
Technical Report
Number 761

Computer Laboratory

UCAM-CL-TR-761
ISSN 1476-2986

Programming networks of vehicles

Jonathan J. Davies

November 2009

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 Jonathan J. Davies

This technical report is based on a dissertation submitted
September 2008 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Programming networks of vehicles
Jonathan J. Davies

Abstract. As computers become smaller in size and advances in communications tech-
nology are made, we hypothesise that a new range of applications involving computing
in road vehicles will emerge. These applications may be enabled by the future arrival of
general-purpose computing platforms in vehicles. Many of these applications will involve
the collection, processing and distribution of data sampled by sensors on large numbers of
vehicles. This dissertation is primarily concerned with addressing how these applications
can be designed and implemented by programmers.

We explore how a vehicular sensor platform may be built and how data from a variety
of sensors can be sampled and stored. Applications exploiting such platforms will in-
fer higher-level information from the raw sensor data collected. We present the design
and implementation of one such application which involves processing vehicles’ location
histories into an up-to-date road map.

Our experience shows that there is a problem with programming this kind of applica-
tion: the number of vehicles and the nature of computational infrastructure available
are not known until the application is executed. By comparison, existing approaches to
programming applications in wireless sensor networks tend to assume that the nature of
the network architecture is known at design-time. This is not an appropriate assumption
to make in vehicular sensor networks. Instead, this dissertation proposes that the func-
tionality of applications is designed and implemented at a higher level and the problem
of deciding how and where its components are to be executed is left to a compiler. We
call this ‘late physical binding’.

This approach brings the benefit that applications can be automatically adapted and
optimised for execution in a wide range of environments. We describe a suite of transfor-
mations which can change the order in which components of the program are executed
whilst preserving its semantic integrity. These transformations may affect several of the
application’s characteristics such as its execution time or energy consumption.

The practical utility of this approach is demonstrated through a novel programming lan-
guage based on Java. Two examples of diverse applications are presented which demon-
strate that the language and compiler can be used to create non-trivial applications.
Performance measurements show that the compiler can introduce parallelism to make
more efficient use of resources and reduce an application’s execution time. One of the
applications belongs to a class of distributed systems beyond merely processing vehicular
sensor data, suggesting that the late physical binding paradigm has broader application
to other areas of distributed computing.

3

4

Contents

Preface 11

Publications 13

1 Introduction 15

1.1 In-vehicle computing . 15

1.2 Applications . 16

1.3 Challenges . 18

1.4 Dissertation outline . 18

2 Background 21

2.1 Computing in vehicles . 21

2.1.1 Data processing in vehicles . 22

2.1.2 Sensors . 23

2.1.3 Communications . 23

2.1.4 Vehicular networks . 24

2.2 Distributed computing . 30

2.2.1 The von Neumann architecture . 30

2.2.2 Loosely-coupled systems . 31

2.2.3 Task assignment . 43

2.3 Programming sensor networks . 46

5

Contents

2.3.1 Distributed database . 48

2.3.2 Active sensor networking . 50

2.3.3 Other approaches . 55

2.4 Summary . 55

3 A vehicular sensor platform 57

3.1 Managing sensor data . 57

3.2 A sensor platform . 58

3.2.1 Requirements . 58

3.2.2 Vehicle . 59

3.2.3 Sensor infrastructure . 59

3.2.4 External communications . 64

3.2.5 Power . 64

3.2.6 User interaction . 66

3.2.7 Data collected . 68

3.3 Further work . 68

3.4 Summary . 71

4 Scalable, distributed, real-time map generation 73

4.1 Inferring a road map from location data 74

4.1.1 Producing road maps . 74

4.1.2 Automatically generating a directed graph 74

4.1.3 Complexity . 81

4.1.4 Evaluation . 81

4.2 Maintaining a model of the road network 86

4.2.1 Map regeneration . 86

4.2.2 Retaining associated metadata . 87

4.2.3 Cost of execution . 89

4.3 Involving multiple vehicles . 89

4.3.1 Scalability . 89

4.3.2 System architecture . 91

4.4 Further work . 92

4.5 Summary . 92

6

Contents

5 Automatic task assignment 95

5.1 The problem of early physical binding . 95

5.2 Automatic task assignment . 96

5.2.1 Task graph . 97

5.2.2 Resource graph . 98

5.2.3 Assignment function . 98

5.2.4 Cost function . 98

5.3 Application design process . 100

5.4 Applicability . 100

5.4.1 Vehicular networks . 101

5.5 Task graph optimisation . 102

5.5.1 Types of task . 102

5.5.2 Denotational semantics . 104

5.5.3 Generalising to n-ary tasks, n > 2 105

5.5.4 Fault tolerance . 106

5.5.5 Examples: aggregation operators 106

5.5.6 Datatypes . 108

5.5.7 Task graph transformations . 110

5.5.8 Redundancy . 128

5.5.9 Optimising transformations for n-ary tasks 128

5.5.10 Example of using transformations: computing π 130

5.6 Expressiveness of task graphs . 133

5.6.1 Pair and unpair tasks . 134

5.6.2 Task graph edges . 141

5.7 Related work . 142

5.7.1 Task graph transformations . 142

5.7.2 MapReduce . 143

5.7.3 SpatialViews . 146

5.8 Further work . 147

5.9 Summary . 148

7

Contents

6 Language and Compiler 149

6.1 Language . 149

6.1.1 Datatype definitions . 150

6.1.2 Task graph definition . 153

6.1.3 Resource graph definition . 155

6.1.4 Initial mapping definition . 155

6.1.5 Cost function definition . 156

6.2 Compiler . 157

6.2.1 Task graph optimisation and assignment 158

6.2.2 Compiler implementation . 160

6.2.3 Front end . 160

6.3 Further work . 161

6.4 Summary . 162

7 Examples 163

7.1 Ray tracing . 163

7.1.1 Datatypes . 164

7.1.2 Initial task graph . 168

7.1.3 Execution . 169

7.2 Automatic road map generation . 171

7.2.1 Design . 172

7.2.2 Implementation . 174

7.2.3 Evaluation . 177

7.3 Summary . 186

8 Conclusion 187

8.1 Further work . 190

A Vehicle-oriented communications technologies 193

B Sensor networks 195

B.1 Sensor-equipped devices . 195

B.2 Examples of sensor network applications 197

B.3 Characteristics of sensor networks . 198

B.4 Node discovery . 199

8

Contents

B.5 Routing . 199

B.5.1 Data-centric routing protocols . 200

B.5.2 Hierarchical routing protocols . 202

B.5.3 Location-based routing protocols 202

C Tightly-coupled systems 205

C.1 Dealing with concurrency . 205

C.1.1 Object-oriented programming . 206

C.1.2 Functional programming . 206

C.2 Architectural models . 207

C.3 Multi-processor machines . 207

C.4 Data-parallel architectures . 208

D Modelling distributed computing 209

D.1 Process algebras . 209

D.1.1 Milner’s ccs . 210

D.1.2 Hoare’s csp . 211

D.1.3 The π-calculus . 211

D.2 Petri nets . 212

D.3 Dataflow models . 213

D.3.1 Kahn’s dataflow networks . 213

D.3.2 Other languages . 214

D.4 Categorical datatypes . 215

D.4.1 Bird-Meertens Formalism . 215

D.4.2 Stages and Transformations paradigm 216

E Inter-process communication techniques 217

E.1 Distributed shared virtual memory . 217

E.2 Shared objects . 218

F Task partitioning 221

F.1 Manual task partitioning . 221

F.2 Static automatic task partitioning . 222

F.3 Dynamic automatic task partitioning . 224

9

Contents

G Example task graphs 225

G.1 Sum . 225

G.2 Maximisation and minimisation . 226

G.3 Count . 226

G.4 Count of unique values . 226

H Graphical derivations of ternary transformations 229

I Proofs of soundness of n-ary transformations 233

I.1 Merge–Processing transformation . 233

I.2 Farm transformation . 234

I.3 Processing–Replication transformation . 235

I.4 Split–Merge transformation . 236

I.5 Merge–Split transformation . 237

I.6 Processing–Split transformation . 238

I.7 Split–Replication transformation . 239

I.8 Merge–Replication transformation . 243

J Transformations involving pair and unpair tasks 249

J.1 Transformations involving both pair and unpair 249

J.1.1 Pair–Unpair transformation . 249

J.1.2 Unpair–Pair transformation . 250

J.1.3 Combine transformation . 251

J.2 Transformations involving pair tasks . 252

J.2.1 Pair–Processing transformation . 252

J.2.2 Pair–Merge transformation . 252

J.2.3 Pair–Replication transformation . 253

J.2.4 Pair–Split transformation . 254

J.3 Transformations involving unpair tasks . 255

J.3.1 Unpair–Processing transformation 255

J.3.2 Unpair–Merge transformation . 256

J.3.3 Unpair–Replication transformation 257

J.3.4 Unpair–Split transformation . 258

J.4 Redundancy . 259

J.5 Derivation of transformations involving pair and unpair 259

References 269

10

Preface

Acknowledgments. I have been supported by many people throughout the course of
the studies which have culminated in this dissertation. I am indebted to my supervisor,
Andy Hopper, for generously arranging for financial support. Moreover, he has been the
inspiration behind much of this work, providing many thought-provoking suggestions and
ideas. Many thanks are due to Alastair Beresford for his day-to-day assistance, advice
and encouragement, many times going beyond the call of duty to provide aid; much of
the content of this dissertation has been discussed with him at length. I would also like to
thank Alan Mycroft for allowing me access to his valuable expertise which has particularly
influenced the latter part of the work.

Many others in the Computer Laboratory have provided assistance of various forms,
from technical help through to proof-reading and moral support. These include David
Cottingham, Andrew Rice, Brian Jones, Samuel Kounev, Ripduman Sohan, Richard
Gibbens, Mbou Eyole-Monono, Robert Harle, Tom Craig, Marcelo Pias, Matthew Parkin-
son, Joseph Newman and John Fawcett. Thanks are due to Louise Driffill for proof-
reading. Finally, I would like to thank my examiners, Ken Moody and Tim Harris, for
their interest and helpful suggestions.

Some of the work contained in this dissertation originated from or was performed jointly
with others. The list of applications involving in-vehicle computing (Section 1.2) was
devised jointly with David Cottingham. The vehicular sensor platform (Chapter 3) was
designed and built in collaboration with Brian Jones and David Cottingham. In particular,
the communications infrastructure (Section 3.2.4) was set up by David and the power
control (Section 3.2.5) implemented by Brian. Figure 3.10 was produced with the help
of Andrew Rice. Some elements of the map generation algorithm (Section 4.1.2) were
suggested by Alastair Beresford; their implementation is my own, with the exception of
the contour follower, implemented by Andrew Rice. Richard Gibbens assisted with the
statistics in Section 4.1.4.1. Keith Farkas made some suggestions about an earlier form of
the content which contributed towards Chapter 4. Much of Chapter 5 evolved after several
lengthy discussions with Alastair Beresford and Alan Mycroft. The invention of split tasks

11

Preface

(Section 5.5.1) and the exponentiation example (Section 5.5.7.2) are due to Alan Mycroft.
Samuel Kounev suggested considering quasi-static applications (Section 5.4.1).

Stylistic conventions. As is commonplace in academic publications, the use of the
plural form of the subjective first-person pronoun—we—is adopted although it refers to
a singular author. The exceptions to this convention are highlighted above, where some
aspects of the work described have been done in conjunction with other researchers.

The pronouns that and which are used interchangeably to introduce restrictive clauses.
Non-restrictive clauses always begin with which and use commas to delimit the clause.

Citations are generally placed at the end of a sentence which introduces or describes
the main theme of the academic work referenced. When this gives rise to ambiguity,
citations are placed adjacent to the word or phrase which most closely identifies the work.
When reference is made to a part of a work and not the work as a whole (such as an
individual statement contained in it), the page number or section number is included
with the citation. Where a reference pertains to the items in a list, the citation is made
after the paragraph preceding the list.

12

Publications

Some of the contributions presented in this dissertation have appeared in the following
publications:

1. Alastair R. Beresford, Jonathan J. Davies, and Robert K. Harle. Privacy-sensitive
congestion charging. In Proceedings of the 14th International Workshop on Security
Protocols (SPW 2006), to appear in LNCS, Cambridge, UK, March 2006.

2. Jonathan J. Davies, David N. Cottingham, and Brian D. Jones. A sensor plat-
form for sentient transportation research. In Paul Havinga, Maria Lijding, Nirvana
Meratnia, and Maarten Wegdam, editors, 1st European Conference on Smart Sens-
ing and Context (EuroSSC 2006), volume 4272 of LNCS, pages 226–229, Enschede,
Netherlands, October 2006. Springer.

3. Jonathan J. Davies, Alastair R. Beresford, and Andy Hopper. Scalable, distributed,
real-time map generation. IEEE Pervasive Computing, 5(4):47–54, Oct–Dec 2006.

4. David N. Cottingham and Jonathan J. Davies. A vision for wireless access on
the road network. In Proceedings of the 4th International Workshop on Intelli-
gent Transportation (WIT 2007), pages 25–30, Hamburg, Germany, March 2007.
Technische Universität Hamburg-Harburg.

5. Jonathan J. Davies and Alastair R. Beresford. Scalable, inter-vehicular applications.
In On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops (Part
II), volume 4806 of LNCS, pages 876–885, Vilamoura, Portugal, November 2007.
Springer.

6. Jonathan J. Davies, Alastair R. Beresford, and Alan Mycroft. Language-based
optimisation of sensor-driven distributed computing applications. In José Luiz Fi-
adeiro and Paola Inverardi, editors, 11th International Conference on Fundamental
Approaches to Software Engineering (FASE 2008), volume 4961 of LNCS, pages
407–422, Budapest, Hungary, March 2008. Springer.

13

Publications

14

CHAPTER1

Introduction

Over recent decades, computer technology has impacted on many areas of society. These
innovations have brought increases in efficiency, productivity, safety and many other bene-
fits. Transportation has enjoyed many aspects of this revolution, with innovations ranging
from electronic stability control in vehicles to urban traffic control systems and electronic
toll collection systems on the road network.

Recent trends in communication technology mean that a further range of applications will
become feasible in the near future. In particular, applications involving communication
amongst large numbers of vehicles across a wide geographic scale are likely to be imple-
mented. The primary focus of this dissertation is to examine how these applications can
be designed, programmed and deployed.

We begin to introduce this work by speculating about the nature of these inter-vehicular
applications in Section 1.2, then highlight some of the challenges in implementing them
in Section 1.3. Finally, in Section 1.4 we describe the approach that is taken in this
dissertation to aim towards achieving these goals.

1.1 In-vehicle computing

Traditionally, computing has been primarily applied to vehicular technology for safety-
related purposes. After these applications, the next beneficiaries of computer technology
in the vehicle industry have been entertainment-oriented applications.

Beyond these areas, there have been very few examples of computing in vehicles. How-
ever, as on-board processing and communications become cheaper and less invasive, more
applications will become possible.

15

1 Introduction

At present, vehicle manufacturers produce proprietary applications which make use of
built-in hardware. Other vendors supply after-market products that can be added to the
vehicle. However, it is rare for these products to integrate seamlessly with each other and
with the vehicle’s own computer software and hardware.

As a result, applications that could share common hardware tend to be deployed in isola-
tion from each other. This inevitably causes the need for lots of separate wires and circuit
boards, which is expensive. Instead, it is preferable for applications to share common
hardware to avoid unnecessary redundancy. For example, gps units are required by a
range of in-vehicle devices: navigation units, black-box devices used in pay-as-you-drive
insurance, and certain implementations of road-user charging. Provided that the vehicle
can supply a gps unit of sufficient accuracy to satisfy all these applications’ demands,
using this single device would be a preferable solution.

It is conceivable that in future vehicles will contain general-purpose sensing and computing
platforms to avoid this situation. This may be spurred by an increasing demand for a
variety of applications involving in-vehicle computing.

1.2 Applications

We predict a variety of such applications, some of which are already emerging: [49]

Entertainment. Entertainment applications will expand beyond listening to music and
watching films to those which involve interaction with the World-Wide Web and
receipt of streaming media. The ami-c organisation (Automotive Multimedia Inter-
face Collaboration) has published standards for automotive interfaces, which enable
a wide variety of envisioned applications that are primarily entertainment-oriented
[5].

Mobile commerce. These applications involve purchasing products and performing other
business transactions whilst on the move [235].

Location-based services. If a vehicle is aware of its geographic position, content relat-
ing to that area can be delivered. This may include local weather or traffic data, or
advertisements from local businesses.

Remote operation. These applications involve the operation of devices in a remote
location such as the home or the office from a moving vehicle, such as switching on
the heating in advance of arriving at a destination.

Asset tracking. A delivery or haulage vehicle can report its position and its current
inventory.

Congestion information. An in-vehicle navigation unit could receive a broadcast of
current traffic conditions determined for example by aggregating sensor data gath-
ered from in-road vehicle sensors. Further, the navigation unit could proactively
query a remote congestion information service regarding the roads that it considers
to incorporate into a route. Such a service could collect data known as ‘floating car

16

1.2 Applications

data’ which consists of detailed movement data from vehicles [55]. This data can
be processed to provide accurate estimates of journey times on particular roads.

Real-time weather. Similarly, vehicles could download current weather observations
and forecasts for the local region. In addition, the network could gather data from
vehicles which contain meteorological sensors and redistribute the aggregated data
back to interested vehicles. There is a huge market for short-term weather forecasts
which would benefit from high-resolution knowledge of current conditions.

Road hazard detection. Potential hazards on the roads could be detected if data from
many vehicles’ braking systems is gathered [94, §3.2]. When a substantial number
of vehicles are found to brake sharply at a particular location, it could be marked
as a potential hazard. Again, this could be a service which vehicles query and from
which they receive notifications of upcoming hazard-spots.

Map generation. Similarly, the location histories of large numbers of vehicles could be
combined and aggregated to provide updates to digital road maps in real-time. For
example, new roads opening or road closures could be detected in this way and the
information delivered back to the vehicles [54]. This application is the subject of
Chapter 4.

Slot booking. Motorway slot-reservation systems, slip-road metering systems [197] and
systems which co-ordinate the efficient flow of traffic through an intersection can be
implemented by vehicles communicating with a known Internet host to negotiate
timing and payment.

Fleet management. Organisations owning a number of vehicles need to be able to man-
age them centrally, perhaps so that their future movements can be planned and their
routes optimised.

Gaming. Occupants of vehicles can play games—perhaps location-aware games [171]—
with occupants of other vehicles or non-mobile participants.

Road user charging. Many suggested implementations of electronic toll collection or
congestion charging schemes involve the transmission of location data to a govern-
mental organisation. Schemes involving dynamic pricing require the in-vehicle unit
to keep track of current prices and pay on behalf of the driver. Alternatively, a
peer-to-peer implementation of congestion charging involving communication be-
tween vehicles that preserves the privacy of the users has been proposed [101].

Intersection collision avoidance. This class of safety applications involves the self-
organising co-ordination of the movement of traffic, such as negotiation between
vehicles approaching a road junction [59].

Accident notification. In-vehicle systems that detect collisions and automatically no-
tify the emergency services of the location and the nature of the collision enable
faster responses.

17

1 Introduction

Journey scheduling. A personal device could proactively suggest not only routes by
which to travel to a destination, but also the modes of transport to use. These
recommendations could be derived from the aggregated information it receives from
a journey-time and timetable service. For example, a driver travelling towards a
city centre could be advised that it is more optimal, in terms of both money and
time, to park on the outskirts of the city and take a bus to the centre.

1.3 Challenges

Some of the applications described above involve the co-ordination of computation to
process sensor data amongst large numbers of vehicles. This can make the design and
implementation of these applications challenging. Specifically, there are four particular
challenges facing application designers:

1. Vehicles need a means of wireless communication with other vehicles and with the
Internet.

2. The mobility of vehicles means that the characteristics of the communication links
will vary over time. Applications must be able to adapt to changes in connectivity.

3. Applications will have goals that relate to the entire network rather than to specific
individual vehicles. This means that the set of participating vehicles will not nec-
essarily be known before the application is executed. Applications must therefore
be able to adapt to whichever computational resources are available to execute it
at run-time. This demands a declarative approach to programming, in which what
needs to be executed is described rather than how and where it is executed.

4. A network including computers on-board vehicles will be heterogeneous. Partici-
pating computers will differ in terms of their levels of computational, storage, en-
ergy and communication resources. Applications should make the most efficient
use possible of these resources whilst ensuring that those in limited supply are not
exhausted.

1.4 Dissertation outline

Of these challenges, this dissertation will focus mainly around addressing the third and
fourth challenges. We will touch briefly upon the former two challenges but leave these
for future work to address.

Chapter 2 lays the foundations of this dissertation by exploring related research. A
network of vehicles can be treated as a sensor network or as a classical distributed system;
approaches to programming both of these kinds of system are described.

Chapter 3 describes the design and implementation of a vehicular sensor platform, high-
lighting the differing nature of data from a variety of sensors and how it can be sampled
and stored.

18

1.4 Dissertation outline

Chapter 4 describes a novel application in which data sensed on multiple vehicles is
collected and processed. The chosen application is the map generation application sug-
gested above. This exemplifies the challenges described in Section 1.3 by questioning
the most appropriate architecture for executing this application. Existing approaches to
programming applications in wireless sensor networks tend to assume that the nature of
the architecture is known at design-time; this is not an appropriate assumption to make
in vehicular sensor networks.

Chapter 5 describes an approach to addressing the challenges, without needing to make
this assumption, through the paradigm of ‘late physical binding’. Designing applications
according to this paradigm involves describing their computation at a higher level in terms
of a graph of inter-related tasks. The decision about how and where the application’s
components are to be executed, called automatic task assignment, is then made by a
compiler that decides where each task is best executed. This approach brings the benefit
that applications can be automatically adapted and optimised for execution in a wide
range of environments. The chapter describes how a task graph can be transformed to
change the order in which components of the application are executed, whilst preserving
its semantic integrity, in order to optimise the task placement.

Chapter 6 describes a concrete programming language and a compiler which together
implement the late physical binding paradigm.

Finally, Chapter 7 demonstrates the use of the paradigm and language to design and
implement two different kinds of application, showing the value of late physical binding.
Performance measurements show that the compiler can introduce parallelism to make
more efficient use of resources and reduce an application’s execution time.

19

1 Introduction

20

CHAPTER2

Background

This chapter presents the foundations on which the work in the forthcoming chapters is
built.

We will begin by examining emerging trends in computing in vehicles and consider the
nature of the inter-vehicular computing environment in Section 2.1. The inter-vehicular
computing environment can be viewed as a distributed system: a parallel system of com-
municating devices which collaborate to achieve a common goal. Hence, Section 2.2 tours
a variety of approaches to abstracting distributed computation, focussing particularly on
the impact these have on the programmer.

As well as being viewed as a form of distributed system, many inter-vehicular computing
applications can be thought of as sensor networks as they are driven by sensor data col-
lected from vehicles, perhaps processed by other vehicles. In the field of sensor networks,
much work has been done in devising techniques by which sensor data can be sampled,
shared, processed and disseminated. Section 2.3 surveys models for programming sensor
networks in the light of lessons learned from distributed computing in general.

2.1 Computing in vehicles

The term ubiquitous computing [243] was coined as an area of Computer Science research
in which computers are deployed pervasively throughout everyday environments. Vari-
ous related terms have been employed—sentient computing [114], pervasive computing,
ambient computing, and more—to indicate the goal of computers shrinking in size and
becoming embedded into the fabric of our environment.

21

2 Background

As this vision is increasingly realised, our environment becomes populated with intelligent
devices. Smart buildings, smart desks, and other ‘smart’ nouns become a reality.

The field of transportation has not evaded electronic intelligence. Intelligent Transport
Systems (its) is a term applied to advances in this area, covering a variety of fields,
including integrated transportation systems, urban traffic control systems, and driver
assistance systems.

If the vision of ubiquitous computing is to be attained, all vehicles, all traffic lights, all
road lanes and all road signs will eventually become addressable nodes on the Internet.
In this section, we explore what it might mean for a vehicle to be a participant in this
environment. We will look at what a vehicle might provide to other parties, and how it
could benefit from being connected to, rather than isolated from, surrounding nodes.

2.1.1 Data processing in vehicles

A modern vehicle contains many microprocessors governing various aspects of the vehicle’s
operation, from the anti-lock braking system through to the cd player unit. A vehicle’s
engine management unit (emu) is responsible for monitoring data from sensors attached
to the components of the engine and controlling actuators such as that which controls the
fuel pump.

Some systems installed by the manufacturer of the vehicle use general purpose cpus
running commodity operating systems. For example, bmw’s iDrive system, a software
interface to allow the driver to interact with the vehicle, uses the VxWorks real-time
operating system.

There are many instances of after-market, third-party devices being used in vehicles.
Off-the-shelf navigation units, which are becoming increasingly popular, employ similar
technology. Pay-as-you-drive insurance schemes [157], pioneered by Norwich Union in
the UK, involve a ‘black box’ inside the vehicle that records parameters relating to the
vehicle’s whereabouts and communicates over a cellular network to report back to the
insurance company so that a premium can be computed. Also, several proposed schemes
for implementing road-user charging such as the hgv tolling scheme in Germany [130]
involve an in-vehicle device which communicates with roadside interrogators.

Rather than all of these systems—and many others—being installed in separate black
boxes, each with their own cpus, it is conceivable that, in the future, vehicle manufacturers
could construct vehicles fitted with general-purpose cpus that are shared by all such
applications.

Due to the highly competitive nature of the vehicle market, manufacturers are keen to
keep both the fuel consumption and the mass of its vehicles as low as possible. There-
fore, if general-purpose cpus are to be provided by manufacturers, it must be the case
that they bring utility to the driver which outweighs any increase in the vehicle’s fuel
consumption or mass. In some cases, the overall mass may decrease if a cpu is shared
between applications. Either way, in the future, embedded computing in vehicles will
become increasingly feasible if Moore’s Law [180] continues to hold.

22

2.1 Computing in vehicles

There may also be other business reasons for manufacturers to incorporate general-purpose
cpus into vehicles. For example, they may be able to charge customers a substantial pre-
mium for an integrated system compared to an after-market solution, or they may be able
to produce future revenue through manufacturer-supplied subscription-based applications.

2.1.2 Sensors

Modern vehicles contain a vast array of sensors. Some monitor various aspects of the
engine’s operation, such as thermometers and fuel flow rate sensors. Others participate
in driver-level applications, such as sensors which detect whether a door is closed, and
rear-mounted range-finding sensors which detect the distance to the nearest object behind
the vehicle.

Sensors may vary widely in terms of the frequency of sampling and the amount of data
they produce. For example, a thermometer may output a single byte and be sampled
every few seconds; a video camera to assist with reversing may output several megabytes
per second.

In the past, wiring was added to vehicles for each new sensor added. However, as vehicles
gained increasing numbers of sensors, this added considerable weight, consumed a signif-
icant amount of space and made adherence to reliability standards difficult [146, p88].
This led to the adoption of a bus-based approach, with wiring shared between sensors. In
the mid-1980s, the controller area network (can) was developed, derivatives of which are
still in widespread use in modern vehicles [146]. Modern vehicles may contain multiple
can buses: perhaps a low-speed bus for the comfort electronics and a high-speed bus for
real-time systems involving engine management.

2.1.3 Communications

In order to share data (processed or unprocessed) with other vehicles, and to obtain data
from other nodes on the Internet (which may themselves be vehicles), extra-vehicular
wireless communications are required.1

Historically, the only form of extra-vehicle communication in the electro-magnetic spec-
trum was the receipt of broadcast radio signals via an analogue tuner. Later, this system
was augmented by small amounts of digital information being broadcast on public radio
channels via the Radio Data System (rds).

Using near-ubiquitous cellular networks such as gsm, gprs and umts, vehicles are able
to connect to the Internet in the same way as mobile telephones. Recently, with systems
such as General Motors’ OnStar system, two-way communication to and from vehicles
has become available. OnStar provides a remote door-unlocking facility and an automatic
crash detection system which notifies the emergency services of the vehicle’s location.

Details about current and predicted future trends in communication technologies are
contained in Appendix A.

1Due to the mobility of vehicles, communications intuitively seem to be necessarily wireless. However,
a wired system is conceivable, involving data-lines strung above roads like power-lines for trams. But
this is deemed to be impractical to implement so will not be considered further.

23

2 Background

2.1.4 Vehicular networks

A vehicular network can be centralised or decentralised. A centralised network uses a
ubiquitous wireless communication technology such as gsm or umts, and vehicles have
globally unique identifiers. On the other hand, a decentralised network uses local com-
munication between nearby nodes. As vehicles move around, they may move into and
come out of range of other nodes. Hence this variety of network is largely ad-hoc, and its
topology is highly variable and may be somewhat unpredictable.

Vehicular networks have particular characteristics that distinguish them from other classes
of network:

• Despite the fast speeds of vehicles, their movements are constrained and their mo-
bility is hence somewhat predictable. Vehicles can only use roads, which occupy a
comparatively small proportion of the surface of the Earth.

• Due to the nodes’ mobility, energy resources are necessarily constrained. However,
energy is in more plentiful supply than in battery-powered devices. Vehicles have
a plentiful supply of fuel, and the consumption of energy due to computing and
communications equipment is likely to be significantly lower than that consumed as
a result of the vehicle’s other operations.

• Vehicles may be assumed to have an accurate knowledge of their position [188, §1],
by using a global, outdoor positioning system such as gps, and may also possess a
road map of the local area [158, §4].

We will consider vehicular ad-hoc networks in Section 2.1.4.1, contrasting them with other
classes of ad-hoc network, and vehicular sensor networks in Section 2.1.4.2, contrasing
them with other classes of sensor network.

2.1.4.1 Vehicular ad-hoc networks

The term ‘mobile ad-hoc network’, or manet, is used to describe networks involving
mobile nodes which do not rely on the availability of a ubiquitous wireless network to
communicate. Manets are usually characterised by nodes having limited computational
resources (processor and storage). The vehicular ad-hoc network, or vanet, is a particular
class of manet in which the mobile nodes are vehicles travelling on roads.

The characteristics of vehicular networks outlined above have important implications for
vanets:

• Networks are highly dynamic due to the mobility of vehicles. Vehicles passing each
other on a motorway may only be within communication range for a matter of
seconds, so communication links between vehicles are frequently established and
broken.

• The traffic density on roads varies significantly throughout the day, perhaps by a
few orders of magnitude. Hence, at off-peak times, vehicles may be disconnected
from other vehicles if none are within range [186, p7].

24

2.1 Computing in vehicles

Blum et al. have attempted to quantify the distinctions in mobility in vanets, compared
to general manets, through simulation [30]. They have established that vehicular net-
works experience very rapid changes in topology due to the high relative speed of vehicles.
Furthermore, even links between vehicles travelling in the same direction are short-lived:
for transmissions of 500 ft range, the links last about one minute on average. In addition,
the inter-vehicular networks were found to be subject to frequent fragmentation, in which
chunks of the network become isolated from each other.

These factors make the implementation of useful vanets difficult [188]. Due to the highly
dynamic mobility of vehicles, there is no guarantee that the vehicles nearby in one instant
will be nearby in the next. Hence, reliably routing a message through a network is a
challenge. Vehicles passing on motorways can pass at up to 140 mph, whilst the density
of vehicles may vary from as little as one vehicle per kilometre of road to five hundred
vehicles per kilometre. In low density situations, a wide transmission range is desirable
but in high density situations it would cause too much contention.

Point-to-point routing. Point-to-point communication is required in applications which
involve collaboration between vehicles which are not necessarily collocated. There have
been many protocols suggested for routing messages between nodes in manets. They can
be classified into three categories: proactive, reactive and position-based protocols: [83,
§4.1]

Proactive protocols employ classical routing strategies such as distance-vector routing
or link-state routing. These protocols are unsatisfactory for use in vanets since
they maintain state about paths, expecting this information to stay fairly constant
over time, which in a vehicular network cannot be assumed.

Reactive protocols create new routes for each message sent, so do not need to store
state about the paths which are not currently in use. Dynamic Source Routing
(dsr) [125] is a source routing protocol, in which a message’s sender (the source)
specifies the entire path to the destination in the message’s header. In contrast,
the ad-hoc on-demand distance vector algorithm (aodv) [198] is an example of
destination routing, which adopts a hop-by-hop approach. Intermediate nodes use a
local look-up table to determine which node to forward a message to. In a vehicular
network, the destination routing approach is likely to fare better than source routing
as the dynamic nature of communication links may render a specified path invalid
before the message has reached its destination [248, §2.3].

Position-based protocols assume that nodes have knowledge of their location, which
is periodically broadcast to neighbouring nodes and registered with a centralised
location service [103]. Routing can then be stateless, performed solely based upon
the positional displacement of neighbours relative to the destination node whose
location was looked up in the location service. A well-known example of a position-
based protocol is Greedy Perimeter Stateless Routing (gpsr) [135]. This protocol
attempts to move a message greedily towards its destination. When greedy routing
can get the message no further, it is routed around the perimeter of the region
between that point and the destination.

25

2 Background

Most routing protocols are commonly evaluated against a random-waypoint model. How-
ever, this is inappropriate for vanets where mobility is far more tightly constrained.
Füßler et al. have instead compared dsr and gpsr by simulating the movements of ve-
hicles in a traffic simulator [83]. Their results show that the position-based approach
performs best for communications spanning more than a few hops.

One of the assumptions about vanets mentioned above is that vehicles may be assumed
to know their locations and the local road topology; this makes position-based protocols
appear most promising for routing in vanets. This has given rise to a number of variants
of position-based routing protocols tailored specifically to the characteristics of vehicular
networks.

Due to the characteristic constraints of vehicle mobility, routing can be optimised by
knowledge of such movement patterns and maps of the local roads. The Anchor-Based
Street and Traffic Aware Routing (a-star) protocol [158] exploits this knowledge for
position-based routing within cities using urban bus route information and knowledge of
street topology.

Similarly, Vehicle-Assisted Data Delivery (vadd) is a strategy to facilitate a delay-tolerant
query and response mechanism using multi-hop routing which takes account of vehicles’
mobility patterns [259]. This protocol is based upon the carry-and-forward principle,
where nodes carry the data when routes do not exist and forward the data when a new
node is within range. Vehicles are assumed to have a road map which incorporates
information about traffic densities and traffic signal schedules. This knowledge can be
used to determine the best road along which to route a data packet.

The CarNet project observed that the use of a centralised location service for position-
based routing can hinder easy deployment and scalability [182]. Rather than the location
service depending on the existence of some fixed infrastructure, they propose a distributed
location service [151].

Message dissemination. In addition to routing for point-to-point communication,
many vehicular applications require the ability to disseminate messages within a group
of nodes. For example, vehicle platooning [153] benefits from the participating vehicles
regularly sharing acceleration, speed and position data [52]. Platooning involves a group
of vehicles travelling in close proximity at high speeds; this is desirable from the point of
view of maximising road utilisation and fuel economy. A particular challenge of this type
of communication is the organisation of access to the radio channel.

Briesemeister et al. have proposed a protocol for disseminating a message about a road
hazard to surrounding vehicles [37]. Their proposed system was simulated and results
suggested that vehicles as far away as 5 km from the source of the message could receive
the message in less than a second. Wu et al. have simulated message propagation on a
particular road to investigate the effectiveness of multi-hop message passing to disseminate
information [249]. Their results show that the density of traffic is critical to the distance
and speed with which a message can travel.

Mddv is a system for disseminating a message to all nodes within a target region [248]. It
combines opportunistic forwarding, trajectory-based forwarding and geographic forward-

26

2.1 Computing in vehicles

ing. Unlike other geographic approaches, knowledge of the locations of other vehicles is
not assumed.

In the Segment-Oriented Data Abstraction and Dissemination system (sodad), data is
associated with a ‘segment’ of road, which is the region of road in which it was generated
[246]. This per-segment information is disseminated through local broadcasts and store-
and-forward propagation. This system is demonstrated in the sotis traffic information
application, whereby data about the traffic conditions in a region is propagated to vehicles
outside the region [247].

The rt-steam middleware provides guaranteed real-time message propagation without
relying on a centralised event broker or look-up service [118]. Real-time guarantees are
achieved via a space-elastic model which maintains a dynamic proximity bound which
allows changes to membership and topology.

Chisalita et al. have proposed an approach to data-sharing using inter-vehicular and
vehicle-to-roadside communication adopting techniques from peer-to-peer networking [47].
It is claimed that the use of this paradigm in vanets can facilitate the development of
self-organising, fault tolerant and scalable vehicular networks.

2.1.4.2 Vehicular sensor networks

We now consider the form of vehicular network which exists for the purpose of sensing.
Appendix B contains a general introduction to the field of sensor networks. As well as
the lower constraints on resources and the nuances of vehicle mobility, a vehicular sensor
network differs in several respects from a traditional, non-mobile wireless sensor network:

• The high potential speed of vehicles means that sensing may take place much more
frequently than with static sensors. If the sensors measure variables which vary
with position then high sampling rates are necessary in order to build an accurate
picture of the variable. This implies that the volumes of data collected by vehicular
sensor networks may be far larger than for static networks.

• A vehicular sensor network may cover a vast geographic area and may contain several
orders of magnitude more participants than typical static sensor networks.

• Furthermore, in a vehicle, there may be lower constraints on available physical space
and energy consumption, so larger processors and storage may be acceptable.

These characteristics mean that protocols and architectures designed for traditional sen-
sor networks are not necessarily directly applicable to vehicular sensor networks [145,
p53]. Techniques used in traditional wireless sensor networks, such as those described
in Appendix B, tended to assume that the devices are motionless, low-power devices in
networks containing no more than tens or hundreds of nodes. These assumptions often
lead to proposals for protocols which flood the entire network with metadata; these are
not appropriate for larger networks.

Although constraints on available communications bandwidth may be far more relaxed in
a vehicular network, it is still important to employ protocols which keep communications

27

2 Background

to a minimum and to keep a tight rein on nodes’ energy consumption. When the commu-
nication medium is broadcast-oriented, as with wireless communications, there is a risk of
overloading the network and rendering it unusable by other nodes. A single overpowered
node could overload the whole cell or the entire network [185, §3.5].

Similarly, whilst storage space may be less constrained, it is still finite. Xu et al. address
the problem of deciding which data to keep and disseminate and which to discard given
limited storage capacity in a vehicular sensor network [250]. Spatio-temporal data be-
comes increasingly worthless as the spatial displacement and age increase. For example,
information about a parking space in one city is of no relevance to drivers in another city.
Similarly, the data is worthless even in the original city on the next day. The decision
about which data to store can be determined by using a ‘relevance function’, which scores
spatio-temporal data in terms of distance and age.

To date, there has been a limited amount of research into vehicular sensor networks, and
very few actual deployments. The extant research falls largely into two main categories:
environment monitoring and traffic information systems.

Environment monitoring. There is a range of applications involving vehicles acting
as sensor nodes monitoring the environment they move within. This may involve sampling
pollution in the atmosphere or monitoring the surface of the road [68].

MobEyes is a system which provides data dissemination facilities for a vehicular sensor
network [145]. The target application domain is urban monitoring, which has a particular
use in post-processing for the detection of criminal activity. Vehicles proactively gather
information about their locality and generate summaries of the data. These summaries are
opportunistically disseminated with nearby vehicles, along with context information. The
style of diffusion is specified by the application; for example, data may passively diffuse by
no more than k hops from its origin. Experimental results have shown that small values of
k are adequate even for moderately widespread diffusion of a datum. MobEyes highlights
a departure in vehicular sensor networks from traditional sensor networks: processing the
data and sending it to a distinguished sink is deemed infeasible due to the large number of
participants and large volume of data. Instead, data is stored within the network, which
can be viewed as a large, decentralised, mobile store, which may be queried at a later
point in time.

The CarTel system takes a different approach [119]. Sensor data collected from vehicles
is sent to a central ‘portal’ where it is stored in a database. There are various means by
which data can travel to the portal. Vehicles opportunistically exploit open WiFi con-
nections as they encounter them to communicate directly to the portal over the Internet.
Alternatively, vehicles may be used as ‘data mules’ to disseminate the data to the portal
in a delay-tolerant multi-hop fashion.

Whilst not oriented around motor vehicles, the BikeNet project involves the collection of
sensor data from bicycles [64]. Because of the lack of a plentiful energy supply, sensor
data is only communicated back to base at the end of a journey or via a mobile phone if
present.

28

2.1 Computing in vehicles

Traffic information systems. By far the most popularly researched application for
vanets is the traffic information system. In these systems, vehicles act as congestion
sensors, detecting the density of traffic that they are experiencing. This information can
be shared with other vehicles so that they can plan a route that minimises delays or avoids
areas of high congestion.

Conventional traffic information systems use sensors embedded in roads or located by
the road-side which count the number of vehicles passing by. Data from these sensors
is communicated to a traffic information centre which then broadcasts aggregated infor-
mation over a radio channel using a protocol such as rds [247, §1]. On the other hand,
using vehicles as congestion sensors avoids the need for such costly infrastructure. It also
has the pleasant property that the sensor density is naturally highest where congestion is
heaviest, so higher-resolution sensing takes place where it is most beneficial.

The TrafficView system [186] enables vehicles to know the locations of nearby vehicles,
to enable a driver-assistance application. Vehicles periodically broadcast the position
and velocity information they have received from other vehicles, updated with their own
information. In order to minimise the volume of data transmitted, compression and
aggregation techniques are employed.

The Self-Organising Traffic Information System (sotis) [247] is a traffic information sys-
tem based on the sodad architecture (see Section 2.1.4.1). The opportunistic data dissem-
ination scheme takes advantage of vehicles travelling in different directions encountering
each other long enough to share their data. Simulation results show that accurate traffic
information can be propagated more than 50 km from the source with low delay, even
when only a small fraction of vehicles support sotis.

A similar traffic information system called StreetSmart has also been proposed [58]. In
this system, vehicles construct their own maps of traffic density and exchange them with
each other. Each node stores a compressed version of every other node’s traffic informa-
tion, expressed as summary statistics about clusters of traffic. To minimise the number
of messages sent, only the interesting data are shared. Data about traffic behaving nor-
mally is considered not interesting; only data exhibiting signs of abnormal behaviour are
communicated.

Other applications. The intent of the vedas system is to remotely monitor the health
of vehicles in a fleet [134]. Data mining techniques are used to detect unusual driving
patterns such as may be caused by drowsy drivers. Vedas aims to minimise the volume
of communication and minimise the energy consumption of in-car devices whilst also
respecting the privacy of drivers.

Sivaharan et al. present a visionary application in which next-generation vehicles drive
themselves autonomously [218]. Collisions between vehicles are avoided based on data
shared via communication between vehicles. Versteegt and Verbraeck describe a deploy-
ment of automated guided vehicles (agvs) for a logistics system under Schiphol Airport in
Amsterdam [237]. In this system, agvs can move autonomously between endpoints, even
travelling within centimetres of other agvs. Error accumulation is prevented through
accurate dead reckoning, with low-slippage wheels and precise odometry.

29

2 Background

2.2 Distributed computing

A network of vehicles can be thought of as a distributed computer. The study of distrib-
uted computing is a vast topic, the subject of a large quantity of research over several
decades [44]. This section will merely scratch the surface of a number of areas of distrib-
uted computing, particularly those from which we can learn lessons and ideas to apply to
large-scale networks of vehicles. We will focus upon drawing attention to issues related
to the programming of distributed computing systems.

A good place to start is with Flynn’s taxonomy of computer organisations [74]. He cate-
gorises computer systems based on the magnitude of interactions between their instruction
and data streams:

Single instruction stream–single data stream (sisd) represent machines containing
a single sequential processor, with no parallelism.

Single instruction stream–multiple data streams (simd) represent computers which
exploit operations which are naturally parallelised, such as array processors which
perform a single operation on many items of data at once.

Multiple instruction streams–single data stream (misd) represent a hypothetical
situation in which multiple processors apply different instructions to the same da-
tum, generally deemed to be impractical [61, p6].

Multiple instruction streams–multiple data streams (mimd) are computer systems
in which multiple processors operate independently on different instruction streams.

Historically, the majority of programming language theory has been built up on the sisd
model. Different approaches are required to handle the kind of distributed systems we
are interested in, which fall largely into the mimd category.

2.2.1 The von Neumann architecture

The ‘von Neumann architecture’ is a term given to the heavily influential model of comput-
ing proposed by John von Neumann in 1945 [238]. This model epitomises sisd systems,
consisting of a single memory unit, an arithmetic logic unit and a control unit which
decodes and executes instructions loaded from memory.

In an sisd or simd system, each instruction has a unique successor. Since execution is
deterministic, an imperative style of programming may be readily adopted. However, this
is not the case in an mimd system due to interleaving. Parallel processing implies that
instructions executed sequentially by one processor may be interleaved with instructions
executed sequentially by another. This interleaving is not deterministic and can lead
to defects such as race conditions. Kennaway and Sleep sum up the failing of the von
Neumann architecture in the following way [137, p111]:

“The underlying concern of a conventional programmer is to guide a single
locus of control through a cunningly designed maze of assignment, conditional

30

2.2 Distributed computing

Figure 2.1: A tightly-coupled system in which memory is shared between four proces-
sors.

Figure 2.2: A loosely-coupled system with four processors each having a local memory.

and repetitive statements. At each step the programmer has (perhaps quite
unconsciously) as a major concern the details of how things are done rather
than getting right what is done.”

But it is improper to require the programmer to consider the individual control loci in
each processor of an mimd system; this would be difficult and prone to errors at best, and
infeasible in general. This demands a declarative style of programming, where it is the
what rather than the how which the programmer expresses.

Distributed computing systems are often classified into two categories: (i) tightly-coupled
and (ii) loosely-coupled systems. Tightly-coupled distributed systems are characterised
by memory being shared between processors, depicted diagrammatically in Figure 2.1.
On the other hand, a loosely-coupled system consists of a set of processors each with
their own local memories and a shared interconnect, as in Figure 2.2. (These diagrams
are deliberately simplistic; the practical systems described below vary in their precise
topology.)

Appendix C gives an overview of tightly-coupled systems. Whilst there is much of interest
in this area, these systems have little bearing on large-scale, vehicle-oriented networks
which are necessarily loosely-coupled. Section 2.2.2 surveys a variety of approaches to
abstracting and programming loosely-coupled systems. Then Section 2.2.3 tells of the
problem of determining where computation should take place in a distributed system.
Complementary to the practical systems described here, Appendix D examines a variety
of theoretical approaches to modelling distributed computation.

2.2.2 Loosely-coupled systems

Advances in computer networking technology have meant that it has become feasible for
a network of computers to co-operate to execute a single application. This has given

31

2 Background

rise to loosely-coupled distributed systems. Unlike in tightly-coupled systems, compo-
nents tend to suffer from independent failures, and delays due to communication may be
unpredictable.

As a proposal for a more appropriate successor to the von Neumann architecture, Valiant
has proposed a Bulk Synchronous Parallel (bsp) model2 [233] that abstracts underlying
hardware to allow algorithm designers to ignore low-level architectural concerns. In this
model, each processor has its own local memory, and a router delivers data through the
inter-connection network. The model assumes a synchroniser that enables a subset of the
processors to execute in a co-ordinated fashion. In this way, communication is decoupled
from synchronisation. Computation is organised into a series of ‘supersteps’, in which
a set of independent local computations are performed before a communication phase
followed by a global synchronisation. Skillicorn et al. have recently re-evaluated bsp
with the benefit of hindsight, concluding that it is closely compatible with commercial
multi-processor parallel computers that have recently emerged [220].

There is a wide spectrum of systems that can be classified as loosely-coupled, some of
which can tolerate independent failures of components. At one end of the spectrum are
network processors, which contain multiple processing elements on a single chip. These
multi-core chips consist of a systematically arranged matrix of many independent pro-
cessing elements, each of which is a fully-fledged computer with local memory, sharing a
communication bus. Network processors are well-suited to high-speed packet processing
applications commonly found in communications networks.

Then there is the non-uniform memory access (numa) machine, which consists of a set
of processors in a single box. In these computers, memory is globally addressable but
distributed, causing memory access times to be dependent on which address is being
accessed.

Cluster computing and grid computing are terms which are broadly used to refer to
loosely-coupled systems often involving large numbers of commodity computers. If there
is a distinction to be made between these terms, it is that cluster computing tends to imply
that the constituent computers have a common owner. Sometimes cluster computing
is used to refer to a set of homogeneous servers, but can also apply to a network of
workstations (now).

The term ‘grid’ was applied to this style of computing as a result of the vision of treating
a large, distributed computing resource in a manner similar to other utilities such as
electricity or water [78]. The dream is for ‘computing power’ to be a resource available to
domestic and industrial users on demand, provided by an external supplier, rather than
each party generating its own computing power.

Grids tend to be classified as either data grids or compute grids. Data grids are common
in the scientific community where a large corpus of data is made available to collaborators
across the globe. Compute grids involve participating computers co-operating to act like
a supercomputer to perform a large computational task. We can distinguish between
compute grids intended for a specific application from cloud computing, which aims to
fulfill the vision described above. Cloud computing is usually implemented using a virtu-

2This model is similar in spirit to the pram model for tightly-coupled systems, described in Section C.2.

32

2.2 Distributed computing

alisation layer such as Xen that allows multiple, mutually isolated, commodity operating
systems to run in tandem on a single processor [21].

In loosely-coupled systems, memory is inherently distributed. Thus there is a decision to
be made about how to support communication between processes3. Is the best approach
to emulate a tightly-coupled system, and present the illusion of a globally shared memory?
Or should a message-passing approach be adopted?

We will consider a number of points on the spectrum of possible approaches, starting
with shared memory in Section 2.2.2.1, moving through rpc in Section 2.2.2.2 to message
passing in Section 2.2.2.3. Publish–subscribe systems are examined in Section 2.2.2.4 and
dataflow systems in Section 2.2.2.5. We then visit the related concept of code mobility
in Section 2.2.2.6. Finally, Section 2.2.2.7 takes a step back and considers declarative
programming techniques which do not require the programmer to consider individual
inter-process interactions.

2.2.2.1 Distributed shared virtual memory

Distributed shared virtual memory (dsvm) is the name given to a layer of abstraction
which presents the illusion of tight-coupling on top of a loosely-coupled system. This is
achieved through a single, globally-addressable memory which all participating processors
have the same view of. In this way, a programmer does not need to worry about which
processor an item of data is located on, or how to obtain its value, as would be the case
in a message-passing approach.

Shared memory is simple to use and familiar from imperative sisd programming. From a
programmer’s point of view, on a tightly-coupled multiprocessor machine, shared memory
is inexpensive to deal with4. To prevent race conditions as other processes interfere with
an operation on shared memory, locking strategies would be applied. This adds only a
small overhead to the cost of reading from and writing to memory. However, in a loosely-
coupled system, communication between processes could be many orders of magnitude
more expensive.

Lenoski et al. commented that “a single address space enhances the programmability of a
parallel machine by reducing the problems of data partitioning and dynamic load distribu-
tion, two of the toughest problems in programming parallel machines. The shared address
space also improves support for automatically parallelizing compilers, standard operat-
ing systems, multiprogramming, and incremental tuning of parallel applications—features
that make a single-address-space machine much easier to use than a message-passing ma-
chine” [147, p64]. However, implementing shared memory as a layer of abstraction on
top of a loosely-coupled system brings with it the cost of creating and maintaining the
illusion of a single, coherent memory. This is likely to entail more communication than is
necessary, which a study by Lu et al. confirms leads to worse performance [162]. Network
bandwidth becomes the limiting factor as the system scales.

3Here, and throughout the rest of the chapter, we use the term ‘process’ to refer to the encapsulation
of computation and not necessarily to refer to an operating system process except where stated. In the
literature, a variety of terms are used; we will use ‘process’ throughout for homogeneity.

4See Section C.1 for a summary of strategies.

33

2 Background

Figure 2.3: Remote procedure calling.

Dsvm may be implemented in a user-level software library or at the hardware level, as is
the case in a non-uniform memory access (numa) computer. In these computers, dsvm
is used to present a globally addressable memory. This is implemented by each portion
of memory being owned by a particular processor, and there being a central register
recording these ownerships. A variety of practical implementations of dsvm with varying
degrees of abstraction are outlined in Appendix E.

2.2.2.2 Remote procedure calling

Remote procedure calling (rpc) is the name given to techniques in which procedures
located in another memory space can be invoked. A remote procedure call has a sim-
ilar appearance to a local procedure call, meaning that single-process programs can be
transformed into multi-process programs with moderately low cost. However, there will
be some differences in the semantics of a local and remote call [156, p41]. For example,
remote calls typically do not support call-by-reference semantics but only call-by-value
semantics, where the arguments are copied. This means that the local and remote pro-
cesses work on independent copies of the data. Moreover, transmitting the arguments and
return values requires a means of marshalling : converting in-memory values to streams
of data which can be sent over a network. Furthermore, there is a greater range of error
conditions that can arise in a remote call compared to a local call; these must be dealt
with through additional supporting error-handling code. Also, even in garbage-collected
languages, there is rarely support for identifying remote objects as candidates for deletion.

However, whilst rpc is used in distributed computing, it offers little scope for paral-
lelism because invocations of remote methods are inherently synchronous (just as with
invocations of local procedures). The caller must wait for the method to return before
proceeding with its execution; hence, there is only one locus of program control, although
it hops between processes. See Figure 2.3.

When the rpc paradigm is applied to an object-oriented language, it is usually referred to
as remote method invocation (rmi). This usually entails support for references to objects
across processes.

The Common Object Request Broker Architecture (corba) is an implementation of rmi
that is language-neutral. Objects’ interfaces are described in a common interface definition
language (idl) which has mappings to many implementation languages. An object request
broker (orb) communicates with the remote object on behalf of the local client, creating
the illusion of it being local by forwarding arguments and return values. The orb performs
marshalling, converting the data to and from a common data representation.

34

2.2 Distributed computing

(a) Synchronous, with send

before receive.
(b) Synchronous, with re-

ceive before send.

(c) Asynchronous, with send

before receive.
(d) Asynchronous, with re-

ceive before send.

Figure 2.4: Message passing.

The Java implementation of rmi is built into the language [163]. It uses a ‘registry’
of remote objects; client-side ‘stub’ classes are automatically generated whose instances
interact with the remote object, in a similar fashion to an orb. Marshalling is achieved
through Java serialization. Serialization is the process of writing an object’s fields into a
byte array, along with the fields of the objects in the graph of the referenced objects.

Web Services. Just as the World-Wide Web is a means for human interaction over
the Internet, Web Services were conceived as a means for computer interaction over the
Internet [4]. Computers publish descriptions of operations which they support in an xml-
based language called the Web Services Description Language (wsdl). These operations
are often procedural and thus their remote invocation can be thought of as rpc, and the
client’s programming model is synchronous.

Some Web Services generalise beyond rpc semantics and follow a message-passing model
where, again, the schema for the messages is defined by the service’s wsdl specification.
The Business Process Execution Language (bpel) is used to describe high-level ‘business
protocols’, which are stateful workflows between Web Services involving message-sending
[8]. This standard separates the deployment information (where the services are executed)
from the description of the protocol.

2.2.2.3 Message passing

At the other extreme from a shared-memory programming model is the message passing
model. In the former, the programmer can be oblivious to which machine a piece of
memory being accessed resides on, and the library or framework performs the necessary

35

2 Background

inter-process communication to transfer data between processes. In the latter, the pro-
grammer must know precisely which process to communicate with, and at what time. All
communications are explicitly instructed by the programmer, and the library or frame-
work is reduced to merely implementing queueing of incoming messages and ensuring
reliable delivery of outgoing messages.

Compared to shared memory, message passing is more naturally suited to loosely-coupled
systems, as message passing forms the basis for the lower-level network communications.
Moving the control over precisely what communication is performed from the framework
to the language domain brings potential increases in efficiency, as the programmer can
avoid unnecessary communications, but comes at the cost of being a greater burden
for the programmer. Low-level concerns such as physical addressing, marshalling and
flow control are moved into the application layer [70, §3.1]. Unlike in shared memory, a
message-passing scheme requires the programmer to identify when to communicate, what
to communicate and with whom to communicate. Furthermore, a message-passing scheme
adds the overhead of requiring data to be marshalled before it can be communicated.

In a message-passing paradigm, there is a decision to be made as to whether the send
and receive calls are blocking or non-blocking. If blocking, the communications between
processes are synchronous: a call to send will not return until a matching call to receive
by another process has been made. If non-blocking, communications are asynchronous,
and processes require buffers to store incoming messages which have not yet been picked
up. Figure 2.4 depicts the difference between asynchronous and synchronous message
passing.

The Erlang language was designed and built up around the notion of concurrency [11].
It permits the simple creation of lightweight processes, independent of the processors on
which they execute, without shared state between processes. This is achieved through a
functional programming style, with message passing between processes. Message passing
is asynchronous and is implemented by each process having a ‘mailbox’. Pattern-matching
capabilities allow processes to deal efficiently with messages potentially arriving from
several other processes concurrently.

The picl library is oriented around message passing, with bindings to C and Fortran
[87]. The message-passing paradigm is supported through send and receive calls in which
a symbolic identifier is attached to each sent message, indicating the message’s type.
Receipt of messages can be done selectively based on the value of the identifier in the
message received. Picl also supports high-level routines such as finding the extrema of a
distributed dataset, or finding the product of a distributed set of vectors.

As well as supporting the sharing of regions of memory, the pvm library includes support
for message passing. As with picl, this is achieved through typed messages [227, §2.2].
Variants of receive include a version which returns with an error value if no matching
message is received within a certain time period, and a version which returns with an
error value if a particular number of non-matching messages have been received without
a matching message.

Perhaps the best-known communication library is mpi, the Message Passing Interface
[242]. This library supports both blocking and non-blocking inter-process communication.
A non-blocking receive notifies the system that a process would like to receive a message.

36

2.2 Distributed computing

Later, the process checks to see if a matching message has arrived [196, p32]. A blocking
send will not return until the local message buffer can be modified without corrupting
the message. There are three derivatives of send, which apply to both the blocking and
non-blocking cases [242, §2]: (i) standard send—a message may be sent regardless of
whether a corresponding receive has been initiated; (ii) ready send—a message is only
sent if a corresponding receive has been initiated; and (iii) synchronous send—the send
operation will only return when a corresponding receive has been initiated.

Bsplib is a communications library (with bindings to several conventional languages) for
programming in the Bulk Synchronous Parallel (bsp) model, consisting of twenty basic
operations [110]. The superstep style of programming is achieved as processes perform
a series of computations on data held locally at the start of the superstep, perhaps even
communicating with other processes. The end of a superstep is marked by a call to
bsp sync at which point all processes synchronise. Bsplib provides facilities to support
several parallel programming paradigms. The bsp message-passing model involves a non-
blocking send operation which delivers a message to another process’s buffer, guaranteed
to be accessible at the beginning of the next superstep. If the message is not read out
from a buffer during that superstep, it is discarded. A second paradigm is ‘direct remote
memory access’, whereby a process registers data, via bsp put, which may be accessed
from a remote process via bsp get.

Grid computing. Message-passing is common in applications deployed on large-scale
compute grids. An example is the seti@home application, in which large volumes of radio
data received from space are processed to search for the presence of particular patterns.
The designers of this application created a small client program which can be installed on
volunteers’ commodity computers and which communicates with the central repository
to fetch a batch of radio data. This is then processed locally using otherwise-idle cpu
cycles. A summary of the results of each dataset are then sent back to the co-ordinator.
Similar projects include Folding@home, in which the data processing involves simulations
of protein folding, and the Great Internet Mersenne Prime Search. General frameworks in
which similar volunteer-computing projects are deployable include Distributed.net, which
has tackled a number of brute-force mathematical problems, and grid.org, which has
tackled brute-force biological problems.

The Globus toolkit has been widely adopted as a framework for implementing grids in
scientific communities. It is an implementation of various open standards, most notably
ogsa which defines the notion of a grid service and the protocols which can be used to
invoke it [79]. It contains the Grid Resource Allocation Manager (gram) which controls
the scheduling and execution of jobs in a compute grid [53]. Descriptions of jobs are
submitted to gram in terms of the resource requirements, files which need to be imported
before execution, and the path to the binary to be executed along with any required
arguments and environment variables.

Popular systems for converting collections of networked workstations into compute grids
include Butler [190] and Condor [229]. In Condor, computers with spare cpu cycles
register themselves with a centralised ‘agent’ to join the grid. Users submit jobs to the
agent, which allocates resources to execute it. Butler operates in a similar manner, but
differs from Condor in that it does not provide automatic process migration [229, §7.1].

37

2 Background

Figure 2.5: Publish–subscribe.

2.2.2.4 Publish–subscribe systems

The message-passing approach required processes to possess knowledge of other processes
with which to communicate. This coupling between processes is broken in publish–
subscribe systems [70]. Instead, messages are sent to a broker. Processes make ‘sub-
scriptions’ with the broker which declare their desire to receive messages matching a
certain pattern. This approach to communication is inherently asynchronous on both
the sender and receiver (known as ‘synchronisation decoupling’) and is characterised by
processes not needing to know any details about the process or processes with whom they
eventually communicate (known as ‘space decoupling’). Furthermore, the persistence of
the broker means that the publisher of a message need not be connected at the time
when the message is delivered to a subscriber (‘time decoupling’). Figure 2.5 depicts the
publish–subscribe paradigm diagrammatically.

Two kinds of publish–subscribe systems can usually be distinguished based on the method
by which a message is identified as fulfilling a subscription. In topic-based matching, each
message has meta-data associated with it which describes the nature of the data contained
in it. This description could come from a hierarchical ontology. On the other hand, in
content-based matching, it is the content of the message which is examined, using a
collection of comparison and string-matching operators. For example, the Java Message
Service is a topic-based publish–subscribe mechanism with a Java api. On the other
hand, the Cambridge Event Architecture is content-based [16].

Linda is a model of process communication which provides a handful of operations to add
to a base language which uses a tuple space to share data [41]. When a process wants to
communicate, it generates a new tuple and emits it into the globally-shared tuple space.
When another process wants to receive that communication, it removes that tuple from
the tuple space. This paradigm is familiar from how applications tend to communicate
with each other, or with future versions of themselves, by writing to files.

However, Linda is not a publish–subscribe system in the strictest sense because there is
no synchronisation decoupling; tuples are extracted from the tuple space in a synchronous
manner. On the other hand, in a true publish–subscribe system, messages are delivered
to subscribers asynchronously. Nevertheless, the programming model is closely related.
Indeed, in many recent implementations of Linda such as JavaSpaces [81], the tuple-space
model is augmented with asynchronous delivery [70, §3.4]. In Linda, the ‘broker’ can be
thought of as the shared tuple space along with the pattern matching mechanisms built
into the framework.

Closely related to publish–subscribe systems are message queueing systems [70, §3.5].

38

2.2 Distributed computing

These systems tend to be oriented around providing point-to-point communication be-
tween two parties rather than providing general communication from m producers to n
consumers. Messages are delivered with guarantees over ordering, which is not necessarily
the case in publish–subscribe systems. Moreover, messages are received based on their
presence in a particular queue rather than based on the content of the message matching a
particular pattern. Widely available commercial implementations include ibm WebSphere
mq and Microsoft mq.

2.2.2.5 Dataflow

Rather than allowing arbitrary bi-directional communication between processes, as is the
case with message-passing, a dataflow approach restricts each process to receive data from
one or more input streams and output data to one or more output streams.

The River programming environment adopts a dataflow approach to describing the com-
munication relationships between processors [13]. In an attempt to avoid the problems
caused by heterogeneity in a loosely-coupled mimd system, where some processors might
run significantly slower than others, River employs ‘distributed queues’ between processes
which connect multiple data producers to multiple data consumers. Then, processes pro-
duce and consume at whatever rate they are capable of, meaning that load balancing
occurs automatically without the need for additional co-ordination communication be-
tween processes. This leads to a straightforward programming model in which processes
(called ‘modules’) are described in a functional manner with no explicit communication
to or from named processes.

2.2.2.6 Code mobility

Mobile code is the term given to a system in which the processor on which a particular
piece of code is executed changes dynamically [82]. This occurs when the data which is
communicated between processors includes executable code. A familiar example of code
mobility is PostScript, in which programs describing the layout of a document are sent
to printers to execute. Another example is Java, which supports dynamic class-loading,
potentially from remote locations. This is a facility which is particularly well-known due
to applet viewers in web browsers, in which the required classes are loaded from across
the web and executed locally.

There are a number of subtle distinctions between code mobility paradigms, charaterised
by the location of code and data before and after execution and where the code is executed.
Three broad categories are as follows: [82, §iv-A]

Remote evaluation paradigm. A process has the know-how necessary to achieve a
goal but lacks the data or resources required to execute it. It sends the code to a
process on a different processor, which executes the code using its own resources
and sends the results back to the original process.

Code on demand. A process has the data that it needs to manipulate, and the facilities
to manipulate it, but does not not have the information about how this processing

39

2 Background

should occur. The know-how about how to manipulate the data is obtained by
requesting code from a process located on another processor.

Mobile agents. A process on a particular processor has the know-how necessary to
achieve a goal, but the resources it needs to execute it are located on a different
processor. The process therefore migrates to that processor and is executed there.

Distinctions are also made over the granularity of the mobility. Process migration is the
migration of entire processes and their address spaces; object migration is the migration
of objects between address spaces. The Emerald language provides object-level migration
[129], using a global namespace to identify objects and a ‘forwarding address’ scheme
to keep track of the location of objects. The Rover toolkit [127] works at the same
granularity, terming mobile objects as ‘relocatable dynamic objects’. In both of these
approaches, it is the programmer who dictates when migrations occur.

Rather than being at the programming language level, the demos/mp distributed oper-
ating system supports process-level migration at the operating system process level [201].

In the compute grid frameworks described in Section 2.2.2.3, the programs to be executed
were assumed to be installed through separate means. For example, an assumption in
gram, Condor and Butler is that they may be accessible through a filesystem shared by
all participants. On the other hand, in data grids, the execution of programs generally
involves the transmission of the programs over the grid to avoid the cost of transmitting
large datasets. For example, in the ogsa-dai framework [9], the data processing to apply
to a dataset is described in a scripting language which is independent of the nature of the
organisation of the data. These scripts are sent to the data source for execution, and the
results transmitted back in the response.

2.2.2.7 Declarative approaches

An alternative approach to programming loosely-coupled systems is to avoid nominating a
specific style of inter-process communication and leave this decision to the compiler. This
demands a higher level of programming abstraction, in which it is likely that the program-
mer is not concerned with hand-crafting individual processes, but rather in describing the
intended overall behaviour.5

MapReduce. MapReduce is a framework designed by Google for distributing the pro-
cessing of large, static datasets in a cluster of commodity computers [56]. The program-
ming model entails the user describing the nature of the processing in a functional style.
The program is automatically parallelised and executed on a cluster of computers, which
can scale to several thousands of members. The run-time system partitions the input data,
schedules the program tasks, manages inter-task communications and handles failures.

5This is reminiscent of the mathematical approach mentioned in Section D.4 whereby the program is
expressed at a high level in a non-parallel manner and a compiler performs equational transformations
to parallelise it.

40

2.2 Distributed computing

Reduce stage A Reduce stage B

Map Map Map Map Map Map

Part Part Part Part Part Part

Group Group

Sort Sort

Reduce Reduce

Sort

Reduce

x1 x2 x3 x4 x5 x6

y1 y3 y2

k1 : v1, k2 : v3 k2 : v2, k3 : v1

k1 : v1 k2 : v3k1 : v2

k1 : v2

k2 : v1

k2 : v1

k3 : v1 k2 : v2

k1 : {v1, v2} k2 : {v1, v2, v3}k3 : {v1}

k1 : [v1, v2] k2 : [v1, v2, v3]k3 : [v1]

Figure 2.6: An example of the computational model of a MapReduce program. The
Map and Reduce functions are user-specified. Reduce stage A is responsible
for reducing keys k1 and k3; stage B is responsible for k2.

41

2 Background

The nature of the computational model in the MapReduce framework is exemplified in
Figure 2.6. The edges in this graph indicate the data flow which arises at run-time with
the values labelled.

The two functions which the programmer must specify6 are the map and reduce func-
tions7. The map function takes a chunk of the input data as a single key–value pair and
returns a set of ‘intermediate’ key–value pairs. For example, in a word frequency-counting
application, the input keys may be urls and the values the textual content of the pages
referred to by the urls, and the output keys would be words, with the values being their
frequencies.

The run-time system gathers together and sorts all the values associated with a particular
intermediate key, passing them to the reduce function responsible for that key. This
function then aggregates the input values and returns an output. Typically this output is
either empty or a single value. In the word frequency application, the reduce task would
sum the frequencies received from the map tasks for a given word, yielding its frequency
of occurrence across the original set of documents.

Usually, for a given application, the number of map function instances is chosen to be
proportional to the size of the input dataset. An optionally programmer-specified parti-
tioning function indicates which reduce stage is to be responsible for executing the reduce
function for which keys. Usually the number of reduce stages is chosen to be a small mul-
tiple of the number of machines available in the network; the number of reduce functions
executed by each reduce stage is related to the number of intermediate keys generated by
the map functions.

As well as the computational model, the MapReduce framework also offers fault-tolerance.
This is achieved through the co-ordinating process (known as the ‘master’) pinging the
machines running each task and dynamically re-assigning the work to a different machine
if a response is not received after a short period of time.

Dryad. Microsoft’s Dryad system [123] has similar goals to MapReduce. It provides a
general-purpose distributed execution engine that exploits data parallelism identified by
the programmer, and has been shown to scale to machines with multiple cpu cores and
data-centres containing thousands of computers. The main difference to MapReduce is in
the programming abstraction. Whilst MapReduce restricts programmers to a rigid model
in which computation must be expressed in terms of map, sort and reduce stages, Dryad
permits the programmer to describe the application as an arbitrary directed acyclic graph.

The graph contains nodes that contain code to be executed sequentially and edges that
indicate the direction of data flow between nodes. A programmer constructs a graphs
using a number of graph composition operators. Furthermore, the physical nature by
which data is transmitted between two nodes on an edge is specified by the programmer.
This could use a variety of transport mechanisms, such as files, tcp pipes and shared-
memory fifos.

6This approach is justified by the Bird-Meertens Formalism which is discussed in Section D.4.1.
7Confusingly, the user-specified functions are referred to as ‘map’ and ‘reduce’ functions, although

these are the merely the functions which are conceptually passed to the map and reduce functionals,
rather than being drop-in replacements for those functionals themselves.

42

2.2 Distributed computing

Dryad offers the facility to re-write the application graph during run-time [123, §5.2].
Depending on the size of data and the speed of computation, which may only become
known at run-time, it may be possible to make more efficient use of resources with a
different graph. For example, an aggregation tree could be formed to increase the efficiency
of a set of associative and commutative operations. Such dynamic re-writing allows the
application to self-optimise and adapt to changing network conditions.

2.2.3 Task assignment

In addition to the decision about which inter-process communications paradigm to adopt,
a distributed computing framework needs to provide facilities to decide which physical pro-
cessor will execute each process. This is known as the problem of ‘task assignment’, since
processes can be thought of as collections of program tasks. This could either be imple-
mented as a language feature to leave the task assignment decision up to the programmer,
or a feature of the execution framework so that the decision is made automatically.

In some architectures, such as a numa computer, the number of processors and the com-
munication links between them are fixed. Therefore it is theoretically reasonable to leave
the task assignment decision to the programmer. However, a good assignment requires
the processors’ characteristics to be predictable; this may not be the case if the computer
is shared between applications. In other architectures, such as cluster or grid computing,
the programmer cannot make this decision, so the mapping of processes to processors can
only be made by the framework. However, even when designing applications for highly
regular, well-understood topologies, applications in which the programmer binds processes
to particular processors will not be portable to different configurations. Moreover, it may
be that automatic task assignment can resolve complex trade-offs better—and reach a
decision more quickly—than a manual approach performed by experts.

A closely related problem is that of task partitioning. This is the problem of determining
which program components should be grouped together into a logical unit to execute on
a single processor, and is thus a pre-requisite for task assignment. In a sense, task parti-
tioning is a technique for converting a monolithic program into a distributed program, by
identifying components that are suitable for execution on separate processors. However,
whilst the execution can be distributed, this area of research tends to assume that there
is only a single locus of control in the program, and that the various partitions interact
via a mechanism such as rpc. This avoids the question of whether the program can be
parallelised, where each partition would be executing concurrently. Appendix F contains
a discussion of the nature of task partitioning techniques.

2.2.3.1 Static automatic task assignment

Kremer et al. have developed a compiler which statically analyses a program which would
normally run solely on a battery-powered mobile device and considers whether it would be
better to off-load the execution of a part of it to a fixed computer with more resources [141].
The static, compiler-based approach means that the whole program can be analysed and
that predictions of future behaviour are not solely based on observed past behaviour. The

43

2 Background

decision about which of the program’s functions to off-load is based on whether remote
execution would save more energy than local execution. This is computed based on an
analysis of the state of which objects would need to be copied to the remote computer.
In order to save further power, the compiler causes the mobile device to hibernate by
inserting code to perform power state transitions. During hibernation, it may choose to
wake up periodically to check on the progress of the remote execution, perhaps requesting
the partial results of computation so that the processing can continue even in the case of
disconnection.

The Titan framework [160] has been designed to allow programmers to design applications
for body-area sensor networks in a task-oriented manner. An application is designed by
selecting tasks from a library of pre-defined tasks, and connecting them together to form
a task graph. A ‘network manager’ determines which processing node should execute
each task, based on a greedy algorithm which respects nodes’ capacities to execute only
a certain amount of tasks. Although we classify this work as implementing merely static
automatic task assignment, the network manager can also recompute the assignment of
tasks to processing nodes in the event of a node failure, at run-time.

Task assignment has also been applied to distributed multimedia applications. Applica-
tions such as teleconferencing involve high-bandwidth data streaming over a network. In
these environments, the computers which could be employed are usually heterogeneous.
Hagin et al. address the task assignment problem by proposing a heuristic-based algorithm
called sigma which minimises total communication and computational cost in polynomial
time [96]. They note that quality of service is an important issue in streaming multime-
dia applications, so sigma ensures that a desired level of quality of service is met by the
assignments which are produced.

In the domain of query processing, the task assignment problem can be restated to ques-
tion whether query operators (select, project, join) are best executed at the client or at
the database-server. Executing them on the client is known as ‘data-shipping’; execut-
ing them on the server is known as ‘query-shipping’. In practice, neither approach will
always be preferable, so a ‘hybrid-shipping’ approach is often adopted [80]. In this ap-
proach, a plan about where operators should be executed is made based on the available
cpu resources at the client and the server.

2.2.3.2 Dynamic automatic task assignment

Dynamic task assignment refers to modifying the assignment of tasks to processors during
run-time. Not only does this mean that a technique for re-evaluating the best assignment
based on changing data is needed, but also that there must be a mechanism to provide
code mobility (see Section 2.2.2.6). Without this, the execution of the program would
need to be halted; another static task assignment performed; and execution started again,
at regular intervals.

Job scheduling systems such as Condor provide a primitive form of dynamic task as-
signment. During the course of the execution of an application, the agent co-ordinator
performs dynamic load balancing. However, this load balancing is very coarse-grained—at
the granularity of jobs rather than at the granularity of functions.

44

2.2 Distributed computing

The Abacus system is a run-time system that dynamically changes the assignment of
processes to processors [6]. Programmers specify programs in C++ in which some objects
are syntactically marked as ‘anchored’ and others as ‘mobile’. Anchored objects need to
be executed on a particular processor (for example because they access local storage
on that machine). Mobile objects may execute on whichever processor is deemed best.
The specification of mobile objects must satisfy two criteria: they must not expose state
publicly except that which is accessible through the exported interface, and they must
support methods to serialise and deserialise their state. The Abacus run-time system
monitors method calls, which are executed synchronously (rpc-style), keeping track of
(i) the sizes of arguments passed to and results returned from method calls, recorded in
a data flow graph which maintains moving averages; (ii) the volume of memory allocated
to each object; and (iii) the duration of each method’s execution in terms of cpu time
and time spent blocked [6, §5.3]. From this data, the Abacus run-time system migrates
mobile objects to different processors when this would seem to reduce the application’s
average response time.

The goals and achievements of the Equanimity system are similar [108]. The authors
of Equanimity term this concept ‘service rebalancing’, and similarly seek to alter the
interface between the client and server portions of a program to optimise some property
via dynamic migration.

In pervasive computing environments, maximising the battery life of mobile devices is of
paramount importance. The Spectra system seeks to achieve this through computation
off-loading onto better-endowed fixed processors [73]. Spectra gathers data about an
application which goes beyond standard profiling to also monitor battery energy use and
the states of devices’ caches. Based on this information, it decides where each task
constituting an application is to be executed. As well as this, it also decides the quality
of the computation which each task is to perform. Programmers specify various versions
of a task which fulfill its specification to different fidelities [212]. For example, a function
to find the maximum of a set of values could compute an accurate value by iterating
through them all (perfect fidelity), or return the maximum of a small sample of values,
which approximates the true result (low fidelity).

Research by Chen et al. seeks not only to provide a framework to dynamically decide
whether to execute a method remotely or locally, to minimise energy consumption, but
also whether just-in-time (jit) compilation of Java bytecode to native code should be
performed remotely or locally [46].

At the operating system process level, the Remote Processing Framework (rpf) runs on
a mobile device and initially performs static assignment of processes to either the device
itself or to a fixed server [210]. The decision about whether to run a process locally
or remotely is rather primitive: the process is executed both locally and remotely on
several occasions, with the total energy consumption measured each time. The lowest-
cost approach is adopted on most future occasions, with occasional use of the higher-cost
approach to confirm that it still has a higher cost [210, §iii.6].

In the Java-based toolkit devised by Omar et al. [192], application performance and
power consumption on a battery-powered portable device is monitored. Their run-time
system uses this information to determine whether objects should be instantiated locally
or remotely. This decision is transparent to programmers via the use of proxy objects.

45

2 Background

DFuse is a framework for programming sensor network applications which involve data
fusion [142]. Applications are specified as task graphs, whose nodes represent data fusion
functions. The assignment of data fusion tasks to physical processors is initially performed
statically through a simple algorithm in which tasks are assigned näıvely then optimised
through each node locally deciding whether it would be better to transfer its tasks to a
neighbour. This mapping is re-evaluated against a programmer-specified cost function
regularly during run-time, to cope with changing conditions in the sensor network such
as node failure.

As well as providing an automatic partitioning service, MagnetOS performs dynamic task
assignment of Java programs, primarily aimed at ad-hoc and sensor networks [22]. At
run-time, the pattern of communication between the application’s components is profiled.
Each node makes a local decision about where to move the application components it
hosts to. Components are migrated in the direction of greatest communication in an
attempt to minimise communication costs.

2.3 Programming sensor networks

In Section 2.1, we determined that networks of vehicles can be thought of as a particular
kind of sensor network. Vehicular networks are also a form of distributed system, so tech-
niques for programming distributed systems were explored in Section 2.2. However, above
the low-level message routing and message dissemination protocols in Section 2.1.4.1, there
has been little research into higher-level programming languages or frameworks for wire-
less sensor networks. This section describes approaches to programming wireless sensor
networks in an attempt to shed some light on the problem of programming vehicular
networks.

In traditional sensor networks8, it is typically expected that programmers write code for
each sensor node individually, and compile and download the executable image into them
manually [34, p187]. A popular programming language in which this can be done is nesC,
an extension of C which adds a component-based programming model and increases safety
through reduced expressive power [85]. nesC is an entirely static language: there is no
dynamic memory allocation, and the call-graph is fully known at compile time. These
restrictions mean that programs can be easily analysed by a compiler, and optimisations
can be simply and accurately applied.

nesC programs are expressed in terms of a graph of components. Components expose
interfaces to which other components can be wired. A component is either a ‘module’,
which provides application code, or a ‘configuration’, which wires other components to-
gether. The graph is arranged such that commands flow downwards between components
and events flow upwards between components.

TinyOS is an operating system for resource-constrained sensor nodes, implemented in
nesC [109]. TinyOS provides a set of reusable system components, such as an analogue-
to-digital converter, a timer and a radio component. Components can create ‘tasks’,
which are short-lived units of computation to be performed. A scheduler is provided

8A light introduction to sensor networks is provided in Appendix B.

46

2.3 Programming sensor networks

which arranges for the execution of tasks in fifo order. Tasks run to completion without
being pre-empted (except by interrupts triggered by the receipt of an event); this means
that only a single stack is needed, which avoids wasting memory by allocating stacks
to non-running tasks. Longer-running operations (such as performing a radio transmis-
sion) are defined in a split-phase manner: the command requesting to perform it returns
immediately and its completion is signalled at some later time by an event.

Developing sensor-network applications in nesC with TinyOS has rapidly become the
norm; an approach adopted by over a hundred research groups worldwide [109, p2]. How-
ever, there are a number of limitations to this way of programming:

• Programming standalone nesC applications or implementing applications within
TinyOS is inherently a static approach since the application’s call-graph is known
at compile-time. This means that there is no facility to change the code that is
executed on a node other than reflashing its rom and rebooting.

However, many sensor networks are long-running and intended to operate with
minimal human intervention, perhaps for months or years. Over this length of
time, it is common to expect that the nodes may be desired for use in a variety of
applications. Even if just running a single application for their lifetime, it is likely
that the application may need bugs to be fixed or new features to be added as new
needs come to light, in which case the ability to upgrade a running application is
desirable.

• The compilation of TinyOS applications to a statically-linked system image means
that there is no facility to run more than one application on a sensor node.

• The requirement for the programmer to decide which node to use to execute which
part of the application means that the programmer must have knowledge of which
nodes will participate in the network, and what the topology of the network will look
like. This is not a practical assumption to make when the network is highly variable
or the application is intended to be deployed in a variety of physical topologies.

• It is tricky to program non-trivial applications with TinyOS. The split-phase para-
digm means that complex logic cannot be encapsulated within a single abstraction
but must be encoded by stitching together many smaller command handlers and
event handlers [222, p766].

These deficiencies have led to the suggestion of using higher-level programming languages
and run-time systems on nodes which manage the running of the application, allowing
reconfiguration, dynamic upgrading and multi-tasking. One possible solution could be to
hard-code a collection of core algorithms into each node and to provide a facility to select
which one to use by sending a request over the wireless network interface. However, it
is not feasible for this set of algorithms to be general enough to suit all possible sensor
network applications whilst not occupying an unreasonable amount of memory space.

Another potential solution would be to allow nodes to be programmed over the air, by
transmitting executable images from a base station. However, this would be extremely
costly in terms of network traffic, and may even be infeasible in networks where nodes
are sometimes unreachable from other nodes [34, p187].

47

2 Background

Various approaches have been adopted between these two extremes. In Section 2.3.1 we
describe approaches which view the network as a distributed database. In Section 2.3.2
we consider approaches which employ a virtual machine running on nodes and use higher-
level programming languages.

2.3.1 Distributed database

One approach is to treat the sensor network as a distributed database. Each sensor can
be viewed as a part of a database which can be queried to extract information about
the environment. With this approach, an application can employ a high-level declarative
language to describe what information is to be extracted from the data, as is the case with
sql in conventional dbmss. In this way, the programmer describes what data is required,
addressing the query to the network as a whole, rather than addressing individual sensor
nodes. On the other hand, this approach limits the programmer to use a restricted set
of operators to process the data. For example, it might be hard to express complex
interactions between collaborating nodes.

With reference to conventional dbmss outside the field of sensor networks, there has been
much research into the closely-related area of distributed query processing [140]. As well as
concerning techniques for caching and replication of data, this research involves determin-
ing where best to execute data processing operators in order to minimise communication
costs. Even in a non-distributed sense, a given sql query could be executed in a variety
of alternative ways (known as execution plans). These plans differ in terms of the shapes
of the trees of the relational operators, the permutations of these operators, the choice of
implementation of operators (in particular, join has a number of implementations) and
the permutations of sub-trees [31, p13].

Unlike in dbmss, where a query runs to completion and returns a single result, in sensor
networks applications often want to execute continuous queries [253]. Continuous queries
run indefinitely (or for a specified duration) and report results during their execution
with a specified frequency. Executing a continuous query once is preferable to repeatedly
executing conventional queries from the point of view of minimising network traffic: in the
absence of continuous queries, a polling strategy would be necessary. In turn, this gives
rise to large energy savings—crucial in networks of battery-powered devices. In Motes9,
transmitting a single bit of data has been found in one study to be equivalent in terms
of energy consumption to executing 800 instructions [165, p132]. In another study, it has
been observed that the cost of executing 3000 instructions is equivalent to sending a bit
one hundred metres by radio [200, p55].

2.3.1.1 Approaches based on sql

Sql supports aggregation operators such as min, max, count, sum and average. Some
dbmss offer additional operators. With both conventional and continuous queries, there
is a question over the point at which aggregation should be performed. One possibility
is to gather all of the data (after selection and projection) at the point from which the

9Motes are an implementation of low-power sensor nodes. See Section B.1.

48

2.3 Programming sensor networks

query was issued (the ‘sink’) and perform the aggregation there—the centralised approach.
However, this may result in a far greater volume of communication than if the aggrega-
tion is performed closer to the source of the data. Hence this approach does not scale
to large networks. Experiments have shown that in-network processing can contribute
considerable savings in network traffic [104, §6.1].

Tiny Aggregation (tag) [165], part of the TinyDB [167] sensor-network querying frame-
work, extends sql to allow continuous queries. In-network optimisations are possible
based on knowledge of the particular aggregation function which is requested in a query.
These optimisations reduce the amount of communication required. Further optimisations
can be attained through snooping messages on the shared channel [166, §3.3].

As well as the standard sql aggregation operators, tag also permits custom aggregation
operations to be defined. They can be expressed in terms of three functions: a merging
function, an initialiser and an evaluator [165, §3.1]. The initialiser expresses how a single
value is to be wrapped into a form which can be passed to the merging function to combine
it with another. The evaluator deconstructs a value of this form into the result of the
aggregate.

Similarly, the Cougar system provides a means of accessing data from nodes in a sensor
network using an sql-derived syntax [32]. As with tag, continuous queries are supported.
Madden and Gehrke, the creators of TinyDB and Cougar respectively, have shown how
the two systems share similar goals and implementations [86].

The Sensor Information Networking Architecture (sina) also uses an sql-like syntax
[224]. The variation on sql provides a spreadsheet-like facility: the results of a query can
be stored in named ‘cells’ and relationships between cells can be set up. Sensor nodes
in sina can arrange themselves into clusters, based on power levels and proximity, in
order to reduce the number of messages and to remove the need for long-range wireless
communication on all nodes.

Icedb is a continuous query processing system which takes account of the intermittent
connectivity of mobile nodes [258]. Applications address continuous queries to a central
server known as a ‘portal’ which distributes the queries to mobile nodes and collects results
from them. Intermittent connectivity means that the results of a query need to be buffered
at the mobile node, to be streamed to the portal later. Even when there is a connection
from a node to the portal, it may not be that the available bandwidth always exceeds
the amount of data to be sent. Instead of making this assumption, icedb prioritises
the delivery of query results so that the data most highly valued by the application is
transmitted first. Programmers express the prioritisation of data through an extension
to sql. Data is prioritised on both a local and global basis. Locally, items are ranked
so that either the more interesting data or a coarse form of the data is delivered first.
Globally, the application can provide feedback that certain data is to be considered more
valuable than other data. For example, an application may wish to prioritise receipt of
information concerning a geographical region about which little is presently known.

2.3.1.2 Other approaches

Heidemann et al. have proposed an approach to performing in-network processing that
is similar in spirit to the sql-based approaches but uses a different methodology [104].

49

2 Background

Rather than performing routing based on named sensor nodes, routing is entirely data-
oriented, using directed diffusion as the mechanism by which data flows through the
network (see Section B.5.1). Applications indicate ‘interests’, which describe the sensor
data and values that are to be matched; sensors listen for interests that overlap with what
they are capable of providing and emit their data.

IrisNet is a distributed database analogous to the sql approaches described above, but
using an xml database [187]. As before, queries are deployed into the network from a sink
and results are delivered back to the sink, whilst the precise nature of the query processing
is hidden from the programmer. Aggregation is performed as close as possible to the
sensors to minimise communication overhead. For a given sensor, programmers create a
‘senselet’: an executable which transforms the sensor data into an xml representation.
The programmer also specifies a database schema that describes metadata about the
sensors. Queries are expressed in the XPath query language.

The DataSpace paradigm embodies the notion of data being geographically distributed
throughout space [121]. Whilst this does not solely apply to sensor networks, this is a
natural application of the concept. Queries contain both a spatial element and a content-
based element. The spatial element indicates which nodes are being queried (which drives
the geographic routing) and the content-based element provides filters for the data. If a
node is located within the specified region and holds data that matches the content filters,
it replies by providing its data back to the sink.

The Milan framework provides a programming abstraction for sensor networks in which
mobile nodes’ battery life is maximised whilst respecting applications’ quality of service
requirements [105]. This optimisation is effected by adjusting properties of the network,
such as altering which sensors send data and which nodes act as routers. For example,
if there is a high density of sensors in one geographic region, but the application only
requires a small amount of information about each region, some sensors in the densely
populated region could be switched off to save energy. Quality of service requirements are
honoured as applications specify the quality they require for each variable (expressed as a
‘state-based variable requirements graph’) and each sensor specifies the quality to which
it measures each variable (expressed as a ‘sensor quality-of-service graph’). The Milan
framework will then attempt to find sets of network nodes that can satisfy the required
total quality of service for all variables required by the application.

DSWare is a middleware which provides a data-centric view of sensor networks [152]. It
provides a set of common database-like services which applications often require, hid-
ing the low-level complexities of sensor networks. These services include event detection
(which includes support for compound events), in-network data storage (involving distrib-
uted hashtable techniques and replication), data caching (spread intelligently to minimise
communication costs and query response time) and data subscription.

2.3.2 Active sensor networking

Treating the sensor network as a distributed database leads to the view of sensor nodes
as mere sources of data rather than general computational devices. Hence, the query
paradigm of database-oriented techniques tends not to be flexible enough to efficiently

50

2.3 Programming sensor networks

express complex algorithms and interactions between nodes. Many applications in sensor
networks can benefit from collaboration between nodes, where decisions are better made
locally in a peer-to-peer fashion compared to being controlled from a potentially distant
sink. For example, the tracking of a moving target is most efficiently achieved by involving
only a small number of neighbouring nodes.

Other problems inherent in the distributed database approach include reply implosion at
the sink which causes a bottleneck, and the need for a communication link from all nodes
back to the sink [124, §1].

Hence, an alternative approach to programming sensor networks is to allow the sensors to
execute arbitrary instructions. In a number of systems, this is achieved using a scripting
language with an interpreter or a virtual machine running on the sensor nodes. The
language must be powerful enough to allow sensor data to be handled appropriately and
to allow complex interactions between nodes to be described, but must hide the low-level
details of the platform. As well as providing an abstraction from the hardware, the virtual
machine may even permit multiple applications to execute concurrently on a single node.

To steer clear of the danger of requiring the programmer to write code for each node
individually—which was the case for programming in TinyOS—the paradigm of mobile
agents is often adopted. We introduced mobile agents as a specific case of mobile code
in Section 2.2.2.6. The computational model for mobile agents in sensor networks is that
rather than the raw sensor data travelling from the sensor nodes to the sink, the code
to be executed travels from the sink to the sensor nodes [203]. Because the agent code
will typically be smaller than the data, this saves on bandwidth usage, which in turn may
save energy. Furthermore, since the locus of control no longer solely exists at the sink,
there is lower latency in interactions between nodes and there is increased tolerance for
disconnection of parts of the network. Another advantage of using mobile agents is the
ability to inject new programs into any node, from where they will migrate to the nodes
where the processing is to be applied [33, §1].

However, there are several differences between a treatment of mobile agents in sensor
networks and mobile agents in fixed, wired, data networks: [35, §iii.C]

• The resource-constrained nature of a sensor network means that care must be taken
over the decision of when to migrate an agent. The replication and distribution of
agents is significantly more costly.

• The low cost of computation compared to the cost of communication in sensor net-
works means that an interpreted scripting language can be adopted rather than a
compiled language. This makes it easier to provide a safe ‘sandbox’ in which appli-
cations can execute. Whilst this requires a lightweight interpreter for the language,
experience has shown that the overhead of interpreting is negligible [150, §4].

• In a traditional data network, a typical application may just consist of a single agent
migrating around. However, in a sensor network, an application is more likely to
consist of a number of tightly collaborating agents. This impacts on the addressing
scheme used by the agents, perhaps meaning that local peer-to-peer communication
amongst neighbours needs to be supported rather than solely using direct addresses
from a global namespace.

51

2 Background

• The attitude towards security is often different in a sensor network. Sensor net-
works are typically under the control of a single authority. Hence, authentication is
required upon code admission, but other security or safety checks can be reasonably
overlooked.

2.3.2.1 Programming active sensor systems

An approach to abstracting the complexities of programming for the TinyOS operating
system on resource-constrained sensor nodes is provided by the Maté virtual machine [149].
This virtual machine is designed to run on low-power sensor nodes. It is an interpreter for
a simple, stack-based language, providing dynamic code-loading. The complexity of send-
ing and receiving messages is hidden: ad-hoc routing is performed automatically. Maté
programs are written in terms of ‘capsules’ consisting of up to twenty-four instructions.
These capsules have the ability to self-transfer using a particular instruction, leading to
the notion that they can be thought of as mobile agents. Although Maté’s language is
very primitive, efforts are underway to provide a high-level language such as TinyScript
[148] which can compile to it in much the same way as Java compiles to bytecode.

However, the designers of Maté have noted three areas in which it is inadequate [150,
§2.4]: (i) it is written with a single class of applications in mind and is not suitable for all
kinds of sensor network application; (ii) programmers are forced to use synchronisation
primitives to ensure concurrency safety between co-located applications; and (iii) code
propagation policies, which are hard to express, must be coded by the programmer.

These difficulties have led to a proposal for a general architecture for implementing an
application-specific programming model. The application-specific virtual machine (asvm)
architecture allows the programmer to produce a custom instruction set and set of events
[150]. This approach encourages a ‘vertical’ application design process, whereby the pro-
grammer chooses what operations the virtual machine supports and then writes code for
it. The advantage of this approach is that the programming interface can be pushed up to
a very high level whereby single instructions give rise to large computations. This makes
programs smaller, reducing the requirements for large program memory on the nodes, and
reducing the communication cost of propagating programs.

Scylla is a virtual machine for mobile sensor network nodes similar in spirit to Maté, al-
though designed for more powerful nodes [225]. It supports application migration between
nodes and an on-demand compilation technique. Scylla applications consist of applica-
tion code, fault handler code and a memory image carrying the application’s state, all
of which are transferred in the case of a migration. The fault-handling code is executed
upon receipt of an application if it is deemed too expensive to execute, perhaps to cause
the application to migrate onwards to a different node. The cost of executing code can be
computed either by an application-provided estimate of the application’s dynamic instruc-
tion count (and hence energy usage), or this can be estimated at run-time. Fault handlers
are restricted to not use backward flow control so their dynamic instruction counts are
guaranteed to be no more than their static instruction count.

SensorWare is another implementation of a mobile agent framework for sensor networks
[34]. It employs a high-level scripting language based on Tcl, whose core interpreter is

52

2.3 Programming sensor networks

deemed to be lightweight enough for sensor networks although it is too big for the memory
of a Mote. The programming model is to define events and event handlers. SensorWare
scripts tend to look like state machines driven by events such as receiving a message from
a peer, data being sensed or the expiry of a timer. An event handler may perform some
computation which may trigger further events and communicate with other agents.

Agilla is another framework for programming and deploying mobile agents in a sensor
network [75]. Agilla’s distinguishing feature is to provide a local tuple space on each
sensor node, into which agents can insert tuples and from which agents can extract tuples
via pattern matching. This facilitates the sharing of data between agents on a node,
which provides a simple means by which an agent can discover its execution context.
The tuple data can be shared locally using instructions which allow an agent to access a
neighbouring node’s tuple space; data can be shared globally via geographic addressing of
nodes. Agents can self-clone and migrate through the network, optionally carrying their
state with them, but the tuple spaces do not migrate.

Smart Messages [132] is a similar library and run-time system based on Java to implement
mobile agents in a sensor network. It implements the Spatial Programming paradigm
[33], in which the network is viewed as a single address space in which resources are
accessed using ‘spatial references’. A spatial reference uses the expected location of a
node of interest and the name of a property. For example, room1.camera may be used
to name any node in location room1 having the property camera. In this way, naming is
content-based, avoiding the use of physical addresses, enabling the framework to hide the
networking details of discovering nodes and routing messages.

The SpatialViews framework [189] is built on top of Smart Messages, using a high-level
programming language which hides the volatility of a mobile network from the program-
mer. SpatialViews abstracts a network as a set of virtual networks called ‘spatial views’.
A spatial view consists of a set of physical nodes which exist in a particular location,
although the membership of this set may change over time. Each spatial view has some
computation to be done; this computation migrates amongst the physical nodes of the
virtual network. For example, a programmer may define a spatial view naming the nodes
within a region r which provide a service called LightSensor. Then the programmer spec-
ifies code to be executed by each such node n in r such as n.read(). When executed,
the framework will migrate the code into r, visiting each of the nodes in random order—
potentially in parallel—then migrating back to the sink to deliver the result. To save
energy, the programmer can optionally specify that not all nodes within the region need
necessarily to be visited. For example, if there are two sensors located very close to each
other, it may be acceptable to only sample one of them, yielding a ‘best-effort’ result. This
is specified by defining a spatial granularity within which nodes are considered equivalent
and a description of the ‘quality of result’ that the algorithm will yield for a given set of
nodes. The framework establishes a trade-off between the quality of result and the energy
consumption.

The designers of the Sensor Querying and Tasking Language (sqtl) [124] distinguish two
classes of operations performed on sensor networks: querying and tasking. Querying is a
synchronous mechanism in which the querier blocks until a response has been delivered;
tasking is an asynchronous operation whereby sensors mutually co-ordinate to achieve
an action. Sqtl is a scripting language supporting both classes of operations. It is

53

2 Background

a procedural language with some object-oriented features. The language is interpreted
by the Sensor Execution Environment (see) virtual machine which deals with incoming
messages and transparently forwards all messages which are marked as being for the
attention of multiple nodes. It also provides some location-awareness, so that applications
can tell where the nodes they are executing on are positioned relative to other nodes.

Abstract Regions is a programming paradigm and library which aims to simplify the
expression of applications which involve communications within local regions of a sensor
network [244]. The programmer defines a ‘neighbourhood relationship’ which defines
regions within the network. For example, the relationship might be ‘within n hops’ or
‘within radius r’ or ‘the k neighbours with the best quality communication link’. Nodes
may thus belong to several regions. The programming model is of sharing data amongst
nodes within a region. This is done through accessing data associated with a known key
from one or more nodes. A node can also perform a ‘reduce’ operation which performs an
associative operation on all of the data associated with a particular key within a region.

Abstract Regions also exposes to applications the ability to tune the trade-off between
reliability and energy consumption. For example, repeatedly sending a message makes it
more likely that it will be received, at the cost of a higher energy consumption than sending
it once. Also, varying the rate of broadcasting location advertisements affects the quality
of region discovery. This trade-off is exposed by each operation returning a measure of
‘quality’, representing how completely or accurately the operation was performed, and
the provision of a low-level interface to tune communications parameters.

The Hood system [245] is largely similar to the Abstract Regions paradigm. In Hood,
attributes to be shared with other nodes are broadcast locally. Nodes which hear the
broadcast can choose, based on a programmer-defined filter, whether to cache the at-
tribute’s value locally. This filtering decision being taken by the receiver means that
there is an asymmetry between two nodes; nodes may hold different opinions on whether
they are both part of a particular neighbourhood; there is no notion of a ‘group’, in which
every node is aware of the membership of every other node. In contrast to Abstract Re-
gions, Hood does not provide data aggregation facilities or any ability to manipulate the
accuracy–resource trade-off.

Dynamic code upgrading. Some systems provide the facility to dynamically upgrade
applications by diffusing new code through the network. This can be thought of as a
particular instance of the mobile agents paradigm. The sos sensor-node operating system
provides this facility natively [100]. An application running on sos consists of a number
of interacting ‘modules’, which can be dynamically linked.

Similarly, the Contiki sensor-node operating system supports dynamic loading and re-
placement of applications (or parts of applications) [62]. Like TinyOS, the Contiki kernel
is event-based (thus similarly avoiding per-thread stacks and the need for locking), but
Contiki provides an application library to allow pre-emptive multi-threading, which sim-
plifies the programming of long-running computation.

Impala [159] is a middleware layer which allows applications to be upgraded dynamically,
in situ. It was originally designed for use with the long-running, large-scale ZebraNet
mobile sensor network [128]. It also allows dynamic adaptability of applications to aim

54

2.4 Summary

to minimise energy usage whilst maximising performance. For example, this adaptation
might involve the decision to change to use a wider-range communications protocol if the
device’s battery level is found to be high and the number of other devices nearby is low.
However, this adaptation is on a per-node basis and is driven by monitored sensor values
or system properties.

2.3.3 Other approaches

In general, the distributed database and active sensor programming paradigms described
above either involved writing a single program to execute on all nodes or writing sepa-
rate programs for individual nodes. An alternative approach is to allow programmers to
describe the behaviour of the system as a whole in a high-level declarative language.

Such an approach has been adopted by Mainland et al. [168]. They use a ‘market-
based macroprogramming’ paradigm in order to organise the execution of applications
in sensor networks. In this paradigm, nodes receive price information and ‘sell’ actions.
Actions that contribute towards the network’s overall goal result in a payment to the
node performing the action. Each action constitutes the expense of some energy which is
subtracted from nodes’ pre-allocated energy budget. Examples of typical actions include
sampling a sensor, aggregating data, forwarding a message and sleeping. With all nodes
acting autonomously in their own self-interest, with no knowledge of any global aims, the
behaviour of the network is controlled by modifying the prices of actions, rather than by
directly instructing the node to perform a different computation. Nodes will select actions
which maximise their utility given their current energy level and the availability of sensor
data or the presence of pending messages to forward. Hence, ‘programming’ a sensor
network using this paradigm involves expressing policies for how the prices should change.
The authors describe this as an instance of the Self-Organising Resource Allocation (sora)
paradigm.

2.4 Summary

This chapter has surveyed extant research that is most closely related to the problem
of programming large-scale networks of vehicles. Broadly, this has covered two areas:
programming paradigms for distributed systems in general (Section 2.2), and for the
specific case of sensor networks (Section 2.3).

In loosely-coupled distributed systems, there are a variety of approaches to managing
communication between processes, ranging from high-level abstractions such as distrib-
uted shared virtual memory to low-level schemes such as message-passing (Section 2.2.2).
The nature of task assignment is also a fundamental characteristic of a distributed system
(Section 2.2.3). This is the problem of determining what computation should take place
on which processors. A system which provides automatic task assignment relieves the
programmer of the burden of needing to decide this in advance.

Wireless sensor networks are usually programmed by writing code for each node individu-
ally, using a language such as nesC for the TinyOS platform. The low-level nature of this

55

2 Background

approach has led to suggestions of programming sensor networks in terms of database-
style queries (Section 2.3.1) or via injecting code into virtual machines running on the
nodes (Section 2.3.2). The former approach suffers from a lack of flexibility; the latter
approach is considered to still be too low-level.

Chapter 5 will present a programming paradigm which seeks to avoid these deficiencies by
allowing programmers to describe applications at a high level and which exploits automatic
task assignment.

56

CHAPTER3

A vehicular sensor platform

This chapter concerns the practical feasibility of treating a vehicle as a sensor platform
that could be a node in a sensor network. Such a platform has been implemented; various
aspects of its design and implementation are described. This platform has been used to
provide the sensor data for the application which will be described in Chapter 4.

3.1 Managing sensor data

Modern vehicles contain many sensors fundamental to the operation of the vehicle (see
Section 2.1.2). In the future, it is conceivable that vehicles will carry sensors whose data
is consumed by third parties.

This gives rise to the questions of when and where sensor data should be processed. For
some applications, immediate processing of the data is required. For example, a vehicle’s
movement data must be shared with other vehicles if it is travelling in a platoon. For
certain other applications, the processing of data can be delayed until a later time. This
may be because it is not needed until later, or because it may be discarded later based
on data subsequently received. Moreover, it may be infeasible to process some data in
real-time, perhaps due to constraints on the speed of processing in the vehicle, such as
may be the case for high-frame-rate video data.

Each application and each type of data will have different requirements. Hence, a vehicular
sensor platform must support a means of multiplexing several applications, meeting the
demands of as many as possible, providing the facility to both store data and process data
in real-time. Since storage space is limited, strategies must be adopted for prioritising

57

3 A vehicular sensor platform

data and determining which data is least costly to discard in order to make room for
newer readings.

An example of a vehicular sensor platform is the Instrumented Car [228]. This vehicle
is equipped with a variety of sensors which obtain data about the driver, the vehicle’s
engine, emissions and its environment.

A vehicle with its own repository of data is useful for its owner, but the value of mul-
tiple similarly-equipped vehicles can be significant. This is reminiscent of the principle
known as Metcalfe’s Law which states that the utility of a communications network is
proportional to the square of the number of participants. This means that vehicular data
repositories need not contain data pertaining only to the host vehicle; it may be useful
for some applications to also acquire data from other vehicles. Hence, a vehicle becomes
a node in a vehicular sensor network (see Section 2.1.4.2). This requires a means of com-
munication between vehicles (see Section 2.1.3) and gives rise to privacy issues as vehicles
share their sensor data with others.

3.2 A sensor platform

To investigate these ideas, and to begin to realise the vision of vehicles producing sensor
data and communicating to share it, we have prepared a vehicle equipped with computing
and communication equipment. It acts as a general-purpose sensor and computing plat-
form which forms the basis on which research into applications such as automatic map
generation (to be described in Chapter 4) has been conducted.

We begin by outlining some practical requirements for its implementation in Section 3.2.1
and describe the internal sensor and computing infrastructure in Section 3.2.3. The
section concludes with a consideration of practical issues such as power management
(Section 3.2.5) and the means of user interaction (Section 3.2.6). Finally, Section 3.2.7
provides a taste of the data that has been collected.

3.2.1 Requirements

We identified various requirements for the platform that would allow it to be used as a
normal vehicle that also collects data as it is used in a manner transparent to its driver:

Power. Because the vehicle is mobile, it is not practical to expect that it will have
any permanent access to an external power supply, so it must be able to cope with
extended disconnection. Thus, the computing equipment contained within it should
exploit the vehicle’s own means of power generation, making use of the available
fuel resources.

Communication. In order to support a wide range of applications, a diverse variety of
short-range and long-range communication interfaces are to be supported.

Transparent nature. The computer and sensing equipment must function in a fully
autonomous fashion and be non-intrusive. The driver should not need to treat the
vehicle any differently to any other vehicle.

58

3.2 A sensor platform

Figure 3.1: View through the side door of the vehicle, showing the placement of the
equipment rack.

Several further requirements relate to the nature of the vehicle as a research platform:

Extensibility. It must be simple to install new sensors of any kind, as new research
needs are identified or as new technologies become available.

Developer-friendly. The need to develop new applications and modify existing ones—
even when the vehicle is away from its home—implies that it is necessary to have a
comfortable means of interfacing with the computer.

Type of vehicle. The vehicle must be based on a car, so that it can travel in the same
places and at the same speeds as the majority of road users, but should permit the
easy installation of electronic equipment.

The subsequent sections indicate how these requirements have been met.

3.2.2 Vehicle

A Renault Kangoo van formed the physical basis for the platform. The vehicle’s carry-
space provided ample space to install the computing equipment, shown in Figure 3.1. The
equipment is held in an equipment rack shown in Figure 3.2.

3.2.3 Sensor infrastructure

The goal of extensibility requires a wide range of sensors to be able to be installed with
minimum effort, with their data being logged to permanent storage. This was achieved

59

3 A vehicular sensor platform

(a) Front view, monitor in retracted position

(b) Rear view, monitor in extended position

Figure 3.2: The equipment rack inside the vehicle.

60

3.2 A sensor platform

Figure 3.3: Overview of sensor infrastructure in the vehicle.

through the installation of three separate data buses and a power distribution network
wired throughout the vehicle; see Figure 3.3 for an overview. Data from sensors attached
to all of these buses is logged to disk on the embedded computer, which is a small form-
factor, commodity pc based on the via epia motherboard.

3.2.3.1 Can bus

Typically, modern vehicles contain their own Controller Area Network (can) bus, or
a derivative thereof, to control many of the vehicle’s sensors and actuators (see Sec-
tion 2.1.2). The features of the can standard which make it particularly well-suited to
in-vehicle sensing include:

• automatic retransmission that guarantees delivery of messages;

• dominant-recessive signalling meaning that collisions do not result in corrupted
packets;

• differential signalling on two wires, meaning that the effect of electrical interference
is minimised; and

• the widespread availability of can interface chips which work at a wide range of
voltages and which are able to operate on a bus over a distance of a few metres.

A dedicated sensor can bus was installed, kept separate from the vehicle’s own bus for
safety reasons to guarantee that it would not interfere with the vehicles’ devices. In
particular, the addressing scheme of the existing nodes and the traffic density patterns
were not known. The sensor can bus was wired in a modular fashion such that sensors
could be added and removed with minimal disruption, inside and outside the vehicle.

The sensor can bus is connected to the on-board computer via a Lawicel can-to-usb
converter, and a can daemon arbitrates between multiple separate processes to send and
receive messages from the devices on the can bus. This is preferable to having each
process try to separately control the can-to-usb device with no co-ordination, which may
have led to the starvation of some processes from can bus access, and may not have coped

61

3 A vehicular sensor platform

with the interleaving of concurrent operations on different devices attached to the can
bus.

Several groups of sensors are attached to the sensor can bus, including:

Meteorological sensors: temperature,
humidity,
barometric pressure;

Position sensors: two-axis accelerometers,
tilt sensor,
two-axis magnetometers;

Environmental sensors: CO2 sensor.

The magnetometers are orthogonally aligned in the horizontal plane and are useful to de-
termine the orientation of the vehicle. When the vehicle is stationary, its orientation would
otherwise be unknown since the heading would not be deducible from the displacement
between consecutive pairs of position readings.

Further sensor deployment is facilitated by the re-use of the circuit layout for interfacing
between sensors and the can bus used for each of these sensors.

3.2.3.2 Usb

To facilitate the installation of sensors that are capable of relaying their data over usb,
and which have a higher data-rate than the can bus can support, a usb tree was wired
throughout the vehicle.

For sensors supporting the rs-232 protocol, we attached them to the usb tree via Al-
phaMicro Components rs-232-to-usb converters. At present, the following devices are
attached in this way:

• three gps receivers;

• an rfid card reader with which to identify the driver of the vehicle by an identity
card; and

• the obd-ii scan-tool to interface with the vehicle’s diagnostics subsystem (described
below).

Connecting these rs-232 devices over usb provided three benefits:

• there was no need for a further separate bus;

• an almost unlimited number of rs-232 devices could be connected rather than being
limited by the number of physical ports, permitting future extensibility; and

• it meant that Linux’s udev facility could be used to create static names for the
rs-232 devices, by relying on the unique identifiers of the rs-232-to-usb converters
rather than relying on the particular physical socket the devices are plugged into.

62

3.2 A sensor platform

Figure 3.4: An application showing current and recent data from three sensors accessed
via obd-ii.

The operating environment in the vehicle was found to exceed the capabilities of usb 2.0,
by requiring a usb tree stretching over several metres. The symptoms of this that were
observed included the devices at the leaves of the tree experiencing an erratic connection
to the computer, sometimes failing to be detected, sometimes failing to initialise properly.
This problem was solved by using usb 1.0—significantly decreasing the bandwidth of the
bus but increasing its tolerance to greater distances. This was achieved by installing a
usb 1.0 hub at the root of the usb tree, causing all of the descendant devices to fall back
to usb 1.0 speeds. It was also found to be important that all usb hubs were externally
powered, rather than consuming power from the bus, so that the deepest leaves of the
tree would be assured of power.

Via the obd-ii interface, data from sensors in the vehicle’s engine can be accessed. The
data available over this port is vehicle-specific. In the vehicle used, the available data
includes the engine speed (rpm), road speed, engine load (as a percentage of the peak
available torque), air intake temperature, fuel rail pressure, intake manifold pressure, and
engine coolant temperature.

Sensor data is obtained over the obd-ii interface by polling. The maximum rate at which
data can be read from the obd-ii port is approximately 2Hz. Unfortunately, this meant
that it is not possible to sample the rapidly varying sensors as frequently as desired; for
example, the engine’s velocity and load can vary substantially over the course of half a
second. Coupled with the fact that only one sensor can be polled at a time, it means
that the data obtained via this interface is of limited quality. To minimise this problem as
much as possible, the sensors are sampled at varying rates, matching as closely as possible
the rates at which their values typically change. Figure 3.4 shows a screenshot of a simple
application visualising data from a subset of obd-ii sensors.

3.2.3.3 Ethernet

In order to support media-rich sensors with high data rates, a 100Mb/s Ethernet network
was also installed. It has been used to stream video data from two cameras: one front-

63

3 A vehicular sensor platform

mounted and one rear-mounted. For such sensors with high data rates, it is best for
them to perform as much processing as possible to relieve the on-board computer from
the burden of this processing, to reduce the volume of network traffic. For example,
on-camera mpeg encoding reduces the data rate from several megabytes per second to
several hundred kilobytes per second.

Even despite this encoding, the data rate of the video is still very high. Thus, given a finite
amount of storage capacity, it is important to prioritise what data is logged permanently.
At a high frame rate, all available disk space could be consumed over the course of a
relatively short journey. But it is common for pairs of consecutive video frames to depict
largely the same information, so it is more space-efficient to only save frames with a
significant difference to the previous saved frame; this observation was the inspiration
behind mpeg encoding. This could be theoretically achieved by dynamically processing
each pair of frames and determining whether the difference is large enough according to
some heuristic, but this processing would be very computationally expensive. Instead, we
observed that the probability of the occurrence of a significant event is related to the speed
of the vehicle: when travelling fast, greater distances are covered so successive frames are
very different; at very slow speeds, the opposite is true. The rate at which video frames
are saved is thus adapted based on the vehicle’s speed. In general, the decision about
whether to save an image could be based on inputs from any on-board sensors, as is the
case with the SenseCam system [112].

3.2.4 External communications

A variety of wireless networking equipment is employed in the vehicle using high-gain,
roof-mounted external antennas.

An ieee 802.11b/g interface has been used to communicate with an access point up to
300m away. Experiments have found that line-of-sight is important. An ieee 802.11a
interface is also used and requires line-of-sight to the access point. Experiments have
found that the maximal range is less than that for 802.11b/g. Furthermore, a gprs/umts
datacard provides near-ubiquitous Internet connectivity at a rate of up to 300 kb/s.

As well as acting as communications interfaces, these devices also act as sensors which
evaluate the strength of the signal which they receive. This data is treated in the same
way as any other sensor data by logging it.

The vehicle automatically detects when it is within range of its home WiFi network and
uploads newly collected data to a fixed server. This allows in-vehicle storage space to be
reclaimed for use on a future journey.

3.2.5 Power

Careful management of power is necessary in a vehicular environment, since the mobility
of vehicles implies that they cannot rely on any permanent connection to an external
power source. On the other hand, vehicles generate electricity through their alternators,
which may be exploited to power on-board equipment. Further challenges are also raised

64

3.2 A sensor platform

by the requirement of transparency, meaning that the presence of the equipment should
not distract the driver from any normal driving habits.

The following goals were identified for a vehicular sensor platform’s power infrastructure:

• avoiding flattening the vehicle’s battery, which would incapacitate the vehicle;

• making use of the vehicle’s alternator to provide the power to run the equipment;

• starting the computing equipment and logging sensor data automatically when the
ignition is started;

• turning off the computer and sensors automatically when the sensor data has been
uploaded after the ignition is turned off;

• having a failsafe power cut-off facility to ensure that the computer will not consume
energy indefinitely when the vehicle is parked; and

• having the facility to connect the vehicle to an external power source in order to
recharge the battery that powers the sensor equipment when possible.

The on-board equipment is powered from an auxiliary battery, separate from the vehicle’s
main battery. This was preferred to using the vehicle’s battery as it could not be expected
to supply a steady 12V, as required by the on-board computer, and also enabled us to be
confident that we could never flatten the main battery by over-use of the equipment.

Circuitry was developed to use the vehicle’s alternator to charge the auxiliary battery in
parallel with the vehicle’s main battery, but with a limit set on the charging current to
avoid overloading the alternator if the auxiliary battery should be particularly low.

Power control circuitry was implemented that powered the computer and sensors auto-
matically when the ignition is started, causing the computer to start logging sensor data;
and to send a signal to the computer indicating that the computer should shut itself down,
when the ignition is turned off.

A hardware failsafe power cut-off was implemented which is triggered if the computer does
not shut itself down within a few minutes, to ensure that if the computer has inadvertently
entered into a stuck state then it will not drain the battery. This was preferred to a
watchdog scheme—whereby the computer would be expected to send regular messages
requesting that the power be kept on—since this would not provide the same degree of
guarantee that power would indeed eventually be cut.

Figure 3.5 shows an overview of the power control scheme which satisfies the following
usage cycle:

1. the driver starts the ignition; computer and sensors automatically turn on;

2. the driver drives the vehicle whilst the sensor data is logged to disk;

3. the driver turns off the ignition and leaves the vehicle;

4. the data collected is uploaded if the vehicle is within range of a suitable wireless
network; and

65

3 A vehicular sensor platform

Figure 3.5: State machine representing the power control scheme (edges are labelled
input / output).

5. the computer shuts down gracefully when the data upload is complete or it has been
idle for a certain period of time.

In order that the computer equipment could be left running when the vehicle is parked at
its home location without draining the battery, a means of connecting it to an external
mains power source was implemented. When this is connected, the failsafe power cut-off
mechanism is overridden.

3.2.6 User interaction

In the front of the vehicle, two windscreen-mounted 8” lcd touchscreen monitors, one on
the driver’s side and one on the passenger’s side, provide means of user interaction, shown
in Figure 3.6. These monitors can be run in identical, independent, or shared desktop
modes, to permit the passenger to interact with the computer and optionally control what
information is displayed on the driver’s monitor. This was implemented by hosting two
desktops in local vnc sessions, as shown in Figure 3.7, and using a modified vnc client
to allow specified portions of the desktop to be displayed.

As is common in many modern vehicles, there is a stalk of audio controls mounted on the
steering column, shown in Figure 3.8. This stalk has been modified to allow it to act as
an input device to the computer, emulating a motionless six-button wheel mouse. This
facility permits the driver to control applications in a similar fashion to the vehicle’s other
functions.

A comfortable development environment is also necessary for deployment and debugging
purposes. This was achieved by converting the main carry-space of the van into an area
where developers can interact with the computer when the vehicle is stationary. A 17” lcd
monitor, keyboard and mouse are provided to mimic a typical office working environment.
The monitor is fixed onto telescopic vertical rails so that when it is not in use it is out of
sight. It can be seen in Figure 3.2b.

66

3.2 A sensor platform

Figure 3.6: Two lcd touchscreen monitors mounted on the dashboard.

Figure 3.7: Two vnc desktops, with A twice the width of B. Desktop A is divided into
two halves, one for passenger and driver each. Desktop B is the passenger’s
independent desktop.

67

3 A vehicular sensor platform

Figure 3.8: The audio control stalk mounted on the steering column.

3.2.7 Data collected

At the time of writing, over fifty million sensor readings have been collected, including a
third of a million images. These are broken down into categories in Table 3.1. Since the
vehicle is in active use, these numbers are still rising.

Figure 3.9 shows a histogram of temperature values recorded by the thermometer, grouped
into 1◦C buckets. This data reflects the ambient temperatures at the times at which the
vehicle has been driven, and thus contains daily and seasonal bias.

Figure 3.10 shows a map of CO2 values recorded over the region around the city of
Cambridge, UK. Each CO2 reading is associated with the geographic position at which
it was sampled by interpolating readings from the gps sensor. This data is then grouped
into two-dimensional cells and averaged before being rendered on top of a map produced
from OpenStreetMap data.1

3.3 Further work

Further research into vehicular sensor platforms could involve the following:

• An interface could be devised to abstract the sensors which may be present on a ve-
hicle. This should be sufficiently general to provide support for all kinds of sensors,

1The image contains OpenStreetMap base map data and is classed as a derived work
that may be distributed under the Creative Commons Attribution-Share Alike 2.0 license,
http://creativecommons.org/licenses/by-sa/2.0/. Base map data is c© 2002–2008 OpenStreetMap
Contributors.

68

3.3 Further work

Data type Values
Location 3 441 849
Horizontal orientation 5 062 123
Three-axis acceleration 9 784 737
Wireless signal strength 23 566 778
obd-ii readings 3 843 545
Humidity 891 889
Temperature 893 150
Barometric pressure 2 463 960
CO2 concentration 4 147 651
Images 355 294
Total 54 450 976

Table 3.1: Number of recorded sensor readings.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5 10 15 20 25 30 35 40

F
re

qu
en

cy

Temperature (oC)

Figure 3.9: Histogram of temperature data sampled by the thermometer.

69

3 A vehicular sensor platform

Figure 3.10: CO2 data plotted on a map of Cambridge.

70

3.4 Summary

including those not available or not commonly fitted in vehicles today. This inter-
face would provide a basis on which in-vehicle applications could be implemented,
meaning that applications would become portable to any vehicle even if it supported
different numbers or models of physical sensors.

• A protocol could be implemented for the exchange of data between vehicles. This
would provide a means by which vehicles can learn information gathered by vehicles
which have travelled in other parts of the road network. This exchange of data need
not necessarily be direct between vehicles and may be supported by centralised or
regional data repositories. Investigation will be required into how the privacy of the
originators of the data can be preserved, and into appropriate techniques for how
older data can be aged and eventually discarded.

3.4 Summary

A vehicular sensor platform requires a means of sensing and storing data from a variety of
sensors. These sensors may have different characteristics which influence how the sensor
is interfaced with, and how its data is collected and stored.

The design of a research platform for vehicular sensing has been described. Amongst
other things, careful consideration is required for how the supply of power is managed.
An implementation of this design has, to date, produced over fifty million sensor readings
from a wide variety of sensors. Some of this data will be used in the application that will
be presented in Chapter 4.

71

3 A vehicular sensor platform

72

CHAPTER4

Scalable, distributed, real-time map
generation

This chapter describes an example of the inference of higher-level information from raw
sensor data collected from vehicles.

Arguably the most important sensor to include in any mobile platform is one which yields
the platform’s location, since it is the variation in location that defines mobility. The
vehicular sensor platform described in Chapter 3 contained several gps receivers with
which to determine its location.

Data from any other sensor can be associated with the location at which it was sampled to
enable it to be spatially indexed. However, information about the vehicle’s location is not
solely useful to provide context for other data; it is valuable in itself. By inspecting the
locations the vehicle has visited and those it has not, we can infer higher-level information
about the behaviour of the vehicle’s drivers and the nature of the road network in which
it has travelled.

In this chapter we will consider in turn:

• what information about the nature of the road network can be inferred from location
data (Section 4.1);

• how to maintain an up-to-date model of the road network (Section 4.2); and

• the value of using location data from multiple vehicles (Section 4.3).

A discussion of the implementation of this application will be postponed until Chapter 7.

73

4 Scalable, distributed, real-time map generation

4.1 Inferring a road map from location data

Information about a road network can be represented as a directed graph with metadata
associated with its edges. The edges in the graph represent roads (or road lanes) and
the vertices in the graph represent junctions. Such a graph can be used to both render
a graphical depiction of the road network and serve as an input to in-vehicle navigation
systems.

4.1.1 Producing road maps

The map data in a vehicle’s navigation unit forms the basis of its routing decisions.
However, this data can be prone to cartographic errors and inaccuracies due to recent
changes in the road network, including temporary road closures, which may make it differ
from reality. This can cause frustration for drivers as they are given an instruction that
is not possible to follow. Consequently, organisations which produce digital maps, such
as Navteq and Tele Atlas, must invest significant effort in maintaining and improving the
accuracy of their data. Details about the creation of new roads and the modification or
closure of existing roads must be incorporated into the databases in a timely fashion.

Data about changes to the road network are obtained by mapping organisations from
various sources, including local authorities and building contractors, but these data tend to
be highly inaccurate. Aerial photographs can be used to deduce the presence and shape of
roads, but are prohibitively expensive to update frequently. Instead, mapping companies
typically own fleets of probe vehicles which can be used to investigate discrepancies or
explore new roads. Tele Atlas spends tens of millions of dollars each year in North America
to keep its databases up-to-date, while in 2004 Navteq employed over 500 analysts who
drove a total of 3.5 million miles throughout North America and Europe.

In this chapter, an algorithm is proposed which aims to keep digital maps up-to-date
without the need for fleets of dedicated probe vehicles.

4.1.2 Automatically generating a directed graph

Automatically generating descriptions of the environment purely from records of location
fixes in an indoor environment has been investigated by Harle [102]. However, whilst it is
unrealistic to expect exhaustive coverage of a typical indoor environment, we can expect
vehicles to exhaust all available road-space, because the road network imposes greater
constraints on the movement of users.

This section presents a map generation application which transforms a set of location
traces from multiple vehicles into a road map. A location trace is a temporally-ordered
set of positions in three-dimensional space which a vehicle has visited. Processing occurs
in several stages:

1. generating a two-dimensional histogram indicating the number of location fixes that
were found in each part of space (from an overhead view);

74

4.1 Inferring a road map from location data

Figure 4.1: The stages in the generation of a map of the city centre of Cambridge, UK.

75

4 Scalable, distributed, real-time map generation

2. deducing the positions of the edges of the roads;

3. computing the positions of the centrelines of the roads; and

4. determining whether roads are uni- or bidirectional.

We now examine these stages in detail, using the generation of a map of Cambridge
in Figure 4.1 as a running example. An evaluation of the algorithm will be given in
Section 4.1.4.

A trace of locations obtained from a gps unit in a single vehicle will show which roads
the vehicle has travelled along, albeit with some errors introduced by uncertainty in the
location fixes and missed sightings when the view of the sky is obscured. From a single
trace it is not possible to distinguish between junctions and bends in roads unless the
vehicle crosses its own path. Moreover, the errors inherent in the gps readings may mean
that the trace misrepresents the true positions of the roads. However, if we superimpose
the traces from several journeys on different routes, junctions will soon become apparent,
and the true positions of the roads will become clearer as noise due to errors becomes less
significant.

4.1.2.1 Creating a histogram

Splitting up two-dimensional space in the horizontal plane into small, tessellating units
of area or cells, we wish to determine the likelihood of each cell constituting part of a
road. Whilst cells do not necessarily have to be square, we will assume that this is the
case for simplicity. The Nyquist-Shannon sampling theorem dictates that the cell width
should be at most half the minimum road width in order to prevent aliasing. In practice,
this equates to a few metres. A gps reading falling in a cell is a good indication that the
cell may be part of a road, so if we associate with each cell a count of the number of gps
points that fall in it, cells with high counts will be those that are most highly believed to
be parts of a road. In this way, we group our two-dimensional real-valued gps fixes into
discrete cells.

Discretising the space over which sensor readings are made into a grid of cells is estab-
lished practice. In the area of robotics, certainty grids [181] or occupancy grids [65] are
used to store the probability of there being an obstacle in any particular cell in robotic en-
vironment exploration [231]. This differs from our work in that we do not have the luxury
of being able to determine the presence of obstacles as well as their absence. Furthermore,
map data intended ultimately for human consumption may tolerate lower accuracy than
robotic control.

At motorway speeds, if gps fixes are obtained at a frequency of 1Hz, consecutive fixes
will fall about thirty metres apart. Thus, with a cell size of a few metres, successive fixes
will not lie in adjacent cells, leaving us with disjoint regions of motorway. However, if the
gps fixes are temporally-ordered, we know that road must exist between consecutive fixes,
so we can also increment the count in the intermediate cells between those in which the
fixes lie. If the frequency of readings is greater than a few hertz then linear interpolation
between the gps fixes is likely to be acceptable. However, higher-order interpolation may
yield more realistic results.

76

4.1 Inferring a road map from location data

Figure 4.2: A line interpolating two gps fixes. The value in cell A is incremented by a
smaller amount than the value in cell B because a < b.

We want the value in each cell to represent the confidence of the cell being part of a road.
Rather than simply incrementing in units, the value of a cell is incremented by an amount
proportional to the length of the line which passes through the cell between successive
location fixes. In this way, if the line only traverses the corner of a cell then the value in
that cell is only incremented by a small amount. For example, in Figure 4.2, the value in
cell A is incremented by a small amount proportional to a and the value in B by a larger
amount proportional to b.

After all of the available gps fixes have been processed in this way, we have a two-
dimensional ‘histogram’1 which estimates the confidence of each cell constituting part of
a road, based on all of the journeys traced out in the data. Figure 4.1a shows an example
of such a histogram, with one pixel per cell and the shade of the pixel related to the value
in the cell.

Even despite the interpolation between successive gps fixes when preparing the histogram,
it is likely that there will be gaps where cells with a low value may be surrounded by cells
with high values. This may be due to either:

• a random paucity of data collected in those cells;

• systematic errors intrinsic in the original gps data;

• real-world features where vehicles cannot travel such as lamp-posts or barriers in
the centre of a road; or

• blackspots where there is no gps coverage such as under bridges.

In any case, we are aiming for a directed graph of the topology of the road network rather
than a detailed picture of the shape of the road, so these gaps are undesirable and should
be removed.

1Whilst we will continue to refer to it as a histogram, it is not a genuine histogram as the values
associated with the cells are no longer merely frequencies.

77

4 Scalable, distributed, real-time map generation

Figure 4.3: A Voronoi graph (black) generated from three sites (red). All points on the
edges of the Voronoi graph are equidistant from the nearest two sites. Each
line goes to infinity.

We can remove such gaps in the histogram by applying a blur filter to the histogram.
Figure 4.1b depicts the histogram convolved with a 3 cell by 3 cell uniform blur convolution
filter. Small gaps will be removed as cell values are averaged with neighbouring cells whilst
larger gaps will persist. Similarly, jagged boundaries will be smoothed. However, it is
possible that performing a blur introduces error since it carries the danger of undesirably
merging two nearby but distinct roads.

4.1.2.2 Deducing positions of road edges

At this stage in the processing we have a good idea of whether a road exists in any given
cell and we binarise this metric to a boolean value: in each cell, is there a road or not?
This is achieved by applying a global threshold to our cells. The particular value chosen
for the threshold will relate to the degree of confidence we want to have in the graph of
the road network which is deduced from the algorithm. A lower threshold will be more
susceptible to noise introduced due to gps errors; a larger threshold may cause certain
roads to be overlooked. The value chosen for the threshold is thus determined empirically
based on the desired trade-off. The result of thresholding the data in the example is
shown in Figure 4.1c.

After thresholding, a contour follower [255] is applied to the image. This extracts a set
of closed polygons describing the outline of the regions of road, as shown in Figure 4.1d.
This outline may not coincide precisely with the real-life edges of the roads, due to errors
in the original gps data. However, if these errors are symmetrically distributed then the
centreline between the edges will coincide with the real-life centreline of the road.

4.1.2.3 Computing centrelines

For a given set of points, a Voronoi graph is the locus of all points which are equidistant
from the nearest two points [15]. The points are referred to as sites. See Figure 4.3 for

78

4.1 Inferring a road map from location data

Figure 4.4: A Voronoi diagram (black) generated from a set of closed polygons (red).

an example. Nodes of the Voronoi graph correspond to positions equidistant from the
nearest three points. In the example, there is one node and three edges which stretch to
infinity.

This concept can be extended to a diagram which is the locus of points that are equidistant
from the nearest two points on the boundaries of a set of closed polygons. See Figure 4.4
for an example. Topologically, the diagram is similar to the Voronoi graph, having nodes
where the nearest three boundaries are equidistant. We will treat the diagram as a graph
in which each edge has an associated shape, and will refer to it as a graph. In the
literature, it is sometimes referred to as a skeleton and is similar to the geometric concept
of a medial axis.

Voronoi graphs are used in a wide range of disciplines, from the natural sciences and
mathematics to computer science [15, §1]. In particular, they are heavily employed in
robotics [48], because they describe the topological features of an environment, making
them suitable for use in route-planning.

Voronoi graphs are naturally suited for use in computing road centrelines. We produce the
Voronoi graphs of the contours describing the edges of the roads and discard the resulting
edges which lie outside the roads.

However, because the edges of the roads are not convex, there will be many short edges of
the Voronoi graph attached to the main trunk, along each road, giving the graph a rather
‘hairy’ appearance, as can be seen in Figure 4.5a. These edges do not correspond to real-
life roads as they are artefacts resulting from our initial discretisation of gps fixes into
square cells causing the road edges to be stepped rather than smooth. We can remove the
edges which are shorter than a threshold representing the minimum permitted absolute
road length, leaving just the main backbone edges running the lengths of the roads. The
result of removing these edges can be seen in Figure 4.5b. Figure 4.1e depicts the Voronoi
graph generated from the contours in the running example, with the short edges which
are discarded indicated in red.

79

4 Scalable, distributed, real-time map generation

(a) A ‘hairy’ Voronoi graph (b) Voronoi graph with artefacts re-
moved

Figure 4.5: Removal of artefacts.

4.1.2.4 Computing road direction

The Voronoi graph is an undirected graph of the road network. Edges of the graph
correspond to road centrelines and nodes correspond to junctions.

The final stage of the algorithm is to deduce which edges of the undirected Voronoi graph
represent unidirectional roads and which represent bidirectional roads. Since the original
gps data are available in temporally-ordered form, we can produce a further data structure
which will help us determine this. Having again split space into cells, in each cell we now
keep track of the directions vehicles travel in as they pass through the cell. This is done by
counting the number of journeys embodied in the gps traces which pass through the cell
in each of eight directions of the compass. This is generated by quantising the bearing of
the displacement vector between each successive pair of fixes and incrementing the count
associated with that direction.

Using this data structure, we can now determine whether the journeys along the roads in
the undirected graph are uni- or bidirectional. Roads containing cells in which vehicles
travel in opposing directions (e.g. both north and south) are deemed to be bidirectional.
Figure 4.6 exemplifies this approach: at two places on the portion of road shown, we
examine the cells through which a line perpendicular to the axis of the road passes. If,
on the majority of such lines, the cells contain opposing directions, the road is deemed to
be bidirectional. Figure 4.1f shows which edges were deduced as uni- and bidirectional in
the running example.

80

4.1 Inferring a road map from location data

Figure 4.6: Determining whether a road is uni- or bidirectional. The sizes and shades of
the arrows in each cell relate to the number of journeys travelling in those
directions through it.

4.1.3 Complexity

The overall time complexity of this algorithm is O(n + m log m), where n is the number
of gps readings and m is the number of cells in the histogram. Individually, the stages
involving the processing of gps readings are O(n). To blur or threshold a histogram,
one operation is required for each cell and hence they are O(m) operations. To find road
edges, a contour follower also performs a raster scan across the cells; again O(m). The
resulting polygons will be bounded by O(m) in size. Producing the Voronoi graph of
these polygons can be achieved in O(m log m) time, and removing the resulting artefacts
in O(m).

However, if we are able to store the latest versions of the histogram and direction data,
the time complexity of generating a new map which incorporates an additional set of gps
readings of size δn is merely O(δn + m log m).

4.1.4 Evaluation

In this section we evaluate the fundamental performance limitations and performance
characteristics of the algorithm and then describe a practical experiment to investigate
the algorithm’s efficacy with real-world data collected from the sensor platform described
in Chapter 3.

4.1.4.1 Fundamental limitations and performance characteristics

Errors in gps readings are typically modelled by a bivariate normal distribution. The
standard deviation, σ, in the error of the position estimate for a modern gps receiver has

81

4 Scalable, distributed, real-time map generation

Figure 4.7: Cross-sectional view of two roads separated by 4σ, showing the normal
distributions of position fixes of vehicles travelling along the edges of the
roads.

recently been estimated at 4.25m, giving a 95% confidence interval of 8.5m [202]. Others
have estimated the value to be 3.5m [172]. We believe that a reasonable minimum distance
between the centrelines of two adjacent parallel roads should be 4σ, so that no more than
approximately 2.5% of the position estimates of vehicles at the edge of one road could
overlap with no more than approximately 2.5% of those of vehicles at the nearest edge of
the other road. This condition is depicted in Figure 4.7. If this limit is not observed then
the region between the roads may be filled with stray gps fixes and thus there may be
no discernable gap between the roads after thresholding. For example, with σ = 4m, the
minimum tolerated road spacing is approximately 16m.

However, in practice, this model of errors is over-simplistic. In certain areas—especially
urban environments with tall buildings—multi-path effects are common, causing system-
atic rather than random errors as a position is consistently reported incorrectly. We have
experienced occasions where a gps unit has unrepeatably reported a series of positions
consistently offset from the true path by a significant distance. If line segments generated
from these traces were to be incorporated in the resulting map, we would be led to believe
that there were roads where none exist. However, since these occurrences are rare, they
can be excluded from the map by setting a sufficiently high binarisation threshold.

Many modern gps units incorporate some form of additional positioning assistance. Aug-
menting technologies such as the Wide Area Augmentation System (waas) and the Euro-
pean Geostationary Navigation Overlay Service (egnos) provide additional radio signals
which report the accuracy of the gps signals; these reduce the value of σ and thus permit
the cell size to be shrunk whilst maintaining the same level of confidence in each cell’s
status. The Galileo system will reduce the errors further when it is introduced. Dead
reckoning units are common in vehicular navigation units and make use of a set of per-
pendicular accelerometers, integrating the outputs with respect to time to give accurate
velocity and hence displacement measurements. As well as reducing σ, this form of assis-
tance allows the unit to continue to deduce position fixes even when no satellites are in
view. This means that maps generated from data using dead reckoning units will include
tunnels and tree-lined avenues where a view of the sky is limited.

The distribution of gps readings for vehicles travelling in all lanes of a road is unlikely to
be normal but instead may be approximated by a multi-modal distribution made up of one
normal distribution per lane. An example of a bimodal distribution for a two-lane road is
shown in Figure 4.8. However, if we assume that the underlying mean of this distribution
is on the centreline of the road (roughly that the volume of traffic is evenly distributed

82

4.1 Inferring a road map from location data

Figure 4.8: Cross-sectional view of a road with two lanes, showing a bimodal distribu-
tion approximating the distribution of location fixes for vehicles travelling
on it.

about the centreline) then, by the Central Limit Theorem, the error of the mean of the gps
readings, when compared with the real centreline of the road, will be normally distributed
and its standard deviation will decrease at a rate of 1/

√
n for an n-fold increase in the

number of samples. Therefore, with sufficient samples, gps data becomes an accurate
predictor of the real road centreline. More specifically, the distribution of gps samples
collected from a two-lane road can be modelled as a distribution (N(µ1, σ

2)+N(µ2, σ
2))/2,

where µ1 and µ2 are the positions of the centrelines of the lanes, and where the mean is
the centreline of the road. By the Central Limit Theorem, with 73 samples, the estimate
of the centreline of a road with the centres of the lanes 3m apart will be within 1m of
the true position, 95% of the time.

High gps sampling rates are desirable, and ideally the sampling rate should be such that
when there is an abrupt change of direction, consecutive position fixes are no more than
one cell width apart. This corresponds to a frequency of v/w for maximum cornering
speed v and cell width w. For a cell width of a few metres, a sampling rate of 1 Hz is
typically sufficient for adequate performance. With lower frequencies, if the samples are
linearly interpolated, the change of direction would not be as sharp as in reality. When
a vehicle is travelling rapidly, the distance between consecutive fixes will be larger, but
abrupt changes of direction are not possible due to physical limits on lateral acceleration.
In order to decrease the volume of gps data collected by a vehicle, a strategy could be
adopted such as only recording points when there is a substantial change of direction.

Roads which feature little in the journeys in the gps traces will not appear in the generated
map if they fall under the threshold and thus will not be included in the generated map,
as they are not distinguishable from erroneous road segments.

With each additional gps trace processed, the degree to which it affects the generated
map is variable. If it makes use of roads which had not been visited before, the map is
not likely to be any different than if it were not included since the contributions to cells
in the histogram will not rise above the threshold. On the other hand, if it makes use of
roads which have been heavily visited, the map will also be minimally different because
they will have little impact on the position of the centreline. Between these two extremes,
the trace will have a more significant effect.

83

4 Scalable, distributed, real-time map generation

Figure 4.9: An Ordnance Survey map of the area with the generated road map overlaid
in black. (a) The yellow circle highlights new roads; (b) the red circle
highlights a bridge misinterpreted as a junction; (c) the blue circle highlights
a junction which is misaligned; (d) the green circle highlights two junctions
which have merged into one.

84

4.1 Inferring a road map from location data

4.1.4.2 Practical analysis

The images in Figures 4.1 were generated from gps traces constituting nearly one million
position readings collected by the vehicle described in Chapter 3 driven in Cambridge.
Road maps have also been generated from other sources of gps data.

To evaluate the efficacy of the application, we have compared its output with a map of
the same region created by the Ordnance Survey (os): see Figure 4.9. Our non-optimised
proof-of-concept implementation of the algorithm takes less than one minute to run to
completion on a standard desktop workstation, for a 70 km2 region comprising around
a sixth of a million cells, with over five million gps readings. In the histogram, 90% of
the cells were empty, with 11% of the remainder falling below the empirically-determined
threshold.

On the roads which have a sufficient density of gps readings, the generated road segments
align well with the os road segments. However, from the roads which our gps traces cover,
a number of differences are evident:

• Some road segments exist in the generated map but not in the os map. These
correspond to newly-constructed roads that are not yet reflected in the os data,
confirmed by visiting the area, suggesting that the algorithm presented can be used
to draw attention to the creation of new roads. An example of this is highlighted in
yellow on Figure 4.9.

• The generated segments are jagged in shape whereas the os segments are much
smoother. This is a result of the segments being extracted from a Voronoi graph of
stepped road boundaries. A topic for further work is to explore whether smoother
segments could be produced.

• Road bridges are interpreted as crossroads in the generated map. An example of
this is highlighted in red on Figure 4.9, where, although real junctions exist in the
vicinity, the cross-roads which the generated map shows does not exist. This is a
result of discarding altitude data from the gps data when initially forming the two-
dimensional histogram. There are two potential solutions to this problem. Firstly,
using a three-dimensional histogram, extracting the three-dimensional surface (us-
ing an algorithm such as Marching Cubes [161]), and producing a three-dimensional
Voronoi graph, we would find that the two roads no longer intersect. Alternatively,
we could analyse each generated junction and determine the turns which are per-
missible for vehicles to make. Bridges would then be interpreted as crossroads in
which no turns are permissible.

• Some junctions are skewed in the generated map. An example of this is highlighted
in blue on Figure 4.9. This effect results from the errors inherent in the initial gps
fixes causing the histogram to fail to accurately represent the true road layout. This
problem is hard to fix but may be solved by vehicles using accelerometers and sensor
fusion techniques to improve the accuracy of location fixes.

• Some pairs of nearby junctions have merged together into one. An example of this is
highlighted in green on Figure 4.9. This results from an excessively gross discretisa-
tion resulting from too large a cell size, or too heavy a blur. Hence this problem can

85

4 Scalable, distributed, real-time map generation

potentially be fixed by adjusting these parameters, at the cost of more expensive
computation or of an increased risk of the presence of gaps in the histogram.

Small-scale changes such as lane closures on multi-lane roads are not reflected in the
map. Even with a smaller cell size, individual lanes would not be distinguishable unless
the location data was provided by a more accurate system than gps. If such a system
were used, individual lanes may be resolvable, but the result of vehicles changing lanes at
arbitrary positions mean that lanes would be heavily cross-linked in the directed graph.

In summary, generating road maps in this way does not produce a perfect result, but
neither do traditional map-making techniques.

4.2 Maintaining a model of the road network

The algorithm presented above can be used to process the location traces obtained from
a single vehicle, and it will yield a map of only those roads that this vehicle has travelled
on. In order to produce a complete map of the road network, we would need to use data
from a large number of vehicles over a period of time. Thus, not only is it necessary to be
able to collect gps traces from many vehicles, we must also be able to run the algorithm
repeatedly, updating the model of the road network with each new piece of information
received. We address the latter problem of re-generating the map first and return to the
former problem of collecting multiple traces in Section 4.3.

4.2.1 Map regeneration

It is desirable for the map generation application to have the ability to reflect (i) the
creation of new roads, (ii) the closure of old roads, and (iii) the change in geometry of
existing roads in the digital map. Using the algorithm described above, it is possible
to establish that a new road has been opened: when gps traces of vehicles making use
of the road are acquired, the digital map will show the presence of the new road when
regenerated. However, the same cannot be said about the other two aims: once we have
some gps traces travelling down a particular road, the digital maps we produce will
contain that road in perpetuity.

In order to reflect changes that happen to existing roads over time in the digital map,
we must place lower trust in older data than more recent data and thus rely on vehicles
continuing to travel down roads regularly in order to maintain our level of trust in their
existence. This can be achieved by incrementing the values in the histogram by smaller
increments when processing an older gps trace than when processing a more recent one.
An entire histogram representing previous state can be aged by simply multiplying each
cell by a scaling fraction. Thus, when a road is closed, we will cease to receive new gps
traces showing the road in use so eventually the value in the cells of the histogram will fall
below our binarisation threshold, causing the road to disappear from the map. However,
this implies that there will be a certain latency between the road closing and this fact
being reflected in the map; this delay can be reduced if we can obtain more gps traces
from more vehicles.

86

4.2 Maintaining a model of the road network

4.2.2 Retaining associated metadata

For the map to be suitable for use in navigation, metadata needs to be associated with
each edge in the directed graph. However, this may be a relatively expensive task to
perform as it may involve some manual effort. Whilst metadata such as the speed limit
could potentially be inferred from the gps data, other metadata such as the road name
could only be determined by visiting each road, or perhaps, in the future, from in-vehicle
cameras or active road signs. Since we strive for up-to-date maps to be generated, the
algorithm must be executed repeatedly as new gps traces come to light, but we must be
able to avoid the cost of having to reassociate the metadata from scratch every time we
generate a fresh version of the map.

Ideally, we would like to be able to transfer the metadata associated with roads in an old
map to the corresponding roads in a new map. However, with the benefit of the knowledge
obtained from additional gps traces, roads that existed in the old version may change
their shape, and junctions may shift position. Furthermore, roads—and thus junctions—
may appear or disappear. This makes it difficult to determine which roads in the old
version correspond with which roads in the present version [102, §3.2.4.1].

One technique to estimate which road in the old version corresponds to which road in
the present version respectively, and which roads exist in one version but not the other,
is to employ a weighted bipartite graph2. The two sets of vertices of the bipartite graph
represent the roads in the old version of the map and the roads in the present version. The
edges in the bipartite graph are associated with a weight relating to the similarity between
a pair of roads from those sets. Hence, a low weight edge between two vertices in the
bipartite graph means that a road in the old version of the map very closely corresponds
to a road in the present version. The weighting relates to the distance that the ends of
the road network edges have moved by, and to the similarity in the shape of the edges.
Figure 4.10c shows such a bipartite graph constructed from two versions of a road map
shown in Figure 4.10a and 4.10b.

A minimum weight maximal matching3 on this bipartite graph will therefore indicate
which edges in old and present versions best correspond, and will contain high weight
edges between the remaining vertices. These high weight edges can be ignored: they
correspond to pairs of roads which exist in one version of the map but not the other.
For the remaining low weight edges, metadata can be transferred between the roads
corresponding to the vertices. In Figure 4.10d, the red edge represents a high weight edge
which is discarded. From this matching, it is evident that road B has closed and roads 1,
3 and 7 are new.

2A bipartite graph is a special type of undirected graph in which vertices are partitioned into two
disjoint sets, and which has no edges between two vertices in the same set. A weighted bipartite graph
has weights associated with its edges.

3A matching, with respect to a graph, is a subset of the graph’s edges with no vertices in common. A
maximal matching is a matching which employs as many edges as possible. A minimum weight maximal
matching is that which minimises the sum of the weights of its edges.

87

4 Scalable, distributed, real-time map generation

Figure 4.10: (a, b) Two versions of the road map; (c) the bipartite graph; and (d) the
minimum cost maximal matching.

88

4.3 Involving multiple vehicles

4.2.3 Cost of execution

Traffic data quoted in Cambridgeshire County Council’s 2006 Traffic Monitoring Report
[40] regarding a typical city-centre road indicates that an average of around 1000 vehicles
use the road per hour. If we need 73 samples at a particular point along the length of
a road to achieve an acceptable level of accuracy, then we should regenerate the map 14
times per hour—once every four minutes—with fresh data. Since the time complexity of
the algorithm is quasilinear with area, our proof-of-concept implementation could process
an area around 325 km2 every four minutes. Thus, to be able to process an area the size
of the entire United Kingdom, we would need around 750 processing nodes. However, we
believe that an optimised implementation could execute at least an order of magnitude
more quickly. Furthermore, it is only a minority of roads that see this kind of traffic flow
and so require such frequent map regeneration.

Because of the cost of regenerating the map, we could instead choose to only regenerate
it when we have sufficient new data to significantly affect the output. We can reduce
the cost of executing the algorithm yet further by only regenerating the parts of the map
which have received new data rather than the entire region.

4.3 Involving multiple vehicles

In-vehicle computational resources can be used to enable direct participation in the pro-
vision of accurate map data. The more vehicles from which gps traces are obtained, the
better the quality of the resulting map. We envisage vehicles on the road network forming
a wide-scale mobile sensing and computing platform in order to achieve this.

4.3.1 Scalability

In order to be able to process gps traces from a vast number of vehicles, covering a large
geographical area, this algorithm needs to scale gracefully. Fortunately, the algorithm is
highly parallelisable, by dividing up space into tessellating regions or tiles.

There are various stages of the algorithm at which the partitioning of data in this way
could take place. For example, it could be the collection of gps traces that is partitioned.
For each region, a processor would be responsible for collecting the traces concerning
journeys within that region. A central processor would then collate all of this data and
compute the map.

Alternatively, each region’s processor could get as far as producing a thresholded his-
togram, and then a central processor would process the combined histogram into a single
map.

A third option is to produce a directed graph of the road network within each tile in
isolation. Once each tile’s graph has been produced, we then need to stitch the results
back together into one complete graph. However, unfortunately, we cannot expect that
roads spanning the edges of the tiles will necessarily align and thus be contiguous when
juxtaposed. This is because we cannot be certain about the results produced near the

89

4 Scalable, distributed, real-time map generation

Figure 4.11: Merging together the parts of the directed graph lying within the central
region of each tile. (The cell size is deliberately large to exaggerate the
relative size of the overlap regions.)

border of a tile when it is processed in isolation. To solve this problem, we instead process
tiles which overlap the adjacent tiles by the number of cells corresponding to the region of
uncertainty. Then, when the resulting directed graphs from each region are to be stitched
together, we simply clip the roads to the tile’s central region. It will then be the case
that a road traversing two adjacent tiles will be contiguous so we can join graph edges
which meet at the seam between their respective tiles into a single edge. The ratio of the
area of the overlap region to the area of the entire map corresponds to the overhead that
parallelisation introduces.

We have tested this technique successfully by partitioning the data used in Figure 4.1
into four quadrants, mimicking separate processing nodes. Processing each quadrant
individually and stitching the tiles together resulted in the same output as processing all
the data at once. Figure 4.11 illustrates the technique.

90

4.3 Involving multiple vehicles

4.3.2 System architecture

By virtue of our desire for a wide range of vehicles’ gps traces so that an accurate and
complete road map can be computed, we need a means of collecting and processing the
data from vehicles which are inherently geographically distributed.

There is a broad spectrum of architectures which could support an application such as
map generation. We can view a network of vehicles along with any infrastructure support
as a set of nodes in a loosely-coupled distributed system (see Section 2.2.2). At one end
of the spectrum is the fully centralised approach, where vehicles upload their raw gps
readings to a central server which generates new map data. Despite bringing benefits,
particularly in the timeliness of data delivery, this suffers from a single point of failure and
is likely to be impractical because of the communication bandwidth needed to transmit
all the gps readings to the server.

To spread the communications bandwidth, we can employ regional processing servers, each
responsible for processing data concerning its own geographical region. This approach may
be preferred by commercial operators seeking to gather and process data cheaply. Further,
to avoid requiring a costly backhaul network between regional servers, data gathered from
the boundaries of the regions may be distributed by the vehicles themselves. Vehicles used
in this way are referred to as ‘data mules’, which are a high latency but high bandwidth
form of communication [39].

It may be possible to execute some of the processing steps on the vehicles themselves,
an approach which is becoming increasingly common. For example, in the Vehicle Data
Stream Mining (vedas) system [134], vehicles perform on-board processing of data from
their sensors, uploading the results to a remote central server over a low-bandwidth wire-
less network.

Another alternative architecture is to provide public data caches which are connected to
the Internet and store data but do not contain any processing facilities. In this scenario,
the onus is on the vehicles themselves to acquire as many gps traces as they can from the
nearest public data cache (perhaps by ieee 802.11 communications) and execute the map
generation application locally. This approach may be preferable to consumers concerned
about location privacy, where a more decentralised scheme can limit the transmission of
personally identifiable data.

At the far end of the architecture spectrum is the fully peer-to-peer scenario in which
vehicular ad-hoc networks (vanets) are formed to share gps and map data. Although
this solution will not have any on-going service costs to customers, it is unlikely that
sufficient data could be gathered in this way to produce up-to-date and reliable maps.

Selecting the appropriate architecture is difficult. Moreover, it is conceivable that the pro-
cessing nodes available to execute the application will not be known in advance. This re-
quires the decision about which computational resources to use to be delayed until just be-
fore run-time. Hence, a form of automatic task assignment is desirable (see Section 2.2.3).
A system which allows programmers to design applications in an architecture-neutral fash-
ion and which automatically selects the most appropriate computational resources will be
the subject of Chapter 5.

91

4 Scalable, distributed, real-time map generation

4.4 Further work

Further research relating to the map generation algorithm could involve the following
tasks:

• The potential of making the histogram’s cell sizes adaptive could be investigated,
so that areas with large numbers of gps readings can be inspected more accurately.

• An additional stage in the algorithm could be implemented to analyse the direction
of approach and departure of vehicles from junctions to determine their nature more
precisely.

• The generated road maps tend to be jagged in shape as a result of the use of square
cells in the histogram. A different map generation technique could be employed to
generate smooth road segments. Alternatively, a line simplification algorithm could
be applied to the segments, such as the one proposed by Douglas and Peucker [60].

• It may be possible to make the thresholding of the histogram adaptive rather than
global. This would mean that busier roads would have a higher threshold applied to
them than other roads so that the accumulation of noise from location errors does
not make the road appear wider than it actually is.

• Similarly, the ageing of old data could be made adaptive to detect road closures
more efficiently. For a road which is usually busy, an absence of vehicles is a strong
suggestion that the road has been closed. For an infrequently visited road, an
absence of vehicles may occur naturally even if the road remains open.

It will also be important for future research to consider the social and security implications
of applications of this kind, such as the means by which vehicle owners’ privacy concerns
can be addressed, and how the system can be protected against the actions of malicious
users.

4.5 Summary

We have examined how up-to-date digital road maps can be created from sensor data
contributed by participating vehicles. An algorithm has been proposed for inferring a
directed graph of the road network from sets of vehicle location traces. The algorithm
involves a number of stages of processing involving techniques from image processing
and graph theory. We will return to describe an implementation of the application in
Chapter 7.

Generating maps in this way has some advantages over traditional map-making tech-
niques. For example, the opening of new roads or the closure of existing roads can be
reflected in the map in real-time. However, this requires metadata about a generated
map to be maintained, which is problematic. A technique for managing this has been
suggested that makes use of bipartite graphs.

92

4.5 Summary

In order to exploit data collected from large numbers of vehicles, the algorithm needs
to operate in a scalable fashion. This is achieved by partitioning the input data into
geographic regions that can be processed independently and then combined into a single
map.

There is a wide range of potential system architectures that could support this kind of
application. A particular architecture impacts on various aspects of the application’s exe-
cution, especially its performance characteristics. If the computational resources that will
be available are not known in advance of the application’s execution, the application must
be designed without architectural assumptions being made, and a system that performs
automatic task assignment is required. The design of programs in this way is the subject
of Chapter 5.

93

4 Scalable, distributed, real-time map generation

94

CHAPTER5

Automatic task assignment

We have introduced a wide range of applications, many of which are characterised by
the collection, processing and dissemination of sensor data in networks of vehicles. The
example of automatic map generation was given in Chapter 4. We noted that this kind
of application tends to produce the best results when as large a number of vehicles as
possible is involved. We described a spectrum of system architectures which could support
such applications, each with different trade-offs. But there is no architecture which is
guaranteed to be best in all circumstances.

In this chapter, we broaden the scope of our discussion to general distributed systems,
showing how a suitable architecture can be automatically selected. This is achieved
through describing the application as a task graph on which transformations can be
performed, and using automatic task assignment to map tasks to processors. For example,
in the context of the automatic map generation application, the transformations may
change a centralised version of the application into one in which the image processing
steps are performed in parallel on the vehicles which generate the gps data.

The concepts introduced in this chapter will form the basis for the language and compiler
described in Chapter 6. In particular, we will show the foundations for a variety of
optimisations for the compiler.

5.1 The problem of early physical binding

In a distributed computing environment, applications can be distributed across several
computers, with separate computers responsible for executing different components of

95

5 Automatic task assignment

the application. It is often the case that there will be several potential computers that
could suitably execute a given component. When designing applications, it is common to
identify which of these computers is to be responsible for executing each component. We
refer to this approach to systems designing as early physical binding as the decision about
which node should execute each part of the application is made at design-time.

In many distributed computing environments, the members of the network and its layout
are not known at design-time. Perhaps the network contains mobile nodes whose presence
and communication characteristics vary over time; vehicular networks are an obvious
example. Therefore, the early binding of application components to processors leads to
poor resource utilisation because a best-guess approach must be taken. This will typically
be less optimal than a post-hoc binding when the characteristics of the network are known.
Perhaps slow processors or expensive communication links might be employed, or the
application might be configured such that the battery life of low-power mobile nodes is
not maximised.

The early physical binding approach also precludes the possibility of writing generalised
applications which could execute in a variety of network configurations.

Asssuming that knowledge of the characteristics of the network can be obtained (perhaps
using a suitable device discovery scheme) then late physical binding is preferable. In this
approach, the processor on which an application component is to be executed is selected
just before the application is run. Delaying this decision means that the placement of ap-
plication components can be optimised with respect to the actual network characteristics.

However, because it must happen for every deployment of the application, when the
programmer is not necessarily present or able to assist, and must happen just before its
execution is commenced, late physical binding cannot in general be performed manually; it
must be done automatically. This is the problem of automatic task assignment, introduced
in Section 2.2.3.

Moreover, a system which automatically determines the placement of application compo-
nents also has the advantage of potentially being better at optimising placement than a
manual approach, especially when the network is large, since complex trade-offs can be
efficiently evaluated.

5.2 Automatic task assignment

Performing automatic assignment of program components to processors demands that the
program is specified independently of the processors on which it may be executed. This
means that programmers need only to focus on the algorithmic details of the program
rather than on the networking aspects. Programmers use a language in which this can
be done, which is fed to a compiler which computes an assignment and generates binaries
which can be executed on each processor. We assume that the compiler has a global view
of the network and can perform a global optimisation to find the best task assignment.
(In some systems, this assumption may be somewhat näıve; we will discuss the specific
case of large-scale vehicular networks in Section 5.4.1.)

The compiler must be provided with

96

5.2 Automatic task assignment

x1 x2

⋆

f

R

y1 y2

(a) Task graph

A
D

B

C

(b) Resource
graph

A

B

CD

x1

y1

x2 ⋆
y2f R

(c) Tasks assigned to resources

Figure 5.1: Example graphs.

• a description of the program (which can be thought of as the ‘source code’),

• a description of the available processors and

• a cost function which provides the optimisation policy.

We will now give formal descriptions to these inputs. A concrete programming language
in which these can be specified will be described in Chapter 6.

5.2.1 Task graph

A program is described by a task graph whose nodes are tasks which each consist of a
set of instructions to be executed sequentially.1 Formally, the task graph is a directed
acyclic graph Gt = (Et, V t) where the set of vertices, V t, are the tasks and the edges, Et,
indicate the direction of data flow between tasks. An edge (v1, v2) indicates that task v2

receives the output of task v1, and that v2 cannot commence execution until the execution
of v1 is complete. An example is drawn in Figure 5.1a.

Tasks are implicitly assumed to execute concurrently. The flow of data between tasks is
data-driven rather than demand-driven. A data-driven approach involves a task notifying
its successor task(s) to consume its output data; a demand-driven implementation would
involve a task requesting input from its predecessor task(s). The demand-driven approach
is a lazy approach, where the graph’s inputs are only required to produce data when there
is the demand to produce an output. Instead, we adopt the eager, data-driven approach
so that outputs are produced as rapidly as the rate of data input allows.

The edges of a task graph represent data streams; each task is a stream processing element.
A stream can be thought of as a temporally-ordered sequence of values. The execution
of a task to process values from its input streams cannot commence until the processing

1According to Stephens’ classification of stream processing systems [226, §3] (see Section D.3), task
graphs are anu systems: tasks execute asynchronously and are non-deterministic, and the channels are
uni-directional.

97

5 Automatic task assignment

of the previous ones has completed. Thus, in order to take advantage of pipeline paral-
lelism, where at any moment in time multiple values from the stream are being processed
concurrently, tasks must be broken down into shorter stages.

The ability for a task to only process one set of inputs at once means that it must employ
queues at each input. As values arrive at a task for processing, they are pushed into a
queue; when a task is ready to commence a new wave of execution it pops the front value
from each queue. For now, we will treat these queues as being of infinite length to avoid
the possibility of an input queue becoming filled.

5.2.2 Resource graph

The network of processors in which the application is to be executed is a graph Gn =
(En, V n), where the vertices V n model processors and the edges En model communication
links between processors. We refer to this as a resource graph; an example is shown in
Figure 5.1b. The processing nodes, which have local memory, are not assumed to be
homogeneous in their processing power or communications capabilities.

The resource graph is usually undirected, implicitly indicating that the communication
links are bi-directional, but can be directed if communication is not symmetric.

5.2.3 Assignment function

The output of task assignment is an assignment function A : V t → V n which maps tasks
from the task graph to processing nodes from the resource graph. A valid assignment
function is such that for each edge (t1, t2) ∈ Et there exists a path (n1, n2, . . . , nk) in
Gn where n1 = A(t1), nk = A(t2) and ∀i ∈ {1, 2, . . . , k − 1}. (ni, ni+1) ∈ En. In other
words, the processor on which a task’s successor is mapped must be reachable from the
processor on which the task itself is mapped. An example of an assignment function is
shown pictorially in Figure 5.1c, where the tasks x1 and y1 are mapped to processor A;
the tasks x2 and ⋆ are mapped to processor B; the task y2 is mapped to processor C; and
tasks f and R are mapped to processor D.

5.2.4 Cost function

The decision about which nodes to use affects the efficacy of the assignment. The efficacy
of the assignment can be described quantitatively by a cost function specific to each
application. A cost function C : Gt×Gn×(V t → V n)→ R+ is a function of a task graph,
a resource graph and an assignment function yielding a positive real number indicating
the cost of the assignment. Higher values indicate less desirable assignments.

Applications will use a cost function which embodies the trade-offs they desire between
relevant metrics. For example, one application may express in its cost function the policy
that any execution time of less than two minutes is acceptable, and that minimising
the use of network bandwidth is the next most important concern. Another application
may seek to minimise total execution time at the expense of all other metrics. In some

98

5.2 Automatic task assignment

applications, the desired cost function may vary over time. For example, an application
in a sensor network may desire high fidelity or high data-rate sensor readings for some
periods of time (perhaps depending on external factors). In this case, a variety of different
assignments may be computed.

Several metrics for evaluating an assignment function are relevant to many applications:

Total execution time. The duration of time elapsed from an item of data being pro-
duced to the final result derived from that data being delivered to all outputs. This
metric takes into account the cpu time and the communication time whilst also
respecting the queueing of incoming data at processors before service.

Network usage. The use of different networks may incur different (monetary) costs. For
example, communicating over a 3G network may require a payment to the provider
whereas the use of a privately-owned local WiFi network may be free of charge.

Quality of result. The number of items of input data which contribute to the compu-
tation of an output will affect the quality of the output. Also, any approximations
which take place in the application will influence this.

Privacy. The level to which the privacy of the originators of the input data is respected
is important in applications where personally-identifiable data is processed. The
value of this metric could relate to an observer’s view of the number of individuals
who could have produced a particular item of data, known as the anonymity set.

Energy consumption. Another useful metric is the energy consumption caused by the
execution of particular tasks. By associating with each processor a value indicating
its power consumption and ability to switch to a low-power state, the total energy
consumption for a given assignment function can be calculated.

So that a cost function can compute the values of relevant metrics, the graphs Gt and
Gn must be weighted. Nodes of the resource graph (processors) are weighted with values
describing their computational characteristics, such as processor speed. Edges of the
resource graph (communication links) are weighted with values characterising the links,
such as maximum throughput or latency.2 Nodes of the task graph (tasks) are weighted
with values describing their requirements, such as the number of instructions constituting
them. Edges of the task graph (data flow) are weighted with values characterising the
data, such as the size of the data or its level of confidentiality.

Task assignment is a well-understood area of research [144]. We will discuss task as-
signment algorithms, and their computational complexities, in Section 6.2.1. The imple-
mented algorithm is not the focus of this dissertation; however, we will also describe it in
that section. Unfortunately, task assignment is np-complete, so it is often infeasible to
find an optimal assignment and we must settle for a near-optimal solution.

2We assume that these characteristics are not affected by external factors. For example, we ignore the
possibility that resources are shared with other applications; this could affect characteristics such as a
processor’s cache hit rate, a disk’s seek time and the time to transmit a message on a given communication
link.

99

5 Automatic task assignment

5.3 Application design process

The typical process of designing an application using automatic task assignment involves
a programmer defining a task graph and the cost function which describes the desired
nature of the assignment.

For small applications, or applications in which the network is predictable, the resource
graph could be hand-crafted by the programmer. But even in these cases, automatic
task assignment is beneficial. However, we are left no choice but to use automatic task
assignment when it is impossible to perform it manually, such as when the nature of the
network is not known until run-time. For applications in large networks, a process of
device discovery must be undertaken in order to ascertain the constituent components of
the resource graph.

Once the resource graph is known, it can be combined with a task graph and cost function
by a compiler which performs the assignment. The compiler produces executable code
for each processor to which at least one task is assigned. As well as defining the tasks
to execute, this must also include communication code to receive each task’s input and
deliver each task’s output.

5.4 Applicability

Although motivated by large-scale vehicular sensor networks, this work is more generally
applicable to several areas of distributed computing. Other forms of wireless sensor net-
work are ideal candidates because of their characteristic use of nodes that are limited in
power and processing capabilities, and have unknown or changing network topology [3],
for which automatic task assignment is compelling.

Ubiquitous computing envisions an era when computers “weave themselves into the fabric
of everyday life until they are indistinguishable from it” [243, p94]. Such a system requires
a network of sensors which monitor the environment and its contents to gather information
about the state of the world. This allows ubiquitous computing applications to interact
seamlessly with humans in the environment. The use of a vast number of sensors, and
the need to process this data into higher-level models of the environment, mean that
automatic task assignment is also desirable in this area.

This work is also relevant to the areas of web services [4] and grid computing [78], since
both of these technologies utilise data and processing capabilities in many different physi-
cal locations and across organisational boundaries. Grid computing enables programmers
to implement applications which are distributed over multiple computers and which access
repositories of data which are sufficiently large that moving programs onto processors near
the data source is much easier than moving the data itself. In terms of data processing,
there are some similarities between grid computing and sensor networks. The question
of where data integration and processing is done is paramount. A large data store in the
grid is infeasible to transfer across the network for processing or summarisation; instead,
the processing must be executed close to the store. The ogsa-dai framework [9] achieves
this using a scripting language whose programs are sent over the grid and executed close

100

5.4 Applicability

to the data. Similarly, sensors exist at particular physical locations so processing on their
outputs is best done close to them to avoid excessive network traffic.

In the vision of the Semantic Web, Berners-Lee et al. describe an application in which three
members of a family wish to book an appointment together to see a suitable doctor [26,
p28]. To arrange a suitable time for the appointment, the four parties’ diary information
needs to be compared. Determining where this comparison should be carried out is not
obvious. For example, is it best to transfer the doctor’s diary to the patient’s computer,
or the patient’s diary to the doctor’s computer? Here a measure of ‘confidentiality’ might
be suitable for use as a metric for optimal placement of computation.

5.4.1 Vehicular networks

If automatic task assignment techniques are to be used in applications for vehicular net-
works, we must avoid the need to recompute the assignment of tasks from scratch every
time the network conditions change because this is too frequent an occurrence. One way
of working around this problem could be to produce approximate task assignments which
make general statements about a task such as “execute it on every node”, “execute it
once per unit area” or “execute it centrally”. This level of detail may suffice for many
applications.

In order to produce assignments of this kind, we can use a variant of the resource graph in
task assignment. Rather than the resource graph containing individual processing nodes,
it contains regions. Each region is a spatial area which may contain many vehicles and is
treated by the task assignment algorithm as an indivisible and opaque processing unit.

The intent of the use of regions is as a layer of abstraction that hides the mobile nature
of vehicles. By defining a region such that its rate of departure of vehicles is roughly
equivalent to its rate of arrival of vehicles, the externally visible characteristics of the
region will be largely constant over time. Now, task assignment will assign tasks to
regions and it is the responsibility of the members of each region to organise themselves
so that the inputs are collected from the neighbouring regions, the tasks are executed and
the results are sent to the destination regions. We refer to applications for which such
regions can be defined as quasi-static applications.

This is a similar approach to that of the principle of a ‘virtual ad-hoc server’ used as part
of the inter-vehicular communication protocol vitp [57]. In this protocol, vehicular sensor
data queries are aimed towards a specified spatial region. The response is formed by a
group of nodes whose membership may change over time. Similarly, the SpatialViews
framework provides a programming language in which spatial regions can be expressed
and which executes code on whichever devices are found to be located in that region [189]
(see Section 2.3.2.1).

In order to guarantee that tasks are executed, such a protocol must ensure that infor-
mation is not lost, especially handling the case where a region temporarily empties of
vehicles. To prevent this, other regions must be responsible for monitoring adjacent re-
gions. Moreover, within a region, since vehicles could leave the region without giving any
advance warning, measures must be taken to ensure that other members of the region are

101

5 Automatic task assignment

aware of the work that needs to be done; this is likely to involve some redundancy as the
work is replicated amongst a number of vehicles.

We leave the implementation of this protocol to further work (see Section 5.8) and now
concentrate on the issues of task assignment for static applications whose topology is not
predictable or known by the application developer.

5.5 Task graph optimisation

Automatic task assignment brings the ability to find a near-optimal mapping of appli-
cation tasks to processors for a given task graph. However, some applications can be
expressed in a variety of semantically-equivalent task graphs. Therefore we are led to
consider whether we can determine an even better fashion in which to execute an appli-
cation by automatically finding an alternative task graph which is somehow better-suited
to the resource graph.

For example, in the automatic map generation application described in Chapter 4, we
could imagine expressing the task graph in a centralised fashion, where the vehicles’
gps data is gathered at a central server before being processed. Alternatively, the data
processing could be done in parallel so that the image processing steps are performed on
each data partition independently before being combined together into a single map.

The attributes of the vehicles and of the central server described in the resource graph
will dictate which of these alternative task graphs would produce maps at a faster rate.
For example, with some resource graphs, this task graph could be naturally mapped to a
scenario in which the vehicles each process the data that they generate. Or, if the resource
graph indicates that there are fixed servers in each geographical region—characterised by
having low-cost communication edges to some vehicles and high-cost edges, or none at all,
to others—then these could be used to process subsets of the data, collected from local
vehicles, in parallel.

As well as differing in terms of execution time, these alternative task graphs could differ
in terms of their treatment of privacy. Since a vehicle’s gps data contains details about
where its drivers have taken it, passing this data to untrusted third parties for processing
will constitute a loss of location privacy. Hence, processing one’s own data locally before
communicating it to others may be preferable if the processing reduces the quality or
amount of sensitive data contained in it.

In general, for a given application, there will be a spectrum of alternative, equivalent
task graphs involving different stages of processing in different orders. We will consider
the nature of this equivalence relation between alternative task graphs by examining the
transformation space which explores the different versions of the algorithm.

5.5.1 Types of task

Firstly, in order to identify useful task-level program transformations, it is prudent to
classify program tasks based on the numbers of inputs and outputs and their behaviour.
We identify six kinds of task:

102

5.5 Task graph optimisation

x

S

(a) Source task

x

F

(b) Sink task

x

y

P

(c) Processing task

x1 x2

x

M

(d) Merge task

x

x1 x2

S

(e) Split task

xx

x

R

(f) Replication task

Figure 5.2: The six kinds of task.

Source tasks are where data is produced, drawn in a task graph as circles (Figure 5.2a).
A source task has no inputs and one output. Although they only have one output
edge, multiple values can be emitted in a sequential fashion. In other words, a source
task produces a stream of values. For example, in a sensor network, a thermometer
which outputs the temperature once per minute is modelled as a source task.

Sink tasks are where data is consumed, also drawn as circles (Figure 5.2b). A sink task
has one input and no outputs. For example, in a sensor network, a sink task could
be used to output the results of data processing to a physical display.

Processing tasks are functions which transform data of one type to another type, and
are drawn as circles (Figure 5.2c). A processing task has one input and one output.

Merge tasks are functions which combine two items of data of a particular type into a
single value of that same type, and are drawn as rectangles (Figure 5.2d). A merge
task has two inputs, a single output and is commutative and associative.

Split tasks are functions which decompose a single item of data of a particular type
into two values of that same type, and are drawn as rectangles (Figure 5.2e). These
values must be constructed such that, when fed into a merge task, the original item
of data is yielded. Thus, split tasks can be thought of as the inverse of merge tasks.
A good split function will break an item of data into two parts of roughly equivalent
size. Split tasks allow large items of data to be partitioned into smaller items so
that computation can be performed in parallel. This permits a divide-and-conquer
approach to data processing.

Replication tasks are functions which copy a value into a pair of identical values, and
are drawn as octagons (Figure 5.2f). A replication task thus has a single input and
two outputs.

The example task graph shown in Figure 5.1a consisted of two source tasks and two sink
tasks connected by a merge task performing a ⋆ operation; a processing task performing
an f function; and a replication task.

103

5 Automatic task assignment

5.5.2 Denotational semantics

In order to formalise the definitions of task graphs and of the tasks, we provide a deno-
tational semantics for task graphs. Not only will this aid the intuitive understanding of
the processing performed by task graphs, we will also use the denotational semantics in
proofs, particularly in justifying that the transformations which will be implemented in
the compiler are correct.

The denotation of a task graph is a predicate in higher-order logic whose arguments are
the inputs and outputs. In a complete graph, the inputs and outputs are the sources and
sinks, respectively. As is the norm, the denotational semantics is compositional; that is,
the denotation of a task graph is built out of the denotation of its components.

In this semantics, we will only model the mathematical relationship between the inputs
and outputs in a single wave of execution. We do not consider the temporal or sequential
aspects of the data streams flowing through the graph or other aspects of its execution.

The denotations of processing, merge, split and replication tasks are as follows:

Proc(f)(x, y) , y = f(x), (5.1)

Merge(⋆)(x1, x2, x) , x = x1 ⋆ x2, (5.2)

Split(>)(x, x1, x2) , (x1, x2) = >(x), (5.3)

Rep(x, x1, x2) , x = x1 ∧ x = x2. (5.4)

For merge tasks, the ⋆ operation must be an associative and commutative binary operator.
For convenience, we write expressions involving ⋆ using infix notation; a⋆b , ⋆(a, b). The
associativity and commutativity of ⋆ are respectively defined as:

∀a, b, c. (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c); (5.5)

∀a, b. a ⋆ b = b ⋆ a. (5.6)

The following properties of tasks follow directly from the commutativity of ⋆ and the
equality of outputs from replication tasks:

Merge(⋆)(x1, x2, x) ≡ Merge(⋆)(x2, x1, x), (5.7)

Rep(x, x1, x2) ≡ Rep(x, x2, x1). (5.8)

The denotation of a task graph is composed from the logical conjunction of these predi-
cates, instantiated with the appropriate inputs and ouputs, with the existential quantifier
used to hide ‘internal’ connections.

The task graph shown in Figure 5.1a has the following denotation. We refer to it by the
predicate Example, which takes the graph’s two inputs and two outputs as parameters.
The two internal connections are referred to by the existentially quantified variables t1
and t2.

Example(x1, x2, y1, y2) , ∃t1, t2. Merge(⋆)(x1, x2, t1) ∧
Proc(f)(t1, t2) ∧ Rep(t2, y1, y2)

≡ ∃t1, t2. t1 = x1 ⋆ x2 ∧
t2 = f(t1) ∧ y1 = t2 ∧ y2 = t2

≡ y1 = y2 = f(x1 ⋆ x2).

104

5.5 Task graph optimisation

M

x1 x2 x3

x

,
M

M

x2 x3x1

x

Figure 5.3: A ternary merge task defined in terms of a chain of binary merge tasks.

This simplified expression indicates the mathematical relationship between the inputs and
outputs.

5.5.3 Generalising to n-ary tasks, n > 2

It is common to want to merge more than two items of data, although the definition of
merge tasks above only permits two items to be combined. Merge tasks are particularly
important in applications where a large number of input values need to be processed, such
as in sensor networks or grid computing. Because of the wealth of input data, it is usually
necessary to be able to aggregate data into a significantly smaller amount of information
to make their processing and interpretation more manageable.

This notion of combining several items into a single value is common in parallel computing,
and is often referred to as ‘reduction’. For example, MapReduce is partly named after
this principle [56]. Reduction is a fundamental part of the programming abstraction in
Abstract Regions [244, §3.1] (see Section 2.3.2.1) and is a primitive operation provided
by the Message-Passing Interface (mpi) [242, §3.4.2] (see Section 2.2.2.3).

More than two items of data can be combined into a single value by chaining several merge
tasks together in any order. For convenience, we draw a chain of merge tasks combining
n items of data as a single, n-ary task. A ternary merge task and an equivalent chain of
binary merge tasks are shown in Figure 5.3.

Similarly, it is common to want to replicate a single value more than twice so that it
can be distributed amongst a large number of participants, or to want to split a value
into more than two parts. As with merge tasks, a chain of replication or split tasks
can be constructed in order to generate more than two replicas or partitions of a value
respectively, and are drawn as a single, n-ary task.

Formally, the n-ary merge, split and replication tasks, where n > 2, are defined inductively
by the following rules, where Merge2, Split2 and Rep2 are synonymous with Merge, Split

and Rep, respectively.

Mergen(⋆)(x1, . . . , xn, x) , ∃t. Mergen−1(⋆)(x1, . . . , xn−1, t) ∧
Merge(⋆)(t, xn, x),

(5.9)

Splitn(>)(x, x1, . . . , xn) , ∃t. Splitn−1(>)(t, x1, . . . , xn−1) ∧
Split(>)(x, t, xn),

(5.10)

Repn(x, x1, . . . , xn) , ∃t. Repn−1(t, x1, . . . , xn−1) ∧
Rep(x, t, xn).

(5.11)

105

5 Automatic task assignment

However, this definition of n-ary split tasks is inadequate. A good binary split task will
divide its input into two pieces of roughly equal size. Hence, as defined above, a ternary
split would divide an input of size x into three pieces, of sizes x

2
, x

4
and x

4
. But a good

ternary split task would preferably divide its input into pieces of sizes x
3
, x

3
and x

3
. From

a theoretical standpoint, we will continue to treat an n-ary split task in terms of a chain
of binary tasks, but we will allow programmers to specify n-ary split tasks which produce
balanced outputs.

5.5.4 Fault tolerance

In a large-scale system, merge tasks must be employed in order to summarise or aggregate
many input values. However, the various inputs may have different data rates. In many
applications, if there is a single merge task collating, say, one hundred inputs, and at
a point in the execution ninety-nine of them have arrived, it may sometimes be most
prudent to execute the merge function on those ninety-nine and ignore the late-comer. In
other words, we may choose to trade the fidelity or accuracy of outputs for the frequency
at which they are produced. In the extreme case, if one of the inputs to a task fails
altogether, then it may be preferable to produce some output rather than no output at
all, waiting infinitely for data to arrive on an input where an upstream task has failed.
This may be particularly important in sensor networks where failures of processors or
communication links are frequent.

This problem is avoided by extending the definition of merge tasks to allow them to
produce a result based on the available inputs after a specified timeout has expired, so
that they are resilient to the failure of a subset of the inputs. If the actual time of arrival
of the ith input, relative to the start of execution, is tai and the latest permitted arrival
time is tdi , then the semantics of the extended definition of n-ary merge tasks would be
as follows:

Mergen(⋆)(x1, . . . , xn, x) , x =

e if I = ∅,
x0 if I = {x0}, or
⋆
i∈I

xi otherwise

where I = {i | 1 ≤ i ≤ n ∧ tai ≤ tdi }, e is a value satisfying ∀x. e ⋆ x = e, and ⋆ is the
cumulative version of the binary ⋆ operator.

5.5.5 Examples: aggregation operators

Continuing the theme of processing large volumes of input data, we consider approaches
to implementations of aggregation operators.

The database community has traditionally expressed aggregation of data in terms of
processing and merge functions. For example, the designers of fad describe aggregation
in terms of an operator called pump which takes a unary operator which is mapped to
each element of a set, and a tree of associative and commutative binary functions which

106

5.5 Task graph optimisation

aggregate the data [19, p103]. The authors give the example of computing the average
salary of a set of employees, which involves the three functions

f(x) = (1, x.salary),

g(x, y) = (x.1 + y.1, x.2 + y.2),

q(x, y) =
y

x
.

Functions f and g are passed to the pump operator along with a set of employee objects.
The value returned from the pump is passed to the function q to yield the desired result.

The tag framework for wireless sensor networks, described in Section 2.3.1.1, adopts
a similar approach to resolve queries for aggregate values of data from sensors in the
network [165]. To implement an aggregate they employ three functions which they refer
to as a merging function, an initializer function and an evaluator function [165, p134].
The initializer (such as f above) is used to specify how to transform a sensor value into
a ‘partial record state’, a value which can be aggregated (which is a processing function);
the merging function (such as g above) takes two partial record states and returns a
single partial record state (which we refer to as a merge function); the evaluator (such as
q above) takes a partial record state and returns the final value of the aggregate (which is
a processing function). The authors state that all the basic sql aggregates are expressible
in this way.

Task graphs of several common aggregation functions which either produce a summary of
a set of input values or return an exemplar value can be found in Appendix G. We give
the example of finding the median value of a set of input values here.

5.5.5.1 Median

fff

g

P1 P2 Pn

Q

m

Figure 5.4: Finding the median input value.

The task graph in Figure 5.4 finds the median input value.3 For n input values, n + 1
processing tasks and one n-ary merge task are employed. We use the terms P1, P2 and
Pn to denote sub-graphs with a single output, and Q to denote a sub-graph with a single
input.

3There exist algorithms to find the median in a more efficient manner, rather than collecting all the
data centrally. We use a simplistic approach to median-finding in this example for clarity.

107

5 Automatic task assignment

The processing function f creates a unit list from its input,

f(x) = [x].

The merge function is that used in merge-sort to produce a single sorted list from two
sorted lists, defined as

m(as, []) = as

m([], bs) = bs

m(a ++ as, b ++ bs) =

{

a ++ m(as, b ++ bs) if a < b
b ++ m(a ++ as, bs) otherwise,

where ++ is the list-cons function such that a1 ++ [a2, . . . , an] = [a1, a2, . . . , an]. The
processing function g selects the median value from the list and is defined as

g([x0, x1, . . . , xn]) =

{

xn

2
if n is even

1
2
(xn−1

2

+ xn+1

2

) otherwise.

5.5.6 Datatypes

Each item of data passed between tasks can be thought to belong to a particular datatype.
A datatype is defined in terms of a set of underlying values. For example, in a sensor
network, a temperature datatype would have underlying set R.

5.5.6.1 Mergeable datatypes

Some datatypes which hold values of type T also have a binary operation ⋆ : T × T → T
which is associative and commutative, and have an identity element i ∈ T such that

∀a ∈ T. i ⋆ a = a. (5.12)

The identity element denotes the datatype’s ‘empty’ value.

Theorem 5.1. The identity element is unique.

Proof. Assume there are two distinct identities, i1, i2 ∈ T , i1 6= i2. Then,

i1 = i1 ⋆ i2 because i1 is an identity and (5.12)
= i2 ⋆ i1 by commutativity of ⋆ and (5.6)
= i2 because i2 is an identity and (5.12),

which is contradictory.

These datatypes are of particular interest because their operation ⋆ coincides with the
definition of merge tasks above. Using ⋆, several items of data of the same type can be
combined into a single item of that type.

Such a datatype is modelled mathematically as a commutative monoid4 (T, ⋆, i). Some
examples of simple commutative monoids are:

4A monoid is an abstract algebraic construct which can be thought of as a semigroup [116] with an
identity element. A commutative monoid’s operation must be commutative and is sometimes referred to
as an abelian monoid by analogy with an abelian group.

108

5.5 Task graph optimisation

addition (R, +, 0),
set union (P(S),∪, ∅), and

maximisation (R ∪ {−∞}, max,−∞).

We refer to these datatypes as being mergeable.

Associativity and commutativity reflect the idea of summarising data from a multiset of
input values: the order does not matter, but duplicates are retained. Note that although
ordered lists form a monoid under the append operation with the empty list as the identity
element, this is not a commutative monoid since append is not commutative.

Since a split task for a particular datatype is an inverse of its merge task, it follows that
mergeable datatypes necessarily support split operations. By analogy with the monoid
(N,×, 1), where merging is multiplication, splitting is factorisation into a pair of factors.
Note that although splitting merely needs to be a right-inverse for merge, i.e. a function
> satisfying

∀x. ⋆ (>(x)) = x, (5.13)

and therefore many split operations may exist for a given merge operation ⋆, we will
nonetheless use the notation ⋆−1.

5.5.6.2 Processing functions

In an application which processes data, it is not always enough to manipulate data within
a single type, so functions f : T1 → T2, where T1 6= T2, are necessary in order to transform
data into a new type. We refer to such functions as processing functions since they coincide
with the definition of processing tasks above.

A processing function f is a monoid homomorphism if it transforms data from one monoid
(S, ⋆, i1) into data from another monoid (T,⊗, i2) whilst satisfying the property that for
all a, b ∈ S,

f(a ⋆ b) = f(a)⊗ f(b). (5.14)

An example of a monoid homomorphism is a function f(x) = ex from monoid (N, +, 0) to
monoid (R,×, 1). It is trivial to check that f(a+b) = f(a)f(b) and confirm that f(0) = 1.

In practice, the constraints of computation mean that real implementations of datatypes
are not necessarily perfect monoids. For example, addition and multiplication are only
approximately associative in floating point arithmetic, thus do not faithfully implement
the monoid (R, +, 0). Similarly, certain thresholding operations, e.g. f(a) = ⌊a⌋, do not
satisfy property (5.14) to be homomorphisms; timeouts on merge tasks further complicate
the issue. A formal treatment would involve adding a metric space structure to monoids
and adding a continuity requirement for homomorphisms and then to argue that the
approximate behaviour is ‘close enough’ for a given application.

Monoids, and commutative monoids in particular, have found similar application in other
fields. The Monoid Homomorphism Language (mhl) is a database query language in
which monoids model datatypes and monoid homomorphisms are the sole means of ma-
nipulating data [1, §6].

109

5 Automatic task assignment

5.5.7 Task graph transformations

We now return to the topic of determining the equivalence relation between alternative
task graphs.

Task graph designers are expected to identify which datatypes are appropriate to treat
as monoids and which processing functions are appropriate to treat as monoid homomor-
phisms. An advantage of this is that static analysis can be used to transform the task
graph whilst maintaining semantic integrity. We believe that designers will be able to eas-
ily identify these in everyday applications. In the worst case, when these are overlooked,
this merely results in a smaller range of optimisations being available to the compiler.

We will present a number of task graph transformations that are expressed as bidirectional
task graph re-write rules. These transformations will be implemented by the compiler that
will be presented in Chapter 6.

We begin by considering two example applications to provide the context in which we will
discuss the first transformation.

5.5.7.1 Arithmetic mean

In sensor networks, it is common to want to find the arithmetic mean of a large number of
sensor readings. The centralised approach would gather and sum all the readings at the
sink node and divide by the number of readings received. Partitioning the problem into
smaller subsets of readings means that we can reach an answer using less energy or more
quickly as several additions can be executed in parallel. However, the arithmetic means of
arbitrary, distinct subsets of readings cannot be readily combined into the overall mean,
because the number of readings contributing to each subset’s mean is lost. A solution
to this problem is to keep a running total of the number of readings in each partition.
Adopting this approach, we can express the arithmetic mean of a set of numeric values
by employing two processing functions—one a homomorphism, the other not.

A multiset of real numbers is represented by the monoid (P(R),⊎, ∅)5 where ⊎ is multiset
union. We use an intermediate monoid (R×N,⊕, (0, 0)), where

(a1, n1)⊕ (a2, n2) , (a1 + a2, n1 + n2),

to store the numerator and denominator in the calculation of the arithmetic mean. The
value of the mean will not be represented by a monoid but will simply be a value drawn
from R.

The function to convert a multiset of numbers into the intermediate form is

h(∅) = (0, 0) (5.15)

h({x} ⊎ xs) = (x, 1)⊕ (h(xs)). (5.16)

5Here, we use P to denote the multiset powerset function,

P(S) , {x |x ⊆ S},

where ⊆ denotes the sub-multiset relation.

110

5.5 Task graph optimisation

{1, 2}{3, 4, 5}

hh

⊕

g

3

g(h({1, 2})⊕ h({3, 4, 5}))
= g((3, 2)⊕ (12, 3))

= g(15, 5)

= 3

(a) Processing before merging

{1, 2}{3, 4, 5}

⊎

h

g

3

g(h({1, 2} ⊎ {3, 4, 5}))
= g(h({1, 2, 3, 4, 5}))
= g(15, 5)

= 3

(b) Merging before processing

Figure 5.5: Example task graphs for computing the arithmetic mean of two sets of values
in a distributed fashion.

Values from the numerator–denominator monoid returned from h can then be transformed
into the desired result using a non-homomorphic function g:

g(x, n) =
x

n
.

The structure of this program is similar to how aggregate functions are defined in tag
(see Section 5.5.5 above). The function h is akin to an ‘initialiser’; the combining of values
via ⊕ is like a ‘merging’ function; and the function g is similar to an ‘evaluator’.

An example task graph for this application is depicted in Figure 5.5a. The sum and count
of two multisets of values are computed by h before being combined by the ⊕ merge task.
Finally the mean is computed by g.

However, the task graph shown in Figure 5.5a can be equivalently expressed as shown in
Figure 5.5b. The former is a conversion to numerator–denominator pairs (processing) for
both of the sets, followed by the summing function ⊕ (merge), and finally g. The latter
is a multiset-union operation (merge) on the two sets, followed by the conversion by h to
the numerator–denominator pair (processing), and finally g.

111

5 Automatic task assignment

The denotations of these two versions of the graph are:

Mean1(x1, x2, y) , ∃t1, t2, t3. Proc(h)(x1, t1) ∧ Proc(h)(x2, t2) ∧
Merge(⊕)(t1, t2, t3) ∧
Proc(g)(t3, y)

≡ ∃t1, t2, t3. t1 = h(x1) ∧ t2 = h(x2) ∧
t3 = t1 ⊕ t2 ∧ y = g(t3)

≡ y = g(h(x1)⊕ h(x2));

Mean2(x1, x2, y) , ∃t1, t2. Merge(⊎)(x1, x2, t1) ∧
Proc(h)(t1, t2) ∧ Proc(g)(t2, y)

≡ ∃t1, t2. t1 = x1 ⊎ x2 ∧ t2 = h(t1) ∧ y = g(t2)

≡ y = g(h(x1 ⊎ x2)).

We can see that these two expressions are equivalent if h is a homomorphism from
(P(R),⊎, ∅) to (R×N,⊕, (0, 0)), by property (5.14).

Proposition 5.2. Function h is a homomorphism.

Proof. We prove h(a ⊎ b) = h(a)⊕ h(b) by induction on the structure of a.

For the base case, we consider a = ∅:

h(∅ ⊎ b) = h(b)
= (0, 0)⊕ h(b) because (0, 0) is an identity and (5.12)
= h(∅)⊕ h(b) by (5.15).

We now assume the inductive hypothesis h(a ⊎ b) = h(a)⊕ h(b) and show that h(({x} ⊎
a) ⊎ b) = h({x} ⊎ a)⊕ h(b):

h(({x} ⊎ a) ⊎ b) = h({x} ⊎ (a ⊎ b)) by assoc. of ⊎ and (5.5)
= (x, 1)⊕ h(a ⊎ b) by (5.16)
= (x, 1)⊕ (h(a)⊕ h(b)) by inductive hypothesis
= ((x, 1)⊕ h(a))⊕ h(b) by assoc. of ⊕ and (5.5)
= h({x} ⊎ a)⊕ h(b) by (5.16).

Thus h satisfies (5.14).

Since h is a homomorphism, property (5.14) implies that h(x1)⊕ h(x2) = h(x1 ⊎ x2), so

Mean1(x1, x2, y) ≡ Mean2(x1, x2, y).

5.5.7.2 Exponentiation

Similarly, an algorithm to compute the exponential of the sum of two natural numbers
could be equivalently expressed as the product of exponentials: ex+y = exey. Exponen-
tiation can be thought of as a function from monoid (N, +, 0) to monoid (R,×, 1). The

112

5.5 Task graph optimisation

x y

exp

+

ex+y

(a) Addition before exponentiation

x y

×

expexp

exey

(b) Exponentiation before multiplication

Figure 5.6: Exponentiation of two natural numbers.

formula ex+y is an additive merge of the two natural numbers x and y followed by an
exponentiation processing task (depicted in Figure 5.6a); a transformation of the formula
gives exey which is two exponentiation processing tasks followed by a multiplicative merge
of the resulting numbers (depicted in Figure 5.6b).

The denotations of the two graphs are as follows:

Exp1(x1, x2, y) , ∃t. Merge(+)(x1, x2, t) ∧ Proc(exp)(t, y)

≡ ∃t. t = x1 + x2 ∧ y = et

≡ y = ex1+x2 ;

Exp2(x1, x2, y) , ∃t1, t2. Proc(exp)(x1, t1) ∧ Proc(exp)(x2, t2) ∧
Merge(×)(t1, t2, y)

≡ ∃t1, t2. t1 = ex1 ∧ t2 = ex2 ∧ y = t1t2

≡ y = ex1ex2 .

Again, we can see that these two expressions are equivalent if exponentiation is a homo-
morphism from (N, +, 0) to (R,×, 1), by property (5.14).

Proposition 5.3. Exponentiation is a homomorphism.

Proof. Follows directly from the identity am+n = aman.

Since exponentiation is a homomorphism, property (5.14) implies that ex1+x2 = ex1ex2, so

Exp1(x1, x2, y) ≡ Exp2(x1, x2, y).

5.5.7.3 Merge–Processing transformation

In both the averaging and the exponentiation examples, we have shown pairs of equivalent
task graphs. These are instances of a general bidirectional task graph transformation
depicted graphically in Figure 5.7. We refer to this transformation as Merge–Processing.
In the figure, P1 and P2 denote sub-graphs with single egress edges and Q denotes a
sub-graph with a single ingress edge. Implicitly, the functions f , ⋆ and ⊗ are universally
quantified.

113

5 Automatic task assignment

⋆

f

P1 P2

Q

M–P←→
ff

⊗

P1 P2

Q

Figure 5.7: The Merge–Processing transformation.

In general, property (5.14) implies that merging before processing will yield the same
result as processing before merging if and only if the processing function is a monoid
homomorphism. Therefore this transformation is only permitted if f is a homomorphism
from a monoid with operation ⋆ to a monoid with operation ⊗. This means that it is
useful for a programmer to be able to express to a compiler when a processing function
is a homomorphism, so the compiler knows when the transformation can be applied and
is guaranteed not to affect the semantics of the program.

In the cases where a processing function is not a homomorphism, information would be
lost if this transformation were to be effected, and this would mean that performing
merging before processing would not yield the same result as processing before merging.
As noted earlier, functions merely approximating homomorphisms will not in general give
bit-identical values, but are sufficient for purpose if marked as homomorphisms when the
programmer is satisfied that the transformations involving homomorphisms can be safely
applied.

There are several consequences of employing the Merge–Processing task graph transforma-
tion. In the rightward direction, the transformation introduces an extra instance of the
processing function, with each working on a different ‘half’ of the input data rather than
working on the combination of both halves. This introduces the possibility for parallelism:
processing each input independently.

The total amount of work performed will be roughly the same before and after the trans-
formation. But depending on the relative sizes of the pre- and post-processed datatypes,
if the two processing tasks are assigned to be executed on (or near) the respective proces-
sors which generated the inputs, the total amount of network traffic may be smaller. The
computational complexities of the two merge functions may also cause the total execution
time to differ.

To exemplify these consequences, consider an application which processes video data and
extracts the number of vehicles seen in the images. A typical scenario might be as follows:
there are ten video cameras, each connected directly to battery-powered local computers;
there is also a central computer powered from the electricity grid; three of the cameras
are connected by Ethernet to the central computer; the remaining cameras communicate
using a wireless gprs connection.

One distributed version of the application could involve appending the videos from all
the cameras (merging) before the vehicle-recognition algorithm is run (processing). The
compiler could assign the merge and processing tasks to the central computer, causing all
of the video data to be transmitted over the network.

114

5.5 Task graph optimisation

Applying the rightward transformation several times yields an alternative expression of
the application in which the vehicle-recognition algorithm (processing) is run on each
individual video, and then the number of vehicles is centrally summed to a single value
(merging). The compiler could assign these several processing tasks to the computers
attached to the cameras, and the merge task to the central computer. In this way, there
is less network traffic generated since integer data is significantly smaller than video data.
However, more battery energy would be consumed as the battery-powered computers now
each perform a computationally-expensive task.

Suppose that the cost function indicates that energy consumption from batteries may be
sacrificed for lower volumes of network traffic, but that execution time is important, and
that the central computer’s processor was five times faster than the battery-powered pro-
cessors. Then, the optimal configuration would be for the videos produced by the cameras
whose processors are connected over gprs to be processed locally and for the other videos
to be streamed over the network, merged and processed on the central computer.

Proposition 5.4. The Merge–Processing transformation is sound.

Proof. In order to formally prove the correctness of the transformation, we compare the
denotations of the task graphs on the left and the right of the transformation. Function
f is assumed to be a monoid homomorphism from (S, ⋆, i1) to (T,⊗, i2).

LeftM–P(x1, x2, y) , ∃t. Merge(⋆)(x1, x2, t) ∧ Proc(f)(t, y)

≡ ∃t. t = x1 ⋆ x2 ∧ y = f(t)

≡ y = f(x1 ⋆ x2);

RightM–P(x1, x2, x) , ∃t1, t2. Proc(f)(x1, t1) ∧ Proc(f)(x2, t2) ∧
Merge(⊗)(t1, t2, y)

≡ ∃t1, t2. t1 = f(x1) ∧ t2 = f(x2) ∧ y = t1 ⊗ t2

≡ y = f(x1)⊗ f(x2)

≡ y = f(x1 ⋆ x2) by (5.14).

Hence,

LeftM–P(x1, x2, y) ≡ RightM–P(x1, x2, y). (5.17)

5.5.7.4 Farm transformation

The symmetry between split tasks and merge tasks gives rise to a second transformation
called Farm6, depicted in Figure 5.8. A single processing task can be replaced by an array
of processing tasks which each tackle a part of the input data. As with Merge–Processing,
the processing function f must be a monoid homomorphism for the transformation to be
valid.

6This transformation is called Farm by analogy to a similar construct termed ‘farm’ by Afshar [1,
§5.1.2].

115

5 Automatic task assignment

f

P

Q

Farm←→ ff

⋆−1

⊗

P

Q

Figure 5.8: The Farm transformation.

This transformation facilitates the parallelisation of data processing by partitioning the
data, so is particularly applicable to applications in grid computing where a large problem
is commonly divided into a number of smaller problems processed in parallel. This para-
digm is familiar from popular distributed computing applications such as seti@home (see
Section 2.2.2.3). The repeated use of this transformation allows a very large task graph
to be generated from a small, easily designed and expressed task graph.

Proposition 5.5. The Farm transformation is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation. Function f is assumed to be a monoid homomorphism from (S, ⋆, i1) to
(T,⊗, i2).

LeftFarm(x, y) , Proc(f)(x, y)

≡ y = f(x);

RightFarm(x, y) , ∃x1, x2, y1, y2. Split(⋆−1)(x, x1, x2) ∧
Proc(f)(x1, y1) ∧ Proc(f)(x2, y2) ∧
Merge(⊗)(y1, y2, y)

≡ ∃x1, x2, y1, y2. (x1, x2) = ⋆−1(x) ∧
y1 = f(x1) ∧ y2 = f(x2) ∧
y = y1 ⊗ y2

≡ ∃x1, x2. (x1, x2) = ⋆−1(x) ∧ y = f(x1)⊗ f(x2)

≡ ∃x1, x2. (x1, x2) = ⋆−1(x) ∧ y = f(x1 ⋆ x2) by (5.14)

≡ y = f(⋆(⋆−1(x))

≡ y = f(x) by (5.13).

Hence,
LeftFarm(x, y) ≡ RightFarm(x, y). (5.18)

5.5.7.5 Processing–Replication transformation

A third transformation, Processing–Replication, is similar to Merge–Processing described
above, but involves swapping the order of processing and replication tasks rather than

116

5.5 Task graph optimisation

f

R

P

Q1 Q2

P–R←→
ff

R

P

Q1 Q2

Figure 5.9: The Processing–Replication transformation.

processing and merge tasks. Rather than performing some processing and then repli-
cating the result, we can replicate the input and process each replica individually. This
transformation is depicted in Figure 5.9.

On the right of the transformation, the total amount of work is doubled. However,
performing the rightward transformation may be desirable in minimising total execution
time if the processors to which the replicas are sent are more powerful than that which
generates the input value. The leftward transformation may be desirable in maximising
the privacy of the originator of the data if processing it reduces its sensitivity, as the data
can be processed locally before being replicated to untrusted parties.

Proposition 5.6. The Processing–Replication transformation is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

LeftP–R(x, y1, y2) , ∃y. Proc(f)(x, y) ∧ Rep(y, y1, y2)

≡ ∃y. y = f(x) ∧ y = y1 ∧ y = y2

≡ y1 = f(x) ∧ y2 = f(x);

RightP–R(x, y1, y2) , ∃x1, x2. Rep(x, x1, x2) ∧
Proc(f)(x1, y1) ∧ Proc(f)(x2, y2)

≡ ∃x1, x2. x = x1 ∧ x = x2 ∧ y1 = f(x1) ∧ y2 = f(x2)

≡ y1 = f(x) ∧ y2 = f(x).

Hence,
LeftP–R(x, y1, y2) ≡ RightP–R(x, y1, y2). (5.19)

5.5.7.6 Split–Replication transformation

Transformation Split–Replication, shown in Figure 5.10, involves the exchange of replica-
tion and split tasks. Much like Processing–Replication, the total amount of work is doubled
in the rightward transformation but may bring similar potential benefits if the resulting
split tasks can be assigned to faster processors than the original split task could be.

Proposition 5.7. The Split–Replication transformation is sound.

117

5 Automatic task assignment

⋆−1

RR

P

Q1 Q2 Q3 Q4

S–R←→
R

⋆−1⋆−1

P

Q1 Q2Q3 Q4

Figure 5.10: The Split–Replication transformation.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

LeftS–R(x, x1, x2, x3, x4) , ∃t1, t2. Split(⋆−1)(x, t1, t2) ∧
Rep(t1, x1, x2) ∧ Rep(t2, x3, x4)

≡ ∃t1, t2. (t1, t2) = ⋆−1(x) ∧
t1 = x1 ∧ t1 = x2 ∧ t2 = x3 ∧ t2 = x4

≡ (x1, x3) = ⋆−1(x) ∧ (x2, x4) = ⋆−1(x);

RightS–R(x, x1, x2, x3, x4) , ∃t1, t2. Rep(x, t1, t2) ∧
Split(⋆−1)(t1, x1, x3) ∧
Split(⋆−1)(t2, x2, x4)

≡ ∃t1, t2. x = t1 ∧ x = t2 ∧
(x1, x3) = ⋆−1(t1) ∧
(x2, x4) = ⋆−1(t2)

≡ (x1, x3) = ⋆−1(x) ∧ (x2, x4) = ⋆−1(x).

Hence,
LeftS–R(x, x1, x2, x3, x4) ≡ RightS–R(x, x1, x2, x3, x4). (5.20)

5.5.7.7 Merge–Replication transformation

⋆

R

P1 P2

Q1 Q2

M–R←→
⋆⋆

RR

P1 P2

Q1 Q2

Figure 5.11: The Merge–Replication transformation.

Transformation Merge–Replication, shown in Figure 5.11, switches the order of merging
and replication.

118

5.5 Task graph optimisation

The rightward transformation doubles the number of tasks and the amount of work whilst
introducing several new dataflow edges which could cause an increase in network traffic.
The rightward transformation is likely to be beneficial when the merge operation is best
carried out on the processors to which the recipients of the two outputs are assigned,
provided the increase in network traffic is acceptable.

Proposition 5.8. The Merge–Replication transformation is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

LeftM–R(x1, x2, y1, y2) , ∃t. Merge(⋆)(x1, x2, t) ∧ Rep(t, y1, y2)

≡ ∃t. t = x1 ⋆ x2 ∧ t = y1 ∧ t = y2

≡ y1 = x1 ⋆ x2 ∧ y2 = x1 ⋆ x2;

RightM–R(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Rep(x1, t1, t2) ∧
Rep(x2, t3, t4) ∧
Merge(⋆)(t1, t3, y1) ∧
Merge(⋆)(t2, t4, y2)

≡ ∃t1, t2, t3, t4. x1 = t1 ∧ x1 = t2 ∧
x2 = t3 ∧ x2 = t4 ∧
y1 = t1 ⋆ t3 ∧
y2 = t2 ⋆ t4

≡ y1 = x1 ⋆ x2 ∧ y2 = x1 ⋆ x2.

Hence,
LeftM–R(x, x1, x2, x3, x4) ≡ RightM–R(x, x1, x2, x3, x4). (5.21)

5.5.7.8 Merge-Reorder transformation

⋆

⋆

P1 P2 P3

Q

M	

←→
⋆

⋆

P1 P2 P3

Q

Figure 5.12: The Merge-Reorder transformation.

Transformation Merge-Reorder, shown in Figure 5.12, follows directly from the associativ-
ity of the functions embodied by merge tasks. This transformation is useful to alter how
the merging of a large number of values takes place in a distributed manner.

It was noted in Section 5.5.3 that a chain of merge tasks combining n items of data can be
drawn as a single n-ary merge task for convenience. This transformation indicates that

119

5 Automatic task assignment

⋆

⋆

⋆

P1 P2 P3 P4

Q

M	

←→
⋆

⋆

⋆

P1 P2 P3 P4

Q

Figure 5.13: The equivalence of two merge trees combining four values.

⋆

⋆

⋆

P1 P2 P3 P4

Q

M	

←→
⋆

⋆

⋆

P1 P2 P3 P4

Q

M	

←→
⋆

⋆

⋆

P1 P2 P3 P4

Q

=

⋆

⋆

⋆

P1 P2P3 P4

Q

M	

←→
⋆

⋆

⋆

P1 P2P3 P4

Q

M	

←→
⋆

⋆

⋆

P1 P2P3 P4

Q

Figure 5.14: Re-structuring a tree, which merges four values, using repeated applica-
tions of Merge-Reorder.

the implicit structure of the chain of tasks is unimportant if all the tasks in the chain are
assigned to the same processor. If assigned to different processors, this transformation
can be used to alter the depth of the merge tree, which may impact on the amount of
communication required and the total time required to perform the merging. For example,
Figure 5.13 shows how a chain of three merge tasks can be transformed into a two-layer
tree of merge tasks using a single instance of the Merge-Reorder transformation. Due to
the introduction of parallelism, only log2(n) merge stages are required rather than n− 1.
Note, however, that a balanced tree of merge tasks will not necessarily be quicker to
execute than a linear chain since the amount of work required in each task may differ
depending on the sizes of the inputs.

This transformation can also be used to re-arrange the structure of a tree of merges that
combines four values. A sequence of four Merge-Reorder steps achieving this is shown in
Figure 5.14.

120

5.5 Task graph optimisation

Proposition 5.9. The Merge-Reorder transformation is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

LeftM	

(x1, x2, x3, x) , ∃t. Merge(⋆)(x1, x2, t) ∧Merge(⋆)(t, x3, x)

≡ ∃t. t = x1 ⋆ x2 ∧ x = t ⋆ x3

≡ x = (x1 ⋆ x2) ⋆ x3;

RightM	

(x1, x2, x3, x) , ∃t. Merge(⋆)(x1, t, x) ∧Merge(⋆)(x2, x3, t)

≡ ∃t. x = x1 ⋆ t ∧ t = x2 ⋆ x3

≡ x = x1 ⋆ (x2 ⋆ x3)

≡ x = (x1 ⋆ x2) ⋆ x3 by (5.5).

Hence,
LeftM	

(x1, x2, x3, x) ≡ RightM	

(x1, x2, x3, x). (5.22)

5.5.7.9 Replication-Reorder transformation

R

R

P

Q1 Q2 Q3

R	

←→
R

R

P

Q1 Q2 Q3

Figure 5.15: The Replication-Reorder transformation.

Transformation Replication-Reorder, shown in Figure 5.15, is analogous to Merge-Reorder

above, and follows from the equivalence of the outputs from replication tasks and can be
used to alter how the replication of a large number of values takes place.

Proposition 5.10. The Replication-Reorder transformation is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

LeftR	

(x, x1, x2, x3) , ∃t. Rep(x, x1, t) ∧ Rep(t, x2, x3)

≡ ∃t. x = x1 ∧ x = t ∧ t = x2 ∧ t = x3

≡ x = x1 ∧ x = x2 ∧ x = x3;

RightR	

(x, x1, x2, x3) , ∃t. Rep(x, t, x3) ∧ Rep(t, x1, x2)

≡ ∃t. x = t ∧ x = x3 ∧ t = x1 ∧ t = x2

≡ x = x1 ∧ x = x2 ∧ x = x3.

121

5 Automatic task assignment

Hence,
LeftR	

(x, x1, x2, x3) ≡ RightR	

(x, x1, x2, x3). (5.23)

5.5.7.10 Split–Merge transformation

⋆−1

⋆

P

Q

S–M←→
P

Q

Figure 5.16: The Split–Merge transformation.

A further transformation, Split–Merge, depicted in Figure 5.16, follows from the definition
of a split function for a particular datatype as an inverse of the merge function for that
datatype.

The rightward transformation can be used to eliminate redundant work; the leftward
transformation can be used to introduce a split and merge task that could be manipulated
by a further transformation.

Proposition 5.11. The Split–Merge transformation is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

LeftS–M(x, y) , ∃t1, t2. Split(⋆−1)(x, t1, t2) ∧Merge(⋆)(t1, t2, y)

≡ ∃t1, t2. (t1, t2) = ⋆−1(x) ∧ y = t1 ⋆ t2

≡ y = ⋆(⋆−1(x))

≡ y = x by (5.13);

RightS–M(x, y) , y = x.

Hence,
LeftS–M(x, y) ≡ RightS–M(x, y). (5.24)

5.5.7.11 Merge–Split transformation

The complement of Split–Merge is Merge–Split, shown in Figure 5.17. The rightward
transformation removes the redundant work involved in splitting the results of a merge
operation and leaves the two inputs separate.

122

5.5 Task graph optimisation

⋆

⋆−1

P1 P2

Q1 Q2

M–S←→
P1 P2

Q1 Q2

Figure 5.17: The Merge–Split transformation.

The denotations of the task graphs on the left and the right of the transformation are as
follows:

LeftM–S(x1, x2, y1, y2) , ∃t. Merge(⋆)(x1, x2, t) ∧ Split(⋆−1)(t, y1, y2)

≡ ∃t. t = x1 ⋆ x2 ∧ (y1, y2) = ⋆−1(t)

≡ (y1, y2) = ⋆−1(x1 ⋆ x2); (5.25)

RightM–S(x1, x2, y1, y2) , y1 = x1 ∧ y2 = x2. (5.26)

Whilst formula (5.26) implies formula (5.25), the converse is not true in general because
⋆−1 is not necessarily a left-inverse of ⋆. Thus,

LeftM–S(x1, x2, y1, y2) ≡/ RightM–S(x1, x2, y1, y2),

so this transformation is not sound.

In words, the split task will not necessarily choose the same output values as were input to
the merge task. For example, consider an application which is handling natural numbers,
where the merge function is multiplication. Hence the monoid in question is (N,×, 1).
The merge task would multiply 6 by 4 to give 24, but the split task may factorise 24 into
3 and 8. Thus the value propagated from sub-tree P1 to Q1 could be changed from 6 to
3 in the rightward transformation.

The transformation becomes sound in the context of sub-trees Q1 and Q2 converging in a
merge operation. Both (5.25) and (5.26) imply that

y1 ⋆ y2 = x1 ⋆ x2.

Thus, there may be occasions when it is useful to perform this transformation and it does
not affect the application’s output. This will be the case when the task graph can be
transformed (by a sequence of zero or more transformations) into a task graph which has
a merge operation that combines the values arriving into Q1 and Q2. In such a graph, the
rightward Split–Merge transformation can then be applied to remove the adjacent split and
merge tasks, as shown in Figure 5.18. Then the inverse of the sequence of transformations
can be applied to return to a task graph equivalent to that which would arise by applying
the rightward Merge–Split transformation.

An example of this procedure is depicted in Figure 5.19, where the single transformation
Merge–Processing is required to transform the initial task graph into a state that admits

123

5 Automatic task assignment

P1 P2

Q

⋆−1

⋆

⋆

S–M←→

P1 P2

Q

⋆

Figure 5.18: Mimicking the effect of the Merge–Split transformation, when the outputs
are combined in a merge task (shown in red).

P1 P2

Q

⋆

⋆−1

ff

⊗

M–P←→

P1 P2

Q

⋆−1

⋆

⋆

f

S–M←→

P1 P2

Q

⋆

f

M–P
−1

←→

P1 P2

Q

ff

⊗

Figure 5.19: An example of achieving the effect of the Merge–Split transformation by
performing a transformation, followed by Split–Merge, followed by the in-
verse of the first transformation.

the Split–Merge transformation. Performing the inverse of Merge–Processing completes a
sequence of transformations equivalent to a single instance of Merge–Split. In the example,
the function f is assumed to be a monoid homomorphism from (S, ⋆, i1) to (T,⊗, i2).

Because the effect of performing Merge–Split in the cases where it is sound can be achieved
using other transformations, Merge–Split is presented here as a transformation which a
compiler may optionally choose to implement if it can confirm the safety of the operation.
If it is not implemented then no sound task graph transformations are lost.

⋆

⋆−1

P1 P2

Q1 Q2

M–S′←→
⋆⋆

⋆−1⋆−1

P1 P2

Q1 Q2

Figure 5.20: The Merge–Split′ transformation: an alternative to Merge–Split.

An alternative to the Merge–Split transformation is presented in Figure 5.20. This trans-
formation is similarly unsound in the general case. We refer to this transformation as

124

5.5 Task graph optimisation

P1 P2

Q

⋆−1

⋆

⋆

S–M←→

P1 P2

Q

⋆ S–M
−2

←→

P1 P2

Q

⋆−1⋆−1

⋆

⋆⋆ M	4

←→

P1 P2

Q

⋆−1⋆−1

⋆

⋆⋆

Figure 5.21: Mimicking the effect of the Merge–Split′ transformation, when the outputs
are combined in a merge task (shown in red in the initial and final graphs).
The second step involves two applications of the inverse of the Split–Merge

transformation; the third step involves a sequence of steps akin to those
shown in Figure 5.14.

Merge–Split′. The leftward direction of this transformation is particularly useful, espe-
cially in conjunction with the rightward direction of Merge–Split, to reduce the complexity
of a set of interlinked split and merge tasks.

In this version of the transformation, the left side is as before:

LeftM–S′(x1, x2, y1, y2) ≡ LeftM–S(x1, x2, y1, y2).

The denotation of the right side is as follows:

RightM–S′(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Split(⋆−1)(x1, t1, t2) ∧
Split(⋆−1)(x2, t3, t4) ∧
Merge(⋆)(t1, t3, y1) ∧
Merge(⋆)(t2, t4, y2)

≡ ∃t1, t2, t3, t4. (t1, t2) = ⋆−1(x1) ∧
(t3, t4) = ⋆−1(x2) ∧
y1 = t1 ⋆ t3 ∧
y2 = t2 ⋆ t4.

(5.27)

As with the original Merge–Split transformation, Merge–Split′ is not sound but (5.27) also
implies that

y1 ⋆ y2 = (t1 ⋆ t3) ⋆ (t2 ⋆ t4)

= (t1 ⋆ t2) ⋆ (t3 ⋆ t4) by assoc. (5.5) and commut. (5.6)

= x1 ⋆ x2,

so this transformation also becomes sound in the context of the outputs converging at
a merge task. As with Merge–Split, the effect of the transformation can be mimicked
by a sequence of sound transformations when the task graph can be transformed into a
state where the values arriving at Q1 and Q2 are merged. This sequence involves several
applications of Split–Merge and Merge-Reorder, and is shown in Figure 5.21.

125

5 Automatic task assignment

⊗−1

f

P

Q1 Q2

P–S←→
⋆−1

ff

P

Q1 Q2

Figure 5.22: The Processing–Split transformation.

5.5.7.12 Processing–Split transformation

Analogous to Processing–Replication but for replication rather than split tasks, Processing–

Split is depicted in Figure 5.22. As with Merge–Processing, the processing function f must
be a monoid homomorphism from (S, ⋆, i1) to (T,⊗, i2).

Since the split task ⋆−1 partitions its input value into two parts, the rightward transforma-
tion permits earlier parallelism and the two processing functions work on separate data.
The total amount of work performed is roughly the same before and after the transforma-
tion, as with Merge–Processing, but may similarly be affected by the relative complexities
of the pre- and post-processed datatypes and the sizes of the two split functions.

We compare the denotations of the task graphs on the left and the right of the transfor-
mation. Function f is assumed to be a monoid homomorphism from (S, ⋆, i1) to (T,⊗, i2).

LeftP–S(x, y1, y2) , ∃y. Proc(f)(x, y) ∧ Split(⊗−1)(y, y1, y2)

≡ ∃y. y = f(x) ∧ (y1, y2) = ⊗−1(y)

≡ (y1, y2) = ⊗−1(f(x)); (5.28)

RightP–S(x, y1, y2) , ∃x1, x2. Split(⋆−1)(x, x1, x2) ∧
Proc(f)(x1, y1) ∧ Proc(f)(x2, y2)

≡ ∃x1, x2. (x1, x2) = ⋆−1(x) ∧
y1 = f(x1) ∧ y2 = f(x2).

(5.29)

Since LeftP–S(x, y1, y2) ≡/ RightP–S(x, y1, y2), this transformation is not sound.

If, however, y1 and y2 are merged by⊗ when sub-trees Q1 and Q2 converge, the denotations
become equivalent. On the left, (5.28) implies that

y1 ⊗ y2 = f(x).

On the right, (5.29) implies that

y1 ⊗ y2 = f(x1)⊗ f(x2)

= f(x1 ⋆ x2) by (5.14)

= f(x).

Therefore, if a task graph can be transformed so that the outputs are merged in this
way, we can again mimic the effect of Processing–Split with a combination of other, sound
transformations. This is shown in Figure 5.23. Hence, Processing–Split is optional for a
compiler to implement.

126

5.5 Task graph optimisation

P

Q

f

⊗−1

⊗

S–M←→

P

Q

f S–M
−1

←→

P

Q

⋆−1

⋆

f

M–P←→

P

Q

⋆−1

ff

⊗

Figure 5.23: Mimicking the effect of the Processing–Split transformation, when the out-
puts are combined in a merge task (shown in red in the initial and final
graphs).

5.5.7.13 Split-Reorder transformation

⋆−1

⋆−1

P

Q1 Q2 Q3

S	

←→
⋆−1

⋆−1

P

Q1 Q2 Q3

Figure 5.24: The Split-Reorder transformation.

Like Merge-Reorder and Replication-Reorder, transformation Split-Reorder, shown in Fig-
ure 5.24, can be used to adjust a chain of split tasks. The values b, c and d propagated
to sub-graphs Q1, Q2 and Q3 respectively are such that a = b ⋆ c ⋆ d where a is the value
output from sub-graph P.

The denotations of the task graphs on the left and the right of the transformation are as
follows:

LeftS	

(x, x1, x2, x3) , ∃t. Split(⋆−1)(x, x1, t) ∧ Split(⋆−1)(t, x2, x3)

≡ ∃t. (x1, t) = ⋆−1(x) ∧ (x2, x3) = ⋆−1(t); (5.30)

RightS	

(x, x1, x2, x3) , ∃t. Split(⋆−1)(x, t, x3) ∧ Split(⋆−1)(t, x1, x2)

≡ ∃t. (t, x3) = ⋆−1(x) ∧ (x1, x2) = ⋆−1(t). (5.31)

Since LeftS	

(x, x1, x2, x3) ≡/ RightS	

(x, x1, x2, x3), this transformation is not sound. The
output of the task graph will potentially be different since the transformation changes
which of the two parts of the split input is further split by the second split task. For
example, if the monoid is (N,×, 1) and the value output from sub-graph P is 48, the
values propagated to sub-graphs Q1, Q2 and Q3 could be 12, 2 and 2 on the left of the
transformation and 3, 4 and 4 on the right.

As with Merge–Split and Processing–Split, this transformation is included because it is
sound provided that the sub-graphs Q1, Q2 and Q3 converge in a further merge operation.

127

5 Automatic task assignment

P

Q

⋆−1

⋆−1

⋆

=

P

Q

⋆−1

⋆−1

⋆

⋆

S–M←→

P

Q

⋆−1

⋆

S–M
−1

←→

P

Q

⋆−1

⋆−1

⋆

⋆

=

P

Q

⋆−1

⋆−1

⋆

Figure 5.25: Mimicking the effect of the Split-Reorder transformation, when the outputs
are combined in a ternary merge task (shown in red in the initial and final
graphs).

Both (5.30) and (5.31) imply that

x1 ⋆ x2 ⋆ x3 = x.

Indeed, as before, when the outputs are merged, the effect of Split-Reorder can be mimicked
by a sequence of other, sound transformations. This is shown in Figure 5.25. This
transformation may therefore be optionally supported by a compiler if it can confirm the
safety of the operation.

We summarise all twelve transformations denotationally in Figure 5.26.

5.5.8 Redundancy

The set of transformations described above includes some redundancy. For example,
Farm can be expressed in terms of two other transformations—Split–Merge and Merge–

Processing—as shown in Figure 5.27. Whilst Farm could therefore be safely overlooked
and cause us to lose no flexibility, it is desirable for a compiler to implement it so that
task graphs with matching sub-graphs can be transformed as a unit in a single step.

5.5.9 Optimising transformations for n-ary tasks

The transformations described above all relate to binary merge, replication and split tasks.
However, given that applications will commonly involve chains of these tasks to combine,
replicate or partition larger numbers of values, it is useful to have n-ary analogues of the
transformations to act directly on n-ary tasks. This enables the whole semantic structure
of an n-ary task to be considered (and transformed) as a unit rather than needing to
break it down into its constituent binary tasks.

Conveniently, it transpires not only that the obvious extensions to the sound binary
transformations are also sound, but moreover that they can be expressed in terms of the
binary transformations. In Appendix H, we graphically show the ternary versions of the
transformations and how they are expressed in terms of the transformations introduced

128

5.5 Task graph optimisation

LeftM–P(x1, x2, y) , ∃t. Merge(⋆)(x1, x2, t) ∧ Proc(f)(t, y)

RightM–P(x1, x2, y) , ∃t1, t2. Proc(f)(x1, t1) ∧ Proc(f)(x2, t2) ∧
Merge(⊗)(t1, t2, y)

LeftFarm(x, y) , Proc(f)(x, y)

RightFarm(x, y) , ∃x1, x2, y1, y2. Split(⋆−1)(x, x1, x2) ∧
Proc(f)(x1, y1) ∧ Proc(f)(x2, y2) ∧
Merge(⊗)(y1, y2, y)

LeftP–R(x, y1, y2) , ∃y. Proc(f)(x, y) ∧ Rep(y, y1, y2)

RightP–R(x, y1, y2) , ∃x1, x2. Rep(x, x1, x2) ∧
Proc(f)(x1, y1) ∧ Proc(f)(x2, y2)

LeftS–R(x, x1, x2, x3, x4) , ∃t1, t2. Split(⋆−1)(x, t1, t2) ∧
Rep(t1, x1, x2) ∧ Rep(t2, x3, x4)

RightS–R(x, x1, x2, x3, x4) , ∃t1, t2. Rep(x, t1, t2) ∧
Split(⋆−1)(t1, x1, x3) ∧ Split(⋆−1)(t2, x2, x4)

LeftM–R(x1, x2, y1, y2) , ∃t. Merge(⋆)(x1, x2, t) ∧ Rep(t, y1, y2)

RightM–R(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Rep(x1, t1, t2) ∧ Rep(x2, t3, t4) ∧
Merge(⋆)(t1, t3, y1) ∧
Merge(⋆)(t2, t4, y2)

LeftS–M(x, y) , ∃t1, t2. Split(⋆−1)(x, t1, t2) ∧Merge(⋆)(t1, t2, y)

RightS–M(x, y) , y = x

LeftM–S(x1, x2, y1, y2) , ∃t. Merge(⋆)(x1, x2, t) ∧ Split(⋆−1)(t, y1, y2)

RightM–S(x1, x2, y1, y2) , y1 = x1 ∧ y2 = x2

LeftM–S′(x1, x2, y1, y2) , ∃t. Merge(⋆)(x1, x2, t) ∧ Split(⋆−1)(t, y1, y2)

RightM–S′(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Split(⋆−1)(x1, t1, t2) ∧
Split(⋆−1)(x2, t3, t4) ∧
Merge(⋆)(t1, t3, y1) ∧Merge(t2, t4, y2)

LeftP–S(x, y1, y2) , ∃y. Proc(f)(x, y) ∧ Split(⊗−1)(y, y1, y2)

RightP–S(x, y1, y2) , ∃x1, x2. Split(⋆−1)(x, x1, x2) ∧
Proc(f)(x1, y1) ∧ Proc(f)(x2, y2)

LeftM	

(x1, x2, x3, x) , ∃t. Merge(⋆)(x1, x2, t) ∧Merge(⋆)(t, x3, x)

RightM	

(x1, x2, x3, x) , ∃t. Merge(⋆)(x2, x3, t) ∧Merge(⋆)(x1, t, x)

LeftR	

(x, x1, x2, x3) , ∃t. Rep(x, x1, t) ∧ Rep(t, x2, x3)

RightR	

(x, x1, x2, x3) , ∃t. Rep(x, t, x3) ∧ Rep(t, x1, x2)

LeftS	

(x, x1, x2, x3) , ∃t. Split(⋆−1)(x, x1, t) ∧ Split(⋆−1)(t, x2, x3)

RightS	

(x, x1, x2, x3) , ∃t. Split(⋆−1)(x, t, x3) ∧ Split(⋆−1)(t, x1, x2)

Figure 5.26: Denotations of task graph transformations.

129

5 Automatic task assignment

f

P

Q

S–M←→
f

⋆−1

⋆

P

Q

M–P←→ ff

⋆−1

⊗

P

Q

Figure 5.27: The Split–Merge and Merge–Processing transformations can be used in con-
junction to achieve the same result as the Farm transformation.

above. The algebraic proofs of soundness for each of the n-ary transformations are given in
Appendix I. A summary of the denotations of the transformations is given in Figure 5.28.

5.5.10 Example of using transformations: computing π

A näıve approach to computing the value of π is to measure the area of a circle of a known
radius r. An implementation of this technique to compute an approximation to π involves
iterating over the pixels in a square and counting the number of pixels (x, y) such that
x2 + y2 ≤ r2.

The datatypes the application will use are as follows:

• A mergeable datatype containing the set of pixels to examine, represented by the
commutative monoid (P(N×N),∪, ∅). The input to the application is drawn from
this datatype, and consists of a set containing all pixels (x, y) such that x, y ∈ [−r, r].

• A mergeable datatype containing the number of pixels found to lie within the bounds
of the circle, represented by the commutative monoid (N, +, 0).

• A mergeable datatype containing the approximation to π, represented by the com-
mutative monoid (R, +, 0).

A split function, σ, is defined for the monoid (P(N×N),∪, ∅):

σ(S) = (S1, S2) such that S1 ∪ S2 = S and S1 ∩ S2 = ∅. (5.32)

An implementation of this function should favour balanced splitting, i.e. |S1| ≈ |S2|.
The function fr to count the pixels lying within the bounds of the circle of radius r is
defined as

fr(∅) = 0 (5.33)

fr({(x, y)} ∪ ps) = δx,y
r + fr(ps), (5.34)

where

δx,y
r ,

{

1 if x2 + y2 ≤ r2,
0 otherwise.

130

5.5 Task graph optimisation

LeftM–P

n (x1, . . . , xn, y) , ∃t. Mergen(⋆)(x1, . . . , xn, t) ∧ Proc(f)(t, y)

RightM–P

n (x1, . . . , xn, y) , ∃t1, . . . , tn. Mergen(⊗)(t1, . . . , tn, y) ∧
∧n

i=1 Proc(f)(xi, ti)

LeftFarm

n (x, y) , Proc(f)(x, y)

RightFarm

n (x, y) , ∃x1, . . . , xn, y1, . . . , yn. Splitn(⋆−1)(x, x1, . . . , xn) ∧
∧n

i=1 Proc(f)(xi, yi) ∧
Merge(⊗)(y1, . . . , yn, y)

LeftP–R

n (x, y1, . . . , yn) , ∃t. Proc(f)(x, t) ∧ Repn(t, y1, . . . , yn)

RightP–R

n (x, y1, . . . , yn) , ∃t1, . . . , tn. Repn(x, t1, . . . , tn) ∧
∧n

i=1 Proc(f)(ti, yi)

LeftS–M

n (x, y) , ∃t1, . . . , tn. Splitn(⋆−1)(x, t1, . . . , tn) ∧
Merge(⋆)(t1, . . . , tn, y)

RightS–M

n (x, y) , y = x

LeftM–S

n (x1, . . . , xn, y1, . . . , yn) , ∃t. Mergen(⋆)(x1, . . . , xn, t) ∧
Splitn(⋆−1)(t, y1, . . . , yn)

RightM–S

n (x1, . . . , xn, y1, . . . , yn) ,

n
∧

i=1

yi = xi

LeftP–S

n (x, y1, . . . , yn) , ∃t. Proc(f)(x, t) ∧ Splitn(⊗−1)(t, y1, . . . , yn)

RightP–S

n (x, y1, . . . , yn) , ∃t1, . . . , tn. Splitn(⋆−1)(x, t1, . . . , tn) ∧
∧n

i=1 Proc(f)(ti, yi)

LeftS–R

m,n(x, x1,1, . . . , xm,n) , ∃t1, . . . , tm. Splitm(⋆−1)(x, t1, . . . , tm) ∧
∧m

i=1 Repn(ti, xi,1, . . . , xi,n)

RightS–R

m,n(x, x1,1, . . . , xm,n) , ∃t1, . . . , tn. Repn(x, t1, . . . , tn) ∧
∧n

i=1 Splitm(⋆−1)(ti, x1,i, . . . , xm,i)

LeftM–R

m,n(x1, . . . , xm, y1, . . . , yn) , ∃t. Mergem(⋆)(x1, . . . , xm, t) ∧ Repn(t, y1, . . . , yn)

RightM–R

m,n(x1, . . . , xm, y1, . . . , yn) , ∃t1,1 . . . , tm,n.
∧m

i=1 Repn(xi, ti,1, . . . , ti,n) ∧
∧n

i=1 Mergem(t1,i, . . . , tm,i, yi)

Figure 5.28: Denotations of n-ary transformations.

131

5 Automatic task assignment

Proposition 5.12. Function fr is a monoid homomorphism from (P(N × N),∪, ∅) to
(N, +, 0).

Proof. In a similar manner to the proof of Proposition 5.2, we prove fr(a∪b) = fr(a)+fr(b)
by induction on the structure of a, which is a set of ordered pairs of natural numbers.

Consider the base case, where a = ∅:

fr(∅ ∪ b) = fr(b)
= 0 + fr(b) because 0 is an identity and (5.12)
= fr(∅) + fr(b) by definition of fr, (5.33).

For the inductive step, we assume fr(a ∪ b) = fr(a) + fr(b). Then,

fr(({(x, y)} ∪ a) ∪ b) = fr({(x, y)} ∪ (a ∪ b)) by assoc. of ∪ and (5.5)
= δx,y

r + fr(a ∪ b) by defn. of fr, (5.34)
= δx,y

r + (fr(a) + fr(b)) by induction hypothesis
= (δx,y

r + fr(a)) + fr(b) by assoc. of + and (5.5)
= fr({(x, y)} ∪ a) + fr(b) by defn. of fr, (5.34).

The function gr to convert a pixel-count into an approximation to π is defined as

gr(x) =
x

r2
. (5.35)

Proposition 5.13. Function gr is a monoid homomorphism from (N, +, 0) to (R, +, 0).

Proof.
gr(x1 + x2) = x1+x2

r2 by definition of gr, (5.35)
= x1

r2 + x2

r2

= gr(x1) + gr(x2) by definition of gr, (5.35).

An initial task graph that the application’s designer might create is shown in Figure 5.29.
It consists of a source and a sink, connected via processing tasks embodying the functions
fr and gr. The source outputs a single value, the set V which contains all pairs (x, y)
such that x, y ∈ [−r, r], which has cardinality (2r + 1)2.

To this initial task graph, a compiler may apply various optimisations. For example,
if supplied with a resource graph containing three fast processors, and a cost function
which minimises execution time, the compiler may choose to perform the ternary Farm

transformation to partition the problem and parallelise the execution of the fr processing
task into three such tasks. Subsequently, if gr is defined such that its execution time
is proportional to the magnitude of its input, the compiler could perform the ternary
Merge–Processing transformation to execute gr individually on each of the outputs from
fr.

This chain of transformations is shown in Figure 5.30. Overall, the transformations have
the effect of parallelising the computation of π so that a result is returned in minimal
time.

132

5.6 Expressiveness of task graphs

sink

V

fr

gr

Figure 5.29: Initial task graph for application to compute π.

sink

V

fr

gr

Farm←→

sink

V

σ

frfrfr

gr

+

M–P←→

sink

V

σ

frfrfr

grgrgr

+

Figure 5.30: A sequence of two transformations applied to the task graph for the π

application.

Rather than containing three processors, if the resource graph were able to contain an
unbounded number of processors, we would still expect only a finite number of them to
be assigned tasks, assuming a realistic model of communication costs. This is because
the cost of communicating to and from a distant processor would be outweighed by the
cost of having fewer partitions. However, in practice resource graphs are finite; this too
provides an upper bound on the number of partitions the set of pixels is split into.

5.6 Expressiveness of task graphs

Proposition 5.14. A task graph composed of source, sink, processing, merge, split and
replication tasks is sufficient to express any algorithm.

In order to prove this proposition, we need to consider whether the general function of
type α1 × α2 × . . . × αn → β1 × β2 × . . . × βm, where n, m ≥ 0, can be expressed by a
graph of tasks, since an algorithm could involve the use of arbitrary functions. We must
also consider whether tasks can be connected by edges in an arbitrary manner. We will
start by addressing the first issue and return to consider the second in Section 5.6.2.

When n = 0 and m = 1, the function can be represented by a single source task. When
n = 1 and m = 0, the function can be represented by a single sink task. When n = 1 and

133

5 Automatic task assignment

x y

(x, y)

(a) Pair
task

(x, y)

x y

(b) Unpair
task

Figure 5.31: Two new kinds of task.

m = 1, the function can be represented by a single processing task. But when n > 1 or
m > 1 it is not so straightforward because the definitions of processing tasks only permit
a single input and a single output.

One approach to addressing this issue could be to extend the definition of processing tasks
to allow multiple inputs of different types. However, this would complicate the theory of
processing tasks as monoid homomorphisms presented above. It would also not be clear
how to amend the transformations appropriately.

Therefore, instead we consider adding two new kinds of task graph element, pair and
unpair tasks.

5.6.1 Pair and unpair tasks

The proposed pair and unpair tasks are depicted in Figure 5.31. A pair task is a function
which takes values of types α and β and pairs them up into a single value of type α× β.
Conversely, an unpair task is a function which takes a value of type α×β and decomposes
it into separate values of types α and β.

The denotations of pair and unpair tasks are as follows:

Pair(x1, x2, y) , y = (x1, x2), (5.36)

Unpair(x, y1, y2) , (y1, y2) = x. (5.37)

We showed in Section 5.5.3 how the primitive kinds of task could be generalised to n-ary
versions, and how these could be expressed in terms of the binary versions. Similarly, we
can do the same for pair and unpair tasks.

In general, an n-tuple (x1, . . . , xn) can be thought of as a series of nested pairs,

(x1, x2, x3, . . . , xn) = (. . . ((x1, x2), x3) . . . , xn).

This leads us to define an n-ary pair task7 in terms of a chain of binary pair tasks. We
show the ternary instance in Figure 5.32. Similarly, an n-ary unpair task can be defined
in terms of a chain of binary unpair tasks.

7Perhaps better referred to as an n-tuple constructor task, but we will stick with the term ‘n-ary pair
task’ to make the relationship between the binary and n-ary versions clear.

134

5.6 Expressiveness of task graphs

x1 x2 x3

x

,

x1 x2 x3

x

Figure 5.32: A ternary pair task defined in terms of a chain of binary pair tasks.

f

a b

x y

, f

a b

x y

Figure 5.33: A processing task taking two inputs and two outputs can be expressed in
terms of a pair task, a processing task and an unpair task.

Formally, the n-ary pair and unpair tasks, where n > 2, are defined inductively by the
following rules, where Pair2 and Unpair2 are synonymous with Pair and Unpair, respectively.

Pairn(⋆)(x1, . . . , xn, x) , ∃t. Pairn−1(⋆)(x1, . . . , xn−1, t) ∧
Pair(⋆)(t, xn, x),

Unpairn(s)(x, x1, . . . , xn) , ∃t. Unpairn−1(s)(t, x1, . . . , xn−1) ∧
Unpair(s)(x, t, xn).

Using pair and unpair tasks allows us the expressivity to describe processing tasks taking
multiple inputs and giving multiple outputs. A processing task taking multiple inputs and
giving multiple outputs can be thought of as a unary processing task sandwiched between
pair and unpair tasks. The binary case is shown in Figure 5.33, where the function f is
of type α× β → γ × δ.

Thus we recognise that the processing task’s single input or output can be a tuple whose
type is the Cartesian product of several other types. For example, a task representing a
function of type α×β → γ would not be considered as a function of two arguments but a
function of a single value of type α×β, producing output values of type γ. Indeed, we have
already been thinking in this way in the arithmetic mean example (see Section 5.5.7.1).

A benefit of this approach, rather than extending the definition of processing tasks, is
that pairing and unpairing are explicit in the task graph so can be allocated to processors
in the network. Also, it means that we can deal with all the elements of a tuple together

135

5 Automatic task assignment

throughout the task graph rather than treating them all independently until required by
a processing task, reducing the complexity of the task graph and rendering it simpler to
understand.

5.6.1.1 Example: standard deviation

It is common in a sensor network to compute the standard deviation of some sensor values
as a measure of the magnitude of the spread of the values. The standard deviation, σ,
can be computed using one of the following equivalent formulae:

σ =

√

√

√

√

1

n

n
∑

i=1

(xi − x)2 (5.38)

=

√

√

√

√

(

1

n

n
∑

i=1

xi
2

)

−
(

1

n

n
∑

i=1

xi

)2

, (5.39)

where n is the number of values and x is the mean. In (5.39), the mean is calculated
explicitly.

In order to implement these two methods of computing standard deviation as task graphs
in as parallelisable fashion as possible, we define the following processing functions:

f1(x) = (x, 1)

f2(x, n) =
x

n
g1(x) = x2

g2(x, y) = x− y

g3(x) =
√

x.

We also recall the merge function defined earlier:

(x1, n1)⊕ (x2, n2) = (x1 + x2, n1 + n2).

Both formulae for computing σ require the use of pair tasks to construct the input to g2

which subtracts two values.

The task graphs for computing the standard deviation of four values, using both ap-
proaches, are shown in Figure 5.34. In approach (a), implementing the formula (5.38),
the mean is calculated first and then subtracted from each input value. In approach (b),
implementing the formula (5.39), the mean of the values is computed in parallel with
the computation of the mean of the squares. This parallelisation suggests that approach
(b) is likely to compute an output in a smaller time than approach (a), assuming an
appropriately endowed resource graph.

5.6.1.2 Transformations involving pair and unpair tasks

Now that task graphs may contain extra kinds of task as well as those originally considered,
the set of task graph transformations needs to be reconsidered. There are eleven new

136

5.6 Expressiveness of task graphs

P1 P2 P3 P4

R

RRRR

g2g2g2g2

g1g1g1g1

f1f1f1f1

f1f1f1f1

⊕

⊕

f2

f2

g3

Q

(a) As in formula (5.38)

P1 P2 P3 P4

RRRR

f1f1f1f1 f1f1f1f1

⊕⊕

f2f2

g1

g1g1g1g1

g2

g3

Q

(b) As in formula (5.39)

Figure 5.34: Two task graphs to compute the standard deviation of four values.

137

5 Automatic task assignment

transformations—three which involve both pair and unpair tasks; four which involve pair
tasks with the other kinds of task; and four which involve unpair tasks with the other
kinds of task. These are listed and proven to be sound in Appendix J (Sections J.1–J.3).
A comment on the presence of redundancy in these trasformations is given in Section J.4.

5.6.1.3 Expressing pair and unpair in terms of other task kinds

Pair and unpair tasks appear to be useful in order to deal with tuples. However, adding
these two extra primitives to the set of task kinds, along with the transformations shown
above, adds complexity. In the spirit of keeping the set of primitives as small as possible,
we consider whether pair and unpair tasks can be expressed in terms of the original,
primitive task kinds.

We can use processing functions to convert values of type α and values of type β into
values of type α × β. Where we have values from monoids (α, ⋆α, 0α) and (β, ⋆β, 0β), we
use processing functions pα : α → α × β and pβ : β → α × β to return values from the
monoid (α× β, ⋆α×β, (0α, 0β)), where the merge function ⋆α×β is defined as

(a1, b1) ⋆α×β (a2, b2) , (a1 ⋆α a2, b1 ⋆β b2). (5.40)

If functions pα and pβ are defined as

pα(a) , (a, 0β) and (5.41)

pβ(b) , (0α, b), (5.42)

then values from α are paired with the identity element of β and values from β are paired
with the identity element of α which allows a merge task on α × β to yield the desired
result.

Proposition 5.15. A graph consisting of a merge task combining the values returned
from pα(a) and pβ(b) acts like a pair task, outputting the pair (a, b).

Proof. We examine the denotation of this graph:

Gpair(x1, x2, y) , ∃t1, t2. Proc(pα)(x1, t1) ∧ Proc(pβ)(x2, t2) ∧
Merge(⋆α×β)(t1, t2, y)

≡ ∃t1, t2. t1 = pα(x1) ∧ t2 = pα(x2) ∧ y = t1 ⋆α×β t2
≡ y = pα(x1) ⋆α×β pβ(x2)
≡ y = (x1, 0β) ⋆α×β (0α, x2) by (5.41) and (5.42)
≡ y = (x1 ⋆α 0α, 0β ⋆β x2) by definition of ⋆α×β , (5.40)
≡ y = (x1, x2) by (5.12)
≡ Pair(x1, x2, y).

Thus, if the datatypes from which a and b are drawn can be expressed as monoids, we
can obtain (a, b) using two processing functions and a merge task. The definition of a
pair task in these terms is shown in Figure 5.35.

138

5.6 Expressiveness of task graphs

x y

(x, y)

≡

x y

(x, y)

pα pβ

⋆α×β

Figure 5.35: A pair task expressed in terms of two processing tasks and a merge task.

Even if a and b are not drawn from mergeable datatypes, we can still adopt this approach
by wrapping the datatypes in monoids which each use a special sentinel value for an
identity. Each monoid’s merge function is then defined for the cases where the sentinel is
present in either the first or second argument. Now, pα(a) , (a, σα) and pβ(b) , (σβ , b),
where σα /∈ α and σβ /∈ β are the sentinel values. Both functions return values from the
monoid ((α ∪ {σα})× (β ∪ {σβ}), ⋆α×β, (σα, σβ)) where now

a1 ⋆α a2 ,

a1 if a2 = σα

a2 if a1 = σα

⊥ otherwise,
(5.43)

and ⋆β is defined similarly, with ⋆α×β defined in terms of these new functions. In practice,
value ⊥ is never returned from ⋆α or ⋆β since ⋆α×β is only ever invoked on the return
values from pα and pβ which each guarantee precisely one sentinel value.

Given that an unpair task is the inverse of a pair task, we consider whether unpair tasks
can likewise be expressed in terms of the inverses of pα, pβ and ⋆α×β . The split task we
desire is defined as:

sα×β(a, b) , ((a, 0β), (0α, b)). (5.44)

Proposition 5.16. sα×β is a right-inverse of ⋆α×β.

Proof. From the definitions of ⋆α×β and sα×β :

⋆α×β(sα×β(a, b)) = ⋆α×β((a, 0β), (0α, b)) by defn. of sα×β, (5.44)
= (a ⋆α 0α, 0β ⋆β b) by defn. of ⋆α×β, (5.40)
= (a, b) by (5.12)

Hence sα×β is a valid split task for the monoid (α× β, ⋆α×β, (0α, 0β)).

Once sα×β has split a pair into two components, it remains to select the appropriate
elements from each. This can be done by two processing functions which simply discard
the other elements:8

πα(a, b) , a (5.45)

πβ(a, b) , b. (5.46)

8The functions are named πα and πβ by analogy with projection functions in the relational algebra
database query language.

139

5 Automatic task assignment

(x, y)

x y

≡

(x, y)

x y

sα×β

πα πβ

Figure 5.36: An unpair task expressed in terms of a split task and two processing tasks.

If these functions are used on the values returned from sα×β , the discarded values will
always be the identity values.

Proposition 5.17. A graph consisting of processing functions πα and πβ can be used in
conjunction with split task sα×β to act like an unpair task, decomposing a pair (a, b) into
its elements a and b.

Proof. We examine the denotation of the graph when passed a pair (x1, x2):

Gunpair((x1, x2), y1, y2) , ∃t1, t2. Split(sα×β)((x1, x2), t1, t2) ∧
Proc(πα)(t1, y1) ∧ Proc(πβ)(t2, y2)

≡ ∃t1, t2. (t1, t2) = sα×β(x1, x2) ∧
y1 = πα(t1) ∧ y2 = πβ(t2)

≡ ∃t1, t2. (t1, t2) = ((x1, 0β), (0α, x2)) ∧
y1 = πα(t1) ∧ y2 = πβ(t2)

by (5.44)

≡ y1 = πα(x1, 0β) ∧ y2 = πβ(0α, x2)
≡ y1 = x1 ∧ y2 = x2 by (5.45) and (5.46)
≡ (y1, y2) = (x1, x2)
≡ Unpair((x1, x2), y1, y2).

Therefore an unpair task can be expressed in terms of one split and two processing tasks,
as shown in Figure 5.36. As before, if datatypes α or β are not mergeable, we can change
the definition of sα×β to use sentinels rather than identity elements.

5.6.1.4 Revisiting the transformations involving pair and unpair

We have shown that pair and unpair tasks can be expressed in terms of the primitive
kinds of task. This leads to the question of whether the transformations involving pair
and unpair tasks defined above can also be derived purely from the transformations defined
for the primitive tasks when pair and unpair are expressed in this way.

It transpires that five of the transformations cannot be expressed in this way. This
is because they depend on the mathematical relationship between particular processing
tasks mentioned in the transformations, or on πα (used in expressing an unpair task) being
an inverse of pα (used in expressing a pair task). Full details are provided in Section J.5.

140

5.6 Expressiveness of task graphs

5.6.1.5 Compiler support of pair and unpair tasks

Some degree of language and compiler support for pair and unpair tasks is desirable. If
they are not supported, in order to make use of a pair α×β, the programmer would have
to code up the processing tasks (pα and pβ) and merge task (⋆α×β) manually. This would
have to be done for each such pair used in the program. This would be tedious given that
these functions largely consist of boiler-plate definition, which means that they are simple
to generate automatically, and it introduces the potential for mistakes to be made. It is
also rather ‘heavyweight’ to use the monoid (α× β, ⋆α×β, (0α, 0β)) when its merge task is
only ever used to combine values where precisely one element of the pair is an identity.

Because pair tasks can be expressed in terms of tasks of the primitive kinds, it is justifiable
for a compiler to support pair and unpair tasks. This can be done either by internally
expanding them in terms of the primitive kinds of task or by treating them as primitives
themselves.

When pair and unpair tasks are treated as primitives, all the transformations involving
pair and unpair tasks should be supported by the compiler. On the other hand, when pair
or unpair tasks are treated as shorthand notation for the combination of processing and
merge or split tasks, the transformations involving pair and unpair could still be directly
supported in order to maximise the flexibility offered. If instead they are left unsupported
and the original set of transformations fallen back upon then the five transformations
which cannot be expressed solely in terms of the transformations on the primitives would
not be available.

5.6.1.6 Generalising to n-ary pair and unpair tasks

The transformations involving pair and unpair tasks can also be generalised from binary
to n-ary versions, so that a compiler can implement these directly rather than relying on
repeated application of the binary versions of the transformations.9

5.6.2 Task graph edges

Now that we have shown that a function of arbitrary type can be represented in a task
graph, we turn to the question of whether they can be connected in an arbitrary fashion
in determining whether Proposition 5.14 holds.

We defined a task graph as being a directed acyclic graph. The absence of cycles means
that there is no possibility for feedback loops or mutually recursive functions. Figure 5.37
shows two such illegal configurations. These are prohibited because cyclicity makes the
task graph stateful, where future outputs may depend on the values of past outputs. This
makes it hard to reason about large-scale properties of the graph and safely perform task
graph transformations. Moreover, cyclicity gives rise to the possibility of non-termination
due to deadlock, as a merge task waits forever for a value that depends on its output. A
detailed treatment of deadlock in task graphs is given by Wadge [239].

9We give the denotations of the graphs involved in the transformations in Figure J.15 but omit the
proofs of soundness.

141

5 Automatic task assignment

x

y

M

P

R

x1 x2

y1 y2

MM

PP

RR

Figure 5.37: Two prohibited task graphs, which involve cycles.

Kahn’s theory of dataflow graphs provides a fby operator to allow the present output to
depend on the previous input and a next operator to allow the present output to depend
on the next input [239, §1]. Conceivably, special fby and next tasks could be introduced
to perform these functions in task graphs. However, these operations are particularly
low-level. Instead tasks are allowed to store state which allows them to implement this
functionality internally.

Therefore, if a program involves any kind of feedback, this must all be enclosed within
a single task if it is to be represented as a task graph. However, this is not ideal, as
the task would then not be possible to break down into pieces to be assigned to different
processors in the network.

5.7 Related work

There has been much research that is related to the content of this chapter. Closely
related are the numerous systems which perform automatic task assignment described in
Section 2.2.3. Task graphs are related to the approach to modelling parallel systems of
using dataflow graphs. This area is briefly described in Section D.3 in Appendix D.

In this section, we begin with a discussion of systems that employ transformations on task
graphs, and then perform a comparison to two of the most closely related frameworks,
MapReduce and SpatialViews.

5.7.1 Task graph transformations

A compiler offers an opportunity to optimise the execution of a program in some dimension
after it has been analysed. In traditional programming languages, optimising compilers
will typically apply program transformations to yield a faster executable, an executable
that makes more judicious use of memory at run-time, or a smaller executable.

Analogous techniques have also been applied to compilers for graph-based programming
paradigms. Usually, the aim is to increase parallelism inherent in the graph, which in
turn results in faster execution. Many of the task graph transformations presented in
Section 5.5.7 have this effect, although the decision about whether to employ a particular

142

5.7 Related work

transformation is left to the compiler based on the programmer-supplied cost function,
which may embody an optimisation policy with goals other than increases in parallelism.

The Dryad system described in Section 2.2.2.7 performs dynamic graph transformations
to modify the shape of an application’s task graph in response to real-time observations
of the size of data [123, §5.2]. The transformations may have the effect of improving the
efficiency of the application’s execution.

Gordon et al. describe the application of transformations of stream processing systems
(see Section D.3) to increase the degree of task parallelism, data parallelism and pipeline
parallelism [90]. This is achieved through ‘fission’ of stream processing elements into
several parallel elements and the ‘fusion’ of a pipeline of adjacent elements into larger
elements. This is based on the StreamIt stream processing programming language, which
is described in Section D.3.2.

The field of database query optimisation was briefly introduced in Section 2.3.1. As well
as performing a variety of simplification operations, query optimisers may apply transfor-
mations to a query’s execution plan in order to yield faster computation of results [45].
These transformations may include the elimination of redundant predicates, simplifica-
tion of expressions, unnesting of sub-queries and re-ordering of operations [140, p426].
Such transformations are particularly important in distributed query processing, where
the decision about the placement of execution is crucial since the transportation of data
may be costly.

The PacLang language for programming network processors, described in Section F, offers
the ability for programmers to express transformations to apply to the source code before
the constituent program tasks are mapped to the available processors [66]. Ennals et al.
describe a collection of transformations which affect the shape of the task graph which
may make it better suited to execution in a given network architecture [67]. Whilst at
present the transformations must be hand-picked, it is conceivable that this could be
derived by an optimising compiler when given a description of the architecture.

5.7.2 MapReduce

The task graph formalism introduced in this chapter can be used to emulate the MapRe-
duce framework, introduced in Section 2.2.2.7. The implementation of the example in
Figure 2.6 as a task graph is shown in Figure 5.38.

A split task is used to divide the input dataset into several chunks. Processing tasks
are used to encode the map and reduce functions. The partitioning is implemented by a
processing task which takes a set of key–value pairs as input and has r outputs, where r
is the number of reduce tasks, defined as:

part(S) , (δ1, δ2, . . . , δr) where δi =

{

vi if ki : vi ∈ S
0 otherwise.

In words, for each key–value pair k : v, the part function sends v to the reduce task
responsible for key k and 0 to all the others.

143

5 Automatic task assignment

Split

Map Map Map Map Map Map

Part Part Part Part Part Part

Merge Merge Merge

Sort Sort

Reduce Reduce

Sort

Reduce

x

y1 y3 y2

Figure 5.38: Emulating the MapReduce framework with a task graph. We show six
map tasks and assume that there are three intermediate keys. The Split,
Map and Reduce functions are provided by the programmer; Part, Merge

and Sort are application-independent.

144

5.7 Related work

The merge function responsible for intermediate key k has m inputs, where m is the
number of map tasks, and performs the multiset union of its inputs whilst ignoring zeros:

merge(v1, v2, . . . , vm) ,

m
⊎

i=0

vi \ {0}.

In this way, it gathers all of the values which were paired with intermediate key k into
a multiset. This is then passed to the sorting functions, which are also implemented as
processing tasks. For some programs, there is no requirement for the intermediate values
to be sorted before being passed to the reduce function. In this case, the processing tasks
implementing the sorting can be dropped from the task graph.

The dense edges in the task graph between the Part tasks and Merge tasks are necessary
because it is not possible to determine statically which intermediate keys will be generated
from each map task. However, in general, not all of the mr edges will have key–value pairs
passed down them. Instead, many of the merge tasks will be passed zeros. An extension
to the compiler could optimise this arrangement to not send zeros from Part functions
since they are ignored by Merge.

It is also not possible to determine statically how many reduce tasks are necessary; we
must instantiate one for every possible intermediate key. Again, this may give rise to
significant complexity, causing the task assignment routine to assign to processors merge,
sort and reduce tasks for keys which never arise at run-time.

5.7.2.1 Examples of emulating the MapReduce framework

We show how two examples described by Dean and Ghemawat [56] can be emulated using
a task graph. In both cases, the map and reduce functions that are described for use with
the MapReduce framework are used unchanged in processing tasks.

Count of url access frequency. This application processes logs of web page requests
and outputs the number of hits every url has received. We assume that the input
is a multiset of urls.

The split task which divides this multiset into separate chunks to be independently
processed is the inverse of the multiset union operator. For efficiency, this should
return a balanced set of multisets, such that each multiset is of approximately similar
cardinality. The processing function for the ‘map’ stage is a function m which pairs
each url in the multiset with the integer 1:

m(∅) = ∅

m({x} ⊎ xs) = (x, 1) ⊎m(xs).

The processing function for the ‘reduce’ stage is a function r which sums each value
in the list passed to it by the merge stage for a particular url:

r([]) = 0

r(x ++ xs) = x + r(xs).

145

5 Automatic task assignment

Reverse web-link graph. This application processes web pages and returns, for each
page, a list of the urls of the pages which link to it. We assume that the input is
a multiset of (url, page contents) pairs.

As above, the split task is the inverse of the multiset union operator, and should
return balanced outputs for efficiency. The processing function for the ‘map’ stage
is a function which processes the web pages, extracting the targets of links and
returning a set of (destination url, source url) pairs. The processing function for
the ‘reduce’ stage is the identity function. No work needs to be done since the Merge

stage will produce lists of source urls for a given destination page url.

In both examples there is no need for a sort stage.

5.7.3 SpatialViews

The SpatialViews framework [189], described in Section 2.3.2.1, shares the goal of en-
abling programmers to write architecture-independent programs. SpatialViews programs
describe operations which are executed on processors which are not determined until run-
time. The kinds of processors on which to execute are prescribed by the programmer
via a type system. This facility is not available in the task graph paradigm; instead,
the processors on which tasks are executed is determined by a cost function. The ap-
proach taken by SpatialViews is more suited to environments in which processors have
different capabilities, such as where processors are usually individual sensors rather than
general-purpose computing resources.

To exemplify the differences in the programming models, consider the program in List-
ing 5.1 which computes average light levels within a region.10 The computation performed
by this program is similar in spirit to that described by the task graph of Figure 5.5a.

Listing 5.1: SpatialViews program to compute average light levels

1 public class AverageLighting {
2 public static void main(String[] args) {
3 sumreduction float s=0;
4 sumreduction int n=0;
5 spatialview sv=LightSensor @ SpaceDefs.CampusB % 320;
6 visiteach x : sv
7 { s += x.read(); n++; }
8 if (n>0)
9 System.out.println(Float.toString(s/n));

10 }
11 }

The SpatialViews programmer defines a ‘spatial view’ embodying a set of light sensors
(line 5) and an operation to perform on each processor in the set (line 7). Source tasks in
the task graph correspond to the light sensors. The computation performed in parallel on
each processor is akin to the processing task h. The merging operation, ⊕, encapsulates
the summing of the numerators and denominators in the intermediate datatype. This
is implicit in the declaration of the two variables in the SpatialViews program using the
sumreduction keyword on lines 3 and 4. The final processing task, g, performs the division
equivalent to that on line 9.

10This example has been reproduced from Figure 3 of [189].

146

5.8 Further work

With regards to parallelism, the SpatialViews language restricts access to the reduction
variables to allow the code to be executed on each node in the spatial view concurrently.
On the other hand, in the task graph paradigm, the parallelism between the processing
tasks implementing h is explicit. Furthermore, in SpatialViews, parallelism can only
arise from visiteach blocks. All other code is executed centrally, rather than employing
automatic task assignment to execute it in the most appropriate place.

The particular processors on which the processing will take place is abstracted by the
spatial view concept. To a certain extent, this is similarly abstracted in the late physical
binding performed by a task graph compiler. In an initial task graph, only one instance
of the h processing task is required because the Merge–Processing transformation can be
performed to yield the appropriate number of h tasks. However, the correct number of
source tasks are still needed and these must be bound to the appropriate physical light
sensors. It is an area for future work to fully abstract this from a task graph, perhaps by
using a type system like SpatialViews’.

Finally, SpatialViews supports only a limited range of reduction operations. The version
described in [189] supports only sum and product, although the authors concede that any
commutative and associative operation would suffice. This concept is generalised in the
definition of a merge task which can embody any such operation.

5.8 Further work

There are various areas in which investigation is required to further this research.

Abstracting source and sink tasks. Although late physical binding using task graphs
aims to allow programmers to make no assumptions about the architecture in which
the application will execute, this is not fully achieved. The programmer must know
in advance the appropriate number of source and sink tasks to employ. A means of
abstracting this could be designed so that the task graph can be fully independent
of the architecture on which it is executed. A technique analogous to the definition
of spatial views in the SpatialViews framework could be adopted.

Quasi-static applications. In Section 5.4.1 we defined quasi-static applications to be
those in which mobile nodes, whose movements satisfy particular statistical prop-
erties, can be grouped into regions. A protocol could be designed for implementing
regions in quasi-static applications in which mobility is abstracted by the use of
regions which are treated as a static node in the resource graph.

Local optimisation. The assumption of a global, omniscient controller which deter-
mines the assignment function and allocates work to the processors is rather näıve.
A protocol could be designed to allow the optimisation of task assignment to be
performed on a local scale, given a description of the optimisation policy.

Cyclicity. It may be considered whether the notion of task graphs could be extended
with any degree of cyclicity permitted. Perhaps statefulness could be modelled in
a way analogous to Sheeran’s work with vlsi design language muFP [216], where

147

5 Automatic task assignment

functions can be augmented with a second output that is fed back as a second input
in order to carry state.

Queueing of values. The present assumption that tasks’ input queues are of unbounded
length is unrealistic in practice. Moreover, if a merge task has two inputs, one of
which receives data at twice the rate of the other, then repeatedly taking the value
at the head of each queue is not optimal in many application scenarios because it
would involve merging values of different ages together. Consideration would need
to be given to how to deal with varying rates of input, perhaps evaluating whether it
is sensible to execute binary merge functions with only a single value under certain
circumstances, and whether it is ever sensible to discard old data from input queues.

Non-deterministic data flow. In some applications, it may be desirable that data flow
is not deterministic but has some statistical properties. The merits of a new,
‘stochastic’ kind of task could be considered, which has one input and two out-
puts, whose input values are copied to one output with probability p or to the other
output with probability 1− p.

5.9 Summary

Traditionally, when designing a distributed application, a programmer must manually
define where the components of the application—called tasks—will be executed. The
absence in the task definitions of a notion of where in the system they are to be executed
allows a compiler to automatically derive an assignment of tasks to processors. Many
areas of distributed computing can benefit from automatic task assignment, including
sensor networks, ubiquitous computing, grid computing and web services.

The assignment of tasks to processors can be optimised by performing various transfor-
mations that change the task graph whilst preserving its semantics. A number of such
transformations have been described. Certain transformations only preserve the seman-
tics of the graph when the processing functions involved are monoid homomorphisms.
Other transformations have further requirements. We have shown how more complex
transformations can be built out of the original transformations.

A task graph is defined to be a directed graph consisting of source, sink, processing,
replication, merge and split tasks. These tasks are sufficient since pair and unpair tasks
can be expressed in terms of them. This means that a task graph is sufficient to express
any algorithm; however, if it involves mutual recursion or feedback loops, the functions
involved must all be contained within a single task.

148

CHAPTER6

Language and Compiler

In Chapter 5, we introduced a task graph paradigm for designing distributed applications.
This paradigm is particularly attractive because optimisations can be performed on the
task graph originally specified by the programmer in order to increase its suitability for
execution in a particular network.

In this chapter, those abstract ideas are made concrete in a programming language and
compiler which we describe. The programming language, described in Section 6.1, enables
programmers to express the computation performed by merge, split and processing tasks
in a natural fashion similar to object-oriented programming, and describe the task graph
which indicates how the tasks are connected. The compiler, described in Section 6.2, takes
these definitions along with a description of the computational resources and performs
transformations to optimise the assignment of tasks to processors. The compiler then
outputs an executable for each processor.

Chapter 7 will present some examples of real-world applications implemented in the lan-
guage introduced here.

6.1 Language

When introducing a new programming paradigm, there is a question over the most suitable
means of exposing it to a programmer [189, §5.1]. One option is to create a library and
api for an existing programming language. In this approach, the programmer can rapidly
adjust to the new paradigm because there is already an existing, familiar tool-chain for
him to use and no new language features to learn.

149

6 Language and Compiler

A second option is to embed the new features into an existing language. This is the
approach taken by the .net Language-Integrated Query (linq) framework [173], in which
database queries are expressed using normal method calls and are compiled into sql. This
brings the advantage of allowing compile-time analyses to be performed that could not
be performed by the host language’s compiler, but it may be difficult to effectively embed
features whose semantics depart dramatically from those of the host language.

A third option is to create a new programming language. This is a disruptive approach:
programmers must learn new syntax and program structure as well as needing to gain
an intuitive understanding of the function performed by the language’s compiler. On
the other hand, the new programming language can be precisely tailored to suit the
paradigm, perhaps introducing new abstractions which do not exist in other languages.
This is likely to make code more readable and hence more maintainable. Again, the
creation of a dedicated compiler for the language means that compile-time analyses and
program transformations are possible.

Since a major motivation for the task graph paradigm is the possibility to perform compile-
time optimisations, we have chosen to create a new programming language to implement
the paradigm of late physical binding through task assignment.

To implement an application in this paradigm, the following components must be provided
to a compiler:

• a task graph, defining the computation performed by merge, split and processing
tasks, and indicating the connections between tasks;

• a resource graph, defining the network of computational resources available to exe-
cute the tasks;

• an initial mapping, indicating the resources to which source and sink tasks are
bound;

• a cost function, used to optimise the assignment of tasks to resources.

In cases where the network is dynamic or the program is designed to work on a number
of network architectures, the resource graph cannot be specified by the programmer.
Instead, the topology of the network must be discovered automatically and the resource
graph created just prior to compilation.

6.1.1 Datatype definitions

There are various ways in which the task graph computational model could be encoded
in a programming language. One approach is task-oriented, in which each processing,
merge and split task is a first-class citizen. Instead, a datatype-oriented approach is
adopted in which merge, split and processing tasks are encapsulated in the definitions of
the datatypes they operate on. This approach ties in well with the modelling of some
datatypes as commutative monoids, with their associated binary operation. For datatypes
that can be modelled in this way, it is natural to encapsulate the underlying set, binary

150

6.1 Language

mergeable splittable datatype PartialAv {

private double numer;

private int denom;

public PartialAv() [cpu=0, out size=1] { identity element, (0, 0)
this(0, 0);

}

public PartialAv(double numer, int denom) { singleton constructor
this.numer = numer; for choosing a value
this.denom = denom; from R × N

}

public PartialAv merge(PartialAv a) merge function, ⊕
[cpu=1, out size=sum]

{

return new PartialAv(this.numer + a.numer,

this.denom + a.denom);

}

public PartialAv[] split() split function, >

[cpu=2, out size=in/2]

{

double seminumer = this.numer / 2.0;

int semidenom = this.denom / 2;

return new PartialAv[] {

new PartialAv(seminumer, semidenom),

new PartialAv(seminumer,

semidenom + this.denom % 2)

};

}

processto Average [cpu=1, out size=1] { processing function, g,
return new Average(this.numer / this.denom); returning an instance of

} the Average datatype,
} not defined here

Figure 6.1: Declaration of the datatype PartialAv representing the monoid (R ×
N,⊕, (0, 0)).

operation and identity element in a single logical unit. Processing tasks that can process
data of a particular datatype are also encapsulated within that same logical unit.

This datatype-oriented approach fits in well with object-orientation. Hence we have cho-
sen to base the language on Java, although any other object-oriented language would have
provided an adequate basis.

Each datatype is defined in its own file and has a syntax built on top of a Java class.
Metrics relating to tasks that are used by the cost function to evaluate a mapping are
also specified in this file. A datatype is declared using the datatype keyword. To facili-
tate physical distribution of the datatype’s components, static methods and static fields
(except public static final fields) are not permitted in datatype declarations.

Datatypes must specify a constructor by which to create a instance of the datatype that
wraps a single element from the underlying set of values. This allows new items of data
to be instantiated.

6.1.1.1 Merge and split tasks

As introduced in Section 5.5.6.1, some datatypes are mergeable. These datatypes can
be modelled mathematically as commutative monoids. They are defined in terms of an

151

6 Language and Compiler

underlying set of values, an identity value and a merge function.

Declarations of such datatypes use the mergeable modifier to indicate that they are
mergeable. Figure 6.1 shows the datatype declaration for the monoid (R × N,⊕, (0, 0))
used in the arithmetic mean example in Section 5.5.7.1, which is a typical mergeable
datatype. The use of the mergeable modifier entails two requirements:

• The datatype is a monoid so must have an identity element. This is implemented by
requiring that mergeable datatypes support a constructor that takes no arguments.

• The binary merge operation must be specified. This is implemented by requiring
that mergeable datatypes of type α support a publicly visible non-static method
merge which takes an argument of type α and returns a value of type α. The merge
function is specified such that the expression a = a1 ⋆ a2 can be expressed in the
fashion a = a1.merge(a2).

Some datatypes define an operation to split them into a pair of smaller elements. Whilst it
is necessarily true that all mergeable datatypes are also splittable in theory, it may be that
the algorithm for implementing balanced splitting is significantly harder to implement
than merging. For example, in the monoid (N,×, 1), merging is multiplication (easy)
but splitting is factorisation (hard). It is also conceivable that the converse is true for
some datatypes: it may be much easier to express a balanced split operation than a
merge operation. Therefore, it is not mandatory that mergeable datatypes necessarily
support a split operation. The splittable modifier is used on datatypes that implement
a split operation as a publicly visible non-static method which returns a pair of items.1

Programmers of datatypes that are both mergeable and splittable need to ensure that
the merge operation is the inverse of the split operation; in general it is undecidable for
a compiler to check this statically, but it can be easily unit tested.

The example in Figure 6.1 defined a split task > which returns two smaller instances of
the datatype of balanced magnitude, such that

∀x ∈ N× R. ⊕ (>(x)) = x.

6.1.1.2 Processing tasks

In the computational model, a processing task transforms data of one type into another
type; see Section 5.5.6.2. Each datatype thus has zero or more other datatypes into which
it can be processed. For each such possibility, the datatype declaration contains the code
describing the processing task. These are defined in processto functions, which must
each return an object of the target type.

In the Java-based implementation, this is implemented in the ‘source’ datatype’s dec-
laration rather than as a constructor in the ‘destination’ datatype’s declaration so that
private members of the source datatype can be accessed, but the alternative approach
would have been equally valid.

1Returning a pair of items is implemented as an array of length two.

152

6.1 Language

Note that the presence of a processing function in a datatype’s declaration does not imply
that it will necessarily be part of a task graph; it merely indicates that such a function
exists.

Processing functions that are monoid homomorphisms are marked with the homomorphism
keyword, to notify the compiler that transformations appropriate to homomorphisms can
be safely applied in applications using this function. Again, it is undecidable for a compiler
to check this statically, so it is the programmer’s responsibility to ensure that this keyword
is used on appropriate occasions. In Figure 6.1, the processing task representing g is not
a homomorphism so is not marked in this way.

6.1.1.3 Cost annotations

Annotations describing the values of various metrics that are employed by the cost func-
tion are required for processing functions, merge functions, split functions and construc-
tors that are used as source tasks. The metrics are specified as a comma-separated list of
key–value pairs, enclosed in square brackets, where the key is a string known to the cost
function and the value is a simple arithmetic expression. Several of these are evident in
Figure 6.1.

Keys may include the out modifier to indicate that they are metrics characterising data
on egress edges from the corresponding node in a task graph. Other values characterise
the node itself. Egress edge values may use the special value in to refer to the value of the
input for the corresponding key. For merge functions, which are unique in having more
than one ingress edge, values may use the keywords num, sum, max, min, avg to refer to the
number, sum, minimum, maximum or average of the input values for the corresponding
key. For split functions, the keyword outs refers to the number of outputs.

For example, a merge task may be annotated with

cpu=50, out size=sum, out privacy=max

to indicate that its cpu load is fifty units; that the size of the output is the sum of the
sizes of its inputs; and that the degree of sensitivity with respect to privacy is the largest
such from among its inputs.

It is necessary for these annotations to be attached to the definitions of the functions,
rather than the task graph, because the compiler is free to apply transformations to the
task graph, and needs to know the values of the metrics on nodes and edges that it creates
in the graph.

6.1.2 Task graph definition

Once the datatypes that are involved in the application have been defined, the programmer
needs to indicate how the tasks are wired together, in a task graph definition file.

An example task graph definition for the arithmetic mean application is given in Fig-
ure 6.2. The task graph it defines corresponds to the merging-before-processing approach
and can be thought of as a three-input version of the task graph depicted in Figure 5.5b.

153

6 Language and Compiler

taskgraph AvTemp {

sourcetask<TempSet> c0 ["/dev/ttyS0"], c1 ["/dev/ttyS0"], c2 ["/dev/ttyS0"];

mergetask<TempSet> m0 [1 => inf, 2 => inf, 3 => inf];

processtask<TempSet, PartialAv> p0;

processtask<PartialAv, Average> p1;

sinktask<Average> s0;

c0 -> m0; c1 -> m0; c2 -> m0;

m0 -> p0;

p0 -> p1;

p1 -> s0;

}

Figure 6.2: Task graph definition for the temperature-averaging application.

The taskgraph block is used to supply a name for the application (AvTemp in the example)
and specify an initial task graph for the application. This task graph will not necessarily
reflect that which is eventually executed; the compiler is free to perform transformations
to optimise it. Hence, programmers are encouraged to describe the initial task graph in
as clear a fashion as possible.

Each task in the graph is declared to be either a sourcetask, a sinktask, a mergetask,
a splittask, a processtask or a reptask. Where appropriate, the ingress and egress
datatypes for these tasks are specified in angled brackets. Programmers specify the egress
datatype for source tasks; the ingress datatype for sink tasks; the ingress and egress
datatype for merge tasks, split tasks and replication tasks; and both the ingress and
egress datatypes for processing tasks.

The links between tasks, indicating the direction of data flow, are specified using the
identifiers given to the tasks. Tasks with multiple inputs or outputs can be specified by
having several edges terminating at or leading from the task; this is the case for m0 in the
example, which is a ternary merge task.

Source tasks can optionally be given a list of arguments that are to be passed to the
constructor of its datatype, if any are required. In a sensor network, the source tasks
generate the application’s input data, so the arguments can be used to create an instance
of the source datatype appropriate to each source task. In the example, each source
task is passed a string indicating the device file corresponding to the sensor from which
temperature data is to be sampled.

Merge tasks specified in the task graph can be annotated with an array of timeouts. (See
Section 5.5.4 for the motivation for this facility.) For an n-ary merge task, timeouts are
specified for each number of potential inputs received from 1 to n. The timeout for k
inputs indicates the longest duration of time the task should wait, after having received
k− 1 input values, for the next. If a timeout expires, the merge task treats that input as
if it had received the datatype’s identity element. The special timeout value inf denotes
an infinite duration, implying that it is not acceptable for the merge task to produce an
output without having received further input values. The timeout value 0 for a particular
input implies that the merge task can always execute without a value being present on
that input. If no timeouts are specified, it is assumed that the timeout for all numbers of
inputs up to and including n are infinite. Infinite timeouts are generally to be avoided in
systems such as sensor networks where the failure of nodes is frequent, as a single failure

154

6.1 Language

resourcegraph {

sensor0: 192.168.0.100 [speed => 2];

sensor1: 192.168.0.101 [speed => 2];

sensor2: 192.168.0.102 [speed => 2];

host3: 192.168.0.103 [speed => 10];

sensor0 -- host3 [bandwidth => 5, latency => 1];

sensor1 -- sensor0 [bandwidth => 1, latency => 1];

sensor2 -- host3 [bandwidth => 5, latency => 1];

}

Figure 6.3: Example resource graph.

mapping {

c0 -> sensor0;

c1 -> sensor1;

c2 -> sensor2;

s0 -> host3;

}

Figure 6.4: Example initial mapping file definition.

may prevent the system from producing output.2

6.1.3 Resource graph definition

A resource graph definition file describes the computational resources in the network (the
nodes) and the communications links between them (the edges). An example is shown in
Figure 6.3.

Resources are given names, and their ip addresses or hostnames are supplied. Whilst
the current implementation of the compiler produces code for an ip network, this need
not be the case: this information is merely used to provide a name for an endpoint for
communication between tasks.

The links between nodes are specified as shown in the example. Symmetric bi-directional
links are indicated by the -- operator; uni-directional links are indicated by ->. Asym-
metric links can thus be specified using two uni-directional links.

Both the nodes and edges of the graph can be annotated with costs, specified as a comma-
separated list of key–value pairs within square brackets. These costs denote properties of
the processors or the communication links. Keys, such as speed, bandwidth and latency

in the example, are names which are known to the cost function.

6.1.4 Initial mapping definition

An initial mapping file specifies an initial assignment function from tasks to processors.
An example is shown in Figure 6.4.

The assignment function produced by a compiler is a superset of the mapping specified in
the initial mapping file. In other words, the mappings specified here indicate fixed tasks
that will definitely be executed on particular processors. Furthermore, tasks which are

2Despite this, infinite timeouts are used as the default because there is no more appropriate alternative.

155

6 Language and Compiler

bound to processors in the mapping are not eligible to be participants in a task graph
transformation effected by the compiler.

The task names correspond to names specified in the task graph file; the resource names
correspond to those specified in the resource graph file. In the example, the three source
tasks are mapped to the three sensor nodes and the sink task is mapped to the other
node.

Whilst there is no requirement to map any tasks to any processors, this facility will be
used in many scenarios. For example, in a sensor network, a particular source task may
need to be executed on a particular node because it has the sensor to be sampled, and
a particular sink task may need to be executed on a particular node where the result of
the processing is to be known. However, this feature can also be used by the programmer
to lock other tasks to particular processors if desired, perhaps where special hardware
support is required.

6.1.5 Cost function definition

The final element of an application provided to a compiler by the programmer is the cost
function, which is used to evaluate a task assignment function.

In the present implementation, this is specified as a perl script containing a function
which computes the cost. This function is given a total assignment function, the task
graph and the resource graph along with the attributes of their nodes and edges; it
returns a positive real number indicating the efficacy of the assignment. A smaller return
value denotes a more desirable assignment.

6.1.5.1 Built-in functions

A library of built-in functions from which a cost function can be simply constructed is
provided with the compiler. An example of one such function which this library contains is
an ‘execution time’ function. This function simulates the execution of the application and
computes the elapsed time between the application’s source tasks producing a value and
the result of processing arriving at all the sink tasks. The simulation of the application
involves scheduling the tasks on the processors, respecting the parallelism inherent in the
network and assuming that a single processor executes multiple tasks sequentially in the
order of which task’s inputs are ready first.

The time to execute a task is calculated from the speed of the processor and the task’s cpu
load. The processor’s speed is specified in the resource graph file as the speed attribute,
measured in instructions per second. The task’s cpu load is specified in the datatype
definition file as the cpu attribute, measured in instructions.

The communication time is calculated from the anticipated size of the data and the
characteristics of the communication links. Source tasks’ size attributes specify the size
of the data that they output in the datatype definition file for the source datatype; other
tasks’ size attributes specify the relation between the size of their input and the size of
their output. Hence the size of the data on any edge in the task graph can be estimated.

156

6.2 Compiler

The characteristics of the communication links are specified in the resource graph file as
bandwidth and latency attributes. Also, a boolean parallelinputs attribute can be
used to specify whether a task with multiple inputs is capable of receiving data from
predecessor tasks in parallel or whether this must be done sequentially.

6.1.5.2 Static nature of attributes

Of course, the attributes provided in the datatype definition and resource graph files are
necessarily static values. This is because the cost function is executed at compile time
and the attributes are specified by the programmer. Hence they can only be an estimate
of the actual, dynamic characteristics of the application.

If the appropriate values of the attributes are not clear to the programmer, they could be
estimated through off-line profiling. Alternatively, as is the case in many dynamic task
assignment systems (see Section 2.2.3.2), dynamic values of attributes can be collected at
run-time through on-line profiling. It is conceivable that a similar feedback mechanism
could be implemented in order to update the attributes in accordance with true values
experienced at run-time.

6.2 Compiler

We now turn our attention to describing the compiler, which applies late physical binding
to applications and produces executables.

The inputs provided to the compiler are as follows:

• the datatype definition files;

• the task graph definition file;

• the resource graph definition file;

• the initial mapping definition file; and

• the cost function definition file.

The job of the compiler is to consider semantically-equivalent alternatives to the task
graph supplied, and to derive a total task assignment function mapping each task to the
processor defined in the resource graph found to be most appropriate to execute it. This is
described in Section 6.2.1. Details regarding the compiler’s implementation are provided
in Section 6.2.2.

The output of the compiler is an executable for each processor that has at least one task
assigned to it. In addition to the code written by the programmer, these executables will
contain the code that performs inter-task communication. The compiler also provides a
variety of facilities that the programmer can interact with to aid the development process,
described in Section 6.2.3.

157

6 Language and Compiler

6.2.1 Task graph optimisation and assignment

The compiler analyses the task graph and the resource graph to determine the best lo-
cations to execute the tasks. As part of this process, the annotations associated with
processors and communication links in the co-ordinator file are examined by the cost
function to determine the relative suitability of any particular mapping of tasks to pro-
cessors. The compiler applies the program transformations described in Section 5.5.7 as
well as task assignment to determine the best task graph and best mapping of its tasks
to processors.

Solving the task assignment problem is a long-established research area, sometimes re-
ferred to as task scheduling. However, the majority of this research has been done in
the context of homogeneous networks; that is, where the processors have identical char-
acteristics. We require an algorithm that optimises task assignment in a heterogeneous
network.

We do not aim to make a direct contribution to this field—we have not attempted to make
the task assignment algorithm implemented by the compiler state-of-the-art; improving
it is an area for future work. However, to the best of our knowledge, we are not aware of
the existence of a task assignment algorithm that considers performing transformations
on the task graph to improve the assignment.

6.2.1.1 Task assignment algorithms

Kwok and Ahmad’s extensive survey of static task assignment algorithms [144] describes
27 algorithms for scheduling directed task graphs on homogeneous multi-processor sys-
tems. However, the authors highlight that little work has been done in task assignment
for heterogeneous systems, where the processors do not necessarily share similar charac-
teristics [144, p455].

Algorithms for task assignment are np-complete in all but a few restricted cases [72],
meaning that it is usually infeasible to computationally determine the optimal assignment,
even for the homogeneous case. To render the computation feasible, many polynomial-
time sub-optimal heuristic-based approaches have been proposed, and attempts have been
made to restrict the problem to simpler cases that can be solved optimally in polynomial
time.

Casavant and Kuhl have produced a taxonomy of scheduling algorithms and classify
various algorithms against it [42]. For static algorithms, they distinguish optimal and
sub-optimal approaches. Sub-optimal approaches are classified as either approximate or
heuristic-based.

Kafil and Ahmad present an algorithm for task assignment in heterogeneous environments,
which finds optimal solutions [131]. The algorithm uses the A* best-first tree-search
strategy. For task assignment, the nodes of the tree represent partial assignment functions,
with the root being the totally undefined assignment function and the leaves being total
assignment functions. A node’s children are examined in order of a lower-bound estimate
on the additional cost of assigning the currently unassigned tasks. Whilst this approach

158

6.2 Compiler

remains np-complete, Kafil and Ahmad claim that the average-case complexity of their
approach is usually acceptable ‘for medium problems’.

Menascé et al. define a meta-algorithm that can be used to systematically build a range
of static heuristic algorithms for heterogeneous environments [174]. This meta-algorithm
consists of a loop that repeatedly executes a heuristic function, which selects a processor
and a task from the set of unassigned tasks, until all tasks are assigned.

6.2.1.2 Implemented algorithm

Unfortunately, mapping a task graph to a resource graph is too general a problem to have a
polynomial-time solution. Furthermore, the potentially computationally-intensive nature
of the cost function means that an approach such as Kafil and Ahmad’s A* search is not
appropriate. Hence, a sub-optimal, heuristic-based algorithm has been implemented.

Implementing a suitable heuristic on which to base the search is challenging because of the
possibility of performing task graph transformations. The search space can be thought
of as a graph of multi-dimensional spaces. Performing a transformation causes a jump to
another space; re-assigning a task from one processor to another causes a change within
that space in the dimension corresponding to that task. A good search strategy will
therefore have some means of predicting whether a transformation is likely to yield a
space which contains a lower-cost assignment. Furthermore, the search must be careful
to avoid looping if it were to consider a sequence of transformations whose composition
is equivalent to the identity transformation.

The present solution involves starting in a random state. All unmapped tasks are initially
assigned to random reachable nodes. For a given task, a reachable node is defined as one
for which there exist paths from all nodes to which the task’s predecessors are mapped.
A method of steepest descent is then used to iteratively search for improvements, in
two phases: firstly, all possible immediate task graph transformations are determined;
secondly, for every program transformation we consider moving each task in turn to
alternative processors in the resource graph. Finally the program transformation and
task movement combination with the lowest cost is selected as the starting point for the
next search iteration. We terminate our search when no further improvements can be
found.

This procedure is repeated a number of times from different random starting states to
aim to find a point in the search space with the global minimum cost. Each application of
the method of steepest descent will find a local minimum, but the starting position may
lead to a poor local minimum. The larger the number of iterations from random starting
points, the more likely it is that the global minimum will be found.

Notably, the strategy for attempting transformations is sub-optimal. In particular, it will
only perform a sequence of two transformations on a task graph if performing the first
transformation results in an improvement. Hence, a small local maximum can obscure a
valley of low cost in the direction beyond it. Improving the algorithm is the subject of
future work.

159

6 Language and Compiler

6.2.2 Compiler implementation

In our current implementation, Polyglot [191] was used to define the language in which
datatypes are defined. Polyglot is a framework that facilitates the creation of extensions to
the Java language and compiler. This is achieved through a pre-processor that converts
code written in the new language into standard Java code, performing new language-
specific compile-time error checking. The standard Java code is then compiled using an
ordinary Java compiler and executed using an ordinary Java virtual machine.

For example, the presence of the mergeable keyword on a datatype definition causes a
check that a merge task with the appropriate signature is present. Code blocks introduced
by the processto keyword are converted into ordinary methods.

As well as being used for the datatype definition language, Polyglot was also employed
to compile the task graph, resource graph and initial mapping files. These are compiled
into a single class that describes the graphs in terms of Java objects. When executed,
this class performs the task graph optimisation and task assignment using the definition
of the cost function, and generates the application’s executable code in separate bundles,
one for each processor. Each bundle is then compiled using a conventional Java compiler
and wrapped up in a jar file.

A compiler flag allows a choice between producing bundles to run on ordinary desktop
computers or on resource-constrained Sun spot devices (see Section B.1). The former
option generates a standard Java application that uses Java’s built-in rmi for inter-task
communications. For networks of resource-constrained devices, rmi is not ideal, since
this approach requires a central registry to be present and accessible. The latter option
generates a midlet for each processor and uses an alternative to rmi that was designed to
run on devices with higher resource limitations, which has lower message overheads and
does not require centralised registries.

6.2.3 Front end

The compiler also has a graphical user interface that the programmer can optionally
interact with to aid the process of developing applications. Figure 6.5 shows a screenshot
of this front end.

It provides the following facilities:

• Visualisation of the task graph, resource graph and assignment function, achieved
using Graphviz [84] graph layout software.

• The ability to see which task graph transformations are eligible to be performed
and perform them, to visualise their consequences.

• For a specified resource graph, the ability to execute the task graph optimisation
and assignment algorithm used by the compiler, to preview the assignment.

• A detailed breakdown of the costs which add up to the overall cost of assignment.

• The ability to manually modify a task assignment, seeing the effect on the cost
metric.

160

6.3 Further work

Figure 6.5: Screenshot of graphical interface visualisation aid.

6.3 Further work

There is some scope for considering improvements to the language and compiler:

Dynamic task assignment. The compiler presently merely facilitates static task as-
signment. A run-time middleware could be implemented to consider dynamic mod-
ification of the assignment. As part of this, a means of on-line profiling for the
application is required, which will dynamically update the cost attributes for the
task graph’s nodes and edges.

Macro language. A macro language to enable portions of a task graph (and corre-
sponding entries in the initial mapping) to be generated automatically from a single
schema would be a useful aid to development. This would permit large task graphs
with a regular structure to be created more easily. One possibility would be to
adopt an approach akin to Dryad, in which graphs are described in a traditional
programming language extended with graph composition operators [123, §3].

Constraining the mapping. The initial mapping currently provides only the facility to
bind a task to a particular processor, or to leave it entirely unbound and potentially
suitable for execution on any processor. Some degree of middle ground may be
desirable. For example, sets of processors in the resource graph could be identified
and the initial mapping could allow the programmer to specify that a task can be
assigned to any member of one such set. This facility could be useful to group
processors that have specialised hardware that a particular task requires.

161

6 Language and Compiler

Dealing with failure. Presently, the code generated by the compiler assumes that the
processors executing the tasks do not fail. A technique could be implemented to
detect and recover from failure during run-time.

Implement pair and unpair tasks. The current implementation of the compiler does
not support pair and unpair tasks natively; see Section 5.6.1 for a discussion of the
desirability of this. Rather than explicit support for pair tasks, one option would be
to support n-ary processing tasks. However, if the language were to support this,
it would demand a change to the decision about where the code defining processing
tasks is defined. Currently, they are defined within the datatype whose values they
accept as input. But this would no longer make sense if the task takes multiple
input values.

Improve task assignment algorithm. The present version of the task graph optimi-
sation and assignment algorithm used by the compiler is somewhat näıve. It could
be improved by implementing a more efficient task assignment technique and by
investigating whether it is possible to heuristically predict a sequence of task graph
transformations that might yield a better assignment.

6.4 Summary

A programming language has been created which can be used to write applications for
distributed systems based on the task graph design paradigm introduced in Chapter 5.
The language allows programmers to define merge, split and processing tasks encapsulated
within the datatypes on which they operate.

The language’s compiler takes the datatype definitions, along with descriptions of the
task graph, the resource graph and the cost function against which an assignment is
evaluated. The compiler performs automatic task assignment and the transformations
described in Section 5.5.7 in order to find a strategy for executing the application. The
compiler produces a jar file to execute on each processor to which tasks are assigned,
suitable for either Sun spot devices or ordinary desktop machines within jvms.

Chapter 7 will describe the use of this language in practical settings.

162

CHAPTER7

Examples

In this chapter, we present two examples of designing practical applications using the
task graph paradigm introduced in Chapter 5 and of using the language and compiler
described in Chapter 6 to implement them.

The example in Section 7.1 is a ray-tracing application exemplifying a typical grid com-
puting application. This shows that the task graph paradigm can be readily applied to
areas of distributed computing beyond just those involving computation involving vehi-
cles. The example in Section 7.2 relates specifically to computing in vehicles and is an
implementation of the map generation application of Chapter 4.

7.1 Ray tracing

Ray tracing is a simple technique in computer graphics to render an image of a scene as
viewed from a particular location [88]. It involves projecting a straight line (a ‘ray’) from
the viewpoint through each pixel of a screen until it hits an object in the scene. The
colour of the object is the colour for that pixel, calculated by computing the angle to the
light sources, taking into account the properties of the object’s surface.

This procedure is readily amenable to parallelisation1 as the colour for each pixel can be
computed independently. The principle is to have a set of pixels, split it, process each
into a partial image and recombine.

1We avoid the term distributed ray tracing since this usually refers to the technique of altering the
directions of the rays to produce effects like motion blur, rather than to the parallelisation of ray tracing.

163

7 Examples

7.1.1 Datatypes

The application employs three datatypes:

• a set of co-ordinates of pixels to render (the PixelSet datatype);

• a rendered image, consisting of an array of pixel colours (the Image datatype); and

• a datatype to save the image to a file (the Writer datatype).

We will look at the source code for each in turn.

7.1.1.1 Set of co-ordinates

The PixelSet datatype represents a set of co-ordinates of pixels whose colours should be
determined. Conceptually, the PixelSet datatype corresponds to the monoid

(P(N× N),∪, ∅),

but we also encapsulate the width and height of the desired image for convenience. The
source code for the PixelSet datatype is shown in Listing 7.1.

Listing 7.1: Datatype PixelSet

1 package raytracer;
2
3 import java.util.*;
4 import raytracer.*;
5
6 mergeable splittable datatype PixelSet {
7
8 private Scene scene = new MyScene(); // hard-coded definition of scene
9

10 private int w; // pixels
11 private int h; // pixels
12 private Collection set;
13
14 public PixelSet() [cpu=0, out size=3] {
15 this(0, 0);
16 }
17
18 public PixelSet(int w, int h) [cpu=1, out size=3] {
19 this.set = initCollection();
20 this.w = w;
21 this.h = h;
22
23 for (int i=0; i<w; i++) {
24 for (int j=0; j<h; j++) {
25 set.add(new Coord(i, j));
26 }
27 }
28 }
29
30 public PixelSet(Collection set, int w, int h) [cpu=1, out size=3] {
31 this.set = set;
32 this.w = w;
33 this.h = h;
34 }
35
36 public String toString() {
37 return "PixelSet["+set.size()+", w="+w+", h="+h+"]";
38 }
39
40 public Collection initCollection() {

164

7.1 Ray tracing

41 return new ArrayList(); // or could be HashSet
42 }
43
44 public Iterator iterator() {
45 return this.set.iterator();
46 }
47
48 public int numPixels() {
49 return this.set.size();
50 }
51
52 public PixelSet merge(PixelSet that) [cpu=1, out size=max] {
53 Collection newSet = initCollection();
54 newSet.addAll(this.set);
55 newSet.addAll(that.set);
56 return new PixelSet(newSet, this.w, this.h);
57 }
58
59 public PixelSet[] split() [cpu=1, out size=in/outs] {
60 int elements = this.set.size();
61
62 Collection one = initCollection();
63 Collection two = initCollection();
64
65 Iterator iterator = this.set.iterator();
66 for (int i=0; i<elements/2; ++i) {
67 one.add(iterator.next());
68 }
69 for (int i=elements/2; i<elements; ++i) {
70 two.add(iterator.next());
71 }
72
73 return new PixelSet[] {
74 new PixelSet(one, this.w, this.h),
75 new PixelSet(two, this.w, this.h)
76 };
77 }
78
79 homomorphism processto Image [cpu=in*100, out size=in/3] {
80 Image image = new Image(this.w, this.h);
81 Viewer viewer = new Viewer(image, true, this.w, this.h);
82
83 int p = 0;
84 Iterator iterator = iterator();
85 while (iterator.hasNext()) {
86 Coord c = (Coord) iterator.next();
87
88 scene.doPixel(image, c.x, c.y);
89
90 // Update the viewer
91 viewer.paintPixel(c.x, c.y);
92 if (++p % 10 == 0) viewer.repaint(); // repaint every so often
93 }
94
95 return image;
96 }
97
98 }

Three constructors are defined: a default constructor that initialises an empty set of
co-ordinates (lines 14–16); a constructor that produces a set of co-ordinates defining a
rectangular area of specified width and height (lines 18–28); and a constructor that can
be given an existing set of co-ordinates (lines 30–34).

The datatype is declared to be mergeable and splittable (line 6). This entails the presence
of a merge method and a split method. The merge method returns the union of two sets
of co-ordinates (lines 52–57). The split method performs a balanced split, partitioning
the co-ordinates into two sets of (near-)equal cardinality (lines 59–77).

A processing task that converts an instance of the PixelSet datatype to an instance of the
Image datatype is defined (lines 79–96). It is declared to be a homomorphism between
these mergeable datatypes (line 79), which means that the programmer is satisfied that

165

7 Examples

merging the results of running this processing task on two sets of co-ordinates achieves
the same effect as running it on the union of these sets.

This processing task is where the core ray tracing algorithm is invoked. A fresh instance
of the Image datatype of the appropriate height and width is instantiated (line 80). Then,
for each co-ordinate in the set, the colour of the pixel is determined and written into the
image (line 88). In order to visualise the progress of the rendering, a window showing the
image is updated (lines 90–92).

The details of the ray-tracing algorithm by which pixel colours are determined are not
shown. In the current implementation, the scene is defined in the MyScene class (not
shown) through an object model. This is referenced on line 8. In a future implementation,
it would be better for the scene to be passed as a parameter to the rendering processing
task.

The cost annotations indicate that a source task producing a PixelSet would require neg-
ligible cpu cycles and produce output of size three units (line 14). Merging two instances
of PixelSet produces an instance that is the same size as the largest of the two (line 52).
Splitting a PixelSet into n parts produces outputs that are 1

n
of the size of the original (line

59). Processing to an Image costs 100 units of cpu cycles for every pixel and produces an
output that consumes a third of the memory (line 79).

7.1.1.2 Image

The Image datatype represents an array of pixel colours. It can be thought of as a monoid
consisting of a partial function from pixel co-ordinates to their colours,

(N× N ⇀ C, ⊲, ∅),

where C , [0, 1]3 represents the red, blue and green components of a colour. The merge
function, ⊲, behaves like its first argument where defined and otherwise like its second
argument, i.e.

(f ⊲ g)(x) ,

{

f(x) if x ∈ dom(f)
g(x) otherwise.

Although in general ⊲ is not commutative, it is only ever used when dom(f)∩dom(g) = ∅,
so will always behave in a commutative fashion. The intent of this datatype is that a
finished image will be a total function from the set of the co-ordinates of all pixels in a
rectangle to their colours. Even in circumstances where there is an overlap between the
domains of f and g, (f ⊲ g)(x) would still be suitable to use provided that f(x) = g(x);
this would be useful in implementations where re-computation is used to mask failures.

The source code for the Image datatype is shown in Listing 7.2. The partial function
underlying the datatype is encoded as a two-dimensional array of type Colour (line 12), a
class whose definition is not shown here.

Listing 7.2: Datatype Image

1 package raytracer;
2
3 import java.awt.*;
4 import java.awt.image.*;

166

7.1 Ray tracing

5 import java.io.*;
6 import com.sun.image.codec.jpeg.*;
7
8 mergeable datatype Image {
9

10 private int w; // pixels
11 private int h; // pixels
12 private Colour[][] pixels;
13
14 public Image() [cpu=0] {
15 this(0, 0);
16 }
17
18 public Image(int horizPixels, int vertPixels) [cpu=0] {
19 this.w = horizPixels;
20 this.h = vertPixels;
21 this.pixels = new Colour[w][h];
22 }
23
24 public String toString() {
25 return "Image["+w+"x"+h+"]";
26 }
27
28 public Colour getPixel(int i, int j) {
29 return pixels[i][j];
30 }
31
32 public void setPixel(int x, int y, Colour col) {
33 pixels[x][y] = col;
34 }
35
36 public Image merge(Image that) [cpu=1, out size=4] {
37 int w = (int)Math.max(this.w, that.w);
38 int h = (int)Math.max(this.h, that.h);
39 Image m = new Image(w, h);
40
41 for (int i=0; i<w; ++i) {
42 for (int j=0; j<h; ++j) {
43 Colour a = (i < this.pixels.length && j < this.pixels[i].length)
44 ? this.pixels[i][j] : null;
45 Colour b = (i < that.pixels.length && j < that.pixels[i].length)
46 ? that.pixels[i][j] : null;
47
48 m.pixels[i][j] = (a == null) ? b : a;
49 }
50 }
51
52 return m;
53 }
54
55 processto Writer [cpu=0, out size=0] {
56 return new Writer(this);
57 }
58
59 public void saveToFile(String filename) throws IOException {
60 final int SCALE = Viewer.SCALE;
61
62 BufferedImage image = new BufferedImage(w*SCALE, h*SCALE,
63 BufferedImage.TYPE INT RGB);
64 Graphics g = image.getGraphics();
65
66 for (int i=0; i<w; ++i) {
67 for (int j=0; j<h; ++j) {
68 Colour c = pixels[i][j];
69 if (c == null) {
70 g.setColor(Color.WHITE); // default to white if colour is unknown
71 } else {
72 g.setColor(c.toColor());
73 }
74 g.fillRect(i*SCALE, j*SCALE, SCALE, SCALE);
75 }
76 }
77
78 // Encode as a JPEG
79 FileOutputStream outStream = new FileOutputStream(filename);
80 JPEGImageEncoder jpeg = JPEGCodec.createJPEGEncoder(outStream);
81 jpeg.encode(image);
82 outStream.close();

167

7 Examples

83 System.out.println("Saved image to "+ filename);
84 }
85 }

The datatype is declared to be mergeable (line 8); the merge function implements ⊲

(lines 36–53). Likewise, the datatype could also be declared to be splittable. However, the
programmer has chosen to avoid providing a split function as this is not a useful operation
to perform given the nature of the ray-tracing application.

A processing task to convert an instance of the Image datatype into an instance of the
Writer datatype is provided (lines 55–57). The constructor of Writer will call the image’s
saveToFile method, which outputs the image as a jpeg file (lines 59–84).

7.1.1.3 File writer

The Writer datatype is a non-mergeable datatype used to write an image to a file. Its
source code is shown in Listing 7.3.

Listing 7.3: Datatype Writer

1 package raytracer;
2
3 datatype Writer {
4
5 private Image image;
6
7 public Writer(Image image) [cpu=0] {
8 this.image = image;
9 try {

10 image.saveToFile("/home/jjd27/scene.jpg");
11 } catch (java.io.IOException e) {
12 e.printStackTrace();
13 }
14 }
15
16 public String toString() {
17 return image.toString();
18 }
19 }

7.1.2 Initial task graph

In much the same way as the example of computing π given in Section 5.5.10, the initial
task graph is very simple and contains no explicit parallelism. The source file is shown in
Listing 7.4.

The graph consists of a linear chain of four tasks (lines 11–13), starting with a source
task which has explicit width and height parameters that are passed to the constructor
of PixelSet (line 6). The graph is depicted in Figure 7.1.

Listing 7.4: Task graph definition

1 import raytracer.Image;
2 import raytracer.PixelSet;
3 import raytracer.Writer;
4
5 taskgraph {
6 sourcetask<PixelSet> c [600, 400];
7 processtask<PixelSet, Image> p;
8 processtask<Image, Writer> q;

168

7.1 Ray tracing

p

s

q

c

PixelSet

Image

Writer

Figure 7.1: Initial task graph for ray-tracing application, with edges annotated with the
types of data which travel along them.

9 sinktask<Writer> s;
10
11 c -> p;
12 p -> q;
13 q -> s;
14 }

7.1.3 Execution

We present an example scenario in which there are three computers. One is a ‘co-ordinator’
which generates the application’s input and on which the image file is to be written. The
other two are fast processors which can efficiently tackle the ray tracing algorithm.

The description of the resource graph for this scenario is shown in Listing 7.5. The
resource graph names the co-ordinator processor coord and the other processors proc1
and proc2. The other processors are ten times as fast as coord. The link between proc1
and proc2 is slow and has low bandwidth, whereas each of these processors has a fast link
back to coord.

Listing 7.5: Resource graph definition

1 resourcegraph {
2 coord: "devon.lce.cl.cam.ac.uk"[speed => 10];
3 proc1: "dtg-proc1.cl.cam.ac.uk"[speed => 100];
4 proc2: "dtg-proc2.cl.cam.ac.uk"[speed => 100];
5
6 coord -- proc1 [bandwidth => 100, latency => 0.1];
7 coord -- proc2 [bandwidth => 100, latency => 0.1];
8 proc1 -- proc2 [bandwidth => 10, latency => 1];
9 }

The initial mapping is shown in Listing 7.6. In order that the algorithm’s output file be
saved on coord, tasks q and s are tied to that processor. The input to the algorithm is
assumed to arise on coord, so c is mapped similarly.

Listing 7.6: Initial mapping definition

1 mapping {
2 c -> coord;
3 q -> coord;
4 s -> coord;
5 }

169

7 Examples

proc1

coord

p

s

qc

Figure 7.2: Best assignment function for the untransformed task graph.

pp

s

⊲

q

c

∪−1

Figure 7.3: Task graph after the application of the Farm transformation.

When the task graph, resource graph and initial mapping files are fed to the compiler,
it attempts to optimise the task graph. We elect to use the built-in cost function that
seeks to minimise the algorithm’s total execution time, described in Section 6.1.5.1. This
is composed of the total time spent communicating and computing.

The best assignment function that the compiler can find for the untransformed task graph
is shown in Figure 7.2. Task p is assigned to processor proc1. The cost function gives this
assignment a score of 3.242.

However, this can be improved upon. The compiler performs the Farm transformation on
task p, yielding the task graph in Figure 7.3, and discovers a better assignment, depicted
in Figure 7.4. The assignment of this task graph scores 2.025. This assignment is better
because the ray tracing is partitioned into two tasks, performed in parallel by the two
fast processors. Even though the co-ordinator is slower, the new split and merge tasks
are executed on it to avoid the expensive communication between proc1 and proc2.

The images displayed in the windows showing the rendering progress at the end of the
execution of task p on proc1 and proc2 are shown in Figure 7.5. The final output, encoded
as a jpeg file, is shown in Figure 7.6. These images depict the scene that was hard-coded
into the MyScene class. It consists of two lights, one white and one red; a red horizontal

2In general, a cost function uses arbitrary units, but since the only metric employed here is the
execution time, the actual units of the cost are seconds.

170

7.2 Automatic road map generation

proc2 proc1

coord

pp s

⊲

q

c

∪−1

Figure 7.4: Best assignment function for the transformed task graph.

(a) On proc1

(b) On proc2

Figure 7.5: Images displayed in the viewer windows.

plane; a yellow torus; and a white implicit surface defined in terms of a function of three
points.

7.2 Automatic road map generation

In Chapter 4, we proposed an algorithm for inferring a directed graph of the road network
from position data collected from vehicles. This application provided the motivation
for the program design paradigm of late physical binding as there is a wide range of
possibilities for where the different stages of the algorithm could be executed; this decision
affects the application’s performance.

As noted in Section 4.3.1, the algorithm is naturally parallelisable by partitioning the data
into geographic regions. This property can be exploited at a variety of the stages of the

171

7 Examples

Figure 7.6: Final ray-traced image.

algorithm. For example, maps for different geographic regions could be produced inde-
pendently by parallel pipelines which converge at the last stage to form a complete map.
Alternatively, the vehicle location trace data from multiple vehicles could be combined
and processed in a single pipeline.

We will discuss how the application has been designed and implemented in Sections 7.2.1
and 7.2.2. In Section 7.2.3, we will evaluate the suitability of automatic task assignment
for the algorithm, examining the effect of program transformations and of execution in
different environments.

7.2.1 Design

The core algorithm was described in Section 4.1.2. The algorithm was described in terms
of a number of stages of processing; these correspond naturally to processing tasks between
datatypes. The datatypes are:

SetOfJourneys a set of vehicle location traces, which are ordered sequences of positions;

VectorMap a cellular grid that stores the direction of travel of vehicles moving through
each cell;

Histogram a two-dimensional histogram indicating the likelihood of the existence of road
in each cell;

BlurredHistogram a blurred histogram, in which the data has been spread into neigh-
bouring cells in an attempt to combat errors in the vehicle trace data;

172

7.2 Automatic road map generation

Bitmap a thresholded histogram, which can be thought of as a bitmap, with a boolean
value for each cell indicating whether it is believed to contain road;

RoadEdges the edges of the roads, produced by a contour follower;

HairyCentrelines a Voronoi graph of the area within the edges of the roads;

Centrelines an undirected graph of the centrelines of the roads, produced by removing
the artefacts from the Voronoi graph; and

DirectedGraph a directed graph of the centrelines of the roads.

In order to provide the flexibility afforded by partitioning the data, each of the appli-
cation’s datatypes must represent data associated with a geographic region. Although
any tesselation of regions could be employed, we will use rectangular tiles since they are
simplest to implement.

As noted in Chapter 5, it is desirable for as many datatypes as possible to be mergeable,
to permit a wide range of potential task graph transformations. Since instances of all
the datatypes are concerned with geographic regions, it seems natural that the merge
operations should combine regions. Whilst two instances of a datatype that concern
neighbouring rectangular regions could conceivably be merged into a single rectangular
region, the merge operation must be general enough to combine data in non-adjacent
regions. This is implemented by instances of each datatype storing a set of rectangular
tiles for which they hold data. The application’s output is a datatype in which this set
of tiles fills the plane between specified bounds with no overlaps or gaps.

7.2.1.1 Overlaps

It was also noted in Section 4.3.1 that the output from executing the algorithm on data
from one region cannot simply be juxtaposed with the results from a neighbouring re-
gion. If this were done, a single, continuous road that spans both regions might not be
continuous in the map at the boundary between the tiles. This is because the algorithm
introduces errors near the edges of tile at several stages of processing, particularly in the
production of the Voronoi graph and when its hairy artefacts are removed. The solution
to this problem was to process not only the data within a region in isolation but along
with the data from just over the boundaries with its eight surrounding regions. This is
implemented by each datatype storing not only the rectangle describing the inner region
for which successive stages of the algorithm will produce data that can be safely juxta-
posed, but also the rectangle describing the outer region for which data is to be processed.
Since this functionality is needed by all the datatypes, it is implemented in a common
super-class that all of the datatypes inherit from.

The need for overlapping regions means that the partitioning of data will not result in
a speed-up equal to the number of partitions. The speed-up of a parallel application is
defined as the ratio of the time to execute in a serial fashion (on a single processor) to
the time to execute in a parallel fashion (on n processors). If the partitions could be kept
entirely independent, then doubling the number of processors would halve the execution
time, so the speed-up would be n (ignoring the cost of communication).

173

7 Examples

Overlaps between tiles also mean that the algorithm’s processing tasks are not true monoid
homomorphisms. In other words, processing followed by merging will not necessarily
produce identical output to merging followed by processing. However, within the inner
bounds of each tile, the results are independent of the order of processing and merging.
Since the application only retains the data within the bounds of the tiles, it is therefore safe
and appropriate to indicate that the processing tasks are to be treated as homomorphisms
by the compiler. This enables a wider range of task graph transformations than would be
available if the processing tasks were not treated as homomorphisms.

7.2.2 Implementation

Since the present implementation of the compiler does not support pair tasks, processing
tasks that take n > 2 inputs must be expressed in terms of n processing tasks pτ1 , . . . ,
pτn

and a merge task ⋆τ1×...×τn
followed by the n-ary processing task, as proposed in Sec-

tion 5.6.1.3. There is one n-ary processing task in the map generation algorithm: the task
that processes the undirected graph into a directed graph. This task requires three inputs:
the grid of vehicles’ directions of movement; the road edges and the undirected graph of
road centrelines. Hence, in addition to the datatypes identified above, a pseudo-datatype
Triple is implemented to model tuples of type VectorMap×RoadEdges×Centrelines.

7.2.2.1 The datatype for sets of journeys

The SetOfJourneys datatype contains sets of ordered sequences of vehicles’ positions, each
sequence associated with the tiles within which it originated. The datatype’s merge
operation finds the union of the sets, maintaining the associations to the corresponding
tiles.

A processing task is defined that transforms an instance of this datatype into an instance of
the Histogram datatype. This procedure is potentially problematic since the instance may
contain journeys spanning more than one adjacent tile and thus contain some subsequences
of journeys more than once due to appearing in the overlap areas. If this situation were
ignored, incrementing the values in the cells through which the sequences pass would lead
to a histogram in which the values in the overlap areas are computed to be a multiple of
their correct value. Hence, the processing task determines which cells of the histogram are
covered by which tiles and, for each cell, divides the value by the number of tiles which
cover it.

A further processing task is defined to transform a SetOfJourneys to a VectorMap. Struc-
turally, the VectorMap is similar to a Histogram, so similar precautions are taken to avoid
over-counting the journeys in the overlap areas.

7.2.2.2 Datatypes based on a cellular grid

There are four datatypes based on a two-dimensional cellular grid structure: Histogram,
BlurredHistogram, Bitmap and VectorMap. We refer to the former three datatypes as
histograms, since each cell stores a number which indicates a degree of confidence in the

174

7.2 Automatic road map generation

presence of road in the cell. The latter datatype stores eight integers per cell, which count
the frequency of (quantised) headings of vehicles travelling through the cell.

Each of these datatypes is implemented as a single histogram that spans the bounding
box of all of the tiles for which data is held. For the parts of the histogram that lie outside
these tiles, if there are any, the values in the cells will be zero. If the instance holds data
for two tiles which are separated by some distance, there will be an excessive number of
empty cells to be stored. To avoid consuming a large amount of memory to store this
histogram, space-efficient sparse-matrix representation techniques can be employed, such
as the use of quadtrees.

The merge operation involves creating a new histogram which spans the union of the tiles
of the two histograms. The values of the cells from the two histograms are summed, and
as before the values in the overlap areas are divided by the number of overlapping tiles.
In order that histograms covering disjoint tiles can be combined into a single histogram,
it must be the case that the histogram’s cell width and height are factors of the width and
height of a tile, respectively. Otherwise, the cells would not align precisely and summing
values would be non-sensical.

The processing task to convert from a Histogram to a BlurredHistogram involves convolving
the cells with a blur filter; the processing task to convert from a BlurredHistogram to a
Bitmap involves thresholding the cells’ values.

The processing task to convert a Bitmap to a RoadEdges makes use of a contour follower.
The current implementation uses the contour follower from the Cantag image processing
library [205], which returns a set of closed polygons tracing the boundaries of the regions
between cells in which road is present and in which road is absent. The processing task
shrinks the boundaries of the overlap regions inwards by three cell widths from each side
and clips the contours to this new area. This removes the artefacts produced by the
contour follower around the edge of the bitmap and produces instances of RoadEdges that
can be safely merged.

7.2.2.3 The datatype for road edges

The RoadEdges datatype stores a set of piecewise linear polylines. Having had the bound-
aries shrunk by the processing task which produced a RoadEdges, instances of edges for
adjacent regions are guaranteed to agree on the content of the overlap region. Hence,
the merging operation can safely juxtapose the data for adjacent regions because it is
inconsequential to duplicate edges that precisely coincide.

The processing task to convert a RoadEdges to a HairyCentrelines begins by constructing
the Voronoi graph of the road edges. This is achieved using Fortune’s implementation of
the efficient sweepline algorithm [76] by converting the road edges into a series of points.
An example is shown in Figure 7.7a. However, as well as containing lines within the road
edges, the Voronoi graph of these points also includes lines outside the edges as well as
ones which cross through the edges, visible in Figure 7.7b. The lines which cross the edges
are removed by testing each Voronoi line for intersection with the road edges, the results
of which are shown in Figure 7.7c. This is achieved efficiently by only testing against
road edge segments which are known to lie nearby. To remove the Voronoi lines which

175

7 Examples

(a) Road edges (red) with
Voronoi sites (black).

(b) Voronoi graph (green)
generated from the sites
(black).

(c) Voronoi edges (green)
which do not cross the
road edges (red).

(d) Voronoi edges (green)
which lie inside the road
(red).

Figure 7.7: Removing the Voronoi edges which cross and lie outside the road edges.

176

7.2 Automatic road map generation

lie outside the road edges, a technique akin to the well-known scanline polygon-filling
algorithm was adopted: for each Voronoi line, the number of road edges to the left is
counted. If it is an even number, the line lies outside the road so is discarded. If it
is odd, it lies inside so is retained. The retained edges are shown in Figure 7.7d. The
processing task finishes by shrinking the boundaries of the overlap regions to discard the
edge-artefacts of the Voronoi graph so that two adjacent tiles agree on the content of the
overlap area.

7.2.2.4 Graph-based datatypes

Three datatypes—HairyCentrelines, Centrelines and DirectedGraph—represent graphs, con-
sisting of sets of nodes and sets of edges. In order that the edges are not merely straight
lines between two nodes, they may have shape, defined as a piecewise linear polyline
travelling between internal nodes.

The processing task that removes the short, ‘hairy’ edges from the HairyCentrelines also
removes the overlap regions, leaving behind only the central regions of the tiles. This is
done because a road centreline that straddles a tile boundary is guaranteed to match up
on either side of the boundary, so there is no longer any need to store any extra data.

Whilst instances of the Centrelines datatype can thus be juxtaposed safely, this is not
the case for instances of DirectedGraph: a single road may be viewed as a unidirectional
road from the point of view of one tile, but as a bidirectional road from the neighbouring
tile. As described in 4.1.2.4, the processing task that produces a DirectedGraph involves
sampling the VectorMap at various steps along the roads, counting the number of places
at which the road appears to be unidirectional and the number of places at which the road
appears to be bidirectional. These numbers are then compared to determine the sense for
the entire road. Hence, in order that we can safely merge roads straddling tile boundaries,
we need to store these counts for both parts of the road and sum them when joining them
into a single road. This enables us to make a better judgment about the sense of the road
than we could make just based on the tile-local decisions about the road’s sense.

7.2.3 Evaluation

We consider executing the map generation application after the vehicles’ location histories
have already been partitioned into geographic regions. The task graph for producing a
map of the roads within a single region is shown in Figure 7.8. When we wish to create
a map of more than one region, two questions arise:

1. At which stage in the algorithm should the data from disjoint regions be combined?

2. On which processors should the processing take place?

We will study the first of these questions by comparing the performance of the application
when merging takes place at different stages in Section 7.2.3.1. The second question will
be addressed in Section 7.2.3.2 by evaluating the performance of the algorithm when
varying numbers of processors are available.

177

7 Examples

Figure 7.8: Task graph to generate a map for a single tile. Tasks are identified by their
shape and input and output datatypes rather than by name.

178

7.2 Automatic road map generation

From To Transformations
A B Merge–Replication, Merge–Processing2

B C Merge–Processing

C D Merge–Processing

D E Merge–Processing

E F Merge–Replication, Merge–Processing

F G Merge–Processing

G H Merge–Processing3, Merge-Reorder∗, Merge–Processing

Table 7.1: Summary of transformations used to derive the task graphs. Numeric super-
scripts indicate multiple applications of a transformation; an asterisk denotes
several such applications.

7.2.3.1 Position of merging stage

If data concerning multiple regions is to be processed into a single map, it is necessary
at some stage to merge the data from those regions. At one extreme is to combine the
vehicle location trace data into a single pool of location histories, and to process that
together. At the other extreme is to process each set independently until we have a map
of each region, which are then finally stitched together.

Since all of the datatypes involved in the application are mergeable, the merging could
take place at any stage in the pipeline between these two extremes. Since all of the
processing tasks are considered to be homomorphisms, it is guaranteed that the stage
at which merging takes place does not affect the application’s output. As was shown in
Chapter 5, these graphs are therefore deemed by the compiler to be equivalent, and it can
apply transformations to move between them. Figures 7.9–7.12 depict eight of these task
graphs, which we will refer to as Task Graphs A–H. Each successive configuration has a
higher degree of potential parallelism than the previous. The task graph transformations
used to derive these graphs were identified manually and are summarised in Table 7.1.

We will compare the execution times of these task graphs. For each task graph, the
resource graph fed to the compiler describes two identical processors; one set of input data
was mapped to each processor. The compiler was instructed to find the best assignments
on each of these task graphs without performing any further task graph transformations.

The two tiles each have vehicle trace data containing over 3000 positions. The cell size
chosen for the histogram-based data structures was 0.0001◦ wide and high, which corre-
sponds roughly to a square on the surface of the Earth with sides of length 10 metres.
The execution times for the eight configurations are shown in Figure 7.13, with the time
for each configuration being an average of three executions.

The large difference between the execution times for task graphs A and H show that em-
ploying task graph transformations can have a profound effect. Increasing the parallelism
by delaying merging as late as possible means that the tiles can be processed concurrently
with some degree of independence.

However, the execution times for configurations B–G are of roughly comparable magni-
tude. This suggests that increasing the degree of parallelism in the task graph does not

179

7 Examples

(a
)

T
a
sk

g
ra

p
h

A
:
P

ro
ce

ss
in

g
tw

o
re

g
io

n
s,

m
er

g
in

g
se

ts
o
f
jo

u
rn

ey
s.

(b
)

T
a
sk

g
ra

p
h

B
:

P
ro

ce
ss

in
g

tw
o

re
g
io

n
s,

m
er

g
in

g
h
is

to
g
ra

m
s

a
n
d

v
ec

to
r

m
a
p
s.

F
ig

u
re

7.
9:

T
as

k
gr

ap
h
s

A
–B

.

180

7.2 Automatic road map generation

(a
)

T
a
sk

g
ra

p
h

C
:
P

ro
ce

ss
in

g
tw

o
re

g
io

n
s,

m
er

g
in

g
b
lu

rr
ed

h
is

to
g
ra

m
s

a
n
d

v
ec

to
r

m
a
p
s.

(b
)

T
a
sk

g
ra

p
h

D
:
P

ro
ce

ss
in

g
tw

o
re

g
io

n
s,

m
er

g
in

g
b
it
m

a
p
s
a
n
d

v
ec

to
r

m
a
p
s.

F
ig

u
re

7.
10

:
T
as

k
gr

ap
h
s

C
–D

.

181

7 Examples

(a
)

T
a
sk

g
ra

p
h

E
:

P
ro

ce
ss

in
g

tw
o

re
g
io

n
s,

m
er

g
in

g
ro

a
d

ed
g
es

a
n
d

v
ec

to
r

m
a
p
s.

(b
)

T
a
sk

g
ra

p
h

F
:

P
ro

ce
ss

in
g

tw
o

re
g
io

n
s,

m
er

g
in

g
h
a
ir

y
ce

n
tr

el
in

es
,

ro
a
d

ed
g
es

a
n
d

v
ec

to
r

m
a
p
s.

F
ig

u
re

7.
11

:
T
as

k
gr

ap
h
s

E
–F

.

182

7.2 Automatic road map generation

(a
)

T
a
sk

g
ra

p
h

G
:

P
ro

ce
ss

in
g

tw
o

re
g
io

n
s,

m
er

g
in

g
ce

n
tr

el
in

es
,

ro
a
d

ed
g
es

a
n
d

v
ec

to
r

m
a
p
s.

(b
)

T
a
sk

g
ra

p
h

H
:
P

ro
ce

ss
in

g
tw

o
re

g
io

n
s,

m
er

g
in

g
d
ir

ec
te

d
g
ra

p
h
s.

F
ig

u
re

7.
12

:
T
as

k
gr

ap
h
s

G
–H

.

183

7 Examples

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

A B C D E F G H

E
xe

cu
tio

n
tim

e
(s

)

Task graph configuration

8.6

6.7 6.8
6.5

7.5

6.3

7.0

5.4

Figure 7.13: Times to execute the map generation algorithm for two tiles, varying the
position at which merging takes place. For each configuration, the green
points indicate the times of the three executions; the red bar indicates the
arithmetic mean of these times.

necessarily lead directly to better performance. It is believed that this may be due to
several factors:

• The computational costs of the datatypes’ merge tasks vary. The implementations
of some merge tasks involve more work than others.

• The task assignment algorithm used by the compiler is necessarily sub-optimal. This
means that the assignment that is decided upon may not be the best assignment
possible. Furthermore, the implementation in the current version of the compiler is
not state-of-the-art and thus may produce inferior assignments.

• The metrics annotated on the source, processing and merge tasks were chosen based
on a cursory observation of the algorithm rather than based on detailed profiling
data. It is believed that determining more accurate metrics would enable the task
assignment algorithm to make better-informed choices about task placement.

7.2.3.2 Number of available processors

For a task graph that processes the vehicle location traces associated with several tiles,
we now examine how the number of available processors affects the execution time.

With four dissimilar processors available, we start with the fastest and add in the oth-
ers in order of decreasing speed.3 The task graph was designed to process four tiles in

3Two of the processors are Xen hosts, each allocated 256 MB of ram, running on a machine with four

184

7.2 Automatic road map generation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Automatic task assignment
Manual task assignment

Figure 7.14: Times to execute the map generation algorithm for four tiles on different
numbers of processors.

parallel, finally merging at the directed graph stage. The compiler was not permitted to
perform any task graph transformations to allow a direct comparison between the effects
of different numbers of processors. Ideally, the study would also be performed with task
graph transformations enabled, to evaluate their potential benefit, but this was not pos-
sible because the size of the task graph meant that the search space was too large for
the compiler’s näıve strategy for performing transformations. The four tiles used each
contained between 40,000 and 130,000 vehicle locations.

Figure 7.14 shows the execution times using different numbers of processors. The red
points are from task assignments which were deduced by the compiler’s automatic task
assignment algorithm; the green points are from hand-crafted assignments. The graph
shows that the hand-crafted task graph tends to fare little better than the automatic
approach, despite the näıveté of the task assignment algorithm and the imprecise metrics
used, as mentioned above.

The curve indicates that, with an increasing number of processors, the execution time
diminishes. However, the execution time appears to approach an asymptote. Given that
only four tiles are being processed, it is unsurprising that the execution time for two and
three processors are similar, since there will be at least one processor on the critical path
which has been assigned two tiles to process. However, it is surprising that the execution
time for four processors is also similar, because in this scenario each processor can process
a single tile. It is suggested that the small difference is because the fastest processor is
able to process two tiles in the same time as the slowest processor is able to process one.

3 GHz Intel Xeon cpus using Citrix XenServer 4.1. The third processor has two 3.2 GHz Intel Pentium 4
cpus and 1 GB of ram. The fourth processor has two 2.8 GHz Intel Pentium 4 cpus and 1 GB of ram.
These machines are interconnected on a 100 Mb/s local-area network.

185

7 Examples

7.3 Summary

We have described the design of two applications in the late physical binding paradigm
of Chapter 5 and their implementations in the language introduced in Chapter 6. One
application, ray tracing, was in the style of traditional grid-computing applications. The
strategy of performing task graph transformations and automatic task assignment was
found to suit this application well because it is inherently parallelisable by partitioning
the problem into several sub-problems which can be tackled independently.

The other application, automatic road map generation, was a demonstration that a non-
trivial application could be easily described as a task graph and implemented in the
language. The task graph paradigm helps us to simply identify a variety of equivalent
expressions of an algorithm that have different operational characteristics by the use of
the transformations of Chapter 5.

186

CHAPTER8

Conclusion

Technological advances in computing and communications mean that a new range of
applications involving computing in vehicles is likely to become feasible. In the future,
the implementation of these applications may be spurred by the existence of general-
purpose computing platforms in vehicles. Such platforms may be provided by vehicle
manufacturers in order to avoid redundancy caused by isolated applications or devices
which could share common software or hardware. Alternatively, vendors of after-market
in-vehicle devices could collaborate to provide interfaces between their devices to allow
them to interact. In either scenario, many new applications become possible. A number
of applications were suggested in Section 1.2.

Of these applications, some of the most promising yet most challenging to implement
involve the collection, processing and distribution of sensor data originating on vehicles.
In these applications, vehicles become sensor platforms and nodes in a large-scale wireless
sensor network. The vehicular sensor platform described in Chapter 3 is a prototype of
such a platform, enabling vehicular sensor data to be gathered, stored and processed. This
work highlighted the need to make judicious use of power and cause limited disruption
for the vehicle’s driver. Furthermore, different sensors were found to require a variety of
treatments in terms of sampling, communications and storage.

Perhaps the largest challenge involved in implementing applications which make use of
vehicular sensor data is to design them to operate in a scalable fashion. Applications
of this kind are usually most efficacious when they use data from many vehicles. For
example, if the vehicles operate in different geographic regions then the output becomes
more complete. Furthermore, using more vehicles means that more data is available, so
that random errors become less significant, potentially leading to a higher accuracy of the

187

8 Conclusion

output. Hence, the applications must be able to simultaneously handle large numbers—
perhaps millions—of vehicles in order to maximise utility.

An example of an application which makes use of vehicular sensor data is that of automatic
road map generation, introduced in Chapter 4. This application involves the use of
algorithms from image processing and graph theory to process sets of location traces
(such as those collected from gps receivers) into a map of the road network. Generating
road maps in this way has some advantages over traditional map-making techniques. For
example, the opening of new roads and the closure of existing roads can be reflected in
the map in real-time.

Whilst this application involves the processing of one particular type of sensor data—
location histories—different applications will make use of other types of data. These
applications will also infer higher-level information from low-level raw data. Obvious
examples include producing real-time maps of geographically varying quantities, such as
temperature or pollution levels. More complex applications, such as an urban traffic
management system which optimises the movement of vehicles according to journey time,
levels of pollution and congestion, could be implemented along similar lines.

Planet-sized sensor networks will result in a hitherto unprecedented volume, resolution and
accuracy of data about the world. This will increase the ability to model the environment
and study the effect of human activities on it. This will have an important role to play
in using computing to overcome the problems facing the planet’s future [115].

The requirement for the scalability of these applications leads to the question of how to
arrange the collection and processing of vehicular sensor data in the most resource-efficient
manner. One option is a centralised approach in which all of the vehicles transmit their
data to a fixed server which performs the processing. However, this suffers from the prob-
lems of a communication bottleneck and the presence of a single point of failure. Moreover,
it may be difficult for vehicles to communicate their data to a central server cheaply and
in a timely fashion. Instead, a distributed approach involving less communication may
be preferable.

A country- or even planet-sized network will contain vast quantities of computational
resource, constituted from many individual devices with varying characteristics, and there
will be many means of communication from one node to another. Judicious selection of
processors and communication links to use is crucial in this kind of network because
processing may be very costly on some processors, and transferring data may be very
costly on some communication links. This is a particular instance of the general problem
of making efficient use of available resources. Rather than contributing to the over-
consumption of resources, in this way computing can be used to provide strategies for the
more prudent use of resources. In order to automate this, an appropriate tool-chain is
required.

The traditional approach to programming wireless sensor networks expects the program-
mer to decide which processors should perform what computation. However, even when
ignoring the problems associated with the mobility of vehicles, when given a description
of a network containing just a small number of vehicles and fixed nodes, it is non-trivial
to determine how best to execute an application in a distributed fashion in it because
the trade-offs are complex. Hence it is especially inappropriate to expect programmers to
make this decision in large-scale vehicular networks.

188

Furthermore, the particular computational resources and communication infrastructure
available in the network may not be known until run-time, so few sensible decisions about
the placement of computation can made in advance by the programmer. There have
been several proposals for improved techniques for programming wireless sensor networks,
such as the distributed database or active sensors approaches described in Section 2.3.
However, these approaches are either too inflexible or do not sufficiently abstract away
from a knowledge of the network in which the application is to execute, so are unsuitable.

In Chapter 5, a novel paradigm was developed for programming distributed computing
applications in which the computation is described independently of any assumptions
about the nature of the network of computers in which it will be executed. This is called
‘late physical binding’ because the decision about the placement of computation is delayed
until execution time. Designing an application in this way involves identifying units of
computation called tasks. A graph of tasks is constructed to describe the application, in
which edges between tasks correspond to the flow of data. There are six types of task,
characterised by the number and type of their inputs and outputs. Merge tasks, which
take several inputs of a given type and produce a single output of the same type, are
particularly important in applications which involve the processing of large quantities of
data, such as those found in vehicular sensor networks. Merge tasks can help to achieve
this by aggregating or simplifying the data.

A particular feature of task graphs is that program optimisations are easy to implement.
This has led to the definition of a wide range of task graph transformations, specified in
Section 5.5.7. Most of these transformations involve changing the order in which tasks are
executed. The soundness of the transformations is guaranteed by an appeal to the theory
of commutative monoids. The transformations affect the degree of parallelism and other
run-time characteristics such as the execution time or energy consumption. Hence the
use of transformations can be crucial to the creation of scalable applications whilst the
programmer can remain oblivious to the nature of the network in which the application
will be executed.

The development of a new programming language in which applications can be specified
according to the late physical binding paradigm was presented in Chapter 6 along with its
compiler. The language adopts a familiar, object-oriented approach to describing tasks.
The compiler takes a task graph along with a description of the network and may apply
transformations to the task graph. The compiler determines the best processor on which
to execute each task—the problem of automatic task assignment—using a programmer-
supplied cost function which is minimised.

The design and implementation of two example applications which demonstrate some
of the range of possibilities for this style of programming were described in Chapter 7.
Both applications were shown to benefit from late physical binding. With the ray-tracing
application, the compiler transformed a non-parallel expression of the algorithm into a
parallel form, well-suited to execution in a network containing several processors. With
the map generation algorithm which was originally proposed in Chapter 4, task graph
transformations were also shown to increase the degree of parallelism, which impacted on
the algorithm’s execution time. We claim that the language is well-suited to implementing
both of these applications, in addition to a broad range of others in the fields of sensor
networks, ubiquitous computing, grid computing, and web services.

189

8 Conclusion

8.1 Further work

Specific suggestions for further research have been provided in each chapter. This section
suggests broader aims for further research in this field.

Communications between vehicles. A fundamental assumption of all of the work de-
scribed above is that wireless communication between vehicles will become possible,
and that vehicles will become citizens of the Internet. At present, this is not yet a
reality and is the subject of on-going research.

Handling mobility. Devising strategies to deal with the mobility of vehicles in a net-
work is difficult. High relative speeds and movement through large distances mean
that communication links between vehicles and to fixed nodes have rapidly vary-
ing characteristics, and frequently establish and break. This creates a challenge for
the implementation of applications designed to execute in vehicular networks. At
present, the compiler implemented in Chapter 6 produces executables which assume
that the characteristics of the network remain unchanged from compilation-time.
This problem could be addressed by abstracting groups of nodes in a resource graph
and treating them as a single, virtual resource with certain statistical properties—
see Section 5.4.1.

Scalability. The experiments relating to the implementation of the automatic map gen-
eration application in Section 7.2.3 involved no greater than four processing nodes.
However, the calculations in Section 4.2.3 showed that around 750 processing nodes
would be required to automatically generate a map of the area of the United King-
dom in a timely fashion.

In order for the paradigm of late physical binding and the compiler to scale grace-
fully up to thousands of processing nodes, it is necessary to eliminate the need for
centralised knowledge of the entire network. This includes the discovery of the nodes
which are to participate in the execution of the application and also the determi-
nation of the characteristics of those processors and of the communication links, in
the dimensions required by the cost function. It also precludes the possibility of
centralised optimisation of task placement; instead, a distributed approach must be
adopted.

Similar problems have been solved with great success in the implementations of
other planet-scale networks, such as the Internet. In these systems, there is no
global co-ordination nor global knowledge of the network’s characteristics. Instead,
each node has limited but sufficient knowledge about the rest of the network that it
can collaborate with other nodes to achieve a common goal. Further research should
investigate whether similar principles can be applied to automatic task assignment in
planet-sized networks. A starting point could be to determine whether it is feasible
to allow groups of nodes to dynamically adjust an assignment amongst themselves
by making decisions based solely on local knowledge.

Security. An important area for research related to the use of sensor data from vehicles
is in security. As well as preventing attacks common to all networks such as denial of

190

8.1 Further work

service attacks, in sensor networks it must not be possible for malicious participants
to invent false data. For data sampled from the environment, it may be possible
to identify such fraud by comparing it to other data obtained in the spatial and
temporal locality. For other types of data, authentication of the originator and
audit trails may be required.

Confidential data must also be handled in an appropriate manner. This is crucial
to ensure that the owners of vehicles will be happy to participate in applications in
which their data is shared. Safeguards must be implemented to ensure that vehicles
wishing to remain private may do so. This is challenging because location privacy
is hard to protect when sharing spatially-indexed data. Techniques such as the use
of mix zones and varying the resolution of shared data could be applied [24].

When vehicles are able to execute applications developed by third parties, care must
be taken over the admission of applications to execute. Perhaps vehicles may only
execute signed applications, certified by known authorities. Furthermore, strategies
for ensuring that applications are guaranteed to operate within known bounds should
also be applied. Techniques such as proof-carrying code and sand-boxing could be
employed.

Abstracting the placement of execution. A challenge inherent in the design of any
high-level strategy for programming distributed systems is to fully divorce the design
of an application from a notion of the processors which will execute it. Keeping these
separate means that the decision about the placement of execution can be made
automatically, meaning that the application can be adapted to any environment, and
that complex trade-offs can be analysed more efficiently than a programmer could
manage. This was the motivation behind the use of task graphs to implement the
late physical binding paradigm, which largely meets this target. However, sometimes
it is not possible to fully abstract away from the notion of the number of processors
which will execute a part of the application. For example, in general, n source tasks
are required to be specified for a sensor network with n sensor nodes. Hence the
number of sensors in the network needs to be known by the programmer. In this
way, the use of task graphs falls short of the aim since it is necessary to bind a
particular task to a particular node.

This problem could be tackled by adding a further layer of abstraction on top of task
graphs in which the general computation to be performed by sensor nodes is declared
once rather than once per sensor. This approach seems somewhat reminiscent of
the SpatialViews programming language (see Section 2.3.2.1) in which a particular
unit of computation is executed on each node of a certain type found to be located
within a specified region.

Performance studies. Finally, it would be worthwhile for future work to compare the
performance of a program produced by the compiler to a hand-crafted application.
This would be instructive from the point of view of evaluating the strength and
wider applicability of this work. Performance comparisons between an optimised
program and one which has not had task graph transformations applied could also
reveal information about the merits of the transformations. This could be useful

191

8 Conclusion

knowledge for compilers to understand better the circumstances under which it is
best to apply each transformation.

192

APPENDIXA

Vehicle-oriented communications
technologies

Various research into vehicle-to-roadside and vehicle-to-vehicle communication has been
undertaken, although there are few examples of deployments of these systems of any sig-
nificant scale. Many of the major vehicle manufacturers are prototyping vehicles equipped
with WiFi (802.11a/b/g) and dsrc (dedicated short-range communications). These tech-
nologies are expected to feature on production vehicles within a few years.

Dsrc is a 5.9GHz radio band which has been reserved specifically for inter-vehicular
communications. This goes hand-in-hand with the ieee’s 802.11p standard for Wireless
Access in Vehicular Environments (wave). This technology is deemed suitable for use for
safety-critical applications [254].

The Drive-Thru Internet project has shown that high-speed Internet access to vehicles
via roadside 802.11b access points is feasible [194]. A similar system called mocca has
attained similar achievements [23]. However, Bergamo et al. point out that performance
falls off rapidly in the absence of line-of-sight communication [25].

Murphy et al. have tested the feasibility of using Bluetooth to transfer data between
vehicles and to stationary access points [184]. Their findings are that vehicles travelling
at 100 km/h can communicate with the access point for 18 seconds. They have also
proposed modifications to the Bluetooth protocol which improves its suitability for this
kind of application.

A system employing millimetre-wave radio has been suggested by Kim et al. [138]. How-
ever, at such high frequencies, propagation distances are very low compared to other radio
technologies, so roadside base stations would be required to be of the order of every 100

193

A Vehicle-oriented communications technologies

metres. As well as the cost of deployment of such a system, there is the technical chal-
lenge of efficiently dealing with the frequent hand-overs that a fast-moving vehicle would
require.

Ribeiro has compared the use of WiFi, Wimax, mbwa and 3G communication technolo-
gies for their suitability to create a wireless vehicular network which includes base-stations
[204]. The most significant difference between WiFi and Wimax was found to be the size
of the coverage area, which is an order of magnitude greater for Wimax, since WiFi was
originally designed merely for indoor use. Furthermore, WiFi base stations are more re-
stricted in terms of the number of users which can be supported at a given time. Mbwa
was found to be very similar to Wimax, although it was specifically designed for mobile
use. Ribeiro suggests that Wimax will eventually supercede 3G cellular technology.

194

APPENDIXB

Sensor networks

Over the last few decades, Moore’s Law [180] has seen the exponential increase in comput-
ing power for a given size of processor. Applied to desktop computers, the physical size of
processors has stayed roughly constant and their computing power has increased. How-
ever, Moore’s Law also applies where the level of functionality is held constant and the
size of the processor is decreased. Coupled with improvements in radio technology, this
has recently enabled a new range of computational devices which constitute low-power
wireless sensor nodes with on-board processors.

B.1 Sensor-equipped devices

Researchers at UC Berkeley have designed and commercialised battery-powered Motes
which consist of a microcontroller with internal flash memory, data sram and data eep-
rom, connected to a set of actuator and sensor devices including leds, a low-power radio
transceiver, an analogue photo-sensor, a digital temperature sensor, a serial port and a
small co-processor unit [109, §3]. These devices have physical sizes of the order of a few
cubic centimetres. Figure B.1 shows an instance of the commercial offering.

A similar platform is the BTnode [27], which is based around a microcontroller with
a Bluetooth radio module. Rather than having integrated sensors and actuators, the
BTnode incorporates several general-purpose interfaces.

Recently, Sun Microsystems have developed an open-source wireless sensor node called
a Sun spot which natively executes Java bytecode [217]. Figure B.2 depicts two such
devices. These devices are modular so that custom sensors or communications interfaces

195

B Sensor networks

Figure B.1: A Moteiv Tmote Sky mote

Figure B.2: Two Sun spot devices.

196

B.2 Examples of sensor network applications

can be installed, but the built-in sensors include a three-axis accelerometer, temperature
sensor and light sensor, and the built-in communications interface is ieee 802.15.4 radio.
Sun spots can be programmed either via a usb interface or over the radio interface from
a usb base-station.

Furthermore, sensor nodes with higher energy consumption are often built from hand-held
or pocket computers such as pdas, or from mobile phones [133].

B.2 Examples of sensor network applications

Sensor networks contain devices sensing a wide variety of ambient conditions: tempera-
ture, pressure, humidity, soil make-up, vehicular movement, noise levels, lighting condi-
tions, the presence or absence of certain kinds of objects, mechanical stress on attached
objects, and so on [69, §2].

In isolation, these kinds of device are limited in their potential, but when mutually con-
nected in a wireless sensor network they can help to achieve many goals in a variety of
fields. Akyildiz et al. identify five such fields including military, environmental, medical
and the home [3, §2]. We will briefly describe a few examples from these areas.

Military applications. In an environment controlled by the enemy, a military force does
not have access to any communications infrastructure but may wish to reconnoitre
the environment [3, §2.1]. Hence, a deployment of low-cost sensor nodes, perhaps
dropped from an aircraft, are a simple means of obtaining information about the
hostile environment. Furthermore, even within friendly circles, the lack of prepared,
wired infrastructure on a battlefield means that wireless communications are neces-
sary.

Environmental monitoring applications. Sensor networks have found scientific uses
for animal habitat monitoring [43, §3] and animal behaviour studying. The ZebraNet
project installed collars on zebras to monitor their movement and flocking patterns
[128]. The Great Duck Island project distributed nodes sensing light, temperature,
infra-red, humidity and atmospheric pressure in an animal habitat [169]. Similarly,
a wireless sensor network has been used to monitor atmospheric conditions along
the height of a redwood tree [232]. Other similar monitoring applications include
meteorological and atmospheric surveying, where long-term trends are observed.

There is also a variety of event-detection applications which are facilitated by the
use of wireless sensor networks. For example, in flood detection [31], forest-fire
detection and seismic activity detection it is particularly important to determine an
accurate location for the physical extent of the event.

Medical applications. Body-area sensor networks can be used to monitor the health of
patients, perhaps notifying a remote doctor when physiological data indicates that
there is a health problem.

Home applications. In the vision of pervasive computing, the ‘networked home’ will
involve sensors embedded within home appliances interacting with each other [199].

197

B Sensor networks

Other commercial applications. Sensor networks can be applied to the problem of
inventory management. Each item in a warehouse has a location sensor; users can
query the network to locate a particular item.

Another commonly cited example application is target detection and tracking: iden-
tifying a moving object (such as a vehicle or an intruder in a building) and contin-
uously updating a notion of their position [12].

Structural monitoring can also benefit from the use of sensor networks: smart struc-
tures have an embedded nervous system of sensors which collects data about its
structural integrity, checking for damage or flaws [251].

B.3 Characteristics of sensor networks

Five design requirements for nodes to be used in sensor networks have been specified by
Hill et al.: [109, §2]

Small physical size, low power consumption. The device’s processing, storage and
communication capability are constrained by size and power limitations.

Concurrency-intensive operation. The devices should be able to simultaneously cap-
ture data from sensors, process it and communicate it with other devices.

Limited physical parallelism. The device will typically contain a single microcon-
troller with limited flexibility in the processor–memory interconnect.

Diversity in design and usage. In order to keep the size and weight of the device
minimal, the hardware carried by a device will be application-specific, so there will
be a large variation in the physical nature of devices.

Robust operation. The devices must be reliable enough to work in harsh environments,
where energy limitations preclude the use of redundancy techniques.

Sensor networks have several characteristics that distinguish them from traditional data
networks. As well as the differences in constraints on energy, computation, storage and
communications bandwidth, Boulis et al. identify that the network’s usage model is dif-
ferent [35, §ii.A]. Traditional data networks typically act to bring together two parties for
point-to-point communication. The user is connected to one node and requires a service
from another node. Instead, in a sensor network, a user typically requires results from
the network as a whole; the sensor network is viewed as a single distributed system.

Akkaya and Younis further point out [2, p326] that a sensor network may have no global
addressing scheme, which precludes the use of ip-based protocols. Furthermore, the sensed
data may contain some redundancy because two nearby sensors are likely to give similar
readings.

Many sensor network applications require techniques from ad-hoc networking. However,
there are a number of general distinguishing differences between wireless sensor networks
and ad-hoc networks: [3, p394]

198

B.4 Node discovery

• sensor networks may contain vast numbers of nodes;

• sensor nodes may be densely deployed;

• sensor nodes are prone to failure;

• the topology of a sensor network may change rapidly;

• communication in a sensor network is often achieved via local broadcast rather than
point-to-point messaging;

• sensor nodes are limited in power, computational capacity and memory; and

• sensor nodes may not have globally unique identifiers.

B.4 Node discovery

An important issue in wireless sensor networks is the provision of a means by which other
nodes can be discovered [193]. In scenarios where a large number of nodes are scattered in
a region, the network needs to be self-discovering and self-organising. In addition, when
the sensor nodes are mobile, the network needs to be able to adapt to changes in the
network topology.

Jini is a discovery protocol which is accessed through a Java api [241]. A discovery scheme
must have some means of cataloguing the participants and the services they expose. In
Jini, this catalogue is centralised, where nodes register with a central repository. The
centralised nature of the catalogue means that Jini is unsuitable for use in large-scale
networks where nodes cannot cheaply or reliably communicate with a central server.
Furthermore, it cannot be used in networks whose nodes are incapable of running Java,
perhaps due to energy, memory or computation constraints. However, some steps have
been made to support resource-constrained devices, particularly through the use of the
Jini Surrogate Architecture, in which a resoure-rich device acts as a proxy for a resource-
constrained device.

Other protocols adopt a distributed cataloguing approach, such as the Bonjour protocol
[10] for use in an ip network, or Universal Plug and Play (UPnP) [206] which uses the
simple object access protocol (soap). In these schemes, the protocol is inherently peer-
to-peer. Typically these are intended to run in zero-configuration environments, where
there is no assumption of services like dhcp or dns.

Specifically designed for low-power sensor networks, Dyo et al. propose an energy-efficient
discovery protocol in which nodes have a daily energy budget and spread out scans for
neighbours according to past activity history [63].

B.5 Routing

In a sensor network, multi-hop routing is often preferable to single-hop routing because
transmission power is proportional to the square of the distance between the transmitter
and the receiver.

199

B Sensor networks

(a) Node A sends adver-
tisements to its neigh-
bours.

(b) Nodes B and C reply
with requests for the
data.

(c) Node A sends its data
to B and C.

Figure B.3: An overview of the spin protocol.

(a) The sink node, E,
sends out interests
which are propagated
through the network.

(b) Data from the sen-
sor on node A is sent
in the directions from
which interests were
received.

(c) One path from A to E

is reinforced.

Figure B.4: An overview of the Directed Diffusion protocol.

There have been a wide range of protocols proposed to arrange the relationships between
nodes for the purposes of the transmission of data across the network. Akkaya and Younis
classify routing protocols into three categories: data-centric, hierarchical and location-
based [2]. We will examine the major protocols in these three classes.

B.5.1 Data-centric routing protocols

Data-centric protocols do not rely on the ability to name individual nodes, but merely
rely on the ability to name the data which the application desires. Hence, these protocols
tend to be query-based: the sink injects a query into the network and waits for data to
return.

A näıve means of relaying data in a sensor network is flooding [2, §2.1]. In this approach,
nodes in possession of data broadcast this data to all neighbours. Eventually, the data
will reach the sink. Whilst this approach does not require any intelligent routing or
topology maintenance, it sends more messages than are necessary which incurs a large
communication cost. The redundancy in communication is embodied in the problem of
implosion, where a node receives more than one duplicate of a message from different
neighbours.

Rather than forwarding a message to all neighbours, the gossiping approach to data
dissemination involves nodes selecting random neighbours with which to share received
data. This makes implosion much less likely but means that the propagation of data
through the network is slower.

200

B.5 Routing

A less näıve strategy is the spin protocol in which desired data is described using high-
level meta-data [107]. Sensor nodes advertise the meta-data describing the kind of data
that they can produce (Figure B.3a). These adverts are sent to neighbouring nodes. If
any such node wishes to receive data, it sends a ‘request’ message back to the sensor
(Figure B.3b) which replies with some data (Figure B.3c). In turn, a node which has
received the data now advertises to its neighbours to invite them to request the data, and
so on. This protocol avoids the problem of implosion, takes advantage of meta-data being
smaller than the data it describes, and avoids data being sent unnecessarily.

Perhaps the best-known routing strategy is Directed Diffusion [122]. Like spin, Directed
Diffusion also makes use of meta-data to describe data. Unlike spin, where the meta-data
travels from data sources to the sink in the form of advertisements, in Directed Diffusion
the meta-data travels from the sink to the sources in the form of interests (Figure B.4a).
An interest is propagated throughout the network, where it is cached at nodes. Incoming
data is compared against cached interests, and forwarded in the direction from which
the interest was received if it matches (Figure B.4b). Hence, data is sent to the sink on
demand. When a sink starts receiving new data, it can reinforce the link from which it
received the data by reiterating the interest, requesting a higher data rate (Figure B.4c).
In turn, this interest will propagate back along the path, reinforcing the entire path as
the main channel for data to be relayed along.

A number of variants of Directed Diffusion have been proposed. Shah and Rabaey ob-
served that the reinforcement of a single path in Directed Diffusion can cause uneven
energy consumption in a network, depleting the energy resources of the nodes on the
reinforced path at a faster rate than those of other nodes. Instead, they propose to occa-
sionally send data along sub-optimal paths [215]. Paths are chosen probabilistically, with
the probability inversely proportional to the cost of the path. In this way, the aim is for
the maximisation of the lifetime of the network as a whole.

Rumor Routing is another variant of Directed Diffusion, which avoids the need to flood the
entire network with interests [36]. Although the description of the meta-data expressing
the desired data in the interests is often smaller than the data itself, this is not always
the case. In Rumor Routing, sensor nodes send out ‘agents’ which propagate information
about the data across the network in a single direction. A query generated by a sink
travels through the network in a random direction until it is received at a node which the
agent has passed through.

Gradient-based routing is another derivative of Directed Diffusion in which nodes receiving
interests keep track of the number of hops from the sink [214]. This value is known as
the ‘height’ of a node. Data is forwarded from a node to the neighbour with the link of
steepest gradient, indicating the shortest path to the sink. As well as incorporating the
number of hops to the sink, the height metric can be manipulated by a node to control
how desirable it appears for neighbouring nodes to use. For example, if a node’s energy
resources are running low, it can increase its height to discourage other nodes from sending
data to it.

201

B Sensor networks

B.5.2 Hierarchical routing protocols

Hierarchical routing protocols involve appointing particular nodes to perform distin-
guished roles within the network. A popular form of hierarchical routing is for nodes
to form clusters which have a distinguished ‘cluster head’ which communicates on behalf
of the members of the cluster to the sink. This approach provides the potential to perform
aggregation at the cluster heads, which means that fewer messages need to be sent.

The Low-Energy Adaptive Clustering Hierarchy (leach) scheme [106] forms local clusters
of nodes based on received signal strength. The cluster heads act as routers in the direction
of the sink for the members of their clusters. Over time, cluster heads change randomly
to balance energy consumption.

Power-Efficient Gathering in Sensor Information Systems (pegasis) [155] adopts a rather
different hierarchical approach, in which the hierarchy is linear rather than tree-based.
The nodes organise themselves into a chain, which traverses all nodes in the network, such
that each node only ever transmits to and receives from a particular neighbour. One node
in the chain is then randomly selected to communicate directly to the sink; this selection
changes over time to balance energy consumption. Compared to the cluster-forming
in leach, the chain-forming in pegasis is much cheaper due to a reduced amount of
communication required [71, p20].

The Threshold-Sensitive Energy Efficient Sensor Network Protocol (teen) [170] takes
a reactive approach to transmitting sensor data from nodes. Rather than the above
proactive approaches, where data is sent at regular intervals or whenever a node receives
a query, in a reactive approach, data is only transmitted when there is a significant
change in the sensed value. In this way, energy is saved through reducing the number of
transmissions at the expense of a higher-fidelity view of the sensed data. This is achieved
through the announcement of two thresholds by cluster heads to the members of their
clusters: a hard threshold and a soft threshold. Nodes only transmit data updates if
the new value exceeds the hard threshold and when the data is different from the last
transmitted value by at least the soft threshold. As with leach and pegasis, the nodes
take turns at being cluster heads.

B.5.3 Location-based routing protocols

Location-based routing protocols assume that nodes have location sensors and use the
information about their positions to reduce the number of messages that need to be sent.

Rodoplu and Meng proposed a routing scheme based on a ‘minimum energy communi-
cation network’ (mecn) [208]. This is a simple local optimisation scheme which attains
a network-wide global minimum energy usage in stationary networks, and close to the
minimum in mobile networks. A node i determines the nodes j for which it is prefer-
able to route via an intermediate node rather than transmitting directly to j. From this,
minimum-cost paths throughout the network can be derived.

Geographic Adaptive Fidelity (gaf) [252] is an ad-hoc network routing protocol which
identifies groups of nodes which are equivalent from the point of view of routing, and
sends the unnecessary ones to sleep. Two nodes are equivalent if they are located in the

202

B.5 Routing

same cell of a square grid. Nodes use location sensors to establish which cell they belong
to and communicate with the equivalent nodes to negotiate which node should sleep and
for how long.

Finally, Yu et al. have proposed a Geographical and Energy Aware Routing strategy
(gear) [257] for routing queries concerning particular geographical regions. A node relays
a query in the direction of the target region whilst also taking account of its neighbours’
energy consumption and attempting to balance this.

203

B Sensor networks

204

APPENDIXC

Tightly-coupled systems

Tightly-coupled distributed systems are distinguished from loosely-coupled distributed
systems by memory being shared between processors, depicted diagrammatically in Fig-
ure 2.1. Shared memory implies that reads and writes to memory locations are immedi-
ately globally visible. This implies some degree of inter-dependence between processors;
on the other hand, the concurrent nature of multiple processors implies some degree of
independence between processors. Hence, there are a number of difficulties which arise
when programming concurrent applications in an environment in which memory is shared.

C.1 Dealing with concurrency

Before languages began to provide facilities to deal with the problems associated with
concurrency, the norm was for programmers to create buffers to support inter-task com-
munication. The buffers would support get and put operations to consume a value from
and insert a value into the buffer, along with full and empty operations to determine the
state of the buffer. In order to support concurrent access to a buffer, semaphores were
used which exploit atomic machine instructions to cause a process to wait whilst another
is performing an operation on the buffer.

However, this paradigm was at too low a level to be practically useful for controlling
access to larger data structures. Relying heavily on the programmer’s correct handling of
semaphores, it was prone to error.

We examine a few solutions adopted by conventional programming languages to work
around or avoid these problems altogether.

205

C Tightly-coupled systems

C.1.1 Object-oriented programming

Java attempts to assist programmers to get around these problems by providing prim-
itives such as mutual exclusion locks and condition variables. Mutual exclusion locks,
or ‘mutexes’, can be used to demarcate critical regions in a program in which it must
be guaranteed that no more than one thread is executing at any given time, removing
the possibility of race conditions between threads. Condition variables are available to
the programmer to avoid the race condition associated with busy-wait loops, where the
process spins while waiting for a certain condition to hold.

Arslan et al. argue that the Java approach is too low-level, and is thus hard to under-
stand and prone to programming errors [14]. Instead, in their proposal for Simple Con-
current Object Oriented Programming (scoop), they propose a higher-level approach
which provides transaction-semantics and a type system which can statically guarantee
concurrency-related safety properties. In their programming model, each object has a
single owning ‘processor’, which may be a thread or a process on a physical CPU. For a
method invocation, if the invoker has a different owning processor to the object on which
the method is invoked, the call is asynchronous. A keyword separate is introduced, used
when declaring a variable to indicate that it may be handled by a different processor. Calls
to methods with separate parameters block until the value passed is exclusively handled
by the caller. This allows static type-checking to ensure safety against synchronisation
defects.

An alternative approach to object-oriented concurrency is to use active objects. In tradi-
tional object-oriented programming, the object abstraction encapsulates data and actions
which can be performed on the data. The active objects paradigm takes this concept
one step further and encapsulates data and actions along with a thread of control. This
one-to-one mapping of threads to objects means that the threads must be lightweight
enough to allow hundreds of thousands to co-exist, and to allow them to be created
and destroyed with minimal cost. Programming with active objects usually entails a
continuation-passing style in which active objects voluntarily pass control to others. Kilim
is an implementation of active objects in Java [223].

C.1.2 Functional programming

Functional programming languages such as ml [178] and Haskell [117] are gaining in
popularity. One reason for this gathering momentum is that they admit many compiler
optimisations because of the pure, near-mathematical form of their programs. Compil-
ers are becoming sufficiently clever that large, semantics-preserving optimisations can be
performed which achieve performance at least as good as hand-optimised procedural pro-
grams, whilst allowing the programmer to express the program at a higher level. Burstall
and Darlington describe a system of rules for transforming recursive functional programs
into more efficient ones whilst maintaining semantic correctness [38]. However, functional
programming languages are also inherently amenable to parallelisation because they are
referentially transparent. This means that the meaning of an expression is always the same
and is built from its component sub-expressions, and does not depend on computation
that has occurred in the past.

206

C.2 Architectural models

Consider the expression f(g(a), h(b)) in a functional language. Since g and h are functional—
that is, they have no side effects—the order of execution of g(a) and h(b) does not affect
the outcome as it might in a procedural language. Hence they could be executed inde-
pendently, in parallel.

Consider also the example of the map function which applies a function to every element
of a list. This is amenable to parallelisation since the function can be applied to each
of the elements in the list in any order. Hence, a large list could instead be partitioned
into distinct sub-lists, each processed independently, and the results appended to give
the same result. Hammond has presented an overview of the history of parallelism in
functional languages [99].

C.2 Architectural models

Over the years, a number of models of multi-processor machines have been proposed as
potential successors to the von Neumann architecture. These models provide high-level
abstractions which enable algorithm designers to specify algorithms in an architecture-
neutral fashion whilst modelling realistic features which are readily implementable in
hardware.

The parallel random access machine (pram) model assumes a single shared memory
which any processor can access [77]. This early model was criticised for its gross over-
simplifications, primarily that it unrealistically assumed there to be no cost for com-
munications between processors. This meant that it encouraged the design of parallel
algorithms which make excessive use of communication, which do not perform well in
practical multi-processor machines. Despite these flaws, it is still a model in widespread
use.

Many extensions to the pram model have been proposed, which address the basic model’s
over-simplifications. These include better modelling of memory contention; of asynchrony
of processors; of the bandwidth and latency of inter-processor communication; and of
memory hierarchy [50, p10].

A survey of parallel algorithms was presented by Karp and Ramachandran [136]. These
algorithms include list, tree, graph and sorting algorithms. They employed the pram
model as the model of computation, despite acknowledging its weaknesses, describing it
as an “extremely useful vehicle for studying the logical structure of parallel computation
in a context divorced from the issues of parallel computation”.

C.3 Multi-processor machines

Most contemporary commodity multi-processor machines are of the variety termed sym-
metric multi-processors (smp). These consist of a set of identical processing elements
connected to a single shared memory via a common bus. Hence the cost of accessing
memory is the same for all processors. The adjective symmetric refers to the homogene-
ity of the processors.

207

C Tightly-coupled systems

The programming model for an smp machine is identical to that for a uniprocessor ma-
chine. Since memory is globally shared, accesses to it are sequential. However, with the
concurrency introduced by the presence of multiple processing elements, it is now possible
that instructions from a single process could execute on different processors. Therefore
the programmer must ensure that his program interacts carefully with the operating sys-
tem so that only streams of instructions which are independent are executed on separate
processors. Typically this is achieved through the use of threads within a process, and
the operating system will only use a single processor for a uni-threaded process.

C.4 Data-parallel architectures

Data-parallel computer architectures are characterised by operations which can be per-
formed in parallel on each element of a large, regular data structure [51, §1.2.5]. Array
processors were born out of the recognition that many mathematical computations in-
volved performing the same operation on all elements of an array or matrix. These
computers formed the basis of many supercomputers of the 1980s, popular in scientific
computing. In the von Neumann style, programs logically contain a single locus of control
in programs. Typically, a control processor would broadcast each instruction to each of
a bank of processing elements, to which each is given an element of the data structure.
In these machines, there is usually some scope for communication between neighbouring
processors, for example to cause all processors to pass an intermediate value to the pro-
cessor to their right. For some applications, this favours a two-dimensional grid layout
rather than a one-dimensional array of processing elements.

Computers falling into this category merit classification as tightly-coupled distributed
computers since the programming model was usually oriented around a shared, global
memory, across which the data structure to process was laid. Each memory element was
owned by a particular processing element. However, due to the deterministic, single-
threaded nature of the programming model, these architectures fall largely into Flynn’s
simd category.

208

APPENDIXD

Modelling distributed computing

There have been a variety of approaches to modelling concurrent computation. The
majority of these calculi have in common a concept of a process1 which performs, often
repeatedly, a sequence of computational steps, which may involve communication to or
from another process as a fundamental operation.

MacQueen distinguishes between calculi in terms of the nature of the communication
channels between processes [164, §2.3.2]:

Direct communication entails processes having globally valid names, and any process
can communicate directly with another process if it knows its name. Hoare’s csp is
an example of a calculus employing direct communication.

Indirect communication entails the existence of explicit channels between processes.
Milner’s ccs and Kahn’s dataflow approach use indirect communication, the latter
with storage of messages on channels and the former without.

We will describe the models mentioned in more detail.

D.1 Process algebras

There are many algebras which have been invented for the purpose of modelling concurrent
computation. Baeten states that “a process algebra is the study of the behaviour of

1As in Chapter 2, we use the term ‘process’ throughout this appendix to refer to the encapsulation of
computation and not necessarily to refer to an operating system process.

209

D Modelling distributed computing

parallel or distributed systems by algebraic means” in an overview of the history of process
algebras [17].

A process algebra provides a means of specifying a parallel system and a way of verifying
properties about it through equational reasoning. Furthermore, two equivalent systems
with different compositions can be shown to be similar using mathematical techniques.

However, the worth of these benefits hang on the ability of the algebra to model complex
systems. The calculi described below scale gracefully. For this to be the case, Milner
states that a process algebra fundamentally needs a ‘product’ operator which composes
two components into a single component, taking account of their interaction, and an
‘encapsulation’ operation which hides the internal details of a component [176, p303].

D.1.1 Milner’s ccs

In Milner’s calculus of communicating systems (ccs), a process is modelled as having
input and output ports [177]. The actions it can perform are to receive an input signal
or to emit an output signal. A process P which waits for an input on port α then emits
an output on port β, then repeats, is modelled as

P = α.β.P .

For example, a binary semaphore can be modelled as follows:

A = p.B

B = q.A

The behaviour A represents the ‘free’ state and B represents the ‘busy’ state. Input
signals p and q are used to alternate between these states.

A process Q which can output on either one of two ports α or β, then repeats, is modelled
as

Q = α.Q + β.Q.

In this way, addition is used to denote non-determinism: any one of the summands could
execute next. Addition is known as the ‘choice’ operator.

Processes are composed by parallel composition, denoted by a vertical bar. A process
outputting on port α composed with a process waiting for input on port α can mutually
communicate, known as a ‘reaction’. Informally,

(α.P + . . .) | (α.Q + . . .) −→ P | Q.

This style of communication is indirect according to MacQueen’s classification and takes
place synchronously since there is no storage on the channel.

Graphically, processes are drawn as nodes with labelled output ports and arcs linking
complementary ports α and α, as shown in Figure D.1.

Encapsulation of a network of processes is achieved through a restriction operator. The
expression P\α behaves like P but does not allow other processes to communicate via

210

D.1 Process algebras

Figure D.1: Three ccs processes, showing complementary ports linked.

channel α. Hence, channel α is hidden. This allows a complex network to behave ab-
stractly just like an individual process: communicating in the same way, being subject to
the same composition operations, and having the same sort of semantics.

Milner shows how ccs can be used to provide a semantics to a conventional programming
language called P [177, §9]. This language consists of standard control-flow constructs such
as if -then-else, while loops, procedure calls and sequential composition as well as parallel
composition. Expressions and commands of P can be translated into ccs recursively.

D.1.2 Hoare’s csp

Hoare’s communicating sequential processes (csp) [111] is similar in spirit to ccs. Van
Glabbeek has surveyed the differences between the two algebras [234]. Where Milner uses
one choice operator, Hoare distinguishes between two: a deterministic version, known
as ‘external choice’, where the chosen path is determined by the environment; and a
non-deterministic version, known as ‘internal choice’.

Like ccs, communication between processes is synchronous. As mentioned above, csp
uses direct communication, according to MacQueen’s taxonomy. Two processes communi-
cate when they share an action α, where α is some global name, whereas in ccs, processes
share a unidirectional channel consisting of α and α. Whilst ccs uses only one operator
for parallel composition, csp uses two: one for interleaving, and one for communication.
The communication operator is similar to the use of parallel composition with restriction
in ccs.

D.1.3 The π-calculus

The π-calculus is an extension of ccs which adds the concept of mobility, which is the
capacity to change the connectivity of a network of processes [179].

In the π-calculus, rather than merely sending a signal to an output port or receiving a
signal from an input port, the actions which processes can perform involve passing a name
to an output or receiving a name from an input. For example, the expression x〈y〉 denotes
the output of name y down the channel with name x. Conversely, the expression x(u)
denotes the input of a name from channel x, where u is bound to the value received.

Now, a reaction is defined as follows:

(x(y).P + . . .) | (x〈z〉.Q + . . .) −→ P [z/y] | Q,

where [z/y] denotes the substitution of free occurrences of y with the name z.

Mobility arises when names of channels (perhaps even private channels, created using
the restriction operator) are passed to other processes. Milner exemplifies this concept

211

D Modelling distributed computing

(a) The initial marking.

(b) The marking after the first
transition has fired.

(c) The marking after the sec-
ond transition has fired.

Figure D.2: An example Petri net, with arc weights indicated as edge labels.

by analogy with the telephone system, whereby the name that is passed is a telephone
number: telling someone your telephone number creates a new communications link to
that person [179, p93].

D.2 Petri nets

Perhaps the earliest approach to model parallel computation was in 1962 by Carl Adam
Petri. Since then, his ‘nets’ have become widely researched and applied to many areas of
computing [183]. A Petri net is defined in terms of a set P of places and T of transitions, a
set of directed arcs F ⊆ (P ×T)∪(T ×P) going between places and transitions. Each arc
is assigned a weight by a weight function W : F → N. An initial marking M0 : P → N0

assigns a number of tokens to each place.

212

D.3 Dataflow models

Petri nets are ‘executed’ by transitions firing, which results in a new marking. A transition
t fires when each predecessor place p has at least W (p, t) tokens. This causes those
numbers of tokens to be removed from each p, and W (t, q) tokens are added to each
output place q.

Figure D.2 shows an example of a Petri net and its execution. Places are denoted by
circles and transitions are denoted by vertical bars. Markings are indicated by drawing
tokens inside the places; the initial marking is indicated in Figure D.2a. The first step
of execution is a firing of the transition on the left, which consumes two tokens from the
uppermost place, depositing a single token in the central place; the resulting marking is
shown in Figure D.2b. Subsequently, the second transition can fire, consuming a single
input token from each of its inputs and depositing two tokens in the final place, shown in
Figure D.2c. After this point, no further progress can be made.

The control flow of a parallel system can be modelled in this elegant and intuitive fashion.
Phenomena such as deadlock are simple to model. However, MacQueen notes that one
of the drawbacks of Petri nets is the lack of a direct way of describing the flow of data
through a net. He concludes that Petri nets “seem most useful for fundamental studies
of the semantics of parallelism which relate only indirectly to the issues of programming”
[164, p6].

D.3 Dataflow models

Dataflow models are a special case of stream processing systems [226]. These systems
consist of a collection of filters that execute in parallel, communicating via channels.
Stephens classifies dataflow systems according to three dimensions [226, §3]:

• whether the filters are synchronous or asynchronous with respect to each other;

• whether the filters are deterministic (functions) or non-deterministic; and

• whether the channels are uni- or bi-directional.

The filters and channels model of dataflow lends itself naturally to a graph-based represen-
tation. Dataflow systems can also be described using a functional programming language;
however, difficulties arise when describing a filter with multiple outputs [164, p29].

The operational semantics of a dataflow system determine whether it is evaluated in an ea-
ger or a lazy fashion [226, §3.3]. Eager execution refers to a data-driven approach whereby
filters send output on their egress channels without regard to whether the successor filter
is in a waiting state. Lazy execution refers to a demand-driven approach whereby filters
demand input from predecessors when they have finished processing the last inputs.

D.3.1 Kahn’s dataflow networks

The most influential contribution to dataflow computation was made by Gilles Kahn. He
defined a programming language and a denotational semantics for his class of dataflow

213

D Modelling distributed computing

Figure D.3: A dataflow network to output a stream of natural numbers, n, and a stream
of perfect squares, s.

networks [164, §6]. The programming language was a simple, algol-like parallel lan-
guage for representing dataflow networks. The model is of dedicated channels with stor-
age between filters, and computation is demand-driven. Channels in Kahn’s model thus
represent unbounded queues of data elements, which yields pipelining between filters.

The denotational semantics is based upon functions on streams (called ‘histories’). De-
notationally, streams can be thought of as similar to lists but without a test for the null
list; this test is not possible since it is undecidable whether a predecessor filter will output
another value. Loops in the network imply recursion in the denotation.

D.3.2 Other languages

An early approach to describe dataflow systems in a high-level, functional style was imple-
mented in the language sisal (Streams and Iteration in a Single-Assignment Language)
[89]. At a glance, sisal had the appearance of contemporary conventional imperative lan-
guages such as Pascal, but restricted each name to bind to at most one single value, giving
rise to its functional, side-effect free nature. Sisal compilers automatically parallelise the
program, outputting a dataflow graph.

Perhaps the most famous dataflow language is Lucid [240]. Lucid adopts a demand-
driven model of evaluation. A Lucid program can be thought of as a system of recursive
equations, each of which defines a network of filters and their communication channels.
Variables in the equations represent streams of values; streams can be composed using
the ‘followed-by’ operator, fby. For example,

n = 1 fby n + 1

s = n× n

defines a simple network which outputs a stream of the natural numbers called n and a
stream of the perfect squares called s, depicted graphically in Figure D.3.

Lustre is a dataflow language designed for specifying ‘reactive’ systems which contin-
ually process input data [97]. In contrast to Lucid’s asynchronous nature, Lustre is
synchronous: each event of a program takes place at a known time. This results in
temporally-deterministic programs, so it has found uses in many real-time systems.

Thies et al. observed that these kinds of language have not been widely adopted by practi-
cal implementations of applications involving streaming media; this has led to the design of

214

D.4 Categorical datatypes

the high-level language StreamIt [230]. The aim of this language is to provide a high-level
stream processing abstraction whilst still maintaining the flexibility of a general-purpose
programming language. A StreamIt program consists of a hierarchical composition of
stream processing elements and constructs which enable serialisation, parallelisation and
feedback loops. The use of a hierarchical graph of stream processing elements, rather than
an arbitrary graph, means that certain compiler analyses and optimisations are possible.

D.4 Categorical datatypes

Categorical datatypes are a generalisation of abstract datatypes, with the addition of
parallel operations [221, §2.5]. The programming model of using categorical datatypes is
a data-parallel model which is architecture-independent and conceptually simple to rea-
son about because it is single-threaded. Moreover, the computation and communication
requirements are known when the datatype is built. Parallelism arises through operations
on the structure of the datatype. Categorical datatypes have been used to develop a
parallel programming model for lists, bags, trees, arrays, molecules and graphs.

D.4.1 Bird-Meertens Formalism

A Bird-Meertens theory begins with base types and extends them to new data-parallel
types using type functors [219, §2]. Given the constructors for a type, a large set of
identities are automatically generated. This is a significant aid to program development:
programs which are clearly correct can be written in an equational style, and a compiler
can use the identities to transform it into one which is more computationally efficient.
Not only is the set of such identities large, it is also guaranteed to be complete. Hence,
any two equivalent computations can be derived from each other.

Crucially for parallelism, these data-parallel types have a generalised ‘map’ operation
which enables a single operation to be applied to all elements of the type in parallel.
Furthermore, for some types, a generalised ‘reduce’ operation is available, which recur-
sively collapses a structured value into a single element, with the possibility of further
parallelism.

As an example, consider the type functor which takes any type and maps it to lists of
that type. We can then lift any function f from type τ1 to type τ2 to a function map f
which maps lists of τ1 to lists of τ2 by applying f to each element. Functionals map and
red are defined as follows:

map f [x1, . . . , xn] = [f(x1), . . . , f(xn)];

red(⋆)[a] = a

red(⋆)[x ++ y] = (red(⋆)x) ⋆ (red(⋆)y),

where ++ is list concatenation.

Homomorphisms on types can then be expressed as the composition of a generalised
map and a generalised reduction. This means that any homomorphism can be expressed

215

D Modelling distributed computing

as a two-stage, highly parallel operation. For lists in particular, Bird proved that all
homomorphisms on lists can be decomposed into a map stage and a reduce stage. Many
important functions can be expressed as list homomorphisms, including sorting [219, §2].

Formally, Bird’s theorem can be expressed as follows for lists:

Theorem D.1 (Bird’s First Homomorphism Theorem [28]). A function h is a homomor-
phism from a monoid of lists (list(S), ++ , []) to (T,⊗, i) iff

h = red(⊗) ◦map(f), (D.1)

where f(a) = h([a]), and this decomposition is unique.

The map stage can be totally parallelised, and the reduce stage can be parallelised in a
tree-like structure [92, p402]. If the operation ⊗ has constant time complexity then the
parallel algorithm for the homomorphism will have complexity O(log n) where n is the
length of the list.

For distributed inputs, where we have a list of lists rather than just a single list as input,
a consequence of Bird’s theorem called the promotion law is applicable [91, p151]:

h ◦ red(++) = red(⊗) ◦map(h). (D.2)

D.4.2 Stages and Transformations paradigm

The ‘stages and transformations’ program design paradigm proposed by Gorlatch involves
the initial expression of a program as a sequential composition of stages [91]. Each
stage may consist of work done in parallel. This program is then transformed into a
parallel composition of sequential work using semantics-preserving transformations. It is
suggested by Gorlatch that this approach is better than initially starting with the program
in the parallel form because the sequential form is far easier to design, understand and
reason about.

216

APPENDIXE

Inter-process communication
techniques

This appendix describes some practical implementations of inter-process communication
techniques for loosely-coupled distributed systems.

E.1 Distributed shared virtual memory

A distinction is made between page-based and fine-grained distributed shared virtual
memory (dsvm). Page-based systems allocate each page of memory to a processor and
transfer the contents of the page to a processor at which a page fault occurs because it
is not present. This approach suffers from the potential problem of false sharing, when
two processes concurrently write to unrelated items of data which are located in the same
page, causing the page to bounce between the processes, incurring a large network cost.
A fine-grained approach separates each item of data and thus does not suffer from the
false sharing problem because the unit of coherence is smaller. However, it means that
checks for the local presence of a page must be made in software rather than relying on
a hardware memory-management unit.

Two early implementations of page-based dsvm at the operating system level are found
in the plus system [29] and Dash multi-processor machine [147]. More recently, Tread-
Marks is a user-level implementation of page-based dsvm on loosely-coupled networks of
commodity computers [7]. Java/dsm is an implementation of a Java virtual machine on
top of TreadMarks [256].

217

E Inter-process communication techniques

Shasta is a fine-grained implementation of dsvm [213]. It rewrites executables, intercept-
ing loads and stores to insert checks whether data is available locally, communicating with
other processors if it is not. Jackal is similarly fine-grained, but works on Java bytecode
[236]. It also analyses Java source code, if available, to reduce the number of access checks
necessary.

High-Performance Fortran is a set of extensions to Fortran 90 which adds constructs
for explicit parallelism, such as forall which identifies loops which can be processed in
parallel [139]. Again, the programming model is of a shared, global memory whilst data
is distributed throughout separate physical memories. Unlike in the languages above, the
process which owns an item of data does not change, but the compiler inserts message-
passing logic to share data. Programmers use align and distribute directives to advise the
compiler of which processors to map items of data to.

In a cluster-computing environment, the mosix virtualisation layer on top of Linux can
create the appearance of a single operating system which runs across multiple machines,
referred to as a ‘single system image’ (ssi) [20]. In this environment, programs are exe-
cuted in the same fashion as on a uni-processor machine, with shared-memory assump-
tions, and the virtualisation layer automatically and transparently performs workload
distribution via process migration.

E.2 Shared objects

The C Region Library (crl) [126] aims to avoid the false sharing problem by allowing
programmers to annotate their programs. Programmers define shared-data regions, which
are arbitrarily-sized contiguous areas of memory, and surround reads and writes with
access-check calls.

Orca is a programming language which supports shared data objects to allow processes
to communicate [18]. Unlike dsvm, where access to shared memory is low-level, through
reads to and writes from memory locations, Orca allows shared data to be manipulated
through user-defined, high-level, composite operations. An example of a shared data
structure might be a fifo queue, with high-level operations push, pop and peek. The
implementation of Orca distributes replicas of shared objects between processes. This
permits read operations to proceed concurrently and with minimal cost; however, write
operations entail a broadcast of the new value to all replicas.

Jade is a programming language based on C which adds constructs which allow the pro-
grammer to annotate how shared objects are accessed [207]. Programs are written in a
serial fashion, and the Jade compiler then identifies which parts of the program can be
executed in parallel whilst preserving the program’s semantics.

The Parallel Virtual Machine (pvm) library, which has bindings to several languages, is a
programming environment for loosely-coupled distributed systems [227]. It incorporates
primitives for various parallel-processing paradigms, including the sharing of memory
regions. This is achieved through the ability to share a contiguous region of memory
containing either a series of integers or floating point values or being treated in an untyped
fashion [227, §2.3].

218

E.2 Shared objects

Mentat is a language built on top of C++ which adds a distributed object space [93].
Objects on which parallel computation can be performed are distinguished from sequential
objects by the programmer.

219

E Inter-process communication techniques

220

APPENDIXF

Task partitioning

This appendix describes extant work pertaining to the field of task partitioning. This is
the problem of determining which program components should be grouped together into
a logical unit to execute on a single processor. Task partitioning is a pre-requisite for task
assignment (see Section 2.2.3) which is the procedure of determining which processor is
to execute each group of components.

F.1 Manual task partitioning

There are several systems in which task partitioning is performed by the programmer and
is fed to a compiler in a configuration file. This usually goes hand-in-hand with manual
task assignment, where the configuration file will not only define which tasks constitute
each partition, but also which processor will execute those tasks.

An early example is cages, which was an environment for programming graphics appli-
cations which use two processors [98]. Programmers would write an ordinary program, as
if for a uniprocessor machine. This is then sent to a pre-processing compiler along with a
separate specification of which variables are global, and of which procedures should be as-
signed to which processor. The pre-processor would then generate individual executables
for each machine, using rpc for procedure calls spanning processors.

A more recent example concerns programming network processors. It is common for
network processors to be arranged such that not all memory banks are available from
each processor. Hence it is necessary for the processors which execute each part of an
application, and the memory banks which hold each item of data, to be carefully selected,

221

F Task partitioning

to ensure that data is always available to processors which need it. Presently, this se-
lection of processors is usually achieved through a programmer manually deciding which
instructions to execute on which processors, preparing a separate binary for each core.
For example, the language PacLang is a high-level, imperative, architecturally-neutral
programming language for programming network processors [66].1 The compiler accepts
a PacLang program along with an architecture mapping script (ams) [67]. The ams is
architecture-specific, and specifies how the high-level program should be partitioned into
a set of concurrent tasks suitable for execution on that architecture, and how these tasks
are mapped to the available processors.

In a sensor network, Kumar et al. discuss task assignment in a hierarchical network [143].
These networks involve two or more tiers of processors, each with a characteristic process-
ing ability which increases up the hierarchy. They state that the decision about where to
partition the application, and which processors to employ, impacts on the application’s
performance and energy consumption.

F.2 Static automatic task partitioning

On the other hand, various work in automatic task partitioning has been undertaken. In-
variably, automatic task partitioning involves the use of profiling—measuring the duration
of time spent in each procedure and the sizes of the arguments and return values—in order
to gather statistical information about the tasks and the interactions between them. This
requires the program to be executed whilst augmented with instrumentation code. This
is superior to a static, off-line approach which can only estimate information about which
tasks communicate with which other tasks, and not deduce how costly this communication
is or how frequently it occurs.

Early work in automatic task partitioning was performed by the Interconnected Processor
System (icops) [175]. The motivation for that work was an interactive graphics applica-
tion which was to be distributed between a host processor (where the application’s data
was located) and a satellite graphics processor (where the display was located). Metrics
gathered through profiling made it clear which of the program’s seven modules should
be executed on which processor. A graph-cutting algorithm was used to automatically
divide the program’s modules into two portions, to run on the two processors.

The Coign system performs task partitioning on an application written using Microsoft’s
Component Object Model (com) [120]. From the results of profiling, an inter-component
communication graph is derived, with weighted edges indicating the volume of data flow
between components. Again, a graph-cutting algorithm is used to divide this graph into
two segments—a client portion and server portion—minimising the edge costs across the
cuts.

The graph-cutting algorithms employed above could be generalised to divide a program
into more than two partitions. However, this is known to be np-complete. Hogstedt et

1PacLang exploits a linear type system which entails each packet on the heap being referenced by
precisely one thread at all times. However, packets may be referenced multiple times within a thread.
This permits a range of compiler optimisations.

222

F.2 Static automatic task partitioning

al. describe a number of heuristic approaches to solving the n-way graph-cutting problem
in polynomial time [113].

An approach to task partitioning for programs expressed in the sisal single-assignment
dataflow language2 was presented by Sarkar and Hennessy [211]. They use a recursive-
subdivision approach. Initially, the entire program graph is considered to be a single task.
Then it is broken down into smaller tasks constituted of sub-graphs. This is then repeated
recursively until no bottleneck tasks remain. A task is a bottleneck when its execution
would cost more than all of the tasks which can be executed in parallel in the meantime.
The costs are derived from static analysis and (optional) hints from the programmer.

Automatic task partitioning has found many applications in the area of ‘computation
off-loading’, also referred to as ‘remote execution’. These terms are applied primarily in
pervasive or ubiquitous computing, referring to the relieving of the burden of intensive
computation from resource-constrained devices (often mobile devices) and its off-loading
to a surrogate processor (often fixed computers). Computation off-loading at the process
level had shown much promise: Rudenko et al. show that for computationally-intensive
applications, the energy savings through remote execution can outweigh the energy losses
incurred through transmitting data to and from the remote processor [209]. Task parti-
tioning explores whether savings can be made at a finer granularity than off-loading the
execution of entire processes.

Ou et al. describe a scheme [195] to partition a pervasive application expressed in Java
bytecode into k + 1 parts, where one is a partition which cannot be offloaded because it
involves interaction with a user, and the other k partitions can be offloaded to surrogate
processors. The profiling scheme they propose generates a weighted graph of program
components which indicates not only communication costs on edges but also cpu and
memory utilisation on vertices.

Li et al. present a similar approach to a solution to the same problem [154]. They de-
termine function execution times by profiling, and partition the program at the function
level using a heuristic-based technique. Their experimental tests with a pda show that,
for a variety of applications, wirelessly off-loading the computation to a more powerful
computer often leads to lower energy consumption than turning the (expensive) wireless
interface off and performing the computation locally.

J-Orchestra [156] is an automatic partitioning system for ubiquitous computing applica-
tions. It transforms a Java program at the bytecode level into a partitioned version by
re-writing the code, converting local method calls to remote calls as appropriate. However,
the analysis driving the partitioning is static, revealing only the existence of dependencies
between classes and not the quantity of communication therein. Through a gui, a user
can edit the partitioning at will.

MagnetOS provides an automatic partitioning service which takes a program written for
a single Java virtual machine [22]. It partitions the program into a set of components,
performing bytecode-level rewriting to modify object creation, method invocation and
field access. Java rmi is employed to provide remote invocation.

2Sisal is introduced in Section D.3.2.

223

F Task partitioning

F.3 Dynamic automatic task partitioning

The approach described by Gu et al. for pervasive computing environments involves mak-
ing decisions about off-loading computation during run-time [95]. Assuming an object-
oriented programming model, their run-time system forms a graph of classes and the
interactions between them. The system analyses the total amount of memory which
instances of each class consume to form the node weights, and the amount of data trans-
ferred between classes to form the edge weights. Programs start off entirely located on
a single mobile device. As the program runs, the system monitors memory usage and
contemplates an off-load if memory becomes tight.

224

APPENDIXG

Example task graphs

In this appendix, we present some examples of simple task graphs. The following examples
are common and well-known aggregation functions which either produce a summary of a
set of input values or return an exemplar value. The sum, count, count-unique and mean
aggregation operations produce a summary of the input; the maximisation, minimisation
and median operations return an exemplar value [165, p135].

The task graph of the median operator was described in Section 5.5.5.1, and that of the
arithmetic mean operator was described in Section 5.5.7.1.

G.1 Sum

P1 P2 Pn

Q

+

Figure G.1: Summing the input values.

Analogous to the computation performed by the sql sum aggregation operator, the task
graph in Figure G.1 sums the input values. One n-ary merge task is employed. The merge
function is addition. We use the terms P1, P2 and Pn to denote sub-graphs with a single
output, and Q to denote a sub-graph with a single input.

225

G Example task graphs

G.2 Maximisation and minimisation

P1 P2 Pn

Q

max

Figure G.2: Finding the maximal input value.

Analogous to the computation performed by the sql max aggregation operator, the task
graph in Figure G.2 finds the maximal input value. A similar graph can be constructed
to find the minimal input value. In each case, one n-ary merge task is employed, where
the merge function is either max or min.

G.3 Count

fff

P1 P2 Pn

Q

+

Figure G.3: Counting the number of input values.

Analogous to the computation performed by the sql count aggregation operator, the task
graph in Figure G.3 counts the number of input values. For n input values, n processing
tasks and one n-ary merge task are employed. The merge function is addition and the
processing function is defined as

f(x) = 1.

G.4 Count of unique values

Analogous to the computation performed by the sql count distinct aggregation oper-
ator, the task graph in Figure G.4 counts the number of unique input values. For n input
values, n + 1 processing tasks and one n-ary merge task are employed.

The processing function f creates a unit list, defined as

f(x) = [x].

226

G.4 Count of unique values

fff

g

P1 P2 Pn

Q

m

Figure G.4: Counting the number of unique input values.

The merge function m takes two sorted lists of values and combines them into a single
sorted list whilst discarding duplicates, defined as

m(as, []) = as

m([], bs) = bs

m(a ++ as, b ++ bs) =

a ++ m(as, bs) if a = b
a ++ m(as, b ++ bs) if a < b
b ++ m(a ++ as, bs) otherwise.

Finally, function g finds the length of a list, defined as

g([]) = 0

g(x ++ xs) = 1 + g(xs).

227

G Example task graphs

228

APPENDIXH

Graphical derivations of ternary
transformations

In this appendix, we graphically show how the ternary versions of the program trans-
formations can be expressed in terms of applications of the binary transformations of
Section 5.5.7.

f

R

P

Q1 Q2 Q3

=

f

R

R

P

Q1 Q2 Q3

P–R←→

R

R

f

f

P

Q1 Q2 Q3

P–R←→ R

R

ff f

P

Q1 Q2 Q3

=
fff

R

P

Q1 Q2 Q3

Figure H.1: Derivation of the ternary Processing–Replication transformation.

229

H Graphical derivations of ternary transformations

⋆

f

P1 P2 P3

Q

= ⋆

⋆

f

P1 P2 P3

Q

M–P←→

⋆

⊗

f f

P1 P2 P3

Q

M–P←→

⊗

⊗

fff

P1 P2 P3

Q

=
fff

⊗

P1 P2 P3

Q

Figure H.2: Derivation of the ternary Merge–Processing transformation.

⋆

R

P1 P2 P3

Q1 Q2 Q3

=
⋆

⋆

R

R

P1 P2 P3

Q1 Q2 Q3

M–R←→
⋆⋆

⋆

R

R

R

P1 P2 P3

Q1 Q2 Q3

M–R←→
⋆

⋆

⋆

⋆ R

RR

R

P1 P2 P3

Q1 Q2 Q3

M–R←→

⋆⋆

⋆

⋆⋆ R

R

RR

R

P1 P2 P3

Q1 Q2 Q3

M–R←→
⋆

⋆

⋆

⋆

⋆

⋆ R

RR

R

R

R

P1 P2 P3

Q1 Q2 Q3

=
⋆⋆⋆

RRR

P1 P2 P3

Q1 Q2 Q3

Figure H.3: Derivation of the ternary Merge–Replication transformation.

f

P

Q

Farm←→ ff

⋆−1

⊗

P

Q

Farm←→ fff

⋆−1

⋆−1

⊗

⊗

P

Q

= fff

⋆−1

⊗

P

Q

Figure H.4: Derivation of the ternary Farm transformation.

230

⋆−1

⋆

P

Q

=
⋆−1

⋆−1

⋆

⋆

P

Q

S–M←→
⋆−1

⋆

P

Q

S–M←→
P

Q

Figure H.5: Derivation of the ternary Split–Merge transformation.

⋆

⋆−1

P1 P2 P3

Q1 Q2 Q3

=
⋆

⋆

⋆−1

⋆−1

P1 P2 P3

Q1 Q2 Q3

M–S←→
⋆

⋆−1

P1 P2 P3

Q1 Q2 Q3

M–S←→
P1 P2 P3

Q1 Q2 Q3

Figure H.6: Derivation of the ternary Merge–Split transformation.

⊗−1

f

P

Q1 Q2 Q3

=

⊗−1

⊗−1

f

P

Q1 Q2 Q3

P–S←→

⋆−1

⊗−1

f

f

P

Q1 Q2 Q3

P–S←→ ⋆−1

⋆−1

fff

P

Q1 Q2 Q3

=
⋆−1

fff

P

Q1 Q2 Q3

Figure H.7: Derivation of the ternary Processing–Split transformation.

231

H Graphical derivations of ternary transformations

⋆
−

1

R
R

R

P

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

=
⋆
−

1

⋆
−

1

R
R

R
R

R

P

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

S
–
R

←
→

⋆
−

1
⋆
−

1

⋆
−

1

R
R

R
R

P

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

S
–
R

←
→

⋆
−

1
⋆
−

1
⋆
−

1

⋆
−

1

R

R
R

P

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

=

⋆
−

1
⋆
−

1
⋆
−

1

⋆
−

1

R

R

R
R

P

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

S
–
R

←
→

⋆
−

1
⋆
−

1

⋆
−

1

⋆
−

1

⋆
−

1

R

R

R

P

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

=

⋆
−

1
⋆
−

1

⋆
−

1
⋆
−

1

R

R

R

P

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

S
–
R

←
→

⋆
−

1

⋆
−

1

⋆
−

1

⋆
−

1

⋆
−

1
R

RP

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

=
⋆
−

1
⋆
−

1
⋆
−

1

RP

Q
1

Q
4

Q
7

Q
2

Q
5

Q
8

Q
3

Q
6

Q
9

F
ig

u
re

H
.8

:
D

er
iv

at
io

n
of

th
e

te
rn

ar
y

S
p
li
t–

R
ep

li
ca

ti
o
n

tr
an

sf
or

m
at

io
n
.

232

APPENDIXI

Proofs of soundness of n-ary
transformations

This appendix contains a collection of proofs of soundness for n-ary task graph transfor-
mations, justifying them in terms of the binary transformations of Section 5.5.7.

I.1 Merge–Processing transformation

The denotations of the task graphs in the n-ary version of the Merge–Processing transfor-
mation are:

LeftM–P

n (x1, . . . , xn, y) , ∃t. Mergen(⋆)(x1, . . . , xn, t) ∧ Proc(f)(t, y)

RightM–P

n (x1, . . . , xn, y) , ∃t1, . . . tn. Mergen(⊗)(t1, . . . , tn, y) ∧
∧n

i=1 Proc(f)(xi, ti)

Proposition I.1. The n-ary version of the Merge–Processing transformation is sound.

Proof. We define the property

Φ(n) , (LeftM–P

n (x1, . . . , xn, y) ≡ RightM–P

n (x1, . . . , xn, y))

and show that ∀n ∈ N. n > 1⇒ Φ(n) by induction on n. The base case, Φ(2), was proven

233

I Proofs of soundness of n-ary transformations

earlier in (5.17). The induction hypothesis is Φ(k)⇒ Φ(k + 1).

LeftM–P

k+1(x1, . . . , xk+1, y)
≡ ∃t. Mergek+1(⋆)(x1, . . . , xk+1, t) ∧ Proc(f)(t, y)
≡ ∃t. (∃u. Mergek(⋆)(x1, . . . xk, u) ∧

Merge(⋆)(u, xk+1, t)) ∧ Proc(f)(t, y)
by (5.9)

≡ ∃u. Mergek(⋆)(x1, . . . , xk, u) ∧
(∃t. Merge(⋆)(u, xk+1, t) ∧ Proc(f)(t, y))

≡ ∃u. Mergek(⋆)(x1, . . . , xk, u) ∧
(∃b, c. Proc(f)(u, b) ∧ Proc(f)(xk+1, c) ∧

Merge(⊗)(b, c, y))

by (5.17)

≡ ∃b, c. (∃u. Mergek(⋆)(x1, . . . , xk, u) ∧ Proc(f)(u, b)) ∧
Proc(f)(xk+1, c) ∧Merge(⊗)(b, c, y)

≡ ∃b, c. (∃t1, . . . tk. Mergek(⊗)(t1, . . . , tk, b) ∧
∧k

i=1 Proc(f)(xi, ti)) ∧
Proc(f)(xk+1, c) ∧Merge(⊗)(b, c, y)

by Φ(k)

≡ ∃t1, . . . tk, c. (∃b. Mergek(⊗)(t1, . . . , tk, b) ∧
Merge(⊗)(b, c, y)) ∧

Proc(f)(xk+1, c) ∧
∧k

i=1 Proc(f)(xi, ti)
≡ ∃t1, . . . tk, c. Merge(⊗)(t1, . . . , tk, c, y) ∧

Proc(f)(xk+1, c) ∧
∧k

i=1 Proc(f)(xi, ti)

by (5.9)

≡ ∃t1, . . . tk+1. Merge(⊗)(t1, . . . , tk+1, y) ∧
∧k+1

i=1 Proc(f)(xi, ti)
≡ RightM–P

k+1(x1, . . . , xk+1, y).

Hence Φ(n) holds for all n > 1.

I.2 Farm transformation

The denotations of the task graphs in the n-ary version of the Farm transformation are:

LeftFarm

n (x, y) , Proc(f)(x, y)

RightFarm

n (x, y) , ∃x1, . . . xn, y1, . . . , yn. Splitn(⋆−1)(x, x1, . . . , xn) ∧
∧n

i=1 Proc(f)(xi, yi) ∧
Merge(⊗)(y1, . . . yn, y)

Proposition I.2. The n-ary version of the Farm transformation is sound.

Proof. We define the property

Φ(n) , (LeftFarm

n (x, y) ≡ RightFarm

n (x, y))

and show that ∀n ∈ N. n > 1⇒ Φ(n) by induction on n. The base case, Φ(2), was proven

234

I.3 Processing–Replication transformation

earlier in (5.18). The induction hypothesis is Φ(k)⇒ Φ(k + 1).

LeftFarm

k+1(x, y)
≡ Proc(f)(x, y)
≡ ∃x1, . . . xk, y1, . . . yk. Splitk(⋆

−1)(x, x1, . . . , xk) ∧
∧k

i=1 Proc(f)(xi, yi) ∧
Mergek(⋆)(y1, . . . , yk, y)

by Φ(k)

≡ ∃x1, . . . xk, y1, . . . yk. Splitk(⋆
−1)(x, x1, . . . , xk) ∧

∧k−1
i=1 Proc(f)(xi, yi) ∧

(∃t1, t2, u1, u2. Split(⋆−1)(xk, t1, t2) ∧
Proc(f)(t1, u1) ∧
Proc(f)(t2, u2) ∧
Merge(⊗)(u1, u2, yk)) ∧

Mergek(⋆)(y1, . . . , yk, y)

by (5.18)

≡ ∃x1, . . . , xk−1, t1, t2, y1, . . . , yk−1, u1, u2.
(∃xk. Splitk(⋆

−1)(x, x1, . . . , xk) ∧ Split(⋆−1)(xk, t1, t2)) ∧
(∃yk. Mergek(⋆)(y1, . . . , yk, y) ∧Merge(⊗)(u1, u2, yk)) ∧
∧k−1

i=1 Proc(f)(xi, yi)
≡ ∃x1, . . . , xk−1, t1, t2, y1, . . . , yk−1, u1, u2. by (5.9), (5.10)

Splitk+1(⋆
−1)(x, x1, . . . , xk−1, t1, t2) ∧

Mergek+1(⋆)(y1, . . . , yk−1, u1, u2, y) ∧
∧k−1

i=1 Proc(f)(xi, yi)
≡ ∃x1, . . . , xk+1, y1, . . . , yk+1. Splitk+1(⋆

−1)(x, x1, . . . , xk+1) ∧
∧k+1

i=1 Proc(f)(xi, yi) ∧
Mergek+1(⋆)(y1, . . . , yk+1, y)

≡ RightFarm

k+1(x, y).

Hence Φ(n) holds for all n > 1.

I.3 Processing–Replication transformation

The denotations of the task graphs in the n-ary version of the Processing–Replication

transformation are:

LeftP–R

n (x, y1, . . . , yn) , ∃t. Proc(f)(x, t) ∧ Repn(t, y1, . . . , yn)

RightP–R

n (x, y1, . . . , yn) , ∃t1, . . . , tn. Repn(x, t1, . . . , tn) ∧
n
∧

i=1

Proc(f)(ti, yi)

Proposition I.3. The n-ary version of the Processing–Replication transformation is sound.

Proof. We define the property

Φ(n) , (LeftP–R

n (x, y1, . . . , yn) ≡ RightP–R

n (x, y1, . . . , yn))

and show that ∀n ∈ N. n > 1⇒ Φ(n) by induction on n. The base case, Φ(2), was proven

235

I Proofs of soundness of n-ary transformations

earlier in (5.19). The induction hypothesis is Φ(k)⇒ Φ(k + 1).

LeftP–R

k+1(x, y1, . . . , yn)
≡ ∃t. Proc(f)(x, t) ∧ Repk+1(t, y1, . . . , yk+1)
≡ ∃t. Proc(f)(x, t) ∧ (∃u. Repk(u, y1, . . . , yk) ∧ Rep(t, u, yk+1)) by (5.11)
≡ ∃u. Repk(u, y1, . . . , yk) ∧ (∃t. Proc(f)(x, t) ∧ Rep(t, u, yk+1))
≡ ∃u. Repk(u, y1, . . . , yk) ∧

(∃t1, t2. Rep(x, t1, t2) ∧ Proc(f)(t1, u) ∧ Proc(f)(t2, yk+1))
by (5.19)

≡ ∃t1, t2. Rep(x, t1, t2) ∧ Proc(f)(t2, yk+1) ∧
(∃u. Repk(u, y1, . . . , yk) ∧ Proc(f)(t1, u))

≡ ∃t1, t2. Rep(x, t1, t2) ∧ Proc(f)(t2, yk+1) ∧
(∃u1, . . . , uk. Repk(t1, u1, . . . , uk) ∧

∧k

i=1 Proc(f)(ui, yi))

by Φ(k)

≡ ∃u1, . . . , uk, t2. (∃t1. Repk(t1, u1, . . . uk) ∧ Rep(x, t1, t2)) ∧
Proc(f)(t2, yk+1) ∧

∧k

i=1 Proc(f)(ui, yi)
≡ ∃u1, . . . , uk, t2. Repk+1(t1, u1, . . . , uk, t2) ∧

Proc(f)(t2, yk+1) ∧
∧k

i=1 Proc(f)(ui, yi)

by (5.11)

≡ ∃u1, . . . , uk+1. Repk+1(x, u1, . . . , uk+1) ∧
∧k+1

i=1 Proc(f)(ui, yi)
≡ RightP–R

k+1(x, y1, . . . , yn).

Hence Φ(n) holds for all n > 1.

I.4 Split–Merge transformation

The denotations of the task graphs in the n-ary version of the Split–Merge transformation
are:

LeftS–M

n (x, y) , ∃t1, . . . , tn. Splitn(⋆−1)(x, t1, . . . , tn) ∧Merge(⋆)(t1, . . . , tn, y)

RightS–M

n (x, y) , y = x

Proposition I.4. The n-ary version of the Split–Merge transformation is sound.

Proof. We define the property

Φ(n) , (LeftS–M

n (x, y) ≡ RightS–M

n (x, y))

and show that ∀n ∈ N. n > 1⇒ Φ(n) by induction on n. The base case, Φ(2), was proven

236

I.5 Merge–Split transformation

earlier in (5.24). The induction hypothesis is Φ(k)⇒ Φ(k + 1).

LeftS–M

k+1(x, y)
≡ ∃t1, . . . , tk+1. Splitk+1(⋆

−1)(x, t1, . . . , tk+1) ∧
Mergek+1(⋆)(t1, . . . , tk+1, y)

≡ ∃t1, . . . , tk+1. (∃u. Splitk(⋆
−1)(u, t1, . . . , tk) ∧ Split(⋆−1)(x, y, tk+1)) ∧

Mergek+1(⋆)(t1, . . . , tk+1, y)
by (5.10)

≡ ∃t1, . . . , tk+1. (∃u. Splitk(⋆
−1)(u, t1, . . . , tk) ∧ Split(⋆−1)(x, y, tk+1)) ∧

(∃v. Mergek(⋆)(t1, . . . , tk, v) ∧Merge(⋆)(v, tk+1, y))
by (5.9)

≡ ∃tk+1, u, v. Split(⋆−1)(x, u, tk+1) ∧Merge(⋆)(v, tk+1, y) ∧
(∃t1, . . . , tk. Splitk(⋆

−1)(u, t1, . . . , tk) ∧
Mergek(⋆)(t1, . . . tk, v))

≡ ∃tk+1, u, v. Split(⋆−1)(x, u, tk+1) ∧Merge(⋆)(v, tk+1, y) ∧
v = u

by Φ(k)

≡ ∃tk+1, t. Split(⋆−1)(x, t, tk+1) ∧Merge(⋆)(t, tk+1, y)
≡ y = x by (5.24)
≡ RightS–M

k+1(x, y).

Hence Φ(n) holds for all n > 1.

I.5 Merge–Split transformation

The denotations of the task graphs in the n-ary version of the Merge–Split transformation
are:

LeftM–S

n (x1, . . . , xn, y1, . . . , yn) , ∃t. Mergen(⋆)(x1, . . . , xn, t) ∧
Splitn(⋆−1)(t, y1, . . . , yn)

RightM–S

n (x1, . . . , xn, y1, . . . , yn) ,

n
∧

i=1

yi = xi

Proposition I.5. The n-ary version of the Merge–Split transformation is sound, provided
that the task graph can be transformed to a state in which the outputs are combined in a
merge stage.

Proof. We define the property

Φ(n) , (LeftM–S

n (x1, . . . , xn, y1, . . . , yn) ≡ RightM–S

n (x1, . . . , xn, y1, . . . , yn))

and show that ∀n ∈ N. n > 1 ⇒ Φ(n) by induction on n. The base case, Φ(2), was
discussed in Section 5.5.7.11 under the condition that the outputs are merged. The

237

I Proofs of soundness of n-ary transformations

induction hypothesis is Φ(k)⇒ Φ(k + 1).

LeftM–S

k+1(x1, . . . , xn, y1, . . . , yn)
≡ ∃t. Mergek+1(⋆)(x1, . . . , xk+1, t) ∧ Splitk+1(⋆

−1)(t, y1, . . . , yk+1)
≡ ∃t. (∃u. Mergek(⋆)(x1, . . . , xk, u) ∧Merge(⋆)(u, xk+1, t)) ∧

Splitk+1(⋆
−1)(t, y1, . . . , yk+1)

by (5.9)

≡ ∃t. (∃u. Mergek(⋆)(x1, . . . , xk, u) ∧Merge(⋆)(u, xk+1, t)) ∧
(∃v. Splitk(⋆

−1)(v, y1, . . . , yk) ∧ Split(⋆−1)(t, v, yk+1))
by (5.10)

≡ ∃u, v. Mergek(⋆)(x1, . . . , xk, u) ∧ Splitk(⋆
−1)(v, y1, . . . , yk) ∧

(∃t. Merge(⋆)(u, xk+1, t) ∧ Split(⋆−1)(t, v, yk+1))
≡ ∃u, v. Mergek(⋆)(x1, . . . , xk, u) ∧ Splitk(⋆

−1)(v, y1, . . . , yk) ∧
v = u ∧ yk+1 = xk+1

(†)

≡ ∃t. Mergek(⋆)(x1, . . . , xk, t) ∧ Splitk(⋆
−1)(t, y1, . . . , yk)) ∧

yk+1 = xk+1

≡
∧k

i=1 yi = xi ∧ yk+1 = xk+1 by Φ(k)

≡
∧k+1

i=1 yi = xi

≡ RightM–S

k+1(x1, . . . , xn, y1, . . . , yn),

where the step marked (†) is valid under the condition that the outputs are subsequently
merged (proof omitted).

Hence Φ(n) holds for all n > 1.

I.6 Processing–Split transformation

The denotations of the task graphs in the n-ary version of the Processing–Split transfor-
mation are:

LeftP–S

n (x, y1, . . . , yn) , ∃t. Proc(f)(x, t) ∧ Splitn(⊗−1)(t, y1, . . . , yn)

RightP–S

n (x, y1, . . . , yn) , ∃t1, . . . , tn. Splitn(⋆−1)(x, t1, . . . , tn) ∧
∧n

i=1 Proc(f)(ti, yi)

Proposition I.6. The n-ary version of the Processing–Split transformation is sound, pro-
vided that the task graph can be transformed to a state in which the outputs are combined
in a merge stage.

Proof. We define the property

Φ(n) , (LeftP–S

n (x, y1, . . . , yn) ≡ RightP–S

n (x, y1, . . . , yn))

and show that ∀n ∈ N. n > 1 ⇒ Φ(n) by induction on n. The base case, Φ(2), was

238

I.7 Split–Replication transformation

discussed in Section 5.5.7.12. The induction hypothesis is Φ(k)⇒ Φ(k + 1).

LeftP–S

k+1(x, y1, . . . , yn)
≡ ∃t. Proc(f)(x, t) ∧ Splitk+1(⊗−1)(t, y1, . . . , yk+1)
≡ ∃t. Proc(f)(x, t) ∧

(Splitk(⊗−1)(u, y1, . . . , yk) ∧ Split(⊗−1)(t, u, yk+1))
by (5.10)

≡ ∃u. Splitk(⊗−1)(u, y1, . . . , yk) ∧
(∃t. Proc(f)(x, t) ∧ Split(⊗−1)(t, u, yk+1))

≡ ∃u. Splitk(⊗−1)(u, y1, . . . , yk) ∧
(∃t1, t2. Split(⋆−1)(x, t1, t2) ∧ Proc(f)(t1, u) ∧ Proc(f)(t2, yk+1))

(†)

≡ ∃t1, t2. (∃u. Proc(f)(t1, u) ∧ Splitk(⊗−1)(u, y1, . . . , yk)) ∧
Split(⋆−1)(x, t1, t2) ∧ Proc(f)(t2, yk+1)

≡ ∃t1, t2. (∃u1, . . . , uk. Splitk(⋆
−1)(t1, u1, . . . , uk) ∧

∧k

i=1 Proc(f)(ui, yi)) ∧
Split(⋆−1)(x, t1, t2) ∧ Proc(f)(t2, yk+1)

by Φ(k)

≡ ∃u1, . . . , uk, t2. (∃t1. Splitk(⋆
−1)(t1, u1, . . . , uk) ∧ Split(⋆−1)(x, t1, t2)) ∧

Proc(f)(t2, yk+1) ∧
∧k

i=1 Proc(f)(ui, yi)
≡ ∃u1, . . . , uk, t2. Splitk+1(⋆

−1)(x, u1, . . . , uk, t2) ∧
Proc(f)(t2, yk+1) ∧

∧k

i=1 Proc(f)(ui, yi

by (5.10)

≡ ∃u1, . . . , uk+1. Splitk+1(x, u1, . . . , uk+1) ∧
∧k+1

i=1 Proc(f)(ui, yi)
≡ RightP–S

k+1(x, y1, . . . , yn),

where the step marked (†) is valid under the condition that the outputs are subsequently
merged (proof omitted).

Hence Φ(n) holds for all n > 1.

I.7 Split–Replication transformation

The denotations of the task graphs in the (m, n)-ary version of the Split–Replication trans-
formation are as follows. The index m corresponds to the number of outputs from the
split task; the index n corresponds to the number of outputs from the replication task.

LeftS–R

m,n(x, x1,1, . . . , xm,n) , ∃t1, . . . , tm. Splitm(⋆−1)(x, t1, . . . , tm) ∧
∧m

i=1 Repn(ti, xi,1, . . . , xi,n)

RightS–R

m,n(x, x1,1, . . . , xm,n) , ∃t1, . . . , tn. Repn(x, t1, . . . , tn) ∧
∧n

i=1 Splitm(⋆−1)(ti, x1,i, . . . , xm,i)

Proposition I.7. The n-ary version of the Split–Replication transformation is sound.

Proof. We define the property

Φ(m, n) , (LeftS–R

m,n(x, x1,1, . . . , xm,n) ≡ RightS–R

m,n(x, x1,1, . . . , xm,n))

and show that ∀m, n ∈ N. m > 1 ∧ n > 1 ⇒ Φ(m, n) by induction on both m and n.
The base case, Φ(2, 2), was proven earlier in (5.20). We will employ two inductive steps,
Φ(j, k)⇒ Φ(j, k + 1) and Φ(j, k)⇒ Φ(j + 1, k) so that we explore the entirety of N× N

space.

239

I Proofs of soundness of n-ary transformations

To assist with the proof, we begin by showing that ∀j ∈ N. j > 1⇒ Φ(j, 2) by induction
on j:

LeftS–R

j+1,2(x, x1,1, . . . , xj+1,2)

≡ ∃t1, . . . , tj+1. Splitj+1(⋆
−1)(x, t1, . . . , tj+1) ∧

∧j+1
i=1 Rep(ti, xi,1, xi,2)

≡ ∃t1, . . . , tj+1. (∃u. Splitj(⋆
−1)(u, t1, . . . , tj) ∧ Split(⋆−1)(x, u, tj+1)) ∧

∧j+1
i=1 Rep(ti, xi,1, xi,2)

by (5.10)

≡ ∃tj+1, u. Split(⋆−1)(x, u, tj+1) ∧ Rep(tj+1, xj+1,1, xj+1,2) ∧
(∃t1, . . . , tj. Splitj(⋆

−1)(u, t1, . . . , tj) ∧
∧j

i=1 Rep(ti, xi,1, xi,2))
≡ ∃tj+1, u. Split(⋆−1)(x, u, tj+1) ∧ Rep(tj+1, xj+1,1, xj+1,2) ∧

(∃t1, t2. Rep(u, t1, t2) ∧
Splitj(⋆

−1)(t1, x1,1, . . . , xj,1) ∧
Splitj(⋆

−1)(t2, x1,2, . . . , xj,2))

by Φ(j, 2)

≡ ∃t1, t2. (∃tj+1, u. Split(⋆−1)(x, u, tj+1) ∧ Rep(u, t1, t2) ∧
Rep(tj+1, xj+1,1, xj+1,2)) ∧

Splitj(⋆
−1)(t1, x1,1, . . . , xj,1) ∧ Splitj(⋆

−1)(t2, x1,2, . . . , xj,2)
≡ ∃t1, t2. (∃u1, u2. Rep(x, u1, u2) ∧ Split(⋆−1)(u1, t1, xj+1,1) ∧

Split(⋆−1)(u2, t2, xj+1,2)) ∧
Splitj(⋆

−1)(t1, x1,1, . . . , xj,1) ∧ Splitj(⋆
−1)(t2, x1,2, . . . , xj,2)

by (5.20)

≡ ∃u1, u2. Rep(x, u1, u2) ∧
(∃t1. Split(⋆−1)(t1, x1,1, . . . , xj,1) ∧ Split(⋆−1)(u1, t1, xj+1,1)) ∧
(∃t2. Split(⋆−1)(t2, x1,2, . . . , xj,2) ∧ Split(⋆−1)(u2, t2, xj+1,2))

≡ ∃u1, u2. Rep(x, u1, u2) ∧
Splitj+1(⋆

−1)(u1, x1,1, . . . , xj+1,1) ∧
Splitj+1(⋆

−1)(u2, x1,2, . . . , xj+1,2)

by (5.10)

≡ RightS–R

j+1,2(x, x1,1, . . . , xj+1,2).

Hence Φ(j, 2) holds for all j > 1.

240

I.7 Split–Replication transformation

Similarly, we show that ∀k ∈ N. k > 1⇒ Φ(2, k) by induction on k:

LeftS–R

2,k+1(x, x1,1, . . . , x2,k+1)
≡ ∃t1, t2. Split(⋆−1)(x, t1, t2) ∧

Repk+1(t1, x1,1, . . . , x1,k+1) ∧ Repk+1(t2, x2,1, . . . , x2,k+1)
≡ ∃t1, t2. Split(⋆−1)(x, t1, t2) ∧

(∃u1. Repk(u1, x1,1, . . . , x1,k) ∧ Rep(t1, u1, x1,k+1)) ∧
(∃u2. Repk(u2, x2,1, . . . , x2,k) ∧ Rep(t2, u2, x2,k+1))

by (5.11)

≡ ∃u1, u2. (∃t1, t2. Split(⋆−1)(x, t1, t2) ∧
Rep(t1, u1, x1,k+1) ∧ Rep(t2, u2, x2,k+1)) ∧

Repk(u1, x1,1, . . . , x1,k) ∧ Repk(u2, x2,1, . . . , x2,k)
≡ ∃u1, u2. (∃v1, v2. Rep(x, v1, v2) ∧

Split(⋆−1)(v1, u1, u2) ∧
Split(⋆−1)(v2, x1,k+1, x2,k+1)) ∧

Repk(u1, x1,1, . . . , x1,k) ∧ Repk(u2, x2,1, . . . , x2,k)

by (5.20)

≡ ∃v1, v2. (∃u1, u2. Split(⋆−1)(v1, u1, u2) ∧
Repk(u1, x1,1, . . . , x1,k) ∧
Repk(u2, x2,1, . . . , x2,k)) ∧

Rep(x, v1, v2) ∧ Split(⋆−1)(v2, x1,k+1, x2,k+1)
≡ ∃v1, v2. (∃t1, . . . , tk. Repk(v1, t1, . . . , tk) ∧

∧k

i=1 Split(⋆−1)(ti, x1,i, x2,i)) ∧
Rep(x, v1, v2) ∧ Split(⋆−1)(v2, x1,k+1, x2,k+1)

by Φ(2, k)

≡ ∃t1, . . . tk, v2. (∃v1. Repk(v1, t1, . . . , tk) ∧ Rep(x, v1, v2)) ∧
Split(⋆−1)(v2, x1,k+1, x2,k+1) ∧
∧k

i=1 Split(⋆−1)(ti, x1,i, x2,i)
≡ ∃t1, . . . tk, v2. Repk+1(x, t1, . . . , tk, v2) ∧

Split(⋆−1)(v2, x1,k+1, x2,k+1) ∧
∧k

i=1 Split(⋆−1)(ti, x1,i, x2,i)

by (5.11)

≡ ∃t1, . . . tk+1. Repk+1(x, t1, . . . , tk+1) ∧
∧k+1

i=1 Split(⋆−1)(ti, x1,i, x2,i)
≡ RightS–R

2,k+1(x, x1,1, . . . , x2,k+1).

Hence Φ(2, k) holds for all k > 1.

241

I Proofs of soundness of n-ary transformations

Now we tackle the first inductive step, Φ(j, k)⇒ Φ(j, k + 1):

LeftS–R

j,k+1(x, x1,1, . . . , xj,k+1)
≡ ∃t1, . . . , tj . Splitj(⋆

−1)(x, t1, . . . , tj) ∧
∧j

i=1 Repk+1(ti, xi,1, . . . , xi,k+1)
≡ ∃t1, . . . , tj . Splitj(⋆

−1)(x, t1, . . . , tj) ∧
∧j

i=1(∃u. Repk(u, xi,1, . . . , xi,k) ∧ Rep(ti, u, xi,k+1))

by (5.11)

≡ ∃u1, . . . , uj. (∃t1, . . . tj. Splitj(⋆
−1)(x, t1, . . . , tj) ∧

∧j

i=1 Rep(ti, ui, xi,k+1)) ∧
∧j

i=1 Repk(ui, xi,1, . . . , xi,k)
≡ ∃u1, . . . , uj. (∃t1, t2. Rep(x, t1, t2) ∧

Splitj(⋆
−1)(t1, u1, . . . , uj) ∧

Splitj(⋆
−1)(t2, x1,k+1, . . . , xj,k+1)) ∧

∧j

i=1 Repk(ui, xi,1, . . . , xi,k)

by Φ(j, 2)

≡ ∃t1, t2. Rep(x, t1, t2) ∧ Splitj(⋆
−1)(t2, x1,k+1, . . . , xj,k+1) ∧

(∃u1, . . . , uj. Splitj(⋆
−1)(t1, u1, . . . , uj) ∧

∧j

i=1 Repk(ui, xi,1, . . . , xi,k))
≡ ∃t1, t2. Rep(x, t1, t2) ∧ Splitj(⋆

−1)(t2, x1,k+1, . . . , xj,k+1) ∧
(∃u1, . . . , uk. Repk(t1, u1, . . . , uk) ∧

∧k

i=1 Splitj(⋆
−1)(ui, x1,i, . . . , xj,i))

by Φ(j, k)

≡ ∃u1, . . . , uk, t2. (∃t1. Rep(x, t1, t2) ∧ Repk(t1, u1, . . . , uk)) ∧
Splitj(⋆

−1)(t2, x1,k+1, . . . , xj,k+1) ∧
∧k

i=1 Splitj(⋆
−1)(ui, x1,i, . . . , xj,i)

≡ ∃u1, . . . , uk, t2. Repk+1(x, u1, . . . , uk, t2) ∧
Splitj(⋆

−1)(t2, x1,k+1, . . . , xj,k+1) ∧
∧k

i=1 Splitj(⋆
−1)(ui, x1,i, . . . , xj,i)

by (5.11)

≡ ∃u1, . . . , uk+1. Repk+1(x, u1, . . . , uk+1) ∧
∧k+1

i=1 Splitj(⋆
−1)(ui, x1,i, . . . , xj,i)

≡ RightS–R

j,k+1(x, x1,1, . . . , xj,k+1).

Hence Φ(j, k)⇒ Φ(j, k + 1) for all j, k > 1.

242

I.8 Merge–Replication transformation

And now the second inductive step, Φ(j, k)⇒ Φ(j + 1, k):

LeftS–R

j+1,k(x, x1,1, . . . , xj+1,k)
≡ ∃t1, . . . , tj+1. Splitj+1(⋆

−1)(x, t1, . . . , tj+1) ∧
∧j+1

i=1 Repk(ti, xi,1, . . . , xi,k)
≡ ∃t1, . . . , tj+1. (∃u. Splitj(⋆

−1)(u, t1, . . . , tj) ∧ Split(x, u, tj+1)) ∧
∧j+1

i=1 Repk(ti, xi,1, . . . , xi,k)

by (5.10)

≡ ∃u, tj+1. Split(x, u, tj+1) ∧ Repk(tj+1, xj+1,1, . . . , xj+1,k) ∧
(∃t1, . . . , tj. Splitj(⋆

−1)(u, t1, . . . , tj) ∧
∧j

i=1 Repk(ti, xi,1, . . . , xi,k))
≡ ∃u, tj+1. Split(x, u, tj+1) ∧ Repk(tj+1, xj+1,1, . . . , xj+1,k) ∧

(∃u1, . . . , uk. Repk(u, u1, . . . , uk) ∧
∧k

i=1 Splitj(⋆
−1)(ui, x1,i, . . . , xji

))

by Φ(j, k)

≡ ∃u1, . . . , uk. (∃u, tj+1. Split(x, u, tj+1) ∧ Repk(u, u1, . . . , uk) ∧
Repk(tj+1, xj+1,1, . . . , xj+1,k)) ∧

∧k

i=1 Splitj(⋆
−1)(ui, x1,i, . . . , xj,i)

≡ ∃u1, . . . , uk. (∃v1, . . . vk. Repk(x, v1, . . . , vk) ∧
∧k

i=1 Split(⋆−1)(vi, ui, xj+1,i)) ∧
∧k

i=1 Splitj(⋆
−1)(ui, x1,i, . . . , xj,i)

by Φ(2, k)

≡ ∃v1, . . . , vk. Repk(x, v1, . . . , vk) ∧
∧k

i=1(∃ui. Splitj(⋆
−1)(ui, x1,i, . . . , xj,i) ∧

Split(⋆−1)(vi, ui, xj+1,i))
≡ ∃v1, . . . , vk. Repk(x, v1, . . . , vk) ∧

∧k+1
i=1 Splitj+1(⋆

−1)(vi, x1,i, . . . , xj+1,i)
≡ RightS–R

j+1,k(x, x1,1, . . . , xj+1,k).

Hence Φ(j, k) ⇒ Φ(j + 1, k) for all j, k > 1, which concludes the proof of Φ(j, k) for all
j, k > 1.

I.8 Merge–Replication transformation

The denotations of the task graphs in the (m, n)-ary version of the Merge–Replication

transformation are as follows. The index m corresponds to the number of inputs to the
merge task; the index n corresponds to the number of outputs from the replication task.

LeftM–R

m,n(x1, . . . , xm, y1, . . . , yn) , ∃t. Mergem(⋆)(x1, . . . , xm, t) ∧
Repn(t, y1, . . . , yn)

RightM–R

m,n(x1, . . . , xm, y1, . . . , yn) , ∃t1,1 . . . tm,n.
∧m

i=1 Repn(xi, ti,1, . . . , ti,n) ∧
∧n

i=1 Mergem(t1,i, . . . , tm,i, yi)

Proposition I.8. The n-ary version of the Merge–Replication transformation is sound.

Proof. We define the property

Φ(m, n) , (LeftM–R

m,n(x1, . . . , xm, y1, . . . , yn) ≡ RightM–R

m,n(x1, . . . , xm, y1, . . . , yn))

243

I Proofs of soundness of n-ary transformations

and show that ∀m, n ∈ N. m > 1 ∧ n > 1 ⇒ Φ(m, n) by induction on both m and n.
The base case, Φ(2, 2), was proven earlier in (5.21). We will employ two inductive steps,
Φ(j, k)⇒ Φ(j, k + 1) and Φ(j, k)⇒ Φ(j + 1, k) so that we explore the entirety of N× N

space.

To assist with the proof, we begin by showing that ∀j ∈ N. j > 1⇒ Φ(j, 2) by induction
on j:

LeftM–R

j+1,2(x1, . . . , xj+1, y1, y2)
≡ ∃t. Mergej+1(⋆)(x1, . . . , xj+1, t) ∧ Rep(t, y1, y2)
≡ ∃t. (∃u. Mergej(⋆)(x1, . . . , xj , u) ∧Merge(⋆)(u, xj+1, t)) ∧

Rep(t, y1, y2)
by (5.9)

≡ ∃u. Mergej(⋆)(x1, . . . , xj , u) ∧
(∃t. Merge(⋆)(u, xj+1, t) ∧ Rep(t, y1, y2))

≡ ∃u. Mergej(⋆)(x1, . . . , xj , u) ∧
(∃t1, t2, t3, t4. Rep(u, t1, t2) ∧ Rep(xj+1, t3, t4) ∧

Merge(⋆)(t1, t3, y1) ∧Merge(⋆)(t2, t4, y2))

by (5.21)

≡ ∃t1, t2, t3, t4. (∃u. Mergej(⋆)(x1, . . . , xj , u) ∧ Rep(u, t1, t2)) ∧
Rep(xj+1, t3, t4) ∧
Merge(⋆)(t1, t3, y1) ∧Merge(⋆)(t2, t4, y2)

≡ ∃t1, t2, t3, t4. (∃u1,1, . . . , uj,2.
∧j

i=1 Rep(xi, ui,1, ui,2) ∧
Mergej(⋆)(u1,1, . . . , uj,1, t1) ∧
Mergej(⋆)(u1,2, . . . , uj,2, t2)) ∧

Rep(xj+1, t3, t4) ∧
Merge(⋆)(t1, t3, y1) ∧Merge(⋆)(t2, t4, y2)

by Φ(j, 2)

≡ ∃u1,1, . . . , uj,2, t3, t4. (∃t1. Mergej(⋆)(u1,1, . . . , uj,1, t1) ∧
Merge(⋆)(t1, t3, y1)) ∧

(∃t2. Mergej(⋆)(u1,2, . . . , uj,2, t2) ∧
Merge(⋆)(t2, t4, y2)) ∧

∧j

i=1 Rep(xi, ui,1, ui,2) ∧ Rep(xj+1, t3, t4)
≡ ∃u1,1, . . . , uj,2, t3, t4. Mergej+1(⋆)(u1,1, . . . , uj,1, t3, y1) ∧

Mergej+1(⋆)(u1,2, . . . , uj,2, t4, y2) ∧
∧j

i=1 Rep(xi, ui,1, ui,2) ∧ Rep(xj+1, t3, t4)

by (5.9)

≡ ∃ui,1, . . . , uj+1,2. Mergej+1(⋆)(u1,1, . . . , uj+1,1, y1)
Mergej+1(⋆)(u1,2, . . . , uj+1,2, y2)
∧j

i=1 Rep(xi, ui,1, ui,2)
≡ RightM–R

j+1,2(x1, . . . , xj+1, y1, y2).

Hence Φ(j, 2) holds for all j > 1.

244

I.8 Merge–Replication transformation

Similarly, we show that ∀k ∈ N. k > 1⇒ Φ(2, k) by induction on k:

LeftM–R

2,k+1(x1, x2, y1, . . . , yk+1)
≡ ∃t. Merge(⋆)(x1, x2, t) ∧ Repk+1(t, y1, . . . , yk+1)
≡ ∃t. Merge(⋆)(x1, x2, t) ∧

(∃u. Repk(t, y1, . . . , yk) ∧ Rep(t, u, yk+1))
by (5.11)

≡ ∃u. (∃t. Merge(⋆)(x1, x2, t) ∧ Rep(t, u, yk+1)) ∧
Repk(u, y1, . . . , yk)

≡ ∃u. (∃t1, t2, t3, t4. Rep(x1, t1, t2) ∧ Rep(x2, t3, t4) ∧
Merge(⋆)(t1, t3, u) ∧Merge(⋆)(t2, t4, yk+1)) ∧

Repk(u, y1, . . . , yk)

by (5.21)

≡ ∃t1, t2, t3, t4. Rep(x1, t1, t2) ∧ Rep(x2, t3, t4) ∧
Merge(⋆)(t2, t4, yk+1) ∧
(∃u. Merge(⋆)(t1, t3, u) ∧ Repk(u, y1, . . . , yk))

≡ ∃t1, t2, t3, t4. Rep(x1, t1, t2) ∧ Rep(x2, t3, t4) ∧
Merge(⋆)(t2, t4, yk+1) ∧
(∃u1,1, . . . , u2,k. Repk(t1, u1,1, . . . , u1,k) ∧

Repk(t3, u2,1, . . . , u2,k) ∧
∧k

i=1 Merge(⋆)(u1,i, u2,i, yi))

by Φ(2, k)

≡ ∃u1,1, . . . , u2,k, t2, t4. (∃t1. Rep(x1, t1, t2) ∧ Repk(t1, u1,1, . . . , u1,k)) ∧
(∃t3. Rep(x2, t3, t4) ∧ Repk(t3, u2,1, . . . , u2,k)) ∧
∧k

i=1 Merge(⋆)(u1,i, u2,i, yi) ∧
Merge(⋆)(t2, t4, yk+1)

≡ ∃u1,1, . . . , u2,k, t2, t4. Repk+1(x1, u1,1, . . . , u1,k, t2) ∧
Repk+1(x2, u2,1, . . . , u2,k, t4) ∧
∧k

i=1 Merge(⋆)(u1,i, u2,i, yi) ∧
Merge(⋆)(t2, t4, yk+1)

by (5.11)

≡ ∃u1,1, . . . , u2,k+1. Repk+1(x1, u1,1, . . . , u1,k+1) ∧
Repk+1(x2, u2,1, . . . , u2,k+1) ∧
∧k

i=1 Merge(⋆)(u1,i, u2,i, yi)
≡ RightM–R

2,k+1(x1, x2, y1, . . . , yk+1).

Hence Φ(2, k) holds for all k > 1.

245

I Proofs of soundness of n-ary transformations

Now we tackle the first inductive step, Φ(j, k)⇒ Φ(j, k + 1):

LeftM–R

j,k+1(x1, . . . , xj , y1, . . . , yk+1)
≡ ∃t. Mergej(⋆)(x1, . . . , xj , t) ∧ Repk+1(t, y1, . . . , yk+1)
≡ ∃t. Mergej(⋆)(x1, . . . , xj , t) ∧

(∃u. Repk(u, y1, . . . , yk) ∧ Rep(t, u, yk+1))
by (5.11)

≡ ∃u. (∃t. Mergej(⋆)(x1, . . . , xj, t) ∧ Rep(t, u, yk+1)) ∧
Repk(u, y1, . . . , yk)

≡ ∃u. (∃t1,1, . . . , tj,2.
∧j

i=1 Rep(xi, ti,1, ti,2) ∧
Mergej(⋆)(t1,1, . . . , tj,1, u) ∧
Mergej(⋆)(t1,2, . . . , tj,2, yk+1)) ∧

Repk(u, y1, . . . , yk)

by Φ(j, 2)

≡ ∃t1,1, . . . , tj,2.
∧j

i=1 Rep(xi, ti,1, ti,2) ∧
Mergej(⋆)(t1,2, . . . , tj,2, yk+1) ∧
(∃u. Mergej(⋆)(t1,1, . . . , tj,1, u) ∧ Repk(u, y1, . . . , yk))

≡ ∃t1,1, . . . , tj,2.
∧j

i=1 Rep(xi, ti,1, ti,2) ∧
Mergej(⋆)(t1,2, . . . , tj,2, yk+1) ∧
(∃u1,1, . . . , uj,k.

∧j

i=1 Repk(ti,1, ui,1, . . . , ui,k) ∧
∧k

i=1 Mergej(⋆)(u1,i, . . . , uj,i, yi))

by Φ(j, k)

≡ ∃u1,1, . . . , uj,k, t1,2, . . . , tj,2.
∧j

i=1(∃ti,1. Rep(xi, ti,1, ti,2) ∧ Repk(ti,1, ui,1, . . . , ui,k)) ∧
∧k

i=1 Mergej(⋆)(u1,i, . . . , uj,i, yi) ∧
Mergej(⋆)(t1,2, . . . , tj,2, yk+1)

≡ ∃u1,1, . . . , uj,k, t1,2, . . . , tj,2.
∧j

i=1 Repk+1(xi, ui,1, . . . , ui,k, ti,2) ∧
∧k

i=1 Mergej(⋆)(u1,i, . . . , uj,i, yi) ∧
Mergej(⋆)(t1,2, . . . , tj,2, yk+1)

by (5.11)

≡ ∃u1,1, . . . , uj,k+1.
∧

i=1 jRepk+1(xi, ui,1, . . . , ui,k+1) ∧
∧k+1

i=1 Mergej(⋆)(u1,i, . . . , uj,i, yi)
≡ RightM–R

j,k+1(x1, . . . , xj , y1, . . . , yk+1).

Hence Φ(j, k)⇒ Φ(j, k + 1) for all j, k > 1.

246

I.8 Merge–Replication transformation

And now the second inductive step, Φ(j, k)⇒ Φ(j + 1, k):

LeftM–R

j+1,k(x1, . . . , xj+1, y1, . . . , yk)
≡ ∃t. Mergej+1(⋆)(x1, . . . , xj+1, t) ∧ Repk(t, y1, . . . , yk)
≡ ∃t. (∃u. Mergej(⋆)(x1, . . . , xj , u) ∧Merge(u, xj+1, t)) ∧

Repk(t, y1, . . . , yk)
by (5.9)

≡ ∃u. Mergej(⋆)(x1, . . . , xj , u) ∧
(∃t. Merge(u, xj+1, t) ∧ Repk(t, y1, . . . , yk))

≡ ∃u. Mergej(⋆)(x1, . . . , xj , u) ∧
(∃t1,1, . . . , t2,k. Repk(u, t1,1, . . . , t1,k) ∧

Repk(xj+1, t2,1, . . . , t2,k) ∧
∧k

i=1 Merge(⋆)(t1,i, t2,i, yi))

by Φ(2, k)

≡ ∃t1,1, . . . , t2,k. (∃u. Mergej(⋆)(x1, . . . , xj , u) ∧ Repk(u, t1,1, . . . , t1,k)) ∧
Repk(xj+1, t2,1, . . . , t2,k) ∧

∧k

i=1 Merge(⋆)(t1,i, t2,i, yi)

≡ ∃t1,1, . . . , t2,k. (∃u1,1, . . . , uj,k.
∧j

i=1 Repk(xi, ui,1, . . . , ui,k) ∧
∧k

i=1 Mergej(⋆)(u1,i, . . . , uj,i, t1,i)) ∧
Repk(xj+1, t2,1, . . . , t2,k) ∧

∧k

i=1 Merge(⋆)(t1,i, t2,i, yi)

by Φ(j, k)

≡ ∃u1,1, . . . , uj,k, t2,1, . . . , t2,k.
∧k

i=1(∃t1,i. Mergej(⋆)(u1,i, . . . , uj,i, t1,i) ∧
Merge(⋆)(t1,i, t2,i, yi)) ∧

∧j

i=1 Repk(xi, ui,1, . . . , ui,k) ∧ Repk(xj+1, t2,1, . . . , t2,k)
≡ ∃u1,1, . . . , uj,k, t2,1, . . . , t2,k.

∧k

i=1 Mergej+1(⋆)(u1,i, . . . , uj,i, t2,i, yi) ∧
∧j

i=1 Repk(xi, ui,1, . . . , ui,k) ∧ Repk(xj+1, t2,1, . . . , t2,k)

by (5.9)

≡ ∃u1,1, . . . , uj+1,k.
∧k

i=1 Mergej+1(⋆)(u1,i, . . . , uj+1,i, yi) ∧
∧j+1

i=1 Repk(xi, ui,1, . . . , ui,k)
≡ RightM–R

j+1,k(x1, . . . , xj+1, y1, . . . , yk).

Hence Φ(j, k) ⇒ Φ(j + 1, k) for all j, k > 1, which concludes the proof of Φ(j, k) for all
j, k > 1.

247

I Proofs of soundness of n-ary transformations

248

APPENDIXJ

Transformations involving pair and
unpair tasks

We defined pair and unpair tasks in Section 5.6.1. In this appendix, we discuss the
additional task graph transformations which arise involving these kinds of task.

J.1 Transformations involving both pair and unpair

Firstly, there are three transformations involving both pair and unpair tasks.

J.1.1 Pair–Unpair transformation

Transformation Pair–Unpair is shown in Figure J.1.

Proposition J.1. Transformation Pair–Unpair is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

Left△–▽(x1, x2, y1, y2) , ∃t. Pair(x1, x2, t) ∧ Unpair(t, y1, y2)

≡ ∃t. t = (x1, x2) ∧ (y1, y2) = t

≡ y1 = x1 ∧ y2 = x2;

Right△–▽(x1, x2, y1, y2) , y1 = x1 ∧ y2 = x2.

249

J Transformations involving pair and unpair tasks

P1 P2

Q1 Q2

△–▽←→
P1 P2

Q1 Q2

Figure J.1: The Pair–Unpair transformation.

Hence,
Left△–▽(x1, x2, y1, y2) ≡ Right△–▽(x1, x2, y1, y2). (J.1)

J.1.2 Unpair–Pair transformation

Transformation Unpair–Pair is shown in Figure J.2.

P

Q

▽–△←→
P

Q

Figure J.2: The Unpair–Pair transformation.

Proposition J.2. Transformation Unpair–Pair is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

Left▽–△(x, y) , ∃t1, t2. Unpair(x, t1, t2) ∧ Pair(t1, t2, y)

≡ ∃t1, t2. (t1, t2) = x ∧ y = (t1, t2)

≡ y = x;

Right▽–△(x, y) , y = x.

Hence,
Left▽–△(x, y) ≡ Right▽–△(x, y). (J.2)

250

J.1 Transformations involving both pair and unpair

J.1.3 Combine transformation

A third transformation, Combine, shown in Figure J.3, combines processing functions
operating on two elements of a pair into one processing function. Function f must be
expressible in terms of gα and gβ such that

∀a, b. f(a, b) = (gα(a), gβ(b)). (J.3)

gα gβ

P

Q

Combine−→ f

P

Q

Figure J.3: The Combine transformation.

Note that this transformation is only permitted in the rightwards direction because func-
tions gα and gβ cannot in general be readily derived from f whereas f is simple to formulate
in terms of gα and gβ.

Proposition J.3. Transformation Combine is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

LeftCombine(x, y) , ∃t1, t2, u1, u2. Unpair(x, t1, t2) ∧
Proc(gα)(t1, u1) ∧ Proc(gβ)(t2, u2) ∧
Pair(u1, u2, y)

≡ ∃t1, t2, u1, u2. (t1, t2) = x ∧
u1 = gα(t1) ∧ u2 = gβ(t2) ∧
y = (u1, u2)

≡ ∃t1, t2. (t1, t2) = x ∧ y = (gα(t1), gβ(t2))

≡ ∃t1, t2. (t1, t2) = x ∧ y = f(t1, t2) by (J.3)

≡ y = f(x);

RightCombine(x, y) , Proc(f)(x, y)

≡ y = f(x).

Hence,
LeftCombine(x, y) ≡ RightCombine(x, y). (J.4)

251

J Transformations involving pair and unpair tasks

J.2 Transformations involving pair tasks

Furthermore, there are four transformations involving pair tasks juxtaposed with process-
ing, merge, replication and split tasks respectively.

J.2.1 Pair–Processing transformation

Transformation Pair–Processing is shown in Figure J.4. As with Combine, Pair–Processing

is uni-directional.

f

P1 P2

Q

△–P←−
gα gβ

P1 P2

Q

Figure J.4: The Pair–Processing transformation, where ∀a, b. f(a, b) = (gα(a), gβ(b)).

Proposition J.4. Transformation Pair–Processing is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

Left△–P(x1, x2, y) , ∃t. Pair(x1, x2, t) ∧ Proc(f)(t, y)

≡ ∃t. t = (x1, x2) ∧ y = f(t)

≡ y = f(x1, x2);

Right△–P(x1, x2, y) , ∃t1, t2. Proc(gα)(x1, t1) ∧ Proc(gβ)(x2, t2) ∧
Pair(t1, t2, y)

≡ ∃t1, t2. t1 = gα(x1) ∧ t2 = gβ(x2) ∧ y = (t1, t2)

≡ y = (gα(x1), gβ(x2))

≡ y = f(x1, x2) by (J.3).

Hence,
Left△–P(x1, x2, y) ≡ Right△–P(x1, x2, y). (J.5)

J.2.2 Pair–Merge transformation

Transformation Pair–Merge is shown in Figure J.5. The merge function ⋆α×β is defined as

(a1, b1) ⋆α×β (a2, b2) , (a1 ⋆α a2, b1 ⋆β b2), (J.6)

252

J.2 Transformations involving pair tasks

⋆α×β

P1 P3P2 P4

Q

△–M←→
⋆α ⋆β

P1 P3 P2 P4

Q

Figure J.5: The Pair–Merge transformation.

Proposition J.5. Transformation Pair–Merge is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

Left△–M(x1, x2, x3, x4, y) , ∃t1, t2. Pair(x1, x2, t1) ∧ Pair(x3, x4, t2) ∧
Merge(⋆α×β)(t1, t2, y)

≡ ∃t1, t2. t1 = (x1, x2) ∧ t2 = (x3, x4) ∧
y = t1 ⋆α×β t2

≡ y = (x1, x2) ⋆α×β (x3, x4)

≡ y = (x1 ⋆α x3, x2 ⋆β x4) by (J.6);

Right△–M(x1, x2, x3, x4, y) , ∃t1, t2. Merge(⋆α)(x1, x3, t1) ∧
Merge(⋆β)(x2, x4, t2) ∧
Pair(t1, t2, y)

≡ ∃t1, t2. t1 = x1 ⋆α x3 ∧ t2 = x2 ⋆β x4 ∧
y = (t1, t2)

≡ y = (x1 ⋆α x3, x2 ⋆β x4).

Hence,

Left△–M(x1, x2, x3, x4, y) ≡ Right△–M(x1, x2, x3, x4, y). (J.7)

J.2.3 Pair–Replication transformation

Transformation Pair–Replication is shown in Figure J.6.

Proposition J.6. Transformation Pair–Replication is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the

253

J Transformations involving pair and unpair tasks

R

P1 P2

Q1 Q2

△–R←→
RR

P1 P2

Q1 Q2

Figure J.6: The Pair–Replication transformation.

transformation.

Left△–R(x1, x2, y1, y2) , ∃t. Pair(x1, x2, t) ∧ Rep(t, y1, y2)

≡ ∃t.t = (x1, x2) ∧ y1 = t ∧ y2 = t

≡ y1 = (x1, x2) ∧ y2 = (x1, x2);

Right△–R(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Rep(x1, t1, t2) ∧ Rep(x2, t3, t4) ∧
Pair(t1, t3, y1) ∧ Pair(t2, t4, y2)

≡ ∃t1, t2, t3, t4. t1 = x1 ∧ t2 = x1 ∧
t3 = x2 ∧ t4 = x2 ∧
y1 = (t1, t3) ∧ y2 = (t2, t4)

≡ y1 = (x1, x2) ∧ y2 = (x1, x2).

Hence,

Left△–R(x1, x2, y1, y2) ≡ Right△–R(x1, x2, y1, y2). (J.8)

J.2.4 Pair–Split transformation

Transformation Pair–Split is shown in Figure J.7. The split function ⋆−1
α×β is defined as

⋆−1
α×β(a, b) = ((a1, b1), (a2, b2)), (J.9)

such that (a1, a2) = ⋆−1
α (a) and (b1, b2) = ⋆−1

β (b).

Proposition J.7. Transformation Pair–Split is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

Left△–S(x1, x2, y1, y2) , ∃t. Pair(x1, x2, t) ∧ Split(⋆−1
α×β)(t, y1, y2)

≡ ∃t.t = (x1, x2) ∧ (y1, y2) = ⋆−1
α×β(x1, x2)

≡ (y1, y2) = ⋆−1
α×β(x1, x2);

254

J.3 Transformations involving unpair tasks

⋆−1
α×β

P1 P2

Q1 Q2

△–S←→
⋆−1

α ⋆−1
β

P1 P2

Q1 Q2

Figure J.7: The Pair–Split transformation.

Right△–S(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Split(⋆−1
α×β)(x1, t1, t2) ∧

Split(⋆−1
α×β)(x2, t3, t4) ∧

Pair(t1, t3, y1) ∧ Pair(t2, t4, y2)

≡ ∃t1, t2, t3, t4. (t1, t2) = ⋆−1
α (x1) ∧

(t3, t4) = ⋆−1
β (x2) ∧

y1 = (t1, t3) ∧ y2 = (t2, t4)

≡ ∃t1, t2, t3, t4. (t1, t2) = ⋆−1
α (x1) ∧

(t3, t4) = ⋆−1
β (x2) ∧

(y1, y2) = ((t1, t3), (t2, t4))

≡ (y1, y2) = ⋆−1
α×β(x1, x2) by (J.9).

Hence,

Left△–S(x1, x2, y1, y2) ≡ Right△–S(x1, x2, y1, y2). (J.10)

J.3 Transformations involving unpair tasks

Similarly, there are four transformations involving unpair tasks juxtaposed with process-
ing, merge, replication and split tasks respectively.

J.3.1 Unpair–Processing transformation

Transformation Unpair–Processing is shown in Figure J.8. In a similar fashion to Combine

and Pair–Processing, the Unpair–Processing transformation is only applicable in the right-
wards direction because gα and gβ cannot be readily derived from f but the converse is
possible.

Proposition J.8. Transformation Unpair–Processing is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the

255

J Transformations involving pair and unpair tasks

gα gβ

P

Q1 Q2

▽–P−→
f

P

Q1 Q2

Figure J.8: The Unpair–Processing transformation; ∀a, b. f(a, b) = (gα(a), gβ(b)).

transformation.

Left▽–P(x, y1, y2) , ∃t1, t2. Unpair(x, t1, t2) ∧
Proc(gα)(t1, y1) ∧ Proc(gβ)(t2, y2)

≡ ∃t1, t2. (t1, t2) = x ∧ y1 = gα(t1) ∧ y2 = gβ(t2)

≡ ∃t1, t2. (t1, t2) = x ∧ (y1, y2) = (gα(t1), gβ(t2))

≡ ∃t1, t2. (t1, t2) = x ∧ (y1, y2) = f(t1, t2) by (J.3)

≡ (y1, y2) = f(x);

Right▽–P(x, y1, y2) , ∃t. Proc(f)(x, t) ∧ Unpair(t, y1, y2)

≡ ∃t. t = f(x) ∧ (y1, y2) = t

≡ (y1, y2) = f(x).

Hence,
Left▽–P(x, y1, y2) ≡ Right▽–P(x, y1, y2). (J.11)

J.3.2 Unpair–Merge transformation

Transformation Unpair–Merge is shown in Figure J.9.

⋆α×β

P1 P2

Q1 Q2

▽–M←→
⋆α ⋆β

P1 P2

Q1 Q2

Figure J.9: The Unpair–Merge transformation.

Proposition J.9. Transformation Unpair–Merge is sound.

256

J.3 Transformations involving unpair tasks

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

Left▽–M(x1, x2, y1, y2) , ∃t. Merge(⋆α×β)(x1, x2, t) ∧ Unpair(t, y1, y2)

≡ ∃t. t = x1 ⋆α×β x2 ∧ (y1, y2) = t

≡ (y1, y2) = x1 ⋆α×β x2;

Right▽–M(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Unpair(x1, t1, t2) ∧
Unpair(x2, t3, t4) ∧
Merge(⋆α)(t1, t3, y1) ∧
Merge(⋆β)(t2, t4, y2)

≡ ∃t1, t2, t3, t4. (t1, t2) = x1 ∧ (t3, t4) = x2

y1 = t1 ⋆α t3 ∧ y2 = t2 ⋆β t4

≡ ∃t1, t2, t3, t4. (t1, t2) = x1 ∧ (t3, t4) = x2

(y1, y2) = (t1 ⋆α t3, t2 ⋆β t4)

≡ ∃t1, t2, t3, t4. (t1, t2) = x1 ∧ (t3, t4) = x2

(y1, y2) = (t1, t2) ⋆α×β (t3, t4)

by (J.9)

≡ (y1, y2) = x1 ⋆α×β x2.

Hence,

Left▽–M(x1, x2, y1, y2) ≡ Right▽–M(x1, x2, y1, y2). (J.12)

J.3.3 Unpair–Replication transformation

Transformation Unpair–Replication is shown in Figure J.10.

R

P

Q1 Q2 Q3 Q4

▽–R←→
RR

P

Q1 Q2Q3 Q4

Figure J.10: The Unpair–Replication transformation.

Proposition J.10. Transformation Unpair–Replication is sound.

257

J Transformations involving pair and unpair tasks

Proof. We compare the denotations of the task graphs on the left and the right of the
transformation.

Left▽–R(x, y1, y2, y3, y4) , ∃t1, t2. Rep(x, t1, t2) ∧
Unpair(t1, y1, y2) ∧ Unpair(t2, y3, y4)

≡ ∃t1, t2. t1 = x ∧ t2 = x ∧
(y1, y2) = t1 ∧ (y3, y4) = t2

≡ (y1, y2) = x ∧ (y3, y4) = x;

Right▽–R(x, y1, y2, y3, y4) , ∃t1, t2. Unpair(x, t1, t2) ∧
Rep(t1, y1, y3) ∧ Rep(t2, y2, y4)

≡ ∃t1, t2. (t1, t2) = x ∧
y1 = t1 ∧ y3 = t1 ∧ y2 = t2 ∧ y4 = t2

≡ (y1, y2) = x ∧ (y3, y4) = x.

Hence,

Left▽–R(x, y1, y2, y3, y4) ≡ Right▽–R(x, y1, y2, y3, y4). (J.13)

J.3.4 Unpair–Split transformation

Transformation Unpair–Split is shown in Figure J.11.

⋆−1
α×β

P

Q1 Q3Q2 Q4

▽–S←→
⋆−1

α
⋆−1

β

P

Q1 Q3 Q2 Q4

Figure J.11: The Unpair–Split transformation.

Proposition J.11. Transformation Unpair–Split is sound.

Proof. We compare the denotations of the task graphs on the left and the right of the

258

J.4 Redundancy

transformation.

Left▽–S(x, y1, y2, y3, y4) , ∃t1, t2. Split(⋆−1
α×β)(x, t1, t2) ∧

Unpair(t1, y1, y2) ∧ Unpair(t2, y3, y4)

≡ ∃t1, t2. (t1, t2) = ⋆−1
α×β ∧

(y1, y2) = t1 ∧ (y3, y4) = t2

≡ ((y1, y2), (y3, y4)) = ⋆−1
α×β(x);

Right▽–S(x, y1, y2, y3, y4) , ∃t1, t2. Unpair(x, t1, t2) ∧
Split(⋆−1

α)(t1, y1, y3) ∧ Split(⋆−1
β)(t2, y2, y4)

≡ ∃t1, t2. (t1, t2) = x ∧
(y1, y3) = ⋆−1

α (t1) ∧ (y2, y4) = ⋆−1
β (t2)

≡ ∃t1, t2. (t1, t2) = x ∧
((y1, y2), (y3, y4)) = ⋆−1

α×β(t1, t2)

≡ ((y1, y2), (y3, y4)) = ⋆−1
α×β(x).

Hence,

Left▽–S(x, y1, y2, y3, y4) ≡ Right▽–S(x, y1, y2, y3, y4). (J.14)

We summarise the transformations involving pair and unpair tasks denotationally in Fig-
ure J.12, and show their n-ary counterparts in Figure J.15.

J.4 Redundancy

As with the original transformations, there is some redundancy in these new transforma-
tions; in Figures J.13 and J.14 we show that both Pair–Processing and Unpair–Processing

can be expressed in terms of Pair–Unpair and Combine.

J.5 Derivation of transformations involving pair and

unpair

In Section 5.6.1.3, we showed that pair and unpair tasks can be expressed in terms of the
primitive kinds of task. This led us to question whether the transformations involving
pair and unpair tasks defined above in Sections J.1–J.3 can also be derived from the
transformations defined for the primitive tasks when we express pair and unpair in this
way.

The Pair–Processing, Unpair–Processing and Combine transformations cannot be expressed
in terms of the transformations on primitive tasks because they depend solely upon the
relationship between a function f and the functions gα and gβ given in (J.3).

259

J Transformations involving pair and unpair tasks

Left△–▽(x1, x2, y1, y2) , ∃t. Pair(x1, x2, t) ∧ Unpair(t, y1, y2)

Right△–▽(x1, x2, y1, y2) , y1 = x1 ∧ y2 = x2

Left▽–△(x, y) , ∃t1, t2. Unpair(x, t1, t2) ∧ Pair(t1, t2, y)

Right▽–△(x, y) , y = x

LeftCombine(x, y) , ∃t1, t2, u1, u2. Unpair(x, t1, t2) ∧
Proc(gα)(t1, u1) ∧ Proc(gβ)(t2, u2) ∧
Pair(u1, u2, y)

RightCombine(x, y) , Proc(f)(x, y)

Left△–P(x1, x2, y) , ∃t. Pair(x1, x2, t) ∧ Proc(f)(t, y)

Right△–P(x1, x2, y) , ∃t1, t2. Proc(gα)(x1, t1) ∧ Proc(gβ)(x2, t2) ∧
Pair(t1, t2, y)

where f(a1, a2) = (gα(a1), gβ(a2))

Left△–M(x1, x2, x3, x4, y) , ∃t1, t2. Pair(x1, x2, t1) ∧ Pair(x3, x4, t2) ∧
Merge(⋆α×β)(t1, t2, y)

Right△–M(x1, x2, x3, x4, y) , ∃t1, t2. Merge(⋆α)(x1, x3, t1) ∧Merge(⋆β)(x2, x4, t2) ∧
Pair(t1, t2, y)

Left△–R(x1, x2, y1, y2) , ∃t. Pair(x1, x2, t) ∧ Rep(t, y1, y2)

Right△–R(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Rep(x1, t1, t2) ∧ Rep(x2, t3, t4) ∧
Pair(t1, t3, y1) ∧ Pair(t2, t4, y2)

Left△–S(x1, x2, y1, y2) , ∃t. Pair(x1, x2, t) ∧ Split(⋆−1
α×β)(t, y1, y2)

Right△–S(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Split(⋆−1
α×β)(x1, t1, t2) ∧ Split(⋆−1

α×β)(x2, t3, t4) ∧
Pair(t1, t3, y1) ∧ Pair(t2, t4, y2)

Left▽–P(x, y1, y2) , ∃t1, t2. Unpair(x, t1, t2) ∧
Proc(gα)(t1, y1) ∧ Proc(gβ)(t2, y2)

Right▽–P(x, y1, y2) , ∃t. Proc(f)(x, t) ∧ Unpair(t, y1, y2)

where f(a1, a2) = (gα(a1), gβ(a2))

Left▽–M(x1, x2, y1, y2) , ∃t. Merge(⋆α×β)(x1, x2, t) ∧ Unpair(t, y1, y2)

Right▽–M(x1, x2, y1, y2) , ∃t1, t2, t3, t4. Unpair(x1, t1, t2) ∧ Unpair(x2, t3, t4) ∧
Merge(⋆α)(t1, t3, y1) ∧Merge(⋆β)(t2, t4, y2)

Left▽–R(x, y1, y2, y3, y4) , ∃t1, t2. Rep(x, t1, t2) ∧
Unpair(t1, y1, y2) ∧ Unpair(t2, y3, y4)

Right▽–R(x, y1, y2, y3, y4) , ∃t1, t2. Unpair(x, t1, t2) ∧
Rep(t1, y1, y3) ∧ Rep(t2, y2, y4)

Left▽–S(x, y1, y2, y3, y4) , ∃t1, t2. Split(⋆−1
α×β)(x, t1, t2) ∧

Unpair(t1, y1, y2) ∧ Unpair(t2, y3, y4)

Right▽–S(x, y1, y2, y3, y4) , ∃t1, t2. Unpair(x, t1, t2) ∧
Split(⋆−1

α)(t1, y1, y3) ∧ Split(⋆−1
β)(t2, y2, y4)

Figure J.12: Denotations of transformations involving pair and unpair tasks.

260

J.5 Derivation of transformations involving pair and unpair

f

P1 P2

Q

Combine←−
gα gβ

P1 P2

Q

△–▽←→
gα gβ

P1 P2

Q

Figure J.13: Derivation of the Pair–Processing transformation.

gα gβ

P

Q1 Q2

△–▽←→
gα gβ

P

Q1 Q2

Combine−→
f

P

Q1 Q2

Figure J.14: Derivation of the Unpair–Processing transformation.

261

J Transformations involving pair and unpair tasks

Left△–▽
n (x1, . . . , xn, y1, . . . , yn) , ∃t. Pairn(x1, . . . , xn, t) ∧ Unpairn(t, y1, . . . , yn)

Right△–▽
n (x1, . . . , xn, y1, . . . , yn) ,

n
∧

i=1

yi = xi

Left▽–△

n (x, y) , ∃t1, . . . , tn. Unpairn(x, t1, . . . , tn) ∧ Pair(t1, . . . , tn, y)

Right▽–△
n (x, y) , y = x

LeftCombine

n (x, y) , ∃t1, . . . , tn, u1, . . . , un. Unpairn(x, t1, . . . , tn) ∧
∧n

i=1
Proc(gi)(ti, ui) ∧

Pairn(u1, . . . , un, y)

RightCombine

n (x, y) , Proc(f)(x, y)

Left△–P

n (x1, . . . , xn, y) , ∃t. Pairn(x1, . . . , xn, t) ∧ Proc(f)(t, y)

Right△–P

n (x1, . . . , xn, y) , ∃t1, . . . , tn. Pairn(t1, . . . , tn, y) ∧
n
∧

i=1

Proc(gi)(xi)

where f(a1, . . . , an) = (g1(a1), . . . , gn(an)

Left△–M

m,n (x1,1, . . . , xm,n, y) , ∃t1, . . . , tn. Mergen(⋆α1×...×αn
)(t1, . . . , tn, y) ∧

∧n

i=1
Pairm(x1,i, . . . , xm,i, ti)

Right△–M

m,n (x1,1, . . . , xm,n, y) , ∃t1, . . . , tm. Pairm(t1, . . . , tm, y) ∧
∧m

i=1
Mergen(⋆αi

)(xi,1, . . . , xi,n, ti)

Left△–R

m,n(x1, . . . , xn, y1, . . . , ym) , ∃t. Pairn(x1, . . . , xn, t) ∧ Repm(t, y1, . . . , ym)

Right△–R

m,n(x1, . . . , xn, y1, . . . , ym) , ∃t1,1, . . . , tm,n.
∧n

i=1
Repm(xi, t1,i, . . . , tm,i) ∧

∧m

i=1
Pairn(ti,1, . . . , ti,n, yi)

Left△–S

m,n(x1, . . . , xn, y1, . . . , ym) , ∃t. Pairn(x1, . . . , xn, t) ∧ Splitm(⋆−1

α1×...×αn
)(t, y1, . . . , ym)

Right△–S

m,n(x1, . . . , xn, y1, . . . , ym) , ∃t1,1, . . . , tm,n.
∧n

i=1
Splitm(⋆−1

α1×...×αn
)(xi, t1,i, . . . , tm,i) ∧

∧m

i=1
Pairn(ti,1, . . . , ti,n, yi)

Left▽–P

n (x, y1, . . . , yn) , ∃t1, . . . , tn. Unpairn(x, t1, . . . , tn) ∧
n
∧

i=1

Proc(gi)(ti, yi)

Right▽–P

n (x, y1, . . . , yn) , ∃t. Proc(f)(x, t) ∧ Unpairn(t, y1, . . . , yn)

where f(a1, . . . , an) = (g1(a1), . . . , gn(an)

Left▽–M

m,n (x1, . . . , xm, y1, . . . , yn) , ∃t. Mergem(⋆α1×...×αn
)(x1, . . . , xm, t) ∧

Unpairn(t, y1, . . . , yn)

Right▽–M

m,n (x1, . . . , xm, y1, . . . , yn) , ∃t1,1, . . . , tm,n.
∧m

i=1
Unpairn(xi, ti,1, . . . , ti,n) ∧

∧n

i=1
Mergem(⋆α1×...×αn

)(t1,i, . . . , tm,i, yi)

Left▽–R

m,n(x, y1,1, . . . , ym,n) , ∃t1, . . . , tm. Repm(x, t1, . . . , tm) ∧
∧m

i=1
Unpairn(ti, yi,1, . . . , yi,n)

Right▽–R

m,n(x, y1,1, . . . , ym,n) , ∃t1, . . . , tn. Unpairn(x, t1, . . . , tn) ∧
∧n

i=1
Repm(ti, y1,i, . . . , ym,i)

Left▽–S

m,n(x, y1,1, . . . , ym,n) , ∃t1, . . . , tm. Splitm(⋆−1

α1×...×αn
)(x, t1, . . . , tm) ∧

∧m

i=1
Unpairn(ti, yi,1, . . . , yi,n)

Right▽–S

m,n(x, y1,1, . . . , ym,n) , ∃t1, . . . , tn. Unpairn(x, t1, . . . , tn) ∧
∧n

i=1
Splitm(⋆−1

α1×...×αn
)(ti, y1,i, . . . , ym,i)

Figure J.15: Denotations of n-ary transformations involving pair and unpair tasks.

262

J.5 Derivation of transformations involving pair and unpair

The Pair–Unpair and Unpair–Pair transformations cannot be expressed solely in terms of
the transformations on primitive tasks—see Figures J.16 and J.17. The derivation of the
Pair–Unpair transformation relies on the fact that πα (used in expressing an unpair task)
is a right-inverse for pα (used in expressing a pair task), and likewise for πβ and pβ.

Proposition J.12. πα is a right-inverse of pα.

Proof. For arbitrary a,

πα(pα(a)) = πα(a, 0β) by definition of pα, (5.41)
= a by definition of πα, (5.45).

The derivation of the Unpair–Pair transformation relies on pα being a right-inverse for πα

for the set of values which may be delivered from the sα×β split task, and likewise for pβ

and πβ .

Proposition J.13. For the first element of pairs returned from sα×β, pα is a right-inverse
of πα.

Proof. From the definition of sα×β, (5.44), the first element of the pair returned will be
(a, 0β) for some a.

pα(πα(a, 0β)) = pα(a) by definition of πα, (5.45)
= (a, 0β) by definition of pα, (5.41).

The derivations in Figures J.18–J.20 show that we can express the Pair–Merge, Pair–

Replication and Pair–Split transformations in terms of the transformations on the primitive
tasks; and those in Figures J.21–J.231 show the same for Unpair–Merge, Unpair–Replication

and Unpair–Split.

1There is a question over the validity of J.23. It relies upon interchanging the order of different split
tasks defined for a given type.

263

J Transformations involving pair and unpair tasks

P1 P2

Q1 Q2

=

pα pβ

⋆α×β

sα×β

πα πβ

P1 P2

Q1 Q2

M–S←→
pα pβ

πα πβ

P1 P2

Q1 Q2

=
P1 P2

Q1 Q2

Figure J.16: Derivation of the Pair–Unpair transformation. The final step follows from
the fact that πα is a right-inverse for pα, and similarly for πβ and pβ.

P

Q

=
pα pβ

⋆α×β

sα×β

πα πβ

P

Q

=
⋆α×β

sα×β

P

Q

S–M←→
P

Q

Figure J.17: Derivation of the Unpair–Pair transformation. The second step follows from
the fact that sα×β will deliver to the πα task an item of type α paired with
0β , and ∀a. pα(πα(a, 0β)) = (a, 0β), and the analogous fact for β.

264

J.5 Derivation of transformations involving pair and unpair

⋆α×β

P1 P3P2 P4

Q

= ⋆α×β

⋆α×β

⋆α×β

pαpα pβpβ

P1 P3P2 P4

Q

M	4

←→ ⋆α×β

⋆α×β

⋆α×β

pαpα pβpβ

P1 P3 P2 P4

Q

M–P
2

←→

⋆α ⋆β

⋆α×β

pα pβ

P1 P3 P2 P4

Q

=

⋆α ⋆β

P1 P3 P2 P4

Q

Figure J.18: Derivation of the Pair–Merge transformation. The second step proceeds as
shown in Figure 5.14.

R

P1 P2

Q1 Q2

=

R

pα pβ

⋆α×β

P1 P2

Q1 Q2

M–R←→ RR

pα pβ

⋆α×β⋆α×β

P1 P2

Q1 Q2

P–R
2

←→

RR

pαpα pβpβ

⋆α×β⋆α×β

P1 P2

Q1 Q2

=

RR

P1 P2

Q1 Q2

Figure J.19: Derivation of the Pair–Replication transformation.

⋆−1
α×β

P1P1

Q1 Q2

=

⋆−1
α×β

pα pβ

⋆α×β

P1 P2

Q1 Q2

M–S′←→ ⋆−1
α×β⋆−1

α×β

pα pβ

⋆α×β⋆α×β

P1 P2

Q1 Q2

P–S
2

←→

⋆−1
α×β⋆−1

α×β

pαpα pβpβ

⋆α×β⋆α×β

P1 P2

Q1 Q2

=

⋆−1
α ⋆−1

β

P1 P2

Q1 Q2

Figure J.20: Derivation of the Pair–Split transformation. The second step involves the
use of the Merge–Split′ transformation.

265

J Transformations involving pair and unpair tasks

⋆α×β

P1 P2

Q1 Q2

=

⋆α×β

sα×β

πα πβ

P1 P2

Q1 Q2

M–S′←→ ⋆α×β⋆α×β

sα×βsα×β

πα πβ

P1 P2

Q1 Q2

M–P
2

←→

⋆α ⋆β

sα×βsα×β

παπα πβπβ

P1 P2

Q1 Q2

=
⋆α ⋆β

P1 P2

Q1 Q2

Figure J.21: Derivation of the Unpair–Merge transformation. The second step involves
the use of the Merge–Split′ transformation.

R

P

Q1 Q2 Q3 Q4

=

R

sα×βsα×β

παπα πβπβ

P

Q1 Q2 Q3 Q4

S–R←→ RR

sα×β

παπα πβπβ

P

Q1 Q2Q3 Q4

P–R
2

←→

RR

sα×β

πα πβ

P

Q1 Q2Q3 Q4

=
RR

P

Q1 Q2Q3 Q4

Figure J.22: Derivation of the Unpair–Replication transformation.

266

J.5 Derivation of transformations involving pair and unpair

⋆−1
α×β

P

Q1 Q3Q2 Q4

=

⋆−1
α×β

sα×βsα×β

παπα πβπβ

P

Q1 Q3Q2 Q4

?
=

⋆−1
α×β

sα×βsα×β

παπα πβπβ

P

Q1 Q3 Q2 Q4

P–S
2

←→

⋆−1
α×β

⋆α ⋆β

πα πβ

P

Q1 Q3 Q2 Q4

=
⋆−1

α
⋆−1

β

P

Q1 Q3 Q2 Q4

Figure J.23: Derivation of the Unpair–Split transformation. The validity of the second
step, involving the exchange of different split tasks on a given datatype, is
questionable.

267

J Transformations involving pair and unpair tasks

268

References

[1] Mohamad Afshar. An Open Parallel Architecture for Data-intensive Applications.
PhD thesis. Technical Report UCAM-CL-TR-459, University of Cambridge, Com-
puter Laboratory, July 1999. (Cited on pages 109 and 115.)

[2] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for wireless
sensor networks. Ad Hoc Networks, 3(3):325–349, May 2005. (Cited on pages 198

and 200.)

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks, 38:393–422, 2002. (Cited on pages 100,

197 and 198.)

[4] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services:
Concepts, Architectures and Applications. Springer-Verlag, Berlin / Heidelberg,
2004. (Cited on pages 35 and 100.)

[5] AMI-C. AMI-C use cases. Available from http://www.ami-c.org/, January 2003.
(Cited on page 16.)

[6] Khalil Amiri, David Petrou, Gregory R. Ganger, and Garth A. Gibson. Dynamic
function placement for data-intensive cluster computing. In Proceedings of the
USENIX Annual Technical Conference, pages 307–322, San Diego, CA, USA, June
2000. (Cited on page 45.)

[7] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu,
Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks: Shared
memory computing on networks of workstations. IEEE Computer, 29(2):18–28,
February 1996. (Cited on page 217.)

269

References

[8] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trick-
ovic, and Sanjiva Weerawarana. Business Process Execution Language for Web
Services, version 1.1. http://www-106.ibm.com/developerworks/webservices/

library/ws-bpel/, May 2003. (Cited on page 35.)

[9] Mario Antonioletti, Malcolm Atkinson, Rob Baxter, Andrew Borley, Neil P.
Chue Hong, Brian Collins, Neil Hardman, Alastair C. Hume, Alan Knox, Mike
Jackson, Amy Krause, Simon Laws, James Magowan, Norman W. Paton, Dave
Pearson, Tom Sugden, Paul Watson, and Martin Westhead. The design and imple-
mentation of grid database services in OGSA-DAI. Concurrency and Computation:
Practice and Experience, 17:357–376, Feb–Apr 2005. (Cited on pages 40 and 100.)

[10] Apple Inc. Bonjour overview. Available from http://developer.

apple.com/documentation/Cocoa/Conceptual/NetServices/

NetServices.pdf, May 2006. (Cited on page 199.)

[11] Joe Armstrong. Programming Erlang: Software for a Concurrent World. The
Pragmatic Bookshelf, Raleigh, North Carolina, USA, July 2007. (Cited on page 36.)

[12] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,
H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam,
M. Nesterenko, A. Vora, and M. Miyashita. A line in the sand: A wireless sen-
sor network for target detection, classification and tracking. Computer Networks,
46(5):605–634, December 2004. (Cited on page 198.)

[13] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E. Culler,
Joseph M. Hellerstein, David Patterson, and Kathy Yelick. Cluster I/O with River:
Making the fast case common. In Proceedings of the 6th Workshop on Input/Out-
put in Parallel and Distributed Systems (IOPADS ’99), pages 10–22, Atlanta, GA,
USA, May 1999. (Cited on page 39.)

[14] Volkan Arslan, Patrick Eugster, Piotr Nienaltowski, and Sebastien Vaucouleur.
SCOOP – Concurrency Made Easy, volume 4028 of LNCS, pages 82–102. Springer-
Verlag, September 2006. (Cited on page 206.)

[15] Franz Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data
structure. ACM Computing Surveys, 23(3):345–405, September 1991. (Cited on

pages 78 and 79.)

[16] Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew Mc-
Neil, Oliver Seidel, and Mark Spiteri. Generic support for distributed applications.
IEEE Computer, 33(3):68–76, March 2000. (Cited on page 38.)

[17] J. C. M. Baeten. A brief history of process algebra. Theoretical Computer Science,
335:131–146, 2005. (Cited on page 210.)

[18] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language
for parallel programming of distributed systems. IEEE Transactions on Software
Engineering, 18(3):190–205, March 1992. (Cited on page 218.)

270

References

[19] François Bancilhon, Ted Briggs, Setrag Khoshafian, and Patrick Valduriez. FAD,
a powerful and simple database language. In VLDB ’87: Proceedings of the 13th
International Conference on Very Large Data Bases, pages 97–105, Brighton, UK,
September 1987. Morgan Kaufmann. (Cited on page 107.)

[20] Amnon Barak and Oren La’adan. The MOSIX multicomputer operating system
for high performance cluster computing. Future Generation Computer Systems,
13(4–5):361–372, March 1998. (Cited on page 218.)

[21] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In ACM Symposium on Operating Systems Principles (SOSP ’03), pages 164–177,
Bolton Landing, NY, USA, October 2003. (Cited on page 33.)

[22] Rimon Barr, John C. Bicket, Daniel S. Dantas, Bowei Du, T. W. Danny Kim,
Bing Zhou, and Emin Gün Sirer. On the need for system-level support for ad hoc
and sensor networks. ACM SIGOPS Operating Systems Review, 36(2):1–5, 2002.
(Cited on pages 46 and 223.)

[23] Marc Bechler, Walter J. Franz, and Lars Wolf. Mobile internet access in FleetNet.
In 13. Fachtagung Kommunikation in Verteilten Systemen: Kurzbeiträge, Praxis-
berichte und Workshop E-Learning, pages 107–118, Leipzig, Germany, April 2003.
VDE Verlag. (Cited on page 193.)

[24] Alastair R. Beresford. Location privacy in ubiquitous computing. PhD thesis. Tech-
nical Report UCAM-CL-TR-612, University of Cambridge, Computer Laboratory,
January 2005. (Cited on page 191.)

[25] Pierpaolo Bergamo, Daniela Maniezzo, Kung Yao, Matteo Cesana, Giovanni Pau,
Mario Gerla, and Don Whiteman. IEEE802.11 wireless network under aggressive
mobility scenarios. In International Telemetry Conference ITC/USA2003, Las Ve-
gas, NV, USA, October 2003. (Cited on page 193.)

[26] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 284(5):28–37, May 2001. (Cited on page 101.)

[27] Jan Beutel, Oliver Kasten, Friedemann Mattern, Kay Römer, Frank Siegemund,
and Lothar Thiele. Prototyping wireless sensor network applications with BTn-
odes. In Proceedings of the 1st European Workshop on Wireless Sensor Networks
(EWSN 2004), volume 2920 of LNCS, pages 323–338, Berlin, Germany, January
2004. (Cited on page 195.)

[28] R. S. Bird. Lectures on constructive functional programming. In M. Broy, edi-
tor, Constructive Methods in Computing Science: Proceedings of the NATO Ad-
vanced Study Institute, volume 55 of NATO ASI Series: Computer and Systems
Sciences, Marktoberdorf, Federal Republic of Germany, Jul–Aug 1988. Springer-
Verlag. (Cited on page 216.)

271

References

[29] Roberto Bisiani and Mosur Ravishankar. PLUS: A distributed shared-memory
system. ACM SIGARCH Computer Architecture News, 18:115–124, June 1990.
(Cited on page 217.)

[30] Jeremy J. Blum, Azim Eskandarian, and Lance J. Hoffman. Challenges of interve-
hicle Ad Hoc networks. IEEE Transactions on Intelligent Transportation Systems,
5(4):347–351, December 2004. (Cited on page 25.)

[31] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Querying the physical
world. IEEE Personal Communications, 7(5):10–15, October 2000. (Cited on

pages 48 and 197.)

[32] Philippe Bonnet, Johnannes Gehrke, and Praveen Seshadri. Towards sensor
database systems. In Proceedings of the 2nd International Conference on Mobile
Data Management, volume 1987 of LNCS, pages 3–14, 2001. (Cited on page 49.)

[33] Cristian Borcea, Chalermek Intanagonwiwat, Porlin Kang, Ulrich Kremer, and Liviu
Iftode. Spatial programming using smart messages: Design and implementation.
In Proceedings of the 24th International Conference on Distributed Computing Sys-
tems (ICDCS), pages 690–699, Tokyo, Japan, March 2004. IEEE Computer Society.
(Cited on pages 51 and 53.)

[34] Athanassios Boulis, Chih-Chieh Han, and Mani B. Srivastava. Design and im-
plementation of a framework for efficient and programmable sensor networks. In
Proceedings of MobiSys 2003: The First International Conference on Mobile Sys-
tems, Applications, and Services, pages 187–200, San Francisco, CA, USA, May
2003. ACM. (Cited on pages 46, 47 and 52.)

[35] Athanassios Boulis and Mani B. Srivastava. A framework for efficient and pro-
grammable sensor networks. In Proceedings of the IEEE Conference on Open Archi-
tectures and Network Programming, pages 117–128, June 2002. (Cited on pages 51

and 198.)

[36] David Braginsky and Deborah Estrin. Rumor routing algorithm for sensor networks.
In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA ’02), pages 22–31, Atlanta, GA, USA, September 2002.
(Cited on page 201.)

[37] Linda Briesemeister, Lorenz Schäfers, and Günter Hommel. Disseminating mes-
sages among highly mobile hosts based on inter-vehicle communication. In IEEE
Intelligent Vehicles Symposium, pages 522–527, October 2000. (Cited on page 26.)

[38] R. M. Burstall and John Darlington. A transformation system for developing re-
cursive programs. Journal of the ACM, 24(1):44–67, January 1977. (Cited on

page 206.)

[39] V. Bychkovsky, K. Chen, M. Goraczko, H. Hu, B. Hull, A. Miu, E. Shih, Y. Zhang,
H. Balakrishnan, and S. Madden. Data management in the CarTel mobile sensor

272

References

computing system. In Proceedings of the 2006 ACM SIGMOD International Con-
ference on Management of Data, pages 730–732, Chicago, IL, USA, 2006. (Cited

on page 91.)

[40] Cambridgeshire County Council. The 2006 traffic monitoring re-
port. Available from http://www.cambridgeshire.gov.uk/transport/

monitoring/network/traffic+monitoring+report.htm, 2006. (Cited on

page 89.)

[41] Nicholas Carriero and David Gelernter. Linda in context. Communications of the
ACM, 32(4):444–458, April 1989. (Cited on page 38.)

[42] Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling in general-
purpose distributed computing systems. IEEE Transactions on Software Engineer-
ing, 14(2):141–154, February 1988. (Cited on page 158.)

[43] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton, and
Jerry Zhao. Habitat monitoring: Application driver for wireless communications
technology. ACM SIGCOMM Computer Communication Review, 31(2 supp.):20–
41, April 2001. (Cited on page 197.)

[44] Fred B. Chambers, David A. Duce, and Gillian P. Jones, editors. Distributed Com-
puting, volume 20 of APIC Studies in Data Processing. Academic Press, 1984.
(Cited on pages 30, 277, 281 and 285.)

[45] Surajit Chaudhuri. An overview of query optimization in relational systems. In Pro-
ceedings of the 17th ACM SIGACT–SIGMOD–SIGART Symposium on Principles
of Database Systems (PODS ’98), pages 34–43, Seattle, WA, USA, 1998. (Cited

on page 143.)

[46] Guangyu Chen, Byung-Tae Kang, Mahmut Kandemir, Narayanan Vijaykrishnan,
Mary Jane Irwin, and Rajarathnam Chandramouli. Studying energy trade offs in
offloading computation/compilation in Java-enabled mobile devices. IEEE Transac-
tions on Parallel and Distributed Systems, 15(9):795–809, September 2004. (Cited

on page 45.)

[47] Ioan Chisalita and Nahid Shahmehri. A peer-to-peer approach to vehicular com-
munication for the support of traffic safety applications. In IEEE 5th Interna-
tional Conference on Intelligent Transportation Systems, pages 336–341, Singapore,
September 2002. (Cited on page 27.)

[48] Howie Choset and Keiji Nagatani. Topological simultaneous localization and map-
ping (SLAM): toward exact localization without explicit localization. IEEE Trans-
actions on Robotics and Automation, 17(2):125–137, April 2001. (Cited on page 79.)

[49] David N. Cottingham and Jonathan J. Davies. A vision for wireless access on
the road network. In Proceedings of the 4th International Workshop on Intelli-
gent Transportation (WIT 2007), pages 25–30, Hamburg, Germany, March 2007.
Technische Universität Hamburg-Harburg. (Cited on page 16.)

273

References

[50] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a
realistic model of parallel computation. ACM SIGPLAN Notices, 28(7):1–12, July
1993. (Cited on page 207.)

[51] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Archi-
tecture: A Hardware / Software Approach. Morgan Kaufmann, 1997. (Cited on

page 208.)

[52] Raymond Cunningham and Vinny Cahill. System support for smart cars. In 9th
ACM SIGOPS European Workshop, Kolding, Denmark, September 2000. ACM.
(Cited on page 26.)

[53] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke. A resource management architecture for metacomputing
systems. In Job Scheduling Strategies for Parallel Processing (JSSPP ’98), volume
1459 of LNCS, pages 62–82. Springer, 1998. (Cited on page 37.)

[54] Jonathan J. Davies, Alastair R. Beresford, and Andy Hopper. Scalable, distributed,
real-time map generation. IEEE Pervasive Computing, 5(4):47–54, Oct–Dec 2006.
(Cited on page 17.)

[55] Peter Day, Jianpang Wu, and Neil Poulton. Beyond real time. ITS International,
12(6):55–56, Nov–Dec 2006. (Cited on page 17.)

[56] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proceedings of the 6th Symposium on Operating System Design
and Implementation (OSDI ’04), San Francisco, CA, USA, December 2004. (Cited

on pages 40, 105 and 145.)

[57] Marios D. Dikaiakos, Tamer Nadeem, Saif Iqbal, and Liviu Iftode. VITP: An infor-
mation transfer protocol for vehicular computing. In Proceedings of the 2nd ACM
International Workshop on Vehicular Ad Hoc Networks (VANET 2005), pages 30–
39, Cologne, Germany, August 2005. (Cited on page 101.)

[58] Sandor Dornbush and Anupam Joshi. StreetSmart traffic: Discovering and dis-
seminating automobile congestion using VANET’s. In Proceedings of the 65th IEEE
Vehicular Technology Conference (VTC Spring 2007), pages 11–15, Dublin, Ireland,
April 2007. (Cited on page 29.)

[59] Florian Dötzer, Florian Kohlmayer, Timo Kosch, and Markus Strassberger. Secure
communication for intersection assistance. In Proceedings of the 2nd International
Workshop on Intelligent Transportation (WIT 2005), Hamburg, Germany, March
2005. Technische Universität Hamburg-Harburg. (Cited on page 17.)

[60] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of
points required to represent a line or its caricature. The Canadian Cartographer,
10(2):112–122, 1973. (Cited on page 92.)

274

References

[61] Ralph Duncan. A survey of parallel computer architectures. IEEE Computer,
23(2):5–16, February 1990. (Cited on page 30.)

[62] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki – a lightweight and
flexible operating system for tiny networked sensors. In Proceedings of the 29th
Annual IEEE International Conference on Local Computer Networks, pages 455–
462, November 2004. (Cited on page 54.)

[63] Vladimir Dyo and Cecilia Mascolo. Efficient node discovery in mobile wireless
sensor networks. In Proceedings of the 4th International Conference on Distributed
Computing in Sensor Systems (DCOSS 2008), volume 5067 of LNCS, pages 478–
485, June 2008. (Cited on page 199.)

[64] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G-S. Ahn, and A. T.
Campbell. The BikeNet mobile sensing system for cyclist experience mapping. In
Proceedings of the 5th ACM Conference on Embedded Networked Sensor Systems
(SenSys 07), pages 87–101, Sydney, Australia, November 2007. ACM Press, New
York, NY, USA. (Cited on page 28.)

[65] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
IEEE Computer, pages 46–57, June 1989. (Cited on page 76.)

[66] Robert Ennals, Richard Sharp, and Alan Mycroft. Linear types for packet pro-
cessing. In Programming Languages and Systems: 13th European Symposium on
Programming (ESOP 2004), volume 2986 of LNCS, pages 204–218, 2004. (Cited

on pages 143 and 222.)

[67] Robert Ennals, Richard Sharp, and Alan Mycroft. Task partitioning for multi-
core network processors. In Proceedings of the 14th International Conference on
Compiler Construction, volume 3443 of LNCS, pages 76–90. Springer-Verlag, April
2005. (Cited on pages 143 and 222.)

[68] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Madden, and Hari
Balakrishnan. The pothole patrol: Using a mobile sensor network for road surface
monitoring. In Proceedings of the 6th International Conference on Mobile Systems,
Applications and Services (MobiSys ’08), pages 29–39, Breckenridge, CO, USA,
2008. (Cited on page 28.)

[69] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next
century challenges: Scalable coordination in sensor networks. In Proceedings of
the 5th Annual ACM/IEEE International Conference on Mobile Computing and
Networking, pages 263–270, Seattle, WA, USA, 1999. (Cited on page 197.)

[70] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe. ACM Computing Surveys (CSUR),
35(2):114–131, June 2003. (Cited on pages 36 and 38.)

[71] Mbou Eyole-Monono. Energy-Efficient Sentient Computing. PhD thesis, Cambridge
University, July 2008. (Cited on page 202.)

275

References

[72] David Fernández-Baca. Allocating modules to processors in a distributed system.
IEEE Transactions on Software Engineering, 15(11):1427–1436, November 1989.
(Cited on page 158.)

[73] Jason Flinn, Dushyanth Narayanan, and M. Satyanarayanan. Self-tuned remote
execution for pervasive computing. In Proceedings of the 8th IEEE Workshop on Hot
Topics in Operating Systems (HotOS), pages 61–66, Schloss Elmau, Oberbayern,
Germany, May 2001. IEEE Press. (Cited on page 45.)

[74] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960, September 1972. (Cited on page 30.)

[75] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Rapid development
and flexible deployment of adaptive wireless sensor network applications. In Pro-
ceedings of the 25th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS ’05), pages 653–662, Washington, DC, USA, 2005. IEEE Computer
Society. (Cited on page 53.)

[76] Stephen Fortune. A sweepline algorithm for Voronoi diagrams. In Proceedings
of the Second Annual ACM SIGACT/SIGGRAPH Symposium on Computational
Geometry, pages 313–322. ACM Press, June 1986. (Cited on page 175.)

[77] Steven Fortune and James Wyllie. Parallelism in random access machines. In
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pages
114–118, San Diego, CA, USA, 1978. ACM. (Cited on page 207.)

[78] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2nd edition, 2004. (Cited on pages 32 and 100.)

[79] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The physiology
of the grid. Technical report, The Globus Project, December 2004. (Cited on

page 37.)

[80] Michael J. Franklin, Björn Thór Jónsson, and Donald Kossmann. Performance
tradeoffs for client-server query processing. ACM SIGMOD Record, 25:149–160,
June 1996. (Cited on page 44.)

[81] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles, Patterns
and Practice. Addison-Wesley, 1999. (Cited on page 38.)

[82] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code
mobility. IEEE Transactions on Software Engineering, 24(5):342–361, May 1998.
(Cited on page 39.)

[83] Holger Füßler, Martin Mauve, Hannes Hartenstein, Michael Käsemann, and Dieter
Vollmer. A comparison of routing strategies for vehicular ad hoc networks. Technical
Report TR-02-003, Department of Computer Science, University of Mannheim, July
2002. (Cited on pages 25 and 26.)

276

References

[84] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software: Practice and Experience,
30(11):1203–1233, September 2000. (Cited on page 160.)

[85] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David
Culler. The nesC language: A holistic approach to networked embedded systems.
In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation (PLDI 2003), pages 1–11, San Diego, CA, USA, June
2003. (Cited on page 46.)

[86] Johannes Gehrke and Samuel Madden. Query processing in sensor networks. IEEE
Pervasive Computing, 3(1):46–55, Jan–Mar 2004. (Cited on page 49.)

[87] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A users’ guide to PICL: A
portable instrumented communication library. Technical Report ORNL/TM-11616,
Oak Ridge National Laboratory, TN, USA, October 1990. (Cited on page 36.)

[88] Andrew S. Glassner, editor. An Introduction to Ray Tracing. Morgan Kaufmann,
San Francisco, CA, USA, 1989. (Cited on page 163.)

[89] J. R. W. Glauert. High level dataflow programming. In Chambers et al. [44],
chapter 4, pages 43–53. (Cited on page 214.)

[90] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In Proceedings of
the 12th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2006), pages 151–162, San Jose, CA, USA,
October 2006. ACM. (Cited on page 143.)

[91] Sergei Gorlatch. Stages and Transformations in Parallel Programming, pages 147–
162. IOS Press, 1996. (Cited on page 216.)

[92] Sergei Gorlatch. Systematic efficient parallelization of scan and other list homomor-
phisms. In Proceedings of the 2nd International Euro-Par Conference on Parallel
Processing–Volume II, volume 1124 of LNCS, pages 401–408. Springer-Verlag, 1996.
(Cited on page 216.)

[93] Andrew S. Grimshaw. Easy-to-use object-oriented parallel processing with Men-
tat. Technical Report CS-92-32, University of Virginia, October 1992. (Cited on

page 219.)

[94] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based services
through spatial and temporal cloaking. In Proceedings of 1st ACM/USENIX In-
ternational Conference on Mobile Systems, Applications and Services (MobiSys),
pages 31–42, San Francisco, CA, USA, May 2003. ACM Press. (Cited on page 17.)

[95] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira Greenberg, and Dejan Milojicic.
Adaptive offloading for pervasive computing. IEEE Pervasive Computing, 3(3):66–
73, July–September 2004. (Cited on page 224.)

277

References

[96] Alexander Hagin, Gabriel Dermler, Kurt Rothermel, and Gennadij Shchemelev.
Distributed multimedia application configuration management. IEEE Transactions
on Parallel and Distributed Systems, 11(7):669–682, July 2000. (Cited on page 44.)

[97] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991. (Cited on page 214.)

[98] Griffith Hamlin, Jr and James D. Foley. Configurable applications for graphics
employing satellites (CAGES). ACM SIGGRAPH Computer Graphics, 9(1):9–19,
Spring 1975. (Cited on page 221.)

[99] Kevin Hammond. Parallel functional programming: An introduction. In Proceedings
of the International Symposium on Parallel Symbolic Computation (PASCO 94),
pages 181–193, Hagenberg/Linz, Austria, September 1994. World Scientific. (Cited

on page 207.)

[100] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. A
dynamic operating system for sensor nodes. In Proceedings of the 3rd International
Conference on Mobile Systems, Applicaions and Services (MobiSys ’05), pages 163–
176, Seattle, WA, USA, 2005. ACM. (Cited on page 54.)

[101] Robert Harle and Alastair Beresford. Keeping big brother off the road. IEE Review,
51(10):34–37, October 2005. (Cited on page 17.)

[102] Robert K. Harle. Maintaining World Models In Context-Aware Environments. PhD
thesis, Laboratory for Communication Engineering, Department of Engineering,
University of Cambridge, 2004. (Cited on pages 74 and 87.)

[103] Hannes Hartenstein, Bernd Bochow, André Ebner, Matthias Lott, Markus
Radimirsch, and Dieter Vollmer. Position-aware ad hoc wireless networks for inter-
vehicle communications: the Fleetnet project. In MobiHoc ’01: Proceedings of the
2nd ACM international symposium on Mobile ad hoc networking & computing, pages
259–262, Long Beach, CA, USA, 2001. ACM Press. (Cited on page 25.)

[104] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan, Deb-
orah Estrin, and Deepak Ganesan. Building efficient wireless sensor networks with
low-level naming. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 146–159, Banff, Alberta, Canada, 2001. (Cited on

page 49.)

[105] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and Mark A. Perillo.
Middleware to support sensor network applications. IEEE Network, 18(1):6–14,
Jan/Feb 2004. (Cited on page 50.)

[106] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.
Energy-efficient communication protocol for wireless microsensor networks. In Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences (HICSS),
January 2000. (Cited on page 202.)

278

References

[107] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adaptive pro-
tocols for information dissemination in wireless sensor networks. In Proceedings
of the 5th Annual ACM/IEEE International Conference on Mobile Computing and
Networking (Mobicom ’99), pages 174–185, Seattle, WA, USA, 1999. (Cited on

page 201.)

[108] Eric H. Herrin II and Raphael A. Finkel. An implementation of service rebalancing.
Technical Report 191-91, University of Kentucky, July 1991. (Cited on page 45.)

[109] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer
Pister. System architecture directions for networked sensors. In Proceedings of
the 9th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2000), pages 93–104, Cambridge, MA,
USA, November 2000. (Cited on pages 46, 47, 195 and 198.)

[110] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau, Kevin
Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob H. Bisseling.
BSPlib: The BSP programming library. Parallel Computing, 24:1947–1980, 1998.
(Cited on page 37.)

[111] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985. (Cited on page 211.)

[112] Steve Hodges, Lyndsay Williams, Emma Berry, Shahram Izadi, James Srinivasan,
Alex Butler, Gavin Smyth, Narinder Kapur, and Ken Wood. SenseCam: A ret-
rospective memory aid. In Ubicomp 2006, volume 4206 of LNCS, pages 177–193,
Orange County, CA, USA, September 2006. Springer-Verlag. (Cited on page 64.)

[113] Karin Hogstedt, Doug Kimelman, V. T. Rajan, Tova Roth, and Mark Wegman.
Graph cutting algorithms for distributed applications partitioning. ACM SIG-
METRICS Performance Evaluation Review, 28(4):27–29, March 2001. (Cited on

page 223.)

[114] Andy Hopper. Sentient computing (abridged and updated version of the Royal So-
ciety Clifford Paterson Lecture, 1999). In Computer Systems: Theory, Technology,
and Applications: A Tribute to Roger Needham, Monographs in Computer Science,
pages 125–131. Springer-Verlag, December 2003. (Cited on page 21.)

[115] Andy Hopper and Andrew Rice. Computing for the future of the planet. Philo-
sophical Transactions of the Royal Society A, 366(1881):3685–3697, October 2008.
(Cited on page 188.)

[116] John M. Howie. Fundamentals of Semigroup Theory. Oxford University Press Inc.,
New York, 1995. (Cited on page 108.)

[117] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,
Joseph Fasel, Maŕıa M. Guzmán, Kevin Hammond, John Hughes, Thomas Johns-
son, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson. Report on
the programming language Haskell: A non-strict, purely functional language. ACM
SIGPLAN Notices, 27:1–164, May 1992. (Cited on page 206.)

279

References

[118] Barbara Hughes, René Meier, Raymond Cunningham, and Vinny Cahill. Towards
real-time middleware for vehicular ad hoc networks. In Proceedings of the 1st ACM
Workshop on Vehicular Ad Hoc Networks, pages 95–96, Philadephia, US, October
2004. (Cited on page 27.)

[119] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko, Allen
Miu, Eugene Shih, Hari Balakrishnan, and Samuel Madden. CarTel: A distributed
mobile sensor computing system. In Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems (SenSys), pages 125–138, Boulder, CO,
USA, November 2006. (Cited on page 28.)

[120] Galen C. Hunt and Michael L. Scott. The Coign automatic distributed partitioning
system. In Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI ’99), pages 187–200, New Orleans, LA, USA, February 1999.
(Cited on page 222.)

[121] Tomasz Imielinski and Samir Goel. DataSpace: Querying and monitoring deeply
networked collections in physical space. IEEE Personal Communications, 7(5):4–9,
October 2000. (Cited on page 50.)

[122] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed dif-
fusion: A scalable and robust communication paradigm for sensor networks. In
MobiCom 2000: Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pages 56–67, Boston, MA, USA, August 2000. ACM
Press. (Cited on page 201.)

[123] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. In Proceedings
of the 2007 EuroSys Conference, pages 59–72, Lisbon, Portugal, March 2007. ACM.
(Cited on pages 42, 43, 143 and 161.)

[124] Chaiporn Jaikaeo, Chavalit Srisathapornphat, and Chien-Chung Shen. Querying
and tasking in sensor networks. In SPIE’s 14th Annual International Symposium
on Aerospace/Defense Sensing, Simulation, and Control, Orlando, FL, USA, April
2000. (Cited on pages 51 and 53.)

[125] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks, volume 353, pages 153–181. Springer US, 1996. (Cited on page 25.)

[126] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-
performance all-software distributed shared memory. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SIGOPS ’95), pages 213–226,
Copper Mountain, CO, USA, 1995. ACM. (Cited on page 218.)

[127] Anthony D. Joseph, Joshua A. Tauber, and M. Frans Kaashoek. Mobile computing
with the Rover toolkit. IEEE Transactions on Computers, 46(3):337–352, March
1997. (Cited on page 40.)

280

References

[128] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan Peh, and
Daniel Rubenstein. Energy-efficient computing for wildlife tracking: Design trade-
offs and early experiences with ZebraNet. SIGPLAN Notices, 37(10):96–107, Octo-
ber 2002. (Cited on pages 54 and 197.)

[129] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobil-
ity in the emerald system. ACM Transactions on Computer Systems, 6(1):109–133,
February 1988. (Cited on page 40.)

[130] Silke Jung. HGV tolls in Germany: Innovative, environmentally friendly and fair.
The IEE Road Transport Symposium, pages 5/1–7, December 2005. (Cited on

page 22.)

[131] Muhammad Kafil and Ishfaq Ahmad. Optimal task assignment in heterogeneous
distributed computing systems. IEEE Concurrency, 8(3):42–51, July–September
1998. (Cited on page 158.)

[132] Porlin Kang, Cristian Borcea, Gang Xu, Akhilesh Saxena, Ulrich Kremer, and Liviu
Iftode. Smart messages: A distributed computing platform for networks of em-
bedded systems. The Computer Journal, 47:475–494, January 2004. (Cited on

page 53.)

[133] Eiman Kanjo and Peter Landshoff. Mobile phones to monitor pollution. IEEE
Distributed Systems Online, 8(7), 2007. (Cited on page 197.)

[134] Hillol Kargupta, Ruchita Bhargava, Kun Liu, Michael Powers, Patrick Blair, Samuel
Bushra, James Dull, Kakali Sarkar, Martin Klein, Mitesh Vasa, and David Handy.
VEDAS: A mobile and distributed data stream mining system for real-time vehi-
cle monitoring. In Michael W. Berry, Umeshwar Dayal, Chandrika Kamath, and
David B. Skillicorn, editors, Proceedings of the SIAM International Data Mining
Conference, number 117 in Proceedings in Applied Mathematics, pages 300–311,
Orlando, FL, USA, 2004. Cambridge University Press. (Cited on pages 29 and 91.)

[135] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking (MOBICOM ’00), pages 243–254, Boston, MA, USA,
2000. (Cited on page 25.)

[136] Richard M. Karp and Vijaya Ramachandran. A survey of parallel algorithms for
shared-memory machines. Technical Report CSD-88-408, UC Berkeley, March 1988.
(Cited on page 207.)

[137] J. R. Kennaway and M. R. Sleep. The ‘language first’ approach. In Chambers et al.
[44], chapter 7, pages 111–124. (Cited on page 30.)

[138] Hong Bong Kim, Marc Emmelmann, Berthold Rathke, and Adam Wolisz. A radio
over fiber network architecture for road vehicle communication systems. In Pro-
ceedings of the 61st IEEE Vehicular Technology Conference (VTC Spring 2005),
volume 5, pages 2920–2924, May 2005. (Cited on page 193.)

281

References

[139] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and
Mary E. Zosel. The High Performance Fortran Handbook. Scientific and Engineering
Computation Series. MIT Press, Cambridge, MA, USA, 1994. (Cited on page 218.)

[140] Donald Kossmann. The state of the art in distributed query processing. ACM
Computing Surveys (CSUR), 32(4):422–469, December 2000. (Cited on pages 48

and 143.)

[141] Ulrich Kremer, Jamey Hicks, and James H. Rehg. A compilation framework for
power and energy management on mobile computers. Technical Report DCS-TR-
446, Rutgers University, June 2001. (Cited on page 43.)

[142] Rajnish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk Shin, Phillip Hutto,
Arnab Paul, and Umakishore Ramachandran. DFuse: A framework for distrib-
uted data fusion. In Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys ’03), pages 114–125, Los Angeles, CA, USA,
November 2003. ACM Press, New York, NY, USA. (Cited on page 46.)

[143] Ram Kumar, Vlasios Tsiatsis, and Mani B. Srivastava. Computation hierarchy for
in-network processing. In WSNA ’03: Proceedings of the 2nd ACM international
conference on Wireless sensor networks and applications, pages 68–77, San Diego,
CA, USA, September 2003. ACM Press. (Cited on page 222.)

[144] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors. ACM Computing Surveys (CSUR),
31(4):406–471, December 1999. (Cited on pages 99 and 158.)

[145] Uichin Lee, Eugenio Magistretti, Biao Zhou, Mario Gerla, Paolo Bellavista, and
Antonio Corradi. MobEyes: Smart mobs for urban monitoring with vehicular sensor
networks. IEEE Wireless Communications, 13(5):52–57, October 2006. (Cited on

pages 27 and 28.)

[146] Gabriel Leen and Donal Heffernan. Expanding automotive electronic systems. IEEE
Computer, 35(1):88–93, January 2002. (Cited on page 23.)

[147] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber,
Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. The Stan-
ford Dash multiprocessor. IEEE Computer, 25(3):63–79, March 1992. (Cited on

pages 33 and 217.)

[148] Philip Levis. The TinyScript language. Available from http://www.

cs.berkeley.edu/ pal/mate-web/files/tinyscript-manual.pdf, July 2004.
(Cited on page 52.)

[149] Philip Levis and David Culler. Maté: A tiny virtual machine for sensor networks.
In Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2002), pages 85–95, San
Jose, CA, USA, October 2002. (Cited on page 52.)

282

References

[150] Philip Levis, David Gay, and David Culler. Active sensor networks. In Proceedings
of the 2nd Symposium on Networked Systems Design & Implementation (NSDI ’05),
volume 2, pages 343–356, Berkeley, CA, USA, 2005. USENIX Association. (Cited

on pages 51 and 52.)

[151] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert
Morris. A scalable location service for geographic ad hoc routing. In Proceedings
of the 6th Annual International Conference on Mobile Computing and Networking
(MOBICOM 2000), pages 120–130, Boston, MA, USA, August 2000. (Cited on

page 26.)

[152] Shuoqi Li, Ying Lin, Sang H. Son, John A. Stankovic, and Yuan Wei. Event detec-
tion services using data service middleware in distributed sensor networks. Telecom-
munication Systems, 26(2–4):351–368, June 2004. (Cited on page 50.)

[153] Wei-yi Li. Design and implementation of digital radio communications link for
platoon control. Technical Report UCB-ITS-PRR-95-2, California Partners for Ad-
vanced Transit and Highways (PATH), Institute of Transportation Studies, Univer-
sity of California, Berkeley, January 1995. (Cited on page 26.)

[154] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation offloading to save energy
on handheld devices: A partition scheme. In CASES ’01: Proceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pages 238–246, Atlanta, GA, USA, November 2001. ACM Press. (Cited

on page 223.)

[155] Stephanie Lindsey and Cauligi S. Raghavendra. PEGASIS: Power-efficient gath-
ering in sensor information systems. In Proceedings of the 2002 IEEE Aerospace
Conference, volume 3, pages 1125–1130, March 2002. (Cited on page 202.)

[156] Nikitas Liogkas, Blair MacIntyre, Elizabeth D. Mynatt, Yannis Smaragdakis, Eli
Tilevich, and Stephen Voida. Automatic partitioning for prototyping ubiquitous
computing applications. IEEE Pervasive Computing, 3(3):40–47, July–September
2004. (Cited on pages 34 and 223.)

[157] Todd Litman. Distance-based vehicle insurance as a TDM strategy. Available online
at http://www.vtpi.org/dbvi.pdf, December 2004. (Cited on page 22.)

[158] Genping Liu, Bu-Sung Lee, Boon-Chong Seet, Chuan-Heng Foh, Kai-Juan Wong,
and Keok-Kee Lee. A routing strategy for metropolis vehicular communications. In
Proceedings of the 18th International Conference on Information Networking, pages
134–143. Springer, February 2004. (Cited on pages 24 and 26.)

[159] Ting Liu and Margaret Martonosi. Impala: A middleware system for managing
autonomic, parallel sensor systems. In Proceedings of the 9th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 107–118, San
Diego, CA, USA, June 2003. (Cited on page 54.)

283

References

[160] Clemens Lombriser, Daniel Roggen, Mathias Stäger, and Gerhard Tröster. Titan: A
tiny task network for dynamically reconfigurable heterogeneous sensor networks. In
Kommunikation in Verteilten Systemen (KiVS), pages 127–138, Berlin / Heidelberg,
February 2007. Springer. (Cited on page 44.)

[161] William E. Lorensen and Harvey E. Cline. Marching cubes: a high resolution 3D
surface construction algorithm. SIGGRAPH Computer Graphics, 21(4):163–169,
July 1987. (Cited on page 85.)

[162] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. Message
passing versus distributed shared memory on networks of workstations. In Pro-
ceedings of the ACM/IEEE SC 1995 Conference: Conference on High Performance
Networking and Computing (SC ’95), San Diego, CA, USA, December 1995. (Cited

on page 33.)

[163] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, and Aske
Plaat. An efficient implementation of Java’s remote method invocation. In Proceed-
ings of the 7th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 173–182, Atlanta, GA, USA, 1999. ACM. (Cited on page 35.)

[164] David B. MacQueen. Models for distributed computing. Technical Report 351,
Institut de Recherche d’Informatique et d’Automatique (IRIA), April 1979. (Cited

on pages 209, 213 and 214.)

[165] Samuel Madden, Michael J. Franklin, Joseph Hellerstein, and Wei Hong. TAG: a
Tiny AGgregation service for ad-hoc sensor networks. ACM SIGOPS Operating
Systems Review, 36:131–146, 2002. (Cited on pages 48, 49, 107 and 225.)

[166] Samuel Madden, Robert Szewczyk, Michael J. Franklin, and David Culler. Support-
ing aggregate queries over ad-hoc wireless sensor networks. In Proceedings of the
4th IEEE Workshop on Mobile Computing Systems and Applications, pages 49–58,
2002. (Cited on page 49.)

[167] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: An acquisitional query processing system for sensor networks. ACM Trans-
actions on Database Systems, 30(1):122–173, March 2005. (Cited on page 49.)

[168] Geoff Mainland, Laura Kang, Sebastien Lahaie, David C. Parkes, and Matt Welsh.
Using virtual markets to program global behavior in sensor networks. In Proceedings
of the 11th ACM SIGOPS European Workshop, pages 1–6, Leuven, Belgium, 2004.
ACM. (Cited on page 55.)

[169] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John
Anderson. Wireless sensor networks for habitat monitoring. In Proceedings of
the 1st ACM International Workshop on Wireless Sensor Networks and Applica-
tions (WSNA ’02), pages 88–97, Atlanta, GA, USA, September 2002. (Cited on

page 197.)

284

References

[170] Arati Manjeshwar and Dharma P. Agrawal. TEEN: A routing protocol for enhanced
efficiency in wireless sensor networks. In Proceedings of the 15th International Par-
allel & Distributed Processing Symposium, San Francisco, CA, USA, April 2001.
(Cited on page 202.)

[171] Kieran Mansley, David Scott, Alastair Tse, and Anil Madhavapeddy. Feedback,
latency, accuracy: Exploring tradeoffs in location-aware gaming. In SIGCOMM
2004 Workshops: Proceedings of ACM SIGCOMM 2004 workshops on NetGames
’04, pages 93–97, Portland, Oregon, USA, August 2004. ACM Press. (Cited on

page 17.)

[172] Keith D. McDonald and Christopher Hegarty. Post-modernization GPS perfor-
mance capabilities. In Proceedings of the IAIN World Congress and the ION 56th
Annual Meeting, pages 242–249, San Diego, CA, USA, June 2000. Institute of Nav-
igation. (Cited on page 82.)

[173] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling objects, rela-
tions and XML in the .NET framework. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, page 706, Chicago, IL, USA,
2006. (Cited on page 150.)

[174] Daniel A. Menascé, Stella C. da Silva Porto, and Satish K. Tripathi. Static heuristic
processor assignment in heterogeneous multiprocessors. International Journal of
High Speed Computing, 6(1):115–137, March 1994. (Cited on page 159.)

[175] Janet Michel and Andries van Dam. Experience with distributed processing on a
host/satellite graphics system. ACM SIGGRAPH Computer Graphics, 10(2):190–
195, Summer 1976. (Cited on page 222.)

[176] A. J. R. G. Milner. Using algebra for concurrency. In Chambers et al. [44], chap-
ter 21, pages 291–305. (Cited on page 210.)

[177] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer-
Verlag, 1980. (Cited on pages 210 and 211.)

[178] Robin Milner. A proposal for Standard ML. In Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, pages 184–197, Austin, TX,
USA, 1984. ACM. (Cited on page 206.)

[179] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999. (Cited on pages 211 and 212.)

[180] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, April 1965. (Cited on pages 22 and 195.)

[181] Hans P. Moravec and Alberto Elfes. High resolution maps from wide angle sonar. In
Proceedings of the 1985 IEEE International Conference on Robotics and Automa-
tion, pages 116–121, March 1985. (Cited on page 76.)

285

References

[182] Robert Morris, John Jannotti, Frans Kaashoek, Jinyang Li, and Douglas Decouto.
CarNet: A scalable ad hoc wireless network system. In Proceedings of the 9th ACM
SIGOPS European Workshop: Beyond the PC: New Challenges for the Operating
System, pages 61–65, Kolding, Denmark, September 2000. (Cited on page 26.)

[183] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, April 1989. (Cited on page 212.)

[184] Patrick Murphy, Erik Welsh, and J. Patrick Frantz. Using Bluetooth for short-term
ad hoc connections between moving vehicles: A feasibility study. In Proceedings
of the 55th IEEE Vehicular Technology Conference (VTC Spring 2002), volume 1,
pages 414–418, 2002. (Cited on page 193.)

[185] Peter Muszynski and Harri Holma. Introduction to WCDMA, chapter 3. John Wiley
& Sons, Ltd, Chichester, England, 2nd edition, April 2004. (Cited on page 28.)

[186] Tamer Nadeem, Sasan Dashtinezhad, Chunyuan Liao, and Liviu Iftode. TrafficView:
Traffic data dissemination using car-to-car communication. Mobile Computing and
Communications Review, 8(3):6–19, July 2004. (Cited on pages 24 and 29.)

[187] Suman Nath, Yan Ke, Phillip B. Gibbons, Brad Karp, and Srinivasan Seshan.
IrisNet: An architecture for enabling sensor-enriched internet services. Techni-
cal Report IRP-TR-02-10, Intel Research Pittsburgh, December 2002. (Cited on

page 50.)

[188] Maziar Nekovee. Sensor networks on the road: The promises and challenges of
vehicular ad hoc networks and grids. In Workshop on Ubiquitous Computing and
e-Research, National e-Science Centre, Edinburgh, Scotland, May 2005. (Cited on

pages 24 and 25.)

[189] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. Programming ad-hoc
networks of mobile and resource-constrained devices. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 249–260, Chicago, IL, USA, June 2005. (Cited on pages 53, 101,

146, 147 and 149.)

[190] David A. Nichols. Using idle workstations in a shared computing environment. In
Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP
’87), pages 5–12, Austin, TX, USA, November 1987. (Cited on page 37.)

[191] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
extensible compiler framework for Java. In Proc. 12th International Conference on
Compiler Construction, volume 2622 of LNCS, pages 138–152, Warsaw, Poland,
April 2003. Springer-Verlag. (Cited on page 160.)

[192] Salim Omar, Xinan Zhou, and Thomas Kunz. Mobile code, adaptive mobile ap-
plications, and network architectures. In Mobile Agents for Telecommunication
Applications (MATA 2000), volume 1931 of LNCS, pages 319–330. Springer-Verlag,
2000. (Cited on page 45.)

286

References

[193] Åke Östmark, Per Lindgren, Aart van Halteren, and Lianne Meppelink. Service
and device discovery of nodes in a wireless sensor network. In IEEE Consumer
Communications and Networking Conference (CCNC 2006), pages 218–222, Las
Vegas, NV, USA, January 2006. (Cited on page 199.)

[194] Jörg Ott and Dirk Kutscher. Drive-Thru Internet: IEEE 802.11b for “automobile”
users. In Proceedings of the 23rd Annual Joint Conference of the IEEE Computer
and Communication Societies (INFOCOM 2004), volume 1, March 2004. (Cited

on page 193.)

[195] Shumao Ou, Kun Yang, and Antonio Liotta. An adaptive multi-constraint parti-
tioning algorithm for offloading in pervasive systems. In Fourth IEEE International
Conference on Pervasive Computing and Communications (PERCOM 2006), pages
116–125, Pisa, Italy, March 2006. (Cited on page 223.)

[196] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996.
(Cited on page 37.)

[197] Markos Papageorgiou and Apostolos Kotsialos. Freeway ramp metering: An
overview. IEEE Transactions on Intelligent Transportation Systems, 3(4):271–281,
December 2002. (Cited on page 17.)

[198] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance vector
routing. In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA ’99), pages 90–100, New Orleans, LA, USA, February
1999. (Cited on page 25.)

[199] Emil M. Petriu, Nicolas D. Georganas, Dorina C. Petriu, Dimitrios Makrakis, and
Voicu Z. Groza. Sensor-based information appliances. IEEE Instrumentation &
Measurement Magazine, 3(4):31–35, December 2000. (Cited on page 197.)

[200] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communications
of the ACM, 43(5):51–58, May 2000. (Cited on page 48.)

[201] Michael L. Powell and Barton P. Miller. Process migration in DEMOS/MP. ACM
SIGOPS Operating Systems Review, 17(5):110–119, October 1983. (Cited on

page 40.)

[202] Ramjee Prasad and Marina Ruggieri. Applied Satellite Navigation using GPS,
GALILEO, and Augmentation Systems. Artech House, London, UK, 2005. (Cited

on page 82.)

[203] Hairong Qi, Xiaoling Wang, S. Sitharama Iyengar, and Krishnendu Chakrabarty.
Multisensor data fusion in distributed sensor networks using mobile agents. In Pro-
ceedings of the 4th International Conference on Information Fusion, pages TuC2:11–
16, Montreal, Canada, August 2001. (Cited on page 51.)

[204] Connie Ribeiro. Bringing wireless access to the automobile: A comparison of Wi-Fi,
WiMAX, MBWA and 3G. In Proceedings of the 21st Annual Rensselaer at Hartford
Computer Science Conference, April 2005. (Cited on page 194.)

287

References

[205] Andrew C. Rice, Alastair R. Beresford, and Robert K. Harle. Cantag: An open
source software toolkit for designing and deploying marker-based vision systems. In
Proceedings of the 4th Annual IEEE International Conference on Pervasive Com-
puting and Communications (PERCOM), pages 12–21, March 2006. (Cited on

page 175.)

[206] Golden G. Richard, III. Service and Device Discovery Protocols and Programming,
chapter 4. McGraw-Hill, 2002. (Cited on page 199.)

[207] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A high-
level, machine-independent language for parallel programming. IEEE Computer,
26(6):28–38, June 1993. (Cited on page 218.)

[208] Volkan Rodoplu and Teresa H. Meng. Minimum energy mobile wireless networks.
IEEE Journal on Selected Areas in Communications, 17(8):1333–1344, August 1999.
(Cited on page 202.)

[209] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. Saving
portable computer battery power through remote process execution. ACM SIGMO-
BILE Mobile Computing and Communications Review, 2(1):19–26, January 1998.
(Cited on page 223.)

[210] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. The
remote processing framework for portable computer power saving. In Proceedings
of the 1999 ACM Symposium on Applied Computing, pages 365–372, San Antonio,
TX, USA, 1999. ACM. (Cited on page 45.)

[211] Vivek Sarkar and John Hennessy. Compile-time partitioning and scheduling of
parallel programs. In Proceedings of the 1986 SIGPLAN Symposium on Compiler
Construction, pages 17–26, Palo Alto, CA, USA, 1986. ACM. (Cited on page 223.)

[212] M. Satyanarayanan and Dushyanth Narayanan. Multi-fidelity algorithms for inter-
active mobile applications. Wireless Networks, 7:601–607, November 2001. (Cited

on page 45.)

[213] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta:
A low overhead, software-only approach for supporting fine-grain shared memory.
In Proceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’96), pages 174–185,
Cambrigde, MA, USA, 1996. ACM. (Cited on page 218.)

[214] Curt Schurgers and Mani B. Srivastava. Energy efficient routing in wireless sensor
networks. In Proceedings of the Military Communications Conference (MILCOM
2001), volume 1, pages 357–361, 2001. (Cited on page 201.)

[215] Rahul C. Shah and Jan M. Rabaey. Energy aware routing for low energy ad hoc
sensor networks. In Proceedings of the Wireless Communications and Networking
Conference (WCNC 2002), volume 1, pages 350–355, March 2002. (Cited on

page 201.)

288

References

[216] Mary Sheeran. muFP, a language for VLSI design. In Proc. 1984 ACM Symposium
on LISP and Functional Programming, pages 104–112, Austin, TX, USA, August
1984. ACM. (Cited on page 147.)

[217] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and Derek White.
JavaTM on the bare metal of wireless sensor devices: The Squawk Java virtual ma-
chine. In Proceedings of the 2nd ACM/USENIX International Conference on Virtual
Execution Environments (VEE ’06), pages 78–88, Ottawa, Ontario, Canada, 2006.
(Cited on page 195.)

[218] Thirunavukkarasu Sivaharan, Gordon Blair, Adrian Friday, Maomao Wu, Hector
Duran-Limon, Paul Okanda, and Carl-Fredrik Sørensen. Cooperating sentient ve-
hicles for next generation automobiles. In Proceedings of the ACM/USENIX Mo-
biSys 2004 International Workshop on Applications of Mobile Embedded Systems
(WAMES 2004), Boston, MA, USA, June 2004. (Cited on page 29.)

[219] D. B. Skillicorn. Parallelism and the Bird-Meertens Formalism. Department of
Computing and Information Science, Queen’s University, Kingston, Ontario, April
1992. (Cited on pages 215 and 216.)

[220] D. B. Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and answers
about BSP. Scientific Programming, 6(3):249–274, 1997. (Cited on page 32.)

[221] David Skillicorn. Foundations of Parallel Programming, volume 6 of Cambridge
International Series on Parallel Computation. Cambridge University Press, 1994.
(Cited on page 215.)

[222] Siarhei Smolau and Ronald Beaubrun. State-oriented programming for TinyOS. In
Proceedings of the 2007 Summer Computer Simulation Conference, pages 766–771,
San Diego, CA, USA, 2007. Society for Computer Simulation International. (Cited

on page 47.)

[223] Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for Java. In
ECOOP 2008: 22nd European Conference on Object-Oriented Programming, vol-
ume 5142 of LNCS, pages 104–128, Paphos, Cyprus, July 2008. Springer. (Cited

on page 206.)

[224] Chavalit Srisathapornphat, Chaiporn Jaikaeo, and Chien-Chung Shen. Sensor infor-
mation networking architecture. In Proceedings of the 2000 International Workshop
on Parallel Processing (ICPP ’00), pages 23–30, Toronto, Ontario, Canada, 2000.
(Cited on page 49.)

[225] Phillip Stanley-Marbell and Liviu Iftode. Scylla: A smart virtual machine for mobile
embedded systems. In Proceedings of the 3rd IEEE Workshop on Mobile Comput-
ing Systems and Applications (WMCSA ’00), pages 41–50, Monterey, CA, USA,
December 2000. (Cited on page 52.)

[226] Robert Stephens. A survey of stream processing. Acta Informatica, 34(7):491–541,
July 1997. (Cited on pages 97 and 213.)

289

References

[227] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concur-
rency: Practice and Experience, 2(4):315–339, December 1990. (Cited on pages 36

and 218.)

[228] James E. Tate. A novel research tool – presenting the highly instrumented car.
Traffic Engineering and Control, 46(7):262–265, July 2005. (Cited on page 58.)

[229] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: The Condor experience. Concurrency and Computation: Practice and
Experience, 17:323–356, Feb–Apr 2005. (Cited on page 37.)

[230] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A language
for streaming applications. In Proceedings of the 11th International Conference on
Compiler Construction (CC 2002), volume 2304 of LNCS, pages 179–196, Grenoble,
France, April 2002. Springer. (Cited on page 215.)

[231] Sebastian Thrun. Robotic mapping: A survey. In Gerhard Lakemeyer and Bernhard
Nebel, editors, Exploring Artificial Intelligence in the New Millennium, chapter 1,
pages 1–36. Morgan Kaufmann, July 2002. (Cited on page 76.)

[232] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin
Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and Wei Hong.
A macroscope in the redwoods. In Proceedings of the 3rd International Conference
on Embedded Networked Sensor Systems (SenSys ’05), pages 51–63, San Diego, CA,
USA, November 2005. (Cited on page 197.)

[233] Leslie G. Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, August 1990. (Cited on page 32.)

[234] R. J. van Glabbeek. Notes on the methodology of CCS and CSP. Theoretical
Computer Science, 177:329–349, 1997. (Cited on page 211.)

[235] Upkar Varshney. Vehicular mobile commerce. IEEE Computer, 37(12):116–118,
December 2004. (Cited on page 16.)

[236] R. Veldema, R. F. H. Hofman, R. A. F. Bhoedjang, C. J. H. Jacobs, and H. E. Bal.
Source-level global optimizations for fine-grain distributed shared memory systems.
ACM SIGPLAN Notices, 36(7):83–92, July 2001. (Cited on page 218.)

[237] Alexander Verbraeck and Corné Versteegt. A bridge between the design and im-
plementation of complex transportation systems. In Dietmar P. F. Möller, editor,
Proceedings of the 12th European Simulation Symposium – Simulation in Industry
(ESS2000), pages 238–243, Hamburg, Germany, September 2000. SCS Publications,
Ghent. (Cited on page 29.)

[238] John von Neumann. First draft of a report on the EDVAC. IEEE Annals of the
History of Computing, 15(4):27–75, 1993. (Cited on page 30.)

[239] William W. Wadge. An extensional treatment of dataflow deadlock. In Gilles Kahn,
editor, Semantics of Concurrent Computation, volume 70 of LNCS, pages 285–299,
Evian, France, 1979. Springer-Verlag. (Cited on pages 141 and 142.)

290

References

[240] William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow Programming
Language, volume 22 of APIC Studies in Data Processing. Academic Press, 1985.
(Cited on page 214.)

[241] Jim Waldo. The Jini architecture for network-centric computing. Communications
of the ACM, 42(7):76–82, July 1999. (Cited on page 199.)

[242] David W. Walker. The design of a standard message passing interface for distributed
memory concurrent computers. Technical Report ORNL/TM-12512, Oak Ridge
National Laboratory, TN, USA, October 1993. (Cited on pages 36, 37 and 105.)

[243] Mark Weiser. The computer for the twenty-first century. Scientific American,
265(3):94–104, September 1991. (Cited on pages 21 and 100.)

[244] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract
regions. In Proceedings of the 1st Conference on Symposium on Networked Systems
Design and Implementation (NSDI 2004), pages 29–42, San Francisco, CA, USA,
March 2004. (Cited on pages 54 and 105.)

[245] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: A neigh-
borhood abstraction for sensor networks. In Proceedings of the 2nd International
Conference on Mobile Systems, Applications, and Services (MobiSys 2004), pages
99–110, Boston, MA, USA, June 2004. (Cited on page 54.)

[246] Lars Wischhof, André Ebner, and Hermann Rohling. Information dissemination in
self-organizing intervehicle networks. IEEE Transactions on Intelligent Transporta-
tion Systems, 6(1):90–101, March 2005. (Cited on page 27.)

[247] Lars Wischhof, André Ebner, Hermann Rohling, Matthias Lott, and Rüdiger Half-
mann. SOTIS – a self-organizing traffic information system. In The 57th IEEE
Semi-Annual Vehicular Technology Conference (VTC 2003-Spring), volume 4, pages
2442–2446, April 2003. (Cited on pages 27 and 29.)

[248] Hao Wu, Richard Fujimoto, Randall Guensler, and Michael Hunter. MDDV: A
mobility-centric data dissemination algorithm for vehicular networks. In Proceedings
of the 1st ACM International Workshop on Vehicular Ad Hoc Networks (VANET
’04), pages 47–56, Philadelphia, PA, USA, October 2004. (Cited on pages 25

and 26.)

[249] Hao Wu, Jaesup Lee, Michael Hunter, Richard Fujimoto, Randall L. Guensler, and
Joonho Ko. Efficiency of simulated vehicle-to-vehicle message propagation efficiency
on Atlanta’s I-75 corridor. Transportation Research Record: Journal of the Trans-
portation Research Board, 1910:82–89, 2005. (Cited on page 26.)

[250] Bo Xu, Aris Ouksel, and Ouri Wolfson. Opportunistic resource exchange in inter-
vehicle ad-hoc networks. In Proceedings of the IEEE International Conference on
Mobile Data Management (MDM 2004), pages 4–12, 2004. (Cited on page 28.)

[251] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan
Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor network for

291

References

structural monitoring. In Proceedings of the 2nd International Conference on Em-
bedded Networked Sensor Systems (SenSys ’04), pages 13–24, Baltimore, MD, USA,
November 2004. (Cited on page 198.)

[252] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed energy conser-
vation for ad hoc routing. In Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking, pages 70–84, Rome, Italy, 2001. (Cited on

page 202.)

[253] Yong Yao and Johannes Gehrke. Query processing for sensor networks. In Proceed-
ings of the 1st Biennial Conference on Innovative Data Systems Research (CIDR
2003), Asilomar, CA, USA, January 2003. (Cited on page 48.)

[254] Jijun Yin, Tamer ElBatt, Gavin Yeung, Bo Ryu, Stephen Habermas, Hariharan
Krishnan, and Timothy Talty. Performance evaluation of safety applications over
dsrc vehicular ad hoc networks. In VANET ’04: Proceedings of the first ACM
workshop on Vehicular ad hoc networks, pages 1–9, Philadelphia, PA, USA, 2004.
ACM Press. (Cited on page 193.)

[255] Shigeki Yokoi, Jun-Ichiro Toriwaki, and Teruo Fukumura. An analysis of topological
properties of digitized binary pictures using local features. Computer Graphics and
Image Processing, 4(1):63–73, March 1975. (Cited on page 78.)

[256] Weimin Yu and Alan Cox. Java/DSM: A platform for heterogeneous computing.
Concurrency: Practice and Experience, 9(11):1213–1224, November 1997. (Cited

on page 217.)

[257] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and energy aware
routing: A recursive data dissemination protocol for wireless sensor networks. Tech-
nical Report CSD-TR-01-0023, UCLA Computer Science Department, May 2001.
(Cited on page 203.)

[258] Yang Zhang, Bret Hull, Hari Balakrishnan, and Samuel Madden. ICEDB:
Intermittently-connected continuous query processing. In Proceedings of the 23rd
International Conference on Data Engineering (ICDE 2007), pages 166–175, Istan-
bul, Turkey, April 2007. IEEE. (Cited on page 49.)

[259] Jing Zhao and Guohong Cao. VADD: Vehicle-assisted data delivery in vehicular ad
hoc networks. IEEE Transactions on Vehicular Technology, 57(3):1910–1922, May
2008. (Cited on page 26.)

292

	Preface
	Publications
	Introduction
	In-vehicle computing
	Applications
	Challenges
	Dissertation outline

	Background
	Computing in vehicles
	Data processing in vehicles
	Sensors
	Communications
	Vehicular networks

	Distributed computing
	The von Neumann architecture
	Loosely-coupled systems
	Task assignment

	Programming sensor networks
	Distributed database
	Active sensor networking
	Other approaches

	Summary

	A vehicular sensor platform
	Managing sensor data
	A sensor platform
	Requirements
	Vehicle
	Sensor infrastructure
	External communications
	Power
	User interaction
	Data collected

	Further work
	Summary

	Scalable, distributed, real-time map generation
	Inferring a road map from location data
	Producing road maps
	Automatically generating a directed graph
	Complexity
	Evaluation

	Maintaining a model of the road network
	Map regeneration
	Retaining associated metadata
	Cost of execution

	Involving multiple vehicles
	Scalability
	System architecture

	Further work
	Summary

	Automatic task assignment
	The problem of early physical binding
	Automatic task assignment
	Task graph
	Resource graph
	Assignment function
	Cost function

	Application design process
	Applicability
	Vehicular networks

	Task graph optimisation
	Types of task
	Denotational semantics
	Generalising to n-ary tasks, n>2
	Fault tolerance
	Examples: aggregation operators
	Datatypes
	Task graph transformations
	Redundancy
	Optimising transformations for n-ary tasks
	Example of using transformations: computing

	Expressiveness of task graphs
	Pair and unpair tasks
	Task graph edges

	Related work
	Task graph transformations
	MapReduce
	SpatialViews

	Further work
	Summary

	Language and Compiler
	Language
	Datatype definitions
	Task graph definition
	Resource graph definition
	Initial mapping definition
	Cost function definition

	Compiler
	Task graph optimisation and assignment
	Compiler implementation
	Front end

	Further work
	Summary

	Examples
	Ray tracing
	Datatypes
	Initial task graph
	Execution

	Automatic road map generation
	Design
	Implementation
	Evaluation

	Summary

	Conclusion
	Further work

	Vehicle-oriented communications technologies
	Sensor networks
	Sensor-equipped devices
	Examples of sensor network applications
	Characteristics of sensor networks
	Node discovery
	Routing
	Data-centric routing protocols
	Hierarchical routing protocols
	Location-based routing protocols

	Tightly-coupled systems
	Dealing with concurrency
	Object-oriented programming
	Functional programming

	Architectural models
	Multi-processor machines
	Data-parallel architectures

	Modelling distributed computing
	Process algebras
	Milner's ccs
	Hoare's csp
	The -calculus

	Petri nets
	Dataflow models
	Kahn's dataflow networks
	Other languages

	Categorical datatypes
	Bird-Meertens Formalism
	Stages and Transformations paradigm

	Inter-process communication techniques
	Distributed shared virtual memory
	Shared objects

	Task partitioning
	Manual task partitioning
	Static automatic task partitioning
	Dynamic automatic task partitioning

	Example task graphs
	Sum
	Maximisation and minimisation
	Count
	Count of unique values

	Graphical derivations of ternary transformations
	Proofs of soundness of n-ary transformations
	Merge--Processing transformation
	Farm transformation
	Processing--Replication transformation
	Split--Merge transformation
	Merge--Split transformation
	Processing--Split transformation
	Split--Replication transformation
	Merge--Replication transformation

	Transformations involving pair and unpair tasks
	Transformations involving both pair and unpair
	Pair--Unpair transformation
	Unpair--Pair transformation
	Combine transformation

	Transformations involving pair tasks
	Pair--Processing transformation
	Pair--Merge transformation
	Pair--Replication transformation
	Pair--Split transformation

	Transformations involving unpair tasks
	Unpair--Processing transformation
	Unpair--Merge transformation
	Unpair--Replication transformation
	Unpair--Split transformation

	Redundancy
	Derivation of transformations involving pair and unpair

	References

