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Abstract— available, albeit approximate, measure of the complexfty o

In this paper we study the structural evolution of the AS the Internet’s structure at the network level.
topology as inferred from two different datasets over a perdd of

seven years. We use a variety of topological metrics to analg Characterising the structure of the AS topology has proved
]Ehe St{ﬁcuilral ‘;i,ffffere”(t:e; ;eve?le(: in th? Als totpO'ngieS if*”;d difficult, but it is usually simplified to: a richly connectedre,
rom the two different datasets. In particular, to focus on the . - : - :
evolution of the relationship betweenpthe core and the peripery, including th.e .fu”y meshe_d- tier-1 Internet Service Provide
we make use of the weighted spectral distribution. (ISPs), providing connectivity for the huge number of sexall
We find that the traceroute dataset has increasing difficulty |SPS and customer networks at the periphery of the network.
in sampling the periphery of the AS topology, largely due to These edge ISPs may connect to only a single upstream
limitations inherent to active probing. Such a dataset has do provider, or may connect to many for resilience, perforneanc

limited a view to properly observe topological changes at th :
AS-level compared to a dataset largely based on BGP data. We and cost reasons. Recent work has shown that the trend is

also highlight limitations in current measurements that require  [OF N€tworks to try to connect directly ir_1 the periphery oéth
a better sampling of particular topological properties of the Internet, rather than to the core, bypassing the largestgets
Internet. Our results indicate that the Internet is changing from  [8]. However, no direct evidence of a corresponding larcgles

a core-centered, strongly customer-provider oriented, diassorta- change in the topological structure had been shown.
tive network, to a soft-hierarchical, peering-oriented, &sortative

network. In this paper we analyse the evolution of the AS topology
using two significant datasets, each generated by a differen

I. INTRODUCTION measurement technique: the Skitter dataset using traegrou
. and the UCLA dataset using BGP. We are aware that there
The Internet cgntlnuously eVON?SE new networks are Clre problems with biased measurements in both data sets.

ated, old ones dlsappgar, and existing ones grow or MerB@wever, it is still our aim to draw conclusions mindful of
At the same time, business dynamics cause interconnectighs . yrawbacks. We focus on the overall structure of the

between networks to change. Both these effects cause fg'ﬁology, rather than local features such as node degrig us

underlying topology of the Internet to be in a constant StaEterecently introduced metric called theeighted spectral dis-

of fllu.x. Studying the evolution of this topology is IMportant iy, tion (WSD) [7]. This allows us to distinguish topologies
as it impacts a variety of factors relevant to network usecs aith different mixing properties, i.e., how much the coreca

applicalltior;?fesigners, Suih as scalabili?r/ andhperformaﬁm;r be differentiated from the periphery of the topology. A ctlea
example, different network structures affect the propagail ;g tion between the core and the periphery is belieged t

%c;(t)r:nl]eagiiignmate (e.g., routing) and illegitimate (e.g.ruges) be one of the strongest features of the Internet topologj; [18

Most efforts to understand the structure of the Interneeha\[/21]
focused on the Autonomous System (AS) topology. There areThis paper makes three contributions. First, we explain how
over 30,000 ASes, each representing a single adminigratiie WSD depicts the mixing between core and periphery in
authority with its own network and peering policies. Thughe AS topology (Section Ill). Second, we find that the AS
the AS topology is a graph reflecting the interconnectioigpology has evolved from a highly hierarchical graph with
between the networks that compose the Internet. Relaijpnisha clearly distinct core towards a “softer” hierarchy where
between ASes are typically classified as either customdéne core and non-core parts of the topology are less distinct
provider, sibling-sibling or peer-peer. Note that as therdnet (Section 1V). Third, we show how the two different measure-
has grown, many larger networks have come to be represemseht techniques, traceroute and BGP, both provide limited b
as more than one AS (i.e., to advertise more than one ABmplementary coverage of the AS topology: the traceroute
number). As a result, the AS topology may contain edgestaset has increasing difficulty sampling the periphehjlav
that do not directly represent a business relationship &etw the BGP dataset can improve its sampling of the transit part
two distinct networks. However, the AS topology serves as aif the Internet (Section V).



Il. THEORETICAL BACKGROUND

The weighted spectral distributioWSD) is a graph theo-
retic metric based on the random walk cycles in a graph. ,
random walk starts at a node, say, with degreel,, and
transitions to the a connected node with probability,,.
After several such steps, say, if the random walk returns
to the starting node, then this is called a random walk cycl
of length N. The WSD takes the struture of the graph to be
all such random walk cycles as expressed via the normalis
Laplacian (roughly speaking, how the graph appears ow
short walks taken from every node). The normalised Lapiacis
matrix of a graph(, defined as:

1, if u=wvandd, #0
1 . .
L(G)(u,v) = ¢ — — if w andv are adjacent (1)
0, otherwise Fig. 1. A simple example network; .

ExpressingL using the eigenvalue decomposition,

wheree; and); are the eigenvalues and eigenvectoré oésp
1. The WSD is based on the following theorem from [7]:

Theorem 2.1:The eigenvalues);, of the nomalised Lapla-
cian matrix for an undirected network are related to the oamd
walk cycle probabilities as:

1
T=2)N=y — 3)
where d,,, is the degree of node; and u; ...u, denotes
a path from nodeu; of length n ending at noden, i.e.

an n-cycle. For a proof see [7]. Theorem 2.1 states the ! Eigenvector
the probability of taking a random walk of lengtN that
returns to the original node, is directly related to the \agigl Fig. 2. Eigenvectors of the simple example network.

eigenvalues of.. This probability is the ’local structure’ of a

node, i.e. its local connecivity. Noting that the are unique

to a graph it can be seen that the WSD gives a 'thumbprint’ fef 1/5t" for each edge. The total probability of taking a random

the structure of a graph. As shown in [7] this can be used falk around each 3-cycle i§:x 1/2 x 1/3 x 1/3 = 0.33, also

estimating the parameters of a topology generator thatyzed shown3

graphs which are close (in the WSD sense) to the target grapfrigure 2 shows a 3-D plot of the absolute value (for

however, in this paper we apply the technique for trackirg tftlarity) of the eigenvectors of the normalized LaplaciaheT

evolution of the AS level graph. corresponding eigenvalues are shown in Table .

As is well known, the eigenvectors of the normalised

A. Examples Laplacian perform a partitioning of the nodes in a graph.
After the fairly theoretical previous section, we aim atigly In this example nodes 4 and 5 are grouped into eigenvector

the reader a better intuition behind the WSD with a simpl@ nodes 1,2 and 6 into eigenvectors 4 and 5, node 7 into

example. Figure 1 shows a small network, caliéd with 7 eigenvector 2 and node 3 into eigenvector 1 (Figure 2). Note

nodes and 8 links. As can be seen there are 2 cycles of lengi#it for each partition the nodes in the partition are theesam

3 in this network and one of length 4. We will také = 3 in  j.e. we could swap the labels between nodes 4 and 5 and the

this example for convenience and without loss of generalifyetwork would not change (i.e. an isomorphism). Eigenvecto

The random walk probabilities are labeled in Figure 1. Feind eigenvalue 7%; and\; = 0, are special and partitions all

example, node 3 has a degree of 5 resulting in a probabilie nodes in the network with the most central nodes having

1These are in general different from the eigenpairs of theék waplacian 3The six comes from the fact that the random walk can start enafrthree
2This is not strictly true but the proportion of co-spectreghs is thought nodes and go in one of two directions. It can be viewed in oge @s really
to be insignificant just a nuisance scaling factor.



TABLE |
EIGENVALUES, WSDAND DOMINANT N

ODES OF EXAMPLE NETWORK

: _ _yy3 | Dominant
er Eigenvector A 1-X | (1=X) nodes
0.2500 1 1.8615 | -0.8615| -0.6394 | 3,1,2,6
0.2500 2 1.3942 | -0.3942 | -0.0612 | 7,45
0.5590 3 1.3333 | -0.3333 | -0.0370 45
0.4330 4 1.0000 | 0.0000 | 0.0000 6,2
0.4330 5 1.0000 | 0.0000 | 0.0000 1,2,6
0.2500 6 0.4110 | 0.5890 | 0.2043 7,3
0.3536 7 0.0000 | 1.0000 | 1.0000 | 3,457
1= N)3 0.4667
the highest coefficients (see Table I, column 1). In genémal t . o R
number of eigenvalues that are zero is equal to the number Th i @ G
components, arguably the most important structural ptgper P I S VO T WO A A B |
in a graph. This graph contains 1 connected component a S oo
so has a single zero eigenvalukg;). Note that the highest ner 1
possible weighting in the WSD is given at zero (i.e. 1 = 1-0) 4t BRI R 1
the number of components in the graph. ST @ L |
Note that the sum of the eigenvalues taken to the powt 7 ol i o * o o ]
of N is indeed the same as the sum of the probabilities ¢ A ’.. :
taking N random walk cycles in the graph. This is shown e * 1
in Table 1, last row,>"7_ (1 — );)3 = 0.4667 which can be 74 S NS SO OO SN S B S
easily verified by adding the cycle probabilities from Fig@ el i oo
(0.3333 4+ 0.1333 = 0.467). What is interesting is how this i S IR |
sum is constructed. In Table | the main contributions to thi T 02 04 0s 08 1 12 12 16 18 2
A

sum are from eigenvalues 1,2,3 and 6 (we ignore eigenvall

7 as it merely reflects that the graph is connected) which are

dominated by the nodes which form the cycles; 3, 4, 5 and 7.

However, this does not mean that the information provide-
by the WSD is confined téV-cycles in the graph. For example
in Figure 4 we take the edge linking nodes 1 and 3 and rewil
it so that 1 and 6 are now connected. Note that while the rigl
cycle is still in place its probabilities have now changesl, a
the degree of node 3 is now 4. The corresponding eigenvalu
have also changed as seen in Figuré 3.

In conclusion, the WSD can roughly be seen as an ame
gamation oflocal views (i.e. walks of lengthV) taken from
all the nodes. Ag1 — \;) < 1 Vi, (1 — X))V will suppress
the smaller eigenvalues more and more /dsincreases.
We consider 3 and 4 to be suitable values /éf for the
current applicationN = 3 is related to the well-known and
understood clustering coefficient; and = 4 as a 4-cycle
represents two routes (i.e., minimal redundancy) between t
nodes. For other applications, other valuesNofmay be of
interest. Also note that in section Il we propose using the
distribution of the eigenvalues for large networks; unfortunatly
it is not instructive to talk about a distribution for a small
number of eigenvalues (7 in this example).

IS

“Note that if we had used the adjacency matrix instead of thenalised

Laplacian the re-wiring would have no effect on the sum ofeéfgenvalues.

5This is closely related to the settling times in Markov clsaimhich are

often expressed in terms of the largest non-trivial eigervalt differs in that
the Walk Laplacian and not the normalised Laplacian is used.

w

Fig. 4. The second example network;.

IIl. MIXING PROPERTIES OF NETWORKS

The synthetic topology generator introduced in this sectio
intended as a strawman tdbthat can be adjusted to show

the effect of different parts of a topology on the resulting

SD. These topologies are generated using a simple model

6j.e. purely for demonstration purposes
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Fig. 5. Synthetic topology. Fig. 6. Synthetic topology spectra.

based on the existence of a network core and a periphery,%'s
do most generative models of the Internet. Figure 5 shows a
small topology of500 nodes. All M nodes within the graph
are first assigned locations using a uniform distributioad&s
within a circle of diametetD are then defined as tlw®re and
nodes out3|de.a circle of diametBi< (1._.m) as the penphery, results in an close estimate of the network WSD (see Figure 6,
wherem < 1 is a factor called thenixing factor Links are denoteds|| E(1 — A)4[)). As m — 0 (i.e., the core and pe-
then assigned between the core nodes using a Waxman mod%ﬂ:o ¢ ) m . . P
riphiery become less and less connected) this estimate lescom
—dBeore more accurate and is exactat= 0.
P(u—v) = acoreexp P (4 Figure 7 shows the effect of increasing the mix between
the periphery and the cofeAs can be seen the core becomes
where acore and fB.ore are the Waxman coefficients for theless distinct in the resulting spectrum, and has praggicall
core, andd is the distance between two nodesand v. disappeared with0% mixing. By increasing the mix we are
Subsequently, links are also assigned in the periphesing effectively adding edges connecting the core and periphery
a Waxman model but one with different coefficientg.. and which results in a spreading of the eigenvalues and thus a
Bper. After this process, isolated nodes are connected to thepreading of the WSD, resulting in less-distinct peakshin t
nearest neighbodrFigure 6 shows the WSD (usiny = 4) current context, the new edges in the mix are being added to
for a topology generated with/ = 2000 nodes,D = 0.25, ¢ nodes causing the eigenvalues to spread by at muisices.
tcore = 0.08, Beore = 0.08, aper = 0.06, Bper = 0.7, and It should be noted that although this makes the core peak less
m = 0.95 (i.e., 5% mixing), resulting in a small (relatively)distinct this does not mean that the core is more difficult to
meshed core with a less well connected periphery. There @egtect, rather that the core itself is now less distinct fitbm
several things to note in Figure 6. Ignoring the asymmaditricperiphery.
part of the curve, which is caused by a small number of
disconnected components, the peak of the weighted spectrum IV. EVOLUTION OF THE INTERNET
of the periphery alone lies at = 0.7 while that for the core  In this section we look at the evolution of the Internet
lies at0.5. The spectrum for the overall network ha peaks seen through the two datasets, over a period of more than 3
at these points. This is a direct consequence of the spectrygars. We rely on a number of topological metrics presented
of a graph being the union of the spectra of its disconnecti&r Section Il. Section IV-A studies the evolution of the AS
subgraphs [3]. In terms of the WSD, the union of spectra ispology seen in the Skitter dataset, and Section IV-B then
equivalent to a weighted average of the WSD. That is, forstudies the evolution of the AS topology seen in the UCLA
graphG + H composed of two disconnected subgraphand dataset. We compare these views of the AS topology in
Section V, where we also discuss the likely evolution of the
"Note that nodes lying betweeP and D x (1 — m) are members of the ”rgal" AS topology. We are aware of the problems associated
coreand the periphery and will be connected twice. with traceroute sampling and we are also aware of the efforts

8Note that there are likely to be some disconnected compsnienthe
resulting graphs, leading to asymmetrical spectra, bstdbies not affect the ~ 9Again the large peaks befor@2 represent isolated subgraphs and are
main results. ignored.

w(G+ H,N) = |G+ H| (“(GJ\U N w(H,N)) )

G [H|

where|.| denotes volume (number of vertices). Although there
is 5% mixing between the core and periphesyG + H, N)



001 artifacts should be reported and accounted for in topoldgic

-~ ~ 1% mixing studies.
0008 " 5% mixing | ] The number of AS edges and the average node degree
0008 X +11#120% mixing :"‘ 1 both follow the behavior of the number of ASes seen. We
0007 D —e—40% mixing A\ ] only observe a large increase in the number of links during

the first few months, during which new monitors are added
resulting in new regions of the Internet being covered by
Skitter measurements. Given the difficulty of building & lis
of destination IP addresses that will answer probes andrcove
most of the ASes, especially at the edge [2], a new monitor
will typically discover new ASes close to its location.

The AS edges that Skitter no longer observes probably
still exist but can no longer be seen by Skitter due to its
shrinking probing scope. To be effective in observing toggl
dynamics, traceroute data collection must update dektmat
lists constantly to give optimal AS coverage. This limibati

Fig. 7. Effect of a change im on the spectrum of the overall network. of Skitter is visible in the decreasing average node dedykee.
would expect to see a net increase in the average node degree
as ASes tend to add rather than remove peerings, and the

in DIMES project to remedy these issti&showever this data results of the BGP data support this view. If the sample of the
is currently only available since January 2007 and hence 8§ topology of the Skitter measurements was not worsening,
long enough for a thorough comparison of Internet topologye should see an increasing average node degree.
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> ¢

evolution. The lower three graphs of Figure 8 present the evolution
of the clustering coefficient, the assortativity coeffi¢j€hand
A. Skitter topology the weighted spectrum wittv = 3, w(G, 3) (related to the

topology’s clustering). We observe that changes were made

The first dataset we study consistsfears of traceroute !
to the way Skitter probes the Internet around mo#ih the

measurements, starting in Janua§01, collected by the

CAIDA Skitter project [12]. Traceroutes are initiated fraev- metrics take an “”“S‘.“?‘ value, very small for the clqsteamny
eral locations in the world toward a large range of destimati Ve"Y Nigh for assortativity. The values of the clusteringl ée

IP addresses. The IP addresses reported in the traceroate&gSOrtativity coefficients fluctuate wildly over tfieyears, as

mapped to AS numbers using RouteViews BGP data. We Jkdhe sampling of the AS topology by Skitter at the AS-level

a monthly union of the set of all unambiguous links collected not stable. Neither the clustering nor the assortatségm

on a daily basis by the projett. to decrease or increase over thgears. The value ab(G, 3)

Figure 8 presents the evolution over thgears of a set of shows a long-term increasing trend, similar to the decngasi

topological metrics computed on the AS topology of SkitterFrend in the average node degree. Although related to the

) - clustering,w(G, 3) gives different weights to different parts
The numper of ASes seen by Skitter exhibits abrupt Changoersthe topology. The subset of the topology that corresponds
during the first40 months. At the end of thos¢0 months,

changes were made in the way probing was perfortidthe to duplicated topological structures, e.g. different AgGeghe

large increases in the number of ASes, observed during gte fﬁerlphery that connect to the same set of upstream providers

40 months, are due to new monitors being added to the systerf”ancewes a smaller weight than the rest. The increas{dg 3)

After each increase in the number of ASes a smooth decre'sitla'kely to be cagsed by the shrinking network sampled by
% itter, that contains more 3-cycles on average.

follows, corresponding to a subset of the IP addresses of Ff:igure 9 presents four WSDs sampling the entire duration

Skitter list that no longer respond to probes, e.g., becau . . . L
a firewall starts blocking the probes. The variations in t&!ethe Skitter dataset. Notice the eigenvalues at zerogathig

) e presence of several disconnected components. The WSD
number of ASes seen by Skitter are not caused by changes | h indl K .
the AS topology itself, but are artifacts of the probing Suc. anuary2002 shows a single peak at = 0.4. As “”.‘e

' ' passes, a second peak appears arouad).3. The sampling

. from the Skitter data shows an Internet moving from a less
LOhttp:/Avww.netdimes.org
11 fink may be ambiguous for a variety of reasons, principallye to hierarchical to more hierarchical topology, i.e. the cozedm-

problems resolving an IP address to an AS number. The Skiterddress ing more dominant. This contradicts current observatibas t

list includes some IP addresses which matched a prefix with dwmore

origin ASes. This can happen for a number of reasons such aeviler 13Assortativity is a measure of the likelihood of connectiohnodes of

stripping the customer AS from the AS path. Since it is notvkmavhich AS  similar degrees [13]. This is usually expressed by meanseéssortativity

is the true origin, the dataset lists both ASes. We filter agchsinstances as coefficientr: assortative networks have> 0 (disassortative have < 0 resp.)

it is not possible to identify the authenticity of such links and tend to have nodes that are connected to nodes with sif@issimilar
12These changes were subject to caveats and bugs affectirgureseents, resp.) degree.

and, thus, the resulting metrics, at mowi. For more information refer to  14See [9] for a detailed explanation on the mathematical measand

http://www.caida.org/data/active/skitterslinks dataset.xml/ different datasets
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the AS topology is becoming less hierarchical, with inciiegs is little difference between each of them, demonstratiray th
numbers of ASes peering at public Internet Exchange Poifi® proportion of nodes in each core is not changing over
(IXPs) to bypass the core of the Internet. time. The nature of the sampling performed by Skitter exyglai
To further investigate this unexpectedly dominant corensethis behavior: the Skitter data set is composed of tracesout
in the Skitter dataset, we introduce supporting evidenaggus rooted at a limited set of locations, so thecore is expected
the k-core metric. A k-core is defined as the maximumto be similar topeeling the layers from an oniofi]. From
connected subgraphil, of a graph,G, with the property a topology evolution point of view, this result shows that,
thatd, > k Vv € H. As pointed out by Alvarez-Hameliat although the number of nodes being sampled by Skitter is
al. [1] the k-core exposes the structure of a graph by prunirdgcreasing, the hierarchy of the Internet as observed lije8ki
nodes with successively higher degrelgsand examining the is actually not changing. Skitter is not sampling the pegigh
maximum remaining subgraph; note this is not the same @isthe Internet and so cannot see evolutionary changes.there
simply pruning all nodes with degrek or less. Figure 10 We insist on the fact that the purpose of this paper is not
shows the proportion of nodes in eakkcore as a function to blame the Skitter dataset for its limited coverage of the
of k. There are84 plots shown, but as can be seen ther&S topology, as it aims at sampling the router-level topglog



Datasets like Skitter that rely on active probing do provid
topological information not visible from BGP data, as wi# b
shown in Section V.

B. UCLA

We now examine the evolution of the AS topology usiig 0.04r -
snapshots, one per month, from Janu2094 to April 2008. ?g S5 = February 2005
This dataset, referred to in this paper as the UCLA datas & o003 B
comes from the Internet topology collecttSrmaintained by < 3
Oliviera et al. [15]. These topologies are updated daily usin 0.02-
data sources such as BGP routing tables and updates fr

0.06

January 2004
\¥

0.05-

RouteViews, RIPES Abilene!” and LookingGlass servers. ool ,:}' April 2008
Each node and link is annotated with the times it was fir: I
and last observed. o ‘ ‘ ‘ ‘ ‘ ‘ ‘
Figure 11 presents the evolution of the same set of top R VA
logical metrics as Figure 8, ovdryears of AS topologies in Fig. 12. Weighted Spectral Distribution, UCLA AS topology.

the UCLA dataset.

The UCLA AS topologies display a completely different 0s
evolution compared to the Skitter dataset, more consistitht
expectations. As the three upper graphs of Figure 11 shaw, 1
number of ASes, AS edges, and the average node degree
all increasing, as expected in a growing Internet. sl

The increasing assortativity coefficient indicates thaeAS
increasingly peer with ASes of similar degree. The preféaén
attachment model seem to be less dominant over time. Tl
trend towards a less disassortative network is consistéght w
more ASes bypassing the tier-1 providers through publ
IXPs [8], hence connecting with nodes of similar degree
Another explanation for the increasing assortativity is a
improvement in the visibility of non-core edges in BGP date

January 2004

Ve

=k)

0.25

(k—core:

k-core

f
o

&~ April 2008

We will see in Section V that the sampling of core and nor 005

core edges by UCLA and Skitter biases the observed 2 L 3 .
topology structure. Contrary to the case of Skitte((7, 3) for Lot e R
UCLA decreases over time. As a weighted clustering metri Fig. 13. k-core proportions, UCLA AS topology.

w(G, 3) indicates that the transit part of the AS topology i
actually becoming relatively sparser over time compareti¢o
periphery. Increasing local peering with small ASes in otde
reduce the traffic sent to providers decreases both thertligra V. RECONCILING THE DATASETS

induced by strict customer-provider relationships, anélim e respective evolutions of the AS topology visible in the
decreases the number of 3-cycles on whigk7, 3) is based. gkitter and UCLA datasets differ, as seen from topological
If we look closely at Figure 12, we see a spectrum with getrics, Skitter shows an AS topology that is becoming
large peak ath = 0.3 in January2004, suggesting a strongly sparser and more hierarchical, while UCLA shows one that
hierarchical topology. As time passes, the WSD becomgspecoming denser and less hierarchical. Why do these two
flatter with a peak ak = 0.4, consistent with a mixed topology gatasets show such differences? The explanation lies in the
Whgre core and non-core are not so easily dls_tlngwshed. way Skitter and UCLA sample different parts of the AS
Figure 13 shows the proportion of nodes in edehore (onol0gy: Skitter sees a far smaller fraction of the coneple®
as a function ofk. There are52 plots shown as a smoothi,h,i0gy than UCLA, and even UCLA does not see the whole
transition between 'the' f|r§t and last plots, emphasmgd Wil topology [14]. A far larger number of vantage points than
bold curves. The distribution of-cores moves to the right {hose currently available are likely to be necessary in oiale
over time, indicating that the proportion of nodes with /8gh re4ch almost complete visibility of the AS topology [16].
connectivity is increasing over time. This adds furthergii T4 check how similar the AS topologies of Skitter and
to the conclusion that the UCLA dataset shows a weakenigg:| o are, we computed the intersection and the difference
hierarchy in the Internet, with more peering connectionssyween the two datasets in terms of AS edges and ASes. We
http:/firl cs.ucla.edultopology/ used a two-year period from Janua2906 until December
6http://www.ripe.net/dbfirr. htm 2007. In Table Il we show the number of AS edges and
17http://abilene.internet2.edu/ ASes that Skitter and UCLA have in common during some

Between nodes on average. Note that the UCLA data set was
not examined in [1].
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Fig. 11. Topological metrics for UCLA AS topology.

of these monthly periods (labelled "intersection”), aslvesd IP to AS mapping issues for multi-origin ASes [8].
the number of AS edges and ASes contributed to the total anGrpe evolution of the AS topology observed by the Skitter

coming from one of the two datasets only (labelled "Skittefyng yc|A datasets is not inconsistent. Rather, the two destas
only” or "UCLA-only”). We observe a steady increase insample differently, the AS topology, leading to differei
number of total ASes and AS edges seen by the union gf large fraction of the AS topology sampled by Skitter

the two datasets. At the same time, the intersection bemer%fhtes to the core, i.e., edges containing at least a 481
the two datasets decreases. In late 2007, Skitter had litsibiyyit jts wider coverage, UCLA observes a different evolatio
of less than25% of the ASes and less tharb% of the AS ¢ the AS topology, with a non-core part that grows more

edges seen by both datasets. As Skitter aims at sampling {1, the core. The evolution seen from the UCLA dataset
In.ternet at the router-level, we should not gxpect that & ha seems more likely to reflect the evolution of the periphery
wide coverage qf the AS topology. Sugh a Ilm'lted coverage s the AS topology. The non-core part of the Internet is
however surprising, given the popularity of this dataseiteN grq\ing and is becoming less and less hierarchical. We wish
that Skitter sees a small fraction of all AS edges, which is ng, point out that, despite a common trend towards making a
seen py the UCLA dgtaset. This indicates that there is paten{,nion of datasets in our networking community, such simple
in active topology discovery to complement BGP data.  4qgition is not appropriate for the UCLA and Skitter dataset
From Table II, we may conclude that the Skitter dataset fsach dataset has its own biases and measurement artifacts.

uninteresting. To the contrary, the relatively constaftteia  combining them bindly will only add these biases together,
decreasing, sampling of the Internet core by Skitter giv@s Yotentially leading to poorer quality data. More data is not
a clue about which part of the Internet is responsible for ifgways better data. Further research is required in order to
structural evolution. devise a correct methodology that takes advantage of eifter

In Table Il we show the number of AS edges belongingatasets obtained from different sampling processes.
to the tier-18 mesh (labelled "T1 mesh”) as well as other AS

edges where a tier-1 appears. More tBaf% of the AS edges
sampled by Skitter cross at least a tier-1 AS, against ab

15% for UCLA. Both dataset see almost all AS edges from. : . .
the tier-1 mesh. Note that the decrease in the number of ﬁ@hly inter-connected network. Tier-1 providers have e

. i ) . . : een well connected, but the biggest shift is seen at the
edges in which a tier-1 appears in Skitter is partly related Fnternet’s periphery where content providers and smallsISP

are aggressively adding peering links among themselveg usi
18we rely on the currently accepted list @R tier-1 ASes that provide 99 y gp 9 9 ey

transit-only service: AS174, AS209, AS701, AS1239, As16e®2014, |XPS to avoid paying transit charges to tier-1 providers.
AS3356, AS3549, AS3561, AS5511, AS6461, and AS7018. However, a different view of the Internet evolution can be

The above observations suggests that the Internet, once
seen as a tree-like, disassortative network with strict grew
U properties [6], is moving towards an assortative and



Autonomous Systems AS Edges

Time Total Intersection  Skitter-only UCLA-only Total Intersection  Skitter-only ~ UCLA-only
Jan. 2006 | 25,301 32.6% 0% 67.4% | 114,847 15.4% 5.3% 79.3%
Mar. 2006 | 26,007 31.6% 0% 68.4% | 118,786 14.9% 4.4% 80.7%
May. 2006 | 26,694 30.5% 0% 69.5% | 124,052 13.8% 4.6% 81.5%
Jul. 2006 | 27,396 29.5% 0% 70.5% | 128,624 13.2% 3.7% 83.1%
Sep. 2006 | 28,108 28.7% 0% 71.3% | 133,813 12.6% 3.4% 84.0%
Nov. 2006 | 28,885 27.9% 0% 72.1% | 139,447 12.4% 3.4% 84.2%
Jan. 2007 | 29,444 27.2% 0% 72.8% | 144,721 11.6% 3.1% 85.3%
Mar. 2007 | 30,236 26.5% 0% 73.5% | 151,380 11.2% 3.0% 85.8%
May. 2007 | 30,978 25.6% 0% 74.4% | 157,392 10.5% 2.7% 86.8%
Jul. 2007 | 31,668 25.9% 0% 86.1% | 166,057 10.0% 3.8% 86.2%
Sep. 2007 | 32,326 24.5% 0% 75.5% | 168,876 9.7% 2.5% 87.8%
Nov. 2007 | 33,001 23.9% 0% 76.1% | 174,318 9.5% 2.2% 88.3%

TABLE Il

STATISTICS ONAS AND AS EDGE COUNTS IN THE INTERSECTION OF BOTISKITTER AND UCLA DATASETS, AND FOR EACH DATASET ALONE

Skitter UCLA

Time Total T1 mesh Other T1 Total T1 mesh Other T1
Jan. 2006 | 23,805 66 7,498 | 108,720 64 19,149
Mar. 2006 | 22,917 66 7,289 113,555 64 19,674
May. 2006 | 22,888 64 7,504 118,331 64 20,143
Jul. 2006 | 21,740 65 7,192 | 123,842 64 20,580
Sep. 2006 | 21,400 65 6,974 129,228 64 21,059
Nov. 2006 | 22,034 66 7,159 | 134,636 65 21,581
Jan. 2007 | 21,345 65 6,898 | 140,216 65 22,531
Mar. 2007 | 21,366 65 6,774 147,000 65 23,194
May. 2007 | 20,738 65 6,694 | 153,156 65 23,769
Jul. 2007 | 22,972 65 6,838 | 159,792 65 24,310
Sep. 2007 | 20,570 64 6,510 164,770 65 24,888
Nov. 2007 | 20,466 64 6,430 | 170,431 65 25,480

TABLE Il

COVERAGE OF TIER1EDGES BYSKITTER AND UCLA.

obtained using the WSD, shown in Figures 9 and 12. Amks. They find that after an exponential increase phasi unt
seen in Section lll, one possible cause for this behavior 2001, the Internet now grows linearly in terms of both ASes
increased mixing of the core and periphery of the networknd inter-AS links. The growth is mostly due to enterprise
i.e. the strict tiered hierarchy is becoming less important networks and content/access providers at the periphetyeof t
the network structure. This is given further weight by stsdi Internet. The average path length remains almost constant
such as [14] which show that the level of peering betweeanostly due to the increasing multihoming degree of transit a
ASes in the Internet has greatly increased during this geri@ontent/access providers. Relying on geo-location tdbksy
leading to a less core-dominated network. Given that aifmact find that the AS ecosystem is now larger and more dynamic
of AS edges are not visible from current datasets and ttiatEurope than in North America. In our paper we have relied
visibility is biased towards a better visibility of custorne on two datasets, covering a more extensive set of links and
provider peerings, we believe that our observations dgtuahodes, in order to focus on structural growth and evolutibn o
underestimate the changes in the structure of the AS topolothe Internet. We use a large set of graph-theoretic measures
Using a hierarchical and preferential attachment-basediemoin order the focus on the behavior of the topology. Due to
to generate synthetic AS topologies is likely to be less argherent issues involved with inference of node locationd a
less justified than ever. The AS topology structure is beagmitypes of relationships [11], we treat the AS topology as an
more complex than in the past. undirected graph.

Shyu et al. [17] study the evolution of a set of topolog-
ical metrics computed on a set of observed AS topologies.

In this section we outline related work, classified into ¢hreThe authors rely on monthly snapshots extracted from BGP
groups: evolution of the AS topology, spectral graph anialysRouteViews from 1999 to 2006. The topological metrics
of the AS topology, and analysis of the clustering featurfes they study are the average degree, average path length, node
the AS topology. degree, expansion, resilience, distortion, link valued &éme

Dhamdhere and Dovrolis [4] rely on available estimatioNormalized Laplacian Spectrum. They find that the metrics
methods for type of relationships between ASes in order &e not stable over time, except for the Normalized Lapfacia
analyze the evolution of the Internet ecosystem in lastdkecaSpectrum.
They believe the available historic datasets from Route¥ie Oliveira et al. [15] look at the evolution of the AS topology
and RIPE are not sufficient to infer the evolution of peerings observed from BGP data. Note that they do not study
links, and so they restrict their focus to customer-provid¢he evolution of the AS topology structure, only the nodes

V1. RELATED WORK



and links. They propose a model aimed at distinguishing re&k periphery, and the rise of multi-homing, both suppaetsth
changes in ASes and AS edges from BGP routing observatimmservations. Further, we observe a move away from a pref-
artifacts. We use the extended dataset made available by ¢hential attachment, tree-like disassortative netwanward a
authors, in addition to 7 years of AS topology data from ametwork that is flatter, highly-interconnected, and asgive.
alternative measurement method. These findings are also indicative of the need for more aetail

Vukadinovic et al. [19] were the first to investigate theand timely measurements of the Internet topology, in order t
properties of the AS topology based on the normalized Lapladild up on works such as [5], focusing on the economics
cian spectrum. They observe that the normalized Laplaciahthe structural changes such as institutional mergeral du
spectrum can be used to distinguish between syntheticdepdioming and increasing peering relationships.
gies generated by Inet [20] and AS topologies extracted from
BGP data. This res.ults indicates that the normallized Lagubac REFERENCES
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