns (i.e., the solution is a
n − 2 dimensional surface).

In Figs. 7 and 8 we report a case at zero temperature below and above the percolation
threshold surface, respectively. As in the case n = 2 above the percolation surface there appear
also metastable solutions. In general, the number of metastable solutions grows smoothly with
n, however, if in the model some of the couplings are negative, the number of solutions may
grow exponentially fast with n, as the system becomes a spin glass [17,11].

More in general the system can be analysed at finite temperatures. In this case, to keep m(1)

rigidly independent from the other m’s (the “Strong-belief” case), it is necessary that the exter-
nal and inhomogeneous external field acting on C(1) be infinite. Once again we stress however
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Figure 8. “Strong-belief” case. An example with n = 3, c(2,1) = c(3,1) = c(2,3) = c(3,2) = 0.1,
c(2,2) = 0.8, c(3,3) = 1.2. In this case det(1 − c) = −0.05 < 0.

that we do not need to specify such a field. Let T be the temperature. Finite temperature
implies that the spin configurations belonging to the other communities have some freedom to
oscillate around the zero temperature equilibrium ones. In this case the system (8) modifies as

{

m(2) = tanh
(

c(2,1)t(2,1)m(1) + c(2,2)t(2,2)m(2) + c(2,3)t(2,3)m(3)
)

m(3) = tanh
(

c(3,1)t(3,1)m(1) + c(3,2)t(3,2)m(2) + c(3,3)t(3,3)m(3)
)

,
(11)

where β = 1/T , and t is the matrix defined as

t(l,k) def
= tanh(βJ (l,k)), (12)

where the matrix J (l,k), represents the matrix of the couplings. When we pass from zero to finite
temperatures, the role of the percolation threshold passes to be played by the critical surface in
the plane (T, c) whose equation becomes:

det (1 − ct) = 0, (13)

where the matrix ct is given by

c
(l,k)
t = c(l,k)t(l,k). (14)

Examples with n = 4 for the local-strong case at finite temperature are reported in Figs.
(20-23).

4. Propaganda case

In this case the community C(1) is subjected to a finite and uniform external field h1 so that
it will be no completely constrained by the field and it will accommodate its configurations
in order to be in equilibrium with all the other communities. Therefore, for the generic case
of n communities with a generic temperature T = 1/β, and a couplings matrix J (l,k), for
l, k = 1, . . . , n, given a value of h1, we will have to solve the following system with respect to all
the n “order parameters” m(1), m(2), . . . , m(n)







m(1) = tanh
(

c(1,1)t(1,1)m(1) + . . . + c(1,n)t(1,n)m(n) + βh1

)

. . .

m(n) = tanh
(

c(n,1)t(n,1)m(1) + . . . + c(n,n)t(n,n)m(n)
)

.

(15)
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Then, if we want to analyse how m(2), . . . , m(n) change as functions of m(1) we have to solve the
system (15) for several values of h1 and plot m(2), . . . , m(n) versus m(1). The condition for the
critical temperature is as Eq. (13). Note that unlike the “Strong-belief” case, the “Propaganda”
case at zero temperature C(1) will give |m(1)| ≡ 1 for any h1 6= 0.

Examples with n = 4 of the “Propaganda” case at finite temperature are reported in Figs.
(24-27).

Note that, from the physical point of view, in both the “Strong-belief” and “Propaganda”
cases, m(1) plays exactly the same role of a term proportional to an external field acting on the

other communities, the l-th one (l 6= 1) having a proportional factor given by c
(l,1)
t . However,

while in the “Strong-belief” case m(1) takes any value in the range [−1, 1], in the “Propaganda”
case, near the critical temperature, m(1) cannot take all the values in the range [−1, 1], since
m(1) undergous finite jumps near the critical point. This is better seen in Fig. (28) where we
plot the m’s versus the external field h1.

5. Real World Community Data

In this paper, we use three experimental datasets. One of them is gathered by the Haggle
Project [12], referred to as “Cambridge”; another dataset from the MIT Reality Mining Project
[8], referred to as “MIT”, where proximity information with nearby nodes are discovered through
periodic Bluetooth scans and location information from cell tower IDs. The last data is extracted
from the social network of Facebook. We crawled two sub-networks from Stanford and Harvard
Universities in the Facebook entries. For Harvard students, the first 35,000 Facebook profiles
belong to past students who were the first users Approximately 20,000 users with 2.1 million
links now exist. The mean degree is 63, and a maximum degree is 911. The users have 1,660
distinct affiliations, of which 1,181 could be mapped to geographic locations all over the globe.
We extracted the entries, who has “Stanford University” as a secondary affiliation in the Harvard
students as well as the entries, who has “Harvard University” as a secondary affiliation in the
Stanford students. Thus, the first group indicates the people who moved from Harvard to
Stanford while the second group indicates the people who moved from Stanford to Harvard.

Previously, the characteristics of these datasets such as inter-contact and contact distribution
have been explored in several studies [5][25], to which we refer the reader for further background
information. We believe these datasets cover a rich diversity of environments from a physical
urban environment in university town (Cambridge) to an online social networks. See [3]for the
detailed analysis of Harvard-Stanford data. Table 1 summarises the configuration.

Table 1. Characteristics of the experimental data

Experimental data set MIT CAM Harvard-Stanford

Device Phone iMote online

Network type Bluetooth Bluetooth Facebook

Duration (days) 246 11 current

Granularity (seconds) 300 120 -

Number of Experimental Devices 97 36 663

Number of Communities 4 2 2

Average Size of Communities 7.5 16.5 331.0
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MIT: in the MIT Reality Mining project [8], 97 smart phones were deployed to students
and staff at MIT over a period of 9 months. These phones were running software that logged
contacts.

CAM: in the Cambridge Haggle project [15], 36 iMotes were deployed to 1st year and 2nd year
undergraduate students for 11 days. iMotes detect proximity using Bluetooth.

Harvard-Stanford: two sub-networks consisting of students from Stanford and Harvard uni-
versities are extracted from Facebook. From those sub-networks, only the entries, who has
both affiliations, Harvard and Stanford are extracted. The number of nodes with Harvard and
Stanford in order is 325 and the number of nodes with Stanford and Harvard in order is 337.

5.1. Community Detection Method

Many community detection methods have been proposed and examined in the literature (see the
recent review papers by Newman [20] and Danon et al. [7]). We have shown various community
detection mechanisms [13] which can be applied to human connectivity traces. In this paper, for
the datasets of MIT and Cambridge, we have exploit both K-Clique and Fiedler Clustering,
where Fiedler Clustering captures more hierarchical structure.

The connectivity traces can be represented by weighted graphs, in which the weight of an
edge represents the contact duration and contact frequency for the two end vertices. Many real
world networks are weighted. A weighted graph can be converted into a multi-graph with many
unit edges. We built various weighted graphs before applying community clustering algorithms.
We only consider symmetric edges, on the other hand, edges can be symmetric (undirected) or
asymmetric (directed), possibly with a different strength in either direction. Harvard-Stanford
dataset is simply divided into 2 clusters based on the order of the affiliation description of
Harvard and Stanford.

• K-Clique: Palla et al.[23] define a community as a union of all k-cliques (complete sub-
graphs of size k) that can be reached from each other through a series of adjacent k-cliques,
where two k-cliques are said to be adjacent if they share k−1 nodes. An advantage of this
approach is that it allows overlapping communities, which is useful as, in human society,
one person may belong to multiple communities.

• Weighted Networks Analysis by Newman [19] can work on weighted graphs built from
encounter trace. A weighted graph can be converted into a multi-graph with many unit
edges.

• Fiedler Clustering: The eigenvector for the nonzero smallest eigenvalue of a Laplacian
matrix is called the Fiedler vector [10]. This vector can be used for decomposing graphs
into structural components.

6. Applying Ising Model to Real Data with Two Communities

Let us consider for simplicity again the case with n = 2 community. If we have the connectivities
matrix c, (or in general the matrix ct for finite temperature (14)) and the percentage of “yes”
(2 × (% of yes) −1 = m) on the two communities taken at several distinct times, we can derive
the histogram of m(2) versus m(1) and compare with our theoretical solution. It is important,
however, for such a validation that the community C(2) with respect to the feature “yes” or
“not”, apart from the connection with C(1), to be completely isolated. For example, there is a
global rumour (“Propaganda” or “Strong-belief”) starting on C(1) that Prof. Smith next year
will win the Nobel Prize in Physics. Then, in order to find some validation for the case with
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n = 2 communities, it is important that C(2) can receive such a rumour only from C(1): any
other information travelling on different channels will invalidate the model with n = 2.

Of particular interest can be the comparison of the slope of m(2) with respect to m(1):

∂m(2)

∂m(1)
=

χ̃(2,1)

χ̃(1,1)
, (16)

where, in general, the matrix χ̃ is defined as

χ̃(l,k) def
=

∂m(l)

∂βh(k)
. (17)

For χ̃ the theory predicts

χ̃ = χ̃0 · (1 − χ̃0 · ct)
−1 , (18)

where

χ̃
(l,k)
0 =

[

1 − m(l)
]2

δl,k. (19)

In particular, in the paramagnetic region (m(l) = 0 for any l), Eqs. (18) and (19) give

χ̃ = (1 − ct)
−1 . (20)

In Figs. 9 and 10 we report the model theoretical predictions at zero temperature for n = 2
where the connectivity matrix c comes from real data.
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Figure 9. “Strong-belief” case at zero temperature. A case with n = 2 and matrix c11 = 8, c12 =
10.78, c21 = 8.08, c22 = 11. Cambridge students (N = 36) data-set analysed by using K-clique.
Here we plot m(2) vs m(1).
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Figure 10. Data-set as Fig. 9. Here we plot m(1) vs m(2).
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Figure 11. “Strong-belief” case at zero temperature. A case with n = 4 and matrix c11 =
12, 12 = 6.92, c21 = 12.86, c22 = 5.72, c11 = 12, c13 = 3.77, c31 = 9.8, c33 = 4, c11 = 12, c14 =
3.47, c41 = 9.0, c44 = 4, c22 = 5.72, c23 = 2.29, c32 = 3.2, c33 = 4, c22 = 5.72, c24 = 1.0, c42 =
1.4, c44 = 4, c33 = 4, c34 = 5, c43 = 5, c44 = 4. MIT students (N = 97) dataset analysed by
using K-clique. Here we analyse the reduced system with n = 2 for m(2) vs m(1). For the case
m(1) vs m(2) the plot is like Fig. 9.
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Figure 12. Data-set as Fig. 11. Here we analyse the reduced system n = 2 for m(3) vs m(1). Fo
the case m(3) vs m(1) the plot is like Fig. 9.
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Figure 13. Data-set as Fig. 11. Here we analyse the reduced system n = 2 for m(4) vs m(1). Fo
the case m(3) vs m(1) the plot is like Fig. 9.
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Figure 14. Data-set as Fig. 11. Here we analyse the reduced system n = 2 for m(3) vs m(2). Fo
the case m(2) vs m(3) the plot is like Fig. 9.
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Figure 15. Data-set as Fig. 11. Here we analyse the reduced system n = 2 for m(4) vs m(3). Fo
the case m(3) vs m(4) the plot is like Fig. 9.
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Figure 16. Data-set as Fig. 11. Here we analyse the reduced system n = 3 for m(2) and m(3) vs
m(1). Fo the case m(3) vs m(4) the plot is like Fig. 9. In this case m(3) and m(2) coincide.
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Figure 17. “Strong-belief” case at zero temperature. A case with n = 2. The dataset is the same
as those of Figs. 9 and 10, but the matrix c is obtained by using the Fiedler clustering, being
now c(11) = 18.8, c(12) = 11.15, c(21) = 14.87, and c(22) = 13.4. This plot must be compared with
Fig. 9. The case C1 versus C2 produces instead a plot like Fig. 9, to be compared with Fig.
10. We see that the two different ways to obtain the matrix c produces here a sort of opposite
situations; being, roughly speaking, the role of C2 and C1 reversed.
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Figure 18. “Strong-belief” case at zero temperature. A case with n = 2, c(11) = 5.9, c(12) = 5.9,
c(21) = 5.71, and c(22) = 5.72. Data-set taken from a Stanford-Harvard online social network
(N = 326 + 337). For the case C1 versus C2 the plot is like Fig. 9.
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Figure 19. “Strong-belief” cases at zero temperature. The above seven plots are taken from
a dataset having the following matrix: c11=3.32, c22=5.86, c33=18.72, c44=21.10, c12=7.83,
c21=3.36, c13=19.3, c31=3.52, c14=24.5, c41=3.5, c23=17.21, c32=7.30, c24=21.86, c42=7.29,
c34=23.18, c43=18.21. The data-set comes from the same set as Fig. 11 but it is analysed
according to the Fiedler clustering algorithm. The cases not shown (including the cases with
two or three interacting communities) are trivial, being these like Fig. 9. Such trivial cases
are due to the fact that the non diagonal matrix elements are too small compared to very high
values of the diagonal terms so that the system remains insensitive even to large variations of
the independent variable m(l), where l = 1, . . . , 4. Note that in the last plot (C2 and C3) vs C4,
the solutions m(2) and m(3) coincide. As is evident from the comparison with the above plots
C2 vs C4, and C3 vs C4, from the plot (C2 and C3) vs C4 we see that the communities C2

and C3 cooperate since their global inertia become bigger when their reciprocal inter-links are
activated. The same argument applies to the case of Fig. 16.
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Figure 20. “Strong-belief” case. Analysis for a non-weighted network (w1) at finite temperature.
The data-set comes from the same set as Fig. 11 and is analysed according to the Fiedler
clustering algorithm. We plot m(2), m(3), m(4) as functions of m(1), where C(1) (and only C(1))
is subjected to an external field which completely constrains C(1). The three groups of plots
correspond to three different finite temperatures T = 50, T = 40, and T = 20 with coupling
J = 1 (i.e. we are considering three situations with the adimensional couplings βJ = 0.02,
βJ = 0.025, and βJ = 0.05, respectively). Note that smaller temperatures correspond to
steeper dependencies.
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Figure 21. “Strong-belief” case. Analysis for a weighted network (w2) at finite temperature.
The data-set comes from the same set as Fig. 11 and is analysed according to the Fiedler
clustering algorithm. We plot m(2), m(3), m(4) as functions of m(1), where C(1) (and only C(1))
is subjected to an external field which completely constrains C(1). The three groups of plots
correspond to three different finite temperatures T = 50, T = 33.3, and T = 20 with coupling
J = 1 (i.e. we are considering three situations with the adimensional couplings βJ = 0.02,
βJ = 0.03, and βJ = 0.05, respectively). Note that smaller temperatures correspond to steeper
dependencies.
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Figure 22. “Strong-belief” case. Analysis for a weighted network (w3) at finite temperature.
The data-set comes from the same set as Fig. 11 and is analysed according to the Fiedler
clustering algorithm. We plot m(2), m(3), m(4) as functions of m(1), where C(1) (and only C(1))
is subjected to an external field which completely constrains C(1). The three groups of plots
correspond to three different finite temperatures T = 50, T = 20, and T = 12.5 with coupling
J = 1 (i.e. we are considering three situations with the adimensional couplings βJ = 0.02,
βJ = 0.04, and βJ = 0.08, respectively). Note that smaller temperatures correspond to steeper
dependencies.
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Figure 23. “Strong-belief” case. Analysis for a weighted network (w4) at finite temperature.
The data-set comes from the same set as Fig. 11 and is analysed according to the Fiedler
clustering algorithm. We plot m(2), m(3), m(4) as functions of m(1), where C(1) (and only C(1))
is subjected to an external field which completely constrains C(1). The three groups of plots
correspond to three different finite temperatures T = 20, T = 12.5, and T = 10 with coupling
J = 1 (i.e. we are considering three situations with the adimensional couplings βJ = 0.05,
βJ = 0.08, and βJ = 0.1, respectively). Note that smaller temperatures correspond to steeper
dependencies.
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Figure 24. “Propaganda” case. Analysis for a weighted network (w1) at finite temperature. The
data-set comes from the same set as Fig. 11 and is analysed according to the Fiedler clustering
algorithm. We plot m(2), m(3), m(4) as functions of m(1), where C(1) (and only C(1)) is subjected
to a uniform external-propaganda field. The three groups of plots correspond to the same three
different finite temperatures as in Fig. 20.
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Figure 25. “Propaganda” case. Analysis for a weighted network (w2) at finite temperature. The
data-set comes from the same set as Fig. 11 and is analysed according to the Fiedler clustering
algorithm. We plot m(2), m(3), m(4) as functions of m(1), where C(1) (and only C(1)) is subjected
to a uniform external-propaganda field. The three groups of plots correspond to the same three
different finite temperatures as in Fig. 21.
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Figure 26. “Propaganda” case. Analysis for a weighted network (w3) at finite temperature. The
data-set comes from the same set as Fig. 11 and is analysed according to the Fiedler clustering
algorithm. We plot m(2), m(3), m(4) as functions of m(1), where C(1) (and only C(1)) is subjected
to a uniform external-propaganda field. The three groups of plots correspond to the same three
different finite temperatures as in Fig. 22.
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Figure 27. “Propaganda” case. Analysis for a weighted network (w4) at finite temperature. The
data-set comes from the same set as Fig. 11 and is analysed according to the Fiedler clustering
algorithm. We plot m(2), m(3), m(4) as functions of m(1), where C(1) (and only C(1)) is subjected
to a uniform external-propaganda field. The three groups of plots correspond to the same three
different finite temperatures as in Fig. 23.
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Figure 28. “Propaganda” case. Analysis for a weighted network (w1) at the finite temperature
T = 50. The data-set comes from the same set as Fig. 11 and is analysed according to the
Fiedler clustering algorithm. We plot m(1), m(2), m(3), m(4) as functions of βh1, the external
and uniform (propaganda) field acting only on C(1) (and only C(1)).

The Cambridge dataset consists of two groups of under graduate students: one is the first
year and the other is second year, where it demonstrate “Strong-belief” between the groups.
Among MIT experiment participants, around 75% of participants are either student or faculty
in the MIT Media Laboratory, while the remaining 25% is incoming students at the MIT Sloan
business school next to the laboratory. Among the participants at the Media Lab, twenty are
incoming masters students and five are incoming MIT new students. Thus, there could be 4
communities: 1) Media lab faculties, 2) Media lab students, 3) Business school faculties, and
4) Business school students. Thus, extracted four communities may be well correlated to these
groups of participants. Nevertheless, cooperation between the community 2 and 3 is shown in
19 and two cases (i.e. “Strong-belief” and “Propaganda”) are shown in the interaction between
the community 2,3,4 against the community 3. Recently the reality mining project disclosed
further collected information from the experiments and we will be able to explore more detailed
social contexts in the MIT dataset for verification of our Ising modelling in future.

7. Conclusions and Implications

In this paper, we have reported preliminary investigations of interactions between communities
using Ising spin model. Our modelling forces a given community to change its inner opinion
through an external source acting only on it, and then we analyse how the other communities
react to this change. There are two possible kinds of external sources: an infinitely strong and
inhomogeneous external field, or a uniform and finite external field. In the former case (i.e.
“Strong-belief”), the community will change independently from the other communities, while
in the latter case the community will change also according to the interactions it has with the
other communities (i.e. “Propaganda”). We have analysed various real world data ranging from
human physical contact networks to online social networks by applying the Ising interaction
model.

The experimental results using real world data clearly demonstrate two distinct scenarios of
phase transitions. If we compare examples in Figs. 20 and 24, we see that the plots are almost
identical but not near the critical Tc. In fact, near Tc, while in the “Strong-belief” case m1

changes continuously, in the “Propaganda” case m1 makes a finite jump from -0.25 to 0.25 and
- correspondingly - m2, m3, and m4 are forced to make a finite jump too. This is better shown
in the example of Fig. 28 where we plot the m′s as a function of the propaganda field h1.

In the examples described in Section 2-6, the parameters of the model are encoded in the
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single matrix c of the connectivities or, more generally, in the matrix ct for finite temperatures.
However, the version of the model we have so far considered is the simplest one: with only uni-
form and positive couplings, and no internal geometry. It is possible to consider generalisations
to the model measuring the amplitude and the sign of the adimensional couplings, and to define
two family of (adimensional) couplings, short-range, βJ0, and long-range, βJ . The former are
in correspondence with a possible geometry internal (to simplify) to the community, while the
latter are in correspondence with random short-cuts of the underlying random graph. To realize
these aim, a direct measure of the correlation function from the data should be done. Once we
have access to the intra-correlation function (i.e., inside the communities) we can evaluate βJ0

and the diagonal matrix elements of the matrix ct, while for the inter-correlation function (i.e.,
between two different communities) we get the non-diagonal matrix elements of ct.

When such generalisations are taken into account, a much more complex scenario of solutions
and phase transitions are expected, as discussed in [21]. In particular, as already mentioned
in the previous Section, when some of the couplings are negative, frustration takes place, and
when the number n of interacting communities is large, a remarkable number of metastable
states with a spin glass scenario will take place. Such situations are in fact expected in a social
system, where an intrinsic unpredictability is a quite common situation.

Note that in Section 2, we have mentioned that the general structure of Eq. (7) is that of
the Curie-Weiss mean field theory, which remains a naive approximation. However, the nature
and the values of the “effective couplings” c(2,1) and c(2,2) is completely different and comes
from the fact that the theory beyond Eqs. (6) is an effective mean-field theory that, besides
the presence of possible short-range couplings, takes into account the fact that the kind of the
disorder we take into account is quenched and not annealed. The method presented in [21]
is limited being the proposed solution exact at any temperature only in the limits c → 0 or
c → ∞. Nevertheless, it remains the only method to face such complicated models for n ≥ 2.
In particular, the method is always exact in the paramagnetic region and Eqs. (10) and (20)
exact. See [22] for further details.

A direction for future research is to validate and verify the correctness of our modelling using
experimental data from real world. We plan to use messages and advertisements for validation,
which are often spread through online social networks. We find that choosing the parameter
values of the network such as memory effects, which can be calculated analytically may become
influential and we plan to verify various setting of parameters by real world experiments.

We also note here the importance of using weighted networks as a tool to differentiate the
roles played by the communities. In fact, as it is evident from Figs. 20-27, by using increasing
weights (w1 → w4) we get larger and larger differences in the susceptibilities associated to
different communities. Our current model is simple and we aim at extending this work to deal
with more complex and realistic situations.
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