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Abstract

Real multiprocessors do not provide the sequentially consistent memory that is assumed by most
work on semantics and verification. Instead, they have relaxed memory models, typically described
in ambiguous prose, which lead to widespread confusion. These are prime targets for mechanized
formalization. In previous work we produced a rigorous x86-CC model, formalizing the Intel and
AMD architecture specifications of the time, but those turned out to be unsound with respect to
actual hardware, as well as arguably too weak to program above. We discuss these issues and present
a new x86-TSO model that suffers from neither problem, formalized in HOL4. We believe it is sound
with respect to real processors, reflects better the vendor’s intentions, and is also better suited for
programming. We give two equivalent definitions of x86-TSO: an intuitive operational model based
on local write buffers, and an axiomatic total store ordering model, similar to that of the SPARCv8.
Both are adapted to handle x86-specific features. We have implemented the axiomatic model in our
memevents tool, which calculates the set of all valid executions of test programs, and, for greater
confidence, verify the witnesses of such executions directly, with code extracted from a third, more
algorithmic, equivalent version of the definition.
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1 Introduction

Most previous research on the semantics and verification of concurrent programs assumes sequential
consistency: that accesses by multiple threads to a shared memory occur in a global-time linear order.
Real multiprocessors, however, incorporate many performance optimisations. These are typically un-
observable by single-threaded programs, but some have observable consequences for the behaviour of
concurrent code. For example, on standard Intel or AMD x86 processors, given two memory locations x
and y (initially holding 0), if two processors proc:0 and proc:1 respectively write 1 to x and y and then
read from y and x, as in the program below, it is possible for both to read 0 in the same execution.

iwp2.3.a/amd4 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MOV EAX←[y] MOV EBX←[x]
Allow: 0:EAX=0 ∧ 1:EBX=0

One can view this as a visible consequence of write buffering : each processor effectively has a FIFO buffer
of pending memory writes (to avoid the need to block while a write completes), so the reads from y and
x can occur before the writes have propagated from the buffers to main memory. Such optimisations
destroy the illusion of sequential consistency, making it impossible (at this level of abstraction) to reason
in terms of an intuitive notion of global time.

To describe what programmers can rely on, processor vendors document architectures. These are
loose specifications, claimed to cover a range of past and future actual processors, which should reveal
enough for effective programming, but without unduly constraining future processor designs. In prac-
tice, however, they are informal prose documents, e.g. the Intel 64 and IA-32 Architectures SDM [2] and
AMD64 Architecture Programmer’s Manual [1]. Informal prose is a poor medium for loose specification
of subtle properties, and, as we shall see in §2, such documents are often ambiguous, are sometimes incom-
plete (too weak to program above), and are sometimes unsound (with respect to the actual processors).
Moreover, one cannot test programs above such a vague specification (one can only run programs on
particular actual processors), and one cannot use them as criteria for testing processor implementations.

Architecture specifications are, therefore, prime targets for rigorous mechanised formalisation. In
previous work [20] we introduced a rigorous x86-CC model, formalised in HOL4 [11], based on the
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informal prose causal-consistency descriptions of the then-current Intel and AMD documentation. Un-
fortunately those, and hence also x86-CC, turned out to be unsound, forbidding some behaviour which
actual processors exhibit.

In this paper we describe a new model, x86-TSO, also formalised in HOL4. To the best of our
knowledge, x86-TSO is sound, is strong enough to program above, and is broadly in line with the
vendors’ intentions. We present two equivalent definitions of the model: an abstract machine, in §3.1,
and an axiomatic version, in §3.2. We compensate for the main disadvantage of formalisation, that it
can make specifications less widely accessible, by extensively annotating the mathematical definitions.
To explore the consequences of the model, we have a hand-coded implementation in our memevents tool,
which can explore all possible executions of litmus-test examples such as that above, and for greater
confidence we have a verified execution checker extracted from the HOL4 axiomatic definition, in §4. We
discuss related work in §5 and conclude in §6.

Further details can be found in the appendices. In Appendix A we discuss a number of litmus tests,
comparing their behaviour in the model (as calculated by memevents) and on actual processors (as
observed with our litmus tool). In Appendix B we reproduce the key “principles” from the informal-
prose vendor documentation, for reference. Appendix C makes the notion of well-formed event structure
precise, Appendix D collects a number of routine auxiliary definitions used in the definition of our models,
and Appendix E gives an overview of the proofs of our results.

2 Many Memory Models

We begin by reviewing the informal-prose specifications of recent Intel and AMD documentation. There
have been several versions, some differing radically; we contrast them with each other, and with what
we know of the behaviour of actual processors.

2.1 pre-IWP (before Aug. 2007)

Early revisions of the Intel SDM (e.g. rev-22, Nov. 2006) gave an informal-prose model called ‘processor
ordering’, unsupported by any litmus-test examples. It is hard to give a precise interpretation of this
description.

2.2 IWP/AMD64-3.14/x86-CC

In August 2007, an Intel White Paper [12] (IWP) gave a somewhat more precise model, with 8 informal-
prose principles supported by 10 litmus tests. This was incorporated, essentially unchanged, into later
revisions of the Intel SDM (including rev.26–28), and AMD gave similar, though not identical, prose
and tests [1]. These are essentially causal-consistency models. They allow independent readers to see
independent writes (by different processors to different addresses) in different orders, as below (IRIW,
see also [5]),

amd6 proc:0 proc:1 proc:2 proc:3
poi:0 MOV [x]←$1 MOV [y]←$1 MOV EAX←[x] MOV ECX←[y]
poi:1 MOV EBX←[y] MOV EDX←[x]
Final: 2:EAX=1 ∧ 2:EBX=0 ∧ 3:ECX=1 ∧ 3:EDX=0
cc : Allow; tso : Forbid

but require that, in some sense, causality is respected: “P5. In a multiprocessor system, memory ordering
obeys causality (memory ordering respects transitive visibility)”. These were the basis for our x86-CC
model, for which a key issue was giving a reasonable interpretation to this “causality”. Apart from that,
the informal specifications were reasonably unambiguous — but they turned out to have two serious
flaws.

First, they are arguably rather weak for programmers. In particular, they admit the IRIW be-
haviour above but, under reasonable assumptions on the strongest x86 memory barrier, MFENCE,
adding MFENCEs would not suffice to recover sequential consistency [20, §2.12]. Here the specifications
seem to be much looser than the behaviour of implemented processors: to the best of our knowledge,
and following some testing, IRIW is not observable in practice. It appears that some JVM implementa-
tions depend on this fact, and would not be correct if one assumed only the IWP/AMD64-3.14/x86-CC
architecture [9].
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Second, more seriously, they are unsound with respect to current processors. The following n6
example, due to Paul Loewenstein [14], shows a behaviour that is observable (e.g. on an Intel Core 2
duo), but that is disallowed by x86-CC, and by any interpretation we can make of IWP and AMD64-3.14.

n6 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$2
poi:1 MOV EAX←[x] MOV [x]←$2
poi:2 MOV EBX←[y]
Final: 0:EAX=1 ∧ 0:EBX=0 ∧ [x]=1
cc : Forbid; tso : Allow

To see why this may be allowed by multiprocessors with FIFO write buffers, suppose that first the
proc:1 write of [y]=2 is buffered, then proc:0 buffers its write of [x]=1, reads [x]=1 from its own write
buffer, and reads [y]=0 from main memory, then proc:1 buffers its [x]=2 write and flushes its buffered
[y]=2 and [x]=2 writes to memory, then finally proc:0 flushes its [x]=1 write to memory.

2.3 Intel SDM rev-29 (Nov. 2008)

The most recent x86 vendor specification, at the time of writing, is revision 29 of the Intel SDM (we
are told that there will be a future revision of the AMD specification on similar lines). Key extracts
are summarised in Appendix B. This is in a similar informal-prose style to previous versions, again
supported by litmus tests, but is significantly different to IWP/AMD64-3.14/x86-CC. First, the IRIW
final state above is forbidden [Example 7-7, rev-29], and the previous coherence condition: “P6. In a
multiprocessor system, stores to the same location have a total order” has been replaced by: “P9. Any
two stores are seen in a consistent order by processors other than those performing the stores”.

Second, the memory barrier instructions are now included, with “P11. Reads cannot pass LFENCE
and MFENCE instructions” and “P12. Writes cannot pass SFENCE and MFENCE instructions”.

Third, same-processor writes are now explicitly ordered (we regarded this as implicit in the IWP“P2.
Stores are not reordered with other stores”): “P10. Writes by a single processor are observed in the same
order by all processors”.

This specification appears to deal with the unsoundness, admitting the n6 behaviour above, but,
unfortunately, it is still problematic. The first issue is, again, how to interpret “causality” as used in
P5. The second issue is one of weakness: the new P9 says nothing about observations of two stores
by those two processors themselves (or by one of those processors and one other). This is illustrated
by the following n5 and n4 examples. These final states were not allowed in x86-CC, and we would
be surprised if they were allowed by any reasonable implementation (they are not allowed in a pure
write-buffer implementation). We have not observed them on actual processors, and programming above
a model that permitted them would be problematic. However, rev-29 appears to allow them.

n5 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [x]←$2
poi:1 MOV EAX←[x] MOV EBX←[x]
Forbid: 0:EAX=2 ∧ 1:EBX=1

n4 proc:0 proc:1
poi:0 MOV EAX←[x] MOV ECX←[x]
poi:1 MOV [x]←$1 MOV [x]←$2
poi:2 MOV EBX←[x] MOV EDX←[x]
Forbid: 0:EAX=2 ∧ 0:EBX=1∧

1:ECX=1 ∧ 1:EDX=2

Summarising the key litmus-test differences, we have:

IWP/AMD64-3.14/x86-CC rev-29 actual processors
IRIW allowed forbidden not observed
n6 forbidden allowed observed
n4/n5 forbidden allowed not observed

There are also many non-differences: tests for which the behaviours coincide in all three cases. The test
details can be found in Appendix A. They include the 9 other IWP tests, illustrating that various load
and store reorderings other than that shown in iwp2.3.a/amd4 (§1) are not possible; the AMD MFENCE
tests amd5 and amd10, and several other tests.

4



3 The x86-TSO Model

Given these problems with the informal specifications, we cannot produce a useful rigorous model by
formalising the “principles” they contain (as we attempted with x86-CC [20]). Instead, we have to build
a reasonable model that is consistent with the given litmus tests, observable processor behaviour, and
with what we know of the needs of programmers and of the vendors intentions.

The fact that write buffering is observable (iwp2.3.a/amd4 and n6) but IRIW is not, together with the
other tests that prohibit many other reorderings, strongly suggests that, apart from write buffering, all
processors share the same view of memory (in contrast to x86-CC, where each processor had a separate
view order). This is broadly similar to the SPARC Total Store Ordering (TSO) memory model [21, 23],
which is essentially an axiomatic description of the behaviour of write-buffer multiprocessors. Moreover,
while the term “TSO” is not used, informal discussions suggest this matches the intention behind the
rev.29 informal specification. Accordingly, we define here a rigorous x86-TSO model.

After some preliminaries, we give two equivalent definitions of x86-TSO. The first, in §3.1, is an
abstract machine, with explicit write buffers. The second, in §3.2, is an axiomatic model, defining
valid executions in terms of memory orders and reads-from maps. In both, we deal with the x86 CISC
instructions with multiple memory accesses, with x86 LOCK’d instructions (CMPXCHG, LOCK;INC,
etc.), with potentially non-terminating computations, and with dependencies through registers. Together
with our earlier instruction semantics, x86-TSO thus defines a complete semantics of programs.

The intended scope of x86-TSO, as for the x86-CC model, covers typical user code and most kernel
code: programs using coherent write-back memory, without exceptions, misaligned or mixed-size accesses,
‘non-temporal’ operations (e.g. MOVNTI), self-modifying code, or page-table changes.

Basic Types: Actions, Events, and Event Structures As in our earlier work, the action of (any
particular execution of) a program is abstracted into a set of events (with additional data) called an
event structure. An event represents a read or write of a particular value to a memory address, or to a
register, or the execution of a fence. Our earlier work includes a definition of the set of event structures
generated by an assembly language program. For any such event structure, the memory model (there
x86-CC, here x86-TSO) defines what a valid execution is.

In more detail, each machine-code instruction may have multiple events associated with it: events are
indexed by an instruction ID iiid that identifies which processor the event occurred on and the position
in the instruction stream of the instruction it comes from (the program order index, or poi). Events also
have an event ID eiid to identify them within an instruction (to permit multiple, otherwise identical,
events). An event structure indicates when one of an instruction’s events has a dependency on another
event of the same instruction with an intra causality relation, a partial order over the events of each
instruction. An event structure also records which events occur together in a locked instruction with
atomicity data, a set of (disjoint, non-empty) sets of events which must occur atomically together.

Expressing this in HOL, we index processors by a type proc = num, take types address and value to
both be the 32-bit words, and take a location to be either a memory address or a register of a particular
processor:

location = Location reg of proc ′reg

| Location mem of address

The model is parameterised by a type ′reg of x86 registers, which one should think of as an enumeration
of the names of ordinary registers EAX, EBX, etc., the instruction pointer EIP, and the status flags.
To identify an instance of an instruction in an execution, we specify its processor and its program order
index.

iiid =〈[ proc : proc; poi : num]〉

This introduces a type of records with two fields, a proc of type proc and a program order index poi of
type num. An action is either a read or write of a value at some location, or a barrier:

dirn = R |W
barrier = Lfence | Sfence |Mfence

action = Access of dirn (′reg location) value | Barrier of barrier

Finally, an event has an instruction instance id, an event id (of type eiid = num, unique per iiid), and an
action:
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event =〈[ eiid : eiid; iiid : iiid; action : action]〉

and an event structure E comprises a set of processors, a set of events, an intra-instruction causality
relation, and a partial equivalence relation (PER) capturing sets of events which must occur atomically,
all subject to some well-formedness conditions which we omit here.

event structure =〈[ procs : proc set;
events : (′reg event)set;
intra causality : (′reg event)reln;
atomicity : (′reg event)set set]〉

Example We show a very simple event structure below, for the program:

tso1 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [x]←$2
poi:1 MOV EAX←[x]

There are four events — the inner (blue) boxes. The event ids are pretty-printed alphabetically, as
a,b,c,d, etc. We also show the assembly instruction that gave rise to each event, e.g. MOV [x]←$1,
though that is not formally part of the event structure.

tso1 rfmap 0 (of ess 0)

a: W [x]=1

proc:0 poi:0

MOV [x]←$1

b: R [x]=2

proc:0 poi:1

MOV EAX←[x]

c: W 0:EAX=2

proc:0 poi:1

MOV EAX←[x]

d: W [x]=2

proc:1 poi:0

MOV [x]←$2

po

intra causality

rf

Note that events contain concrete values: in this par-
ticular event structure, there are two writes of x, with
values 1 and 2, a read of [x] with value 2, and a write
of proc:0’s EAX register with value 2. Later we show
two valid executions for this program, one for this
event structure and one for another (note also that
some event structures may not have any valid execu-
tions).
In the diagram, the instructions of each processor
are clustered together, into the outermost (magenta)
boxes, with program order (po) edges between them,
and the events of each instruction are clustered to-
gether into the intermediate (green) boxes, with
intra-causality edges as appropriate — here, in the
MOV EAX←[x], the write of EAX is dependent on
the read of x.

3.1 The x86-TSO Abstract Machine Memory Model

To understand our x86-TSO machine model, consider an idealised x86 multiprocessor system partitioned
into two components: its memory and register state (of all its processors combined), and the rest of the
system (the other parts of all the processor cores). Our abstract machine is a labelled transition system:

a set of states, ranged over by s, and a transition relation s
l
−→ s′. An abstract machine state s models the

state of the first component, the memory and register state of a multiprocessor system, and the machine
interacts with the rest of the system by synchronising on labels l (the interface of the abstract machine),
which include register and memory reads and writes. One should think of the machine as operating in
parallel with the processor cores (absent their register/memory subsystems), executing their instruction
streams in program order; the latter data is provided by an event structure. This partitioning does not
correspond directly to the microarchitecture of any realistic x86 implementation, in which memory and
registers would be implemented by separate and intricate mechanisms, but it is useful and sufficient for
describing the programming model, which is the proper business of an architecture description. It also
supports a precise correspondence with our axiomatic memory model. In more detail, the labels l are
the values of the HOL type:

label = Tau | Evt of proc (′reg action) | Lock of proc | Unlock of proc

• Tau, for an internal action by the machine;
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Read from memory

not blocked s p ∧ (s.M a = Some v) ∧ no pending (s.B p)a

s
Evt p (Access R (Location mem a)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s

Read from write buffer

not blocked s p ∧ (∃b1 b2.(s.B p = b1 ++[(a, v)] ++b2) ∧ no pending b1 a)

s
Evt p (Access R (Location mem a)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s

Read from register

(s.R p r = Some v)

s
Evt p (Access R (Location reg p r)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s

Write to write buffer

T

s
Evt p (Access W (Location mem a)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s ⊕ 〈[B := s.B ⊕ (p 7→ [(a, v)] ++(s.B p))]〉

Write from write buffer to memory

not blocked s p ∧ (s.B p = b ++[(a, v)])

s
Tau
−−−→ s ⊕ 〈[M := s.M ⊕ (a 7→ Some v); B := s.B ⊕ (p 7→ b)]〉

Write to register

T

s
Evt p (Access W (Location reg p r)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s ⊕ 〈[R := s.R ⊕ (p 7→ ((s.R p)⊕ (r 7→ Some v)))]〉

Barrier

(b = Mfence) =⇒ (s.B p = [ ])

s
Evt p (Barrier b)
−−−−−−−−−−−−−−−→ s

Lock

(s.L = None) ∧ (s.B p = [ ])

s
Lock p
−−−−−−→ s ⊕ 〈[L := Some p]〉

Unlock

(s.L = Some p) ∧ (s.B p = [ ])

s
Unlock p
−−−−−−−−→ s ⊕ 〈[L := None]〉

Figure 1: The x86-TSO Machine Behaviour
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• Evt p a, where a is an action, as defined above (a memory or register read or write, with its value,
or a barrier), by processor p;

• Lock p, indicating the start of a LOCK’d instruction by processor p; or

• Unlock p, for the end of a LOCK’d instruction by p.

(Note that there is nothing specific to any particular memory model in this interface.) The states of
the x86-TSO machine are records, with fields R, giving a value for each register on each processor; M ,
giving a value for each shared memory location; B, modelling a write buffer for each processor, as a list
of address/value pairs; and L, which is a global lock, either Some p, if p holds the lock, or None. The
HOL type is below.

machine state =〈[ R : proc→ ′reg → value option; (* per-processor registers *)

M : address→ value option; (* main memory *)

B : proc→ (address#value)list; (* per-processor write buffers *)

L : proc option(* which processor holds the lock *)]〉

The behaviour of the x86-TSO machine, the transition relation s
l
−→ s′, is defined by the rules in

Fig. 1. The rules use two auxiliary definitions: processor p is not blocked in machine state s if either it
holds the lock or no processor does; and there are no pending writes in a buffer b for address a if there
are no (a, v) pairs in b. Restating the rules informally:

1. p can read v from memory at address a if p is not blocked, has no buffered writes to a, and the
memory does contain v at a;

2. p can read v from its write buffer for address a if p is not blocked and has v as the newest write to
a in its buffer;

3. p can read the stored value v from its register r at any time;

4. p can write v to its write buffer for address a at any time;

5. if p is not blocked, it can silently dequeue the oldest write from its write buffer to memory;

6. p can write value v to one of its registers r at any time;

7. if p’s write buffer is empty, it can execute an MFENCE (so an MFENCE cannot proceed until all
writes have been dequeued, modelling buffer flushing); LFENCE and SFENCE can occur at any
time, making them no-ops;

8. if the lock is not held, and p’s write buffer is empty, it can begin a LOCK’d instruction; and

9. if p holds the lock, and its write buffer is empty, it can end a LOCK’d instruction.

We emphasise that this is an abstract machine: we are concerned with its extensional behaviour, the
(completed, finite or infinite) traces of labelled transitions it can perform (which should include the
behaviour of real implementations), not with its internal states and the transition rules. The machine
should provide a good model for programmers, but may bear little resemblance to the internal structure
of implementations. Indeed, a realistic design would certainly not implement LOCK’d instructions with
a global lock, and would have many other optimisations — the force of the x86-TSO model is that none
of those have programmer-visible effects, except perhaps via performance observations.

One can imagine several variants of the machine with different degrees of locking. We conjecture
that one could additionally make the read-register, write-register, write-buffer, and barrier transitions
dependent on a not blocked premise to arrive at a stricter, but observationally equivalent, machine,
that might be simpler for programmers to reason with. However, the additions would make the proof
of equivalence to the axiomatic memory model more difficult. We also conjecture that removing the
not blocked premise from the read-memory transition, and removing the requirement that the buffer is
empty on a Lock label, would give a more liberal, but equivalent, machine. Again the equivalence proof
would be more difficult. Should either of these variant machines become useful, we anticipate being able
to prove them equivalent by working solely on the machines.
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We relate the machine to event structures in two steps, which we summarise here (the HOL details
can be found on-line [22] and are summarised in Appendix E). First, we define a more intensional
event-machine: we annotate each memory and register location with an event option, recording the most
recent write event (if any) to that location, refine write buffers to record lists of events rather than of
plain location/value pairs, and annotate labels with the relevant events.

Theorem 1 The annotation-erasure of the event-machine is exactly the machine presented above.
[HOL proof]

Let path range over finite or infinite sequences of states and labels s0
l1−→ s1

l1−→ s1 · · · . We define
(okMpath path) to hold if path is a path through the event-machine, the first state is an initial machine
state, with empty write buffers, etc., and a progress condition holds: for each memory write in path,
the corresponding Tau is eventually performed. Finally, given an event structure E , we say such a path

is a machine execution corresponding to that event structure if (okEpath E path), i.e., if there is a 1:1
correspondence between non-Tau/Lock/Unlock labels of path and the events of E , consistent with
program order and intra-causality, and atomic sets are properly bracketed by Lock/Unlock pairs.

3.2 The x86-TSO Axiomatic Memory Model

Our x86-TSO axiomatic memory model is based on the SPARCv8 memory model specification [21, 23],
but adapted to x86 and in the same terms as our earlier x86-CC model. Compared with the SPARCv8
TSO specification, we omit instruction fetches (IF ), instruction loads (IL), flushes (F ), and stbars (—S ).
The first three deal exclusively with instruction memory, which we do not model, and the last is useful
only under the SPARC PSO memory model. To adapt it to x86 programs, we add register and fence
events, generalize to support instructions that give rise to many events (partially ordered by an intra-
instruction causality relation), and generalize atomic load/store pairs to locked instructions.

An execution is permitted by our memory model if there exists an execution witness X for its event
structure E that is a valid execution. An execution witness contains a memory order, an rfmap, and an
initial state; the rest of this section defines when these are valid.

execution witness =
〈[ memory order : (′reg event)reln;

rfmap : (′reg event)reln;
initial state : (′reg location→ value option)]〉

The memory order is a partial order that records the global ordering of memory events. It must
be a total order on memory writes, and corresponds to the ≤ relation in SPARCv8, as constrained by
the SPARCv8 Order condition (in figures, we use the label mo non-po write write for the otherwise-
unforced part of this order).

partial order (<X.memory order)(mem accesses E)

linear order ((<X.memory order)|(mem writes E))(mem writes E)

The initial state is a partial function from locations to values. Each read event’s value must come
either from the initial state or from a write event: the rfmap (‘reads-from map’) records which, containing
(ew, er) pairs where the read er reads from the write ew. The reads from map candidates predicate below
ensures that the rfmap only relates such pairs with the same address and value. (The SPARCv8 model
does not have an explicit representation of reads-from maps, and does not deal with initial states.)

reads from map candidates E rfmap =
∀(ew, er) ∈ rfmap.(er ∈ reads E) ∧ (ew ∈ writes E) ∧

(loc ew = loc er) ∧ (value of ew = value of er)

We lift program order from instructions to a relation po iico E over events, taking the union of
program order of instructions and intra-instruction causality. This corresponds roughly to the ; in
SPARCv8. However, intra causality might not relate some pairs of events in an instruction, so our
po iico E will not generally be a total order for the events of a processor.

po strict E =
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{(e1, e2) | (e1.iiid.proc = e2.iiid.proc) ∧ e1.iiid.poi < e2.iiid.poi ∧
e1 ∈ E .events ∧ e2 ∈ E .events}

<(po iico E) = po strict E ∪ E .intra causality

The check rfmap written below ensures that the rfmap relates a read to the most recent preceding
write. For a register read, this is the most recent write in program order. For a memory read, this is
the most recent write in memory order among those that precede the read in either memory order or
program order (intuitively, the first case is a read of a committed write and the second is a read from
the local write buffer). The check rfmap written and reads from map candidates predicates implement
the SPARCv8 Value axiom above the rfmap witness data. The check rfmap initial predicate extends
this to handle initial state, ensuring that any read not in the rfmap takes its value from the initial state,
and that that read is not preceded by a write in memory order or program order.

previous writes E er <order =
{ew′ | ew′ ∈ writes E ∧ ew′ <order er ∧ (loc ew′ = loc er)}

check rfmap written E X =
∀(ew, er) ∈ (X .rfmap).

if ew ∈ mem accesses E then
ew ∈ maximal elements (previous writes E er (<X.memory order) ∪

previous writes E er (<(po iico E)))
(<X.memory order)

else (* ew IN reg accesses E *)

ew ∈ maximal elements (previous writes E er (<(po iico E)))(<(po iico E))

check rfmap initial E X =
∀er ∈ (reads E \ range X .rfmap).

(∃l.(loc er = Some l) ∧ (value of er = X .initial state l)) ∧
(previous writes E er (<X.memory order) ∪

previous writes E er (<(po iico E)) = {})

We now further constrain the memory order, to ensure that it respects the relevant parts of program
order, and that the memory accesses of a LOCK’d instruction do occur atomically.

• Program order is included in memory order, for a memory read before a memory access (labelled
mo po read access in figures) (SPARCv8’s LoadOp):

∀er ∈ (mem reads E).∀e ∈ (mem accesses E).
er <(po iico E) e =⇒ er <X.memory order e

• Program order is included in memory order, for a memory write before a memory write (mo po
write write) (the SPARCv8 StoreStore):

∀ew1 ew2 ∈ (mem writes E).
ew1 <(po iico E) ew2 =⇒ ew1 <X.memory order ew2

• Program order is included in memory order, for a memory write before a memory read, if there
is an MFENCE between (mo po mfence). (There is no need to include fence events themselves in
the memory ordering.)

∀ew ∈ (mem writes E).∀er ∈ (mem reads E).∀ef ∈ (mfences E).
(ew <(po iico E) ef ∧ ef <(po iico E) er) =⇒ ew <X.memory order er

• Program order is included in memory order, for any two memory accesses where at least one is
from a LOCK’d instruction (mo po access/lock):

∀e1 e2 ∈ (mem accesses E).∀es ∈ (E .atomicity).
((e1 ∈ es ∨ e2 ∈ es) ∧ e1 <(po iico E) e2) =⇒ e1 <X.memory order e2
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• The memory accesses of a LOCK’d instruction occur atomically in memory order (mo atomicity),
i.e., there must be no intervening memory events. Further, all program order relationships between
the locked memory accesses and other memory accesses are included in the memory order (this is
a generalization of the SPARCv8 Atomicity axiom):

∀es ∈ (E .atomicity).∀e ∈ (mem accesses E \ es).
(∀e′ ∈ (es ∩ mem accesses E).e <X.memory order e′) ∨
(∀e′ ∈ (es ∩ mem accesses E).e′ <X.memory order e)

To deal properly with infinite executions, we also require that the prefixes of the memory order are
all finite, ensuring that there are no limit points, and, to ensure that each write eventually takes effect
globally, there must not be an infinite set of reads unrelated to any particular write, all on the same
memory location (this formalizes the SPARCv8 Termination axiom).

finite prefixes (<X.memory order)(mem accesses E)

∀ew ∈ (mem writes E).
finite{er | er ∈ E .events ∧ (loc er = loc ew) ∧

er 6<X.memory order ew ∧ ew 6<X.memory order er}

A final state of a valid execution takes the last write in memory order for each memory location,
together with a maximal write in program order for each register (or the initial state, if there is no such
write). This is uniquely defined assuming that no instruction has multiple unrelated writes to the same
register — a reasonable property for x86 instructions.

The definition of valid execution E X comprising the above conditions is equivalent to one in which
<X.memory order is required to be a linear order, not just a partial order (again, the full details are
on-line):

Theorem 2
1. If linear valid execution E X then valid execution E X .

2. If valid execution E X then there exists an X̂ with a linearisation of X ’s memory order such that
linear valid execution E X̂ . [HOL proof]

Interpreting “not reordered with” Perhaps surprisingly, the above definition does not require
that program order is included in memory order for a memory write followed by a read from the
same address. The definition does imply that any such read cannot be speculated before the write
(by check rfmap written, as that takes both <(po iico E) and <X.memory order into account). However,
if one included a memory order edge, perhaps following a naive interpretation of the rev-29 “P4. Reads
may be reordered with older writes to different locations but not with older writes to the same location”,
then the model would be strictly stronger: the n7 example below would become forbidden, whereas it
is allowed on x86-TSO. We conjecture that this would correspond to the (rather strange) machine with
the Fig. 1 rules but without the read-from-write-buffer rule, in which any processor would have to flush
its write buffer up to (and including) a local write before it can read from it.

n7 proc:0 proc:1 proc:2
poi:0 MOV [x]←$1 MOV [y]←$1 MOV ECX←[y]
poi:1 MOV EAX←[x] MOV EDX←[x]
poi:2 MOV EBX←[y]
Allow: 0:EAX=1 ∧ 0:EBX=0 ∧ 2:ECX=1 ∧ 2:EDX=0

Examples We show two valid executions of the previous example program in Fig. 2. In both execu-
tions, the proc:0 W x=1 event is before the proc:1 W x=2 event in memory order (the bold mo non-po
write write edge). In the first execution, on the left, the proc:0 read of x reads from the most recent

write in memory order (the combination of the bold mo non-po write write edge and the mo rf edge),
which is the proc:1 W x=2. In the second execution, on the right, the proc:0 read of x reads from the
most recent write in program order, which is the proc:0 W x=1. This example also illustrates some
register events: the MOV EAX←[x] instruction gives rise to a memory read of x, followed by (in the
intra-instruction causality relation) a register write of EAX.
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tso1 vos 0 (of productive ess 0) showing Require

a: W [x]=1

proc:0 poi:0

MOV [x]←$1

b: R [x]=2

proc:0 poi:1

MOV EAX←[x]

d: W [x]=2

proc:1 poi:0

MOV [x]←$2

c: W 0:EAX=2

proc:0 poi:1

MOV EAX←[x]

po

mo non-po write write

intra causality

rf mo rf

tso1 vos 0 (of productive ess 2) showing Require

a: W [x]=1

proc:0 poi:0

MOV [x]←$1

b: R [x]=1

proc:0 poi:1

MOV EAX←[x]

d: W [x]=2

proc:1 poi:0

MOV [x]←$2

c: W 0:EAX=1

proc:0 poi:1

MOV EAX←[x]

po rf mo non-po write write

intra causality

Figure 2: Example valid execution witnesses (for two different event structures)

3.3 The Machine and Axiomatic x86-TSO Models are Equivalent

To show these two definitions equivalent, given an event-machine path, we first build an execution witness
path to X path, putting the memory reads and write-buffer flushes (Taus) in their (linear) order from
path. Now:

Theorem 3 For any well-formed event structure E and event-machine path path, if okEpath E path

and okMpath path, then path to X path is a valid execution for E . [HOL proof]

Theorem 4 For any well-formed event structure E , and valid execution X for E , there exists some
event-machine path, such that okEpath E path and okMpath path, in which the memory reads and
write-buffer flushes both respect <X.memory order . [hand proof, with some parts in HOL]

4 Verified Checker and Results

To explore the consequences of x86-TSO, we implemented the axiomatic model in our memevents tool,
which exhaustively explores candidate execution witnesses. For greater confidence, we added to this
a verified witness checker: we defined variants of event structures and execution witnesses, using lists
instead of sets, wrote algorithmic versions of well formed event structure and valid execution, proved
these equivalent (in the finite case) to our other definitions, extracted OCaml code from the HOL, and
integrated that into memevents. (Obviously, this only provides assurance for positive tests, those with
allowed final states.)

The memevents results coincide with our observations on real processors and the vendor specifications,
for the 10 IWP tests, the (negated) IRIW test, the two MFENCE tests amd5 and amd10, our n2–n6 and
n8, and rwc-fenced. The remaining tests (amd3, n1, n7, and rwc-unfenced) are “allow” tests for which
we have not observed the specified final state in practice.

5 Related Work

There is an extensive literature on relaxed memory models, but most of it does not address x86, and we
are not aware of any previous model that addresses the concerns of §2. We touch here on some of the
most closely related work.

There are several surveys of weak memory models, including those by Adve and Gharachorloo [3], by
Luchango [16], and by Higham, Kawash, and Verwaal [13]. The latter, in particular,formalises a range of
models, including a TSO model, in both operational and axiomatic styles, and proves equivalence results.
Their axiomatic TSO model is in a different style to ours, rather closer to the machine behaviour, and
idealised rather than x86-specific. Burckhardt and Musuvathi [7, Appendix A] also give operational and
axiomatic definitions of a TSO model and prove equivalence, but only for finite executions. Their models
treat memory read, memory write and barrier events, but lack register events and locked instructions
that force multiple events to happen atomically. Hangel et al. [10] describe the Sun TSOtool, checking
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the observed behaviour of pseudo-randomly generated programs against a TSO model. Roy et al. [17]
describe an efficient algorithm for checking whether an execution lies within an approximation to a TSO
model, used in Intel’s Random Instruction Test (RIT) generator. Boudol and Petri [6] give an opera-
tional model with hierarchical write buffers (thereby permitting IRIW behaviours), and prove sequential
consistency for data-race-free (DRF) programs. Burckhardt et al. [8] define an x86 memory model based
on IWP [12] (together with two MS CLR models). The mathematical form of their definitions is rather
different to ours, using rewrite rules to re-order or eliminate memory accesses in sets of traces. Their
model validates the 10 IWP tests and also some instances of IRIW (depending on how parallel compo-
sitions are associated), so it will not coincide with x86-TSO or x86-CC. Loewenstein et al. [15] describe
a “golden memory model” for SPARC TSO, somewhat closer to a particular implementation microar-
chitecture than the abstract machine we give in §3.1, that they use for testing implementations. They
argue that the additional intensional detail increases the effectiveness of simulation-based verification.
Roychoudhury [18] describes a system for exhaustive search of executions in a logic programming system
for versions of SPARC TSO and the Java Memory Model. Saraswat et al. [19] also define memory models
in terms of local reordering, and prove a DRF theorem, but focus on high-level languages rather than
processors. Several groups have used proof tools to tame the intricacies of these models, including Yang
et al.[24], using Prolog and SAT solvers to explore an axiomatic Itanium model, and, turning briefly
to high-level languages, Aspinall and Sevcik [4], who formalised and identified problems with the Java
Memory Model using Isabelle/HOL.

6 Conclusion

We have described x86-TSO, a memory model for x86 processors that does not suffer from the ambiguities,
weaknesses, or unsoundnesses of earlier models. Its abstract-machine definition should be intuitive for
programmers, whereas its equivalent axiomatic definition supports the memevents exhaustive search and
permits an easy comparison with related models; the similarity with SPARCv8 suggests x86-TSO is
strong enough to program above. Mechanisation in HOL4 revealed a number of subtle points of detail,
including some of the well-formed event structure conditions that we depend on (e.g. that instructions
have no internal data races). We hope this will clarify the semantics of x86 architectures.
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We acknowledge funding from EPSRC grant EP/F036345.
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A Litmus Tests and Discussion

In this appendix we go through a number of litmus tests, including all those from the Intel IWP [12],
the Intel SDM (Rev-29) [2], the AMD64 APM [1], and some others.

Tests are named iwpXXX, for the test numbered XXX from IWP, amdNNN, for the NNN’th test
from the AMD64 APM, or nNNN, for other tests. We let x and y range over distinct aligned memory
locations. Unless otherwise stated, all tests are considered with respect to an initial state in which those
locations and all registers contain 0. We write assembly instructions in Intel syntax (as opposed to the
AT&T syntax used by gcc and gas) except that we write an arrow← instead of a comma, to clarify the
direction of data flow.

The results of the tests, in x86-CC, x86-TSO, and our observations on actual processors, are sum-
marised in §A.9. In all cases the x86-TSO behaviours are consistent with our observations, though it
does permit some behaviours that we have not observed. In other words, this data does not contradict
the claim that x86-TSO is sound.

A.1 Load/Store Reordering

Rev-29 Example 7-1. Stores Are Not Reordered with Other Stores.

iwp2.1/amd1 proc:0 proc:1
poi:0 MOV [x]←$1 MOV EAX←[y]
poi:1 MOV [y]←$1 MOV EBX←[x]
Forbid: 1:EAX=1 ∧ 1:EBX=0

This is Test 2.1 in the Intel White Paper (IWP), and also the first test in the AMD64-3.14. There are
two stores on one processor to two different locations, and the other processor loads from those locations
in the opposite order. Executions in which the first load reads from the second store, but the second load
reads from the initial state, not from the first store, are forbidden. We illustrate such executions below,
in a diagram showing the reads-from map over the memory events (eliding register events and the eiid

and iiid data of each memory event). This test also shows that loads are not reordered with other loads.

iwp2.1/amd1 rfmap 1 (of ess 0)

a: W [x]=1

b: W [y]=1

c: R [y]=1

e: R [x]=0

rf

rf

Rev-29 Example 7-2. Stores Are Not Reordered with Older Loads.

iwp2.2/amd2 proc:0 proc:1
poi:0 MOV EAX←[x] MOV EBX←[y]
poi:1 MOV [y]←$1 MOV [x]←$1
Forbid: 0:EAX=1 ∧ 1:EBX=1

Here the two processors read a value, from two different locations respectively, and then each stores a
value to the other location. Executions as shown below, in which each reads from the write of the other
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processor, are forbidden.

iwp2.2/amd2 rfmap 0 (of ess 0)

a: R [x]=1

c: W [y]=1

d: R [y]=1

f: W [x]=1

rf

rf

Rev-29 Example 7-3. Loads May be Reordered with Older Stores.

iwp2.3.a/amd4 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MOV EAX←[y] MOV EBX←[x]
Allow: 0:EAX=0 ∧ 1:EBX=0

This test illustrates non-sequentially-consistent behaviour allowed by store buffering, as discussed in §1.
Each processor stores to one location and loads from the other location. Both loads are allowed to read
from the initial state. We illustrate one such allowed execution below.

iwp2.3.a/amd4 vos 1 (of productive ess 3) showing Allow

a: W [x]=1

b: R [y]=0

d: W [y]=1

e: R [x]=0

mo non-po write write

rf rf

Rev-29 Example 7-4. Loads Are not Reordered with Older Stores to the Same Location.

iwp2.3.b proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MOV EAX←[x] MOV EBX←[y]
Require: 0:EAX=1 ∧ 1:EBX=1

This is variant of the previous test in which each load reads from the same location as that processor
stored to. Here they are forced to read from the local store. Operationally, loads must read from the local
store buffer if it contains a write to the address in question. All executions must satisfy the ‘Require’
condition; one such is shown below. (The Rev-29 example is identical to the proc:0 part of iwp2.3.b; the
proc:1 part adds no more force).

iwp2.3.b vos 1 (of productive ess 0) showing Require

a: W [x]=1

b: R [x]=1

d: W [y]=1

e: R [y]=1

rf

mo non-po write write

rf
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Rev-29 Example 7-5. Intra-Processor Forwarding is Allowed.

iwp2.4/amd9 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MOV EAX←[x] MOV ECX←[y]
poi:2 MOV EBX←[y] MOV EDX←[x]
Allow: 0:EBX=0 ∧ 1:EDX=0

This test is a variant of Example 7-3 (iwp2.3.a/amd4) in which each processor stores to a location then
reads from that location before reading from the other location. Again, store buffers allow the specified
final state, and one such execution is shown below.

iwp2.4/amd9 vos 1 (of productive ess 3) showing Allow

a: W [x]=1

b: R [x]=1

d: R [y]=0

f: W [y]=1

g: R [y]=1

i: R [x]=0

rf

mo po read access

mo non-po write write

rf

mo po read access

rf rf

Rev-29 Example 7-6. Stores Are Transitively Visible.

iwp2.5/amd8 proc:0 proc:1 proc:2
poi:0 MOV [x]←$1 MOV EAX←[x] MOV EBX←[y]
poi:1 MOV [y]←$1 MOV ECX←[x]
Forbid: 1:EAX=1 ∧ 2:EBX=1 ∧ 2:ECX=0

This test shows that a particular transitive chain of causality must be respected. Here proc:1 reads
proc:0’s write to x, then (in program order) proc:1 writing to y; proc:2 reads from that write of y, then
(in program order) proc:1 reads x. That final read is not allowed to be from the initial state. The
forbidden reads-from relationship is shown below. The Write-to-Read Causality (WRC) test of Boehm
and Adve [5, Fig. 5] is similar to this test, but with fences between the proc:1 and proc:2 pairs of
instructions. In x86-TSO the final state is forbidden without requiring such fences.

iwp2.5/amd8 rfmap 1 (of ess 0)

a: W [x]=1 b: R [x]=1

d: W [y]=1

e: R [y]=1

g: R [x]=0

rf

rf

rf

AMD3.14 Test 3

amd3 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MOV [x]←$2 MOV [y]←$2
poi:2 MOV EAX←[y] MOV EBX←[x]
Allow: 0:EAX=1 ∧ 1:EBX=1
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This test is another variant of Example 7-3 (iwp2.3.a/amd4) in which each processor stores to a location
then stores again to that location before reading from the other location. Again, store buffers allow each
processor to read from the first write of the other processor, and one such execution is shown below.

amd3 vos 0 (of productive ess 4) showing Allow

a: W [x]=1

b: W [x]=2

g: R [x]=1

e: W [y]=1

c: R [y]=1

f: W [y]=2

mo po write write

rfmo rf

mo non-po write write

rfmo rf

mo po write write

IWP Test 2.6. Total Order on Stores to the Same Location

iwp2.6 proc:0 proc:1 proc:2 proc:3
poi:0 MOV [x]←$1 MOV [x]←$2 MOV EAX←[x] MOV ECX←[x]
poi:1 MOV EBX←[x] MOV EDX←[x]
Forbid: 2:EAX=1 ∧ 2:EBX=2 ∧ 3:ECX=2 ∧ 3:EDX=1

This test requires stores to the same location by two processors to be observed in the same order by two
other processors. The forbidden reads-from relation is shown below. The test was in IWP, but is no
longer present in rev-29.

iwp2.6 rfmap 56 (of ess 0)

a: W [x]=1 c: R [x]=1

i: R [x]=1

b: W [x]=2

e: R [x]=2

g: R [x]=2

rf

rfrf

rf

A.2 Independent Reads of Independent Writes

The following IRIW example, discussed here in §2.2 and by Boehm and Adve [5], has a final state
permitted in AMD64-3.14 (explicitly), in IWP (implicitly), and in x86-CC. Rev-29, however, contains
the same example but with the given final state forbidden (rev-29 Example 7-7. Stores Are Seen in
a Consistent Order by Other Processors). We have not observed the final state in practice, and it
is forbidden in x86-TSO. The reads-from relation required for the given final state is below; in such
executions, proc:0 and proc:1 write to two different locations, and proc:2 and proc:3 read from those
locations, seeing the writes in opposite orders (proc:2 sees the write to x but not the write to y, reading
y from the initial state, whereas proc:3 sees the write to x but reads x from the initial state).

amd6 proc:0 proc:1 proc:2 proc:3
poi:0 MOV [x]←$1 MOV [y]←$1 MOV EAX←[x] MOV ECX←[y]
poi:1 MOV EBX←[y] MOV EDX←[x]
Final: 2:EAX=1 ∧ 2:EBX=0 ∧ 3:ECX=1 ∧ 3:EDX=0
cc : Allow; tso : Forbid
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amd6 rfmap 5 (of ess 0)

a: W [x]=1 c: R [x]=1b: W [y]=1 g: R [y]=1

e: R [y]=0 i: R [x]=0

rf rf

rf rf

A.3 Locked Instructions: Tests iwp2.7/amd7, iwp2.8.a, iwp2.8.b, n8, and n3

Only the following three IWP litmus tests involve locked instructions, and none of the three forbidden
results are allowed in x86-TSO. However, only iwp2.8.a is forbidden by the parts of x86-TSO dealing
with locking; the other two are forbidden by the core TSO properties directly (i.e., even if hypothetical
non-locked versions of the XCHG instructions were used).

Rev-29 Example 7-8. Locked Instructions Have a Total Order.

iwp2.7/amd7 proc:0 proc:1 proc:2 proc:3
poi:0 XCHG [x]←EAX XCHG [y]←EBX MOV ECX←[x] MOV ESI←[y]
poi:1 MOV EDX←[y] MOV EDI←[x]
Initial state: 0:EAX = 1; 1:EBX = 1 (elsewhere 0)
Forbid: 2:ECX=1 ∧ 2:EDX=0 ∧ 3:ESI=1 ∧ 3:EDI=0

This is a variant of the IRIW example amd6 but using XCHG instructions (which are implicitly LOCK’d)
instead of MOV instructions on proc:0 and proc:1.

Rev-29 Example 7-9. Loads Are not Reordered with Locks.

iwp2.8.a proc:0 proc:1
poi:0 XCHG [x]←EAX XCHG [y]←ECX
poi:1 MOV EBX←[y] MOV EDX←[x]
Initial state: 0:EAX = 1; 1:ECX = 1 (elsewhere 0)
Forbid: 0:EBX=0 ∧ 1:EDX=0

Rev-29 Example 7-10. Stores Are not Reordered with Locks.

iwp2.8.b proc:0 proc:1
poi:0 XCHG [x]←EAX MOV EBX←[y]
poi:1 MOV [y]←$1 MOV ECX←[x]
Initial state: 0:EAX = 1 (elsewhere 0)
Forbid: 1:EBX=1 ∧ 1:ECX=0

Test n8. Loads Are not Reordered with Locks — Single-XCHG Variant.

n8 proc:0 proc:1
poi:0 XCHG [x]←EAX MOV [y]←$1
poi:1 MOV EBX←[y] MOV EDX←[x]
Initial state: 0:EAX = 1; [y] = 1 (elsewhere 0)
Allow: 0:EAX=0 ∧ 1:EDX=0

This test is a variant of iwp2.8.a, but with an unlocked write in place of one of the XCHG instructions.
The x86-TSO model allows the result where EBX and EDX are both 0.
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Test n3: Independent Locked Instructions and Stores

n3 proc:0 proc:1 proc:2 proc:3
poi:0 XCHG EAX←[x] MOV [y]←$1 MOV EBX←[y] MOV ESI←[x]
poi:1 MOV ECX←[x] MOV EDI←[y]
poi:2 MOV EDX←[x] MOV EBP←[y]
Initial state: 0:EAX = 1 (elsewhere 0)
Final: 2:EBX=1 ∧ 2:ECX=0 ∧ 2:EDX=1 ∧ 3:ESI=1 ∧ 3:EDI=0 ∧ 3:EBP=1
cc : Allow; tso : Forbid

IWP left open the question of whether a locked instruction and a store to a different location could be
seen in different orders by two other processors. We introduced the n3 test above to cover this case [20].
The given final state was allowed by x86-CC, but is not allowed by x86-TSO (again without the LOCK
having anything to do with the reasoning). We have not observed the final state to occur in practice.

A.4 Fence Instructions: Tests amd5 and amd10

We handle fences by forcing write-to-read program order dependencies into the memory order. The
following amd10 example is very similar to iwp2.8.a, and the forbidden behavior is prohibited by x86-
TSO by essentially the same mechanism. Test amd5 below is similar. Our interpretation seems consistent
with rev-29 principles P11 and P12.

amd10 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MFENCE MFENCE
poi:2 MOV EAX←[x] MOV ECX←[y]
poi:3 MOV EBX←[y] MOV EDX←[x]
Final: 0:EBX=0 ∧ 1:EDX=0
cc : Allow; tso : Forbid

amd10 rfmap 3 (of ess 0)

a: W [x]=1

c: R [x]=1

b: MFENCE

e: R [y]=0

g: W [y]=1

i: R [y]=1

h: MFENCE

k: R [x]=0

rf

rf

rf rf

amd5 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MFENCE MFENCE
poi:2 MOV EAX←[y] MOV EBX←[x]
Final: 0:EAX=0 ∧ 1:EBX=0
cc : Allow; tso : Forbid

amd5 rfmap 3 (of ess 0)

a: W [x]=1

b: MFENCE

c: R [y]=0

e: W [y]=1

f: MFENCE

g: R [x]=0rf rf
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A.5 The Unsoundness of IWP/AMD3.14/x86-CC: Test n6

The n6 test below, by Loewenstein, was discussed in §2.2, where we explained how the final state is
allowed by write-buffer implementations.

n6 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$2
poi:1 MOV EAX←[x] MOV [x]←$2
poi:2 MOV EBX←[y]
Final: 0:EAX=1 ∧ 0:EBX=0 ∧ [x]=1
cc : Forbid; tso : Allow

The final state is also allowed in x86-TSO, as shown in the execution below.

n6 vos 0 (of productive ess 7) showing Allow

a: W [x]=1

b: R [x]=1

d: R [y]=0

f: W [y]=2

g: W [x]=2

rf

mo po read access

mo po write write

mo non-po write write

rf

The final state is allowed (as far as we can interpret the principles) in rev-29. The final state is observable
on Intel processors: we find witnesses on an Intel Core 2, with our litmus tool. However, the given final
state is forbidden in our x86-CC model, and by any interpretation we can make of the IWP or AMD3.14
principles. We have:

(a, b) in preserved program order (by IWP P4)
(b, d) in preserved program order (by IWP P1)
(d, f) in the view order of proc:0 (otherwise d could not read value 0)
(f, g) in preserved program order (by IWP P2)
So the view order of proc:0 must be a, b, d, f, g.
So (a, g) in the write serialization for location x (by IWP P6)
So the final state must have [x] = 2, not [x] = 1.

A.6 The Weakness of Rev-29: Tests n4 and n5

As discussed in §2.3, the following examples were not allowed in x86-CC, nor are they allowed by
x86-TSO. We would be surprised if they were allowed by any reasonable implementation, and have
not observed them on Intel processors. Programming above a model that permitted them would be
problematic. However, the rev-29 principles seem to allow them. In particular, P9 has no force because
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it only involves processors other than those performing the two stores.

n5 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [x]←$2
poi:1 MOV EAX←[x] MOV EBX←[x]
Forbid: 0:EAX=2 ∧ 1:EBX=1

n5 rfmap 2 (of ess 0)

a: W [x]=1

e: R [x]=1b: R [x]=2

d: W [x]=2

rf

rf

n4 proc:0 proc:1
poi:0 MOV EAX←[x] MOV ECX←[x]
poi:1 MOV [x]←$1 MOV [x]←$2
poi:2 MOV EBX←[x] MOV EDX←[x]
Forbid: 0:EAX=2 ∧ 0:EBX=1 ∧ 1:ECX=1 ∧ 1:EDX=2

n4 rfmap 8 (of ess 0)

a: R [x]=2

c: W [x]=1

d: R [x]=1

f: R [x]=1

h: W [x]=2

i: R [x]=2

rf

rf

rf

rf

A.7 Interpreting the rev-29 “not reordered with”: Test n7

Key phrases in the vendor documentation (Intel IWP, AMD64-3.14, and Intel SDM rev-29) are not given
definite meanings, making it hard use them to justify x86-TSO. Principles P1, P2, P3, P4, and P8 of
rev-29 (reproduced in Appendix B) all refer to some events being “not reordered with” others. These
principles were also present in IWP/AMD64-3.14, and in x86-CC we interpreted them as giving rise to a
preserved-program-order relation, which was included in a transitive happens-before relation, with which
each processor’s view order had to be consistent. In a TSO-based model, however, one might expect to
interpret two events being “not reordered” by requiring that any program order relation between them
must also appear in the transitive memory order (as suggested by P5). This seems reasonable, and is
what we do, for P1, P2, P3, and P8. However, P4 states Reads may be reordered with older

writes to different locations but not with older writes to the same location. There is
no problem with the first part, but for the second part, that interpretation would forbid the final state
of litmus test n7 below (discussed in §3.2), whereas it is allowed on x86-TSO.

n7 proc:0 proc:1 proc:2
poi:0 MOV [x]←$1 MOV [y]←$1 MOV ECX←[y]
poi:1 MOV EAX←[x] MOV EDX←[x]
poi:2 MOV EBX←[y]
Allow: 0:EAX=1 ∧ 0:EBX=0 ∧ 2:ECX=1 ∧ 2:EDX=0

We illustrate this for the example x86-TSO valid execution below. If the second part of P4 were inter-
preted to give rise to preserved program order edges appearing in memory order, then there would be a
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memory order edge from a to b. Read d would then have to read from f, not from the initial state.

n7 vos 0 (of productive ess 5) showing Allow

a: W [x]=1

b: R [x]=1

d: R [y]=0

f: W [y]=1 g: R [y]=1

i: R [x]=0

rf

mo po read access

mo non-po write write rfmo rf

mo po read access

rf

rf

There are other valid executions, but not with the given final state.

A.8 Other Tests

Test n1: Reordering of Loads with Older Stores to Different Locations

n1 proc:0 proc:1 proc:2
poi:0 MOV [x]←$2 MOV [y]←$1 MOV EBX←[x]
poi:1 MOV EAX←[y] MOV [x]←$1 MOV ECX←[x]
Allow: 0:EAX=0 ∧ 2:EBX=1 ∧ 2:ECX=2

In x86-CC, the allowed final result of iwp2.3.a/amd4 did not require the reordering of loads with older
stores to different locations that the test description spoke of. We introduced Test n1 [20] as an example
where such reordering was (in x86-CC) essential. The final behaviour is still allowed in x86-TSO, as
shown below.

n1 vos 0 (of productive ess 21) showing Allow

a: W [x]=2

h: R [x]=2b: R [y]=0

d: W [y]=1

e: W [x]=1

f: R [x]=1

rfmo rf

mo po write write

mo non-po write write

rf
mo rf

mo po read access

rf

Test n2: Transitive Causality via Preserved Program Order and the Write Serialisation

n2 proc:0 proc:1 proc:2 proc:3
poi:0 MOV [y]←$1 MOV [x]←$2 MOV EAX←[x] MOV ECX←[z]
poi:1 MOV [x]←$1 MOV [z]←$1 MOV EBX←[x] MOV EDX←[y]
Forbid: 2:EAX=1 ∧ 2:EBX=2 ∧ 3:ECX=1 ∧ 3:EDX=0

We introduced n2 [20] to show transitivity through preserved program order (of the proc:0 and proc:1
events) and the write serialisation for x (which has W [x]=1 before W [x]=2 by the proc:2 observations).
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There are no x86-TSO executions with the reads-from map below.

n2 rfmap 26 (of ess 0)

a: W [y]=1

b: W [x]=1

e: R [x]=1c: W [x]=2

g: R [x]=2d: W [z]=1

i: R [z]=1

k: R [y]=0

rf rf rf

rf

Test RWC (unfenced): Read-to-Write Causality

rwc-unfenced proc:0 proc:1 proc:2
poi:0 MOV [x]←$1 MOV EAX←[x] MOV [y]←$1
poi:1 MOV EBX←[y] MOV ECX←[x]
Allow: 1:EAX=1 ∧ 1:EBX=0 ∧ 2:ECX=0

This test is based on the Read-to-Write Causality (RWC) test of Boehm and Adve [5, Fig. 6]. With no
fences, the non-SC behaviour below is allowed in x86-TSO.

rwc-unfenced vos 0 (of productive ess 3) showing Allow

a: W [x]=1 b: R [x]=1 f: W [y]=1

d: R [y]=0 g: R [x]=0

rfmo rf

mo non-po write write

mo po read access

rf rf

Test RWC (singly fenced): Read-to-Write Causality

rwc-fenced proc:0 proc:1 proc:2
poi:0 MOV [x]←$1 MOV EAX←[x] MOV [y]←$1
poi:1 MOV EBX←[y] MFENCE
poi:2 MOV ECX←[x]
Final: 1:EAX=1 ∧ 1:EBX=0 ∧ 2:ECX=0
cc : Allow; tso : Forbid

Adding an MFENCE to proc:2 rules out that behaviour:

rwc-fenced rfmap 3 (of ess 0)

a: W [x]=1 b: R [x]=1

d: R [y]=0

f: W [y]=1

g: MFENCE

h: R [x]=0

rf

rf

rf
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A.9 Summary of Test Results

The table below summarises the results for all the previous tests in the x86-CC model, the x86-TSO
model, and our observations on actual processors. The memevents-cc.txt and memevents-tso.txt columns
give the behaviour in our x86-CC and x86-TSO models respectively1. These results are from our
memevents tool, which includes hand-written executable implementations of the formal models. For
x86-TSO, “Allow” results are validated with the verified checker described in §4. The “actual processors”
data is from observations with our litmus tool on an Intel Core 2 Duo, and indicates the number of
positive (for “Allow” or “Require” tests) or negative (for “Forbid” tests) observations out of the number
of runs.

memevents-cc memevents-tso Actual hardware
amd10 Allow Forbid Forbid validated 0/200000
amd3 Allow Allow Allow not validated 0/200000
amd5 Allow Forbid Forbid validated 0/200000
amd6 Allow Forbid Forbid validated 0/200000
iwp2.1/amd1 Forbid Forbid Forbid validated 0/200000
iwp2.2/amd2 Forbid Forbid Forbid validated 0/200000
iwp2.3.a/amd4 Allow Allow Allow validated 46/200000
iwp2.3.b Require Require Require validated 200000/200000
iwp2.4/amd9 Allow Allow Allow validated 193/200000
iwp2.5/amd8 Forbid Forbid Forbid validated 0/200000
iwp2.6 Forbid Forbid Forbid validated 0/200000
iwp2.7/amd7 Forbid Forbid Forbid validated 0/200000
iwp2.8.a Forbid Forbid Forbid validated 0/200000
iwp2.8.b Forbid Forbid Forbid validated 0/200000
n1 Allow Allow Allow not validated 0/200000
n2 Forbid Forbid Forbid validated 0/200000
n3 Allow Forbid Forbid validated 0/200000
n4 Forbid Forbid Forbid validated 0/200000
n5 Forbid Forbid Forbid validated 0/200000
n6 Forbid Allow Allow validated 9/200000
n7 Allow Allow Allow not validated 0/200000
n8 Allow Allow Allow validated 130832/200000
rwc-fenced Allow Forbid Forbid validated 0/200000
rwc-unfenced Allow Allow Allow not validated 0/200000

Discrepancies between x86-TSO and the observed behaviour could be of two kinds: For a “Forbid”
or “Require” test, an observation of the forbidden result, which we would indicate with “Forbid NOT
validated” or “Require NOT validated” respectively, would indicate that the formal x86-TSO model is
unsound with respect to actual hardware. We see no such observations.

For an“Allow”test, the absence of an observation of the allowed result, which we indicate with“Allow
not validated” (in blue), may suggest that x86-TSO is weaker (allowing more behaviours) than actual
processors, or may merely mean that the test has not been run sufficiently often or with the processor
in a state to exhibit the behaviour.

Note also that this experimental data is from just a few tests run on just one machine of a specific
implementation, whereas many x86 implementations, with radically different microarchitectures, are in
widespread use. Further testing would be desirable to increase confidence in the soundness of x86-TSO.

It would be very surprising if x86-TSO were not more liberal in some ways than actual processors. For
example, actual processors will have size-bounded write buffers, whereas x86-TSO does not, and probably
should not (otherwise reasoning above the model would be needlessly complex and implementation-
specific).

1For the fence tests (amd10, amd5, and rwc-fenced) the x86-CC column indicates the behaviour in the extension of our
formal x86-CC model (which did not cover fences) with MFENCE enforcing local write-read ordering in happens-before.
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B The IWP and Rev-29 Principles and Litmus Tests

B.1 Principles

The Intel documentation, both IWP and the SDM Vol.3A rev-29 §7.2.2, states a number of “principles”.
We reproduce them here for reference.

Eight of the rev-29 principles correspond to principles from IWP, in the sense that they have the
same force for the fragment we are considering, but may have additional conditions, here greyed out,
relevant to other instructions. For consistency with our previous work we tag these P1–P8, following the
IWP numbering. In addition there are five new clauses, which we tag P9–P14. We list them in the same
order as Rev-29.

P1 Reads are not reordered with other reads.

P3 Writes are not reordered with older reads.

P2 Writes to memory are not reordered with other writes[, with the exception of writes executed with the
CLFLUSH instruction,streaming stores (writes) executed with the non-temporal move instructions
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD),string operations (see Section
7.2.4.1)].

P4 Reads may be reordered with older writes to different locations but not with older writes to the
same location.

P8 Reads or writes cannot be reordered with [I/O instructions,] locked instructions[, or serializing
instructions].

P11 Reads cannot pass LFENCE and MFENCE instructions.

P12 Writes cannot pass SFENCE and MFENCE instructions.

In a multiple-processor system, the following ordering principles apply:

P13 Individual processors use the same ordering principles as in a single-processor system.

P10 Writes by a single processor are observed in the same order by all processors.

P14 Writes from an individual processor are NOT ordered with respect to the writes from other pro-
cessors.

P5 Memory ordering obeys causality (memory ordering respects transitive visibility).

P9 Any two stores are seen in a consistent order by processors other than those performing the stores.

P7 Locked instructions have a total order.

Summarising the differences of rev-29 with respect to IWP, the IWP P6

P6 In a multiprocessor system, stores to the same location have a total order.

has been replaced by P9; P11 and P12, concerning the fence instructions, have been added, and P10,
P13 and P14 have been added (though they might have been considered implicit in IWP).

B.2 Litmus Tests

The rev-29 litmus tests, Examples 7-1 to 7-10, are essentially identical to the IWP litmus tests, except
that iwp2.6 is removed and the IRIW test, with forbidden final state, is added. Rev-29 also adds 6
Litmus tests for string operations, which are not in the fragment of the ISA we consider in this paper.

The vendor litmus tests appear to be a more reliable source than the prose principles: the litmus tests
are almost completely unambiguous (the only exception is that in some cases it is not explicitly stated
that certain locations are not aliased), and, as far as we can observe, are consistent with the behaviour
of actual processors, whereas the principles are hard to interpret, as we have discussed. Of course, the
litmus tests do not by themselves determine a useful memory model, as they specify behaviour only for
a small number of very specific programs.
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C Well-Formed Event Structures

In this appendix we define our well-formedness condition for event structures, comprising a number of
sanity conditions (that there are only a finite number of processors, that the intra-instruction causality
relation is indeed a partial order, etc.). This follows our x86-CC work, in which we proved that all event
structures arising from the semantics for assembly programs are indeed well-formed.

well formed event structure E =
(* The set of events is at most countable *)

countable E .events ∧

(* there are only a finite number of processors *)

(finite E .procs) ∧

(* all events are from one of those processors *)

(∀e ∈ (E .events).proc e ∈ E .procs) ∧

(* the eiid and iiid of an event (together) identify it uniquely *)

(∀e1 e2 ∈ (E .events).(e1.eiid = e2.eiid) ∧ (e1.iiid = e2.iiid) =⇒ (e1 = e2)) ∧

(* intra-instruction causality is a partial order over the events *)

partial order (E .intra causality)E .events ∧

(* ...and moreover, is *intra*-instruction *)

(∀(e1, e2) ∈ (E .intra causality).(e1.iiid = e2.iiid)) ∧

(* the atomicity data is a partial equivalence relation: the atomic sets of events are disjoint *)

per E .events E .atomicity ∧

(* atomic sets are *intra* instruction *)

(∀es ∈ (E .atomicity).∀e1 e2 ∈ es.(e1.iiid = e2.iiid)) ∧

(* accesses to a register on a processor can only be by that processor *)

(∀e ∈ (E .events).∀p r .(loc e = Some (Location reg p r)) =⇒ (p = proc e)) ∧

(* An event never comes after an infinite number of other events in program order *)

finite prefixes (po iico E)E .events ∧

(* The additional properties below hold, for the ISA fragment dealt with in [SSFN+09], and were useful for
the metatheory there, but seem less essential than those above. *)

(* there is no intra-causality edge *from* a memory write *)

(∀(e1, e2) ∈ (E .intra causality).e1 6= e2 =⇒ e1 /∈ mem writes E) ∧

(* if an instruction two events on a location and one is a write, then there must be an intra-causality edge
between them. In other words, there cannot be a local race within an instruction *)
(∀(e1 ∈ writes E)e2.

(e1 6= e2) ∧
(e2 ∈ writes E ∨ e2 ∈ reads E) ∧
(e1.iiid = e2.iiid) ∧
(loc e1 = loc e2)
=⇒

(e1, e2) ∈ E .intra causality ∨
(e2, e1) ∈ E .intra causality) ∧

(* each atomic set includes all the events of its instruction *)

(∀es ∈ (E .atomicity).∀e1 ∈ es.∀e2 ∈ (E .events).(e1.iiid = e2.iiid) =⇒ e2 ∈ es) ∧
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(* all locked instructions include at least one memory read *)

(∀es ∈ (E .atomicity).∃e ∈ es.e ∈ mem reads E)

D Auxiliary Definitions

This appendix collects the remaining auxiliary definitions used in the x86-TSO axiomatic and abstract
machine memory model definitions. These are mostly routine, but presented here for reference.

D.1 Axiomatic Memory Model

type abbrev proc : num

type abbrev Ximm : word32

type abbrev address : Ximm

type abbrev value : Ximm

type abbrev eiid : num

type abbrev reln : ′a#′a → bool

is mem access e = ∃d a v.e.action = Access d (Location mem a)v

writes E = {e | e ∈ E .events ∧ ∃l v.e.action = Access W l v}

reads E = {e | e ∈ E .events ∧ ∃l v.e.action = Access R l v}

fences E = {e | e ∈ E .events ∧ (∃f .e.action = Barrier f )}

mfences E = {e | e ∈ E .events ∧ (e.action = Barrier Mfence)}

mem writes E = {e | e ∈ E .events ∧ ∃a v.e.action = Access W (Location mem a)v}

mem reads E = {e | e ∈ E .events ∧ ∃a v.e.action = Access R (Location mem a)v}

reg writes E = {e | e ∈ E .events ∧ ∃p r v.e.action = Access W (Location reg p r)v}

reg reads E = {e | e ∈ E .events ∧ ∃p r v.e.action = Access R (Location reg p r)v}

mem accesses E = {e | e ∈ E .events ∧ (∃d a v.e.action = Access d (Location mem a)v)}

reg accesses E = {e | e ∈ E .events ∧ ∃d p r v.e.action = Access d (Location reg p r)v}

loc e =
case e.action of

Access d l v → Some l

‖ Barrier f → None
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value of e =
case e.action of

Access d l v → Some v

‖ Barrier f → None

proc e = e.iiid.proc

The following definition of valid executions collects together the conditions in the text of §3.2.

valid execution E X =
partial order X .memory order (mem accesses E) ∧
linear order (X .memory order |(mem writes E))(mem writes E) ∧

finite prefixes X .memory order (mem accesses E) ∧
(∀ew ∈ (mem writes E).

finite{er | er ∈ E .events ∧ (loc er = loc ew) ∧
(er , ew) /∈ X .memory order ∧ (ew, er) /∈ X .memory order}) ∧

(∀er ∈ (mem reads E).∀e ∈ (mem accesses E).(er , e) ∈ po iico E =⇒ (er , e) ∈ X .memory order) ∧
(∀ew1 ew2 ∈ (mem writes E).(ew1, ew2) ∈ po iico E =⇒ (ew1, ew2) ∈ X .memory order) ∧
(∀ew ∈ (mem writes E).∀er ∈ (mem reads E).∀ef ∈ (mfences E).

(ew, ef ) ∈ po iico E ∧ (ef , er) ∈ po iico E =⇒ (ew, er) ∈ X .memory order) ∧
(∀e1 e2 ∈ (mem accesses E).∀es ∈ (E .atomicity).

(e1 ∈ es ∨ e2 ∈ es) ∧ (e1, e2) ∈ po iico E

=⇒
(e1, e2) ∈ X .memory order) ∧

(∀es ∈ (E .atomicity).∀e ∈ (mem accesses E \ es).
(∀e′ ∈ (es ∩ mem accesses E).(e, e′) ∈ X .memory order) ∨
(∀e′ ∈ (es ∩ mem accesses E).(e′, e) ∈ X .memory order)) ∧

X .rfmap ∈ reads from map candidates E ∧
check rfmap written E X ∧
check rfmap initial E X

max state updates E X l =
{value of ew | ew ∈ maximal elements

{ew′ | ew′ ∈ writes E ∧ (loc ew′ = Some l)}
(case l of

Location mem a → X .memory order

‖ Location reg p r → po iico E)}

(check final state E X None =
¬(finite E .events)) ∧

(check final state E X (Some final state) =
finite E .events ∧
(∀l.

if (max state updates E X l) = {} then
final state l = X .initial state l

else
final state l ∈ max state updates E X l))

D.2 Abstract Machine Memory Model

clause name x = T

not blocked s p = (s.L = None) ∨ (s.L = Some p)

no pending b a = ¬(∃v′.MEM (a, v′)b)
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The following is the primary HOL definition of the abstract machine transitions. The rules in Fig. 1
are typeset from an equivalent HOL definition in a slightly different style.

(∀s a v p.
clause name“read-mem”∧
not blocked s p ∧
(s.M a = Some v) ∧
no pending (s.B p)a
=⇒

machine trans s

(Evt p (Access R (Location mem a)v))
s) ∧

(∀s a v p.
clause name“read-buffer”∧
not blocked s p ∧
(∃b1 b2.(s.B p = b1 ++[(a, v)] ++b2) ∧ no pending b1 a)
=⇒

machine trans s

(Evt p (Access R (Location mem a)v))
s) ∧

(∀s r v p.
clause name“read-reg”∧
(*not blocked s p /\*)

(s.R p r = Some v)
=⇒

machine trans s

(Evt p (Access R (Location reg p r)v))
s) ∧

(∀s a v p s′.
clause name“write-buffer”∧
(*not blocked s p /\*)

(s′ =〈[ R := s.R;
M := s.M ;
B :=(p 7→ (a, v) ∈ s.B p)s.B;
L := s.L]〉)

=⇒
machine trans s

(Evt p (Access W (Location mem a)v))
s′) ∧

(∀s a v p b s′.
clause name“write-mem”∧
not blocked s p ∧
(s.B p = b ++[(a, v)]) ∧
(s′ =〈[ R := s.R;

M :=(a 7→ Some v)s.M ;
B :=(p 7→ b)s.B;
L := s.L]〉)

=⇒
machine trans s Tau s′) ∧

(∀s r v p s′.
clause name“write-reg”∧
(*not blocked s p*)

(s′ =〈[ R :=(p 7→ (r 7→ Some v)(s.R p))s.R;
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M := s.M ;
B := s.B;
L := s.L]〉)

=⇒
machine trans s

(Evt p (Access W (Location reg p r)v))
s′) ∧

(∀s p.
clause name“barrier”∧
(*not blocked s p /\*)

(s.B p = [ ])
=⇒

machine trans s (Evt p (Barrier Mfence))s) ∧

(∀s p b.
clause name“nop”∧
(*not blocked s p /\*)

b 6= Mfence

=⇒
machine trans s (Evt p (Barrier b))s) ∧

(∀s p s′.
clause name“lock”∧
(s.L = None) ∧
(s.B p = [ ]) ∧
(s′ =〈[ R := s.R;

M := s.M ;
B := s.B;
L := Some p]〉)

=⇒
machine trans s (Lock p)s′) ∧

(∀s p s′.
clause name“unlock”∧
(s.L = Some p) ∧
(s.B p = [ ]) ∧
(s′ =〈[ R := s.R;

M := s.M ;
B := s.B;
L := None]〉)

=⇒
machine trans s (Unlock p)s′)

machine state to state constraint s =
λl.
case l of

Location mem a → s.M a

‖ Location reg p r → s.R p r

machine final state path =
if finite path then
Some (machine state to state constraint (last path))
else
None

machine init state sc =
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〈[ R :=(λp r .sc (Location reg p r));
M :=(λa.sc (Location mem a));
B :=(λp.[ ]);
L := None]〉

is init s = ∃sc.s = machine init state sc

The definitions of okEpath and okMpath are given over event machines, in Appendix E.

E Proof Outlines

E.1 Event-annotated machine

We annotate the abstract machine with events to support the equivalence proof between the abstract
machine and axiomatic presentations of x86-TSO.

The event abstract machine stores with each memory and register location the event that last wrote
there. It also keeps events in the write buffer.

evt machine state =〈[
(* Per processor registers, annotated with the event that last wrote it *)

eR : proc→ ′reg → (value#′reg event option) option;
(* main memory, annotated with the event that last wrote it *)

eM : address→ (value#′reg event option) option;
(* Per processor FIFO write buffers *)

eB : proc→ ′reg event list;
(* Which processor holds the lock *)

eL : proc option

]〉

evt no pending b a = ¬(∃e.MEM e b ∧ (loc e = Some (Location mem a)))

evt not blocked s p = (s.eL = None) ∨ (s.eL = Some p)

A TauEvt ew label reports that ew is the event moved from the write buffer to the store. A
REvt er ew opt label does read event er and reports that ew opt was the last write event on that
location. WEvt and BEvt labels both simply perform the given event. The event set argument to
UnlockE and LockE labels is ignored by the machine; it is used only for bookkeeping during a later
proof.

evt machine label =
TauEvt of ′reg event

| REvt of ′reg event ′reg event option

|WEvt of ′reg event

| BEvt of ′reg event

| LockE of proc ′reg event set

| UnlockE of proc ′reg event set

The transition relation of the event machine is defined by the following rules. Read each clause as“the
event-annotated machine has a transition from state s to state s′ labelled l if each conjunct preceding
=⇒ is satisfied”.

(∀s a v p er ew opt.
clause name“evt-read-mem”∧
evt not blocked s p ∧
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(proc er = p) ∧
(er .action = Access R (Location mem a)v) ∧
(s.eM a = Some (v, ew opt)) ∧
evt no pending (s.eB p)a
=⇒

evt machine trans s (REvt er ew opt)s) ∧

(∀s a v p er ew.
clause name“evt-read-buffer”∧
evt not blocked s p ∧
(proc er = p) ∧
(er .action = Access R (Location mem a)v) ∧
(ew.action = Access W (Location mem a)v) ∧
(∃b1 b2.(s.eB p = b1 ++[ew] ++b2) ∧ evt no pending b1 a)
=⇒

evt machine trans s (REvt er (Some ew))s) ∧

(∀s r v p er ew opt.
clause name“evt-read-reg”∧
(*evt not blocked s p /\*)

(proc er = p) ∧
(er .action = Access R (Location reg p r)v) ∧
(s.eR p r = Some (v, ew opt))
=⇒

evt machine trans s (REvt er ew opt)s) ∧

(∀s a v p ew s′.
clause name“evt-write-buffer”∧
(*evt not blocked s p /\*)

(proc ew = p) ∧
(ew.action = Access W (Location mem a)v) ∧
(s′ =〈[ eR := s.eR;

eM := s.eM ;
eB :=(p 7→ ew ∈ s.eB p)s.eB;
eL := s.eL]〉)

=⇒
evt machine trans s (WEvt ew)s′) ∧

(∀s a v p ew b s′.
clause name“evt-write-mem”∧
evt not blocked s p ∧
(proc ew = p) ∧
(ew.action = Access W (Location mem a)v) ∧
(s.eB p = b ++[ew]) ∧
(s′ =〈[ eR := s.eR;

eM :=(a 7→ Some (v,Some ew))s.eM ;
eB :=(p 7→ b)s.eB;
eL := s.eL]〉)

=⇒
evt machine trans s (TauEvt ew)s′) ∧

(∀s r v p ew s′.
clause name“evt-write-reg”∧
(*evt not blocked s p /\*)

(proc ew = p) ∧
(ew.action = Access W (Location reg p r)v) ∧
(s′ =〈[ eR :=(p 7→ (r 7→ Some (v,Some ew))(s.eR p))s.eR;
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eM := s.eM ;
eB := s.eB;
eL := s.eL]〉)

=⇒
evt machine trans s (WEvt ew)s′) ∧

(∀s p eb.
clause name“evt-barrier”∧
(*evt not blocked s p /\*)

(proc eb = p) ∧
(eb.action = Barrier Mfence) ∧
(s.eB p = [ ])
=⇒

evt machine trans s (BEvt eb)s) ∧

(∀s eb.
clause name“evt-nop”∧
(*not blocked s p /\*)

((eb.action = Barrier Sfence) ∨ (eb.action = Barrier Lfence))
=⇒

evt machine trans s (BEvt eb)s) ∧

(∀s p s′ es.
clause name“evt-lock”∧
(s.eL = None) ∧
(s.eB p = [ ]) ∧
(s′ =〈[ eR := s.eR;

eM := s.eM ;
eB := s.eB;
eL := Some p]〉)

=⇒
evt machine trans s (LockE p es)s′) ∧

(∀s p s′ es.
clause name“evt-unlock”∧
(s.eL = Some p) ∧
(s.eB p = [ ]) ∧
(s′ =〈[ eR := s.eR;

eM := s.eM ;
eB := s.eB;
eL := None]〉)

=⇒
evt machine trans s (UnlockE p es)s′)

evt machine state to state constraint s =
λl.
case l of

Location mem a → OPTION MAP FST (s.eM a)
‖ Location reg p r → OPTION MAP FST (s.eR p r)

A path through the machine should only be considered if it reasonably corresponds to an event
structure. The okEpath predicate expresses the necessary conditions. (nth label and PL are from HOL’s
library for paths through a LTS. nth label gets the nth label from the head of the path, and PL returns
a (downward closed) set of all numbers that can be used to index into the path, which can be finite or
infinite. first returns the first state in a path.)

(get orig event (REvt e ) = Some e) ∧
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(get orig event (WEvt e) = Some e) ∧
(get orig event (BEvt e) = Some e) ∧
(get orig event = None)

locked segment path i j p =
j + 1 ∈ PL path ∧
i < j ∧
(∃es.nth label i path = LockE p es) ∧
(∃es.nth label j path = UnlockE p es) ∧
(∀k es.i < k ∧ k < j =⇒ nth label k path 6= UnlockE p es)

okEpath E path =
(* The REvt, WEvt and BEvt labels are exactly the set of events *)

(E .events = {e | ∃i.i + 1 ∈ PL path ∧ (get orig event (nth label i path) = Some e)}) ∧
(* No REvt, WEvt, or BEvt appears twice as a label *)

(∀i j e1 e2.
i + 1 ∈ PL path ∧ j + 1 ∈ PL path ∧
(get orig event (nth label i path) = Some e1) ∧ (get orig event (nth label j path) = Some e2) ∧
(e1 = e2)
=⇒

(i = j)) ∧
(* The REvt, WEvt, and BEvt parts of the trace follow po iico *)

(∀(e1, e2) ∈ (po iico E).∃i j .
i < j ∧ j + 1 ∈ PL path ∧
(get orig event (nth label i path) = Some e1) ∧ (get orig event (nth label j path) = Some e2)) ∧

(* atomic sets of events are properly bracketed by lock/unlock pairs *)

(∀es ∈ (E .atomicity).
∃i j p.

locked segment path i j p ∧
({e | e ∈ es ∧ e ∈ mem accesses E}
=
{e | ∃k.i < k ∧ k < j ∧

(get orig event (nth label k path) = Some e) ∧
e ∈ mem accesses E ∧
(proc e = p)}))

Finally, we require all paths to satisfy the okMpath predicate which ensures the head of the path
is in a starting state and that no write event stays in the buffer forever (okpath is part of HOL’s path
library and simple says that path is a path through the given LTS).

evt machine init state sc =
〈[ eR :=(λp r .OPTION MAP (λv.(v,None))(sc (Location reg p r)));

eM :=(λa.OPTION MAP (λv.(v,None))(sc (Location mem a)));
eB :=(λp.[ ]);
eL := None]〉

evt is init s = ∃sc.s = evt machine init state sc

okMpath path =
evt is init (first path) ∧
okpath evt machine trans path ∧
∀i e.
i + 1 ∈ PL path ∧ (nth label i path = WEvt e) ∧ is mem access e

=⇒
∃j .j + 1 ∈ PL path ∧ i < j ∧ (nth label j path = TauEvt e)
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To show that the two machines are equivalent, we define how labels and states are erased. erase label
simply removes the annotating information. erase state is phrased as a relation, because, when erasing
the write buffers, their type does not guarantee that an address/value pair can be extracted (although
it will be the case for all states on path satisfying okMpath). The annotated labels function returns the
set of all labels that could be annotated versions of its input, given any potential write annotations.

(erase label (TauEvt ) = Tau) ∧
(erase label (REvt e ) = Evt (proc e)e.action) ∧
(erase label (WEvt e) = Evt (proc e)e.action) ∧
(erase label (BEvt e) = Evt (proc e)e.action) ∧
(erase label (LockE p es) = Lock p) ∧
(erase label (UnlockE p es) = Unlock p)

erase state s s′ =
(∀p r .s′.R p r = OPTION MAP FST (s.eR p r)) ∧
(∀a.s′.M a = OPTION MAP FST (s.eM a)) ∧
(∀p.(LENGTH (s′.B p) = LENGTH (s.eB p)) ∧
∀n.n < LENGTH (s.eB p) =⇒
∃e a v.(EL n (s.eB p) = e) ∧

(proc e = p) ∧
(e.action = Access W (Location mem a)v) ∧
(EL n (s′.B p) = (a, v))) ∧

(s′.L = s.eL)

(annotated labels Tau ew e opt = {TauEvt ew}) ∧
(annotated labels (Evt p (Access R l v))ew e opt =
{REvt e e opt | e | (e.action = Access R l v) ∧ (p = proc e)}) ∧

(annotated labels (Evt p (Access W l v))ew e opt =
{WEvt e | (e.action = Access W l v) ∧ (p = proc e)}) ∧

(annotated labels (Evt p (Barrier b))ew e opt =
{BEvt e | (e.action = Barrier b) ∧ (p = proc e)}) ∧

(annotated labels (Lock p)ew e opt =
{LockE p es | es | T}) ∧

(annotated labels (Unlock p)ew e opt =
{UnlockE p es | es | T})

The following erasure theorems ensure that the machines are equivalent.

Theorem 5

∀sc. erase state (evt machine init state sc)(machine init state sc)

Proof sketch (full proof in HOL):
Immediate from the definitions.

�

Theorem 6

∀s s′.
erase state s s′

=⇒
(evt machine state to state constraint s =
machine state to state constraint s′)

Proof sketch (full proof in HOL):
Immediate from the definitions.

�

Theorem 7
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∀l l ′ ew er opt.
l ∈ annotated labels l ′ ew er opt

=⇒
(l ′ = erase label l)

Proof sketch (full proof in HOL):
Immediate from the definitions.

�

Theorem 8

∀s1 l s2 s′1.
evt machine trans s1 l s2 ∧
erase state s1 s′1
=⇒
∃s′2.
erase state s2 s′2 ∧
machine trans s′1 (erase label l)s′2

Proof sketch (full proof in HOL):
By case analysis on which transition the event machine takes.

�

Theorem 9

∀s′1 l ′ s′2 s1.
machine trans s′1 l ′ s′2 ∧
erase state s1 s′1
=⇒
∃ew ew opt.
∀l.l ∈ annotated labels l ′ ew ew opt =⇒
∃s2. erase state s2 s′2 ∧ evt machine trans s1 l s2

For this theorem, some of the annotation is “output” coming from the event machine itself: any
possible ew and ew opt events that should be recorded on TauEvt or REvt labels. However, the use
of annotated labels ensures that the event machine will be able to progress with any other annotating
information (such as the event’s iiid or eiid).
Proof sketch (full proof in HOL):

By case analysis on which transition the machine takes.
�

E.2 Linear valid executions

The following definition of linear valid execution is equivalent to the definition of valid execution. It
differs only by requiring a linear order over memory access events, instead of a partial order, and by
omitting two properties that are redundant given a linear ordering (those are: that memory writes have a
linear order, and that only finitely many memory reads are unrelated to a same-location memory write).

linear valid execution E X =
linear order X .memory order (mem accesses E) ∧
finite prefixes X .memory order (mem accesses E) ∧
(∀er ∈ (mem reads E).∀e ∈ (mem accesses E).(er , e) ∈ po iico E =⇒ (er , e) ∈ X .memory order) ∧
(∀ew1 ew2 ∈ (mem writes E).(ew1, ew2) ∈ po iico E =⇒ (ew1, ew2) ∈ X .memory order) ∧
(∀ew ∈ (mem writes E).∀er ∈ (mem reads E).∀ef ∈ (mfences E).

(ew, ef ) ∈ po iico E ∧ (ef , er) ∈ po iico E =⇒ (ew, er) ∈ X .memory order) ∧
(∀e1 e2 ∈ (mem accesses E).∀es ∈ (E .atomicity).

(e1 ∈ es ∨ e2 ∈ es) ∧ (e1, e2) ∈ po iico E

=⇒
(e1, e2) ∈ X .memory order) ∧

(∀es ∈ (E .atomicity).∀e ∈ (mem accesses E \ es).
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(∀e′ ∈ (es ∩ mem accesses E).(e, e′) ∈ X .memory order) ∨
(∀e′ ∈ (es ∩ mem accesses E).(e′, e) ∈ X .memory order)) ∧

X .rfmap ∈ reads from map candidates E ∧
check rfmap written E X ∧
check rfmap initial E X

Theorem 10

∀E X . linear valid execution E X =⇒ valid execution E X

Proof sketch (full proof in HOL):
Immediate from the definitions.

�

Theorem 11

∀E X memory order ′.
valid execution E X ∧
X .memory order ⊆ memory order ′ ∧
linear order memory order ′ (mem accesses E) ∧
finite prefixes memory order ′ (mem accesses E) ∧
(∀er ∈ (mem reads E).∀ew ∈ (mem writes E).
(loc er = loc ew) ∧ (ew, er) ∈ memory order ′ =⇒ (ew, er) ∈ X .memory order)
=⇒

linear valid execution E (X ⊕ memory order := memory order ′)

This theorem says that any linearization of memory order is still a valid memory ordering, as long as
it obeys the following additional condition. If ew is a memory write and er is a memory read from the
same location, then if the original memory ordering does not relate ew and er , the linearization must
make er come before ew. Otherwise, in the linearization, er might see ew’s write, but this should only
happen if ew precedes er in the original memory order.
Proof sketch (full proof in HOL):

By unfolding all of the relevant definitions.
�

Theorem 12

∀E X .
well formed event structure E ∧
valid execution E X

=⇒
∃memory order ′.
X .memory order ⊆ memory order ′ ∧
linear order memory order ′ (mem accesses E) ∧
finite prefixes memory order ′ (mem accesses E) ∧
(∀er ∈ (mem reads E).∀ew ∈ (mem writes E).
(loc er = loc ew) ∧ (ew, er) ∈ memory order ′ =⇒ (ew, er) ∈ X .memory order)

Proof sketch (full proof in HOL):
Define the following relation, complete memory order, that extends memory order with any missing

same-location memory read to memory write dependencies. Note that the definition below also adds in
enough other edges to remain transitive.

complete memory order E memory order =
memory order ∪
{(e1, e2) | ∃ew er .(ew, er) /∈ memory order ∧ (er , ew) /∈ memory order ∧

ew ∈ mem writes E ∧ er ∈ mem reads E ∧ (loc ew = loc er) ∧
(e1, er) ∈ memory order ∧ (ew, e2) ∈ memory order}
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We have the following theorem (proved in HOL) that allows us to linearize partial orders, maintaining
the finite prefixes property.

∀r s. countable s ∧ partial order r s ∧ finite prefixes r s =⇒ ∃r ′. linear order r ′ s ∧ finite prefixes r ′ s ∧ r ⊆ r ′

The rest of the theorem proceeds by unfolding definitions, noting that valid execution requires
X .memory order to have finite prefixes, which allows us to prove that complete memory order has
finite prefixes as well.

�

E.3 Abstract machine model/axiomatic model equivalence

E.3.1 Abstract machine validity

The path to X function produces an execution witness whose (linear) memory ordering comes from the
labels of its input path, whose reads-from map comes from the annotations on the labels, and whose
initial state corresponds to the first state in the path.

(get mem event (TauEvt e) = Some e) ∧
(get mem event (REvt e ) =

if is mem access e then
Some e

else
None) ∧

(get mem event = None)

path to X path =
〈[ memory order :=
{(e1, e2) |
∃j i l1 l2.

j + 1 ∈ PL path ∧ i ≤ j ∧
(nth label i path = l1) ∧ (nth label j path = l2) ∧
(get mem event l1 = Some e1) ∧ (get mem event l2 = Some e2)};

rfmap :={(ew, er) | (ew, er) | ∃i.i + 1 ∈ PL path ∧ (nth label i path = REvt er (Some ew))};
initial state := evt machine state to state constraint (first path)]〉

Theorem 13

∀E path.
well formed event structure E ∧
okEpath E path ∧
okMpath path

=⇒
linear valid execution E (path to X path)

Proof sketch (full proof in HOL):
By unfolding the definitions in linear valid execution and okEpath, and by using the following the-

orems that express how the labels of a valid path through the lts relate to each other. Each of these
theorems is a “safety” style theorem that is proved (in HOL) by induction on the location of the largest
label index mentioned. Some of them require nested inductions, and some rely on the being no duplicate
writes (which okEpath ensures).

no dup writes path =
∀i j ew.
SUC i ∈ PL path ∧
SUC j ∈ PL path ∧
(nth label i path = WEvt ew) ∧
(nth label j path = WEvt ew)
=⇒
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(i = j)

Each TauEvt comes from a WEvt.

Theorem 14

∀path j e.
okMpath path ∧
j + 1 ∈ PL path ∧
(nth label j path = TauEvt e)
=⇒
∃i.i < j ∧ (nth label i path = WEvt e) ∧ is mem access e

Each same processor pair of TauEvts comes from a pair of WEvts in order.

Theorem 15

∀path i j ew1 ew2.
okMpath path ∧
j + 1 ∈ PL path ∧
i < j ∧
(proc ew1 = proc ew2) ∧
(nth label i path = TauEvt ew1) ∧
(nth label j path = TauEvt ew2)
=⇒
∃k l.k < i ∧ l < j ∧ k < l ∧

(nth label k path = WEvt ew1) ∧ (nth label l path = WEvt ew2)

REvt labels have reads on them.

Theorem 16

∀path i e1 e2.
okMpath path ∧
i + 1 ∈ PL path ∧
(nth label i path = REvt e1 e2)
=⇒
∃l v.e1.action = Access R l v

WEvt labels have writes on them.

Theorem 17

∀path i e.
okMpath path ∧
i + 1 ∈ PL path ∧
(nth label i path = WEvt e)
=⇒
∃l v.e.action = Access W l v

BEvt labels have barriers on them.

Theorem 18

∀path i e.
okMpath path ∧
i + 1 ∈ PL path ∧
(nth label i path = BEvt e)
=⇒
∃f .e.action = Barrier f

Each same processor pair of WEvt labels is followed by a pair of TauEvt labels in order. This relies
on the liveness property in okMpath.

Theorem 19
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∀path i j ew1 ew2.
okMpath path ∧
j + 1 ∈ PL path ∧
i < j ∧
(proc ew1 = proc ew2) ∧
(nth label i path = WEvt ew1) ∧
(nth label j path = WEvt ew2) ∧
is mem access ew1 ∧
is mem access ew2 ∧
no dup writes path

=⇒
∃k l.l + 1 ∈ PL path ∧ k < l ∧ (nth label k path = TauEvt ew1) ∧ (nth label l path = TauEvt ew2)

TauEvts occur before a label that would require an empty buffer.

Theorem 20

∀path i j ef ew p es.
okMpath path ∧
j + 1 ∈ PL path ∧
i < j ∧
(((nth label j path = BEvt ef ) ∧ (proc ef = proc ew) ∧ (ef .action = Barrier Mfence)) ∨
(nth label j path = UnlockE (proc ew)es) ∨
(nth label j path = LockE (proc ew)es)) ∧
(nth label i path = WEvt ew) ∧
is mem access ew

=⇒
∃k.k < j ∧ (nth label k path = TauEvt ew)

A REvt label reads from the most recent TauEvt label if there are no intermediate same processor,
same location WEvt labels. Otherwise it reads from the most recent of those.

Theorem 21

∀path j er ew.
okMpath path ∧
j + 1 ∈ PL path ∧
no dup writes path ∧
(nth label j path = REvt er (Some ew))
=⇒

(loc er = loc ew) ∧
(value of er = value of ew) ∧
(((proc er = proc ew) ∧
∃i.
i < j ∧
(nth label i path = WEvt ew) ∧
(∀k.i < k ∧ k < j =⇒ nth label k path 6= TauEvt ew) ∧
(∀k ew′.i < k ∧ k < j ∧ (nth label k path = WEvt ew′) ∧ (proc er = proc ew′) =⇒

loc ew 6= loc ew′)) ∨
(∃i.
i < j ∧
(nth label i path = TauEvt ew) ∧
(∀k ew′.k < j ∧ (nth label k path = WEvt ew′) ∧ (proc er = proc ew′) ∧

(loc ew′ = loc er) =⇒
∃l.k < l ∧ l < j ∧ (nth label l path = TauEvt ew′)) ∧

(∀k ew′.i < k ∧ k < j ∧ (nth label k path = TauEvt ew′) =⇒ loc ew 6= loc ew′)))

A REvt that reads from the initial state is not preceded by write labels to its location.

Theorem 22
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∀path i er .
okMpath path ∧
i + 1 ∈ PL path ∧
(nth label i path = REvt er None)
=⇒

(value of er = evt machine state to state constraint (first path)(the (loc er))) ∧
∀j ew.
j < i ∧
((nth label j path = TauEvt ew) ∨ ((nth label j path = WEvt ew) ∧ (proc er = proc ew)))
=⇒

loc ew 6= loc er

Memory read and write labels inside of a locked segment are on the processor that is locked.

Theorem 23

∀path i j k p e e′.
okMpath path ∧
locked segment path i k p ∧
i < j ∧
j < k ∧
is mem access e ∧
((nth label j path = REvt e e′) ∨
(nth label j path = TauEvt e))
=⇒

(proc e = p)

WEvt and TauEvt labels with the same write occur atomically with respect to locks on the write’s
processor.

Theorem 24

∀path i j ew.
okMpath path ∧
locked segment path i j (proc ew) ∧
is mem access ew

=⇒
((∃k.i < k ∧ k < j ∧ (nth label k path = WEvt ew)) =
(∃k.i < k ∧ k < j ∧ (nth label k path = TauEvt ew)))

�

E.3.2 Abstract machine completeness

The proof that the abstract machine can perform any valid execution is currently partly in HOL and
partly by hand. We intend to fully mechanize the parts that currently by hand.

We first need several additional definitions for grouping and operating on sets of labels.

memL E X =
{TauEvt e | e ∈ mem writes E} ∪
{REvt er None | er ∈ mem reads E ∧ er /∈ range X .rfmap} ∪
{REvt er (Some ew) | er ∈ mem reads E ∧ (ew, er) ∈ X .rfmap}

localL E X =
{REvt er None | er ∈ reads E ∧ er /∈ range X .rfmap} ∪
{REvt er (Some ew) | er ∈ reads E ∧ (ew, er) ∈ X .rfmap} ∪
{WEvt e | e ∈ writes E} ∪
{BEvt e | e ∈ fences E}

proc es es = {proc e | e ∈ es}
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lockL E X =
{LockE p es | es ∈ E .atomicity ∧ (p ∈ proc es es)} ∪
{UnlockE p es | es ∈ E .atomicity ∧ (p ∈ proc es es)}

allL E X =
memL E X ∪
localL E X ∪
lockL E X

(l e (TauEvt e) = Some e) ∧
(l e (REvt e ) = Some e) ∧
(l e (WEvt e) = Some e) ∧
(l e (BEvt e) = Some e) ∧
(l e = None)

(l es (LockE p es) = Some es) ∧
(l es (UnlockE p es) = Some es) ∧
(l es = None)

Our overall strategy is to characterize an ordering on labels label order such that any sequence of
labels that follows this ordering has a path through the machine (that is also an okEpath and okMpath).
We then show that the properties in linear valid execution ensure that such a sequence exists. The first
part of the proof is not currently mechanized in HOL, but is proved by hand. We have proved in HOL
that there exists a partial ordering over labels lo such that label order ⊆ lo (which via hand proof has
finite prefixes), and therefore there exists a sequence consistent with label order (via the linearization
theorem mentioned in Section E.2.

label order E X =
{(l, l ′) | l ∈ memL E X ∧ l ′ ∈ memL E X ∧

(the (l e l), the (l e l ′)) ∈ X .memory order} ∪
{(l, l ′) | l ∈ localL E X ∧ l ′ ∈ localL E X ∧

(the (l e l), the (l e l ′)) ∈ po iico E} ∪
{(WEvt e,TauEvt e) |WEvt e ∈ allL E X ∧TauEvt e ∈ allL E X} ∪
{(TauEvt e,BEvt e′) | TauEvt e ∈ allL E X ∧BEvt e′ ∈ allL E X ∧

e′ ∈ mfences E ∧ (e, e′) ∈ po iico E} ∪
{(TauEvt e,LockE p es) | TauEvt e ∈ allL E X ∧ LockE p es ∈ allL E X ∧

e /∈ es ∧ ∃e′.e′ ∈ es ∧ e′ ∈ mem accesses E ∧ (e, e′) ∈ po iico E} ∪
{(LockE p es, l) | LockE p es ∈ allL E X ∧ l ∈ allL E X ∧
∃e.(l e l = Some e) ∧ e ∈ es ∧ e ∈ mem accesses E} ∪

{(l,UnlockE p es) | l ∈ memL E X ∧UnlockE p es ∈ allL E X ∧
∃e.(l e l = Some e) ∧ e ∈ es} ∪

{(UnlockE p es, l) | UnlockE p es ∈ allL E X ∧ l ∈ allL E X ∧
∃e e′.(l e l = Some e) ∧ e′ ∈ es ∧ e /∈ es ∧

(e′, e) ∈ X .memory order ∧
(l ∈ memL E X ∨ (e ∈ mem accesses E ∧ (proc e = p)))} ∪

{(l,LockE p es) | l ∈ memL E X ∧ LockE p es ∈ allL E X ∧
∃e e′.(l e l = Some e) ∧ e′ ∈ es ∧ e /∈ es ∧

(e, e′) ∈ X .memory order} ∪
{(UnlockE p es,LockE p′ es′) | UnlockE p es ∈ allL E X ∧ LockE p′ es′ ∈ allL E X ∧

es 6= es′ ∧ ∃e e′.e ∈ es ∧ e′ ∈ es′ ∧ (e, e′) ∈ X .memory order} ∪
{(WEvt e,WEvt e′) |WEvt e ∈ allL E X ∧WEvt e′ ∈ allL E X ∧

(e, e′) ∈ X .memory order ∧ (proc e = proc e′)}

lo1–lo4 correspond to clauses of label order, and lo events composes them to form a partial order.
The proof that lo events is a transitive and antisymmetric uses several lemmas that collapse particular
relation compositions into shorter ones, and then relies on the transitivity and antisymmetry of the
underlying memory and program orders. For example,
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∀E X l1 l2 l3 l4.well formed event structure E ∧ linear valid execution E X ∧ (l1, l2) ∈ lo4 E X ∧

(l2, l3) ∈ lo2 E X ∧ (l3, l4) ∈ lo3 E X =⇒ (l1, l4) ∈ lo1 E X

lo1 E X =
{(l, l ′) | l ∈ memL E X ∧ l ′ ∈ memL E X ∧

(the (l e l), the (l e l ′)) ∈ X .memory order}

lo2 E X =
{(l, l ′) | l ∈ localL E X ∧ l ′ ∈ localL E X ∧

(the (l e l), the (l e l ′)) ∈ po iico E} ∪
{(WEvt e,WEvt e′) |WEvt e ∈ allL E X ∧WEvt e′ ∈ allL E X ∧

(e, e′) ∈ X .memory order ∧ (proc e = proc e′)} ∪
{(l,WEvt e) | l ∈ localL E X ∧WEvt e ∈ allL E X ∧

∃e′.WEvt e′ ∈ localL E X ∧ (the (l e l), e′) ∈ po iico E ∧
(e′, e) ∈ X .memory order ∧ (proc e′ = proc e)}

lo3 E X =
{(WEvt e,TauEvt e) |WEvt e ∈ allL E X ∧TauEvt e ∈ allL E X}

lo4 E X =
{(TauEvt e,BEvt e′) | TauEvt e ∈ allL E X ∧BEvt e′ ∈ allL E X ∧

e′ ∈ mfences E ∧ (e, e′) ∈ po iico E}

lo events E X =
lo1 E X ∪ lo2 E X ∪
lo1 E X ◦ lo2 E X ∪
lo2 E X ◦ lo1 E X ∪
lo2 E X ◦ lo1 E X ◦ lo2 E X ∪
lo2 E X ◦ lo3 E X ◦ lo1 E X ∪
lo2 E X ◦ lo3 E X ◦ lo1 E X ◦ lo2 E X ∪
lo1 E X ◦ lo4 E X ◦ lo2 E X ∪
lo2 E X ◦ lo1 E X ◦ lo4 E X ◦ lo2 E X ∪
lo2 E X ◦ lo3 E X ◦ lo1 E X ◦ lo4 E X ◦ lo2 E X

lo5 defines a partial order over just the lock labels, using the above proof technique of collapsing
relational compositions.

lo5 E X =
{(LockE p es,LockE p es) | LockE p es ∈ lockL E X} ∪
{(UnlockE p es,UnlockE p es) | LockE p es ∈ lockL E X} ∪
{(l1, l2) | l1 ∈ lockL E X ∧ l2 ∈ lockL E X ∧

the (l es l1) 6= the (l es l2) ∧
∃e1 e2.e1 ∈ the (l es l1) ∧ e2 ∈ the (l es l2) ∧

(e1, e2) ∈ X .memory order} ∪
{(LockE p es,UnlockE p es) | LockE p es ∈ lockL E X ∧UnlockE p es ∈ lockL E X}

lo6–lo8 express how lock labels relate to other labels, to enforce the atomicity guarantees required of
a locked instruction.

lo6 E X =
{(LockE p es, l) | LockE p es ∈ allL E X ∧ l ∈ allL E X ∧

∃e.(l e l = Some e) ∧ e ∈ es ∧ e ∈ mem accesses E}

lo7 E X =
{(l,UnlockE p es) | l ∈ memL E X ∧UnlockE p es ∈ allL E X ∧

∃e.(l e l = Some e) ∧ e ∈ es}

43



lo8 E X =
{(UnlockE p es, l) | UnlockE p es ∈ allL E X ∧ l ∈ allL E X ∧

∃e e′.(l e l = Some e) ∧ e′ ∈ es ∧ e /∈ es ∧
(e′, e) ∈ X .memory order ∧
(l /∈ memL E X =⇒ ((proc e = p) ∧ e ∈ mem accesses E))}

lo68 E X = lo6 E X ∪ lo8 E X

lo79 E X = lo7 E X ∪ lo9 E X

Finally, lo defines a partial order over all labels in allL E X .

lo E X =
lo events E X ∪
lo5 E X ∪
lo5 E X ◦ lo68 E X ◦ lo events E X ∪
lo5 E X ◦ lo68 E X ◦ lo events E X ∪
lo events E X ◦ lo79 E X ◦ lo5 E X ∪
lo events E X ◦ lo79 E X ◦ lo5 E X ◦ lo68 E X ◦ lo events E X

Theorem 25

∀E X .
well formed event structure E ∧ linear valid execution E X

=⇒
partial order (lo E X)(allL E X)

Proof sketch (full proof in HOL): The proof follows the methodology introduced above of collapsing
certain relation compositions to other, shorter ones. The most intricate cases involve showing that there
is no cycle formed between lo events and lo6–lo9, since lock labels are not directly apparent in the
execution witness. �

Theorem 26

∀E X .
well formed event structure E ∧ linear valid execution E X

=⇒
label order E X ⊆ lo E X

Proof sketch (full proof in HOL): Immediate by expanding the definitions. �

Theorem 27

∀E X .well formed event structure E ∧ linear valid execution E X

=⇒
∃path. okEpath E path ∧ okMpath path

Proof sketch: Create a sequence from label order and assume that the machine has gone i steps through
the sequence, and show that it can take one more by cases on the next label. �

E.4 Executable checker

The executable checker essentially replaces sets with lists and quantification with iteration over the lists.

ch event structure =〈[ ch procs : proc list;
ch events : (′reg event)list;
ch intra causality : (′reg event)ch reln;
ch atomicity : (′reg event)list list]〉

ch execution witness =〈[ (* the memory order is the transitive closure of the pairs in ch memory order *)
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ch memory order : (′reg event)ch reln;
ch rfmap : ′reg event→ ′reg event option;
ch initial state : ′reg location→ value option]〉

cis mem access e =
case e.action of

Access d (Location mem a)v → T
‖ → F

is mem read e =
case e.action of

Access R (Location mem a)v → T
‖ → F

is mem write e =
case e.action of

Access W (Location mem a)v → T
‖ → F

is read e =
case e.action of

Access R l v → T
‖ → F

is write e =
case e.action of

Access W l v → T
‖ → F

is barrier e =
case e.action of

Barrier Mfence→ T
‖ → F

check po iico intra e1 e2 =
if proc e1 = proc e2 then

if e1.iiid.poi < e2.iiid.poi then
T

else if e1.iiid.poi = e2.iiid.poi then
e1 6= e2 ∧MEM (e1, e2)intra

else
F

else
F

check po iico in mo intra mo e1 e2 =
if check po iico intra e1 e2 then

MEM (e1, e2)mo

else
T

barrier separated intra barriers e1 e2 =
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(proc e1 = proc e2) ∧
EXISTS (λeb. check po iico intra e1 eb ∧ check po iico intra eb e2)

barriers

previous writes1 er r =
MAP FST (FILTER (λ(ew, er ′).(er ′ = er) ∧ is write ew ∧ (loc ew = loc er))r)

previous writes2 er intra es =
FILTER (λew.(loc ew = loc er) ∧ check po iico intra ew er)es

check maximal1 x xs r =
MEM x xs ∧
EVERY (λx ′.if x 6= x ′ then ¬(MEM (x, x ′)r) else T)xs

check maximal2 x xs intra =
MEM x xs ∧
EVERY (λx ′.if x 6= x ′ then ¬(check po iico intra x x ′) else T)xs

(cross[ ] = [ ]) ∧
(cross ((x, y) ∈ r)r ′ = MAP (λ(x ′, y′).(x, y′))r ′ ++ cross r r ′)

tinsert (x, y)r =
let left = FILTER (λ(x ′, y′).y′ = x)r in
let right = FILTER (λ(x ′, y′).x ′ = y)r in
(x, y) ∈ r ++
MAP (λ(x ′, y′).(x ′, y))left ++
MAP (λ(x ′, y′).(x, y′))right ++
cross left right

(tclose[ ]acc = acc) ∧
(tclose ((x, y) ∈ r)acc = tclose r (tinsert (x, y)acc))

check valid execution E X =
let mo = tclose (FILTER (λ(e1, e2).e1 6= e2)X .ch memory order)[ ] in
let writes = FILTER is write E .ch events in
let reads = FILTER is read E .ch events in
let mwrites = FILTER is mem write writes in
let mreads = FILTER is mem read reads in
let barriers = FILTER is barrier E .ch events in
let intra = tclose E .ch intra causality[ ] in
(* partial order *)

EVERY (λ(e1, e2).e1 6= e2)mo ∧
EVERY (λ(e1, e2).cis mem access e1 ∧ cis mem access e2 ∧

MEM e1 E .ch events ∧MEM e2 E .ch events)X .ch memory order ∧
(* linear order on mwrites *)

EVERY (λe1.EVERY (λe2.if e1 6= e2 then
MEM (e1, e2)mo ∨MEM (e2, e1)mo

else
T)

mwrites)
mwrites ∧

(* po iico in memory order *)

EVERY (λer1.EVERY (λer2. check po iico in mo intra mo er1 er2)mreads)
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mreads ∧
EVERY (λer .EVERY (λew. check po iico in mo intra mo er ew)mwrites)

mreads ∧
EVERY (λew1.EVERY (λew2. check po iico in mo intra mo ew1 ew2)mwrites)

mwrites ∧
EVERY (λew.

EVERY (λer .
if barrier separated intra barriers ew er ∨

EXISTS (λes.MEM ew es ∨MEM er es)E .ch atomicity then
check po iico in mo intra mo ew er

else
T)

mreads)
mwrites ∧

(* atomicity *)

EVERY (λes.
EVERY (λe.

if ¬(MEM e es) then
EVERY (λe′.

if is mem read e′ ∨ is mem write e′ then
MEM (e, e′)mo

else
T)

es ∨
EVERY (λe′.

if is mem read e′ ∨ is mem write e′ then
MEM (e′, e)mo

else
T)

es

else
T)

(mreads ++mwrites))
E .ch atomicity ∧
(* rfmc *)

EVERY (λer .
case X .ch rfmap er of

Some ew →
is read er ∧ is write ew ∧MEM ew E .ch events ∧
(loc er = loc ew) ∧ (value of er = value of ew)

‖ None→ T)
E .ch events ∧

(* rfmap written and initial*)

EVERY (λer .
case X .ch rfmap er of

Some ew →
if is mem write ew then

check maximal1 ew (previous writes1 er mo ++
previous writes2 er intra writes)mo

else
check maximal2 ew (previous writes2 er intra writes)intra

‖ None→
(case loc er of

Some l →
(value of er = X .ch initial state l) ∧
(previous writes1 er mo = [ ]) ∧
(previous writes2 er intra writes = [ ])
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‖ None→ F))
reads

check set eq es1 es2 = EVERY (λe.MEM e es2)es1 ∧ EVERY (λe.MEM e es1)es2

check well formed event structure E =
let intra = tclose (FILTER (λ(e1, e2).e1 6= e2)E .ch intra causality)[ ] in
EVERY (λe.MEM (proc e)E .ch procs)E .ch events ∧
EVERY (λe1.

EVERY (λe2.
if (e1.iiid = e2.iiid) ∧ (e1.eiid = e2.eiid) then

e1 = e2

else T)
E .ch events)

E .ch events ∧
EVERY (λ(e1, e2).MEM e1 E .ch events ∧MEM e2 E .ch events)E .ch intra causality ∧
EVERY (λ(e1, e2).e1 6= e2)intra ∧
EVERY (λ(e1, e2).e1.iiid = e2.iiid)intra ∧
¬MEM[ ]E .ch atomicity ∧
EVERY (λes.EVERY (λe.MEM e E .ch events)es)E .ch atomicity ∧
EVERY (λes1.

EVERY (λes2.
if ¬ check set eq es1 es2 then

EVERY (λe1.EVERY (λe2.e1 6= e2)es1)es2

else
T)

E .ch atomicity)
E .ch atomicity ∧

EVERY (λes1.EVERY (λe1.EVERY (λe2.e1.iiid = e2.iiid)es1)es1)E .ch atomicity ∧
EVERY (λe.case loc e of Some (Location reg p r)→ p = proc e ‖ → T)E .ch events ∧
EVERY (λ(e1, e2).¬ is mem write e1)intra ∧
EVERY (λe1.

EVERY (λe2.
if is write e1 ∧ e1 6= e2 ∧ (is write e2 ∨ is read e2) ∧

(e1.iiid = e2.iiid) ∧ (loc e1 = loc e2) then
MEM (e1, e2)intra ∨MEM (e2, e1)intra

else
T)

E .ch events)
E .ch events ∧

EVERY (λes.
EVERY (λe1.

EVERY (λe2.
if e1.iiid = e2.iiid then MEM e2 es else T)
E .ch events)

es)
E .ch atomicity ∧

EVERY (λes.EXISTS (λe. is mem read e)es)E .ch atomicity

The chE to E and chX to X functions convert from the list-based representation of event structures
and execution witnesses to the set-based one.

chE to E E =
〈[ procs := set E .ch procs;

events := set E .ch events;
intra causality :=
(set E .ch intra causality)+ ∪ {(e, e) | e ∈ (set E .ch events)};
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atomicity := set (MAP set E .ch atomicity)]〉

chX to X E X =
〈[ memory order :=(set X .ch memory order)+ ∪

{(e, e) | e ∈ mem accesses (chE to E E)};
rfmap :={(ew, er) | MEM er E .ch events ∧ (X .ch rfmap er = Some ew)};
initial state := X .ch initial state]〉

Theorem 28

∀E . check well formed event structure E = well formed event structure (chE to E E)

Proof sketch (full proof in HOL):
By expanding the definitions and using various theorems about EVERY, EXISTS and MEM from

HOL’s list library.
�

Theorem 29

∀E X .
well formed event structure (chE to E E)
=⇒

(check valid execution E X = valid execution (chE to E E)(chX to X E X))

Proof sketch (full proof in HOL):
By expanding the definitions and using various theorems about EVERY, EXISTS and MEM from

HOL’s list library.
�

F Change History

• r1068, 2008-12-19: First version of the axiomatic model.

• r1105, 2009-01-07: Fixed the definition of valid execution for infinite executions, adding the condi-
tion that only a finite number of same-location reads can be unrelated to a write to that location.
Fixed the definition of check rfmap written for reads from registers.

• Revision : 1746, 2009-03-25: Technical Report version, including the x86-TSO abstract machine
memory model, the equivalence result, the verified checker, discussion of litmus tests, and proof
outlines.
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