
Technical Report
Number 743

Computer Laboratory

UCAM-CL-TR-743
ISSN 1476-2986

Optimising the speed and accuracy
of a Statistical GLR Parser

Rebecca F. Watson

March 2009

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 Rebecca F. Watson

This technical report is based on a dissertation submitted
September 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Darwin College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

3

Abstract

The focus of this thesis is to develop techniques that optimiseboth the speed and
accuracy of a unification-based statistical GLR parser. However, we can apply these
methods within a broad range of parsing frameworks. We first aim to optimise the
level of tag ambiguity resolved during parsing, given that we employ a front-end
PoS tagger. This work provides the first broad comparison of tag models as we
considerboth tagging and parsing performance. Adynamicmodel achieves the
best accuracy and provides a means to overcome the trade-offbetween tag error
rates in single tag per word input and the increase in parse ambiguity over multiple-
tag per word input. The second line of research describes a novel modification to
the inside-outside algorithm, wherebymultiple inside and outside probabilities are
assigned for elements within the packed parse forest data structure. This algorithm
enables us to compute a set of ‘weighted GRs’ directly from this structure. Our
experiments demonstrate substantial increases in parser accuracy and throughput
for weighted GR output.

Finally, we describe a novelconfidence-basedtraining framework, that can, in prin-
ciple, be applied to any statistical parser whose output is defined in terms of its con-
sistency with a given level and type of annotation. We demonstrate that a semisu-
pervised variant of this framework outperforms both Expectation-Maximisation
(when both are constrained by unlabelled partial-bracketing) and the extant (fully
supervised) method. These novel training methods utilise dataautomaticallyex-
tracted from existing corpora. Consequently, they require no manual effort on be-
half of the grammar writer, facilitating grammar development.

4

5

Acknowledgements

I would first like to thank Ted Briscoe, who was an excellent supervisor. He has
helped to guide this thesis with his invaluable insight and Ihave appreciated his
patience and enthusiasm. Without his easy-going nature andconstant support and
direction this thesis would not have been completed as and when it was. Most
importantly, he always reminded me to enjoy my time at Cambridge and have a
nice glass of wine whenever possible! I would also like to thank John Carroll who
even at a distance has managed to provide a great deal of support and was always
available when I needed help or advice.

People from the NLIP group and administrative staff at the Computer Laboratory
were also very helpful. I enjoyed my many talks with Anna Ritchie, Ben Medlock
and Bill Hollingsworth. I will miss their moral support and I’m grateful that fate
locked us in a room together for so many years! Thanks also to Gordon Royle
and other staff at the University of Western Australia who supported me while I
completed my research while visiting this University at home in Perth.

I also greatly appreciated the feedback I received during myPhD Viva. Both of my
examiners, Stephen Clark and Anna Korhonen, provided helpful and thoughtful
suggestions which improved the overall quality of this work’s presentation.

This research would not have been possible without the financial support of both the
Overseas Research Students Awards Scheme and the Poynton Scholarship awarded
by the Cambridge Australia Trust in collaboration with the Cambridge Common-
wealth Trust.

On a personal note I would like to thank my family; my parents and my sister
Kathryn, who were always available to talk and provided a great deal of support.
Finally, special thanks goes to my partner James who moved across the world to
support me during my PhD. He made our home somewhere I didn’t mind working
on weekends.

6

Contents

1 Introduction 13
1.1 Natural Language Parsing 13

1.1.1 Problem Definition .13
1.1.2 Corpus-based Estimation .14
1.1.3 Statistical Approaches .. 15

1.2 Research Background .18
1.3 Available Resources .. 18

1.3.1 Corpora .18
1.3.2 Evaluation .23

1.4 Research Goals .26
1.5 Thesis Summary .26

1.5.1 Contributions of this Thesis .. 26
1.5.2 Outline of Subsequent Chapters .. 27

2 LR Parsers 28
2.1 Introduction .28
2.2 Finite Automata .29

2.2.1 NFA .29
2.2.2 DFA .31

2.3 LR Parsers .32
2.3.1 LR Parsing Model .33
2.3.2 Types of LR Parsers .34
2.3.3 Parser Actions .34
2.3.4 LR Table .35
2.3.5 Parsing Program .38
2.3.6 Table Construction .38

2.4 GLR Parsing .43
2.4.1 Relationship to the LR Parsing Framework 43
2.4.2 Table Construction .43
2.4.3 Graph-structured Stack .. 44
2.4.4 Parse Forest .47
2.4.5 LR Parsing Program .47
2.4.6 Output .50
2.4.7 Modifications to the Algorithm .. . 50

2.5 Statistical GLR (SGLR) Parsing 50
2.5.1 Probabilistic Approaches .. . 51

7

8 CONTENTS

2.5.2 Estimating Action Probabilities 51
2.6 RASP .53

2.6.1 Grammar .53
2.6.2 Training .58
2.6.3 Parser Application .58
2.6.4 Output Formats .61

3 Part-of-speech Tag Models 65
3.1 Previous Work .65

3.1.1 PoS Taggers and Parsers .65
3.1.2 Tag Models .67
3.1.3 HMM PoS Taggers .68

3.2 RASP’s Architecture .70
3.2.1 Processing Stages .70
3.2.2 PoS Tagger .70

3.3 Part-of-speech Tag Models 73
3.3.1 Part-of-speech Tag Files .. 73
3.3.2 Thresholding over Tag Probabilities 74
3.3.3 Top-ranked Parse Tags .75
3.3.4 Highest Count Tags .76
3.3.5 Weighted Count Tags .77
3.3.6 Gold Standard Tags .77
3.3.7 Summary .77

3.4 Part-of-speech Tagging Performance 77
3.4.1 Evaluation .77
3.4.2 Results .80

3.5 Parser Performance .. 81
3.5.1 Evaluation .81
3.5.2 Results .82

3.6 Discussion .84

4 Efficient Extraction of Weighted GRs 86
4.1 Inside-Outside Algorithm (IOA) 87

4.1.1 Background .87
4.1.2 The Standard Algorithm .88
4.1.3 Extension to LR Parsers .92

4.2 Extracting Grammatical Relations 94
4.2.1 Modification to Local Ambiguity Packing 94
4.2.2 Extracting Grammatical Relations 95
4.2.3 Problem: Multiple Lexical Heads 97
4.2.4 Problem: Multiple Parse Forests 100

4.3 The EWG Algorithm .101
4.3.1 Inside Probability Calculation and GR Instantiation 102
4.3.2 Outside Probability Calculation 105
4.3.3 Related Work .107

4.4 EWG Performance .107
4.4.1 Comparing Packing Schemes .108

CONTENTS 9

4.4.2 Efficiency of EWG .108
4.4.3 Data Analysis .109
4.4.4 Accuracy of EWG .110

4.5 Application to Parse Selection 110
4.6 Discussion .111

5 Confidence-based Training 112
5.1 Motivation .113
5.2 Research Background .114

5.2.1 Unsupervised Training .114
5.2.2 Semisupervised Training .. 114

5.3 Extant Parser Training and Resources 118
5.3.1 Corpora .119
5.3.2 Extant Parser Training .120
5.3.3 Evaluation .121
5.3.4 Baseline .121

5.4 Confidence-based Training Approaches 121
5.4.1 Framework .121
5.4.2 Confidence Measures .124
5.4.3 Self-training .125

5.5 Experimentation .. 125
5.5.1 Semisupervised Training .. 125
5.5.2 Unsupervised Training .130

5.6 Discussion .132

6 Conclusion 135

References 139

List of Figures

1.1 Tree and GR parser output for the sentenceThe dog barked. 14
1.2 Example sentence from Susanne. 19
1.3 Example bracketed corpus training instance from Susanne. 19
1.4 Example annotated corpus training instance from Susanne. 20
1.5 Example annotated training instance from the GDT. 20
1.6 Example sentence from the WSJ. .. . 21
1.7 Example bracketed corpus training instance from the WSJ.. 21
1.8 Example sentence from PARC 700 Dependency Bank. 22
1.9 Example of sentences from DepBank. 22

2.1 NFA for the RE(a|b)∗ab. 30
2.2 DFA for the RE(a|b)∗ab. 32
2.3 Algorithm to simulate a DFA. .. . 32
2.4 Components of an LR parser. .. 33
2.5 GrammarG1. 36
2.6 DFA forG1. 37
2.7 LR(0) items for the ruleS → NP VP. 39
2.8 GrammarG2. 44
2.9 Grammar NFA forG2. 45
2.10 Example parses forG2. 46
2.11 Example graph-structured stack forG2. 49
2.12 Example metagrammar rule. 55
2.13 The GR subsumption hierarchy 57
2.14 Simplified parse forest within the extant parser. 60
2.15 Example syntactic tree output. 62
2.16 Example n-best GR and weighted GR output. 64

3.1 RASP processing pipeline. .. . 71
3.2 Example lexical entries in the tag dictionary. 71
3.3 Example mapping from PoS tag to terminal category. 72
3.4 PoS tag output forWe all walked up the hill 73
3.5 SINGLE-TAG and ALL-TAG PoS tags example. 74
3.6 MULT-SYS PoS tags example. .. 75

4.1 The inside (e) and outside (f) regions for nodeNi. 89
4.2 Calculation of inside probabilities for nodeNi. 90
4.3 Calculation of outside probabilities for nodeNi. 90

10

LIST OF FIGURES 11

4.4 Example GR output using an altered GR specification. 101
4.5 Example EWG data structures forN4. .104
4.6 Example EWG data structures forN2. .104
4.7 Comparison of total CPU time. .. 108
4.8 Comparison of total memory. .. . 109
4.9 Scatter graph of parse ambiguity to sentence length. 110

5.1 Example RASP output for a sentence from Susanne. 120
5.2 Cross entropy convergence for semisupervised EM. 128
5.3 Performance overS for Cr and EM. .129
5.4 Performance overW for Cr and EM. .129
5.5 Performance overSW for Cr and EM. .130
5.6 Tuning over the WSJ (W) from Susanne (S). 131
5.7 Cross entropy convergence for EM over unsupervisedSu. 132
5.8 Performance overSu for Cr and EM. .133

List of Tables

1.1 Corpora summary. .24

2.1 Transition table for the NFA in Figure2.1. 31
2.2 LALR(1) table forG1. 37
2.3 Example stack configuration forG1. 38
2.4 The canonical LR(0) sets forG1. 41
2.5 Generalised LALR(1) table forG2. 45
2.6 Example stack configurations forG2. 48
2.7 Statistical models over the action table forG2. 54
2.8 Example of the alternative LR parser normalisation methods. 55
2.9 Probabilities and GR specifications for nodes in Figure2.14. 63

3.1 Tag setup descriptions. 78
3.2 Tagging Performance. .. . 80
3.3 Parsing Performance. .. . 82

4.1 Inside probabilities and filled GR specifications example. 98
4.2 Outside probabilities, and IO probabilities example. 99
4.3 Performance of the two parse selection algorithms. 111

5.1 Corpus split forS, W andSW. .126
5.2 Semisupervised confidence-based training performance. 127
5.3 Unsupervised confidence-based training performance. 132

12

Chapter 1

Introduction

This thesis develops new parse selection models and training algorithms to improve parsing
accuracy and efficiency of an existing and well-developed natural language parser. This chapter
first describes, in §1.1, the problem ofnatural language parsing; processing raw text to provide
a linguistic analysis of the text’s meaning. The work in thisthesis utilises and modifies an
existing well-developed parser namedRASP. We discuss RASP’s research background in §1.2,
and describe the resources available for use throughout in §1.3. Finally, in §1.4 and §1.5 we
describe the contributions of this thesis and provide an overview of the chapters to follow,
respectively.

1.1 Natural Language Parsing
In this section, we first define the problem ofnatural language parsing. In particular, we fol-
low previous work and define the problem as a supervised learning task. We discuss current
statistical approaches to parsing and the current state-of-the-art performance for this task.

1.1.1 Problem Definition
In natural language processing, aparser is a computer program capable of analysing a string
of words that form a well-formed sentence to determine a suitable grammatical structure: a
parse.1.1 Parses can be represented in a number of ways. Aparse tree(or syntactic tree,
tree, henceforth) represents the syntactic structure of each phrase (e.g. verb, noun or adjective
phrases).Grammatical relations(GRs, or relational dependencies) represent the grammatical
roles of different words in the sentence (e.g. subject, object). The parser’sgrammareffectively
provides a mapping from word strings (i.e. terminals of the grammar) to the set of possible
parses. For example, in context-free grammars (CFG) the grammar specifies syntax using sim-
ple rule rewrites to build a syntactic tree over a sentence. We use the terms analysis, derivation
and parse interchangeably and consider the specific output formats as independent, given the
analysis determined by the parser. For example, for the sentence:The dog barked, our extant
parser outputs the tree and GRs in Figure1.1.

The problem ofparse selectionis to choose the correct parse from the set of all possi-
ble parses. This task is nontrivial as large numbers of parses can result due to ambiguities in
structural attachment and interaction between rules in thegrammar. As a result, researchers
have favoured statistical techniques whereby themost probable parseis assumed to be correct.

1.1Parsers optionally include asentence detectioncomponent that marks the sentence boundaries within the raw
text.

13

14 1. INTRODUCTION

TAGGED SENTENCE: (The_AT dog_NN1 bark+ed_VVD)

(T/txt−sc1/−
 (S/np_vp

(N1/n dog_NN1))
The_AT

(NP/det_n1

 (V1/v bark+ed_VVD)))

TREE: T/txt−sc1/−

 S/np_vp

NP/det_n1

The_AT N1/n

dog_NN1

bark+ed_VVD

V1/v

GRs: (ncsubj bark+ed_VVD dog_NN1 _)
(det dog_NN1 The_AT)

Figure 1.1: Tree and GR parser output for the sentenceThe dog barked. TAGGED is the
preprocessed part-of-speech (PoS) tagged sequence for this sentence. The GR typesdet and
ncsubj correspond to determiner and nonclausal subject relations, respectively. Note that the
labelled bracketing for the tree (TREE) corresponds to the syntactic structure on the right.

Thus, parse selection is often the task ofparse ranking, where parses are ranked from most to
least probable and the first parse is considered correct. As it is infeasible to output all possible
parses, parsers output only then highest ranked parses (then-best list).

1.1.2 Corpus-based Estimation

In order to learn the probability distributions of the statistical component of the parser, we
often base the distribution on an electronic and structuredtext; acorpus. This task is often
supervisedin that the corpus, i.e. training data, will contain examples of raw text paired with
the full and correct analysis. A parse ranking model should be able to model and generalise
from the underlying linguistic preferences of the corpus’domain(e.g. newswire text). That
is, a parse ranking model should model theunderlying distribution(UD) which generates the
domain’s linguistic preferences, whereby the primary assumption made is that thistraining data
is representative of the domain. Arguably, learning the UD over more homogeneous domains is
easier than over broader domains.

The parser is applied to sentences (or raw text) termedtest data. Ideally, both the test and
training data are drawn from the same domain, whereby the training data is consideredin-
domain. In contrast, the data may instead beout-of-domain. Therefore, overfitting the UD is
undesirable, though generalisation or inductive bias mustbe capable of capturing the underlying
preferences manifest in this distribution.

As we aim to model the UD, training over in-domain data has been shown to outperform
models trained over out-of-domain data.Gildea (2001) illustrates that training and testing
Model 1 of Collins (1999) on two different corpora reduces parsing accuracy significantly.
However, training over both corpora slightly increases accuracy when testing on either cor-
pus. This illustrates the need for a balanced training corpus that can potentially generalise well
to unseen domains. Even small levels of in-domain data have been shown to improve parser
accuracy. For example,Tadayoshiet al. (2005) adapt a statistical parser trained on newswire

images/parseeg.eps

1.1 Natural Language Parsing 15

text to the biomedical domain by retraining on the Genia Corpus. Augmenting a parser, trained
initially over a different domain, to model the preferencesof another is often referred to as
parser tuningor domain adaptation.

We first define parsing in terms of a supervised learning task,in which we aim to induce the
function f : X →Y, given training examples〈xi ,yc〉,xi ∈ X,yc ∈Y. We definef (xi) ∈Y as the
selected candidate forxi, whereyc is the correct candidate for training examplei. The function
f utilises the functionGEN to determine set of possible candidates forxi i.e. GEN(xi) ⊂ Y.
In parsing,xi ∈ X is thei-th sentence,yi j ∈ GEN(xi) is the j-th parse for thei-th sentence and
yc ∈ Y is the correct analysis. Asyc is often a syntactic tree, such corpora are also referred
to astreebanks. The functionGEN(xi) creates the compact data structure that represents all
possible parses for sentencexi. The size of this structure depends largely on the complexity of
the particular parser’s grammar.

1.1.3 Statistical Approaches
For probabilistic approaches to parsing, we utilise the supervised learning task framework,
which assigns a probability to each parseyi j ∈ Y for sentencexi. We utiliseyi j to denote an
arbitrary parse, andyc to denote the correct parse, for the sentencexi. Within statistical parsers,
the most probable parse is selected as the best candidate forthe correct parse:

f (xi) = argmaxyi j∈GEN(xi)Pr(xi,yi j)

Statistical parsing models incorporate structural and/orlexical parameters (features) over
yi j that aim to include sufficient context to allow the model to learn and reflect linguistic pref-
erences. Models differ in their choice of such features and the functionPr, which is used to
estimate the importance of features in relation to one another. Approaches can be separated in
a variety of ways. We considergenerativeor discriminativeandparametricor nonparametric
approaches. Following, we review current parsing models interms of these types and their
training criteria, and discuss the types of features they employ.

Training

Generative models definePr using a joint probability model:P(xi,yi j). Such models arepara-
metric in that they utilise a specific set of features; each with an associated weight, where the
probability of a parse is based on the product of the corresponding features multiplied by their
associated weights. These models are allhistory-basedparsing models, as defined byBlack
et al. (1991), whereby a parse’s probability is the product of the probabilities for each decision
which results in creation of the parse. For example, in a probabilistic CFG (PCFG) model, the
features represent the count of each CFG rule applied, while the weights represent the prob-
ability of the corresponding rule. The predominant method of training generative parametric
models is to use maximum likelihood estimation (MLE) with a ‘smoothing’ method to allow
for unseen data. MLE assigns the weights of the model so as to maximise the total probability
of all parses in the training data.

In parametric discriminative models,Pr is the conditional likelihoodP(yi j |xi). That is,
we model the probability only in terms of other parses for thesentencexi. These conditional
probability models (such as log-linear models) utilise iterative training schemes to ensure they
maximise the log-likelihood of the training data and to compensate for dependencies amongst
features. In either case, for any given sentence in the corpus, the MLE training criteria does
not ensure that the likelihood of the training parse is greater than that of incorrect (competing)

16 1. INTRODUCTION

parses. Nevertheless, conditional models are popular in the literature, having led to impressive
ranking results when combined with large feature sets (e.g.Charniak & Johnson 2005; Clark &
Curran 2004b).

In contrast, nonparametric models aim to directly differentiate between incorrect and correct
parses for a given sentence. Thus all such models are discriminative andPr is replaced by,
for example, margin length values in maximum-margin approaches. Nonparametric approaches
such as boosting, SVMs, and (variants of) the Perceptron algorithm have also yielded impressive
results (e.g.Collins & Duffy 2002; Kudoet al.2005; Shen & Joshi 2004). However it is unclear
whether the different training criteria, or the number and type of features, provide a greater
gain in accuracy.Collins & Roark(2004) report similar accuracy results for both parametric
and nonparametric models over the same feature sets. Furthermore, nonparametric models are
harder to train using either semisupervised or unsupervised techniques.

Models also differ in the way in which the underlying grammaris learnt. The statistical
model can be learnt over a manually written grammar, or the grammar may be explicitly or
implicitly learnt over a supervised corpus. Thus, to createa broad-coverage parser, manual
effort is required mainly to write the grammar or create the corpus. Though some approaches,
such as ‘U-DOP’, an unsupervised variant of the ‘DOP’ parsing model, assume no grammar is
available and instead assume a binary branching unlabelledPCFG grammar (Bod, 2006).

Feature Spaces

PCFG models are widely acknowledged in the literature as inadequate due to their lack of
context. Conversely, other parametric models such as the DOPmodel (Bod, 1998) should be
able to model the UD accurately given explicit tree and subtree features. We can think of the
level of context available (whether implicit or explicit inthe model) to lie on a linear scale. At
one end of the scale there are context-free models like PCFG, while at the other end we place
full (sentential) context models like DOP. In general, we assume that the number of feature
types and instances in a model is directly proportional to the level of context considered. Thus
as we move along this scale, increasing the level of context,we decrease the level of bias, that
is, the model is less likely to underfit the data. However thisresults in an associated increase
in the number of features where the model is more likely to overfit the data; the ‘bias versus
variance’ trade-off.

Collins (2004) highlights that due to convergence requirements and to avoid overtraining,
the number of training samples should be proportional to thesize of the feature space. There-
fore, we should only include as many features (or as much context) as is optimal to ensure
effective generalisation. Both nonparametric and conditional models are valued for their ability
to incorporate a large number of (possibly dependent) features. These features are usually either
n-gram statistics or CFG(-like) rules labelled with a varying amount of additional structural and
or lexical context. Therefore, the latter set of features are ‘DOP-like’ in that they model context
with features resembling subtrees (optionally labelled with lexical information).

However, the large number of lexical features (including n-gram statistics and lexicalised
structural features) do not generalise well to other domains. Gildea(2001) illustrates that re-
moving bilexical statistics (derived from the WSJ Corpus) from Model 1 of Collins (1999)
decreases performance by less than 1% over the WSJ while performance was unaffected when
testing over the Brown Corpus (we describe these corpora in §1.3.1). Similarly, Klein & Man-
ning (2003) argue that lexicalised parsing models achieve around 4% absolute improvement
over unlexicalised models trained and tested on the WSJ.Bikel (2004) illustrates that the bilexi-

1.1 Natural Language Parsing 17

cal parameters of Model 2 ofCollins(1999) contribute less than 0.5% accuracy, while removing
all of the lexical features results in a 3% decrease in accuracy when training and testing over
the WSJ.

Further, efficiency is an important issue for real-world applications. All nonparametric and
conditional models are reliant on an initial generative model to define the space of competing
parses, theparse forest. Many also require the initial set of candidate parses from the parametric
model to rerank (e.g.Collins & Duffy 2002; Kaplanet al.2004; Kudoet al.2005). Suchrerank-
ing parsing models separate the parsing and selection phases, though some include the initial
generative probability as a feature of the discriminative model e.g.Collins & Roark(2004). It is
often impracticable to unpack all parses, though we would ideally like to provide the reranking
model with the set of all candidate parses if this model is more accurate. Specifically, there is
a trade off between efficiency and accuracy.Collins & Roark(2004) define a more efficient
dynamic programming approach to enable their nonparametric model to train over and rerank
all parses. However this model is only able to consider a set of local features, available at any
node in the parse forest. This precludes many of the nonlocalfeatures that can only be applied
to an entire parse.

State-of-the-art Performance

Comparison of parsing systems is hampered, as performance isreported for parsers trained on
different treebanks, tested over different test suites andevaluated using a number of evaluation
schemes (depending on the parser’s preferred output: tree or GRs). Comparison of performance
over GRs is further complicated as parsers extract GRs with differing levels of granularity.

Currently, parsers considered state-of-the-art are often trained and tested on the WSJ and
favour the application of highly lexicalised probabilistic models. These models report precision
and recall PARSEVAL scores (Black et al., 1991) of around 90% (e.g.Charniak 2000; Collins
1999; Ratnaparkhi 1999). However, the WSJ is arguably a more homogeneous and simpler
corpus than other corpora, such as the Susanne treebank overwhich RASP is trained.

Briscoe & Carroll(2006) compare RASP’s performance to that of the XLE parser ofKaplan
et al. (2004) and of Model 3 ofCollins (1999). Though the comparison is nontrivial, they
illustrate that RASP is substantially faster than both parsers, with parser accuracy higher than
that of the Collins’ parser and ranging between ‘cut-down-grammar’ and ‘complete-grammar’
XLE systems. Further RASP is trained over a subset of the Brown Corpus, that is, an out-of-
domain training set. Therefore, RASP’s accuracy and efficiency is arguably state-of-the-art.

Discussion

Nonparametric models which aim to directly differentiate correct from incorrect parses are com-
plex to train and often inefficient to decode. Nevertheless,they are currently popular because
of their ability to accurately model the UD and ensure that the probability (or score) of correct
parses exceeds that of competing incorrect ones for training inputs. Other recent parametric
models, such as log-linear models, are also complex to trainand inefficient to decode. How-
ever, if compared to nonparametric models using the same feature sets and training data, they
produce similar ranking accuracy (e.g.Collins & Roark 2004).

Generative parametric models capable of direct MLE are currently disfavoured because em-
pirically their performance has been worse.Briscoe & Carroll(1993) demonstrate that a gen-
erative probability distribution defined over the actions of a (nondeterministic) generalised LR
parser (GLR,Tomita 1987) provides additional context to the ranking model obtainedfrom a
standard PCFG. Further, the parser retains advantages such as simple estimation and efficient

18 1. INTRODUCTION

decoding. In this thesis we utilise this GLR parser, in search of parametric models that can
be easily trained and efficiently decoded and which readily support semisupervised training
techniques.

1.2 Research Background
RASP resulted as part of the tool-set developed within the Alvey Natural Language Tools
(ANLT) for English at the University of Cambridge funded by the UK Alvey Programme. The
parser is a generative (parametric) model based on the GLR framework.1.2

RASP (the ‘robust accurate statistical parser’) is a state-of-the-art system for text processing
distributed freely for research purposes.1.3 It is a set of pipelined modules for sentence boundary
detection, word tokenisation, part-of-speech tagging andsyntactic parsing which recovers the
grammatical relations between words, phrases and clauses in individual text sentences. The full
(Lisp and C) code base runs to several hundred thousand lines.The RASP system, described
by Briscoe & Carroll(2002), has been downloaded by over 160 groups. This paper, describing
the first release, has been cited 147 times (Google Scholar 14/08/07) in descriptions of further
research utilising RASP by researchers in the UK, Europe, theUS, Australia and Asia. It
has been used to automatically annotate over 1 billion wordsof English text in the context
of published work developing lexical databases, question-answering systems, text classifiers,
information extraction systems, summarisers, and so forth. The second release of this system is
described byBriscoeet al. (2006).

1.3 Available Resources
This thesis is the result of research conducted at the Computer Laboratory of the University
of Cambridge, under the supervision of Professor E.J. Briscoe, who co-developed RASP. As a
result, this work benefits from direct access to RASP’s grammar, code and all associated pro-
cessing components. RASP is utilised in a number of research projects both within the Com-
puter Laboratory, and in other universities and in commercial projects. As a result the grammar,
associated processing components and also evaluation schemes were developed, and thence,
varied throughout the life of this work. The data and evaluation schemes used throughout this
work are described in the following sections. Results in subsequent experimental chapters are
comparable within their respective chapters only due to changes that occurred in the grammar
and/or evaluation framework.

1.3.1 Corpora
The following sections describe data in use throughout thiswork as training, tuning or test data.
The treebanks we use in this work are in one of two possible formats. In either case, a treebankT
consists of a set of training instances. Each training instancet ∈ T is a pair(s,M), wheres is the
automatically preprocessed sentence text (tokenised and labelled with PoS tags, see §3.2) andM
is either a fully annotated derivation,A, or an unlabelled bracketingU . This bracketing may be
partial in the sense that it may be compatible with more than one derivation produced by a given
parser. Although occasionally the bracketing is itself complete, the alternative nonterminal
labelling causes indeterminacy. Often the ‘flatter’ bracketing available from existing treebanks
is compatible with several alternative ‘deeper’ mostly binary-branching derivations output by a

1.2We provide details of this framework, and specific details ofthe RASP system, in the following chapters.
1.3Seehttp://www.informatics.susx.ac.uk/research/nlp/rasp/ for license and download details.

1.3 Available Resources 19

parser.

Susanne Treebank

The Susanne Corpus (henceforth, Susanne) is a balanced subset of the Brown Corpus which
consists of 15 broad categories of American English texts (Sampson, 1995). This treebank con-
tains detailed syntactic derivations represented as trees, but the node labelling is incompatible
with our system’s grammar. Figure1.2 illustrates an example sentence from the corpus. The
RASP developers built two system-compatible corpora from Susanne, a bracketed corpus and
an annotated corpus.

To build the bracketed corpus, sentences were extracted from Susanne and automatically
preprocessed. A few multiwords were retokenised, and the sentences were retagged using
RASP’s PoS tagger. The bracketing was then automatically anddeterministically modified
to more closely match that of RASP’s grammar. This pipeline resulted in a bracketed corpus
of 7014 sentences. Figure1.3 illustrates the corresponding bracketed corpus training instance
extracted from the original annotation in Figure1.2. The first item (line) is the preprocessed
word-stems with the corresponding PoS tags (determined using the original word rather than
the stem). The second line provides unlabelled bracketing over the words of the sentence.

A01:0700a - APPGm His his [S[Ns:s.
A01:0700b - NN1c petition petition .Ns:s]
A01:0700c - VVDv charged charge [Vd.Vd]
A01:0700d - JJ mental mental [Ns:o.
A01:0700e - NN1n cruelty cruelty .Ns:o]S]
A01:0700f - YF +. - .O]

Figure 1.2: Example sentence from Susanne. The third columnillustrates the PoS
tag while the fourth and fifth column show the word and word-stem, respectively.
The final column illustrates the syntactic structure of the sentence.

his_APP$ petition_NN1 charge_VVN mental_JJ cruelty_NN1 .
((his petition) charge (mental cruelty))

Figure 1.3: Example bracketed corpus training instance from Susanne.

A fully annotated and system compatible treebank of 4801 training instances (3543 of which
are unique) from this bracketed corpus was also created. Thesystem parser was applied to
construct a parse forest of analyses which are compatible with the bracketing. For 1258 training
instances, the grammar writer interactively selected correct (sub)analyses within this set until a
single analysis remained. The remaining 2285 training instances were automatically parsed and
all consistent derivations were returned. Since the bracketing is consistent with more than one
possible derivation for roughly two thirds of the data, the 1258 training instances were repeated
twice so that counts from these trees were weighted more highly. The level of reweighting
was determined experimentally using some held out data fromSusanne. Even given the partial

20 1. INTRODUCTION

(his_APP$ petition_NN1 charge_VVN mental_JJ cruelty_NN1 ._.)
(T/txt-sc1/-+

(S/np_vp (NP/det_n1 his_APP$ (N1/n petition_NN1))
(V1/v_n1 charge_VVN

(N1/ap_n1/- (AP/a1 (A1/a mental_JJ)) (N1/n cruelty_NN1))))
(End-punct3/- ._.))

Figure 1.4: Example annotated corpus training instance from Susanne.

bracketing derived from Susanne, the costs of deriving the fully annotated treebank are high, as
interactive manual disambiguation takes an average of ten minutes per sentence.

Returning to our previous example, Figure1.4 illustrates the fully annotated training in-
stance. Again, the first line contains the preprocessed textwhile the second element (subse-
quent lines) correspond to the fully annotated derivation that will be directly compatible with (a
specific version of) RASP’s grammar.

Grammar Development Treebank

The grammar development treebank (GDT) is an annotated corpus, a list of around two thou-
sand manually maintained sentences paired with correct derivations. Figure1.5 illustrates an
example annotated training instance from the GDT. Each training instance consists of a pair; the
preprocessed text and a corresponding derivation which is compatible with the current version
of RASP’s grammar. The GDT does not include useful frequency information as, in general,
each grammatical rule occurs in derivations as many times asis required to illustrate its in-
teraction with other rules to define the linguistic coverageof the system. Furthermore, these
sentences are short and relatively artificial, having been constructed by the grammar writer to
elucidate coverage and minimise ambiguity.

(The_AT technology_NN1 is_VBZ long_JJ in_II the_AT tooth_ NN1)
(T/txt-sc1/--

(S/np_vp (NP/det_n1 The_AT (N1/n technology_NN1))
(V1/be_ap/- is_VBZ

(AP/a1
(A1/a_pp long_JJ

(PP/p1
(P1/p_np in_II

(NP/det_n1 the_AT (N1/n tooth_NN1)))))))))

Figure 1.5: Example annotated training instance from the GDT.

Wall Street Journal

The Penn Treebank (PTB) is a corpus of over 4.5 million words ofAmerican English (Marcus
et al., 1993). The corpus has been annotated with PoS tags and around halfhas been annotated
with skeletal syntactic structure. As this corpus is the largest treebank available for English,

1.3 Available Resources 21

((S
(NP-SBJ (DT The) (JJ new) (NN rate))
(VP (MD will)

(VP (VB be)
(ADJP-PRD (JJ payable)

(NP-TMP (NNP Feb.) (CD 15)))))
(. .)))

Figure 1.6: Example sentence from section 2 of the WSJ. Brackets are labelled
with the phrasal category or with the PoS tag for each word.

The_AT new_JJ rate_NN1 will_VM be_VB0 payable_JJ Feb._NPM 1 15_MC ._.
((The new rate) (will (be (payable (Feb. 15)))) .)

Figure 1.7: Example bracketed corpus training instance from the WSJ.

the Wall Street Journal (WSJ) sections of the Penn Treebank (PTB) are employed as both train-
ing and test data by many researchers in the field of statistical parsing. The annotated corpus
implicitly defines a grammar by providing labelled bracketing over words annotated with PoS
tags. An example annotated sentence is shown in Figure1.6.

We extract the unlabelled bracketing from all sections of the WSJ, including those for the
de facto standard training sections (2-21 inclusive). The pipeline is the same as that used for
creating the bracketed Susanne corpus. However we do not automatically map the bracketing
to be more consistent with the system grammar. Instead we simply remove unary brackets.
The de facto training set is compiled to form a bracketed corpus of 38,329 training instances.
Figure1.7shows the resulting bracketed treebank training instance for the corresponding WSJ
sentence shown in Figure1.6.

Parc 700 Dependency Bank

King et al. (2003) describe the development of the PARC 700 Dependency Bank, a gold-
standard set of relational dependencies for 700 sentences drawn at random from section 23
of the WSJ (the de facto standard test set for statistical parsing). Briscoe & Carroll(2006) parse
the corpus with RASP (and manually correct the output if required), to create a doubly anno-
tated data set, enabling (nontrivial) comparison of RASP with other state-of-the-art statistical
parsers. Figure1.8 illustrates an example sentence from the resulting corpus with both parser’s
annotation.

We test our parser on the same 560 sentence subset (DepBank, henceforth) thatKaplanet al.
(2004) utilise in their study of parser accuracy and efficiency. Unless otherwise stated we utilise
DepBank without gold standard PoS tagging, that is, we apply our entire automated pipeline
including PoS tagger. A gold standard named-entity (NE) mark-up for DepBank was provided
by Stephan Riezler, co-author ofKaplanet al. (2004). The gold standard RASP annotation
over the NE markup was also developed in the format shown in Figure1.8. Thus there are two
gold-standards for DepBank, one with and one without NE mark-up.

As this is a test corpus, we build the corresponding files to parse that consist only of the

22 1. INTRODUCTION

sentence(
id(wsj_2351.19, parc_23.15)
date(2002.6.12)
validators(T.H. King, J.-P. Marcotte)

sentence_form(But that won’t be easy.)
structure(adjunct(be˜0, but˜6)

adjunct(be˜0, not˜5)
stmt_type(be˜0, declarative)
subj(be˜0, pro˜2)
tense(be˜0, fut)
xcomp(be˜0, easy˜1)
adegree(easy˜1, positive)
subj(easy˜1, pro˜2)
num(pro˜2, sg)
pron_form(pro˜2, that)
adegree(but˜6, positive))

rasp(
(conj But be)
(ncsubj be that _)
(aux be wo)
(ncmod _ easy n’t)
(xcomp _ be easy)))

Figure 1.8: Example sentence from PARC 700 Dependency Bank annotated using
both RASP and the XLE parser ofKaplanet al. (2004).

But_CCB that_DD1 wo_VM n’t_XX be_VB0 easy_JJ ._.
Would_VM <w>Mr. Antori_NP2</w> ever_RR get_VV0 back_RL in _II ?_?

Figure 1.9: Example of sentences from DepBank.

preprocessed sentences. To do so, we extract the raw text from the NE and non-NE DepBank
corpora then process this text (e.g. tokenise and tag) usingRASP’s preprocessing modules.
The first line of Figure1.9shows an example preprocessed sentence, which correspondsto the
sentence in Figure1.8. The second line illustrates an example sentence with NE mark-up.

Kaplanet al.(2004) report results in terms of both relational dependencies, which are the re-
formatted and corrected F-structure output from their lexical functional grammar (LFG) parser,
and also a set of ‘semantically-relevant’ features. In our modified version of DepBank, we
replace these features with a slightly richer relational annotation (Briscoe & Carroll, 2006).
Briscoe & Carroll(2006) note that RASP’s parsing results (F1 scores) are lower than those re-
ported in that paper partly because many of these features are numerous and relatively easy to
recover.

1.3 Available Resources 23

Summary

Susanne is a (balanced) subset of the Brown Corpus which consists of 15 broad categories of
American English texts. All but one category (reportage text) are drawn from different domains
than that of the WSJ. Therefore we consider Susanne as out-of-domain training data when
testing on DepBank, followingGildea(2001) and others.

We provide a summary of the data in Table1.1. Note that the average parses per sentence
and average GRs per sentence will differ depending on the version of the grammar used1.4 to
parse the data. However, these statistics provide a basis for comparison of complexity. The
default system processing limitations were imposed on our parser (see §2.6.3) for all corpora
except DepBank, halting the parser for some sentences prior to completing parsing. Further,
we considered only sentences with a word length of less than or equal to 50. Thus the number
of sentences (Sent) in the corpus is shown, as well as the number of sentences that completed
parsing (Comp). From this latter set we determined the statistics for sentence parses and GRs.
The final column (Frag) illustrates the number of parses for which a fragmentary parse(see
§2.6.4) was found. That is, the system was unable to find a full parse given the grammar,
though was still able to return an analysis for the sentence.

1.3.2 Evaluation

We evaluate the parser’s output using a relational dependency evaluation scheme (Carrollet al.,
1998; Lin, 1998) with standard measures: precision, recall and F1. Relations are organised in a
subsumption based hierarchy. In addition to determining precision, recall and F1 for each level
in the relation hierarchy, we calculate the micro- and macro-averaged values for each of these
scores across all relations. The macro-average measure is calculated by taking the average of
each measure for each individual relation, while the micro-average measure is calculated from
the counts across all relations.

As previously mentioned, many parsers currently report PARSEVAL evaluation measures
based on the labelled bracketing of the parser. That is, a bracket is labelled with a nontermi-
nal grammar category and inside the bracket are other nonterminal categories (more labelled
brackets) or words. This ‘bracketing’ provides a flat representation of a syntactic tree. There-
fore this evaluation compares the structure of a parse tree output by the parser with that of the
gold standard tree. In contrast, the relation-based evaluation considers the GRs output from the
parser, where the same GR can be produced within different syntactic structures. As a result,
our evaluation does not penalise different structural representations but instead aims to provide
merit to the semantics extracted.

Hierarchy Based Evaluation

For each sentence we determine the relations output by the parser that are correct at each level
of the relational hierarchy. This hierarchy is shown in Figure 2.13, in a subsequent section
in which we describe RASP’s grammar. Relations take the general form: (relation subtype

head dependent initial) . A relation is correct if the head and dependent slots are equal and if
the other slots are equal (if specified). The evaluation we perform in the final experimentation
chapter (Chapter5) differs in two respects from evaluation defined inCarroll et al. (1998).
Firstly, a different relational hierarchy is applied due toa major change in grammar (described
in Briscoe & Carroll 2006). Secondly, the evaluation scheme is altered so that GR counts

1.4Those quoted here were determined over thetsg15grammar.

24 1. INTRODUCTION

W
ords

P
arses

G
R

s
D

ata
S

ent
C

om
p

range
avg

stdev
m

ed
range

avg
stdev

m
ed

range
avg

stdev
m

e
d

F
rag

S
usanne

7014
6597

2–94
19.52

10.87
18

1–3.28e9
1.44e6

4.63e7
55

0–8
2

16.16
10.03

15
850

G
D

T
2079

2079
2–22

6.60
2.40

6
1–356

4.12
12.56

2
0–18

4.93
2.04

5
0

W
S

J
39617

37094
1–141

23.98
11.41

87
1–1.04e9

7.95e5
1.47e7

146K
0–

49
18.57

8.72
43

6876
D

epB
ank

560
560

3–61
22.82

10.34
22

1–5.95e10
1.07e10

2.51e11
148

1
–53

18.84
9.25

18
110

Table
1.1:

S
um

m
ary

ofcorpora
used

throughoutthis
w

ork.
T

he
W

S
J

statistics
are

calculated
overthe

de
facto

training
sect

ions
2-21

inclusive.

1.3 Available Resources 25

are percolated upwards throughout the hierarchy. This enables the root GR typedependent to
represent the unlabelled dependency scores.1.5

In the new evaluation, if a relation is incorrect at a given level in the hierarchy it may still
match for a subsuming relation (if the remaining slots all match). For example, if anncmod

relation is mislabelled withxmod, it is correct for all relations which subsume bothncmod and
xmod, e.g.mod. Similarly, the GR is considered incorrect forxmod and all relations that subsume
xmod but notncmod. Thus, the evaluation scheme calculates unlabelled dependency accuracy at
thedependency (most general) level in the hierarchy. The micro- and macro-averaged precision,
recall and F1 scores are calculated as they were in the previous evaluation; from the counts for
relations in the hierarchy.

Wilcoxon Signed Ranks Test

In statistics, a result issignificantif it was unlikely to have occurred by chance. Astatistically
significantresult means there is statistical evidence that there is a difference (not necessarily
large) between two sets of data. We can utilise statistical significance to compare two parsers, by
comparing whether their performance was statistically significant. Therefore, we can determine
whether a change in the parsing model improves the parser’s accuracy or if an increase in
accuracy occurs simply by chance.

The Wilcoxon Signed Ranks (Wilcoxon, henceforth) test is anonparametrictest for statis-
tical significance that is appropriate when there is one datasample and several measures. For
example, to compare the accuracy of two parsers over the samedata set. As the number of
samples (sentences) is large we use the normal approximation for z. Siegel & Castellan(1988)
describe and motivate this test. These results are computedover micro-averagedF1 scores for
each sentence in the test corpus.

We first determineCd; the subset of sentences in the test corpusC for which the accuracy
differs between parsers. We determine the set of accuracy differences between the parsers for
each sentence inCd, ranking the (absolute value) of these differences in orderfrom smallest to
largest in a listD. The statisticT+ is the sum of the ranks of the positive, non-zero differences,
wheredi ∈ D is the difference rankedi (this ranking starts at 1):

T+ = ∑
di∈D,di>0

i

Mean, variance and observedz are determined as follows, whereN is the size of the setCd:

Mean= µT+ =
N(N+1)

4

Variance= σ2
T+ =

N(N+1)(2N+1)

24

z=
T+−µT+

σT+

We use a 0.05 level of significance, which indicates that there is a 5% chance that we in-
correctly find the results are statistically significant when they are not. We provide z-value
probabilities for significant results reported below, where a result is statistically significant if

1.5We define the new grammar and GR hierarchy only. Readers are referred toBriscoeet al.(2002) for a diagram
of the previous GR hierarchy.

26 1. INTRODUCTION

the z-value probability is less than 0.05. Therefore, providing the z-value probabilities enables
the reader to ascertain the level of statistical significance that applies. For example, a z-value
probability of 0.01 is judged significant in this work (as it is less than 0.05), and indicates that
there is a 1% chance that this conclusion is incorrect.

1.4 Research Goals
The work in this thesis aims to improve parser accuracy, efficiency and training methods of
the extant parser. While these methods utilise (and modify) RASP’s extant parsing code and
components, the parse selection and training methods we develop herein are applicable to a
wider range of statistical parsers.

Initial experimentation, including optimising PoS tag models and developing an efficient
algorithm to determine the weighted GR output format, aids in the author’s familiarisation of
the RASP system and processing modules. Further experimentation predominantly aims to
improve the training methods available to the parser. In particular to develop semisupervised
training methods, which require no on-going manual effort on behalf of the grammar writer, to
facilitate grammar development.

1.5 Thesis Summary

1.5.1 Contributions of this Thesis
The research in this thesis provides a number of new results and techniques (all techniques and
the majority of results have been published), in the following areas:

• Optimising front-end PoS tagging models:Watson(2006) provides a broad comparison of
PoS tag models in terms of both tagging and parsing performance. Experimental results
illustrate that parsers are unable to improve on the taggingperformance of a ‘good’ PoS
tagger. Resolving the majority of PoS tag ambiguity in the tagger aids in both parser
accuracy and the overall system’s efficiency.

• Optimising weighted-GR output:Watsonet al. (2005) define a novel modification to the
Inside-Outside algorithm. This efficient dynamic programming approach directly deter-
mines the weighted-GR output format from the compact representation of parses; the
parse forest. The approach improves over previous work, which either loses efficiency by
unpacking the parse forest, or places extra constraints on local ambiguity packing, lead-
ing to less compact forests. This novel algorithm significantly increases the throughput
and accuracy of this output format.

• Semisupervised parser training:Watsonet al. (2007) illustrate more efficient and flex-
ible use of existing training data. The Inside-Outside algorithm is applied to perform
Expectation-Maximisation over the LR parse table to improve performance over the cur-
rent, fully supervised training method. Removing the manualeffort required to train the
parser facilitates grammar development and domain adaptation.

• Confidence-based semisupervised training:Watsonet al. (2007) describe a new training
framework that defines a weighting scheme over analyses considered consistent during
training. This method outperforms the Inside-Outside algorithm given the same level of
corpus annotation. Further, the method can be applied to anylevel and type of annotation

1.5 Thesis Summary 27

by simply redefining which parses are compatible with the corpus annotation available
during training.

1.5.2 Outline of Subsequent Chapters
Chapter 2 (LR Parsers) describes the theory, compilation, and application of LR parsers or
so-called shift-reduce parsers. We describe the modifications defined byTomita (1987) which
extend the LR framework to ambiguous grammars resulting in the GLR parsing framework. We
then describe various methods for defining statistical distributions over the GLR model. That
is, to create statistical GLR (SGLR) parsers. Further, the chapter defines the SGLR parsing
framework employed within RASP. Finally, we describe RASP’s grammar, extant training and
application of the parser as well as the different output formats available for use.

Chapter 3 (Part-of-speech tag models) describes experimentation aimed at optimising the
PoS tag models employed by the extant parser. We first describe previous work which illustrates
that the choice of the PoS tag model employed as a front-end toparsing significantly affects the
speed and accuracy of the parser. Next, we describe RASP’s processing components, in partic-
ular, the current PoS tagger. We define a number of different tag selection models, including
those that consider the parser itself as a PoS tagger. Finally, we investigate the optimum level
of PoS tag ambiguity to be resolved by the parser itself, rather than the front-end PoS tagger.

Chapter 4 (Efficient extraction of weighted GRs) first describes the Inside-Outside algo-
rithm (IOA) and its application to train PCFGs. We extend thisalgorithm to SGLR parsers, in
particular, to the extant parsing framework. We show how to apply a variant of the IOA to ef-
ficiently extract one of RASP’s output formats (‘weighted GRs’) directly from the parse forest
rather than over the set of n-best parses (the extant method). Furthermore, we illustrate that
this solution can not be applied in all situations. Rather than modify the extant parse forest as
previous work has, resulting in a less compact data structure, we describe a novel modification
to the IOA. This modification enablesmultipleinside and outside probabilities to be determined
for each node within the parse forest. Experimental resultscompare this novel approach to the
current one, in terms of both parser throughput and accuracy.

Chapter 5 (Confidence-based training) reviews the current training method and describes
the limitations of such fully supervised training approaches. These limitations have prompted
the development of unsupervised and semisupervised methods which we describe. We then
define a confidence-based training framework which can be applied over any level or type of
corpus annotation, and its relationship to previous work. We also define a number of different
confidence measures that can be employed within this framework. Experimental results com-
pare these confidence measures and the IOA (Expectation-Maximisation), over semisupervised
and unsupervised training corpora, to the current trainingmethod.

Chapter 6 (Conclusion) summarises the major contributions of this thesis, and suggests
future lines of research.

Chapter 2

LR Parsers

This chapter describes the theory and application ofLR parserswhich are a type ofshift-reduce
parser. We define LR parsers and generalised LR (GLR) parsers in §2.3and §2.4, respectively.
These descriptions build on the theory of finite-state automata we provide in §2.2. We de-
scribe existing statistical approaches over the latter parsing framework in §2.5. Experiments
in this work use an existing and well-developed GLR parsing system which we modify as re-
quired. Finally, we provide details specific to the extant parser in §2.6. Much of the theory
described herein regarding finite automata and LR parsing (including parser compilation) has
been adapted fromAho et al. (1986).

2.1 Introduction
The LR parsing strategy was first devised for programming languages, in particular compil-
ers, to enable precompilation of processing steps over a language. The strategy has since been
generalised for use in a wider range of applications, including natural language parsing. We pre-
viously defined anatural language parser(in §1.1.1) as a program analysing a string of words
(sentence) to return a suitable grammatical structure: aparse. However, in the literature, the
termparserrefers to any program that processes a sequence of input tokens to return structure
over these tokens, given an underlyingformal languageor grammar. In linguistics, the term
grammarapplies to various structures of human language including phonology, morphology
and syntax.

There are many types of grammars. We describe context-free grammars (CFG), a well
known type of generative grammar. A CFG defines the set of possible input tokens, the grammar
terminals(that is, the alphabetΣ) of the grammar, in thelexicon. Theproduction rules(rules
or productionsfor short) define the way in which these terminals may acceptably combine. The
primary goal of a parser is to organise the input sequence of terminals, based on the rules, into
larger grammatical units orphrases. These larger units are referred to asnonterminal(NT)
symbols of the grammar. Rules are written asrewrites: A → (β)∗ whereA represents aNT
symbol of the grammar andβ may be anycategoryof the grammar i.e. aΣ or NT symbol. For
example, the ruleNP → Det N stipulates that a noun phraseNPmay be formed by two terminal
symbols; a determiner (Det) followed by a noun (N).

As theNT categories combineΣ categories of the grammar, we consider this set of terminals
the span(or word span, given that terminals are often words in natural language parsing) of
the resultingNT category. One (or more) of theseNT symbols are consideredroot (or top)
categories. If such a top category spans the entire input sequence, then we accept the input and

28

2.2 Finite Automata 29

return the corresponding structure; aparse(or derivation). This structure can be graphically
represented as a tree diagram (see Figure1.1) where leaves are terminals while nonleaf nodes
represent nonterminals (phrases) of the grammar. Hence, the term “parse tree” (or “phrase-
structure tree”) is used to refer to this structure.

We can formally define a grammarG using the tuple{NT,Σ,P,R} where:

• NT is the finite set of nonterminal symbols.

• Σ is the finite set of terminal symbols, disjoint from the setNT.

• P is the finite set of production rules of the grammar:

NT → (Σ|NT)∗

• R∈ NT, the root category symbol.2.1

We first definefinite-state automata(FSA), that can be described with regular expressions
(RE). REs are one way of characterising regular languages (a proper subset of the languages
generated by a CFG). We describe how FSAs are graphically represented astransition graphs,
though are encoded and processed by the parsing program using the correspondingtransition
table. We then describeLR parsers, that implicitly encode probabilistic deterministic FSA
(PDFA), thence also utilise a similar table, theLR table, to drive the parser.

2.2 Finite Automata
If the parser’s grammar identifies acceptable sequences of terminals only, without associating
structure, then the parser is instead considered arecogniser. A recogniser takes as input a
sequence of tokens and returns either ‘accept’ or ‘reject’ as output. For example, given the RE
(a|b)∗ab, we only accept a sequence of input tokens if it consists of any number ofa andb
tokens (including 0) followed by the sequenceab. The sequencesab andbbababare accepted,
while aabbis not.

FSA can apply either as a parser or as a recogniser given a language (grammar).Aho et al.
(1986) describe a number of algorithms to compile an FSA from a RE, which we do not discuss
here. We aim instead to illustrate how these automata are used as recognisers for RE, and build
on this theory in subsequent sections to illustrate the automata implicit in LR parsers over CFGs.

2.2.1 NFA

Model Definition

A nondeterministic FSA (NFA) is defined using:

• A set of statesS.

• A set of input symbolsT.

• A transition functionactionthat maps state-symbol pairs to the set of next possible states.

2.1While a single root category symbol is defined, the grammar in the existing parser RASP defines several root
category symbols. Thus, the following explanations assumemore than one root category symbol may be defined
in the parser’s grammar.

30 2. LR PARSERS

• A stateS0 ∈ S, which is thestart (or initial) state.

• A set of statesSacc⊆ S, the set ofend(or accept) states.

A FSA is deterministic or nondeterministic, wherenondeterministicmeans that more than
one transition out of a state is possible on the same input symbol. That is,actionreturns one or
more possible states for any given state-symbol pair. The null input symbolε is included inT.

Transition Graph

Thetransition graphdiagrammatically represents an NFA as a labelled directed graph. Vertexes
of the graph each correspond to a state in the setS, while labelled edges represent the output of
the functionaction. The graph looks like a transition diagram, where edges are labelled with
terminals of the grammar i.e.T = Σ. Given the RE in the previous example,(a|b)∗ab, the
corresponding transition graph is shown in Figure2.1. In this example, the NFA is defined over
S= {0,1,2} whereS0 = 0 andSacc = 22.2, T = {a,b}, andaction is implicit in the labelled
edges of the graph. For example,action(1,b) = {2} while action(1,a) = {}.

start ba

b

a

0 1 2

Figure 2.1: NFA for the RE(a|b)∗ab.

Paths

An NFA acting as a recogniser, accepts a sequence of input symbols if we can find acomplete
paththrough the NFA from the start state (S0) to an end state (inSacc) which consumes the entire
input sequence. Apath represents astate sequence, the set of states visited thus far given the
input consumed. For example, we accept the input sequenceababas we determine the complete
path{0,0,0,1,2} through the NFA.

To determine a path we utilise two variables: the current stateSc and the remaining input ter-
minals. To start, we initialise these variables to the startstateSc = S0 and entire input sequence,
respectively. The transitions defined byaction (edges) areparsing actions, these movements
are conditioned on the current stateSc and next token in the input sequence. When we move
along each edge of the NFA, we consume the terminal in the input sequence that labels the
edge. Returning to our previous example, for the sequenceabab, in state 1 we have consumed
abaand have the remaining input{b}. Thus we move from state 1 to state 2 consumingb and,
reaching one of the end states with no remaining input, we return ‘accept’.

Transition Table

A transition tableis used as an operational mechanism to drive the parser across the corre-
sponding transition graph. There is a simple mapping between row and columns in the table to
states and terminals (edge labels) in the graph. Thus the table can be determined from the graph

2.2We utilise the state numberi in Si to identify each state.

images/graph-fsa-eg-corr.eps

2.2 Finite Automata 31

and vice versa. For example, Table2.1 illustrates the corresponding transition table for the
NFA graph in Figure2.1. Each row in the transition table represents a state in the NFA, while
columns each represent a terminal symbol. Within each cell in the table, in rowi and columnj,
is the set of possible edges (actions) of the NFA for stateSi and thej-th terminal (Σ j). Thus, the
table encodes the functionaction, where each cell contains the set of states returned byaction
given the state-symbol pair.

INPUT SYMBOL
STATE a b

0 0,1 0
1 2
2

Table 2.1: Transition table for the NFA in Figure2.1.

If actionreturns null (i.e. for empty cells in the table) this impliesan edge to thesink state
exists, at which point the input sequence is rejected. As a result, we consider the corresponding
path toterminateat the current state. A path is consideredactiveuntil it either terminates or
completes.

Multiple Paths

More than one path may be possible through an NFA given an input sequence. Multiple entries
in a single cell represent such ambiguous transitions. In this case, we continue processing all
active paths until we determine a single complete path, at which point we accept the input.
Alternatively, if all active paths terminate, we reject theinput. At the state where multiple paths
(edges) are found, we consider the paths todiverge. Conversely, paths are considered tomerge
for shared portions of their state sequence.

For the example sequenceababif we consume the first terminala then two paths are active;
one ending each in state 0 and state 1. From these states, we consumeb and move to states 0
and 2, respectively. At state 2, our path terminates as thereis still the unexpended input{a,b}.
In contrast, the path ending at state 0 remains active, though again we diverge to two paths: to
states 0 and 1. After consuming the last tokenb, the first path terminates and the second path
ends at state 2. The latter path ends at an accept state and is now considered complete.

Formal Language

An NFA implicitly defines itsformal language; the set of all input strings it accepts. Returning
to our previous example, the formal language is the set:{ab,aab,bab,aaab,baab,abab,bbab, ...}.

2.2.2 DFA
A deterministic FSA (DFA) is a special case of an NFA in which only one move is possible
for any given state-symbol pair, and no state has an edge withthe null symbolε. Aho et al.
(1986) describe an algorithm to compile an NFA to its equivalent DFA, that results in a more
efficient recogniser. However, the number of states of the DFA may expand exponentially and
this conversion is infeasible for large NFA. We do not provide details of this algorithm as they
are not relevant to this work. Figure2.2illustrates the equivalent DFA for the NFA in Figure2.1.

Given the automaton is deterministic, we utilise a list to store the corresponding state se-
quence (path) and input consumed. This list is referred to asthestack. The stackU is initially

32 2. LR PARSERS

start ba

b a a

0 1 2

b

Figure 2.2: DFA for the RE(a|b)∗ab.

empty, and new states and input symbols consumed are added tothe stack as we move through
the NFA. Continuing the previous example, the sequenceabab was accepted with state se-
quence{0,0,0,1,2}. This state sequence is determined given the stack built during parsing:
{0,a,0,b,0,a,1,b,2}.

Algorithm: Simulating a DFA

The algorithm in Figure2.3 simulates a DFA, taking as input a sequence terminated by the
end-of-file character (eo f) and returning either ‘accept’ or ‘reject’. The functionnext returns
the next terminal in the input sequence.

Algorithm 1 (Simulating a DFA).
Set Sc = S0 and U= {S0}

1. repeat forever begin
2. l = next()
3. Set Sc = action(Sc, l)
4. if Sc ∈ S then U= U ∪{l ,Sc};
5. if Sc ∈ Sacc and l = eo f then return ‘accept’;
6. if Sc = null or l = eo f then return ‘reject’;

end

Figure 2.3: Algorithm to simulate a DFA.

2.3 LR Parsers
LR parsing is a table-driven technique, where theLR tableis constructed from an unambiguous
CFG and implicitly encodes a DFA. The LR table defines the next parsing action (edge of the
DFA), so that the parser is driven over a sequence of input terminals in a similar fashion as
described for a recogniser over a DFA. Consequently, we move over the input left-to-right,
hence the ‘L’ in ‘LR’ parsing. We reduce the input consumed to form non-terminal categories
whenever possible which results in creating the ‘right-most derivation in reverse’, hence the ‘R’
in ‘LR’.

The LR precompilation process results in construction of the LR table over the CFG, similar
to the transition table described previously. This processrepresents the bulk of the processing
required, and subsequently, the parsing process is relatively simple to encode and apply. We
describe this precompilation process in detail in this section. Algorithms that generalise these

images/graph-lr-dfa-eg-corr.eps

2.3 LR Parsers 33

methods to apply over ambiguous grammars, and moreover, to define statistical models within
this generalised framework, are discussed in subsequent sections.

2.3.1 LR Parsing Model
In this section we describe how to compile and apply an LR parser over CFGs, in which rules
are rewrites as defined previously:NT → (Σ|NT)∗. Following popular terminology, we refer
to the left hand side category as themothercategory, while terminals and nonterminals on the
right hand side of the rule aredaughtersof the production.

Relationship to the Recogniser

STACK

LR Parsing

Program

a1, a2, ... ai, ... an, $

Sm

S0

Xm

X1

S1

...

INPUT

LR Table

OUTPUT

Figure 2.4: Components of an LR parser.

Figure2.4 illustrates the general components of an LR parser, similarto those of the recog-
niser described in the previous section. In summary, the LR parser we describe differs from the
recogniser as follows:

• Input: again consists of sequences of terminals of the grammar (from the setΣ). Although
Σ does not includeε and instead includes the end of sentence marker $. Input sequences
are appended with the symbol $ (rather thaneo f) to denote the end of the input sequence.

• Parsing actions:consist of the type of actions described previously (consuming a terminal
symbol, accepting and rejecting input) as well as a fourth action type: reduceactions, in
which rules (rewrites) of the regular grammar are applied toform mother (NT) categories
from the input consumed. The LR parser is driven over the input using shift and reduce
actions, hence the parsers are a type ofshift-reduce automata.

• Stack: differs in structure and use from the stack described in §2.2.2. Instead of using
a list structure, the stack is implemented as a last-in-first-out (LIFO) queue. That is,
symbol-state pairs are removed (POP operations) as well as added (PUSH operations) to
the top of the stack. The POP operations occur when a reduce action is applied. We first
remove the daughters of the rule before we add the newly created mother category of the
rule to the stack.

• LR table:differs from the transition table as it also encodes reduce actions. The LR table
consists of two parts; anactionandgototable. The action table is similar to the transition

images/lr-model.eps

34 2. LR PARSERS

table, where rows represent states and columns represent terminals of the grammar. Cells
contain competing parse actions given the current stateSc and terminal symbol. The goto
table encodes the next state after a reduce action is applied.

• Output: we instead return the corresponding parse tree, whose root category spans the
entire input (if found). Thus, we implicitly accept input ifwe can find such a derivation
that is determined from the corresponding complete path through the underlying DFA.

2.3.2 Types of LR Parsers

There are several types of LR parse tables, where each type results in creation of the correspond-
ing LR parser type, and components of the LR parser are otherwise the same as in Figure2.4.
Aho et al. (1986) describe three techniques to construct an LR(k) parsing table for a grammar;
simple LR (SLR), lookahead LR (LALR) and canonical LR. These methods represent increas-
ing left context used to make parsing decisions. Similarly,the variablek represents the number
of lookahead items, the unexpended terminals in the input sequence, used as right context. As
the level of context (the LR method andk) increases, so too do the number of states in the DFA.
The LALR(1) method is popular as it provides a trade-off between accuracy (context) and effi-
ciency (number of LR states). We describe LALR(1) parser construction and application herein,
as we apply such an LALR(1) parser, modified to handle an ambiguous unification-based gram-
mar.

2.3.3 Parser Actions

The types of actions applied by an LR parser include those considered previously for a recog-
niser. We define these three action types informally described thus far, as well as a fourth action
type which applies a grammar rule.

LR Parser Configuration

We represent theconfigurationof the parser using a pair; the current stack state and unexpended
input. For example consider the following configuration:

(S0X1S1X2S2...XmSm,aiai+1...an)

We denote categories of the grammar (terminal and nonterminal) using the variableX. This
configuration corresponds to being in stateSm, i.e. Sc = Sm, the next input symbol isai and the
input consumed thus far is(a1...ai−1).

The actionFunction

We refer to the unexpended input as the set oflookaheads, and the next input token as the
current lookahead(or simply lookaheadfor short): lac. In the recogniser described previously,
we determine the next state using the functionaction which returns the next state given the
current state and lookahead:action(Sc, lac). The next state specified results from one of three
actions: (i) accept the input, (ii) reject the input or (iii)consume the input itemai and move to
the next state specified byaction, i.e. Sc = action(Sm,ai). The final action type is referred to as
a shift action in LR parsing. These three action types are encoded inthe action table of the LR
table.

2.3 LR Parsers 35

Reduce Actions

In LR parsing, the fourth action type, areduceaction, requires different treatment of the con-
figuration’s stack. A reduce action corresponds to applyingone of the rules (productions) in
the grammarA→ β. Thus we form the categoryA by combining daughter categoriesβ already
created, whereβ = {D1,D2, ...,Dp}. The stack must contain these categories formed in order,
that is, withDp on top of the stack. We remove these daughter categories fromthe stack and
place the newly created mother categoryA, and the next state, on the stack. Note that for a
reduce action, we do not consume the next input symbol.

For example, if the grammar contains the ruleVP → V NPand the stack contains aNPon top
and then aV, we first remove these two items from the stack before placingthe newVP analysis
and next state on the stack. Thus, as the stack is implementedas a LIFO queue, a POP operation
removes the daughters of a grammar rule, while PUSH adds the newly created mother category
on the stack.

For a reduce action, the next state to visit depends on the state exposed after popping the
daughter categories from the stack, theancestorstate, and the newly formed mother category
A. This information is encoded in the goto table of the LR table, which we describe further in
subsequent sections. For now, we consider the functionGOTOto return the next state to visit,
given the ancestor state and mother category.

Configurations for each Action Type

The type of action returned byaction, results in different parser configurations, as follows:

• Shift actions: if action(Sm,ai) = shift Sj , then the parser executes a shift action and moves
to statej, consuming an input item as we did in the recogniser, entering the configuration:

(S0X1S1X2S2...XmSmaiSj ,ai+1...an)

• Reduce actions:if action(Sm,ai) = reduceA → β then we execute the reduce action by
popping off thep daughters of the production from the stack, exposing the state Sm−p.
AssumingSj = GOTO(Sm−p,A) then the resulting configuration will be:

(S0X1S1X2S2...Sm−pASj ,ai...an)

• Accept:if action(Sm,ai) = accept, then parsing is complete.

• Reject:if action(Sm,ai) = null, then the path terminates atSm and we reject the input.

2.3.4 LR Table

Action and Goto Tables

The LR table consists of two parts, the action table and the goto table, and implicitly encodes
the grammar DFA. The action table, encoded in a similar fashion to the transition table of a
DFA, defines the set of possible actions given the current state Sc and the lookaheadlac. States
correspond to rows and lookaheads to columns, while cells inthe table contain parsing actions.
In the goto table, the rows and columns correspond to the ancestor state and the nonterminal
category created, respectively.

36 2. LR PARSERS

Grammar G1

The unambiguous grammarG1, shown in Figure2.5, is a simple CFG which models preposi-
tional phrases (PP), noun phrases (NP) and verb phrases (VP), i.e. NT={PP, NP, VP, S } over
the terminals verb, pronoun and preposition:Σ={V,Pro,P }. The original root category of the
grammar wasS. However, to handle the case where more than one root category is specified,
theaugmented grammarinstead defines a single root categoryT and new rules (for each of the
previous root categories where each rule rewrites the new root category as the old category).

r0: T -> S
r1: S -> NP VP
r2: NP -> Pro
r3: PP -> P NP
r4: VP -> V NP
r5: VP -> V NP PP

Figure 2.5: GrammarG1. Each rule number, using the format rx, refers to production number
x.

The single top category of an augmented grammar (e.g.T) allows the resulting LR parser
compiled over the grammar to indicate when the input should be accepted. That is, the input
is acceptable if an action calls for the creation of this top category. Thus, we consider the
LR parser to consist of a single accept stateSacc. Grammar augmentation is performed during
construction of the LR table, that is, as part of the precompilation process.

Grammar G1: LR Table

The corresponding LR table forG1 is shown in Table2.2, where si specifies a shift to statei
while r j specifies a reduce by production numberj of the grammar. The ‘accept’ action and
empty cells specify that we should accept and reject the input, respectively. The goto table
simply encodes the next state number given the ancestor state (row) and newly create mother
category (column).

Grammar G1: DFA

The correspondinggrammar DFAfor G1 is shown as a transition graph in Figure2.6. Each
vertex corresponds to a state in the LR table and the vertex number illustrates the corresponding
state number. Vertexes may also specify, in brackets, the ancestor state which must have been
exposed to enable the transition to the state. Edges are compressed and labelled with the set of
lookahead items for the edge (i.e. a single edge correspondsto each lookahead item) and also
the action which is performed.

This transition graph provides a simplified view of the LR parser because the graph is con-
ditionally traversed across a set of edges from a state that specifies the same reduce rule. That
is, although multiple edges are shown for the same lookahead(s) and reduce rule, only one is
applicable given the ancestor state exposed. Consequently,the automata is deterministic.

Relationship between the Grammar DFA and LR Table

The grammar DFA is constructed from the table in three stagesas follows:

• Vertex creation:Each row in the table represents a state. As a result, we create one vertex
in the graph for each state in the table. If the vertex’s number is defined in a cell in the

2.3 LR Parsers 37

state action goto
$ P Pro V S NP VP PP

0 s3 9 1
1 s2 8
2 s3 4
3 r2 r2 r2
4 r4 s5 7
5 s3 6

6 r3
7 r5
8 r1
9 accept

Table 2.2: LALR(1) table forG1.

0 3 4(2)

6(5)

1(0) 2

8(1) 9(0)

Pro
s3

$
r4

$,P,V
r2

V
s2

P

$
r1

$
r0

$,P,V
r2

$,P,V
r2

5

P
s5

7(4)

$
r3

accept$
r5

Pro
s3

Figure 2.6: DFA for grammarG1.

goto table for state (row)Sa, then we label the vertex with the ancestor stateSa. This
illustrates that a reduce action should have exposedSa on the stack to enable transition
along an edge to this vertex in the DFA.

• Shift edge creation:Each shift in the action table sj for state (row)Si in column Σk

specifies that a directed edge should be created from statei to statej with labelΣk.

• Reduce edge creation:For each reduce action in the action table rj, specifying a reduction
of rule A → β, for state (row)Si in columnΣk results in creation of one or more edges.
We create a directed edge from statei to each stateSl , whereSl appears in the column for

images/lr-g1-dfa.eps

38 2. LR PARSERS

categoryA in the goto table.

2.3.5 Parsing Program

The Parsing Process

Parsing determines paths through the underlying DFA, as described previously, from the start
stateS0 to the accept stateSacc given the current input. To begin parsing, we first initialise
the variable representing the current state to the start state. That is, we setSc = S0 and also
set the current lookaheadlac to the first input token. The parsing program is implemented by
extending the algorithm for simulating a DFA, as defined in §2.2.2. Lines 2–4 of the algorithm
are replaced by statements conditioned on whether the action returned byaction(Sc, lac) is a
shift or reduce. The next input symbol is only consumed if theaction is a shift. The stack is
updated for each action type as described in §2.3.3.

Parsing overG1

Table 2.3 illustrates the stack configurations reached after each action is applied for theG1

LALR(1) parser over the sentence ‘he likes her’ with corresponding tagged input sequence:
{he Pro likes V her Pro $ }. The resulting parse tree is extracted from the stack by keeping
track of which rules applied in order and the word span of eachcategory. In this example, the
resulting parse tree is:
(S (NP he Pro) (VP likes V (NP her Pro))) .

number stack input action
1 0 Pro V Pro $ shift to state 3
2 0 Pro 3 V Pro $ reduce using r2
3 0 NP 1 V Pro $ shift to state 2
4 0 NP 1 V 2 Pro $ shift to state 3
5 0 NP 1 V 2 Pro 3 $ reduce using r2
6 0 NP 1 V 2 NP 4 $ reduce using r4
7 0 NP 1 VP 8 $ reduce using r1
8 0 S 9 $ accept

Table 2.3: Stack configuration forG1 over PoS tag sequence{Pro,V,Pro }. The first column
shows the configuration number while the next two columns form the tuple of each configura-
tion reached. The final column illustrates the next action determined using the stack top state
(Sc) and current lookahead (the first token in the input column).

2.3.6 Table Construction

LR(k) Parsing and Handles

The LR precompilation process results in compiling the states of the LR(k) table and the ac-
tions possible given the current state and nextk lookaheads (including 0, for SLR parsers). This
process facilitates a parsing mechanism capable of identifying thehandle; the appropriate sub-
string to reduce, along with the rule which should be appliedto perform the reduction. Thus,
LR tables encode additional context over the underlying CFG.Left-context is incorporated as
states represent the handle, while right-context is incorporated in the set ofk lookaheads.

2.3 LR Parsers 39

For an LR(k) table, we identify which handles are appropriategiventhe nextk input sym-
bols as right context. In the shift-reduce LR parser, the state on top of the stack encodes all
the information required to determine the current handle (or set of handles if the method is
generalised to apply over an ambiguous grammar).

LALR(1) States

In an LALR(1) parser, each state represents the same (left) input having been consumed; either
a terminal category of the grammar or a nonterminal of the category with the same left-context
(category). For example, inG1, NP may appear as the subject (in ruler1), the object of a verb
(in rulesr4 andr5) or within a preposition phrase (in ruler3). Consequently, there are three
corresponding states forNP created in each of these contexts: states 1, 4 and 6, respectively.
A trivial method to determine how many contexts each nonterminal category may appear in,
involves counting the number of states that appear within the corresponding column for this
category in the goto table.

LR(k) Items

Algorithms to construct the LR table from the grammar differdepending on the type of LR
table, that is, the type of LR parser we wish to construct. In general, we createLR(k) items,
tuples in the form[A→ α ·β,δ], where the first element is a production of the grammar (with a
dot at some position within the daughters of the rule) andδ is a set ofk (including 0) terminal
symbols of the grammar. The position of the dot indicates theinput that has been witnessed to
date; daughters to the left of the dot have been seen while daughters to the right of the dot may
yet be witnessed (i.e. possible given the grammar).

LR(0) Items

To create the LR states of a grammar, we first create all LR(0) items. That is, we create an
item for each rule in the grammar for each possible position of the dot (including start and end
positions). The LR(0) items for the ruleS → NP VPare shown in Figure2.7.

S → · NP VP

S → NP · VP

S → NP VP ·

Figure 2.7: LR(0) items for the ruleS → NP VP.

Kernel Items

We can definekernel(and conversely,nonkernel) items as those items with the dot in a position
other than immediately to the right of the arrow (→). In addition to these items, we also consider
the nonkernel items for the augmented top category (e.g.T → · S) as kernel items.

FIRSTand FOLLOW

If the dot appears at the end of the production (e.g.A→ αβ·) then this indicates that a reduce
rule is possible at this point during parsing. For example, the third LR(0) item in Figure2.7
indicates that anNP is followed by aVP, so we reduce to form the mother categoryS. Alterna-
tively, if A→ α ·β is an item whereβ ∈ Σ then we perform a shift over terminalβ. We utilise
the functionsFIRST andFOLLOW to determine this kind of information from the item sets

40 2. LR PARSERS

whereFIRST(X) andFOLLOW(X) indicate the terminal symbols that the symbolX may be-
gin with or be followed by in the given grammar. For example, in G1, FIRST(NP) = {Pro }
while FOLLOW(NP) = {V,P,$ }.

Collections of Item Sets: States

The precompilation process begins by augmenting the grammar and determining the set of all
possible items given the CFG. Items are then grouped in sets which give rise to the states of
the parser. During construction of these item sets, we effectively determine thecompiled DFA
for the grammar, as each new item set is created from the existing set by consuming the next
terminal or nonterminal category to appear. From the resulting compiled DFA, we determine
the set of LR states to be the collection of item sets. The actions of the LR parser are also
encoded in this DFA.2.3

closureand goto

In order to group the item sets we require two functions:closureandgoto (where thisgoto
function is distinct from the uppercaseGOTO defined previously). The functionclosure is
defined over a set of itemsI , where we include each item of I inclosure(I), and expand each
item in I to include all the nonkernel items for categories immediately to the right of the dot
in the item. We repeat this expansion over the items until allsuch nonkernel items have been
included. Formally, givenA,B,C ∈ NT andα,β,γ,ρ ⊆ {Σ,NT,ε}, then ifA→ α ·Bβ is in the
closure ofI then so too isB→ ·Cγ as isC→ ·ρ and so on and so forth. As the set of nonkernel
items for any given category is computed (or for efficiency, precomputed) for each category of
the grammar, we compress the set of items in a closure so that each item set is represented only
by the kernel items. However, in the following examples we represent each item set in full,
showing both kernel and nonkernel items of the set.

The second function,goto, is defined in terms of theclosureoperation. Simply,goto(I ,X)
represents the items which result if items in the setI receive a grammar symbolX as input. Thus,
goto(I ,X) is defined to be the closure of the set of all itemsA→ αX ·β such thatA→ α ·Xβ in
the setI .

Constructing the Canonical LR(0) Item Sets

To construct the canonical collection of LR(0) items, we initialise the set of itemsΘ by taking
the closure of the top category kernel items with the dot at the very start,T →· S. We repeatedly
determine thegoto(I ,X) for eachI ∈ Θ andX ∈ {Σ,NT} adding the resultinggoto(I ,X) item to
a set inΘ if they are already present in this set. If not, we create a newitem set which includes
the new item. For each new item set we also perform the closureoperation over this setI to
augment the item set with the nonkernel items. The setΘ forms our set of states in the compiled
DFA, where each state produced bygoto(I ,X) has an edge to it from the state corresponding to
I labelled with the categoryX.

Canonical LR(0) Collection for G1

The canonical LR(0) collection of sets for grammarG1 is shown in Table2.4. The table shows
the set numberj as I j , and the corresponding kernel and nonkernel items of each set in the
second and third columns, respectively. The remaining columns illustrate the next item set

2.3Note that the compiled DFA differs from the one we extract from the resulting LR table previously discussed
(the grammar DFA). The algorithm for compiling the LR table creates the compiled DFA which contains edges
from ancestor states rather than from the current state conditioned on the ancestor state.

2.3 LR Parsers 41

created by determining thegotoof the item (row) and grammar symbol (column). For example,
goto(I0:NP → · Pro ,Pro)=I3. That is, from an item in setI0 we consume aPro terminal symbol
and move to an item inI3. Starting from closure(T → · S), we create the first item setI0. From
here, we calculate thegotoof I0 with eachX symbol in the grammar. Forgoto(S → · NP VP,
NP) we create the itemS → NP · VP which is currently not in any set in the collection. In view
of this new item, we create a new setI1. We then perform the closure operation overS → NP ·

VP in this new set to complete it. We continue until thegoto function is unable to create a new
set from the current sets.

Items goto(I,X)
Set Kernel Nonkernel S VP NP PP V Pro P

I0 T → · S I9
S → · NP VP I1
NP → · Pro I3

I9 T → S ·

I1 S → NP · VP I8
VP → · V NP I2
VP → · V NP PP I2

I2 VP → V · NP I4
VP → V · NP PP I4

NP → · Pro I3
I3 NP → Pro ·

I4 VP → V NP ·

VP → V NP · PP I7
PP → · P NP I5

I5 PP → P · NP I6
NP → · Pro I3

I6 PP → P NP ·

I7 VP → V NP PP ·

I8 S → VP NP ·

Table 2.4: The canonical LR(0) sets forG1.

Constructing a SLR Parsing Table

To create the SLR parse table for a grammar, we proceed in fullas follows for augmented
grammarG:

1. Construct the LR(0) canonical item setsΘ = {I0, I1, ...In} for G.

2. Statei is constructed fromIi, and the table is initialised to contain empty cells for each
terminal and nonterminal in the action and goto tables, respectively.

3. The corresponding parsing actions for the state are determined within the action table as
follows:

42 2. LR PARSERS

(a) If Ii containsA → α · aβ, wherea is a terminal, andgoto(Ii ,a) = I j then we set
the cell in the action table for statei and terminala to contain a shift toSj , i.e.
action(Si ,a) =sj.

(b) If Ii contains rule numberk with the dot at the end e.g.A→ α·, then set each cell in
the action table for statei and for each terminal inFOLLOW(A) to contain a reduce
by rulek i.e. rk.

(c) If T → S · is in Ii this specifies to reduce to the augmented top category. As a result,
we set the action in the cell for statei and terminal $ to be ‘accept’.

4. The goto table consists of transitions for statei and nonterminalAsuch that ifgoto(Ii ,A)=
I j thenGOTO(Si ,A) = Sj .

5. We set the initial state of the parser toI0, i.e. S0, determined by the initial closure opera-
tion over the root category item e.g.T → · S.

Constructing the Canonical LR(1) Parse Table

To create a canonical LR(1) table, we modify theclosureandgoto functions to operate over
LR(1) items to create the item sets. The LR(1) items are designed to incorporate some right
context to guide the parsing decisions. For the LR(1) item:[A → α·,a], we only reduce by
A → α if the next input symbol isa. The important distinction between this parser and the
SLR parser described previously, is that the set of sucha symbols will now be a subset of
FOLLOW(A) (recall that we allowed the reduction in the SLR table for alla in FOLLOW(A)).

States created over LR(1) items effectively split the statesof the corresponding SLR states
(constructed over LR(0) items) so that each state not only contains the information required to
determine the current handle, but also indicate exactly which lookahead (input) symbols can
follow the handleα, for which there is a possible reduction to the nonterminalA.

In G1, a reduction to formNPby r2 occurs for the lookahead $ only within the context of a
PP or VP in rulesr3 andr4, respectively. For theNP in subject position however, the lookaheads
may be either of{P, V }. So two separate LR(1) item sets now correspond to the reduce to
NP rather than the single LR(0) itemNP → Pro ·. The LR(1) item sets corresponding to these
situations are[NP → Pro ·, $] and[NP → Pro ·, {P, V }], respectively.

Constructing the LALR(1) Parse Table

LALR(1) parse tables contain the same number of states as the SLR table, by compressing
the LR(1) item sets i.e. those states found for the canonical LR(1) table. We can compress
the LR(1) item sets into sets with the samecore. Compressed sets contain sets of items in
which only the lookahead values differ. These sets are used to create the states in the LALR(1)
table. However, creation of the LR(1) item sets can prove infeasible for large grammars and
a more efficient algorithm for creating the LALR(1) table involves creation of the LR(0) item
sets (represented using kernel items only) which are then augmented with the set of lookahead
symbols (the second element of the tuple).

In order to augment the LR(0) item sets with lookahead symbolswe can generate lookaheads
spontaneouslyor they maypropagatefrom one LR(0) item set to the item set’sgoto item sets
(described byAndersonet al. 1973, alsoAho et al. 1986). The algorithm utilises a dummy
lookahead symbol # to detect the situations in which lookaheads propagate, calling for multiple
passes over the kernel items to perform the lookahead augmentation. If [B→ γ ·Cδ,b] is in I ,
and we know for each nonterminalC the set ofA, where eachA is a left-mostNT for all possible

2.4 GLR Parsing 43

right-most rule expansions (⇒∗
rm) of C i.e. whereC⇒∗

rm Aη, then we can determine the values
of a for which [A → X · β,a] is in goto(I ,X) as the setFIRST(ηδ). Note that this will be a
subset ofFOLLOW(A), the set givenA is derived (expanded) fromC (and not another category
of the grammar). If the setηδ is null or may be expanded toε thenb is also a possible lookahead
and[A→ X ·β,b] will be in thegoto(I ,X). In this case, we consider that the lookaheads (i.e.b)
propagate fromB→ γ ·Cδ to A→ X ·β.

Constructing the G1 LALR(1) Parse Table

G1 is a simple grammar. As a result, the SLR and LALR(1) parse tables (Table2.2) are equiv-
alent. This occurs as all nonterminal categories are each expanded from a single nonterminal
category. That is, continuing the discussion in the previous section, the following holds for all
A: FIRST(ηδ) = FOLLOW(A). Thus we derive the LALR(1) table forG1 either by applying
the SLR table construction method from the item sets (states) in Table2.4, or by augmenting
these item sets with lookaheads.

2.4 GLR Parsing
We now describe modifications to the LR parser to facilitate nondeterminism in the parsing
actions. In particular, we describe the modifications made by Tomita (1987) that generalise
LR parsing, to compile and apply an LR parser over an ambiguous CFG. Tomita describes
generalised LR parsing(GLR, henceforth), an extension of the LR parsing framework,to allow
parallel tracking of multiple state transitions and stack actions by using agraph-structured
stack. Thus we allow for multiple paths through the NFA to be determined, and each complete
path found corresponds to a derivation as discussed in §2.2.1. We describe these modifications
over an LALR(1) parser.

2.4.1 Relationship to the LR Parsing Framework
If we consider the LR framework in Figure2.4, the modifications thatTomita(1987) describes
may be summarised as follows:

• LR table:can specify more than one possible action i.e. sets of transitions as in the NFA
described previously. Thus cells in the LR table now specifya set of possible actions and
actionreturns this set given the current state and lookahead.

• Stack:we generalise the standard linear LIFO queue structure to enable the stack to merge
and diverge as the corresponding paths (state sequences) doso.

• LR parsing program:processes each path in parallel, so that all possible paths are found
throughout the underlying NFA.

• Output: the set of all possible parses licensed by the grammar. That is, the parser outputs
one parse for each complete path found.

2.4.2 Table Construction
The LR table is constructed as described previously, thoughmore than one action can be applied
given the current state and lookahead. Consequently, the functionactionreturns any number of
possible shift and reduce actions. This results in actionconflictsor competingactions in cells
throughout the LR table. Shift-reduce or reduce-reduce conflicts are possible, though shift-shift
conflicts are not, aslac has a single value which determines a single possible shift move.

44 2. LR PARSERS

Competing actions correspond to either ambiguities in the grammar (that each result in
competing derivations) or to alternative derivations thatare not distinguishable given the current
context (so that one or more actions result in a path that eventually terminates).

Grammar G2 Example

GrammarG2, shown in Figure2.8, extends GrammarG1 and models simple attachment prefer-
ences for prepositional phrases (PP) between noun phrases (NP) and verb phrases (VP). The top
categoryT has also been added, so that the augmented grammar also contains T’ and the rule
r0: T’ → T. Ruler0 specifies the edge to the accept state.

The GLR table (generalised LALR(1)) for this grammar is shownin Table2.5. The cor-
responding grammar NFA is shown in Figure2.9. There are several cells in the table which
define multiple actions. For example, for state 5 with a preposition lookahead we have two
possible actions:action(5,P) = {r5,s4}. This represents the situation where anNPoccurs after
a terminalP (as the ancestor state is 4) and the lookahead isP as well. So we have the choice
between creating aPP using the previously seenP andNPwith r5: PP → P NP, or shifting over
the nextP. In the latter case, we may include the currentNP with the next preposition phrase,
using eitherr4 or r7.

r0: T’ -> T
r1: T -> S
r2: S -> NP VP
r3: NP -> Pro
r4: NP -> NP PP
r5: PP -> P NP
r6: VP -> V NP
r7: VP -> V NP PP
r8: VP -> VP PP

Figure 2.8: GrammarG2.

2.4.3 Graph-structured Stack

If a single derivation is possible, then a single path can represent the derivation. Otherwise,
the stack diverges to separate paths where more than one action is applicable and merges when
the same state is reached for the current lookahead (as from this point the same actions will
be processed). This equivalence is critical as it allows forsubsequent parsing actions to be ap-
plied to a single entity. Consequently, it allows for tractable computation over large ambiguous
grammars.

The graph-structured stack (stack, henceforth) forms an NFA that is a subset of the gram-
mar’s NFA implicit in the GLR table. Each vertex in the stack now holds more information
in addition to the state number of the vertex. The additionalinformation includes the resulting
syntactic structure(s) of the sentence, enabling the parsing program to return all full derivations
possible given the grammar. That is, the parsing algorithm is anall-path parsing algorithm in
that it determines all possible paths in the underlying NFA,that is, all possible derivations.

2.4 GLR Parsing 45

state action goto
$ P Pro V T S NP VP PP

0 s2 12 1 3
1 r1
2 r3 r3 r3
3 s4 s7 10 6
4 s2 5
5 r5 r5 r5 6

s4
6 r4 r4 r4
7 s2 8
8 r6 r6 9

s4
9 r4 r4

r7 r7
10 r2 s4 11
11 r8 r8
12 accept

Table 2.5: Generalised LALR(1) table forG2.

0 2 8(7)

3(0)

47

5(4) 6(3,5) 9(8) 11(10)

10(3) 1(0) 12(0)

Pro
s2

Pro
s2

Pro
s2

$,P,V
r4

$,P,V
r4

$,P,V
r3

$,P,V
r3

$,P,V
r3

$,P,V
r5$,P,V

r4

$,P,V
r5

$,P,V
r5

$,P
r8

$,P
r4

$,P
r7

$,P
r6

$,P
r4

$,P
r4

P
s4

P
s4

P
s4

V
s7

$
r2

$
r1

$
accept

Figure 2.9: Grammar NFA forG2.

images/glr-g2-nfa.eps

46 2. LR PARSERS

Example Stack overG2

Given the sentence ‘He gives it to her’ with corresponding PoS tag sequence{Pro,V,Pro,P,Pro }
the possible parses, and corresponding state sequences through the NFA, are shown in Fig-
ure 2.10. The stack over this example is shown in Table2.6 in a similar fashion to the stack
shown for the unambiguous grammarG1 in Table2.3. However, thestackcolumn is now sub-
divided into four columns. The first illustrates the stack shared by all three parses. The second
column illustrates the stacks that each continue from the stack in the first column, while the
third illustrates the stack that is again shared between allparses. That is, moving from the first
to second column, the stack diverges (splits). Moving from the second column to the third,
shows these stacks merge again. The parse number is shown in the fourth stack column, which
illustrates the parses that result for the given stack.

P1:(T (S (NP Pro)
(VP V (NP Pro)

(PP P (NP Pro)))))
0,2,3,7,2,8,4,2,5,9,10,1,12,acc
P2:(T (S (NP Pro)

(VP (VP V (NP Pro))
(PP P (NP Pro)))))

0,2,3,7,2,8,10,4,2,5,11,10,1,12,acc
P3:(T (S (NP Pro)

(VP V (NP (NP Pro)
(PP P (NP Pro))))))

0,2,3,7,2,8,4,2,5,9,8,10,1,12,acc

Figure 2.10: Example parses forG2, with corresponding state sequences that produced the
parse. The stateaccrepresents the accept state.

Figure2.11illustrates the same stack diagrammatically as a NFA. In this figure, the stack
is separated into word boundary stacks that illustrate the parsing actions (edges) performed for
each lookahead. Edges are arrows shown with solid lines. Each edge corresponds to a parsing
action, which results in moving from one state to the next. For a reduce action the lookahead
is not updated. Thus, reduce actions result in subanalyses in the same word boundary stack
and correspond to downward edges in this figure. In contrast,for a shift action we consume
the current lookahead, and a horizontal edge illustrates the transition to the next word boundary
stack. We perform all possible reduce actions prior to performing the possible shift actions for
a given lookahead. This order is evident in the edge numbering.

For reduce actions (downward edges), we create a mother category from daughter subanal-
yses represented within vertexes of this graph. A dotted line between vertexi and vertex j
illustrates that the ancestor statei is exposed when we perform a reduce action (POP the daugh-
ter categories from the stack) that results in a subanalysisfor vertex j. The newly created mother
category (shown in brackets) in vertexj spans the subset of the input shown from vertexi to
vertex j. For example, given lookaheadV in word boundary stack 1, we reduce from state 2
to 3 with r3 resulting in aNP. The word span of vertex 3 is from 0 to 1 (i.e. overPro) and the
ancestor state is in vertex 0 which represents the start stateS0.

The diverging paths in this graph, and in the stack example, illustrate the two positions

2.4 GLR Parsing 47

where the individual parses result. That is, the two nondeterministic decision points. The first
decision point occurs at state 8 with lookaheadP (stack configuration 6 in Table2.6); where
reducing to state 10 results in P2. Similarly, at state 9 withlookahead$ (stack configuration
11b in Table2.6) we decide between P1 and P3.

2.4.4 Parse Forest
As we build the stack during parsing, the compact representation of all possible parses, the
parse forest, is also built within this structure. The parse forest is efficiently represented using
subtree sharingandlocal ambiguity packingwhich we now describe.

Relationship between the Parse Forest and Graph-structured Stack

First, recall that the stack is separated into word boundarystacks, that is, one word boundary
stack for each item (lookahead) in the input sequence. Within each vertex of a word boundary
stack we encode the corresponding subanalyses (subtrees) for the vertex’s LR state. That is,
each subanalysis results from a parsing action that specifies the vertex’s LR state as the next
state (for the given lookahead).

Each subanalysis corresponds to anodein the parse forest. Thus each vertex in the stack
represents a set of nodes in the parse forest for the given lookahead and LR state. Therefore, the
parse forest and graph-structured stack are separate data structures, though the stack encodes
the parse forest which represents the analyses built withinthe stack.

Subtree Sharing

If a vertex is formed after application of a shift action, then the corresponding nodes (subanal-
yses) for this vertex areword nodes. In contrast, after a reduce action, we form a subanalysis
using one or more daughter nodes (in stack vertexes) and we create atree node. A tree node
represents a subanalysis (subtree), created by storing thenewly created mother category as well
aspointersto the daughter nodes (rather than copying each daughter node’s subtrees). This
process is known assubtree sharing, as different nodes may specify (that is, contain pointers
to) the same daughter nodes in the parse forest.

Local Ambiguity Packing

If we create nodes (subanalyses) for a vertex, then a subset of these nodes may represent equiv-
alent subanalyses over the same subset of the input sequence(that is, with the same word span).
The definition of node equivalence varies between parsing systems and grammars. For a CFG,
two subanalyses are equivalent if their mother categories are the same.

Equivalent nodes in a vertex represent competing nodes (subtrees) in the parse forest. As we
create these nodes within the same state of the LR parser (with the same lookahead symbol and
word span) we apply the same set of subsequent parsing actions to each. To reduce redundant
processing, we need only apply these parsing actions once. In view of this redundancy we
merge competing nodes in the parse forest (and therefore, inthe vertex of the stack) through
local ambiguity packing(packing, henceforth). Here, we represent each set of nodesusing one
node of the set. Subsequent parsing actions are then appliedto the single representative node
only.

2.4.5 LR Parsing Program
The LR parsing program proceeds in the same fashion as previously described. Although it
now allows for more than one action to be applied given the current state and lookahead item.

48 2. LR PARSERS

num
ber

from
stack

input
action

1
0

P
1,P

2,P
3

P
ro

V
P

ro
P

P
ro

$
s2

2
1

0
P

ro
2

P
1,P

2,P
3

V
P

ro
P

P
ro

$
r3

3
2

0
N

P
3

P
1,P

2,P
3

V
P

ro
P

P
ro

$
s7

4
3

0
N

P
3

V
7

P
1,P

2,P
3

P
ro

P
P

ro
$

s2
5

4
0

N
P

3
V

7
P

ro
2

P
1,P

2,P
3

P
P

ro
$

r3
6

5
0

N
P

3
V

7
N

P
8

P
1,P

2,P
3

P
P

ro
$

r6,s4
7a

6
(r6)

0
N

P
3

V
P

10
P

2
P

P
ro

$
s4

8a
7a

0
N

P
3

V
P

10
P

4
P

2
P

ro
$

s2
8b

6
(s4)

V
7

N
P

8
P

1,P
3

9a
8a

0
N

P
3

V
P

10
P

4
P

ro
2

P
2

$
r3

9b
8b

V
7

N
P

8
P

1,P
3

10a
9a

0
N

P
3

V
P

10
P

4
N

P
5

P
2

$
r5

10b
9b

V
7

N
P

8
P

1,P
3

11a
10a

0
N

P
3

V
P

10
P

P
11

P
2

$
r8

11b
10b

V
7

N
P

8
P

P
9

P
1,P

3
r4,r7

12a
11b

(r4)
0

N
P

3
V

7
N

P
8

P
3

$
r8

13
11a,11b

(r7),12a
0

N
P

3
V

P
10

P
1,P

2,P
3

$
r2

14
13

0
S

1
P

1,P
2,P

3
$

r1
15

14
0

T
12

P
1,P

2,P
3

$
accept

Table
2.6:

S
tack

configurations
forG2

over
P

oS
tag

sequence{P
ro,V

,P
ro,P

,P
ro

}.
T

he
first

colum
n

show
s

the
configuration

num
ber

w
hile

the
second

colum
n

show
s

the
previous

stack
configuration

and
w

hich
action

w
as

applied
(in

brackets)
ifm

ore
than

one
actio
n

w
as

possible.
T

he
next

tw
o

colum
ns

(‘stack’
and

‘input’)
form

the
tuple

of
e

ach
configuration

reached.
T

he
final

colum
n

illustrates
the

s
et

of
possible

actions,determ
ined

using
the

stack
top

state
(

S
c)

and
currentlookahead

(the
firsttoken

in
the

inputofcolum
n

4).

2.4 GLR Parsing 49

0 Pro 1 2 3 4 5ProV P Pro $

0 2

7

1(s2)

3(s7) 4(s2)

5(r3)

8(s4)
8(NP)

8(NP)

5(NP)

9(PP)

10(VP)

6(r6)

9(s2)

10(r3)

12(r5)

11(r5)

15(r8)

14(r7)

16(r2)

1(S)

17(r1)

18(acc)
acc

12(T)

7(s4)

2

4 2

2(r3)

3
(NP)

10
(VP)

13
(r4)

11(PP)

17
(r6)

Figure 2.11: Example graph-structured stack forG2 over PoS tag sequence{Pro,V,Pro,P,Pro }.
Each vertex is shown with the corresponding state number androot category for each subanaly-
sis (in brackets). For word vertexes, which are created by shift actions, the category is the word
itself. The vertexes are separated into word boundary stacks (over each lookahead), where
each word boundary stack number is shown across the top of this figure. To the right of each
word boundary stack is an item in the input sequence, where this item is the lookahead for
the boundary. We also number edges (solid lines) which show the order in which the actions
are performed and, in brackets, the action to perform. Dotted lines illustrate the ancestor state
exposed for a reduce action that creates a subanalysis for the vertex.

images/graph-stack-eg.eps

50 2. LR PARSERS

The parsing program begins by initialising the first word boundary stack (the 0th stack) to a list
containing a single vertex data structure representing thestart LR state. All other word boundary
stack positions are initialised to empty. The program continues by applying all possible reduce
actions for each vertex in the current word boundary stack, so that subsequent shift actions may
be applied to all possible states in this stack (for the givenlookahead).

Each production may be augmented with a set of tests, where each nonterminal is augmented
with a set of attributes and the tests define whether the attribute values are acceptable.Tomita
(1987) describes that during parsing, whenever a reduce action forms a higher-level nonterminal
using a phrase structure rule, a separate function associated with the rule is called that defines,
passes and/or tests the attribute values of the resulting nonterminal. If this function returns
notification that one or more tests have failed, then the parser discards the resulting nonterminal.

The parsing program also includes a processing stage to enable extraction of the set of (n-
best) derivations from the resulting parse forest. This code is considered tounpackthe parse
forest, given that the nodes (competing subanalyses) arepackedin the data structure.

2.4.6 Output

Given subtree sharing and packing, the parse forest itself represents another NFA, where we
may move from root node (representing the root category of the grammar) to word nodes. The
path diverges where packing occurs and merges for subtree sharing. To unpack the parse forest
and extract the set of competing derivations, we simply needto traverse the NFA and consider
each possible combination of subanalyses for each node in the parse forest. That is, we perform
a depth-first search of this structure and for each node we return the set of possible subanalyses.
Optionally, this set is pruned so that only the n-best set of subanalyses is returned.

Given the set of subanalyses for each daughter node, we create an alternative subanalysis for
the current node for each possible combination of daughter subanalyses with the given mother
category. We combine this set of subanalyses with the set returned by any packed nodes, as this
set represents the alternative subanalyses for the currentnode. At the root node of the parse
forest, the set of possible analyses represent competing derivations for the given input sequence
(sentence).

2.4.7 Modifications to the Algorithm

Kipps (1989) reformulates the modifications defined byTomita(1987) to improve the parser’s
efficiency through changes to the state-popping process. The algorithm identifies, for a given
reduce rule, each possibleancestor. That is, the set of daughters on the stack and the resulting
ancestor vertex. TheANCESTORSfunction, which dominates the complexity of the parser, de-
termines a set of possible ancestors given the current vertex, the number of daughters and the
mother category we wish to create. This function is modified so that the reduce function utilises
a lookup table, reducing the complexity of the parser fromnp+1, where p is the maximum
number of daughters for a production, ton3.

2.5 Statistical GLR (SGLR) Parsing
This section discusses existing approaches to incorporatestatistical models over the GLR (LR,
henceforth) parsing framework defined above. In particular, we define the different normalisa-
tion methods over the LR table, given action counts derived over a supervised training corpus.

2.5 Statistical GLR (SGLR) Parsing 51

2.5.1 Probabilistic Approaches

PCFG Model

At first, methods considered LR parsing as a purely operational mechanism, aiming to distribute
probabilities originally associated with the probabilistic CFG (PCFG) (Wright & Wrigley,
1989). However, these methods fail to take advantage of the additional context available in
the LR parser. The resulting level of context is equivalent to that available in the PCFG, which
are acknowledged in the literature as inadequate due to a lack of context-sensitivity.

Stack Configurations

Suet al. (1991) propose a model that is moderately more context-sensitivethan the underlying
CFG. They distribute probability mass across possible action sets for the stack configurations
that result for each lookahead item, i.e. between the possible word boundary stacks. The proba-
bility of a parse is the product of the probabilities for eachstack configuration that results (prior
to each shift action) during construction of the parse. Effectively, they include full context (stack
configuration) in the probability model. However, this model requires a complex algorithm to
train and is it is not efficient to decode.

Parser Actions

Briscoe & Carroll(1993) (B&C, hereafter) propose a method that distributes probability mass
directly between competing parsing actions in the LR table,so that the parsing model success-
fully incorporates a greater level of context compared to the underlying CFG. Further, they
estimate the probability distributions using simple MLE and the model is efficient to decode.
The probability of each parse is the product of all shift/reduce actions that result in the parse.
Inui et al. (1997) (I&T, hereafter) refine the B&C probabilistic model by providing an alter-
native normalisation method. Associating probabilities with each vertex in the stack is prob-
lematic, as vertex represent a set of subanalyses (nodes) where each results from a different
reduce action. Instead,Carroll (1993) associates probabilities with each subanalysis and with
each packed subanalysis, i.e. with each node in the parse forest, rather than with each vertex in
the graph-structured stack (see §2.4.4).

2.5.2 Estimating Action Probabilities
Estimating action probabilities in the LR table consists ofa) recording an action history for
the correct derivation (for each sentence in a treebank), b)computing the frequency of each
action over all action histories and c) normalising these frequencies to determine probability
distributions over conflicting (i.e. shift/reduce or reduce/reduce) actions. Models differ in the
last step, the normalisation method during MLE.

Action Counts

In order to estimate action probabilities, we must first derive from a supervised corpus the count
for each action in the LR table. Given a pair(s,A), from an annotated treebank as defined in
§1.3.1, we determine the parse forest for the sentences. We then identify the parse in the parse
forest that matches the treeA specified in the treebank. This ‘correct’ parse has a corresponding
set of shift and reduce actions that results in creation of the parse. For each shift and reduce
action in this set, we add a count of 1 to the count for this action in the LR table. Repeating
this process for each sentence (training instance) in the treebank, we determine the total action
count for each action in the LR table. We now discuss alternative normalisation methods to

52 2. LR PARSERS

form probability distributions within the LR table, and consequently, for parses in the parse
forest.

Lookahead Normalisation

It seems reasonable to determine the probability of each parsing action through MLE over
competing action sets i.e. within cells of the LR table. We refer to this normalisation method as
la-norm. The resulting probabilities are analogous to the transition probabilities in first-order
HMM PoS-taggers as we assign probability mass between transitions in the underlying NFA
with the same edge label (lookahead item).

State and B&C Normalisation

B&C, by contrast, use MLE to estimate their model’s parametersfrom counts over rows of the
LR table, that is across all lookaheads for each state, whichwe refer to asstate-norm. Their full
normalisation method further distributes probability mass between the alternative states possible
after a reduce action. Thus, they effectively distribute probability mass betweenall actions
(edges) possible from a state in the grammar NFA, including the edges that are conditional
on the ancestor state exposed after a reduce action. However, this distributes probability mass
between actions that do not compete with each other given thecurrent input, that is, lookahead
item. As a result, probabilities for actions are deficient, i.e. the probability of all parses licensed
by the grammar do not sum to 1.

Inui Normalisation

I&T propose an alternative normalisation method, based on whether the current state was
reached from a shift or reduce action. In which case, they distribute probability mass between
cells (la-norm) or across rows (state-norm), respectively. They motivate this method using the
conditional probability of moving from the current stack configurationσi−1, to another,σi. They
estimate this probability using the stack-top stateSc, next input symbollac and next actionai .
They argue that the conditional probability of the next lookahead is known after a reduce action
(i.e. it is unchanged) and unknown after a shift. Let us considerSs andSr mutually exclusive
sets of states, which represent those states reached after shift or reduce actions, respectively.
The probability of a given transition from one stack state toanother (that is, of the given action
ai) can be estimated using:

P(lac,ai,σi|σi−1) ≈

{

P(lac,ai|Sc) Sc ∈ Ss

P(ai |Sc, l i) Sc ∈ Sr

}

Therefore, they normalise over all lookaheads for a state orover each lookahead for the
state, depending on whether the state is a member ofSs or Sr , respectively.

I&T also remove subdivision of probability mass between goto ancestor states for a given
nonterminal category. They argue that this decision is deterministic in their model, which is
based on stack state rather than the top-stateSc. However, in practice they utiliseSc to represent
the stack i.e. back-off to a purely state-based level of context. I&T describe refinements that
are expected to provide performance gains over the model of B&C, because la-norm models
the preferences between competing actions only. Moreover,state-norm implicitly incorporates
bigram statistics in the model.

2.6 RASP 53

Example

Returning to our previous example over the grammarG2, we consider a training corpus that
consists of seven sentences: one example of P1, two of P2 and four P3 parses. Table2.7
shows the total action counts in brackets next to each actionin the LR table. We illustrate
only the action part of the table as the goto table is unchanged from Table2.5. A tuple in the
second row illustrates the probabilities for state-norm, la-norm and the normalisation model by
I&T, respectively. B&C counts and resulting probabilities (for each ancestor vertex) appear for
reduce actions in the remaining rows for each state, with theancestor state in brackets. We do
not apply smoothing in this example. Although if no counts are seen for any of the competing
actions in a set, we show the probabilities distributed equally between the unseen actions.

The probability of P1, P2 and P3 for each normalisation modelare shown in Table2.8.
Given the training data, the resulting probability model should rank P1< P2< P3. However,
while both lookahead and I&T based normalisations achieve this ranking, with probabilities
in ratio to the number of each parse seen during training, both state and B&C normalisation
methods do not. A similar example was shown by I&T, though over a different grammar. B&C
and state based normalisation both rank P2< P1, which on closer inspection of both examples
is primarily due to the subdivision of probability mass to noncompeting actions (at this point in
parsing). That is, to those that are not one of the two decision points (from states 8 and 9) as
discussed in §2.4.3.

2.6 RASP
RASP (the ‘robust accurate statistical parser’) is a robust statistical analysis system for English
developed byBriscoe & Carroll (2002). RASP is a SGLR parser, applying the probability
distribution over complete derivations, using the I&T probability model over parsing actions as
described in §2.5.2. This section provides specific details of RASP’s grammar in §2.6.1, training
in §2.6.2, parser application in §2.6.3and finally, we describe the output formats available in
§2.6.4.

2.6.1 Grammar

Unification-based Metagrammar

Briscoe(2006) describes the manually written feature-based unificationgrammar, where ter-
minals are defined over PoS tags (Elworthy, 1994, the CLAWS II tagset). The grammar is
written in the ANLT formalism, i.e. as ametagrammar, based on the notion of generalised
phrase structure grammar (GPSG). Terminals do not include the null category and features hold
atomic values so that rules are written using only a subset ofthe attribute-valued (AV) grammar
possibilities defined by the ANLT formalism (Groveret al., 1993). The grammars developed
for use in RASP are referred to as the set of ‘tag sequence grammars’, tsg, and version numbers
are appended to this acronym. The grammars utilised in this work are variants of the finaltsg15
released with version 2 of RASP (Briscoe & Carroll, 2006).

Attributes can be organised into sets for the purpose of feature propagation (feature sets) or
simply to enable abbreviated representation of common sets(aliases). For example, Figure2.12
shows a grammar rule analysing a verb phrase followed by a prepositional phrase modifier. The
rule’s name isV1/vp pp and the syntactic specification which follows on the first line contains
alias categoriesV1, H1 andP2 which are defined in the grammar as:

ALIAS V1 = [V +, N -, BAR 1].

54 2. LR PARSERS

state action
$ P Pro V

0 s2 (7)
Sr {1,1,1}
1 r1 (7)
Sr {1,1,1}

7(12)

1(12)

2 r3 (7) r3 (7) r3 (7)
Ss {0.33,1,0.33} {0.33,1,0.33} {0.33,1,0.33}

0(3),7(5),0(8) 0(3),0(5),7(8) 7(3),0(5),0(8)

0(3),0.33(5),0(8) 0(3),0(5),0.33(8) 0.33(3),0(5),0(8)

3 s4 (0) s7 (7)
Sr {0,1,1} {1,1,1}
4 s2 (7)
Ss {1,1,1}
5 r5 (7) r5 (0) r5 (0)
Sr {1,1,1} {0,0.5,0.5} {0,1,1}

0(6),5(9),2(11) 0(6),0(9),0(11)

0(6),0.71(9),0.29(11) 0(6),0(9),0(11)

s4 (0)
{0,0.5,0.5}

6 r4 (0) r4 (0) r4 (0)
Sr {0.33,1,1} {0.33,1,1} {0.33,1,1}

0(3),0(5),0(8) 0(3),0(5),0(8) 0(3),0(5),0(8)

0.11(3),0.11(5),0.11(8) 0.11(3),0.11(5),0.11(8) 0.11(3),0.11(5),0.11(8)

7 s2 (7)
Ss {1,1,1}
8 r6 (4) r6 (2)
Sr (10,4) (10,2)

{0.36,1,1} {0.18,0.29,0.29}
4(10) 2(10)

0.36(10) 0.18(10)

s4 (5)
{0.45,0.71,0.71}

9 r4 (4) r4 (0)
Sr {0.8,0.8,0.8} {0,0.5,0.5}

0(3),0(5),4(8) 0(3),0(5),0(8)

0(3),0(5),0.8(8) 0(3),0(5),0(8)

r7 (1) r7 (0)
{0.2,0.2,0.2} {0,0.5,0.5}

1(10) 0(10)

0.2(10) 0(10)

10 r2 (7) s4 (2)
Sr {0.78,1,1} {0.22,1,1}

7(1)

0.78(1)

11 r8 (2) r8 (0)
Sr {1,1,1} {0,1,1}

2(10) 0(10)

1(10) 0(10)

12 accept
Sr

Table 2.7: Statistical models over the action table forG2.

2.6 RASP 55

Normalisation method
Parse State-norm la-norm B&C I&T
P1 0.0025 0.1420 0.0018 0.0051
P2 0.0011 0.2900 0.0003 0.0104
P3 0.0036 0.5680 0.0026 0.0204

Table 2.8: Example of the parse probabilities that result for different LR parser normalisation
methods.

V1/vp_pp : V1[MOD +] --> H1 P2[ADJ -, WH -] :
1 :
2 = [PSUBCAT NP], (ncmod _ 1 2) :
2 = [PSUBCAT NONE], (ncmod prt 1 2) :
2 = [PSUBCAT (VP, VPINF, VPING, VPPRT, AP)], (xmod _ 1 2) :
2 = [PSUBCAT (SFIN, SINF, SING)], (cmod _ 1 2) :
2 = [PSUBCAT PP], (pmod 1 2).

Figure 2.12: Example metagrammar rule. This rule definitionshows the rule name and syntactic
specification (on the first line), with semantic rules for theGR output format shown in the
remaining lines.

ALIAS H1 = [H +, BAR 1].
ALIAS P2 = [V -, N -, BAR 2].

The tsg grammars utilise x-bar theory, expressed in the feature BAR. The V andN features
represent the major categories of verb and noun, while the values+ and- represent the presence
and absence of the feature, respectively. The head daughteris identified using the featureH,
so that in this example, the first daughter is the head daughter. In addition to these features,
a number of feature-value pairs are defined in the syntactic specification. For example, the
prepositional phrase daughter is a non-wh phrase.

Object Grammar

The metagrammar enables the grammar writer to express the rules in a compressed and manage-
able format e.g. with aliases. These ‘compressed’ rules arecompiled into anobject grammar
by ‘expanding out’ the phrase structure rules with additional features. The resulting object
grammar contains categories represented as lists, specifying the category number followed by
values corresponding to the features for the given category. Each value is set to either a specific
predetermined value (e.g.+), or a variable value (starting with@) which is instantiated during
unification. A table holds the corresponding feature names for each category.

For example, the 6th category type in tsg15 corresponds to a verb category. The following
example shows a verb with several features instantiated, with the associated entry in the feature
name table as follows:

(6 - + |1| @2787 @2815 - PAST + - - -)
(N V BAR PLU MOD AUX VFORM FIN CONJ SCOLON QUOTE)

Rules in the object grammar consist of lists of such categories. The first item is the rule’s
mother, followed by the rule name, while remaining categories represent the daughters of the

56 2. LR PARSERS

rule. Each feature value is instantiated as specified in the metagrammar rule and features that
are required to unify between daughters, or pass from the head daughter to the mother, are
specified by using the same variable number (e.g. @7) in the daughter’s and mother’s category
lists. TheV1/vp pp rule shown in Figure2.12results in the compiled object grammar rule, with
the features set as specified in the aliases and within the rule itself, as follows:

((#(6 - + |1| @7 + @23 @24 @28 - - -) "V1/vp_pp"
(#(6 - + |1| @7 @36049 @23 @24 @28 - - @36050))
(#(9 - - |2| @36051 @36052 - - @36053 - - @36054)))

CF Backbone

The context-free (CF)backbonegrammar is determined from the object grammar, where rules
contain categories identified using atomic names. That is, each atomic name has an associated
residue of feature name-value pairs. Given a specified set offeatures we wish to ‘compile’
out of the grammar, we effectively determine a rule for each possible combination of these
features i.e. so that a CFG (with no residue of features) results if all features of the grammar
are compiled out.2.4 For example, if a rule contains 2 values for 3 features that are unspecified
(i.e. have variable values), all of which we wish to compile out, then we create 23 = 8 different
run-time rules. Each of these 8 rules now have specific valuesdefined for each of the three
features compiled out, and these features no longer need to be unified during parsing.

We determine the CF backbone from the object grammar in two stages. Firstly, we deter-
mine the set of disjoint categories in the object grammar. This set covers the whole grammar,
where each of the features we wish to compile out have set values in the categories (and thence
rules) created. We identify each category with a distinct atomic category name. Secondly, we
create a CF rule for each object grammar rule using the atomic category names. Additional
refinements are required to the second stage to deal with, forexample, coordination and un-
bounded dependencies, which we do not cover here (see instead, Carroll 1993).

In the resulting CF backbone, nonterminals and terminals in the grammar are then identified
using these atomic category names. A table maps these names to the feature-value categories.
The grammar for tsg15 consists of 1189 run-time productions, that is, in the compiled CF back-
bone. The CF backbone consists of 61 distinct categories; 28 terminals, and 33 nonterminals.
For example, the CF backbone rule for the grammar rule in Figure 2.12, with V1-41 andp2-48

distinct categories, follows:

(CFRULE :NAME V1/vp_pp :MOTHER V1-41 :DAUGHTERS (V1-41 P2- 48))
V1-41: [N -, V +, BAR 1, PLU @7, MOD @1993, AUX @1994, VFORM @1995,

FIN @28, CONJ @2738, SCOLON -, QUOTE @2917]
P2-48: [N -, V -, BAR 2, PSUBCAT @13, PFORM @16, ADJ @18, WH @20,

MOD @22, CONJ @2832, SCOLON -, QUOTE @5439]

Grammatical Relation (GR) Specifications

Briscoeet al. (2006) describe the grammar and the rule-to-rule mapping from local trees to
grammatical relations (GRs). The mapping specifies for each grammar rule the semantic head
of the rule (head, henceforth), and one or more GRs that shouldbe output (optionally depending
on feature values instantiated at parse time). Therefore, the nontrivial task of determining GRs
via feature propagation and structural context (over each n-best derivation) is no longer required.

2.4Note that this is infeasible given large broad-coverage unification grammars.

2.6 RASP 57

For example, the rule in Figure2.12 identifies the first daughter (1) as the head (second
line), and that one of five possible GRs is to be output (subsequent lines), depending on the
value of thePSUBCATsyntactic feature. If the feature has the valueNP, then the relation isncmod

(nonclausal modifier), with slots filled by the heads of the first and second daughters (the1 and2

arguments). The resultingGR specificationis <1, (ncmod 1 2)>. That is, each GR specification
is defined as:<head, GR>.2.5

Figure2.13specifies the set of possible GRs defined in the grammar. These GRs are ar-
ranged in a subsumption-based hierarchy which illustratesthe intent of the grammar writer to
differentiate arguments from adjuncts. GRs take the following form: (relation subtype head

dependent initial) whererelation specifies the type of relationship between thehead and
dependent . The subtype slot encodes additional specifications of the relation typefor some
relations. Finally, theinitial slot encodes the initial or underlying logical relation of the
grammatical subject in constructions such as passive.

�����
PPPPP

Q
QQ

�
��

HHHH
!!!!

HHH
���

Q
Q
QQ

��
!!!!!!!! �

�
�

��

(((((((

�
��

hhhhhhhhh

PPPPPSS��
�����

�

��
aaaaa

XXXXXXX

hhhhhhhhhh

dependent

ta arg mod det aux conj

mod arg

ncmod xmod cmod pmod
subj dobj

subj
comp

ncsubj xsubj csubj
obj pcomp clausal

dobj obj2 iobj xcomp ccomp

Figure 2.13: The GR subsumption hierarchy

Marked Rules

Of the 1189 productions, 255 are (manually) identified as marked: peripheral rather than core
rules of English grammar. These rules are intended to apply only when other rules are not
available. For example, there are marked rules to cover heavy NP shifted arguments to verbs
where, for example, a short PP argument occurs before an NP:presented to him the largest case
of cigars she had ever seen.

Optional Grammar Constituents

Many rules include multiple optional constituents (for succinctness of grammar expression).
For example, a rule for subject auxiliary inversion withbe licensesnot before or after the com-
plement which can also optionally be followed by an adverbial phrase: is (not) he (not) the
abbot (clearly)?, resulting in 23 = 8 different run-time rules.

2.5One or more GRs are defined in the second element of the GR specification. For simplicity, we consider one
GR per specification.

58 2. LR PARSERS

2.6.2 Training

LR Table Construction

A generalised LALR(1) (LR, henceforth) table is constructed from the CF backbone grammar
utilising the efficient LALR(1) table construction technique, described in §2.3.6. However,
this algorithm requires multiple passes over the item sets to propagate the lookaheads correctly
between the sets and, asCarroll (1993) reports, was infeasible given the size of RASP’s CF
backbone grammar.Kristensen & Madsen(1981) describe a modification to this algorithm,
applied within RASP, that computes the lookaheads using a single pass over all item sets and
caches intermediate results to enable tractable computation of the table.

Action Probabilities

Probabilities are associated with actions in the LR table using the normalisation method ofInui
et al. (1997) as discussed in §2.5.2. We determine action counts by training on around 5K
fully annotated training instances from Susanne (see §1.3.1). During normalisation, we apply
Laplace estimation to ensure that we assign a non-zero probability to all actions in the LR table.
That is, we assign ‘unseen actions’ a probability equal to the reciprocal ofT, whereT is the
total frequency of actions plus 1 for each actiona in A:

T = ∑
a∈A

(|a|+1)

Each unseen action is in the setA, so that the sum of all action probabilities equals 1.

2.6.3 Parser Application

Processing Components

RASP is based on a pipelined modular architecture in which text is preprocessed by a series of
components that perform sentence boundary detection, tokenisation, part of speech (PoS) tag-
ging, named entity recognition and morphological analysis, before being passed to a statistical
parser (Briscoe & Carroll, 2002). The PoS tagged tokens are then mapped to terminals of the
grammar, so that the input sequence is mapped from raw text tothe terminals of the grammar
prior to parsing.

Parsing Framework

To parse over an input sequence of grammar terminals, we utilise the GLR framework previ-
ously defined in §2.4. That is, we apply a graph-structured stack over the GLR table for the CF
backbone. The shift and reduce actions are obtained and applied by considering the atomic cat-
egories only. However, after each reduce action we unify thefeatures for the CF rule, effectively
augmenting the rule with a test as inTomita(1987).

Thus, on each reduce action the features and the daughters ofthe rule are unified. That is,
we unify the residue of features not incorporated into the CF backbone grammar. If unification
fails then this derivation path also fails. Since unification often fails it is not possible to apply
beam or best first search strategies during construction of the parse forest; statistically high
scoring paths often end up in unification failure. Hence, theparse forest represents all parses
licensed by the grammar.

Efficiency Modifications

2.6 RASP 59

Kipps (1989) describes how to turn theANCESTORSfunction (called for each reduce action)
into a table look-up function.Carroll (1993) modifies this algorithm so that the function utilises
acacheof intermediate results to enable fast look-up of ancestorsand these intermediate results
are stored in sets of alternative node sequences. Each cacheentry keyed onv andk holds the set
of all possible node sequences whose start vertex is distance k in the stack from vertexv. The
entry is updated when each new analysis is formed during parsing, so that the cache is always
up to date. The resulting parser’s time complexity is alson3.

Packing

Carroll (1993) generalises the atomic category packing ofTomita(1987) (described in §2.4.4)
to complex feature-based categories followingAlshawi (1992). Packing is based on feature
structuresubsumption(Oepen & Carroll, 2000, provide a definition), whereby the most general
node represents the set of packed nodes.Miyao & Tsujii (2002) define feature forests, an
instance of a parse forest in which nodes are sets of property-values rather than, for example,
CFG categories. Theirconjunctivenodes correspond to the node definition we provide, while
disjunctivenodes represent a set of equivalent conjunctive nodes. In practice, we utilise a single
node to represent a set of equivalent nodes. Therefore, packing simply results in a compact data
representation by grouping equivalent nodes, regardless of the formalism used to define this
structure.

Parse Forest

In view of the multiple root categories, the parse forest is,in practice, considered the set of
parse forests, where each dominates analyses spanning the whole sentence with the specified
root category. Nodes within the parse forest, and in the resulting derivations are labelled with
sets of features (attribute-value pairs). As previously discussed, the LR action table defines
the set of possible shift and/or reduce actions applicable given the current state and lookahead.
The corresponding action probability assigns a score to each newly derived (sub)analysis, and
moreover, to this node in the parse forest. Recall that the parse forest is built within the graph-
structured stack, as defined in §2.4.4.

Figure2.14shows a simplified parse forest containing three parses generated for the follow-
ing preprocessed text:

I PPIS1 see+ed VVD the AT man NN1 in II the AT park NN1

Each node is uniquely identified by the number in the top left of each square. Edges to circles
with numbers indicate that a pointer to ashareddaughter node is stored. In this case, the
number identifies the corresponding node’s data structure.For example, node 5 represents the
word node forsee+ed VVDwhich is a daughter of nodes 4, 18 and 22.

Parse Selection Model

At parse time, the probability of an action corresponding toa marked production: a ‘marked
action’, is effectively reset to be equal to the minimum of all unseen action probabilities in
the table. Due to the marked action probabilities and unification failure, the extant model’s
probability distributions are deficient. Arguably, the ranking of competing derivations is more
important than preserving this property of probability distributions.

Parses are ranked in order from most to least probable, and wedetermine the n-best deriva-
tions, as discussed in §1.1.1. Derivations are found byunpackingthe parse forest, using a

60 2. LR PARSERS

T
/t

x
t-

sc
1

/-
S

/n
p

_
v

p

I_
P

P
IS

1
th

e
_

A
T

m
a

n
_

N
N

1

th
e

_
A

T

p
a

rk
_

N
N

1

in
_

II

se
e

+
e

d
_

V
V

D

V
1

/v
_

n
p

_
p

p

V
1

/v
p

_
p

p

V
1

/v
_

p
p

P
P

/p
1

V
1

/v
_

n
p

P
1

/p
_

n
p

P
1

/p
_

n
p

in
_

II

in
_

II

N
P

/d
e

t_
n

N
P

/d
e

t_
n

P
1

/p
_

n
p

N
P

/d
e

t_
n

N
I/

n

N
1

/n

N
1

/n
l_

p
p

l

P
P

/p
1

1
2

3 4

5 6

7

8
9

1
0

1
1

1
2

1
3

1
4 1

5
1

6
1

7
1

8

5

5

7
8

1
3

1
3

6

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

Figure 2.14: Simplified parse forest forI saw the man in the park. Each node in the graph
represents a node in the parse forest and is shown with the corresponding subanalysis’ rule
name. Two nodes are packed into theV1/v np pp node, shown using dotted lines, which results
in three alternative parses for the sentence. Edges (with solid lines) illustrate pointers from
mother to daughter nodes. Squares shown with dashed lines identify word nodes while solid
lines represent tree nodes.

images/fig-packaged-eg.eps

2.6 RASP 61

depth-first beam search over complete parse forests (those rooted in top categories of the gram-
mar). The probability of each derivation is the product of all shift/reduce actions that result in
the derivation (Briscoe & Carroll 1993, see §2.5.1).

Processing Restrictions

Processing restrictions (time and memory limitations) canbe imposed by the user during pars-
ing to enable an efficiency and accuracy trade-off. Further,a word-length limitation may be
specified by the user so that only sentences of length less than or equal to this value are pro-
cessed. As the size of the parse forest scales, in general, exponentially to sentence length, this
limitation enables the user to further prioritise efficiency or accuracy.

2.6.4 Output Formats

There are a number of output types available, including syntactic tree2.6, GRs and robust min-
imal recursion semantics (RMRS, seeCopestake 2003). Each of these is computed from the
n-best derivations. It is also possible to specify that a combination of these output formats
should be returned.

N-best Derivations

From the parse forest, RASP unpacks then-bestderivations.2.7 Each derivation is represented
as an embedded list of pointers to nodes of the parse forest, illustrating the syntactic structure
over these nodes. We perform a final unification check across each derivation, as packing is
based on subsumption and features may not unify once all combinations of packed nodes are
enumerated. If unification fails for an unpacked derivation, then it is removed from the n-best
list.

Fragmentary Parse

If the parser is unable to find a full analysis (that is, one rooted in the start category) then
the system outputs afragmentaryderivation. This is a connected sequence of partial analyses
spanning the input by applying a modified shortest paths algorithm (Briscoe & Carroll, 2006).
Therefore, given sufficient memory and time, the system is able to produce an analysis for most
sentences which lie outside the grammar. If we are unable to create the parse forest within the
imposed time or memory limitations, a fragmentary analysisis returned.

Syntactic Tree

A syntactic tree (or tree, for short) consists of labelled-bracketing output in which each set of
brackets corresponds to a rule. The contents of each bracketindicates the daughters of the
rule, and therefore, the word-span of the phrase itself. Thetree is trivial to determine from the
derivation, as the list of pointers has the same structure asthe syntactic tree. We determine the
rule names of the derivation by replacing each pointer to a node with the corresponding original
production name (or the word itself for word nodes).

Figure1.1 shows an example syntactic tree and its corresponding flat labelled-bracketing
representation. This flat labelled-bracketing is used to represent syntactic trees output by RASP.
For example, Figure2.15shows three parses in this format generated for the parse forest shown
in Figure2.14.

2.6The termtreerefers to syntactic trees in this work, while derivation refers to unpacked structures that include
full derivation information e.g. attribute-value pairs.

2.7The numbern is specified by the user, and represents the maximum number ofparses to be unpacked.

62 2. LR PARSERS

(T/txt-sc1/-
(S/np_vp I_PPIS1

(V1/v_np see+ed_VVD
(NP/det_n1 the_AT

(N1/n1_pp1 (N1/n man_NN1)
(PP/p1

(P1/p_np in_II (NP/det_n1 the_AT (N1/n park_NN1)))))))))

(T/txt-sc1/-
(S/np_vp I_PPIS1

(V1/v_np_pp see+ed_VVD (NP/det_n1 the_AT (N1/n man_NN1))
(PP/p1

(P1/p_np in_II (NP/det_n1 the_AT (N1/n park_NN1)))))))

(T/txt-sc1/-
(S/np_vp I_PPIS1

(V1/vp_pp
(V1/v_np see+ed_VVD (NP/det_n1 the_AT (N1/n man_NN1)))
(PP/p1

(P1/p_np in_II (NP/det_n1 the_AT (N1/n park_NN1)))))))

Figure 2.15: The n-best syntactic trees output for three parses for the sentenceI saw the man in
the park.

Grammatical Relations (GRs)

The GRs for each derivation are computed from the set of GR specifications at each node,
passing the (semantic) head of each subanalysis up to the next higher level in the derivation (be-
ginning from word nodes). GR specifications for nodes are, ifrequired, instantiated based on the
features of daughter nodes. These are referred to asunfilleduntil the slots containing numbers
arefilled with the corresponding heads of each daughter node. For example, the grammar rule
namedNP/det n has the unfilled GR specification<2, (det 2 1)>. Therefore, if aNP/det n local
tree has two daughters with headstheandcat respectively, the resulting filled GR specification
is <cat, (det cat the)>. That is, the head of the local tree iscat and the GR output is(det cat the).
For a derivation, each node has one corresponding head and one or more corresponding GRs
(in the filled GR specification). For word nodes, the head is the word itself.

Weighted GRs

The weighted GR output for a sentence consists of the unique set of grammatical relations in all
derivations licensed for that sentence, where each GR is weighted based on the probabilities of
the derivations in which it occurs. This weight is normalised to fall within the range[0,1] where
1 indicates that all derivations contain the GR.

Example

If we continue the example for the parse forest shown in Figure2.14, the corresponding shift/reduce
probability and instantiated GR specifications for each node are shown in Table2.9. For exam-
ple, theV1/vp pp subanalysis (node 17) contains the instantiated GR specification<1, (ncmod 1 2)>

2.6 RASP 63

since its second daughter has the valueNP for its PSUBCATfeature. Note that the head of a word
node is considered the word itself.

GR SPECIFICATION
Node Word/Rule Probability head GR
1 T/txt-sc1/– 0.0 1
2 S/npvp -0.5391 2 (ncsubj 2 1)

3 I PPIS1 -0.6763 IPPIS1
4 V1/v np pp -0.8728 1 (dobj 1 2),(iobj 1 3)

5 see+edVVD -0.00002 see+edVVD
6 NP/detn -1.1568 2 (det 2 1)

7 theAT -0.0004 theAT
8 N1/n -1.848 1
9 manNN1 0.0 manNN1
10 PP/p1 0.0 1
11 P1/pnp -0.6565 1 (dobj 1 2)

12 in II -0.0134 in II
13 NP/detn -0.1663 2 (det 2 1)

14 theAT -0.0005 theAT
15 N1/n -2.307 1
16 parkNN1 0.0 parkNN1
17 V1/vp pp 0.0 1 (ncmod 1 2)

18 V1/v np -2.5335 1 (dobj 1 2)

19 PP/p1 0.0 1
20 P1/pnp -0.6565 1 (dobj 1 2)

21 in II -0.0005 in II
22 V1/v np -1.1534 1 (dobj 1 2)

23 NP/detn -0.1663 2 (det 2 1)

24 N1/n1pp1 -0.5165 1 (ncmod 1 2)

25 P1/pnp -0.6565 1 (dobj 1 2)

26 in II -0.0452 in II

Table 2.9: Node (log base 10) probability and instantiated GR specifications for parse forest
nodes shown in Figure2.14.

Figure 2.16 illustrates the n-best GRs and the corresponding (non-normalised and nor-
malised) weighted GRs for this sentence. Weights on the GRs arenormalised probabilities
representing the weighted proportion of derivations in which the GR occurs. A non-normalised
weighting is calculated as the sum of derivation probabilities for derivations that contain the
specific GR. We then normalise the weight using the sum of all derivation probabilities. For ex-
ample, the GR(iobj see+ed in) is in one derivation with probability−8.237, the non-normalised
score. The sum of all derivation probabilities is−7.843. Therefore, the normalised probability
(and final weight) of the GR is 10(−8.237−−7.843) = 0.404265.2.8

2.8As we are dealing with log probabilities, summation and subtraction of these probabilities is not straight-
forward. Multiplication of probabilities X and Y, with log probabilities x and y respectively is determined using
the formulaX ×Y = x+ y, division usingX ÷Y = x− y, summation usingX +Y = x+ log10(1+ 10(y−x)) and

64 2. LR PARSERS

N-BEST GRS: (NON-NORMALISED) WEIGHTED GRS:
Parse probability: -8.075 -7.843 (det manNN1 theAT)
(det manNN1 theAT) -7.843 (det parkNN1 theAT)
(det parkNN1 theAT) -7.843 (dobj inII park NN1)
(dobj in II park NN1) -7.843 (dobj see+edVVD man NN1)
(dobj see+edVVD man NN1) -7.843 (ncsubj see+edVVD I PPIS1)
(ncsubj see+edVVD I PPIS1) -8.075 (ncmod manNN1 in II)
(ncmod manNN1 in II) -8.237 (iobj see+edVVD in II)

-9.884 (ncmod see+edVVD in II)

Parse probability: -8.237 (NORMALISED) WEIGHTED GRS:
(det manNN1 theAT) 1.0 (det manNN1 theAT)
(det parkNN1 theAT) 1.0 (det parkNN1 theAT)
(dobj in II park NN1) 1.0 (dobj inII park NN1)
(dobj see+edVVD man NN1) 1.0 (dobj see+edVVD man NN1)
(ncsubj see+edVVD I PPIS1) 1.0 (ncsubj see+edVVD I PPIS1)
(iobj see+edVVD in II) 0.5866 (ncmod manNN1 in II)

9.0960e-3 (ncmodsee+edVVD in II)
0.404265 (iobj see+edVVD in II)

Parse probability: -9.884
(det manNN1 theAT)
(det parkNN1 theAT)
(dobj in II park NN1)
(dobj see+edVVD man NN1)
(ncsubj see+edVVD I PPIS1)
(ncmod see+edVVD in II)

Total probability (sum of all parse probabilities): -7.843

Figure 2.16: The n-best GRs, and non-normalised/normalisedweighted GRs determined from
three parses for the sentenceI saw the man in the park. Parse probabilities and non-normalised
weights are shown as log probabilities as RASP stores all probabilities in log (base 10) form
with double float precision.

subtraction usingX−Y = x+ log10(1−10(y−x)).

Chapter 3

Part-of-speech Tag Models

We briefly described the preprocessing stages of the extant parser in §2.6.3. These processing
modules, which we define in §3.2, include a part-of-speech (PoS) tagger (tagger, henceforth).
The tagger maps each token in the input sequence to a set of possible PoS or grammatical
categories defined in the tagger’sdictionary (or lexicon). The tagger usually decides on the
optimum set of PoS tags given the input sequence, so that onlyone tag is returned per word.
In this case, the tagger is considered to run insingle tag per word (tpw)mode. However,
most taggers may also run inmultiple tpwmode, where more than one tag is returned for each
word, though some of the tag ambiguity present in the dictionary is resolved by the tagger. If
a tagger is used as afront-endto a parser, then the resulting PoS tags are considered terminals
of the parser’s grammar. Tag ambiguity unresolved by the tagger is effectively resolved by the
parser as the parser selects the most likely derivation, andtherefore the corresponding PoS tag
sequence, during parsing.

This chapter describes work that aims to optimise the level of tag ambiguity to pass onto the
parser, in terms of both parsing efficiency and accuracy. We investigate this aim with respect to
RASP’s PoS tagger, and define a number of different tag models within RASP’s architecture in
§3.3. Utilising gold standard tag and GR sets enables comparisonof these tag models in terms
of both tagging and parser performance in §3.4 and §3.5, respectively. As far as the author is
aware, this work is the first to perform such a broad comparison. We first describe related work
in §3.1. Much of the work we describe in this chapter appears inWatson(2006).

3.1 Previous Work
This section describes previous work on the integration of PoS taggers into the parsing process.
We discuss how PoS taggers may be utilised as front-ends to parsers, that is, as preprocessing
modules prior to parsing, in §3.1.1. Next, we describe work that focuses on the choice of tag
model, that is, the optimum level of tag ambiguity to pass onto the parser in §3.1.2. Finally, we
describe PoS tag models in §3.1.3.

3.1.1 PoS Taggers and Parsers

PoS Tagger Front-end

In §2.3.1, we defined the components of an LR parsing system. We also described natural
language parsers; programs that accept a word string as the input sequence and return the corre-
sponding analysis (a parse). The input sequence analysed bythe parser consists of terminals of
the grammar, so that the parse structure (consisting of nonterminals) is defined and constructed

65

66 3. PART-OF-SPEECH TAG MODELS

over these terminals.
Given a CFG, we output a derivation that includes words labelled with PoS tags and non-

terminal categories that each span (a subset of) these PoS tags. Depending on the architecture
of the parser, we can consider either the words or the PoS tagsas the terminals of the grammar.
That is, rules of the grammar may include unary rules, where the word is the daughter of the
rule and the PoS tag category is the mother of the rule e.g.Det → the . If we remove these
unary rules, and consider PoS tags terminals of the grammar,then we require a preprocessing
stage that first maps from the raw text sequence to a PoS tag sequence. In this case, the tagger
is considered afront-endor preprocessing module to the parser and the input sequenceis a set
of word-tag pairs e.g.the Det .

Resolving PoS Tag Ambiguity

PoS tagging is the process of mapping from raw text to the PoStag sequence. That is, a method
to select one tag per word. A dictionary defines the set of tagsfor each terminal of the grammar.
Initially, the set of tags for each word is considered the setin the dictionary. The tagger then
resolves some or all of the tag ambiguity. If it resolves all ambiguity then only one tag per word
will remain and the tagger is considered to be insingle tpwmode.

Conversely if it does not remove any tag ambiguity, we bypass the tagger altogether and
allow the parser to resolve all the ambiguity. That is, the parser builds all possible parses relating
to each possible combination of tags in the input sequence and selects the most probable parse,
and thus, the corresponding tag sequence. In this case, we effectively allow the tag dictionary
to define a set of unary grammar rules as discussed previously.

A number of intermediate models may be utilised, whereby we vary the level of tag am-
biguity passed onto the parser, so that the tagger and parserare both resolving some of the
ambiguity. In this way, the tagger and the parser (or a combination of both) form a PoS tag
model. While the parser may act as a PoS tag model, the probability of each tag determined
by the tagger, given multiple tpw input to the parser, may be integrated into, thence affect, the
probability of each resulting derivation (and corresponding PoS tag sequence).

Affect on Performance

Research investigating the use of PoS taggers as front ends toparsers has, to date, concen-
trated on whether or not such a preprocessing stage improvesparse accuracy and/or efficiency.
Compared to the parser, the tagger resolves tag ambiguity efficiently, as parse ambiguity can
increase exponentially with tag ambiguity. Thus, most studies agree that efficiency improves
with a tagger front-end. For example,Charniaket al. (1996) illustrate that using a front-end
tagger to resolve all tag ambiguity, which achieves 95.9% tagging accuracy, can significantly
improve the efficiency of the parser. Their efficiency metricis the number of edges in their chart
parser. They measured tagging accuracy only, and so did not test the impact of these tag models
on parsing accuracy.

Researchers have speculated that both speed and accuracy of parsing improves, as the tagger
‘filters out’ unlikely tags resulting in reduced parse ambiguity. Furthermore, if we reduce tag
errors, we reduce the number of parsing errors that result ifthe parser selects incorrect tags, and
therefore, incorrect syntactic analysis over these tags. However, these studies generally employ
a ‘good’ statistical PoS tagger, as taggers now achieve tagging accuracy in the high 90’s when
trained and tested over the same domain.

Dalrymple (2006) investigates whether we can reduce parse ambiguity if we resolve tag
ambiguity. Dalrymple argues that this will only occur if parses can be differentiated based on

3.1 Previous Work 67

their tag sequences. If so, resolving tag ambiguity with a ‘perfect tagger’ may improve parser
performance. Otherwise tag errors introduced by a tagger will be detrimental to parse accuracy
and coverage. Dalrymple illustrates that over section 13 ofthe WSJ (see §1.3.1), parses are
differentiated based on their tag sequences for 70.53% of sentences. Given access to a perfect
tagger, parse ambiguity is reduced by around 50%.

An increase in tag error rates results in a decrease in parseraccuracy and coverage. This de-
cline in performance may out-weigh the benefits of increasedefficiency, depending on whether
the parsing task prioritises efficiency or accuracy in the parser. For example,Kaplan & King
(2003) show that parser coverage (percentage of full parses) falls from 76% to only 62% if they
employ a front-end PoS tagger.Dalrymple(2006) suggests that a major source of their tag errors
is their mapping from PoS tags to the terminals of their grammar. Furthermore, this error-prone
mapping is evident in their results for parser coverage and accuracy over gold-standard PoS
tags. In this case, the parser’s accuracy still declines, though these gold-standard tags should
instead provide an upper bound on the task.

Coverage

Parser coverage is often used to reflect parser accuracy. Although this is not appropriate as
increased coverage does not necessarily translate to increased accuracy, especially if the parser’s
grammar is not well-constrained over the PoS tag terminals.For example,Charniaket al.
(1996) report that incorrect tags only marginally affect the parser’s coverage. Their parser finds
a complete parse for all sentences given all possible tags, while only finds a complete parse for
99.2% of sentences over the single tpw input. However, it is unclear whether the accuracy of
the parser improves given multiple tpw input as parse ambiguity increases given multiple tpw
input. That is, the parser is more likely to select an incorrect sequence of tags (and therefore,
an incorrect parse) given all possible tags.

Discussion

Research investigating front-end PoS taggers supports their use if parsing efficiency is paramount.
Furthermore, an increase in parser accuracy results if the PoS tagger’s tagging errors result in
fewer parse errors compared to those due to increased parse ambiguity over multiple tpw input.
Thus, the optimal level of tag ambiguity resolved by the parser depends on the given PoS tag-
ger and parser, and furthermore, whether parser efficiency or accuracy is critical in the current
parsing task.

For example,Clark & Curran(2004a) illustrate that significant increases in efficiency, ac-
curacy and coverage occur if they integrate a front-end multiple tpw supertagger with their
combinatory categorial grammar (CCG) parser. Supertags are lexically rich PoS tags, and spec-
ify the local syntactic constraints for a word. They do not fully resolve tag ambiguity in the
supertagger, as the supertagger in single tpw mode achieveslower accuracy (low 90’s) than PoS
taggers with coarser tag sets such as the tagger ofCharniaket al. (1996).

We do not investigate whether a PoS tagger should be used (readers are referred toDalrym-
ple 2006for a recent survey and discussion of this) but instead focuson the choice of tag model.
We define a number of tag models in the following section, and provide a broad comparison of
these models in terms of a number of performance metrics for both parsing and tagging.

3.1.2 Tag Models
We define atag modelas the parsing architecture employed to select the tag sequence or to
provide a ranking (probability) for each tag (given more than one tag per word). This may

68 3. PART-OF-SPEECH TAG MODELS

include utilising the tagger, parser or a mixture of both. Thus the resultingtag filecan contain
any level of tag ambiguity, from single tpw to the full set of tags defined over each word in the
tag dictionary. Recall that atag sequenceis defined as a sequence of tags (or word-tag pairs)
where one tag was selected for each word (token) in the input sequence.

Charniak et al. (1996)

Charniaket al. (1996) investigate the optimal choice of tag model for a PCFG parserand con-
sider the parser’s tagging accuracy, that is, the tag sequence in the top ranked parse. They
conclude that the parser, given multiple tpw input, can not significantly improve on the tag ac-
curacy of a (single tpw) PoS tagger. Although they employ only a coarse tag set that consists
of only 19 PoS tags. Therefore, these results may not translate for parsers that employ finer
grained tag sets (such as the set applied by RASP). Furthermore, if we assume that tag error
rates correspond to parser error rates, we incorrectly assume that all tag errors are equally detri-
mental to parser output. This is not the case however, as for example, a noun mistagged as
a verb will have a more adverse effect on parser performance than mistagging the noun as an
adjective.

Dalrymple (2006)

Dalrymple(2006) investigates the impact of PoS tags on parse ambiguity; represented by the
number of parses licensed by the grammar. By grouping parses via their tag sequences, Dal-
rymple finds that they can differentiate the majority of parses in terms of their tag sequence
since only 30% of sentences had all their parses defined over the same tag sequence. Given the
correct tag sequence in these cases, they estimate that parse ambiguity will halve. Dalrymple
suggests that the tag sequence that corresponds to the largest number of parses may well be the
correct tag sequence given that most parses contain the tag sequence, though she is unable to
evaluate this tag selection model without a gold-standard tag set. We consider this tag model in
this work, as well as more sophisticated tagging schemes.

Clark & Curran (2004a)

Clark & Curran(2004a) apply a tag model that uses the parser’s CCG grammar to decide
whether supertags output by the supertagger are acceptable. That is, whether the grammar
is able to find a full analysis. A small number of supertags perword are output initially (1.4
tpw), the set of most probable tags. They continue to increase the number of supertags, until
either the parser is able to find a complete analysis or the maximum set of tags is considered
(those with probability within range of the most probable tag for the word) is considered. This
method improves the efficiency, coverage and accuracy of theparser.

3.1.3 HMM PoS Taggers
In this section we describe Hidden Markov Models (HMMs), a common statistical PoS tagging
model, as the parser currently utilises a first-order HMM PoStagger. We also discuss the
algorithms that select a PoS tag sequence from the set definedin the tag dictionary. Furthermore,
we describe methods that determine this dictionary and train the parameters of a HMM.

Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs) may be viewed as a generalised NFA (see §2.2.1), as tags
correspond to states and two types of edges exist. The first type, transition edges, links two
states in the graph. That is, these edges are the same as the transition edges defined by an NFA.

3.1 Previous Work 69

The corresponding probability of such an edge represents the probability that one tag follows
another, or a given set of tags. Theorderof a HMM is the number of preceding tags we consider
when we calculate the transition probabilities. For example, a second order HMM determines
the probability of a tag based on the previous two tags witnessed. The second type,lexical
edges, is defined for each state, where we define the probability of a word output by that state
i.e. the probability of the word given the tag. Non-zero probabilities for word-tag pairs occur
only if this pair occurs in the tag dictionary. We output the tag sequence through the NFA, given
the input sequence of words. Although the corresponding state sequence is unknown, resulting
in the term ‘hidden’ in ‘Hidden Markov Models’.

Determining Tag Sequences

We determine the tag sequence for an input sequence using thewell known Viterbi or Forward-
Backward (FBA) algorithms, which are both dynamic programming approaches (readers are
referred toSharman 1990for a detailed introduction to these algorithms). The Viterbi algorithm
selects the tag sequence corresponding to the most likely path through the HMM, where a path’s
probability is the product of transition and lexical probabilities.

Over an input sequence, the FBA determines the probability of each possible state (tag) in
the HMM. That is, non-zero probabilities result for states that are members of one or more
complete paths through the HMM. The forward and backward probabilities correspond to the
total probability of all paths to and from the state, respectively. The probability of each state is
the product of forward and backward probabilities for the state. This probability is the posterior
tag probability, that is, the probability of the tag given the word over the given input sequence
of words. The most probable tag for each word or all possible tags for the word (with the corre-
sponding posterior tag probabilities) is returned by the tagger. Thresholds can be applied over
the posterior probabilities, so that we retain highly-probable tags only in subsequent process-
ing. Furthermore, the posterior tag probabilities can be incorporated into the parser’s statistical
model.

Training a HMM

If we have a tagged corpus from which to learn the model’s parameters (probabilities), then
frequency counts can be used to determine both transition and lexical probabilities to produce
MLE. The set of tags observed for each word and their frequency are used to create the dic-
tionary. If a hand-tagged corpus is unavailable, we can train a HMM tagger using either the
Viterbi or the Baum-Welch algorithm. To perform Baum-Welch training we iteratively update
the model’s parameters, starting from an initial set of model parameters. During each iteration,
we update each tag’s probabilities using the forward-backward probabilities of each state (tag).
Baum-Welch is designed to converge on a set of parameters thatmaximise the probability of
a training corpus. That is, this training algorithm is a generalised Expectation-Maximisation
(EM) algorithm.

The Initial Model’s Impact on Performance

Elworthy(1994) andMerialdo(1994) independently define three patterns of Baum-Welch train-
ing given different conditions to determine the initial model parameters. Elworthy applies MLE
over a hand-tagged corpus to form one of the initial models, from which he refines the model
parameters using Baum-Welch over another untagged corpus. The classicalpattern emerges
given a poor initial model, where performance on the test setimproves steadily with each train-
ing iteration. Two other patterns also result, theinitial andearlypatterns, where the best model

70 3. PART-OF-SPEECH TAG MODELS

is either the start model or the one that results from very fewtraining iterations, respectively. In
these cases, the initial model either contains sufficient information (e.g. if the model trains over
a hand-tagged corpus) or only partial information (e.g. lexical information only), respectively.

Smoothing and Unknown Words

During training, smoothing assigns unseen word-tag pairs anon-zero probability. Furthermore,
most taggers also incorporate an unseen word module, so thatif a word does not have an entry
in the dictionary the tagger is still able to determine the most likely tag or set of tags for each
word.

3.2 RASP’s Architecture

3.2.1 Processing Stages

RASP is implemented as a series of modules written in C or CommonLisp, which can be
pipelined analogously to a series of Unix-style filters. Themodules include sentence boundary
detection, tokenisation, PoS tagging, NE recognition and morphological analysis. Next, this
preprocessedtext is input to the statistical parser (Briscoe & Carroll, 2002).3.1 Figure3.1 il-
lustrates the different processing stages performed during parsing, many of which are optional
(e.g. by default NE recognition is not performed). Note thatthe final two processing stages are
both performed by the parser itself.

3.2.2 PoS Tagger

CLAWS Tagset

§2.6.1describes RASP’s grammar, where terminals are defined over PoS tags output by a first
order (‘bigram’) HMM PoS tagger originally implemented byElworthy (1994). The tagset ap-
plied is based on the CLAWS tagset, which is used in Susanne (Sampson 1995, see §1.3.1).
The full definition of the tagset is available in this reference, andJurafsky & Martin(2000)[Ap-
pendix C].

In the CLAWS tagset, the first letter encodes the major PoS category and subsequent let-
ters/numbers encode increasingly more minor differences.For example, nouns begin with the
letter ‘N’ and the second letter being a ‘P’ or ‘N’ illustrates whether the noun is proper or not,
respectively. Tags ending with numbers 1 or 2 illustrate singular or plural versions of the tags.
ThusNP1andNP2are closely related tags, both being proper nouns in singular and plural forms,
respectively.

Training

The tagger is trained on 3 million words of text from Susanne,the LOB (Johanssonet al., 1986)
and (a subset of) the BNC (Aston & Burnard, 1998). The resulting tag dictionary contains just
over 50K words.Briscoe & Carroll(2006) make minor modifications to the tagger’s dictionary,
based on observed parse failures over sections from the WSJ (not including section 23). The fre-
quency counts for each tag are stored in the tag dictionary. Given the training patterns observed
by Elworthy, the frequency counts of these fully annotated corpora provide the best tagging
accuracy. For example, Figure3.2illustrates a number of entries (lines) in the dictionary, where

3.1Processing times given throughout, including those in subsequent chapters, do not include these preprocessing
stages. We omit these preprocessing overheads as they are negligible compared with those required during parsing.

3.2 RASP’s Architecture 71

?

Raw Text

?

Sentence Boundary Detection

?

Tokeniser

?

NE Recognition

?

PoS Tagger

?

Morphological Analysis

?

Parser and Grammar

?

Statistical Disambiguator

Figure 3.1: RASP processing pipeline.

We 2 PPIS2 100 NP1 1
all 3 DB 229 DB2 150 RR 55
walked 2 VVD 46 VVN 13
up 3 II 34 RP 213 VV0 10
the 1 AT 8520
hill 2 NN1 2 NNL1 24
. 1 . 6584

Figure 3.2: Example lexical entries in the tag dictionary. Each line in the dictionary corresponds
to a word (start of each line) which is followed by the number of PoS tags for the word. The
line then contains pairs consisting of a PoS tag and corresponding frequency count.

each specifies the word and corresponding tagset and frequency counts. The sentenceWe all
walked up the hill .has the corresponding possible tagset shown for each word inthis figure.

Mapping from PoS Tags to Terminal Categories

The full CLAWS tagset contains over 170 PoS and punctuation tags. However, the current
grammar only utilises 150 of these, of which around 50 are associated with an identical or
subsuming lexical category in the current grammar. That is,the mapping from terminals to PoS
tags is many-to-many. For example, the tagsVVD(past tense form of lexical verb) andVVG(-ing
form of lexical verb) are both mapped to the terminal with name V0. However the verb form
values for the terminals (VFORMfeatures) arePASTandING, respectively. Figure3.3 illustrates a

72 3. PART-OF-SPEECH TAG MODELS

WORD , : [PUNCT comma].
WORD . : [PUNCT dot].
WORD AT : DT[PLU @x, POSS -, WH -].
WORD CC : CJ[CJTYPE END].
WORD CCB : CJ[CJTYPE END].
WORD DB : N0[NTYPE PART, PLU -, POSS -, WH -, CONJ -].
WORD DB2 : N0[NTYPE PART, PLU +, POSS -, WH -, CONJ -].
WORD NN : N0[NTYPE NORM, PLU @x, POSS -, WH -, CONJ -].
WORD NN1 : N0[NTYPE NORM, PLU -, POSS -, WH -, CONJ -].
WORD PNQO : N2[QUOTE -, SCOLON -, NTYPE PRO, PLU -, POSS -, WH +,CONJ -].
WORD PPIS2 : N2[QUOTE -, SCOLON -, NTYPE PRO, PLU +, POSS -, WH -, CONJ -].
WORD RA : A0[AFORM NONE, ATYPE TEMP, ADV +, CONJ -].
WORD RP : A0[AFORM NONE, ATYPE CAT, ADV +, CONJ -], PT.
WORD VVD : V0[FIN +, AUX -, VFORM PAST, PLU @x, CONJ -].

Figure 3.3: Example mapping from PoS tag to terminal category. Each line specifies that an
input item (PoS tag) in the grammar is defined, followed by theCLAWS PoS tag and a colon
symbol. Following the colon is the metagrammar definition for the given tag (see §2.6.1), where
many of the features are fully specified.

number of example mappings between the PoS tags to the terminals of the grammar.

Tagging Modes

The tagger can be run in single tpw (default) or multiple tpw modes, where either the most
probable or the set of all possible tags are retained, respectively. As the FBA is implemented in
addition to the Viterbi algorithm, the tagger can trade-offprecision against recall by returning
all but the most improbable tags up to some relative threshold (where tags are ranked according
to their posterior probabilities found using the FBA). However, in practice, these thresholds
are applied within the parsing module, thus the multiple tpwoutput of the tagger contains all
the tags defined in the tag dictionary. When run in multiple tpwmode, the tagger returns the
posterior tag probability of each possible tag.

For example, the sentenceWe all walked up the hill .has the corresponding dictionary
entries shown in Figure3.2. The single and multiple tpw output of the tagger is shown in
Figure3.4. The multiple tpw output shows each tag in the dictionary with the posterior tag
probability. The single tpw tag sequence results from selecting the highest scoring tag for each
word.

Unknown Word Handling

The tagger incorporates a well-developed statistical unknown word handling module (Piano,
1996; Weischedelet al., 1993) which performs well under most circumstances. However known
but rare words often cause problems as tags for all realisations are rarely present.Briscoeet al.
(2006) describes a series of manually developed rules which they semi-automatically apply to
the dictionary to ameliorate this problem, by adding further tags with low counts to rare words.
The new tagger has an accuracy of just over 97% on the DepBank part of section 23 of the WSJ
(see §1.3.1), which is competitive performance over this (largely out-of-domain) text.

3.3 Part-of-speech Tag Models 73

We_PPIS2 all_DB2 walked_VVD up_RP the_AT hill_NN1 ._.

We PPIS2:0.999983, NP1:1.73948e-05
all DB:0.168974 DB2:0.803405 RR:0.0276206
walked VVD:0.858121 VVN:0.141879
up II:0.149321 RP:0.850004 VV0:0.000674805
the AT:1
hill NN1:0.607938 NNL1:0.392062
. .:1

Figure 3.4: PoS tag output forWe all walked up the hill .The first line illustrates the single tpw
output, while subsequent lines illustrate the multiple tpwoutput.

3.3 Part-of-speech Tag Models
We tend to consider parser efficiency and accuracy as parsinggoals that we must trade-off.
However, it is unclear whether errors introduced by a taggerin single tpw mode affect parser
accuracy more so than parse selection errors introduced dueto increased parse ambiguity. Un-
less the parser can select PoS tags with greater accuracy, and improve over the parsing perfor-
mance (of the single tpw tagset) then both efficiency and accuracy improve from the use of a
PoS tagger front-end.

In §3.3.1we describe the various tag models considered in this work. These include the
tag models applied byCharniaket al. (1996) and suggested byDalrymple(2006). We contrast
these tag models in terms of PoS tag and parser accuracy in subsequent sections, using the gold
standard tag and dependency files from DepBank (see §1.3.1). Inclusion of the parser in a tag
model assumes that a feed-back loop enables the parser to first select the PoS tag sequence and
then (without reparsing) select a parse from the group of parses which contain that tag sequence.

We utilise the first sentence in DepBank to illustrate the different tag files that result for
each tag model. This sentence is:It will also purchase$473 million in assets, and receive$550
million in assistance from the RTC.Tokenisation results in the following input sequence i.e.
with punctuation separated from word forms:It will also purchase$ 473 million in assets , and
receive$ 550 million in assistance from the RTC .

3.3.1 Part-of-speech Tag Files
Initially we apply the PoS tagger to create PoS tagged files over the raw text files of DepBank.
PoS tag files that originate from the tagger alone are named ending with ‘-TAG’.

SINGLE-TAG

The SINGLE-TAG file contains preprocessed text with the tagger run in forced-choice (single
tpw) mode. As a result, a single tag is selected for each tokenin the sentence and we do not
output the associated probability, i.e. each tag has a probability of 1.

ALL-TAG

Similarly, the ALL-TAG file is created by running the tagger in multiple tpw mode. The re-
sulting file contains more than one tag per word i.e. all tags defined for the token in the tag
dictionary. When run in multiple-tag mode, the tagger outputs the posterior tag probabilities
of each tag as described previously. Figure3.5 illustrates the SINGLE-TAG and ALL-TAG file

74 3. PART-OF-SPEECH TAG MODELS

It_PPH1 will_VM also_RR purchase_VV0 $_NNU 473_MC million _NNO in_II
assets_NN2 ,_, and_CC receive_VV0 $_NNU 550_MC million_NN O in_II
assistance_NN1 from_II the_AT RTC_NP1 ._.

It It_PPH1:1
will will_NN1:3.41324e-06 will_VM:0.999997
also also_RR:1 also_&FW:1.53286e-09
purchase purchase_VV0:0.959841 purchase_NN1:0.0401588
$ $_NNU:1
473 473_MC:1
million million_NNO:1
in in_RP:8.33575e-308 in_II:1
assets asset+s_VVZ:6.57905e-306 asset+s_NN2:1
, ,_,:1
and and_CC:1
receive receive_VV0:1
$ $_NNU:1
550 550_MC:1
million million_NNO:1
in in_RP:5.443e-308 in_II:1
assistance assistance_NN1:1
from from_RR:0.000113897 from_RG:2.20964e-05 from_II:0 .999864
the the_AT:1
RTC RTC_NP1:1
. ._.:1

Figure 3.5: PoS tag output forIt will also purchase$ 473 million in assets , and receive$ 550
million in assistance from the RTC .The first three lines illustrate the single tpw output in the
SINGLE-TAG file, while subsequent lines illustrate the multiple tpw output in the ALL-TAG
file. Each line in ALL-TAG corresponds to the word at the startof the line, which is followed
by each possible tag paired with the corresponding posterior tag probability. Each possible tag
is shown in the form: wordtag:probability. Each word in the ALL-TAG file is analysed bythe
morphological processing module.

contents for the example sentence. In this example, the SINGLE-TAG input is correct, therefore
this tag sequence appears in the gold standard tag file.

3.3.2 Thresholding over Tag Probabilities
ALL-TAG contains token-tag pairs with their correspondingposterior tag probability. For effi-
ciency, RASP applies two thresholds over the tag probabilities prior to parsing.3.2 Firstly, the
parser removes all but the most probable tag if this tag has a posterior probability higher than
0.90. Secondly, only tags more than 1 in 50 times as probable as the most probable tag are
parsed.

We ‘filter’ the ALL-TAG file to produce the corresponding tag files that result from appli-
cation of the RASP thresholds, retaining the original posterior tag probabilities. PoS tag files
that originate from applying parse system thresholds over the ALL-TAG files alone, are named

3.2These thresholds can be specified by the user.

3.3 Part-of-speech Tag Models 75

ending with ‘-SYS’.

DEFAULT-SYS

DEFAULT-SYS results from filtering the full tagset in the ALL-TAG file with the RASP sys-
tem default tag thresholds. For the example sentence, all ambiguity can be resolved by the
application of the system default thresholds. That is, the file contains the same tags as the
SINGLE-TAG file, though these are weighted according to the weight of the tag shown in the
ALL-TAG file. However, this tag weight has no overall effect on the parse ranking as all parses
have the same tag sequence.

MULT-SYS

MULT-SYS results from increasing the system default thresholds to 0.99 and 200, respectively.
The tag file contains more tags on average than DEFAULT-SYS due to the lowered thresholds,
though still aims to filter out low probability tags. Figure3.6 illustrates the MULT-SYS tag file
contents for the example sentence. Some tag ambiguity remains, as two tags are included for
the tokenpurchasein the input.

It It_PPH1:1
will will_VM:0.999997
also also_RR:1
purchase purchase_VV0:0.959841 purchase_NN1:0.0401588
$ $_NNU:1
473 473_MC:1
million million_NNO:1
in in_II:1
assets assets_NN2:1
, ,_,:1
and and_CC:1
receive receive_VV0:1
$ $_NNU:1
550 550_MC:1
million million_NNO:1
in in_II:1
assistance assistance_NN1:1
from from_II:0.999864
the the_AT:1
RTC RTC_NP1:1
. ._.:1

Figure 3.6: MULT-SYS PoS tags forIt will also purchase$ 473 million in assets , and receive
$ 550 million in assistance from the RTC .

3.3.3 Top-ranked Parse Tags

We apply the parser-based tag model considered byCharniaket al. (1996), where we select
the tag sequence that appears in the top-ranked parse outputby the parser. We run RASP over
the aforementioned tag files to produce the parser-based files. Time and memory limitations

76 3. PART-OF-SPEECH TAG MODELS

self-imposed on the system (see §2.6.3) can result in parse time outs, we therefore remove these
limitations.

The original posterior tag probabilities affect parse ranking as RASP incorporates these
probabilities directly. During parsing, the probability of the word with a given tag is considered
the probability of this tag. Thus the probability of a parse is the product of all action probabilities
(see §2.6.3) and corresponding posterior tag probabilities. Each tag file contains a single tpw
in the same format as that shown for the SINGLE-TAG file. PoS tag files that contain tag
sequences corresponding to the parser’s top parse are namedstarting with the original tag file
parsed, and ending with ‘-TOP-PARSE’.

ALL-TAG-TOP-PARSE

The ALL-TAG-TOP-PARSE file contains the top-ranked parse tagsequence when RASP parses
the ALL-TAG file.

DEFAULT-SYS-TOP-PARSE

Similarly, the DEFAULT-SYS-TOP-PARSE contains the top-ranked parse tag sequence when
DEFAULT-SYS tag file is parsed.

MULT-SYS-TOP-PARSE

Finally, we parse the MULT-SYS tag file to determine the top-ranked parse tag sequence for the
MULT-SYS-TOP-PARSE file.

3.3.4 Highest Count Tags

We apply the parser-based tag model mentioned, though not implemented, byDalrymple(2006).
This model selects the tag sequence, whereby each tag selected for a word appears in the high-
est number of derivations output by the parser.3.3 The number of derivations containing each
tag is normalised by the total number of parses, and this score is used to rerank the tagset for
each token. If the system finds a fragmentary parse (see §2.6.4) for a sentence then the system
outputs the original tagset for each word.

We consider this reranking over the DEFAULT-SYS file only. This enables feasible pro-
cessing times as the grammar licenses too many parses given higher levels of tag ambiguity.
Ordinarily highly ambiguous sentences are halted due to thetime and memory restrictions im-
posed during parsing, though we remove these as we require tag sequences for all sentences. As
we utilise the DEFAULT-SYS file only, and rank tag sequences based on the number of parses,
the corresponding tag files start with the name ‘DEFAULT-SYS-NUM’. We output the top tag
for each word or all tags with the corresponding probabilitybased on the (normalised) number
of derivations in which each tag occurs.

DEFAULT-SYS-NUM-TOP

We run RASP over DEFAULT-SYS, and output the top ranked tag sequence where the ranking
is based on the proportion of derivations which contain the given tag. This tag file contains a
single tag per word, in the same format as shown for the SINGLE-TAG file.

3.3As unpacking all derivations is impracticable, we apply theinside-outside algorithm (IOA) to determine these
counts/probabilities directly from the parse forest. We describe the IOA fully in the following chapter.

3.4 Part-of-speech Tagging Performance 77

DEFAULT-SYS-NUM-ALL

We output all tags of DEFAULT-SYS, though the tag probabilities are replaced with the new
weighting based on the proportion of derivations containing the tag. The tag file contains one
or more tags per word, in the same format as shown for the DEFAULT-SYS tag file. However,
the corresponding tag weights are updated to the weight determined by this tag model.

3.3.5 Weighted Count Tags

We consider a novel tag model that is effectively a more sophisticated version of the previous
tag model based on highest counts. Here, we instead weight tags based on theweightedsum
of derivations output by the parser. We utilise the corresponding parses’ probability in the
weighted sum. Therefore, the normalised weight of the tag represents the proportion of parse
probability mass containing the tag rather than the proportion of parses.3.3 Thus tags in higher
ranked derivations are considered more likely.

Again, we utilise only the DEFAULT-SYS file to enable feasible processing times over the
full data set. The resulting tag files start with the name ‘DEFAULT-SYS-WEIGHT’. We output
the top ranked tag or all tags (with new probability associated with each) into separate tag
files. The following tag files are in the same format as the DEFAULT-SYS-NUM-TOP file and
DEFAULT-SYS-NUM-ALL files, respectively.

DEFAULT-SYS-WEIGHT-TOP

We output the top ranked tag sequence where each tag weight represents the proportion of parse
probability mass that contains the given tag.

DEFAULT-SYS-WEIGHT-ALL

We output all tags, reweighting each tag with the new probability based on the proportion of
parse probability mass.

3.3.6 Gold Standard Tags

We also utilise the gold standard tagset of DepBank (see §1.3.1), to measure the accuracy of the
other tag models and to provide an upper bound on parser accuracy. This tag file is referred to
as GOLD and contains the single (correct) tag per word, in thesame format as shown for the
SINGLE-TAG file.

3.3.7 Summary

Table3.1 summarises the different tag models considered and the corresponding file name for
each. The tag model’s file name is referred to henceforth.

3.4 Part-of-speech Tagging Performance
This section defines a number of tagging evaluation measuresin §3.4.1. These measures are
applied to contrast the alternative tag models’ performance in §3.4.2.

3.4.1 Evaluation

Standard precision and recall measures are considered, along with a number of other perfor-
mance metrics which we define here. When determining the correctness of a tag against the
gold tag, a few exceptions apply as tags identified as equivalent in the grammar are considered

78 3. PART-OF-SPEECH TAG MODELS

Tag
S

etup
N

am
e

D
escription

Tagger
S

IN
G

LE
-TA

G
Tagger

in
single

tpw
m

ode.
A

LL-TA
G

Tagger
in

m
ultiple

tpw
m

ode.
T

hresholds
M

U
LT-S

Y
S

T
hresholds

(0.99,200)
applied

to
A

LL-
TA

G
.

D
E

FA
U

LT-S
Y

S
D

efaultthresholds
(0.90,50)

applied
to

A
LL-T

A
G

.
P

arser
A

LL-TA
G

-T
O

P
-P

A
R

S
E

Tag
sequence

in
top

parse
w

hen
pars

ing
A

LL-TA
G

.
T

hresholds
D

E
FA

U
LT-S

Y
S

-T
O

P
-P

A
R

S
E

Tag
sequence

in
top

parse
w

hen
parsing

D
E

FA
U

LT-S
Y

S
.

&
P

arser
M

U
LT-S

Y
S

-T
O

P
-P

A
R

S
E

Tag
sequence

in
top

parse
w

hen
pa

rsing
M

U
LT-S

Y
S

.
D

E
FA

U
LT-S

Y
S

-N
U

M
-T

O
P

M
ostfrequently

used
tag

by
allparses

over
D

E
FA

U
LT-S

Y
S

.
D

E
FA

U
LT-S

Y
S

-N
U

M
-A

LL
N

orm
alised

counts
oftags.

D
E

FA
U

LT-S
Y

S
-W

E
IG

H
T-T

O
P

H
ighestscoring

tag
based

upon
the

s
um

ofprobabilities
ofparses

in
w

hich
tags

occur
w

hen
parsing

D
E

FA
U

LT-S
Y

S
.

D
E

FA
U

LT-S
Y

S
-W

E
IG

H
T-A

LL
N

orm
alised

w
eighted

countoftags.
M

anual
G

O
LD

T
he

gold
standard

tagset.

Table
3.1:

Tag
setup

descriptions
and

corresponding
file

nam
es.

T
he

tag
setup

(firstcolum
n)

defines
w

hether
the

tagger,th
resholds

(applied
to

the
posterior

tag
probabilities

outputby
the

tagger)
and

/or
the

parser
is

em
ployed

in
the

tag
m

odel.
N

ote
thatw

e
consi
der

the
application

ofthresholds
over

posterior
tag

probabilities
a

function
o

fthe
tagger

and
notthe

parser
(though

in
practice

these
thre

sholds
are

applied
w

ithin
the

parser
m

odule).
D

E
FA

U
LT-S

Y
S

-N
U

M
-

and
D

E
FA

U
LT-S

Y
S

-W
E

IG
H

T-
A

LL
tag

setups
are

norm
alised

based
upon

the
num

ber
ofpar
ses

and
sum

ofallparse
probabilities,respectively.

3.4 Part-of-speech Tagging Performance 79

equivalent for the following metrics. Tags considered equivalent are&FO(treated by the gram-
mar as a name) and proper nouns, that is, tags starting withNP. Furthermore, all nouns (starting
with N) and numbers (starting withM) are considered equivalent.

Mean Reciprocal Rank (MRR)

MRR is an evaluation metric that can apply if a model produces alist of possible answers
ordered by probability of correctness. MRR is used in a numberof information extraction and
question answering (QA) tasks, and was originally defined inthe TREC QA task where the
number of answers for each question in the task was set to 5 only.

As several of our tag models produce tag rankings we utilise ageneralised version of the
TREC QA MRR to measure how well each tag model ranks the tagset for each word. Further-
more, we allow the tagset to be the size specified in the tag dictionary. Other metrics effectively
determine boolean values for correctness, that is, reflect whether the top ranked tag is correct.
In contrast, the MRR attempts to exemplify systems that are able to rank the correct tag higher.
Thus, with identical accuracy, two tag models’ MRR differ greatly if one is able to consistently
rank the correct tag higher.

Calculation of the MRR is performed using the following equation over a set of tagski for
each wordi in the sentence (the set of wordsW), where the functionrank provides the rank of
a given tag in the tagsetki, with correct tagci ∈ ki:

MRR=
1

‖W‖

‖W‖

∑
i=1

{

0 if ci /∈ ki,
1

rank(ci)
if ci ∈ ki.

Sentences Affected:Sent

We report the proportion of sentences affected by tagging errors in the metricSent, calculated
as the percentage of tagged sentences containing at least one tagging error. This metric aims to
illustrate the proportion of sentences that are affected bytagging errors as these sentences are
more likely to result in parsing errors.

Average Tag Cost:ATC

The average tag cost (ATC) is designed to illustrate the average distance between the tag selected
and the gold-standard tag, thereby representing the predicted impact on parsing accuracy. In
the CLAWS tagset, the first letter encodes major PoS category and subsequent letters/numbers
encode more minor differences. Thus, ATC is determined using the average position in which
the tag names disagree. If the first letters disagree then this is assumed to be more detrimental
than if the last letters or numbers disagree. Therefore, VVDis closer to VVG than to NP1. This
measures whether the majority of tag errors are confusions expected to have a detrimental effect
on parsing performance.

The distance between two tags is calculated as the reciprocal of 2 to the power of the position
in which tag letters or numbers disagree, where the positionindex begins at 0. In the previous
example, the distance is therefore be1

22 = 0.25 and 1
20 = 1, respectively. A few exceptions apply

to the distance measure: tags identified as equivalent in thegrammar (defined previously) have
a distance of 0. Confusions between nouns (starting withN) and adjectives (starting withJ) are
considered less detrimental and thus have a distance equal to the reciprocal of 2 to the power of
the position in which tag letters or number disagree plus one. That is, we define a distance of

1
20+1 = 0.5.

80 3. PART-OF-SPEECH TAG MODELS

3.4.2 Results

Table 3.2 illustrates the tagging performance of all eleven tag models measured against the
GOLD tag file. The first four rows of this table illustrate the tagging performance of the system’s
PoS tagger. The following three rows illustrate the performance of the parser’s top parse tag
model for the three alternative multiple tpw tag models. Theremaining four rows illustrate the
top parse tag and tag ranking based on the sum of derivations and weighted sum of derivations,
respectively.

Tag Setup Avg tpw† Precision Recall MRR ATC Sent

SINGLE-TAG 1 97.23 97.23 97.18 0.5757 40.71
DEFAULT-SYS 1.12 88.50 98.79 97.94 - 21.79
MULT-SYS 1.23 80.86 99.42 98.26 - 11.25
ALL-TAG 1.51 65.89 99.78 98.42 - 4.64
DEFAULT-SYS-TOP-PARSE 1 95.38 95.38 95.38 0.6086 59.11
MULT-SYS-TOP-PARSE 1 94.47 94.47 94.41 0.6286 64.46
ALL-TAG-TOP-PARSE 1 93.77 93.77 93.71 0.6496 69.29
DEFAULT-SYS-NUM-TOP 1 92.72 93.86 93.68 0.6325 65.71
DEFAULT-SYS-NUM-ALL 1.12 89.23 98.65 95.99 - 24.11
DEFAULT-SYS-WEIGHT-TOP 1 94.67 95.84 95.66 0.6127 54.82
DEFAULT-SYS-WEIGHT-ALL 1.12 89.23 98.65 97.05 - 24.11

Table 3.2: Tagging Performance.†The average tag per word.

PoS Tagger Performance

Accuracy of the tagger in single tpw mode (SINGLE-TAG) on DepBank is good, achieving
precision of 97.23%. This precision is higher than might be expected on arbitrary text, as the
tagger dictionary has been adapted to the WSJ (described in §3.2.2). Upper bounds on tagging
performance are illustrated by the ALL-TAG results, where the only tagging errors are made by
the unknown word handling module. Therefore, 4.64% of sentences have at least one incorrect
tag due to the presence of 0.22% of words being incorrectly tagged. The proportion of sentences
for which at least one tagging error occurs varies dramatically across the four PoS tagger models
(from 40.71% to 4.64%). Therefore, if the parser can integrate the multiple tagged data and cope
with the additional ambiguity introduced there is limited room for improvement in terms of tag
selection.

Parser Tagging Performance

While there is some room for improvement over the PoS tagger, as shown in Table3.2, none
of the alternative parser-based tag models are able to improve on the accuracy of the single tpw
output of the tagger (or the ranking of multiple tpw as shown by the MRR score).

As the average number of tags per word increases, the performance of the parser’s top
parse (the -TOP-PARSE files) declines (reflected in all evaluation measures). However, this
will not necessarily translate to poorer parsing performance given that some tags are closer than
others (based on the distance metric described). The relatively small decline in the ATC metric,
compared to the decline in the PoS tagging accuracy, suggests that a similar drop in parsing
accuracy is not expected when moving from single to multipletpw tagger output.

3.5 Parser Performance 81

Highest and Weighted Count Tag Models

The tag model DEFAULT-SYS-NUM-TOP, mentioned byDalrymple (2006), is the poorest
performing tag model. However, RASP’s grammar licenses a greater number of derivations
(judged over section 13 of the WSJ) than the XLE parser appliedin Dalrymple(2006).3.4 The
more sophisticated weighted model (DEFAULT-SYS-WEIGHT-TOP) also performs poorly and
furthermore, this model also fails to improve on the rankingof tags (illustrated by the lower
MRR score of DEFAULT-SYS-WEIGHT-ALL).

If we consider DEFAULT-SYS-TOP-PARSE the gold standard, andmeasure the precision
of tags in DEFAULT-SYS-NUM-TOP and DEFAULT-SYS-WEIGHT-TOPwe find that 94.86%
and 99.72% of tags agree respectively. This suggests that the top ranked parse tags tend to occur
frequently in the higher ranked derivations but less frequently across all derivations. These
findings suggest that it is the statistical model more so thanthe grammar causing incorrect
tag-selection.

Emulating Lower PoS Tagger Performance

In order to emulate performance of the tag models over data with higher levels of unseen words,
we determine tagging performance of each model using an initial PoS tagger with artificially
reduced performance over DepBank. We reduced the accuracy ofthe tagging models by around
2%. However, similar results are observed across the tag models and none of the alternative
parser-based tag models are able to improve on the accuracy of the PoS tagger.

Furthermore, we test the performance of the tag models over the GDT (see §1.3.1). Whilst
RASP is not trained on the GDT, this data represents sentencesfor which the grammar will
have a correct parse. Therefore, this data provides an approximate upper bound on how well the
parser can correct over a PoS tagger. However, similar results are also observed over this data
set and the initial PoS tagger outperforms all other tag models.

3.5 Parser Performance
While the alternative parser-based tag models are unable to improve on the accuracy of the
tagger, this will not necessarily translate to equally detrimental parsing performance. That is,
the tagging evaluation measures may not accurately reflect the impact of these models on the
parser’s performance, given that the parser can recover from certain tag confusions and not
others. Therefore, this section discusses the optimal tag model in terms of parser evaluation
measures over DepBank. We also contrast the performance achieved using NE markup over
DepBank (see §1.3.1). The NE versions of the tag models described previously, are named
starting with the original tag file name followed by ‘-NE’.

3.5.1 Evaluation

We utilise the micro-average and macro-averageF1 measures defined in §1.3.2against the gold
standard (NE) dependency set for DepBank. The proportion of sentences which result in a frag-
mentary analysis (see §2.6.4) is also reported, along with the time taken to parse the sentences
using an Intel Pentium 4 3.2GHz CPU with 1GB of Ram on a 32 bit version of Linux.

3.4Dalrymple(2006) reports that over section 13 of the WSJ on average 429 derivations result with a median of
12 derivations. In contrast, RASP finds on average 927K derivations and a median of 128 over this section.

82 3. PART-OF-SPEECH TAG MODELS

3.5.2 Results
Table3.3 illustrates the performance of the parser using alternative tag models as front-ends.
Ten tag models are shown in the first 20 rows of the table, whereeach model has two corre-
sponding lines of results. The first line of each pair illustrates the parser’s performance over all
560 test sentences. Parsing over the correctly tagged test suite (GOLD) illustrates that a 2.02%
increase in F1 (6.97% relative reduction in error) results from removing the 2.77% of tag errors.

The last two rows of the table illustrate the upper bounds on precision and recall (for all
test sentences) when parsing the DEFAULT-SYS tag setup. That is, the precision upper bound
is achieved by considering only the GRs resulting from all possible derivations, and the recall
upper bound by considering GRs from all possible derivations(Carroll & Briscoe, 2002).

Micro-average Macro-average
Tag Setup Prec Rec F1 Prec Rec F1 Frag† Time‡

SINGLE-TAG 71.06 70.96 71.01 58.08 58.98 58.53 21.25 0:03:50
73.66 74.94 74.30 62.51 63.45 62.98

DEFAULT-SYS 71.14 72.21 71.67 58.02 57.64 57.83 12.85 0:05:23
73.09 74.71 73.89 61.44 60.81 61.12

MULT-SYS 70.10 71.39 70.74 56.26 57.59 56.92 10.00 0:18:27
72.07 73.49 72.77 59.66 59.72 59.69

ALL-TAG 68.42 70.14 69.27 54.61 56.90 55.73 6.96 13:40:32
70.48 72.24 71.35 60.39 59.00 59.69

SINGLE-TAG-NE 73.53 69.66 71.54 59.10 58.16 58.63 25.00 0:03:13
75.66 73.33 74.48 62.88 62.50 62.69

MULT-SYS-NE 72.54 70.49 71.50 56.96 56.92 56.94 12.68 0:10:57
74.09 72.62 73.34 62.90 59.16 60.97

ALL-TAG-NE 71.32 69.30 70.30 55.21 56.13 55.67 9.28 0:45:51
73.01 71.29 72.14 61.17 58.29 59.70

DEFAULT-SYS 71.08 72.21 71.64 58.20 57.82 58.01 12.85 0:03:42
-WEIGHT-TOP 72.99 74.69 73.83 61.68 61.04 61.38
DEFAULT-SYS 67.95 69.11 68.52 53.21 54.85 54.02 12.85 0:03:13
-NUM-TOP 69.59 71.26 70.41 54.90 57.57 56.20
GOLD 72.94 73.12 73.03 60.53 61.04 60.78 14.46 0:04:39

74.58 75.70 75.14 64.94 63.91 64.42
HYBRID 71.59 72.39 71.99 59.02 60.36 59.68 - -
Precision U/bound 82.25 31.34 45.39 70.22 21.87 33.36 - 4:02:49
Recall U/bound 17.81 87.74 29.60 20.11 82.26 32.32

Table 3.3: Parser Performance.†Frag represents the percentage of fragmentary parses (the
percentage of sentences for which full derivations could not be found). ‡Time is shown in
format hours:minutes:seconds.

Parser Performance

If we first compare the performance of the parser for the alternative tag models over all 560 test
sentences, it is clear that the most efficient tag model is thetagger in single tpw mode (SINGLE-
TAG). The coverage of the parser is increased (the percentage of fragmentary derivations is
halved) by using DEFAULT-SYS tag setup. Furthermore, an increase of 0.66% micro-averaged

3.5 Parser Performance 83

F1 results (a relative error reduction of 2.27%), though thereis also a similar decrease in macro-
averaged F1. However the macro-average is a less informative metric, asdecreased performance
can result if incorrect GRs occur in rarer GR types instead.

The increase in parse time required to process DEFAULT-SYS illustrates that there is, as
is often the case, a trade-off between accuracy and efficiency. However, the relatively small
increase in accuracy will not out-weigh the large decrease in efficiency for most parsing tasks.
These results and conclusion agree with those ofCharniaket al. (1996).

NE Markup

A 0.53% increase in F1 (1.83% relative reduction in error) results from using goldstandard NE
mark-up, that is, SINGLE-TAG-NE compared to SINGLE-TAG. Comparing this to the 2.02%
increase in F1 achieved from the gold standard tag set suggests there is more to be gained by
concentrating on tag selection than NE recognition. However, this may not be the case over
data sets for which a high number of unknown words can be marked as NEs, for example, in
biological texts.

Comparison over Full Derivations

In order to compare the impact of the alternative tagging models on parser accuracy, it is also
necessary to consider the accuracy for those sentences for which full derivations are found.
To compare all tag models across a consistent set of sentences, we consider the sentences for
which full (non-fragmentary) derivations result for SINGLE-TAG. That is, we remove 21.25%
of sentences that result in fragmentary derivations.3.5 The accuracy over this set is illustrated in
the second row for each tag model in Table3.3.

The 3.29% increase in F1 resulting for the SINGLE-TAG tag setup illustrates that a large
proportion of the parse errors are introduced by the fragmentary parse output. Further, the
margin between the SINGLE-TAG and GOLD tag setups has narrowed to only 0.84% F1. These
results illustrate that tag errors in the SINGLE-TAG file account for a large proportion of the
21.25% resulting fragmentary derivations. This raises an interesting question: can we rely on
the grammar to find an analysis if and only if the correct tag sequence is input? A positive
response to this question is expected for grammars whose rules (nonterminal categories) are
well-constrained over the grammar’s terminals (PoS tags).

HYBRID Tag Model

Clark & Curran(2004a) apply a tag selection strategy whereby they assign a small number
of supertags per word initially (1.4 tpw) and increase the number of supertags if the parser
fails to find an analysis. This is shown to improve the efficiency, coverage and accuracy of
the parser. We apply a similar ‘dynamic’ tag selection modelas we observe that single tpw
input achieves high accuracy when considering full derivations only, while using multiple tpw
input increases the parser’s coverage. This model outperforms all others considered herein with
respect to parser accuracy. However, efficiency is expectedto decrease (from that over single
tpw) as this tag model parses each sentence repeatedly untileither a full parse is found or we
have considered all possible tags for the input sequence.

Supertagging is a harder task than PoS tagging. In single tpwmode, supertaggers achieve
much lower accuracy than extant PoS taggers (around 91% compared to 97.23%), suggesting

3.5The proportion of fragmentary derivations is around 5% worse than reported byBriscoe & Carroll(2006)
as SINGLE-TAG does not include NE mark-up and contains different tokenisation (for example, quotation marks
varied significantly).

84 3. PART-OF-SPEECH TAG MODELS

that resolving the ambiguity during parsing would achieve higher accuracy overall. Moreover,
multiple tpw input should be considered for supertaggers asthey achieve similar accuracy to
PoS taggers in this mode (99.1% compared to 99.78%). Although our dynamic tag model is
similar to that ofClark & Curran(2004a), it is a fundamentally different approach due to the
higher accuracy of extant PoS taggers over in-domain data. Furthermore, supertaggers are far
more sensitive to domain changes as subcategorisation correlates closely with word sense which
in turn correlates with the topic/domain.

In order to test this tag selection strategy, we combine the output from the set of sentences
that result in full derivations when parsing SINGLE-TAG andthe output resulting from parsing
DEFAULT-SYS for the remaining sentences.3.6 The accuracy achieved is illustrated in the row
with HYBRID tag setup. This model is the only tag selection model which improves on the
accuracy of the parser in terms of both macro- and micro-averaged F1 (compared over all test
sentences). Furthermore, as multiple tpw input is only considered for the fraction of sentences
for which a fragmentary parse occurs, the time taken to parsethe sentences should also improve;
ranging between the time to parse the SINGLE-TAG and DEFAULT-SYS tag setups.

3.6 Discussion
Contrasting the alternative tag models’ performance both interms of tagging and parser per-
formance has supported previous findings. That is, that single tpw input to a parser is sensible
given large speed improvements and only a small decrease in accuracy. However, if accuracy
is a higher priority than efficiency, then limited tag ambiguity should be passed onto the parser,
as accuracy gains are available (0.66% F1, relative error reduction of 2.27%). Interestingly,
the system’s default thresholds (optimised on Susanne) forconsideration of multiple tags ap-
pear near optimal for DepBank, achieving a trade-off betweenincreased parse ambiguity and
incorrect PoS tag errors. Significant gains were also made inparser coverage, where using the
parser’s default thresholds almost halves the number of fragmentary derivations (from 21.25%
to 12.85%).

Not one of the tag models based on the parser’s output were able to improve on the tag-
ging accuracy achieved by the front-end tagger. That is, theSINGLE-TAG model achieved the
highest tagging accuracy. The DEFAULT-SYS-NUM-TOP tag model proved to be the worst
performing model in terms of both tagging and parsing performance. Although as previously
noted, this may be due to the exponential increase in parse ambiguity given increased tag am-
biguity that occurs in RASP. Parsers with more constrained grammars may benefit from the use
of this tag model.

The parser was unable to improve on the tagging and parse accuracy achieved by the single
tpw PoS tagger. These results may reflect a problem with the integration of the tag probabilities
in the statistical model of the parser. We aim to investigatethis issue in future work. Again,
this may not translate to all grammars, as the number of derivations licensed by our grammar
are much higher than achieved by, for example, the XLE grammar (as reported byDalrymple
2006).

The dynamic (HYBRID) tag model was the only model to improve both macro- and micro-
averaged F1. Here, the known trade-off between parse ambiguity and PoS tag error provides a
means to gauge PoS tag error based on parser output. Therefore, when no derivations are found

3.6Note that a fully dynamic tag model can be implemented in the system though was not due to time constraints.
Instead, output of these two tag files are combined to illustrate the model’s performance gain (given only a single
iteration of the dynamic model).

3.6 Discussion 85

the model assumes that a PoS tag error is the cause and increases the number of tags considered.
These findings are consistent with those ofClark & Curran(2004b), regarding a dynamic tag
model. Though their results were based over a supertagger that achieves lower tagging accuracy
in single tpw mode.

Parsing over the gold standard tag set illustrated that a 2.02% increase in F1 (6.97% relative
reduction in error) results. Comparing this to the 0.53% increase in F1 (1.83% relative reduction
in error) which results from using gold standard named-entity (NE) mark-up, suggests there is
more to be gained by concentrating on tag selection than NE recognition. However, the con-
clusions drawn here and by Charniak are based upon high performing PoS taggers that achieve
accuracy rates in the high 90’s. These conclusions are not expected to translate to parsing sys-
tems that employ taggers with lower accuracy. That is, to data with higher levels of unseen
words. For example, around 20% of words are ‘unseen’ in biological texts. In such cases,
the use of NE recognition, particularly over the unseen words, is expected to affect parsing
performance significantly.

Chapter 4

Efficient Extraction of Weighted GRs

The current parser’s output formats, described in §2.6.4, are each determined from the n-best
list of derivations. Theweighted GRoutput consists of the unique set of GRs across the n-
best GR sets, each weighted by the sum of the probabilities ofderivations (n-best GR sets) in
which it occurs. This weight is normalised (using the sum of all derivation probabilities) to fall
within the range[0,1] where 1 indicates that all derivations contain the GR. Hence,the current
approach unpacks the n-best derivations from the parse forest, derives the corresponding n-best
GR sets and finds the unique set of GRs and corresponding weights.

Carroll & Briscoe(2002) illustrate that increasing the size of the n-best list improves the
upper bound on precision/recall in the high precision/recall GR sets, determined by thresholding
over the GR weights. Therefore, if practicable, it is preferable to include all possible derivations
when calculating weighted GRs. Hence, the extant approach iseither (i) inefficient (and for
some examples impracticable) if a large number of derivations are licensed by the grammar, or
(ii) inaccurate if the number of derivations unpacked (the size of the n-best list) is less than the
number licensed by the grammar.

In this chapter we present a novel approach, the EWG algorithm, enabling weighted GRs
to be determined directly from the packed parse forest produced by RASP. This approach is
a dynamic programming variant of the Inside-Outside algorithm (IOA), which is ideal for this
task, enabling exact computation of the GR weights using theinside and outside probabilities
determined for nodes in our parse forest. We describe the IOAoverPCFGparse forests in §4.1.
Following, we extend the IOA to apply over LR parse forests, referred to as the IOALR.

Using the IOALR, we can determine for each node in the parse forest, the probability of all
derivations that include that node. This probability represents the probability of all n-best GR
sets that contain the corresponding GR output for the node. Summing over such probabilities
for each (unique) GR output (across all nodes in the parse forest) provides the non-normalised
weight for the GR. Furthermore, the IOALR determines the sum of all derivations in the parse
forest, which is the normalising factor.

We describe the application of the IOALR to determine weighted GR output directly from
RASP’s parse forest in §4.2. A single iteration of the IOALR is applied to determine the inside
and outside probabilities over the parse forest. These probabilities are applied to calculate
weights for the GRs which we determine in parallel. Consequently, this approach is referred to
as IOALR(1). However, this solution applies to the extant parser if (i) the parse forest contains
only derivations licensed by the grammar. That is, no derivations fail the final unification check
we perform over the n-best list of derivations (see §2.6.4). In addition, the solution requires that

86

4.1 Inside-Outside Algorithm (IOA) 87

(ii) each node in the parse forest is assigned a single semantic (lexical) head. This allows us
to consider the product of inside and outside probabilitiesfor each node as the corresponding
probability of the node’s lexical head.

EWG, defined in §4.3, ensures that (i) holds for all input by altering the local ambiguity
packing operation. EWG does not ensure that (ii) holds, whilerelated work has, instead we
modify the IOALR(1) so that we allow each node in the parse forest to be assignedmultipleinside
and outside probabilities, one for each possible lexical head. Consequently, EWG improves on
previous work which either loses efficiency by unpacking theparse forest before extracting
weighted GRs, or places extra constraints on which nodes can be packed to ensure that each
node specifies a single lexical head, leading to less compactparse forests.

Our experiments, described in §4.4, demonstrate substantial increases in parser accuracy
and throughput for weighted GR output. Finally, in §4.5, we apply a parse selection strategy
defined byClark & Curran(2004b) that utilises the EWG algorithm and achieve 3.01% relative
reduction in error. Furthermore, the GR set output by this approach is aconsistent set. In
contrast, the high precision GR sets defined inCarroll & Briscoe(2002) are neither consistent
nor coherent.4.1 Much of the work we describe in this chapter appears inWatsonet al. (2005).

4.1 Inside-Outside Algorithm (IOA)
We first describe the development and properties of the IOA in§4.1.1. We then define the IOA
and its standard (iterative) application to PCFG training in§4.1.2. Finally, in §4.1.3we illustrate
the simple extension to apply the IOA to the parse forest derived from an LR parser and to the
extant parser’s forest.

4.1.1 Background

The Inside-Outside algorithm (IOA) was introduced byBaker(1979), as a generalisation of the
HMM’s Baum-Welch estimation methods (see §3.1.3), to enable re-estimation of parameters
in PCFGs over raw (unannotated) text. Inside and outside probabilities are analogous to the
forward and backward probabilities of the Baum-Welch algorithm. The IOA was reviewed
by Lari & Young (1990), who extended it to an iterative training method for PCFGs that allows
the grammar to be inferred from a training corpus of unrestricted size.

Relationship to EM

The IOA is a variant of the Expectation-Maximisation (EM) algorithm, in which the basic as-
sumption is that a ‘good’ grammar is one for which training sentences are likely to occur. That
is, the IOA as described byLari & Young (1990), is used to find the MLE over training cor-
pora that are not annotated.Prescher(2001) formally proves that Inside-outside estimation is a
dynamic-programming variant of EM, and therefore, inherits the good convergence behaviour
of EM. That is, the IOA converges on a set of parameter estimates that maximise the probability
of the training corpus.

Local Maxima and Convergence Patterns

The IOA is not without problems. For example,Charniak(1994) illustrates that the algorithm
converges to different local maxima given different initial estimates (randomly selected) for

4.1A consistent setof GRs is one in which each word is the dependent of only one other word and acomplete
setis one in which every word is listed as the dependent of another word.

88 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

model parameters. Further,Elworthy (1994) found three general patterns for the related Baum-
Welch algorithm over HMM PoS taggers, as described previously in §3.1.3, in which the algo-
rithm did not necessarily improve given a ‘good’ initial model.

Discussion

We illustrate IOA (EM) training over the extant LR parser in the next chapter. Although the
convergence properties of IOA are not of concern in this chapter, as EWG simply applies a
single iteration of a variant of IOA to determine the probability of all derivations containing each
GR in the parse forest. That is, we utilise the dynamic programming properties of the algorithm
to efficiently compute weights of elements in the data structure. Several parse selection and
training strategies employ similar dynamic programming approaches, which are necessary for
efficient parser training and application, as unpacking theentire parse forest is unfeasible for
broad coverage natural language parsers. For example,Miyao & Tsujii (2002) describe a variant
of the IOA for training a log-linear parsing model from packed feature forests.

4.1.2 The Standard Algorithm

Much of the theory described in this section, regarding the ‘standard’ IOA application to PCFG
training, has been adapted fromLari & Young (1990). We discuss the application over aPCFG
parse forest. That is, to a parse forest in which nodes resultfrom applying a rule of the grammar,
thence each node represents the mother categoryi of the rule only. Each subanalysis for a node
Ni results due to the application of a rule of the grammar of formi → jk or i → j. That is, we
assume that the PCFG is in Chomsky Normal Form (CNF).

Overview

We previously described forward and backward probabilities in a HMM (which may be con-
sidered a generalised NFA) in §3.1.3. The probability of a state in the HMM is considered the
product of forward and backward probabilities for the state. That is, the total probability of
all complete paths to and from the state, respectively. Similarly, we consider the probability
of nodes in a PCFG parse forest as the product of the inside and outside probabilities (the IO
probability) for the nodeNi. This probability corresponds to the sum of derivation probabilities
over all derivations that contain theNT categoryi over the node’s word span. For example, for
the grammar ruleNP/det n over the inputthe man, the corresponding node’s IO probability is
equal to the probability of all derivations which include the NP/det n category over this subset
of the input.

We consider the sum of all such IO probabilities for eachNT categoryi, for each possi-
ble word span for nodesNi in each sentence in the training corpus, to represent the expected
frequency of the nonterminal. Thus we effectively re-estimate the probability of the rule using
relative frequency counts, that is, for productioni → jk, the probability of the rule is determined
using:

P(i → i j) =
f req(i → i j)

∑ j,k f req(i → jk)
(4.1)

Thus the IOA proceeds by iteratively re-estimating the probability for each rule in the grammar
where each iteration involves determining such relative frequency counts over the entire training
corpus. This process results in converging the probabilities of each rule so that the probability
of the training corpus is maximised. Convergence occurs in practice, as rule rewrites that oc-
cur more frequently for eachNT category are at each iteration assigned a higher proportionof

4.1 Inside-Outside Algorithm (IOA) 89

Nr

Ni

f

a1 as at aT.
e

Figure 4.1: The inside (e) and outside (f) regions for nodeNi.

the probability mass for the category. Thus, the set of sentences that contain these rules each
have a higher probability so that the total probability of these sentences in the corpus increases.
However, to maximise the probability of the entire trainingcorpus, we must ensure that low fre-
quency rules are still assigned some of the probability mass. The IOA converges on a maximum
that assigns more weight to frequently occurring rules yet still determines all training sentences
to occur with ‘high’ probability.

The inside and outside probabilities for nodes are defined herein, which are applied to deter-
mine these expected frequency counts for each rule. We also define the re-estimation equations
that effectively apply Equation4.1, so that we iteratively converge on a (locally) maximal solu-
tion. That is, to perform EM over PCFG.

Inside Probability

We defined a CFG grammar G, in §2.1, as a tuple{NT,Σ,P,R}. The NT and Σ elements
represent the set of nonterminal and terminal symbols of thegrammar, respectively. The element
P represents the set of productions (rules), whileR represents the nonterminal category that is
considered the top grammar category.

The probability of a subanalysis is calculated as the probability of the rule applied (that
created the subanalysis), multiplied by the product over all daughter node probabilities. The
inside probability of a node represents the probability of all subanalyses for the node, calculated
by summing over their corresponding probability. Conversely, the outside probability represents
the probability of all analyses which include one of the node’s subanalyses.

Given an input sequence of terminals of the grammar{a1, ...aT}, we denote the inside and
outside probabilities for a nodeNi, that spans input itemsas to at inclusively, ase(s, t,Ni)
and f (s, t,Ni), respectively. Figure4.1 illustrates the corresponding nodes in the parse forest
used when calculating the inside and outside probabilitiesfor Ni . Nonleaf nodes in the figure
representNT categories, andNr is the root node whose categoryr is in the setR. Leaf nodes
representΣ categories of the grammar, that is, the input sequence{a1, ...aT}.

The inside probabilitye(s, t,Ni) represents the probability of subanalyses that are rooted
with mother categoryi for this sentence over the word spans to t. Each production is of the
form i → jk where each set of daughter nodesNj andNk span fromas to ar andar+1 to at ,
respectively. Figure4.2 illustrates this structure for nodeNi. The inside probabilitye(s, t,Ni)
for a given sentence is calculated using:

e(s, t,Ni) = ∑
j,k

[P(i → jk)
t−1

∑
r=s

e(s, r,Nj)e(r +1, t,Nk)] (4.2)

We calculate the inside probabilities bottom-up. For a wordnode, the inside probability is

images/fig-ioa-areas.eps

90 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

1 s r. r + 1 t T.

NNj

Ni

k

Figure 4.2: Calculation of inside probabilities for nodeNi.

either equal to the PoS tag probability (if PoS tag terminalshave associated posterior tag prob-
abilities) or considered to be 1. That is, for the input itemas for word numbers, e(s,s,Nas) = 1.

As a result, over a single derivation, the inside probability of each node corresponds to the
product of all CFG rules that are applied to create the subanalysis. That is, the top category’s
inside probability is the derivation’s probability. Over the parse forest, the inside probability
of the root node (that is, the probability for sentenceq, Pq = e(1,Tq,NRq)) corresponds to the
summation over the probabilities of all derivations for thesentence.

Outside Probability

The outside probability for a nodeNi, as shown in Figure4.1, is calculated using all the nodes
for which the node is a daughter (subanalysis). This calculation includes the inside probability
of the other daughter nodes of whichNi is a member. That is, categoryi could appear in two
settings: j → ik or j → ki, as shown in Figure4.3.

1 s t. t + 1 r T.

N

N N

j

i k

1 r s - 1. s t T.

Nj

NiNk

Figure 4.3: Calculation of outside probabilities for nodeNi.

The outside probability ofNi, f (s, t,Ni), represents the probability of all possible analyses
that include the nodeNi and span froma1 to as−1 andat+1 to aT . We calculate the outside
probability ofNi, using the outside probability of the mother node (Nj) multiplied by the product
of inside probabilities of the daughters other thanNi i.e. Nk. We perform a summation over this
probability in each instance whereNi is a daughter of a node, i.e. for each possibleNj andNk.
The outside probabilityf (s, t,Ni) for a given sentence is calculated using:

f (s, t,Ni) = ∑
j,k

[f (s, r,Nj)P(j → ik)
T

∑
r=t+1

e(t +1, r,Nk)]

+∑
j,k

[f (r, t,Nj)P(j → ki)
s−1

∑
r=1

e(r,s−1,Nk)] (4.3)

We calculate the outside probabilities top-down, assigning the outside probability of the root
nodeNr to be 1.

images/fig-ioa-inside.eps
images/fig-ioa-outside.eps

4.1 Inside-Outside Algorithm (IOA) 91

Re-estimation Equations

We rearrange the standard inside Equation4.2, splitting the equation into two separate equa-
tions. The first equation specifies the rule used, that is, theparticularNT categories forj and
k. We perform the summation over each possible set of categories for j andk in the second
equation:

e(s, t,Ni,Nj ,Nk) = P(i → jk)
t−1

∑
r=s

e(s, r,Nj)e(r +1, t,Nk) (4.4)

e(s, t,Ni) = ∑
j,k

e(s, t,Ni,Nj ,Nk) (4.5)

The product of inside and outside probabilitiese(s, t,Ni) and f (s, t,Ni) represents the sum
of all probabilities for derivations in which the mother categoryi is utilised over the spanas to
at . If we sum over all possible values fors andt for the sentence, then we determine the sum
of all probabilities for derivations in which the mother categoryi appears. If we normalise by
the probability of all derivations (Pq) then we determine the proportion of the probability mass
within the parse forest for sentenceq that utilises the mother categoryi. Within the IOA, this
quantity falls in range[0,1], and is effectively considered the frequency of the mother category
i for the sentence:

f reqq(Ni) =
1
Pq

∑
s,t

eq(s, t,Ni) fq(s, t,Ni)

Similarly, the product of the inside and outside probabilities,e(s, t,Ni,Nj ,Nk) and f (s, t,Ni),
represents the probability of all derivations in which the rule i → jk is utilised over the spanas

to at . Again, if we sum over the values fors andt, and normalise usingPq, then we determine
the weighted proportion of derivations in which the rulei → jk occurs:

f reqq(Ni,Nj ,Nk) =
1
Pq

∑
s,t

eq(s, t,Ni,Nj ,Nk) fq(s, t,Ni) (4.6)

Dividing this proportion by the proportion determined for mother categoryi calculates the
relative weighted frequency (i.e. probability) of expanding i using the rulei → jk for sentence
q:

Pq(Ni ,Nj ,Nk) =
f reqq(Ni ,Nj ,Nk)

f reqq(Ni)
(4.7)

Extending this equation to apply over all sentences for a corpus simply involves summing
over each sentenceq in corpusQ. The following equation represents the relative frequency
count Equation4.1, and is the re-estimation equation applied during each IOA iteration, to
determine the new probability of each rulei → jk of the grammar:

P(i → jk) = P(Ni ,Nj ,Nk) =

∑
q∈Q

f reqq(Ni,Nj ,Nk)

∑
q∈Q

f reqq(Ni)
(4.8)

92 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

4.1.3 Extension to LR Parsers
We described the IOA for a PCFG parse forest. However, each node in a PCFG parse forest
corresponds to a particular mother category of the grammar.As described in §2.3.6, an LR
parser encodes additional context over the underlying CFG. In view of this additional context,
we apply the re-estimation equations for each action in the LR table, rather than for each CFG
production. Therefore this is not a ‘standard’ IOA implementation, and consequently, is referred
to as the IOALR instead.

Calculating Inside and Outside Probabilities

The extension of the IOA to LR parsers is relatively trivial,as we determine the inside and
outside probabilities of each node in an LR parse forest as welikewise determine for each node
in the PCFG parse forest. Each frequency calculation now relates to the parse action in the LR
table, rather than to the CFG rule applied. That is, we utilisethe corresponding probability of
the action for nodeNi, P(a[i]) rather than that of the corresponding ruleP(i → jk). The product
of the inside and outside probabilities (the IO probability) for each action corresponds to the
sum of probabilities for all derivations in the LR parse forest that result due to the LR parse
action. For a word node, the (inside) probability is equal tothe probability of the shift action
that results in creation of the word node and (optionally) the posterior PoS tag probability.

Action Counts and Normalisation

In the LR parse forest, each nodeNi represents an LR state that spans a subset of the input
sequence. The set of actions forNi, that result in a subanalysis forNi (and moving to the LR
state), is considered rather than the set of rules applied. These actions are usually defined in
different cells of the LR table, as each subanalysis resultsfrom a reduce action over different
daughter nodes (representing varying left-context, thus states, in the LR parser).

We determine the frequency of each action using the normalised IO probability of the action.
That is, we apply Equation4.6(as described in the following section). However, we do not apply
the normalisation factor in Equation4.7. Instead, we normalise based on the set of competing
actions for the current state and/or lookahead item rather than the node’s mother category or LR
state. For each set of competing actions in the LR table, we normalise each action in the set by
the sum over these action frequencies. Therefore, the frequency of each action calculated using
Equation4.6 is considered the action count for each action and we normalise over these counts
as we would otherwise over a fully annotated corpus for an LR parser (see the normalisation
methods defined in §2.5.2).

Extension to the Extant Parser

In addition to the minor modifications made to the algorithm to apply over LR parse actions
(rather than PCFG rules), there are a number of practical differences in the application of the
algorithm described to the parse forest data structure built by the extant parser.

Nodes in the parse forest are efficiently represented using sub-tree sharing and packing (see
§2.4.4). In keeping with previous notation, a set of nodes in the parse forest will be referred
to using uppercaseN. The representative node for the setNi is the nodeni, where the number
i uniquely identifies a node (set) in the parse forest. Each node nc ∈ Ni represents a particular
action. That is, a single subanalysis for the node setNi. The representative nodeni may contain a
set of packed nodesnp, wherenp =PACKED(ni). Thus,Ni = {ni |PACKED(ni)}. For example,
see Figure2.14, which illustrates a parse forest produced by the extant parser. There are 26
individual nodes, two of which are packed in another, resulting in 24 node sets. The noden4

4.1 Inside-Outside Algorithm (IOA) 93

for V1/v np pp represents the fourth node setN4, which includes the node itself and the packed
nodesn17 (V1/vp pp) andn22 (V1/v np).

Each nodenc ∈ Ni has a set span (set values fors andt), and corresponds to a single parse
action. Similarly, the nodes’ daughter node setsDNl ∈ D(nc) do not vary, that is, each has a set
span and mother category. Further, our grammar is not in CNF and more than one daughter may
be specified for a grammar rule. As a result, in Equation4.4, the valuesj, k andr are effectively
set. We determine the inside probability of the node using a simplified version of this equation:

e(nc) = P(a[c]) ∏
DNl∈D(nc)

e(DNl) (4.9)

Note that we no longer specify the span of the node in this equation, as this is already set for
each node in the parse forest and each nodenc represents a specific data structure in the parse
forest. We usea[c] to represent the action for nodenc that applies a rule of formA→ α, where
the set of daughter categoriesα corresponds to the set of categories in each of the daughter node
setsD(nc).

As packed nodes represent alternative subanalyses for the node, we apply the summation
for the inside equation. That is, we apply Equation4.5over the set of nodes inNi:

e(Ni) = ∑
nc∈Ni

e(nc) (4.10)

We store the inside probability for the node itselfnc and utilise this probability to calculate
the node’s IO probability. However we return the inside probability for the nodeni as that ofNi.

Simplifying the outside equations, given the set data structure of the parse forest, is per-
formed in a similar fashion. We simplify Equation4.3, as the valuer is set, as are the daughters
for each mother noden j of Ni, to:

∀nc ∈ Ni, f (nc) = f (Ni) = ∑
n j ,Ni∈D(n j)

f (n j)P(a[j]) ∏
Nk∈D(n j),Nk 6=Ni

e(Nk) (4.11)

Different nodes in the parse forest can result from the same parse action. To determine the
frequency count for each actionad for sentenceq, we sum over the IO probability for each node
that results due to application of the action. That is, we simplify Equation4.6to:

f reqq(ad) =
1
Pq

∑
nc,a[c]=ad

eq(nc) fq(nc) (4.12)

Again, we determine this frequency across each sentenceq in the training corpusQ. How-
ever, we determine the nominator in Equation4.8only:

f req(ad) = ∑
q∈Q

f reqq(ad)

The denominator for Equation4.8 is instead calculated by summing over the frequency counts
for competing actions in the LR table. That is, we normalise the frequency counts for actions
using the extant normalisation method described in §2.6.2.

94 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

4.2 Extracting Grammatical Relations
In this section, we show how to obviate the need to trade off efficiency and accuracy by ex-
tracting weighted GRs directly from the parse forest using a dynamic programming variant of
the IOALR; the IOALR(1). This approach, extended in §4.3 to handle all parse forests output
by the extant parser, enables efficient calculation of weighted GRs overall derivationsand
substantially improves the throughput and memory usage of the parser.

Our approach removes the intermediate processing stages that unpack the n-best derivations
and determine the corresponding set of GRs for each derivation. Instead, we show how to
extract the weighted GR output directly from the parse forest. We assume for now that a single
lexical head is specified per node. In this case, we consider the IO probability of the node as the
IO probability of the node’s GR specification. This probability forms part of the non-normalised
score for the GR.

In §4.2.2, we describe the IOALR(1), which determines weighted GRs directly from the
extant parse forest. We apply Equation4.12, though over the unique GRgd rather than for the
actionad for each node. Here,f reqq(gd) is the final weight for unique GRgd in the weighted
GR output, whereg[c] represents the GR output for nodenc:

f reqq(gd) =
1
Pq

∑
nc,g[c]=gd

eq(nc) fq(nc) (4.13)

We continue the example over the sentenceI saw a man in the park, the parse forest for
which is shown in Figure2.14. The probability of shift/reduce actions and instantiatedGR
specifications for each node are shown in Table2.9. Figure2.16illustrates the corresponding
n-best GR sets and weighted GR output formats for this example.

In practice, more than one lexical head can result for each node in the parse forest. We
illustrate this by example in §4.2.3, artificially modifying the GR specifications in our continued
example so that more than one lexical head results for a node in the parse forest. We illustrate
that the IOALR(1) is unable to extract the corresponding weighted GR output from the resulting
parse forest.

Since the parser is unification-based, we first discuss in §4.2.1, modifications to the parsing
algorithm so that local ambiguity packing is based on feature structureequality rather than
subsumption. This ensures that only derivations licensed by the grammar are represented within
the parse forest.

4.2.1 Modification to Local Ambiguity Packing
We described the extant parser’s packing method in §2.6.3, where packing is based on feature
structure subsumption. In this section, we discuss the problem with this packing definition in
relation to applying dynamic-programming approaches to the parse forest. We also describe
how to modify the packing operation to enable weighted GRs to be extracted directly from the
parse forest.

Global Consistency for Subsumption-based Packing

Oepen & Carroll(2000) note that when using subsumption-based packing with a unification-
based grammar, the parse forest may implicitly represent some derivations that are not actually
licensed by the grammar. These derivations have values for one or more features that are locally
but not globally consistent. This is not a problem when computing GRs from derivations that

4.2 Extracting Grammatical Relations 95

have already been unpacked. In this case, the relevant unifications are checked during the
unpacking process, and unification failure causes the affected derivations to be filtered out.
Unification fails for at least one packed tree in approximately 10% of the sentences in the
DepBank test suite (see §1.3.1). However, such inconsistent derivations are a problem forany
approach to probability computation over the parse forest that is based on the IOA. For EWG,
we therefore modify the parsing algorithm so that packing isbased on feature structureequality
rather than subsumption.

Packing Operations

Oepen and Carroll give definitions and implementation details for subsumption and equality
operations, which we adopt. In the experiments below, we refer to versions of the extant parser
with subsumption and equality based packing as SUB-PACKING and EQ-PACKING respec-
tively.

When packing based on subsumption, nodenB is packed into nodenA based on the truth
value returned by the following definition of subsumption:

Given two nodesnA andnB with (unification-based) feature listsΘA andΘB,
thennA subsumesnB if and only if:

1. the category type of A and B, specified by the first elements inΘA andΘB,
are equal; and

2. each remaining corresponding element ofΘA andΘB, θA andθB respectively,
conform to one of the following:

(a) θA andθB both contain values and these values are equal or

(b) θA is unspecified

The definition of equality between nodes is similar to the above definition except for a minor
change to part2b, requiringbothθA andθB to be unspecified.

4.2.2 Extracting Grammatical Relations

Unfilled GR Specifications

The extant parser’s grammar, described in §2.6.1, encodes a set of possible GR specifications
for each rule of the grammar. The particular GR specificationthat applies for the resulting node
nc in the parse forest may depend on the feature values of the nodes daughtersD(nc). That
is, the grammar defines a rule-to-rule mapping from local trees to GR specifications that are
optionally instantiated during parse time so that one GR specification, in the form<head, GR>

is specified for each nodenc in the parse forest. Thehead of the GR specification defines the
semantic head (head, henceforth) for this node, while theGR is the GR output for the node.

The GR specifications for each node in our example sentence are shown in Table2.9. These
areunfilled (see §2.6.4), as the GR slots are specified using the number of the daughter whose
head should be used. Node 13 forNP/det n spans over the subset of the inputthe parkand
has the unfilled GR specification<2, (det 2 1)>. This GR specification defines that the second
daughter’s head is the node’s head, and the GR output by the node is adet(erminer) where
the head and dependent slots are to be filled by the heads of the second and first daughters,
respectively (the2 and1 arguments).

96 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

Filled GR Specifications

GR specifications are referred to as unfilled until the slots containing numbers arefilled with the
corresponding head of each daughter node. We consider the head of each word node as the word
itself. For example, the resulting filled GR specification for node 13 is<park, (det park the)>,
i.e. the head of the node isparkand the GR output is(det park the).

Over a single derivation, the corresponding set of GRs is computed from the instantiated
GR specifications at each node in the derivation, passing thehead determined for each node
(for the filled GR specification) upwards from daughter to mother nodes in the derivation. For
example, the corresponding n-best GR sets for each derivation output for our example sentence
are shown in Figure2.16.

Processing Stages

Three processing stages are required to determine weightedGRs over the parse forest. That
is, to apply the IOALR(1). We calculate (1) filled GR specifications and corresponding inside
probabilities, (2) outside (and non-normalised) probabilities of a unique GR set, and (3) nor-
malised probabilities (that is, the final weights) of the weighted GR set. Note that the inside and
outside probabilities in the first two stages are effectively determined using a single iteration of
the IOALR, though we do not update our model’s parameters.

The first two processing stages are covered in detail in the following sections. The final
stage normalises the probabilities of the unique GR set by dividing each weight by the sum of
all the derivation probabilities. That is, by dividing withthe root-node’s inside probability (Pq

for sentenceq). Stage (3) can instead be performed during stage (2), so that we incrementally
determine the normalised probabilities of each unique GR, aswe determine this normalising
factor during stage (1).

Inside Probability and GR Determination

We now describe how to determine the inside probabilities over the node setsNi in the parse
forest. We perform a depth-first search, filling GR specifications from word-nodes to the root
node and returning the head and inside probability for each node in the extant parse forest, as
described in §4.1.3. We determine the inside probability for each nodenc and node setNi. That
is, using Equation4.9 and Equation4.10to calculate the inside probabilitiese(nc) ande(Ni),
respectively.

We fill the GR specification for the nodenc using each head for the daughter node sets.
That is, we use the head forDNl ∈ D(nc) to fill the GR slot if the numberl is specified in the
unfilled GR. We restrict the set of parse forests considered tothose in which each nodenc ∈ Ni

specifies the same lexical head. For each nodenc we determine a tuple{head(nc),e(nc)} that
represents the head and inside probability of the node. For each node setNi, the tuple returned is
{head(ni),e(Ni)}, whereni is the representative node for the setNi. We defined previously that
the head of a word node to be the word itself. Furthermore, we defined the inside probability of
a word node to be the probability of the shift action which created the word node. Therefore, it
is trivial to determine the head and inside probability for each node in the parse forest.

Example Sentence

For our example sentence, Table4.1 illustrates the inside probability and filled GR specifica-
tions for each node in the parse forest shown in Figure2.14. This table builds on Table2.9
which illustrates the shift/reduce action probability andthe corresponding instantiated (though

4.2 Extracting Grammatical Relations 97

unfilled) GR specifications.4.2 The filled GR specifications contain GRs that can be seen in the
n-best GR sets and weighted GR output formats shown in Figure2.16. For n4 (V1/v np pp),
we illustrate a pair of probabilities. The first is the insideprobability of the nodee(n4) and the
second is for the node sete(N4). All three nodes of the setN4 specify the same headsee+ed VVD.
Thus, we pass up the pair{see+ed VVD,−6.6284} for this node set.

Outside Probability and Weighted GR Determination

Once we determine the inside probabilities and fill each GR specification for each node in the
parse forest, we traverse the parse forest top-down to determine outside probabilities as dis-
cussed in §4.1.3. Table4.2 illustrates the outside probability for each node (and nodeset) in
the continued example. We sum over each possible outside probability (for each subanalysis in
which the node is a daughter node) i.e. for each nodenc (row) of the table. This summation is
shown for each mother noden j , for the node in Equation4.11. We consider the outside proba-
bility f (nc),∀nc ∈Ni as the outside probability of the node setNi, as shown in this equation. For
example, we show a pair of probabilities for several columnsof n4, one for the node itself and
one forN4. The outside probability ofN4 is considered the outside probability for each node in
the set, that is,n4, n17 andn22.

The IO probability of each node is the IO probability for the corresponding GR output by the
node. This probability corresponds to (a portion of) the sumof all derivation probabilities that
include the GR, that is, the non-normalised probability of the GR. In the case where the same GR
occurs in different nodes of the parse forest, we sum over theIO for each of these nodes. That
is, we apply the summation in Equation4.13. To normalise the GR and determinef reqq(gd) as
shown in this equation (the final weight of the GR), we divide bythe inside probability of the
root node. In our example, we show the normalised IO probability for each node (instance of a
GR) then sum over these normalised probabilities instead. For example, the GR(det man NN1

the AT) results for nodes 6 and 23, summing over their (normalised IO) probabilities we weight
this GR with value 1.

In practice, we store a hash table indexed against each GR. As we determine outside proba-
bilities for each node, we (incrementally) store the IO probability in the hash table against each
GR index. Thus after traversing the parse forest, the hash table contains a list of unique GRs
and corresponding non-normalised weights. The non-normalised set of GRs for the example
sentence is shown in Figure2.16. In order to normalise this set we utilise the inside probabil-
ity of the root node, that is, the probability of all derivationsPq. The final (normalised) set of
weighted GRs for this example is also shown in Figure2.16, wherePq = −7.8438.

4.2.3 Problem: Multiple Lexical Heads

The IOALR(1) solution applies only if a single lexical head results for each node, though this is
often not the case. We extend the example parse forest discussed previously to illustrate how
multiple heads may occur for each (tree) node in the parse forest. In related work, discussed
in the following section, the parse forest is altered so thata single lexical head is guaranteed to
result for each node. This allows these approaches to apply asimilar solution as that described
previously to determine weighted GR output.

Consider the set of nodes for the mother categoryV1 in Figure2.14, that is, nodes 4, 17
and 22. Each node specifies the headsee+ed VVD. However, if we alter the GR specification for

4.2Note that some values in this table, and others following forthis example, differ slightly from the exact values
that are calculated in this example in practice, due to rounding errors.

98 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

G
R

S
P

E
C

IF
IC

AT
IO

N
N

ode
W

ord/R
ule

P
rob

Inside
head

G
R

(s)
1

T
/txt-sc1/–

0.0
-7.8438

see+
edVV

D
2

S
/np

vp
-0.5391

-7.8438
see+

edVV
D

(ncsubj
see+ed

V
V

D
I

P
P

IS
1

)
3

I
P

P
IS

1
-0.6763

-0.6763
IPP

IS
1

4
V

1/v
np

pp
-0.8728

[-7.02172,-6.6284]
see+

ed
V

V
D

(dobj
see+ed

V
V

D
m

anN
N

1)(iobj
see+ed

V
V

D
in

II)
5

see+
edV

V
D

-0.00002
-.00002

see+
edVV

D
6

N
P

/detn
-1.1568

-3.0052
m

anN
N

1
(det

m
an

N
N

1
the

A
T)

7
the

AT
-0.0004

-.0004
theAT

8
N

1/n
-1.848

-1.848
m

anN
N

1
9

m
an

N
N

1
0.0

0.0
m

anN
N

1
10

P
P

/p1
0.0

-3.1437
in II

11
P

1/p
np

-0.6565
-3.1437

inII
(dobj

in
II

park
N

N
1)

12
in

II
-0.0134

-0.0134
inII

13
N

P
/detn

-0.1663
-2.4738

parkN
N

1
(det

park
N

N
1

the
A

T)
14

the
AT

-0.0005
0.0005

theAT
15

N
1/n

-2.307
-2.307

parkN
N

1
16

park
N

N
1

0.0
0.0

parkN
N

1
17

V
1/vp

pp
0.0

-8.66952
see+

edVV
D

(ncm
od

see+ed
V

V
D

in
II)

18
V

1/v
np

-2.5335
-5.53872

see+
edVV

D
(dobj

see+ed
V

V
D

m
anN

N
1)

19
P

P
/p1

0.0
-3.1308

inII
20

P
1/p

np
-0.6565

-3.1308
inII

(dobj
in

II
park

N
N

1)
21

in
II

-0.0005
-0.0005

inII
22

V
1/v

np
-1.1534

-6.86012
see+

edVV
D

(dobj
see+ed

V
V

D
m

anN
N

1)
23

N
P

/detn
-0.1663

-5.7067
m

anN
N

1
(det

m
an

N
N

1
the

A
T)

24
N

1/n1
pp1

-0.5165
-5.54

m
anN

N
1

(ncm
od

m
an

N
N

1
in

II)
25

P
1/p

np
-0.6565

-3.1755
inII

(dobj
in

II
park

N
N

1)
26

in
II

-0.0452
-0.0452

inII

Table
4.1:

Inside
(log

base
10)

probabilities
and

filled
G

R
sp

ecifications
for

parse
forestnodes

show
n

in
F

igure
2.14

and
Table2.9.

T
he

shift
or

reduce
probability

for
the

node
is

show
n

in
the

third
colum

n
and

the
inside

probability
for

the
node

is
show

n
in

the
fourt
h

colum
n.

T
he

rem
aining

tw
o

colum
ns

illustrate
the

filled
G

R
specification

for
the

node.

4.2 Extracting Grammatical Relations 99

N
od

e
W

or
d/

R
ul

e
In

si
de

ou
ts

id
e

IO
no

rm
IO

1
T

/tx
t-

sc
1/

–
-7

.8
43

8
0.

0
-7

.8
43

8
1.

0
2

S
/n

p
vp

-7
.8

43
8

0.
0

-7
.8

43
8

1.
0

3
I

P
P

IS
1

-0
.6

76
3

-7
.1

67
5

-7
.8

43
8

1.
0

4
V

1/
v

np
pp

[-
7.

02
17

2,
-6

.6
28

4]
-1

.2
15

4
[-

8.
23

71
2,

-7
.8

43
8]

[0
.4

04
28

,1
.0

]
5

se
e+

ed
V

V
D

-.
00

00
2

∑
(−

8.
23

71
,−

9.
88

49
,−

8.
07

55
)
=
−

7.
84

38
-7

.8
43

8
1.

0
6

N
P

/d
et

n
-3

.0
05

2
∑

(−
5.

23
19

2,
−

6.
87

97
2)

=
−

5.
22

23
-8

.2
27

5
0.

41
33

3
7

th
e

AT
-.

00
04

∑
(−

8.
22

71
,−

8.
07

51
2)

=
−

7.
84

34
7

-7
.8

43
8

1.
0

8
N

1/
n

-1
.8

48
∑

(−
6.

37
95

,−
6.

22
75

2)
=
−

5.
99

59
-7

.8
43

86
1.

0
9

m
an

N
N

1
0.

0
-7

.8
43

86
-7

.8
43

86
1.

0
10

P
P

/p
1

-3
.1

43
7

-5
.0

93
4

-8
.2

37
1

0.
40

42
8

11
P

1/
p

np
-3

.1
43

7
-5

.0
93

4
-8

.2
37

1
0.

40
42

8
12

in
II

-0
.0

13
4

-8
.2

23
7

-8
.2

37
1

0.
40

42
8

13
N

P
/d

et
n

-2
.4

73
8

∑
(−

5.
76

33
,−

7.
41

11
2,
−

5.
60

17
2)

=
−

5.
37

00
-7

.8
43

8
1.

0
14

th
e

AT
0.

00
05

-7
.8

43
3

-7
.8

43
8

1.
0

15
N

1/
n

-2
.3

07
-5

.5
36

8
-7

.8
43

8
1.

0
16

pa
rk

N
N

1
0.

0
-7

.8
43

8
-7

.8
43

8
1.

0
17

V
1/

vp
pp

-8
.6

69
52

-1
.2

15
4

-9
.8

84
92

0.
00

90
97

18
V

1/
v

np
-5

.5
38

72
-4

.3
46

2
-9

.8
84

92
0.

00
90

97
19

P
P

/p
1

-3
.1

30
8

-6
.7

54
12

-9
.8

84
92

0.
00

90
97

20
P

1/
p

np
-3

.1
30

8
-6

.7
54

12
-9

.8
84

92
0.

00
90

97
21

in
II

-0
.0

00
5

-9
.8

84
42

-9
.8

84
92

0.
00

90
97

22
V

1/
v

np
-6

.8
60

12
-1

.2
15

4
-8

.0
75

52
0.

58
65

2
23

N
P

/d
et

n
-5

.7
06

7
-2

.3
68

82
-8

.0
75

52
0.

58
65

2
24

N
1/

n1
pp

1
-5

.5
4

-2
.5

35
52

-8
.0

75
52

0.
58

65
2

25
P

1/
p

np
-3

.1
75

5
-4

.9
00

02
-8

.0
75

52
0.

58
65

2
26

in
II

-0
.0

45
2

-8
.0

30
32

-8
.0

75
52

0.
58

65
2

Ta
bl

e
4.

2:
O

ut
si

de
an

d
(n

on
-)

no
rm

al
is

ed
IO

pr
ob

ab
ili

tie
s

f
or

pa
rs

e
fo

re
st

no
de

s
sh

ow
n

in
F

ig
ur

e
2.

14
an

d
Ta

bl
e4

.1
.

100 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

V1/vp pp to <2, (ncmod 1 2) >, then the second daughter is now considered the head. In this
case, bothV1/v np pp andV1/v np specify the headsee+ed VVD, while V1/vp pp specifies the
headin II . Thus for the mother nodeS/np vp , we can fill the GR specification<2, (ncsubj 2 1)>

as before, creating the filled GR specification:<see+ed VVD, (ncsubj see+ed VVD I PPIS1)>. We
may also fill the GR specification using the second daughter head combination:
<in II, (ncsubj in II I PPIS1)>. It is clear in this example that node 2 (S/np vp) appears in all
possible derivations for the sentence. However, the two possible filled GR specifications clearly
do not appear in every possible derivation. Consequently, weare no longer able to utilise the IO
of the node within the frequency calculations for the filled GR specifications of the node. The
new set of n-best GRs and weighted GRs is shown in Figure4.4.

We describe the solution to this problem in §4.3. That is, we describe modifications to the
IOALR(1) described in this section. This algorithm is called ‘EWG’as it is capable ofextracting
weightedGRs fromanyparse forest produced by the extant parser and is not limitedto those in
which a single lexical head results per node. EWG is based on the simple observation that if a set
of nodesNi specify more than one possible head, then the inside probability of each head forms
part of the probabilitye(Ni). We re-define the summation over nodes inNi in Equation4.10, so
that we condition the summation on the node’s head, where thefunctionH returns the head of
a node:

e(Ni) = ∑
h

∑
nc∈Ni ,H(nc)=h

e(nc)

That is, we can determine the inside probability for each head h for Ni e(Ni,h) using the
inside probabilities for each node in the set where the previous equation can be split into two
parts:

e(Ni,h) = ∑
nc∈Ni ,H(nc)=h

e(nc) (4.14)

e(Ni) = ∑
h

e(Ni ,h)

In the event that multiple heads occur for a node set, using the single probabilitye(Ni) to
represent the probability of each head over-estimates the probability e(Ni,h) for a head,unless
a single head only results for the node set. That is, the previous solution applies only if every
node (set) has a single head.

4.2.4 Problem: Multiple Parse Forests

As described in §2.6.3, the grammar specifies a number of possible root categories,so a number
of root node structures can result. Each of these structuresdefine a set of derivations, where each
derivation spans the whole sentence with the specified top category. In practice, we consider
the parse forest as the set of such root node data structures.

In the following section, we describe EWG over a single root node, though the extension to
multiple root nodes is trivial. To determine the inside probability of the sentencePq, applied to
normalise the weights of the weighted GR output, we sum over the inside probability of each
root node produced. We perform the outside probability calculation by assigning the outside
probability ofeachroot node to be 1.

4.3 The EWG Algorithm 101

N-BEST GRS: (NON-NORMALISED) WEIGHTED GRS:
Parse probability: -8.075 -7.843 (det manNN1 theAT)
(det manNN1 theAT) -7.843 (det parkNN1 theAT)
(det parkNN1 theAT) -7.843 (dobj inII park NN1)
(dobj in II park NN1) -7.843 (dobj see+edVVD man NN1)
(dobj see+edVVD man NN1) -7.847 (ncsubj see+edVVD I PPIS1)
(ncsubj see+edVVD I PPIS1) -8.075 (ncmod manNN1 in II)
(ncmod manNN1 in II) -8.237 (iobj see+edVVD in II)

-9.884 (ncmod see+edVVD in II)
-9.884 (ncsubj inII I PPIS1)

Parse probability: -8.237 (NORMALISED) WEIGHTED GRS:
(det manNN1 theAT) 1.0 (det manNN1 theAT)
(det parkNN1 theAT) 1.0 (det parkNN1 theAT)
(dobj in II park NN1) 1.0 (dobj inII park NN1)
(dobj see+edVVD man NN1) 1.0 (dobj see+edVVD man NN1)
(ncsubj see+edVVD I PPIS1) 0.990904 (ncsubj see+edVVD I PPIS1)
(iobj see+edVVD in II) 0.5866 (ncmod manNN1 in II)

9.0960e-3 (ncmodsee+edVVD in II)
0.404265 (iobj see+edVVD in II)

Parse probability: -9.884 9.0960e-3 (ncsubj inII I PPIS1)
(det manNN1 theAT)
(det parkNN1 theAT)
(dobj in II park NN1)
(dobj see+edVVD man NN1)
(ncsubj inII I PPIS1)
(ncmod see+edVVD in II)

Total probability (sum of all parse probabilities): -7.843

Figure 4.4: The n-best GRs, and non-normalised/normalised weighted GRs for the three parses
for the sentenceI saw the man in the parkusing an altered GR specification in the ruleV1/vp pp.
The corresponding parse forest and original GR set are shownin Figures2.14and2.16, respec-
tively.

4.3 The EWG Algorithm
In the previous section we illustrated the application of the IOALR(1) over the extant parse
forest to extract weighted GRs. As long as a single lexical head results for each node in the
parse forest, the corresponding IO probability of the node may be used as the IO probability
of the GR output by the node. However, in practice, more than one lexical head may result for
each node in the parse forest. We describe the modifications made to our previous approach in
subsequent sections, and discuss the relationship of our novel EWG algorithm to previous work
in §4.3.3.

As described previously, three processing stages are required to determine weighted GRs
over the parse forest. Several changes are required to the first stage of processing in which we

102 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

fill GR specifications and calculate inside probabilities. We discuss these changes in §4.3.1, and
describe the data structure created during this stage. Thisstructure is traversed during the next
stage of processing, described in §4.3.2, to determine outside probabilities and non-normalised
weighted GRs.

4.3.1 Inside Probability Calculation and GR Instantiation

Inside Data Structure

EWG allows multiple heads and their corresponding probabilities to propagate upwards in the
parse forest. We return a set of data structures for each nodesetNi, where each corresponds to
a possible head for the node set. For now, we consider this data structure (Sh

Ni
) to hold simply

the head and corresponding inside probability. Thus, as before we pass up a tuple that consists
of the node’s head and inside probability. Although now morethan one tuple is possible.

Multiple Heads in a Node Set

We first consider the case where each node has a single filled GRspecification, and a filled GR
specification in a packed node defines a different lexical head to that of the representative node.
In this case, we allowmultiple headsto be passed up by the node set. Hence, the summation
over nodes inNi in Equation4.10needs to beconditionedon the possible heads of a node, where
e(Ni,h) is the inside probability of each headh for node setN. That is we apply Equation4.14:

e(Ni ,h) = ∑
nc∈Ni ,H(nc)=h

e(nc) (4.15)

We create a data structureSh
Ni

=< h,e(Ni,h) > for each headh for the node setNi. For example,
continuing the altered example in §4.2.3, we determine such a data structure for each head
see+ed VVDandin II , returning forN4 the list:

{Ssee+ed VVD
N4

=< see+ed VVD,−6.6324>,Sin II
N4

=< in II ,−8.66952>}

Here, the inside probability of the headsee+ed VVDis calculated using the inside probability of
n4 andn22. That is, using the nodes whose GR specifications have the head see+ed VVD. For the
headin II , the inside probability is that of the single noden17.

Multiple Filled GR Specifications

We now need to consider multiple heads passed up by each daughter node, resulting inmultiple
filled GR specificationsfor a single node. We create one filled GR specification for each possible
combination of daughters’ heads. As described previously,for the mother nodeS/np vp , we fill
the GR specification<2, (ncsubj 2 1)> with each of the heads forN4. This results in the filled GR
specifications:<see+ed VVD, (ncsubj see+ed VVD I PPIS1)> and<in II, (ncsubj in II I PPIS1)>.

GR Specification Inside Probability

Each possible head for daughter node setsDNl ∈ D(nc) has an associated inside probability,
e(DNl ,h), and we determine the probability of each filled GR specification, sm ∈ G(nc) for a
nodenc, using each daughter’s head probability.

That is, we consider Equation4.9to apply to the lexical head of each daughterhk chosen to
fill the GR specification (in the set of possible lexical headsfor daughter node setl : H(DNl)):

e(nc,sm) = P(a[c]) ∏
hk∈H(DNl),hk∈sm,DNl∈D(nc)

e(DNl ,hk) (4.16)

4.3 The EWG Algorithm 103

Returning to our previous example, we now calculate the inside probabilities of the GR speci-
fications: <see+ed VVD, (ncsubj see+ed VVD I PPIS1)> and<in II, (ncsubj in II I PPIS1)>. These
probabilities are equal to the reduce probability of the node n2 (-0.5391) multiplied by (i)
the inside probability of headI PPIS1 (-0.6763), and (ii) the inside probabilities of the heads
see+ed VVD (-6.6324) andin II (-8.66952), respectively. That is, for the first filled GR spec-
ification, the inside probability is∑(−0.5391− 0.6763− 6.6324) = −7.8478, while for the
second it is∑(−0.5391−0.6763−8.66952) = −9.88492.4.3

The same word can appear as a head for more than one daughter ofa node. This occurs if
competing analyses have daughters with different word spans and, therefore, particular words
can be considered in the span of either daughter. As the grammar permits both pre- and post-
modifiers, it is possible for words in the ‘overlapping’ spanto be passed up as heads for both
daughters. Therefore, semantic heads are not combined unless they are different words.

Head Inside Probability: Grouping GR Specifications

As a node can have multiple filled GR specificationsG(nc), and packed nodes can also contain
multiple filled GR specifications, we alter Equation4.15to:

e(Ni,h) = ∑
nc∈Ni

∑
sm∈G(nc),H(sm)=h

e(nc,sm) (4.17)

Here,e(nc,sm) (the inside probability of filled GR specificationsm for nodenc) is determined
using Equation4.16. Hence, (a) calculation of inside probabilities takes intoaccount multi-
ple semantic heads, and (b) GR specifications are filled usingevery possible combination of
daughters’ heads.

Node Data Structures

For each node setNi , which includes the representative nodeni and any packed nodesnp, we
propagate up the set of data structures{Sh

Ni
} for each possible headh for the node set. At word

nodes, we simply return the word and the shift score of the node as the semantic head and inside
probability, respectively.

{Sh
Ni
} also stores the corresponding set of GR specifications with the headh. That is, we

storeG(Ni ,h) = {sm},∀sm ∈ G(nc),nc ∈ Ni,H(sm) = h. Furthermore, for each filled GR speci-
ficationsm which results for nodenc in the setNi, we store the node’s action probabilityP(a[c])
and inside probability of the GR specificatione(nc,sm).

Sh
Ni

= (h,e(Ni,h),G(Ni,h) = {(sm :< h,{GR} >,P(a[c]),e(nc,sm),{Shk
DNl

}}))

Note that we store the set ofShk
DNl

structures for each daughter’s headhk used to fill a GR
specification.

For example, for the node setN4 in the continued example, we store the filled GR spec-
ifications<see+ed VVD, (ncsubj see+ed VVD I PPIS1)> and<in II, (ncsubj in II I PPIS1)> for each
headsee+ed VVDand in II , respectively. Thus forN4 we return the set:{Ssee+ed NN1

N4
,Sin NN1

N4
},

where these data structures are shown in Figure4.5. Similarly, we return the set forN2:
{Ssee+ed NN1

N2
,Sin NN1

N2
}, which are also shown in Figure4.6.

4.3As previously described, summation of log probabilities isequivalent to the multiplication of these probabil-
ities.

104 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

Ssee+ed NN1
N4

= < see+ed VVD,−6.6324,G(N4,see+ed VVD) >

G(N4,see+ed VVD) ={(< see+ed VVD,

{(dobj see+ed VVD manNN1),(iobj see+ed VVD in II) } >,

P(a[4]) = −0.8728,−7.02172,{Ssee+ed VVD
N5

,Sman NN1
N6

,Sin II
N10

})

(< see+ed VVD,{(dobj see+ed VVD manNN1)} >,

P(a[22]) = −1.1534,−6.86012,{Ssee+ed VVD
N5

,Sman NN1
N23

})}

Sin II
N4

= < in II ,−8.66952,G(N4, in NN1) >

G(N4, in II) ={(< in II ,{(ncmod see+ed VVD in II) } >,

P(a[17]) = 0.0,−8.66952,{Ssee+ed VVD
N18

,Sin II
N19

})}

Figure 4.5: Example EWG data structures forN4.

Ssee+ed NN1
N2

= < see+ed VVD,−7.8478,G(N2,see+ed VVD) >

G(N2,see+ed VVD) ={(< see+ed VVD,{(ncsubj see+ed VVD I PPIS1) } >,

P(a[2]) = −0.5391,−7.8478,{SI PPIS1
N3

,Ssee+ed VVD
N4

})}

Sin NN1
N2

= < in NN1,−9.88492,G(N2, in NN1) >

G(N2, in NN1) ={(< in NN1,{(ncsubj in NN1 I PPIS1) } >,

P(a[2]) = −0.5391,−9.88492,{SI PPIS1
N3

,Sin NN1
N4

})}

Figure 4.6: Example EWG data structures forN2.

Overview

Each node setNi, of nodeni with packed nodesnp, is processed in full as follows:

• Process each of the node’s packed nodesnp (as described forni following) to determine
the packed node’s list of filled GR specifications and corresponding inside probabilities.

• Process the nodeni, with daughtersD(ni):

– Instantiateni ’s GR specifications based on features of daughtersD(ni).

– Process each daughter node set inDNl ∈ D(ni) to determine a list of possible heads
and corresponding inside probabilities for each. That is, we determine the set of
Shk

DNl
structures for each daughter node set.

– Fill the GR specification ofni with each possible combination of daughters’ heads,
creating the setG(ni).

– Calculate the inside probability of each filled GR specification e(ni ,sm), that is, for
eachsm ∈ G(ni) using Equation4.16.

4.3 The EWG Algorithm 105

• Combine the alternative filled GR specifications ofni and of each of the packed nodesnp,
to determine the list of unique semantic headsh and corresponding inside probabilities
e(Ni,h) using Equation4.17.

• CreateSh
Ni

for each uniqueh and return the set of such structures in a list:{Sh
Ni
}

This results in the data structure over the parse forest, that is, over the set of parse forests
with root nodeNr : Sτ = {Sh

Nr
}. This structure is traversed during the next stage of processing,

so that the parse forest itself is only traversed once.

4.3.2 Outside Probability Calculation

GR Specification Outside Probability

After the inside probabilities are computed (bottom-up), the resulting data structureSτ is tra-
versed to compute outside probabilities. This data structure is already split into alternative heads
for each node setNi (Sh

Ni
). Therefore, it is trivial to traverse this structure to determine outside

probabilities. The outside probability ofSh
Ni

is equal to the outside probability of each filled GR
specification data structure stored inSh

Ni
. That is, f (nc,sm) = f (Ni ,h) for each possiblesm filled

for nodenc ∈ Ni, where the head of the GR specificationsm is h.

Daughter Node Outside Probability

We then calculate the outside probability of each daughter node DNl ∈ D(nc), whose head
hk was used to fill the GR specificationsm resulting for nodenc. We consider the outside
probability of the GR specification to be that of the mother node in Equation4.11. Further,
we utilise the inside probability of each daughter nodeDNp for the headhr , a fellow daughter,
which also fills the GR specificationsm. Note that the set of probabilitiese(DNp,hr) for each
k andr is already stored within the data structure withsm. The test we define for this product
(hr ∈ sm) is not required if we apply this equation within the data structures created during the
previous processing stage.

f (DNl ,hk) = ∑
nc

f (nc,sm)P(a[c]) ∏
DNp∈D(nc),DNp 6=DNl ,hr∈sm

e(DNp,hr) (4.18)

For example, forN4 we calculate the outside probability of the headsee+ed VVD, where
f (n2,< see+ed VVD,{(ncsubj see+ed VVD I PPIS1) }>)= 0,P(a[2])=−0.5391 ande(N3, I PPIS1)=
−0.67634.4 as:

f (N4,see+ed NN1) = 0+−0.5391+−0.6763= −1.2154

Considering thatf (n4,sm) = f (N4,see+ed NN1) for GRsm with headsee+ed NN1, we determine
the non-normalised weight of the GRs forn4 {(dobj see+ed VVD manNN1),(iobj see+ed VVD

in II) } as -1.2154 + -7.02172 = -8.23712. Normalising each GR by -7.8438, we find, for
example, the final weight of(iobj see+ed VVD in II) is 0.40428.4.5

4.4The log10 probability of 1 is 0. Again, we use summation to perform multiplication for log probabilities.
4.5Again, these figures differ slightly from weight shown in Figure4.4, due to rounding errors.

106 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

Traversing the New Data Structure

Therefore, once we create the new data structure, outside probabilities for each node are deter-
mined over this structure in the regular fashion, rather than over the parse forest. We simply
equate the outside probability of each head to be that of every corresponding filled GR specifi-
cation data structure.

Overview

In practice, we apply a breadth first search (FIFO queue) overSτ, to minimise multiple process-
ing of shared data structures. We initialise this queue to contain each root node with an outside
probability of 1. We perform a POP operation to determine thenext paired list from the queue.
This pair consists of the data structure and corresponding outside probability:{Sh

Ni
, f (Ni,h)}.

We process each pair as follows:

• Process each of the GR specifications in(Sh
Ni

). For each filled GR specificationsm, where
sm ∈ G(Ni ,h) was created for nodenc ∈ Ni:

– Let f (nc,sm) = f (Ni ,h) and calculate the IO probability ofsm using:

IO(nc,sm) = e(nc,sm) f (nc,sm) (4.19)

– Add IO(nc,sm) to the (non-normalised) probability for the GR in the filled GR spec-
ificationsm.

– Process the data structure for each daughter headhk chosen to fillsm from the daugh-
ter node setDNl ∈ D(nc). That is, process each of the daughter data structures (that
each specify a single head) used to fill the slots in the GR specificationsm. For each
Shk

DNl
stored forsm:

∗ Calculate the outside probabilityf (DNl ,hk) of the headhk from daughter node
setDNl using the reduce probability of the nodenc which createdsm: P(a[c]),
which is also stored in the data structure. That is, we use Equation4.18without
the summation overnc; the set of mother nodes for whichDNl is a daughter.

∗ Queue the data structureShk
DNl

and corresponding outside probabilityf (DNl ,hk).

We calculate the outside probabilities (top-down) and, when we find filled GR specifica-
tions, we incrementally store the non-normalised (IO) weight of each GR in a hash table, as
described previously. Each increment represents the situation where the node is a daughter of
another in the parse forest. That is, performs the summationover mother nodesnc in Equa-
tion 4.18. Thus, if an outside probability is determined for a data structure already queued,
then the probability is appended to the list of outside probabilities for the queued item and Prior
to calculating Equation4.19 we perform a summation over each outside probability, where
f (nc,sm) = ∑ f (Ni ,h).

Traversing the Parse Forest

We could instead store the inside probabilities and the set of filled GR specifications within
each node of the parse forest, rather than create theSdata structures. In this case, we calculate
outside probabilitiesconditionedon which lexical head (from each daughter) is used to fill each
GR specification. Here, we pass down the outside probabilityf (Ni ,h) to each nodenc ∈ Ni and
then to each of the GR specifications stored innc if and only if the head of the GR specification

4.4 EWG Performance 107

is h. This test is not required when processing overSτ as GR specifications are already grouped
by head value. Equation4.18 is already shown with the condition that we include the inside
probabilitye(DNp,hr) for daughterp if and only if hr filled a slot insm.

4.3.3 Related Work
In the previous sections we illustrated that a dynamic programming approach over the parse
forest can be used to calculate weighted GR outputonly if a single head is determined for each
node in the parse forest. Further we illustrated how to extend this application to successfully
associatemultipleheads, and corresponding inside and outside probabilities, with each node in
the parse forest using our novel EWG algorithm.

The approach we take is similar to that inSchmid & Rooth(2001), where ‘expected gov-
ernors’ (similar to our filled GR specifications) are determined for each node. However they
ensure that competing nodes (i.e. each node in a node set) in the parse forest have thesame
head. Initially, they create a packed parse forest and during a second pass the parse forest
nodes are split if multiple heads occur. A single iteration of the IOA is applied over this split
PCFG parse forest data structure, as described for LR parse forests using the IOALR(1) in §4.2.2.
However, as they utilise a PCFG grammar, rules specify how to determine dependency relations
given tuples consisting of theNT categories of mother and daughters of CFG rules. In contrast,
within the extant parser such rules are encoded in finer grained unification-based rules within
the grammar itself. Moreover, these are optionally instantiated on the features of the rules’
daughters.

Clark & Curran (2004b) apply the dynamic programming approach ofMiyao & Tsujii
(2002) to determine weighted dependency relations (DR) within their CCG parser. They al-
ter their packing algorithm so that nodes in the packed charteffectively have the same semantic
head. That is, their definition for feature structure equivalence is extended to include the head
of each node as well.

These previous approaches determined dependency relations and corresponding weights
directly from the parse forest, using dynamic programming approaches similar to the IOALR(1)
we describe. That is, they ensure that a single head is specified for each node, which results in a
less compact parse forest. As a result, they require additional processing overheads to create the
parse forest, and moreover, to determine inside and outsideprobabilities from this less compact
parse forest.

In order to apply the EWG algorithm, we also modify the packingalgorithm to be based on
feature structure equality rather than subsumption. This results in a less compact parse forest,
though only to the extent originally found in the parse forests of Schmid & Rooth(2001) and
Clark & Curran(2004b). If we extend the definition of node equivalence to include the node’s
head (of a filled GR specification), or split the nodes in a postprocessing stage as the previous
approaches have, this increases the size of the parse forestfurther. Therefore, we consider our
approach as an efficient alternative to those in previous work, given that many existing parsers
already utilise equality-based packing.

4.4 EWG Performance
This section presents experimental results showing (a) improved efficiency and (b) increased
upper bounds of precision and recall achieved using EWG. In the following section, §4.5, we
show (c) increased accuracy achieved by a parse selection algorithm that would otherwise be
too inefficient to consider. We utilise the same data (DepBank) and machine hardware described

108 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

in 3.5.1.

4.4.1 Comparing Packing Schemes
Figures4.7and4.8compare the efficiency of EWG to the EQ-PACKING and SUB-PACKING
methods in terms of CPU time and memory, respectively.4.6 Note that EWG applies equality-
based packing to ensure only derivations licensed by the grammar are considered.

As the maximum number of (n-best) derivations increases, EQ-PACKING requires more
time and memory than SUB-PACKING. However, if we compare thesesystems with an n-
best value of 1, the difference in time and memory is negligible. This suggests that it is the
unpacking stage which is responsible for the decreased throughput. For EWG we are forced to
use equality-based packing. Although these results suggest that this condition does not affect
the algorithm’s throughput.

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Maximum number of parses (n−best)

SUB−PACKING
EQ−PACKING

EWG

Figure 4.7: Comparison of total CPU time required by the different versions of the parsing
system for calculation of weighted GRs over the n-best derivations.

4.4.2 Efficiency of EWG
Both figures illustrate that the time and memory required by EWGare static, because the algo-
rithm considers all derivations represented in the parse forest regardless of the value of n-best
specified. Therefore, the ‘cross-over points’ are of particular interest: at which n-best value is
EWG’s efficiency the same as that of the current system’s? Thisvalue is approximately 580 and
100 for time and memory, respectively (comparing EWG to EQ-PACKING). That is, the cur-
rent system takes the same amount of time to calculate weighted GRs over approximately 580
n-best parses as the EWG algorithm takes to calculate weighted GRs directly from the parse
forest (over all parses). Similarly, the memory requirements are approximately equal for the
current system utilising an n-best list of size 100. Consequently, as the size of the n-best list un-
packed (for the existing system’s calculation of weighted GRs) increases over these cross-over

4.6CPU time and memory usage are as reported using thetime function in Allegro Common Lisp 7.0 and do
not include system start-up overheads or the time required for garbage collection.

images/plot-time.eps

4.4 EWG Performance 109

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

M
em

or
y

(G
B

)

Maximum number of parses (n−best)

SUB−PACKING
EQ−PACKING

EWG

Figure 4.8: Comparison of total memory required by the different versions of the system for
calculation of weighted GRs over the n-best derivations.

points, the EWG algorithm becomes more efficient in comparison to the existing system (for
the given dataset).

Given that there are on average around 9K derivations per sentence for DepBank, these
results indicate a substantial improvement in both efficiency and accuracy for weighted GR
calculation. However, the median number of derivations persentence is around 50, suggesting
that large derivation numbers for a small subset of the test suite are skewing the arithmetic
mean. Therefore, the complexity of this subset significantly decreases throughput, and EWG
improves efficiency for these sentences more so than for others.

4.4.3 Data Analysis

The general relationship between sentence length and number of derivations suggests that the
EWG is more beneficial for longer sentences. Figure4.9 shows the distribution of derivation
ambiguity over sentence length. The figure illustrates thatthe number of derivations can not be
reliably predicted from sentence length, though the general relationship holds. Considering the
cross-over points for time and memory, the number of sentences with more than 580 and 100
derivations were 216 and 276, respectively. These points are shown using dotted lines in the
figure. Thus, the EWG outperforms the current algorithm for around half of the sentences in the
data set. The relative gain achieved overall for EWG reflects that a subset of sentences signifi-
cantly decreases throughput. Hence, the EWG is expected to bemore efficient than the current
method for determining weighted GRs if longer sentences are present in the data set and if the
size of the n-best list is set to a value greater than the cross-over point(s). Table1.1 illustrates
the average and median number of parses for a number of different data sets.4.7 Consequently,
EWG is expected to outperform the current method over all corpora except the simple GDT.

4.7We employ a version of the tsg15 grammar in these experimentsthat is less ambiguous than the one released
with version 2 of RASP (applied to determine the statistics in Table1.1). As a result, EWG is expected to provide
even further performance gains over the current method for determining weighted GRs.

images/plot-mem.eps

110 4. EFFICIENT EXTRACTION OF WEIGHTED GRS

250

500

750

> 1000

 0 10 20 30 40 50 60 70

N
um

be
r

of
 P

ar
se

s

Sentence Length

Memory Cross−Over

250

500

750

> 1000

 0 10 20 30 40 50 60 70

N
um

be
r

of
 P

ar
se

s

Sentence Length

Memory Cross−Over
Time Cross−Over

Figure 4.9: Scatter graph of parse ambiguity to sentence length (one point per sentence). The
cross-over points are illustrated for time and memory. The maximum number of derivations
shown is 1K, points plotted at 1K correspond to sentences with equal to or greater than 1K
derivations.

4.4.4 Accuracy of EWG
Upper bounds on precision and recall are determined using thresholds over the weighted GRs of
1 and 0, respectively.4.8 Upper bounds of precision and recall provided by EWG are 79.57and
82.02, respectively. This results in an F1 upper bound of 81.22%. However, considering the top
100 derivations only, we achieve upper bounds on precision and recall of 78.77% and 81.18%
respectively, resulting in an F1 upper bound of 79.96%. Therefore, using EWG, we achieve
a relative increase of 6.29% for the F1 upper bound on the task. Similarly,Carroll & Briscoe
(2002) demonstrate (on an earlier, different test suite) that increasing the number of derivations
(n-best) from 100 to 1K increases precision of weighted GR sets from 89.59% to 90.24%, a
relative error reduction (RER) of 6.8%. Therefore, EWG achieves a substantial improvement in
both efficiency and accuracy for weighted GR calculation. The approach provides an increase
in the upper bounds of precision and recall, that is, it provides an increased F1 upper bound on
the task.

4.5 Application to Parse Selection
The previous section illustrated the increased level of efficiency achieved by EWG compared
to the extant method for calculating weighted GRs. This section describes a parse selection
algorithm using EWG that would otherwise be too inefficient toapply.

We previously described the work ofClark & Curran(2004b), whereby weighted depen-
dency relations (DRs) are determined directly from a packed chart. They also describe a parse
selection algorithm which maximises the expected recall ofdependencies. Their algorithm se-

4.8In these experiments we use a threshold of 1−ε (with ε = 0.0001) instead of a threshold of 1.0, to reduce the
influence of very low ranked derivations. Note that these upper bounds are at least as high as those achieved by
selecting the best possible single n-best GR set.

images/plot-dist.eps

4.6 Discussion 111

lects the DR set with the highest average DR score based on theweights from the weighted
DRs.

We apply this parse selection algorithm in two ways. We (a) rerank the n-best GR sets based
on the average weight of GRs and select the highest ranking set, or (b) apply a simple variant
of the Viterbi algorithm to select the GR set with the highestaverage weighted score over the
data structure built during EWG. The latter approach, based on the parse selection algorithm
in Clark & Curran(2004b), takes into accountall possible derivationsand effectively reranks
these derivations using weights output by EWG. These approaches are referred to asRERANK
(over the top 1K derivations) andBEST-AVG, respectively. Table4.3illustrates the performance
of the extant parsing model and of these approaches over DepBank.

Micro-average Macro-average
Model Prec Rec F1 Prec Rec F1
Extant 71.24 71.24 71.24 58.42 59.62 59.01
RERANK 71.72 70.94 71.33 59.47 60.22 59.84
BEST-AVG 71.59 71.49 71.54 59.53 60.63 60.08

Table 4.3: Performance of the two parse selection algorithms.

The GR set corresponding to the system’s top parse achieves an F1 of 71.24%. By applying
BEST-AVG and RERANK parse selection, we achieve a relative error reduction (compared to
the upper bound of 81.22%) of 3.01% and 0.90%, respectively.Therefore, BEST-AVG achieves
higher accuracy and is more efficient than RERANK. This suggests that BEST-AVG is able to
select derivations that are ranked in a position lower than 1K. Thus, as expected, it is advan-
tageous to consider all derivations during reranking tasks. It is also worth noting that these
parse selection schemes are able to output aconsistentset of GRs, unlike the high precision GR
output defined byCarroll & Briscoe(2002).

4.6 Discussion
We described a dynamic programming approach based on the IOAfor producing weighted GR
output directly from the parse forest of the extant unification-based LR parser. Our approach
is novel in that we allow any node in the parse forest to havemultiple heads. This removes
the additional processing overheads, introduced by eithersplitting nodes in the parse forest
(and duplicating the associated data structures) or from building a less compact parse forest,
as described in previous approaches. In an evaluation on a standard test suite (DepBank), the
approach achieves substantial improvements in accuracy and parser throughput over the extant
implementation. EWG is available for use within the second release of the RASP parser, as an
alternative method to calculate the weighted GR output format.

We intend to extend this work to develop more sophisticated parse selection schemes based
on weighted GR output. Reranking the n-best GR sets results ina consistent but not necessarily
a complete set of GRs. Given the (increased) upper bound on precision for the high precision
GR output, we hope to boost the corresponding recall measureby determining a consistent
and complete set of GRs directly from the weighted GR set. We continue this discussion in
Chapter6.

Chapter 5

Confidence-based Training

We discussed statistical approaches to parsing in §1.1.3, where we defined training a parser as
a supervisedlearning task. The current training method for RASP, described in §5.3, utilises
such a supervised training framework. It employs around 5K of fully-annotated and system
compatible derivations from a subset of Susanne to derive the action counts, thus corresponding
probabilities, of the LR model. However, such treebanks arelimited in their use and coverage,
and furthermore, are expensive to develop and maintain. These limitations, discussed in detail
in §5.1, have prompted the development ofunsupervisedandsemisupervisedstatistical training
approaches that illustrate promising results.

In this chapter we focus on semisupervised training approaches, reviewed in §5.2, and de-
scribe novelconfidence-basedtraining methods, and their relationship to previous work,in §5.4.
We contrast the performance of the extant parser trained over Susanne, with that of the same
parser trained over unannotated or unlabelled partially-bracketed sentences from this treebank
and from the WSJ. That is, we contrast the performance of the current, fully supervised, training
method to that of the unsupervised or semisupervised confidence-based methods in §5.5.

We also compare the performance of these methods against theIOALR, the IOA extended
to apply over our extant LR parser as described in §4.1.3, and further, to apply over unlabelled
partially-bracketed data followingPereira & Schabes(1992). We consider the IOALR a variant
of Expectation-Maximisation (EM), followingPrescher(2001). Hence, in the experimentation
described herein, we refer to the IOALR training methods applied as EM.

The semisupervised variants of the confidence-based methods we describe outperform both
EM (when both are constrained over the same data set) and the current fully supervised train-
ing method, achieving statistically significant improvements over the extant parser. Though we
would expect a supervised method to outperform a semisupervised one over thesamedata set,
these results suggest that a semisupervised method can outperform a supervised one given suf-
ficient training data. As semisupervised data is simpler to extract from existing, though incom-
patible, corpora and also simpler to develop, these methodsare preferable to fully supervised
methods and aid in adapting the parser to new domains.

Although our training methods are considered semisupervised, they utilise partially-annotated
data automatically extracted from existing corpora. As a result, they require no manual effort
on behalf of the grammar writer. These methods have been adopted by the extant parser, as they
provide significant increases in accuracy, and furthermore, aid in grammar development. Much
of the work we describe in this chapter appears inWatsonet al. (2007).

112

5.1 Motivation 113

5.1 Motivation
Currently, many statistical parsers require extensive and detailed treebanks, as many of their lex-
ical and structural parameters are estimated in a fully-supervised fashion from treebank deriva-
tions.Collins(1999) is a detailed exposition of one such ongoing line of research, which utilises
the standard training sections of the WSJ. However, there aredisadvantages to this approach
which we discuss in this section.

Manual Effort

Firstly, treebanks are expensive to create manually. Further, given a manually written grammar,
the grammar writer must alsomaintain these treebanks. For example, §1.3.1 described the
annotated (supervised) training corpus of the extant parser that incorporates a manually written
feature-based unification grammar (see §2.6.1). Grammar updates require equivalent (manual)
updates to the annotation in this training corpus, where interactive manual disambiguation takes
an average of ten minutes per sentence.

Usability

Secondly, the richer the annotation required, the harder itis to adapt the treebank to train parsers
which make different assumptions about the structure of syntactic analyses. For example,Hock-
enmaier(2003) trains a CCG statistical parser on the WSJ, but first maps the treebank to CCG
derivations semi-automatically.

Coverage

Thirdly, many (lexical) parameter estimates do not generalise well between domains as dis-
cussed in §1.1.3. For instance,Gildea(2001) reports that WSJ derived bilexical parameters in
Collins (1999) Model 1 parser contribute about 1% to parse selection accuracy when test data
is in the same domain. In contrast, they yield no improvementfor test data selected from the
Brown Corpus (of which Susanne is a subset). However, trainingover both corpora slightly
increases performance when testing on either corpus.

Therefore, the use of in-domain training data improves parsing accuracy. In-domain data
can be included with out-of-domain data in a single trainingcorpus. Alternatively, the parser
may beadaptedto the new domain by retraining the parser over a separate corpus, using the
existing parser as theinitial model. Here, even small levels of in-domain data are shown to
improve parser accuracy. Note that we can frame the problem of parser tuningor domain
adaptationas an unsupervised or (semi)supervised task.

For example,Tadayoshiet al. (2005) adapt a statistical parser trained on the WSJ to the
biomedical domain by retraining on the Genia Corpus, augmented with manually corrected
derivations in the same format. They are able to tune their parser with around 5K of in-domain
annotated sentences (a small set compared to 40K of WSJ sentences that train the parser ini-
tially).

Discussion

In order to make statistical parsing more viable for a range of applications, we need to make
more effective and flexible use of existing training data andminimise the cost of annotation
for new data created to tune a system to a new domain. Therefore, the focus of this work is to
developsemisupervisedtraining approaches that utilise partially-annotated data extracted from
existing, though incompatible, treebanks. Further, thesemethods can apply over unsupervised
in-domain data, to adapt the parser to a new domain if required.

114 5. CONFIDENCE-BASED TRAINING

5.2 Research Background
Training methods can be defined based on the level of supervised annotation. That is the level
of manual effort required, to provide training data prior toor during the training process. If
we utilise fully annotated training data we consider the approach to besupervised. The limita-
tions of these approaches have prompted the development of unsupervised and semisupervised
methods.

Although unsupervised methods have proven relatively unsuccessful, semisupervised meth-
ods have illustrated promising results. We provide examples of several relatively successful
unsupervised training methods in §5.2.1, and review the popular semisupervised approaches
in §5.2.2.

5.2.1 Unsupervised Training

Training approaches that require no (manual) annotation are consideredunsupervised. These
methods are generally based on the IOA, which we described inthe previous chapter, and have
been largely unsuccessful to date. Although an advantage ofsuch approaches is that raw data
in any domain is readily available.

In recent years, inferring the grammar and statistical model from unlabelled data has pro-
vided some encouraging results. For example,Klein & Manning(2002) report promising results
for unsupervised grammar induction over the ATIS Corpus (Marcuset al., 1993) and section 10
of the WSJ. The unlabelledF1 of 71% achieved for the WSJ section is only around 10% lower
than the performance of a supervised PCFG trained over the same section.Klein & Manning
(2004) extend this work, and combine the constituency based modelwith a dependency model,
which achieves a further increase in performance to 77.6%.

Similarly, Bod (2006) illustrates that an unsupervised ‘DOP’ parser trained using EM re-
lated to the IOA (‘UML-DOP’) outperforms a supervised PCFG when both are trained over the
WSJ. However the underlying models differ, and we still expect (semi)supervised training to
outperform unsupervised training given thesamemodel and data set.

5.2.2 Semisupervised Training

Given limited (in-domain) training data or manual effort available, two general types of semisu-
pervised training methods are pursued in research, either increase thequantityand/orquality
of training data while minimising the corresponding required manual effort. Approaches can
consist of a mixture of (i) using an existing, though incompatible, treebank’s annotation, (ii)
active learning, and (iii) bootstrappingmethods. We describe each of these approaches (and
their variants), and research which focuses on these methods, in this section. These approaches
utilise either partially annotated data or a mixture of bothsupervised and unsupervised data.

Mapping Treebanks

Given an existing corpus, with different representationalassumptions, we can semi-automatically
map the corpus to a representation compatible with the parser’s grammar. For example,Hock-
enmaier(2003) trains a CCG statistical parser on the WSJ, but first maps the treebank to CCG
derivations semi-automatically, creating theCCGBank. Similarly,Miyao & Tsujii (2005) semi-
automatically map the WSJ to a head-driven phrase structure grammar (HPSG) treebank. The
resulting treebanks are fully annotated, facilitating supervised training. However, the semi-
automatic mapping requires less manual effort compared to the creation of these corpora from

5.2 Research Background 115

scratch, so we consider the underlying method to be semisupervised. These methods are more
labour intensive than those that follow.

Partial Treebank Annotation

Alternatively we can utilise only a subset of the annotationthat is potentially more compatible
with the parser’s grammar.Pereira & Schabes(1992) adapt the IOA to apply over semisuper-
vised data, that is, over unlabelled bracketing, that they extract from the WSJ. They constrain
the training data (derivations) they consider within the IOA to those consistent with the con-
stituent boundaries defined by the bracketing. One advantage of this approach is that, although
less information is derived from the treebank, it generalises better to parsers which make differ-
ent representational assumptions. Furthermore it is easier, as Pereira and Schabes did, to map
unlabelled bracketing to a format more consistent with the target grammar. Another is that the
cost of annotation with unlabelled brackets is lower than that of developing a representationally
richer treebank.

More recently,Riezleret al. (2002) illustrate a method to train a maximum entropy parsing
model over semi-supervised data. They utilise all derivations in the model consistent with the
labelled bracketing of the WSJ. They first extract a partial annotation from the WSJ treebank
that consists of the PoS tags and labelled brackets that are relevant for determining their GRs.
In order to utilise this annotation, they map from WSJ PoS tagsto the terminals of their gram-
mar. Parsing over these PoS tags results in a number of possible derivations, as the extracted
annotation is not sufficient to disambiguate the finer grained LFG derivations. They modify the
standard log-linear objective function so that they include all such consistent derivations (nor-
malising by the set of all derivations). In contrast to the approach ofPereira & Schabes(1992),
this approach incorporates all derivations licensed by thegrammar during normalisation, and
not only those consistent with the partial annotation.

Clark & Curran(2004b), following Riezleret al.(2002), train their maximum entropy model
for their CCG parser using all derivations consistent with thegold standard derivations in the
CCGBank created byHockenmaier(2003). However, inClark & Curran(2006), they utilise
partially annotated data only, where the training data consists only of supertags. They extend
the work ofClark & Curran(2004b), and redefine the consistency of a derivation in terms of
the corresponding dependency relations. They consider theset of dependencies that occur in
at leastk% of all derivations (licensed by the set of supertags in the training data) to be a gold
standard dependency set. This set of dependencies is analogous to the set of high precision
weighted GRs produced by RASP created using a threshold ofk/100. This approach achieves
impressive performance; only 1.2% worse on section 23 of theWSJ than the model trained on
full annotations.

Hwa(1999) applies the IOA to (partially) labelled data followingPereira & Schabes(1992).
However these experiments focus on the level of bracketing and constitute type (labels of the
brackets), over the ATIS and WSJ corpora, from which the grammar may be reliably learnt. This
experimentation illustrates that higher level constituents, that constitute only a small proportion
of the bracketing, are the most informative. In fact, to train the underlying grammar, the model
requires only 25% (randomly selected) of the bracketing to achieve over 90% accuracy for ATIS.
In contrast, if the model trains over all brackets, it achieves around 93% accuracy. Similarly, on
the WSJ, the model achieves within 3% of the fully supervised performance when it trains over
25% of (randomly selected) brackets. Results are slightly lower if Hwa infers the grammar as
well as the statistical model.

116 5. CONFIDENCE-BASED TRAINING

Active Learning

Active learning(AL) is a framework foractivelyselecting samples that should be manually
annotated. The primary goal of AL is to reduce the number of annotated training sentences
needed to achieve the same level of parsing accuracy. A popular method for AL isselective
sampling(Cohnet al., 1994), whereby the AL system selects the next set of unannotated sam-
ples (from a large unannotated corpus) to be annotated. For natural language parsing, we wish
to select the set of sentences which is most informative. Approaches favour eithercertainty-or
committee-based methods.

For certainty based methods, an initial (optionally supervised) parser selects the set of unan-
notated sentences with the lowest confidence, e.g. derivation probability. For committee-based
approaches, a set of parsers is used to annotate the unannotated sentences. The set of sentences
that led to the highest number of parser disagreements is selected.

A number of different certainty- and committee-based approaches are explored in the liter-
ature, which we do not cover here. Instead, we refer readers to Osborne & Baldridge(2004),
who provide references to research in this area and compare the performance of a number of
these approaches. They illustrate that, in general, certainty-based sampling slightly outperforms
committee-based sampling. Furthermore, they show that both methods clearly outperform se-
lection methods that apply random sampling, sentence length and overall structural ambiguity
(number of derivations).

Bootstrapping

Bootstrapping significantly increases the quantity of training data, where additional training
data isautomaticallyannotated using an initial statistical model. These methods combine a
(small)seedset of manually labelled data, with a (large) set of unlabelledbootstrapdata which
is automatically labelled. If the seed and bootstrap data are from different domains, then we
consider this adomain adaptationmethod. If the seed data is also unannotated, then the ap-
proach is unsupervised.

These methods generally require manual effort to create theinitial seed data only, unless
an existing treebank is utilised to train the initial model.In either case, such methods are
considered semisupervised due to the annotation provided in the seed data set. There are a
number of variants to the general bootstrapping framework.For example, the way in which the
data sets are combined may differ.

Self-training

In self-trainingapproaches, we train an initial parsing model over the seed data. This parser then
labels the bootstrap data set, that is, the parser labels itsown training data.Charniak(1997) is
the first to apply this method, though he did not use this terminology. In general, the top-ranked
derivation for each sentence in the bootstrap data is added to the training data as though the
parser’s annotation is correct. That is, counts are simply merged between the seed and labelled
bootstrap data sets.

Initial research in these methods illustrates that either modest performance gains, or sig-
nificant decreases occur, in parsing and PoS tagging models.Charniak(1997) reports minor
gains if he retrains a parser over 30 million words of unsupervised WSJ text. That is, he uses
an initial ‘basic’ model to annotate these sentences. Similarly, Clark et al. (2003) illustrate that
self-training with PoS taggers results in unimpressive performance, regardless of the size of the
initial seed data set.

5.2 Research Background 117

This framework incorporates any number of iterations. If weuse more than one iteration,
then we repeatedly update the initial model by labelling theentire bootstrap data or only the
next portion of this data. Furthermore, we can set the size ofeach portion depending on the
number of iterations to perform.Steedmanet al. (2003b) illustrate modest improvement and a
steady decline in performance when performing self-training for each of two different parsers,
respectively. Each parser is initialised with the first 500 sentences from the standard WSJ train-
ing sections. Using self-training iterations, each iteration incorporates 30 sentences of which 20
of those with the highest top-derivation probabilities areincluded. Therefore, this self-training
method utilises some selective sampling within each iteration.

Recently, successful instances of self-training have been published in the literature.Bac-
chianiet al.(2006) report the first successful self-training experiments. Out-of-domain labelled
seed data (from the Brown Corpus) is used to train the initial model which is then applied over
the in-domain, though unannotated, WSJ bootstrap data (representing an unsupervised domain
adaptation task). A single training iteration is performedover the entire bootstrap data set. The
set of (up to 20) candidate derivations for each sentence, each weighted by their normalised
derivation probability, is included during training. Thisresults in weighting features of the
model (corresponding to each derivation) using weights analogous to the expected frequency
counts for the IOA, as described previously in §4.1.2. They simply combine the counts from
each corpus, though set the contribution of the in-domain bootstrap data to be 5 times that of
the out-of-domain seed data (this weight was optimised on supervised data). The performance
of the self-trained parser increases from 75.70% to 80.55%f -score over section 23 of the WSJ,
as the number of WSJ sentences in the bootstrap data increasesfrom 0 to 200K. Furthermore,
this work shows that during supervised domain adaptation, simply merging counts from each
corpus outperforms model interpolation. That is, it outperforms interpolation between different
parsing models where each model is trained over a separate corpus. Consequently, they utilised
count-merging during the unsupervised domain adaptation.

Similarly, McClosky et al. (2006) report successful self-training experiments over a dis-
criminative reranking parser. Here, an initial generativeparser outputs the 50-best list, which
is reranked by a discriminative maximum entropy model. Following Bacchianiet al. (2006),
counts from each domain are simply merged where in-domain (WSJ) data is weighted 5 times
higher. However, they utilise only the top-ranked parse output by either the generative or dis-
criminative parsing system during self-training and consider these top-derivations to be ‘cor-
rect’. The (baseline) reranking system achieves 91.3%f -score when trained and tested over the
standard WSJ sections. They illustrate that self-training using the generative model alone, i.e.
the generative parser’s top-parse, results in a decline in performance. However, incorporating
the top-ranked derivations output by the full reranking model improves parser performance to
92.1%, currently the best reported PARSEVAL accuracy for theWSJ.

Co-training

Co-trainingis another variant of bootstrapping in which parsers annotateeach other’sbootstrap
training data iteratively. Generally, co-training outperforms self-training methods, even when
one parser initially achieves much lower accuracy than another. This method requires that the
annotation from both parsers are (somewhat) compatible.

Co-training has been used in a number of natural language processing applications including
word-sense disambiguation, web-page classification and named-entity identification.Sarkar
(2001) performs the first application of co-training to parsing, using two components of a single

118 5. CONFIDENCE-BASED TRAINING

lexicalised tree adjoining grammar (LTAG) parser; the supertagger and the parser. A PoS tag
dictionary is constructed over the labeled and unlabeled training data which is used by both the
supertagger and the parser. Initial models for the supertagger and parser are created by training
over a small initial data set of around 10K (seed) sentences from sections 2-6 of the WSJ.
Sarkar co-trains over around 30K unannotated (bootstrap) sentences extracted from sections 7-
21, and evaluates the models over the de facto WSJ section 23. The co-trained parsing model
achieves 80.02% and 79.64% precision and recall, respectively, while the initial parsing model
(trained over the seed data) achieves only 72.23% and 69.13%, respectively. Therefore, co-
training is able to significantly improve the initial model’s performance. These results are not
as significant as those in previous applications, though parsing is arguably harder than those
tasks which involve a smaller and simpler set of labels and relatively small parameter spaces.

Steedmanet al. (2003b) extend the work ofSarkar(2001) by co-training usingseparate
parsers: the (same) LTAG parser and Model 2 ofCollins (1999). They effectively combine the
co-training framework with the AL selective sampling method, selecting 20 sentences of 30
during each iteration as previously described. Their results show that co-training outperforms
self-training significantly, and is most beneficial when thelabelled seed data sets are smaller
(500 compared to 1K sentences). Though they note that the performance of co-training from
500 seed sentences and an additional 2K of co-labelled bootstrap sentences, never achieves the
accuracy of the initial model trained over 1K seed sentences(76.9% compared to 78.6%).

Furthermore, performance achieved by co-training over theBrown Corpus is around 2%
lower (76.8% vs. 79.0%) than that achieved over the WSJ. This performance drop is in agree-
ment to that noted byGildea (2001). However if they seed the data with an additional 100
sentences from the WSJ, then the resulting co-trained performance increases to 78.2%, close
to that achieved by seeding the model with in-domain data only. Therefore, these experiments
help to illustrate that limited in-domain data can help parser accuracy.Steedmanet al. (2003a)
continue fromSteedmanet al. (2003b), and investigate alternative scoring functions within the
selective sampling methods in each co-training iteration.

Corrected Co-training

The training frameworks discussed thus far can be combined to produce a wide-range of train-
ing architectures. For instance,Pierce & Cardie(2001) propose a semisupervised variant of
co-training, whichSteedmanet al. (2003a) apply, termedcorrected co-training. This model
attempts to combine the strengths of co-training and AL. During each co-training iteration, se-
lected samples are manually verified and corrected if required.Steedmanet al.(2003a) compare
the performance of co-training and corrected co-training,where they apply the same sampling
method in both cases. That is selective sampling determinesthe next set of bootstrap sentences
to annotate, and these sentences are either annotated manually or automatically by the (other)
parser. As expected, corrected co-training significantly reduces the number of bootstrap training
sentences required to achieve the same level of parser accuracy. Though corrected co-training
requires additional manual effort.

5.3 Extant Parser Training and Resources
In this section we review the available training corpora in §5.3.1, and extant parser training in
§5.3.2, which we described in full within previous chapters. We definederivation consistency
over a fully supervised corpus as applied by the extant parser, and over a semisupervised (unla-
belled partially-bracketed) corpus as described byPereira & Schabes(1992). Finally, we review

5.3 Extant Parser Training and Resources 119

the evaluation methods in §5.3.3, and following, describe the baseline system in this work and
its performance in §5.3.4.

5.3.1 Corpora

Corpus Format

In §1.3.1, we described a treebankT which consists of a set of training instances. Each training
instancet is a pair(s,M), wheres is the automatically preprocessed text (tokenised and labelled
with PoS tags (see §3.2.2) and M is either a fully annotated derivation,A, or an unlabelled
bracketingU . We extend this definition to include unsupervised corpora in whichM is null.

In this section we define the set of training corpora, and following, derivation consistency for
each treebank type where eitherA orU is paired with each sentence in a corpus. The bracketing
in U may be partial in the sense that it may be consistent with morethan one derivation produced
by a given parser. For unsupervised training, all derivations are considered ‘consistent’ given
that no annotation is provided. Note that the sentenceswhich is parsed during training, consists
entirely of automatically preprocessed text using the RASP pipeline in all corpora considered.
That is, we do not utilise the PoS tags in either Susanne or theWSJ.

Training Corpora

We previously described fully annotated and bracketed corpora for Susanne and the WSJ in
§1.3.1. We utilise these corpora in the experimentation describedin this chapter, and also
the combination of both bracketed Susanne and WSJ corpora. Weuse the sentence-delimited
preprocessed text from Susanne during unsupervised training.

We refer to the fully annotated corpus created from a subset of Susanne, the extant training
data, asB, as this represents thebaselinetraining corpus.B consists of 4801 training instances
in the format(s,A).

The bracketed corpora extracted from Susanne and the WSJ are referred to asS andW.
These corpora consist of 7014 and 38,329 training instances, respectively, in the format(s,U).
The concatenated file containing both Susanne and WSJ bracketed training instances is referred
to asSW. We refer to the unsupervised variant of theScorpus asSu. However, in practice, we
process theSfile and ignore the bracketing paired with each sentences.

Annotated Derivation Consistency

Givent = (s,A), there exists a single derivation in the parse forest that iscompatible (correct).
In this case, equality between the derivation tree and the treebank annotationA identifies the
single correct (consistent) derivation.

Bracketed Derivation Consistency

FollowingPereira & Schabes(1992), givent = (s,U), a node’s span in the parse forest isvalid if
it does not overlap with any span defined inU . A derivation is consideredconsistentif the span
of every node in the derivation is valid inU . That is, if no crossing brackets are present in the
derivation. Each valid node in the parse forest is considered consistent if one or more possible
daughter node sets are also consistent and if it is a member ofa consistent derivation.5.1

5.1When we walk the parse forest during the EM training methods wecollect consistent node’s actions and the
corresponding IO probability. We walk the parse forest along valid paths, so that we only consider the set of nodes
in the parse forest that appear in one or more consistent derivations.

120 5. CONFIDENCE-BASED TRAINING

For example, Figure1.3illustrates an example bracketed lemmatised training instance from
Susanne. The (single) derivation output by the extant parser for this sentence is shown in Fig-
ure5.1. The corresponding constituent boundaries:(((his (petition)) (charge (((mental)) (cru-
elty))))) are consistent with the unlabelled-bracketing extracted from Susanne shown in Fig-
ure1.3: ((his petition) charge (mental cruelty).

(T/txt-sc1/-+
(S/np_vp (NP/det_n1 his_APP$ (N1/n petition_NN1))

(V1/v_n1 charge_VVN
(N1/ap_n1/- (AP/a1 (A1/a mental_JJ))

(N1/n cruelty_NN1))))
(End-punct3/- ._.))

Figure 5.1: Example RASP output for a sentence from Susanne.

Given the set of consistent nodes in the parse forest, or set of consistent derivations within
the n-best list, we extract the corresponding action histories and estimate action probabilities, as
described in §2.6.2. We extract the corresponding action for each consistent node in the parse
forest (see §4.1.3). Alternatively, for each node in a consistent derivation,where actions may
occur in more than one derivation. In this way, partial bracketing is used to constrain the set of
derivations (and thus, corresponding LR parse actions) considered in training to those that are
compatible with this bracketing.

5.3.2 Extant Parser Training
In this section we briefly review theory regarding supervised training for parametric models,
and that of the extant parser, described fully in previous chapters.

Training Parametric Models

As described previously, a supervised corpus (ortreebank), T consists of a set of training in-
stances where each training instanceti ∈ T is a pair(s,A). The parse forestY is created by
parsing overs, representing the set of derivationsyi j ∈Y. A single derivation in the parse forest
yc ∈Y is equal to the derivationA, and therefore, is considered the ‘correct’ derivation. The set
of features for each correct derivationyc, is extracted for each training instanceti ∈ T.

The features’ frequencies are used to determine MLE for the model, often using relative
frequency estimates over sets of competing features. For example, the set of rule rewrites
for a given NT category of a PCFG. For an LR parser, the featuresare parsing actions and
we normalise the frequency of these actions based on the total frequency across each set of
competing actions in the LR table.

LR Parser Training

Estimating action probabilities in the LR table (see §2.5.2) consists of (a) recording an ac-
tion history for the correct derivationyc, for each training instanceti ∈ T, (b) computing the
frequency of each action over all action histories and (c) normalising these frequencies to de-
termine probability distributions over conflicting actions.

For supervised training, the weight of each action in the first step is considered to be 1. That
is, we consider step (b) a weighted frequency sum over actions where each action witnessed
has a weight of 1. Therefore, to determine the frequency of action ad in the LR table, where

5.4 Confidence-based Training Approaches 121

the functionHIST returns the set of LR parsing actions used to create the givenderivation, we
apply the following equation whereδ(x,y) returns 1 ifx equalsy and 0 otherwise:

f req(ad) = ∑
ti∈T

∑
a∈HIST(yc)

δ(a,ad) (5.1)

Extant Parser Training

The extant parser (our model trained using the extant supervised method described in §2.6.2), is
considered the baseline system in this work. We determine action counts by training onB. That
is, we apply Equation5.1over the action histories for each correct derivation in this supervised
corpus. We normalise over these action counts using the normalisation method defined byInui
et al. (1997), as discussed in §2.5.2. In addition, we apply Laplace estimation within this
normalisation method in the extant parser, to ensure all actions in the table are assigned a non-
zero probability (theIL function). In view of these definitions, we consider the baseline system
in this work to be the parsing systemIL(B).

5.3.3 Evaluation
We employ DepBank (see §1.3.1) as test data in subsequent experiments to compare parser
performance. Further we utilise the Wilcoxon test for statistical significance (see §1.3.2) and
provide z-values probabilities to compare parsing systems, predominantly against the baseline
system.

5.3.4 Baseline
The micro-averagedF1 score for the baseline system over DepBank is 75.61%, which (over
similar sets of relational dependencies) is broadly comparable to recent evaluation results pub-
lished byKaplanet al. (2004) with their state-of-the-art parsing system (Briscoe & Carroll,
2006).

5.4 Confidence-based Training Approaches
In this section we describeconfidence-basedtraining. The general framework of this approach,
and its relationship to previous approaches, is defined in §5.4.1. Following, in §5.4.2, we de-
scribe a number of confidence measures, which we apply in the experimentation discussed in
§5.5. Finally we define a self-training variant of the framework in §5.4.3which is also applied
in experimentation to follow.

5.4.1 Framework
The general confidence-based training framework is described in this section, and is closely
related to the self-training frameworks discussed. We describe in subsequent sections, the ini-
tial parsing model which is trained over seed data, and then applied to annotate the bootstrap
data. The differentiating factor of our framework is the incorporation of alternativeconfidence
measures which depend on the initial parsing model used.

We also extend the self-training framework to include varying levels of annotation in both
the seed and bootstrap data sets. As a result, we perform unsupervised or semisupervised train-
ing, where the level and type of annotation may vary. Given any type of annotation, we require
only a definition ofderivation consistency, as we define our models over the set of consistent
derivations for each sentence in the bootstrap data set.

122 5. CONFIDENCE-BASED TRAINING

Note that the confidence-based framework can also be extended to include co-training tech-
niques, and therefore, applied to a wide range of parsing models and training methods. We
describe a single-pass over the entire bootstrap data only.However, we could extend the frame-
work so that the initial model is repeatedly updated. This extension is analogous to the iterative
self-training methods described.

Initial Parsing Model

The first stage in our framework simply involves training thestatistical parser over the initial
seed data. While in self-training the seed data is generally asmall supervised corpus, any initial
parsing model can be considered. Therefore, we can train theinitial model over an arbitrarily
large seed data set (including null) using semisupervised or unsupervised training techniques.

Annotating Derivations

The self-training methods previously described utilise aninitial parsing model toannotatere-
maining unlabelled data. That is, they parse the unlabelleddata with the initial parser and take
the top-ranked parse produced for each sentence as additional training data. Therefore, these
methods effectively consider the annotation of this top ranked parse as correct. The final parsing
model is created by training over both the seed corpus and theannotated bootstrap corpus in a
fully supervised fashion. In contrast, our models considerall derivations produced by the initial
model, and weight the contribution of the corresponding features of the derivation based on the
initial model’sconfidencein each derivation.

If we apply the confidence training framework over unsupervised seed and bootstrap data,
then this method is related to the work ofBod(2006), which was published after the work in this
chapter was complete. Bod applies an unsupervised variant of‘self-training’ with the ‘DOP’
parser. The parser is trained with simple frequency estimates over the top 100 derivations,
‘U-DOP’, which performs 2% worse than a supervised PCFG when both are trained over the
WSJ. However, while all derivations are considered in these frequency estimates, each of the
derivations are weightedequally. We include all derivations in the confidence-based methods,
though we weight them according to the initial model’s confidence in the derivations returned.

If the bootstrap data consists of semisupervised (that is, partially annotated) data, then we
follow previous work (e.g.Pereira & Schabes 1992) and restrict the set of derivations we include
to those that are consistent with this annotation. Effectively, we apply any partial annotation as a
means to ‘filter’ out the derivations in the n-best list that are incompatible with this annotation.
This increases the quality of the derivations considered during training. Thus, the higher the
level of annotation in the bootstrap data, the better our methods are expected to perform.

Estimating Action Probabilities

The corresponding features ofall derivations within the n-best list (optionally, only thosecon-
sistent with annotation, if available) are utilised duringtraining. However, we weight the fea-
tures of the model based on the correspondingderivation confidenceof the initial parsing model
used to derive the n-best list. A variant of Equation5.1 is applied over the set of consistent
derivations, where we instead apply aweightedsum. The weight is determined using the func-
tion c over the derivations in which the feature appears. We determine the frequency of each
action in the LR parse table using the weighted frequency of each occurrence of the action
across allti ∈ T in each consistent derivationyi ∈Y:

f req(ad) = ∑
ti∈T

∑
yi ,ad∈HIST(yi)

c(yi) (5.2)

5.4 Confidence-based Training Approaches 123

The frequency of each feature determined over the bootstrapdata is combined directly with
the frequency of each feature over the seed data i.e. using count-merging.

Relationship to the IOA (EM)

We described the extension of the unsupervised IOA to LR parsers in §4.1.3; the IOALR. The
frequency Equation4.1.3 can be considered in terms of the confidence measure functionc,
applied to nodesn j of the parse forest as follows:

f req(ad) = ∑
ti∈T

∑
n j ,a[j]=ad

c(n j) (5.3)

c(n j) =
1
Pti

e(n j) f (n j)

Equation5.3is related to the confidence-based frequency Equation5.2, where we sum over
derivations rather than nodes of the parse forest. Recall that the normalised IO probability for
a node represents the summation of probabilities for all derivations in which the node occurs,
normalised by the sum of all derivation probabilities. Consequently, if we unpackall possible
derivations represented in the parse forest, weighted by their normalised probabilities, then the
resulting weighted frequency counts for each unique node inthese derivations is equal to the
corresponding parse forest node’s normalised IO probability.

If we utilise a functionc in Equation5.2, that returns the derivation’s normalised probability
(as inBacchianiet al.2006) we effectively perform one iteration of the IOALR, though over the
set of n-best derivations rather than the entire derivationspace. Thus the confidence based
methods require only a small proportion (equivalent to a single iteration) of the processing
overhead required to train using IOALR.

Relationship to Previous Work

In summary, the framework defined is related to, though differentiated from, previous work
described as follows:

• Self-training: while we utilise an initial model to annotate further training data, we con-
sider unsupervised and semisupervised training for the initial parsing model. Moreover,
we include the set ofall derivations (consistent with the annotation, if available) of the
bootstrap data rather than only the highest ranked derivation.

• Partially-annotated data: we constrain the set of derivations considered to those that are
consistent with the partial annotation. However, we construct and rank this derivation set
using aninitial parsing modeltrained over a separate seed data set. Previous approaches
that have constrained the set of derivations use only a uniform parsing model to construct
and rank the derivations. That is, include counts from the (single) bootstrap data only to
create the resulting parsing model.

• The work ofBacchianiet al. (2006), regarding unsupervised self-training, is closely re-
lated to our framework, though was published after the work in this chapter was complete.
A feature’s weight, i.e. the functionc, is the corresponding derivations’ normalised prob-
ability. This weighting effectively determines the frequency of features over the bootstrap
data by applying one iteration of unsupervised IOA, considering the 20-best derivations
only, instead of the entire parse forest.

124 5. CONFIDENCE-BASED TRAINING

In effect, we have combined the successful semisupervised training approaches that (i) con-
strain the set of derivations considered to those consistent with partial annotation (e.g.Clark
& Curran 2006; Pereira & Schabes 1992; Riezleret al.2002, with (ii) self-training approaches
(e.g. Bacchianiet al. 2006; McClosky et al. 2006). Although we generalise the framework
to include unsupervised training and apply confidence basedweighting within the frequency
counts for features.

5.4.2 Confidence Measures
During confidence-based training, we select more than one derivation, placing an appropriate
weight on the corresponding action histories based on the initial model’s confidence in the
derivation. In this section we define three such confidence measures for consistent derivations
(i.e. returned for the functionc in Equation5.2). In subsequent experimentation we contrast the
performance of each against EM, over both unsupervised and semisupervised corpora.

We weight transitions corresponding to each derivation rankedr with probabilityp in the set
of sizen either using1

n, 1
r or p itself to weight counts. These methods all perform normalisation

over the resulting action histories using the training function IL (defined in §5.3.2) and are
referred to asCn, Cr andCp, respectively. These functions take two arguments: an initial model
and the bootstrap data to train over, respectively. As we improve the accuracy of the initial
model, and decrease the size of the n-best list in response, the accuracy of the resulting parsing
model is expected to increase across all of these measures. We discuss each measure, in turn, in
the following sections.

Uniform Measure: Cn

Cn is a ‘uniform’ model which weights each action count only by the degree of derivation
ambiguity and makes no explicit use of ranking information.In effect, the initial parser only
acts to provide the n-best derivations, where the likelihood of a correct parse being in this set
increases as the accuracy of the initial model increases. While we weight in a uniform manner,
both the initial parsing model and the number of derivationsconsidered (the size of then-best
list) affect the accuracy of the resulting trained parser. This method is similar to that ofRiezler
et al. (2002), where all consistent derivations are included in the log-linear objective function.
However, we normalise using consistent derivations only.

Ranking Measure: Cr

Cr weights each action count using the corresponding derivation’s rank. This measure is based
on the intuition that features that consistently occur in highly ranked derivations are more likely
to be correct, and hence, should be assigned a greater proportion of the probability mass.

Probability Measure: Cp

Cp weights each action count using the derivations’ probability. This measure places the greatest
level of trust in the initial model’s statistical component. Given a ‘perfect’ initial parsing model,
Cp is expected to outperform all other possible measures, as itassigns probability mass to correct
syntactic subanalyses only.Cp is simpler than and different to one iteration of IOALR, as we use
inside probabilities only, and furthermore, do not normalise based on the sum of all derivation
probabilities.

In the case that we consider an n-best list of size 1, this method is considered similar to
Viterbi training for HMMs, where the top-ranked path’s probability is used in the weighted
frequency sum for corresponding edges in the path.

5.5 Experimentation 125

5.4.3 Self-training
In experimentation to follow, we also perform a variant of self-training within the confidence
training framework. That is, we assign a weight of 1 to each action corresponding to the top-
ranked parse output by the initial model over the bootstrap training corpus. We refer to this
training method asC1.

This method is closely related to the self-training methodsemployed in the literature which
we discussed previously, though we first ‘filter’ the set of n-best derivations. That is, we con-
sider only those derivations that are consistent with the partial-annotation of the sentence.

5.5 Experimentation
As we utilise an initial model to annotate additional training data, our methods are closely
related to self-training methods. However, in experimentation discussed in this section, we
train entirely from either unannotated or unlabelled partially-bracketed data using the confi-
dence training framework described in the previous section. Therefore, these methods are best
described as unsupervised or semisupervised, respectively. We expect the extant parser trained
over a fully supervised corpus to outperform one trained over the same corpus with less detailed
annotation. However, both EM (IOALR) and confidence-based methods are trained overlarger
semisupervised (and unsupervised) corpora, providing greater potential for these methods to
outperform the extant parser.

In §5.5.1we contrast these models over semisupervised corpora consisting entirely of un-
labelled partially-bracketed data. We utilise such data extracted from Susanne and the WSJ,
as a major focus of this work is the flexible reuse of existing treebanks to train a wider vari-
ety of statistical parsing models. We train a different parsing model for each of the confidence
measures (described in §5.4.2), and for the self-training method (described in §5.4.3). Here,
the confidence-based training achieves statistically significant improvements in parser accuracy
over both EM and the current supervised training method. In addition, these methods are more
efficient than EM and require no manual annotation effort on behalf of the grammar writer.

Following, in §5.5.2, we compare the unsupervised variants of EM and the confidence
based models over the unsupervised Susanne corpusSu. Surprisingly both models perform
only slightly worse than the extant fully supervised method, moreover, these differences are not
statistically significant (if we select the best performingEM iteration).

5.5.1 Semisupervised Training
In this section, we compare the accuracy of the current parseranking model trained from a
fully-annotated portion of Susanne with one trained from unlabelled partially-bracketed training
instances derived from this treebank and from the WSJ. We demonstrate that the confidence-
based semisupervised techniques outperform EM when both are constrained by partial brack-
eting. Both methods based on partially-bracketed training data outperform the fully supervised
technique, and both can, in principle, be applied to any statistical parser whose output is consis-
tent with such partial-bracketing. We also explore tuning the model to a different domain and
the effect of in-domain data in the semisupervised trainingprocesses.

Experimental Setup

We parsed all the bracketed training data using the baselinemodel to obtain up to 1K top-ranked
derivations and found that a significant proportion of the sentences of the potential set available
for training had only a single derivation consistent with their unlabelled bracketing. We refer to

126 5. CONFIDENCE-BASED TRAINING

this set of sentences as theunambiguous training data(γ) and refer to the remaining sentences
(for which more than one consistent derivation was returned) as theambiguous training data
(α). The availability of significant quantities of unambiguous training data that can be found au-
tomatically suggests that we may be able to dispense with thecostly reannotation step required
to generate the fully supervised training corpus,B.

Table5.1illustrates the split of the corpora into mutually exclusive setsγ, α, ‘no match’ and
‘timeout’. The latter two sets are not utilised during training and refer to sentences for which
all derivations were inconsistent with the bracketing and those for which no derivations were
found due to time and memory limitations (self-imposed) on the system, respectively.5.2 As
our grammar is different from that implicit in the WSJ there isa high proportion of sentences
where no derivations were consistent with the unmodified PTBbracketing. However, a prelim-
inary investigation of the ‘no match’ data did not yield any clear patterns of inconsistency that
we could quickly ameliorate by simple modifications of the PTB bracketing. We leave for the
future a more extensive investigation of these cases which,in principle, would allow us to make
more use of this training data. An alternative approach thatwe have also explored is to utilise a
similar confidence-based training approach with data partially-annotated for grammatical rela-
tions (Watson & Briscoe, 2007).

Corpus | γ | | α | No Match Timeout
S 1097 4138 1322 191
W 6334 15152 15749 1094
SW 7409 19248 16946 1475

Table 5.1: Corpus split forS, W andSW.

Confidence-based Approaches

Models derived using the unambiguous training data,γ, as the seed data alone are relatively ac-
curate, achieving indistinguishable performance to that of the baseline system given in-domain
(eitherW or SW) training data. We utilise these models as initial models and train over the
corresponding ambiguous data sets (considered the bootstrap data) for each corpus with each
of the confidence-based models. We consider the top 1K derivations output by each of the ini-
tial models over the bootstrap data, and then remove derivations from this n-best list that are
inconsistent with the corresponding unlabelled bracketing.

The initial models are novel, being the first to consider the use of such unambiguous data
only. These models were based on the intuition that, as only asingle derivation is consistent
with the annotation, we can assume that the partial-annotation is sufficient to disambiguate the
finer grained derivations of the extant parser. This data canbe considered analogous to the
seed data set used during the self-training methods in the literature, where a supervised (high
confidence) data set is used to train the initial model.

Table5.2gives results for all confidence-based models. Results statistically significant com-
pared to the baseline system are shown in bold print (increase) or italic print (decrease). These
methods show promise, often yielding systems whose performance is significantly better than
the baseline system. MethodCr achieved the best performance in this experiment and remained

5.2As there are time and memory restrictions during parsing, the SW results are not equal to the sum of those
from SandW analysis.

5.5 Experimentation 127

consistently better across different corpora. Throughoutthe different approaches a domain ef-
fect can be seen, models utilising justSare worse, although the best performing models benefit
from the use of bothSandW as training data (i.e.SW). These results are consistent with those
found byGildea(2001).

The ‘self-training’C1 method performs the worst of all retrained models, resulting in a
declinein performance over the initial model for bothW andSW. The increase in performance
for this model overSmay reflect the benefit of using a balanced corpus during training, though
may be due to the relatively small size of the seed data considered where there is less chance
for bias in the model to be reflected in the reannotated data.

While many statistical parsers extract the grammar in parallel with the corresponding sta-
tistical parse selection model, our results demonstrate that existing treebanks can be utilised to
train parsers that deploy grammars that make other representational assumptions. As a result,
our methods can be applied by a range of parsers to minimise the manual effort required to train
a parser or adapt to a new domain.

Model Prec Rec F1 P(z)‡

Baseline 77.05 74.22 75.61 -
IL(γ(S)) 76.02 73.40 74.69 0.0294
C1(IL(γ(S)),α(S)) 77.05 74.22 75.61 0.4960
Cn(IL(γ(S)),α(S)) 77.51 74.80 76.13 0.0655
Cr(IL(γ(S)),α(S)) 77.73 74.98 76.33 0.0154
Cp(IL(γ(S)),α(S)) 76.45 73.91 75.16 0.2090
IL(γ(W)) 77.01 74.31 75.64 0.1038
C1(IL(γ(W)),α(W)) 76.90 74.23 75.55 0.2546
Cn(IL(γ(W)),α(W)) 77.85 75.07 76.43 0.0017
Cr(IL(γ(W)),α(W)) 77.88 75.04 76.43 0.0011
Cp(IL(γ(W)),α(W)) 77.40 74.75 76.05 0.1335
IL(γ(SW)) 77.09 74.35 75.70 0.1003
C1(IL(γ(SW)),α(SW)) 76.86 74.21 75.51 0.2483
Cn(IL(γ(SW)),α(SW)) 77.88 75.05 76.44 0.0048
Cr(IL(γ(SW)),α(SW)) 78.01 75.13 76.54 0.0007
Cp(IL(γ(SW)),α(SW)) 77.54 74.95 76.23 0.0618

Table 5.2: Performance of confidence-based training modelson DepBank.‡represents the sta-
tistical significance of the system against the baseline model.

Comparing EM and Confidence-based Approaches

As previously noted, we consider the IOALR a variant of EM followingPrescher(2001). In order
to further extend the IOALR to apply over semisupervised corpora, followingPereira & Schabes
(1992), we simply have to extend Equation5.3 (i.e. Equation4.1.3) so that only consistent
nodes are included in this summation. We employ the functionτ over nodes, which returns 1 if
a node is consistent (see §5.3.1) and 0 if not.

f req(ad) = ∑
t∈T

∑
n j ,a[j]=ad

τ(n j)c(n j)

128 5. CONFIDENCE-BASED TRAINING

We perform EM starting from two initial models; either a uniform probability model,IL(),
or from models derived from unambiguous training data,γ. We create the uniform model by
distributing the probability mass equally between competing actions in the LR table. This model
achieves 69.92%, which is fairly good given that no trainingdata has been incorporated into the
statistical model, indicating the expressive power of the underlying manually written grammar.

We denote the EM models using the functionEM. This function accepts the same input
as the confidence based functions, that is, an initial model and the bootstrap data to train over,
respectively. We utilise the cross entropy estimate described inPereira & Schabes(1992), where
the cross entropyH over a given corpusC and grammarG is based onPt ; the total probability
of all derivations for each sentencet ∈C:

H(C,G) = −

∑
t∈C

log(Pt)

∑
t∈C

|t|

Figure5.2 shows the cross entropy decreasing monotonically from iteration 2 (as guaran-
teed by the EM method) for different corpora and initial models. Some models show an initial
increase in cross-entropy from iteration 1 to iteration 2, because the models are initialised from
a subset of the data which is used to perform maximisation. Cross-entropy increases, by defini-
tion, as we incorporate ambiguous data with more than one consistent derivation (i.e. increasing
the ratio oflog(Pt) to |t|).

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 2 4 6 8 10 12 14 16

H(C,G)

Iteration Number

EM(IL(),S)
r

r

r r r r r r r r r r r r r

r

EM(IL(γ(S)),S)

c

c
c c c c c c c c c c c c c

c

EM(IL(),W)

△

△△△△△△△△△△△△△△

△
EM(IL(γ(W)),W)

⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆
EM(IL(),SW)

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2

2
EM(IL(γ(SW)),SW)

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3

Figure 5.2: Cross entropy convergence for semisupervised EMoverS, W andSW.

Performance over DepBank can be seen in Figures5.3, 5.4, and5.5for each corpusS,W and
SW, respectively. Comparing the accuracy ofCr and EM in each of Figures5.3, 5.4, and5.5, it
is evident thatCr outperforms EM across all data sets, regardless of the initial model applied.
In most cases, these results are statistically significant,even when we manually select the best
model (iteration) for EM.

The graphs of EM performance illustrate the same ‘classical’ and ‘initial’ patterns observed
by Elworthy(1994) (described in §3.1.3). When EM is initialised from a relatively poor model,

5.5 Experimentation 129

74

74.5

75

75.5

76

76.5

0 2 4 6 8 10 12 14 16

F1

Iteration Number

Baseline
Cr(IL(γ(S)),α(S))

EM(IL(),S)

r

r r
r

r

r r
r r r r r r

r r

r

EM(IL(γ(S)),S)

b

b b

b

b b b
b

b b b b b b b b

b

Figure 5.3: Performance overS for Cr and EM.

75

75.2

75.4

75.6

75.8

76

76.2

76.4

76.6

0 2 4 6 8 10 12 14 16

F1

Iteration Number

Baseline
Cr(IL(γ(W)),α(W))

EM(IL(),W)

r

r

r
r r r r

r r r r
r

r r r

r

EM(IL(γ(W)),W)

b

b

b
b

b b b b b b

b b b b
b b

b

Figure 5.4: Performance overW for Cr and EM.

such as that built fromS (Figure5.3), a ‘classical’ pattern emerges with relatively steady im-
provement from iteration 1 until performance asymptotes. However, when the starting point is
better (e.g. in Figures5.4and5.5), the ‘initial’ pattern emerges. That is, the best performance
is reached after a small number of iterations.

Domain Adaptation

When building NLP applications it is preferable to accurately tune a parser to a new domain
with minimal manual effort. To obtain training data in a new domain, annotating a corpus with
partial-bracketing information is much cheaper than full annotation. To investigate whether
such data would be of value, we consideredW to be the corpus over which we were tuning and
applied the best performing model trained overS, Cr(IL(γ(S)),α(S)), as our initial model. That

130 5. CONFIDENCE-BASED TRAINING

75

75.2

75.4

75.6

75.8

76

76.2

76.4

76.6

76.8

0 2 4 6 8 10 12 14 16

F1

Iteration Number

Baseline
Cr(IL(γ(SW)),α(SW))

EM(IL(),SW)

r r
r

r r r r r r r r r r
r r

r

EM(IL(γ(SW)),SW)

b

b

b

b

b b b b b b b b b b b b

b

Figure 5.5: Performance overSW for Cr and EM.

is, we considerW as in-domain data (as DepBank is extracted from section 23 of the WSJ) and
we utilise a model trained over out-of-domain data to annotate this corpus. We consider this a
semisupervised domain adaptation task.

Figure5.6 illustrates the performance ofCr compared to EM. Tuning usingCr was not sig-
nificantly different from the model built directly from the entire data set withCr , achieving
76.57% as opposed to 76.54% F1. In contrast, EM performs better given in-domain data from
the beginning rather than tuning to the new domain.Cr outperforms EM except for one par-
ticular EM iteration as shown in this figure. Though it is worth noting the behaviour of EM
given only the tuning data (W) rather than the data from both domains (SW). In this case, the
graph illustrates a combination of Elworthy’s ‘initial’ and ‘classical’ patterns. The steep drop
in performance (to under 70%F1) after the first iteration is probably due to loss of information
from S. However, this run also eventually converges to similar performance, suggesting that the
information inS is effectively disregarded as it forms only a small portion of SW, and that these
runs effectively converge to a local maximum overW.

Bacchianiet al. (2006) explore the effect of weighting the contribution (frequency counts)
of the in-domain and out-of-domain training data sets. Theydemonstrates that altering this
weighting can have beneficial effects. However, theSW corpus already contains a dispropor-
tionate number of in-domainW sentences (40K of 47K). Furthermore, our results suggest that
the parsing models are effectively converging on the WSJ in either case.

5.5.2 Unsupervised Training

The confidence-based models were primarily developed for use over semisupervised corpora.
However, we wished to consider the performance of these models given unsupervised data. In
this case, we illustrate the approximate accuracy lower bound for these models (given an initial
parsing model) as we rely entirely on the initial model to annotate the bootstrap data. In this
section we first describe the experimental setup, and following, describe the performance of the
different confidence measures over the unsupervised Susanne corpusSu available in this work.
Finally, we train the same parsing model using EM over the unsupervised data, and contrast the

5.5 Experimentation 131

74

74.5

75

75.5

76

76.5

77

0 2 4 6 8 10 12 14 16

F1

Iteration Number

Baseline
Cr(IL(γ(SW)),α(SW))

Cr(Cr(IL(γ(S)),α(S)),W)
EM(IL(γ(SW)),SW)

b

b

b
b

b b b b b b b b b b b b

b

EM(Cr(IL(γ(S)),α(S)),W)

rr

r

r

r

r r

r
r r r r r r r r

r

EM(Cr(IL(γ(S)),α(S)),SW)

c

c

c
c c c c c c c c c c c c c

c

Figure 5.6: Tuning over the WSJ (W) from Susanne (S).

resulting parser’s performance to that achieved by the current parser and the confidence-based
methods.

Experimental Setup

We consider an initial uniform probability model, i.e.IL(). We output the top 1K deriva-
tions from this initial model over theSu corpus, and include all these derivations within the
confidence-based framework.

Confidence-based Approaches

Table5.3 illustrates the performance of the unsupervised models, where surprisingly, theCr

model achieves lower thoughstatistically indistinguishableperformance to that of the current,
fully supervised, parsing model. The unsupervised corpus contains around 7K sentences while
the supervised corpus contains 5K. The additional trainingdata, combined with the relatively
good performance of the uniform model, is able to achieve fairly impressive results. This model
significantly outperforms the alternative,Cn andCp, confidence measures, indicating that this
method is fairly robust to the choice of initial parsing model. These results, combined with
those discussed previously, indicate thatCr performs well over corpora with varying levels of
annotation.

The results of self-training i.e.C1 have resulted in an increase in performance over the
initial model. We previously hypothesised that the marginal increase for this model overS is
due to the lack of inherent bias within the initial model, as the unambiguous seed dataγ(S) was
a relatively small data set. This theory is supported by these results in which the initial uniform
model contains no learnt bias. Any learnt (incorrect) linguistic bias appears to be compounded
in the resulting self-trained model, though this is expected as these biases are selected for when
self-annotating the data. The self-training model also outperforms theCp model over this data.
However, the probability-based confidence measure is expected to perform poorly if the initial
model’s probability model is unable to assign probability mass to correct constituents only. In
these experiments, the initial uniform model we employ doesnot reflect any preference between
competing parse actions.

132 5. CONFIDENCE-BASED TRAINING

Model Prec Rec F1 P(z)‡

Baseline 77.05 74.22 75.61 -
IL() 70.98 68.90 69.92 0.0000
C1(IL(),Su) 74.94 72.50 73.70 0.0000
Cn(IL(),Su) 75.74 73.25 74.48 0.0024
Cr(IL(),Su) 76.28 73.81 75.02 0.1170
Cp(IL(),Su) 72.25 70.23 71.23 0.0000

Table 5.3: Performance of all unsupervised confidence-based models on DepBank.‡represents
the statistical significance of the system against the baseline model.

Comparison to EM

We perform unsupervised EM overSu using the IOALR, as described in §4.1.3, the cross-entropy
of which is shown in Figure5.7. Figure5.8 illustrates the performance of the unsupervisedCr

and EM overSu. The ‘initial’ pattern ofElworthy (1994) emerges for EM, where the best
performing iterations are those from 2 to 4, where the EM outperforms the confidence-based
method for these iterations. These iterations of EM, and theconfidence-based methodCr ,
achieve lower performance compared to the current model, though these results are not sig-
nificant. However, if we were unable to manually select the best model (iteration) for EM, then
the resulting EM model (the model resulting for the converged fifth iteration) would be signifi-
cantly lower (z-value of 0.0040) to that of the current model. Therefore theCr training method
is preferable, even in an unsupervised training task.

2.35

2.4

2.45

2.5

2.55

2.6

1 2 3 4 5 6 7 8 9 10

H(C,G)

Iteration Number

EM(IL(),Su)
r

r

r
r r r r r r r

r

Figure 5.7: Cross entropy convergence for EM over unsupervisedSu.

5.6 Discussion
We have presented several semisupervisedconfidence-basedtraining methods which have sig-
nificantly improved performance over the current supervised method, while also reducing the

5.6 Discussion 133

72

72.5

73

73.5

74

74.5

75

75.5

76

0 2 4 6 8 10

F1

Iteration Number

Baseline
Cr(IL(),Su)

EM(IL(),Su)

r

r r r

r r r r
r r

r

Figure 5.8: Performance overSu for Cr and EM.

manual effort required to create training or tuning data. Wehave shown that given a medium-
sized unlabelled partially-bracketed corpus, the confidence-based models achieve superior re-
sults to those achieved with EM applied to the same SGLR parseselection model. Indeed, a
bracketed corpus provides flexibility as existing treebanks can be utilised despite the incompat-
ibility between the system grammar and the underlying grammar of the treebank. Mapping an
incompatible annotated treebank to a compatible partially-bracketed corpus is relatively easy
compared to mapping to a compatible fully-annotated corpus.

An immediate benefit of this work is that (re)training parsers with incrementally-modified
grammars based on different linguistic frameworks should be much more straightforward. For
example, seeOepenet al. (2002) for a discussion of the problem. Furthermore, our findings
suggest that it may be possible to usefully tune a parser to a new domain with less annotation
effort.

Of the confidence measures considered,Cr consistently performed the best, illustrating its
robust nature across different domains and varying levels of annotation. The ‘self-training’C1

measure performed poorly in the semisupervised training task for several corpora, supporting
the findings in initial self-training studies.

Our findings mirror those ofElworthy(1994) andMerialdo(1994) for POS tagging and sug-
gest that EM is not always the most suitable training method (especially when some in-domain
training data is available). The confidence-based methods were successful because the level
of noise introduced did not outweigh the benefit of incorporating all derivations compatible
with the bracketing in which the derivations contained a high proportion of correct constituents.
These findings may not hold if the level of bracketing available does not adequately constrain
the derivations considered.Hwa (1999) describes a related investigation with EM. However,
we illustrated that even over an unsupervised corpus, theCr confidence method achieved sta-
tistically equivalent performance to the extant model. Although, this may not translate to other
parsers in which the uniform statistical model performs poorly or if the models are also required
to infer the grammar during training.

In future work we intend to further investigate the problem of tuning to a new domain, given

134 5. CONFIDENCE-BASED TRAINING

that minimal manual effort is a major priority. We hope to develop methods which required
no manual annotation. For example, high precision automatic partial bracketing using phrase
chunking and/or named entity recognition techniques mightyield enough information to support
the training methods developed in this work.

Finally, further experiments regarding alternative confidence measures within the frame-
work described may prove beneficial. For example, we could normalise the ranking measure
based on the number of consistent derivations. This confidence measure would ensure that each
sentence in the bootstrap data contributes equally to the LRparse action frequency counts. Sev-
eral other variants of the framework may also improve the final parse model’s performance. For
example, we could perform iterative rounds of reannotationover portions of the bootstrap data,
as applied in the previous self-training experiments, for example those described bySteedman
et al. (2003b).

Chapter 6

Conclusion

The focus of this thesis was the optimisation, in terms of both parser accuracy and efficiency, of
an extant and well-developed SGLR parser. In this chapter wereview the novel contributions
of this thesis and also describe future lines of investigation. This discussion is organised by
chapter.

Chapter 3 considered the optimal choice of PoS tag model employed by the extant parser,
given that a front-end PoS tagger (i.e. preprocessing component) is applied. Previous work
shows that parser efficiency improves if tag ambiguity is resolved by the front-end PoS tagger,
though the accuracy and coverage of the parser declines as the level of tag error increases. Con-
sequently, we investigated the optimum level of tag ambiguity to pass to the parser considering
both PoS tag and parser performance. As far as the author is aware, this work is the first to
perform such a broad comparison. This broad comparison is important as different tag confu-
sions are not equally detrimental to parser output (illustrated within the experimental results of
this chapter). While the initial tag selection models investigated achieve poor tagging perfor-
mance, we show that gains in parser accuracy and coverage areavailable if we allow the parser
to resolve some of the tag ambiguity. However, this results in a significant decline in parser
efficiency.

Parsing results suggested that tag errors introduced by thePoS tagger cause a large propor-
tion of the resulting fragmentary parses found over the single tag per word input. We hypothe-
sised that a grammar (especially one that is well-constrained over the terminals) may be relied
upon to find a parse over correct PoS tag sequences only. In response, we described adynamic
tag selection model similar to that applied byClark & Curran 2004a. This model increases the
number of tags considered in parsing, starting from the set of most probable tags, until a com-
plete derivation is found. Here, the known trade-off between parse ambiguity and PoS tag error
provides a means to gauge PoS tag error based on parser output. An artificial implementation of
the model achieves the parsing accuracy and efficiency for the large proportion of nonfragmen-
tary parses over the single tpw input. However, it also improves the accuracy over the remaining
set of (otherwise fragmentary) parses, as we reparse these with larger tag sets (removing the tag
errors introduced) resulting in an overall increase in parser accuracy and coverage. As we only
reparse a relatively small proportion of sentences our efficiency is improved over that of the
parser considering multiple tag per word input across all test sentences.

In future work, we aim to implement the dynamic model within the extant parser, as our
experimental results were achieved by merging resulting parse output files only. Furthermore,
we hope to apply this tag selection model over domains in which the PoS tagger achieves poor

135

136 6. CONCLUSION

single tpw tagging accuracy. Here, we hope to investigate whether the dynamic model can im-
prove parse accuracy and coverage while increasing parser throughput over a range of domains.
That is, whether the grammar can reliably be used to indicatethe presence of tag errors over
out-of-domain (tag and parser) data.

Chapter 4defined a novel method that improves the throughput and accuracy of the ‘weighted
GRs’ output format. The extant method required a number of processing stages to determine this
output format: unpacking the n-best derivations from the parse forest, deriving the correspond-
ing n-best GR sets and finding the unique set of GRs and corresponding weights. Although the
accuracy of the output improves as the size of the n-best listconsidered increases, the efficiency
declines in turn.

We illustrated how to obviate the need to trade off efficiencyand accuracy by extracting
weighted GRs directly from the parse forest using a dynamic programming approach based on
the IOA. However, this method correctly calculates the weights of this output only if asingle
lexical head is found for each node in the parse forest. Related work enforces this condition by
placing extra constraints on which nodes can be packed, leading to less compact parse forests.
Instead, we defined a novel dynamic programming approach, the ‘EWG’ algorithm to enable
multiple inside and outside probabilities for each node in the parse forest, one for each possible
lexical head. Experimental results demonstrated that the novel EWG algorithm achieved sub-
stantial increases in parser accuracy and throughput for weighted GR output. EWG is available
for use within the second release of RASP (seeBriscoeet al. 2006), as an alternative method
to calculate the weighted GR output format. This algorithm could be applied to any graph-
structured data structure, over which we aim to estimate weighted frequency estimates for node
attributes for which more than one value may apply.

We employed the parse selection strategy defined byClark & Curran(2004b). This method
applied the EWG algorithm and achieved 3.01% relative reduction in error forF1. However, it is
infeasible to define some GRs within the mapping from local-trees to GRs in RASP’s grammar.
Therefore each of the n-best GR sets is consistent, though may not represent a complete GR
set. These ‘missing’ GRs do not appear within the weighted GR output and should be inferred
given an incomplete, though consistent, set of GRs. TheF1 upper bound of the task is calculated
using the high precision and recall GR sets determined from the weighted GR output. This upper
bound is currently in the low 80’s, and reflects the short-fall in the GR representation.

In future work, we aim to develop parse selection strategiesdirectly over the weighted GR
output format, the GRs of which form a directed graph (DG). Nodes of the DG are words of the
input, while edges from head to dependent are labelled with the GR’s type and weight. Given
a (nontrivial) definition of GR consistency, we aim to determine the set of consistent GRs in
this DG. For example, we could employ a suitable search algorithm (defined in graph-theory)
to select the most probable consistent subset of this DG. If this work proves feasible, we aim to
infer the GRs that are missing from this consistent set, to form a consistentandcomplete GR
set.

Finally, in Chapter 5, we described a novel training framework similar to the self-training
approaches employed in the literature, that can be applied to a wide range of parsing models.
The framework considered weighting the contribution of allderivations within the n-best list
that areconsistentwith the training corpus annotation (if any). This weighting is based on the
correspondingderivation confidenceof the initial parsing model. We described a number of
different confidence measures, and compared these over a range of different domains. TheCr

measure, based on the inverse of the derivation’s rank, proved to be fairly robust in terms of the

137

choice of initial parsing model, training domain and the level of corpus annotation available.
The confidence-based parsing models consistently outperformed Expectation-Maximisation

in the experimentation described, over both semisupervised and unsupervised training corpora.
Furthermore, constraining the confidence-based models using unlabelled partially-bracketed
data (automatically extracted from existing corpora) resulted in several parsing models that
significantly outperformed the extant parser. TheCr model, trained over the bracketed Susanne
corpusS, has been adopted as the training method within the extant parser. This model improves
the accuracy of the resulting parser, moreover, it aids in grammar development as the grammar
writer is no longer required to maintain a fully-supervisedtreebank. In fact, this method requires
no manual effort on behalf of the grammar writer and the extant parser’s training method is now
fully automated.

In future work, we aim to investigate methods to usefully tune the parser to new domains,
given that several studies have illustrated that even limited in-domain training data can signif-
icantly improve parser accuracy. The unsupervised training experiments illustrated that theCr

method may be sufficiently robust to handle unsupervised domain adaptation. We also aim to
investigate automatic methods (requiring no direct annotation) for providing partial-annotation
to constrain the set of derivations considered. Here, high precision automatic partial brack-
eting using phrase chunking and/or named entity recognition techniques might yield enough
information to support the training methods developed in this thesis.

138 6. CONCLUSION

References

AHO, A., SETHI, R. & ULLMAN , J. (1986).Compilers: principles, techniques, and tools.
Addison-Wesley, Boston, MA.

ALSHAWI , H., ed. (1992).The Core Language Engine. MIT Press, Cambridge, MA.

ANDERSON, T., EVE, J. & HORNING, J. (1973). Efficient LR(1) parsers.Acta Informatica,
2(1), 12–39.

ASTON, G. & BURNARD, L. (1998).The BNC Handbook. Edinburgh University Press, Edin-
burgh.

BACCHIANI , M., RILEY, M., ROARK, B. & SPROAT, R. (2006). MAP adaptation of stochastic
grammars.Computer Speech and Language, 20(1), 41–68.

BAKER, J. (1979). Trainable grammars for speech recognition. InProceedings of the Spring
Conference of the Acoustical Society of America, 547–550, Boston, MA.

BIKEL , D. (2004). Intricacies of Collins’ parsing model.Computational Linguistics, 30(4),
479–511.

BLACK , E., ABNEY, S., FLICKENGER, D., GDANIEC, C., GRISHMAN, R., HARRISON, R.,
HINDLE , D., INGRIA, R., JELINEK , F., KLAVANS , J., LIBERMAN , M., MARCUS, M.,
ROUKOS, S., SANTORINI , B. & STRZALKOWSKI , T. (1991). A procedure for quantitavely
comparing the syntactic coverage of English grammars. InProceedings of the Fourth DARPA
Workshop on Speech and Natural Language, 306–311, Morgan Kaufman, San Mateo, CA.

BOD, R. (1998).Beyond Grammar: An Experience-Based Theory of Language. CSLI Publica-
tions, Cambridge University Press.

BOD, R. (2006). An all-subtrees approach to unsupervised parsing. InProceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meeting of the As-
sociation for Computational Linguistics, 865–872, Sydney, Australia.

BRISCOE, E.J. (2006).An introduction to tag sequence grammars and the RASP systemparser.
Technical Report 662, Computer Laboratory, University of Cambridge.

BRISCOE, E.J. & CARROLL, J. (1993). Generalised probabilistic LR parsing of natural lan-
guage (corpora) with unification-based grammars.Computational Linguistics, 19(1), 25–59.

BRISCOE, E.J. & CARROLL, J. (2002). Robust accurate statistical annotation of general text.
In Proceedings of the 3rd International Conference on LanguageResources and Evaluation,
1499–1504, Las Palmas, Gran Canaria.

139

140 REFERENCES

BRISCOE, E.J. & CARROLL, J. (2006). Evaluating the speed and accuracy of a domain-
independent stastistical parser on the PARC Depbank. InProceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics Main Conference Poster Sessions, 41–48, Sydney, Australia.

BRISCOE, E.J., CARROLL, J., GRAHAM , J. & COPESTAKE, A. (2002). Relational evalua-
tion schemes. InProceedings of the Beyond PARSEVAL Workshop at the 3rd International
Conference on Language Resources and Evaluation, 4–8, Las Palmas, Gran Canaria.

BRISCOE, E.J., CARROLL, J. & WATSON, R. (2006). The second release of the RASP system.
In Proceedings of the 21st International Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational Linguistics Interactive Presentation
Sessions, 77–80, Sydney, Australia.

CARROLL, J. (1993).Practical unification-based parsing of natural language. Technical Re-
port 314, Computer Laboratory, University of Cambridge.

CARROLL, J. & BRISCOE, E.J. (2002). High precision extraction of grammatical relations. In
Proceedings of the 19th International Conference on Computational Linguistics, 134–140,
Taipei, Taiwan.

CARROLL, J., BRISCOE, E.J. & SANFILIPPO, A. (1998). Parser evaluation: a survey and a
new proposal. InProceedings of the Workshop on The Evaluation of Parsing Systems at the
1st International Conference on Language Resources and Evaluation, 447–454, Granada,
Spain.

CHARNIAK , E. (1994).Statistical Language Learning. MIT Press, Cambridge, MA.

CHARNIAK , E. (1997). Statistical parsing with a context-free grammar and word statistics.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth
Innovative Applications of Artificial Intelligence Conference, 598–603, Providence, Rhode
Island.

CHARNIAK , E. (2000). A maximum-entropy-inspired parser. InProceedings of the first confer-
ence on North American chapter of the Association for Computational Linguistics, 132–139,
Seattle, Washington.

CHARNIAK , E., CARROLL, G., ADCOCK, J., CASSANDRA, A., GOTOH, Y., KATZ , J.,
L ITTMAN , M. & M CCANN , J. (1996). Taggers for parsers.Artificial Intelligence, 85(1–2),
45–57.

CHARNIAK , E. & JOHNSON, M. (2005). Coarse-to-fine n-best parsing and MaxEnt discrimi-
native reranking. InProceedings of the 43rd Annual Meeting of the Association for Compu-
tational Linguistics, 173–180, Ann Arbor, Michigan.

CLARK , S. & CURRAN, J. (2004a). The importance of supertagging for wide-coverage CCG
parsing. InProceedings of the 20th International Conference on Computational Linguistics,
282–288, Geneva, Switzerland.

REFERENCES 141

CLARK , S. & CURRAN, J. (2004b). Parsing the WSJ using CCG and log-linear models. In
Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics,
104–111, Barcelona, Spain.

CLARK , S. & CURRAN, J. (2006). Partial training for a lexicalised-grammar parser. InPro-
ceedings of the Human Language Technology Conference of the North American Chapter of
the Association of Computational Linguistics, 144–151, New York, New York.

CLARK , S., CURRAN, J. & OSBORNE, M. (2003). Bootstrapping PoS taggers using unlabelled
data. InProceedings of the 7th conference on Natural language learning at Human Language
Technology Conference of the North American Chapter of the Association of Computational
Linguistics, 49–55, Edmonton, Canada.

COHN, D.A., ATLAS, L. & L ADNER, R.E. (1994). Improving generalization with active learn-
ing. Machine Learning, 15(2), 201–221.

COLLINS, M. (1999).Head-Driven Statistical Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania.

COLLINS, M. (2004). Parameter estimation for statistical parsing models: Theory and practice
of distribution-free methods. In H. Bunt, J. Carroll & G. Satta, eds.,New developments in
Parsing Technology, 19–55, Kluwer Academic Publishers, Norwell, MA.

COLLINS, M. & D UFFY, N. (2002). New ranking algorithms for parsing and tagging:Kernels
over discrete structures, and the voted perceptron. InProceedings of the 40th Annual Meeting
on Association for Computational Linguistics, 263–270, Philadelphia, Pennsylvania.

COLLINS, M. & ROARK, B. (2004). Incremental parsing with the perceptron algorithm. In
Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, 111–
118, Barcelona, Spain.

COPESTAKE, A. (2003).Report on the Design of RMRS. Technical Report D1.1a, Computer
Laboratory, University of Cambridge.

DALRYMPLE , M. (2006). How much can part-of-speech tagging help parsing? Natural Lan-
guage Engineering, 12(4), 373–389.

ELWORTHY, D. (1994). Does baum-welch re-estimation help taggers? InProceedings of the
4th Conference on Applied Natural Language Processing, 53–58, Stuttgart, Germany.

GILDEA , D. (2001). Corpus variation and parser performance. InProceedings of the 6th con-
ference on Empirical Methods in Natural Language Processing, 167–202, Pittsburgh, PA.

GROVER, C., CARROLL, J. & BRISCOE, E.J. (1993).The Alvey Natural Language Tools
grammar (4th Release). Technical Report 284, Computer Laboratory, University of Cam-
bridge.

HOCKENMAIER, J. (2003).Data and models for statistical parsing with Combinatory Catego-
rial Grammar. Ph.D. thesis, School of Informatics, The University of Edinburgh.

142 REFERENCES

HWA , R. (1999). Supervised grammar induction using training data with limited constituent
information. InProceedings of the 37th annual meeting of the Association for Computational
Linguistics on Computational Linguistics, 73–79, College Park, Maryland.

INUI , K., SORNLERTLAMVANICH , V., TANAKA , H. & TOKUNAGA , T. (1997). A new for-
malization of probabilistic GLR parsing. InProceedings of the 5th International Workshop
on Parsing Technologies, 123–134, Cambridge, MA.

JOHANSSON, S., ATWELL , R., GARSIDE, R. & LEECH, G. (1986).The tagged LOB corpus:
user’s manual. Norwegian Computing Centre for the Humanities, Bergen.

JURAFSKY, D. & M ARTIN , J. (2000).Speech and Language Processing. Prentice-Hall, Upper
Saddle River, NJ, USA.

KAPLAN , R. & K ING, T. (2003). Low-level mark-up and large-scale LFG grammar processing.
In Proceedings of the 8th International Lexical Functional Grammar Conference, 238–249,
Albany, NY.

KAPLAN , R., RIEZLER, S., KING, T., MAXWELL , J., VASSERMAN, A. & CROUCH, R.
(2004). Speed and accuracy in shallow and deep stochastic parsing. In Proceedings of the
Human Language Technology Conference and the 4th Annual Meeting of the North American
Chapter of the Association for Computational Linguistics, 97–104, Boston, MA.

K ING, T., CROUCH, R., RIEZLER, S., DALRYMPLE , M. & K APLAN , R. (2003). The PARC
700 Dependency Bank. InProceedings of the 4th International Workshop on Linguistically
Interpreted Corpora at the 10th Conference of the European Chapter of the Association for
Computational Linguistics, 1–8, Budapest, Hungary.

K IPPS, J. (1989). Analysis of Tomita’s algorithm for general context-free parsing. InProceed-
ings of the 1st International Workshop on Parsing Technologies, 193–202, Pittsburgh, PA.

KLEIN , D. & M ANNING , C. (2002). A generative constituent-context model for improved
grammar induction. InProceedings of the 40th Annual Meeting of the Association for Com-
putational Linguistics, 128–135, Philadelphia, PA.

KLEIN , D. & M ANNING , C. (2003). Accurate unlexicalized parsing. InProceedings of the 41st
Annual Meeting of the Association for Computational Linguistics, 423–430, Sapporo, Japan.

KLEIN , D. & M ANNING , C. (2004). Corpus-based induction of syntactic structure:models of
dependency and constituency. InProceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, 478–485, Barcelona, Spain.

KRISTENSEN, B.B. & M ADSEN, O.L. (1981). Methods for computing LALR(k) lookahead.
ACM Transactions on Programming Languages and Systems, 3(1), 60–82.

KUDO, T., SUZUKI , J. & ISOZAKI, H. (2005). Boosting-based parse reranking with subtree
features. InProceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics, 189–196, Ann Arbor, Michigan.

LARI , K. & Y OUNG, S. (1990). The estimation of stochastic context-free grammars using the
Inside-Outside algorithm.Computer Speech and Language, 4(1), 35–56.

REFERENCES 143

L IN , D. (1998). Dependency-based evaluation of MINIPAR. InProceedings of the Workshop
on The Evaluation of Parsing Systems at the 1st International Conference on Language Re-
sources and Evaluation, Granada, Spain.

MARCUS, M.P., SANTORINI , B. & M ARCINKIEWICZ , M.A. (1993). Building a large anno-
tated corpus of English: The Penn Treebank.Computational Linguistics, 19(2), 313–330.

MCCLOSKY, D., CHARNIAK , E. & JOHNSON, M. (2006). Effective self-training for pars-
ing. In Proceedings of the Human Language Technology Conference of the North American
Chapter of the Association of Computational Linguistics, 152–159, New York, New York.

MERIALDO, B. (1994). Tagging English Text with a probabilistic model. Computational Lin-
guistics, 20(2), 155–171.

M IYAO , Y. & T SUJII, J. (2002). Maximum entropy estimation for feature forests. In Proceed-
ings of the Human Language Technology Conference, 292–297, San Diego, California.

M IYAO , Y. & T SUJII, J. (2005). Probabilistic disambiguation models for wide-coverage HPSG
parsing. InProceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics, 83–90, Ann Arbor, Michigan.

OEPEN, S. & CARROLL, J. (2000). Ambiguity packing in constraint-based parsing: practical
results. InProceedings of the 1st conference on North American chapter of the Association
for Computational Linguistics, 162–169, Seattle, WA.

OEPEN, S., TOUTANOVA , K., SHIEBER, C., MANNING , C., FLICKINGER, D. & BRANTS,
T. (2002). The LinGO Redwoods Treebank: Motivation and preliminary applications. In
Proceedings of the 19th International Conference on Computational Linguistics, 1–5, Taipei,
Taiwan.

OSBORNE, M. & B ALDRIDGE, J. (2004). Ensemble-based active learning for parse selection.
In Proceedings of the North American Chapter of the Association for Computational Lin-
guistics, 89–96, Boston, MA.

PEREIRA, F. & SCHABES, Y. (1992). Inside-outside reestimation from partially bracketed cor-
pora. InProceedings of the 30th Annual Meeting of the Association for Computational Lin-
guistics, 128–135, Newark, Delaware.

PIANO , L. (1996).Adaptation of Acquilex tagger to unknown words – release 2, University of
Cambridge Computer Laboratory, unpublished memo.

PIERCE, D. & CARDIE, C. (2001). Limitations of co-training for natural language learning
from large datasets. InProceedings of the Conference on Empirical Methods in NaturalLan-
guage Processing, 1–9, Philadelphia, PA.

PRESCHER, D. (2001). Inside-outside estimation meets dynamic EM. InProceedings of the 7th
International Workshop on Parsing Technologies, 241–244, Beijing, China.

RATNAPARKHI , A. (1999). Learning to parse natural language with maximumentropy models.
Machine Learning, 34(1–3), 151–175.

144 REFERENCES

RIEZLER, S., KING, T., KAPLAN , R., CROUCH, R., MAXWELL , J. & JOHNSON, M. (2002).
Parsing the Wall Street Journal using a lexical-functionalgrammar and discriminative estima-
tion techniques. InProceedings of the 40th Annual Meeting on Association for Computational
Linguistics, 271–278, Philadelphia, PA.

SAMPSON, G. (1995).English for the Computer. Oxford University Press, Oxford, UK.

SARKAR , A. (2001). Applying cotraining methods to statistical parsing. InProceedings of the
2nd meeting of the North American Chapter of the Association for Computational Linguistics,
1–8, Pittsburgh, PA.

SCHMID , H. & ROOTH, M. (2001). Parse forest computation of expected governors. In Pro-
ceedings of the 39th Annual Meeting of the Association for Computational Linguistics, 458–
465, Toulouse, France.

SHARMAN , R.A. (1990).Hidden Markov Model Methods for Word Tagging. Technical Report
214, IBM UK Scientific Centre, Winchester, England.

SHEN, L. & JOSHI, A. (2004). Flexible margin selection for reranking with full pairwise sam-
ples. InProceedings of the 1st International Joint Conference of Natural Language Process-
ing, 446–455, Hainan Island, China.

SIEGEL, S. & CASTELLAN , N.J. (1988).Nonparametric Statistics for the Behavioural Sci-
ences, 2nd edition. McGraw Hill, New York.

STEEDMAN, M., HWA , R., CLARK , S., OSBORNE, M., SARKAR , A., HOCKENMAIER, J.,
RUHLEN, P., BAKER, S. & CRIM , J. (2003a). Example selection for bootstrapping statis-
tical parsers. InProceedings of the Annual Meeting of the North American chapter of the
Association for Computational Linguistics, 157–164, Edmonton, Canada.

STEEDMAN, M., OSBORNE, M., SARKAR , A., CLARK , S., HWA , R., HOCKENMAIER, J.,
RUHLEN, P., BAKER, S. & CRIM , J. (2003b). Bootstrapping statistical parsers from small
datasets. InProceedings of the 10th Conference of the European Chapter of the Association
for Computational Linguistics, 331–338, Budapest, Hungary.

SU, K., WANG, J., SU, M. & CHANG, J. (1991). GLR parsing with scoring. In M. Tomita,
ed.,Generalized LR Parsing, 93–112, Kluwer Academic Publishers, Boston, MA.

TADAYOSHI , H., MIYAO , Y. & T SUJII, J. (2005). Adapting a probabilistic disambiguation
model of an HPSG parser to a new domain. InProceedings of the Second International Joint
Conference on Natural Language Processing, 199–210, Jeju Island, Korea.

TOMITA , M. (1987). An efficient augmented-context-free parsing algorithm. Computational
Linguistics, 13(1-2), 31–46.

WATSON, R. (2006). Part-of-speech models for parsing. InProceedings of the 9th Annual
CLUK Research Colloquium, Open University, Milton Keynes.

WATSON, R. & BRISCOE, E.J. (2007). Adapting the RASP system for the CoNLL07 domain-
adaptation task. InProceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007,
1170–1174, Prague, Czech Republic.

REFERENCES 145

WATSON, R., BRISCOE, E.J. & CARROLL, J. (2007). Semi-supervised training of a statisti-
cal parser from unlabeled partially-bracketed data. InProceedings of the 10th International
Workshop on Parsing Technologies, 23–32, Prague, Czech Republic.

WATSON, R., CARROLL, J. & BRISCOE, E.J. (2005). Efficient extraction of grammatical
relations. InProceedings of the 9th International Workshop on Parsing Technologies, 160–
170, Vancouver, Canada.

WEISCHEDEL, R., SCHWARTZ, R., PALMUCCI , J., METEER, M. & RAMSHAW, L. (1993).
Coping with ambiguity and unknown words through probabilistic models.Computational
Linguistics, 19(2), 361–382.

WRIGHT, J. & WRIGLEY, E. (1989). Probabilistic LR parsing for speech recognition. In Pro-
ceedings of the 1st International Workshop on Parsing Technologies, 193–202, Pittsburgh,
PA.

	743.pdf
	1 Introduction
	1.1 Natural Language Parsing
	1.1.1 Problem Definition
	1.1.2 Corpus-based Estimation
	1.1.3 Statistical Approaches

	1.2 Research Background
	1.3 Available Resources
	1.3.1 Corpora
	1.3.2 Evaluation

	1.4 Research Goals
	1.5 Thesis Summary
	1.5.1 Contributions of this Thesis
	1.5.2 Outline of Subsequent Chapters

	2 LR Parsers
	2.1 Introduction
	2.2 Finite Automata
	2.2.1 NFA
	2.2.2 DFA

	2.3 LR Parsers
	2.3.1 LR Parsing Model
	2.3.2 Types of LR Parsers
	2.3.3 Parser Actions
	2.3.4 LR Table
	2.3.5 Parsing Program
	2.3.6 Table Construction

	2.4 GLR Parsing
	2.4.1 Relationship to the LR Parsing Framework
	2.4.2 Table Construction
	2.4.3 Graph-structured Stack
	2.4.4 Parse Forest
	2.4.5 LR Parsing Program
	2.4.6 Output
	2.4.7 Modifications to the Algorithm

	2.5 Statistical GLR (SGLR) Parsing
	2.5.1 Probabilistic Approaches
	2.5.2 Estimating Action Probabilities

	2.6 RASP
	2.6.1 Grammar
	2.6.2 Training
	2.6.3 Parser Application
	2.6.4 Output Formats

	3 Part-of-speech Tag Models
	3.1 Previous Work
	3.1.1 PoS Taggers and Parsers
	3.1.2 Tag Models
	3.1.3 HMM PoS Taggers

	3.2 RASP's Architecture
	3.2.1 Processing Stages
	3.2.2 PoS Tagger

	3.3 Part-of-speech Tag Models
	3.3.1 Part-of-speech Tag Files
	3.3.2 Thresholding over Tag Probabilities
	3.3.3 Top-ranked Parse Tags
	3.3.4 Highest Count Tags
	3.3.5 Weighted Count Tags
	3.3.6 Gold Standard Tags
	3.3.7 Summary

	3.4 Part-of-speech Tagging Performance
	3.4.1 Evaluation
	3.4.2 Results

	3.5 Parser Performance
	3.5.1 Evaluation
	3.5.2 Results

	3.6 Discussion

	4 Efficient Extraction of Weighted GRs
	4.1 Inside-Outside Algorithm (IOA)
	4.1.1 Background
	4.1.2 The Standard Algorithm
	4.1.3 Extension to LR Parsers

	4.2 Extracting Grammatical Relations
	4.2.1 Modification to Local Ambiguity Packing
	4.2.2 Extracting Grammatical Relations
	4.2.3 Problem: Multiple Lexical Heads
	4.2.4 Problem: Multiple Parse Forests

	4.3 The EWG Algorithm
	4.3.1 Inside Probability Calculation and GR Instantiation
	4.3.2 Outside Probability Calculation
	4.3.3 Related Work

	4.4 EWG Performance
	4.4.1 Comparing Packing Schemes
	4.4.2 Efficiency of EWG
	4.4.3 Data Analysis
	4.4.4 Accuracy of EWG

	4.5 Application to Parse Selection
	4.6 Discussion

	5 Confidence-based Training
	5.1 Motivation
	5.2 Research Background
	5.2.1 Unsupervised Training
	5.2.2 Semisupervised Training

	5.3 Extant Parser Training and Resources
	5.3.1 Corpora
	5.3.2 Extant Parser Training
	5.3.3 Evaluation
	5.3.4 Baseline

	5.4 Confidence-based Training Approaches
	5.4.1 Framework
	5.4.2 Confidence Measures
	5.4.3 Self-training

	5.5 Experimentation
	5.5.1 Semisupervised Training
	5.5.2 Unsupervised Training

	5.6 Discussion

	6 Conclusion
	References

