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Abstract—
In this paper we study the structural evolution of the AS

topology as inferred from two different datasets over a period of
seven years. We use a variety of topological metrics to analyze
the structural differences revealed in the AS topologies inferred
from the two different datasets. In particular, to focus on the
evolution of the relationship between the core and the periphery,
we make use of the weighted spectral distribution.

We find that the traceroute dataset has increasing difficulty
in sampling the periphery of the AS topology, largely due to
limitations inherent to active probing. Such a dataset has too
limited a view to properly observe topological changes at the
AS-level compared to a dataset largely based on BGP data. We
also highlight limitations in current measurements that require
a better sampling of particular topological properties of the
Internet. Our results indicate that the Internet is changing from
a core-centered, strongly customer-provider oriented, disassorta-
tive network, to a soft-hierarchical, peering-oriented, assortative
network.

I. I NTRODUCTION

The Internet continuously evolves: new networks are cre-
ated, old ones disappear, and existing ones grow or merge.
At the same time, business dynamics cause interconnections
between networks to change. Both these effects cause the
underlying topology of the Internet to be in a constant state
of flux. Studying the evolution of this topology is important
as it impacts a variety of factors relevant to network users and
application designers, such as scalability and performance. For
example, different network structures affect the propagation of
both legitimate (e.g., routing) and illegitimate (e.g., viruses)
information.

Most efforts to understand the structure of the Internet have
focused on the Autonomous System (AS) topology. There are
over 30,000 ASes, each representing a single administrative
authority with its own network and peering policies. Thus,
the AS topology is a graph reflecting the interconnections
between the networks that compose the Internet. Relationships
between ASes are typically classified as either customer-
provider, sibling-sibling or peer-peer. Note that as the Internet
has grown, many larger networks have come to be represented
as more than one AS (i.e., to advertise more than one AS
number). As a result, the AS topology may contain edges
that do not directly represent a business relationship between
two distinct networks. However, the AS topology serves as an

available, albeit approximate, measure of the complexity of
the Internet’s structure at the network level.

Characterising the structure of the AS topology has proved
difficult, but it is usually simplified to: a richly connectedcore,
including the fully meshed tier-1 Internet Service Providers
(ISPs), providing connectivity for the huge number of smaller
ISPs and customer networks at the periphery of the network.
These edge ISPs may connect to only a single upstream
provider, or may connect to many for resilience, performance
and cost reasons. Recent work has shown that the trend is
for networks to try to connect directly in the periphery of the
Internet, rather than to the core, bypassing the largest providers
[8]. However, no direct evidence of a corresponding large-scale
change in the topological structure had been shown.

In this paper we analyse the evolution of the AS topology
using two significant datasets, each generated by a different
measurement technique: the Skitter dataset using traceroute,
and the UCLA dataset using BGP. We are aware that there
are problems with biased measurements in both data sets.
However, it is still our aim to draw conclusions mindful of
these drawbacks. We focus on the overall structure of the
topology, rather than local features such as node degree, using
a recently introduced metric called theweighted spectral dis-
tribution (WSD) [7]. This allows us to distinguish topologies
with different mixing properties, i.e., how much the core can
be differentiated from the periphery of the topology. A clear
distinction between the core and the periphery is believed to
be one of the strongest features of the Internet topology [18],
[21].

This paper makes three contributions. First, we explain how
the WSD depicts the mixing between core and periphery in
the AS topology (Section III). Second, we find that the AS
topology has evolved from a highly hierarchical graph with
a clearly distinct core towards a “softer” hierarchy where
the core and non-core parts of the topology are less distinct
(Section IV). Third, we show how the two different measure-
ment techniques, traceroute and BGP, both provide limited but
complementary coverage of the AS topology: the traceroute
dataset has increasing difficulty sampling the periphery, while
the BGP dataset can improve its sampling of the transit part
of the Internet (Section V).



II. T HEORETICAL BACKGROUND

The weighted spectral distribution(WSD) is a graph theo-
retic metric based on the random walk cycles in a graph. A
random walk starts at a node,u say, with degreedu, and
transitions to the a connected node with probability1/du.
After several such steps, sayN , if the random walk returns
to the starting node, then this is called a random walk cycle
of lengthN . The WSD takes the struture of the graph to be
all such random walk cycles as expressed via the normalised
Laplacian (roughly speaking, how the graph appears over
short walks taken from every node). The normalised Laplacian
matrix of a graph,G, defined as:

L(G)(u, v) =















1, if u = v anddv 6= 0

− 1√
dudv

, if u andv are adjacent

0, otherwise

(1)

ExpressingL using the eigenvalue decomposition,

L(G) =
∑

i

λieie
T
i (2)

whereei andλi are the eigenvalues and eigenvectors ofL resp
1. The WSD is based on the following theorem from [7]:

Theorem 2.1:The eigenvalues,λi, of the nomalised Lapla-
cian matrix for an undirected network are related to the random
walk cycle probabilities as:

∑

i

(1 − λi)
N =

∑

C

1

du1
du2

. . . duN

(3)

where dui
is the degree of nodeu1 and u1 . . . un denotes

a path from nodeu1 of length n ending at noden, i.e.
an n-cycle. For a proof see [7]. Theorem 2.1 states that
the probability of taking a random walk of lengthN that
returns to the original node, is directly related to the weighted
eigenvalues ofL. This probability is the ’local structure’ of a
node, i.e. its local connecivity. Noting that theλi are unique2

to a graph it can be seen that the WSD gives a ’thumbprint’ for
the structure of a graph. As shown in [7] this can be used for
estimating the parameters of a topology generator that produce
graphs which are close (in the WSD sense) to the target graph
however, in this paper we apply the technique for tracking the
evolution of the AS level graph.

A. Examples

After the fairly theoretical previous section, we aim at giving
the reader a better intuition behind the WSD with a simple
example. Figure 1 shows a small network, calledG1, with 7
nodes and 8 links. As can be seen there are 2 cycles of length
3 in this network and one of length 4. We will takeN = 3 in
this example for convenience and without loss of generality.
The random walk probabilities are labeled in Figure 1. For
example, node 3 has a degree of 5 resulting in a probability

1These are in general different from the eigenpairs of the walk Laplacian
2This is not strictly true but the proportion of co-spectral graphs is thought

to be insignificant

Fig. 1. A simple example networkG1.
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Fig. 2. Eigenvectors of the simple example network.

of 1/5th for each edge. The total probability of taking a random
walk around each 3-cycle is:6×1/2×1/3×1/3 = 0.33, also
shown.3

Figure 2 shows a 3-D plot of the absolute value (for
clarity) of the eigenvectors of the normalized Laplacian. The
corresponding eigenvalues are shown in Table I.

As is well known, the eigenvectors of the normalised
Laplacian perform a partitioning of the nodes in a graph.
In this example nodes 4 and 5 are grouped into eigenvector
3, nodes 1,2 and 6 into eigenvectors 4 and 5, node 7 into
eigenvector 2 and node 3 into eigenvector 1 (Figure 2). Note
that for each partition the nodes in the partition are the same;
i.e. we could swap the labels between nodes 4 and 5 and the
network would not change (i.e. an isomorphism). Eigenvector
and eigenvalue 7,e7 andλ7 = 0, are special and partitions all
the nodes in the network with the most central nodes having

3The six comes from the fact that the random walk can start in one of three
nodes and go in one of two directions. It can be viewed in our case as really
just a nuisance scaling factor.



TABLE I
EIGENVALUES, WSD AND DOMINANT NODES OF EXAMPLE NETWORK.

e7 Eigenvector λ 1 − λ (1 − λ)3 Dominant
nodes

0.2500 1 1.8615 -0.8615 -0.6394 3,1,2,6
0.2500 2 1.3942 -0.3942 -0.0612 7,4,5
0.5590 3 1.3333 -0.3333 -0.0370 4,5
0.4330 4 1.0000 0.0000 0.0000 6,2
0.4330 5 1.0000 0.0000 0.0000 1,2,6
0.2500 6 0.4110 0.5890 0.2043 7,3
0.3536 7 0.0000 1.0000 1.0000 3,4,5,7

P

7

i=1
(1 − λi)3 0.4667

the highest coefficients (see Table I, column 1). In general the
number of eigenvalues that are zero is equal to the number of
components, arguably the most important structural property
in a graph. This graph contains 1 connected component and
so has a single zero eigenvalue (λ7). Note that the highest
possible weighting in the WSD is given at zero (i.e. 1 = 1-0);
the number of components in the graph.

Note that the sum of the eigenvalues taken to the power
of N is indeed the same as the sum of the probabilities of
taking N random walk cycles in the graph. This is shown
in Table I, last row,

∑7

i=1
(1 − λi)

3 = 0.4667 which can be
easily verified by adding the cycle probabilities from Figure 2
(0.3333 + 0.1333 = 0.467). What is interesting is how this
sum is constructed. In Table I the main contributions to the
sum are from eigenvalues 1,2,3 and 6 (we ignore eigenvalue
7 as it merely reflects that the graph is connected) which are
dominated by the nodes which form the cycles; 3, 4, 5 and 7.

However, this does not mean that the information provided
by the WSD is confined toN -cycles in the graph. For example
in Figure 4 we take the edge linking nodes 1 and 3 and rewire
it so that 1 and 6 are now connected. Note that while the right
cycle is still in place its probabilities have now changed, as
the degree of node 3 is now 4. The corresponding eigenvalues
have also changed as seen in Figure 3.4

In conclusion, the WSD can roughly be seen as an amal-
gamation oflocal views (i.e. walks of lengthN ) taken from
all the nodes. As(1 − λi) ≤ 1 ∀i, (1 − λi)

N will suppress
the smaller eigenvalues more and more asN increases5.
We consider 3 and 4 to be suitable values ofN for the
current application:N = 3 is related to the well-known and
understood clustering coefficient; andN = 4 as a 4-cycle
represents two routes (i.e., minimal redundancy) between two
nodes. For other applications, other values ofN may be of
interest. Also note that in section II we propose using the
distributionof the eigenvalues for large networks; unfortunatly
it is not instructive to talk about a distribution for a small
number of eigenvalues (7 in this example).

4Note that if we had used the adjacency matrix instead of the normalised
Laplacian the re-wiring would have no effect on the sum of theeigenvalues.

5This is closely related to the settling times in Markov chains which are
often expressed in terms of the largest non-trivial eigenvalue. It differs in that
the Walk Laplacian and not the normalised Laplacian is used.

Fig. 3. WSD of the example network.

Fig. 4. The second example network,G2.

III. M IXING PROPERTIES OF NETWORKS

The synthetic topology generator introduced in this section
is intended as a strawman tool6 that can be adjusted to show
the effect of different parts of a topology on the resulting
WSD. These topologies are generated using a simple model

6i.e. purely for demonstration purposes



Fig. 5. Synthetic topology.

based on the existence of a network core and a periphery, as
do most generative models of the Internet. Figure 5 shows a
small topology of500 nodes. AllM nodes within the graph
are first assigned locations using a uniform distribution. Nodes
within a circle of diameterD are then defined as thecoreand
nodes outside a circle of diameterD×(1−m) as the periphery,
wherem ≤ 1 is a factor called themixing factor. Links are
then assigned between the core nodes using a Waxman model:

P (u → v) = αcore exp
−dβcore

D (4)

where αcore and βcore are the Waxman coefficients for the
core, andd is the distance between two nodesu and v.
Subsequently, links are also assigned in the periphery7 using
a Waxman model but one with different coefficients,αper and
βper. After this process, isolated nodes are connected to their
nearest neighbour.8 Figure 6 shows the WSD (usingN = 4)
for a topology generated withM = 2000 nodes,D = 0.25,
αcore = 0.08, βcore = 0.08, αper = 0.06, βper = 0.7, and
m = 0.95 (i.e., 5% mixing), resulting in a small (relatively)
meshed core with a less well connected periphery. There are
several things to note in Figure 6. Ignoring the asymmetrical
part of the curve, which is caused by a small number of
disconnected components, the peak of the weighted spectrum
of the periphery alone lies atλ = 0.7 while that for the core
lies at0.5. The spectrum for the overall network hastwo peaks
at these points. This is a direct consequence of the spectrum
of a graph being the union of the spectra of its disconnected
subgraphs [3]. In terms of the WSD, the union of spectra is
equivalent to a weighted average of the WSD. That is, for a
graphG+H composed of two disconnected subgraphsG and

7Note that nodes lying betweenD andD × (1 − m) are members of the
core and the periphery and will be connected twice.

8Note that there are likely to be some disconnected components in the
resulting graphs, leading to asymmetrical spectra, but this does not affect the
main results.
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Fig. 6. Synthetic topology spectra.

H :

ω(G + H, N) = |G + H |
(

ω(G, N)

|G| +
ω(H, N)

|H |

)

(5)

where|.| denotes volume (number of vertices). Although there
is 5% mixing between the core and peripheryω(G + H, N)
results in an close estimate of the network WSD (see Figure 6,
denotedΣ||E(1 − λi)

4||). As m → 0 (i.e., the core and pe-
riphery become less and less connected) this estimate becomes
more accurate and is exact atm = 0.

Figure 7 shows the effect of increasing the mix between
the periphery and the core.9 As can be seen the core becomes
less distinct in the resulting spectrum, and has practically
disappeared with40% mixing. By increasing the mix we are
effectively adding edges connecting the core and periphery,
which results in a spreading of the eigenvalues and thus a
spreading of the WSD, resulting in less-distinct peaks. In the
current context, the new edges in the mix are being added to
t nodes causing the eigenvalues to spread by at mostt places.
It should be noted that although this makes the core peak less
distinct this does not mean that the core is more difficult to
detect, rather that the core itself is now less distinct fromthe
periphery.

IV. EVOLUTION OF THE INTERNET

In this section we look at the evolution of the Internet
seen through the two datasets, over a period of more than 3
years. We rely on a number of topological metrics presented
in Section II. Section IV-A studies the evolution of the AS
topology seen in the Skitter dataset, and Section IV-B then
studies the evolution of the AS topology seen in the UCLA
dataset. We compare these views of the AS topology in
Section V, where we also discuss the likely evolution of the
”real” AS topology. We are aware of the problems associated
with traceroute sampling and we are also aware of the efforts

9Again the large peaks before0.2 represent isolated subgraphs and are
ignored.
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Fig. 7. Effect of a change inm on the spectrum of the overall network.

in DIMES project to remedy these issues10, however this data
is currently only available since January 2007 and hence not
long enough for a thorough comparison of Internet topology
evolution.

A. Skitter topology

The first dataset we study consists of7 years of traceroute
measurements, starting in January2001, collected by the
CAIDA Skitter project [12]. Traceroutes are initiated fromsev-
eral locations in the world toward a large range of destination
IP addresses. The IP addresses reported in the traceroutes are
mapped to AS numbers using RouteViews BGP data. We use
a monthly union of the set of all unambiguous links collected
on a daily basis by the project.11

Figure 8 presents the evolution over the7 years of a set of
topological metrics computed on the AS topology of Skitter.

The number of ASes seen by Skitter exhibits abrupt changes
during the first40 months. At the end of those40 months,
changes were made in the way probing was performed.12 The
large increases in the number of ASes, observed during the first
40 months, are due to new monitors being added to the system.
After each increase in the number of ASes a smooth decrease
follows, corresponding to a subset of the IP addresses of the
Skitter list that no longer respond to probes, e.g., because
a firewall starts blocking the probes. The variations in the
number of ASes seen by Skitter are not caused by changes in
the AS topology itself, but are artifacts of the probing. Such

10http://www.netdimes.org
11A link may be ambiguous for a variety of reasons, principallydue to

problems resolving an IP address to an AS number. The SkitterIP address
list includes some IP addresses which matched a prefix with two or more
origin ASes. This can happen for a number of reasons such as a provider
stripping the customer AS from the AS path. Since it is not known which AS
is the true origin, the dataset lists both ASes. We filter out such instances as
it is not possible to identify the authenticity of such links.

12These changes were subject to caveats and bugs affecting measurements,
and, thus, the resulting metrics, at month40. For more information refer to
http://www.caida.org/data/active/skitteraslinks dataset.xml/

artifacts should be reported and accounted for in topological
studies.

The number of AS edges and the average node degree
both follow the behavior of the number of ASes seen. We
only observe a large increase in the number of links during
the first few months, during which new monitors are added
resulting in new regions of the Internet being covered by
Skitter measurements. Given the difficulty of building a list
of destination IP addresses that will answer probes and cover
most of the ASes, especially at the edge [2], a new monitor
will typically discover new ASes close to its location.

The AS edges that Skitter no longer observes probably
still exist but can no longer be seen by Skitter due to its
shrinking probing scope. To be effective in observing topology
dynamics, traceroute data collection must update destination
lists constantly to give optimal AS coverage. This limitation
of Skitter is visible in the decreasing average node degree.We
would expect to see a net increase in the average node degree
as ASes tend to add rather than remove peerings, and the
results of the BGP data support this view. If the sample of the
AS topology of the Skitter measurements was not worsening,
we should see an increasing average node degree.

The lower three graphs of Figure 8 present the evolution
of the clustering coefficient, the assortativity coefficient,13 and
the weighted spectrum withN = 3, ω(G, 3) (related to the
topology’s clustering)14. We observe that changes were made
to the way Skitter probes the Internet around month40: the
metrics take an unusual value, very small for the clusteringand
very high for assortativity. The values of the clustering and the
assortativity coefficients fluctuate wildly over the7 years, as
if the sampling of the AS topology by Skitter at the AS-level
is not stable. Neither the clustering nor the assortativityseem
to decrease or increase over the7 years. The value ofω(G, 3)
shows a long-term increasing trend, similar to the decreasing
trend in the average node degree. Although related to the
clustering,ω(G, 3) gives different weights to different parts
of the topology. The subset of the topology that corresponds
to duplicated topological structures, e.g. different ASesat the
periphery that connect to the same set of upstream providers,
receives a smaller weight than the rest. The increasingω(G, 3)
is likely to be caused by the shrinking network sampled by
Skitter, that contains more 3-cycles on average.

Figure 9 presents four WSDs sampling the entire duration
of the Skitter dataset. Notice the eigenvalues at zero, indicating
the presence of several disconnected components. The WSD
in January2002 shows a single peak atλ = 0.4. As time
passes, a second peak appears aroundλ = 0.3. The sampling
from the Skitter data shows an Internet moving from a less
hierarchical to more hierarchical topology, i.e. the core becom-
ing more dominant. This contradicts current observations that

13Assortativity is a measure of the likelihood of connection of nodes of
similar degrees [13]. This is usually expressed by means of the assortativity
coefficientr: assortative networks haver > 0 (disassortative haver < 0 resp.)
and tend to have nodes that are connected to nodes with similar (dissimilar
resp.) degree.

14See [9] for a detailed explanation on the mathematical measures and
different datasets
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the AS topology is becoming less hierarchical, with increasing
numbers of ASes peering at public Internet Exchange Points
(IXPs) to bypass the core of the Internet.

To further investigate this unexpectedly dominant core seen
in the Skitter dataset, we introduce supporting evidence using
the k-core metric. A k-core is defined as the maximum
connected subgraph,H , of a graph,G, with the property
that dv ≥ k ∀v ∈ H . As pointed out by Alvarez-Hamelinet
al. [1] the k-core exposes the structure of a graph by pruning
nodes with successively higher degrees,k, and examining the
maximum remaining subgraph; note this is not the same as
simply pruning all nodes with degreek or less. Figure 10
shows the proportion of nodes in eachk-core as a function
of k. There are84 plots shown, but as can be seen there
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is little difference between each of them, demonstrating that
the proportion of nodes in each core is not changing over
time. The nature of the sampling performed by Skitter explains
this behavior: the Skitter data set is composed of traceroutes
rooted at a limited set of locations, so thek-core is expected
to be similar topeeling the layers from an onion[1]. From
a topology evolution point of view, this result shows that,
although the number of nodes being sampled by Skitter is
decreasing, the hierarchy of the Internet as observed by Skitter
is actually not changing. Skitter is not sampling the periphery
of the Internet and so cannot see evolutionary changes there.

We insist on the fact that the purpose of this paper is not
to blame the Skitter dataset for its limited coverage of the
AS topology, as it aims at sampling the router-level topology.



Datasets like Skitter that rely on active probing do provide
topological information not visible from BGP data, as will be
shown in Section V.

B. UCLA

We now examine the evolution of the AS topology using52
snapshots, one per month, from January2004 to April 2008.
This dataset, referred to in this paper as the UCLA dataset,
comes from the Internet topology collection15 maintained by
Oliviera et al. [15]. These topologies are updated daily using
data sources such as BGP routing tables and updates from
RouteViews, RIPE,16 Abilene17 and LookingGlass servers.
Each node and link is annotated with the times it was first
and last observed.

Figure 11 presents the evolution of the same set of topo-
logical metrics as Figure 8, over4 years of AS topologies in
the UCLA dataset.

The UCLA AS topologies display a completely different
evolution compared to the Skitter dataset, more consistentwith
expectations. As the three upper graphs of Figure 11 show, the
number of ASes, AS edges, and the average node degree are
all increasing, as expected in a growing Internet.

The increasing assortativity coefficient indicates that ASes
increasingly peer with ASes of similar degree. The preferential
attachment model seem to be less dominant over time. This
trend towards a less disassortative network is consistent with
more ASes bypassing the tier-1 providers through public
IXPs [8], hence connecting with nodes of similar degree.
Another explanation for the increasing assortativity is an
improvement in the visibility of non-core edges in BGP data.
We will see in Section V that the sampling of core and non-
core edges by UCLA and Skitter biases the observed AS
topology structure. Contrary to the case of Skitter,ω(G, 3) for
UCLA decreases over time. As a weighted clustering metric,
ω(G, 3) indicates that the transit part of the AS topology is
actually becoming relatively sparser over time compared tothe
periphery. Increasing local peering with small ASes in order to
reduce the traffic sent to providers decreases both the hierarchy
induced by strict customer-provider relationships, and inturn
decreases the number of 3-cycles on whichω(G, 3) is based.

If we look closely at Figure 12, we see a spectrum with a
large peak atλ = 0.3 in January2004, suggesting a strongly
hierarchical topology. As time passes, the WSD becomes
flatter with a peak atλ = 0.4, consistent with a mixed topology
where core and non-core are not so easily distinguished.

Figure 13 shows the proportion of nodes in eachk-core
as a function ofk. There are52 plots shown as a smooth
transition between the first and last plots, emphasized with
bold curves. The distribution ofk-cores moves to the right
over time, indicating that the proportion of nodes with higher
connectivity is increasing over time. This adds further weight
to the conclusion that the UCLA dataset shows a weakening
hierarchy in the Internet, with more peering connections

15http://irl.cs.ucla.edu/topology/
16http://www.ripe.net/db/irr.html
17http://abilene.internet2.edu/
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between nodes on average. Note that the UCLA data set was
not examined in [1].

V. RECONCILING THE DATASETS

The respective evolutions of the AS topology visible in the
Skitter and UCLA datasets differ, as seen from topological
metrics. Skitter shows an AS topology that is becoming
sparser and more hierarchical, while UCLA shows one that
is becoming denser and less hierarchical. Why do these two
datasets show such differences? The explanation lies in the
way Skitter and UCLA sample different parts of the AS
topology: Skitter sees a far smaller fraction of the complete AS
topology than UCLA, and even UCLA does not see the whole
AS topology [14]. A far larger number of vantage points than
those currently available are likely to be necessary in order to
reach almost complete visibility of the AS topology [16].

To check how similar the AS topologies of Skitter and
UCLA are, we computed the intersection and the difference
between the two datasets in terms of AS edges and ASes. We
used a two-year period from January2006 until December
2007. In Table II we show the number of AS edges and
ASes that Skitter and UCLA have in common during some
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of these monthly periods (labelled ”intersection”), as well as
the number of AS edges and ASes contributed to the total and
coming from one of the two datasets only (labelled ”Skitter-
only” or ”UCLA-only”). We observe a steady increase in
number of total ASes and AS edges seen by the union of
the two datasets. At the same time, the intersection between
the two datasets decreases. In late 2007, Skitter had visibility
of less than25% of the ASes and less than10% of the AS
edges seen by both datasets. As Skitter aims at sampling the
Internet at the router-level, we should not expect that it has a
wide coverage of the AS topology. Such a limited coverage is
however surprising, given the popularity of this dataset. Note
that Skitter sees a small fraction of all AS edges, which is not
seen by the UCLA dataset. This indicates that there is potential
in active topology discovery to complement BGP data.

From Table II, we may conclude that the Skitter dataset is
uninteresting. To the contrary, the relatively constant, albeit
decreasing, sampling of the Internet core by Skitter gives us
a clue about which part of the Internet is responsible for its
structural evolution.

In Table III we show the number of AS edges belonging
to the tier-118 mesh (labelled ”T1 mesh”) as well as other AS
edges where a tier-1 appears. More than30% of the AS edges
sampled by Skitter cross at least a tier-1 AS, against about
15% for UCLA. Both dataset see almost all AS edges from
the tier-1 mesh. Note that the decrease in the number of AS
edges in which a tier-1 appears in Skitter is partly related to

18We rely on the currently accepted list of12 tier-1 ASes that provide
transit-only service: AS174, AS209, AS701, AS1239, AS1668, AS2914,
AS3356, AS3549, AS3561, AS5511, AS6461, and AS7018.

IP to AS mapping issues for multi-origin ASes [8].

The evolution of the AS topology observed by the Skitter
and UCLA datasets is not inconsistent. Rather, the two datasets
sample differently, the AS topology, leading to different bias.
A large fraction of the AS topology sampled by Skitter
relates to the core, i.e., edges containing at least a tier-1AS.
With its wider coverage, UCLA observes a different evolution
of the AS topology, with a non-core part that grows more
than the core. The evolution seen from the UCLA dataset
seems more likely to reflect the evolution of the periphery
of the AS topology. The non-core part of the Internet is
growing and is becoming less and less hierarchical. We wish
to point out that, despite a common trend towards making a
union of datasets in our networking community, such simple
addition is not appropriate for the UCLA and Skitter datasets.
Each dataset has its own biases and measurement artifacts.
Combining them bindly will only add these biases together,
potentially leading to poorer quality data. More data is not
always better data. Further research is required in order to
devise a correct methodology that takes advantage of different
datasets obtained from different sampling processes.

The above observations suggests that the Internet, once
seen as a tree-like, disassortative network with strict power-
law properties [6], is moving towards an assortative and
highly inter-connected network. Tier-1 providers have always
been well connected, but the biggest shift is seen at the
Internet’s periphery where content providers and small ISPs
are aggressively adding peering links among themselves using
IXPs to avoid paying transit charges to tier-1 providers.
However, a different view of the Internet evolution can be



Autonomous Systems AS Edges
Time Total Intersection Skitter-only UCLA-only Total Intersection Skitter-only UCLA-only

Jan. 2006 25,301 32.6% 0% 67.4% 114,847 15.4% 5.3% 79.3%
Mar. 2006 26,007 31.6% 0% 68.4% 118,786 14.9% 4.4% 80.7%
May. 2006 26,694 30.5% 0% 69.5% 124,052 13.8% 4.6% 81.5%
Jul. 2006 27,396 29.5% 0% 70.5% 128,624 13.2% 3.7% 83.1%
Sep. 2006 28,108 28.7% 0% 71.3% 133,813 12.6% 3.4% 84.0%
Nov. 2006 28,885 27.9% 0% 72.1% 139,447 12.4% 3.4% 84.2%
Jan. 2007 29,444 27.2% 0% 72.8% 144,721 11.6% 3.1% 85.3%
Mar. 2007 30,236 26.5% 0% 73.5% 151,380 11.2% 3.0% 85.8%
May. 2007 30,978 25.6% 0% 74.4% 157,392 10.5% 2.7% 86.8%
Jul. 2007 31,668 25.9% 0% 86.1% 166,057 10.0% 3.8% 86.2%
Sep. 2007 32,326 24.5% 0% 75.5% 168,876 9.7% 2.5% 87.8%
Nov. 2007 33,001 23.9% 0% 76.1% 174,318 9.5% 2.2% 88.3%

TABLE II
STATISTICS ON AS AND AS EDGE COUNTS IN THE INTERSECTION OF BOTHSKITTER AND UCLA DATASETS, AND FOR EACH DATASET ALONE.

Skitter UCLA
Time Total T1 mesh Other T1 Total T1 mesh Other T1

Jan. 2006 23,805 66 7,498 108,720 64 19,149
Mar. 2006 22,917 66 7,289 113,555 64 19,674
May. 2006 22,888 64 7,504 118,331 64 20,143
Jul. 2006 21,740 65 7,192 123,842 64 20,580
Sep. 2006 21,400 65 6,974 129,228 64 21,059
Nov. 2006 22,034 66 7,159 134,636 65 21,581
Jan. 2007 21,345 65 6,898 140,216 65 22,531
Mar. 2007 21,366 65 6,774 147,000 65 23,194
May. 2007 20,738 65 6,694 153,156 65 23,769
Jul. 2007 22,972 65 6,838 159,792 65 24,310
Sep. 2007 20,570 64 6,510 164,770 65 24,888
Nov. 2007 20,466 64 6,430 170,431 65 25,480

TABLE III
COVERAGE OF TIER-1 EDGES BYSKITTER AND UCLA.

obtained using the WSD, shown in Figures 9 and 12. As
seen in Section III, one possible cause for this behavior is
increased mixing of the core and periphery of the network,
i.e. the strict tiered hierarchy is becoming less importantin
the network structure. This is given further weight by studies
such as [14] which show that the level of peering between
ASes in the Internet has greatly increased during this period,
leading to a less core-dominated network. Given that a fraction
of AS edges are not visible from current datasets and that
visibility is biased towards a better visibility of customer-
provider peerings, we believe that our observations actually
underestimate the changes in the structure of the AS topology.
Using a hierarchical and preferential attachment-based model
to generate synthetic AS topologies is likely to be less and
less justified than ever. The AS topology structure is becoming
more complex than in the past.

VI. RELATED WORK

In this section we outline related work, classified into three
groups: evolution of the AS topology, spectral graph analysis
of the AS topology, and analysis of the clustering features of
the AS topology.

Dhamdhere and Dovrolis [4] rely on available estimation
methods for type of relationships between ASes in order to
analyze the evolution of the Internet ecosystem in last decade.
They believe the available historic datasets from RouteViews
and RIPE are not sufficient to infer the evolution of peering
links, and so they restrict their focus to customer-provider

links. They find that after an exponential increase phase until
2001, the Internet now grows linearly in terms of both ASes
and inter-AS links. The growth is mostly due to enterprise
networks and content/access providers at the periphery of the
Internet. The average path length remains almost constant
mostly due to the increasing multihoming degree of transit and
content/access providers. Relying on geo-location tools,they
find that the AS ecosystem is now larger and more dynamic
in Europe than in North America. In our paper we have relied
on two datasets, covering a more extensive set of links and
nodes, in order to focus on structural growth and evolution of
the Internet. We use a large set of graph-theoretic measures
in order the focus on the behavior of the topology. Due to
inherent issues involved with inference of node locations and
types of relationships [11], we treat the AS topology as an
undirected graph.

Shyu et al. [17] study the evolution of a set of topolog-
ical metrics computed on a set of observed AS topologies.
The authors rely on monthly snapshots extracted from BGP
RouteViews from 1999 to 2006. The topological metrics
they study are the average degree, average path length, node
degree, expansion, resilience, distortion, link value, and the
Normalized Laplacian Spectrum. They find that the metrics
are not stable over time, except for the Normalized Laplacian
Spectrum.

Oliveira et al. [15] look at the evolution of the AS topology
as observed from BGP data. Note that they do not study
the evolution of the AS topology structure, only the nodes



and links. They propose a model aimed at distinguishing real
changes in ASes and AS edges from BGP routing observation
artifacts. We use the extended dataset made available by the
authors, in addition to 7 years of AS topology data from an
alternative measurement method.

Vukadinovic et al. [19] were the first to investigate the
properties of the AS topology based on the normalized Lapla-
cian spectrum. They observe that the normalized Laplacian
spectrum can be used to distinguish between synthetic topolo-
gies generated by Inet [20] and AS topologies extracted from
BGP data. This results indicates that the normalized Laplacian
spectrum reveals important structural properties of the AS
topology. However, as noted by Haddadiet al. [10], the
spectrumalonecannot be used directly to compare graphs as it
contains too detailed information about the network structure.
We expand on this work by demonstrating how appropriate
weighting of the eigenvalues can reveal the structural differ-
ences between two topologies.

VII. C ONCLUSIONS

In this paper we presented a study of two views of the
evolving Internet AS topology, one inferred from traceroute
data and the other from BGP data. We exposed discrepancies
between these two inferred AS topologies and their evolu-
tion. We reconciled these discrepancies by showing that the
topologies are not directly comparable asneithermethod sees
the entire Internet topology: BGP data misses some peerings
in the core which traceroute observes; traceroute misses many
more peerings than BGP in the periphery. However, traceroute
and BGP data do provide complementary views of the AS
topology.

To remedy the problems of decreasing coverage by the
Skitter traceroute infrastructure and the lack of visibility of the
core by UCLA BGP data, significant improvements in fidelity
could be achieved with changes to the existing measurement
systems. The quality of data then collected by the traceroute
infrastructure would benefit from greater AS coverage, while
the BGP data would benefit from data showing intra-core
connectivity it misses today. We acknowledge the challenges
inherent in these improvements but emphasize that, without
such changes, the study of the AS topology will forever
be subject to the vagaries of imperfect and flawed data.
Availability of traceroute data from a larger number of vantage
points, as attempted by the Dimes project, will help remedy
these issues. However, even such measurements have to be
done on a very large scale, and ideally performed both from
the core of the network (like Skitter), as well as the edge (like
Dimes). Efforts in better assessment of the biases inherentto
the measurements are also necessary.

To provide an objective analysis of the changing structure of
the AS topology, we used a wide range of topological metrics,
including the newly introduced weighted spectral distribution.
We find that the core of the Internet is becoming less dominant
over time, and that edges at the periphery are growing instead.
The practice of content providers and content distribution
networks seeking connectivity to greater numbers of ISPs at

the periphery, and the rise of multi-homing, both support these
observations. Further, we observe a move away from a pref-
erential attachment, tree-like disassortative network, toward a
network that is flatter, highly-interconnected, and assortative.
These findings are also indicative of the need for more detailed
and timely measurements of the Internet topology, in order to
build up on works such as [5], focusing on the economics
of the structural changes such as institutional mergers, dual
homing and increasing peering relationships.
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