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Summary

Program errors are hard to detect and are costly, to both programmers who spend sig-
nificant efforts in debugging, and for systems that are guarded by runtime checks. Static
verification techniques have been applied to imperative and object-oriented languages, like
Java and C#, for checking basic safety properties such as memory leaks. In a pure func-
tional language, many of these basic properties are guaranteed by design, which suggests
the opportunity for verifying more sophisticated program properties. Nevertheless, few
automatic systems for doing so exist. In this thesis, we show the challenges and solutions
to verifying advanced properties of a pure functional language, Haskell. We describe a
sound and automatic static verification framework for Haskell, that is based on contracts
and symbolic execution. Our approach gives precise blame assignments at compile-time
in the presence of higher-order functions and laziness.

First, we give a formal definition of contract satisfaction which can be viewed as a denota-
tional semantics for contracts. We then construct two contract checking wrappers, which
are dual to each other, for checking the contract satisfaction. We prove the soundness
and completeness of the construction of the contract checking wrappers with respect to
the definition of the contract satisfaction. This part of my research shows that the two
wrappers are projections with respect to a partial ordering crashes-more-often and fur-
thermore, they form a projection pair and a closure pair. These properties give contract
checking a strong theoretical foundation.

As the goal is to detect bugs during compile time, we symbolically execute the code
constructed by the contract checking wrappers and prove the soundness of this approach.
We also develop a technique named counter-example-guided (CEG) unrolling which only
unroll function calls on demand. This technique speeds up the checking process.

Finally, our verification approach makes error tracing much easier compared with the ex-
isting set-based analysis. Thus equipped, we are able to tell programmers during compile-
time which function to blame and why if there is a bug in their program. This is a break-
through for lazy languages because it is known to be difficult to report such informative
messages either at compile-time or run-time.
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Chapter 1

Introduction

Program errors are common in software systems, including those that are constructed
from functional languages. For greater software reliability, such errors should be re-
ported accurately and detected early during program development. Contract checking
(both static and dynamic) has been widely used in procedural and object-oriented lan-
guages [LN98, FLL+02, BCC+03, BLS04]. The difficulty of contract checking in func-
tional languages lies in the presence of advanced features such as higher-order func-
tions and laziness. However, dynamic checking of contracts for higher-order functions
has been studied by [FF02, BM06, FB06, HJL06]. Recently, hybrid1 contract check-
ing [Fla06, KTG+06, KF07, GF07] for functional languages has also been proposed.

Inspired by the idea of the contract semantics [FF02, BM06], in this thesis, we describe
a sound and automatic static verification tool for Haskell, that is based on contracts and
symbolic execution. Our approach gives precise blame assignments at compile-time in the
presence of higher-order functions and laziness. Consider:

f :: [Int] -> Int

f xs = head xs ‘max‘ 0

where head is defined in the module Prelude as follows:

head :: [a] -> a

head (x:xs) = x

head [] = error "empty list"

If we have a call f [] in our program, its execution will result in the following error
message from the runtime system of the Glasgow Haskell Compiler (GHC):

Exception: Prelude.head: empty list

This gives no information on which part of the program is wrong except that head has
been wrongly called with an empty list. This lack of information is compounded by the

1A static contract checking followed by a dynamic contract checking.

17
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fact that it is hard to trace function calling sequence at run-time for lazy languages, such
as Haskell.

The programmers’ intention is that head should not be called with an empty list. To
achieve this, programmers can give a contract to the function head. Contracts are imple-
mented as pragmas:

{-# CONTRACT head :: {s | not (null s)} -> {z | True} #-}

where not and null are just ordinary boolean-valued Haskell functions:

null :: [a] -> Bool

null [] = True

null xs = False

not True = False

not False = True

This contract places the onus on callers of head to ensure that the argument to head

satisfies the expected precondition. With this contract, our compiler would generate the
following error message (by giving a counter-example (f [])) when checking the definition
of f:

Error: f [] calls head

which fails head’s precondition!

Suppose we change f’s definition to the following:

f xs = if null xs then 0

else head xs ‘max‘ 0

With this correction, our compiler will not give any more warning as the precondition of
head is now fulfilled.

Our goal is to detect crashes in a program where a crash is informally defined as an unex-
pected termination of a program (i.e. a call to error). Divergence (i.e. non-termination)
is not considered to be a crash.

1.1 Contributions

In this thesis, we develop a compile-time checker to highlight a variety of program errors,
such as pattern matching failure and integer-related violations (e.g. division by zero,
array bound checks), that are common in Haskell programs. We make the following
contributions:

1. Our system is the first static checker for a lazy functional language, intended for
ordinary programmers. It has the following features:
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• We check contract violation statically (like ESC/Java [FLL+02]), rather than
dynamically (like run-time checking approaches [FF02, HJL06]).

• We check each program in a modular fashion on a per-function basis. We
check the contract of a function f using mostly the contracts of functions that
f calls, rather then by looking at their actual definitions. This modularity
property is essential for the system to scale.

• Contracts are written in Haskell itself so that programmers do not need to
learn a new language.

• We design a verification system for a lazy language. The framework can be
easily tuned to verify programs written in a strict language, but not vice versa.

• We can detect and locate bugs in the presence of higher-order functions
and arbitrary data structures (Chapter 4)

Few of these features are individually unique, but no system known to us offers
them in combination.

2. We give a crisp, declarative specification for what it means for a term to satisfy a
contract (Section 4.3), independent of the techniques used (theorem provers, run-
time checks, whatever) to verify that it does indeed satisfy it. This is unusual,
with the notable exception of Blume & McAllester’s work [BM06]. However, unlike
Blume & McAllester (and most other related work on higher-order contracts), we
focus on static verification and target a lazy language. To the best of our knowledge,
this is the first attempt for static checking of higher-order functions with contracts.

3. Our contracts themselves contain unrestricted Haskell terms. That means arbitrary
functions can be used in contracts, including:

• higher order functions

• recursive functions

• partial functions

which are not supported by most automatic verification tools including popular
ones such as ESC/Java [FLL+02] and Spec# [BLS04]. This hugely increases the
expressiveness of the specification language and allows sophisticated properties to be
conveniently expressed (Chapter 2). This also means we tackle head-on the question
of what happens if the contract itself diverges (Section 5.2) or crashes (Section 5.3).

4. Despite these complications, we are able to give a very strong theorem express-
ing the soundness and completeness of contract wrappers as compared to contract
satisfaction (Chapter 5). Our framework neatly accommodates some subtle points
that others have encountered, including: ensuring that all contracts are inhabited
(Section 4.3.4) and the Any contract (Section 4.3.3).

5. We develop a concise notation (⊲ and ⊳) for describing contract checking, which
enjoys many useful properties (Section 5.5) for presenting a relatively-simple proof
of contract wrappers (Chapter 6).
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6. Unlike the traditional verification condition (VC) generation2 (in some meta lan-
guage) approach that solely relies on a theorem prover to verify it, we treat precondi-
tions and postconditions as boolean-valued functions and check safety properties us-
ing symbolic simplification that adheres to Haskell’s semantics instead (Section 7.1).
This way, we have better control of the whole verification process and whenever nec-
essary, we can ask an external theorem prover for assistance (Section 7.1.2).

7. We exploit a counter-example guided (CEG) unrolling technique to assist the sym-
bolic simplification process (Section 7.2). CEG approach is used widely for ab-
straction refinement in the model checking community. However, to the best of our
knowledge, this is the first time CEG is used in determining which function call to
be unrolled.

8. We give a trace of functional calls that leads to a crash at compile-time, whilst such
traces are usually offered by debugging tools at run-time. A counter-example is
generated and reported together with its function calling trace as a warning message
for each potential bug (Section 7.3).

9. We show that this symbolic-simplification approach is indeed sound w.r.t. the spec-
ification (unlike, say, ESC/Java) (Section 7.1). An induction approach used for
contract checking of recursive functions is sound and we give formal definition and
proof of soundness (Section 5.4). Our approach can verify advanced properties such
as sorting (Section 8.3) and AVL trees (Section 8.5).

10. We integrate it to one branch of the Glasgow Haskell Compiler (GHC) so that the
verification tool can deal with full Haskell. We evaluate our implementation on
small but interesting real-life programs (Chapter 9).

1.2 Thesis Roadmap

This thesis is divided into three parts:

• Appetiser. Chapter 1 and 2 give a programmer’s-eye view of the system and
Section 2.3 describes the intuition of how static contract checking works. Section 1.3
(Technical Background) shows where we position ourselves in the area of program
verification. Readers, who are familiar with program verification or bug detection,
may skip Section 1.3.

• Main Course. Chapter 3–9 contains all the details of the static contract checking
framework where Chapter 4-7 are the most substantial chapters of this thesis.

• Dessert. This thesis opens a new and fertile research area on static contract check-
ing. Chapter 10 shows possible future work that can be done to enhance the current
system. As there are many approaches in program verification, Chapter 11 justifies
that our approach is new and plausible by comparing with closely related work in

2The computation of a VC is similar to the computation of a weakest precondition.
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detail. We also suggest possible future collaboration with some of the related work.
We put the related work chapter in Part III due to the fact that readers may have to
understand many technical details of our system to appreciate the differences which
may be small but crucial.

For the ease of reading, a page number reference to definitions, theorems and lemmas is
given as a superscript.

1.3 Technical Background

Software reliability is a serious problem for modern society. We are in contact with
software everyday, but this software often contains serious bugs. This is partly because
software is getting more and more complex, and partly because program verification
techniques are not advanced enough.

There are two reasons that make a functional language the language of choice for building
complex and reliable software:

† It makes programming easier by introducing high-level features such as higher-order
functions, abstract data types, polymorphism, laziness, etc.

‡ It avoids the side effects caused by pointers and aliasing which make imperative
languages (e.g. C-like languages) much more error prone.

Nevertheless, functional programmers still spend tremendous time in debugging their pro-
grams. From the 2005 Glasgow Haskell Compiler (GHC) survey3, the most-requested fea-
ture, after performance improvement, is some kind of debugger. About two decades after
the design of ML/SML [MTH89] and one decade after the appearance of Haskell [Tea98],
there is still no compiler that supports static automatic verification of these high-level lan-
guages. The trouble is that these high-level languages support advanced features (such as
higher-order functions, complex recursions, laziness) that make programming easier, but
make verification harder.

Program verification dates back to Hoare logic [Hoa69] and its extensions [EMC77, Apt81,
DJ84, GCH89, Goe85]. Researchers are actively involved in automatically verifying im-
perative programs at compile-time. Some examples include ESC/Java [FS01, FLL+02]
for Java, Spec♯ [BLS04] for C♯, and SLAM [BR02] for C. Formal reasoning for mutable
data structures has also been studied, for example, Separation Logic [Rey02, ORY01] has
been used in reasoning for low-level C-like languages. But most safety problems they try
to tackle are avoided by the design of a functional language as mentioned earlier at the
beginning of Section 1.3, hence very few results could be applied to verifying functional
languages. We aim to study sophisticated safety properties of functional programs. In
this thesis, we convert state monads to a core language which is similar to System F so
that we do not have to handle states explicitly.

In this section, we give a brief overview of the world of correctness checking of functional
programs along two axes:

3http://www.haskell.org/ghc/survey2005-summary.html
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(1) level of rigorous in static checking (Section 1.3.1);

(2) compile-time to run-time (Section 1.3.2).

We only aim to give a general idea on the position of our work. More detailed comparisons
of our work with other closely related works can be found in Chapter 11 (Related Work).

1.3.1 Degree of Static Verification

Static checking can improve software productivity because the cost of correcting an error is
reduced dramatically if it is detected early. Figure 1.1 (adapted from [FLL+02]) compares
static checkers on two important dimensions: the degree of error coverage obtained by
running the tool and the cost of running the tool.

T y p eC h e c k i n g D M L
S C C E S C / J a v a T h e o r e mP r o v i n g

d e c i d a b l e c e i l i n g
e f f o r t

c o v e r a g e

Figure 1.1: Degree of Verification

Our static contract checking (SCC) framework is close to the extended static checking
(ESC) framework. However, existing ESC tools are all unsound (represented with dotted
circle) while ours is sound.

At the lower left corner are the static checking techniques that are widely used, which re-
quire only modest effort, but catch only a limited class of errors, for example, conventional
type checkers.

Another well-known static checking technique is dependent type checking, which is un-
decidable in general. However, if we restrict the constraints used in the dependent types
to linear inequalities over integer domain, the dependent type checking is decidable. For
example, a language that supports decidable dependent type checking is dependent ML
(DML) [XP99].
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At the top right corner are the most sophisticated program verification techniques which
may cover all possible safety checking, for example, Isabelle/HOL [tea06b] and Coq [tea06a].
However, it may take both the theorem prover and programmers (who may have to supply
necessary theorems) a great amount of effort to do the proof.

Hindley-Milner Type Checking

A type of a function is a general specification to the function. For example:

(+) :: Int -> Int -> Int

(/) :: Int -> Int -> Int

both functions (+) and (/) take two integers as input and return an integer as output.
The type of the function does not specify what the function does (whether addition or
division). A type checker reports an error during compile-time when it encounters an
expression such as 1 + True because the second argument True has type Bool which
violates the required type Int. However, an expression (5 + 0) is safe while (5 / 0)

will crash, though both of them are well-typed.

Dependent Type Checking over Restricted Constraint Domains

Dependent type checkers allow more constraints to be specified than conventional type
checkers, for example:

append [] ys = ys

append (x:xs) ys = x : append xs ys

withtype {m,n:Nat} => [a](m) -> [a](n) -> [a](m+n)

The Hindley-Milner type of append is [a] -> [a] -> [a] which says that the function
append takes two lists of elements of type a and return a list of type a. The dependent type
[a](m) -> [a](n) -> [a](m+n) makes the original Hindley-Milner type depend on the
value of m and n which refer to the length of each input list. The extra notation {m,n:Nat}

says that the m and n are universally quantified and they denote natural numbers. So the
dependent type of the function append says that the function takes two lists of length
m and n respectively and return a list whose length is the sum of the lengths of the two
input lists.

Consider the following functions:

(++) = append

rev [] = []

rev (x:xs) = rev xs ++ [x]

withtype {m:Nat} => [a](m) -> [a](m)

length [] = 0

length (x:xs) = 1 + length xs

withtype {m:Nat} => [a](m) -> Int(m)
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The function rev reverses a list, the function length calculates the length of a list and
the function ++ (which can be used in infix form) appends two lists. With the dependent
types, assuming xs and ys are safe, a dependent type checker should be able to tell that
the following expression

case length (rev (xs ++ ys)) == length (rev (ys ++ xs)) of

True -> xs

False -> error "huh"

is safe because length (rev (xs ++ ys)) == length (rev (ys ++ xs)) always returns
True and the call to “error” cannot be reached.

Extended Static Checking

Extended static checkers extend static type checkers by allowing more expressive con-
straints to be specified, so that they can catch more errors. The Extended Static Check-
ing (ESC) approach shares the same goal as dependent type checking: to check more
properties of a program than the basic type checking. Compare with DML, ESC relaxes
the form of constraints to be verified. It allows arbitrary pure functions to be used in the
specifications. Consider an example in ESC/Haskell, which reflects the general ESC style
of annotation.

foo x y @ requires { prime x > sqrt y }

foo x y @ ensures { $res == x*2 }

foo x y = case prime x > sqrt y of

True -> x*2

False -> error "foo"

where $res denotes the result of the function foo. We can see that arbitrary pure func-
tions can be used in the specification so ESC is undecidable. In the above example, no
tool can statically prove prime x > sqrt y for arbitrary x and y.

Tools that fall into this category include ESC/Modula-3 [LN98], ESC/Java [FLL+02],
Spec# [BLS04] and ESC/Haskell [Xu06]. ESC/Modula-3 and ESC/Java are unsound
while Spec# is sound because it requires invariants to be given. ESC/Haskell is sound
and forms part of this thesis.

Theorem Proving

In the upper right corner of Figure 1.1 is full functional program verification, which
theoretically catches all errors, but is extremely expensive. For example:

taut xs ys = case (rev (xs ++ ys) == rev ys ++ rev xs) of

True -> xs

False -> error "taut"
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We know that if given two safe finite lists xs and ys, the test

rev (xs ++ ys) == rev ys ++ rev xs -- A Theorem for finite lists!

should always evaluate to True because it is a tautology. However, in order to verify
this tautology, a theorem prover may require programmers to provide some non-trivial
lemmas. In the above case, a lemma stating the associativity of the function ++ is needed:

lemma assocAppend xs ys zs =

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

The theorem prover has to prove the lemma based on the definition of (++) before applying
the lemma to verify the theorem. Often, to prove one lemma, more lemmas have to be
provided and proved. This whole process of proving one theorem can be very expensive.

Nevertheless, a theorem prover can be used as an assisting tool for static contract checking.
This is illustrated in Section 7.1.2 where we use an external theorem prover to simplify
expressions involving arithmetic.

1.3.2 Static Contract Checking vs Dynamic Contract Checking

Programmers can specify a property that they expect a function to have in the form of
a contract. If all functions in a program satisfy their corresponding contracts, a pro-
gram should not give any unexpected error during run-time. However, in general, not all
contract violations can be detected during compile-time. An alternative approach is to
check contract satisfaction at run-time and report failures if any run-time data, that a
function takes, violates the function’s contract. This approach is called dynamic contract
checking. Findler and Felleisen [FF02] adopt this approach and have given a dynamic con-
tract checking algorithm for Scheme, an untyped strict functional language. Research on
dynamic assertion checking includes [VOS+05, HJL06, CL07]. However, dynamic check-
ing suffers from two drawbacks. First, it consumes cycles that could otherwise perform
useful computation. More seriously, dynamic checking provides only limited coverage -
specifications are only checked on data values and code paths of actual executions. Thus,
dynamic checking often results in incomplete and late detection of defects.

Flanagan [Fla06] has proposed a hybrid contract checking scheme: a static contract check-
ing followed by a dynamic contract checking. (He uses the name hybrid type in [Fla06]
because it refers to hybrid refinement type.) Hybrid contract checking can detect defects
statically (whenever possible) and dynamically (only when necessary).

In this thesis, we focus on static contract checking and we can turn contracts that cannot
be checked statically into dynamic contract checks. However, this is easy in the strict
setting and is non-trivial in the lazy setting. Some work on lazy assertions [CMR03, CH06]
has been proposed, but there are still some difficult open problems left to be solved. We
will elaborate more in Section 10.6.
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Chapter 2

Overview of Static Contract
Checking

The type of a function constitutes a partial specification to the function. For exam-
ple, inc :: Int -> Int says that inc is a function that takes an integer and returns
an integer. A contract of a function gives more detailed specification. For example:
{-# CONTRACT inc :: {x | x > 0} -> {r | r > x} #-} says that the function inc

takes a positive value and returns a value that is greater than the input. A contract
can therefore be viewed as a refinement to a type, so it is also known as refinement type
in [FP91, Dav97, Fla06].

This thesis describes a system that allows a programmer to write a contract on some (but,
like type signatures, not necessarily all) definitions, and then statically checks whether
the definition satisfies the contract. This check is undecidable, and our system may give
the result “definitely satisfies”, “definitely does not satisfy”, or “don’t know”. In the
latter two cases we emit information that helps to localise the (possible) bug. We begin,
however, by giving the flavour of contracts themselves with various examples. Section 4
gives formal semantics of contracts.

2.1 Expressiveness of the Specification Language

Consider a simple example:

div :: Float -> Float -> Float

div x y = case y == 0 of

True -> error "divide by zero"

False -> x / y

where the operator (/) does the primary division job. The function div crashes when
taking an argument that is equal to 0. Programmers can give the function div a contract:

{-# CONTRACT div :: {x | True} -> {y | y /= 0} -> {z | True} #-}

27
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The contract of div says that the first argument can be any number (indicated by the
weakest constraint True) and the second argument should not be zero; if these require-
ments are satisfied, the function should produce a number (again, we do not care what
number it is). With this contract declaration, the compiler can tell (div 5 0) is a bug
without exploring the definition of div.

Recall the earlier example:

{-# CONTRACT inc :: {x | x > 0} -> {z | z > x} #-}

We see that the x in the precondition is used in the postcondition. Here, we assume that
the scope of x includes the RHS of -> so that we can relate the input and the output of
a function.

We now show the expressiveness of contracts with examples; each subsection focuses on
a particular feature.

2.1.1 Recursive Functions Called in Contracts

Programmers often find that they use a data type with many constructors, but at some
specialised contexts in the program only a subset of these constructors is expected to
occur. Such a data type can also be recursive. For example, in a software module of
the Glasgow Haskell Compiler (GHC) that is used after type checking, we may expect
that types would not contain mutable type variables. Under such a scenario, certain
constructor patterns may be safely ignored. We use a simple example to illustrate such
scenario by defining a datatype T and a predicate noT1 as follows.

data T = T1 Bool | T2 Int | T3 T T

noT1 :: T -> Bool

noT1 (T1 _) = False

noT1 (T2 _) = True

noT1 (T3 t1 t2) = noT1 t1 && noT1 t2

The function noT1 returns True when given any data structure of type T in which there
is no data node with a T1 constructor. We may have a consumer:

sumT :: T -> Int

{-# CONTRACT sumT :: {x | noT1 x} -> {z | True} #-}

sumT (T2 a) = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

which requires that the input data structure does not contain any T1 node. We may also
have a producer like:
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rmT1 :: T -> T

{-# CONTRACT rmT1 :: {x | True} -> {z | noT1 z} #-}

rmT1 (T1 a) = case a of

True -> T2 1

False -> T2 0

rmT1 (T2 a) = T2 a

rmT1 (T3 t1 t2) = T3 (rmT1 t1) (rmT1 t2)

We know that for all crash-free t of type T, a call (sumT (rmT1 t)) will not crash. Thus,
by allowing a recursive predicate (e.g. noT1) to be used in the contracts, we can achieve
such a goal.

2.1.2 Higher-Order Functions Called in Contracts

Now consider a higher-order function filter whose result is asserted with the help of
another recursive higher-order function all.

filter :: (a -> Bool) -> [a] -> [a]

{-# CONTRACT filter :: {f | True} -> {x | True} -> {z | all f z} #-}

filter f [] = []

filter f (x:xs’) = case (f x) of

True -> x : filter f xs’

False -> filter f xs’

all :: (a -> Bool) -> [a] -> Bool

all f [] = True

all f (x:xs) = f x && all f xs

(&&) True x = x

(&&) False x = False

Note that in the contract of filter, the variable f in the parameter contract can be used
in the result contract. In general, we assume the scope of bound variables in contracts
extends over the RHS of the ->.

2.1.3 Contracts for Higher Order Function Parameters

The contract notation is more expressive than the requires, ensures notation used in
our initial work [Xu06], because it scales properly to higher order functions. Consider an
example adapted from [BM06]:

f1 :: (Int -> Int) -> Int

{-# CONTRACT f1 :: ({x | True} -> {y | y >= 0}) -> {z | z >= 0} #-}

f1 g = (g 1) - 1

f2 = f1 (\x -> x - 1)
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The contract of f1 says that if f1 takes a function, which returns a natural number when
given any integer, the function f1 itself returns a natural number.

The Findler-Felleisen algorithm in [FF02] (a dynamic contract checking algorithm) can
detect a violation of the contract of f1, however, it cannot tell the argument of f1 in
the definition of f2 fails f1’s precondition due to lack of evidence during run-time. On
the other hand, the Sage system in [KTG+06] (a hybrid contract checking system) can
detect the failure in f2 statically, and can report contract violation of f1 at run-time. Our
system can report both failures at compile-time with the following informative messages:

Error: f1’s postcondition fails

because (g 1) >= 0 does not imply

(g 1) - 1 >= 0

Error: f2 calls f1

which fails f1’s precondition

2.1.4 Functions without Contracts

A special feature of our system is that it is not necessary for programmers to annotate
all the functions. There are two reasons why a programmer may choose not to annotate
a function with contracts:

1. The programmer is lazy.

2. There is no contract that is more compact than the function definition itself.

Examples of the second case are the function (&&), null and even a recursive function
like noT1 in Section 2.1.

If a function, say f , which may be recursive, does not have a contract annotation, we
assume programmers want to check whether f satisfies the trivial contract {x | True}.

It is possible to infer simple contracts for non-recursive functions, such as head, by col-
lecting conditions that do not leading to a crash. It is much harder to infer contracts for
recursive functions. Contract inference is not in the scope of this thesis; we discuss some
existing work on specification inference in Section 11.5.

2.1.5 Laziness

A conservative contract may cause false alarms especially in the presence of laziness. For
example:

fst (a,b) = a

f3 xs = (null xs, head xs)

f4 xs = fst (f3 xs)
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We could give f3 the following contract:

{-# CONTRACT f3 :: {xs | not (null xs)} -> {z | True} #-}

With this contract, our system may report the following error message when checking the
definition of f4.

Error: (f4 []) fails f3’s precondition

However, the call fst (f3 xs) is safe in a lazy language even if xs has value [] because
the call to head [] will not be invoked.

One way to reduce such false alarms is to inline f3 and fst so that we have fst (f3 xs)

simplified to null xs and we know f4 is safe. Although inlining can reduce false alarms
due to laziness, if the size of the lazy function is big, or the function is recursive, the
inlining strategy breaks down. For example:

fstN :: (Int, Int) -> Int -> Int

fstN (a, b) n = case n > 0 of

True -> fstN (a + 1, b) (n - 1)

False -> a

g2 = fstN (5, error "fstN") 100

We need to inline fstN for 100 times to know g2 is safe.

A better way to reduce the false alarms due to laziness is to introduce a special contract
Any, which every expression satisfies. We can give function fstN the following contract:

{-# CONTRACT fstN :: ({x | True}, Any) -> {n | True} -> {z | True} #-}

The contract of fstN says that it does not care what the second component of the argu-
ment is, as long as the first component is crash-free, the result is crash-free. Here, with
the contract Any, without inlining any function, our system can tell that g2 is safe.

This means we give a crash (error "msg") a contract Any, while in [BM06] an expression
that unconditionally crashes satisfies no contract. This is one of the key differences in
designing the contract semantics.

2.1.6 Data Constructor Contract

In Section 2.1.5, we gave fst’s argument the contract ({x | True}, Any); that is, the
argument should be a pair whose first component satisfies {x | True}, and whose sec-
ond satisfies Any. We generalise this form for any user-defined data constructor so that
programmers can give a contract to the sub-components of any data constructor. For
example, we can use the list constructor (:) to create a contract like this:

{x | x > 0} : {xs | all (<0) xs}
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which says that the first element in the list is positive while the rest are all negative. We
may also have this:

{x | x > 0} : {y | y > 0} : Any

which says that the first two elements are positive while the rest can be anything (i.e.
may crash). There are two things to note:

1. The contract Any and the contract {x | True} are different: all expressions satisfy
Any while only crash-free expressions satisfy {x | True}. The difference is explained
in detail in Section 4.3 and Section 5.1.2.

2. Although we can give a contract to a component of a data structure, it is different
from a recursive contract (Section 10.2).

We allow any user-defined data constructors to be used in declaring a contract. For
example:

data A = A1 Int Bool | A2 A

f5 :: A -> Int

{-# CONTRACT f5 :: A1 {x | x > 0} {y | y == True} -> {z | z > x} #-}

f5 (A1 x y) = case y of

True -> x + 1

False -> error "f4"

As we allow data constructors to be used in contracts, we can replace the contract
{y | y == True} by True as True itself is a nullary constructor. There are two things
to note:

1. In the contract of f5, the data constructor A1 is used, whereas in the type specifi-
cation the data type A is used.

2. A call (f5 (A2 ...)) fails the precondition of f5.

Moreover, data constructor A2 can be used in constructing contracts as well. For example:

{-# CONTRACT f6 :: A2 {x | f5 x > 0} -> {z | True} #-}

Function f6 expects an input satisfying (A2 (A1 {x | x > 0} True)). Note that the
constructor contract only specifies properties for a top-level data constructor. To specify
properties recursively over a data structure, we need a recursive contract, which is one of
our future enhancements (Section 10).
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2.1.7 Partial Functions in Contracts

A partial function is one that may crash or diverge. For example, function head, which
crashes when given an argument []. Since we allow arbitrary Haskell code in contracts,
what are we to say about contracts that crash or diverge? One possibility is to simply
exclude all such contracts – but excluding divergence (in a statically-checkable system)
requires a termination checker, and excluding functions like head is extremely restrictive.
For example:

head :: [a] -> a

{-# CONTRACT head :: {x | not (null x)} -> {z | True} #-}

head (x:xs) = x

head [] = error "empty list"

headPlus :: [Int] -> Int

{-# CONTRACT headPlus :: {xs | not (null xs)}

-> {z | z > head xs} #-}

headPlus [] = error "Urk"

headPlus (x:xs) = x+1

Here the postcondition uses head (which may crash), but that seems entirely reasonable
in view of the precondition that xs is non-empty. Nevertheless, such a contract is rejected
by [BM06], because of the call to head.

Our approach is to permit divergence in contracts (which avoids the requirement for a
termination checker), but to require them to be “crash-free”. Our definition of crash-
free-ness for contracts takes account of dependency, and hence is much more liberal than
requiring each Haskell term in the contract to be independently crash-free (which excludes
head). This liberality is, we believe, key to making contracts usable in practice. We discuss
crash-freeness of contracts in §5.3.1 and divergence in §5.2.1.

2.1.8 Contract Synonym

In previous sections, we used the contract {x | True} at many places. In our system,
we allow programmers to define contract synonyms which are similar to the idea of type
synonyms. For example, we may have:

{-# CONTRACT Ok = {x | True} #-}

{-# CONTRACT Pos = {x | x > 0} #-}

{-# CONTRACT Nat = {x | x >= 0} #-}

{-# CONTRACT NotNull = {xs | not (null xs)} #-}

{-# CONTRACT head :: NotNull -> Ok #-}

head (x:xs) = x

In this thesis, a contract synonym is just a shorthand. In future, we may allow contract
synonyms to have parameters.
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2.2 Three Outcomes from Our System

Some properties that our system may attempt to check can either be undecidable or
difficult to verify at compile-time. For example:

g1 :: Int -> Int

{-# CONTRACT g1 :: Ok -> Ok #-}

g1 x = case (prime x > square x) of

True -> x

False -> error "g1"

where prime gives the xth prime number and square gives x2. Most theorem provers
including ours are unable to tell the condition prime x > square x always holds or not
(in fact, it does not hold), so we report a potential crash. For another example:

g2 :: [a] -> [a] -> [a]

{-# CONTRACT g2 :: Ok -> Ok -> Ok #-}

g2 xs ys = case (rev (xs ++ ys) == rev ys ++ rev xs) of

True -> xs

False -> error "g2"

Some theorem provers may be able to prove the validity of the theorem:

rev (xs ++ ys) == rev ys ++ rev xs

for all well-defined xs and ys. However, this is often at high cost and may require extra
lemmas from programmers such as the associativity of the append operator ++.

As it is known to be expensive to catch all errors in a program, our system chooses only
to provide meaningful messages to programmers based on three possible outcomes after
checking for potential crashes for each function definition (say f). They are:

(a) Definitely safe. If the precondition of f is satisfied, any call to f with crash-free
arguments will not crash.

(b) Definite bug. Any call to f with crash-free arguments, satisfying the declared
precondition of f , crashes or loops.

(c) Possible bug. The system cannot decide which of (a) or (b) is the case.

For the last two cases, a trace of function calls that leads to a (potential) crash together
with a counter-example1 will be generated and reported to the programmer. We make a
distinction between definite and possible bugs, in order to show the urgency of the former
and also because the latter may not be a real bug.

1Programmers can set the number of counter-examples they would like to see.
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2.3 The Plan for Verification

It is all very well for programmers to claim that a function satisfies a contract, but how
can we verify that claim statically (i.e. at compile time)? The usual approach is to extract
verification conditions (VC) from the program that faithfully embody the semantics of
the language and send those VCs to a theorem prover. If we get answer“Yes”, we know a
function satisfies its contract. But if we get answer “No”, it is hard to tell which function
to blame and why.

Our overall plan, which is similar to that of Blume and McAllester [BM06], is as follows.

• Our overall goal is to prove that the program does not crash, so we must first say
what programs are, and what it means to “crash” (Chapter 3).

• Next, we give a semantic specification for what it means for a function f to “satisfy
a contract” t, written f ∈ t (Chapter 4).

• From a function definition f = e we form a term e ⊲ t pronounced “e ensures t”.
This term behaves just like e except that

(a) if e disobeys t then the term crashes;

(b) if the context uses e in a way not permitted by t then the term loops.

The term e ⊲ t is essentially the wrapper mechanism first described by Findler and
Felleisen [FF02], with some important refinements (Chapter 5).

• With these pieces in place, we can write down our main theorem (Chapter 5), namely
that

e ∈ t ⇐⇒ (e ⊲ t) is crash-free

We must ensure that everything works properly, even if e diverges, or laziness is
involved, or the contract contains divergent or crashing terms.

• Using this theorem, we may check whether f ∈ t holds as follows: we attempt
to prove that (e ⊲ t) is crash-free — that is, does not crash under all contexts.
We conduct this proof in a particularly straightforward way: we perform symbolic
evaluation of (e ⊲ t). If we can simplify the term to a new term e′, where e′ is
syntactically safe — that is, contains no crashes everywhere in the expression —
then we are done. This test is sufficient, but not necessary; of course, the general
problem is undecidable.
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Chapter 3

The Language

The language presented in this thesis, named language H, is simply-typed lambda calculus
with case-expression, constructors and integers. Language H is simpler than the language
we use in our implementation, which is the GHC Core Language [Tea98], which is similar
to System F and includes parametric polymorphism.

3.1 Syntax

The syntax of our language H is shown in Figure 3.1. A program is a module that
contains a set of data type declarations and function definitions. Expressions include
variables, type and term abstractions, type and term applications, constructors and case

expressions. We treat let-expressions as syntactic sugar:

let x = e1 in e2 ≡s (λx.e2) e1

We omit local letrec as well, we only have recursive (or mutually recursive) top-level
functions. We introduce a special function finn, which is only for internal usage (Sec-
tion 5.2.1). Readers can ignore the finn for the moment. There are two exception values
adopted from [Xu06]:

BAD is an expression that crashes. A program crashes if and only if it evaluates to BAD.
For example, a user-defined function error can be explicitly defined as:

error :: String -> a

error s = BAD

A preprocessor ensures that source programs with missing cases of pattern matching
are explicitly replaced by the corresponding equations with BAD constructs. For
example, after preprocessing, function head’s definition becomes:

head (x:xs) = x

head [] = BAD

39
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pgm ∈ Program
pgm := def1, . . . , defn

def ∈ Definition
def := decl

| f ∈ t contract attribution
| f ~x = e top-level definition

decl ∈ Data Type
decl := data T ~α where data type decl

−−−−−−−−−−→
K ∈ ~τi → T ~α data constructors

| data T ~α = data type decl
K1 ~τi | · · · | Kn ~τi data constructors

x, y, v, f, g ∈ Variables
a, e, p ∈ Exp Expression
a, e, p ::= v | λ(x ::τ).e | e1 e2

| case e0 of (v ::τ) alts case-expression
| K ~e constructor
| finn e finite evaluation
| r exception

r ::= BAD a crash
| UNR unreachable

alts ::= alt1 . . . altn
alt ::= pt → e case alternative

pt ::= K (x1 ::τ1) . . . (xn ::τn) pattern
| DEFAULT

τ ∈ Types
τ | Int | Bool | () | . . . base types

| T data type
| α type variable
| ∀α.τ

val ∈ Value
val ::= n | K ~e | λx ∈ t.e | UNR | BAD

Figure 3.1: Syntax of the Language H

UNR (short for “unreachable”) is an expression that gets stuck. This is not considered
as a crash, although the execution comes to a halt without delivering a result. A
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program that loops forever also does not crash, and does not deliver a result, so you
can think of UNR as a term that simply goes into an infinite loop.

The exceptional values are for internal usage and hidden from Haskell programmers. Their
behaviour is made precise by the operational semantics in Figure 3.3.

The top-level declaration f ∈ t is the claim that f satisfies contract t. We discuss contracts
in Chapter 4.

3.2 Type Checking Rules for Expression

The language H is statically typed in the conventional way. Figure 3.1 gives the syntax
of types, while Figure 3.2 gives type checking rules. A type judgement has the form

∆ ⊢ e ::τ

which states that given ∆ (which is a mapping from variable to its type, contract and
definition), e has type τ assuming that any free variable in it has type given by ∆. If
∆ = ∅, we omit the ∆, and write ⊢ e ::τ .

∆ ⊢ BAD :: τ [T-BAD] ∆ ⊢ UNR :: τ [T-UNR]

v :: τ ∈ ∆
∆ ⊢ v :: τ

[T-Var]
K :: ~τ → T ∈ ∆ ∆ ⊢ ~e :: ~τ

∆ ⊢ K ~e :: T ~α
[T-Con]

∆ ⊢ e :: Bool
∆ ⊢ finn e :: Bool

[T-fin]
∆, x :: τ1 ⊢ e :: τ2

∆ ⊢ (λ(x ::τ1).e) :: τ1 → τ2

[T-Lam]

∆ ⊢ e1 :: τ1 → τ2 ∆ ⊢ e2 :: τ1

∆ ⊢ (e1 e2) :: τ2

[T-App]

∆ ⊢ e0 :: T ~τ ∆, {v :: T ~τ}, {
−−−−−−−−→
Ki ~xi :: T ~τ} ⊢ ei :: τ

∆ ⊢ (case e0 of (v ::T ~τ) {Ki ~xi → ei}) :: τ
[T-Case]

∆ ⊢ λx.e0 :: τ1 → τ2 ∆ ⊢ e :: τ
∆ ⊢ (case λx.e0 of (v ::τ1 → τ2) {DEFAULT → e}) :: τ

[T-CaseLam]

Figure 3.2: Type Checking Rules

As we do type checking before contract checking, we assume all expressions are well-typed
(i.e. no type error) in the rest of this thesis. Note that nothing substantial in the thesis
depends delicately on the type system. The reason we ask that programs are well-typed
is to avoid the technical inconvenience in designing the semantics of contracts if, say,
evaluation finds an ill-typed expression (3 True).
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3.3 Operational Semantics

The semantics of the language H is given by the confluent, non-deterministic rewrite rules
in Figure 3.3. The language is confluent because it is a subset of the untyped lambda
calculus which is confluent. We use a small-step reduction-rule semantics, rather than
(say) a deterministic more machine-oriented semantics, because the more concrete the
semantics becomes, the more involved the proofs become too.

Most of these rules are entirely conventional. The rule [E-top] deals with a top-level
function call f . We fetch its definition from the environment ∆, which maps a variable
to its type, contract and definition. To save clutter, we usually leave this environment
implicit, rather than writing (say) ∆ ⊢ e1 →M e2.

Evaluation proceeds by repeatedly replacing the current redex with its corresponding one-
step reduction until a value is reached. (Note that BAD and UNR are considered values.)
Rule [E-ctx] allows a reduction step to take place anywhere. The expression C[[e]] means
substituting the • in the context C by the expression e (i.e. C[e/•]). The relation e1 → e2

performs a single step reduction and the relation →∗ is the reflexive-transitive closure of
→.

The unconventional features are the “M” subscript on the reduction arrow, the form
finn e, and the reduction rules [E-fin1,2,3]. Their job is to convert a boolean-valued
divergent expression to True before the fuel M is used up. These aspects all concern
contracts containing divergent expressions, and are discussed in detail in Section 5.2.1,
where we define →∗ in terms of →∗

M . For the moment, we can simply ignore the subscripts
and fin.

The rule [E-beta] performs the standard β-reduction. When a scrutinee of a case expres-
sion is a data constructor that matches one of the patterns, it is also a redex, shown in
the rule [E-match1]. If the scrutinee does not match any pattern pti except the DEFAULT

branch, then the DEFAULT branch will be taken as shown in the rule [E-match2], In the
rule [E-match3], if the scrutinee is a function and the only branch is DEFAULT, the RHS
of the branch is taken. The rule is only useful when we introduce a function ‘seq‘ in
Section 5.1.1. In the rule [E-match4], if the scrutinee does not match any pattern and
there is no DEFAULT branch, indicated by (K ~a 6∼ pti), we return UNR. This relates to the
fact that during preprocessing we fill in all missing branches by BAD, and now we would
like to use UNR to indicate a missing branch. The purpose of doing so is to make the
symbolic execution less cluttered. We discuss symbolic execution in detail in Section 7.1.
Rules [E-exapp] and [E-excase] deal with exception values in the usual way.

Now we can give the usual definition of contextual equivalence:

Definition 1 (Semantically Equivalent) Two expressions e1 and e2 are semantically
equivalent, namely e1 ≡s e2, iff

∀C. C[[e1]] →
∗ BAD ⇐⇒ C[[e2]] →

∗ BAD

Two expressions are said to be semantically equivalent, if under all closing contexts, if
one evaluates to BAD, the other also evaluates to BAD. The conventional definition on
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Evaluation

(f = λx.e) ∈ ∆
f →M λx.e

[E-top]
e →M e′ n < M

finn e →M finn+1 e′
[E-fin1]

finn UNR →M True [E-fin2]
finn val →M val [E-fin3]

(val 6= UNR and n < M)
finM e →M True [E-fin4]

(λx.e1) e2 →M e1[e2/x] [E-beta]

case Ki ~yi of

{ . . . ; Ki ~xi → ei; . . .}
→M ei[yi/xi] [E-match1]

case K ~a of

{pti → ei; DEFAULT → e}
→M e

for all i. K ~a 6∼ pti

[E-match2]

case λx.e0 of

{DEFAULT → e}
→M e [E-match3]

case K ~a of

{pti → ei}
→M UNR

for all i. K ~a 6∼ pti

[E-match4]

r e →M r [E-exapp]
case r of alts →M r [E-excase]

e1 →M e2

C[[e1]] →M C[[e2]]
[E-ctx]

Contexts
C ::= • | C e | e C | λx.C | K e1 . . . Ci . . . en

| case C of alts
| case e of {p1 → e1; . . .

; pi → Ci; . . .
; pn → en}

Strict Context
S ::= • | S e | case S of alts

Figure 3.3: Semantics of the Language H

semantical equivalence uses () (unit) or any value that is syntactically comparable, for
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example, True, False, etc. That is:

∀C. C[[e1]] →
∗ () ⇐⇒ C[[e2]] →

∗ ()

However, if we use this definition together with our operational semantics, we cannot
distinguish the two exceptional values BAD and UNR. So instead of using (), we choose
another syntactically comparable value BAD.

Lemma 1 (Equivalence) For all (possibly open) expressions e1, e2, if e1 →∗ e2, then
e1 ≡s e2.

As mentioned earlier, there exists an implicit environment that maps variables to its type,
contract and definition. So Lemma 1 actually says “if ∆ ⊢ e1 →

∗ e2, then ∆ ⊢ e1 ≡s e2”.

Lemma 2
p44

, which is only used in the proof of Lemma 5
p46

, says that the strictness of a
context does not change the behaviour of an expression. This implies that if we can prove
a theorem that holds for strict context, then the theorem holds for all contexts.

Lemma 2 (Strict Context)

∀S, BAD /∈s S, S[[e]] 6→∗ BAD ⇐⇒ ∀C, BAD /∈s C, C[[e]] 6→∗ BAD

Proof We prove two directions separately.
(⇒) We prove it by induction on the size of context. We only have to examine those
non-strict context one by one:

1. Case C = e′ C ′: Since BAD /∈s C, BAD /∈s e′. That means e′ 6→∗ BAD. By inspecting
rules in Figure 3.3, BAD can only be caught by the rule [E-exapp]. By induction
hypothesis, ∀C′, BAD /∈s C′, C′[[e]] 6→∗ BAD. Since e′ 6→∗ BAD, C′[[e]] 6→∗ BAD, BAD /∈s e′

and BAD /∈s C
′, we have C[[e]] 6→∗ BAD as desired.

2. Case C = λx.C ′: It is a lambda value, so C[[e]] 6→∗ BAD.

3. Case C = K e1 . . . C ′
i . . . en: It is a constructor value, so C[[e]] 6→∗ BAD.

4. Case C = case e′ of {p1 → e1; . . . pi → C ′
i; . . . ; pn → en}: Since BAD /∈s C, BAD

/∈s e′. That means e′ 6→∗ BAD. By inspecting rules in Figure 3.3, BAD can only be
caught by rule [E-excase]. By induction hypothesis, ∀C′, BAD /∈s C′, C′[[e]] 6→∗ BAD.
Since e′ 6→∗ BAD, C′[[e]] 6→∗ BAD, BAD /∈s e′ and BAD /∈s C′, we have C[[e]] 6→∗ BAD as
desired.

5. Case C = λx.C ′: It is a lambda value, so C[[e]] 6→∗ BAD.

(⇐) Immediate because a strict context S is a subcontext of C. �
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3.4 Crashing

We use BAD to signal that something has gone wrong in the program: it has crashed. A
program is correct if and only if the main function in a program does not crash.

Definition 2 (Crash) A closed expression e crashes iff e →∗ BAD.

Our technique can only guarantee partial correctness. A diverging program does not
crash.

Definition 3 (Diverges) A closed expression e diverges, written e↑, iff either e →∗ UNR,
or there is no value val such that e →∗ val.

At compile-time, one easy way to check the safety of a program is to see whether the
program is syntactically safe:

Definition 4 (Syntactic safety) A (possibly-open) expression e is syntactically safe iff
BAD /∈s e. Similarly, a context C is syntactically safe iff BAD /∈s C.

The notation BAD /∈s e means BAD does not syntactically appear anywhere in e, similarly
for BAD /∈s C. For example, λx.x is syntactically safe while λx. (BAD, x) is not. An
expression with free variables is not considered as syntactically safe.

Definition 5 (Crash-free Expression) A (possibly-open) expression e is crash-free iff

∀C. BAD /∈s C, ⊢ C[[e]] :: (), C[[e]] 6→∗ BAD

The notation ⊢ C[[e]] :: () means C[[e]] is closed and well-typed under the type system
shown in Figure 3.2. The Definition 5

p45

says that if an expression does not crash in all
safe contexts, which are like probes for BAD, then the expression cannot crash regardless
whether there is any BAD syntactically appearing in it because all of them are unreachable.
That means a crash-free expression may not be syntactically safe, for example:

\x -> case x * x >= 0 of

True -> x + 1

False -> BAD

The tautology x ∗ x >= 0 is always true, so the BAD can never be reached. For another
example, (BAD, 3) is not crash-free because there exists a context (fst •), such that:

fst (BAD, 3) → BAD

In short, crash-freeness is a semantic concept, and hence undecidable, while syntactic-
safety is syntactic and readily decidable. Certainly, a syntactically safe expression is
crash-free and crash-freeness is preserved during execution.

Lemma 3 (Syntactically Safe Expression is Crash-free) For all e,

e is syntactically safe ⇒ e is crash-free
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Proof Given BAD /∈s e, for all C such that BAD /∈s C, we know BAD /∈s C[[e]]. Recall the
operational semantics in Figure 3.3, in order to introduce a BAD at RHS of →, we must
have a BAD at the LHS of →. Since BAD /∈s C[[e]], we have C[[e]] 6→∗ BAD. �

Lemma 4 (Crash-free Preservation) Given e1 → e2,

e1 is crash-free ⇐⇒ e2 is crash-free

Proof We prove two directions by contradiction.
(⇒)
Suppose e2 is not crash-free. By Definition 5

p45

(Crash-free Expression), there exists a C
such that BAD /∈s C and C[[e2]] →

∗ BAD. By [E-ctx] and e1 → e2 and C[[e2]] →
∗ BAD, we

have: C[[e1]] →
∗ C[[e2]] →

∗ BAD. As we know e1 is crash-free, we reach contradiction. Thus,
we are done.
(⇐)
Suppose e1 is not crash-free. By Definition 5

p45

(Crash-free Expression), there exists a
C such that BAD /∈s C and C[[e1]] →

∗ BAD. By [E-ctx] and e1 → e2 and confluence of the
language, we have C[[e2]] →

∗ BAD. With the assumption that e2 is crash-free, we reach
contradiction. Thus, we are done. �

The forward direction of Lemma 5
p46

cannot be derived directly from the definition of
crash-free expression (Definition 5

p45

), which requires the context to be syntactically safe.
In the proof of Lemma 5

p46

((⇒) direction), we use an operator ⌊.⌋ which replaces all BADs
in an expression by UNR. We call it neutering, which is recursively defined in Figure 3.4.
The neutering operator satisfies the Lemma 6

p47

.

⌊⌊e⌋⌋ = ⌊e⌋
⌊BAD⌋ = UNR

⌊UNR⌋ = UNR

⌊e1 e2⌋ = ⌊e1⌋ ⌊e2⌋
⌊λv.e⌋ = λv.⌊e⌋

⌊K e1 . . . en⌋ = K ⌊e1⌋ . . . ⌊en⌋
⌊case e0 of {pti → ei}⌋ = case ⌊e0⌋ of {pti → ⌊ei⌋}

Figure 3.4: Neutering Expression and Contract

Lemma 5 (Crash-free Function) For all (possibly-open) terms λx.e,

λx.e is crash-free
⇐⇒

for all (possibly-open) crash-free e′, e[e′/x] is crash-free.

Proof We prove two directions separately.
(⇒)

λx.e is crash-free

⇒ (By Lemma 6
p47

, e′ is crash-free ⇒ ⌊e′⌋ ≡s e′

and by the definition of crash-free expression)
for all crash-free e′, e[e′/x] is crash-free
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(⇐) We have the following proof.

∀e′, e[e′/x] is crash-free

⇒ (By Lemma 4
p46

)
∀e′, (λx.e) e′ is crash-free

⇒ (By Definition 5
p45

(Crash-free Expression))
(1) ∀e′,∀C, BAD /∈s C, C[[(λx.e) e′]] 6→∗ BAD

⇒ (By Lemma 2
p44

(Strict Context))
(2) ∀e′,∀D′, BAD /∈s D

′, D′[[(λx.e) e′]] 6→∗ BAD

⇒ (reasoning at (*) below)
(3) ∀D, BAD /∈s D, D[[(λx.e)]] 6→∗ BAD

⇒ (By Lemma 2
p44

(Strict Context))
∀C, BAD /∈s C, C[[(λx.e)]] 6→∗ BAD

⇐⇒ (By Definition 5
p45

(Crash-free Expression))
λx.e is crash-free

(*) To prove (3), we appeal to Lemma 2
p44

, which allows us to examine only strict contexts.
There are 3 cases to consider:

• Case C = •. Since (λx.e) is a value, (λx.e) 6→∗ BAD.

• Case C = • e′′. By (2) where we choose e′ as e′′, we are done.

• Case C = case • of alts. Since λx.e is not a constructor, case λx.e of alts cannot
be further reduced, so (case λx.e of alts) 6→∗ BAD.

End of proof. �

Lemma 6 (Neutering) If e is crash-free, then ⌊e⌋ ≡s e.

Proof Since e is crash-free, all BADs in e are not reachable so by converting all BADs in
e to UNR by ⌊.⌋ does not change the semantics of e. Formally, we prove this by induction
on reduction rules. �

3.5 Behaves-the-same

We now define an ordering, named Behaves-the-same, which is useful in later sections.

Definition 6 (Behaves the same) Expression e1 behaves the same as e2 w.r.t. a set of
exceptions R, written e1 ≪R e2, iff for all contexts C, such that ∀i ∈ {1, 2}. ⊢ C[[ei]] :: ()

C[[e2]] →
∗ r ∈ R ⇒ C[[e1]] →

∗ r

Definition 6
p47

says that e1 either behaves the same as e2 or throws an exception from
R. (The definition does not look as strong as that, but as every theorist knows, it is.
For example, could e1 produce True while e2 produces False? No, because we could find
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a context C that would make C[[e2]] throw an exception while C[[e1]] does not.) In our
framework, there are only two exceptional values in R: BAD and UNR. Certainly, if e2 itself
throws an exception, then e1 must throw the same exception.

As we only have two exceptional values BAD, UNR (which are dual to each other) in R, this
yields Lemma 7

p48

. We omit {} if there is only one element in R.

Lemma 7 (Properties of Behaves-the-same) For all closed e1 and e2,

e1 ≪UNR e2 ⇐⇒ e2 ≪BAD e1

Proof We prove two directions separately.

(⇒) We have the following proof:

e1 ≪UNR e2

⇐⇒ (By defn of ≪UNR)
∀C. C[[e2]] →

∗ UNR ⇒ C[[e1]] →
∗ UNR

⇐⇒ (By logic)
∀C. C[[e1]] 6→

∗ UNR ⇒ C[[e2]] 6→
∗ UNR

We want to show that ∀D. D[[e1]] →
∗ BAD ⇒ D[[e2]] →

∗ BAD.

Assume D[[e1]] →
∗ BAD.

Let C = case (fin D[[•]]) of {DEFAULT → UNR}

Now we have C[[e1]] →
∗ BAD ⇒ C[[e2]] 6→

∗ UNR.

Since C[[e2]] = case D[[e2]] of {DEFAULT → UNR}, we have D[[e2]] →
∗ BAD.

So we have

∀D. D[[e1]] →
∗ BAD ⇒ D[[e2]] →

∗ BAD

(⇐) By replacing BAD by UNR and UNR by BAD in the above proof for the direction (⇒),
we get the proof for the direction (⇐). �

3.6 Crashes-more-often

We now study the specialized ordering crashes-more-often, which plays a crucial role in
proving Property 1

p63

.

Definition 7 (Crashes-more-often) An expression e1 crashes more often than e2, writ-
ten e1 � e2, iff e1 ≪BAD e2.

Informally, e1 crashes more often than e2 if they behave in exactly the same way except
that e1 may crash when e2 does not. By Definition 7

p48

, Lemma 7
p48

also says that:

e1 ≪UNR e2 ⇐⇒ e2 � e1
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Theorem 1 (Crashes-more-often is AntiSymmetric) For all expressions e1 and e2,
e1 � e2 and e2 � e1 iff e1 ≡s e2.

Proof It follows immediately from the definition of ≡s (Definition 1
p42

) and the definition
of �. �

The crashes-more-often operator has many properties. Lemma 8
p49

says that BAD crashes-
more-often then all expressions; all expressions crash more often then a diverging expres-
sion. Lemma 9

p49

gives more intuitive properties.

Lemma 8 (Properties of Crashes-more-often - I)

(a) BAD � e2

(b) e1 � e2 if e2 ↑

Proof We prove each property separately (all by contradiction) and we assume type
soundness.

(a) Assume there exists a context C such that C[[e2]] →
∗ BAD and C[[BAD]] 6→∗ BAD. There

are two possibilities for C[[e2]] →
∗ BAD: (1) the BAD is from the context C; (2) the

BAD is from the hole e2. For case (1), we must have C[[BAD]] →∗ BAD since we use the
same context C. For case (2), if the hole is evaluated, we reach BAD immediately. So
we reach a contradiction and we are done.

(b) Given e2 ↑, assume there exists a context C such that C[[e2]] →
∗ BAD and C[[e1]] 6→

∗

BAD. Since e2 ↑ and C[[e2]] →
∗ BAD, we know the BAD is from the context C. So no

matter what e1 is, we have C[[e1]] →
∗ BAD. Thus, we again reach a contradiction and

we are done. �

Lemma 9 (Properties of Crashes-more-often - II) If e1 � e2

(a) e1 →
∗ K f1 ⇒ e2 →

∗ K f2 or e2 ↑
(b) e1 ↑ ⇒ e2 ↑
(c) e1 is crash-free ⇒ e2 is crash-free
(d) e1 →

∗ λx.e′1 ⇒ e2 →
∗ λx.e′2 or e2 ↑

Proof We prove each property separately (all by contradiction):

(a) Given e1 →∗ K f1, assume neither e2 →∗ K f2 nor e2 ↑. Then we must have
e2 →∗ BAD. By the definition of � and the fact that e1 � e2, if e2 →∗ BAD, then
e1 →

∗ BAD. Since e1 →
∗ K f1, we reach a contradiction and we are done.

(b) Given e1 ↑, assume e2 6 ↑. Then e2 →
∗ val and there exists a syntactically safe context

C such that C[[e2]] →
∗ BAD. But C[[e1]] always diverges as e1 diverges if BAD /∈s C. By

the fact that e1 � e2 and by the definition of �, we reach a contradiction and we
are done.
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(c) Given e1 is crash-free, assume e2 is not crash-free. By Definition 5
p45

(Crash-free
Expression), there exists a syntactically safe context C such that C[[e2]] →

∗ BAD. By
the fact that e1 � e2 and by the definition of �, we have C[[e1]] →

∗ BAD. This contra-
dicts with another assumption that e1 is crash-free. Since we reach a contradiction,
we are done.

(d) The proof is similar to that in (a). �



Chapter 4

Contracts and Their Semantics

Having discussed the language of programs, we now discuss the language of contracts.

4.1 Syntax

t ∈ Contract
t ::= {x | p} Predicate Contract

| x : t1 → t2 Dependent Function Contract
| (t1, t2) Tuple Contract
| Any Polymorphic Any Contract

Figure 4.1: Syntax of Contracts

The syntax of contracts is given in Figure 4.1. A predicate contract {x | p} can be viewed
as a boolean-valued function λx.p where p is arbitrary expression in H. We use the syntax
x : t1 → t2 for a dependent function contract where x can be used in t2. If x is not used
in t2, it can be omitted. We adopt this notation from [Aug98, Fla06], which is equivalent
to Πx : t1 → t2. For example:

{-# CONTRACT inc :: x’:{x | x > 0} -> {r | r > x’} #-}

inc x = x + 1

We abbreviate x′ : {x | p} → t to {x | p} → t[x/x′]. So the contract of inc can be written
as:

{-# CONTRACT inc :: {x | x > 0} -> {r | r > x} #-}

by assuming the scope of x includes the RHS of the ->. In general, given x : t1 → t2, the
x can be omitted unless t1 is a function type, for example:

{-# CONTRACT f3 :: k:({x | x > 0} -> {z | z > x})

-> {y | True} -> {r | k y} #-}

51
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Here, we cannot omit k, which denotes a function contract, if it is used in the RHS of ->.
Moreover, the variables x and z cannot be used outside the brackets.

In Chapter 2, we have seen an example of using tuple contract. For reasons of notational
simplicity, we only restrict data constructor contracts to pairs only in this thesis, but the
idea generalises readily. In our full implementation, we deal with arbitrary user-defined
data constructor contracts.

We introduce a special polymorphic contract named Any which every expression satisfies.
Section 4.3.3 shows why it is important to have Any.

4.2 Type Checking for Contracts

As the predicates in contracts are just boolean-valued Haskell expressions, it might be be-
lieved that we would simply call Haskell’s type-checker to type-check the pre/postcondition.
However, there are a few interesting issues to consider. For example:

head :: [a] -> a

head (x:xs) = x

Suppose a programmer gives this precondition for head:

{-# CONTRACT head :: {xs | xs /= []} -> Ok #-}

As the inequality operator /=, which is defined in type class Eq, is used, it makes the
precondition stronger than necessary. That means it implicitly requires the type of head
to be head :: Eq a => [a] -> a. This means during the type checking of contracts,
we need to bear in mind that we should reject those contracts that cause the type of the
function to be stronger.

∆, a :: k ⊢c t :: τ
∆ ⊢c (∀a :: k. t) :: τ

[C-Forall]

∆ ⊢c Any :: τ [C-Any]

∆, x :: τ ⊢c e :: Bool
∆ ⊢c {x | e} :: τ

[C-One]

∆ ⊢c c1 :: τ1 ∆, x :: τ1 ⊢c c2 :: τ2

∆ ⊢c x : c1 → c2 :: τ1 → τ2

[C-Fun]

∆ ⊢c ci :: τi for i = 1, 2
∆ ⊢c (c1, c2) :: (τ1, τ2)

[C-Tuple]

Figure 4.2: Type Checking Rules for Contract
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A contract type judgement has the form

∆ ⊢c t ∈ τ

which states that given ∆ (a mapping from program variable to its type, and from type
variable to its kind), e has type τ assuming that any free variable in it has type given by
∆. Contract type checking rules are shown in Figure 4.2. In our full implementation, the
∆ also contains the type classes (TC) in scope and we need an additional typing rule as
follows.

∆, TC a ⊢c t :: τ
∆ ⊢c t :: TC a ⇒ τ

[C-TyClass]

4.3 Contract Satisfaction

We give the semantics of contracts by defining “e satisfies t”, written e ∈ t, in Figure 4.3.
This is a purely declarative specification of contract satisfaction, it says which terms
satisfy a contract, without saying how a satisfaction check might be performed. We
regard the ability to give a simple, declarative, programmer-accessible specification of
contract satisfaction as very important, but it is a property that few related works share,
with the notable and inspiring exception of [BM06], as that paper says:

The structure of a non-compositional semantics like [the Findler-Felleisen
wrapping algorithm] is difficult to understand. With just Definition 1 [which
says that a term satisfies a contract if its wrapping cannot crash] to hand,
an answer to the question “Does e satisfy t?” is not easy because it involves
consideration of every possible context. Nor can we ignore this problem, since
in our experience most people’s intuition differs from [Definition 1].

In Figure 4.3, both e and t may mention functions bound in the top-level definitions ∆.
These functions are necessary for the evaluation relation of rule [A1] to make sense. To
reduce clutter, we do not make these top-level bindings explicit, by writing ∆ ⊢ e ∈ t,
but instead allow rule [E-top] of Figure 3.3 to consult ∆ implicitly.

Given e ::τ and ⊢ t ::τ, we define e ∈ t as follows:

e ∈ {x | p} ⇐⇒ e↑ or (e is crash-free and p[e/x] 6→∗ {BAD, False}) [A1]

e ∈ x : t1 → t2 ⇐⇒ e↑ or (e →∗ λx.e′ and ∀e1 ∈ t1. (e e1) ∈ t2[e1/x]) [A2]

e ∈ (t1, t2) ⇐⇒ e↑ or (e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2) [A3]

e ∈ Any ⇐⇒ True [A4]

Figure 4.3: Contract Satisfaction
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4.3.1 Predicate Contract

In [A1] we say an expression e has contract {x | p} written e ∈ {x | p}, we mean e either
diverges or it is a crash-free expression that satisfies the predicate p in the contract. The
predicate p may give four possible outcomes: ↑, True, False and BAD (four-valued logic).
We consider↑ and True to be safe while the outcomes False and BAD to be unsafe. To say
e satisfies p, we require p[e/x] 6→∗ {BAD, False}, which means p[e/x]↑ or p[e/x] →∗ True.

The alert reader will notice that [A1] specifies that only crash-free terms satisfy a predicate
contract {x | p}. This means that the contract {x | True}, which we abbreviate to Ok, is
satisfied precisely by the crash-free terms. For example:

λx.x ∈ Ok (3, 5) ∈ Ok λx.(BAD, x) 6∈ Ok

Other choices are possible, but we postpone the discussion to Section 5.1.2, when we have
more scaffolding in place.

Only diverging expressions satisfy contracts {x | False} and {x | BAD}. For example:

UNR ∈ {x | False}
UNR ∈ {x | BAD}

bot ∈ {x | False}
bot ∈ {x | BAD}

where bot is defined as:

bot = bot

We elaborate more on divergence in Section 4.3.4.

4.3.2 Dependent Function Contract and Tuple Contract

In [A2], we say an expression e has dependent function type x : t1 → t2, when e is applied
to any argument that satisfies the contract t1, it produces a result that satisfies the
contract t2. To get dependent function contracts we must simply remember to substitute
[e1/x] in t2.

In [A3], if an expression evaluates to a tuple, we expect each subcomponent satisfies its
corresponding contract. A tuple expression, which is not crash-free, can satisfy only a
tuple contract. For example:

(BAD, 3) 6∈ {x | (snd x) > 0}
(BAD, 3) ∈ (Any, {x | x > 0})

However, we can have:

(True, 2) ∈ {x | (snd x) > 0}

As defined in [A1], a crash-free expression may satisfy a predicate contract.
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4.3.3 Any Contract

If we only have [A1]-[A3], the expression BAD would not satisfy any contract. In a lazy
language this is much too conservative, so in [A4] we introduce a special contract, named
Any, which is satisfied by any expression including BAD. For example:

{-# CONTRACT fst :: (Ok, Any) -> Ok #-}

fst (x,y) = x

Any is also useful in post-conditions: a function whose postcondition is Any is a function
that may crash. Haskell programmers often write packaged versions of Haskell’s error

function, such as

myError :: String -> a

{-# CONTRACT myError :: Ok -> Any #-}

myError s = error ("Fatal error: " ++ s)

So BAD satisfies Any. In fact, BAD satisfies only the contract Any because it fails the
constraints stated in [A1]-[A3]:

BAD 6∈ (Any, Any)
BAD 6∈ Any → Any

Lemma 10
p55

says that the only contract that BAD satisfies is Any.

Lemma 10 (Contract Any) If BAD ∈ t, then t = Any.

Proof By inspecting the definition of ∈, the only contract that BAD satisfies is Any. �

4.3.4 Diverging Terms

The definitions in Figure 4.3 specify that a divergent term e satisfies every contract. This
choice is expressed directly for predicate contracts {x | p} and tuple contracts (t1, t2), and
is an easy consequence for function contracts. We made this choice because otherwise we
would often have to prove termination in order to prove that e ∈ t. For example:

f x = case x < 10 of

True -> x

False -> f (x/2)

Does f ∈ Ok → {x | x < 10}? The True branch clearly satisfies the postcondition but
what about the False branch? Specifying that divergence satisfies any contract allows us
to answer “yes” without proving termination. Furthermore, despite divergence, a caller
of f can still rely on f’s postcondition:

g y = case (f y > 10) of

True -> error "Urk"

False -> True
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Here g cannot crash, because f guarantees a result less than 10, or else diverges.

Our choice has the nice consequence that every contract is inhabited (by divergence).
This matters. Consider whether (λx.BAD) satisfies {x | False} → Ok. If {x | False} was
uninhabited, the answer would be “yes”. But that choice is incompatible with building a
rigorous connection (sketched in Section 2.3) between contract satisfaction and Findler-
Felleisen-style wrapping. Indeed, Findler and Blume are forced to invent an awkward
(and entirely informal) predicate form “non-empty-predicate” [FB06], which we do not
need.

4.4 Contract Satisfaction for Open Expressions

We have mentioned that e and t may mention functions bound in the top-level environ-
ment. These functions participate in the evaluation of rule [A1]. But suppose that the
programmer declares:

{-# CONTRACT f :: {x | x > 0} -> Ok #-}

f = ...

When checking the contract of a function g that calls f, we should presumably assume only
f’s declared contract, without looking at its actual definition. Doing so is more modular,
and allows the programmer to leave room for future changes by specifying a contract that
is more restrictive than the current implementation.

This goal is easily achieved. Suppose the declared contracts for f and g are tf , tg respec-
tively, and the definition of g is g = eg where f is called in eg. Then, instead of checking
that eg ∈ tg, we check that

(λf. eg) ∈ tf → tg

That means we simply lambda-abstract over any variables free in eg that have declared
contracts. This approach also allows the programmer to omit a contract specification (just
as type signatures are often omitted), in which case the contract checker can “look inside”
the definition when proving the correctness of calls to that function. The exact details are
a software engineering matter; our point here is that the underlying infrastructure allows
a variety of choices.

The same technique simplifies the problem of checking satisfaction for recursive functions.
If the programmer specifies the contract tf for a definition f = e, then it suffices to check
that

λf.e ∈ tf → tf

which is easier because λf.e does not call f recursively. There is nothing new here – it is
just the standard technique of loop invariants in another guise – but it is packaged very
conveniently.

In other words, imagine we have a contract judgement:

∆ ⊢ e ∈ t

which states that given ∆, which is a mapping from variable to its type, contract and
definition.
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Definition 8 (Contract judgement) We write ∆ ⊢ e ∈ t to mean that e has contract
t assuming that any free variable in e has contract given by ∆ and any free variable in
t has definition given by ∆. Suppose ∆ = {f1 7→ (τ1, t1, e1), . . . , fn 7→ (τn, tn, en)}, we
define:

∆ ⊢ e ∈ t ⇐⇒ λf1. . . . .fn.e ∈ t1 → · · · → tn → t

This means, in theory (i.e. in the formalization of the verification), we only need to deal
with closed expressions; in practice (i.e. in the implementation), we may refer to the
environment ∆ when necessary.

4.5 Subcontract Relation

Definition 9 (Subcontract) For all closed contracts t1 and t2, t1 is a subcontract of t2,
written t1 ≦ t2, iff

∀e. e ∈ t1 ⇒ e ∈ t2

For open contracts t, we assume implicitly that there is an environment ∆, which is a
mapping from variable to its type, contract and definition (See Definition 8

p57

in Sec-
tion 4.4).

Moreover, the subcontract relation can be illustrated in rule-form shown in Figure 4.4.
Each rule in Figure 4.4 is a theorem. The relation p ⇒e q in rule [C-Pred] is defined in
Definition 10. Rule [C-Any] follows directly from the definition of ≦. We now study the
rules [C-Pred], [C-DepFun] and [C-Tup]. We assume the statement above the line is true,
and prove the statement below the line is true. We leave the proof of other direction as
a open problem.

p ⇒e q
{x | p} ≦ {x | q}

[C-Pred]
t1 ≦ t3 t2 ≦ t4
(t1, t2) ≦ (t3, t4)

[C-Tup]

t3 ≦ t1 ∀e ∈ t3. t2[e/x] ≦ t4[e/x]
x : t1 → t2 ≦ x : t3 → t4

[C-DepFun] t ≦ Any [C-Any]

Figure 4.4: Subcontract Relation

Definition 10 (Boolean Expression Implication) For all boolean expressions p and

q, we say p implies q (written p ⇒e q) iff





case q of

True → ()
False → BAD



 �





case p of

True → ()
False → BAD





From Definition 10
p57

, for example, we know {x | x < 10} ⇒e {x | x < 12}.

The substitution for contracts is defined in Figure 4.5. Here, we assume each bound
variable has a unique name.
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{x | p}[e/y] = {x | p[e/y]}
(x : t1 → t2)[e/y] = x : t1[e/y] → t2[e/y]
(t1, t2)[e/y] = (t1[e/y], e2[e/y])
Any[e/y] = Any

Figure 4.5: Substitution for Contracts

4.5.1 Predicate Contract Ordering

We prove that the rule [C-Pred] is sound; that is we prove Theorem 2
p58

.

Theorem 2 (Predicate Contract Ordering) For all expressions p, q, if p ⇒ q then
{x | p} ≦ {x | q}.

Proof We have the following proof for all t1, t2, t3, t4:

p ⇒e q

⇐⇒ (By Definition 10
p57

(Boolean Expression Implication), let

e1 =





case p of

True → ()
False → BAD



 and e2 =





case q of

True → ()
False → BAD



)

e2 � e1

⇐⇒ (By Definition 7
p48

(Crashes-more-often))
∀C. C[[e2]] →

∗ BAD ⇒ C[[e1]] →
∗ BAD

⇒ (By (*) below)
∀e. e is crash-free and (e1[e/x] 6→∗ {BAD, False} ⇒ e2[e/x] 6→∗ {BAD, False})

⇐⇒ (By logic and definition of ∈ in Figure 4.3)
∀e. e ∈ {x | e1} ⇒ e ∈ {x | e2}

⇐⇒ (By Definition 9
p57

(Subcontract))
{x | e1} ≦ {x | e2}

(*) We know ∀e, a, x. e[a/x] ≡s let x = a in e.
Assuming for all crash-free e:
(1) ∀C. C[[e2]] →

∗ BAD ⇒ C[[e1]] →
∗ BAD

(2) (let x = e in e1) 6→
∗ {BAD, False})

we want to show (let x = e in e2) 6→
∗ {BAD, False}

Suppose (let x = e in e2) →
∗ BAD

By (1), let C be let x = e in •, we have C[[e1]] →
∗ BAD.

That means (let x = e in e1) →
∗ BAD.

This contradicts with (2) so our assumption is wrong and we are done.

Suppose (let x = e in e2) →
∗ False

By (1), let C be case (let x = e in •) of {False → BAD}, we have C[[e1]] →
∗ BAD.

That means (case (let x = e in e1) of {False → BAD}) →∗ BAD.
That means (let x = e in e1) →

∗ {BAD, False}.
This contradicts with (2) so our assumption is wrong and we are done.
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End of proof. �

4.5.2 Dependent Function Contract Ordering

We prove that the rule [C-DepFun] is sound; that is we prove Theorem 3
p59

.

Theorem 3 (Dependent Function Contract Ordering) For all t1, t2, t3, t4.

if t3 ≦ t1 and ∀e ∈ t3. t2[e/x] ≦ t4[e/x], then x : t1 → t2 ≦ x : t3 → t4

Proof We have the following proof for all t1, t2, t3, t4:

t3 ≦ t1 and ∀e3 ∈ t3. t2[e3/x] ≦ t4[e3/x]

⇐⇒ (By Definition 9
p57

(Subcontract))
(†1) ∀e1. e1 ∈ t3 ⇒ e1 ∈ t1 and ∀e3 ∈ t3.∀e2. e2 ∈ t2[e3/x] ⇒ e2 ∈ t4[e3/x]

⇒ (By the (*) below)
(†2) ∀e. ∀e1 ∈ t1. (e e1) ∈ t2[e1/x] ⇒ ∀e3 ∈ t3. (e e3) ∈ t4[e3/x]

⇐⇒ (By definition of ∈ in Figure 4.3)
∀e. e ∈ x : t1 → t2 ⇒ e ∈ x : t3 → t4

⇐⇒ (By Definition 9
p57

(Subcontract))
x : t1 → t2 ≦ x : t3 → t4

(∗) For all e, assuming:
(1) ∀e1. e1 ∈ t3 ⇒ e1 ∈ t1 (first clause of the line †1)
(2) ∀e3 ∈ t3, ∀e2. e2 ∈ t2[e3/x] ⇒ e2 ∈ t4[e3/x] (second clause of the line †1)
(3) ∀e1 ∈ t1.(e e1) ∈ t2[e1/x] (LHS of the line †2)

we show ∀e3. e3 ∈ t3 ⇒ (e e3) ∈ t4[e3/x]as follows.
e3 ∈ t3

⇐⇒ (By (1))
e3 ∈ t1

⇐⇒ (By (3))
(e e3) ∈ t2[e3/x]

⇐⇒ (By (2))
(e e3) ∈ t4[e3/x]

We are done. �

4.5.3 Tuple Contract Ordering

We prove the rule [C-Tup] is sound by showing:

For all t1, t2, t3, t4. if t1 ≦ t3 and t2 ≦ t4, then (t1, t2) ≦ (t3, t4)
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Proof For all e, if e diverges, then for all t1, t2, t3, t4, e ∈ (t1, t2) and e ∈ (t3, t4) because
a divergent expression satisfies all contracts. By the definition of ≦, we have the desired
result (t1, t2) ≦ (t3, t4). Now, we prove the case when e →∗ (e1, e2) as follows.

t1 ≦ t3 and t2 ≦ t4

⇐⇒ (By Definition 9
p57

(Subcontract))
∀e1. e1 ∈ t1 ⇒ e1 ∈ t3 and ∀e2. e2 ∈ t2 ⇒ e2 ∈ t4

⇐⇒ (By logic (∀x.A) ∧ (∀y.B) ≡ ∀x, y. A ∧ B if y /∈ fv(A) and x 6∈ fv(B))
∀e1, e2. e1 ∈ t1 ⇒ e1 ∈ t3 and e2 ∈ t2 ⇒ e2 ∈ t4

⇒ (By logic ((A ⇒ B) ∧ (C ⇒ D)) ⇒ ((A ∧ C) ⇒ (B ∧ D)))
∀e. e →∗ (e1, e2) and ((e1 ∈ t1 and e2 ∈ t2) ⇒ (e1 ∈ t3 and e2 ∈ t4))

⇒ (By logic (A ∧ (B ⇒ C)) ⇒ ((A ∧ B) ⇒ (A ∧ C)))
∀e. (e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2)
⇒ (e →∗ (e1, e2) and e1 ∈ t3 and e2 ∈ t4)

⇐⇒ (By definition of ∈ in Figure 4.3)
∀e. e ∈ (t1, t2) ⇒ e ∈ (t3, t4)

⇐⇒ (By Definition 9
p57

(Subcontract))
(t1, t2) ≦ (t3, t4)

Note that some tuple contracts are not comparable by ≦, for example: (Ok, Any) 6≦
(Any, Ok) and (Any, Ok) 6≦ (Ok, Any).

4.6 Contract Equivalence

In this section we give formal definition of the equivalence of two contracts. Definition 11
p60

is used in the proof of the Telescoping Property, an important property of contracts in
Section 6.2

Definition 11 (Contract Equivalence) Two closed contracts t1 and t2 are equivalent,
namely t1 ≡t t2, iff

∀e. e ∈ t1 ⇐⇒ e ∈ t2

Theorem 4 (Subcontract is Antisymmetric) For all closed contracts t1 and t2, t1 ≦

t2 and t2 ≦ t1 iff t1 ≡t t2.

Proof

t1 ≦ t2 and t2 ≦ t1

⇐⇒ (By Definition 9
p57

(Subcontract))
∀e. e ∈ t1 ⇒ e ∈ t2 and ∀e. e ∈ t2 ⇒ e ∈ t1

⇐⇒ (By logic (∀x. A(x) ⇒ B(x)) ∧ (∀x. B(x) ⇒ A(x)) ≡ ∀x. A(x) ⇐⇒ B(x))
∀e. e ∈ t1 ⇐⇒ e ∈ t2

⇐⇒ (By Definition 11
p60

(Contract Equivalence))
t1 ≡t t2

End of proof. �
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For open contracts t, we assume implicitly that there is an environment ∆, which is a
mapping from variable to its type, contract and definition (See Definition 8

p57

in Sec-
tion 4.4).

Lemma 11
p61

and Lemma 12
p61

are needed in proving the main theorem of this thesis.
Similar lemmas for tuple contract and Any contract can be proved easily; as they are not
used anywhere, we omit those two lemmas in this thesis.

Lemma 11 (Predicate Contract Equivalence) For all expressions e1 and e2, if e1 ≡s

e2, then {x | e1} ≡t {x | e2}.

Proof We have the following proof:

e1 ≡s e2

⇐⇒ (By Theorem 1
p49

(Crashes-more-often is Antisymmetric))
e1 � e2 and e2 � e1

⇐⇒ (By Theorem 2
p58

(Predicate Contract Ordering))
{x | e1} ≦ {x | e2} and {x | e2} ≦ {x | e1}

⇐⇒ (By Theorem 4
p60

(Subcontract is Antisymmetric))
{x | e1} ≡t {x | e2}

End of proof. �

Lemma 12
p61

illustrates that, to see two dependent function contracts are equivalent,
we require two domains to be equivalent; instead of checking the equivalence of two co-
domains, we check the equivalence of two ranges. For example:

t1 = x : {x | x > 0} → {y | y > x} t2 = x : {x | x > 0} → {y | y > abs x}

where function abs returns the absolute value of x. In this case, t1 ≡t t2 holds, but
{y | y > x} 6≡t {y | y > abs x}.

Lemma 12 (Dependent Function Contract Equivalence) For all contracts t1, t2, t3, t4,
if t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x], then x : t1 → t2 ≡t x : t3 → t4.

Proof We have the following proof.

t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x]

⇐⇒ (By Theorem 4
p60

(Subcontract is Antisymmetric))
t1 ≦ t3 and t3 ≦ t1 and
(∀e ∈ t1. t2[e/x] ≦ t4[e/x] and ∀e ∈ t1. t4[e/x] ≦ t2[e/x])

⇐⇒ (Since t1 ≡t t3, e ∈ t1 ⇐⇒ e ∈ t3.)
t3 ≦ t1 and ∀e ∈ t1. t2[e/x] ≦ t4[e/x] and
t1 ≦ t3 and ∀e ∈ t1. t4[e/x] ≦ t2[e/x]

⇒ (By [C-DepFun] in Figure 4.4)
x : t1 → t2 ≦ x : t3 → t4 and x : t3 → t4 ≦ x : t1 → t2

⇐⇒ (By Theorem 4
p60

(Subcontract is Antisymmetric))
x : t1 → t2 ≡t x : t3 → t4

We are done. �
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Chapter 5

Contract Checking

So far we have a nice declarative specification of when a term satisfies a contract. If we
could statically check such claims, we would have a powerful tool. For example, if we
could show that main ∈ {x | True}, then we would have proved that the entire program
is crash-free.

In their ground-breaking paper [FF02], Findler & Felleisen describe how to “wrap” a term
in a contract-checking wrapper, that checks at run-time

(a) that the term obeys its contract, and

(b) that the context of the term respects the contract.

One route to checking contract satisfaction statically, sketched in §2.3, is to wrap the term
in the Findler-Felleisen way, and check that the resulting term cannot crash.

This leads to our main property:

Property 1 (Soundness and Completeness of Contract Checking) For all expres-
sions e, and crash-free contracts t,

(e ⊲ t) is crash-free ⇐⇒ e ∈ t

The free variables of e and t must all be bound by the top-level environment ∆, which
we leave implicit as before. The form (e ⊲ t) wraps e in a Findler-Felleisen-style contract
checker, specified in Figure 5.1. As in the case of contract satisfaction, there are tricky
details, as we discuss in Section 5.1. Another subtle but important point is the requirement
that the contract t be “crash-free”; this deals with contracts that crash and is discussed
in Section 5.3.1.

Property 1
p63

is very strong. It states that the wrapped term e ⊲ t is crash-free when and
only when e ∈ t. Certainly, then, if we can prove that e ⊲ t is crash-free, we have proved
that e ∈ t. But how can we prove that e⊲ t is crash-free? There are many ways to do this.
Briefly, the approach we take is to perform meaning-preserving transformations on e ⊲ t,
of precisely the kind that an optimising compiler might perform (inlining, β-reduction,
constant folding, etc). If we can “optimise” (i.e. symbolically simplify) the term to a
form that is syntactically safe (Section 3.4), then we are done. The better the symbolic
simplification, the more contract satisfaction checks will succeed – but none of that affects
Property 1

p63

. For details see Section 7.

63
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r ∈ {BAD, UNR} e ⊲ t = e
BAD

⊲⊳
UNR

t e ⊳ t = e
UNR

⊲⊳
BAD

t

e
r1

⊲⊳
r2

{x | p} = e ‘seq‘ case fin p[e/x] of
True → e
False → r1

[P1]

e
r1

⊲⊳
r2

x : t1 → t2 = e ‘seq‘ λv. let x = (v
r2

⊲⊳
r1

t1)

in (e x)
r1

⊲⊳
r2

t2

[P2]

e
r1

⊲⊳
r2

(t1, t2) = case e of

(e1, e2) → (e1

r1

⊲⊳
r2

t1, e2

r1

⊲⊳
r2

t2)

[P3]

e
r1

⊲⊳
r2

Any = r2 [P4]

Figure 5.1: Projection

5.1 Wrappers ⊲ and ⊳

We have converted the contract satisfaction checking problem to a crash-freeness checking
problem. Besides the wrapper ⊲, we need to define its dual ⊳ as well. That means we
define two wrappers, e ⊲ t and e ⊳ t, where e is an expression and t is a contract. These
two forms are not part of the syntax of expressions (Figure 3.1); rather they are thought
of as macros, which expand to a particular expression. The definition of each expansion
is given in Figure 5.1. Informally:

• e ⊲ t, pronounced “e ensures t”, crashes if e does not satisfy t.

• e ⊳ t, pronounced “e requires t”, crashes if the context does not satisfy t.

Our goal is to define e ⊲ t such that Property 1
p63

holds.

The expression constructors ⊲ and ⊳ are dual to each other, so we define e ⊲ t and e ⊳ t
through a combined constructor:

e
r1

⊲⊳
r2

t

which is a term that behaves just like e, except that it throws exception r1 if e does not
respect t, and throws exception r2 if the wrapped term is used in a way that does not
respect t. In the vocabulary of “blame”, r1 means “blame e” while r2 means “blame the
context”. Figure 5.1 defines the convenient abbreviations

e ⊲ t = e
BAD

⊲⊳
UNR

t e ⊳ t = e
UNR

⊲⊳
BAD

t
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So e⊲t crashes (with BAD) if e does not satisfy t, and diverges (with UNR) if the context does
not respect t. Strictly speaking these two wrappers are more like the wrappers in [BM06]
rather than in [FF02]. The detailed differences are discussed in Chapter 11.

The beauty of the constructors lies in [P1] and [P2]. Let us ignore the occurrences of
seq and fin temporarily. The main structure of Figure 5.1 is standard from earlier
works [FF02, BM06], and we do not belabour it here. In [P1], we have:

e ⊲ {x | p} = case p[e/x] of
True → e
False → BAD

e ⊳ {x | p} = case p[e/x] of
True → e
False → UNR

The e ⊲ {x | p} says that if e fails to satisfy the predicate p, it is e’s fault because we
would like e to ensure the property p and we signal this fault with the BAD. That means
if e ⊲ {x | p} is crash-free, then the BAD is not reachable so we know the predicate p is
satisfied. On the other hand, the e ⊳ {x | p} says that if e fails to satisfy the predicate
p, the rest of the code should be unreachable because we require the caller of e to have
the property p before e is called. In [P2], we swap the direction of the triangles for the
parameter (note the inversion of r1 and r2 in the expansion of function contracts):

e ⊲ t1 → t2 = λv. ((e (v ⊳ t1)) ⊲ t2)
e ⊳ t1 → t2 = λv. ((e (v ⊲ t1)) ⊳ t2)

The e ⊲ t1 → t2 says that in order to ensure the postcondition to be t2, we require the
argument to satisfy the precondition t1. The e⊳t1 → t2 says that if the caller of e (i.e. the
argument given to e) cannot ensure t1, the BAD introduced by the ⊲ signals this failure.

It becomes more interesting when we have higher order functions, the direction of the
triangle swaps back and forth:

(λx.e) ⊲ (t1 → t2) → t3
= λv1. (((λx.e) (v1 ⊳ t1 → t2)) ⊲ t3)
= λv1. (((λx.e) (λv2. ((v1 (v2 ⊲ t1)) ⊳ t2))) ⊲ t3)

Recall the higher-order function f1 g = (g 1) - 1 in Section 2.1.3, we have:

f1 ⊲ ({x | True} → {y | y >= 0}) → {r | r >= 0}
= . . .
= λv1. case (v1 1) >= 0 of

True → case (v1 1) − 1 >= 0 of

True → (v1 1) − 1
False → BAD

False → UNR

As ((v1 1) >= 0) does not imply ((v1 1) − 1 >= 0), the residual BAD indicates a post-
condition failure. This illustrates how we get the first error message in Section 2.1.3. As
f1’s definition does not satisfy its contract, we only use its contract at call sites of f1.
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As a result, in f2, as (x− 1 ≥ 0) is not true for all x, we get the second error message in
Section 2.1.3.

One thing to note in [P3] is that we expect the expression e to evaluate to a tuple. Recall
the example (BAD, 3) 6∈ {x | snd x > 0}, using Property 1

p63

we can verify it by checking
crash-freeness of (BAD, 3) ⊲ {x | snd x > 0}:

(BAD, 3) ‘seq‘ case snd (BAD, 3) > 0 of

True → (BAD, 3)
False → BAD

→∗ case snd (BAD, 3) > 0 of

True → (BAD, 3)
False → BAD

→∗ (BAD, 3)
which is not crash-free

Similarly, we can verify that (BAD, 3) ∈ (Any, {x | x > 0}) as BAD ⊲ Any = UNR which is
crash-free and we also have:

case 3 > 0 of

True → 3
False → BAD

→∗ 3
which is crash-free

The wrapping of Any in [P4], while new, is obvious after a moment’s thought. For example:

fst ⊲ (Ok, Any) → Ok

= λv.((fst (v ⊳ (Ok, Any))) ⊲ Ok)
= λv.((fst (v ⊳ (Ok, Any))))
= λv.((fst (case v of(a, b) → (a ⊳ Ok, b ⊳ Any))))
= λv.((fst (case v of(a, b) → (a, BAD))))

Here we have used the fact that e ⊲⊳ Ok = e ⊲⊳ {x | True} = e. That is, considered as
a wrapper Ok does nothing at all. In this example we see that the wrapper replaces the
second component of the argument to fst with BAD, so that if fst should ever look at it,
the program will crash. That is exactly right, because the contract says that the second
component can be anything, with contract Any.

The polymorphic Any contract satisfies Lemma 13
p66

, which says that the only contract
that makes BAD ⊲ t crash-free is Any.

Lemma 13 (Contract Any - II) If BAD ⊲ t is crash-free, then t = Any.

Proof By inspecting the definition of ⊲, for all t such that t 6= Any, BAD⊲t →∗ BAD which
is not crash-free. And we have BAD ⊲ Any = UNR which is crash-free, so we are done. �

5.1.1 The use of seq

The reader may wonder about the uses of seq in [P1] and [P2] of Figure 5.1. The Haskell
function seq (short for “sequence”) is defined as follows:

e1 ‘seq‘ e2 = case e1 of

DEFAULT → e2
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which has the following properties:

Lemma 14 (Properties of seq)

(a) e1 ↑ ⇒ (e1 ‘seq‘ e2)↑
(b) e1 →

∗ BAD ⇒ (e1 ‘seq‘ e2) →
∗ BAD

(c) e1 →
∗ val 6∈ {BAD, UNR} ⇒ (e1 ‘seq‘ e2) ≡s e2

Proof By inspecting the operational semantics in Figure 3.3 and definition of seq. �

It is necessary in the definition of ⊲⊳ to ensure that Property 1
p63

holds for (a) divergent
and (b) crashing terms. For example, if bot is a diverging term (defined by bot = bot),
then Figure 4.3 says that bot ∈ {x | False}. But if [P1] lacked the seq, we would have

bot ⊲ {x | False}
= case False of { True -> bot; False -> BAD }

= BAD, which is not crash-free

thus contradicting Property 1
p63

.

Dually, we must ensure that BAD 6∈ Ok → Any. Without the seq in [P2] we would get

BAD ⊲ Ok → Any = λv. ((BAD (v ⊳ Ok)) ⊲ Any)
= λv. UNR, which is crash-free

again contradicting Property 1
p63

. This also means

BAD 6≡s λx.BAD

because BAD denotes a crash while λx.BAD is a value which will only crash when applied
to an argument.

Have we covered all the cases? A quick check shows that:

• If e →∗ BAD, the e ‘seq‘ prevents e from satisfying the contract unless the contract
is Any.

• If e↑, then e ⊲ t satisfies all contracts.

More solidly, Property 1
p63

goes through with the definitions of Figure 5.1.

5.1.2 Aside: Why Only Crash-free Terms Satisfy Predicate Con-
tracts

In Section 4.3.1 we promised to explain why we chose to allow only crash-free terms to
satisfy a predicate contract, regardless of the predicate. An obvious alternative design
choice for contract satisfaction would be to drop the “e is crash-free” condition in the
predicate contract case:

e ∈ {x | p} ⇐⇒ e↑ or p[e/x] 6→∗ {BAD, False} [B1]
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Then we could get rid of Any, because {x | True} would do instead. On the other hand,
a polymorphic contract meaning “crash-free” is extremely useful in practice, so we would
probably need a new contract Ok (now not an abbreviation) defined thus:

e ∈ Ok ⇐⇒ e is crash-free [B2]

This all seems quite plausible, but it has a fatal flaw: we could not find a definition for
⊲ that validates our main theorem. That is, our chosen definition for ∈ makes Figure 5.1
work out, whereas the otherwise-plausible alternative appears to prevent it doing so.

Suppose we have [B1] instead of [A1], that means (BAD, BAD) ∈ {x | True}. However,
according to [P1], we have (BAD, BAD) ⊲ {x | True} = (BAD, BAD) which is not crash-free.
This means Property 1

p63

fails. Can we change [P1] to fix the theorem? It is hard to see
how to do so. The revised rule must presumably look something like

e ⊲ {x | p} = case fin p[e/x] of { True →???; False → BAD }

But what can we put for “???”? Since e ⊲ t is supposed to behave like e if p[e/x] holds,
the “???” must be e — but then BAD ⊲ {x | True} would not be crash free. This difficulty
motivates our choice that predicate contracts are satisfied only by crash-free terms.

5.2 Contracts that Diverge

Our system allows non-termination both in the programs we verify, and in their specifica-
tions (contracts), which is most unusual for a system supporting static verification.

As we discussed in Section 4.3.4, we allow non-termination for programs because we work
with a real-life programming language, in which many functions actually do not terminate.
We do not want to exclude non-termination in general, even for specifications, because
we do not want to be forced to perform termination proofs, which are often tedious to do.
Since the current advances in automatic termination proofs are still limited, especially for
lazy programs, requiring termination would put a substantial extra burden on the user of
our system.

What about divergent contracts? Many program verification systems for functional pro-
gramming, such as HOL, systems based on dependent types (Coq, Agda), and ACL2, do
not allow any non-terminating definitions. The main reason is that this introduces an
immediate unsoundness in these systems. For example, by an (unsound) induction proof,
a constant defined as let x = x could be proved equal to both 1 and 2, concluding that
1=2.

But it would be an onerous burden to insist that all contracts terminate, because the
programmer can write arbitrary Haskell in contracts, and proving termination of arbitrary
Haskell programs is hard. Furthermore, allowing non-termination in specifications is of
direct benefit. Consider a function zipE which requires two inputs to have the same
length:

{-# CONTRACT zipE :: xs:Ok -> {ys | sameLen xs ys} -> Ok #-}
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zipE [] [] = []

zipE (x:xs) (y:ys) = (x,y) : zipE xs ys

zipE _ _ = error "unequal lengths"

sameLen [] [] = True

sameLen (x:xs) (y:ys) = sameLen xs ys

sameLen _ _ = False

Here, two infinite lists satisfy the contract for ys, since (sameLen xs ys) diverges, and
indeed zipE does not crash for such arguments. Care is necessary in writing the contract:
if we had instead said length xs == length ys, the contract would diverge if only one
argument was infinite, but zipE would crash for such arguments, so it would not satisfy
this alternative contract. In this way, safety properties over infinite structures are allowed.
(Safety properties are properties that always have finite counter-examples whenever there
exists any counter-example.)

Why is our approach sound? First, any contract we verify for a program only deals with
partial correctness. In other words, all contracts are inhibited by non-terminating pro-
grams as well. Second, our system does not include reasoning mechanisms like equational
reasoning. In fact, our system has no means of expressing equality at all! Everything is
expressed in terms of Haskell expressions evaluating to boolean values, crashing, or not-
terminating. Third, any specification that does not terminate is semantically the same as
a True contract. Why? Because of the mysterious fin construct, as we discuss next.

5.2.1 Using fin in Contract Wrappers

Suppose we have the top-level definition bot = bot; that is, bot diverges. Now consider
e = (BAD,BAD) and t = {x | bot}. Then e 6∈ t (since e is not crash-free). If we did not
use fin in the definition of ⊲⊳ (Figure 5.1), e ⊲ t would reduce to this term:

case bot of { True -> (BAD, BAD); False -> BAD }

This term is contextually equivalent to bot itself, and so it is crash-free, contradict-
ing Property 1

p63

.

What to do? Execution has gotten stuck evaluating the diverging contract, and has
thereby missed crashes in the term itself. Our solution is to limit the work that can be
spent on contract evaluation. The actual definition of ⊲⊳ makes e ⊲ t equal to

case (fin0 bot) of

True -> (BAD, BAD)

False -> BAD

The operational semantics of fin (Figure 3.3) gives a finite M units of “fuel” to each
fin. Each reduction under a fin increases the subscript on the fin until it reaches the
maximum M (rule [E-fin1]). When the fin subscript n reaches the limit M , fin gives up
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and returns True (rule [E-fin3]). For example: e = if fin (False || False) then 1 else 2.
Then we have:

e →∗
0 1 (M = 0 means no fuel)

e →∗
1 1

but
e →∗

2 2
e →∗

3 2
e →∗

4 2

Now, recall the example at the beginning of Section 5.2.1, for any finite M , we have

e ⊲ t →∗
M (BAD,BAD)

So we define our full-scale reduction relation →∗ in terms of →∗
M :

Definition 12 (Reduction) We say that e →∗ val iff there exists N such that for any
M ≥ N we have e →∗

M val.

Under this definition, e ⊲ t →∗ (BAD,BAD), and Property 1
p63

holds.

5.2.2 Practical Consequences

This may all seem a bit complicated or artificial, but it is very straightforward to im-
plement. First, remember that we are concerned with static verification, not dynamic
checking. Uses of fin are introduced only to check contract satisfaction, and are never
executed in the running program. Second, our technique to check that e⊲ t is crash-free is
to optimise it and check for syntactic safety. To be faithful to the →∗ semantics, we need
only refrain from “optimising” (case (fin bot) of <alts>) to bot, thereby retaining
any BADs lurking in <alts>. Since this particular optimisation is a tricky one anyway, it
is quite easy to omit! In other words, in our static contract checking, we can safely omit
fin and the rules [E-fin1,2,3].

5.2.3 Summary

By being careful with our definition of →∗, we can retain Property 1
p63

in its full, bi-
directional form. This approach is, of course, only available to us because we are taking a
static approach to verification. A dynamic checker cannot avoid divergence in contracts
(since it must evaluate them), and hence must lose the (⇒) direction of Property 1

p63

, as
indeed is the case in [BM06].

5.3 Contracts that Crash

Our goal is to detect crashes in a program with the help of contracts, we do not expect
contracts themselves to introduce crashes. One approach, taken by Blume & McAllester
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[BM06], is to prohibit a contract from mentioning any function that might crash. But
that is an onerous restriction, as we argued in Section 2.1.7.

It is attractive simply to allow arbitrary crashes in contracts; after all, Figure 4.3 specifies
exactly which terms inhabit even crashing contracts. Alas, if we drop the (still-to-be-
defined) condition “crash-free contract” from Property 1

p63

, the (⇒) direction still holds,
but the (⇐) direction fails. Here is a counter-example involving a crashing contract. We
know that:

λx.x ∈ {x | BAD} → Ok

because the only expression that satisfies {x | BAD} is an expression that diverges and a
diverging expression satisfies Ok. But we have:

λx.x ⊲ {x | BAD} → Ok = λv.(λx.x (v ⊳ {x | BAD}))

= λv.(v ⊳ {x | BAD})

= λv.(v ‘seq‘ BAD)
which is not crash-free

5.3.1 Crash-free Contracts

So unrestricted crashes in contracts invalidates (one direction of) Property 1
p63

. But no
one is asking for unrestricted crashes! For example, this contract does not make much
sense:

tbad = xs : Ok → {r | r > head xs}

What does it mean if the argument list is empty? Much more plausible is a contract like
this (see §2.1.7):

tgood = xs : {xs | not (null xs)} → {r | r > head xs}

which specifies that the argument list is non-empty, and guarantees to return a result
bigger than head of the argument. You might wonder what happens if the first element
of the list xs is BAD, that means head xs →∗ BAD even if the list xs is non-empty. This
will not occur because only a crash-free expression satisfies a predicate contract (recalling
[A1] in Figure 4.3). Since xs satisfies a predicate contract {xs | not (null xs)}, it does
not contain crashing elements.

Thus motivated, we define a notation of a “crash-free” contract:

Definition 13 (crash-freeness) A contract t is crash-free iff

t is {x | p} and p is crash-free
or t is x : t1 → t2 and t1 is crash-free and for all e1 ∈ t1, t2[e1/x] is crash-free
or t is (t1, t2) and both t1 and t2 are crash-free
or t is Any

This definition is essentially the same as that of Tsafe in [BM06], although perhaps a little
more straightforward. It simply asks that the predicates in a contract are crash-free under
the assumption that the dependent function arguments satisfy their contracts. So, under
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this definition, tbad is ill-formed while tgood is crash-free. The latter is crash-free because
head xs is crash-free for every xs that satisfies not (null xs).

For another example:

{-# CONTRACT f :: k:({x | x > 0} -> Ok) -> {r | k (-3) == r} #-}

is not crash-free because for a function satisfying {x | x > 0} -> Ok, the call k (-3)

may crash. On the other hand, the contract

{-# CONTRACT f :: k:({x | x > 0} -> Ok) -> {r | k 3 == r} #-}

is crash-free.

5.3.2 Wrapping Dependent Function Contracts

Recall [P2] from Figure 5.1:

e
r1

⊲⊳
r2

x : t1 → t2 = e ‘seq‘ λv. ((e (v
r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v
r2

⊲⊳
r1

t1)/x])

Notice that v is wrapped by v
r2

⊲⊳
r1

t1 even in the contract t2, as well as in the argument to

e. Could we simplify [P2] by omitting this wrapping, thus?

e
r1

⊲⊳
r2

x : t1 → t2 = e ‘seq‘ λv. ((e (v
r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[v/x])

No, we could not: Property 1
p63

would fail again. Here is a counter-example.

{-# CONTRACT h :: {x | not (null x)} -> {r | head x == r} #-}

h (y:ys) = y

Now h satisfies its contract th, but h ⊲ th is not crash-free, as the reader may verify.

We remarked earlier that Blume & McAllester require that contracts only call crash-free
functions. But the wrapping of v inside t2 in rule [P2] might itself introduce crashes, at
least if t2 uses x in a way that does not respect t1. They therefore use another variant of
[P2], as follows:

e
r1

⊲⊳
r2

x : t1 → t2 = e ‘seq‘ λv. ((e (v
r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v
r2

⊲⊳
UNR

t1)/x])

Notice the “UNR” introduced out of thin air in the wrapping of v in t2, which is enough to
maintain their no-crashing invariant. Happily, if the contracts are crash-free (which we
need anyway, so that it is possible to call head) there is no need for this somewhat ad-hoc
fix.
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5.3.3 Practical Consequence

One might worry that the crash-freeness condition in Property 1
p63

makes the verification
task more onerous: perhaps to prove e ∈ t now we must check two things (a) that t is
well formed and (b) that e ⊲ t is crash-free. Happily, this is not necessary, because the
(⇒) of Property 1

p63

holds for arbitrary t:

Theorem 5 (One Direction of Grand Theorem) For all closed expression e, for all
contract t,

(e ⊲ t) is crash-free ⇒ e ∈ t

Proof The proof of Theorem 5 is the same as the proof for the direction (⇒) of Prop-
erty 1

p63

(i.e. Theorem 9
p81

) because only the proof for the direction (⇐) of Property 1
p63

requires the condition that t to be crash-free.

We inspect the proof for Theorem 9
p81

in Section 6.1 case by case. For the case e →∗ BAD,
examining the direction (⇒), Lemma 4

p46

(preservation of crash-freeness) and Lemma 13
p66

(Contract Any - II) are called, but none of them require crash-free t. For the case
t = x : t1 → t2, Lemma 14

p67

(c) (properties of seq), Lemma 5
p46

(crash-free function),
Theorem 11

p94

(projection pair), Theorem 10
p93

(congruence of �), Lemma 9
p49

(c) (prop-
erty of �)) are called, but none of them require crash-free t. It is obvious that the rest of
the cases do not require crash-free t, either.

5.3.4 Aside: Conjecture for Ill-formed Contracts

In Section 5.3.1, we show that one direction of Property 1
p63

does not hold for ill-formed
contracts; that is, it is not the case that:

e ∈ t ⇒ (e ⊲ t) is crash-free

where we lift the condition that t is crash-free. However, to make Property 1
p63

hold for
both directions, for arbitrary contracts (including ill-formed ones), we may play the fol-
lowing trick. Previously, we introduced a special function fin that converts divergence to
True and untouches other expressions. That means (fin BAD) evaluates to BAD. Suppose
we enhance the definition of fin by making it convert a crash to False. That is:

fin BAD = False

Recall the counter example given in Section 5.3.1:

λx.x ∈ {x | BAD} → {r | True}
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With this enhanced definition of fin, We now have:

λx.x ⊲ {x | BAD} → {r | True}

= (By definition of ⊲ and ⊳)
λv.(λx.x (v ⊳ {x | BAD}))

= (By β-reduction)
λv.(v ⊳ {x | BAD})

= (By definition of ⊳)
λv.(v ‘seq‘ (case fin BAD of {True → v; False → UNR}))

= (Since fin BAD = False)
λv.(v ‘seq‘ UNR), which is crash-free

This leads us to the following conjecture, which re-states Property 1
p63

without the re-
quirement for the contract t to be crash-free.

Conjecture 1 (Sound and Complete for All Contracts) If fin BAD = False, then
for all closed e, (possibly open) t,

e ∈ t ⇐⇒ (e ⊲ t) is crash-free

However, we have been unable either to prove this conjecture, or to find a counter example!
The proof for Property 1

p63

fails for the following reason.

With the enhanced definition of fin (i.e. fin converting BAD to False), Theorem 10
p93

(Congruence of �) in Section 6.5 fails. Theorem 10
p93

states that:

∀e1, e2. e1 � e2 ⇐⇒ ∀C, C[[e1]] � C[[e2]]

Here is a counter example:

Let e1 = BAD and e2 = True.

By Definition 7
p48

(Crashes-More-Often), we know e1 � e2.
We want to show that there exists a context C, such that C[[e1]] 6� C[[e2]].
Here is such a context: C = case fin [[•]] of

True → BAD

False → 5
where C[[e1]] = 5 6� BAD = C[[e2]]

We see that a context with fin gives us problem. That means the congruence theorem
for � holds for all context C, such that fin /∈s C (i.e. fin not syntactically occurring in
C). Inspecting the places where Theorem 10

p93

is called in proving Property 1
p63

, we do
have fin in the context. So we get stuck.

5.4 Recursion

You might wonder whether the wrappers ⊲ and ⊳ work for recursive functions. Recall the
idea of treating free variables as parameters in Section 4.4, we can apply it to recursive



CHAPTER 5. CONTRACT CHECKING 75

functions as well. For example, we have:

f ∈ t
f = . . . f . . .

To simplify our presentation, we assume we do not have other top-level function calls and
only one self-recursive call in the definition of f . We treat the f in recursive calls as a
free variable. So instead of checking f ∈ t, we check λf. . . . f . . . ∈ t → t. That means
we check whether (λf. . . . f . . . ) ⊲ t → t is crash-free or not. If we elaborate this term, we
get:

(λf. . . . f . . . ) ⊲ t → t

= (By definition of ⊲)
λv1. (((λf. . . . f . . . ) (v1 ⊳ t)) ⊲ t)

→ (By β-reduction)
λv1. (((. . . f . . . )[(v1 ⊳ t)/f ]) ⊲ t)

If we apply the last line to f , we get:

((. . . f . . . )[(f ⊳ t)/f ]) ⊲ t

That means we replace each f in recursive calls by f ⊳ t. Suppose t = t1 → t2, we have:

f ⊲ t1 → t2
= (. . . (f ⊳ t1 → t2) . . . ) ⊲ t1 → t2

= (By definition of ⊲ and ⊳)
(∗) λv2. ((. . . (λv1. ((f (v1 ⊲ t1)) ⊳ t2)) (v2 ⊳ t1) . . . ) ⊲ t2)

Recall that the symbol ⊲ means ”ensures” (i.e. ”check”) while the symbol ⊳ means
”requires” (i.e. ”assume”). Basically, the line of the above derivation indicated by (∗)
says that:

• we assume the precondition holds (indicated by (v2 ⊳ t1)) at the entry of the defini-
tion body, we check whether the precondition holds (indicated by (v1 ⊲ t1)) before
the entry of each recursive call.

• we assume the postcondition holds for each recursive call (indicated by (f (v1 ⊲
t1)) ⊳ t2)), and we check whether the postcondition holds for the whole function
body (indicated by the ⊲ t2 at the end of the expression).

This is the same idea as the Hoare logic rule for a procedure call.

5.5 Contract Properties

In this section, we first give a list of interesting properties that contracts enjoy and then
discuss some of them in detail.
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5.5.1 Properties Overview

The � relation, the satisfaction ∈ and the two constructors ⊲ and ⊳ enjoy many nice
properties shown in Figure 5.2. These lemmas form a basis for proving our main re-
sult: Property 1

p63

. Property 1
p63

is similar to the soundness and completeness theorems
in [BM06]. We give a complete proof of the theorem as well as these lemmas in Chapter 6.
The proof technique is different from that in [BM06].

Lemma 15
p86

(Telescoping Property) For all e, crash-free t. (e
r1

⊲⊳
r2

t)
r3

⊲⊳
r4

t = e
r1

⊲⊳
r4

t

Lemma 19
p92

(Key Lemma) For all crash-free e, crash-free t, e ⊳ t ∈ t.

Lemma 20
p95

(Idempotence) (a) e ⊲ t ⊲ t ≡ e ⊲ t (b) e ⊳ t ⊳ t ≡ e ⊳ t

Lemma 21
p96

(Conditional Projection) For all e, crash-free t,
(w.r.t. �,�) if e ∈ t, then (a) e ⊳ t � e

(b) e ⊲ t � e

Theorem 7
p79

(Monotonicity of ∈) If e1 ∈ t1 and e1 � e2, then e2 ∈ t

Theorem 10
p93

(Congruence) ∀e1, e2. e1 � e2 ⇐⇒ ∀C, C[[e1]] � C[[e2]]

Theorem 11
p94

(Projection Pair) ∀e ∈ t. e ⊲ t ⊳ t � e

Theorem 12
p94

(Closure Pair) ∀e ∈ t. e � e ⊳ t ⊲ t

Figure 5.2: Properties of ⊲ and ⊳

5.5.2 Contracts are Projections

In [FB06], Findler & Blume discovered that contracts (a re-functionalized contract imple-
mentation based on Findler-Felleisen’s dynamic contract checking algorithm [FF02]) are
pairs of projections (similar, but not the same, idea to our ⊲ and ⊳). That means given a
contract t, λe.Wt(e) is a projection where Wt is a wrapper function. To be a projection
w.r.t. a partial ordering ⊑, a function p must satisfy these two properties:

1. p ◦ p = p (idempotence)

2. p ⊑ 1 (result of projection contains no more information than its input)

In Findler & Blume’s words:

The first property means that it suffices to apply a contract once; the second
property means that a contract cannot add behaviour to a value. That is,
the contract may replace some parts of its input with errors, but it must not
change any other behaviour. Technically, Scott’s projections [Sco76] only add
⊥ (divergence), but errors are a better match for our [FB06] work.

Blume & McAllester [BM06] have two types of exceptions ⊥ (divergence) and ⊤ (error)
(where each ⊤ is labelled with i, i.e. ⊤i, to distinguish the crashes). However, in Findler
& Felleisen’s work [FF02] and the follow-up work by Findler & Blume [FB06], there
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is only one exception error (blame in [FB06]). That is why in the above quote, they
clarify that their contract wrapper may replace some parts of its input with errors, but
it does not change any other behaviour. Note that there is no similar claim by Blume &
McAllester [BM06].

Our work is closer to Blume & McAllester [BM06] as we have two exceptional values BAD
(error) and UNR (divergence). Are our wrappers projections?

Based on Definition 6
p47

(Behaves-the-same), our contract wrapper ⊲⊳ is a projection with
the partial ordering ≪{r1,r2} (where r1, r2 ∈ {BAD, UNR}) on terms:

(1) e
r1

⊲⊳
r2

t
r1

⊲⊳
r2

t = e
r1

⊲⊳
r2

t (2) e
r1

⊲⊳
r2

t ≪{r1,r2} e

The (1) and (2) are Lemma 20
p95

(Idempotence) and Lemma 23
p97

(Behaviour of Projec-
tion) whose proof can be found in Section 6.7 and Section 6.8 respectively.

In Figure 5.2, note that the projections ⊳ and ⊲ are only projections (w.r.t. �,�) if e ∈ t.
If we drop the condition, a counter-example for e ⊳ t � e is:

λx.x ⊳ {x | True} → {r | False}
= (By β-reduction and the fact e ⊲⊳ {r | True} = e)

λv. ((λx.x v) ⊳ {r | False})
= λv. (v ‘seq‘ case fin False of {True → v; False → UNR})
= λv. (v ‘seq‘ UNR)
6� λx.x

In this counter example, λx.x 6∈ {x | True} → {r | False} because 5 ∈ {x | True} while
((λx.x) 5) 6∈ {r | False} (only a divergent expression satisfies {r | False}). Then is it
possible that e � e ⊳ t (i.e. e ⊳ t � e)? Well, a counter example for e ⊳ t � e is:

λx.x ⊳ {x | False} → {r | True}
= (By β-reduction and the fact e ⊲⊳ {r | True} = e)

λv. (λx.x (v ⊲ {r | False}))
= λv. (v ‘seq‘ case fin False of {True → v; False → BAD})
= λv. (v ‘seq‘ BAD)
6� λx.x

We now examine the other projection e ⊲ t � e (i.e. e � e ⊲ t). A counter example for
e ⊲ t � e is:

λx.x ⊲ {x | True} → {r | False}
= (By β-reduction and the fact e ⊲⊳ {r | True} = e)

λv. ((λx.x v) ⊲ {r | False})
= λv. (v ‘seq‘ case fin False of {True → v; False → BAD})
= λv. (v ‘seq‘ BAD)
6� λx.x
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Again, λx.x 6∈ {x | True} → {r | False}. Is it possible to have e ⊲ t � e? Again, no. A
counter example for e ⊲ t � e is:

λx.x ⊲ {x | False} → {r | True}
= (By β-reduction and the fact e ⊲⊳ {r | True} = e)

λv. (λx.x (v ⊳ {r | False}))
= λv. (v ‘seq‘ case fin False of {True → v; False → UNR})
= λv. (v ‘seq‘ UNR)
6� λx.x

Why do Findler et al claim that a contract wrapper is unconditionally a projection
in [FF02, FB06] and here we need a condition e ∈ t? As mentioned at the beginning
of Section 5.5, in [FF02, FB06], only one exceptional value (error) is used. That means,
instead of having two exceptional values BAD and UNR, they have only BAD, but give each
BAD a label lbl. For example, (BAD “server”) indicates that the function definition itself
should be blamed as (assuming the precondition holds) the function does not produce a
result that satisfies the required postcondition. For another example, (BAD “client”) in-
dicates that the caller does not supply an argument that meets the callee’s precondition.
That is why an expression wrapped with their contract wrapper is a projection – either
behaving the same as the original expression or throwing an exception (BAD lbl). This
single exception design makes sense because they do contract checking at run-time. Once
a witness (a run-time data that triggers the BAD lbl) is found, the execution stops and
the lbl (which may consist of a function name) is blamed. In our case, we do contract
checking at compile-time in a modular fashion:

• At each function definition, we check whether a function meets its postcondition by
assuming the precondition holds. This assumption is indicated by UNR. That means
if the precondition does not hold, we get UNR which is crash-free so that the post-
condition checking is not disturbed. (Reminder: we convert contract satisfaction
checking to crash-freeness checking)

• At each call site, we check whether an argument given to a function being called
satisfies the function’s precondition. If it does, we know that the function will
produce a result that satisfies the agreed contract. Again, we do not want any
postcondition failure to disturb our precondition checking, so if postcondition fails,
we get UNR.

This also explains why the use of UNR is important in our framework.

5.5.3 Contracts Ordering w.r.t. Crashes-more-often

We now try to order wrapped expressions with the crashes-more-often operator. We have
not found any usefulness of Theorem 6

p78

yet, but it corresponds to the Theorem 4 and
the Theorem 5 (2) in [FB06].

Theorem 6 (Subcontract and Crashes-more-often Ordering) For all t1 and t2,

∀e. e ⊲ t1 � e ⊲ t2 ⇒ t1 ≦ t2
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Proof We have the following proof:

∀e. e ⊲ t1 � e ⊲ t2

⇒ (By Lemma 9
p49

(c) (Properties of Crashes-more-often - II))
∀e. e ⊲ t1 is crash-free ⇒ e ⊲ t2 is crash-free

⇒ (By Theorem 9
p81

(grand theorem))
∀e. e ∈ t1 ⇒ e ∈ t2

⇐⇒ (By Definition 9
p57

(Subcontract))
t1 ≦ t2

5.5.4 Monotonicity of Satisfaction

Theorem 7
p79

says that if e′ is like e except that it crashes less often, then it satisfies all
the contracts that e satisfies. This theorem is not used in proving the grand theorem, but
it is an interesting property.

Theorem 7 (Monotonicity of Satisfaction) For all e, e′, t, if e ∈ t and e � e′, then
e′ ∈ t

Proof The proof begins by dealing with two special cases.

• Case e →∗ BAD: By definition of ∈, we know t = Any. Since every expression satisfies
Any, we have e′ ∈ Any.

• Case e↑: By Lemma 9
p49

(b) (properties of �), we know e′ ↑. By definition of ∈, we
know ∀t. e′ ∈ t.

Hence for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}.

The rest of the proof is by induction on the size of t.

• Case e ∈ {x | p}: By Definition [A1], we know e is crash-free and p[e/x] 6→∗

{BAD, False}.

By Lemma 9
p49

(c) (properties of �), e′ is crash-free and has the same semantics as
e. Thus, e′ ∈ t.

• Case e ∈ x : t1 → t2: We have the following induction hypothesis:

∀e1 ∈ t1. e1 � e′1 ⇒ e′1 ∈ t1 [IH1]
∀e′2, ∀e1 ∈ t1, e2 ∈ t2[e1/x]. e2 � e′2 ⇒ e′2 ∈ t2[e1/x] [IH2]

We also know that if e →∗ λx.e′′, then e′ ↑ or e′ →∗ λx.e′′.

We have the following proof:

e ∈ t and e � e′

⇐⇒ (By definition of ∈ and by Lemma 9
p49

(d) (properties of �))
e →∗ λx.e′′ and ∀e1 ∈ t1.(e e1) ∈ t2[e1/x] and
(e′ ↑ or e′ →∗ λx.e′′ and e � e′)
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If e′ ↑, by inspecting the definition of ∈, we have e′ ∈ x : t1 → t2 as desired. Now we
prove the case when e′ does not diverge:

e →∗ λx.e3 and ∀e1 ∈ t1.(e e1) ∈ t2[e1/x] and
e′ →∗ λx.e4 and e � e′

⇐⇒ (By Theorem 10
p93

(congruence of �))
e →∗ λx.e3 and ∀e1 ∈ t1.(e e1) ∈ t2[e1/x] and
e′ →∗ λx.e4 and ∀e5. (e e5) � (e′ e5)

⇒ (By [IH2], choosing e5 to be e1 ∈ t1)
e′ →∗ λx.e4 and ∀e1 ∈ t1. (e′ e1) ∈ t2[e1/x]

⇐⇒ (By definition of ∈)
e′ ∈ x : t1 → t2

Notice that, perhaps curiously, we do not use the induction hypothesis on t1.

• Case e ∈ (t1, t2): We have the following induction hypothesis

∀e1 ∈ t1, e
′
1. e1 � e′1 ⇒ e′1 ∈ t1 [IH1]

∀e2 ∈ t2, e
′
2. e2 � e′2 ⇒ e′2 ∈ t2 [IH2]

We also know that e →∗ (e1, e2) and e′ →∗ (e1, e2).

We have the following proof:

(e1, e2) ∈ (t1, t2) and e1 � e′1 and e2 � e′2
⇐⇒ (By definition of ∈)

e1 ∈ t1 and e2 ∈ t2 and e1 � e′1 and e2 � e′2
⇒ (By [IH1] and [IH2])

e′1 ∈ t1 and e′2 ∈ t2

⇐⇒ (By definition of ∈)
(e′1, e

′
2) ∈ (t1, t2)

• Case e ∈ Any: By definition of ∈ i.e. [A4], any expression has type Any, so e′ ∈ Any.�



Chapter 6

Correctness Proofs of Contract
Checking

To achieve the grand plan mentioned in Section 2.3 (i.e. to check e ∈ t), our static
contract checking consists of three steps:

1. Construct the expression e ⊲ t which captures all contract violations with BAD.

2. Simplify e ⊲ t as much as possible, to e′, say.

3. See if BAD is syntactically in e′; if not, e′ is crash-free (i.e. no contract violations).

To justify the correctness of this approach, we need to prove Theorem 8
p81

.

Theorem 8 (Soundness of Static Contract Checking) For all closed expression e,
and contract t,

(simpl (e ⊲ t)) is syntactically safe ⇒ e ∈ t

Proof By Theorem 9
p81

, Lemma 26
p107

and Lemma 3
p45

(e is syntactically safe ⇒ e is
crash-free).

The function simpl is defined by a set of semantically preserving simplification rules in the
form of e1 =⇒ e2, each of them satisfies Lemma 26

p107

. Details of symbolic simplification
as well as the proof for Lemma 26

p107

are shown in Section 7.1.

Lemma 26
p107

(Correctness of One-Step Simplification) If e1 =⇒ e2, then e1 ≡s e2.

The proof of Lemma 26
p107

can be found in Section 7.1.3. Theorem 9
p81

is exactly the
same as Property 1

p63

.

Theorem 9 (Soundness and Completeness of Contract Checking (grand theorem))
For all closed expression e, closed and crash-free contract t,

(e ⊲ t) is crash-free ⇐⇒ e ∈ t

In this chapter, we give a detailed proof for Theorem 9
p81

. There are two directions to be
proved:

81
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• e ∈ t ⇒ e ⊲ t is crash-free. The difficulty lies in the proof for dependent function
contracts. We appeal to a key lemma (Lemma 19

p92

[Key Lemma] in Section 6.3).

• e⊲t is crash-free ⇒ e ∈ t. The difficulty also lies in the proof for dependent function
contracts. We appeal to three things:

– definition and properties of crashes-more-often (Definition 7
p48

, Lemma 9
p49

).

– projection pair property of ⊲ and ⊳ (Theorem 11
p94

in Section 6.6);

– congruence of crashes-more-often (Theorem 10
p93

in Section 6.5).

We used to prove Lemma 19
p92

[Key Lemma] and Theorem 11
p94

[Projection Pair] by
induction on the size of the contract t. But later on, we found that we could prove them
with the help of a property named telescoping property in [BM06], though the telescoping
property does not seem to be used in any of the proofs in [BM06]. Moreover, with the
telescoping property (Section 6.2), we can prove the idempotency property of ⊲ and ⊳
(Section 6.7) easily as well.

As mentioned in Section 5.2.1, the fin used in the proofs refers to the computable finn.
That means if e diverges, then (fin e) converges to True.

As some of the proofs involve the structural induction on the size of contract, we define
it in Figure 6.1.

|.| :: Contract → Int
|{x | p}| = 1
|x : t1 → t2| = |t1| + |t2| + 1
|(t1, t2)| = |t1| + |t2| + 1
|Any| = 1

Figure 6.1: Size of Contract

To make the proof look less clustered, we use the following shorthands:

cf : crash-free
ss : syntatically safe

defn : definition
cl : closed

To make the dependency of theorems and lemmas clear, a dependency diagram is shown
in Figure 6.2. For many theorems and lemmas, we prove them by induction on the size
of contract t. The dashed directed edge shows that the size of the contract decreases,
i.e. for a function contract t1 → t2, we call another lemma (or theorem) with t = t1.
The solid directed edge shows the size of the contract is preserved. This makes the proof
well-founded even though there are cycles in the dependencies (Section 6.4).
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T9

L13 L10 L14L5

L4

L19

t=t1

T12 T11L9

L6 L15

t=t1

L16

t=t2

L17 L18 L11L12

T1T2T4

T13

L20L21

L22

T14 L23

L24 L25

Figure 6.2: Dependency of Theorems and Lemmas

6.1 Proof of the Grand Theorem

Theorem 9
p81

For all expression e and crash-free contract t, such that ⊢ e :: τ and
⊢c t :: τ ,

e ⊲ t is crash-free ⇐⇒ e ∈ t

Proof The conditions ⊢ e :: τ and ⊢ t :: τ mean that both the expression e and the
contract t are closed and well-typed. The proof begins by dealing with two special cases:

• Case e →∗ BAD: We prove the two directions separately.
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(⇒)
e ⊲ t is cf

⇒ (By Lemma 4
p46

(preservation of crash-freeness)

and Lemma 13
p66

(about Any))
t = Any

⇒ (By defn of ∈, every expression satisfies Any)
e ∈ t

(⇐)
e ∈ t

⇒ (By Lemma 4
p46

(preservation of crash-freeness)

and Lemma 10
p55

(about Any))
t = Any

⇒ (By defn of ⊲)
e ⊲ Any is crash-free

• Case e↑: By inspecting the definition of ⊲ and ∈, for all t, if e↑, then (e ⊲ t)↑ and
e ∈ t. Thus, we are done.

Hence, for the rest of the proof, we assume that e →∗ val 6∈ {BAD, UNR}.

The rest of the proof is by induction on the size of t.

• Case t is {x | p}:

e ⊲ {x | p} is cf

⇐⇒ (By defn of ⊲)




e ‘seq‘ case fin p[e/x] of
True → e
False → BAD



 is cf

⇐⇒ (Since e →∗ val 6∈ {BAD, UNR}, by defn of ‘seq‘ and fin)
e is cf and fin p[e/x] →∗ True

⇐⇒ (By defn of fin)
e is cf and p[e/x] 6→∗ {BAD, False}

⇐⇒ (By defn of ∈)
e ∈ {x | p}

• Case t is x : t1 → t2: we want to prove that

(e ⊲ x : t1 → t2) is cf ⇐⇒ e ∈ x : t1 → t2

We have the following induction hypotheses:

∀cl e1, e1 ⊲ t1 is cf ⇐⇒ e1 ∈ t1 [IH1]
∀cl e2, e

′. e2 ⊲ t2[e
′/x] is cf ⇐⇒ e2 ∈ t2[e

′/x] [IH2]

We have the following proof:
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e ⊲ x : t1 → t2 is cf.

⇐⇒ (By defn of ⊲)
e ‘seq‘ λv.(e (v ⊳ t1)) ⊲ t2[(v ⊳ t1)/x] is cf.

⇐⇒ (Since e →∗ val 6∈ {BAD, UNR}, by Lemma 14
p67

(c) (properties of seq))
λv. (e (v ⊳ t1)) ⊲ t2[(v ⊳ t1)/x] is cf.

⇐⇒ (By Lemma 5
p46

(crash-free function))
(†) ∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is cf.

Now the proof splits into two. In the reverse direction, we start with the assumption
e ∈ x : t1 → t2:

e ∈ x : t1 → t2

⇐⇒ (By defn of ∈)
∀ e1 ∈ t1. (e e1) ∈ t2[e1/x]

⇒ (By Lemma 19
p92

(Key Lemma), let e1 = e′ ⊳ t1)
∀cf e′. (e (e′ ⊳ t1)) ∈ t2[(e

′ ⊳ t1)/x])

⇐⇒ (By [IH2])
(†) ∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is cf.

Now we have reached the desired conclusion (†). The key step is the use of Lemma 19
p92

(the first key lemma) (see §6.3).

In the forward direction, we start with (†):

∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e
′ ⊳ t1)/x] is cf.

⇒ (By [IH1], e1 ∈ t1 ⇒ (e1 ⊲ t1) is cf
so we replace e′ by e1 ⊲ t1)
∀e1 ∈ t1. (e ((e1 ⊲ t1) ⊳ t1)) ⊲ t2[(e1 ⊲ t1 ⊳ t1)/x] is cf

⇒ (By (Theorem 11
p94

(projection pair) and

Theorem 10
p93

(congruence of �) and

Lemma 9
p49

(c) (property of �)) twice)
∀e1 ∈ t1. (e e1) ⊲ t2[e1/x]) is cf

⇒ (By [IH2])
∀ e1 ∈ t1. (e e1) ∈ t2[e1/x])

⇐⇒ (by definition of ∈)
e ∈ x : t1 → t2

There are two key steps: one is to choose a particular crash-free e′, namely (e1 ⊲ t1)
where e1 ∈ t1; the other one is the appeal to Theorem 11

p94

, the projection pair
property of ⊲ and ⊳.

• t is (t1, t2): We have the following induction hypotheses:

∀cl e1, t1. e1 ⊲ t1 is cf ⇐⇒ e1 ∈ t1 [IH1]
∀cl e2, t2. e2 ⊲ t2 is cf ⇐⇒ e2 ∈ t2 [IH2]
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We have
e ⊲ (t1, t2) is cf

⇐⇒ (By defn of ⊲)
case e of {(e1, e2) → (e1 ⊲ t1, e2 ⊲ t2)} is cf

⇐⇒ (By [E-match1] and defn of cf)
e →∗ (e1, e2) and
(e1 ⊲ t1) is cf and (e2 ⊲ t2) is cf

⇐⇒ (By [IH1] and [IH2])
e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2

⇐⇒ (By definition of ∈)
e ∈ (t1, t2)

• t is Any: We have:

e ⊲ Any is cf

⇐⇒ (By definition of ⊲)
UNR is cf

⇐⇒ (By definition of ∈, and UNR ∈ Any)
e ∈ Any

End of proof. �

6.2 Telescoping Property

The telescoping property is adopted from [BM06] and we found that this property makes
the proofs of many lemmas shorter. However, it is not used in any proof in [BM06].

Lemma 15 (Telescoping Property) For all e, and crash-free t, (e
r1

⊲⊳
r2

t)
r3

⊲⊳
r4

t = e
r1

⊲⊳
r4

t

Proof Before we start the proof, by defn of ‘seq‘and [E-case1], we know two facts:

[Fact1] ∀e′. BAD ‘seq‘ e′ →∗ BAD

[Fact2] ∀alts, case BAD of alts → BAD

The proof begins by dealing with two special cases.

• Case e →∗ BAD: Based on [Fact1] and [Fact2], for all t 6= Any, by inspecting the

definition of ⊲⊳, we know (e
ri

⊲⊳
rj

t) →∗ BAD∀i, j. So LHS=RHS=BAD for t 6= Any. In

the case t = Any, we have:

(e
r1

⊲⊳
r2

Any)
r3

⊲⊳
r4

Any

= r2

r3

⊲⊳
r4

Any

= r4

= e
r3

⊲⊳
r4

Any
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• e↑. Similar to the arguments in the case e →∗ BAD.

Hence for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}.

The rest of the proof is by induction on the size of t.

• t is {x | p}:

(e
r1

⊲⊳
r2

{x | p})
r3

⊲⊳
r4

{x | p}

= (By definition of ⊲⊳)

let y = let x = e in





x ‘seq‘ case fin p of

True → x
False → r1





in y ‘seq‘ case fin p[y/x] of
True → y
False → r3

= (Since y is strict due to ‘seq‘, we float let x = e out)
let x = e
in x ‘seq‘ case fin p of

True → let y = x
in y ‘seq‘ case fin p[y/x] of

True → y
False → r3

False → let y = r1

in y ‘seq‘ case fin p[y/x] of
True → y
False → r3

= (inline x and inline y)
e ‘seq‘ case fin p[e/x] of

True → e ‘seq‘ case fin p[e/x] of
True → e
False → r3

False → r1 ‘seq‘ case fin p[e/x] of
True → r1

False → r3

= (Since e →∗ val 6∈ {BAD, UNR} and r1 ∈ {BAD, UNR}
and propagating the True (or False) value of fin p[e/x]to sub-branches)
e ‘seq‘ case fin p[e/x] of

True → e
False → r1

= (By defn of ⊲⊳)

e
r1

⊲⊳
r4

t

• t is x : t1 → t2: We have the following induction hypotheses:

∀e, cf t1, (e
r1

⊲⊳
r2

t1)
r3

⊲⊳
r4

t1 = e
r1

⊲⊳
r4

t1 [IH1]

∀e, e′, cf t2[e
′/x], (e

r1

⊲⊳
r2

t2[e
′/x])

r3

⊲⊳
r4

t2[e
′/x] = e

r1

⊲⊳
r4

t2[e
′/x] [IH2]
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We have the following proof:

(e
r1

⊲⊳
r2

x : t1 → t2)
r3

⊲⊳
r4

x : t1 → t2

= (By defn of ⊲⊳)

λv1. ((e
r1

⊲⊳
r2

x : t1 → t2) (v1

r4

⊲⊳
r3

t1))
r3

⊲⊳
r4

t2[(v1

r4

⊲⊳
r3

t1)/x]

= (By defn of ⊲⊳ again)

λv1. ((λv2. (e (v2

r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v2

r2

⊲⊳
r1

t1)/x]) (v1

r4

⊲⊳
r3

t1))
r3

⊲⊳
r4

t2[(v1

r4

⊲⊳
r3

t1)/x]

= (By β-reduction)

λv1. ((e ((v1

r4

⊲⊳
r3

t1)
r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v1

r4

⊲⊳
r3

t1
r2

⊲⊳
r1

t1)/x])
r3

⊲⊳
r4

t2[(v1

r4

⊲⊳
r3

t1)/x]

= (By induction hypothesis with t = t1)

λv1. ((e (v1

r4

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v1

r4

⊲⊳
r1

t1)/x])
r3

⊲⊳
r4

t2[(v1

r4

⊲⊳
r3

t1)/x]

= (By Lemma 16
p89

, we replace r3 by r1)

λv1. ((e (v1

r4

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v1

r4

⊲⊳
r1

t1)/x])
r3

⊲⊳
r4

t2[(v1

r4

⊲⊳
r1

t1)/x]

= By induction hypothesis [IH2]: t = t2[(v1

r4

⊲⊳
r1

t1)/x]

t2[(v1

r4

⊲⊳
r1

t1)/x]is cf because t is cf and by Lemma 19
p92

, v1

r4

⊲⊳
r1

t1 ∈ t1)

λv1. (e (v1

r4

⊲⊳
r1

t1))
r1

⊲⊳
r4

t2[(v1

r4

⊲⊳
r1

t1)/x]

= (By defn of ⊲⊳)

e
r1

⊲⊳
r4

x : t1 → t2

• t is (t1, t2): We have the following induction hypotheses:

∀e, cf t1, (e
r1

⊲⊳
r2

t1)
r3

⊲⊳
r4

t1 = e
r1

⊲⊳
r4

t1 [IH1]

∀e, cf t2, (e
r1

⊲⊳
r2

t2)
r3

⊲⊳
r4

t2 = e
r1

⊲⊳
r4

t2 [IH2]

We have the following proof:

(e
r1

⊲⊳
r2

(t1, t2))
r3

⊲⊳
r4

(t1, t2)

= (By defn of projection)
(

case e of

(e1, e2) → (e
r1

⊲⊳
r2

t1, e
r1

⊲⊳
r2

t2)

)

r3

⊲⊳
r4

(t1, t2)

= (By simpl rule CaseOut)
case e of

(e1, e2) → ((e
r1

⊲⊳
r2

t1)
r3

⊲⊳
r4

t1, (e
r1

⊲⊳
r2

t2)
r3

⊲⊳
r4

t2)

= (By induction hypotheses [IH1] and [IH2])
case e of

(e1, e2) → (e
r1

⊲⊳
r4

t1, e
r1

⊲⊳
r4

t2)

= (By defn of projection)

e
r1

⊲⊳
r4

(t1, t2)
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• t is Any:

LHS

(e
r1

⊲⊳
r2

Any)
r3

⊲⊳
r4

Any

= r2

r3

⊲⊳
r4

Any

= r4

RHS

e
r3

⊲⊳
r4

Any

= r4

Since LHS ≡ RHS, we are done. �

In the case of dependent function contract x : t1 → t2, in order to apply the induction
hypothesis for t2, we need a crucial lemma (Lemma 16

p89

) which says that the lower
exception in t2 is not reachable, so we can replace r3 by r1. The intuition is that since
x : t1 → t2 is a crash-free contract, t2 must use x in a way that respects the contract t1, so
wrapping x in a contract that raises exception r1 if the context does not respect t1 cannot
cause r1 to be raised.

Lemma 16 (Unreachable Exception) For all t1, t2, if ∀e1 ∈ t1, t2[e1/x] is crash-free,

then for all r1, r3, r4, for all crash-free e′1, t2[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t t2[(e
′
1

r4

⊲⊳
r1

t1)/x]

Proof We prove this by induction on the size of t2. Note that, by the definition of the
size of a contract and the definition of contract substitution, the contract substitution
preserves the size of the contract.
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• Case t2 = {y | p}. We have the following proof:

∀e1 ∈ t1. {y | p}[e1/x] is cf

⇐⇒ (By substitution)
∀e1 ∈ t1. {y | p[e1/x]} is cf

⇐⇒ (By defn of cf)
∀e1 ∈ t1. p[e1/x] is cf

⇒ (By Lemma 19
p92

(Key Lemma), ∀cf e′1. e′1 ⊳ t1 ∈ t1)
∀cfe′1. p[(e′1 ⊳ t1)/x] is cf

⇐⇒ (By defn of ⊳)

∀cfe′1. p[(e′1
UNR

⊲⊳
BAD

t1)/x] is cf

⇐⇒ (By defn of cf and p[(e′1
UNR

⊲⊳
BAD

t1)/x] has type Bool)

∀cfe′1. p[(e′1
UNR

⊲⊳
BAD

t1)/x] 6→∗ BAD

⇐⇒ (Let D = p[(e′1
•1

⊲⊳
•2

t1)/x])

D[[UNR, BAD]] 6→∗ BAD

⇒ (By Lemma 17
p91

(Exception I))
∀r1, r3, D[[UNR, r1]] ≡s D[[UNR, r3]]

⇒ (By Lemma 18
p91

(Exception II))
∀r1, r3, r4, D[[r4, r1]] ≡s D[[r4, r3]]

⇐⇒ (By definition of D)

∀cf e′1, r1, r3, r4. p[(e′1
r4

⊲⊳
r3

t1)/x] ≡s p[(e′1
r4

⊲⊳
r1

t1)/x]

⇐⇒ (By Lemma 11
p61

(Predicate Contract Equivalence) and substitution)

∀cf e′1, r1, r3, r4. {y | p}[(e′1
r4

⊲⊳
r3

t1)/x] ≡t {y | p}[(e′1
r4

⊲⊳
r1

t1)/x]

• Case t2 = y : t3 → t4. We have the following induction hypotheses:

∀e1 ∈ t1, (t3[e1/x] is cf ⇒ ∀cf e′1, t3[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t t3[(e
′
1

r4

⊲⊳
r1

t1)/x]) [IH1]

∀e1 ∈ t1,∀e3 ∈ t3, (t4[e3/y, e1/x] is cf ⇒

∀cf e′1, t4[e3/y, (e′1
r4

⊲⊳
r3

t1)/x] ≡t t4[e3/y, (e′1
r4

⊲⊳
r1

t1)/x]) [IH2]

We have the following proof:

∀e1 ∈ t1, (y : t3 → t4)[e1/x] is cf

⇐⇒ (By defn of cf)
∀e1 ∈ t1. t3[e1/x] is cf and ∀e3 ∈ t3[e1/x], t4[e1/x, e3/y] is cf

⇐⇒ (By [IH1] and [IH2])

∀cfe′1, t3[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t t3[(e
′
1

r4

⊲⊳
r1

t1)/x] and

∀e3 ∈ t3[e1/x],∀cfe′1, t4[e3/y, (e′1
r4

⊲⊳
r3

t1)/x] ≡t t4[e3/y, (e′1
r4

⊲⊳
r1

t1)/x]

⇐⇒ (By Lemma 12
p61

(Dependent Function Contract Equivalence) and
contract substitution in Figure 4.5)

∀cfe′1, y : t3 → t4[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t y : t3 → t4[(e
′
1

r4

⊲⊳
r1

t1)/x]



CHAPTER 6. CORRECTNESS PROOFS OF CONTRACT CHECKING 91

• Case t2 = (t3, t4). We have the following induction hypotheses:

∀e1 ∈ t1, t3[e1/x] is cf ⇒ ∀cf e′1, t3[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t t3[(e
′
1

r4

⊲⊳
r1

t1)/x] [IH1]

∀e1 ∈ t1, t4[e1/x] is cf ⇒ ∀cf e′1, t4[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t t4[(e
′
1

r4

⊲⊳
r1

t1)/x] [IH2]

We have the following proof:

∀e1 ∈ t1. (t3, t4)[e1/x] is cf)

⇐⇒ (By substitution)
∀e1 ∈ t1. (t3[e1/x], t4[e1/x]) is cf)

⇐⇒ (By defn of cf)
∀e1 ∈ t1. t3[e1/x] is cf and t4[e1/x]) is cf)

⇐⇒ (By [IH1] and [IH2])

∀cf e′1, t3[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t t3[(e
′
1

r4

⊲⊳
r1

t1)/x] and t4[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t t4[(e
′
1

r4

⊲⊳
r1

t1)/x]

⇐⇒ (By substitution)

∀cf e′1, (t3, t4)[(e
′
1

r4

⊲⊳
r3

t1)/x] ≡t (t3, t4)[(e
′
1

r4

⊲⊳
r1

t1)/x]

• Case t2 = Any. Immediate result. �

In Lemma 17
p91

, we prove the equivalence of two terms under a more general condi-
tion C[[BAD]] is cf rather than simply C[[BAD]] 6→∗ BAD (which is good enough for prov-
ing Lemma 16

p89

(Unreachable Exception)) because Lemma 17
p91

is also used in prov-
ing Lemma 22

p96

(Exception III).

Lemma 17 (Exception I) ∀C. (C[[BAD]] is cf ⇒ ∀r ∈ {BAD, UNR}. C[[r]] ≡s C[[BAD]])

Proof There are only two exceptional values: BAD and UNR. Hence, it is to prove that:

∀C, (C[[BAD]] is cf ⇒ C[[UNR]] ≡s C[[BAD]])

The intuition is that if C[[BAD]] is cf, then the BAD in the hole cannot be reached, so we
can replace it by any exceptional value. This reasoning in turn relies on the absence of a
“catch” primitive that can transform BAD into something non-BAD. Note that the following
may hold:

∀C, e1, e2. (C[[BAD]] is cf ⇒ C[[e1]] ≡s C[[e2]])

but in this thesis, we only need to prove this specific lemma.

Formally, we can prove the lemma by case splitting on whether C[[BAD]] terminates, and if
it does, by induction on the number of steps of reduction. �

Lemma 18 (Exception II) ∀C, r1, r3, r4. C[[UNR, r1]] ≡s C[[UNR, r3]] ⇒ C[[r4, r1]] ≡s C[[r4, r3]]

Proof There are only two exceptional values: BAD and UNR. Hence, it is to prove that:

∀C, r1, r3. C[[UNR, r1]] ≡s C[[UNR, r3]] ⇒ C[[BAD, r1]] ≡s C[[BAD, r3]]
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We can see that there are two holes and the first hole is filled in with the same value
while the second hole is filled in with different exceptional values indicated by r1 and r3

respectively. It is obvious that ∀C. C[[BAD]] ≡s C[[BAD]] because two sides are syntactically
the same. The intuition is that even if we have two holes (instead of one hole), as long
as the second hole does not play a role in any reduction i.e. unreachable, the equality ≡s

still holds. We use the constraint C[[UNR, r1]] ≡s C[[UNR, r3]] to specify the condition that
the second hole does not play a role.

Formally, we can prove the lemma by case splitting on whether C[[r4, r1]] terminates, and
if it does, by induction on the number of steps of reduction.

6.3 Key Lemma

Lemma 19 (Key Lemma) For all crash-free e and crash-free contract t, such that ⊢
e :: τ and ⊢c t :: τ ,

e ⊳ t ∈ t

Proof First, we have the following derivation (named D1).

(e ⊳ t) ⊲ t

= (By defn of ⊳ and ⊲)

(e
UNR

⊲⊳
BAD

t)
BAD

⊲⊳
UNR

t

= (By Lemma 15
p86

(Telescoping Property))

e
UNR

⊲⊳
UNR

t

Now, we have the following proof.

e is cf

⇒ (Since t is crash-free, t ≡ ⌊t⌋. By the defn of ⊲⊳,

the context (•
UNR

⊲⊳
UNR

⌊t⌋) is syntactically safe.

By defn of cf, we have below)

e
UNR

⊲⊳
UNR

t is cf

⇐⇒ (By derivation D1)
(e ⊳ t) ⊲ t is cf

⇐⇒ (By Theorem 9
p81

(grand theorem))
(e ⊳ t) ∈ t

End of proof. �

6.4 Examination of Cyclic Dependencies

Recall the dependency graph in Figure 6.2, there are a few cycles:
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T9

L19

t=t1   

T9

T12

L15

L19

  t=t1     

T9

T11

L15

L19

  t=t1     

L15

L19

t=t1   

L19

L15

L16

  t=t2     

cycle (1) cycle (2) cycle (3) cycle (4) cycle (5)

Figure 6.3: Cyclic Dependency of Three Lemmas

(1) T5 → L19 → T5

(2) T5 → T12 → L15 → L19 → T5

(3) T5 → T11 → L15 → L19 → T5

(4) L19 → L15 → L19

(5) L19 → L15 → L16 → L19

Each cycle is shown in Figure 6.3. The dashed directed edge indicates a decrease in size of
t while the solid directed edge shows a preservation of the size of t. We can see that, in each
cycle, there is an edge that decreases the size of t. Cycle (1) is well-founded because the size
of t (where t = x : t1 → t2) decreases (to t1) when Theorem 9

p81

calls Lemma 19
p92

. Cycle
(2), Cycle (3) and Cycle (4) are well-founded because the size of t (where t = x : t1 → t2)
decreases (to t1) when Lemma 15

p86

calls Lemma 19
p92

. Cycle (5) is well-founded because

the size of t (where t = x : t1 → t2) decreases (to t2[(v1

r4

⊲⊳
r1

t1)/x]) when Lemma 15
p86

calls

Lemma 16
p89

. By the definition of the size of a contract (Figure 6.1), we know that the
substitution occuring in t2 does not change the size of t2.

Although there are cyclic dependencies among these theorems and lemmas, on each cyclic
path, there is a decrease in the size of t. Thus, our proof on induction of the size of t is
well-founded.

6.5 Congruence of Crashes-More-Often

Theorem 10 (Congruence of Crashes-More-Often)

∀e1, e2. e1 � e2 ⇐⇒ ∀C, C[[e1]] � C[[e2]]

Proof We prove two directions separately:



94 6.6. PROJECTION PAIR AND CLOSURE PAIR

(⇒) For an arbitrary B, we prove B[[e1]] � B[[e2]]. We have the following proof:

e1 � e2

⇐⇒ (By definition 7)
∀C.C[[e2]] →

∗ BAD ⇒ C[[e1]] →
∗ BAD

⇒ ∀C,D. (C = D[[B[[•]]]]) ⇒ (C[[e2]] →
∗ BAD ⇒ C[[e1]] →

∗ BAD)

⇒ ∀D. D[[B[[e2]]]] →
∗ BAD ⇒ D[[B[[e1]]]] →

∗ BAD

⇒ ∀B.B[[e1]] � B[[e2]]

Note that we assume for all i = 1, 2:

⊢ C[[ei]] :: (), ⊢ D[[ei]] :: () and ⊢ E [[ei]] :: ()

(⇐) It is trivially true, because we can choose an empty context (i.e. C = •). �

6.6 Projection Pair and Closure Pair

Recall the definition of projection pair. Let D and E be complete partial order’s. If
f : D → E and g : E → D are continuous functions such that f ◦ g ⊆ id, then (f ,g)
is called a projection pair. If id ⊆ f ◦ g, then (f ,g) is called a closure pair. In this
section, we are not going to explore the theory in depth. We only notice that in some
way (• ⊲ t ⊳ t � id) and (id � • ⊳ t ⊲ t) match the definition of projection pair and closure
pair respectively.

Theorem 11 (A Projection Pair) For all e and t, such that ∃∆. ∆ ⊢ e :: τ and
∆ ⊢c t :: τ ,

(e ⊲ t) ⊳ t � e

Proof We have the following proof:

(e ⊲ t) ⊳ t

= (By defn of ⊲ and ⊳)

(e
BAD

⊲⊳
UNR

t)
UNR

⊲⊳
BAD

t

= (By Lemma 15
p86

)

e
BAD

⊲⊳
BAD

t

≪{BAD} e

By definition of ≪{BAD}, we get the desired result. �

Theorem 12 (A Closure Pair) For all e and t, such that ∃∆. ∆ ⊢ e :: τ and ∆ ⊢c t ::
τ ,

e � (e ⊳ t) ⊲ t



CHAPTER 6. CORRECTNESS PROOFS OF CONTRACT CHECKING 95

Proof We have the following proof:

(e ⊳ t) ⊲ t

= (By defn of ⊳ and ⊲)

(e
UNR

⊲⊳
BAD

t)
BAD

⊲⊳
UNR

t

= (By Lemma 15
p86

)

e
UNR

⊲⊳
UNR

t

≪{UNR} e

By definition of ≪{UNR}, we get the desired result. �

6.7 Contracts are Projections

Recall the definition of projection, a projection p is a function that has two properties:

1. p = p ◦ p

2. p ⊆ 1

The first one is called the retract property and says that projections are idempotent
on their range. The second one says that the result of a projection contains no more
information than its input.

We would like to show that if e ∈ t, then (• ⊳ t) is an error projection while (• ⊲ t) is a
safe projection. By error projection, we mean e⊳ t either behaves the same as e or returns
BAD. Similarly, by safe projection, we mean e ⊲ t either behaves the same as e or returns
UNR.

Findler and Blume [FB06] are the first to discover that contracts are pairs of projections.
However, they assume that the e is a non-crashing term and the only error raised are
contract violations. We assume that a program may contain errors and may crash. We
give error a contract Any. Moreover, we prove different theorems from [FB06].

Theorem 13 (Error Projection) For all closed e and closed t, if e ∈ t, (• ⊳ t) is a
projection.

Proof By Lemma 20
p95

(a) (Idempotency) and Lemma 21
p96

(a). �

Theorem 14 (Safe Projection) For all closed e and closed t, if e ∈ t, (• ⊲ t) is a
projection.

Proof By Lemma 20
p95

(b) (Idempotency) and Lemma 21
p96

(b). �

Lemma 20 (Idempotence) For all closed e, t,

e
r1

⊲⊳
r2

t
r1

⊲⊳
r2

t = e
r1

⊲⊳
r2

t
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Proof It follows directly from Lemma 15
p86

(telescoping property). �

Lemma 21 (Conditional Projection) For all closed e, closed and crash-free t, if e ∈ t,
then

(a) e ⊳ t � e (b) e � e ⊲ t

Proof We prove each of them separately.

(a) Given e ∈ t, we have:

e ⊳ t

= (By defn of ⊲ in Figure 5.1)

e
UNR

⊲⊳
BAD

t

≡s (By Lemma 22
p96

(Exception III))

e
BAD

⊲⊳
BAD

t

� e

(b) Given e ∈ t, we have:

e ⊲ t

= (By defn of ⊲ in Figure 5.1)

e
BAD

⊲⊳
UNR

t

≡s (By Lemma 22
p96

(Exception III))

e
UNR

⊲⊳
UNR

t

� (Since t is crash-free)
e

End of proof. �

Lemma 22 (Exception III) ∀e, t. e ∈ t ⇒ ∀r. e
BAD

⊲⊳
r

t ≡s e
UNR

⊲⊳
r

t

Proof For all expression e, contract t, we have:

e ∈ t

⇐⇒ (By Theorem 9
p81

(Grand Theorem))
e ⊲ t is cf

⇐⇒ (By defn of ⊲ and cf)

∀C, BAD 6∈ C. C[[e
BAD

⊲⊳
r

t]] 6→∗ BAD

⇐⇒ (By Lemma 17
p91

(Exception I))

∀C, BAD 6∈ C. C[[e
BAD

⊲⊳
r

t]] ≡s C[[e
UNR

⊲⊳
r

t]]

⇒ (Let C = •)

e
BAD

⊲⊳
r

t ≡s e
UNR

⊲⊳
r

t

We are done. �
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6.8 Behaviour of Projections

We have seen that in Section 6.7, we make use of the property of behaves-the-same (≪)
(Lemma 23

p97

). In this section, we give its detailed proof. Lemma 23
p97

says that an
expression wrapped with a contract behaves either the same as the original expression or
returns one of the exceptions which can be either BAD or UNR.

Lemma 23 (Behaviour of Projection) For all r1, r2, e, crash-free t, such that ⊢ e :: τ
and ⊢c t :: τ , and r1, r2 ∈ {BAD, UNR},

e
r1

⊲⊳
r2

t ≪{r1,r2} e

Proof The proof begins by dealing with two special cases: e↑, e →∗ BAD. In both cases,

by Definition of ⊲⊳ and Lemma 14
p67

(properties of ‘seq‘), we know e
r1

⊲⊳
r2

t ≡s e and we

are done.

Hence, for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}. We prove it by
induction on the size of t. Let R be {r1, r2}.

• t is {x | p}: we have

e
r1

⊲⊳
r2

{x | p} = e ‘seq‘ case fin p[e/x] of
True → e
False → r1

Since t is crash-free, p[e/x] 6→∗ BAD. So there are two cases to consider:

– If p[e/x] →∗ {False}, then e
r1

⊲⊳
r2

{x | p} →∗ {r1} and we are done.

– If p[e/x] ↑ or p[e/x] →∗ {True} , since fin converts divergence to True, we

know fin p[e/x] gives True. Thus, e
r
1 {x | p} →∗ {e} and we are done.

• t is x : t1 → t2: We have

e
r1

⊲⊳
r2

x : t1 → t2 = e ‘seq‘

λv. ((e (v
r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v
r2

⊲⊳
r1

t1)/x])

Since e →∗ val 6∈ {BAD, UNR}, e →∗ λx.e′ and (e
r1

⊲⊳
r2

x : t1 → t2) →∗ λv. ((e (v
r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v
r2

⊲⊳
r1

t1)/x]).

We want to show that ∀C. C[[e]] →∗ r ∈ R ⇒ C[[λv. ((e (v
r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v
r2

⊲⊳
r1

t1)/x]]]) →∗ r. We prove it by induction on strict contexts first and by Lemma 2
p44

(strict context), it is true for all contexts. There are 3 cases to consider:

1. C = [[•]];

2. C = D[[case • of alts]];
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3. C = D[[• e3]].

Case 1 and 2 are trivially true by inspecting the operational semantics of ‘seq‘and
case. For Case 3, since we prove it by induction on the size of context, we have the
following induction hypothesis:

∀D[[e]] →∗ r ⇒ D[[• e3]] →
∗ r [IH]

So all we need to prove is that for all e3,

(λv. ((e (v
r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(v
r2

⊲⊳
r1

t1)/x])) e3 ≪R e e3

By β-reduction, it means we want to show

(e (e3

r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(e3

r2

⊲⊳
r1

t1)/x] ≪R (e e3) (∗)

By induction hypotheis where t = t2[(e3

r2

⊲⊳
r1

t1)/x], we have

(e (e3

r2

⊲⊳
r1

t1))
r1

⊲⊳
r2

t2[(e3

r2

⊲⊳
r1

t1)/x] ≪R (e (e3

r2

⊲⊳
r1

t1)) (1)

By induction hypothesis where t = t1, we have

e3

r2

⊲⊳
r1

t1 ≪R e3

By Lemma 24
p98

(Congruence of ≪R), we have

e (e3

r2

⊲⊳
r1

t1) ≪R e e3 (2)

By (1) and (2) and Lemma 25
p99

(Transitivity of ≪R), we get (*). By [IH], we have

the desired result ∀C. C[[e]] →∗ r ∈ R ⇒ C[[e
r1

⊲⊳
r2

x : t1 → t2]] →
∗ r.

• t is (t1, t2): We have

e
r
1 (t1, t2) = case e of

(e1, e2) → (e1

r
1 t1, e2

r
1 t2)

If e →∗ val 6∈ {BAD, UNR}, then e →∗ {e1, e2}. By the induction hypotheses where

t = t1 and t = t2 respectively, we know e1

r
1 t1 ≪R e1 and e2

r
1 t2 ≪R e2.

Therefore, by Definition 6
p47

(b), we have e
r
1 (t1, t2) ≪R e.

• t is Any: Since we have e
r
1 Any = ¬r, we know e

r
1 Any →∗ {¬r}. By Defini-

tion 6
p47

(a), we are done. �

Lemma 24 (Congruence of Behaves-the-same) If e1 ≪R e2, then ∀C, C[[e1]] ≪R

C[[e2]].
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Proof we have the following proof:

e1 ≪R e2

⇐⇒ (By definition 6)
∀C, C[[e2]] →

∗ r ∈ R ⇒ C[[e1]] →
∗ r

⇒ (Choose C be D[[C[[E]]•]])
∀D,∀E , D[[E [[e2]]]] →

∗ r ∈ R ⇒ D[[E [[e1]]]] →
∗ r

⇐⇒ (By definition 6)
∀C, C[[e1]] ≪R C[[e2]]

Note that we assume for all i = 1, 2:

⊢ C[[ei]] :: (), ⊢ D[[ei]] :: () and ⊢ E [[ei]] :: ()

End of proof. �

Lemma 25 (Transitivity of ≪R) If e1 ≪R e2 and e2 ≪R e3, then e1 ≪R e3.

Proof By Definition 6
p47

, we have

(1) ∀C. C[[e2]] →
∗ r ∈ R ⇒ C[[e1]] →

∗ r
(2) ∀C. C[[e3]] →

∗ r ∈ R ⇒ C[[e2]] →
∗ r

For all C, assuming C[[e3]] →
∗ r ∈ R, we want to show C[[e1]] →

∗ r. We have the following
proof:

∀C. C[[e3]] →
∗ r ∈ R

⇒ (By (2))
C[[e2]] →

∗ r ∈ R

⇒ (By (1))
C[[e1]] →

∗ r

End of proof �
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Chapter 7

Symbolic Execution and Error
Reporting

Given f ∈ t, we have shown that to check f ∈ t, we check “f ⊲ t is crash-free” instead.
What happens if f ⊲ t is not crash-free? That means when we try to symbolically execute
the term f ⊲ t to some e′ and there are some residual BADs in e′, what can we report to
the programmer from the contract violation? In this chapter, we first give the details of
the symbolic execution together with a novel counter-example guided (CEG) unrolling
approach. Then we are ready to show how meaningful error messages can be generated
from the simplified version of f ⊲ t.

7.1 Symbolic Execution

After we construct the expression e ⊲ t which captures all contract violations with BAD,
all we need to do is to symbolically evaluate it and attempt to simplify it to some e′

which does not contain BAD. Symbolic execution is also called simplification. A set of
deterministic simplification rules is shown in Figure 7.2 The function fv(e), which returns
free variables of e, is defined in Figure 7.1. Each rule satisfies the theorem:

If e1 =⇒ e2, then e1 ≡s e2

Note that each transition rule in Figure 3.3 itself is also a simplification rule.

7.1.1 Simplification Rules

Many simplification rules are adopted from the literature [Pey96]. For example, the rule
CaseCase floats out the scrutinee while the rule CaseOut pushes an argument into each
branch. The short-hand {Ki ~xi → ei} stands for ∀i, 1 ≤ i ≤ n.{K1 ~x1 → e1; . . . ; Kn ~xn

→ en} where ~xi refers to a vector of fields of a constructor Ki. The rest of the rules are
elaborated as follows.

101
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fv :: Exp → {Var}
fv(BAD) = ∅
fv(UNR) = ∅
fv(x) = {x}
fv(λx.e) = fv(e) − {x}
fv(e1 e2) = fv(e1) ∪ fv(e2)
fv(K e1 . . . en) =

⋃n

i=0 fv(ei)
fv(case e0 {ci ~xi → ei}) = fv(e0) ∪

⋃n

i=0(fv(ei) − ~xi)

Figure 7.1: Free Variables

case (case e0 of {pti → ei}) of alts (CaseCase)
=⇒ case e0 of {pti → case ei of alts} fv(alts) ∩ var(pti) = ∅

(case e0 of {pti → ei}) a (CaseOut)
=⇒ case e0 of {pti → (ei a)} fv(a) ∩ ~xi = ∅

case e0 of {pti → ei; ptj → UNR} (RmUNR)
=⇒ case e0 of {pti → ei}

case e0 of {pti → ei} (SameBranch)
=⇒ e0 ‘seq‘ e1

patterns are exhaustive and
for all i, fv(ei) ∩ var(pti) = ∅ and e1 = ei

case e0 of {Ki ~xi → ei} (Scrut)
=⇒ case e0 of {Ki ~xi → ei[Ki ~xi/e0]} fv(ei) ∩ ~xi = ∅

Figure 7.2: Simplification Rules

Unreachable The rule RmUNR discards all unreachable branches which are marked
by UNR. For example:

... case xs of

[] -> UNR

(x:xs’) -> x

will be simplified to

... case xs of

(x:xs’) -> x

One difference between the semantics of our language H and Haskell is that: in Haskell,
a missing branch denotes a crashing branch while in H, a missing branch denotes an
unreachable branch. There are two reasons we design the semantics in this way:
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• When we preprocess a user program (i.e. transform Haskell to language H), all
missing cases of pattern matching are explicitly replaced by a branch that returns
BAD as mentioned earlier in Section 3.1.

• If we know a branch is not reachable, we want to delete the branch so as to reduce
the size of the expression under symbolic simplification.

For example, we may have a code fragment like:

... case False of

True -> ...

False -> UNR

which can be simplified to:

... case False of

True -> ...

We can see that in this case, the scrutinee does not match any branch. Now, we can apply
the transition rule [E-Match4] (in Figure 3.3) and simplify the whole case-expression to
UNR.

Match The transition rule [E-Match4] (in Figure 3.3) and the simplification rule
RmUNR might seem to be redundant due to the existence of the transition rules [E-
Match1-3], which select the matched branch and remove the unmatched branches. But
they are not. Consider:

... case xs of

True -> case False of

True -> ...

False -> ...

The transition rules [E-Match1-3] only deal with the situation when the scrutinee
matches one of the branches. So in the above case, we need to apply the transition
rule [E-Match4] and the simplification rule RmUNR respectively to get:

... case xs of

False -> ...

Common Branches During the simplification process, we often encounter code frag-
ment like this:

... case xs of

K1 -> True

K2 -> True
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In the rule SameBranch if all branches have the identical RHS (w.r.t. α-conversion),
the scrutinee is redundant. However, we need to be careful as we should do this only if

(a) all patterns are exhaustive (i.e. all constructors of a data type are tested);

(b) given {Ki ~xi → ei}, no free variables in ei are bound in Ki ~xi.

To see why we need condition (a), consider the following example:

rev :: {xs | True} -> {rs | null rs ==> null xs}

During the simplification of its checking code rev ⊲ trev, we may have:

... case rev xs of

[] -> case xs of

[] -> rev xs

(x:xs’) -> ...

The inner case has only one branch (the other branch is understood to be unreachable).
It might be believed that we would replace the expression (case xs of {[] -> rs })

by rs as there is only one branch that is reachable and the resulting expression does not
rely on any substructure of xs. However, this makes us lose a critical piece of information,
namely:

if (rev xs) == [], then xs == [].

On the other hand, given this information we can perform more aggressive simplification.
For example, suppose we have another function g that calls rev:

g xs = case (rev xs) of

[] -> ... case xs of

[] -> True

(x:xs) -> False

(x:xs) -> ...

we may use the above information to simplify the inner case to True which may allow
more aggressive symbolic checking.

The condition (b) is needed because of the scoping of variables. For example:

case xs of

K1 x y -> y

K2 x y -> y

The two ys in the two branches refer to different data although they are syntactically the
same. So the rule SameBranch can only be applied when ei does not use any variables
in ~xi.

Moreover, the RHS of the rule SameBranch is e0‘seq‘e1 instead of e1 is because if e0

reduces to BAD (or UNR), the LHS reduces to BAD (or UNR), which is not semantically
equivalent to e1.
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Static Memoization All known information should be used in simplifying an expres-
sion. In order for the rule Scrut to work, we need to keep a table which captures all the
information we know when we traverse the syntax tree of an expression. As the scrutinee
of a case-expression is an expression, the key of the table is an expression rather than
a variable. The value of the table is the information that is true for the corresponding
scrutinee. For example, when we encounter:

case (noT1 x) of

True -> e1

we extend the information table like this:

: :
noT1 x True

When we symbolically evaluate e1 and encounter (noT1 x) a second time in e1, we look
up its corresponding value in the information table for substitution.

7.1.2 Arithmetic

Our simplification rules are mainly to handle pattern matchings. For expressions involving
arithmetic, we need to consult a theorem prover. Suppose we have:

foo :: Int -> Int -> Int

foo :: {i | True} -> {j | i > j}

Its representative function foo ⊳ tfoo looks like this:

t_foo = \i j -> case (i > j) of

False -> BAD

True -> ...

Now, suppose we have a call to foo:

goo i = foo (i+8) i

After inlining foo ⊳ tfoo, we may have such symbolic checking code:

\i -> case (i+8 > i) of

False -> BAD

True -> ...
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A key question to ask is if BAD can be reached? To reach BAD, we need i+8 > i to return
False. Now we can pass this off to a theorem prover that is good at arithmetic and see
if we can prove that the False branch is unreachable. If so, we can safely remove the
branch leading to BAD.

In theory, we can use any theorem prover that can perform arithmetic. Currently, we
choose a free theorem prover named Simplify [DNS05] to perform arithmetic checking in
an incremental manner. For each case scrutinee such that

• it is an expression involving solely primitive operators, or

• it returns a boolean data constructor

we invoke Simplify prover to determine if this scrutinee evaluates to definitely true, def-
initely false or DontKnow. If the answer is either true or false, the simplification rule of
Match is applied as well as adding this to our information table. Otherwise, we just
keep the scrutinee and continue to symbolically evaluate the branches.

Each time we query the theorem prover Simplify, we pass the knowledge accumulated in
our information table as well. For example, we have the following fragment during the
simplification process:

... case i > j of

True -> case j < 0 of

False -> case i > 0 of -- (*)

False -> BAD

When we reach the line marked by (*), before we query i > 0, we send information
i > j == True and j < 0 == False to the Simplify. Such querying can be efficiently
implemented through the push/pop commands supplied by the theorem prover which
allows truth information to be pushed to a global (truth) stack and popped out when it
is no longer needed.

You might notice that it is possible to make use of the external theorem prover to do the
static memoization job mentioned in Section 7.1.1. There are two reasons that we do not
combine two tasks into one:

1. calling an external theorem prover is more expensive. Currently, we covert program
fragment to string format and send it to the external theorem prover; after getting
the result (from the prover) which is also in string format, we parse the string in
order to know the result is ”Valid” or ”Invalid”. Thus, it is more expensive than
looking up a static memoization table internally. Moreover, if there is no arithmetic
involved in a program (eg. programmers use Peano numbers only), programmers
may choose not to install the external theorem prover or to switch off the prover
by setting a flag during compilation. So we do not have to enforce programmers
to install an external prover if programmers work on a platform (e.g. Palm) with
limited resources.

2. external stuff is less trustworthy. We have proved the correctness of the whole
verification system except the correctness of the external theorem prover because it
is developed by another party.
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7.1.3 Proof of Soundness of Simplification

In this section, we show that each simplification rule preserves the semantics of the ex-
pression it simplifies.

Lemma 26 (Correctness of One-Step Simplification) If e1 =⇒ e2, then e1 ≡s e2.

Proof We prove the lemma by considering simplifying rules one by one. Basically, we
symbolically evaluate both e1 and e2. If ∃e′. e1 →

∗ e′ and e2 →
∗ e′, then we are done.

• Rule CaseOut: We want to show e1 ≡s e2 where

e1 = (case e0 of {pti → ei}) a
e2 = case e0 of {pti → ei a}

There are four cases to consider:

(a) Case e0 →∗ BAD. By [E-excase] and [E-exapp], e1 →∗ BAD. By [E-excase], e2

→∗ BAD.

(b) Case e0 ↑. By [E-excase] and [E-exapp], e2 ↑. By [E-excase], e2 ↑.

(c) Case e0 →∗ Kj ~xj. By [E-match1], both e1 and e2 reduce to (ej a) if we have
{. . . ; Kj ~xj → ej; . . . }.

(d) Case e0 →
∗ Kj ~xj where Kj ~xj 6∈ {pt1, . . . , ptn−1}. By [E-match2], both e1 and

e2 reduces to (en a) if we have {. . . ; DEFAULT → en}.

• Rule CaseCase: We want to show e1 ≡s e2 where

e1 = case (case e0 of {pti → ei}) of alts
e2 = case e0 of {pti → case ei of alts}

There are 3 cases to consider:

(a) Case e0 →
∗ BAD. We have:

e1 →
∗ BAD (by applying [E-excase] twice)

e2 →
∗ BAD (by [E-excase])

(b) Case e↑. We have:

e1 ↑ (by applying [E-excase] twice)
e2 ↑ (by [E-excase])

(c) Case e0 →
∗ ptj. We have:

e1 →
∗ case ej of alts (by [E-match1] or [E-match2)

e2 →
∗ case ej of alts (by [E-match1] or [E-match2)
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• Rule NoMatch: We want to show e1 ≡s e2 where

e1 = case Kj ~ej of {pti → ei}
e2 = UNR

The expression e1 gets stuck as there is no reduction rule to apply. Since UNR denotes
getting stuck, we have e1 ≡s e2.

• Rule RmUNR: We want to show e1 ≡s e2 where

e1 = case e0 of {Ki ~xi → ei; ptj → UNR}
e2 = case e0 of {Ki ~xi → ei}

If e0 →
∗ ptj, then e1 →

∗ UNR and e2 gets stuck. Since UNR denotes getting stuck, we
have e1 ≡s e2.

• Rule SameBranch: We want to show e1 ≡s e2 where

e1 = case e0 of {pti → e′i}
e2 = e0 ‘seq‘ e′1

There are 3 cases to consider:

(a) Case e0 →
∗ BAD. We have:

e1 →
∗ BAD (by [E-excase])

e2 →
∗ BAD (by defn of ‘seq‘ and [E-excase])

(b) Case e0 ↑. We have:

e1 ↑ (by [E-excase])
e2 ↑ (by defn of ‘seq‘ and [E-excase])

(c) Case e0 →
∗ ptj. We have:

e1 →
∗ ej (by [E-match1])

e2 →
∗ e1 (by defn of ‘seq‘ and [E-match2])

Since for all i, fv(ei) ∩ ~xi = ∅ and e1 = ei, we know e1 = ej.

• Rule Scrut: We want to show e1 ≡s e2 where

e1 = case e0 of {Ki ~xi → ei}
e2 = case e0 of {Ki ~xi → ei[Ki ~xi/e0]}

There are 3 cases to consider:

(a) Case e0 →
∗ BAD. We have:

e1 →
∗ BAD (by [E-excase])

e2 →
∗ BAD (by [E-excase])
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(b) Case e↑. We have:
e1 ↑ (by [E-excase])
e2 ↑ (by [E-excase])

(c) Case e0 →
∗ Kj ~xj. We have:

e1 →
∗ ej (by [E-match1] or [E-match2])

e2 →
∗ ej[Kj ~xj/e0] (by [E-match1] or [E-match2])

Since e0 →∗ Kj ~xj, by the confluence of the language, we know e0 ≡s Kj ~xj.
So ej[Kj ~xj/e0] ≡s ej. �

7.2 Counter-Example Guided Unrolling

If many cases, applying simplification rules to an expression is not good enough to deter-
mine whether all BADs are reachable because we may have arbitrary function calls in the
expression. Consider:

sumT :: T -> Int

sumT :: {x | noT1 x } -> {r | True }

sumT (T2 a) = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

where noT1 is the recursive predicate mentioned in Section 2.1.1. After simplifying sumT⊲
tsumT, we may have:

case (noT1 x) of

True -> case x of

T1 a -> BAD

T2 a -> a

T3 t1 t2 -> case (noT1 t1) of

False -> BAD

True -> case (noT1 t2) of

False -> BAD

True -> sumT t1 + sumT t2

Program Slicing To focus on our goal (i.e. removing BADs) as well as to make the
checking process more efficient, we slice the program by collecting only the paths that
lead to BAD. We assume all variables are safe. A bound variable is safe because we want
to assume a safe argument will be given. A variable that denotes a top-level function is
safe because we already wrap this variable with its contract. That means all potential
crashes are exposed in this wrapping. A function named slice, which does the job, is
defined in Figure 7.3. A call to slice gives the following sliced program:
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case (noT1 x) of

True -> case x of

T1 a -> BAD

T3 t1 t2 -> case (noT1 t1) of

False -> BAD

True -> case (noT1 t2) of

False -> BAD

In Figure 7.3, the function checkAndSlice filters all BAD branches when traversing the
definition of a function. The list of variables vs captures all local variables: the parameters
of the function and the bounded variables in each alt. Function checkAndSlice returns
two results: the first one is the sliced function definition while the second result indicates
there is any BAD in the expression under inspection. So in the definition of noBAD, we re-
use the function checkAndSlice as shown in Figure 7.5. The special constructor Inside
is for tracing which function calls lead to the crash. To save the trouble of having a
separate figure for defining checkAndSlice and unroll, we include their definitions for
the constructor Inside in Figure 7.3 and Figure 7.4 respectively. Details on Inside is in
Section 7.3.

slice :: Exp → Exp
slice e = fst (checkAndSlice [ ] e)

checkAndSlice vs BAD = (BAD, False)
checkAndSlice vs UNR = (UNR, True)
checkAndSlice vs (v) = (v, True)
checkAndSlice vs (e1 e2) = let (a1, b1) = (checkAndSlice vs e1)

(a2, b2) = (checkAndSlice vs e2)
in if b1 then if b2 then (e1 e2, True)

else(e1 a2, False)
else (a1 a2, False)

checkAndSlice vs (λx.e) = let (a, b) = checkAndSlice vs e
in if b then (λx.e, True)

else (λx.a, False)
checkAndSlice vs (K ~e) = let es = (map (checkAndSlice vs) ~e))

in if all (map (== UNR) s)
then (K ~e, True)
else (K (map fst es), False)

checkAndSlice vs (Inside n e) = let (a, b) = (checkAndSlice vs e)
in if b then (Inside n e, True)

else (Inside n a, False)
checkAndSlice vs (case e0 of alts) =

case e0 of (filter (λ(K ~x e) → not (snd (checkAndSlice vs (e))) alts)

Figure 7.3: Slicing
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The Unrolling Itself We know we need to unroll one or all of the call(s) to noT1 in
order to proceed. Let us unroll them one by one. The unrolling is done by a function
named unroll which is defined in Figure 7.4. The unrolling of the topmost noT1 gives:

case (\x -> case x of

T1 a’ -> False

T2 a’ -> True

T3 t1’ t2’ -> noT1 t1’ && noT1 t2’) x) of

True -> case x of

T1 a -> BAD

T3 t1 t2 -> case (noT1 t1) of

False -> BAD

True -> case (noT1 t2) of

False -> BAD

The function unroll takes an expression to be unrolled, an environment ρ that maps top-
level function name to its definition and returns a new expression with top-level functions
being unrolled. The ρ(v) looks up the environment ρ with v as a key and fetches the
definition of v if v is in the environment; otherwise, returns v.

unroll :: Exp → [(Name,Exp)] → Exp
unroll (e1 e2) ρ = ((unroll e1 ρ) e2)
unroll (v) ρ = ρ(v)
unroll (λx.e) ρ = λx.(unroll e ρ)
unroll (K e1 . . . en) ρ = K (unroll e1 ρ) . . . (unroll en ρ)
unroll Inside n e = Inside n (unroll e ρ)
unroll (NoInline e) ρ = NoInline e
unroll (case e0 of {Ki ~xi → ei}) ρ =
case (case (unroll e0 ρ) of {Ki ~xi → NoInline e0}) of

{Ki ~xi → unroll ei ρ}}

Figure 7.4: Unrolling

Keeping Known Information Note that the new information noT1 t1’ && noT1 t2’

after the unrolling is what we need to prove that (noT1 t1) and (noT1 t2) are not False
at the branches. However, if we also unroll the calls (noT1 t1) and (noT1 t2) at the
branches, we lose the information (noT1 t1) == False and (noT1 t2) == False. To
solve this problem (i.e. to keep known information), we add one extra case-expression
after each unrolling. So unrolling the call of (noT1 x) actually yields:

case (case (NoInline (noT1 x)) of

True -> (\x -> case x of

T1 a’ -> False

T2 a’ -> a’

T3 t1’ t2’ -> (noT1 t1’ && noT1 t2’))) x) of
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True -> case x of

T1 a -> BAD

T3 t1 t2 -> case (noT1 t1) of

False -> BAD

True -> case (noT1 t2) of

False -> BAD

But to avoid unrolling the same call more than once, we wrap (noT1 x) with a special
constructor NoInline, which prevents the function unroll from unrolling it again.

Counter-Example Guided Unrolling - The Algorithm Given a checking code
f ⊲ tf , as we have seen, in order to remove BADs, we may have to unroll some function
calls. The counter-example guided unrolling technique is summarised by the pseudo-code
algorithm escH defined below. The parameter n is the maximum number of unrollings
we do. It can be pre-set by either the system or programmers.

escH rhs 0 = “Counter-example :” ++ report rhs
escH rhs n = let rhs′ = simplifier rhs

b = noBAD rhs′

in case b of

True → “No Bug.”
False → let s = slice rhs′

in case noFunCall s of

True → let eg = oneEg s
in “Definite Bug :” ++ report eg

False → let s′ = unrollCalls s
in escH s′ (n − 1)

Basically, the escH function simplifies the code f ⊲tf and checks that all BADs are removed
by the simplification process. If there is any residual BAD, it will report to the programmer
by generating a warning message. To guarantee termination, escH takes a pre-set number
which indicates the maximum unrolling that should be performed. Before this number
decreases to 0, it simplifies the code f ⊲ tf once and calls noBAD, which is defined in
Figure 7.5, to check for the absence of BAD. If there is any BAD left, it slices the rhs′ and
obtain an expression which contains all paths that lead to BAD. If there is no function calls
in the sliced expression which can be checked by a function named noFunCalls, we know
the existence of a definite bug and report it to programmers. In our system, programmers
can pre-set an upper bound on the number of counter-examples that will be generated for
the contract checking of each function. By default, it gives one counter-example. If there
are function calls, we unroll each of them by calling unroll.

This procedure is repeated until either all BADs are removed or the pre-set number of
unrollings has decreased to 0. When escH terminates, there are three possible outcomes:

• No BAD in the resulting expression (which implies definitely safe);

• BAD appears and there is no function calls in the resulting expression (where each
such BAD implies a contract failure);
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• BAD appears and there are function calls in the resulting expression (where each such
BAD implies a possible contract failure).

These are essentially the three types of messages we suggest to report to programmers in
Section 2.2.

noBAD :: Exp → Bool
noBAD e = snd (checkAndSlice [ ] e)

Figure 7.5: Checking for BAD

From our experience, unrolling is used in the following situations:

1. A recursive predicate (say noT1) is used in the contract of another function (say
sumT1). During the checking process, only the recursive predicates are unrolled. We
do not need to unroll sumT1 at all as its recursive call is represented by its contract
whose information is enough for the checking to be done. Thus, we recommend
programmers to use recursive predicate of small code size.

2. A function without contract annotation. If it is a recursive function, sometimes we
may have to unroll its recursive call to obtain more information during checking.
An example is illustrated in Section 8.4.

3. The contract itself does not capture enough information. For example, the function
length:

{-# CONTRACT length :: {xs | True} -> {r | r >= 0} #-}

length [] = 0

length (x:xs) = 1 + length xs

The contract only specifies that the result should be a non-negative integer. When
we encounter a function call (length []), we may have to inline the definition of
length to know (length []) is 0. In this case, there is no contract that is more
compact than the function definition itself.

7.2.1 Inlining Strategies

Recall that during the counter-example-guided (CEG) unrolling, whenever we unroll a
function call, after inlining the definition of the function, we also keep the call itself using
a special constructor NoInline. For example, we have:

f x = g x 1

g x y = x > y

Suppose we need to CEG unroll the following fragment:
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case (f a) of

True -> case (g a 1) of

False -> BAD

we have:

case (g a 1) of

True -> case (NoInline (f x)) of

True -> case (a > 1) of

False -> case (NoInline (g a 1)) of

False -> BAD

In this case, since we know (g a 1) is True, the error branch is not reachable. As we
inline all function calls simultaneously, we need to keep each original call so that we will
not lose any known information.

However, this unrolling strategy is not good enough because sometimes we do not want
to inline all function calls in a scrutinee at the same time. For example:

case (length b + length (a:y) == r) of

True -> case (length (a:b) + length y == r) of

False -> BAD

We would like to expand the calls length (a:y) and length (a:b), but not the calls
length b and length y so that we can get a simplified code like:

case (length b + 1 + length y == r) of

True -> case (1 + length b + length y == r) of

False -> BAD

Now we can hand it over to an external theorem prover to deal with the commutativity
of the + and show that the BAD is unreachable.

To know which call to unroll, there may be a number of strategies. One of them could be
unrolling those calls such that some of their arguments are constructors. However, this
is only reasonable if the function definition pattern matches on those parameter. Our
current approach is to unroll all functions except length simultaneously and we only
unroll the function length if its argument is a constructor. With this simple heuristic
added in, we can verify properties involving length more efficiently. We can add more
and more heuristics for other frequently used functions gradually.

Another more general approach could be introducing a special form, % which captures
both the original call and the inlined expression. Consider the previous example, we may
get something like this:

case ((length b) % (case b of ...) +

(length (a:y)) % (case (a:y) of ...) == r) of

True -> case ((length (a:b)) % (case (a:b) of ...) +

(length y) % (case y of ...) == r) of

False -> BAD
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The LHS of % is the original call while the RHS is the inlined body. It means we may
have to try all combinations when we test the reachability of the BAD branch. This is the
drawback of the approach, but it is the most general one which works for all cases.

7.3 Error Tracing and Counter-Example Generation

To know which function to blame [FF02], we need to give each BAD a tag. That is BAD lbl
where the label lbl is a function name. For a function f with contract t, we check f ⊲ t is
crash-free or not, where

f ⊲ t = f
BAD "f"

⊲⊳
UNR

t

A residual BAD "f" tells us that we should blame f . That means even if f takes arguments
satisfying their corresponding preconditions, f may fail to produce a result that meets its
postcondition. For example:

{-# CONTRACT inc :: {x | x > 0} -> {r | r > x} #-}

inc x = x - 1

after optimizing (i.e. simplifying) inc ⊲ tinc, we have:

\v -> (case v > 0 of

True -> case v - 1 > v of

True -> case v > 0 of

True -> v - 1

False -> UNR

False -> BAD "inc"

False -> UNR)

We can report to programmers during compile-time:

Error: inc fails its postcondition

when v > 0 holds

v - 1 > v does not hold

This error message is generated directly from the path that leads to the BAD "inc".

case v > 0 of

True -> case v - 1 > v of

False -> BAD "inc"

How about precondition violation? Suppose we know f ∈ tf . If f is called in a function
g with contract tg, recalling the reasoning in Section 4.4, we shall check λf.eg ∈ tf → tg.
That means we check: λf.eg ⊲ tf → tg is crash-free or not. By the definition of ⊲, we have:
λf. ((eg (f ⊳ tf )) ⊲ tg).
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In order to trace which function calls which function that fails which function’s precon-
dition, instead of using (f ⊳ tf ), we use:

Inside lbl loc (f ⊳ tf )

The lbl is the function name (“f” in this case) and the loc indicates the location (e.g.
(row,column)) of the definition of f in the source file. Note that

f ⊳ t = f
UNR

⊲⊳
BAD "f"

t

For example, we have:

{-# CONTRACT f1 :: {x | True} -> {z | x < z}

-> {r | True} #-}

f1 x z = if x < z then 5 else error "Urk"

f2 x z = 1 + f1 x z

f3 [] z = 0

f3 (x:xs) z = case x > z of

True -> f2 x z

False -> ...

After optimizing f3 ⊲ tf3, we have:

\xs -> \z ->

case xs of

[] -> 0

(x:y) -> case x > z of

True -> Inside "f2" <l2>

(Inside "f1" <l1> (BAD "f1"))

False -> ...

Note that, the "f1" in (BAD "f1") indicates which function’s precondition is not fulfilled.
Thus, the residual fragment enables us to give one counter-example with the following
meaningful message at compile-time:

Error <l3>: f3 (x:y) z

when x > z holds

calls f2

which calls f1

which may fail f1’s precondition!

where the location <l3> indicates the location of the definition of f3 in the source file.

Simplification rules related to Inside are shown in Figure 7.6. The basic idea is to push
Inside into substructures of each expression. Moreover, if the expression is a constant,
we can remove Inside by this rule: Inside f l n =⇒ n (RmInside)

This error tracing technique achieves the same goal as that in [MFF06] but in a much
simpler way.
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Inside f l (case e0 of {ci ~xi → ei})
=⇒ case (Inside f l e0) of {ci ~xi → Inside f l ei} (InsideCase)

Inside f l (λx.e) =⇒ (λx.Inside f l e) (InsideLam)

Inside f l (e1 e2) =⇒ (Inside f l e1) (Inside f l e2) (InsideApp)

Inside f l (K x1, . . . , xn)
=⇒ (K (Inside f l x1) (Inside f l xn)) (InsideConstructor)

Figure 7.6: Simplification Rules for Tracing
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Chapter 8

Examples

In this section, we illustrate the power and the limitations of our system with exam-
ples. Examples with recursive functions called in contracts are worked out by hand
(Section 8.2, 8.3, 8.5 and 8.5) while the rest (Section 8.1 and 8.4) can be automated. This
is due to the fact that we do not have a smart algorithm knowing which call to unroll
although it is obvious to a normal programmer (a human being) (Section 7.2.1).

8.1 Nested Recursion

The McCarthy’s f91 function always returns 91 when its given input is less than or equal
to 101. We can specify this property by the following contract that can be automatically
checked.

{-# CONTRACT f91 :: {n | True} -> {r | ((n <= 100 && r == 91) ||

n > 100 && r == n - 10)} #-}

f91 :: Int -> Int

f91 n = case (n <= 100) of

True -> f91 (f91 (n + 11))

False -> n - 10

This example shows how contracts can be exploited to give succinct and precise abstrac-
tion for functions with complex recursion.

8.2 Size of Data Structure

These examples show that we can specify and verify size properties of a function in its
contract. We first give the function length a contract stating that it always returns a non-
negative number. We also define a predicate sameLen that tests whether two lists have
the same length. The difference between sameLen xs ys and length xs == length ys

is that if any of the list xs or ys is infinite, the test sameLen xs ys terminates while the
test length xs == length ys diverges.

119
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{-# CONTRACT length :: Ok -> {r | r >= 0} #-}

length [] = 0

length (x:xs) = 1 + length xs

sameLen [] [] = True

sameLen (x:xs) (y:ys) = sameLen xs ys

sameLen _ _ = False

Consider two versions of reverse: reverse1 makes use of recursion to reverse a list while
reverse2 calls an auxiliary function rev which makes use of iteration to accumulate
resulting list with its second parameter. Our framework can verify that reverse1, rev
and reverse2 satisfy their corresponding contracts.

{-# CONTRACT reverse1, reverse2 :: {x | True}

-> {r | length x == length r} #-}

reverse1 x = case x of

[] -> []

(y:ys) -> reverse1 ys ++ [y]

reverse2 x = rev x []

{-# CONTRACT rev :: {x | True} -> {y | True}

-> {r | length r == length x + length y} #-}

rev x y = case x of

[] -> y

(a:b) -> rev b (a : y)

Now, consider another two popular functions map and zip. We can verify their contracts
as well.

{-# CONTRACT map :: (Ok -> Ok) -> {xs | True}

-> {rs | length xs == length rs} #-}

map f xs = case xs of

[] -> []

(x:xs’) -> f x : map f xs’

{-# CONTRACT zip :: {xs | True} -> {ys | length xs == length ys}

-> {rs | length rs == length xs} #-}

zip [] [] = []

zip (x:xs) (y:ys) = (x,y):zip xs ys

With these contracts, our system can tell that both g1 and g2 satisfy contract Ok without
any unrollings.

g1 xs = zip xs (reverse xs)

g2 xs = zip xs (map g1 xs)
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8.3 Sorting

As our approach gives the flexibility of asserting properties about components of a data
structure, it can verify sorting algorithms. Here we give examples on list sorting. In
general, our system should be able to verify sorting algorithms for other kinds of data
structures, provided that appropriate contracts are given.

sorted [] = True

sorted (x:[]) = True

sorted (x:y:xs) = x <= y && sorted (y : xs)

insert :: Ok -> {xs | sorted xs} -> {r | sorted r}

insert item [] = [item]

insert item (h:t) = case item <= h of

True -> item:h:t

False -> h:(insert item t)

insertsort :: Ok -> {r | sorted r}

insertsort [] = []

insertsort (h:t) = insert h (insertsort t)

Other sorting algorithms that can be successfully checked include mergesort and bubblesort

whose definitions and corresponding annotations are shown below.

{-# CONTRACT fst :: (Ok, Any) -> Ok #-}

{-# CONTRACT snd :: (Any, Ok) -> Ok #-}

fst (a,b) = a

snd (a,b) = b

{-# CONTRACT merge :: {xs | sorted xs} -> {ys | sorted ys}

-> {r | sorted r} #-}

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) = if x <= y

then x : (merge xs (y:ys))

else y : (merge (x:xs) ys)

split [] pair = pair

split [x] (xs, ys) = ((x:xs), ys)

split (x:y:zs) (xs, ys) = split zs ((x:xs),(y:ys))

{-# CONTRACT mergesort :: Ok -> {r | sorted r} #-}

mergesort [] = []

mergesort [x] = [x]

mergesort xs = let (as, bs) = split xs

in merge (mergesort as) (mergesort bs)



122 8.4. QUASI-INFERENCE

{-# CONTRACT bsorthelper :: Ok -> {r | not (snd r) ‘==>‘

sorted (fst r)} #-}

bsorthelper :: [Integer] -> ([Integer], Bool)

bsorthelper [] = ([], False)

bsorthelper [a] = ([a], False)

bsorthelper (x:xs) = let (y:ys, changed) = bsorthelper xs

in case x <= y of

True -> (x :(y:ys), changed)

False -> (y :(x:ys), True)

{-# CONTRACT bubblesort :: Ok -> {r | sorted r} #-}

bubblesort xs = let (result, changed) = bsorthelper xs

in case changed of

True -> bubblesort result

False -> result

8.4 Quasi-Inference

Our checking algorithm sometimes can verify a function without programmer supplying
specifications. This can be done with the help of the counter-example guided unrolling
technique. While the utility of unrolling may be apparent for non-recursive functions,
our technique is also useful for recursive functions. Let us examine a recursive function
named risers [MR05] which takes a list and breaks it into sublists that are sorted. For
example, risers [1,4,2,5,6,3,7] gives [[1,4],[2,5,6],[3,7]]. The key property of
risers is that when it takes a non-empty list, it returns a non-empty list, which can be
expressed as follows:

risers :: {xs | True} -> {r | not (null xs) ==> not (null r)}

Based on this property, the calls to both head and tail (with the non-empty list argu-
ments) can be guaranteed not to crash. We can automatically infer this property by using
counter-example guided unrolling without the need to provide a contract for the risers

function. Consider:

risers [] = []

risers [x] = [[x]]

risers (x:y:etc) = let ss = risers (y : etc)

in case x <= y of

True -> (x : (head ss)) : (tail ss)

False -> ([x]) : ss

head (s:ss) = s

tail (s:ss) = ss
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When a function is not annotated with a contract by programmers, we assume program-
mers would like to check whether the function satisfies the default contract Ok. We have
risers ⊲ Ok as follows.

case xs of

[] -> []

[x] -> [[x]]

(x:y:etc) -> let ss = risers (y : etc)

in case x <= y of

True -> (x:(head_1 ss)):(tail_1 ss)

False -> ([x]):ss

We use the label _i to indicate different calls to head and tail. As the pattern-matching
for the parameter of risers is exhaustive and the recursive call will not crash, what we
need to prove is that the function calls (head_1 ss) and (tail_1 ss) will not crash.
Here, we only show the key part of the checking process due to space limitation. Unrolling
the call (head_1 (risers (y:etc))) gives:

case (case (y:etc) of

[] -> []

[x’] -> [[x’]]

(x’:y’:etc’)-> let ss’ = risers (y’:etc’)

in case x’ <= y’ of

True ->(x’:(head_2 ss’)):(tail_2 ss’)

False -> [x’]:ss’) of

[] -> BAD

(z:zs) -> x:z:zs

The branch []->[] will be removed by the simplifier according to the rule match because
[] does not match the pattern (y:etc). For the rest of the branches, each of them returns
a non-empty list. This information is sufficient for our simplifier to assert that ss is non-
empty. Thus, the calls (head_1 ss) and (tail_1 ss) are safe from pattern-matching
failure.

We refer to this simple technique as quasi-inference because the only property we infer
is Ok. Even this simplest property Ok is hard to infer as the problem is undecidable in
general (Section 2.2).

8.5 AVL Tree

An AVL tree is a self-balancing binary search tree and named after its two inventors, G.
M. Adelson-Velsky and E. M. Landis in 1962. In Haskell, we can create a data type AVL

as follows.

data Tree = L | N Int Tree Tree deriving Show
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In an AVL tree, the depths of the two child subtrees of any node differ by at most one.
The function depth calculates the depth of an AVL tree:

depth :: Tree -> Int

depth L = 0

depth (N _ t u) = (max (depth t) (depth u)) + 1

A function that checks whether an AVL tree is balanced is defined as:

balanced :: Tree -> Bool

balanced L = True

balanced (N _ t u) = balanced t && balanced u &&

abs (depth t - depth u) <= 1

abs :: Int -> Int

abs x = case x >= 0 of

True -> x

False -> -x

The advantage of using an AVL tree data structure is that: searching, insertion and
deletion all take O(log n) time in both the average and worst cases where n is the number
of the nodes in the tree before the operation is applied. Insertion and deletion may require
the tree to be rebalanced by one or more tree rotations. The idea of right rotation and
left rotation is illustrated in Figure 8.1. The functions rrotate and lrotate define the
two rotations respectively:

rrotate :: Tree -> Tree

rrotate (N v (N x l r) t) = N x l (N v r t)

lrotate :: Tree -> Tree

lrotate (N v t (N x l r)) = N x (N v t l) r

The function rrotate and lrotate do not require their input to be an AVL tree.

The type and a possible contract for insertion can be:

insert :: AVL -> Int -> AVL

{-# CONTRACT insert :: {x | balanced x} -> Ok ->

{r | notL r && balanced r &&

0 <= depth r - depth x &&

depth r - depth x <= 1} #-}



CHAPTER 8. EXAMPLES 125

v

x u

l r

before right rotation

v

t x

l r

after right rotation

v

t x

l r

before left rotation

x

v r

t l

after left rotation

Figure 8.1: Dependency of Theorems and Lemmas

The contract of insert requires the input tree to be balanced. The postcondition notL r

says that the resulting tree should not be an empty tree where notL is defined as:

notL :: AVL -> Bool

notL L = False

notL (N _ _ _) = True

Besides requiring the resulting tree to be balanced (indicated by balanced r), the post-
condition also requires the depth of the resulting tree is greater than that of the input
tree but the difference cannot be greater than one. It is because inserting one node to
a tree may increase the depth of the tree, but due to re-balancing of the tree by proper
rotations, the difference in depth should not be greater than one. The function insert is
defined as follows.

insert x i

= case x of

L -> N i L L

N v t u ->

case i < v of

True -> let t1 = insert t i

in case depth t1 - depth u > 1 of
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True -> case t1 of

L -> error ‘‘insert’’

N x l r ->

case depth l > depth r of

True -> rrotate (N v t1 u)

False -> rrotate (N v (lrotate t1) u)

False -> N v t1 u

False -> case i > v of

True -> let u1 = insert u i

in case depth u1 - depth t > 1 of

True -> case u1 of

N x l r ->

case depth l > depth r of

True -> lrotate (N v t (rrotate u1))

False -> lrotate (N v t u1)

False -> N v t u1

False -> N v t u

At the top level, there are two branches: L and N v t u. For the L branch, it can be
easily verified that N i L L satisfies the postcondition of the function insert. For the
branch N v t u, there are two sub-branches which are symetric. Let us consider one of
them, say the True branch.

case x of

N v t u -> -- (1)

case i < v of

True -> let t1 = insert t i -- (2)

in case depth t1 - depth u > 1 of -- (3)

True -> case t1 of

L -> error ‘‘insert’’ -- (%A)

N x l r -> -- (4)

case depth l > depth r of -- (5)

True -> rrotate (N v t1 u) -- (%B)

False -> rrotate (N v (lrotate t1) u) -- (%C)

False -> N v t1 u -- (%D)

Based on the framework described in previous chapters, we show that we can (manually)
verify that the sub-branch indicated by (%B) produces an AVL tree. The other two
branches (%C) and (%D) follow in a similar way.

First, we know the function insert takes an AVL tree as input (i.e. x is an AVL tree).
That means the difference between the depth of t and the depth of u is no greater than
one. From line marked by (1), by inlining balanced (N v t u), and the abs in the
definition of balanced, we obtain this constraint:
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(BG_PUSH (AND (AND (balanced t) (balanced u))

(OR (AND (>= (depth t) (depth u))

(AND (<= 0 (- (depth t) (depth u)))

(<= (- (depth t) (depth u)) 1)))

(AND (<= (depth t) (depth u))

(AND (<= 0 (- (depth u) (depth t)))

(<= (- (depth u) (depth t)) 1))))))

For the ease of reading, we write (- (depth t) (depth u)) instead of following the def-
inition of abs strictly to write (- (- (depth u) (depth t))); the theorem prover does
not distinguish these two representations. Here, we use Simplify’s prefix notation [DNS05].
The function depth is treated as an uninterpreted function by the theorem prover. The
key word BG_PUSH pushes the constraint to a truth stack. Whenever we make a query
later, the prover assumes all constraints on the truth stack hold.

Second, we can make use of the fact about the postcondition of the recursive call insert
at line marked by (2) to obtain the following constraint.

(BG_PUSH (AND (AND (balanced t1) (notL t1))

(AND (<= 0 (- (depth t1) (depth t)))

(<= (- (depth t1) (depth t)) 1))))

The condition (notL t1) indicates that the sub-branch L (i.e. the branch leading to
error ‘‘insert’’) is unreachable. Let us focus on the path leading to (%B). The line
marked by (3) gives:

(BG_PUSH (> (- (depth t1) (depth u)) 1))

As t1 is balanced, the line marked by (4) gives:

(BG_PUSH (EQ (depth t1) (+ 1 (depth l))))

(BG_PUSH (AND (AND (balanced l) (balanced r))

(OR (AND (>= (depth l) (depth r))

(AND (<= 0 (- (depth l) (depth r)))

(<= (- (depth l) (depth r)) 1)))

(AND (<= (depth l) (depth r))

(AND (<= 0 (- (depth l) (depth r)))

(<= (- (depth l) (depth r)) 1))))))

The line marked by (5) gives directly this:
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(BG_PUSH (> (depth l) (depth r)))

We have the following constraints from the call rrotate (N v t1 u).

(BG_PUSH (OR (AND (>= (depth r) (depth u))

(EQ res (depth r)))

(AND (< (depth r) (depth u))

(EQ res (depth u)))))

(BG_PUSH (EQ (depth u2) (+ res 1)))

After the right rotation, the resulting tree is N x l (N v r u). First, let res be the max-
imum value of (depth r) and (depth u). Then, let u2 denote the depth of (N v r u).
We can check whether (N v r u) is balaned tree by sending the following query to the
theorem prover:

(OR (AND (>= (depth r) (depth u))

(AND (<= 0 (- (depth r) (depth u)))

(<= (- (depth r) (depth u)) 1)))

(AND (<= (depth r) (depth u))

(AND (<= 0 (- (depth u) (depth r)))

(<= (- (depth u) (depth r)) 1))))

If readers copy all constraints to one file and call the theorem prover Simplify, theorem
prover gives the answer “Valid”. Next, we want to check whether (N x l u2) is balanced.
If so, the resulting tree at (%B) is an AVL tree. From above, we know u2 is balanced; from
(4), we know l is balanced. All we need to check is the depth difference is no greater than
one:

(OR (AND (>= (depth l) (depth u2))

(AND (<= 0 (- (depth l) (depth u2)))

(<= (- (depth l) (depth u2)) 1)))

(AND (<= (depth l) (depth u2))

(AND (<= 0 (- (depth u2) (depth l)))

(<= (- (depth u2) (depth l)) 1))))

Theorem prover returns “Valid” again.

We leave deletion for AVL tree and insertion for Red-Black tree as exercise to readers.



Chapter 9

Implementation and Experiments

9.1 Embedding Static Contract Checking into GHC

We integrate the static contract checker described in this thesis to one branch of the
Glasgow Haskell Compiler (GHC). The overall structure of GHC is shown in Figure 9.1.
The Verify pass is the static contract checker, which is called after the GHC-Core is
obtained. The static contract checking does not interfere with the rest of the compilation.
It only generates more warning or error messages during compilation time.

9.2 Interfacing to a Theorem Prover

In this section, we give the details on how we invoke a theorem prover named Simplify
during our symbolic simplification process. As mentioned in Section 7.1.2, we only send
the scrutinee of a case-expression involving arithmetic to a theorem prover as we can han-
dle the rest with our simplification rules. For example, when we encounter the following
fragment:

case (i + 8 > i) of

False -> BAD "foo"

True -> 5

we would like to send the expression i + 8 > i to the theorem prover which will give
True as the output. From this information, we know the fragment can be simplified to 5.
For another example:

... case i > j of

True -> case j < 0 of

False -> case i > 0 of -- (*)

False -> BAD

False -> case j > 5 of

True -> ...
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Figure 9.1: Overall Structure of GHC

In this case, when we reach the line marked by (*), before we query i > 0, we should send
information i > j == True and j < 0 == False to the theorem prover. Fortunately, the
theorem prover Simplify provides a stack for us to push known information to the stack
and pop it out when it is no longer valid or needed. In the above example, we push
i > j == True and j < 0 == False to the stack before query i > 0; when we work on
the False branch of i > j, we know the information j < 0 == False is no longer valid
so we pop it out from the stack before we query j > 5. The pushing and popping can be
done with the command BG_PUSH and BG_POP provided by the theorem prover Simplify.

Due to our special need mentioned above, we would like to call the theorem prover inter-
actively by sending pieces of information one by one and making small queries one after
another. Fortunately, in GHC’s base library, there is a module System.Process which
contains a function named runInteractiveCommand that allows us to run a command
using the shell (e.g. invoking the theorem prover Simplify by a command Simplify.exe),
and return Handles that may be used to communicate with the process via its stdin,
stdout, and stderr interactively. This means we need to do the following steps:

1. Start the theorem prover. The function startProver is invoked before the start of
the ESC/Haskell algorithm. Basically, we create two Handles: inH and outH, to
handle input and output respectively after invoking Simplify.exe using the shell.
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data Prover = P { inH, outH :: Handle }

startProver :: IO Prover

startProver

= do { (pin,pout,perr,pid) <- runInteractiveCommand "Simplify.exe"

; hSetBuffering pin LineBuffering

; let p = P { inH = pin, outH = pout }

; return p}

2. Convert an expression involving arithmetic to String form, which is in the accept-
able formula format, before sending it to the theorem prover.

send :: Prover -> String -> IO ()

send p s = hPutStrLn (inH p) s

pushProver :: Prover -> Exp -> IO ()

pushProver p e

= send p (formulaToString (BGPush [toFormula e]))

popProver :: Prover -> IO ()

popProver p = send p (formulaToString BGPop)

3. Once we get back the result (of type String) from the theorem prover, we convert
it back to an expression by parsing the String. We read one line at a time until we
find either the word “Valid” or the word “Invalid”, which can be successfully parsed
by the parser.

findResponse :: Show a => Prover->Parser a->IO a

findResponse prover parser

= do { -- Reading from Simplify

; line <- hGetLine (outH prover)

; case parse parser "" line of

Right b -> return b -- Got result

Left err -> findResponse prover parser

}

4. Stop the theorem prover. The function stopProver is invoked after the end of the
ESC/Haskell algorithm.

stopProver :: Prover -> IO ()

stopProver (P { inH = pin, outH = pout })

= do { hClose pin; hClose pout }

The theorem prover Simplify gives two possible outputs: Valid and Invalid. If the
result is Invalid, a counter-example is given as well. For example, the result of a query
i + 8 > i is Valid. However, if you query i > j, the result is Invalid and a counter-
example i <= j is given. Similarly, if you query not (i > j), the result is Invalid and
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a counter-example i > j is given. This means when the theorem prover says Invalid,
we cannot assume the negation of the formula is Valid. Thus, we apply the following
strategy:

1. if the answer is Valid, take it as the result;

2. if the answer is Invalid, check the negation of the formula;

3. if the negation is Valid, take its negation as the result;

4. if the negation is Invalid, it means DontKnow.

9.3 Contract Positions

Is the following program erroneous?

{-# CONTRACT Pos = {x | x > 0} #-}

{-# CONTRACT h1 :: Pos -> Pos #-}

h1 x = x

g1 x = ... h1 (-1)...

The contract for h1 is too strong. By too strong, we mean the programmer specified
precondition is too strong. This makes the system reject programs that are actually safe.
That means, in the above case, we give a false alarm.

Is below an erroneous program?

{-# CONTRACT h2 :: Ok -> {r | r > -7} #-}

h2 x = x*x

g2 x = ... (if h2 5 >=0 then True else BAD) ...

The contract for h2 is too weak. By too weak, we mean the postcondition is too weak. It
does not give the system enough information to accept those safe programs. Again, we
give false alarm.

In the above two cases, if we inline the function body during CEG unrolling, we can
reduce false alarms. That means at call sites (h1 -1) and (h2 5), we inline h1 and h2,
and the information obtained from the function bodies can tell us that both programs
are actually safe. However, by doing this, we may violate programmers wish. For exam-
ple, the programmer would like a function h1 to have contract Pos -> Pos, but during
implementation, she makes a mistake, or she may like to change her implementation in
future. What she wants other parties to know is the interface for h1, i.e. the contract of
h1 so that even if she changes the implementation in future, the callers of h1 do not need
to amend their code. So shall we respect the function definition more or the contracts
more? We give a detailed discussion below.
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{-# CONTRACT len :: Ok -> Pos #-}

len :: [a] -> Int

len [] = 0

len (x:xs) = 1 + len xs

f x = case len [] == 0 of

True -> x

False -> BAD

g x = case len x >= 0 of

True -> True

False -> BAD

Strong Contract Position – Respect Contract More If programmers specify f ∈ t,
then we never inline f . CEG unrolling only applies to a function that does not have a
contract.

Under this position, if len is given a contract, we report that “f may crash, g is ok”. As
the only information we have is postcondition of len is greater then 0, len [] == 0 gives
False while len x >= 0 gives True. On the other hand, if len is not given a contract,
we report that “f is ok, g may crash”. After we inline the definition of len, we know that
len [] == 0 gives True. As we cannot prove len x >= 0 after a number of unrollings,
we give up and report that “g may crash”.

Weak Contract Position – Respect Definition More Even if programmers specify
f ∈ t, we still use CEG unrolling for f provided f ⊲ t is crash-free. That means as long as
f satisfies its contract though the contract may be too strong or too weak, we can always
inline f ’s definition.

Strong-Weak Contract Position – Strong Contravariant, Weak Co-variant An-
other alternative could be that programmers can give stronger precondition and weaker
postcondition. These conditions may result in imprecise analysis so that more programs
may be rejected. However, we still choose to use CEG unrolling to inline function’s body
regardless it is annotated with contracts or not. After unrolling, as more precise informa-
tion is obtained, the analysis result may be different from the result without unrolling.
For example, in the definition of g2, if we do not unroll the call (f2 5), the postcondi-
tion (f2 5) >= -7 does not imply (f2 5) >= 0. On the contrary, if we unroll the call
(f2 5), we will get (5*5)>=0 which is True, thus, we know the call to f2 is safe. So this
approach is not desirable.

Strong Flag We propose to use the strong contract position and weak contract position
approaches, but not the strong-weak contract position approach. It is possible to allow
programmers to flag strong contract position by using a key word STRONG, for example:

{-# STRONG CONTRACT h1 :: Pos -> Pos #-}

{-# CONTRACT h2 :: Ok -> {r | r > -7} #-}
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This means the programmer would like us to respect the strong contract as she may
change the implementation of h1, all the callers should assume the strong contract at call
sites. On the other hand, the default contract annotation says that, respect the contract
in general, but when the contract is too weak, inlining the body of h2 to obtain more
precise information is allowed.

9.4 Experiments

The experiments have been done on a PC with dual processor of speed 2.7GHz and 2GB
memory running windows vista. We evaluate our tool on a medium-sized program, which
consists of some small examples used in this thesis and some small programs for basic
testings. The total number of lines of code is 325. The number of lines of contract
annotation is 22. The time for verification is 1.17sec. This brief figure is to show that
the contract checking framework can work efficiently in practice. We leave sophisticated
experiments to future work. Programs under testing are shown in Appendix C.

We have manually proved the correctness of the following motivating algorithms based on
the technique introduced in this thesis. We could be the first to prove properties about
AVL trees.

• List Operations It contains the following functions that manipulate lists: length,
append, reverse, map, filter, take, drop, zip, last, risers. Contracts, that are
checked for these functions, are shown below.

{-# CONTRACT length :: {x | True} -> {r | r >= 0} #-}

{-# CONTRACT append :: {xs | True} -> {ys | True} ->

{r | (length xs + length ys) == (length rs)} #-}

{-# CONTRACT reverse :: {x | True} -> {r | sameLen x r} #-}

{-# CONTRACT map :: {f | True} -> {xs | True}

-> {r | sameLen xs r} #-}

{-# CONTRACT filter :: {f | True} -> {x | True} -> {r | all f r} #-}

{-# CONTRACT take :: {n | n >= 0} -> {xs | True}

-> {r | len r <= len xs} #-}

{-# CONTRACT drop :: {n | n >= 0} -> {xs | (len xs) >= n}

-> {r | (len r) <= (len xs)} #-}

{-# CONTRACT zip :: {xs | True} -> {ys | sameL xs ys}

-> {r | sameLen xs r} #-}

{-# CONTRACT last :: {ys | not (null ys)} -> {r | True} #-}

{-# CONTRACT risers :: {x | True} -> {r | True} #-}

• Sorting Algorithms It contains these sorting algorithms: insertion-sort, merge-
sort, bubble-sort and quick-sort. We first prove the sorted property (Section 8.3).
To prove the permutation property, we need to have one more simplification rule:

f (case e0 of {pti → ei}) (AppCase)
=⇒ case e0 of {pti → (f ei)} where f is strict
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The job of the rule AppCase is to push the function f to the branches of a case-
expression. This rule only holds when the function f is strict. As there is a strictness
analyser readily built in GHC, we can use it to get the strictness information of the
function before the phase of verification.

• AVL Tree See Section 8.5.

• Red-Black Tree See Section 8.5 and Appendix B.
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Chapter 10

Possible Enhancements

10.1 Conjunctive Contracts and Disjunctive Contracts

The first extension is to allow programmers to declare multiple contracts because some
properties can not be expressed precisely with a single contract. For example:

{-# CONTRACT g :: {x | x > 0} -> Any -> Ok #-}

{-# CONTRACT g :: {x | x <= 0} -> Ok -> Ok #-}

g x y = if x > 0 then x + 1

else y

One might think to combine the two contracts into one:

g :: x:Ok -> {y | x <= 0} -> Ok

But this is a stronger contract which is actually equivalent to the following multi-contracts:

{-# CONTRACT g :: {x | x > 0} -> {y | False} -> Ok #-}

{-# CONTRACT g :: {x | x <= 0} -> Ok -> Ok #-}

We know that {y | False} and Any are not the same by the definition in Figure 4.3 in
Section 4.3. In order to express more precise properties, we allow programmers to give
multiple contracts to a function.

We propose to add both conjunctive contracts and disjunctive contracts:

t ∈ Contract
t ::= . . .

| t1 ∧ t2 Conjunctive Contract
| t1 ∨ t2 Disjunctive Contract

The definition of contract satisfaction could be:

e ∈ t1 ∧ t2 ⇐⇒ e ∈ t1 and e ∈ t2
e ∈ t1 ∨ t2 ⇐⇒ e ∈ t1 or e ∈ t2

139
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The definition of ⊲ could be:

e ⊲ t1 ∧ t2 ⇐⇒ e ⊲ t1 ⊲ t2
e ⊲ t1 ∨ t2 ⇐⇒ (|e ⊲ t1, e ⊲ t2|)

For disjunctive contracts, we may have to introduce a special constructor (|, |) as we would
like to keep both results: e ⊲ t1 and e ⊲ t2. But it is not easy to define such a constructor
that fits our algorithm of contract wrappers. A lot of research has to be done.

In [HJL06], Hinze et. al. mention that conjunctive contracts and disjunctive contracts
are not necessarily projections. Thus, we need to check whether the following holds:

Idempotency: (a) e ⊲ (t1 ∧ t2) ⊲ (t1 ∧ t2) ≡ e ⊲ (t1 ∧ t2)
(b) e ⊳ (t1 ∧ t2) ⊳ (t1 ∧ t2) ≡ e ⊳ (t1 ∧ t2)
(c) e ⊲ (t1 ∨ t2) ⊲ (t1 ∨ t2) ≡ e ⊲ (t1 ∨ t2)
(d) e ⊳ (t1 ∨ t2) ⊳ (t1 ∨ t2) ≡ e ⊳ (t1 ∨ t2)

Approximate Identity: e ∈ t1 ∧ t2 ⇒ (a) e � e ⊲ t1 ∧ t2
(b) e ⊳ t1 ∧ t2 � e

e ∈ t1 ∨ t2 ⇒ (c) e � e ⊲ t1 ∨ t2
(d) e ⊳ t1 ∨ t2 � e

10.2 Recursive Contracts

Only with the concept of disjunctive contracts, we can define recursive contracts. With
recursive contracts, we can specify properties for a recursively defined data structure with-
out defining a recursive predicate. Without recursive contracts, we cannot give a contract
to a list of elements where some of the element may be undefined.

Below is not an ideal design, because it only works with polymorphic data types.

length :: [Any] -> Ok

length [] = 0

length (x:xs) = 1 + length xs

where the shorthand [Any] is actually the AnyList below.

data List a = Cons a (List a) | Nil

{-# CONTRACT AnyList = List Any #-}

We may want something like

{-# NEWCONTRACT AnyList = Cons Any AnyList | Nil #-}
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10.3 Polymorphic Contracts

The forms of contracts seem very rich already, however, with these we still cannot give
a precise contract for the popular function map. We need quantifiers! It is known to be
more complex when quantifiers are involved. But they are very useful especially together
with recursive contracts. Here, we propose to introduce polymorphic contracts in which we
quantify contract variables instead of quantifying over program variables or type variables.

We may also add a rank-2 contract, which is more expressive than a conjunctive contract
because the former allows arbitrary instantiation of a contract variable while the later one
explicitly specifies the instances expected. These extensions greatly increase the expressive
power of contracts so that we can verify more precise properties for higher-order functions.

t ∈ Contracts
t ::= . . .

| β Contract Variable
| ∀β.t Quantified Contract

If we have contract variable, we can define the contract of map as follows:

{-# CONTRACT map :: forall t1, t2. (t1 -> t2) -> [t1] -> [t2] #-}

where t1 and t2 are contract variables. For example, map head may have contract:

[NonNull] -> [Ok]

As the polymorphic type of map forces the function f’s parameter and the second param-
eter of map to have the same contract. For example, if we have map head [[1],[],[2]],
we can see that the expression [[1],[],[2]] does not satisfy the contract [NonNull].
Thus, we know that the call map head [[1],[],[2]] will crash.

The contract of map looks exactly the same as its polymorphic type:

map :: forall a, b. (a -> b) -> [a] -> [b]

where a and b are type variables. Although the type and contract of map look the same,
one cannot replace another. Consider:

mapInt :: (Int -> Int) -> [Int] -> [Int]

where mapInt is a monomorphic version of map that works on integers only. We can give
it the same contract as map, i.e.

{-# CONTRACT map :: forall t1, t2. (t1 -> t2) -> [t1] -> [t2] #-}

With this contract, a call (map pos) may have contract [Pos] -> [Pos] assuming the
contract of pos is Pos which is {x | x > 0}. This definitely cannot be achieved by the
type declaration of mapInt.

On the other hand, polymorphic contracts may cause more false alarms. Consider:
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{-# CONTRACT twice :: forall t. (t -> t) -> t -> t #-}

twice :: forall a. (a -> a) -> a -> a

twice f x = f (f x)

Programmers give the function twice an appropriate type, but a contract that is too
strong. As f is only applied twice, it is not necessary to enforce the function to have the
same precondition and postcondition. For example, we have:

tail :: NonNull -> Ok

tail (x:xs) = xs

A call to (twice tail [1,2]) is safe. As the precondition and the postcondition of
tail are not the same, we may give a false alarm in this case. We believe that this is an
interesting area to explore.

10.4 Declaration of Lemmas

A contract is for programmers to specify the input-output relation of one function. It is
not for specifying a meta property of a function, for example, the associativity of (+). It
is not for specifying a relation between functions, either. For example, we cannot specify
pop (push s a) == a where the function push pushes an item to the top of a stack and
the function pop pops out the topmost element from the stack. Thus, in addition to
contracts, it is ideal to allow programmers to declare some simple lemmas which may
help a lot in assisting the verification process. For example, we need lemma1 to prove the
postcondition of the function selectMin which is used in the definition of selectionSort.

lemma1 x y xs

= smaller x xs && y <=x => smaller y xs

smaller x [] = True

smaller x (y:ys) = x <= y && smaller x ys

{-# CONTRACT selectMin :: {xs | not (null xs)} ->

{rs | smaller (fst rs) xs } #-}

selectMin [x] = (x, [])

selectMin (x:xs’) = let y = fst (selectMin xs)

ys = snd (selectMin xs)

in if x <= y then (x, xs’)

else (y, (x:ys))

{-# CONTRACT selectionSort :: Ok -> {r | sorted r} #-}

selectionSort [] = []

selectionSort (x:xs) = let (y,ys) = selectMin (x:xs)

in y : selectionSort ys
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Other useful lemmas include:

lemma2 xs ys

= length (xs ++ ys) == length xs + length ys

lemma3 xs

= reverse (xs ++ ys) == reverse ys ++ reverse xs

These lemmas need to be verified before being applied. As lemmas are just functions, we
can use our existing system to verify them. We can give each lemma a contract specifying
that its result must be True. For example:

{-# CONTRACT lemma1 :: Ok -> Ok -> Ok -> True #-}

{-# CONTRACT lemma2 :: Ok -> Ok -> True #-}

{-# CONTRACT lemma3 :: Ok -> True #-}

If a lemma satisfies its contract, the lemma is valid. As the contracts of these lemmas
share a common pattern (i.e. the contract for each parameter is Ok, the contract for the
result is True), these contracts can be automatically generated. QuickCheck [CH03] is
an automatic random testing tool for Haskell programs. It is made up of a combinator
library written in Haskell which contains many such lemmas. Verifying the lemmas in
their library could be a good case study and also can test the verification strength of our
system.

We have shown how lemmas can be defined and verified, now we explore how lemmas
can be applied. We may introduce a new key word using so that programmers can write
something like: e using lemmai ~a for some i. This expression is then transformed to

case lemma1 ~a of

True → e
False → UNR

Another alternative is to make use of the external theorem prover by pushing all lemmas
to the truth stack. These are just our first thoughts. You might notice that lemma3 does
not hold if xs is infinite and ys is finite. , we may adapt some ideas from [FPST07], which
supports both dependent types and lemmas.

10.5 Data Type Invariants

Besides giving contracts to functions, programmers may like to supply contracts for data
constructors as well. For example:

data S a where

S1 :: Int -> Int -> S Int

{-# CONTRACT S1 :: {x | True} -> {y | x > y} -> {r | True} #-}

S2 :: S Int -> S Int

{-# CONTRACT S2 :: S {x | True} -> S {r | r > x} #-}
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It says that when S1 is constructed, it should take two integers where the first one is
greater than the second one. For example, (S1 5 4) is a valid expression while (S1 1 2)

is not. When S1 is pattern-matched, the invariant (x > y) can be assumed, e.g.:

{-# CONTRACT f :: S Int -> Int #-}

f (S1 x y) = 1/(x - y)

We know that the call to the division function (/) will never fail because x-y is al-
ways greater than 0. The example S2 shows how similar things can be done with
GADT [XCC03, JVWW06].

Note that this is totally different from the constructor contracts mentioned in Section 4.
Constructor contracts are about constructing contracts using data constructors while this
data type invariant is about giving contracts to data constructors.

In order to cater for invariants of data types, we need to pay attention to two places in a
program:

(1) the return of the data constructors.

(2) the pattern-matching of the data constructors.

For the case (1), we can treat a data constructor as a normal function and the invariant
can be viewed as a precondition to the constructor. For example:

d1 x = S1 (x + 1) x

The checking code for d1 is:

d1 ⊲ Ok → Ok = (λx. ((S1 ⊳ x : Ok → {y | x > y} → Ok) (x + 1) x)) ⊲ Ok → Ok

= . . .

= λx. S1 (x + 1)





case (x + 1) > x of

True → x
False → BAD





As (x + 1) > x holds, the BAD is unreachable. So we know that d1 satisfies the contract
Ok → Ok.

For the case (2), we treat the invariant as a postcondition and this information can be
very useful after a pattern is matched. Recall the example f:

f s = case s of

(S1 x y) -> 1 / (x - y)
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Suppose the contract for the division operator (/) is Ok → {q | q 6= 0} → Ok. The checking
code for f is as follows.

f ⊲ Ok → Ok = λs. case s of

(S1 x y) → case (S1 ⊲ x : Ok → {y | x > y} → Ok) x y of

True → ((/) ⊳ Ok → {q | q 6= 0} → Ok) 1 (x − y)
= . . .
= λs.. case s of

(S1 x y) → case x > y of

True → case (x − y) 6= 0 of

True → 1/(x − y)
False → BAD

As (x > y) implies (x − y) 6= 0, we know the BAD is unreachable. From this example, we
can see that in the checking code of f, we need also to add an extra case-expression for
each pattern matching. That means for each function call fi in the body of f , it is not
enough to simply replace the function call fi by fi ⊳ ti where ti is the contract of fi. We
define an operator [[.]]# (in Figure 10.1) that does two things: (1) replace fi by fi ⊳ ti; (2)
add extra case-expression for matched patterns. The function ρ takes either a variable
for a data constructor as input and fetches its contract.

[[.]]# :: Exp → Exp
[[n]]# = n
[[v]]# = v ⊳ ρ(v)
[[λx.e]]# = λx.[[e]]#

[[K ~e]]# = ρ(K) ~[[e]]#

[[e1 e2]]
# = [[e1]]

# [[e2]]
#

[[let x = e1 in e2]]
# = let x = [[e1]]

# in [[e2]]
#

[[case e0 of {Ci ~xi → ei}]]
# = case[[e0]]

# of

{Ki ~xi → case (Ki ⊳ ρ(Ki)) ~xi of

True → [[ei]]
#}

Figure 10.1: Abstraction Derivation

10.6 Lazy Dynamic Contract Checking

For those contracts that we fail to check during compile time (i.e. we do not know e ∈ t
or not), we would like to check the contract during run-time. For example, we may define
a function assert that checks whether the predicate b holds at run-time:

assert :: True -> a -> a

assert b x = case b of

True -> x

False -> error ‘‘Assertion failed!’’
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As our contract checking technique adopts the idea from dynamic contract checking [FF02,
HJL06], we can use the same ⊲ algorithm to check those contracts, which we fail to check
statically, at run-time. Recall the function insert in Section 8.3.

sorted [] = True

sorted (x:[]) = True

sorted (x:y:xs) = x <= y && sorted (y : xs)

insert :: Ok -> {xs | sorted xs} -> {r | sorted r}

insert item [] = [item]

insert item (h:t) = case item <= h of

True -> item:h:t

False -> h:(insert item t)

In case we cannot statically verify that insert satisfies its contract, we may generate the
following dynamic checking code to check the contract:

checkedInsert x xs = let vs = (assert (sorted xs) xs))

in assert (sorted (insert x vs)) (insert x vs)

To make our presentation simple, let us focus on precondition checking only:

checkedPreInsert x xs = insert x (assert (sorted xs) xs)

It works fine in a strict language, for example:

> checkedPreInsert 3 [1,5,2,4]

Assertion failed!

However, in a lazy language, it fails to work as the assertion may not terminate. For
example:

take 5 (checkedPreInsert 3 [1,2..])

goes into an infinite loop while the original unchecked code

take 5 (insert 3 [1,2..])

gives [1,2,3,3,4].

It is non-trivial to insert an assertion as lazy as possible. Existing work on this problem
can be divided into two strands:

• strict dynamic contract checking [FF02, HJL06].

• lazy assertion [CMR03, CH06, CH07].

Obviously, strict dynamic contract checking is not the most appropriate technique for
a lazy programming language. Furthermore, lazy assertions cannot assign blame in the
same precise way as contracts. Findler et al. [FyGR07] took a step towards lazy dynamic
contract checking by adding “a small controlled amount of laziness” to contract checking,
but this is still a fertile research area. Lazy dynamic contract checking will help in the
debugging phase of software development. All run-time checks related to contracts can
be switched off when building the final version of the software.
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10.7 Program Optimization

Contracts are not only useful for verifying program’s safety, they may also help in opti-
mizing the program, in particular, dead code elimination and redundant code elimination.

10.7.1 Dead Code Elimination

Dead code refers to a piece of code that is not reachable during the execution of a program.
Here, we propose to eliminate dead pattern matchings. For example:

zip :: [a] -> [b] -> [(a,b)]

{-# CONTRACT zip :: xs:Ok -> {ys | length xs == length ys} -> Ok #-}

zip [] [] = []

zip (x:xs) (y:ys) = (x,y): zip xs ys

If we know the function zip which always takes two lists of the same length, with its
contract, we do not need to pattern match its second argument. Xi [Xi99] has addressed
this kind of dead pattern elimination with dependent-type checking and mentioned that
this can contribute up to 20% speedup. As our contracts are much more expressive than
the restricted version of dependent type in [Xi99], we have potential to eliminate more
dead patterns than theirs.

10.7.2 Redundant Array Bound Checks Elimination

Redundant code can be reached during the execution of a program but does not have
any effect on the subsequent code to be executed. People have worked on eliminating
redundant array bound checks for more than two decades. We hope the proposed contract
framework is an injection of new blood to this area. The target application is software
related to graphics, animation and finance which involve tremendous array accesses.

A simple example of array bound elimination is illustrated below. Assume the function
sub performs direct array access and has the following type:

sub :: Array Int b -> Int -> b

Another function (!), which performs bounds checking before accessing the element of
an array, is defined as follows.

{-# CONTRACT (!) :: {a | True} -> {i | i>=0 && i < bound a} -> Ok #-}

(!) arr i = if i >= 0

then if i < bound arr then sub arr i

else error "Index is too large!"

else error "Index is too small!"

Consider a function sumArr which sums up all the elements in an array:
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sumArr :: Array Int Int -> Int

sumArr arr = sumArrAux arr (bound arr - 1)

sumArrAux arr n = case n of

0 -> arr!n

_ -> arr!n + sumArrAux arr (n - 1)

Our system may infer that sumArr satisfies contract Ok, which means the precondition of
(!) is always satisfied. This implies that we can replace (!) by sub (i.e. removing the
two bound checks) and improve the efficiency of running sumArr greatly.

10.8 Detecting Divergence or Termination

Consider:

d1 = case (length [1..] == length [2..]) of

True -> 1

False -> BAD

After inlining both calls to length for a fixed number of times, we stop and say we are not
able to tell the two calls are equal. That means we cannot prove True is a sufficient precon-
dition of d1. The program diverges when evaluating length [1..] == length [2..],
however, we cannot tell. Thus, in this case, we will raise a false alarm.

We can detect some trivial divergence. For example:

bot :: a -> a

bot x = bot x

d2 = case bot True of

True -> 1

False -> BAD

Syntactically, we can detect that the function bot diverges no matter what argument it
takes simply because the recursive parameter is the same as the formal parameter. In this
case, we know that bot True will diverge, so the branch leading to error is unreachable.

On the other hand, we may try to detect termination. There are a few works on termina-
tion analysis to functional programs [LJBA01, SJ05, Ser07], but not for a lazy language,
and not modular in the presence of higher-order functions. One automatic termina-
tion analysis for Haskell programs that makes uses term rewriting technique is discussed
in [GSSKT06]. Their analysis is modular in the presence of higher-order functions, but it
is implemented in Java, which makes full integration into GHC challenging.
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Related work

Static verification of software is a field dense with related work, of which we can only
summarise a limited fraction here.

11.1 Contracts

The idea of “contract” was first established by Parnas [Par72] and popularized by Meyer
in its use in Eiffel [Mey92]. More recently, Findler and Felleisen introduced the notion of
higher-order contracts, including a careful treatment of “blame” [FF02]. This paper un-
leashed a new wave of papers about contract checking in higher order languages, including
[BM06, FB06, BM06, HJL06, WF07, Fla06, KTG+06, KF07, GF07]. Although they share
a common foundation, these papers differ in their notation and approach, which makes
like-for-like comparisons difficult.

Of these papers, the work of Blume and McAllester [BM06, BM06] is by far the most
closely related because they give a declarative semantics for contract satisfaction, and
prove a connection with the dynamic wrappers of Findler and Felleisen. Here is a brief
summary of the differences between some of this work, especially [BM06], and our own:

• We aim at static contract checking, for a statically typed language, whereas most
of the related work deals with dynamic checks, or a hybrid checking strategy for a
dynamically typed language.

• We deal with a lazy language; all other related work is for strict languages. In
particular, we give a crashing expression a contract Any while a contract is only
given to non-crashing expressions in [FF02, BM06, FB06].

• We deal with dependent function contracts which [FF02, FB06] do not.

• We lay great emphasis on crashing and diverging contracts, which are either not
the focus of these other works, or are explicitly excluded. Our solution appears
both less restrictive than [BM06], by allowing crashing functions to be called within
contracts, and supports Theorem 9 in both directions, rather than the (⇐) direction
only.

149
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• Our definition of contract satisfaction (i.e. the denotational semantics for contracts)
is different from Blume & McAllester’s [BM06]. Besides the extra contract Any

introduced, another difference is that we require expressions that satisfy a predicate
contract to be crash-free while they do not have this requirement. (The reason for
having this requirement is discussed in Section 5.1.2.) As a result, all our contracts
are inhabited by some expressions while the contract {x | False} is not inhabited
by anything in [BM06]. (The reason why it is good to have all contracts inhabited
is stated in Section 4.3.4.)

• The telescoping property (Figure 5.2) is first discovered in [BM06], but it does not
seem to be used in any of the proofs in [BM06] while we use it intensively to make
many proofs of our lemmas much simpler.

• Findler and Blume discovered that contracts are pairs of projections in [FBF06,
FB06]. That means given a contract t, λe.Wt(e) is a projection where Wt is a
wrapper function. To be a projection w.r.t. ⊑, a function p must satisfy these two
properties:

1. p ◦ p = p (idempotence)

2. p ⊑ 1 (result of projection contains no more information than its input)

Our (• ⊲ t) and (• ⊳ t) (i.e. λx.(x ⊲ t) and λx.(x ⊳ t)) satisfy the idempotence
property as shown in Figure 5.2, but does not satisfy (2). They only satisfy (2)
under the condition that the input of the projection satisfies its contract t as shown
in Figure 5.2. Moreover, we discover the projection pair property (in Figure 5.2),
which plays a crucial role in our proof.

• Blume & McAllester deal with recursive contracts, which we do not.

Inspired by [FF02, BM06], Hinze et al [HJL06] implement contracts as a library in Haskell
and contracts are checked at run-time. The framework also supports contract construc-
tors such as pairs, lists, etc. Another dynamic contract checking work is the Camila
project [VOS+05] which use monads to encapsulate the pre/post-conditions checking be-
haviour.

The hybrid contract checking framework [Fla06, KTG+06, KF07, GF07], in theory, can be
as powerful as our system. (Hybrid checking means a combination of static and dynamic
contract checking.) But in practice, our symbolic execution strategy adopted from [Xu06]
gives more flexibility to the verification as illustrated in §2.1.3. In [WF07], Wadler and
Findler show how contracts fit with hybrid types and gradual types by requiring casts in
the source code. The casts are similar to the job of our ⊲ and ⊳.

11.2 Verification Condition Generation Approach

In an inspiring piece of work [FS01, FLL+02], Flanagan et al, showed the feasibility of
applying an extended static checker (named ESC/Java) to Java. Since then, several
other similar systems have been further developed, including Spec#’s and its automatic
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verifier Boogie [BLS04] that is applicable to the C# language. We adopt the same idea of
allowing programmers to specify properties about each function (in the Haskell language)
with contract annotations, but also allow contract annotations to be selectively omitted
where desired. Furthermore, unlike previous approaches based on verification condition
(VC) generation which rely solely on a theorem prover to verify, we use an approach based
on symbolic evaluation that can better capture the intended semantics of a more advanced
lazy functional language. With this, our reliance on the use of theorem provers is limited to
smaller fragments that involve the arithmetical parts of expressions. Symbolic evaluation
gives us much better control over the process of the verification where we have customised
sound and effective simplification rules that are augmented with counter-example guided
unrolling. More importantly, we are able to handle specifications involving recursive
functions and/or higher-order functions which are not supported by any known automatic
verification tools including ESC/Java and Spec#.

11.3 Dependent Type Approach

In the functional language community, type systems have played significant roles in guar-
anteeing better software safety. Advanced type systems, such as dependent types, have
been advocated to capture stronger properties. While full dependent type system (such
as Cayenne [Aug98]) is undecidable in general, Xi and Pfenning [XP99] have designed
a smaller fragment based on indexed objects drawn from a constraint domain C whose
decidability closely follows that of the constraint domain. Typical examples of objects
in C include linear inequalities over integers, boolean constraints, or finite sets. In a
more recent Omega project [She04], Sheard shows how extensible kinds can be built to
provide a more expressive dependent-style system. In comparison, our approach is more
programmer friendly as we allow arbitrary functions to be used in the contract annota-
tions without the need to encode them as types. It is also easier for programmers to add
properties incrementally. Moreover, our symbolic evaluation is formulated to adhere to
lazy semantics and is guaranteed to terminate when code safety is detected or when a
preset bound on the unrollings of each recursive function is reached. Compared with the
dependent type approaches [XP99, CDX05, She04, WSW05] in general, we separate type
and contract declarations so that type related work (e.g. type inference) and contract
related techniques can be developed independently.

11.4 QuickCheck, Cover and Programatica Projects

Amongst the Haskell community, there have been several works that are aimed at pro-
viding high assurance software through validation (testing) [CH03], program verifica-
tion [HJK+05] or a combination of the two [DQT03]. Our work is based on program
verification. Compared to the Programatica project which attempts to define a P-Logic
for verifying Haskell programs, we use Haskell itself as the specification language and
rely on sound symbolic evaluation for its reasoning. Our approach eliminates the effort
of inventing and learning a new logic together with its theorem prover. Furthermore,
our verification approach does not conflict with the validation assisted approach used by
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[CH03, DQT03] and can play complementary roles. We give a brief description of each
project below.

QuickCheck [CH03] is an automatic random testing tool for Haskell programs. It is made
up of a combinator library written in Haskell for an embedded specification language with
test data generation and test execution. Program properties may be specified by either
pre/post, algebraic style or model-based (functions or relations), before the properties
are tested by random input generation. Given a function f which satisfies a property
specification ∀x ∈ A.P [x, f(x)] with decidable property P , QuickCheck randomly gen-
erates values for x a preset number of times for its validation. It reports failure when
a counter-example is found. QuickCheck could provide a profile of test generation to
classify the proportion of trivial versus non-trivial tests. It allows user-specified random
test data generators which is important for more complex data structures. A follow-up
work for QuickCheck[CH03] has extended the random testing framework to cover monadic
programs, where monadic properties are specified and then validated based on the no-
tion of observational equivalence. As mentioned in Section 10.4, we can verify lemmas in
QuickCheck’s library in near future.

In the Cover project [DQT03], the idea of combining testing and proving is proposed for
improving confidence in the correctness of Haskell programs. The aim of this combination
is to harness the strengths of both testing and proving to provide a more effective way
for ensuring the correctness of programs. Testing may be used for debugging programs
and specification before a costly proof attempt. During a proof development, testing
can quickly eliminate wrong conjectures. Proving helps to decompose a program into
smaller components that could benefit from testing. This allows us a way to decompose
the testing task. Current proof assistant technology requires great effort of a user, even
for moderately complex program. Cover project intends to leverage on the lightweight
nature of testing to handle bigger programs, and leaving only the more critical task to
their Agda/Alfa proof assistant.

The Programatica project [HJK+05] aims to provide a sophisticated programming envi-
ronment for the development of high assurance software system. Its components include a
semantically rich, formal modelling language (Haskell), an expressive programming logic,
called P-Logic, to capture critical program properties and a toolset for creating, main-
taining and auditing the supporting evidences for different levels of software assurance.
Program properties are expected for different stages of software development and can help
validate code and also provide a good source of documentation. Both random testing us-
ing QuickCheck and proof assistant using Alfa (based on constructive type theory) are
currently used for property validation.

11.5 Specification Inference

In [MR05, MR08], pattern matching failures can be inferred during compile time without
specifications from programmers. Notably they use a language of regular expressions for
contracts, which is incomparable with ours, and the technical details are very different.
Moreover, high-order functions are inlined before analysis is applied in [MR05, MR08]
while we analyse higher-order functions directly and do not lose modularity.
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I myself have done some research in sized type (i.e. dependent type used in DML) infer-
ence for a first-order functional language [CKX01] and an imperative language [PXC08].
Recently, there is a piece of work on liquid type [RKJ08] which is on inferring dependent
type in the presence of higher-order functions, by requiring only a set of logic qualifiers
to be annotated. However, there are always some advanced properties that cannot be
inferred. For example, the noT1 property mentioned in Section 2.1.1 cannot be inferred
by the liquid type framework because the noT1 specifies a property that is true recursively
for a data structure.

11.6 Logical Framework

In [HY04], a compositional assertion checking framework has been proposed with a set
of logical rules for handling higher order functions. Given arguments satisfying their
precondition, they check whether function definition satisfies its postcondition and the
checking is currently a manual proof based on the logical rules. Apart from our focus on
automatic verification, we can give precise blame when a contract violation is detected.
The work in [HY04] has the strength in verification, but not in assigning blames.

11.7 Model for Dynamic Contract Checking

In [FF02], Findler and Felleisen introduce the notion of higher-order contracts. Later one,
Blume and McAllester [BM06] introduce the concept of contract semantics and prove the
soundness and completeness of the dynamic contract checking algorithm in [FF02] with
respect to the contract semantics. We use a similar approach, but aimed at static checking.
We use a lazy language, and support constructor contracts; on the other hand they deal
with recursive contracts which we do not. Our grand theorem (Theorem 9) is close to
their soundness and completeness theorems. However, the proof techniques are different.
We use a crucial fact that the constructors ⊲ and ⊳ form a projection pair while Blume
and McAllester use a bisimulation strategy.

Also inspired by [FF02, BM06], Hinze et. cl. [HJL06] implement contracts as a library
in Haskell and also provide contract constructors such as pairs, lists, etc. Compared
with [FF02, BM06, HJL06], we apply a theory similar to those but to static contract
checking so that we can detect bugs early. Another work on dynamic contract checking is
the Camila project [VOS+05], which use monads to encapsulate the pre/post-conditions
checking behaviour.

In [FB06], Findler and Blume discover that contracts are pairs of projections. Our pro-
jections use crashes-more-often as the partial ordering rather than the specificness of the
contract. This difference partly due to the fact that we assume program itself may con-
tain errors while they assume the only errors that can occur are due to contract violation.
Moreover, we also discover the projection pair property which plays a crucial role in our
proof.
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11.8 Hybrid Type Checking and Hoare Type Theory

The static contract checking part of the hybrid contract checking framework [Fla06,
KTG+06, KF07, GF07], in theory, can be as powerful as our system in terms of ver-
ifying program properties. But in practice, our symbolic execution strategy adopted
from [Xu06] gives more flexibility to the verification as illustrated in Section 2.1.3 and
also precise blames. In [WF07], Wadler and Findler show how contracts fit with hybrid
types and gradual types by requiring casts in the source code. The casts are similar to
our ⊲ and ⊳. Compared with [Fla06, KTG+06, KF07, GF07, WF07], we deal with a lazy
language and also handle constructor contracts.

In Hoare Type Theory (HTT) [NMB06, NAMB07], dependent types and a Hoare-style
logic are combined for a language with higher-order functions and imperative commands.
The approach can discover some bugs, but not all bugs while our approach can detect
all bugs. We are also better at assigning blames to functions. But our contracts do not
contain quantifiers while their Hoare types do.

11.9 Extended Static Checking for Haskell

Our first attempt to verify Haskell program is illustrated in [Xu06]. Later on, we realise
that the checking code constructed is strict on contracts. For example, given:

f x y @ requires { x > 0 && y > 0}

f x y = case y <= 0 of

True -> error "f"

False -> case x <= 0 of

True -> error "f"

False -> 1

In [Xu06], the function f# corresponds to (but is not the same as) f ⊳ tf and f# is:

λx.λy. case x > 0 && y > 0 of

False → BAD

True → case y ≤ 0 of

True → UNR

False → case x ≤ 0 of

True → UNR

False → 1

We can see that the precondition is checked before the whole definition of the function. If
x takes argument bot and y takes argument -2, (f# bot -2) diverges while the original
code (f bot -2) crashes. This counter example shows that f# is not lazy enough.

On the other hand, in the contract approach, f has the following contract:

{-# CONTRACT f :: {x | x > 0} -> {y | y > 0} -> Ok
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and its representative code f ⊳ tf is:

f ⊳ {x | x > 0} → {y | y > 0} → Ok

=













λx.λy.case y ≤ 0 of

True → UNR

False → case x ≤ 0 of

True → UNR

False → 1

















case x > 0 of

True → x
False → BAD









case y > 0 of

True → y
False → BAD





= . . .
= λx.λy.case y ≤ 0 of

True → BAD

False → case x ≤ 0 of

True → BAD

False → 1

We can see that the contract of each parameter is checked just before it is used in the
definition of f. That means we check the contract lazily.

11.10 Counter-example Guided Approach

Counter-example guided heuristics have been used in many projects (in which we can
only cite a few) [BR02, HJM03] primarily for abstraction refinement. To the best of
our knowledge, this is the first time it is used to guide unrolling which is different from
abstraction refinement.
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Chapter 12

Conclusion

We have presented a static contract checker for an advanced functional programming lan-
guage, Haskell. With static contract checking, more bugs can be detected at compile-time
and meaningful error messages can be reported early. We have demonstrated via exam-
ples the expressiveness of contracts and highlighted the effectiveness of our verification
techniques. Apart from the fact that contract annotation helps in finding bugs, it is also
a good form of documentation.

The main job of the static contract checker is to tell programmers where the bug is and
why it is a bug. Unlike theorem provers, it is designed for ordinary programmers. But
it has potential to be extended to prove more sophisticated properties. Contracts also
have good potential for program optimisation to remove redundant runtime tests and
unreachable dead code.

Our approach is sound as our symbolic evaluation follows closely the lazy semantics of
Haskell. We have proved the soundness of each simplification rule and given a proof of
the soundness of the static contract checking.

We extend our methodology to accommodate parametric polymorphism. Full Haskell (in-
cluding type classes, IO Monad, etc) are transformed to the GHC Core Language [Tea98],
which is in turn translated to the language H. This translation makes the integration of
the verification system into the Glasgow Haskell Compiler (GHC) easily. After we resolve
all engineering problems and finish the enhancements in Chapter 10, GHC will be the
first verifying compiler for an advanced functional language.
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Appendix A

Deletion for AVL Tree

In this section, we give an incorrect version of deletion. We claim that we can verify
those correctly defined branches and detect the incorrectly defined branches marked by
(Wrong).

-- balanced deletion

{-# CONTRACT delete :: {x | balanced x} -> Ok ->

{r | balanced r && 0 <= depth x - depth r &&

depth x - depth r <= 1} #-}

delete :: AVL -> Int -> AVL

delete v1 v2

= case v1 of

L -> L

N v L L -> case v == v2 of

True -> L

False -> N v L L

N v t L -> case v == v2 of

True -> t

False -> let t1 = delete t v2

in N v t1 L

N v L u -> case v == v2 of

True -> u

False -> N v L (delete u v2)

N v t u ->

case v == v2 of

True -> case depth t > depth u of

True -> let t1 = delete t (btmax t)

in N (btmax t) t1 u -- B2

False -> let u1 = delete u (btmin u)

in N (btmin u) t u1

False -> case v2 < v of

True -> let t1 = delete t v2
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t2 = insert t1 v

u1 = delete u (btmin u)

in case depth u - depth t1 > 1 of

True -> case depth u1 - depth t2 <= 1 of

True -> N (btmin u) t2 u1

False -> case u1 of

N x l r ->

case depth r > depth l of

True -> -- (Wrong)

lrotate (N v t2 u1)

False -> N (btmin u) t2 u1)

False -> N v t1 u

False -> let u1 = delete u v2

u2 = insert u1 v

t1 = delete t (btmax t)

in case depth t - depth u1 > 1 of

True -> case depth t1 - depth u2 <= 1 of

True -> N (btmin t) u2 t1

False -> case t1 of

N x l r ->

case depth r > depth l of

True -> -- (Wrong)

lrotate (N v u2 t1)

False -> N (btmax t) t1 u2)

False -> N v t u1

max :: Int -> Int -> Int

max x y = case x >= y of

True -> x

False -> y

btmax :: AVL -> Int

btmax (N x _ L) = x

btmax (N x t u) = btmax u

btmin :: AVL -> Int

btmin (N x L _) = x

btmin (N x t u) = btmin t



Appendix B

Insertion for Red-Black Tree

A red-black tree is a type of self-balancing binary search tree, which was invented by
Rudolf Bayer in 1972. Like AVL tree, it can also search, insert and delete in O(log n)
where n is the number of the node in the tree prior to the operation. In a red-black
tree, the leaf nodes are not relevant and do not contain data. A red-black tree is a binary
search tree where each node has a colour attribute, the value of which is either red or black.
In addition to the ordinary requirements imposed on binary search trees, the following
additional requirements of any valid red-black tree apply:

(1) A node is either red or black.

(2) The root is black.

(3) All leaves are black, even when the parent is black.

(4) Every red node has two black children, with E being regarded black as well.

(5) Every simple path from a node to a descendant leaf contains the same number of
black nodes, either counting or not counting the null black nodes.

In this section, we claim that our system can verify Okasaki’s insertion algorithm, main-
tains the invariant (5) slavishly. However, the invariant (4) is slightly weakened: read
node at the root of a tree may have red children. We call such red-black trees ”infrared”,
the other red-black trees ”proper”.

module RedBlack where

data Colour = R | B deriving Show

data RB = E | T Colour RB Int RB deriving Show

{- Insertion and membership test as by Okasaki -}

rbinsert :: RB -> Int -> RB

{-# CONTRACT rbdelete :: {s | rbinvariant t} -> Ok -> {r | rbinvariant r} #-}
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rbinsert s x = makeBlack (ins s x)

{-# CONTRACT ins :: {s | rbinvariant t} -> Ok -> {r | rbinvariant r} #-}

ins t x

= case t of

E -> T R E x E

T color a y b -> case x < y of

True -> balance color (ins a x) y b

False -> case x == y of

True -> t

False -> balance color a y (ins b x)

makeBlack (T _ a y b) = T B a y b

{- balance: first equation is new,

to make it work with a weaker invariant -}

balance :: Color -> RB -> Int -> RB -> RB

-- balance B (T R a x b) y (T R c z d) = T R (T B a x b) y (T B c z d)

balance B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)

balance B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)

balance B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)

balance B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)

balance a x b = T c a x b

-- invariant: (4)

redinvariant E = True

redinvariant (T R (T R _ _ _) _ _) = False

redinvariant (T R _ _ (T R _ _ _)) = False

redinvariant (T _ l _ r) = redinvariant l && redinvariant r

blackdepth E = 0 -- we don’t count Es as real nodes

-- if they were, they would be black

blackdepth (T B a _ _) = 1 + blackdepth a

blackdepth (T R a _ _) = blackdepth a

-- invariant: (5)

blackinvariant E = True

blackinvariant (T _ a _ b) = blackdepth a == blackdepth b &&

blackinvariant a && blackinvariant b

rbinvariant t = redinvariant t && blackinvariant t



Appendix C

Programs in Experiments

Total functions from Haskell library can be used (e.g. not, null, etc) as the library is
compiled with -O option, which means the library functions can be inlined. Here, we
have rewritten some library functions (e.g. and2) for some basic testings. In our current
implementation, we use the notation _ for contract Any.

C.1 List

and2 True x = x

and2 False x = False

{-# CONTRACT head1 :: {xs | not (null xs)} -> {z | True} #-}

head1 :: [Int] -> Int

head1 (x:xs) = x

{-# CONTRACT tail1 :: {xs | not (null xs)} -> {z | True} #-}

tail1 :: [Int] -> [Int]

tail1 (x:xs) = xs

{-# CONTRACT head2 :: {xs | not (null xs)} -> {z | True} #-}

head2 :: [[Int]] -> [Int]

head2 (x:xs) = x

-- {-# CONTRACT headtail :: {x | not (null (head2 x))} -> {z | True} #-}

-- to show the importance of giving precondition for head2

{-# CONTRACT headtail :: {x | and2 (not (null x)) (not (null (head2 x)))}

-> {z | True} #-}

headtail :: [[Int]] -> [Int]

headtail (y:ys) = tail1 y

-- with this contract, the caller of res2
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-- may be considered as a non-safe function

{-# CONTRACT res2 :: {x | True} -> _ #-}

res2 x = head1 [1]

res2_crash = res2 -- unsafe because res2’s postcondition is Any

{-# CONTRACT res3 :: {x | True} #-}

res3 = head1 [1]

res4 = (head1 [6], head1 []) -- unsafe

res5 = head1 [1]

res6 x = case x of

True -> res4 -- unsafe

False -> (res5, 1)

{-# CONTRACT last1 :: {ys | not (null ys)} -> {z | True} #-}

last1 :: [Int] -> Int

last1 [x] = x

last1 (x:xs) = last1 xs

{-# CONTRACT negList :: {ys | not (null ys)} -> {z | True} #-}

negList [x] = [not x]

negList (x:xs) = (not x) : negList xs

{-# CONTRACT minimum1 :: {xs | not (null xs)} -> {z | True} #-}

minimum1 :: [Int] -> Int

minimum1 [x] = x

minimum1 (x1:x2:xs) = let m = case (x1 < x2) of

True -> x1

False -> x2

in minimum1 (m : xs)

C.2 Tuple

{-# CONTRACT f0 :: {a | not (null a)} -> {z | True} #-}

f0 :: [Bool] -> Bool

f0 (x:xs) = x

-- This is a stronger contract which requires the argument to be nonNull.

{-# CONTRACT f :: {a | not (null a)} -> ({y | True}, {z | True}) #-}

f :: [Bool] -> (Bool, Bool)
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f x = (True, f0 x)

{-# CONTRACT fst2 :: ({x | True}, _) -> {z | True} #-}

fst2 :: (Bool, Bool) -> Bool

fst2 (a,b) = a

{-# CONTRACT snd2 :: (_, {x | True}) -> {z | True} #-}

snd2 :: (Bool, Bool) -> Bool

snd2 (a,b) = b

g1 x = fst2 (f x)

g2 x = snd2 (f x)

g3 x = f0 x

h [] = True

h (x:xs) = g2 xs

C.3 Higher-Order Functions

{-# CONTRACT f1 :: ({x | True} -> {y | >= 0}) -> {z | z >= 0} #-}

f1 :: (Int -> Int) -> Int

f1 g = g 1 - 1

f2 = f1 (\x -> x -1)

C.4 Data Type

-- non-recursive data type

data A = A1 | A2

data B = B1 | B2

noA2 A1 = True

noA2 A2 = False

yesA2 A1 = False

yesA2 A2 = True

{-# CONTRACT h1 :: {x | noA2 x} -> {z | yesA2 z} #-}

h1 :: A -> A
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h1 A1 = A2

g1 :: A -> A

g1 A1 = A1

g1 A2 = A1

{-# CONTRACT h2 :: {x | not (noA2 x)} -> {z | not (yesA2 z)} #-}

h2 :: A -> A

h2 A2 = A1

test = h1 (g1 A2) -- this is safe

-- f1, f2, f3 test error msg generation

{-# CONTRACT f1 :: {x | noA2 x} -> _ #-}

f1 :: A -> A

f1 x = h1 A2

f3 x y = case y of

B1 -> f2 x y

f2 x y = case y of

B1 -> f1 x

C.5 Data Constructor Contract

{-# CONTRACT g1 :: ({x | x > 0}, _ ) -> {z | z > 0} #-}

g1 :: (Int, Int) -> Int

g1 (x,y) = x

{-# CONTRACT g2 :: ( _ , {y | y > 0}) -> {z | z > 0} #-}

g2 :: (Int, Int) -> Int

g2 (x,y) = y

bad = error "bad!"

t1 = g1 (5, bad)

t2 = g2 (bad, 6)

t3 = g1 (bad, 7)

t4 = g1 (-1, 6) -- seems inlining is done.

data A a = B a | C a Int
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{-# CONTRACT g :: B {x | x > 0} -> _ #-}

g :: A Int -> Int

g (B x) = x

g (C x y) = y

C.6 Recursive Functions in Contracts

len [] = 0

len (x:xs) = 1 + len xs

-- contract with lenLeq1 works more efficiently than

-- contract with len function i.e. a recursive function

lenLeq1 [] = True

lenLeq1 [a] = True

lenLeq1 xs = False

-- {-# CONTRACT f :: {xs | (len xs) <= 1} -> {r | True} #-}

{-# CONTRACT f :: {xs | lenLeq1 xs} -> {r | True} #-}

f :: [Int] -> Int

f [] = 0

f [x] = 1

C.7 Arithmetic

-- {-# CONTRACT f :: {x | x >= 0} -> {r | r < 1} #-}

{-# CONTRACT f1 :: {x | x >= 0} -> {r | True} #-}

f1 :: Int -> Bool

f1 x = x > 1

{-# CONTRACT f2 :: {x | True} -> {r | r == x + 1 } #-}

f2 :: Int -> Int

f2 x = x + 1

{-# CONTRACT g :: {x | True} #-}

g = f1 (-1)
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-- {-# SPECIALISE f :: Int -> Int #-}

-- {-# CONTRACT f :: x:{y | y > 0} -> {r | r == x + 1} #-}

-- {-# CONTRACT f :: x:{y | y > 0} -> {y | y > 0} -> {r | r == x + 1} #-}

-- {-# CONTRACT f :: any -> {y | y > 0} #-}

-- {-# CONTRACT f :: {y | y > 0} -> _ #-}

{-# CONTRACT inc :: {y | y > 0} -> {r | r > 1} #-}

inc :: Int -> Int

inc x = x + 1

-- {-# CONTRACT sum2 :: x:{y | y > 0} -> {y | y > x} -> {r | r > 0} #-}

sum2 :: Int -> Int -> Int

sum2 x y = x + y

{-# CONTRACT mul :: {x | x >= 0} -> {y | y >= 0} -> {r | r >= 0} #-}

mul :: Int -> Int -> Int

mul x y = x * y

t1 = inc 5

t2a = sum2 (inc 5) 2

t2b = sum2 (inc 5) 6
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