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People are the network:

experimental design and evaluation of

social-based forwarding algorithms

Pan Hui

Summary

Cooperation binds but also divides human society into communities. Members of the same

community interact with each other preferentially. There is structure in human society. Within

society and its communities, individuals have varying popularity. Some people are more pop-

ular and interact with more people than others; we may call them hubs. I develop methods to

extract this kind of social information from experimental traces and use it to choose the next hop

forwarders in Pocket Switched Networks (PSNs). I find that by incorporating social informa-

tion, forwarding efficiency can be significantly improved. For practical reasons, I also develop

distributed algorithms for inferring communities.

Forwarding in Delay Tolerant Networks (DTNs), or more particularlyPSNs, is a challenging

problem since human mobility is usually difficult to predict. In this thesis, I aim to tackle this

problem using an experimental approach by studying real human mobility. I perform six mo-

bility experiments in different environments. The resultant experimental datasets are valuable

for the research community. By analysing the experimental data, I find out that the inter-contact

time of humans follows a power-law distribution with coefficient smaller than 1 (over the range

of 10 minutes to 1 day). I study the limits of “oblivious” forwarding in the experimental envi-

ronment and also the impact of the power-law coefficient on message delivery.

In order to study social-based forwarding, I develop methods to infer human communities from

the data and use these in the study of social-aware forwarding. I propose several social-aware

forwarding schemes and evaluate them on different datasets. I find out that by combining com-

munity and centrality information, forwarding efficiency can be significantly improved, and I

call this schemeBUBBLE forwarding with the analogy that each community is aBUBBLE with

big bubbles containing smaller bubbles. For practical deployment of these algorithms, I pro-

pose distributed community detection schemes, and also propose methods to approximate node

centrality in the system.

Besides the forwarding study, I also propose a layerless data-centric architecture for thePSN

scenario to address the problem with the status quo in communication (e.g. an infrastructure-

dependent and synchronous API), which bringsPSNone step closer to real-world deployment.



Acknowledgments

I would like to thank my supervisor Prof. Jon Crowcroft for endless jolly discussions and beers

in the Castle. I would also like to thank Dr Christophe Diot, Dr James Scott and Dr Augustin

Chaintreau for their wonderful supervision and help duringthe first one and a half year of my

PhD; and Dr Eiko Yoneki for the very enjoyable collaborationin my third year. I would like to

thank Mr Shu-Yan Chan for his help with some programming.

I want to thank to Dr Steven Hand, Dr Pietro Lio, Dr Andrew Moore, Dr Mirco Musolesi, Dr

Sid Chau, Mr Derek Murray, Miss Meeyoung Cha, Dr Andrea Passarella, Dr Andrew Warfield,

Dr Meng-How Lim, Mr Hamed Haddadi and many others for their insightful comments on the

dissertation and related papers; and Dr Ralph Kling and Mr Vincent Hummel from Intel for

their help on the iMote platform. I also want to thank the people who have shared the same

office with me and the friends I made during my internship in Intel Cambridge and Thomson

Paris. I have had a very good time over these three years.

Finally I want to thank my parents for their endless support,the Sir Edward Youde Foundation

for the main financial support of my PhD program, and Intel Research Cambridge and Thomson

Rsearch Paris for the interesting working experiences.



List of Publications

[10-2007] Eiko Yoneki, Pan Hui, Shu-yan Chan and Jon Crowcroft. A Socio-Aware Overlay

for Multi-Point Asynchronous Communication in Delay Tolerant Networks. In ACM/IEEE

International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile

Systems (MSWiM), October 2007, Crete Island, Greece.

[9-2007] Eiko Yoneki, Pan Hui, and Jon Crowcroft. Visualizing Community Detection in

Opportunistic Network. In ACM MobiCom 2007 Workshop on Challenged Networks

(CHANTS), September 2007, Montreal, Canada.

[09-2007] Jing Su, James Scott, Pan Hui, Eben Upton, Meng How Lim, Christophe Diot, Jon

Crowcroft, Ashvin, Goel, and Eyal de Lara . Haggle: Clean-slate networking for mobile

devices. In Conference on Ubiquitous Computing (Ubicomp),September 2007, Inns-

buck, Austria.

[08-2007] Pan Hui, Eiko Yoneki, Shu-yan Chan and Jon Crowcroft. Distributed Community

Detection in Delay Tolerant Networks. In Sigcomm Workshop MobiArch ’07, August,

Kyoto, Japan.

[06-2007] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, and

James Scott. Impact of Human Mobility on Opportunistic Forwarding Algorithms. IEEE

Transactions on Mobile Computing, Volume 6, Issue 6 (June 2007).

[05-2007] Pan Hui and Jon Crowcroft. Bubble Rap: Forwarding in small world DTNs in ever

decreasing circles. University of Cambridge Computer Laboratory Technical Reports,

UCAM-CL-TR-684, May 2007.

[03-2007] Pan Hui and Jon Crowcroft. How Small Labels create Big Improvements. Interna-

tional Workshop on Intermittently Connected Mobile Ad hoc Networks (ICMAN). March

19-23, 2007, White Plains, NY.

[12-2006] Pan Hui and Jon Crowcroft. How Small Labels create Big Improvements. Second

coNEXT Conference Student Workshop Poster, December 4-7, 2006,Lisboa, Portugual.

[10-2006] Pan Hui, Jeremie Leguay, Jon Crowcroft, James Scott, Timur Friedman and Vania

Conan. Osmosis in Pocket Switched Networks. First International Conference on Com-

munications and Networking in China (ChinaCom). Oct 25-27,2007, Beijing, China.



[04-2006] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, James

Scott. Impact of Human Mobility on the Design of Opportunistic Forwarding Algorithms.

In IEEE INFOCOM 2006,April 23-29, Barcelona, Spain.

[01-2006] James Scott, Pan Hui, Jon Crowcroft, and Christophe Diot. Haggle: A Networking

Architecture Designed Around Mobile Users. In IFIP WONS 2006, January 18-20, Les

Menuires, France.

[10-2005] Pan Hui, Augustin Chaintreau, Richard Gass, James Scott, Jon Crowcroft, and Christophe

Diot. Pocket Switched Networking: Challenges, Feasibility, and Implementation Issues.

In Workshop on Autonomic Communication (WAC), Oct 3-5, 2005, Vouliagmeni-Athens,

Greece.

[09-2005] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and Christophe

Diot. Pocket Switched Networks and the Consequences of Human Mobility in Confer-

ence Environments. In SIGCOMM Workshop on Delay Tolerant Networking, September,

2005, Philadelphia, USA.

[02-2005] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, James

Scott. Pocket Switched Networks: Real-world mobility and its consequences for oppor-

tunistic forwarding. University of Cambridge, Computer Lab. Technical Report UCAM-

CL-TR-617. February 2005

6



List of Acronyms

ADU:

AP:

API:

CCDF:

DO:

DTN:

FO:

GPL:

GPRS:

GSM:

HTTP:

IP:

INS:

MAC:

MANET:

MCP:

NO:

POP:

PSN:

SMTP:

SNMP:

SQL:

TTL:

WNA:

Application-level Data Unit

Access Point

Application Programming Interface

Cumulative Distribution Function

Data Object

Delay Tolerant Network/Networking

Forwarding Object

General Public License

General Packet Radio Service

Global System for Mobile communications

Hypertext Transfer Protocol

Internet Protocol

Intentional Naming System

Media Access Control

Mobile Ad Hoc Networks

Multiple-Copy-Multiple-Hop

Name Object

Post Office Protocol

Pocket Switched Network/Networking

Simple Mail Transfer Protocol

Simple Network Management Protocol

Structured Query Language

Time to Live

Weighted Network Analysis



Contents

1 Introduction 12

1.1 Metrics for Evaluating Forwarding Efficiency . . . . . . . . .. . . . . . . . . 13

1.2 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

1.3 Pocket Switched Networks . . . . . . . . . . . . . . . . . . . . . . . . . .. . 14

1.4 Haggle Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 16

1.5 Delay Tolerant Networks . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 17

1.6 Forwarding in PSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

1.7 Security and Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19

1.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

1.9 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Measuring Human Mobility 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

2.2 iMote Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

2.3 Experimental Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 25

2.4 Inter-contact Time Analysis . . . . . . . . . . . . . . . . . . . . . . .. . . . . 28

2.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Inter-contact Time Characterisation . . . . . . . . . . . . .. . . . . . 30

2.5 Forwarding with Power Law-based Opportunities . . . . . . .. . . . . . . . . 36

2.6 Empirical Evaluation of Controlled Flooding Algorithms . . . . . . . . . . . . 38

2.6.1 Controlled Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.2 Performance and Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 Delay and Impact of Time-TTL . . . . . . . . . . . . . . . . . . . . . 42

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS CONTENTS

3 Inferring Human Communities 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

3.2 Community Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48

3.3 Contact Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Weight Distribution of Contact Graphs . . . . . . . . . . . . .. . . . 51

3.3.2 Correlation between Regularity and Familiarity . . . .. . . . . . . . . 53

3.4 Weighted Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . .. . 55

3.4.1 Clustering by Modularity . . . . . . . . . . . . . . . . . . . . . . . .. 55

3.4.2 Clustering by Edge Betweenness . . . . . . . . . . . . . . . . . . .. . 57

3.4.3 Results by Weighted Analysis . . . . . . . . . . . . . . . . . . . . .. 59

3.5 Findingk-clique Communities . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 k-clique University Communities . . . . . . . . . . . . . . . . . . . . 61

3.5.2 k-clique Communities in Reality Mining . . . . . . . . . . . . . . . . 62

3.5.3 k-clique Conference Communities . . . . . . . . . . . . . . . . . . . . 64

3.5.4 k-clique Metropolitan Communities . . . . . . . . . . . . . . . . . . . 66

3.6 Distributed Community Detection . . . . . . . . . . . . . . . . . . .. . . . . 67

3.6.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.2 SIMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.3 k-CLIQUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.4 MODULARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Evaluation of Distributed Detection . . . . . . . . . . . . . . . .. . . . . . . 73

3.7.1 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7.2 Results of Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . .. . 79

4 How Small Labels Create Big Improvements 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Labeling Before Throwing out . . . . . . . . . . . . . . . . . . . . . . .. . . 83

4.4 Analysis of Inter-contact Times . . . . . . . . . . . . . . . . . . . .. . . . . . 83

9



CONTENTS CONTENTS

4.5 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 86

4.5.1 HaggleSim Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . .87

4.5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.4 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 88

4.7 Modeling as Temporal Graphs . . . . . . . . . . . . . . . . . . . . . . . .. . 91

4.7.1 Topological Attachment Phase . . . . . . . . . . . . . . . . . . . .. . 92

4.7.2 Community Detection Phase . . . . . . . . . . . . . . . . . . . . . . .93

4.7.3 Temporal Attachment Phase . . . . . . . . . . . . . . . . . . . . . . .94

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Social Based Forwarding in Small World DTNs 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

5.2 On Human Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99

5.2.1 Experimental Datasets . . . . . . . . . . . . . . . . . . . . . . . . . .99

5.2.2 Heterogeneity in Cohesiveness . . . . . . . . . . . . . . . . . . .. . . 99

5.2.3 Heterogeneity in Centrality . . . . . . . . . . . . . . . . . . . . .. . . 100

5.3 Interaction and Forwarding . . . . . . . . . . . . . . . . . . . . . . . .. . . . 101

5.4 Greedy Ranking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .. . 104

5.4.1 The Power of Greedy Ranking . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 When the Greedy Ranking Fails . . . . . . . . . . . . . . . . . . . . .106

5.5 Direct Labeling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 107

5.5.1 The Problem with Direct Labeling . . . . . . . . . . . . . . . . . .. . 108

5.6 Centrality Meets Community . . . . . . . . . . . . . . . . . . . . . . . .. . . 110

5.6.1 Two-community Case . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.2 Multiple-community Cases . . . . . . . . . . . . . . . . . . . . . . .. 114

5.7 Making Centrality Practical . . . . . . . . . . . . . . . . . . . . . . .. . . . . 118

5.7.1 Approximating Centrality . . . . . . . . . . . . . . . . . . . . . . .. 118

5.7.2 Human Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . .119

5.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . .. . 125

10



CONTENTS CONTENTS

6 Conclusion 127

6.1 Ongoing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A Haggle: A Clean-slate Architecture for PSN 133

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

A.2 Pocket Switched Networking . . . . . . . . . . . . . . . . . . . . . . . .. . . 135

A.3 Problem with the Status Quo . . . . . . . . . . . . . . . . . . . . . . . . .. . 137

A.4 Core Concepts of Haggle . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 138

A.4.1 Data Persists inside Haggle . . . . . . . . . . . . . . . . . . . . . .. . 138

A.4.2 Networking Protocols inside Haggle . . . . . . . . . . . . . . .. . . . 139

A.4.3 Name Graphs supporting Late Binding . . . . . . . . . . . . . . .. . 139

A.4.4 Centralised Resource Management . . . . . . . . . . . . . . . . .. . . 139

A.5 Haggle Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 139

A.5.1 Data Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.5.2 Name Manager using Name Graphs . . . . . . . . . . . . . . . . . . . 143

A.5.3 Connectivity Manager and Connectivities . . . . . . . . . .. . . . . . 145

A.5.4 Protocol Manager and Protocols . . . . . . . . . . . . . . . . . . .. . 146

A.5.5 Forwarding Manager and Algorithms . . . . . . . . . . . . . . . .. . 147

A.5.6 Resource Manager using Tasks . . . . . . . . . . . . . . . . . . . . .. 148

A.6 Comparison with the DTN Architecture . . . . . . . . . . . . . . . .. . . . . 149

A.7 Short Summary of Prototyping . . . . . . . . . . . . . . . . . . . . . . .. . . 150

A.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11



Chapter 1

Introduction

This dissertation is concerned with the design and evaluation of forwarding algorithms in Pocket

Switched Networks (PSNs), which are a type of Delay Tolerant Network (DTN) targeting mobile

humans [Fal03]. A PSN uses contact opportunities to allow humans to communicate without

network infrastructure. I show that, by adding social information such as community and cen-

trality, the forwarding efficiency of aPSNcan be significantly improved over stateless “obliv-

ious” forwarding schemes and also state of the art encounters predicting algorithm. The key

contribution of this thesis is the design of efficient (in term of delivery ratio and cost) social-

based forwarding algorithms from the empirical understanding of human mobility, interaction

and social structures.

Forwarding is a challenging problem in PSN. Unlike traditional Internet and Mobile Ad Hoc

Network (MANET), an end-to-end path for each node pair is usually impossible in PSN because

either the network topology is changing too fast or the network is too sparse for full connec-

tivity. It means that the traditional routing table strategy is not applicable to solve forwarding

problem in this kind of environments. We require an efficientdata forwarding mechanism that

copes with dynamical, repeated disconnection and re-wiring. Some state of art routing algo-

rithms [JLW05] [LDS04] in this area still provide forwarding by building and updating routing

tables whenever mobility occurs. I believe this approach isnot cost effective for a PSN, since

mobility is often unpredictable, and topology changes can be rapid. Rather than exchange much

control traffic to create unreliable routing structures, I prefer to search for some characteristics

of the network which are more tolerant to mobility. A PSN is formed by people. Those people’s

social relationships may vary much more slowly than the topology, and therefore can be used

for better forwarding decisions. Furthermore, if we can detect these social mobility patterns

online in a decentralised way, we can put the algorithms intopractical applications.

I propose theBUBBLE algorithm, with the intention of bringing in a concise concept of commu-

nity into PSNforwarding to achieve significant improvement of forwarding efficiency.BUBBLE

combines the knowledge of community structure with the knowledge of nodecentralityto make

forwarding decisions. There are two intuitions behind thisalgorithm. Firstly, people have vary-

ing roles and popularities in society, and these should be true also in the network – the first part

12
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of the forwarding strategy is to forward messages to nodes which are more popular than the

current node. Secondly, people form communities in their social lives, and this should also be

observed in the network layer – hence the second part of the forwarding strategy is to identify

the members of destination communities, and to use them as relays.

In this chapter I outline the background issues that motivated this work, and state the contribu-

tions that are described in this dissertation. After that I summarise the contents of each chapter.

1.1 Metrics for Evaluating Forwarding Efficiency

The aim is to show thatBUBBLE and its sub-class of algorithms are efficient forwarding algo-

rithms in term of delivery ratio and cost. Two forwarding algorithms with similar delivery ratio,

the one with lower delivery cost is classified as more efficient and vice versa for the delivery

cost case.

For all the emulations/simulation conducted to compare forwarding efficiency in this thesis, I

have the following two metrics, and for these two metrics, I compute the 95th percentile using

t-distribution.

Delivery Ratio: The proportion of messages that have been delivered out of the total unique

messages created.

Delivery Cost: The total number of messages (include duplicates) transmitted across the air.

To normalize this, I divide it by the total number of unique messages created.

For some cases, I also compute the Hop-count-distribution for the deliveries, which is the distri-

bution of the number of hops needed for all the deliveries, and which reveals the social distance

between sources and destinations.

In this thesis, I am not going to do end-to-end evaluation of applications using these algorithms.

I only propose a simple unicast communication scenario withdelay tolerant messaging service.

I will limit my evaluation to delivery ratio and delivery cost in a network where all connectivity

is short-range wireless (i.e., no wired backhaul allowed).Although thePSN concept allows

using infrastructures (e.g. wireless access point) to tunnel the messages, I will not include it in

this thesis.

1.2 Social Networks

Society naturally divides intocommunitiesaccording to needs for cooperation or selection.

In sociology, the idea ofcorrelated interactionis that an organism of a given type is more

likely to interact with another organism of a same type than with a randomly chosen mem-

ber of the population [Oka05]. If the correlated interaction concept applies, then our intu-

ition is that using community information to influence forwarding paths may be advantageous.
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The PSN forwarding problem is then turned into a well known community detection prob-

lem [NG04] [New06] [New04b] [DDDGA05] [Cla05]. Besides community,familiar strangers

is another useful relationship which can be useful for data delivery. Studied by Milgram

[Mil77], familiar strangers are people you meet regularly but do not spend time with, such as

people who take the same bus or underground as you every day tothe work, or people use the

same laundry room. This kind of regularity can be useful for predicting encounter, for example

we can usually predict the arrival of buses because of their regular schedule. I believe that by

observing the contact patterns of the mobile devices, we caninfer this social information.

Understanding a network and a node’s participation in the network is important. Centrality

measurements give insight into the roles and tasks of nodes in a network. Freeman [Fre77]

defined several centrality metrics to measure the importance of a node to the network. Be-

tweenness centrality measures the number of times a node falls on the shortest path between

two other nodes. This concept is also valid in a temporal network, which is a type of network

with time-dependent connectivity [KKK02]. In aPSN, it can represent the importance of a node

for relaying traffic for others in the system. To determine the overall centrality of a vertex,pk,

we need merely to sum its partial betweenness values for all unordered pairs of points where

i 6= j 6= k:

CB(pk) =
∑

n

∑

n

bij(pk), i < j (1.1)

wheren is the number of points in the graph. The sum,CB(pk), is an index of the overall

partial betweenness of pointpk. Wheneverpk falls on the only geodesic path connecting a pair

of points,i andj, CB(pk) is increased by 1 (bij(pk) = 1). When there are alternative geodesic

paths,CB(pk) is increased in proportional to the frequency of occurrenceof pk among those

alternatives. Closeness centrality yields the node with the shortest path to all others and the best

visibility in a graph of relationships. It is a measure of howlong it will take data to spread to

the others in this graph. The closenessCC(a) for a vertexa is the inverse sum of distances (i.e.

hop count) to other nodesb:

CC(a) = 1 /
∑

b

dab (1.2)

In this dissertation, I will concentrate on using the above social network concepts to help us to

choose a good data carrier for a specific destination.

1.3 Pocket Switched Networks

PSNsare a type ofDTN, targeted at mobile users. Mobile workers move between connectivity

islands (e.g. WiFi at home and work). Outside these islands,end-to-end connectivity becomes

expensive, slow, or simply unavailable. PSN is the new networking paradigm, which uses

human mobility and store-and-forward strategy to solve thecommunication problem outside

the connectivity islands. On the other hand, there is a huge amount of untapped resources in
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portable networked devices such as laptops, PDAs and mobilephones, including local wireless

bandwidth (e.g. 802.11 and Bluetooth), storage capacity, CPU power, and multimedia data.

These resources should be utilised. Furthermore, the communication between users is not al-

ways necessarily to pass through the Internet. According toa questionnaire survey amount 70

participants in the Computer Laboratory University of Cambridge, around 50% of their email

exchanges are among people they met daily. Another motivation is that the information provide

by the Internet may not best satisfy the interest of the localusers, for example an user may be

more interested in a video clip of his friend, Britney Spears, instead of the MTV of the singer

Britney Spears that is usually what Google search will return to you. Empirical result about

social search are also observed by other researchers [MGD06]. In this aspect, PSN unleashes

the power of local, social and community search and communication.

Currently the only scarce resource is battery power, but advances in power engineering and

battery technologies have meant that mobile phones now lastfor a week on a single charge,

while remaining in constant network contact (although in idle mode). I expect that this innova-

tion will continue, allowing devices to participate in wireless networks while minimizing power

consumption. PSN focus on multi-hop delivery and data searching in neighbour’s cache. I en-

vision a world where these resources can be used to provide networking functionality alongside

access networks, and where users’ applications make use of both types of bandwidth transpar-

ently. This is the goal ofPSN. To further illustrate thePSN scenario, I give two motivating

examples here.

First, let us consider a Japanese tourist, Nami, in Paris. Nami uses her HTC Touch mobile phone

to take pictures of Paris. She is very excited when she arrives the Eiffel tower, and she wants

to take pictures of the beautiful tower from different angles.1 But her mobile phone is running

out of storage because in the same day she already took 300 pictures. Nami can delete some

pictures, but she feels pity since every picture is so nice and unique to her. She wants to send

some pictures to her friend, Eiko, who is also visiting Paris, so Eiko can store the pictures for

her temporarily. Nami cannot find an Internet Cafe around Eiffel tower and it is too expensive to

send via GPRS, especially using her roaming phone, and she isleaving Paris tomorrow. Nami is

supposed to be able to send her pictures to Eiko or even to her own email account by multi-hop

delivery using short-range radio, but the current technologies disappoint this young lady.

A second motivating example is set on a train going towards London. Charlie wants to find

out about restaurants in London using his laptop. He does nothave anyGPRSconnection (and

may not be willing to pay for it if he did, or may be out of coverage range, or the train might

actually be a plane). Currently, Charlie would not bother even trying to perform this task, as

he probably knows that his web browser (which is the obvious application to end users for

obtaining information) only works when he has a connection to a wireless access point (AP).

In this case, the frustrating thing is that the data is highlylikely to be present on many other

devices within wireless range of Charlie, since others going to London may well have looked

1Yes, she is Japanese! What can we say?
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up restaurants before they departed, or on the train (if theydid haveGPRSaccess etc). However,

with the existing architecture, that information is not available to Charlie.

There are also PSN related prior systems that use a wirelessLAN when wide-area connectiv-

ity is not available. Bayou (from PARC in 1995) maintained a calendaring application where

wireless devices opportunistically synchronize with eachother, and where connectivity to an

infrastructure server was only intermittently [TTP+95]. More recently, Pastwatch is a peer-to-

peer CVS-like system from MIT that allows a group of nodes to become disconnected from

the “main” repository, and to form a replicated read-write source repository as a local cluster

while partitioned from the main server [YCM06]. Although Pastwatch does not do automatic

discovery and name resolution of nearby nodes, it is still a good example of an application

that tolerates wide-area disconnection (e.g. PSN scenario) with a high level of functionality

remaining. These prior works also strengthen our motivations of PSN research. But because

this thesis is focus on forwarding, I will leave more discussion about applications and systems

in the Appendix and also as future work.

1.4 Haggle Architecture

Haggle architecture2 is a ground-up redesign of networking for mobile devices to support the

mobile user scenario, more particular the PSN scenario. Thekey idea behind Haggle is to

have a data-centric architecture [ASS+] where applications do not have to concern themselves

with the mechanisms of transporting data to the right place,since that is what has made them

infrastructure-dependent. By delegating to Haggle the task of propagating data, applications

can automatically take advantage of any connection opportunities that arise, both local neigh-

borhoods opportunities and connectivity with servers on the Internet when available. I identify

four design decisions for Haggle that follow on from this.

1. Data Persists inside Haggle: The data on each node in Haggle must be visible to and

searchable by other nodes (with appropriate security/access restrictions applied). This

facilitates operation of our motivating web example, in that the public webpage needed

by one person can be found despite it being in another person’s device. In practice,

this means that Haggle must manage persistent data storage for applications, instead of

applications storing data in a separate file system.

2. Networking Protocols inside Haggle: Any application-layer networking protocol in-

cludes implied assumptions about the type of network available. For example, client-

server protocols such asSMTP, POPand HTTP assume that Internet-based servers are

contactable. With Haggle, I place networking protocol support inside Haggle itself, al-

lowing me to present a data-centric rather than connection-centric abstraction to applica-

tions.
2Haggle has two meanings, the first meaning is “ad hoc Google”,and the second meaning represents the

haggling scenario of finding data carriers.
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3. Name Graphs supporting Late Binding: Haggle maintains its own naming repository

(it obviously cannot rely on remote look-up of this data), with mappings from user-level

names to protocol-specific names specifying the various ways to get to the user-level

name. Furthermore, the whole set of mappings (the “name graph”) is transmitted along

with the data, allowing even intermediate (i.e. non-source) nodes to bind to protocol-

specific names as late as possible [AWSBL].

4. Centralised Resource Management: One role of the networking architecture on every

device is to decide what to do with each of its network interfacesnow. Haggle contains a

centralised resource management component, which decideson a cost/benefit comparison

basis what tasks it chooses to perform on each network interface at a given moment.

The details of the Haggle architecture design can be found inthe Appendix.

1.5 Delay Tolerant Networks

The existing TCP/IP based Internet operates on the principle of providing end-to-end inter-

process communication using a concatenation of potentially dissimilar link-layer technologies.

The standardisation of the IP protocol and its mapping into network-specific link-layer data

frames at each router as required supports interoperability using a packet-switched model of

service. Although often not explicitly stated, a number of key assumptions are made regard-

ing the overall performance characteristics of the underlying links in order to achieve smooth

operation: an end-to-end path exists between a data source and its peer(s), the maximum round-

trip time between any node pair in the network is not excessive, and the end-to-end packet

drop probability is small. A class of so-calledchallenged networks, which may violate one or

more of these assumptions, is becoming important and may notbe well served by the current

end-to-end TCP/IP model. Challenged networks arise primarily as a result of various forms

of host and router mobility, but may also come into being as a result of disconnection due to

power management or interference. Examples of such networks include Terrestrial Mobile Net-

works, Exotic Media Networks, Military Ad-Hoc Networks, and Sensor and Sensor/Actuator

Networks. The architecture for Delay Tolerant Networking (DTN) [Fal03] seeks to address the

communication needs of thesechallengedenvironments. This architecture proposes a message

based store-and-forward overlay network that leverages a set of convergence layers to adapt to

a wide variety of underlying transports. In addition, the model also espouses novel approaches

to application structuring and programming interface, fragmentation, reliability, and persistent

state management.

Both PSNandDTN are designed to solve intermittent connection problem.DTN focuses more

on environments with more predictable mobility (e.g. satellites, buses), andPSNtargets on mo-

bile humans, which have more difficult predictability. As I mentioned in the previous section,

PSNis not only to solve connectivity problem, but also with the insight of local communication,
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community sharing, and social search from neighbours’ and neighbours’ neighbours’ caches.

From the architecture point of view, the Haggle architecture is a data-centric clean slate de-

sign for PSN, where applications do not have to concern themselves with the mechanisms of

transporting data to the right place, since that is what has made them infrastructure-dependent.

The data-centric principle of Haggle is that the data on eachnode in Haggle must be visible to

and searchable by other nodes (with appropriate security/access restrictions applied). In other

words, relationships between application data units (e.g.a webpage and its embedded images)

should be representable in Haggle, and applications shouldbe able to search both locally and

remotely for data objects matching particular useful characteristics.

We can see that we need a completely new paradigm to consider forwarding in this new commu-

nication model. In this thesis, I look at two human social structures, community and centrality,

which are very important for the data-centric forwarding.

1.6 Forwarding in PSNs

Forwarding inPSNs is a challenging problem since human mobility is usually unscheduled

and difficult to predict. Quite a lot of work has been done on forwarding in DTNs and the

related mobile ad hoc networks in the literature. Vahdatet al. proposed the epidemic routing

[VB00] which is similar to the “oblivious” flooding scheme I evaluated in this thesis. Spray and

Wait [SPR05] is another “oblivious” flooding scheme but witha self-limited number of copies.

Grossglauseret al. proposed the two-hop relay scheme [GT02] to improve the capacity of dense

ad hoc networks.

Many approaches calculate the probability of delivery to the destination node, where the metrics

are derived from the history of node contacts, spatial information and so forth. The pattern-

based Mobyspace Routing by Leguayet al. [LFC06], location-based routing by Lebrunet

al. [Leb05], context-based forwarding by Musolesiet al. [MHM05] and PROPHETRouting

[LDS04] fall into this category.PROPHETuses past encounters to predict the probability of

future encounters. The transitive nature of encounters is exploited, where indirectly encounter-

ing the destination node is evaluated. Message Ferry by Zhaoet al. [ZAZ04] takes a different

approach by controlling the movement of each node. Recent attempts to uncover a hidden sta-

ble network structure in DTNs such as social networks have emerged. For example, SimBet

Routing [DH07] uses ego-centric centrality and its social similarity. Messages are forwarded

towards the node with higher centrality to increase the possibility of finding the potential carrier

to the final destination.RANK algorithm introduced in this thesis uses betweenness centrality

in a similar manner to SimBet routing. On the other hand,BUBBLE exploits further community

structures and combines it withRANK for further improvement of forwarding efficiency. The

mobility-assisted Island Hopping forwarding [NSDG06] uses network partitions that arise due

to the distribution of nodes in space. Their clustering approach is based on the significant loca-

tions for the nodes and not for clustering nodes themselves.Clustering nodes is a complex task
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to understand the network structure for aid of forwarding.

Finally, I emphasise that I take an experimental rather thantheoretical approach, which makes

a further difference from the other work described above. I believe that the proper way to

understand forwarding is first to understand human mobilityand interaction patterns, otherwise

the algorithms designed may be mathematically beautiful but far from reality. We need to

know how the people move, how they meet each other, how they interact with each other, and

whether they move as a group. Can we find out regular or long-term patterns? This way of

reasoning turns forwarding inPSNsinto a social network problem. I look at what kind of social

information is useful for forwarding, and how can this be extracted efficiently from daily contact

patterns.

1.7 Security and Privacy

In this thesis, security and privacy have not been addressedas key concerns; I chose to narrow

the scope of the problem to exclude them, so as to allow me to make progress. I intend to

introduce security primitives as a core concern in the future PSN research. However, I have

made an initial analysis of the potential security threats that PSNand the Haggle architecture

raise, discussed below.

Many data security issues inPSNcan be handled using standard security techniques such as

encryption, access control, and data signing.PSNmakes it more likely that there will be a man-

in-the-middle attack. One proviso is that many security techniques rely on access to a trusted

third party, e.g. a certificate signing authority. This access may be available less often when

using PSN. One interesting approach would be to accept data which is uncheckably signed,

but somehow mark it (both internally and to the user) as “untrusted” until the signature can be

checked through infrastructure access.

There are particular security and privacy issues in the use of name graphs in the Haggle archi-

tecture. A name graph can contain sensitive information, e.g. a user’s email address and/or

phone number, or the number and type of a user’s devices (and hence how worthwhile it is to

rob the user). Since Haggle potentially exposes the full graph to everyone who can see anFO

with the graph, this could prove to be a breach of privacy. Onesolution might be to restrict

trust to particular groups of users, e.g. the personnel of a company, and avoid sending mes-

sages through untrusted nodes, except when the name graph and data have been encrypted and

authenticated to the extent that those nodes could not obtain any useful information, and could

only help by passing the data on to non-privacy-sensitive names (e.g. MAC addresses).

There are also privacy issues to do with neighbor discovery protocols, since one’s devices essen-

tially beacon their identity. This could allow tracking of the user. This problem is not unique to

Haggle, and many devices already essentially act as beacons, e.g. laptops using 802.11 placing

their MAC addresses on each frame.
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Resource theft or resource denial-of-service is an interesting issue for any system in which user-

owned nodes cooperate to achieve their goals, and resourcesare limited. In Haggle, we have

a built-in mechanism to cope with this, namely the Resource Manager, which already makes

judgments taking into account the utility of a given action to the user, and the device owner’s

preferences. On the other hand, this offers a single point ofattack whereby a remote exploit

might allow an attacker to take full control of the device, sosecuring the Resource Manager

will be of particular concern.

Finally, we might ask the question of what motivates any nodeto spend its resources assisting

any other node. An incentive to cooperate can be created in many ways — using reputation

systems, micro-payments, or social kudos/disapproval. Furthermore, in some possible deploy-

ments of Haggle, e.g. within an enterprise, there is a pre-existing incentive to cooperate so this

may not be a problem.

1.8 Contributions

My first contribution is the conducting of several real humanmobility experiments which pro-

vide valuable datasets for the research community. I programmed the sensors (known as iMotes,

which run TinyOS and are equipped with Bluetooth) to log other Bluetooth devices within com-

munication range. I have conducted 6 experiments in different environments including confer-

ences, research labs, a university town, and a metropolitancity, with up to 80 participants. For

some experiments, I also deployed fixed iMotes at some city hot spots and key areas in a con-

ference to provide approximate location information and mimic infrastructure. I analysed the

human contact time and inter-contact time distributions and discovered that the inter-contact

time for each pair follows a heavy-tail distribution over the range of 10 minutes to 1 day. I ana-

lytically studied the impact of the power-law coefficient onPSNforwarding and also empirically

analysed the “oblivious” forwarding schemes.

A further contribution is the apply of the community detection algorithms from complex net-

work study to the mobility trace analysis, and the propose and evaluation of three distributed

community detection algorithms for mobile devices. Most ofthe mobility traces available and

mobility experiments to date have noa priori community information, which makes study of

social-aware or community based forwarding impossible [EP06] [MV05] [CHC+06] [HCS+05]

[HKA04]. Community detection has been well studied but is still a popular problem in the com-

plex networks and bio-informatics communities. It has beenused to analyse protein structure,

human social relationships, and internet AS-level clustering. In this thesis, I apply and adapt

two community detection algorithms named weighted networkanalysis (WNA) andK-CLIQUE

detection to infer human communities from mobility traces,which are further used for the for-

warding study. In real deployment, we do not expect a centralserver to collect all the traces

from the mobile devices for community detection, so I also propose three schemes for dis-

tributed community detection of mobile devices. I evaluatethese distributed algorithms against



CHAPTER 1. INTRODUCTION 21

the centralised methods, and find the results to be quite satisfactory.

The final main contribution is the design and evaluation of several social-aware forwarding

algorithms using community and centrality information. I proposeLABEL which makes use

of a priori social information,RANK which makes use of pre-calculated betweenness central-

ity, andBUBBLE which makes use of centrality to move the messages away from the source

and use community information to identify the destination group. I evaluate the algorithms

against flooding, the “oblivious” multiple-hop-multiple-copy (MCP) scheme (controlled flood-

ing scheme by limiting the number of hops and number of copies), andPROPHET[LDS04].

I find out that by combining community and centrality information, we can achieve a deliv-

ery ratio close to controlled flooding andPROPHETbut with much less cost. As a by-product

of these algorithms, I also uncover several properties which are important for a new human

interaction/mobility design.

I have an additional contribution of the design of Haggle architecture, a clean-slate data-centric

architecture around mobile users, which is considered to bea side-track work from the forward-

ing algorithm design so I include it only in the Appendix.

1.9 Outline

The remainder of this dissertation is structured as follows.

In Chapter 2 I describe the iMote experiments I have conducted and also the datasets I obtained

from the community. I analyse the inter-contact distribution for all the datasets and also the

impact of the distribution on forwarding strategies. A section is also dedicated to the empirical

analysis of “oblivious” forwarding on the traces.

In Chapter 3 I infer the human community structures from the mobility traces usingWNA and

K-CLIQUE. I also propose three distributed community detection algorithms for mobile de-

vices.

In Chapter 4 I introduce the simple social-aware forwardingalgorithm calledLABEL , which is

evaluated on a dataset witha priori community information.

In Chapter 5 I present theBUBBLE algorithm which is the social-aware algorithm making use

of both community and centrality information.

In Chapter 6 I conclude the thesis with a discussion of ongoing and future work.

In the Appendix I present the clean-slate data-centric Haggle architecture, the problem with the

status quo, the design principles, and the detailed design.



Chapter 2

Measuring Human Mobility

In Pocket Switched Networks (PSNs), mobility determines the communication opportunities

when access infrastructure is not available. Studying human mobility can help us understand

the constraints of opportunistic communication and to design practical and effective forward-

ing strategies. Killer applications and security measurescan also be inferred from the human

mobility and interaction pattern1, however, they are not the main focus of this thesis so I will

not go into the details. I will limit my evaluation to multi-hop delivery, assuming a messaging

service.

This chapter concentrates on several peer-contact-based human mobility experiments I have

conducted during this thesis period, and the analysis of thehuman mobility patterns from these

traces. To ensure generality of the analysis results, I alsoinclude mobility traces from other

experiments, i.e. WiFi access point logs from Dartmouth College [HKA04]. I need to em-

phasise here that while previous works looked at wireless network proximity in mobile ani-

mals [JOW+02a, SH03], mine is a pioneering study of human proximity using mobile devices,

and analysis of the impact of human contact patterns for opportunistic communications.

The chapter is the result of collaboration with my supervisor Prof. Jon Crowcroft, and also

Dr. Augustin Chaintreau, Dr. Christophe Diot, Dr. James Scott, and Richard Gass. Statistical

analysis of human contact and inter-contact patterns and mathematical study of the impact of

inter-contact distribution on forwarding are the contribution of Dr. Chaintreau; my contributions

are mainly to the experimental platforms, experimental deployment, and the inference of the

human social patterns from the traces. Most of the text and results in this chapter are extracted

or summarised from aWDTN workshop paper [HCS+05] with me as the first author and an

IEEE Transactions on Mobile Computing paper [CHC+07] with Dr. Chaintreau as the first

author and me as the second author. Vincent Hummel and Dr. Ralph Kling from Intel provided

very important support for the iMote platform and software development on the iMotes.

1For example, city wide alternative reality gaming applications can plan where to put their infrastructures and

distribute hints if they know how the people move; community-based data sharing and caching applications can

plan their caching strategies if they know the community structures.

22
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2.1 Introduction

The increasing popularity of devices equipped with wireless network interfaces (such as cell

phones or PDAs) offers new communication services opportunities. Such mobile devices can

transfer data in two ways - transmitting over a wireless (or wired) network interface, and car-

rying from location to location by their users (while storedin the device). They can therefore

participate in what has been recently called a Pocket Switched Network [HCS+05]. Commu-

nication services that rely on this type of data transfer will strongly depend on human mobility

characteristics and on how often such transfer opportunities arise. Therefore, they will require

fundamentally different networking protocols than those used in the Internet. Since two (or

more) ends of the communication might not be connected simultaneously, it is impossible to

maintain routes or to access centralised services such as the DNS.

In order to better understand the constraints of opportunistic data transfer, I chose to conduct

real-world deployments of devices to members of various communities, allowing me to deter-

mine the effects of users’ mobility patterns on the prevalence of networking opportunities. I

used Intel iMotes to collect connection opportunity data and mobility statistics. I have con-

ducted experiments in various environments including conferences, campuses, small cities like

Cambridge and also big metropolitans like Hong Kong. For some experiments, I also used

static nodes to mimic infrastructure or city hot spots and toprovide approximate location infor-

mation. A lot of research inMANET or DTN are evaluated on simple mobility models, such as

random way point, which are most likely unrealistic. I believe my experimental deployments

and data collection are very important for the research community by providing real-life mo-

bility traces for theoretical evaluation. Some of our datasets are now available online in the

CrawDad wireless database [KHA04], and are used by many researchers.

I analyse five datasets from iMote experiments and five external datasets. I define the inter-

contact time as the time between two transfer opportunities, for the same devices. I observe in

the traces that the inter-contact time distribution follows a heavy-tailed distribution over a range

of 10 minutes to 1 day. Inside this range the inter-contact time distribution can be compared to

that of a power-law.

p(x) = Cx−α (2.1)

Distributions of the form (2.1) are said to follow a power law. The constantα is called the

exponent or coefficient of the power law. (The constant C is mostly uninteresting; onceα

is fixed, it is determined by the requirement that the distribution p(x) sum to 1.) To reveal

the power-law form of the distribution it is usually better to plot the histogram on logarithmic

scales [New05]. I study the impact of those large inter-contact times on the actual performance

and theoretical limits of a general class of opportunistic forwarding algorithms that I call “naive”

or “oblivious” forwarding algorithms. Algorithms in this class do not use the identities of the

devices that are met, nor the recent history of the contacts,nor the time of day, in order to make

forwarding decisions. Instead, forwarding decisions are based on forwarding rules statically

defined that bound the number of data replicas, or the number of hops.
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(a) iMote with battery (b) iMote package

Figure 2.1: iMote for the experiment

Based on experimental observations, I develop a simplified model of opportunistic contact be-

tween human-carried wireless devices. I do not claim that this model is satisfactory to accu-

rately predict the performance of different forwarding algorithms. It rather serves my purpose,

which is to demonstrate how heavy-tail inter-contact timesinfluence the performance of naive

forwarding algorithms, and how these should be configured tooffer reasonable guarantees.

The rest of the Chapter is structured as follow. I first describe the platform and deployment

of the iMote experiments (Section 2.2), then I give a brief summary about the iMote datasets

I collected and also some external datasets collected by other research groups that I will use

in this dissertation (Section 2.3). After studying the pairinter-contact time distribution (Sec-

tion 2.4), I present analytical results about forwarding inPSNswith power-law inter-contact

time distributions (Section 2.5). As a complement to the theoretical work, I also empirically

study the limitations of the “oblivious” forwarding in these real scenarios (Section 2.6). Before

the conclusion of this Chapter, I also discuss related work (Section 2.7).

2.2 iMote Experiments

In this section I use an experiment conducted within a group of conference attendees to represent

the general features of the iMote experiment. Other experiments follow a similar setup and

deployment approach, which involved different participants and environments.

The device used to collect connection opportunity data and mobility statistics in this experi-

ment is the Intel iMote. This is a small platform designed forembedded operation, comprising

an ARM processor, Bluetooth radio, and flash RAM, and is shownwith a CR2 battery in Fig-

ure 2.1(a). I packaged these devices in a dental floss box, as shown in Figure 2.1(b), due to their

ideal size, low weight, and hard plastic shell.
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Fifty-four of these boxes were distributed to attendees at the IEEE Infocom conference in Miami

in March 2005 (which had eight hundred attendees in total). The volunteers were asked to keep

the iMote with them for as much of their day as possible. Volunteers were chosen to belong to a

wide range of organisations — more than thirty were represented. To assure the participants of

their anonymity, I did not record the MAC address of the iMotes that they were given, instead

only recording an uncorrelated number printed on the outside of the box, so that I could perform

the logistics of distribution and collection. Of the fifty-four iMotes distributed, forty-one yielded

useful data, eleven did not contain useful data because of various failures with the battery and

packaging, and two were not returned.

The iMotes were configured to perform a Bluetooth baseband layer “inquiry” discovering the

MAC addresses of other Bluetooth nodes in range, with the inquiry mode enabled for five sec-

onds. Despite the Bluetooth specification recommending that inquiry last for ten seconds, pre-

liminary experiments showed that five seconds is sufficient to consistently discover all nearby

devices, while halving the “battery-hungry” inquiry phase. Between inquiry periods, the iMotes

were placed in a sleep mode in which they respond to inquiriesbut are not otherwise active, for

a duration of 120 seconds plus or minus twelve seconds in a uniform random distribution. The

randomness was added to the sleep interval in order to avoid asituation where iMotes’ timers

were in sync, since two iMotes performing inquiry simultaneously cannot see each other. How-

ever, I still expect iMotes to fail to see each other during inquiry around four percent of the time

(when they are doing inquiry at the same time).

The results of inquiry were written to flash RAM. Since flash capacity is limited (64K for data),

it is impossible to store the full results of each inquiry without running the risk of exhausting the

memory. Instead, I decided to record “contact periods”. This is achieved by maintaining an “in-

contact” list comprising the Bluetooth MAC addresses of thenodes that are currently visible.

When a device on this list stops responding to inquiries, I store a record of the form{MAC,

start time, end time}. Preliminary tests revealed the following problem: Bluetooth devices on a

specific brand of mobile phone did not show up consistently during inquiries (and increasing the

inquiry period to ten seconds did not help). Therefore, a small number of nodes were causing

the memory to fill too quickly. To avoid this problem, I keep a device in the “in-contact list”

even if it is not seen for one inquiry interval. If it comes back in-contact on the next interval,

nothing is stored. If it does not, a record is stored as normal. This solves the problem, at the

expense of not being able to detect actual cases where a node moved out of range during one

two-minute period, and back into range for the next two-minute period.

2.3 Experimental Datasets

In this section, I summarise the features of all the experimental datasets which I will use in

this chapter and the rest of this dissertation, which include five iMote datasets and five external

datasets involve Bluetooth or WiFi. The characteristics ofthe iMote datasets, explained below,
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are shown in Table 2.1.

Experimental dataset Cambridge04 Infocom05 Hong Kong Cambridge05 Infocom06

Device iMote iMote iMote iMote iMote

Network type Bluetooth Bluetooth Bluetooth Bluetooth Bluetooth

Duration (days) 3 3 5 11 3

Granularity (seconds) 120 120 120 600 120

Number of Experimental Devices 12 41 37 54 98

Number of internal contacts 4,229 22,459 560 10,873 191,336

Average # Contacts/pair/day 10 4.6 0.084 0.345 6.7

Number of External Devices 148 264 868 11,357 14,036

Number of external contacts 2,441 1,173 2,507 30,714 63,244

Table 2.1: Characteristics of the five iMote datasets

• In Cambridge04, the data was obtained from twelve doctoral students and faculty com-

prising a research group at the University of Cambridge Computer Lab. This is an early

experiment and hence has small participant population.

• In Infocom05, the devices were distributed to approximately fifty students attending the

Infocom student workshop. Participants belong to different social communities (depend-

ing on their country of origin, research topic, etc.). However, they all attended the same

event for 4 consecutive days and most of them stayed in the same hotel and attended the

same sessions (note, though, that Infocom is a multi-track conference).

• In Hong Kong, the people carrying the wireless devices were chosen independently in a

Hong Kong bar, to avoid any particular social relationship between them. These people

were invited to come back to the same bar after a week. They areunlikely to see each

other during the experiment.

• In Cambridge05, the iMotes were distributed mainly to two groups of students from Uni-

versity of Cambridge Computer Laboratory, specifically undergraduate year1 and year2

students, and also some PhD and Masters students. In addition to this, a number of sta-

tionary nodes were deployed in various locations that were expected many people to visit,

such as grocery stores, pubs, market places, and shopping centers in and around the city

of Cambridge, UK. However, the data from these stationary iMotes will not be used in

this chapter. This dataset covers 11 days.

• In Infocom06, the scenario was similar toInfocom05except that the scale is larger, with

80 participants. Participants were selected so that 34 out of 80 form 4 subgroups by

academic affiliations. In addition, 20 long range iMotes were deployed at several places

in the conference site to act as access points. However, the data from these fixed nodes is

also not used in this chapter.2

2In this chapter, I do not use Cambridge05 and Infocom06 data because they were unavailable when I was
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Table 2.2 summarises the characteristics of the four external experiments (but five datasets):

UCSD [MV05], Dartmouth College [HKA04], University of Toronto [SCP+04], and MIT Re-

ality Mining project [EP06]. I name themUCSD, Dartmouth, Toronto, andMIT respectively.

User Population Toronto UCSD Dartmouth MIT BT MIT GSM

Device PDA PDA Laptop/PDA Cell Phone Cell Phone

Network type Bluetooth WiFi WiFi BT GSM

Duration (days) 16 77 114 246 246

Granularity (seconds) 120 120 300 300 10

Devices participating 23 273 6648 100 100

Number of internal contacts 2,802 195,364 4,058,284 54,667 572,190

Average # Contacts/pair/day 0.35 0.034 0.00080 0.022 0.23

Recorded external devices N/A N/A N/A N/A N/A

Number of external contacts N/A N/A N/A N/A N/A

Table 2.2: Comparison of data collected in the external experiments.

UCSD and Dartmouth make use of WiFi networking, with the former including client-based

logs of the visibility of access points (APs), while the latter includes SNMP logs from the ac-

cess points. The durations of the different logs are three and four months respectively. Since we

required data about device-to-device transmission opportunities, the raw datasets were unsuit-

able for our experiment and required pre-processing. For both datasets, I made the assumption

that mobile devices seeing the sameAP would also be able to communicate directly (in ad-hoc

mode), and created a list of transmission opportunities by determining, for each pair of devices,

the set of time regions for which they shared at least oneAP.

The traces from the Reality Mining project at MIT Media Lab include records of visible Blue-

tooth devices and GSM cell towers, collected by 100 cellphones distributed to student and

faculty on the campus during 9 months. I treat these sets of contacts as two different datasets.

For the GSM part, I have assumed, as done above, that two devices are in contact whenever they

are connected with the same cell tower.

Unfortunately, this assumption introduces inaccuracies.On one hand, it is overly optimistic

since two devices attached to the same (WiFi or GSM) base station may still be out of range

of each other. On the other hand, the data might omit connection opportunities, e.g., when two

devices pass each other at a place where there is no instrumented access point. Another potential

issue with these datasets is that the devices are not necessarily co-located with their owners at all

times (i.e. they do not always characterise human mobility). Despite these inaccuracies, these

traces are a valuable source of data spanning many months andincluding thousands of devices.

In addition, considering two devices connected to the same base station being potentially in

contact is not altogether unreasonable. These devices would indeed be able to communicate

doing the analysis. But in Chapter 3, we will see that users insimilar environments (e.g. two Infocom experiments)

exhibit similar statistical properties.
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Figure 2.2: Data on contacts seen by an iMote: other iMotes (left) and all other device types

(right).

locally through the base station without using end-to-end connectivity, or even by using the

Internet.

The traces from the University of Toronto have been collected by 20 Bluetooth-enabled PDAs

distributed to a group of students. These devices performeda Bluetooth inquiry each 100 sec-

onds and this data was logged. This methodology does not require devices to be in range of any

AP in order to collect contacts, but it does require that the PDAs are carried by subjects and that

they have sufficient battery life for them to participate in the data collection. Data may be col-

lected over a long period if devices are recharged. The dataset I use comes from an experiment

that lasted 16 days.

2.4 Inter-contact Time Analysis

2.4.1 Definitions

I am interested in how the characteristics of transfer opportunities impact data forwarding de-

cisions. In this chapter, I focus on how often such opportunities occur. I decided not to attempt

to analyse how much data can be transported for each of them and loss rates3, as these strongly

3Wireless links are lossy, and loss rates are hard to predict,because signal propagation is complex in realistic

environments (multi-path fading, reflective obstacles, etc.). In this thesis, I presume that a node may forward pack-

ets to another during a recorded “contact” in my measurements. I may underpredict the message count required to

delivery the data because of the possible link-layer retransmission to recover from losses. But because I want to

focus on the impact of human mobility on forwarding algorithms in this thesis, I temporarily do not consider these

physical-layer details and leave them for future work.
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depends on factors such as the transmission protocol, the antennas used, and other factors that

could be modified to provide improved transmission performance. In my analysis in Section 2.5,

I address two extreme cases corresponding to lower and upperbounds for the amount of data

that could be transferred in each connection opportunity.

I define theinter-contact timeas the time elapsed between two successive contacts of the same

devices. Inter-contact time characterises the frequency with which packets can be transferred

between networked devices; it has rarely been studied in theliterature. The behaviour of inter-

contact times is important when considering the delay experienced by packets in a PSN. This

is the time a node has to wait to get in contact with a specific node (as seen immediately after

losing contact with that node). The nature of the distribution will affect the choice of suitable

forwarding algorithms to be used to maximize the successfull transmission of messages in a

bounded delay. Two remarks must be made at this point:

First, the inter-contact time is computed once at the end of each contact period, as the time

interval between the end of this contact and the begin of the next contact with the same de-

vices4. Another option would be to compute the remaining inter-contact time seen at any time,

i.e at timet, for each pair of devices: the remaining inter-contact timeis the time it takes af-

ter t, before a given pair of devices meet again (a formal definition is given in Section 2.5).

Inter-contact time and remaining inter-contact time have different distributions, which are re-

lated, for a renewal process, via a classical result known asthe waiting time paradox (see p.147

in [Bre99]). A similar relation holds for stationary processes, in the theory of Palm Calculus

(see p.15 in [BB03]). I choose to study the first definition of “inter-contact time seen at the end

of a contact period”, as the second gives too much weight to large values of inter-contact times.

In other words the definition that was chosen is the most conservative one in the presence of

large values.

Second, the inter-contact time distribution is influenced by the duration and the granularity of

the experiment. Inter-contact times that last more than theduration of the experiment cannot

be observed, and inter-contact times close to the duration are less likely to be observed. In a

similar way, inter-contact times that last less than the granularity of the measurement (which

ranges from two to five minutes among different experiments)cannot be observed.

Another measure of the frequency of transfer opportunitiesthat could be considered, is the inter-

any-contact, i.e. for a given device, the time elapsed between two successive contacts with any

other device. This measure is very much dependent on the deployment of wireless devices and

their density during the experiment, as it characterises time that devices spend without meeting

any other device.

4Inter-contact starting after the last contacts recorded for this pair of devices were not included.
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2.4.2 Inter-contact Time Characterisation

I study the empirical distribution of the inter-contact times obtained for all experiments shown

in Figures 2.3, 2.4, and 2.5.

For all plots, an empirical distribution of the inter-contact times was first computed separately

for each pair of devices that met at least twice. It is hard to study the characteristics of the

distributions for all pairs individually, because there are many such distributions, and some of

them may only include a few observed values. This is why I follow a two-step approach: First,

I present the distribution obtained when all pairs distributions are combined, each with an equal

weight, in a distribution that I call the aggregated distribution. Second, I use a parametric model

motivated by this first part and estimate the parameters of the individual distribution for each

pair.

1) Aggregated distribution: Figures 2.3, 2.4, and 2.5 present the aggregated distribution for

different datasets. All plots show the complementary cumulative distribution function, using a

loglog scale.

Figure 2.3: Aggregated distribution of the inter-contact time in Cambridge, Hong Kongand

Torontoexperiments

For iMote experiments, “(i)” indicates that the dataset shown is obtained using internal contacts

only, while “(e)” indicates that the dataset shown includesonly external contacts. For the first

two iMote experiments (labeledCambridgeandHong Kong) I present only one case here (cor-

responding respectively to internal and external contacts). They are shown in Figure 2.3, which
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also includes the distribution obtained among pairs of experimental devices in the trace from the

University of Toronto. Distributions belonging to the iMote-based experiment atInfocom05are

shown in Figure 2.4 , where distributions associated with internal and external contacts have

been plotted separately for comparison. Figure 2.5 presents the distribution of inter-contact

computed using traces from experiments other than ours.

Let us first note that, although inter-contacts are short in most cases, the occurrence of large

inter-contacts is far from negligible: in the three iMote based experiments (Cambridge, Info-

com05andHongKong), 17 to 30% of inter-contact times are greater than one hour,and 3 to 7%

of all inter-contacts are greater than one day. In the Toronto datasets, 14% of inter-contacts last

more than a day, and 8% more than a week. These large inter-contacts are even more present in

the traces collected inUCSD, DartmouthandMIT, the most extreme case being theMIT trace

using Bluetooth sightings, where up to 60% of the inter-contacts observed are above one day.

The variation between datasets is significant. It can be expected given the diversity of commu-

nication technologies and populations studied, as well as the impact of experimental conditions

(granularity, duration). But they also present common properties that I now discuss in more

detail.

I now concentrate on the region between 10 minutes and one day. In this region, all datasets

exhibit the same characteristics: the cumulative distribution function (CCDF) is slowly varying,

it is lower bounded by theCCDFof a power-law distribution, that may in some cases be a good

approximation. This contradicts the exponential decay of the tail which characterises the most

common mobility models found in the literature, and I prove in the next section that it can have

a significant impact on the performance of opportunistic networking algorithms.

To justify the above claim, I studied the quantile-quantileplot comparison between the empir-

ical distribution found and three parametric models (exponential, log-normal, and power-law).

An example is shown in Figure 2.6 for the distribution based on internal contacts during the

Infocom05experiment. All parametric models have been set to take the same median value as

the empirical distribution. I also normalise the power-lawto fit the granularity t=120 seconds,

and the log-normal distribution such that the logarithm of both the empirical variable and the

model have the same variance. Not surprisingly, we observe that the three models deviate sig-

nificantly from the empirical findings for values above one day. As expected, the exponential

distribution is far from the empirical ones, the quantile for the log-normal distribution deviates

from the empirical case by a non negligible factor. The power-law distribution, by opposition,

remains close to the empirical one for values up to 18 hours, and it seems to be the most appro-

priate model to apply. In other datasets, the power-law may sometimes not match the empirical

findings as well as in this example, but among these three models it is always the closest to the

empirical distribution. For values above one day, I expect models with additional parameters

(e.g. following a Weibull distribution) to improve the match with the empirical distribution, but

that is beyond the scope of this chapter.

The most notable difference I observe between datasets is that the fit with a power-law is better
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Figure 2.4: Aggregated distribution of the inter-contact time in Infocom05 experiment

Figure 2.5: Aggregated distribution of the inter-contact time in UCSD, Dartmouth andMIT

experiments
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Figure 2.6: Inforcom05: Quantile-quantile plot of comparison between the aggregated distribu-

tion of the inter-contact time and three parametric models

for the datasets that contain the largest number of points, such as in Figure 2.4 and Figure 2.5. I

also observe that the coefficient of the power-law that is a lower bound on the range [10 minutes;

1 day] is different between datasets: this is 0.6 for the iMote experiments atCambridgeand

Hong Kong, as well as for Toronto datasets, 0.35 for the iMote based experiment atInfocom05,

and 0.2 for traces collected in UCSD, Dartmouth and MIT. In all cases, it is below 1. The value

of this coefficient, which is also called the heavy-tail index, is critical for the performance of

opportunistic forwarding algorithms, and I discuss it further below.

Figure 2.4 shows that the distribution is almost unchanged if one considers internal or external

contacts. The same observation was made for other iMote experiments, except for the experi-

ment conducted in Hong Kong where very few internal contactswere logged. Some variations

of the heavy-tail index have been observed depending on the time of the day.

2) Individual distribution for each pair: So far I have studied the aggregated distribution where

all pairs have been combined together, and I found that it canbe approximated by a power-law

for values up to 1 day. In this section, I assume that this claim can be made individually for

all pairs, although the parameter of this power-law, also called the heavy-tail index, may be

different among them. This approach allows us to study the heterogeneity between pairs via a

single parameter, some of these results also measure the accuracy of the above assumption for

each pair.
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(a) Infocom05 (b) All Experiments

Figure 2.7: Estimation of the heavy-tail index of the power-law applied separately for each pair

for Infocom05(left) and summary of results obtained in all datasets (right).

Estimator for the heavy-tail index Let us consider a pair of nodes. The sample of the inter-

contacts observed for this pair will be denoted byX1, . . . ,Xn, its order statistics byX(1) ≤

... ≤ X(n), and its median value by m. All times will be given in seconds.If we assume

that this sample follows a power-law with granularity 120s and heavy-tail indexα, we have:

P [X ≥ x] = (x/120)−α, such that an estimator ofα based on the samples’ medianm is given

by:

α̌ =
ln(2)

ln(m)− ln(120)
(2.2)

More generally one can consider all order statistics X(i) that fit in the range [10 minutes; 1 day]

and estimateα based on each of them. It creates a collection of estimators for the value ofα, as

follows:

{
ln(n)− ln(n− i)

ln(X(i))− ln(120)
| 600 ≤ X(i) ≤ 86400, i < n} (2.3)

I denote byαlow andαup respectively the minimum and maximum values in this set above. It is

equivalent to plot the empiricalCCDF for this sample in a log-log scale, and bound thisCCDF

from above and below by two straight lines that go through probability 1 at time value 120s.

These slopes would be equal respectively to−αlow and−αup. By opposition toα̌, these two

estimators are not centred around the value ofα, and they do not converge to this value when the

sample becomes large. They rather serve the purpose of a heuristic analysis; they characterise

some bounds that are verified by each pair. Note also that, intuitively, the differenceαup− αlow

indicates how the conditional distribution of the sample inthis range differs from a pure power-

law.
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In Figure 2.7(a), I plot the values of̌α and the interval[αlow; αup] for all pairs of iMotes during

the experiment conducted atInfocom05. One can expect that the coefficient takes different

values among pairs, as some participants are more likely to meet often than others. I initially

ranked all pairs according to their value forα̌, in decreasing order. Although I have computed

these values for all pairs, I only draw the interval[αlow; αup] for 100 pairs chose,n arbitrarily

according to their rank (one every 14), in order to keep the figure readable. As shown in Figure

2.7(a), estimations ofα for different pairs may indeed vary between 0.05 and 1. Between these

two extreme values, which are rarely observed, estimates for almost all pairs lie between 0.1

and 0.7 depending on the estimator. Note that all estimates of α are smaller than 1; the only

exceptions are the upper estimateαup for three pairs (i.e. less than 0.2% of pairs in this case).

The median-based estimate lies in [0.2 ; 0.4] for half of the pairs, the lower estimates lies in

[0.14 ; 0.32], and the upper estimate lies in [0.32 ; 0.5] again for half of the pairs.

These results have three major implications: First, the heterogeneity among pairs implies differ-

ent possible values forα, which are centered around the value already observed when studying

the aggregate distribution (i.e. 0.33). Second, the difference between the median estimator and

the heuristic bounds I defined above remains within 0.25 except in a few cases. Last, the upper

estimateαup almost never goes above 1, which establishes that the inter-contact distribution for

each pair is lower bounded in this range by a power-law with a coefficient smaller than 1.

The same results have been obtained for other datasets, and they are summarised in Figure

2.7(b). For each dataset indicated in the bottom, I show the distribution of values obtained

among pairs for the three estimators defined above. Each estimator stands for one box-plot: it

is, from left to right,αlow, α̌, αup; the thick part indicates the values found in 50% of the pairs,

the thin part contains the region where 90% of the pairs are found.

In theHong KongandDartmouthdatasets, where contacts are sparser, inter-contact samples for

each pair contain fewer values. As a consequence, the difference between estimators can grow

significantly. I even observe thatαup goes slightly beyond 1 for 10% of the pairs inHong Kong

dataset, although it is probably an artefact of my conservative estimate.

Correlation : We study the auto-correlation coefficients to see how the value of the inter-contact

time may depend on the previous values for the same pair. The results are shown in 2.8 for

all orderk up to 50. Since the inter-contact time distribution usuallyhas no finite variance, we

computed the correlation coefficient on the values of the logarithm of the inter-contact times.

Note that a correlation coefficient was computed for each pair, we present for all orderk the

average value we observed among all pairs, as well as the interval containing 50% and 90% of

the centred values (respectively, in the thick box and the thin bar).

In the Infocom05dataset, the variation of the coefficient among pairs is quite important, al-

though most pairs remain reasonably non-correlated (the thick box remains always less than

0.30 away from zero). Overall we observe a slightly negativecorrelation on average over all

pairs, which reduces ask grows. Correlation coefficients are smaller when the dataset is large

(as seen for example in theMIT GSM trace shown here, as well as for all other long traces).
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Figure 2.8: Correlation coefficients for the sequence of inter-contact times: for all pairs of

iMotes in theInfocom05dataset (left), and for all pairs of devices inMIT GSM dataset (right)

This tends to indicate that these coefficients for all pairs would be closer to zero if the iMote

experiment could be done with a longer duration, and that thesample of inter-contacts collected

for each pair was bigger.

Based on the above results, I assume in the next section that the inter-contact time distribution

follows a power-law for each pair. To simplify the analysis Iassume in addition that the coef-

ficient is the same for all pairs, that the sequence of inter-contact times is i.i.d. (i.e. correlation

coefficient are null) and that they are independent between pairs. This simplification allows me

to characterise the performance of forwarding algorithms quite generally. Some of the results I

present can be extended to stationary ergodic sequences, but that is left for future work.

2.5 Forwarding with Power Law-based Opportunities

In this section, I present a summary about forwarding with power law-based opportunities. But

as mathematical analysis is not a main contribution of this thesis, I recommand readers to refer

to our paper [CHC+07] for the details of the proof.

I am interested in a general class of forwarding algorithms,which all rely on other devices

to act as relays, carrying data between a source device and a destination device that might

not be contemporaneously connected. These relay devices are chosen purely based on contact

opportunism and not using any stored information that describes the current state of the network.

The only information used in forwarding is the identity of the destination so that a device knows

when it meets the destination of a bundle. I call such algorithms “oblivious”, although they

could be in reality quite complex and, as we will see, very efficient in some cases.

The following two algorithms provide bounds for the class ofalgorithm described above:
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• wait-and-forward: The source waits until its next direct contact with the destination to

communicate.

• flooding: a device forwards all its received data to any device which it encounters, keeping

copies for itself.

The first algorithm uses minimal resources but can incur longdelays and does not take full

advantage of the ad-hoc network capacity. The second algorithm, that was initially proposed

in [VB00], delivers data with the minimum possible latency,but does not scale well in terms

of bandwidth, storage, and battery usage. In between these two extreme algorithms, there is

a whole class of algorithms that play on the number of relay devices to maximise the chance

of reaching the destination in a bounded delay while avoiding flooding. The most important

reason not to flood is to minimise memory requirements and related power consumption in

relay devices, and to delete the backlog of previously sent messages that are still waiting to be

delivered, and could be outdated. Some strategies, based ontime-outs, buffer management, limit

on the number of hops and/or duplicate copies have been proposed (see [VB00, CM01, DFL01])

to minimise replication and backlog.

I do not include the contact time representing the duration of each contact in this model , as-

suming that each contact starts and ends during the same timeslot. This is justified here by

the fact that I am interested in a model that accounts for consequences of large values of the

inter-contact time. It was observed (see [HCS+05]) that the contact time distribution is also

heavy-tailed, but it takes smaller values, by several orders of magnitude, than the ones of the

inter-contact time. Even if we do not explicitly model the contact time (each contact lasts one

time slot), we need to take into consideration the fact that acontact may last long enough to

transmit a significant amount of data. I then introduce two situations:

• theshort contact case: where only a single data unit of a given size can be sent between

two devices during each contact.

• thelong contact case: where two devices in contact can exchange an arbitrary amount of

data during a single time slot.

These two cases represent a lower and an upper bound for the evaluation of bandwidth. The

number of data units transmitted in a contact (whether shortor long) is defined as a data bundle.

The long and the short case differ from a queuing standpoint.In the long contact case, the queue

is emptied any time a destination is met. In the short contactcase, only one data unit is sent and

therefore, data can accumulate in the memory of the relay device.

At this stage, I have established the following results for the class of so-called “oblivious”

forwarding algorithms defined in the long contact case :

• Forα > 2 any algorithm from the class I considered achieves a delay with finite mean.
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• If 1 < α < 2, the two-hop relaying algorithm, introduced by [GT02], is not stable in the

sense that the delay incurred has an infinite expectation. Itis however still possible to

build a naive forwarding algorithm that achieves a delay with finite mean. This requires

that a number ofm duplicate copies of the data are produced and forwarded, where m

must be greater than1
α−1

, and the network must contain at least2
α−1

devices.

• If α < 1, none of these algorithms, including flooding, can achieve atransmission delay

with a finite expectation.

In other words, I have characterised the performance of all these algorithms in the face of ex-

treme conditions (i.e. heavy-tailed inter-contact times). The last case whereα < 1 corresponds

to the most extreme situation, and the result I provide in this case seems at first unsatisfactory:

none of the algorithms I have introduced can guarantee a finite expected delay. To make the

matter worse, this case whereα < 1 seems to be typical of the inter-contact distribution in

the [10 minutes; 1 day] range for all the scenarios I have previously studied empirically. This

overall implies that the expected delay for all the scenarios I have discussed before should be at

least of the order of one day. Note that this was shown for any forwarding algorithms used, and

even when queuing delays in relay devices are neglected.

2.6 Empirical Evaluation of Controlled Flooding Algorithm s

I have shown above that using devices met opportunisticallyto relay a message toward its

destination improves significantly the chance of delivering this message, and reduces its delivery

delay. Indeed I established a stronger result: in all datasets, a small number of intermediate hops

are enough to reach most of the optimal paths (minimum latency). This indicates that designing

algorithms to forward messages based on a simple Time-To-Live (TTL) can sometimes be very

successful.

I use the forwarding algorithm emulator which will be described more detail in Chapter 4 to

analyse practical controlled flooding algorithms. The controlled flooding algorithms work as

follows: each message received is sent several times, to thefirst devices met, until one of the

TTL counters (limiting the number of hops, the number of copies sent locally, or the time)

reaches zero. I study their cost, and their success delivery.

There are several reasons to believe that focusing on such simple forwarding algorithms is a

natural first step to follow. This problem is easy to formulate and leads to a good characterisation

based on the real-life traces I presented. It can serve as a baseline to propose and evaluate more

complex forwarding techniques. In addition, suchTTL-based techniques may be needed to

eliminate old data from the system, even in the presence of smarter forwarding algorithms.

Note also that it does not necessarily mean that I am restricted to inefficient techniques. Indeed,

models of human interaction networks were recently proposed in which even simple algorithms
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are proved to benefit from unknown but regular human behavior(See [Kle06] and references

therein).

2.6.1 Controlled Flooding

Controlled flooding algorithms or as I also call them Multiple-Copy-Multiple-Hop (MCP) 5

algorithms work as follow. When created, a data packet is given a time-TTL value, as well

as a hop-TTL integer value. At each intermediate node, the hop-TTL value is decreased by 1

when the packet is received. A packet with hop-TTL=1 can onlybe delivered to the destination

directly and can not be forwarded to intermediate nodes. A packet with hop-TTL value above

1 is replicatedm times: one copy is kept by this node, andm-1 are sent to the first devices met

that did not receive this packet before. The time-TTL 6 value acts as a time-out; nodes decrease

the counter with time and discard the packet when this counter becomes zero.

Note that ifm = 1 the packet will not leave the source unless the destination is met directly, as

well as if the hop-TTL is initially set to 1. The initial value given to hop-TTL is also the maximal

number of hops that are used by a forwarding path. Note that the two-hop relaying algorithm

proposed in [13] would here correspond to hop-TTL=2,m=2, time-TTL=∞.

The forwarding algorithm emulator generates 1000 messagesover the duration of the experi-

ment, at a time chosen with uniform distribution. The sourceand the destination are chosen

uniformly among all experimental devices. The goal of this emulation is certainly not intended

to carry out a full-fledged representative simulation of a real PSN. Instead I found this method

suitable for my purposes, which is to compare generally the performance of controlled flooding

algorithms to optimal found with the previous methodology.

Note that I have performed emulation on all three datasets and observations are consistent with

those shown below.

2.6.2 Performance and Cost

In this section, I evaluate controlled flooding algorithms based on two metrics: (i) the success

delivery ratio, which is the probability for a packet created at a source node to reach its desti-

nation within a delay smaller or equal than time-TTL ; and (ii) the average cost per message,

which is the total number of copies created in the network, divided by the number of messages

generated in the sources (i.e. 1000 in this experiment). Thestatistics about each experiment,

including the number of nodes, can be found in Section 2.3.

5A more correct version should be MCMH, but because MCP has been used in my previous publications so I

just keep it here for consistency.
6I consider time TTL here because in some situations the applications can specific the time that a message

should stay in the system. For example, a message about a meeting at 10 am is meaningless if it arrives at 6pm of

the same day. It also serves as an indicator of how sparse a network is.
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The performance of all controlled flooding algorithms lies between that ofwait-and-forward

(i.e. the case hop-TTL= 1 or m = 1) andflooding (i.e. no TTL, messages are sent to every

encounter). The success delivery ratio for these algorithms was established for any time-TTL in

the previous section.

Figure 2.9: Success delivery (top) and Average Cost (bottom) observed withInfocom05for

several controlled flooding schemes: time-TTL was set to 3 hours.

Figure 2.9 shows the performance of controlled flooding on the Infocom05dataset for a time-

TTL set to 3 hours. The x-axis corresponds to the number of copiescreated locally at each

hop (i.e. m). Each plot corresponds to a different value of the hop-TTL. The delivery success

ratio is shown at the top along with the performance evaluated with the earlier method forwait-

and-forward, andflooding. 7 In the bottom plot, I show the cost of each algorithm. Both

performance and cost are shown with confidence interval describing the minimal and maximal

values seen in the 100 runs of the experiment. I observe that the delivery success ratio might

vary for different simulations (the difference might grow up to 7%).

The first observation is that both delivery success and cost converge quickly whenm increases,

especially when hop-TTL is greater than 2. For both 4 and 6 hops, I observe only marginal

improvement of the delivery success ratio formabove 4 (the same observation holds for 2 hops

whenm is increased above 10). Note that the cost of the algorithm still increases a little whenm

is larger than 4, but it is already reasonably close to the asymptotic cost corresponding to flood-

ing. This essentially shows that no controlled flooding algorithm can match the delivery success

ratio of flooding without incurring a similar cost. This trade-off leaves room for improvement:

an algorithm which has more restriction than controlled flooding, based on an intelligent design,

7wait-and-forward(flooding) is supposed to be at only one point on the graph, but I draw it as a horizontal line

to emphasise the lower bound (upper bound).
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could succeed reducing this cost with a small impact on the overall delivery ratio.

Figure 2.10: Performance-Cost trade-off for time-TTL=3 hours during Infocom05: success de-

livery obtained as a function of the total number of copies created per message, for different

controlled flooding algorithm.

The optimal trade-off area between cost and success delivery ratio is found for values ofm

between 2 and 10, and values of hop-TTL between 2 and 6. Note that the best improvement

with regard to the cost is found for the most conservative algorithm: 2 hops andm=2 yields an

average increase of 5% for the delivery ratio, for a marginalcost. Another 5% average increase

may be achieved within a reasonable cost by remaining conservative: either by allowing 6 hops

and keepingm = 2, or by keeping 2 hops but settingm equal to 10. I present this trade-off

between average performance and cost in Figure 2.10: the same data points are shown where

x-axis corresponds to the cost value, whereasy-axis represents delivery success. The delivery

success ratio obtained by wait-and-forward and flooding wasshown again to delimit the bound

of the area. The value corresponding tom following values 1,2,4,10,100 can be read from

the left to right on each plot corresponding to each hop-TTL (two data points are explicitly

detailed for future reference). The best delivery success ratio is achieved by restricting paths to

2 hops and increasesmwhen cost needs to remain moderate (under 6 copies created intotal per

message). Keeping 2 hops as a maximum and increasingm proved to be suboptimal at some

point, as algorithms with smallermbut longer paths perform better for a similar cost. In the next

section, I analyse in more detail the two parameter settingscorresponding to these two cases:

(hop-TTL=2,m=10) and (hop-TTL=4,m=4).
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Results obtained with other traces are comparable. Becausethe network is much sparser in

the other datasets, I found that setting time-TTL to 3 hours produces a delivery ratio that is too

small to be effectively studied. I present the case of Reality Mining, where time-TTL is set to

24 hours, in Figure 2.11. Observations are similar toInfocom05: both average performance and

cost quickly converge withm, the trade-off between them follows a very similar diagram than

the one presented above forInfocom05, where 2 hops again yields the best immediate benefit.

Figure 2.11: Success delivery (top) and total number of copies sent (bottom) inReality, for

several controlled flooding schemes: time-TTL is set to 24 hours.

2.6.3 Delay and Impact of Time-TTL

Impact of the hop-TTL andmwere analysed in the previous section, for a fixed value of thetime-

TTL. In this section, I focus on two controlled flooding algorithms, (hop-TTL=2, m=10) and

(hop-TTL=4, m=4) that offer different performance-cost trade-off, as shown above. I compare

their dependence on the values of time-TTL.

The delivery success with a fixed time-TTL value gives the proportion of packets, which reach

their destination within a certain time, hence it also describes the delay distribution of pack-

ets forwarded by this algorithm. I plot this distribution inFigure 2.12 for these two different

parameter setting.8 The cost of each algorithm with these values of time-TTL is shown in Fig-

ure 2.13. Note that the delivery success for both algorithmsfollows the same trend at every

time scale. The algorithm with 4 hops and smaller value ofm remains close to the optimal at all

time-scales. The algorithm with 2 hops and largem yields a significant benefit when compared

8Because I have plotted the 95th percentile in previous section, here I show the maximum and minimum in the

graph for additional information.
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Figure 2.12: Success delivery seen as a function of time-TTL duringInfocom05for three differ-

ent controlled flooding parameters.

to wait-and-forward. One thing to notice is that their difference tends to be much reduced when

time-TTL is large. Analyzing the cost of both algorithms as a functionof the time-TTL confirms

that using 2 hops with large m is the best candidate when time-TTL is large, as it allows a simi-

lar performance improvement while keeping the number of packets created reasonablely small

(under 10).

2.7 Related Work

My opportunistic communication model is related to both Delay-Tolerant Networking and Mo-

bile Ad-Hoc Networking9. Research work onMANET, DTN, and more recently PSN [SHCD06]

confirms the importance of the problem I address, as several propositions were made to use mo-

bile devices as relays for data transport. Such an approach was considered to enable communi-

cation where no contemporaneous path may be found [VB00], togather information efficiently

in a network of low-power sensors [JSB+04, JOW+02b], or to improve the spatial reuse of

denseMANETs [GT02, SMS06]. All these work has proved that the mobility model used has a

strong impact on the performance of the algorithms they propose.

I did not find any previous work studying the characteristicsof inter-contact time for users of

9www.dtnrg.org and www.ietf.org/html.charters/manet-charter.html
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Figure 2.13: Average cost of a message seen as a function of time-TTL during Infocom05, for

three different controlled flooding parameters.

portable wireless devices. However, I have identified related work in the area of modeling and

forwarding algorithms.

A common property of many mobility models found in the literature is that the tail of the inter-

contact distribution decays exponentially. In other words, for these models, the inter-contact

time is light-tailed. This is the case for i.i.d. locations of devices in a bounded region (as

assumed in [GT02]), or in the case of the popular random way point model as demonstrated

in [SMS06]. It was shown recently that, by opposition, devices moving according to Brown-

ian motion in a bounded region, exhibit heavy-tailed inter-contact time, with a finite variance

(corresponding in my analysis to the caseα > 2) (see [SMS06] and references therein).

The most relevant work is the algorithm proposed by Grossglauser and Tse in [GT02], further

analysed in [SMS06]. The two-hop relay forwarding algorithm was initially introduced to study

how the mobility of devices impacts the capacity of the network. My work starts from very dif-

ferent assumptions. Most notably, I do not model the bandwidth limitation due to interference,

as I focus only on the delay induced by mobility. However, some of the results that I show could

be used to characterise the delay obtained in such contexts.
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2.8 Conclusion

I have analysed several network scenarios for opportunistic data transfer among mobile devices

carried by humans, using eight experimental datasets. For all datasets, I observe that the inter-

contact time between two devices can be approximated by a power-law on the [10 minutes; 1

day] range. I prove in a simple model the following major results: power-law condition may

be addressed by naive forwarding algorithms as long as the heavy-tail index of the power-law

is greater than 1. When, by opposition, the heavy-tail indexis smaller than 1, the expected

delay cannot be bounded for any forwarding algorithm of thattype, even when one neglects the

queuing occurring in each relay device. I have measured a heavy-tail index smaller than 1 in all

datasets. As a consequence, the expected delay is at least inthe order of one day.10

These observations bring new practical recommendations toevaluate the performance of for-

warding algorithms. Most of the mobility models commonly used today are characterised by a

light tailed inter-contact distribution for any pair of nodes. That seems at odds with the empir-

ical evidence of inter-contact distribution, for values upto 1 day, which is well approximated

by a heavy-tail distribution. Some of these models can in theory be modified to account for

this last property, this may be a future research direction.Another complementary direction,

which is chosen in this chapter, is to directly model opportunities between devices instead of

geographical locations. This approach has the advantage that it can be directly compared with

a growing set of real-life connectivity traces, now publicly available. I believe that this is a

practical solution, at least for some of the issues to be addressed in opportunistic networking.

More generally my results deal with the feasibility of forwarding in opportunistic networks and

their consequences require more attention. At least three different directions may be followed.

• First, it might be that reasoning with expected value of delay is not suitable, since the

possible occurrence of a long delay is unavoidable, whatever forwarding algorithm is

used. Applications for such networks should therefore be designed to cope with this

aspect of opportunistic communication.

• Second, note that I did not model the general case where contact processes for a pair of

nodes are heterogeneous or contain significant correlation. It is still possible that a finite

expected delay exists in a more complex model that reproduces accurately the statistical

properties of the datasets. This direction is appealing butit requires to remove one of the

modeling assumptions that I have made and that is instrumental for most of the results

currently known in this area. It also necessitates to designa forwarding algorithm that

differentiates between nodes; some schemes of that type have been only recently proposed

[DFGV03, LDS04, LFC06].

10It sounds bad, right? But actually for many applications, wecare more about how many percentages of the

messages can be delivered instead of the expected delay. It is just like best effort and QoS.
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• Third, one can investigate how to add connection opportunities in a mobile network, using

special devices or partial infrastructure, that could in some cases be already available. It

looks promising but the impact of this partial infrastructure should be carefully studied.

Although the results showed in the chapter are not positive for forwarding inPSN, we still need

to do forwarding. The two “oblivious” algorithms I introduced in this chapter provides two

bounds for all kind of forwarding algorithms. If I do not consider wireless contention and loss

rates, no algorithm can achieve better performance than flooding in terms of delivery delay. And

in terms of delivery cost, wait-and-forward would be considered to be the best choice. But for

overall performance, neither approach is ideal. Wait-and-forward is too slow and will have low

delivery ratio. Flooding packets has a very high cost, not just in link utilisation, but for other

resources such as node storage and battery life, which are likely to be highly valued by users.

Controlled flooding is not only easy to implement but it can also be used to achieve several

performance-cost objectives. Getting close to the optimaldelay is possible with a small number

of intermediate relays, but it remains costly with such simple algorithms. I envision that success

delivery rate and cost could be further optimised using moresophisticated techniques.

In the research community, it has been a widely held belief that identifying community informa-

tion about recipients can help select suitable forwarders,and reduce the delivery cost compared

to “oblivious” flooding. This is a reasonable intuition, since people in the same community are

likely to meet regularly, and hence be appropriate forwarders for messages destined for other

members of their community. However, to date as far as I am aware, there has been no ex-

perimental evaluation of this belief, and no-one knows whether it is valid or not. In the rest

of the dissertation, I will focus on exploring the possibility and effectiveness of using social

information for forwarding. In the next chapter, I will firstlook at how can we infer human

communities from the datasets.



Chapter 3

Inferring Human Communities

In last chapter, I have shown that human inter-contact time can be approximated by a power-

law in the [10 minutes; 1 day] range, which gives us some roughidea about pair interaction.

In order to understand more about human mobility and interaction, I want to look at group-

level interaction in this chapter. I apply some complex network analyses such asK-CLIQUE

community detection [PDFV05] and Newman’s weighted network analysis (WNA) [J.N04] to

the human mobility traces, which allow us to understand the human clustering behavior1 in

different environments and we can also use these detected communities for further study of

social-aware forwarding2. For online applications, I also propose three distributedcommunity

detection algorithms. This is joint work with my supervisorProf. Jon Crowcroft, Dr Eiko

Yoneki and my fellow PhD student Shu-Yan Chan. Shu-Yan helped me to implementWNA in

Java, and I coordinated and completed the remaining parts.

3.1 Introduction

A social network consists of a set of people forming sociallymeaningful relationships, where

prominent patterns or information flow are observed. In PSN,social networks could map to

computer networks since people carry the computer devices.The aims of this chapter are to

uncover the social community structures from the mobility traces using centralised commu-

nity detection methods, and to develop distributed versionof detection algorithms for practical

online applications.

Mobility traces can be represented in the form of weighted graphs called contact graphs, with the

weight of an edge representing the contact duration/contact frequency of the two end vertices.

Understanding human interaction can be tackled from the domain of weighted network analysis.

One possible outcome of studies of the weighted contact graphs is community detection. Many

1This includes how people form cliques and interact with eachother on a group basis.
2For K-CLIQUE detection, I apply the algorithm directly, but forWNA I find two different versions of the

algorithm in the original paper and I need to choose the correct version and implement it.

47
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real-life networks are weighted, but because of complexity, not a great deal of analysis has been

done in this area. The seminal work is aWNA paper by Newman [J.N04]. The advantage about

weighted analysis is that, unlike other algorithms, we do not need to threshold the weight on the

contact graphs. The disadvantage is that it cannot detect overlapping community structures, yet

in human society one person may belong to multiple communities. To address this problem, I

also use theK-CLIQUE community algorithm proposed by Pallaet al.[PDFV05], which allows

overlapping of communities.

I evaluate the algorithms on mobility traces, which havea priori knowledge of community so

that I can compare the detected communities to reality. Additionally, I evaluate the impact of

the detected communities on message forwarding efficiency in Chapter 4 and Chapter 5, and I

find out that such community information improves forwarding efficiency quite significantly.

As we are targeting online forwarding applications, I also sought distributed community de-

tection algorithms which can allow the mobile devices to detect their own local communities

instead of relying on a centralised server. Here I propose three algorithms, namelySIMPLE,

K-CLIQUE, andMODULARITY , which are demonstrated to achieve quite close performanceto

the centralised methods, in the best case around 90% accuracy. 3

The structure of this chapter is as follows. I survey existing community detection algorithms in

Section 3.2, followed by the characteristics of contact graphs in Section 3.3. I go into the details

of the methodologies, includingWNA in Section 3.4 andK-CLIQUE community detection in

Section 3.5. I present the algorithms on distributed community detection and the results in

Section 3.6 and Section 3.7. Finally I conclude with a brief discussion.

3.2 Community Detection

Community detection in complex networks has attracted a lotof attention in recent years. There

is still no universally accepted definition of community, but in most versions, community is a

subgraph of a network whose nodes are more tightly connectedwith each other than with nodes

outside the subgraph. Detecting community is equivalent toinvestigating statistical properties

of a graph, disregarding the roles played by specific subgraphs, and hence identifying substruc-

tures/subgraphs which could correspond to important functions. In the case of the World Wide

Web, examples of communities are sets of Web pages dealing with the same topic [FLGC02].

In biological networks, it is widely believed that modular structure results from evolutionary

constraints and plays a crucial role in biological functions [HHLM99] [RSM+02]. In social net-

works, community structures correspond to human social communities [New04b] [LN04]. Fi-

nally on the Internet, community structures correspond to autonomous systems [LN04], which

are a connected segment of a network consisting of a collection of subnetworks interconnected

3The whole trace is used for the training in order to compare with the centralised methods, which use the whole

trace for the calculation.
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by a set of routers. In thePSNsI studied, community structure would correspond to human

communities or some structures which are beneficial for forwarding efficiency. Given the rel-

evance of the problem, it is crucial to construct efficient procedures and algorithms for the

identification of the community structure in a generic network. Recent reviews [New04b] and

[DDDGA05] may serve as introductory reading, which also include methodological overviews

and comparative studies of the performance of different algorithms.

Qualitatively, a community is defined as a subset of nodes within the graph such that connec-

tions between the nodes are denser than connections with therest of the network. The detection

of community structure in a network is generally intended asa procedure for mapping the net-

work into a tree [RCC+04], known in social science as dendrogram. In this tree, theleaves are

the nodes whereas the branches join nodes or (at higher level) groups of nodes, thus identifying

a hierarchical structure of communities nested within eachother.

There are two main approaches to clustering: nodes are either joined successively in an ag-

glomerative manner starting from single nodes, or the wholenetwork is recursively partitioned.

Hierarchical clustering is a representative of the agglomerative approach [WFI94] . Using this

method, nodes are grouped into larger and larger communities, and the tree is built up to the

root, which represents the whole network. For the divisive approach, the order of construction

of the tree is reversed: one starts with the whole graph and iteratively cuts the edges, thus di-

viding the network progressively into smaller and smaller disconnected subnetworks identified

as the communities. The crucial step in a divisive algorithmis the selection of the edges to

be cut. Girvan and Newman (GN) have introduced a divisive algorithm in which the selection

of the edges to be cut is based on the value of their edge betweenness [NG04], a generalisa-

tion of Freeman betweenness centrality [Fre77]. The betweenness of an edge is the number

of shortest paths between all node pairs running through it.It is clear that, when a graph is

made of tightly bound clusters, each loosely interconnected, all shortest paths between nodes in

different clusters have to go through the few inter-clusterconnections, which therefore have a

large betweenness value. Recursively removing these largebetweenness edges would partition

the network into communities of different sizes. The GN algorithm represents a major step

forward for the detection of communities in networks, sinceit avoids many of the shortcomings

of traditional methods [NG04].

Quantitatively, however, we need metrics to measure how well the community splitting is pro-

gressing, otherwise most of the algorithms would continue until every node is split into a single

community. Newman and Girvan proposed in [NG04] a measure ofnetworks calledmodular-

ity. Such as for a division withg groups, they define ag × g matrix e whose elementseij are

the fractions of edges in the original network that connect vertices in groupi to those in group

j. The modularity is defined to be

Q =
∑

i

eii −
∑

ijk

eijeki = Tre− ‖e2‖ (3.1)

where‖e2‖ indicates the sum of all elements ofe2, andTre is the trace of matrixe, which is the
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sum of the diagonal elements. This measure essentially compares the number of links inside a

given module with the expected value for a randomised graph of the same size and same degree

sequence. The concept of modularity has gained such popularity that it has not only been used

as a measure of the community partitioning of a network; it has also been used as a heuristic

indicator in various community detection algorithms [NG04] and also as the sole quality or

fitness function in community detection algorithms [CNM04]. I will revisit the concepts of

modularity in the next section.

Neither the agglomerative nor the divisive methods consider the overlapping of communities,

but in nature many nodes may belong to several communities atthe same time, just as a human in

the society may belong to many different social groups. Pallaet al. define ak-clique community

as a union of allk-cliques (complete subgraphs of size k) that can be reached from each other

through a series of adjacentk-cliques [PDFV05]. Twok-cliques are said to be adjacent if they

sharek − 1 nodes. This definition is based on their observation that an essential feature of a

community is that its members can be reached through well-connected subsets of nodes, and

that there could be other parts of the whole network that are not reachable from a particular

k-clique, but they potentially contain furtherk-clique communities. Or in other words, thek-

clique communities of a network withk = 2 are equivalent to the connected components, since

a 2-clique is simply an edge and a 2-clique-community is the union of those edges that can be

reached from each other through a series of shared nodes. On the another hand, a 3-clique-

community is the union of triangles that can be reached from one another through a series of

shared edges. Ask is increased, thek-clique communities shrink in size, but become more

cohesive since their member nodes have to be part of at least onek-clique.

Most of the algorithms mentioned above are dealing with binary graphs, which are undirected

and unweighted. There are many everyday examples of networks, such as the Internet, the world

wide web, and various biological and social systems. Many ofthese are intrinsically weighted,

their edges having differing strengths, e.g. in a social network there may be stronger or weaker

social ties between individuals. However, there are so manycases where edge weights are

known for networks, and to ignore them is to throw away a lot ofdata that, in theory at least,

could help us to understand these systems better. As I have introduced in Section 3.1, Newman

[J.N04] proposed a transformation of the edge-betweennesscommunity detection algorithm

from an unweighted network to a weighted version. I will discuss the details of this algorithm

in later sections.

3.3 Contact Graphs

My first contribution is to introduce the notion ofcontact graphas a way to help represent the

mobility traces, and to choose a threshold for community detection. The way I convert human

mobility traces into weighted contact graphs is based on thenumber of contacts and the contact

duration, although I could use other metrics. The nodes of the graphs are the physical nodes
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from the traces, the edges are the contacts, and the weights of the edges are the values based on

the metrics specified such as the number of contacts during the experiment.

We can measure the relationship between two people by how many times they meet each other

and how long they stay with each other. We naturally think that if two people spend more time

together or see each other more often, they are in a closer relationship. In this chapter I am not

going to provide a specific threshold to infer actual social context. I just use these two metrics

to produce maps which may prove useful to guide forwarding, although later we will find out

that the detected communities match well with the real social communities.

Here I explore further properties of the experimental scenarios, and present statistics concerning

the contact graphs for each dataset.

3.3.1 Weight Distribution of Contact Graphs

First I show that the statistical properties for the two conference scenarios are quite similar.

Figure 3.1(a) and 3.1(b) show the contact duration distribution for Infocom06andInfocom05
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Figure 3.1: Contact duration distribution forInfocom06andInfocom05

respectively. Thex-axis is the contact duration in seconds and they-axis is the probability of

contact durations larger than the value on thex-axis. We can see that their distributions are

quite similar, with a mean difference as small as 0.0003 (0, 0.0633). More similarities will be

seen in the next section as well. To prevent redundancies, the later sections I only selectively

show one example, in most casesInfocom06, since it contains more participants.

Figure 3.2 and Figure 3.3 show the contact duration and number of contacts distribution for each

pair in four experiments. For theHongKongexperiment I include the external devices, but for

the other three experiments I use only the internal devices.I show later that for theHongKong

experiment I need to use the external devices to help to forward the data because of network

sparseness.
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Cambridge Reality

Infocom 06 HK

Figure 3.2: The contact duration distribution for each pairin four experiments.
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Figure 3.3: The number of contacts distribution for each pair in four experiments.
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3.3.2 Correlation between Regularity and Familiarity

I assume contact duration indicates familiarity. Two people sharing the same office might hate

each other, and not talk, but I will ignore this kind of extreme situation here. The number of

times two people meet each other implicitly reveals the pattern with which they meet. In this

work, I infer regularity of meetings from the number of contacts. Two people might meet a lot

of times in a short period (e.g. a day), and then not at all. However, short periods with many

contacts are less likely to contribute to the upper quartersof the distribution, and here I will

ignore these too as outliers.
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Figure 3.4: Number of contacts versus the contact durationsfor pairs ofCambridgeStudents.

Figure 3.4 shows the correlation between regularity and familiarity in the Cambridgedataset4.

Here regularity is positively correlated to familiarity with a correlation coefficient of 0.9026.

I define four kinds of relationships between a pair of nodes: Community, Familiar Strangers,

Strangers, and Friends. A pair of nodes which has long contact duration (high familiarity)

and large number of contacts (high regularity) is likely to belong to the same community. A

pair of nodes which meet regularly but do not spend time with each other, could be familiar

strangers [PG04] meeting everyday. People who do not meet regularly and do not spend time

with each other would be in the category of strangers. Finally, for node pairs which do not meet

very frequently but spend quite a lot of time together for each meeting, I count as friends. It

4Here, byCambridgedata I refer to theCambrige05data in Section2.3. The details of other datasets can also

be found in this section.
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is not necessary that the division of the four quarters are exactly at the middle. It is just as a

reference or example. A clear-cut division may need more empirical experimental results. But

here I provide the methodology to classify these four kinds of relationship based on pure contact

duration and frequency. Additional difficulties faced by empirical social network research are

well described in work by Watts [Wat99].

Figure 3.5 shows the correlation between the number of contacts and contact durations for the

other four experiments. We can see that conference environments are quite similar, both with a

narrow stripe in the left bottom quarter. This stripe shows that people in the conference tend to

meet each other more often than spend long time together. That is a typical conference scenario,

since people may meet each other many times in coffee breaks,corridors, the registration desk

etc. They may stand together and chat for a while, and then shift to chat with others instead

of spending all the time together.Infocom06contains double the number of participants, and

hence more data points. TheRealityset is similar to theCambridgeone, with most of the points

lying on or above the diagonal line. However, it seems that people also have more contacts

instead of spending time together. In theHongKongfigure, we can find two pairs of friends,

two pairs of close community members, and two pairs of familiar strangers. All the other pairs

lie in the strangers quarter. This is in line with our expectations for an experiment designed to

contain little social correlation.

Reality

Infocom05 Infocom06

HK

c: 0.6604 c: 0.5817

c: 0.8325 c: 0.7927

Figure 3.5: Number of contacts against contact durations for all pairs in the four datasets, with

correlation coefficient.
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These correlation graphs give us an overview idea about the social characteristics of the people

in these environments. And later in the community detectionpart, I will detect different types

of relationships by choosing suitable thresholds for5 the contact duration and number of contact

similar to the four quadrants division in Figure 3.4.

3.4 Weighted Network Analysis

In this section, I implement and use Newman’sWNA for data analysis, even though the algo-

rithm was proposed two years ago and yet no reference implementation publicly exists.6 And

I also extend unweighedmodularityproposed in [NG04] to a weighted version and use it as a

measurement of the fitness of the detected communities. I will start from themodularityand

then move to thebetweennessalgorithm.

3.4.1 Clustering by Modularity

As mentioned previously, Newman and Girvan proposed in [NG04] a measure of network

cohesiveness calledmodularity. The concept of modularity has gained such popularity that it

has not only been used as a measure of community partitioningof a network, it has also been

used as a heuristic indicator guiding various community detection algorithms [NG04], and also

used as the sole quality or fitness function in community detection algorithms [CNM04].

For each community partitioning of a network, one can compute the corresponding modularity

value using the following definition ofmodularityQ:

Q =
∑

vw

[
Avw

2m
−

kvkw

(2m)2
]δ(cv,cw) (3.2)

whereAvw has value1 if verticesv andw are connected and0 otherwise,m = 1
2

∑

vw Avw,

ci is the index of vertexi, and henceδ(cv,cw) = 1 iff vertices v andw belong to the same

community, and= 0 otherwise. Therefore the term in the formula
∑

vw Avw

2m
δ(cv,cw) is equal

to
∑

vw Avwδ(cv ,cw)
∑

vw Avw
, which is the fraction of the edges that fall within communities. Modularity

is defined as the difference between this fraction and the fraction of the edges that would be

expected to fall within the communities if the edges were assigned randomly but keeping the

degrees of the vertices unchanged. Under such a condition ofrandom edge allocation, the

probability for a given edge connected to vertexv is kv

2m
wherekv is the degree of vertexv

defined as
∑

w Avw. It follows that the probability for a given edge connected to vertexv andw

is kvkw

(2m)2
. Summation of this term over allv andw results in the fraction of the edges that would

5Many community detection algorithms only work on binary graphs, and we need to convert a weighted graph

into a unweighted graph by setting a threshold.
6During the implementation, I found two different interpretations of the algorithm in the paper. I believe that I

have chosen the correct one after the confirmation of the author.
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expected to fall within the communities if the edges were assigned randomly, and hence forms

the term used in the above formula forQ.

In [CNM04], Clausetet al. proposed an optimised algorithm to detect community structure of

unweighed graph, based solely on the concept of modularity using an agglomerative approach.

It first assigns each individual node to its own community, then chooses the two communi-

ties to merge together which would give the maximum increasein the modularity value of the

community partitioning.

As stated in [J.N04] according to the “general” transformation of algorithms for unweighted

networks, the modularityQ for weighted networks has the same formula

Q =
∑

vw

[
Avw

2m
−

kvkw

(2m)2
]δ(cv,cw) (3.3)

providedAvw now represents the weight of the edge betweenv andw, and the degreeki is

defined to be
∑

w Avw as before .

However, instead of calculating the adjacency matrix of thegraph and calculating at each step

the possible changes inQ due to further merging (△Qij), the optimised (unweighed) algorithm

in [CNM04] maintains and updates a sparse matrix containing△Qij for each pairi,j of com-

munities with at least one edge between them. In [CNM04], theinitial value for△Qij is set

to

△Qij =
1

2m
−

kikj

(2m)2
(3.4)

if i,j are connected, andQij = 0 otherwise (in these cases,Qij is set to0 as an optimisation

since joining two communities with no edge between them can never produce an increase in

Q, so we do not need to consider joining them). At each iteration, the two communitiesi and

j with the largest△Qij are chosen to merge together, until only one community remains. The

△Qij value is updated according to the rule set. The weighted version of the algorithm and

program remain the same efficiency as the original version:O(mdLog(n)) for a network that

hasm edges,n vertices, and whered is the depth of the “dendrogram” describing the network’s

community structure. In this case,m is the number of edges in the weighted version of the

graph, not the number of edges in the transformed multigraph).

I observe that the original formula purposed in [CNM04] has amistake in it. There is a factor

of 2 missing in the initial value of△Qij. The correct formula should be:

1.

△Qij =
2

2m
−

2kikj

(2m)2
(3.5)

if i,j are connected, and△Qij = 0 otherwise, for unweighted networks.

2.

△Qij =
2Aij

2m
−

2kikj

(2m)2
(3.6)

if i,j are connected, and△Qij = 0 otherwise, for weighted networks.
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For both the weighted and unweighted version, if verticesi andj are merged, the difference

in the− kvkw

(2m)2
δ(cv,cw) term in the modularity value before and after the merge is− 2kikj

(2m)2
since

after the merge,δ(cv,cw) = 1 for v = i, w = j or v = j, w = i.

The 1
2m

term in the definition for△Qij in [CNM04] is derived from the
∑

vw
Avw

2m
δ(cv,cw)

term in the original definition ofQ, of which after verticesi and j were merged to a single

community,δ(cv,cw) = 1 for v = i, w = j or v = j, w = i, so the newQ value should include

the new termAvw

2m
and Awv

2m
in the summation, and for a unweighted network with no parallel

edges,Avw andAwv both only equal1. Therefore, for the unweighted version of the algorithm,

the correct term should be2
2m

and for the weighted version,2Aij

2m
.

The algorithm is essentially a genetic algorithm in disguise, using modularity as the measure

of fitness. Instead of testing some mutations of the current best solutions, it enumerates all

possible mergings of any two communities in the current solution, and evaluates the relative

fitnesses of the resulting merges. The merge is considered tobe fit if it leads to an increase

in modularity value. The algorithm proceeds with the merge which gives the highest increase

in modularity value as the next current solution, and terminates if no possible merge would

increase the modularity value.

In this chapter, I use a community detection algorithm basedon edge betweenness, which I will

talk about in following section, and which uses modularity to evaluate the fitness of a particular

division.

3.4.2 Clustering by Edge Betweenness

As has also been briefly introduced before, Newman and Girvan[NG04] proposed a commu-

nity detection algorithm based on edge betweenness for unweighted networks. They defined the

edge betweennessof an edge in a network as the number of geodesic (shortest) paths between

all node pairs that run along that edge. If there are two geodesic paths joining a given node

pair, then each one counts as a half of a path, and similarly for three or more. At each iteration

of the community detection algorithm, edge betweenness of all edges are (re-)computed, then

the edge with the highest edge betweenness is then removed. An existing community may then

be split into two because the removed edge might be the sole connection between these two

communities (the reason behind this algorithm is that the inter-community edges will be the

ones visited most by the geodesic path). Eventual all nodes are split into their own communi-

ties. Then the modularity values of the community partitioning at each iteration are computed.

According to Newman and Girvan [NG04], the local peaks of themodularity value correspond

to “satisfactory” splits.

Although the impression given in [J.N04] is that they obtaintheir weighted version of the al-

gorithm by following the general mapping of a weighted network to a multigraph with multiple

edges of unit length, there are actually two completely different interpretations in the paper. I

call themInterpretation BadandInterpretation Final, respectively.
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Interpretation bad: The author stated “To derive an answer we employ our mappingfrom the

weighted network to a multigraph. Suppose we have a weightednetwork with integer weights

on the edges and as before we replace each edge of weight n by n parallel edges of unit weight.

The adjacency matrix remains unchanged. Now we apply the normal unweighted version of our

algorithm to the resulting multigraph.”

Interpretation Final: In the same paper, Newman also summarised the adaptation of this algo-

rithm (which itself is based on Dijkstra’s shortest path) for a weighted network as following:

“first calculate the betweennesses of all edges in a weightednetwork ignoring the weights. Then

divide each such betweenness by the weight of the corresponding edge, remove the edge(s) with

the highest resulting score, recalculate the betweennesses, and repeat.”

Interpretation Badis only equivalent toInterpretation Finalfor graphs which have shortest

paths without cycles. I provide the following example to illustrate the different results these

contradictory interpretations will produce:

Figure 3.6: Illustration of Newman edge betweenness

In the network given in Figure 3.6(a), if we want to compute the edge betweenness, then ac-

cording toInterpretation Final, we will calculate the betweennesses of all edges in our weighted

graph in the normal way, ignoring the weights. So if we consider the contribution of the shortest

path fromS to F of the network, we first compute its contribution to the transformed network

as shown in Figure 3.6(b). There are 2 shortest paths fromS to F , and their contributions to the

betweenness of each of the edgesA,B,D,E are 1/2. Then the next step is to divide each such

betweenness by the weight of the corresponding edge. Therefore, the betweenness values of the

edges are now:A = B = 1/2, D = E = 1/(2× 50) = 1/100.

However, if we followInterpretation Bad, we will replace each edge of weightn by n parallel

edges of unit weight as shown in Figure 3.6(c). Then we apply the normal unweighted version

of our algorithm to the resulting multigraph. When traveling fromS to F in the network, there

will be 1 + 50 × 50 equal-length shortest paths, so the contribution to the betweenness value

by edgesA andB will be 1/2501, but the contribution by each of the50 parallel edges will be

50/2501.
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As we can now see, the ratio of the contribution of the same path (S toF ) to the edges’ between-

ness values are quite different according to the different interpretations of the algorithm. ForIn-

terpretation Badthe ratio of betweenness contribution ofA to H (the original edge with weight

50) = 1/2501 : 50/2501 = 1 : 50. For Interpretation Final, the ratio= 1/2 : 1/100 = 50 : 1

The appearance of50 in both ratios are coincidental. If we change the original weight of edge

J to 30, then the calculation forInterpretation Badwill become1/1501 : 30/1501 = 1 : 30

while Interpretation Finalwill give the ratio= 1/2 : 1/(2× 50) = 50 : 1.

Interpretation Finalcan be restructured into the follow generic structure, and is the version that

our further discussion of community detection on weighted networks will be based on:

1. For each pair of vertices in the network, compute the “shortest path” between them ac-

cording to some “shortest path” measurement (forInterpretation Final, the path length is

equal to the number of hops along the path), accumulate the number of “shortest paths”

passing through each edge and repeat for the other pairs. If there are multiple “shortest

paths”, their contributions to the accumulated values of any particular edge is the fraction

of the multiple paths passing through that edge.

2. The edge betweennesses are then the values accumulated for each edge divided by their

edge weights.

3. Remove the edge with the highest edge betweenness. and repeat from1 until there are no

more edges in the network.

4. For each step in3 that splits a community into two smaller ones, recalculate the modular-

ity value of the network with the current community partitioning. Select those splittings

with local maxima of modularity.

As it can now be seen in step 2 above, along any “shortest path”, it penalises heavy edges’

(e.g. edges that indicate high proximity) shares of the contribution of that path to their final

edge betweenness. The aim of this step is to force the inter-community links along the shortest

path to be selected by the algorithm to have the highest edge betweenness, as Newman suggests

in [J.N04] that the inter-community edges should always have lower weight then those intra-

community edges.

In this chapter, I will use the above version of weighted network analysis and also theK-

CLIQUE detection algorithm to study the human interactions in the datasets. They both have

advantages and disadvantages, but together they are very useful tools for our study. In the

following subsection, I will first give the results by the weighted analysis.

3.4.3 Results by Weighted Analysis

As I mentioned before, the traces are converted into weighted contact graphs. In this chapter,

I create contact graph based only on two metrics: one is the number of contacts and the other
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one is contact duration. These contact graphs are fed directly into the algorithm for community

detection.

Table 3.1 summarises the communities detected using Newman’s algorithm on all three datasets.

NonzeroQ values indicate deviations from randomness; values around0.3 or more usually

indicate good divisions. For theInfocom06case, theQmax value is low. This indicates that

the community partition is not very good in this case; this also agrees with the fact that in a

conference, the community boundary becomes blurred (people with different affiliations mix

with each other). For theRealitycase, theQ value is high. This also reflects the more diverse

campus environment. Out of the 100 participants, 75 are either students or faculty in the MIT

Media Laboratory, while the remaining 25 are incoming students at the adjacent MIT Sloan

Business School. Of the 75 users at the Media Lab, 20 are incoming masters students and 5

are incoming MIT freshmen. For theCambridgedata, the two groups split by the algorithm

exactly match the two groups (2nd year and 3rd year) of students selected for the experiment.

The scenario ofInfocom05is similar to Infocom06so I will not go into the details. I do not

want to claim that the communities detected by the algorithmexactly match the real social

communities, but at least reflect some of the social relationships. In my study here, my main

focus is to see how these detected communities have impact onforwarding efficiency.

Experimental dataset Infocom06 Cambridge Reality Infocom05

Qmax 0.2280 0.4227 0.5682 0.3039

Max. Community Size 13 18 23 13

No. Communities 4 2 8 4

Avg. Community Size 8.000 16.500 9.875 6.5

No. Community Nodes 32 33 73 26

Total No. of Nodes 78 36 97 37

Table 3.1: Communities detected from five iMote datasets

To prevent redundancy, I will not provide visualisation of theWNA communities detected. In-

stead I will show that for theK-clique communities. It is more interesting to show the overlap-

ping of community structures than only showing the stand-alone version.

3.5 Finding k-clique Communities

I use theK-CLIQUE community algorithm proposed by Pallaet al. [PDFV05], since overlap-

ping of communities is allowed, and it is apparent that in human society one person may belong

to multiple communities. I have calculated all the results by using both contact duration and

number of contacts for all five experiments but to prevent redundancies I just show two cases of

contact duration and two cases of number of contacts.

I will show both graphically and quantitatively the overlapping communities within all these

environments in the following.
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3.5.1 k-clique University Communities

In the visualisation, an edge is added between two nodes if they are direct neighbors to each

other in the community. The length of the edges is not proportional to any property of either the

communities or the nodes. However the width of the edges is proportional to the link-weight

that is the number of shared nodes between the two communities.

Figure 3.7 shows thek-clique communities detected from theCambridgedata using number of

contacts.

K = 3 K = 4

K = 5 K = 10

Figure 3.7: Communities based on number of contacts with weight threshold =29,k = 3,4,5,

and10 (Cambridge).

The duration of the experiment is 11 days. For the number of contacts, I used a threshold of

29 contacts, which represents an average of almost 3 contacts per day.7 In this case, around

8.5% of all the edges are taken into account. I observe that the nodes mainly split into two

communities of size 11 respectively withk as high as 10. Next I examine lower values ofk.

We can see also from Figure 3.7, whenk = 3 there is a big community of 31 nodes, and when

k = 4 the big community splits into two overlapping communities of sizes 14 and 17 with

overlapping size of 1, and whenk = 5 the two overlapping communities split into two disjoint

communities of size 14 and 16 respectively. The two disjointcommunity structures are visible

until k = 11, with a gradual decrease in the community size. For the contact duration metric,

I set the contact duration threshold to be 10 hours for the whole 11 days of the experiment

(Figure 3.8). I also mainly observe two communities when using this metric. The membership

of these two communities is more or less the same as that when using the number of contacts

metric. This agrees with Figure 3.4 where we can observe thatthe contact duration and number

of contacts for theCambridgedata are highly correlated.

7Considering some students may be taking the same courses, bein the same supervision group, and live in the

same College, and hence using the same dining hall, this value is reasonable.
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K = 3 K = 5

K = 7 K = 11

Figure 3.8: Communities based on contact durations with weight threshold = 10 hours,k =

3,5,7, and11 (Cambridge).

The output from the algorithm clearly illustrates that the participants can be seen as two com-

munities in this case. When we look at the experimental data,the two communities classified

by this algorithm match well with the two groups of Year1 and Year2 students selected for the

experiment. Of course, in each group students tend to know each other and meet each other,

and hence the clique size can be as large as 10.

3.5.2 k-clique Communities in Reality Mining

This is another campus environment but the environment is more diverse than theCambridge

one. We will see that unlike theCambridgedata, which consists mainly of two classes of

students, this dataset consists of more groups.

First I look at communities detected by using a threshold of 388,800 seconds or 4.5 days on the

9-monthRealitydataset. Here I assume 3 lectures per week and 4 weeks per month and for a

total of 9 months, I get this threshold value (2% of the total links are taken into consideration).

Research students in the same office may stay together all dayso their contact duration threshold

could be very large. For students attending lectures, this estimate can be reasonable. A looser

threshold still detects the links with much stronger fit. I observe 8 communities of size (16,

7, 7, 7, 6, 5, 4, 3) whenk = 3 in this case. The 4-size one overlaps at one node with the

16-size one which also overlaps with another 7-size community at another nodes. Two other 7-

size communities overlap each other with overlapping size 1. The other three communities are

disjoint. Whenk = 4, the 3-clique community is eliminated and other communities shrink or

are eliminated, and only 5 communities of size (13, 7, 5, 5, 4)left. All of these 5 communities

are disjoint. Whenk = 5, 3 communities of sizes (9, 6, 5) remain. The 9-size one and the 5-size



CHAPTER 3. INFERRING HUMAN COMMUNITIES 63

K = 3

K = 4

K = 5

K = 7

7-clique

3-clique

Figure 3.9: Communities based on contact durations with weight threshold = 388,800 seconds

(4.5 days),k = 3,4,5, and7 (Reality).

one are split from the 13-size one in the 4-clique case. Moving tok = 6 andk = 7, there are 2

communities and 1 community respectively.

W388800, k=3 W388800, 
k=4

W648000,  
k=3

W648000, k=4

Figure 3.10: Communities based on contact durations with weight threshold = 648,000 seconds

(7.5 days),k = 3,4 (Reality).

I am also interested in knowing about small groups which are tightly knit. I set a strict threshold

of 648,000 seconds, that is on average 1 hour per weekday, 4 weeks per month, and for a total
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of 9 months. Around 1% of the links are taken into account for the community detection. When

k = 3, there are three disjoint communities of size (12, 7, 3). When k = 4, there are only two

communities left of size (8, 6). Figure 3.10 shows the 3-clique and 4-clique communities with

648,000-second threshold and 388,800-second threshold. Asingle 7-size community remains

in thek = 5 andk = 6 cases. This 7-clique community is the same as in the 388,800-second

case. These 7 people could be people from the same research group; they know each other and

have long contact with each other.

3.5.3 k-clique Conference Communities

In this section, I will show the community structures in a conference environment. Here I

take Infocom06as an example since it contains more participants thanInfocom05and I have

more participant information. Infocom is a multiple-trackconference with several programs

running at the same time. I do not expect all the 80 experimentparticipants to attend the same

sessions, so will not expect the clique size to be as big as that of the Cambridgedata. The

total dataset only covers 3 days, hence I will not expect the threshold to be very big. People

usually socialise during conferences in small groups, so I expect clique sizes of 3, 4 or 5 to be

reasonable. And forInfocom06, the participants were specially selected so that 34 out of 80

form four subgroups according to academic affiliations. Outof these four groups, there were

two groups from institutes in Paris with sizes of four and ten, respectively (named Paris Group

A and Paris Group B), and there is one group from Lausanne, Switzerland of five people, and

another, larger group of 15 people from the local organisation in Barcelona. But for this local

organisation group, the volunteers are from different local institutions and also responsible for

different sessions in the conference, so I will not expect them to all be together. After collecting

the data, for privacy purposes, all the personal information about the participants is deleted

except the Node ID, the affiliation and the nationality.

Figure 3.11 shows the 3-clique communities with threshold 20,000 seconds or 5.6 hours, that is

approximately 1.85 hours per day. 1.68% of all edges are taken into account for the community

calculation. I observe 6 communities of size (25, 11, 6, 6, 5,3) in this case. The 25-size

one overlaps at one node with a 6-size one which also overlapswith the 11-size community at

another node and the 3-size one at another node. The 2nd 6-size community also overlaps the

3-size and 11-size one at another two nodes. The 5-size community stands alone. Although I

know that during a conference people from different sub-communities tend to mix together and

hence the boundary of affiliation communities should becomeless clear, I still find hints of the

original affiliation communities from the figure. The algorithm correctly classified the nodes

belonging to the local organisers into a community (see the Barcelona Group at the right hand

side of the figure), and the members of the Lausanne Group intoanother community. There are

several nodes which do not belong to these affiliations and are also falsely classified into the

same communities, but this also truly reflects the nature of aconference, to socialise with people

in other institutions. The two Paris groups are also clearlyidentified; they tend to socialise with
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each other. Node 47 belongs to both groups, it is important tolink these two groups together.

There are many members in the 25-size group not belonging to acommon institution but they

are here linked together by different small groups mixing together in the conference.

Barcelona Group

Paris Group A

Paris Group B

Lausanne Group

Paris Groups
Barcelona Group

Lausanne Group

Figure 3.11: 3-clique communities based on contact durations with weight threshold equals 5.6

hours (Infocom06).

When I increasek from 3 to 4, the graph splits into 8 communities of size (8, 6, 6, 5, 5, 4, 4, 4).

The number of nodes decreases a lot, but we can also see that the cohesiveness of the affiliation

communities is quite strong. The Barcelona Group and the Lausanne group are still there, with

the numbers change from 7 to 5 and 5 to 4, respectively. The links from node 47 linking two

detected communities containing Paris Group members disappear, but we still observe a mixing

of five Paris Group A and Group B nodes together to form a community structure.

Barcelona Group (Spanish)
Paris Group A (French)

Paris Group B (French)
Italian

Figure 3.12: 5-clique communities based on contact durations with weight threshold equals 5.6

hours (Infocom06).

Figure 3.12 shows the communities when k is equal to 5. There are now only 3 communities

of size (5, 5, 5). All small communities with size less than 5 in k = 4 case are eliminated. We

can observe that the Barcelona Group and a Paris Group are still there. Another group mainly

consisting of Italian-speaking people overlaps with the French group. I do not want to claim

that the division byK-CLIQUE community algorithm matches real social groups perfectly,but
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at least it gives us rich information about the underlying human interaction. A preliminary

conclusion here is that affiliation or even nationality is strongly linked human contacts, even in

the highly mixed environment of a conference.

3.5.4 k-clique Metropolitan Communities

As we can see from Figure 3.5, most pairs have a low number of contacts and low contact

duration. I do not expect to discover a rich social structurefrom this data. However, in this

case, we can see how some internal nodes without much social correlation are nevertheless

connected together by external Bluetooth devices, by considering all of the 869 nodes detected,

including 37 iMotes and 832 external devices.

The experiment lasted 6 days. First I set the threshold to be 3encounters which is equal to an

average of one encounter per 2 days. Around 8% of the total links are taken into consideration.

In this case I observed 10 communities sized (18, 10, 8, 6, 6, 5, 4, 3, 3, 3) respectively when

k = 3, which is shown on the Figure 3.13.

From the same figure we also see that the internal nodes are usually joined together by external

nodes. They themselves may not have social correlation at all, but are connected together by

these unknown external devices which may belong to colleagues or friends or familiar strangers

of the iMote owners. This gives us optimism about the possibility of city-wide PSNdata com-

munication. 8

Whenk = 4, communities shrink to only two small communities of size 4 and 5, respectively.

It seems thatk = 4 is too strong in this case. I tried to increase the number of contacts to be 6,

on average one contact per day; in this case only 2.4% of the links are taken into consideration.

There are only 6 small communities of size (6, 4, 4, 3, 3, 3), respectively, with only two over-

lapping with each other at a single node. This again confirms the very sparse social cohesion in

the experiment.

The communities detected by theWNA and theK-CLIQUE methods are not necessarily the

same, and most probably they will not exactly match because of the overlapping community

feature ofk-clique. But clearly, they can be useful tools for us to analyse the datasets and

extract the important clustering features out of them. I will use these detected communities to

test my forwarding algorithms in later chapters.

As I know that there are many community detection algorithmsthat have been proposed and

studied in the literature, the key point is to select the oneswhich are suitable for our applica-

tions. I want to uncover overlapping structures and I also want to reduce manual intervention in

choosing the threshold for the data, so I chooseK-CLIQUE andWNA. I believe there are some

8Although we have observed an expected delay of 1-day in Chapter 2, power-law distribution also implies a

lot of short inter-contacts. If we can design communicationpatterns to make use of these short inter-contacts and

avoid or ignore the very long inter-contacts (e.g.night), communication is still possible. I will show that in the next

two chapters.
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Figure 3.13: Communities based on number of contacts with weight threshold = 3 and k=3

(HK).

other suitable methods, but this work introduces data clustering techniques into human mobility

trace studies.

3.6 Distributed Community Detection

The centralised detection methods introduced above are useful for offline data analysis on mo-

bility traces [D+04] [EP06] to explore structure in the data and hence design useful forwarding

strategies, security measures, and killer applications. But as self-organizing networks, I would

also ask whether the mobile devices can sense and detect their own local communities instead

of relying on a centralised server, which leads to the area ofdistributed community detection.

However, to date as far as I am aware, detecting community by distributed approaches has not

yet drawn much attention from researchers, especially for mobile applications. Clauset [Cla05]

defines a measure of local community structure and an algorithm that infers the hierarchy of

communities that encloses a given vertex by exploring the graph one vertex at a time. Although

its original design was for static graphs with a known topology instead of dynamic temporal

graphs such asPSNs, it provides a motivation for us to examine different centralised community

detection algorithms and investigate the possibility of developing a distributed version.

In this section, I will introduce three distributed community detection algorithms, namedSIM-

PLE, k-CLIQUE, andMODULARITY . The difference between these three algorithms are the

admission criteria for a node into a local community.SIMPLE uses classic Jaccard similar-
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ity [Jac01],k-CLIQUE is based on the clique size, andMODULARITY uses the local modularity

measure proposed by Clauset [Cla05]. Except from borrowinglocal modularity as a fitness

measurement of detected communities from the static graph to the dynamic graph in one of the

algorithms, all the other parts of the algorithms are my contributions.

In the rest of this section, I will first introduce definitionsand terms and then go into the details

of these algorithms.

3.6.1 General Framework

Before introducing the basic structure of the algorithms, Iwill first define some terms which are

common to all the three algorithms and also specific to a particular algorithm. As I mentioned

above, we can detect different kinds of social communities by specifying the contact duration

and number of contacts threshold, but in order to make the presentation easier and in order to

compare with other centralised detection methods, which only allow one metric to be specified,

I constrain the discussion in this section to the communities detected by contact duration. In the

language of graph theory, I refer to a mobile device as a vertex.

The common terminologies for all these algorithms are:

Familiar set: I assume each vertex (mobile device) will keep a map of vertices it has en-

countered with the corresponding cumulative contact durations. When the cumulative contact

duration with a vertex exceeds a certain thresholdTth, it is promoted to be included into its

familiar set̥. These two vertices now have an undirected edge between them. A given vertex,

υi, has perfect knowledge of its own familiar set (by definition), denoted̥ i. The same vertex

also could have gathered incomplete knowledge of other vertices’ familiar sets, e.g. a local

approximation of the familiar set for vertexυj would be denoted̥̃ j .

Local Community: a vertex’s local community, denoted byC, contains all the vertices in its

familiar set(its direct neighbors) and also the vertices that are selected by my following com-

munity detection algorithms (the selection criteria of each algorithm to be further elaborated).

Because of a lack of temporal synchronisation, each vertex actually in the same community

may detect a different local community.

The basic structure of my algorithms is as follows. When a mobile deviceυ0 first initialises

its community detection procedure, the local communityC0 only contains this source vertex.

Whenever it encounters another deviceυi, they will exchange part of their local knowledge of

the network.υ0 then has to decide on the following based on certain acceptance criteria:

1. whether to place the encountered vertexυi in its familiar set̥0 and/orlocal community

C0.

2. whetherC0 should merge with all or part ofCi.

The general framework for the detection algorithms is summarised below:
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Algorithm 1 : The generic framework of the algorithms (running on vertexυ0 )
Initialisation: addυ0 to C0;

υ0 exchanges local network information withυi (the vertex it encounters);

var considerMerging ← false ;

while in contact withυi do
keep counting the contact histories;

if υi can be promoted to̥ 0 then
putυi in C0;

considerMerging ← true;

break;

if υi /∈ ̥0 andCommunityAccept(υi) then
putυi in C0;

considerMerging ← true

if considerMerging == true then
MergeCommunities(C0, Ci)

The three algorithms I introduced here follow this framework. The difference is just the imple-

mentation of the functionsCommunityAccept(υi) andMergeCommunities(C0, Ci), and we will

look at them in increasing order of complexity fromSIMPLE, toK-CLIQUE, to MODULARITY .

3.6.2 SIMPLE

CommunityAccept (υi) = true iff

|̥i ∩ C0|/|̥i| > λ

(whereλ is the merging threshold, which I will vary in this chapter tosee the differences of the

final communities detected). See Figure 3.14.

MergeCommunities(C0, Ci): if υi is added toC0, we will consider merging the two local

communitiesiff

|C0 ∩ Ci| > γ|C0 ∪ Ci|

See Figure 3.15.

As its name implies, this is a reallysimpleapproach. In essence, we admit a vertexυi into

our local communityC0 (even if it is not in the familiar set ofυ0) if most of its connec-

tion are to vertices that are in our local community already.And we merge the two local

communities if the main parts of them already overlap (See Figure. 3.15). Both functions

CommunityAccept(υi) andMergeCommunities(C0, Ci) preserve the intuition that there should

be more intra-community connections than inter-communityones.
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3.6.3 k-CLIQUE

CommunityAccept (υi) = true iff

|̥i ∩ C0| ≥ k − 1.

i.e. the familiar set, ̥i contains at leastk − 1 members of the local community,C0, (See

Figure 3.16).

MergeCommunities(C0, Ci): if υi is added toC0, we consider each vertexυj insideCi (the

local community ofυi), and ifCommunityAccept(υj) (its familiar set, ˜̥ j contains at leastk−1

members ofC0), υj is also added to the local communityC0, i.e. the admission criterion for
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Figure 3.16: Admission criteria fork-CLIQUE

eachυj is

| ˜̥ j ∩ C0| ≥ k − 1

This approach is based upon the concept ofk-clique communities [PDFV05], where each com-

munity is a union ofk-cliques(smaller complete, fully connected, subgraphs ofk nodes) that

can be reached from each other through a series ofadjacent k-cliques, where twok-cliques are

said to be adjacent if they sharek − 1 nodes.

3.6.4 MODULARITY

Clauset introduced the concept of Local Modularity [Cla05]for distributed community detec-

tion. The following are the relevant definitions (Figure 3.17):

Boundary Set: For a given vertexv0 and its local communityC0, the associated boundary set

B0 is defined as the subset of vertices inC0, whose members have edges connecting to one or

more vertices outsideC0, i.e.

B0 = {υi | (υi ∈ C0) and ((̥i \ C0) 6= ∅)}

Local Modularity: The local modularityR for a givenC0 with B0 is defined as

R0 =
I

|T |

whereT is the set of edges with one or more endpoints inB0, while I is the number of those

edges with both of their endpoints inC0. If B0 = ∅, R0 is defined to have value of1.

Each vertex can use Local Modularity as a measure of the sharpness of its local community

boundary, and the measure is independent of the size of the enclosed community.

CommunityAccept (υi) = true iff (Fi 6= ∅) and either

a) (̥i ⊆ C0 and B0 6= ∅) or
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b) ∆Ri
0 > 0 (the difference between the local modularity measure before and after addingυi to

C0 is +ve).

MergeCommunities(C0, Ci): the algorithm only considers adding the vertices in the setK :

{vk | there existj s.t.υj ∈ C0 ∩ Ci andvk ∈ ˜̥ j andvk ∈ Ci \ C0}

For eachvk ∈ K, it evaluates whether̥̃ k ⊆ C0. If this condition is satisfied, the corresponding

vk is added toC0. The rest of thevk are then considered in descending order of∆Rk
0 . Vertices

with a negative or zero contribution to∆R will not be added toC0, and the values of∆R are

re-evaluated after each addition toC0.
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Figure 3.18: Explanation of set K inMODULARITY

Figure 3.18 illustrates how and why set K is chosen. The shaded area in Figure 3.18(a) shows

the vertices in the setK. When considering merging parts of two communities together, one

first considers locating all the vertices that are common to the local communities of both vertices

(C0 ∩ Ci, shaded area in Figure 3.18(b)). Then we consider those vertices that are adjacent to

the set of vertices inC0 ∩Ci (shaded area in Figure 3.18(c)), which are more closely connected
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to the common vertices of the two local communities and hencesuitable for merging intoC0.

But since a portion of them are already inC0, and a portion of them are in neither of the local

communities, we only consider the set of vertices inK.

Both functionsCommunityAccept(υi) andMergeCommunities(C0, Ci) make sure that the ra-

tio of intra-community connections to inter-community ones would always increase for each

addition of a community member.

Clearly, theSIMPLEalgorithm requires less storage and less computation. Thek-CLIQUE algo-

rithm is in the middle andMODULARITY is the most demanding one - because of the need to

re-evaluate∆R in each iteration, hence inMergeCommunities(C0, Ci) only part of the commu-

nity (K) is considered to be merged, as a resource/performance tradeoff.

3.7 Evaluation of Distributed Detection

In this section, I evaluate the communities detected by the distributed methods against the cen-

tralised methods. In order to do the comparison, I need to first develop similarity measurements.

3.7.1 Similarity Measures

Newman [New04a] introduce a metric calledfraction of vertices correctly identifiedto evalu-

ate the communities detected against pre-known communities. According to the definition, the

largest set of vertices that are grouped together by the algorithm in each of the known commu-

nities is found first. If the algorithm puts two or more of these known communities in the same

set, then all vertices in those sets are considered incorrectly classified. Otherwise, they are con-

sidered correctly classified. All other vertices not in the largest sets are considered incorrectly

classified.

Another measurement metric is used in [DDDGA05] by Danonet al., which is callednor-

malised mutual informationmeasure. It is based on defining a confusion matrixN, where the

rows correspond to the ”real” communties, and the columns correspond to the ”found” commu-

nities. Each element ofN, Nij is the number of nodes in the real communityi that appear in the

found communityj. Thenormalised mutual informationis then defined as following:

NMI(A,B) =
−2

∑cA

i=1

∑cB

j=1 Nijlog(
NijN

Ni.N.j
)

∑cA

i=1 Ni.log(Ni.

N
) +

∑cB

j=1 N.jlog(
N.j

N
)

(3.7)

wherecA is the number of real communities,cB is the number of found communities,Ni. is the

sum over rowi of matrixNij andN.j is the sum over columnj.

I can adapt these two measurements to evaluate my distributed community detection algorithm

against its corresponding centralised method. However before moving forward, I need to con-

sider the fairness problem. Since, for distributed community detection, each node will detect
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the local communities to which it belongs, if a system hasN nodes, there would be at leastN

communities detected (i.e.cB ≥ N). Denote the number of real communities ascA as above.

If N ≫ cA, the evaluation ofcA againstcB would be unfair, especially if over weighted by

the big community. Also, considering that the network is a temporal graph and some nodes are

more popular than others, nodes belonging to the real community may not have the same local

view of the communities detected. Therefore we need to consider a modification to address this

problem. My approach is to choose the biggest detected community, move it to thecore com-

munitylist and then discard the communities detected by all the nodes included in it, and then

repeat this for the remaining biggest one on the list and continue until no more communities are

left. I then evaluatecA against thecore communitylist. The biggest communities are not nec-

essarily the best communities detected: they may contain a lot of redundancy so the selection

of the biggest communities does not necessarily favor my algorithms. This shrinking process

will remove the smaller groups of the overlapping communities, which may also penalise my

results.

Newman’s method is a little bit harsh; as he mentioned in his paper, there are cases in which one

might consider some of the vertices to have been identified correctly, and this method would

not. Also considering that for all three datasets, there aremany more single-node communities

than bigger communities, this will make the NMI measure tendtowards 1. Hence here I con-

sider another modified similarity measurement. Here I introduce similarity by using the classic

Jaccard index [Jac01] which was proposed by Jaccard over onehundred years ago to evaluate

the similarity of two communities.

σJaccard =
|Γi

⋂

Γj |

|Γi

⋃

Γj |
(3.8)

whereΓi is the members of communityi and|Γi| is the cardinality of the setΓi, that is equal to

the number of members in communityi. In this chapter, I will compare thecore communities

detected by distributed methods with the communities detected by centralised algorithms using

this similarity measurement.

3.7.2 Results of Detection

To evaluate the community detection algorithms, I replay the mobility traces of the three ex-

periments and emulate the gossiping of community information on each encounter. Here I only

evaluate the communities detected after the whole traces, which lasted 9 months forReality, 3

months forUCSDand 11 days forCambridge. As a first step I do not evaluate the time needs

for the communities to be well developed at the middle of the emulation.

Figure 3.19 shows the similarity between the communities detected by the distributedSIMPLE

method and thek-CLIQUE against the communities detected by the centralisedk-CLIQUE algo-

rithm with a threshold of 389k seconds for theRealitydataset, 78k seconds for theUCSD, and

36k seconds forCambridge. These threshold values for the centralised methods were selected
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Figure 3.19: Impact of Familiar Set threshold,k-CLIQUE and SIMPLE

following many trials and also by studying the nature of the group of experimental objects.

Some of them are found to agree with the real experimental groups, such as for theCambridge

data, the two groups detected correspond to the two main participant groups. Figure 3.19 also

shows the different similarity values with different familiar set thresholds. We can see that the

k-CLIQUE method shows better results most of time than theSIMPLE method. With a suitable

threshold, the distributed algorithms for bothSIMPLE andk-CLIQUE can reach around 80% of

the performance of the centralised algorithm. For theSIMPLE case, I use a merging thresh-

old, λ, of 0.6. I also find out that varying the merging threshold from 0.5 to 0.9 makes little

difference; whereas the Familiar Set threshold changes thesimilarity values quite significantly.

Figure 3.20 shows an example for theRealitydata using theSIMPLE approach.

Since we know the network is highly intermittently connected, the local community informa-

tion for each node within the same community may not be synchronised. I want to know how

different these local community views are. From theCore Communities, we can compare the

local community detected by each member in eachCore Communitywith its Core Community,

calculate the similarity values and then plot the distributions of all these similarity values. Fig-

ure 3.21 shows these distributions for the three datasets (they areReality, UCSDandCambridge

respectively) using distributedk-CLIQUE. We can see that for bothRealityandCambridge, the

local community views are quite similar to the selected largestCore Community. This would

be probably because of the relatively smaller dataset size and higher connectivity. And these
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two groups of nodes also agree with the two main groups of students participating in the ex-

periment.TheUCSDdata relies on users connecting to centralised access points instead of peer

contacts and hence is more sparse. In general, the local community views have bigger variation

when usingSIMPLE. Figure 3.22 gives an example of theRealitycase. Similar variations are

also observed in the other two datasets. And I also find out that there is no impact of the merging

threshold,λ (from 0.5 to 0.9) on the distribution if using the same Familiar Set threshold.
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Figure 3.23 also shows the comparisons ofMODULARITY andSIMPLE with centralised New-

manWNA [J.N04]. Since theMODULARITY and Newman methods both used modularity, it

is fairer to compare them than comparing with the centralised k-CLIQUE method. We can see

that in theRealitycase,MODULARITY has better performance thanSIMPLE with the same

threshold, and it has a best performance of around 80% similarity. TheSIMPLE approach also

generally has good performance with a 75% similarity for a suitable threshold setting. For

UCSD, the similarity values are in general low for both algorithms and this is also true for the

k-CLIQUE algorithm. For theCambridgedata, at high threshold values,MODULARITY be-

haves better thanSIMPLE and the other way round at low threshold values, but they bothreach

a maximum point above 80%.

I conclude this section with Table 3.2, which summarises thehighest similarity values calculated

by each distributed algorithm. ForSIMPLE, I show both its comparison with the centralised

k-CLIQUE (first) and the centralised Newman method (second). We can see that generally

MODULARITY andk-CLIQUE have slightly better accuracy (i.e. more similar to the centralised

methods) than theirSIMPLE counterpart. That is to be expected since they require more infor-

mation and calculation, especially as the computation complexity of MODULARITY is O(n4)

in the worst case, wheren is the size of the network explored so far. However, since a factor

of n2 is contributed by the evaluation of each∆R, which in reality is likely to be bounded

by O(k2) wherek is the average degree of a vertex in the graph, the worst case performance

is thusO(n2k2). Considering its computational and storage requirements,the performance of

SIMPLE is quite acceptable, so I would suggestSIMPLE, with O(n), for the mobile devices with

strong constraints on storage and computational complexity. If the mobile devices can afford

the storage for a local copy of the Familiar Set of their community members,k-CLIQUE would

be a good choice for its reasonably good similarity values and also quite low computational

complexity,O(n2) in the worst case.MODULARITY requires the most computational power

but it does not have significant better performance in these cases. This may be biased by the
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Figure 3.23: Impact of Familiar Set threshold,MODULARITY and SIMPLE

limitations of the experimental datasets, but I will not strongly recommend it at this moment.

Experimental dataset SIMPLE k-CLIQUE MODULARITY

Reality 0.79/0.76 0.87 0.82

UCSD 0.47/0.56 0.55 0.40

Cambridge 0.85/0.85 0.85 0.87

Table 3.2: Summary of best performance of the algorithms

3.7.3 Limitations

There are several limitations to my study in this chapter, and I want to point them out here:

• As a first study, I only evaluate the communities detected after the replaying of the whole

traces, but did not evaluate the communities at different stages of the emulation. Evolution

of the communities detected at different times could also bean interesting study topic.

• The Familiar Set threshold values I used in the emulations are trace-dependent and were

chosen based on the whole duration of a trace. In a real application, we may want to

specify them in more general terms such as number of hours or number of times per day,
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per week or per month. Here I just want to compare the performance of the distributed

algorithms with the centralised ones so I simply specify them in relation to the whole

experimental durations.

• I did not evaluate the detection of different categories of relationship in this chapter. In

real applications, however, the mobile devices should be able to detect the different cate-

gories of relationship in Figure 3.4 by specifying the Familiar Set thresholds for contact

durations and number of contacts.

• In the current version of the algorithms, I need to specify a static Familiar Set threshold,

but maybe in future versions more dynamic methods such as weight-averaging, which

dynamically choose the threshold by considering the average value of the weights over

the edges connecting all the neighbours, could be used to reduce manual configuration.

• I did not consideragingof the contacts at this moment, but we need to look into it in the

future. Some previous contacts may become irrelevant aftersome time, but which take up

storage and cause false-positive impact for detection, so good agingmechanisms about

contacts should be considered.

3.8 Conclusion and Future Work

I have applied Newman’sWNA andK-CLIQUE community detection to severalPSNsand found

the communities detected match well with real social communities. These two offline analysis

tools would be very useful for us to analyse and extract humaninteraction patterns from all

experimental datasets. There are a lot of community detection algorithms in the area of complex

networks; one key point is to pick the correct ones for a particular application. I believe that

there are other algorithms which can also serve the same purpose. But my most important

contribution here is opening a new aspect of mobility trace analysis that the research community

can follow and further improve and a lot of different research can be done based on it. For

example, we can use these detected communities to test a series of social-aware forwarding

algorithms, data sharing overlay design, and security policies in the future. In the later chapters,

I will evaluate the impact of the detected communities onPSNforwarding efficiency compared

with “oblivious” flooding or using randomly generated groups with the same size.

I also proposed three distributed community detection algorithms with different levels of com-

putational complexity and resource requirements. I evaluated them on three human mobility

experimental datasets with Bluetooth peer-to-peer and WiFi client-access point logging traces.

I discovered that the communities detected by the distributed algorithms can satisfactorily ap-

proximate the centralised algorithms which require the whole network topology. I also com-

pared the performance of these three algorithms and proposed a scenario in which each could

be used. These distributed algorithms are not part of offlinedata analysis but they provide the
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possibility for each mobile device to identify its local community and hence can be used for

online applications. To the best of my knowledge, this is thefirst work that uses mobile devices

to infer human communities.

In future, I would like to evaluate my algorithms on more mobility traces, such as the WiFi traces

from the Crawdad project [HKA04], and also some forthcomingiMote experiments to make a

more conclusive statement about the accuracy and application scenarios of these algorithms.

And I would also like to develop my studies further with regard to the limitations I listed in

section 3.7.3.



Chapter 4

How Small Labels Create Big

Improvements

Following up the mathematical and empirical analysis of “oblivious” forwarding algorithms in

Chapter 2, I want to start looking at using social context to improve forwarding efficiency in

this chapter. Society naturally divides into communities according to needs for cooperation

or selection. In sociology, the idea ofcorrelated interactionis that an organism of a given

type is be more likely to interact with another organism of a same type than with a randomly

chosen member of the population [Oka05]. If the correlated interaction concept applies, then

our intuition is that using this community information to influence forwarding paths may be

advantageous. In this chapter, I study the impact of affiliation labels onPSN forwarding. To

the best of my knowledge, this is the first empirical work in this area. This is a joint work

with my supervisor Prof. Jon Crowcroft. Dr. Meng-How Lim, Dr. James Scott, Dr. Augustin

Chaintreau, Richard Gass, Dr. Christophe Diot, and Dr Eiko Yoneki were also involved in the

organizing of this experiment.

4.1 Introduction

In Section 2.6, I have shown empirically that traditional naive multiple-copy-multiple-hop

(MCP) flooding schemes work well in dense environments such as academic conferences, and

provide fair performance in sparser settings in terms of delivery ratio and delay. However, in

terms of delivery cost, the naive approach is far from satisfactory, as it creates a lot of unwanted

traffic as a side-effect of the delivery scheme, and the overhead rapidly becomes unacceptable

in a mobile network characterized by resource scarcity, vulnerability, and contention.

In the research community, it has been a widely held belief that identifying community infor-

mation about recipients can help in selecting suitable forwarders, and reduce the delivery cost

compared to “oblivious” flooding. This is a reasonable intuition, since people in the same com-

munity are likely to meet regularly, and hence be appropriate forwarders for messages destined

81
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for other members of their community. However, to date as faras I am aware, there has been no

experimental evaluation of this belief, and no one knows whether it is valid or not.

I conducted a human mobility experiment during IEEE Infocom2006, with the participants

labeled according to their academic affiliations. After collecting 4 days of data during the con-

ference period, I replayed traces using an emulator, and discovered that a small label indicating

affiliation can indeed effectively reduce the delivery cost, without trading off much against de-

livery ratio. The intuition that simply identifying community can improve message delivery

turns out to be true even during a conference, where the people from different sub-communities

tend to mix together.

Inspired by the inter-contact time analysis, I also proposed an early model for temporal graphs

based on community and temporal attachment.

The rest of this chapter is arranged as follows. I first introduce related work in Section 4.2; then

followed by the “labeling” strategy in Section 4.3. In Section 4.4, I analyse the inter-contact

time within communities and between communities. I introduce the evaluation methodology

and present the results in Section 4.5 and Section 4.6 respectively. I also introduce a simple

model for temporal graphs with community topologies and power-law temporal attachment in

Section 4.7. Finally I give a short conclusion of the chapter.

4.2 Related Work

Forwarding strategies under intermittently connected mobile ad hoc networks have been ex-

plored by a number of research groups. I have presented an analytical foundation on the impact

of human mobility on the design of opportunistic forwardingalgorithms based on six real human

mobility traces from four different research groups in Chapter 2 (also see [CHC+06]). Lind-

grenet al. considered the community concepts for controlled flooding [LDS04]. They have the

assumption that nodes mainly remain inside their communityand sometimes visit others. To

route a message to a destination, a node may transfer that message to a node that belongs to

the same community as the destination. Their work provides agood theoretical hypothesis for

community-based routing, but there has not been any empirical evaluation. Musolesiet al. pro-

posed a community-based mobility model for mobile ad hoc research [MM06]. In [HCS+05],

we took a similar measurement of human mobility in a conference environment but community

issues have not been touched. In this chapter, I am looking atthe problem using an experimental

approach. Empirical results could be helpful for both modeling and theoretical work of other

research groups.
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4.3 Labeling Before Throwing out

The forwarding scheme I used here is called theLABEL strategy. We imagine that each node

has a label telling others about its affiliation/group, justlike the name badge in a conference.

The strategy chosen is exclusively to forward messages to the destination, or to next-hop nodes

belonging to the same group (same label) as the destination.The assumption I make here

is that people with same affiliation tend to meet more often than people outside the affilia-

tion, and hence can be good forwarders to relay messages to the other members in the same

affiliation/with the same label. This is similar to thecorrelated interactionconcept in sociol-

ogy [Oka05]. This strategy requires little information about each individual and is believed to

be easy to implement in real life, by just “tapping” (imaginewhen we use a small pen to hit on

the touch screen a PDA and write on it) mobile device and writing down the affiliation of the

owner, which is what we are usually required to input when we have a new PDA.

Here, I do not require a node to know all the other nodes with the same label. Two encounter

nodes only need to know whether they have the same label. Thisapproach is much more

scalable since each node only need to store its own label but not information about other nodes

with the same label. This is doable if there is a pre-agreed labeling scheme (e.g. affiliation1),

or I call it explicit community, which can be explicitly named. For some communities, which

cannot be explicitly named (implicity community2), each device can detect its own community

by using distributed community detection algorithms I haveintroduce in Chapter 3. In this

chapter, I will limit to studya priori affiliation groups, and leave all the detail discussion about

communities in the next chapter.

4.4 Analysis of Inter-contact Times

Before moving into the detailed performance evaluation ofLABEL , I want to first verify the

correlated interaction from the dataset witha priori group information. Inter-contact time dis-

tribution is a good indication for this relationship. For a given pair of nodes A and B, the

time-line can be divided into two regions, contact times andinter-contact times. The contact

times are when A and B are in range of one another, and could therefore have sent data if they

had wished to. Inter-contact time is the time elapsed between two successive contact periods

for a given pair of devices (see Section 2.4), hence the inter-contact time distribution simply

indicates the frequency of interaction. In last chapter (also [HCS+05]), I have shown that inter-

contact time follows a power-law distribution, the bigger that value of the power coefficient, the

more frequently the node pairs interact. In this work, I extend this to look at the inter-contact

distribution for all the nodes inside a group and also the inter-contact distribution between two

1All the Intel employees in the world share the same Intel label.
2For example, Bob usually hang out together with some friendsfrom his high school, some colleagues from

his company, and also his neighbour, but there is not an explicit label to describe this group.
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groups. I believe the power-law coefficient of these inter-group inter-contact time distributions,

if they are following a power-law, indicates the closeness of two groups.

Figure 4.1(a) shows a typical inter-contact time distribution for a pair of nodes in one commu-

nity, and a pair of nodes from different communities. We can see that the intra-community pair

has a higher power-law coefficient than the inter-communitypair; that is, node pairs in the same

community tend to meet more often. Figure 4.1(b) also shows the aggregated inter-contact time

distribution for a node with all the other nodes in its community, as well as for all other nodes

in another community; we can also observe a variation in the power-law coefficient. To avoid

the bias caused by a single node, I also calculate the aggregated inter-contact time distribution

for all the nodes within the same group and also the same distribution with all nodes outside the

group; the results are shown in Figure 4.2. We can see a significantly steeper slope for the intra-

community aggregated inter-contact distribution. This provides empirical evidence that people

from the same organisation tend to meet more often than people from different organisations.

This provides good hints to identify forwarders for messagedelivery.
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Figure 4.1: Comparison of inter-contact and aggregated inter-contact time for intra and inter
community nodes

Here I also want to introduce the concept of friendship communities [Dun98]. The University

of Cambridge’s Computer Laboratory researchers may be a friendly community towards Intel

Research Cambridge staff, since these two groups of people use the same building3 and have a

number of collaborations. Hence people from one group may begood forwarders for people in

the corresponding friendship group. In the experimental data, there are two groups from Paris,

and I want to look at whether they have a closer relationship when compared to other groups,

based on the inter-contact time distribution. As shown in Figure 4.3, we can see that within the

same group, the power-law coefficient is the largest, and next largest with the nodes in a friend-

3We do not share a building anymore!!
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Figure 4.2: The aggregated inter-contact time distributions for all nodes inside a same group

and also with all other nodes outside the group.

ship group, and lowest for an arbitrary group. Although the difference is not very significant,

we can still observe it. Later, I will also look at how helpfulthis friendship community can be

when used explicitly to forward messages.
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4.5 Evaluation Methodology

4.5.1 HaggleSim Emulator

In order to evaluate different forwarding algorithms, I developed an emulator calledHaggleSim,

which can replay the mobility traces collected and emulate different forwarding strategies on

every contact event. This emulator is driven by contact events. The original trace files are

divided into discrete sequential contact events, and fed into the emulator as inputs. The event

granularity depends on our choice of balance between replayspeed, and the degree of accuracy

desired. In all the simulations in this work, I divided the traces into discrete contact events with

granularity of 100 seconds. I analyse the successful delivery rate, the delivery cost, the delay

distribution, the hop count distribution for all successful deliveries, and the popularity of a node

as a relay based on the log files produced by the emulator.

Table 4.1 shows a snapshot of my emulation source file. My simulator reads the file line by

line, treating each line as a discrete encounter event, and makes a forwarding decision on this

encounter based on the forwarding algorithm under study. Aswe can see from the source file,

some events happen at the same time stamp, and should be treated as simultaneous. Just reading

the file line by line artificially imposes an order on events, so instead I keep contacts in a buffer

while reading multiple lines ahead: if the next event happens at the same time, and there would

be an exchange of messages between the nodes referenced in the line due to the forwarding

strategy, I will re-read the contacts in the buffer, and apply the same forwarding strategy to the

newly exchanged messages. This removes the artificial ordering.

Node Node Time Stamp

6 24 14991

25 11 14991

25 240 14991

24 240 14991

6 240 14991

35 511 14991

24 11 14991

6 24 15001

25 11 15001

25 240 15001

Table 4.1: Snapshot of Simulation Source File
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4.5.2 Simulation Parameters

There are three parameters I used in my simulation to achievecontrolled flooding inMCP strat-

egy.4

• Number of copies (m): The maximum number of duplicates of each message created at

each node.

• Number of hops (Hop-TTL): The maximum number of hops, counted from the source, that

a message copy can travel before reaching the destination; this is similar toTTL value in

the Internet.

• TimeTTL: The maximum time a message can stay in the system after its creation. This is

to prevent expired messages from further circulation.

4.5.3 Performance Metrics

For all the simulations I have conducted for this work, I havemeasured the following metrics:

• Delivery ratio: The proportion of messages that have been delivered out of the total num-

ber of messages created.

• Half-life delivery timeTTL: This is the timeTTL value that would allow half of the mes-

sages created to be delivered; in other words it is equivalent to the delay time that half

of the created messages experienced. It measures how fast and efficient a forwarding

strategy is for message delivery.

• Hop-count-distribution for deliveries: The distribution of the number of hops needed

for all the deliveries. This metric gives some idea of how a forwarding strategy picks

forwarders. In theLABEL strategy, it reveals the social distance between sources and

destinations.

• Delivery cost: For cost, I measure the total number of medium accesses; that is the total

number of messages (includes duplicates) transmitted across the air. To normalise this, I

divide it by the total number of unique messages created.5

4Same as the evaluation ofMCP in Section 2.6
5Packet loss in the wireless environment will add more cost, but I will not look at it in this work, as I have

explained in Chapter 2.
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4.5.4 Simulation Scenario

In order to study exclusively the effect of community on forwarding, I created the following

scenario: all the seventy-seven nodes6 create a total of 1000 messages, destined only to the

thirty-four nodes belonging to the four groups; the messagecreation times are uniformly dis-

tributed throughout the experimental duration.

In order to compare the performance of the labeling strategywith a naive strategy, I run an

emulation of theMCP strategy. To ensure that the performance improvement is notdue to

arbitrary limited number of forwarders, for every round of simulation, I created four random

groups of same group sizes as the original groups but with nodes randomly selected from all

the seventy-seven nodes. I refer to the labeling strategy and the control experiment asLABEL

andCONTROLrespectively, in my analysis. To achieve statistical fairness, I run the emulation

20 times with different traffic patterns.

4.6 Results and Analysis

In this section, I compare the performance of four strategies, MCP, LABEL , CONTROL, and

WAIT (wait-and-forward); this entails waiting until the source of a message has direct contact

with the destination. In this simulation I used 4-copy-4-hop for theMCPscheme which has been

shown by experience (see Section 2.6) to be the best naive scheme in this kind of conference

scenario in terms of delivery and cost.
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Figure 4.4: Comparison of delivery ratio and cost of different strategies

In Figure 4.4(a) we can see that, as expected,LABEL has a delivery ratio betweenMCP and

6Because of hardware problems, three out of eighty did not yield any data.
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WAIT, and the trend is for it to approach closer to the performance ofMCP, as the allowed time

TTL of the messages increases.7 In terms of cost, in Figure 4.4(b) we can see thatMCP costs

much more thanLABEL , especially when the timeTTL is increased up to 1 day, whereMCPhas

less than a 10% improvement overLABEL , but it has around 6 times higher cost. Of course,

WAIT has the lowest cost: since it is during a conference, it does not need to wait too long

to meet the destination directly, hence the delivery ratio is not too low. Figure 4.5 shows the

number of other nodes met directly by each node during the experimental period. It shows that

almost every node has the chance to meet most of the other nodes during that period. However,

if we look at the half-life delivery value, we can see that thehalf-life delivery is 3 hours for

MCP, 9 hours forLABEL and around 1 day for WAIT. In other words, if you can tolerate a1

day delay, you could use the WAIT strategy, otherwiseLABEL would perform the best in terms

of delivery ratio, delay and cost.
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Figure 4.5: The number of other nodes met directly by each node during the experimental

period.

The randomly generated groups scenarioCONTROL is around 5% worse in terms of average

delivery thanLABEL in many cases, but it has a wider confidence interval thanLABEL . (I also

plotted the maximum and minimum bounds. And I find out that theminimum bounds ofCON-

TROL are usually around 10% lower than the average value of theLABEL strategy.) This means

that a badly generated combination of groups would affect the delivery quite significantly. Con-

sidering that 34 out of the 78 nodes have a community relationship, it is not difficult for the

random groups generated to consist of members which belong to real affiliation groups. Fur-

thermore, considering that during a conference, people from different research groups often mix

together, this kind of performance is reasonable.

Figure 4.6 shows further the improvement ofLABEL ’s performance compared toMCP in terms

of delivery against cost. Each point represents a differenttime TTL value, and we can see that

as we vary this, the delivery almost varies linearly with thecost. The anomaly after the cost

is equal to 22 for theMCP case, where the slope slightly decreases is due to the fact that the

system is going into saturation, and further increases in cost bring slower increases in delivery.

7Readers can observe that around 50% of the messages can be delivered within 3 hours using MCP. Although

I have shown in Chapter 2 that for power-law coefficient,α, small than 1, expected delay is a day or even longer

for all the datasets, if a system does not require expected delay guarantee for all packets (like this example),PSN
is still possible.
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ClearlyLABEL has a much steeper slope thanMCP: this means that this strategy is much more

cost effective.
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Figure 4.6: The Delivery-Cost Graph forMCP, LABEL andCONTROLstrategies.

In Figure 4.7, I also look at the hop distribution, which is the distribution of the number of

hops required for all the delivered messages. In this case, Iset the timeTTL to 3 hours as

I have done in Section 2.6. Thex-axis shows the number of hops and they-axis shows the

probability for a message to be delivered with at least that number of hops. Here I show the

maximum and minimum bounds as well. For this value of timeTTL, an maximum of 50%

of the total messages created can be delivered (they-value at 1-hop). ForMCP, half of the

messages delivered traversed 4 hops (they-value at 4-hop minus they-value at 5-hop), because

MCPsends out messages on a blind first-come-first-send approach. But instead, forLABEL , the

delivery ratio is almost the same for 1-hop and 4-hop, and slightly bigger in the 3-hop case. The

direct contact case (1 hop) only helps to deliver less than 10% of the messages; much of the

delivery relies on intermediate social relays.

In order to ascertain whether the friendship group concept is helpful for message delivery, I ran

another series of simulations. In these, members of different friendship groups are allowed to

act as relays for each other. I assigned the two groups from Paris to be friendship-groups of each

other, and they help to relay messages. The result I expectedto see is that the use of friendship

groups can help to improve the delivery ratio, without too much increase in the delivery cost.

A controlled experiment is also done, by using a random groupchosen as a friendship group,

rather than one with a known affiliation.

We can see from Figure 4.8(a) and Figure 4.8(b) that the friendship group did indeed help to

improve delivery, with only slightly increased cost, Also,as expected, the randomly generated

friendship group just increased the cost, without any improvement in delivery. It is difficult

to study group and friendship group behavior in a conference, since the people are often mix-

ing promiscuously: that is one of the purposes of a conference; but we can still make some
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Figure 4.8: Comparison of delivery ratio and cost on different strategies, with friendship groups.

observations about the correlation we see. I further believe that the techniques and metrics I

have developed here can be used for research on friendship groups with more easily specified

boundaries.

4.7 Modeling as Temporal Graphs

As a priori measurement work reported in Chapter 2 and Section 4.4, inter-contact time of

humans follows a power-law distribution with a power-law coefficient smaller than1. In this

section, I introduce howPSNscan be modeled as temporal graphs with power-law distributed

inter-contact time and also with nodes forming a community structure, as described in Chap-
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ter 3. There is still no empirical proof about the topology ofa PSN, but usually communica-

tion networks are modeled as Erdős-Rényi random graphs [Bol01] (ER model) or scale-free

graphs [CJW06]. Here I aim to model the underlying topology of PSNsby both of these two

kinds of graphs. This section is not about forwarding, but anidea by combining community

detection in the previous chapter and inter-contact time analysis in this chapter.

The modeling ofPSNshere is divided into three phases, 1) the topological attachment phase, 2)

the community detection phase, and 3) the temporal attachment phase. In the topological attach-

ment phase, the topology of the graph is created by either theER model or the Barabasi-Albert

model [AB02] with the clustering size controlled by a linking probability. In the community

detection phase, the graph created in phase one is split intocommunities. (some communities

may only contain a single node.) In the third phase, inter-contact time distributions with differ-

ent power-law coefficients are assigned to node-pairs, higher for within-community and lower

for between communities.

4.7.1 Topological Attachment Phase

On Erdős-Rényi graphs, a network is characterised by two parameters: the size N and the

link probability p. The mean degree isz = p(N-1). The percolation transition takes place at

p = pc ≡ 1/N, wherep is the probability that two vertices are connected andN is the total

number of vertices in the graph. The appearance of a giant component, which is also referred

to as the percolating component, results in a dramatic change in the overall topological features

of the graph.

In scale-free networks, some nodes act as ”highly connectedhubs” (high degree), although most

nodes are of low degree. Scale-free networks’ structure anddynamics are independent of the

system’s size N, the number of nodes the system has. Their most distinguishing characteristic

is that their degree distribution follows a power-law relationship, where the coefficientγ may

vary approximately from 2 to 3 for most real networks. To model scale-free networks, I use the

Barabasi-Albert model. The algorithm of the Barabasi-Albert model is the following:

(1) Growth: Starting with a small number (m0) of nodes, at every time step, a new node is added

with m(≪ m0) edges that link the new node tomdifferent nodes already present in the system.

(2) Preferential attachment: When choosing the nodes to which the new node connects, the

probabilityΠ that a new node will be connected to nodei depends on the degreeki of nodei is

assumed, such that

Π(ki) =
ki

∑

j kj

, (4.1)

After t time steps this procedure results in a network withN = t + m0 nodes andmt edges.

The first step of building up the temporal graph is to build up the topological attachment. We

can control the cluster sizes by varying the linking probability p. Whenp < pc, the cluster size
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decays exponentially for large s:

Pp(|C| = s) ∼ e−α(p)s : s→∞, (4.2)

whereα(p)→∞ asp→ 0 andα(pc)=0. Whenp > pc, the cluster sizePp(|C| = s) follows

a stretch exponential,e−β(p)s(d−1)/d
, whered is the dimension of the lattice, but this dependence

also vanishes asd → ∞. By using these percolation thresholds, we can have a good reference

to control the cluster sizes of the graphs we created.

4.7.2 Community Detection Phase

The second phase is to run the community detection algorithmto split the graphs from the

previous stages into communities. I have tested the algorithm on 220 random graphs of 1000

vertices. The percolation threshold of a random graph of 1000 vertices is1/1000 = 0.001. I

use11 different linking probabilities, ranging from0.0004 to 0.003 so we see the change before

and after the percolation threshold, and for each linking probability I create 20 topologies.

I measured the number of communities (num), maximum community size (Smax), average

community size without counting the size-2 community (Swo2), and average community size

including the size-2 community (Swi2)for each graph; Figure 4.9(a) and 4.9(b) summarise all

the results.
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Figure 4.9:num(left) andSmax(right) againstPlink

We can see thatSmax increases almost linearly with the linking probability (Plink). This tells us

that in order to increase the maximum community size of the population, we can just increase

the linking probability. The number of communities,num, first increases with increasingPlink

until a maximum and then decreases withPlink. WhenPlink is very low (e.g. 0.0004), the

network created is very sparse and more nodes are not connected to any other nodes, and when

Plink increases, the network becomes more and more connected and hence more clusters form.

WhenPlink increases to a certain value, more big clusters form and hence fewer communities.

The average community size increases slowly and linearly until 0.001 and increases more

rapidly after this threshold. This observation is similar for bothSwo2 andSwi2. And we can
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Figure 4.10:Swi2(left) andSwo2(right) againstPlink

also see thatSwo2 is quite different fromSwi2 until Plink = 0.002. This indicates that quite a

significant amount of communities are size-2 communities. These graphs give us some guide-

lines on how to use the linking probability to estimate the average community size, the number

of communities and also maximum community size of the graphsto be created, and also give

us some information about the working performance of this community detection algorithm.

Because this is not a main focus of the dissertation, I will leave the community detection of

random graphs with higher linking probability and scale-free graphs as future work. After this

phase, we can move to create the temporal attachment for the node pairs.

4.7.3 Temporal Attachment Phase

As measured in [CHC+06] and [HCS+05], the inter-contact time of a node pair follows a

power-law distribution. Here I will show empirically that the power-law coefficients are quite

different for node pairs within communities and between communities. Figure 4.11 shows

the inter-contact time distribution extracted from a typical node with nodes within the same

community and also nodes in another community in theCambridgedataset. The two graphs

contain the same number of node pairs. We can see that for the within-community case, the

inter-contact time between800 seconds and10000 seconds can be approximated by a power-

law distribution with power-law coefficient varying betweenαlow andαup. We can also see from

the right figure that the number of contacts significantly decreases between communities. This

results in many discrete steps. We also observed fewer linesin the between-community figure

even though they contain the same number of node pairs. This is because some nodes have no

contacts with that node. Similar observations for within-community and between-community

inter-contact distributions are also found for other node pairs in the same dataset and also other

datasets. This gives us hints on how to model the temporal attachment of the nodes.

After the above community detection phase, the random or scale-free graphs generated are

split into communities. Then I assign a series of inter-contact times for each node pair. For

a within community pair, the power-law coefficient of its inter-contact time distribution,α, is

picked uniformly between a predefined upper boundαup andαlow, that isαlow ≤ α ≤ αup.

And for node pairs between communities and also for nodes notbelonging to communities,
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Figure 4.11: Inter-contact distribution, within group (left) and between group (right),Cambridge

their power-law coefficients of inter-contact time distribution are picked uniformly between 0

and(αup + αlow)/2. Here all the node pairs I mentioned above are all connected nodes on the

random graphs created in the topological attachment phase,so they should have at least one

contact. After this phase, the temporal graphs are ready to use.

The limitation of my model is that it is contact-based and does not incorporate spatial infor-

mation, so it cannot be used to test spatial-based algorithms i.e. landmark routing. But it did

incorporate the two main features of human interaction measured in the literature, structurally

local cohesive and temporal preferential attachment, and will be a useful step for better mobil-

ity modeling. Instead of random graphs and power-law graphs, I want to use real online social

network topologies at the topological attachment phase in the near future, which may reflect

better real human community structures [MMG+07]. Although this section is not on the main

track of forwarding algorithm design, it provides early ideas on modeling and generating hu-

man mobility traces, which can be used to test forwarding algorithms. Hence it is related and I

include it here for the readers’ interest.

4.8 Conclusions

The addition of even a small amount of state information, i.e. in my experiments an affilia-

tion label used to choose nodes preferentially, is shown to bring significant improvement in

forwarding performance over oblivious or naive forwardingalgorithms inPSN. This is the first

empirical result of evaluating groups witha priori information. One experimental dataset may

not be able to draw us a very general conclusion, but this is all I have with a priori labeling.

One way to further confirm this result is to evaluate it on moreexperimental datasets with the

communities detected by the algorithms in Chapter 3.

Another problem with the simpleLABEL is that the source needs to wait until the community

members of the destination or the destination are at one-hopdistance from itself to start the

forwarding. This may be not acceptable in many situations, since it may happen that the sender

will never be in reach of a member of the community of the message recipient. We need to
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consider more efficient ways of moving the messages away fromthe source so we can combine

several ways together to improve the overall performance. In the next chapter, I look into these

two problems.



Chapter 5

Social Based Forwarding in Small World

DTNs

In this paper I seek to understand human social context at multiple levels of detail and use it

in the design of forwarding algorithms for Pocket Switched Networks (PSNs). From human

mobility traces taken from the real world, I discover the heterogeneity of human interaction,

including communities and hubs. Society naturally dividesinto communities, and individuals

have varying popularity. I propose a social based forwarding algorithm,BUBBLE, which is

shown empirically to improve forwarding efficiency significantly. This is a follow-up chap-

ter based on the community detection methodologies in Chapter 3 and theLABEL strategy in

Chapter 4.

5.1 Introduction

Thefirst generation of human network models were probably the Erdős-Rényi random graphs

[Bol01]. More recently, heterogeneity has been introducedinto models through the use of

power-law and small-world graphs, especially in analysis of the AS-level of the Internet [CJMW05]

[CJW06]. This is thesecondgeneration of modeling. It is well known that some nodes may be

more highly connected to each other than to the rest of the network. The set of such nodes are

usually called clusters, communities, cohesive groups or modules. Many different approaches to

community detection in complex networks have been proposedsuch asK-CLIQUE [PDFV05],

betweenness [NG04], modularity [New06] and more recently methods based on information

theory [RB06b] and statistical mechanics [RB06a]. Other methods can be found in survey pa-

pers [New04b] [DDDGA05]. Community detection can help us understand the local structure

in mobility traces, and therefore help us design good strategies for information dissemination.

It may be that communities detected from mobility data do notactually match well to real social

communities, but still help with improved forwarding.1

1I have found out that actually they match quite well in Chapter 3.
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The first goal of this chapter is to move to a third generation of human mobility models, under-

standing heterogeneity at multiple levels of detail.

Our previous work [CHC+06] (Chapter 2) established inter-contact intervals, and contact du-

rations for a wide range of typical human mobility patterns and for a variety of today’s radio

devices. Critically, it was shown that stateless forwarding schemes would not provide a bounded

expected mean delivery latency across such systems. On the other hand, flooding packets has

a very high cost, not just in link-utilisation, but for otherresources such as node storage and

battery life, which are likely to be highly valued by users.

The second goal of this chapter is to devise efficient forwarding algorithms for PSNs which

take advantage of botha priori and learned knowledge of the structure of human mobility, to

provide improved performance trade-of between delivery probability, latency and cost.

In this chapter, I focus on two specific aspects of society: community and centrality.Com-

munity is an important attribute of PSNs. Cooperation binds, but also divides human society

into communities. Human society is structured. Within a community, some people are more

popular, and interact with more people than others (i.e.have highcentrality); we call them hubs.

Popularity ranking is one aspect of the population. As I haveintroduced the correlated inter-

action in the last chapter, an organism of a given type is morelikely to interact with another

organism of the same type than with a randomly chosen member of the population [Oka05].

This correlated interaction concept also applies to human,so we can exploit this kind of com-

munity information to select forwarding paths. To date, though, there have been few results to

support this conjecture that I am aware of, except my very preliminary analysis on the use of

as users’ affiliation [HC07]. Betweenness centrality measures the number of times a node falls

on the shortest path between two other nodes [Fre77]. This concept is also valid in a temporal

network. In aPSN, it can represent the importance of a node for relaying traffic for others in the

system. Hence, I will look at whether hierarchical search works with this centrality metric, and

how to acquire the metric in a practical, decentralised way.

I evaluate the impact of community and centrality on forwarding and propose a hybrid algo-

rithm, BUBBLE, that uses both. I demonstrate a significant improvement in forwarding effi-

ciency. I focus on empirical analysis; I do not consider abstracting a mathematical model in this

work, but evaluate the forwarding schemes directly on the mobility traces.

There are five specific contributions in this chapter that progress towards my two top-level

goals. First, I explore human heterogeneity in the datasets(Section 5.2). Second, I show em-

pirically that identifying nodes according to their centrality or ranking can improve delivery

cost-effectiveness over a greedy forwarding approach (Section 5.4). Third, I demonstrate the

limitations of theLABEL algorithm (introduced in Chapter 4) of solely using community in-

formation (Section 5.5). Fourth, I combine community and centrality together, making use of

both local and global structures. This reduces the dead-endeffect caused by global ranking, by

forming a hybrid forwarding strategy,BUBBLE, which improves over the delivery performance

of naive multiple-copy-multiple-hop (MCP) flooding schemes andPROPHET[LDS04], but with
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much lower cost (Section 5.6). Finally, I use average unit-time degree to approximate centrality,

and show that this achieves nearly the same performance as greedy ranking (Section 5.7).

5.2 On Human Heterogeneity

The human heterogenous structures I want to explore are community (heterogeneity in cohe-

siveness) and hubs (heterogeneity in centrality). Cohesiveness indicates the local clustering and

centrality identifies the importance of the role of a node in the network.

5.2.1 Experimental Datasets

I use experimental datasets gathered by my for a period of 2 years referred to asHong Kong,

Cambridge2, Infocom05, Infocom06, and one other dataset from the MIT Reality Mining Project [EP06],

referred to asReality. Previously the characteristics of these datasets such as inter-contact and

contact distribution, have been explored in several studies [CHC+06] [HCS+05] [LLS+06]

and also Chapter 2 of this thesis, to which I refer the reader for further background information.

5.2.2 Heterogeneity in Cohesiveness

As I studied in Chapter 3, the participants among all these experiments form local clusters or

community structures. This community structure is an important characteristic to be considered

in human mobility modeling, forwarding algorithms, and applications to design forPSNs. In

Chapter 4, I have done an early study on using affiliation information to improve forwarding

efficiency in the conference scenario. In this chapter, I will verify it in different environments

and hence to draw more general conclusions.

There are two features about human communities to emphasisehere. One is the overlapping

characteristic and the other is the hierarchical characteristic. As I analysed the data usingK-

CLIQUE community detection, I found out that some of the communities overlap each other.

One person may belong to multiple communities, and bridge data or epidemics from one com-

munity to another community. So it is important to consider and identify this kind of bridge

node in algorithms. Also when we increased the threshold values for the detection criteria,

we observed the shrinking in the community sizes and some bigcommunities further split into

smaller stand alone communities. This is the hierarchical nature of human communities. I will

show how I can use these two features in my forwarding design in the later sections.

2Here,Cambridge, I refer toCambridge05in Section 2.3.
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5.2.3 Heterogeneity in Centrality

In many mobility models such as random way point, nodes are assumed, explicitly or implicitly,

to have homogeneous speed distributions, importance and popularity. My intuition is that the

last two assumptions, at least, are not true. People have different levels of popularity: salesmen

and politicians meet customers frequently, whereas computer scientists may only meet a few

of their colleagues once a year. Homogeneity might favour different forwarding strategies for

PSNs. In contrast, I want to employ heterogeneous popularity to help design more efficient

forwarding strategies: I prefer to choose popular hubs as relays rather than unpopular ones. To

date I am not aware of any empirical evidence for using human popularity or node centrality for

information dissemination in mobile networks.

A temporal network is a kind of weighted network. The centrality measure in traditional

weighted networks may not work here since the edges are not necessarily concurrent (i.e. the

network is dynamic and edges are temporal-dependent). Hence we need a different way to

calculate the centrality of each node in the system. My approach is as follows:

1. Carry out a large number of emulations of unlimited flooding with different uniformly

distributed traffic patterns created using theHaggleSimemulator.

2. Count the number of times a node acts as a relay for other nodes on all the shortest delay

deliveries. Here the shortest delay delivery refers to the case when the same message is

delivered to the destination through different paths, where I only count the delivery with

the shortest delay.

I call this number calculated above thebetweenness centralityof this node in this temporal

graph3. Of course, it can be normalised to the highest value found. Here I use unlimited

flooding since it can explore the largest range of delivery alternatives with the shortest delay.

This definition captures the spirit of Freeman centrality [Fre77].

Initially, I only consider the homogeneous communication pattern, in the sense that every des-

tination is equally likely, and I do not weight the traffic matrix by locality. I then calculate the

global centrality value for the whole homogeneous system. Later, I will analyse the heteroge-

neous system (Section 5.6).

Figure 5.1 shows the number of times a node falling on the shortest paths between all other

node pairs. We can simply treat this as the centrality of a node in the system. I observed a very

wide heterogeneity in each experiment. This clearly shows that there is a small number of nodes

which have extremely high relaying ability , and a large number of nodes have moderate or low

centrality values, across all experiments. One interesting point from the HK data is that the node

3I have calculated the weighted node centrality for each node, but found out that the weighted centrality is not

well correlated to the centrality on the temporal graph. Nodes having high static weighted centrality may have low

temporal centrality.
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Figure 5.1: Number of times a node as relays for others on fourdatasets.

showing highest delivery power in the figure is actually an external node. This node could be

some popular hub for the whole city, i.e.postman or a newspaper man in a popular underground

station, which relayed a certain amount of cross city traffic. The 30th, 70th percentiles and the

means of normalised individual node centrality are shown inTable 5.1 and the distributions are

show in Figure 5.2.

Experimental dataset 30th percentile Mean 70th percentile

Cambridge 0.052 0.220 0.194

Reality 0.005 0.070 0.050

Infocom06 0.121 0.188 0.221

Hong Kong 0.000 0.017 0.000

Table 5.1: Statistics about normalised node centrality in 4experiments

5.3 Interaction and Forwarding

In the first half of this chapter and in Chapter 3, I have shown the existence of heterogeneity at

the level of individuals and groups, in all the mobility traces. This motivates us to consider a

new heterogeneous model of human interaction and mobility.
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Figure 5.2: Distribution of normalised node centrality on four datasets.

Categories of human contact patternsHuman relationships can be modeled by using corre-

lation of contact duration and number of contacts. I defined four types of human relation-

ship based on the correlation of contact duration and numberof contacts (Section 3.3).

Cliques and Community I explored the community structures inside different social environ-

ments, and found these community structures match quite well with the real underlying

social structures (Section 3.4 and 3.5).

Popularity Ranking We shall see that popular hubs are as useful in thePSNcontext as they

are in the wireline Internet and in the Web.

I also provide the details of the statistics of interactionsfor the experiments (see Chapter 3) so

that they can be used by other researchers in future modeling, or to bootstrap larger experiments

of composites of these.

From Section 5.4 to Section 5.7, I look at how can we use this information to make smart for-

warding decisions. The following three pre-existing schemes provide lower and upper bounds

in terms of cost and delivery success. All of these schemes are inefficient because they assume a

homogeneous environment. If the environment is homogeneous then every node isstatistically

equivalent(i.e. every node has the same likelihood of delivering the messages to the destina-

tion). As I showed in the first half of this chapter, the environments and nodes are diverse,

and hence all these naive schemes are doomed to have poor performance. We need to design

algorithms which make use of this rich heterogeneity.
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- WAIT Hold onto a message until the sender encounters the recipient directly, which represents

the lower bound for delivery and cost.

- FLOOD Messages are flooded throughout the entire system, which represents the upper bound

for delivery and cost.

- MCP Multiple-Copy-Multiple-Hop. Multiple Copies are sent subject to a time-to-live hop

count limit on the propagation of messages. By exhaustive emulations, the 4-copy-4-hop

MCP scheme is found to be the most cost-effective scheme in termsof delivery ratio and

cost for all naive schemes among all the datasets except theHongKongdata (see also

Section 2.6). Hence for fair comparison, I would like to evaluate my algorithms against

the 4-copy-4-hopMCP scheme in most of the cases.

The Mobile network has a dual nature: it is both a physical network and at the same time it

is also a social network. A node in the network is a mobile device, and also associated with a

mobile human.

Figure 5.3 shows the design space for the forwarding algorithms in this chapter. The vertical

axis represents the explicit social structure, that is facets of nodes that can specifically identified

such as affiliation, organisation or other social context. This is the social or human dimension.

The two horizontal axes represent the network structural plane, which can be inferred purely

from observed contact patterns. The Structure-in-Cohesive Group axis indicates the use of

localised cohesive structure, and the Structure-in-Degree axis indicates the use of hub structure.

These are observable physical characteristics. In my design framework, is not necessary that

physical dimensions are orthogonal to the social dimension, but since they are represent two

different design parameters, I would like to separate them.The design philosophy here is to

consider both the social and physical aspects of mobility.

I introduce four forwarding algorithms in this chapter, namely LABEL , RANK, DEGREE, and

BUBBLE.

LABEL Explicit labels are used to identify forwarding nodes that belong to the same organi-

sation. Optimisations are examined by comparing label of the potential relay nodes and

the label of the destination node.This is in the human dimension, although an analogous

version can be done by labeling ak-clique community in the physical domain.

RANK This is analogous to the degree of a node in a fixed network; I use a modified ranking

scheme, namely the node centrality in a temporal network. A message is forwarded to

nodes with higher centrality values than the current node. It is based on observations in

the network plane, although it also reflects the hub popularity in the human dimension.

DEGREE A heuristic based on the observed average of the degree of a node over some longer

interval. Either the last interval window (S-Window), or a long-term cumulative esti-

mate, (C-Window) is used to provide a fully decentralised approximation for each node’s

centrality, and then that is used to select forwarding nodes.
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Figure 5.3: Design space for forwarding algorithms.

BUBBLE The BUBBLE family of protocols combines the observed hierarchy of centrality of

nodes with explicit labels, to decide on the best forwardingnodes.BUBBLE is an exam-

ple algorithm which uses information from both human aspects and also the physically

observable aspects of mobility.

BUBBLE is a combination ofLABEL andRANK. It usesRANK to spread out the messages and

usesLABEL to identify the destination community. For this algorithm,I make two assumptions:

• Each node belongs to at least one community. Here I allow single node communities to

exist.

• Each node has a global ranking (i.e. global centrality) in the whole system and also a

local ranking within its community. It may belong to multiple communities and hence

may have multiple local rankings.

In the following sections, I will show how can we make use of these different metrics to improve

forwarding performance in a heterogeneous system and also when they will fail.

5.4 Greedy Ranking Algorithm

The third contribution of this chapter is to modify the greedy ranking search scheme over power-

law networks to apply to temporal graphs, and evaluate the resulting algorithm.
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5.4.1 The Power of Greedy Ranking

Here I use a similar greedy strategy to the one Adamicet al. introduced in [AHLP01]. APSN

is not a static network like the Internet: we do not know when alocal maximum is reached

since the next encounter is unexpected. We cannot employ precisely the same strategy as they

propose. Here I assume each node knows only its own ranking4 and the rankings of those it

encounters, but does not know the ranking of other nodes it does not encounter, and does not

know which node has the highest rank in the system. My strategy, which I call RANK, is very

simple: we keep pushing traffic on all paths to nodes which have a higher ranking than the

current node, until either the destination is reached, or the messages expire.

If a system is small enough, the global ranking of each node isactually the local ranking. If

we consider only the Systems Research group (around 40 people), a subset of the Cambridge

Computer Laboratory (235 people), this is the ranking of each node inside the group. If we

consider the whole Computer Laboratory, we are consideringa larger system of many groups,

but they all use the same building. A homogeneous ranking canstill work. But when we

consider the whole city of Cambridge, a homogeneous rankingsystem would exclude many

small scale structures. In this section, I show that in relatively small and homogeneous systems,

a simple greedy ranking algorithm can achieve good performance.

(a) (b)

Figure 5.4: Comparison of delivery ratio (left) and cost (right) of MCP andRANK on 4 copies

and 4 hops case (Reality).

Figure 5.4(a) shows that the simple greedy ranking performsalmost as well asMCP for deliv-

ery.5 Figure 5.4(b) also shows that the cost is only around 40% thatof MCP, which represents a

marked improvement.

Hierarchical organisation is a common feature of many complex systems. The defining feature

of a hierarchical organisation is the existence of a hierarchical path connecting any two of its

4A node can know its own ranking from a central server or using distributed approximations, which I will show

in Section 5.7.
5In general, most of the deliveries experience a large latency in theRealitydataset (e.g. take up to one week to

deliver 50% of the created messages). The reason is that thisdataset is quite sparse. Some participants may switch

off their Bluetooth radios sometimes to save power of their phones.
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nodes. Trusinaet al. [TMMS04] address how to detect and measure the extent of the hierarchy

manifested in the topology of a given complex network. They defined the hierarchical path

based on node degrees. A path between two nodes in a network iscalled hierarchical if it

consists of anup pathwhere one is allowed to step from nodei to nodej only if their degrees

ki, kj satisfyki ≤ kj, followed by adown pathwhere only steps to nodes of lower or equal

degree are allowed. Either the up or down path is allowed to have zero length. Because of the

good results from the greedy ranking algorithm, I analysed the percentage of hierarchical paths

inside all the shortest paths. Table 5.2 summarises the results.

Experimental dataset % hierarchical paths

Cambridge 87.2 (-2.4,+4.3)

Reality 81.9 (-3.1,+3.3)

Infocom05 62.3 (-2.5,+2.5)

Infocom06 69.5 (-4.1,+2.4)

Hong Kong 33.5 (-4.0,+4.0)

Table 5.2: Hierarchical paths analysis of all shortest paths

The percentage of hierarchical paths is calculated as the number of hierarchical paths divided

by the number of non-direct deliveries. We can see that forCambridgedata andReality, the

percentage of hierarchical paths is very high, so our strategy of pushing the messages up the

ranking tree can find a lot of these paths, and the performanceof the ranking strategy here is not

much different from that ofMCP. For Infocom06andInfocom05, the percentage of hierarchical

paths is also high, hence the greedyRANK strategy can as well discover many of the shortest

paths. However, for theHong Kongexperiment, the network is too sparse and a lot of shortest

paths are hidden. (This occurs because I could not know the devices detected by the external

devices, and most of the resulting paths used for delivery are actually not the shortest) We can

see that percentage of hierarchical paths controls the delivery success achieved by the greedy

RANK algorithm. I conclude from this that a high percentage of theshortest paths are actually

hierarchical paths.

5.4.2 When the Greedy Ranking Fails

RANK appears to work in small and homogeneous systems, but when welook at a more di-

versified system, for example theHong Kongdataset, it may work differently. In theHong

Kongexperiment, the 37 participants are intentionally selected without any social correlation.

They live and work throughout the whole city. Relying on direct contact, less than 4% of the

messages can be delivered.6 Unlike what I did to all the previous datasets, here all the external

6The confidence interval in this case is similar to theReality dataset. I show the maximum and minimum

instead to demonstrate the upper and the lower bounds for this dataset.
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Bluetooth devices detected need to be used for constructingthe paths. But, because we do not

know the devices detected by all these external devices, a lot of potential paths were not found.

(a) (b)

Figure 5.5: Comparison of delivery ratio and cost ofMCP and GreedyRANK on no constraints

case (HK)

Figure 5.5 shows the delivery ratio and delivery cost using flooding, and using uncontrolled

greedy ranking (i.e. not controlled by number of hops and copies). We can see that using

flooding, we can deliver more than 40% of the total traffic across the whole city by using only

the 37 iMotes and the external devices detected by these iMotes. Without knowing the devices

detected by the external devices, that will be a huge number of paths out of these 869 devices.

However the cost is also very high: to deliver one message, weneed to make around 180

copies. But in this case, greedy ranking can only deliver 10%of the messages, although the

cost is much lower as well. In terms of delivery and cost, greedy ranking is still more cost-

effective than flooding, but clearly the delivery success rate is still too low. One explanation

for this low performance is that since the participants haveno social correlation, and belong to

different social communities, high global ranking of a nodemay not represent a good choice

of relay for some local communities. Messages keep being pushed up to some globally higher

ranking nodes, and getting stuck at some maxima, rather thanthen trickling down to some local

community. Figure 5.6(a) shows that the maximum number of hops for greedy Rank is 4 hops

and after that the messages get stuck. Figure 5.6(b) shows the rank distribution of the sources,

destinations and dead-ends of all the undelivered messages, indicating that message delivery has

typically failed at highly-ranked nodes. This supports my hypothesis concerning the dilemma

of the messages getting stuck at maxima.

5.5 Direct Labeling Strategy

In the LABEL strategy [HC07] in Chapter 4, each node is assumed to have a label that tells

others its affiliation, just like a name badge in a conference. The directLABEL strategy refers to

the exclusively using of labels to forward messages to destinations: next-hop nodes are selected
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Figure 5.6: The hop distribution of the delivered (left) andthe rank distribution of undelivered

(right) on HK data.

if they belong to the same group (same label) as the destination. It was demonstrated thatLA-

BEL significantly improves forwarding efficiency over “oblivious” forwarding usingInfocom06

dataset. This is a beginning of social based forwarding inPSN, but lack of mechanisms to move

messages away from the source when the destinations are socially far away (such asReality).

My third contribution is to demonstrate the limitations ofLABEL strategy and move to a new

forwarding algorithm using both community and centrality information.

5.5.1 The Problem with Direct Labeling

As I mentioned before, for all the datasets we have, onlyInfocom06dataset hasa priori affili-

ation labels. But fortunately, a human community also represents one type of long term, stable

relationship. An outside observer of human society would not know at first to which group each

person belongs. As time goes by, we gain higher confidence concerning who usually socialises

with whom. In this part of the analysis, I use the communitiesdetected from the nine month

Realitytraces. Nine months is a long enough period for us to have highconfidence to believe

that the communities extracted from the dataset truly reflect the social communities existing

between the participants. I evaluate theLABEL strategy on this dataset.

We can see from Figure 5.7 thatLABEL only achieves around 55% of the delivery ratio of

theMCP strategy and only 45% of the flooding delivery although the cost is also much lower.

However, it is not an ideal scenario forLABEL . In this environment, people do not mix as well

as in a conference. A person in one group may not meet members in another group so often, so

waiting until the members of the other group appear to do the transmission is not effective here.

Figure 5.8 shows the correlation of thenth-hop relay nodes to the source and destination groups

for the messages on all the shortest paths, that is the percentage of the nth-hop relay nodes that

are still in the same group as the source or already in the samegroup as the destination. We can

see that more than 50% of the nodes on the first hops (from the S-Group plot) are still in the

same group as the source group of the message and only around 5% of the first hop nodes (from
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(a) (b)

Figure 5.7: Comparison of delivery ratio (left) and cost (right) of MCP andLABEL on 4 copies

and 4 hops case (Reality).

the D-Group plot) are in the same group as the destination. This explains why direct labeling is

not effective, since it is far from discovering the shortestpath. We can also see that on going to

the 2nd hop, S-Group correlation drops to slightly less than30%, and when going to 4th-hops,

almost all (90%) messages have escaped from this source group. To calculate the percentage for

each hop I divide the number of messages which belong to that group (S-Group or D-Group)

by the total number of messages destined beyond nodes at thatparticular hop, but not the total

messages created. In the 4-hop case, there are perhaps only 100 messages to forward further,

and only 10 out of these 100 relay nodes belong to the source group. This explains whyLABEL

is not effective, since it is far from discovering the shortest path. In the next section, I will talk

about how to use centrality to improve the delivery ratio ofLABEL .
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Figure 5.8: Correlation of nth-hop nodes with the source group and destination group (Reality).
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5.6 Centrality Meets Community

The fourth contribution in this chapter is to combine the knowledge of both the centrality of

nodes and the community structure, to achieve further performance improvements in forward-

ing. I show that this avoids the occurrence of the dead-ends encountered with pure global

ranking schemes. I call the protocols hereBUBBLE, to capture our intuition about the social

structure. Messages bubble up and down the social hierarchy, based on the observed community

structure and node centrality, together with explicit label data. Bubbles represent a hybrid of

social and physically observable heterogeneity of mobility over time and over community.

5.6.1 Two-community Case

In order to make the study more systematic, I start with the two-community case. I use the

Cambridgedataset for this study. By experimental design, and confirmed using my community

detection algorithm, we can clearly divide theCambridgedata into two communities: the un-

dergraduate year-one and year-two group. In order to make the experiment more fair, I limit

myself to just the two 10-clique groups found with a number-of-contact threshold of 29; that is

where each node at least meet another 9 nodes frequently. Some students may skip lectures and

cause variations in the results, so this limitation makes myanalysis yet more plausible.
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Figure 5.9: Node centrality in 2 groups inCambridgedata

First I look at the simplest case, for the centrality of nodeswithin each group. In this case,

the traffic is created only for members within the same community and only members in the

same community are chosen as relays for messages. We can clearly see from Figures 5.9(a) and

5.9(b) that inside a community, the centrality of each node is different. In Group B, there are

two nodes which are very popular, and have relayed most of thetraffic. All the other nodes have

low centrality value. Forwarding messages to the popular nodes would make delivery more cost

effective for messages within the same community.
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Then I consider traffic which is created within each group andonly destined for members in

another group. To eliminate other outside factors, I use only members from these two groups

as relays. Figure 5.10(a) shows the individual node centrality when traffic is created from one

group to another. Figure 5.10(b) shows the correlation of node centrality within an individual

group and inter-group centrality. We can see that points liemore or less around the diagonal

line. This means that the inter- and intra- group centralities are quite well correlated. Active

nodes in a group are also active nodes for inter-group communication. There are some points on

the left hand side of the graph which have low intra-group centrality but moderate inter-group

centrality. These are nodes which move across groups. They are not important for intra-group

communication but can perform certainly well when we need tomove traffic from one group to

another.
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Figure 5.10: Inter-group centrality and correlation between intra- and inter-group centrality

(Cambridge)

I can show now why homogeneous global ranking in Section 5.4 does not work perfectly.

Figure 5.11 shows the correlation of the local centrality ofGroup A and the global central-

ity of the whole population. We can see that quite a number of nodes from Group A lie along

the diagonal line. In this case the global ranking can help topush the traffic toward Group A.

However the problem is that some nodes which have very high global rankings are actually not

members of Group A, for example node D. Just as in real society, a politician could be very

popular in the city of Cambridge, but not a member of the Computer Laboratory, so may not

be a very good relay to deliver message to the member in the Computer Laboratory. Now we

assume there is a message at node A to deliver to another member of Group A. According to

global ranking, we would tend to push the traffic toward B, C, D, and E in the graph. If we

pushed the traffic to node C, it would be fine, and to node B it would be perfect. But if it push

the traffic to node D and E, the traffic could get stuck there andnot be routed back to Group A.

If it reaches node B, that is the best relay for traffic within the group, but node D has a higher

global ranking than B, and would tend to forward the traffic tonode D, where it would probably

get stuck again. Here I propose theBUBBLE algorithm to avoid these dead-ends.
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Figure 5.11: Correlation of local centrality of group A and the global centrality (Cambridge).

Algorithm 2 : BUBBLE RAP
begin

foreach EncounteredNode i do
if (LabelOf(currentNode) == LabelOf(destination)) then

if (LabelOf(EncounteredNode i) == LabelOf(destination))

and

(LocalRankOf(EncounteredNode i) > LocalRankOf(currentNode)) then
EncounteredNode i.addMessageToBuffer(message)

else
if (LabelOf(EncounteredNode i) == LabelOf(destination))

or

(GlobalRankOf(EncounteredNode i) > GlobalRankOf(currentNode)) then
EncounteredNode i.addMessageToBuffer(message)

end

Forwarding is carried out as follows. If a node has a message destined for another node, this

node would first bubble this message up the hierarchical ranking tree using the global ranking

until it reaches a node which has the same label (community) as the destination of this message.

Then the local ranking system will be used instead of the global ranking and continue to bubble

up the message through the local ranking tree until the destination is reached or the message

expired. This method does not require every node to know the ranking of all other nodes in the

system, but just to be able to compare ranking with the node encountered, and to push the mes-

sage using a greedy approach. I call this algorithmBUBBLE-A, since each world/community

is like a bubble. Figure 5.12 illustrates theBUBBLE algorithm and Algorithm 2 summarise the

operations in a flat community (not hierarchical7) space.

This fits our intuition in terms of real life. First you try to forward the data via people more

popular than you around you, and then bubble it up to well-known popular people in the society,

7We will discuss the hierarchical structures in the conclusion section.
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Figure 5.12: Illustration of theBUBBLE forwarding algorithm.

such as a postman. When the postman meets a member of the destination community, the

message will be passed to that community. This community member will try to identify the

more popular members within the community and bubble the message up again within the

local hierarchy until the message reach a very popular member, or the destination itself, or the

message expires.

A modified version of this strategy is that whenever a messageis delivered to the community, the

original carrier can delete this message from its buffer to prevent it from further dissemination.

This assumes that the community member would be able to deliver this message. I call this

protocol with deletion, strategyBUBBLE-B.

We can see from Figure 5.13(a) that bothBUBBLE-A andBUBBLE-B achieve almost the same

delivery success rate as the 4-copy-4-hopMCP. 8 AlthoughBUBBLE-B has the message deletion

mechanism, it achieves exactly the same delivery asBUBBLE-A. From Figure 5.13(b), we can

see thatBUBBLE-A only has 60% the cost ofMCP andBUBBLE-B is even better, with only

45% the cost ofMCP. Both have almost the same delivery success asMCP.

8Here, I use the “perfect” centrality calculated using knowledge of the entire period, then use this knowledge

in forwarding decisions throughout the same entire period.It seems a little bit unfair for the evaluations, but I will

show in Section 5.7.2 that the centrality measured in the past is useful as a predictor for the future, hence it is a

fair way to use “perfect” centrality. I have to take this approach because some of the datasets are really short in

experimental periods and I cannot afford using a portion of adataset to train the individual centrality.
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Figure 5.13: Comparisons of several algorithms onCambridgedataset, delivery and cost.

5.6.2 Multiple-community Cases

To study the multiple-community cases, I use theRealitydataset. To evaluate the forwarding

algorithm, I extract a 3-week session during term time from the whole 9-month dataset. Emu-

lations are run over this dataset with uniformly generated traffic.

There is a total of 8 groups within the whole dataset. Figure 5.14 shows the node centrality in

4 groups, from small-size to medium-size and large-size group. We can see that within each

group, almost every node has different centrality.

In order to make my study easier, I first isolate the largest group in Figure 5.14, consisting of

16 nodes. In this case, all the nodes in the system create traffic for members of this group. We

can see from Figure 5.15(a) thatBUBBLE-A and BUBBLE-B perform very similarly toMCP

most of the time in the single group case, and even outperformMCP when the timeTTL is set

to be larger than 1 week. From Figure 5.15(b), we can see thatBUBBLE-A only has 70% and

BUBBLE-B only 55% of the cost ofMCP. We can say that theBUBBLE algorithms are much

more cost effective thanMCP, with high delivery ratio and low delivery cost.

After the single group case, I start looking at the case of every group creating traffic for other

groups, but not for its own members. I want to find the upper cost bound for theBUBBLE

algorithm, so I do not consider local ranking; messages can now be sent to all members in the

group. This is exactly a combination of directLABEL and greedyRANK, using greedyRANK to

move the messages away from the source group. I do not implement the mechanism to remove

the original message after it has been delivered to the groupmember, so the cost here will

represent an upper bound for theBUBBLE algorithms.

From Figure 5.16(a) and Figure 5.16(b), we can see that of course flooding achieves the best

performance for delivery ratio, but the cost is 2.5 times that of MCP, and 5 times that ofBUB-
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Figure 5.14: Node centrality in several individual groups (Reality).
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Figure 5.15: Comparisons of several algorithms onRealitydataset, single group.
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BLE. BUBBLE is very close in performance toMCP in multiple groups case as well, and even

outperforms it when the timeTTL of the messages is allowed to be larger than 2 weeks.9 How-

ever, the cost is only 50% that ofMCP.
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Figure 5.16: Comparisons of several algorithms onRealitydataset, all groups.

In order to further justify the significance of social based forwarding, we also compareBUBBLE

with a benchmark ‘non-oblivious’ forwarding algorithm,PROPHET[LDS04]. PROPHETuses

the history of encounters and transitivity to calculate theprobability that a node can deliver a

message to a particular destination. Since it has been evaluated against other algorithms before

and has the same contact-based nature asBUBBLE (i.e. do not need location information), it is

a good target to compare withBUBBLE.

PROPHEThas four parameters. We use the defaultPROPHETparameters as recommended in

[LDS04]. However, one parameter that should be noted is the time elapsed unit used to age

the contact probabilities. The appropriate time unit used differs depending on the application

and the expected delays in the network. Here, we age the contact probabilities at every new

contact. In a real application, this would be a more practical approach since we do not want to

continuously run a thread to monitor each node entry in the table and age them separately at

different time.

Figures 5.17(a) and 5.17(b) show the comparison of the delivery ratio and delivery cost of

BUBBLE andPROPHET. Here, for the delivery cost, I only count the number of copies created

in the system for each message as I have done before for the comparison with the “oblivious”

algorithms. I do not count the control traffic created byPROPHETfor exchanging routing table

9 Two weeks seems to be very long, but as I have mentioned before, theRealitynetwork is very sparse. I choose

it mainly because it has long experimental period and hence more reliable community structures can be inferred.

The evaluations here can serve as a proof of concept of the BUBBLE algorithm, although the delays are large in

this dataset.
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Figure 5.17: Comparisons ofBUBBLE andPROPHETon Realitydataset.

during each encounter, which can be huge if the system is large (PROPHETuses flat addressing

for each node and its routing table contains entry for each known node). We can see that most

of the time,BUBBLE achieves a similar delivery ratio toPROPHET, but with only half of the

cost. Considering thatBUBBLE does not need to keep and update an routing table for each node

pairs, the improvement is significant.

Similarly significant improvements by usingBUBBLE are also observed in other datasets. These

demonstrate the generality of theBUBBLE algorithm, but for lucidity of the dissertation, I do

not include the results here. There are several other ‘non-oblivious’ forwarding algorithms,

for example the pattern based Mobyspace Routing [LFC06] by Leguayet al., the location-

based routing [Leb05] by Lebrunet al., and adaptive routing by Musolesiet al. [MHM05].

Mobyspace and location-based routing both required location related information, butBUBBLE

only use contact-based information. They are in different application categories and hence

are not comparable. Adaptive routing provides a nice framework for choosing relays based

on utility calculation, but strictly speaking it is not a forwarding algorithm. There is a social

based forwarding algorithm called SimBet routing [DH07] proposed independently at the same

time asBUBBLE, because they happened at the same time so I also did not do thecomparison.

SimBet routing uses ego-centric centrality but without community information to forward data.

TheRANK algorithm I introduced in this thesis would provide a delivery ratio upper bound for

this algorithm. But overall, I evaluatedBUBBLE againstWAIT , FLOOD, the optimizedMCP,

LABEL , RANK, and the benchmarkPROPHET, it is enough to justify the powerful performance

of BUBBLE.
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5.7 Making Centrality Practical

For practical applications, I want to look further into howBUBBLE can be implemented in a

distributed way. To achieve this, each device should be ableto detect its own community and

calculate its centrality values. In Chapter 3 (also in [HYyCC07]), I have proposed three algo-

rithms, namedSIMPLE, K-CLIQUE andMODULARITY , for distributed community detection,

and I have proved that the detecting accuracy can be up to 85% of the centralisedK-CLIQUE

algorithm. The next step is to ask how can each node know its own centrality in a decentralised

way, and how well past centrality can predict the future.

The final contribution of this chapter is to provide early answers to these two questions.

5.7.1 Approximating Centrality

I found that the total degree (unique nodes) seen by a node throughout the experiment period

is not a good approximation for node centrality. Instead thedegree per unit time (for example

the number of unique nodes seen per 6 hours) and the node centrality have a high correlation

value. We can see from Figure 5.18 that some nodes with a very high total degree are still not
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Figure 5.18: Correlation of rank with total degree and rank with unit time degree (Reality).

good carriers. It also shows that the per 6 hour degree is quite well correlated to the centrality

value, with correlation coefficient as high as 0.9511. That means how many people you know

does not matter too much, but how frequently you interact with these people does matter.

In order to verify that the average unit-time degree is as good as or close toRANK, I run another

sets of emulations using greedy average unit-time degree (or I simply call it DEGREE) instead of

the pre-calculated centrality. Figure 5.19(a) and 5.19(b)compare the delivery ratio and delivery

cost of using greedyRANK and greedyDEGREE. We can see thatRANK andDEGREEperform

almost the same with the delivery and cost lines overlappingeach other. They not only have

similar delivery but also similar cost.
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Figure 5.19: Comparisons of delivery ratio and cost ofRANK andDEGREEonRealitydataset.

However, the average unit-time degree calculated throughout the whole experimental period is

still difficult for each node to calculate individually. I then consider the degree for the previous

unit-time slot (I call this the slot window) such that when two nodes meet each other, they

compare how many unique nodes they have met in the previous unit-time slot (e.g. 6 hours).

I call this approach single window (S-Window). Another approach is to calculate the average

value on all previous windows, such as from yesterday to now,then calculate the average degree

for every 6 hours. I call this approach cumulative window (C-Window). This technique is

similar to a statistics technique called exponential smoothing [Win60] and I would like to do

further theoretical investigation.

We can see from Figure 5.20(a) and 5.20(b) that the S-Window approach reflects more recent

context and achieves a maximum of 4% improvement in deliveryratio overDEGREE, but at

double the cost. The C-Window approach measures more of the cumulative effect, and gives

more stable statistics about the average activeness of a node. However, its cumulative measure-

ment is not as good an estimate asDEGREE, which averages throughout the whole experimental

period. It does not achieve as good delivery asDEGREE(not more than 10% less in term of

delivery), but it also has lower cost.

5.7.2 Human Predictability

The second question above can be generalised to: how much canhuman interaction be predicted

from past contact history? In this section, I use vertex similarity, which has been well studied

in citation networks, to study the predictability of human interaction from the contact graph.

Additionally, I run emulations on traces to see how much pastcentrality can predict future

centrality.
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Figure 5.20: Comparisons of delivery ratio and cost ofDEGREE, S-WindowandC-Window on

Realitydataset

Vertex Similarity

There are several ways to compare structural vertex similarity in previous work. Two vertices

are consideredstructurally equivalentif they share many of the same network neighbors,

σJaccard=
|Γi

⋂

Γj |

|Γi

⋃

Γj |
(5.1)

σcosine=
|Γi

⋂

Γj|
√

|Γi||Γj|
(5.2)

σmin =
|Γi

⋂

Γj |

min (|Γi||Γj|)
(5.3)

whereΓi is the neighborhood of vertexi in a network, which is the set of vertices connected to

vertexi via an edge.|Γi| is the cardinality of the setΓi, that is equal to the degree of the vertex

i. The Jaccard index [Jac01] above is the same one introduced in Section 3.6, and the cosine

similarity has a long history of study on citation networks [Sal89]. Here I use vertex similarity

to measure the predictability of human interaction: we can compare the vertex similarity of

the contact graphs over two days and tell how similar human interaction is on these two days.

Averaging over all the vertices, we get an estimate for the whole population. I call this simply

graph similarity. I have studied all three metrics, but the trends are similar, and so I just present

the results of the classic Jaccard measurement here.

I look at the dataset of theRealityexperiment from 1st February to 30th April 2005. The reason

for choosing this period is that it is far from the new academic year so the human relationships

are already relatively stable and also it is term time so the participants will be more active in the
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campus. I study the vertex similarity and the simple graph similarity for every two consecutive

days and also for every pair of days against the date of the 1stof February for these three

months. I consider it as a binary graph; I do not consider the weight for the edges, but just

consider the existence of an edge. The three metrics proposed above do not apply to a weighted

graph.

S u S u S u S u S uS u S uS u S u S u S u S u

Figure 5.21: Vertex similarity of every consecutive day pairs of a single node

Figure 5.21 shows the Jaccard vertex similarity of an activenode, i.e. a node with high centrality

value, for the 88 consecutive day pairs. The horizontal lineat the middle shows the average

value. In the calculation, when two comparing vertices haveboth cardinalities equal to 0, I

count their similarity to be 1, the maximum Jaccard similarity. We can see that the trough

(minimum) points are corresponding to a change from weekdayto weekend and also weekend

to weekday; and the peak (maximum) points are correspondingto a transition from Saturday

to Sunday, so there is always a peak surrounded by two troughs. We see that the nodes met by

this node during the week-days are very different from the those nodes met during the weekend.

For the weekend, the nodes met have a very high probability tomeet again the second weekend

day. But even during week-day, there are around 50% of the nodes met one day that will be

met again the second day. This is the case for the active nodes, but for the less active nodes, i.e.

the nodes with a low centrality value, they have the highest vertex similarity value: 1 almost

everyday. These nodes usually see exactly the same nodes everyday. This also explain why they

have low centrality values.

Figure 5.22 shows the simple graph similarity for the contact graphs of every consecutive day.

We can see that the average value is as high as 0.7, for the whole population studied the human

interaction pattern is quite predictable for every two consecutive days. The peaks here are also

corresponding to the transition from a Saturday to a Sunday.

In order to see more clearly the phase transition from weekday to weekend, and also to look at

whether there is any long-term attenuation for the human interaction in this system, I compare

every day with the first day of the period I studied, which is 1st February and is a weekday.

Figure 5.23 shows the vertex similarity of every day pair. Wecan see that the vertex similarity

drops to zero from a weekday to a weekend transition and stayszero for the whole weekend.

And we did not observe the long term attenuation effect from the graphs produced. Similar

trends of changes are also observed in the graph similarity graph.
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Figure 5.22: Simple graph similarity of every consecutive day pairs

S u S uS uS u S uS u S u S uS uS uS uS u

Figure 5.23: Vertex similarity of every day pairs with a randomly chosen weekday of a single

node

But if we want to further look at whether the same node pair stay similar amount of time

together for a day pair and also whether they meet for similarnumber of times everyday, we

need to consider a weighted version of measurement for this kind of similarity. Since I cannot

find useful metrics from the literature, I need to devise my own:

σweight =

∑n

0 min(wit)
∑n

0 max(wit)
(5.4)

wheren = |Γi

⋃

Γj|, min(wit) is the minimum andmax(wit) of the weight for an edge con-

necting nodei and one of its neighbours, nodet, in the two graphs. If there is no edge in the

graph, I count its weight to be 0. Here I count the number of contacts as the weight and then

calculate the vertex similarity for all nodes, as well as thegraph similarity. Figure 5.24 shows

the weighted vertex similarity for every consecutive day pair for the same node as shown before.

We still observe the transition from weekday to weekend and vice-versa. The horizontal lines

in the middle show the average. It is around 0.3. That is not very high because of the transition

from weekday to weekend and weekend to weekday would producetwo 0 values. However, if

we look at the whole population in Figure 5.25, we can see thateven the contact frequencies of

two consecutive days are quite predictable, with an averageof close to 0.7.

I will look at the similarity of different time durations, the impact of different periods of the day

(i.e. the nodes seen during the day time should be different from the nodes during night time),

and different data analysis techniques such as correlationand matrix analysis will be used. The
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Figure 5.24: Weighted vertex similarity for every consecutive day pair of a single node

current result is limited to an academic campus but I will look at more complex environments

in the future. An early conclusion I can make here is that daily human interaction is quite

predictable. Nodes that met on one day have a high probability to meet again on the next day.

This provides an indirect answer to the predictability of centrality as well.

S u S u S u S u S uS u S uS u S u S u S u S u

Figure 5.25: Vertex similarity of every day pairs with a randomly chosen weekday of a single

node

Predictability of Centrality

In order to further verify whether the centrality measured in the past is useful as a predictor for

the future, I extracted three temporally consecutive 3-week sessions from theRealitydataset and

then run a set of greedyRANK emulations on the last two data sessions, but using the centrality

values from first session.

Figure 5.26(a) and 5.26(b) show the delivery ratio and cost of RANK on the 2nd data session

using the centrality values from the 1st data session. It seems that the performance ofRANK is

not far fromMCP but with much lower cost, i.e. it is as good as running the emulation on the

original dataset which the centrality values derived from.Similar performance is also observed

in the 3rd data session. These results imply some level of predictability of human mobility, and

show empirically that past contact information can be used in the future.

All these approaches, (DEGREE, S-Window, C-Window and predictability of human mobil-

ity) provide us with a decentralised way to approximate the centrality of nodes in the system,



CHAPTER 5. SOCIAL BASED FORWARDING IN SMALL WORLD DTNS 124

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

3 weeks1 w4 d2 d1 day6 h3 h1 hour10 min2 min

D
el

iv
er

y 
su

cc
es

s 
ra

tio

Time TTL

FLOOD
MCP

RANK
WAIT

(a) Delivery

 0

 10

 20

 30

 40

 50

3 weeks1 w4 d2 d1 day6 h3 h1 hour10 min2 min

T
ot

al
 C

os
t

Time TTL

FLOOD
MCP

RANK
WAIT

(b) Cost

Figure 5.26: Delivery ratio (left) and cost (right) ofRANK algorithm on 2nd data session, all

groups (Reality)

and hence help us to design appropriate forwarding algorithms. Combining these approximate

methods and the distributed community detection, we can putBUBBLE into reality. I will briefly

discuss how distributedBUBBLE works for a city wide environment, but leave the evaluation

details as future work when I can get a larger scale of dataset.

Suppose there is a network of mobile users, perhaps spanningan entire city, each device can

detect its own local community using one of the three distributed detection algorithms (e.g.K-

CLIQUE) from Chapter 3. At the same time, it also counts its own 6-hour-averaged degree (i.e.

C-Window). Its global ranking can be approximated as its 6-hour-averaged degree for all nodes

and its local ranking can be approximated as its 6-hour-averaged degree only for nodes inside

its community. With all these metrics, each node can forwardmessages usingBUBBLE.

5.8 Related Work

For distributed search for nodes and content in power-law networks, Sarsharet al. [SOR04]

proposed using a probabilistic broadcast approach: sending out a query message to an edge with

probability just above the bond10 percolation threshold of the network. They show that if each

node caches its directory via a short random walk, then the total number of accessible contents

exhibits a first-order phase transition, ensuring very highhit rates just above the percolation

threshold.

For routing and forwarding inDTNs and mobile ad hoc networks, there is much existing lit-

erature. Vahdatet al. proposed epidemic routing, which is similar to the “oblivious” flood-

10A percolation which considers the lattice edges as the relevant entities.



CHAPTER 5. SOCIAL BASED FORWARDING IN SMALL WORLD DTNS 125

ing scheme I evaluated in this chapter [VB00]. Spray and Waitis another “oblivious” flooding

scheme but with a self-limited number of copies [SPR05]. Grossglauseret al. proposed the two-

hop relay schemes to improve the capacity of dense ad hoc networks [GT02]. Many approaches

calculate the probability of delivery to the destination node, where the metrics are derived from

the history of node contacts, spatial information and so forth. The pattern-based Mobyspace

Routing by Leguayet al. [LFC06], location-based routing by Lebrunet al. [Leb05], context-

based forwarding by Musolesiet al. [MHM05] and PROPHETRouting [LDS04] fall into this

category.PROPHETuses past encounters to predict the probability of future encounters. The

transitive nature of encounters is exploited, where indirectly encountering the destination node

is evaluated. Message Ferry by Zhaoet al. [ZAZ04] takes a different approach by controlling

the movement of each node.

Recent attempts to uncover a hidden stable network structure in DTNs such as social networks

have been emerged. For example, SimBet Routing [DH07] uses ego-centric centrality and its

social similarity. Messages are forwarded towards the nodewith higher centrality to increase the

possibility of finding the potential carrier to the final destination. In Chapter 4 (also in [HC07]),

I use small labels to help forwarding in PSNs based on the simple intuition that people belong-

ing to the same community are likely to meet frequently, and thus act as suitable forwarders for

messages destined for members of the same community. The evaluation demonstrates that even

such a basic approach results in a significant reduction in routing overheads.RANK algorithm

introduced in this chapter uses betweenness centrality in asimilar manner to SimBet routing.

On the other hand,BUBBLE exploits further community structures and combines it withRANK

for further improvement of forwarding algorithms. The mobility-assisted Island Hopping for-

warding [NSDG06] uses network partitions that arise due to the distribution of nodes in space.

Their clustering approach is based on the significant locations for the nodes and not for cluster-

ing nodes themselves. Clustering nodes is a complex task to understand the network structure

for aid of forwarding.

Finally, I emphasise that I take an experimental rather thantheoretical approach, which makes

a further difference from the other work described above.

5.9 Conclusion and Future Work

Based on a diverse set of real world traces, I have detected characteristic properties of social

grouping, and also showed how such characteristics can be effectively used in designing for-

warding algorithms. I proposed the novelBUBBLE algorithm which is based on a delay-tolerant

network environment, and built out of human-carried devices. It has similar delivery ratio to, but

much lower resource utilisation than flooding, controlled flooding (e.g.,MCP), andPROPHET,

and hence is a powerful forwarding strategy forPSNs.

In Section 5.7.1 I chose a window size of 6 hours from the intuition that daily life is divided into

4 main periods, morning, afternoon, evening and night, eachalmost 6 hours. This appears to
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work, however, future work will look at how sensitive the system is to the choice of this period.

For betweeness centrality, I will look at the egocentric centrality which is a localised centrality

measurement used in social network analysis and found to be correlated to the global social

centrality [Mar02]. Using this egocentric centrality measure, we may not need concerning the

global centrality measurement and we can make the problem more distributed.

On the forwarding aspect, I want to look at the use of real-world geographic landmarks as a part

of the landscape within which forwarding algorithms can operate and be optimised further. In

principle,BUBBLE is supposed to work with a hierarchical community structure, but because

of the limited size of data (each experiment is not large enough for me to extract hierarchical

structure), the current algorithm and evaluation focus on aflat community structure. This can

later be extended to a hierarchical structure. I will further verify my results when more mobility

traces are available.

Further experimental work involving large-scale experiments is required to confirm my results

with more confidence in a wider variety of settings. Furthermore, I believe that it should be

possible to abstract mathematical models of mobility that match my empirical results. We can

use these models to generate further datasets with which to evaluate my and other forwarding

systems.

I believe that this chapter represents a first step in combining rich multi-level information about

social structures and interactions to drive novel and effective means for disseminating data in

DTNs. A great deal of future research can follow. Based on theknowledge gained from this

chapter and previous chapters, I will look at many-to-many communication as ongoing work in

the next chapter.



Chapter 6

Conclusion

In this dissertation I have studied human mobility and interaction patterns by deploying ex-

periments, inferred human communities from the traces, andintroduced several social-aware

forwarding algorithms forPSNs. Considering real deployment, several distributed community

detection algorithms have also been suggested for mobile devices. In this chapter I summarise

my contributions and describe some ongoing work and potential avenues for future research.

6.1 Ongoing Work

In the last chapter I introduced theBUBBLE algorithm which uses both community and central-

ity information to disseminate messages to some known destinations. This is a useful unicasting

protocol for other communication paradigms to make use of. Unlike a traditional IP network,

one-to-one is not necessarily the most popular communication mode forPSNs; instead multi-

point communication such as data sharing and emergency announcement are more likely to

be the killer applications,1 because of the broadcast nature of the wireless channel and also

given the intermittent connectivity of the network. I am extending this thesis work by looking

at designing a social-aware overlay for publish/subscribecommunication, which makes use of

the social knowledge (community and centrality) I discussed in this thesis. Overlay nodes are

the high centrality nodes in communities, for example acloseness centralitynode has the best

visibility to the other nodes in the community. Distributedcommunity detection operates when

nodes (i.e. devices) are in contact and subscription propagation is performed along with this

operation. I validate my message forwarding algorithms forpublish/subscribe with the mobility

traces that I presented in Chapter 2.

Figure 6.1 depicts a publish/subscribe broker overlay, which is dynamically constructed through

1Although the expected delay for unicast messages is 1 day, the median delay can be much smaller as we have

observed in theInfocom06dataset. For multi-point communication, the delay can be even more optimistic because

of multiple sources.
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the gossipping stage for community detection. Construction of the broker overlay is indepen-

dent from the underlying unicast routing algorithms.

Multiple centrality nodes can be used as a group of brokers. Fig. 6.2 depicts the community

structure and closeness centralities detected in MIT Reality Mining trace. 8 communities are

detected and the largestCommunity 1contains 21 members.Communities 4-8contain 3-4

members. There are 24 devices that do not belong to any communities, namedLoners. Multiple

centrality nodes are selected, which are in the inner circle. In Community 1, 13 nodes are

closeness centrality nodes, thus, these nodes form a brokergroup. Alternatively one of the

centrality nodes is named a single broker, which is marked atthe centre of the circle in Fig. 6.2.

All the detected centrality nodes have a single hop count to all the members of the community,

and an average 93% of nodes in the community can take the role of event broker. Note that 24

nodes (25% of community members) do not belong to any communities or do not get a chance

to be detected.
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I have some early evaluation results of the overlay on the reality mining dataset (details can

refer to our paper [YHCC07]), and I am now evaluating it on theother datasets and compare it

with random gossiping. I am also looking at some potential killer PSNapplications (i.e. hazard

alert, data sharing, environment monitoring), which can make use of my overlay structure.

6.2 Future Research

Future research could include looking into more generic community detection algorithms, better

modeling of temporal graphs, studying betweenness centrality on temporal graphs with differ-

ent topologies, and large-scale mobility experiments. In the forwarding aspect, I also want to

study multi-point communication, the impact of altruism onforwarding, the study of the impact

of infrastructure at the city hot spots, strategies for deployment of infrastructure to improve

communication, and comparing with other proposed forwarding algorithms.

As I mentioned in the above Ongoing work section, multi-point communication is an important

research topic and I am looking into it, especially the issues of using community members to

cache data in order to enable an ad hocGoogleservice.

The current distributed community detection algorithms have some inherent issues, such as

reliance on choosing the appropriate threshold values as the algorithms’ parameters, and the

time-varying nature of some communities, which is a problemas the algorithms use accumu-

lated information from the contact history, so obsolete community memberships would always

persist. At present each device stores all its contacts without deleting. But in reality we need to

consideragingfor the contacts, since some previous contacts may become irrelevant after some

time, but this takes up storage and may cause false-positives in the detection, especially for big

networks.

For human communities we can further classify them into temporal communities and non-

temporal communities, with temporal communities only valid for a particular time such as

during a conference. According to the current distributed community detection algorithms, the

temporal community will be outweighed by non-temporal contacts and will never be detected,

but they can also be useful during that time period and we wantto know about them. So it

seems that in some situations it is desirable for a self-sustaining distributed community detection

algorithm to have the ability to “forget” a dormant community; in other situations, it is desirable

for the algorithm to be able to “remember” communities that are not currently active. The ideal

solution is for each device to keep the records of the time andduration, for each encounter, so

that it would be possible to compute on demand the local communities information within any

given period. However, such computation would also requirethe histories of all its neighboring

vertices (it is not enough to just know one’s familiar set, but its familiar set’s familiar set as well).

Given the likely applications of distributed community detection algorithms are in environments

with limited resources and bandwidth, it is not likely that the requirements of keeping copies

of complete histories and the need to constantly exchange and update neighboring devices’
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histories can be satisfied. Therefore, a possible solution is the use of timestamping on the most

recent encounters as a resource/accuracy compromise. I want to address these weaknesses in

the future and also look at the issues about the temporal communities.

I have briefly introduced a simple method to model human interaction as a temporal graph with

a random topology but a higher power-law coefficient for inter-community edges and lower

power-law coefficient for intra-community edges (see Chapter 4). I want to improve the model

by considering also the contact time distribution and graphwith different topologies such as

scale-free (with cut-off), small world, and real world social networks (e.g. Orkut2, YouTube3,

and Flickr4) [MMG+07].

I intend to correlate a node’s centrality value to its degreeof connectivity. This is probably

true for a static graph but not necessarily for a temporal graph. As I found when studying the

node betweeness centrality on the traces in Chapter 5, the number of people you know does not

matter but how often you interact with them matters. I want todo a complete study on node

centrality on temporal graphs with different topologies. Ialso want to look at the centrality

from the social aspect, such as how the socio-centric centrality in a social network correlates to

the temporal graph centrality, and also how the local measure, egocentric centrality, can be used

for decentralised centrality approximation (definitions of socio-centric and egocentric centrality

can be found in [Mar02]).

Altruism refers to behavior which is costly to the organism performing the behavior but which

benefits other organisms. In a Pocket Switched Network (PSN), helping others to carry and

forward data is an altruistic behavior. Correlated interaction refers to the idea that an organism

of a given type might be more likely to interact with another organism of a same type than

with a randomly chosen member of the population. I assume there is more altruistic behavior

within communites/groups and less altruistic behavior between communities/groups, and I want

to study how this heterogenous altruistic behavior affectsinformation dissemination for both

single source to single destination, and single source to multiple destinations.

Looking at the city structure in order to decide where to put the Haggle access points to improve

communication can be an interesting topic as well. The idea is to map the city (i.e. Cambridge,

Hong Kong) into a complex network with junctions as nodes andthe roads connecting two

junctions as edges (in this case, I count the actual width of the road to be the weight of the edge

and length of the road as the distance, not the topological hop length) [CLP06]. I would then

run myWNA implementation (community detection, edge betweenness, node centrality) on it

and use this to decide where to put the access points (i.e. themin-cut between two community

structures). We can even do an iMote experiment in the city ofCambridge to verify whether the

number of Bluetooth devices detected matches the centrality of the streets.

On the forwarding aspect, I want to look at the use of real-world geographic landmarks as a part

2www.orkut.com
3www.youtube.com
4www.flickr.com
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of the landscape within which forwarding algorithms can operate and be optimised further. In

principle,BUBBLE is supposed to work with a hierarchical community structure, but because

of the limited size of data (each experiment is not large enough for me to extract hierarchical

structure), the current algorithm and evaluation focus on aflat community structure. This can

later be extended to a hierarchical structure. I will further verify my results when more mobility

traces are available.

I am planning to do a larger scale mobility experiment with the number of participants ranging

from five hundred to one thousand using mobile phones and iMotes. A large experiment is

necessary to verify my observations and results to eliminate the biases from limited sampling.

6.3 Summary

In Chapter 1 I began by introducing some background information about Delay Tolerant Net-

works (DTNs), Pocket Switched Networks (PSNs), forwarding inPSNs, and social network anal-

ysis. I then presented my thesis, that adding social knowledge can improve the forwarding

efficiency inPSNs. I stated the four main contributions for this thesis including iMote experi-

ments, inferring communities from the data, distributed community detection, and social aware

forwarding algorithms. After that I gave a road map of the thesis.

In Chapter 2 I reported the iMote experiments I have conducted and also analysed the inter-

contact time distribution of each node pair for all datasets, which was found to follow a heavy-

tailed distribution with a power-law coefficient smaller than 1 in the range of 10 minutes to

1 day. I also presented analytical results about the impact of the power-law coefficient on

forwarding and the empirical results of “oblivious” forwarding.

In Chapter 3 I showed how to apply weighted network analysis (WNA) and theK-CLIQUE

community detection algorithms to infer community structures from the traces, which was then

used for the community based forwarding study in Chapter 6. Ialso presented three distributed

community detection algorithms with different computational complexity and accuracy. These

algorithms achieve quite high accuracy when compared with the centralised detection algo-

rithms.

In Chapter 4 I presented a simple social-aware forwarding algorithm calledLABEL which makes

use ofa priori group information. I evaluated it on theInfocom06dataset, which hasa priori

affiliation information from the design of the experiment. Ifound out thatLABEL can improve

the forwarding efficiency in terms of delivery ratio and costcompared to the “oblivious” con-

trolled flooding schemes. I also presented some early results of the modeling of temporal graphs

using community structure and power-law distribution for inter-contact time.

In Chapter 5 I presented theBUBBLE algorithm, which makes use of both community and cen-

trality information. I extracted human heterogeneity information from the traces and proposed

this algorithm based on the observations. Most of the current proposed forwarding algorithms
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are not based on real human mobility analysis and are usuallyevaluated on simple mobility

models. BUBBLE is a practical forwarding algorithm that is completely derived from human

mobility measurements. I evaluated this algorithm by running emulations on the traces and

found the forwarding efficiency to be significantly improved.



Appendix A

Haggle: A Clean-slate Architecture for

PSN

In this chapter, I concentrate on describing a clean-slate architecture for mobile devices. Current

mobile computing applications are infrastructure-centric, due to the IP-based API that these

applications are written around. This causes many frustrations for end users, whose needs

might be easily met with local connectivity resources but whose applications do not support

this (e.g. emailing someone sitting next to you when there isno wireless access point). I

identify the general scenario faced by the users of Pocket Switched Networking (PSN), and

discuss why the IP-based status quo does not cope well in thisenvironment. I present a set of

architectural principles forPSN, and the high-level design of Haggle. Haggle is an asynchronous

data-centric network architecture which addresses the mobility problem by raising the API so

that applications can provide the network with applicationlevel Data Objects (DO) with high-

level metadata concerningDO identification, security and delivery to user-named endpoints.

This chapter is joint work with Jing Su, Dr. James Scott, my supervisor Prof. Jon Crowcroft,

Dr. Christophe Diot, Dr. Eben Upton, Dr. Meng How Lim, Dr. Ashvin Goel, and Dr. Eyal

de Lara. The texts and figures of this chapter are mainly extracted and summarised from a

paper [SHCD06] presented in the IFIP WONS2006 conference with Dr. James Scott as the

first author and me as a second author and also from another paper in Ubicomp 2007 with Jing

Su as the first author and me as the third author. My main contribution is in the architecture

design at the WONS paper stage and Jing Su’s main contribution is in the prototyping and

refining of the architecture at the Ubicomp paper stage. Dr. James Scott is the the manager for

the architecture design and prototyping. The other collaborators also have strong input in both

software engineering and technical opinions.
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A.1 Introduction

Miniaturisation, Moore’s Law and convergence have had a profound impact on portable devices,

such as smart phones, notebooks, and PDAs. The result is thatpeople are able to carry their

previously desktop-based computing environments with them, with the aim of having ubiqui-

tous access to applications such as email and web browsing inan always-on, always-available

fashion. However, the low speed (e.g.GPRS) , high price (e.g.GPRS) and constrained avail-

ability (e.g. 802.11) of wireless Internet access means that these devices are often discon-

nected from the Internet, or have only a slow or expensive connection. These devices use the

same, OSI-layered, IP based networking approach as desktopPCs, which assume a fixed net-

work. This fixed network design sometimes performs badly or not at all in the environment

that mobile devices find themselves in, which can bear more resemblance to Pocket Switched

Networks [HCG+05] or Delay Tolerant Networks [Fal03].

The Underlying Problem

In Section 1.3, I listed two motivating examples forPSNs. The root cause of the deficiencies

highlighted in the stories lies in the current network architecture for mobile devices (the IP suite

of protocols and the Berkeley sockets API), which presents applications with a synchronous,

end-to-end connectivity model using numeric addresses forendpoints. In order to satisfy user-

level tasks such as messaging and web-browsing, applications are effectively forced by this

model to act in ways that include inherent reliance on networking infrastructure, i.e. Internet

connectivity.

Due to the use of a synchronous model, applications are forced to become aware of the con-

nectivity state of the node and to handle changes in this state, or (typically) simply assume

always-on connectivity and avoid solving the problem. By employing end-to-end connections,

applications are prevented from making use (without extensive and explicit support) of network

routes that may involve non-contemporaneous connectivity. By requiring numeric addresses,

user-memorable endpoint identifiers such asuser@domain.organdwww.server.commust be

translated before the interface can be used, forcing a reliance on the presence ofDNS.

In reality, while our devices may often have cheap, fast Internet connectivity for some periods

(e.g. when we are at home or work), at other times they are disconnected from the Internet, or

only connected through an expensive and/or slow network (e.g. GPRS, pay-to-use 802.11 APs).

However, while they are disconnected, devices may often be connected to other devices in the

neighborhood, and, as described in the motivating examplesabove, this limited connectivity

may often be enough to provide significant value to users if itcould be put to work.
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Chapter Contributions and Structure

In the rest of this chapter, I present the Haggle architecture, a ground-up redesign of networking

for mobile devices, to support the mobile user scenario.

The contributions of this chapter are as follows. First, I give an overview aboutPSN (Sec-

tion A.2). Then I present the problem with the status quo (Section A.3). After an overview of

the core concepts behind Haggle, (Section A.4), I present a detailed description of the Haggle

architecture (Section A.5). While many of the ideas that areintegrated into Haggle are built on

existing research1, a key contribution of this chapter is their organisation into a coherent archi-

tecture. Other contributions include the comparison of Haggle architecture and the currentDTN

architecture (Section A.6), and the description of the prototype and applications (Section A.7).

Finally I conclude this Chapter in Section A.8.

A.2 Pocket Switched Networking

In designing a new network architecture, it is first important to define the scenario in which that

architecture will be used. IP, for example, was designed against a backdrop of a multitude of

existing networks, and with the primary needs being resilient end-to-end communications in the

presence of node failures, as befits its originator, the US Department of Defense [Cla88].

PSN is the term we use to describe the situation faced by today’s mobile information user.

Such users have one or more devices, some/all of which may be with them at any time, and

they move between locations as part of a normal schedule. In so moving, the users can spend

some (or much) of their time in islands of connectivity, i.e.places where they have access

to infrastructure such as 802.11 access points (APs) which they can use to communicate with

other nodes via the Internet. They also occasionally move within wireless range of other devices

(either stationary or carried by other users) and are able toexchange data directly with those

devices.

Thus, inPSN, there are three methods by which data can be transferred, namely, neighborhood

connectivity with local devices, infrastructure connectivity to the global Internet, and user mo-

bility, which can physically carry data from place to place.For the former two methods, the

connectivity is subject to a number of characteristics, including those of bandwidth, latency,

congestion, synchronicity (e.g. email or SMS are asynchronous, while ad-hoc 802.11 is syn-

chronous), the duration of the transfer opportunity (i.e. the time till the device moves out of

range), and also monetary cost (usually only for infrastructure). For the latter method of user

mobility, users acting as data mules can transfer significant amounts of data, and while users

movements cannot in general be controlled, they can be measured, and patterns in those move-

ments can be exploited. I will go into the details of mobilitymeasurement in the next chapter.

1I provide references in the main body of the text rather than in a separate section.
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In addition to the issue of network connectivity, we must also consider the usage model for

PSN. While different applications have different network demands, we can distinguish partic-

ular broad classes which are known to be useful: (a)one-to-manywhere one node needs to

transfer data to a user-defined destination. The destination may be another user (who may own

many nodes), all users in a certain place, users with a certain role (e.g. police), etc. The key

point is that, often, the destination is not a single node butis instead a set of nodes with some

relationship, e.g. the set of nodes belonging to a message recipient. (b)flooded queryin which

a device requires data of some sort, e.g. the current news. The source for this data can be any

node which is reachable using any of the three connectivity types, including via infrastructure

(e.g. a news webpage), neighbors (e.g. a recent cache of a news webpage) or mobility (e.g. the

arrival of a mobile node carrying suitable data). In both classes described above, the endpoints

of a network operation are no longer described by network-layer addresses, but are instead a set

of desirable properties. As a result, general network operations no longer have single source

and destination nodes.

Finally, in PSNsituations, resource management is a key issue. Mobile devices have limited

resources in terms of storage, network bandwidth, processing power, memory, and battery. The

latter is perhaps the most important, since the others can potentially be reclaimed without the

users assistance, while charging the battery requires the user to perform the physical act of plug-

ging it in, and restricts the devices’ mobility while charging. Other resources are also precious,

particularly in the face of demands imposed by the usage scenarios above, where devices may

need to use storage and network bandwidth to help forward messages for other devices. How-

ever, there is also much cause for optimism: storage capacities are increasing exponentially,

wireless networking has the useful property of spatial reuse, and processing power on mobile

devices is growing with Moores Law. For power, many devices are plugged in more often than

not, e.g. notebook computers, and low-power electronics allow current mobile phones to last

for many days on a single charge.

From the discussion above, I extract three motivations for anetworking architecture in thePSN

environment, in order of importance:

• Allow applications to take advantage of all types of data transfer (neighborhood, infras-

tructure, mobility) without having to specifically code foreach circumstance

• Allowing networking endpoints to be specified by userlevel naming schemes rather than

node-specific network addresses, thus each network operation can potentially involve

many endpoints.

• Allowing limited resources to be used efficiently by mobile devices, taking into account

user-level priorities for tasks.
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A.3 Problem with the Status Quo

Current applications perform badly in thePSNenvironment, since they are typically designed

around some form of infrastructure which is not always available. While some applications can

cope with infrastructure blackout, e.g. with a disconnected or offline mode, most do not. Direct,

neighborhood connectivity is used by very few widely used applications, and human mobility is

deliberately used by almost none. Thus, when infrastructure is not present, users are presented

with huge inconveniences since the applications which are familiar to them stop working, and

are forced to take on the task of understanding these situations so that they can be productive

despite this application failure. For instance, users may require many alternative applications in

order to do a single task depending on the situation, e.g. a file can be exchanged by email, by

putting it on a website for download, by using an instant messaging client, by direct Bluetooth

or infrared transfer. More likely, the user will simply invest in aUSB key and manually bypass

the huge inconvenience of the status quo.

The root cause of this is the fact that applications are provided with a networking interface that

only understands streams of data directed at anonymous numeric endpoints (namely TCP/IP).

This forces developers to implement protocols for naming, addressing and data formatting in-

ternally in the applications themselves, e.g.SMTP, IMAP andHTTP. While at the GUI level,

applications have general user-level tasks such as “send this file to James”, once a particular

network protocol such asSMTP is imposed on that task, it becomes a more specific task, e.g.

“send this file to the server pointed at by the MX record in theDNS record of the domain name

part of james.w.scott@intel.com”. The latter task is specific to a particular kind of connectivity

scenario, in this case infrastructure-based. It is therefore impossible to execute even if James’

device is in the neighborhood at that time i.e. even if the user-level task could be satisfied.

Another problem with the current networking API is that it issynchronous. Applications cannot

indicate a network task to be performed and then exit, since finished applications have all their

TCP/IP sockets closed. For example, an email application with pending outgoing email in the

outbox will not be able to use a passingAP to send this email if the application is not running

when theAP is passed. Therefore, an application in thePSNenvironment has to be constantly

on and monitoring the connectivity status of the device. This increases the complexity of a

disconnection-aware application, since it must be able to wait through periods of bad connec-

tivity and detect and perform networking actions when a suitable endpoint is again visible. It

also increases the load on mobile device resources, since many applications would have to be

present in the background at all times.

Another problem is that persistent user data is kept by applications in a file system which, in

the current node architecture, is disconnected from the networking system. This means that all

sharing of data between nodes must often be conducted by applications themselves. The biggest

example of this is the device synchronisation problem. Whena user has multiple devices, they

must explicitly run an application on each which pulls theirdata out of the file system and shares

it with their other device(s). Such synchronisation is often a source of much inconvenience for
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users, since the sync tools must understand the different ways that each user application uses the

file system to store data and metadata, and often has to translate it so that different applications

can be synced with the same data. Another example is in distributed web caching. The exact

web page that a user wants may be in the cache of a neighboring node, but since web browsers

do not explicitly support the transfer, there is no way to getthis off the neighbour’s file system

and into the network to be shared with the user.

The final problem identified is that applications have no easyway to prioritise the use of a mo-

bile device limited resources. These resources include persistent storage, network bandwidth,

and battery energy. Currently, an application such as a web browser must estimate by itself how

much of the storage can be used for non-critical history caching, or how much network band-

width should be used for pre-fetching of web pages. This decision is often passed on to the user,

who might have to adjust settings manually, at the application level (e.g. how much disk to use

as cache), at the hardware level (e.g. turning on or off wireless network interfaces depending on

the battery level), or by only running certain apps when theydo not want to prioritise network

bandwidth for other tasks (e.g. network-hungry file-sharing apps). These controls are coarse

at best, and require expert understanding in order to properly exercise them. The result is that

resources are often used inefficiently.

A.4 Core Concepts of Haggle

In previous work [SHCD06] I explored the principles behind the design of Haggle (though I

had not built a working prototype at that time). In this dissertation, I reiterate the key concepts

before diving into the architectural description that follows.

The key idea behind Haggle is to have a data-centric architecture [ASS+] where applications

do not have to concern themselves with the mechanisms of transporting data to the right place,

since that is what has made them infrastructure-dependent.By delegating to Haggle the task of

propagating data, applications can automatically take advantage of any connection opportunities

that arise, both local neighborhood opportunities and connectivity with servers on the Internet

when available. I identify four design decisions for Hagglethat follow on from this.

A.4.1 Data Persists inside Haggle

The data on each node in Haggle must be visible to and searchable by other nodes (with ap-

propriate security/access restrictions applied). This facilitates operation of our motivating web

example, in that the public webpage needed by one person can be found despite it being in an-

other person’s device. In practice, this means that Haggle must manage persistent data storage

for applications, instead of applications storing data in aseparate file system.
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A.4.2 Networking Protocols inside Haggle

Any application-layer networking protocol includes implied assumptions about the type of net-

work available. For example, client-server protocols suchasSMTP, POPandHTTPassume that

Internet-based servers are contactable. With Haggle, I place networking protocol support inside

Haggle itself, allowing me to present a data-centric ratherthan connection-centric abstraction

to applications.

A.4.3 Name Graphs supporting Late Binding

Since Haggle aims to be infrastructure-independent, it must be able to use protocol-independent

names for delivery (since many protocols imply infrastructure of one sort or another). Since we

are in an environment where we cannot predict the best path for data a priori, we must perform

late binding from protocol-independent names such as a person’s name to protocol-specific

names such as MAC addresses or email addresses [AWSBL]. Haggle therefore maintains its

own naming repository (it obviously cannot rely on remote look-up of this data), with mappings

from user-level names to protocol-specific names specifying the various ways to get to the user-

level name. Furthermore, the whole set of mappings (the “name graph”) is transmitted along

with the data, allowing even intermediate (i.e. non-source) nodes to bind to protocol-specific

names as late as possible.

A.4.4 Centralised Resource Management

One role of the networking architecture on every device is todecide what to do with each of

its network interfacesnow. In the current architecture, this decision does not take into account

resource management — the decision to spend resources on something is taken by applications

individually. This makes it very hard for applications to beproactive, since they must make

sure themselves that only a suitable level of resources is used. Haggle therefore contains a

centralised resource management component, which decideson a cost/benefit comparison basis

what tasks it chooses to perform on each network interface ata given moment.

A.5 Haggle Architecture

The Haggle architecture is shown in Figure A.1. Haggle is at amacro-scale comprised of six

Managers, the Data, Name, Forwarding, Protocol, Connectivity and Resource Managers. In

addition, many of the Managers themselves have well-definedabstractions for their contents, as

shown in italics/parentheses on the diagram - e.g. the Protocol Manager encapsulates a number

of “Protocol” objects.
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Figure A.1: Haggle overview

Haggle is a layerless architecture, in that we do not pass data and control signals up and down

between layers as for the current network architecture. Instead, all Managers provide interfaces

which other Managers can communicate with. In terms of the current model, Haggle spans

the link layer through to the application layer, inclusive.Link layer functionality in Haggle

includes, for example, the choice of whether the 802.11 interface is in infrastructure mode or

ad hoc mode, while Haggle’s Protocols include application-layer protocols such asSMTP and

HTTP. Rather than present a “cross-layer design” where layeringis deliberately broken, I in-

stead acknowledge that this model is not appropriate for Haggle. The key value of layering, in

that between layers there are well-defined abstract interfaces facilitating modularity, is kept: the

six Managers provide abstract interfaces and are modular inthat they can be replaced indepen-

dently.

As there is no top layer, the API that Haggle provides to applications is composed of a sub-

set of the APIs that each Haggle manager provides to each other. In this chapter I do not

list the APIs explicitly due to an excessive level of detail —interested readers are referred to

http://cvs.sourceforge.net/projects/haggle/where these interfaces are available.

I now describe the design of each of the managers, including the key data abstractions and

components, and how they communicate to perform networkingtasks. In this section I restrict

myself to describing architectural decisions, and do not discuss specific implementations (e.g.

the SMTP protocol, or the 802.11 connectivity) — this is left to laterin the chapter where I

discuss the prototype that has been built and evaluated. At the end of this section, I discuss
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Figure A.2: Example DOs: Message and Attachment

potential security and privacy issues that Haggle raises.

A.5.1 Data Manager

As stated previously, Haggle maintains users’ data persistently rather than relying on a separate

file system. Haggle’s data format is designed around the needto bestructuredandsearchable.

In other words, relationships between application data units (e.g. a webpage and its embedded

images) should be representable in Haggle, and applications should be able to search both lo-

cally and remotely for data objects matching particular useful characteristics. I draw inspiration

from desktop search products (e.g. Google Desktop) which have changed the way that many

users file and access their data [CDT06], allowing us to avoidhaving to methodically place

data in a file/directory structure. I propose that applications can use a combination of structured

data and search, with the former providing the kind of capabilities expected of a traditional

file/directory system, and the latter allowing applications to easily find and use data that they

themselves did not store.

Data Objects

The data format is simple. A Data Object (DO) comprises manyattributes, each of which is a

pair consisting of atypeandvalue. Types and values are typically strings, though some values

may also be binary packed representations, e.g. the data in an mp3 file. I encourage and expect

applications to expose as muchmetadataas possible about an item of application data using
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attributes, including application data. Two example DOs are shown in Figure A.2, representing

a message from Bob to Alice, and a photo of the sunset. Note that Haggle does not require

users to enter more metadata about their objects than applications would require themselves;

the value of exposing metadata is in searchability usingDO filters described later.

In order to facilitate multi-application environments andto avoid cache consistency issues,DO

attributes are immutable after creation. (Haggle itself may mutate attributes for internal record-

tracking, but applications may not). Applications must create a newDO instead of modifying

a DO, and cause their existing links and claims to point at the newDO. This provides useful

guarantees for applications that their data will not be modified “under their feet”, although

the disadvantage is that if they wish to use the most up-to-date version of data, they must be

proactive, and use the search functionality described later to get updates either proactively or

reactively. Another potential disadvantage of copying DOs, that of the time and storage costs of

data replication, can be minimised by using standard copy-on-write techniques present in many

filesystems.

Links between DOs

DOs can be linked into a directed graph. Links can take two forms. The first is to link data to

embedded or prerequisite data, e.g. a photo album’s metadata can link to the set of photos in

the album, a webpage can link to its embedded objects, or (as shown in Figure A.2) an email

can link to its attachments. This provides applications with a way to structure data, akin to the

way that some applications use the placement of files in a common directory but more explicit.

It allows Haggle to keep track of the prerequisite objects that must be shared alongside a top-

level object in order to properly transmit a given application data unit. The second purpose of

linking is for applications to themselves link to the DOs which they require for their operation,

which can be regarded as an “ownership claim.” In this way, many applications can claim the

sameDO, e.g. a photo gallery application can claim a photo that is linked to by a message

(which brought it into the node) which is in turn claimed by the messaging application. Linking

and claiming are accomplished using the same mechanism. I use the two terms to differentiate

between the parent being anotherDO or a different entity.

Since Haggle allows many applications to claim DOs, it does not have a “delete” call, instead,

just “unlink”. When the last link is removed from aDO, it becomes eligible for garbage collec-

tion, though this is not necessarily performed immediatelysince the node may have plenty of

persistent storage space. The data remains searchable evenin its unclaimed state, which is an

advantage since data is not lost unless space is actually required for new data.

DO Filters

In addition to the ability to retrieve DOs via a unique ID provided at creation time, the Data

Manager also supports searching of DOs using a “DO filter”. This comprises a set of regular-
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expression-like queries about the attributes of an object,e.g. “mime-type” EQUALS “text/html”

AND “keywords” INCLUDES “news” AND “timestamp”≥ (now() - 1 hour) would return DOs

matching recent news webpages. A filter can be made persistent, and since it is itself stored in

aDO, it can be sent remotely. This flexibility allows a single mechanism to be used for multiple

purposes: a non-persistent local filter is a search on local data, a persistent local filter is a

registration of interest in incoming data of a particular type (which functions analogously to a

TCP socket “listen”), a non-persistent remote filter is a request for data which is sent across

the network as appropriate (depending on the Forwarding Algorithms, Protocols and Neighbors

available), and a persistent remote filter allows “subscriptions” to particular data to be registered

with other nodes (e.g. a home PC registers interest in receiving all photos generated on a mobile

phone).

The Data Manager is responsible for matchingDO filters to DOs, and performs this when-

ever new data appears (which may match an existing persistent filter) or whenever a new filter

appears (which may match existing DOs). If there are matches, then the source of the filter

(whether local or remote) is notified. The ability of Haggle to unilaterally, without invoking

application processes, answer remote queries is a key feature. It facilitates sharing of infor-

mation between nodes beyond what we have today, since once the information is provided to

Haggle, any and all connection opportunities that the node sees can result in the sharing of that

information, given appropriate security concerns such as encryption and access control.

A.5.2 Name Manager using Name Graphs

Endpoint descriptions for data transmissions in Haggle arenot performed in the usual method

of the nested headers found on the front of current physical-layer packets (e.g. Ethernet ad-

dress, IP address, TCP port, andSMTP’s RCPT TO field describing the endpoint for an email

message). This is because I aim to be able to make use of any available ad-hoc or infrastructure

connectivity opportunity. Since we cannot assume knowledge of the best end-to-end path, either

when a communication is generated or even at an intermediatenode once the communication

is in-transit, we cannot perform the ahead-of-time directory lookups that are currently used to

map a user-level endpoint, e.g. “Bob Smith”, to theSMTP’s RCPT TO field (b@a.org) and so

on, in order to construct those addresses ahead of time. Not only is it the case that some of

these lookups require infrastructure services such asDNS that may not be available, but even

more importantly it is not possible to perform the initial name-to-email-address mapping that

is implicit in the users’ choice of an email client rather than an Instant Messaging or mobile

phone text message (SMS) client. The choice of client program by the user is currently equiv-

alent to making them choose a networking protocol (e.g. email implies use ofSMTP) and may

be equivalent to making them choose a device on which the receiver will receive the message

(e.g. text message implies use of a particular phone).

We require a more general form of naming notation that allowslate-binding of user-level names,

independent of the lower-level addressable name, as proposed in i3 [SAZ+]. We achieve this
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John Doe

GUID-123456

(802.11bg) 00:12:34:56:78:90

(Bluetooth) 00:07:E0:07:E9:80

johndoe@freemail.org

+1 416-555-9898

Figure A.3: Example of a name graph

by usingname graphs, inspired by the intentional naming system (INS) [AWSBL], which are

hierarchical descriptions of all known mappings from a user-level endpoint to lower-level names

(which may imply particular protocols/connectivity methods), and by using the whole name

graph as the “recipient” for a message, both on the source node and at intermediate nodes for

the message. This is one of the “layerless” aspects of Haggle, and it contrasts with the existing

Internet architecture where names are only meaningful at particular layers of the protocol stack.

What’s in a Name?

An example name graph is shown in Figure A.3. These graphs span from top-level nodes

such as personal names through to leaves comprising persistent methods of reaching them (e.g.

an email address), but do not include transient addressing data for those methods (e.g. an IP

address for the email server, or MAC address for the next-hop). Let us first discuss the choice

of this partition [KKP].

In Haggle, we regard all of the nodes in a name graph as “names”, andanyof these names can

be an “address” if there exists a suitable protocol on the node which understands that name.

For example, an SMS-capable device regards a phone number “name” as an “address”, but a

non-SMS-capable device would not. This allows for the fact that, as a message moves between

nodes, different methods of mapping names to transmission methods become available. Thus a

layered model of name-to-address mapping is not always appropriate.

I note that while a given node may need to “resolve” a name further in order to effect sending

to that name, e.g. taking an email address, discovering theSMTP server suitable, and using

IP routing and a next-hop MAC address to send towards thatSMTP server, it is not sensible

to regard these looked-up values as members of the name graph, since another node with the

same message would need completely different values, and would have to resolve them inde-

pendently.

While persistent information is stored in name graphs, transient information is captured using

the notion of a Neighbor, which identifies the next-hop in thepath for the data in order to reach

the name. Neighbors are discovered by Connectivities (thisis discussed in the next section),

and their properties are used by Protocols to establish whatnames a given communication can

be forwarded to.
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Name Objects

Haggle represents name graphs using DOs with a particular attribute containing the name as

a string, which are known as Name Objects (NOs). These are linked using the normalDO

linking function to provide name graphs. The use of DOs for naming allows names to be easily

managed and made persistent.

Before Haggle can send data to a name graph, the NOs and links must be constructed somehow.

There are many potential sources for NOs. Firstly, althoughthe name graph concept seems at

odds with existing user devices, actually much of what is proposed is simply a consolidation

of naming information from disparate sources already present on a device. For instance, name-

to-email-address mappings, name-to-instant-messaging-ID mappings, etc are already kept by

the respective applications. In addition, names can also begathered from Connectivities such as

Bluetooth or 802.11, as MAC addresses of nearby Haggle-capable nodes are regarded as Names.

A third discovery method follows on from this, whereby the Name Manager can detect nearby

Haggle nodes (via the existence of neighbours) and directlysend them a message containing

both theNO graph corresponding to the node, and aDO filter requesting the recipient’s ownNO

graph (analogous to the node saying “Hi stranger, I’m Bob, who are you?”). A fourth discovery

method is in the receipt of messages where the node is acting as a courier, or is the destination.

These messages’NO graphs can be mined for information. A fifth method may be for name

graphs to be maintained and distributed during periods of stable connectivity with a trusted

server on the Internet.

Finally, it is worth noting that a name graph used as an address for a message need not remain

static. Intermediate nodes could potentially add to this graph, either adding hints for forwarding

algorithms to perform better routing, e.g. “This MAC address was seen recently”, or filling

in missing sections of the graph. As an extreme example, a user might be told the name of

someone that they wish to send a message to, but not have any other information such as their

email address. By simply using the person’s name, a message can be created which can only be

delivered by (controlled) broadcasting. However, one of the nodes in the room might have the

name graph corresponding to that name, and could add the necessary NOs as destinations for

the message so that it can be delivered properly.

A.5.3 Connectivity Manager and Connectivities

Haggle aims to support and embrace the use of many different networking technologies at the

same time. Networking technologies differ by their range, latency, bandwidth, infrastructure

available, cost of using the infrastructure, battery consumption, availability, and so on. It is

therefore appropriate for different Connectivities to be used depending on the particular type

of communication being sent, e.g. a small but urgent messagecould use (relatively) expensive

GPRS, while large, non-urgent data could wait until a free connection opportunity arises (either

locally or via a “free” access point).
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The job of the Connectivity Manager in Haggle is simply to encapsulate a number of Con-

nectivity objects and to initialise the appropriate numberat start-of-day. Each Connectivity

must support a well-defined interface including functionality for neighbor discovery, open-

ing/using/closing communications channels, and estimating the costs (in terms of money, time

and energy) of performing network operations. The Connectivity must interface with the un-

derlying hardware to provide this functionality.

There will be one Connectivity instance per instance of a network interface on a node (so if

there were two 802.11 interfaces there would be two Connectivities created during initialisa-

tion). This is because a Connectivity is regarded by the Resource Manager as a schedulable

resource, so it must be clear exactly how many resources there are. Since the Resource Man-

ager expects to schedule the network interface, all operations that result in network activity,

including operations initiated by the Connectivity’s codeitself, must be passed to the Resource

Manager as “Tasks” (to be discussed in Section A.5.6).

Connectivities also interact with Protocols, providing them with Neighbor lists gained during

neighbor discovery. A Neighbor is a potential next-hop by which particular Protocols may know

how to send data of particular types to particular NOs. We differentiate between “non-Internet”

Neighbors which are direct next hops running Haggle, and “Internet” Neighbors which are next

hops supporting IP for accessing the Internet. Typically, each Protocol will only be interested

in one type of Neighbors.

Neighbor discovery can take various forms. In 802.11, any node with reception turned on can

see beacons from access points (APs) which announce their existence. For Bluetooth, neighbor

discovery is an active (and time-consuming) process. ForGPRS, neighbor discovery is implicit

in that when base station coverage is present, an Internet Neighbor is visible.

A.5.4 Protocol Manager and Protocols

The Protocol Manager is only responsible for encapsulatinga set of Protocols, and initializing

that set at start-of-day. A Protocol is a method by which DOs can be forwarded to Names,

e.g. SMTP, HTTP, a direct peer-to-peer protocol etc. This highlights an architectural differ-

ence between Haggle and traditional network stacks, since these protocols are normally at the

application layer and forwarding decisions are normally considered to be taken at the IP layer

underneath.

Each Protocol monitors the Neighbors visible through the Connectivities, and using these Neigh-

bors it can determine which NOs it can deliver to. This decision can also take into account the

type of data being forwarded, e.g. anSMTPprotocol can send a message to an emailNO, but it

may refuse to accept non-message data (e.g. application signaling) since that is not suitable to

appear in an inbox.

For Protocols which must accept incoming connections, e.g.a direct peer-to-peer protocol, they

must provide each Connectivity with enough information so that it can redirect incoming data
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to that protocol. This is akin to listening sockets in the existing architecture. Some Protocols

do not accept incoming connections; typically, all Internet-using Protocols (HTTP, SMTP, POP)

act as clients to existing servers and so must initiate connections themselves. While seemingly

simpler, this proves a source of additional work due to polling requirements — for example, the

POPProtocol must use Resource Manager “Tasks” in order to request that email accounts be

checked (if Internet connectivity is available).

A.5.5 Forwarding Manager and Algorithms

The Forwarding Manager provides an API to applications to cause data to be sent remotely,

encapsulates a number of Forwarding Algorithms, and sends the Forwarding Tasks that are

produced by them to the Resource Manager.

Applications request data transfers by specifying a set of DOs (the heads of a larger set of

linked DOs) and a set of NOs (the heads of name graphs). The Forwarding Manager constructs

a Forwarding Object (FO) which is aDO with metadata about the forwarding operation, and

which is linked to the destinationNO graphs, to the DOs, and to anNO graph describing the

sender (useful for replies either from applications or fromHaggle’s internal replies with DOs

matchingDO filters). The metadata can include expiry times and expiry hop counts, security

information and routing hints for forwarding algorithms (described below), as well as a list of

NOs to which the data has already been sent. Other metadata can also be present — theDO

format allows for simple extensibility, and unknown fields can be easily ignored across different

implementations/instantiations of Haggle.

Forwarding Algorithms

Once anFO is created, it is the job of one or more Forwarding Algorithmsto determine suitable

next hops. In Haggle, we precisely define the role of a Forwarding Algorithm as: for each

FO, propose a set of{Protocol,NO, Neighbor} tuples which thisFO could be sent to, and a

scalar “forwarding benefit” associated with each tuple, which is an estimate of the probability

that sending it that way would result in successful end-to-end delivery. The tuples and benefit

levels change continuously, depending on the available connection opportunities, the known

information about theFO (e.g. if it expires or has already been delivered), etc.

Haggle has the useful feature of allowing many Forwarding Algorithms to be in usesimulta-

neously. Note that I donot mean that traffic is generated according to the wishes of all For-

warding Algorithms, since the Resource Manager will be responsible for accepting or denying

the proposed actions of every algorithm. The simplest algorithm is a direct forwarding algo-

rithm, which only proposes to send anFO if it can directly reach anNO which is present in

its graph of destinations (i.e. it does not make use of any multi-hop communication), with a

forwarding benefit of 100% by definition. Another algorithm is the epidemic forwarding al-

gorithm [VB00], which sends the data to every Name that is reachable, i.e. it floods the data,
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but with a correspondingly low forwarding benefit. Haggle can also make use ofMANET al-

gorithms such as geographic [MWH01] or distance-vector [PBRD03], as well as opportunistic

store-and-forward [SRJB] [ZAZ04] such as mobility-based [HCS+05, AAO03, LFC06] algo-

rithms. Haggle is able to use many of these algorithms simultaneously, obtaining the “best of

many worlds” in that for each forwarding operation, a different Forwarding Algorithm may

prove best, due to availability or not of per-algorithm state information. Such state information

can be exchanged in Haggle by Forwarding Algorithms themselves creating Forwarding Tasks

targeted at nearby nodes.

For eachFO, and each Protocol, Name, Neighbor that anFO is proposed to be sent to (with

associated benefit), the Forwarding Manager creates a “Forwarding Task”, to be executed when

the Resource Manager decides on doing so. When executed, theForwarding Task causes the

associated Protocol to send theFO to theNO, via the Neighbor.

A.5.6 Resource Manager using Tasks

As referred to many times above, all outgoing or incoming network operations in Haggle are

proposed to the Resource Manager and executed only if/when the Resource Manager chooses;

they are not necessarily executed in order or at all. A Task comprises a method of accomplish-

ing the work, the benefits of achieving the Task, and the costsof performing the Task. This

definition is deliberately abstract so that the Resource Manager can compare between different

possible actions while knowing little about the actual mechanisms or details of formulating or

carrying out Tasks.

Both the costs and benefits of Tasks are re-evaluated by the Resource Manager each time a

Task is considered for execution, using callback functionsprovided at Task creation time. A

Task’s cost describes measurable, true costs to the node, expressed in terms of energy, money

and time-on-network. Time-on-network refers to connectivity-specific nature of the Tasks being

scheduled, and represents the opportunity cost of not doingsomething different with that time.

Task benefits describe the estimated utility to end users of executing a Task. This is not a simple

calculation to make. Components of this benefit include forwarding benefit which, as described

above, is the likelihood that this action will result in a successful end-to-end transmission, but

also application benefit (how worth it to the application is that transmission), and user benefit

(what priority is the action to the user). We would also like to be able to take into account

priorities specified by the owner of the devices, e.g. “I don’t want to spend money on others’

traffic, but I will allow Haggle to share a limited percentageof my battery”)

Tasks can be either asynchronous or immediate. Asynchronous Tasks are the norm, and (as

the name suggests) the Resource Manager is provided with a callback to asynchronously call

when it wants the Task performed. Asynchronous Tasks can be “persistent”, i.e. once they are

executed they persist to be executed again later — otherwise, a Task is only called at most once.

Immediate Tasks are used when a particular operation must either be done now or not at all, and
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they are used to deal with events such as incoming network connections which must either be

accepted or rejected.

Benefits and Costs for asynchronous Tasks are often varied bytheir owner over time. For

persistent Tasks, the benefit of a Task that has just been executed will be low, e.g. checking

for new email on a server or checking for new Neighbours is notthat beneficial if the operation

was last performed 1 second ago, and the benefit would rise over time. On the other hand, an

FO with an imminent application-set expiry time becomes less and less beneficial to forward in

a multi-hop fashion, since the likelihood of reaching the destination in time for the application

purpose becomes low. Costs are calculated with the assistance of the Connectivity that the Task

will be using — typically, the Task owner would provide an estimate of the number of bytes

to be sent/received via a particular Neighbor, and the Connectivity can translate that into the

expected money, energy, and time that this transmission will take.

Once a Task is being executed, the Resource Manager can also be asked for a “continuation”,

i.e. if the scope of the work being done by the Task increases over the initial cost/benefits

specified, then the Resource Manager can be synchronously polled for permission (with additive

cost/benefit over the existing Task) to authorise work on theextended Task. This is useful for

circumstances such as email checking, which may discover a large email waiting for download.

The Task model is in marked contrast to the traditional network stack, where networking op-

erations proposed by applications or operating system functions are always attempted. The

centralisation of decision-making about what Tasks are worth doing at all, and which are more

important at any time, allows Haggle to have a number of advantageous features.

The Resource Manager is a key illustration of how Haggle is “layerless” since Tasks come from

many different managers. I have already described examplesof Tasks generated by the Name

Manager (querying nearby Neighbors for name information),Forwarding Manager (exchanging

state information), Protocols (email checking), and Connectivities (Neighbor discovery).

In the current version of Haggle, security and privacy have not been addressed as key concerns.

I have briefly discussed them in Section 1.7, but no real implementation has be done. I will

strongly raise these important issues in the next version ofthe prototype.

A.6 Comparison with the DTN Architecture

DTN [Fal03] is a network architecture designed for challenged networks, which are networks

that may violate one or more of the three key assumptions about the underlying link character-

istics: an end-to-end path exists between a data source and its peer(s), the maximum round-trip

time between any node pairs in the network is not excessive, and the end-to-end packet drop

probability is small. Examples of these networks includes terrestrial mobile networks, exotic

media networks, military Ad-Hoc networks, and sensor networks. Clearly,PSN is one kind of

challenged network and hence it falls underDTN.
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As a proposed architecture forPSN, Haggle shares some design principles withDTN, such as

both of them use application-level message switching, latename binding, and custody-persistent

storage for store-and-forward. For message switching,DTN uses Application-level Data Units

(ADUs) and Haggle usesDOs. In DTN, ADUs are typically sent by and delivered to applications

in complete units. They are transformed by the bundle layer into one or more protocol data

units called “bundle” for forwarding, bundles may be further fragmented during transmission.

The data-centric design of Haggle (DO) enables them to be used by many parties. This design

approach is driven by “ad hoc Google” applications.

Because of the data-centric principle and application characteristics ofPSNs, Haggle has clear

architectural differences from theDTN architecture.DTN adopts an overlay architecture, and

Haggle uses the layerless concept.DTN aimed to provide interoperability for different networks

such as the Internet, Bus networks, and exotic media networks, it has to be designed as an over-

lay architecture. It laid on top of the transport layer or other network layer. It relies on the

implementation of the convergence layer to adapt the bundlelayer to the underlying transport

layer. Different underlying protocols i.e. TCP and UDP, need a corresponding convergence

layer implementation. BecauseDTN only has specifications for its bundle layers but no spec-

ification for the underlying network type, the underlying network type can be sockets, sensor

networks and Haggle.

Haggle is a clean-slate design tailor-made for mobile devices based on the characteristics of

mobile networks (i.e. lack of end-to-end connectivity, availability of local peer-to-peer), and

expected applications such as asynchronous messaging, web-browsing, and ad hoc Google (one

reason for taking a data-centric approach). Considering the Internet as a useful medium for re-

laying data for mobile device communication, Haggle incorporates popular Internet application

protocols such asSMTP, POP, andHTTP into its Protocol manager, so Haggle can talk to the

Internet directly, instead of using proxies. But unlikeDTN, Haggle did not aim to be a universal

interoperability platform to link different networks fromsensors to near-Earth satellite commu-

nications. It is specific to mobile devices.DTN can run on top of Haggle by implementing a

Haggle convergence layer, or Haggle can provide theDTN protocol in the protocol manager

for interoperability. Because these two architectures share the same vision about challenged

network characteristics and some key design principles, itis easy for them to be compatible

with each other, and actually Haggle can be a clean-slate layerless implementation reference

for DTN.

A.7 Short Summary of Prototyping

We have developed a Haggle prototype using Java initially, targeting Windows XP. This devel-

opment has been conducted usingsourceforge.net, an open source development site, under the

GNU General Public License (GPL), and remains open-source and available to other research

groups. The implementation of the prototype is not a main contribution of this dissertation, so
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(a) Email Application (b) Web Application

Figure A.4: Haggle Email and Web Applications

I will not go into the details here, but give a brief summary for the completeness of this work.

We implemented Haggle’s Data Manager using Java’s standardSQL interface, backed by MySQL.

Although any SQL back-end will work, we chose MySQL because it is freely available. We

chose SQL as the storage mechanism for the Data Manager because it provides an easy inter-

face for persistence and search.DO Filters are implemented as regular expression-like queries,

and for the most part these queries can be translated directly into SQL select statements, to take

full advantage of SQL’s optimised environment. We chose to focus on 802.11 connectivity for

our prototype. This is because it is a widely used wireless access network, and is available for

a range of devices from laptops to mobile phones. It also offers both neighborhood and infras-

tructure connections (through ad hoc mode and infrastructure mode respectively) which allow

us to explore the range of Haggle capabilities using a singleconnectivity type. Implementing

802.11 support requires a native driver component which communicates with the NDIS driver

interface for Windows XP. We implemented this in C++ resulting in a dll file, which provides

our Java code with capabilities such as putting the 802.11 interface in ad hoc mode orAP mode.

We implemented two forwarding algorithms so far, namely direct and epidemic. The direct

algorithm only proposes to send anFO to a NO if that NO appears as a destination of theFO.

The epidemic algorithm proposes to send everyFO to everyNO where a Protocol says it can

support that transfer, but does so with a lower forwarding benefit since it has no idea whether it

will reach the destination this way.

Based on our introductory motivating examples, we have chosen to target email and the web

as our prototype applications. To be clear, by “email” and “web” we mean the messaging and

hyperlinked-information applications, rather than the protocols that underly them. Both of these

applications enjoy huge support from the pre-existing infrastructure deployment of servers and

content. It is a crucial feature of Haggle that we can take advantage of this infrastructure as well

as providing new functionality (operation when infrastructure is not available). This makes

Haggle much more compelling to existing users of that infrastructure, and the value added by

Haggle provides motivation for its deployment. To provide legacy support for existing email
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and web applications, we implement localhostSMTP/POPandHTTP proxies alongside Haggle.

This allows users to keep using the same applications they habitually use (we have tested Out-

look Express, Thunderbird, Internet Explorer and Firefox)with only minimal reconfiguration.

The modes of communication and operation of email and web applications using Haggle are

highlighted in Figure A.4. For the details of the prototype,the readers may refer to the separate

technical report [SSH+07].

A.8 Conclusion

Haggle is a clean-slate node architecture for mobile devices. Haggle allows applications to be-

come infrastructure-independent, freeing them from having to explicitly handle different and

changing connectivity environments. I prototype Haggle using existing email and web appli-

cations, showcasing their ability to operate in ad hoc networking circumstances where they

would previously have failed. This allows people to use the same application across different

connectivity scenarios, something they cannot do today without manual configuration.

Haggle provides a uniform interface for exposing application-layer names and naming meta-

data to allow late-binding of data delivery. This allows Haggle to select the best protocols and

connectivities to use, under any given network constraints, for reaching the destination. The

Resource Manager provides a single informed decision pointfor managing the usage of net-

work resources, allowing the node to coordinate the needs ofits applications with the user’s

preferences.

On the another hand, this architecture and prototype work points us to an important issue of

PSN, the forwarding algorithms, which led to the main contributions of this thesis, social-based

forwarding. At this moment I only implement direct transfer(wait for destination) and epidemic

forwarding for the prototype, I want to implement and test myBUBBLE algorithm on the Haggle

testbeds in the near future.
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