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People are the network:
experimental design and evaluation of
social-based forwarding algorithms

Pan Hui

Summary

Cooperation binds but also divides human society into comti@s. Members of the same
community interact with each other preferentially. Theystructure in human society. Within
society and its communities, individuals have varying papty. Some people are more pop-
ular and interact with more people than others; we may celnthubs. | develop methods to
extract this kind of social information from experimentaldes and use it to choose the next hop
forwarders in Pocket Switched NetworkB3NS9. | find that by incorporating social informa-
tion, forwarding efficiency can be significantly improvedrpractical reasons, | also develop
distributed algorithms for inferring communities.

Forwarding in Delay Tolerant Network®{Ns), or more particularlyPSNs is a challenging
problem since human mobility is usually difficult to preditt this thesis, | aim to tackle this
problem using an experimental approach by studying realamumobility. | perform six mo-
bility experiments in different environments. The resottexperimental datasets are valuable
for the research community. By analysing the experimerstt,d find out that the inter-contact
time of humans follows a power-law distribution with coeifict smaller than 1 (over the range
of 10 minutes to 1 day). | study the limits of “oblivious” foekding in the experimental envi-
ronment and also the impact of the power-law coefficient oasage delivery.

In order to study social-based forwarding, | develop mes#itodnfer human communities from
the data and use these in the study of social-aware forw@rdliipropose several social-aware
forwarding schemes and evaluate them on different datddetd out that by combining com-
munity and centrality information, forwarding efficiencgrc be significantly improved, and |
call this schem®UBBLE forwarding with the analogy that each community B@BBLE with

big bubbles containing smaller bubbles. For practical apent of these algorithms, | pro-
pose distributed community detection schemes, and algmpeomethods to approximate node
centrality in the system.

Besides the forwarding study, | also propose a layerless-ckattric architecture for theSN
scenario to address the problem with the status quo in conwation (e.g. an infrastructure-
dependent and synchronous API), which brir@&None step closer to real-world deployment.
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Chapter 1

Introduction

This dissertation is concerned with the design and evalnati forwarding algorithms in Pocket
Switched NetworksESN9, which are a type of Delay Tolerant Netwoii¥N) targeting mobile
humans[[Fald3]. A PSN uses contact opportunities to allomdms to communicate without
network infrastructure. | show that, by adding social infiation such as community and cen-
trality, the forwarding efficiency of SNcan be significantly improved over stateless “obliv-
ious” forwarding schemes and also state of the art encauptedicting algorithm. The key
contribution of this thesis is the design of efficient (innbeof delivery ratio and cost) social-
based forwarding algorithms from the empirical understagndf human mobility, interaction
and social structures.

Forwarding is a challenging problem in PSN. Unlike tradiabinternet and Mobile Ad Hoc
Network (MANET), an end-to-end path for each node pair is usually impasgildPSN because
either the network topology is changing too fast or the nétwe too sparse for full connec-
tivity. It means that the traditional routing table strateg not applicable to solve forwarding
problem in this kind of environments. We require an efficigata forwarding mechanism that
copes with dynamical, repeated disconnection and re-guirbome state of art routing algo-
rithms [JLWO5] [LDS04] in this area still provide forwardjrby building and updating routing
tables whenever mobility occurs. | believe this approaatoiscost effective for a PSN, since
mobility is often unpredictable, and topology changes aardpid. Rather than exchange much
control traffic to create unreliable routing structurestdfpr to search for some characteristics
of the network which are more tolerant to mobility. A PSN isfed by people. Those people’s
social relationships may vary much more slowly than the limgpg and therefore can be used
for better forwarding decisions. Furthermore, if we caredethese social mobility patterns
online in a decentralised way, we can put the algorithmspnéatical applications.

| propose th&UBBLE algorithm, with the intention of bringing in a concise coptef commu-
nity into PSNforwarding to achieve significant improvement of forwaglefficiency.BUBBLE
combines the knowledge of community structure with the Kedge of nodeentralityto make
forwarding decisions. There are two intuitions behind #igorithm. Firstly, people have vary-
ing roles and popularities in society, and these shouldu®edlso in the network — the first part

12



CHAPTER 1. INTRODUCTION 13

of the forwarding strategy is to forward messages to nodashndre more popular than the
current node. Secondly, people form communities in thasraddives, and this should also be
observed in the network layer — hence the second part of thefding strategy is to identify
the members of destination communities, and to use themasre

In this chapter | outline the background issues that magv#tis work, and state the contribu-
tions that are described in this dissertation. After thatrhsarise the contents of each chapter.

1.1 Metrics for Evaluating Forwarding Efficiency

The aim is to show theBUBBLE and its sub-class of algorithms are efficient forwardingpalg
rithms in term of delivery ratio and cost. Two forwarding @lghms with similar delivery ratio,
the one with lower delivery cost is classified as more efficard vice versa for the delivery
cost case.

For all the emulations/simulation conducted to comparevdoding efficiency in this thesis, |
have the following two metrics, and for these two metricompute the 95th percentile using
t-distribution.

Delivery Ratio: The proportion of messages that have been delivered ouedbthl unique
messages created.

Delivery Cost: The total number of messages (include duplicates) tratestingtcross the air.
To normalize this, | divide it by the total number of uniquessages created.

For some cases, | also compute the Hop-count-distributiothe deliveries, which is the distri-
bution of the number of hops needed for all the deliveried,vanich reveals the social distance
between sources and destinations.

In this thesis, | am not going to do end-to-end evaluatiorppiigaations using these algorithms.
| only propose a simple unicast communication scenario detfay tolerant messaging service.
I will limit my evaluation to delivery ratio and delivery com a network where all connectivity
is short-range wireless (i.e., no wired backhaul alloweélthough thePSN concept allows
using infrastructures (e.g. wireless access point) todgltie messages, | will not include it in
this thesis.

1.2 Social Networks

Society naturally divides int@ommunitiesaccording to needs for cooperation or selection.
In sociology, the idea o€orrelated interactionis that an organism of a given type is more
likely to interact with another organism of a same type thatih\a randomly chosen mem-
ber of the population [[Oka05]. If the correlated interastanncept applies, then our intu-
ition is that using community information to influence fomaang paths may be advantageous.
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The PSN forwarding problem is then turned into a well known commurdetection prob-
lem [NG04] [New06] [New04b] [[DDDGAO5][Cla05]. Besides comunity, familiar strangers
is another useful relationship which can be useful for dakvery. Studied by Milgram
[Mi[77], familiar strangers are people you meet regulany 8o not spend time with, such as
people who take the same bus or underground as you every dag veork, or people use the
same laundry room. This kind of regularity can be useful fedicting encounter, for example
we can usually predict the arrival of buses because of tegilar schedule. | believe that by
observing the contact patterns of the mobile devices, werndanthis social information.

Understanding a network and a node’s participation in thevork is important. Centrality
measurements give insight into the roles and tasks of nadasnetwork. Freeman [Frel77]
defined several centrality metrics to measure the impoetafia node to the network. Be-
tweenness centrality measures the number of times a nddeofathe shortest path between
two other nodes. This concept is also valid in a temporal agiwhich is a type of network
with time-dependent connectivity [KKKD2]. InRSN it can represent the importance of a node
for relaying traffic for others in the system. To determine tiverall centrality of a vertex,,
we need merely to sum its partial betweenness values fonalidered pairs of points where
L F ] F R

Colpr) = D> biy(pe)yi < (1.1)

wheren is the number of points in the graph. The sufi(py), is an index of the overall
partial betweenness of poipt. Whenevep, falls on the only geodesic path connecting a pair
of points,i andj, Cz(py) is increased by 1b(;(p;) = 1). When there are alternative geodesic
paths,Cs(py) is increased in proportional to the frequency of occurresicg, among those
alternatives. Closeness centrality yields the node wittstiortest path to all others and the best
visibility in a graph of relationships. It is a measure of hlmug it will take data to spread to
the others in this graph. The closenégga) for a vertexa is the inverse sum of distances (i.e.
hop count) to other nodés

Co(a)= 1/ da (1.2)
b

In this dissertation, | will concentrate on using the abaveia network concepts to help us to
choose a good data carrier for a specific destination.

1.3 Pocket Switched Networks

PSNsare a type oDTN, targeted at mobile users. Mobile workers move betweenaxiivity

islands (e.g. WiFi at home and work). Outside these islagnid;to-end connectivity becomes
expensive, slow, or simply unavailable. PSN is the new neting paradigm, which uses
human mobility and store-and-forward strategy to solvedbi@munication problem outside
the connectivity islands. On the other hand, there is a hugeuat of untapped resources in
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portable networked devices such as laptops, PDAs and matidees, including local wireless
bandwidth (e.g. 802.11 and Bluetooth), storage capaci®t) @ower, and multimedia data.
These resources should be utilised. Furthermore, the comcation between users is not al-
ways necessarily to pass through the Internet. Accordiraggoestionnaire survey amount 70
participants in the Computer Laboratory University of Caiudpe, around 50% of their email
exchanges are among people they met daily. Another mativaithat the information provide
by the Internet may not best satisfy the interest of the lasals, for example an user may be
more interested in a video clip of his friend, Brithey Spearstead of the MTV of the singer
Britney Spears that is usually what Google search will retoryou. Empirical result about
social search are also observed by other researdhers [MIGDOthis aspect, PSN unleashes
the power of local, social and community search and comnatioic.

Currently the only scarce resource is battery power, buacks in power engineering and
battery technologies have meant that mobile phones nowdast week on a single charge,
while remaining in constant network contact (although ie imhode). | expect that this innova-
tion will continue, allowing devices to participate in wiess networks while minimizing power
consumption. PSN focus on multi-hop delivery and data $&agdn neighbour’s cache. | en-
vision a world where these resources can be used to providerkng functionality alongside
access networks, and where users’ applications make usglofypes of bandwidth transpar-
ently. This is the goal oPSN To further illustrate the®SN scenario, | give two motivating
examples here.

First, let us consider a Japanese tourist, Nami, in ParimiNses her HTC Touch mobile phone
to take pictures of Paris. She is very excited when she artive Eiffel tower, and she wants
to take pictures of the beautiful tower from different amﬂeBut her mobile phone is running
out of storage because in the same day she already took 30@esic Nami can delete some
pictures, but she feels pity since every picture is so nickwamque to her. She wants to send
some pictures to her friend, Eiko, who is also visiting PassEiko can store the pictures for
her temporarily. Nami cannot find an Internet Cafe arounteBidwer and it is too expensive to
send via GPRS, especially using her roaming phone, and &eviag Paris tomorrow. Nami is
supposed to be able to send her pictures to Eiko or even toAreemail account by multi-hop
delivery using short-range radio, but the current techgielodisappoint this young lady.

A second motivating example is set on a train going towardsdoo. Charlie wants to find
out about restaurants in London using his laptop. He doekan@ anyGPRSconnection (and

may not be willing to pay for it if he did, or may be out of covgearange, or the train might
actually be a plane). Currently, Charlie would not bothegretrying to perform this task, as
he probably knows that his web browser (which is the obviquslieation to end users for
obtaining information) only works when he has a connectma tvireless access poiriR).

In this case, the frustrating thing is that the data is hidiklgly to be present on many other
devices within wireless range of Charlie, since others gggmnLondon may well have looked

Yes, she is Japanese! What can we say?
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up restaurants before they departed, or on the train (ifdicbifaveGPRSaccess etc). However,
with the existing architecture, that information is notiéalale to Charlie.

There are also PSN related prior systems that use a wired@g¢svhen wide-area connectiv-
ity is not available. Bayou (from PARC in 1995) maintainedadeadaring application where
wireless devices opportunistically synchronize with eattter, and where connectivity to an
infrastructure server was only intermittently [TT95]. More recently, Pastwatch is a peer-to-
peer CVS-like system from MIT that allows a group of nodes éadme disconnected from
the “main” repository, and to form a replicated read-writei€e repository as a local cluster
while partitioned from the main server [YCMO06]. Althoughddaatch does not do automatic
discovery and name resolution of nearby nodes, it is stilbadgexample of an application
that tolerates wide-area disconnection (e.g. PSN scgnaitb a high level of functionality
remaining. These prior works also strengthen our motinatiof PSN research. But because
this thesis is focus on forwarding, | will leave more disdassabout applications and systems
in the Appendix and also as future work.

1.4 Haggle Architecture

Haggle architecturﬁ is a ground-up redesign of networking for mobile devicesupp®rt the
mobile user scenario, more particular the PSN scenario. KeEgadea behind Haggle is to
have a data-centric architecture [A§Svhere applications do not have to concern themselves
with the mechanisms of transporting data to the right placee that is what has made them
infrastructure-dependent. By delegating to Haggle thk tdgpropagating data, applications
can automatically take advantage of any connection oppiies that arise, both local neigh-
borhoods opportunities and connectivity with servers anlthernet when available. | identify
four design decisions for Haggle that follow on from this.

1. Data Persists inside Haggle The data on each node in Haggle must be visible to and
searchable by other nodes (with appropriate securitysgcastrictions applied). This
facilitates operation of our motivating web example, intttiee public webpage needed
by one person can be found despite it being in another perstavice. In practice,
this means that Haggle must manage persistent data stamagpgdlications, instead of
applications storing data in a separate file system.

2. Networking Protocols inside Haggle Any application-layer networking protocol in-
cludes implied assumptions about the type of network aviglaFor example, client-
server protocols such &MTP, POPand HTTP assume that Internet-based servers are
contactable. With Haggle, | place networking protocol supjnside Haggle itself, al-
lowing me to present a data-centric rather than connedismric abstraction to applica-

tions.
2Haggle has two meanings, the first meaning is “ad hoc Googled, the second meaning represents the
haggling scenario of finding data carriers.
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3. Name Graphs supporting Late Binding Haggle maintains its own naming repository
(it obviously cannot rely on remote look-up of this data)thwmnappings from user-level
names to protocol-specific names specifying the variousswayget to the user-level
name. Furthermore, the whole set of mappings (the “namentraptransmitted along
with the data, allowing even intermediate (i.e. non-sourcmles to bind to protocol-
specific names as late as possible [AWSBL].

4. Centralised Resource ManagementOne role of the networking architecture on every
device is to decide what to do with each of its network integfmow. Haggle contains a
centralised resource management component, which demdesost/benefit comparison
basis what tasks it chooses to perform on each network auedt a given moment.

The details of the Haggle architecture design can be foutiteii\ppendix.

1.5 Delay Tolerant Networks

The existing TCP/IP based Internet operates on the prma@plproviding end-to-end inter-
process communication using a concatenation of potentakimilar link-layer technologies.
The standardisation of the IP protocol and its mapping irdtwork-specific link-layer data
frames at each router as required supports interopesabging a packet-switched model of
service. Although often not explicitly stated, a number e lassumptions are made regard-
ing the overall performance characteristics of the undm®glyinks in order to achieve smooth
operation: an end-to-end path exists between a data sauildtsgeer(s), the maximum round-
trip time between any node pair in the network is not excesswnd the end-to-end packet
drop probability is small. A class of so-calletiallenged networksvhich may violate one or
more of these assumptions, is becoming important and malgenatell served by the current
end-to-end TCP/IP model. Challenged networks arise piiynas a result of various forms
of host and router mobility, but may also come into being assalt of disconnection due to
power management or interference. Examples of such neswockude Terrestrial Mobile Net-
works, Exotic Media Networks, Military Ad-Hoc Networks, @tsensor and Sensor/Actuator
Networks. The architecture for Delay Tolerant NetworkipJ ) [Fal03] seeks to address the
communication needs of theskallengedenvironments. This architecture proposes a message
based store-and-forward overlay network that leverages af £onvergence layers to adapt to
a wide variety of underlying transports. In addition, thed®lalso espouses novel approaches
to application structuring and programming interfacegin@ntation, reliability, and persistent
state management.

Both PSNandDTN are designed to solve intermittent connection probl&mN focuses more
on environments with more predictable mobility (e.g. daés, buses), anBSNtargets on mo-
bile humans, which have more difficult predictability. As eEntioned in the previous section,
PSNis not only to solve connectivity problem, but also with theight of local communication,
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community sharing, and social search from neighbours’ aidhtours’ neighbours’ caches.
From the architecture point of view, the Haggle architeztigra data-centric clean slate de-
sign for PSN where applications do not have to concern themselves Wwehrechanisms of
transporting data to the right place, since that is what hadenthem infrastructure-dependent.
The data-centric principle of Haggle is that the data on ewmxce in Haggle must be visible to
and searchable by other nodes (with appropriate secutyss restrictions applied). In other
words, relationships between application data units @webpage and its embedded images)
should be representable in Haggle, and applications shmultble to search both locally and
remotely for data objects matching particular useful ctisrastics.

We can see that we need a completely new paradigm to consimartling in this new commu-
nication model. In this thesis, I look at two human socialstres, community and centrality,
which are very important for the data-centric forwarding.

1.6 Forwarding in PSNs

Forwarding inPSNsis a challenging problem since human mobility is usuallyanesiuled
and difficult to predict. Quite a lot of work has been done orwlrding inDTNs and the
related mobile ad hoc networks in the literature. Vahetadl. proposed the epidemic routing
[VBOQ] which is similar to the “oblivious” flooding scheme Valuated in this thesis. Spray and
Wait [SPRO5] is another “oblivious” flooding scheme but watkelf-limited number of copies.
Grossglausest al. proposed the two-hop relay scherne [GIT02] to improve theagpaf dense
ad hoc networks.

Many approaches calculate the probability of delivery eodlstination node, where the metrics
are derived from the history of node contacts, spatial mfttion and so forth. The pattern-
based Mobyspace Routing by Leguay al. [LEC08], location-based routing by Lebruat

al. [Leb05], context-based forwarding by Musoletial. [MHMO05] and PROPHETRouting
[CDS04] fall into this category.PROPHETuses past encounters to predict the probability of
future encounters. The transitive nature of encountersgk@ed, where indirectly encounter-
ing the destination node is evaluated. Message Ferry by ghab[ZAZ04] takes a different
approach by controlling the movement of each node. Recterats to uncover a hidden sta-
ble network structure in DTNs such as social networks haverged. For example, SimBet
Routing [DHOT] uses ego-centric centrality and its socialilgrity. Messages are forwarded
towards the node with higher centrality to increase theipdgyg of finding the potential carrier
to the final destinationRANK algorithm introduced in this thesis uses betweennessatantr
in a similar manner to SimBet routing. On the other ha1dBBLE exploits further community
structures and combines it WitANK for further improvement of forwarding efficiency. The
mobility-assisted Island Hopping forwardirig [NSDG06] sisetwork partitions that arise due
to the distribution of nodes in space. Their clustering apph is based on the significant loca-
tions for the nodes and not for clustering nodes themse®estering nodes is a complex task
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to understand the network structure for aid of forwarding.

Finally, | emphasise that | take an experimental rather thaoretical approach, which makes
a further difference from the other work described above.elleve that the proper way to
understand forwarding is first to understand human molality interaction patterns, otherwise
the algorithms designed may be mathematically beautifulféufrom reality. We need to
know how the people move, how they meet each other, how theyeict with each other, and
whether they move as a group. Can we find out regular or lomg-patterns? This way of
reasoning turns forwarding iPSNsinto a social network problem. I look at what kind of social
information is useful for forwarding, and how can this beragted efficiently from daily contact
patterns.

1.7 Security and Privacy

In this thesis, security and privacy have not been addressé&dy concerns; | chose to narrow
the scope of the problem to exclude them, so as to allow me te@mpeogress. | intend to
introduce security primitives as a core concern in the fiR8Nresearch. However, | have
made an initial analysis of the potential security threhtd PSNand the Haggle architecture
raise, discussed below.

Many data security issues PSNcan be handled using standard security techniques such as
encryption, access control, and data signingNmakes it more likely that there will be a man-
in-the-middle attack. One proviso is that many securithtégues rely on access to a trusted
third party, e.g. a certificate signing authority. This ascenay be available less often when
using PSN. One interesting approach would be to accept daitzhvis uncheckably signed,

but somehow mark it (both internally and to the user) as ‘wsted” until the signature can be
checked through infrastructure access.

There are particular security and privacy issues in the tisame graphs in the Haggle archi-
tecture. A name graph can contain sensitive informatian, a.user’'s email address and/or
phone number, or the number and type of a user’s devices @mzkehow worthwhile it is to
rob the user). Since Haggle potentially exposes the fuplyta everyone who can see B0
with the graph, this could prove to be a breach of privacy. Saolation might be to restrict
trust to particular groups of users, e.g. the personnel amapany, and avoid sending mes-
sages through untrusted nodes, except when the name graplat@have been encrypted and
authenticated to the extent that those nodes could notroaisi useful information, and could
only help by passing the data on to non-privacy-sensitiveesa(e.g. MAC addresses).

There are also privacy issues to do with neighbor discovexppols, since one’s devices essen-
tially beacon their identity. This could allow tracking diet user. This problem is not unique to

Haggle, and many devices already essentially act as beaegnsaptops using 802.11 placing

their MAC addresses on each frame.
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Resource theft or resource denial-of-service is an intiegessue for any system in which user-
owned nodes cooperate to achieve their goals, and rescanedisnited. In Haggle, we have

a built-in mechanism to cope with this, namely the Resouremader, which already makes
judgments taking into account the utility of a given actiorthe user, and the device owner’s
preferences. On the other hand, this offers a single poiattatk whereby a remote exploit
might allow an attacker to take full control of the device,s&xuring the Resource Manager
will be of particular concern.

Finally, we might ask the question of what motivates any niodgpend its resources assisting
any other node. An incentive to cooperate can be created iy mvays — using reputation
systems, micro-payments, or social kudos/disapprovathBrmore, in some possible deploy-
ments of Haggle, e.g. within an enterprise, there is a pigtiag incentive to cooperate so this
may not be a problem.

1.8 Contributions

My first contribution is the conducting of several real hunmaobility experiments which pro-
vide valuable datasets for the research community. | prograd the sensors (known as iMotes,
which run TinyOS and are equipped with Bluetooth) to log oBleetooth devices within com-
munication range. | have conducted 6 experiments in difteeavironments including confer-
ences, research labs, a university town, and a metropdaiitarwith up to 80 participants. For
some experiments, | also deployed fixed iMotes at some citgpats and key areas in a con-
ference to provide approximate location information andiiinfrastructure. | analysed the
human contact time and inter-contact time distributiond discovered that the inter-contact
time for each pair follows a heavy-tail distribution oveettange of 10 minutes to 1 day. | ana-
lytically studied the impact of the power-law coefficient®Nforwarding and also empirically
analysed the “oblivious” forwarding schemes.

A further contribution is the apply of the community detectialgorithms from complex net-
work study to the mobility trace analysis, and the proposkeraluation of three distributed
community detection algorithms for mobile devices. Mostt@ mobility traces available and
mobility experiments to date have @opriori community information, which makes study of
social-aware or community based forwarding imposs/bléfMV05] [CHCT06] [HCST05]
[HKAO4]. Community detection has been well studied butikapopular problem in the com-
plex networks and bio-informatics communities. It has besed to analyse protein structure,
human social relationships, and internet AS-level clusterIn this thesis, | apply and adapt
two community detection algorithms named weighted netveorddysis (WNA) and K -CLIQUE
detection to infer human communities from mobility tracekjch are further used for the for-
warding study. In real deployment, we do not expect a cesealer to collect all the traces
from the mobile devices for community detection, so | alsopmse three schemes for dis-
tributed community detection of mobile devices. | evaluhtse distributed algorithms against
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the centralised methods, and find the results to be quitfactiry.

The final main contribution is the design and evaluation oes&# social-aware forwarding
algorithms using community and centrality information. roposeLABEL which makes use
of a priori social informationRANK which makes use of pre-calculated betweenness central-
ity, and BUBBLE which makes use of centrality to move the messages away fiersdurce
and use community information to identify the destinatiooup. | evaluate the algorithms
against flooding, the “oblivious” multiple-hop-multipspy (MCP) scheme (controlled flood-
ing scheme by limiting the number of hops and number of cQparsd PROPHET[LDS0A].

| find out that by combining community and centrality infortioa, we can achieve a deliv-
ery ratio close to controlled flooding amROPHETbut with much less cost. As a by-product
of these algorithms, | also uncover several properties lwhie important for a new human
interaction/mobility design.

| have an additional contribution of the design of Haggléhaecture, a clean-slate data-centric
architecture around mobile users, which is considered todige-track work from the forward-
ing algorithm design so | include it only in the Appendix.

1.9 Outline

The remainder of this dissertation is structured as follows

In Chapter 2 | describe the iMote experiments | have condiatel also the datasets | obtained
from the community. | analyse the inter-contact distribntfor all the datasets and also the
impact of the distribution on forwarding strategies. A satis also dedicated to the empirical
analysis of “oblivious” forwarding on the traces.

In Chapter 3 | infer the human community structures from tlubitity traces usingVvVNA and
K-CLIQUE. | also propose three distributed community detection rélgms for mobile de-
vices.

In Chapter 4 | introduce the simple social-aware forwarditgprithm called_ABEL, which is
evaluated on a dataset wihpriori community information.

In Chapter 5 | present th@UBBLE algorithm which is the social-aware algorithm making use
of both community and centrality information.

In Chapter 6 | conclude the thesis with a discussion of orgaird future work.

In the Appendix | present the clean-slate data-centric Hagghitecture, the problem with the
status quo, the design principles, and the detailed design.



Chapter 2
Measuring Human Mobility

In Pocket Switched Networkg?EN9, mobility determines the communication opportunities
when access infrastructure is not available. Studying mumability can help us understand
the constraints of opportunistic communication and toglegiractical and effective forward-
ing strategies. Killer applications and security measgessalso be inferred from the human
mobility and interaction pattevﬁ] however, they are not the main focus of this thesis so | will
not go into the details. | will limit my evaluation to multieip delivery, assuming a messaging
service.

This chapter concentrates on several peer-contact-basadrhmobility experiments | have
conducted during this thesis period, and the analysis ditimean mobility patterns from these
traces. To ensure generality of the analysis results, |ialdade mobility traces from other
experiments, i.e. WIiFi access point logs from Dartmouthlége [HKAOZ]. | need to em-
phasise here that while previous works looked at wirelesworé& proximity in mobile ani-
mals [JOW 024[SHOB], mine is a pioneering study of human proximitypgsnobile devices,
and analysis of the impact of human contact patterns for ppistic communications.

The chapter is the result of collaboration with my supemwiBmf. Jon Crowcroft, and also
Dr. Augustin Chaintreau, Dr. Christophe Diot, Dr. JamestSe@md Richard Gass. Statistical
analysis of human contact and inter-contact patterns artdemetical study of the impact of
inter-contact distribution on forwarding are the conttibo of Dr. Chaintreau; my contributions
are mainly to the experimental platforms, experimentalagpent, and the inference of the
human social patterns from the traces. Most of the text aswlteein this chapter are extracted
or summarised from &DTN workshop paper [HCRE] with me as the first author and an
IEEE Transactions on Mobile Computing paper [CHIZ] with Dr. Chaintreau as the first
author and me as the second author. Vincent Hummel and DshRding from Intel provided
very important support for the iMote platform and softwaeyelopment on the iMotes.

1For example, city wide alternative reality gaming applizas can plan where to put their infrastructures and
distribute hints if they know how the people move; commutised data sharing and caching applications can
plan their caching strategies if they know the communitycitires.

22
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2.1 Introduction

The increasing popularity of devices equipped with wirglastwork interfaces (such as cell
phones or PDAS) offers new communication services oppiiesn Such mobile devices can
transfer data in two ways - transmitting over a wireless (oe#) network interface, and car-
rying from location to location by their users (while stoiedhe device). They can therefore
participate in what has been recently called a Pocket Sadtdtetwork [HCS05]. Commu-
nication services that rely on this type of data transfel stibngly depend on human mobility
characteristics and on how often such transfer opporasérise. Therefore, they will require
fundamentally different networking protocols than thosediin the Internet. Since two (or
more) ends of the communication might not be connected samebusly, it is impossible to
maintain routes or to access centralised services sucle ath

In order to better understand the constraints of opporticrdsita transfer, | chose to conduct
real-world deployments of devices to members of variousroamnities, allowing me to deter-
mine the effects of users’ mobility patterns on the prevegeof networking opportunities. |
used Intel iMotes to collect connection opportunity datd amobility statistics. | have con-
ducted experiments in various environments including emrfces, campuses, small cities like
Cambridge and also big metropolitans like Hong Kong. Fore@xperiments, | also used
static nodes to mimic infrastructure or city hot spots anprtavide approximate location infor-
mation. A lot of research iMANET or DTN are evaluated on simple mobility models, such as
random way point, which are most likely unrealistic. | bediany experimental deployments
and data collection are very important for the research conity by providing real-life mo-
bility traces for theoretical evaluation. Some of our datasare now available online in the
CrawDad wireless database [KHA04], and are used by mangnesers.

| analyse five datasets from iMote experiments and five eatatatasets. | define the inter-
contact time as the time between two transfer opportuniitethe same devices. | observe in
the traces that the inter-contact time distribution fobmheavy-tailed distribution over a range
of 10 minutes to 1 day. Inside this range the inter-contact tilistribution can be compared to
that of a power-law.

p(r) =Czx™“ (2.1)
Distributions of the form (2.1) are said to follow a power lawhe constanty is called the
exponent or coefficient of the power law. (The constant C istigauninteresting; oncer
is fixed, it is determined by the requirement that the distidn p(x) sum to 1.) To reveal
the power-law form of the distribution it is usually betterglot the histogram on logarithmic
scales[[New05]. | study the impact of those large inter-aontimes on the actual performance
and theoretical limits of a general class of opportunistieerding algorithms that | call “naive”
or “oblivious” forwarding algorithms. Algorithms in thidass do not use the identities of the
devices that are met, nor the recent history of the contaotghe time of day, in order to make
forwarding decisions. Instead, forwarding decisions asebl on forwarding rules statically
defined that bound the number of data replicas, or the nunitheps.
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Figure 2.1: iMote for the experiment

Based on experimental observations, | develop a simplifiedehof opportunistic contact be-
tween human-carried wireless devices. | do not claim thatrtfodel is satisfactory to accu-
rately predict the performance of different forwardingaithms. It rather serves my purpose,
which is to demonstrate how heavy-tail inter-contact tinméisience the performance of naive
forwarding algorithms, and how these should be configurexdfey reasonable guarantees.

The rest of the Chapter is structured as follow. | first déscthe platform and deployment
of the iMote experiments (Secti@nP.2), then | give a brighmary about the iMote datasets
| collected and also some external datasets collected l®r otisearch groups that | will use
in this dissertation (Sectidn 2.3). After studying the pater-contact time distribution (Sec-
tion[2:4), | present analytical results about forwardingP®Nswith power-law inter-contact
time distributions (Sectioh’d.5). As a complement to thethgcal work, | also empirically
study the limitations of the “oblivious” forwarding in theseal scenarios (Secti@nP.6). Before
the conclusion of this Chapter, | also discuss related w8dc{ior Z2.17).

2.2 iMote Experiments

In this section | use an experiment conducted within a grdepuoference attendees to represent
the general features of the iMote experiment. Other exparimfollow a similar setup and
deployment approach, which involved different particifzeend environments.

The device used to collect connection opportunity data aobility statistics in this experi-
ment is the Intel iMote. This is a small platform designeddorbedded operation, comprising
an ARM processor, Bluetooth radio, and flash RAM, and is shawtin a CR2 battery in Fig-
ure[2.1(d). | packaged these devices in a dental floss bokpasisn Figurd Z.1(B), due to their
ideal size, low weight, and hard plastic shell.
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Fifty-four of these boxes were distributed to attendeelsaltEEE Infocom conference in Miami
in March 2005 (which had eight hundred attendees in totdig volunteers were asked to keep
the iMote with them for as much of their day as possible. Viadens were chosen to belong to a
wide range of organisations — more than thirty were represko assure the participants of
their anonymity, | did not record the MAC address of the iMotleat they were given, instead
only recording an uncorrelated number printed on the oetsidhe box, so that | could perform
the logistics of distribution and collection. Of the fiftgdr iMotes distributed, forty-one yielded
useful data, eleven did not contain useful data becausermiugfailures with the battery and
packaging, and two were not returned.

The iMotes were configured to perform a Bluetooth basebayet fanquiry” discovering the
MAC addresses of other Bluetooth nodes in range, with theirgegnode enabled for five sec-
onds. Despite the Bluetooth specification recommendingitig@iry last for ten seconds, pre-
liminary experiments showed that five seconds is sufficiemoinsistently discover all nearby
devices, while halving the “battery-hungry” inquiry pha8etween inquiry periods, the iMotes
were placed in a sleep mode in which they respond to inquaiéare not otherwise active, for
a duration of 120 seconds plus or minus twelve seconds infaranrandom distribution. The
randomness was added to the sleep interval in order to avsitdation where iMotes’ timers
were in sync, since two iMotes performing inquiry simultansly cannot see each other. How-
ever, | still expect iMotes to fail to see each other duringuimy around four percent of the time
(when they are doing inquiry at the same time).

The results of inquiry were written to flash RAM. Since flaspaity is limited (64K for data),
itis impossible to store the full results of each inquirylwatit running the risk of exhausting the
memory. Instead, | decided to record “contact periods”sThachieved by maintaining an “in-
contact” list comprising the Bluetooth MAC addresses ofitbeles that are currently visible.
When a device on this list stops responding to inquiriespitest record of the fordMAC,
start time, end timg Preliminary tests revealed the following problem: Blutodevices on a
specific brand of mobile phone did not show up consistentiindunquiries (and increasing the
inquiry period to ten seconds did not help). Therefore, allsmuanber of nodes were causing
the memory to fill too quickly. To avoid this problem, | keep evite in the “in-contact list”
even if it is not seen for one inquiry interval. If it comes kag-contact on the next interval,
nothing is stored. If it does not, a record is stored as narmhis solves the problem, at the
expense of not being able to detect actual cases where a rmgegraut of range during one
two-minute period, and back into range for the next two-rtemeriod.

2.3 Experimental Datasets

In this section, | summarise the features of all the expantaiedatasets which | will use in
this chapter and the rest of this dissertation, which ingliine iMote datasets and five external
datasets involve Bluetooth or WiFi. The characteristicthefiMote datasets, explained below,
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are shown in Table2.1.

Experimental dataset Cambridge04| Infocom05| Hong Kong| Cambridge05| Infocom06
Device iMote iMote iMote iMote iMote
Network type Bluetooth Bluetooth | Bluetooth Bluetooth Bluetooth
Duration (days) 3 3 5 11 3
Granularity (seconds) 120 120 120 600 120
Number of Experimental Device 12 41 37 54 98
Number of internal contacts 4,229 22,459 560 10,873 191,336
Average # Contacts/pair/day 10 4.6 0.084 0.345 6.7
Number of External Devices 148 264 868 11,357 14,036
Number of external contacts 2,441 1,173 2,507 30,714 63,244

Table 2.1: Characteristics of the five iMote datasets

e In CambridgeO4the data was obtained from twelve doctoral students andtjacom-
prising a research group at the University of Cambridge QaerpLab. This is an early
experiment and hence has small participant population.

¢ In InfocomO5 the devices were distributed to approximately fifty studexttending the
Infocom student workshop. Participants belong to diffessrtial communities (depend-
ing on their country of origin, research topic, etc.). Hoeevthey all attended the same
event for 4 consecutive days and most of them stayed in the katel and attended the
same sessions (note, though, that Infocom is a multi-tranokecence).

¢ In Hong Kong the people carrying the wireless devices were chosen eraEmtly in a
Hong Kong bar, to avoid any particular social relationshaépdeen them. These people
were invited to come back to the same bar after a week. Theyrdikely to see each
other during the experiment.

e In Cambridge05the iMotes were distributed mainly to two groups of studdram Uni-
versity of Cambridge Computer Laboratory, specifically emgaduate yearl and year2
students, and also some PhD and Masters students. In aditthis, a number of sta-
tionary nodes were deployed in various locations that wepe&ed many people to visit,
such as grocery stores, pubs, market places, and shoppitegsen and around the city
of Cambridge, UK. However, the data from these stationargtédd will not be used in
this chapter. This dataset covers 11 days.

¢ In InfocomO06 the scenario was similar ifafocom05except that the scale is larger, with
80 participants. Participants were selected so that 34 b80dorm 4 subgroups by
academic affiliations. In addition, 20 long range iMoteseveeployed at several places
in the conference site to act as access points. Howeveratadrdm these fixed nodes is
also not used in this chap&r.

2In this chapter, | do not use Cambridge05 and Infocom06 datalse they were unavailable when | was
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Table[Z2 summarises the characteristics of the four extenxperiments (but five datasets):
UCSD [MV035], Dartmouth College [HKAQ4], University of Tordo [SCP 04], and MIT Re-
ality Mining project [EPOB]. | name thetdCSD, Dartmouth Torontg andMIT respectively.

User Population Toronto | UCSD | Dartmouth MIT BT MIT GSM
Device PDA PDA Laptop/PDA| Cell Phone| Cell Phone
Network type Bluetooth | WiFi WiFi BT GSM
Duration (days) 16 77 114 246 246
Granularity (seconds) 120 120 300 300 10

Devices participating 23 273 6648 100 100

Number of internal contacts 2,802 195,364| 4,058,284 54,667 572,190
Average # Contacts/pair/day 0.35 0.034 0.00080 0.022 0.23
Recorded external devices  N/A N/A N/A N/A N/A
Number of external contacts N/A N/A N/A N/A N/A

Table 2.2: Comparison of data collected in the external exysnts.

UCSD and Dartmouth make use of WiFi networking, with the ferrmcluding client-based
logs of the visibility of access points (APs), while the ¢atincludes SNMP logs from the ac-
cess points. The durations of the different logs are thrdd@ur months respectively. Since we
required data about device-to-device transmission oppiis, the raw datasets were unsuit-
able for our experiment and required pre-processing. Fiir thatasets, | made the assumption
that mobile devices seeing the saarRewould also be able to communicate directly (in ad-hoc
mode), and created a list of transmission opportunitiesdbgrehining, for each pair of devices,
the set of time regions for which they shared at leastAme

The traces from the Reality Mining project at MIT Media Lalelude records of visible Blue-
tooth devices and GSM cell towers, collected by 100 cellgisodistributed to student and
faculty on the campus during 9 months. | treat these setsrabcts as two different datasets.
For the GSM part, | have assumed, as done above, that twosdenie in contact whenever they
are connected with the same cell tower.

Unfortunately, this assumption introduces inaccuraci®s. one hand, it is overly optimistic
since two devices attached to the same (WiFi or GSM) basestatay still be out of range
of each other. On the other hand, the data might omit cororeopportunities, e.g., when two
devices pass each other at a place where there is no instiesreatess point. Another potential
issue with these datasets is that the devices are not nabessdocated with their owners at all
times (i.e. they do not always characterise human mohilDgspite these inaccuracies, these
traces are a valuable source of data spanning many monthsanding thousands of devices.
In addition, considering two devices connected to the saase Istation being potentially in
contact is not altogether unreasonable. These devicesviadéed be able to communicate

doing the analysis. Butin Chapfdr 3, we will see that usessmilar environments (e.g. two Infocom experiments)
exhibit similar statistical properties.
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Figure 2.2: Data on contacts seen by an iMote: other iMotdt) @ind all other device types
(right).

locally through the base station without using end-to-eodnectivity, or even by using the
Internet.

The traces from the University of Toronto have been colktte 20 Bluetooth-enabled PDAs

distributed to a group of students. These devices perfomigdetooth inquiry each 100 sec-

onds and this data was logged. This methodology does nateedgvices to be in range of any

AP in order to collect contacts, but it does require that the BB carried by subjects and that
they have sufficient battery life for them to participatehie data collection. Data may be col-
lected over a long period if devices are recharged. The e@atase comes from an experiment
that lasted 16 days.

2.4 Inter-contact Time Analysis

2.4.1 Definitions

| am interested in how the characteristics of transfer ojppities impact data forwarding de-

cisions. In this chapter, | focus on how often such oppotiesmbccur. | decided not to attempt
|}

to analyse how much data can be transported for each of théﬂmsmrate, as these strongly

3Wireless links are lossy, and loss rates are hard to premicguse signal propagation is complex in realistic
environments (multi-path fading, reflective obstacles,)etn this thesis, | presume that a node may forward pack-
ets to another during a recorded “contact” in my measuresnéntay underpredict the message count required to
delivery the data because of the possible link-layer retrassion to recover from losses. But because | want to
focus on the impact of human mobility on forwarding algamithin this thesis, | temporarily do not consider these
physical-layer details and leave them for future work.
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depends on factors such as the transmission protocol, teareas used, and other factors that
could be modified to provide improved transmission perfaroga In my analysis in Sectién 2.5,

| address two extreme cases corresponding to lower and lyopeds for the amount of data
that could be transferred in each connection opportunity.

| define theinter-contact timeas the time elapsed between two successive contacts ofitiee sa
devices. Inter-contact time characterises the frequenttywhich packets can be transferred
between networked devices; it has rarely been studied iliténature. The behaviour of inter-
contact times is important when considering the delay egpeed by packets in a PSN. This
is the time a node has to wait to get in contact with a specifien@as seen immediately after
losing contact with that node). The nature of the distrinuitvill affect the choice of suitable
forwarding algorithms to be used to maximize the succelssrismission of messages in a
bounded delay. Two remarks must be made at this point:

First, the inter-contact time is computed once at the endaoheontact period, as the time
interval between the end of this contact and the begin of th contact with the same de-
vicea. Another option would be to compute the remaining intertaotitime seen at any time,
I.e at timet, for each pair of devices: the remaining inter-contact tismthe time it takes af-
ter ¢, before a given pair of devices meet again (a formal defimitgogiven in Sectiof_215).
Inter-contact time and remaining inter-contact time hawkemdnt distributions, which are re-
lated, for a renewal process, via a classical result knowheawaiting time paradox (see p.147
in [Bre99]). A similar relation holds for stationary proses, in the theory of Palm Calculus
(see p.15in[[BB0O3Y]). | choose to study the first definition ioftér-contact time seen at the end
of a contact period”, as the second gives too much weightge lealues of inter-contact times.
In other words the definition that was chosen is the most cuasee one in the presence of
large values.

Second, the inter-contact time distribution is influencgdhe duration and the granularity of
the experiment. Inter-contact times that last more thardtiration of the experiment cannot
be observed, and inter-contact times close to the durateieas likely to be observed. In a
similar way, inter-contact times that last less than thenglarity of the measurement (which
ranges from two to five minutes among different experimecdashot be observed.

Another measure of the frequency of transfer opportunitiascould be considered, is the inter-
any-contact, i.e. for a given device, the time elapsed b&tvio successive contacts with any
other device. This measure is very much dependent on theydtapht of wireless devices and

their density during the experiment, as it characterisas that devices spend without meeting
any other device.

4Inter-contact starting after the last contacts recordethis pair of devices were not included.
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2.4.2 Inter-contact Time Characterisation

| study the empirical distribution of the inter-contact &mobtained for all experiments shown
in Figures[ZB[Z]4, an@_2.5.

For all plots, an empirical distribution of the inter-cocttéimes was first computed separately
for each pair of devices that met at least twice. It is hardttys the characteristics of the
distributions for all pairs individually, because there anany such distributions, and some of
them may only include a few observed values. This is why bfela two-step approach: First,

| present the distribution obtained when all pairs distiitns are combined, each with an equal
weight, in a distribution that | call the aggregated disition. Second, | use a parametric model
motivated by this first part and estimate the parameterseoirtiividual distribution for each
pair.

1) Aggregated distributionFigures [2.B,[2]4, anld 2.5 present the aggregated distnibfdr
different datasets. All plots show the complementary cativg distribution function, using a

loglog scale.
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Figure 2.3: Aggregated distribution of the inter-contawctet in Cambridge Hong Kongand
Torontoexperiments

For iMote experiments, “(i)” indicates that the datasetvsh@s obtained using internal contacts
only, while “(e)” indicates that the dataset shown includaly external contacts. For the first
two iMote experiments (labeledambridgeandHong Kong | present only one case here (cor-
responding respectively to internal and external confa€tsey are shown in Figufe2.3, which
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also includes the distribution obtained among pairs of erpental devices in the trace from the
University of Toronto. Distributions belonging to the iMebased experiment Bitfocom05are
shown in Figure[(Zl4 , where distributions associated witarital and external contacts have
been plotted separately for comparison. Fiduré 2.5 pregémet distribution of inter-contact
computed using traces from experiments other than ours.

Let us first note that, although inter-contacts are short astncases, the occurrence of large
inter-contacts is far from negligible: in the three iMotesbd experimentJambridge Info-
comO05andHongKong, 17 to 30% of inter-contact times are greater than one lamatr 3 to 7%

of all inter-contacts are greater than one day. In the Tordatasets, 14% of inter-contacts last
more than a day, and 8% more than a week. These large inte&xet®are even more presentin
the traces collected idCSD DartmouthandMIT, the most extreme case being tér trace
using Bluetooth sightings, where up to 60% of the inter-aot# observed are above one day.
The variation between datasets is significant. It can beaggdeagiven the diversity of commu-
nication technologies and populations studied, as wehastpact of experimental conditions
(granularity, duration). But they also present common proes that | now discuss in more
detail.

| now concentrate on the region between 10 minutes and onelddljis region, all datasets
exhibit the same characteristics: the cumulative distidioufunction CCDF) is slowly varying,

it is lower bounded by the CDFof a power-law distribution, that may in some cases be a good
approximation. This contradicts the exponential decayeftail which characterises the most
common mobility models found in the literature, and | pravéhie next section that it can have

a significant impact on the performance of opportunistievogking algorithms.

To justify the above claim, | studied the quantile-quanpilet comparison between the empir-
ical distribution found and three parametric models (exgmtial, log-normal, and power-law).
An example is shown in Figufe2.6 for the distribution basadrdernal contacts during the
InfocomO5experiment. All parametric models have been set to takeahme snedian value as
the empirical distribution. | also normalise the power-lawfit the granularity t=120 seconds,
and the log-normal distribution such that the logarithm oftbthe empirical variable and the
model have the same variance. Not surprisingly, we obséatele three models deviate sig-
nificantly from the empirical findings for values above ong.das expected, the exponential
distribution is far from the empirical ones, the quantile thee log-normal distribution deviates
from the empirical case by a non negligible factor. The pekaerdistribution, by opposition,
remains close to the empirical one for values up to 18 housjtaseems to be the most appro-
priate model to apply. In other datasets, the power-law mayesimes not match the empirical
findings as well as in this example, but among these three isiddg always the closest to the
empirical distribution. For values above one day, | expectiels with additional parameters
(e.g. following a Weibull distribution) to improve the matwith the empirical distribution, but
that is beyond the scope of this chapter.

The most notable difference | observe between datasetatighin fit with a power-law is better
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Figure 2.6: Inforcom05: Quantile-quantile plot of comgan between the aggregated distribu-
tion of the inter-contact time and three parametric models

for the datasets that contain the largest number of points, as in FigurE2l4 and Figute P.5. |
also observe that the coefficient of the power-law that isvetdound on the range [10 minutes;
1 day] is different between datasets: this is 0.6 for the BMetperiments aCambridgeand
Hong Kong as well as for Toronto datasets, 0.35 for the iMote basedraxygnt ainfocom05
and 0.2 for traces collected in UCSD, Dartmouth and MIT. litases, it is below 1. The value
of this coefficient, which is also called the heavy-tail irdes critical for the performance of
opportunistic forwarding algorithms, and | discuss it fignt below.

Figure Z% shows that the distribution is almost unchanfjede considers internal or external
contacts. The same observation was made for other iMoteiexgats, except for the experi-
ment conducted in Hong Kong where very few internal contaetiee logged. Some variations
of the heavy-tail index have been observed depending onntieedf the day.

2) Individual distribution for each pairSo far | have studied the aggregated distribution where
all pairs have been combined together, and | found that ibeaspproximated by a power-law
for values up to 1 day. In this section, | assume that thisiclean be made individually for
all pairs, although the parameter of this power-law, aldeedahe heavy-tail index, may be
different among them. This approach allows us to study therbgeneity between pairs via a
single parameter, some of these results also measure theaegof the above assumption for
each pair.
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Estimator for the heavy-tail index Let us consider a pair of nodes. The sample of the inter-
contacts observed for this pair will be denoted.®y, . . . ,X,,, its order statistics by, <

. < X(»), and its median value by m. All times will be given in secondwe assume
that this sample follows a power-law with granularity 120l doeavy-tail indexy, we have:
P[X > z] = (x/120)~“, such that an estimator efbased on the samples’ medianis given

by:

In(2)

In(m) — In(120) (2.2)

o =

More generally one can consider all order statistics X@} fit in the range [10 minutes; 1 day]
and estimater based on each of them. It creates a collection of estimatotbé value oty, as
follows:

{ In(n) —In(n — 1)
ln(X(i)) — ln(120)

<X < i<n )
600 < X;) < 86400, i 2.3

| denote by, anda,, respectively the minimum and maximum values in this set abtivs
equivalent to plot the empiric&CDFfor this sample in a log-log scale, and bound &DF
from above and below by two straight lines that go througtbpbality 1 at time value 120s.
These slopes would be equal respectively-tg,,, and—a,,. By opposition tot, these two
estimators are not centred around the value,@nd they do not converge to this value when the
sample becomes large. They rather serve the purpose of stieanalysis; they characterise
some bounds that are verified by each pair. Note also thattiugly, the differencev,, — a;.
indicates how the conditional distribution of the sampléis range differs from a pure power-
law.
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In Figure[2.¥(a), | plot the values afand the intervala;,.,; o] for all pairs of iMotes during
the experiment conducted Atfocom05 One can expect that the coefficient takes different
values among pairs, as some participants are more likelyetet wften than others. | initially
ranked all pairs according to their value f@yrin decreasing order. Although | have computed
these values for all pairs, | only draw the intery@l,.,; c.,,] for 100 pairs chose,n arbitrarily
according to their rank (one every 14), in order to keep tharéigeadable. As shown in Figure
24(a), estimations af for different pairs may indeed vary between 0.05 and 1. Betvtbese
two extreme values, which are rarely observed, estimateslfioost all pairs lie between 0.1
and 0.7 depending on the estimator. Note that all estimdtesave smaller than 1; the only
exceptions are the upper estimatg for three pairs (i.e. less than 0.2% of pairs in this case).
The median-based estimate lies in [0.2 ; 0.4] for half of tagg) the lower estimates lies in
[0.14; 0.32], and the upper estimate lies in [0.32 ; 0.5] adai half of the pairs.

These results have three major implications: First, therbgeneity among pairs implies differ-
ent possible values far, which are centered around the value already observed vitéyiisg

the aggregate distribution (i.e. 0.33). Second, the diffee between the median estimator and
the heuristic bounds | defined above remains within 0.25@X0ea few cases. Last, the upper
estimatev,,, almost never goes above 1, which establishes that thedoteact distribution for
each pair is lower bounded in this range by a power-law witbeffcient smaller than 1.

The same results have been obtained for other datasetsheyd@re summarised in Figure
Z4(b). For each dataset indicated in the bottom, | show tseilaltion of values obtained
among pairs for the three estimators defined above. Eachagsti stands for one box-plot: it
is, from left to right,a;,.,, ¢, cu,,; the thick part indicates the values found in 50% of the pairs
the thin part contains the region where 90% of the pairs aredo

In theHong KongandDartmouthdatasets, where contacts are sparser, inter-contactesfopl
each pair contain fewer values. As a consequence, theatifferbetween estimators can grow
significantly. | even observe that,, goes slightly beyond 1 for 10% of the pairsHiong Kong
dataset, although it is probably an artefact of my conseeatstimate.

Correlation: We study the auto-correlation coefficients to see how theevaf the inter-contact
time may depend on the previous values for the same pair. hdts are shown ii_2.8 for
all orderk up to 50. Since the inter-contact time distribution usubHg no finite variance, we
computed the correlation coefficient on the values of tharitigm of the inter-contact times.
Note that a correlation coefficient was computed for each pa present for all ordek the
average value we observed among all pairs, as well as theaht®ntaining 50% and 90% of
the centred values (respectively, in the thick box and tiretihr).

In the InfocomO5dataset, the variation of the coefficient among pairs iseguitportant, al-
though most pairs remain reasonably non-correlated (tlo& tox remains always less than
0.30 away from zero). Overall we observe a slightly negatimeelation on average over all
pairs, which reduces dsgrows. Correlation coefficients are smaller when the datadarge

(as seen for example in tMdIT GSM trace shown here, as well as for all other long traces).
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Mo - -

Figure 2.8: Correlation coefficients for the sequence daériabntact times: for all pairs of
iMotes in thelnfocomO5dataset (left), and for all pairs of devicesNHT GSM dataset (right)

This tends to indicate that these coefficients for all paiosi be closer to zero if the iMote
experiment could be done with a longer duration, and thasaineple of inter-contacts collected
for each pair was bigger.

Based on the above results, | assume in the next sectiorh@atter-contact time distribution

follows a power-law for each pair. To simplify the analysissisume in addition that the coef-
ficient is the same for all pairs, that the sequence of intetact times is i.i.d. (i.e. correlation
coefficient are null) and that they are independent betweaés.pT his simplification allows me

to characterise the performance of forwarding algorithoigecgenerally. Some of the results |
present can be extended to stationary ergodic sequendelabis left for future work.

2.5 Forwarding with Power Law-based Opportunities

In this section, | present a summary about forwarding witivgrdaw-based opportunities. But
as mathematical analysis is not a main contribution of thesis, | recommand readers to refer
to our papern[CHCOY] for the details of the proof.

| am interested in a general class of forwarding algorithmisich all rely on other devices
to act as relays, carrying data between a source device aedtaation device that might
not be contemporaneously connected. These relay devieehasen purely based on contact
opportunism and not using any stored information that dlessthe current state of the network.
The only information used in forwarding is the identity oéttlestination so that a device knows
when it meets the destination of a bundle. | call such algor# “oblivious”, although they
could be in reality quite complex and, as we will see, verycedfit in some cases.

The following two algorithms provide bounds for the classlgiorithm described above:
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e wait-and-forward: The source waits until its next direchtaxt with the destination to
communicate.

¢ flooding: a device forwards all its received data to any dewhich it encounters, keeping
copies for itself.

The first algorithm uses minimal resources but can incur ldeigys and does not take full
advantage of the ad-hoc network capacity. The second #igarthat was initially proposed
in [VBOQ], delivers data with the minimum possible latenbyt does not scale well in terms
of bandwidth, storage, and battery usage. In between tinasextreme algorithms, there is
a whole class of algorithms that play on the number of relayogs to maximise the chance
of reaching the destination in a bounded delay while avgidiooding. The most important
reason not to flood is to minimise memory requirements aratedlpower consumption in
relay devices, and to delete the backlog of previously sexssages that are still waiting to be
delivered, and could be outdated. Some strategies, basedeouts, buffer management, limit
on the number of hops and/or duplicate copies have been gedigsee [VBOQ, CMO1, DELD1])
to minimise replication and backlog.

| do not include the contact time representing the duratifosach contact in this model , as-
suming that each contact starts and ends during the sameslimeThis is justified here by
the fact that | am interested in a model that accounts foremqumsnces of large values of the
inter-contact time. It was observed (ske [H@S]) that the contact time distribution is also
heavy-tailed, but it takes smaller values, by several ardémagnitude, than the ones of the
inter-contact time. Even if we do not explicitly model thentact time (each contact lasts one
time slot), we need to take into consideration the fact thedract may last long enough to
transmit a significant amount of data. | then introduce tviegions:

e theshort contact casewhere only a single data unit of a given size can be sent lagtwe
two devices during each contact.

¢ thelong contact casewhere two devices in contact can exchange an arbitrary abodu
data during a single time slot.

These two cases represent a lower and an upper bound fordh&aton of bandwidth. The
number of data units transmitted in a contact (whether sivdang) is defined as a data bundle.
The long and the short case differ from a queuing standplmirihe long contact case, the queue
is emptied any time a destination is met. In the short com@s®, only one data unit is sent and
therefore, data can accumulate in the memory of the relaigelev

At this stage, | have established the following results fo tlass of so-called “oblivious”
forwarding algorithms defined in the long contact case :

e Fora > 2 any algorithm from the class | considered achieves a deldyfimite mean.
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e If 1 < a < 2, the two-hop relaying algorithm, introduced by [GT02], @t stable in the
sense that the delay incurred has an infinite expectatiors. Hbwever still possible to
build a naive forwarding algorithm that achieves a delaywiitite mean. This requires
that a number ofn duplicate copies of the data are produced and forwardedrewhe
must be greater thaf'-, and the network must contain at leasgt devices.

e If o < 1, none of these algorithms, including flooding, can achietramsmission delay
with a finite expectation.

In other words, | have characterised the performance oha#ie¢ algorithms in the face of ex-
treme conditions (i.e. heavy-tailed inter-contact tim@$j)e last case where < 1 corresponds
to the most extreme situation, and the result | provide is tiaise seems at first unsatisfactory:
none of the algorithms | have introduced can guarantee & fxipected delay. To make the
matter worse, this case whetie < 1 seems to be typical of the inter-contact distribution in
the [10 minutes; 1 day] range for all the scenarios | haveipusly studied empirically. This
overall implies that the expected delay for all the scersdritave discussed before should be at
least of the order of one day. Note that this was shown for arwdrding algorithms used, and
even when queuing delays in relay devices are neglected.

2.6 Empirical Evaluation of Controlled Flooding Algorithm s

| have shown above that using devices met opportunistitallselay a message toward its
destination improves significantly the chance of delivgthis message, and reduces its delivery
delay. Indeed | established a stronger result: in all d&gaaesmall number of intermediate hops
are enough to reach most of the optimal paths (minimum Igdefitis indicates that designing
algorithms to forward messages based on a simple Time-@{LTL) can sometimes be very
successful.

| use the forwarding algorithm emulator which will be debed more detail in Chaptét 4 to
analyse practical controlled flooding algorithms. The odolfed flooding algorithms work as
follows: each message received is sent several times, tirshelevices met, until one of the
TTL counters (limiting the number of hops, the number of cope# $ocally, or the time)
reaches zero. | study their cost, and their success delivery

There are several reasons to believe that focusing on sogblesforwarding algorithms is a
natural first step to follow. This problem is easy to formeland leads to a good characterisation
based on the real-life traces | presented. It can serve aseditato propose and evaluate more
complex forwarding techniques. In addition, sucthL-based techniques may be needed to
eliminate old data from the system, even in the presence aftemforwarding algorithms.
Note also that it does not necessarily mean that | am resdrtctinefficient techniques. Indeed,
models of human interaction networks were recently progpasevhich even simple algorithms
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are proved to benefit from unknown but regular human behd@ee [KIe06] and references
therein).

2.6.1 Controlled Flooding

Controlled flooding algorithms or as | also call them MukigCopy-Multiple-Hop MCP) H
algorithms work as follow. When created, a data packet isrg& time¥TL value, as well

as a hoprTL integer value. At each intermediate node, the M@p-value is decreased by 1
when the packet is received. A packet with hop-TTL=1 can telylelivered to the destination
directly and can not be forwarded to intermediate nodes. dkgtawith hopTTL value above

1 is replicatedn times: one copy is kept by this node, amell are sent to the first devices met
that did not receive this packet before. The tim'EL-H value acts as a time-out; nodes decrease
the counter with time and discard the packet when this colr@eomes zero.

Note that ifm = 1 the packet will not leave the source unless the destimaéimet directly, as
well as if the hoptTL is initially set to 1. The initial value given to hopfL is also the maximal
number of hops that are used by a forwarding path. Note tleatvib-hop relaying algorithm
proposed in [13] would here correspond to Hof-=2, m=2, timeTTL=cc.

The forwarding algorithm emulator generates 1000 messaggasthe duration of the experi-
ment, at a time chosen with uniform distribution. The sowand the destination are chosen
uniformly among all experimental devices. The goal of timsuation is certainly not intended
to carry out a full-fledged representative simulation of@ RSN Instead | found this method
suitable for my purposes, which is to compare generally grfopmance of controlled flooding
algorithms to optimal found with the previous methodology.

Note that | have performed emulation on all three dataset®hgervations are consistent with
those shown below.

2.6.2 Performance and Cost

In this section, | evaluate controlled flooding algorithnaséd on two metrics: (i) the success
delivery ratio, which is the probability for a packet crehtd a source node to reach its desti-
nation within a delay smaller or equal than tim&L ; and (ii) the average cost per message,
which is the total number of copies created in the networkdéed by the number of messages
generated in the sources (i.e. 1000 in this experiment). stdtéstics about each experiment,
including the number of nodes, can be found in Sediioh 2.3.

5A more correct version should be MCMH, but because MCP has bsed in my previous publications so |

just keep it here for consistency.
6] consider time TTL here because in some situations the @gtjiins can specific the time that a message

should stay in the system. For example, a message about engnae10 am is meaningless if it arrives at 6pm of
the same day. It also serves as an indicator of how sparsevankes.
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The performance of all controlled flooding algorithms lietvieeen that ofvait-and-forward
(i.,e. the case hopTL= 1 or m = 1) andflooding(i.e. noTTL, messages are sent to every
encounter). The success delivery ratio for these algostivas established for any tinTé-L in
the previous section.
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Figure 2.9: Success delivery (top) and Average Cost (bqgtmserved withinfocomO5for
several controlled flooding schemes: timekL was set to 3 hours.

Figure[Z® shows the performance of controlled flooding @nlnfocom05dataset for a time-
TTL set to 3 hours. The x-axis corresponds to the number of capésged locally at each
hop (i.e.m). Each plot corresponds to a different value of the Mdp- The delivery success
ratio is shown at the top along with the performance evatbaiéh the earlier method fowait-
and-forward andflooding H In the bottom plot, | show the cost of each algorithm. Both
performance and cost are shown with confidence intervaki@sg the minimal and maximal
values seen in the 100 runs of the experiment. | observehbaldlivery success ratio might
vary for different simulations (the difference might grow to 7%).

The first observation is that both delivery success and arstezrge quickly whem increases,
especially when hop-TL is greater than 2. For both 4 and 6 hops, | observe only mdrgina
improvement of the delivery success ratio fioabove 4 (the same observation holds for 2 hops
whenmis increased above 10). Note that the cost of the algoritiihmstreases a little whem

is larger than 4, but it is already reasonably close to thengsgtic cost corresponding to flood-
ing. This essentially shows that no controlled flooding athon can match the delivery success
ratio of flooding without incurring a similar cost. This texdff leaves room for improvement:
an algorithm which has more restriction than controlleddiag, based on an intelligent design,

"wait-and-forward(flooding is supposed to be at only one point on the graph, but | drasvatlaorizontal line
to emphasise the lower bound (upper bound).
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could succeed reducing this cost with a small impact on tleeadvdelivery ratio.
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Figure 2.10: Performance-Cost trade-off for tiMfie==3 hours during InfocomO05: success de-
livery obtained as a function of the total number of copie=ated per message, for different
controlled flooding algorithm.

The optimal trade-off area between cost and success deligéo is found for values om
between 2 and 10, and values of HDp: between 2 and 6. Note that the best improvement
with regard to the cost is found for the most conservativerdtigm: 2 hops andn=2 yields an
average increase of 5% for the delivery ratio, for a margtoat. Another 5% average increase
may be achieved within a reasonable cost by remaining ceaibez: either by allowing 6 hops
and keepingn = 2, or by keeping 2 hops but settimgequal to 10. | present this trade-off
between average performance and cost in Figurd 2.10: the data points are shown where
x-axis corresponds to the cost value, whergais represents delivery success. The delivery
success ratio obtained by wait-and-forward and floodingsiasvn again to delimit the bound
of the area. The value correspondingntofollowing values 1,2,4,10,100 can be read from
the left to right on each plot corresponding to each mop-(two data points are explicitly
detailed for future reference). The best delivery succa$s is achieved by restricting paths to
2 hops and increas@swhen cost needs to remain moderate (under 6 copies creatdliper
message). Keeping 2 hops as a maximum and increasimgved to be suboptimal at some
point, as algorithms with smallen but longer paths perform better for a similar cost. In thetnex
section, | analyse in more detail the two parameter settiogesponding to these two cases:
(hop-TTL=2,m=10) and (hopFTL=4,m=4).
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Results obtained with other traces are comparable. Bedheseetwork is much sparser in
the other datasets, | found that setting tim#&- to 3 hours produces a delivery ratio that is too
small to be effectively studied. | present the case of ReMining, where time¥TL is set to
24 hours, in FigurE2Z11. Observations are simildnfocom05 both average performance and
cost quickly converge withn, the trade-off between them follows a very similar diagréusmnt
the one presented above fofocom05 where 2 hops again yields the best immediate benefit.
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Figure 2.11: Success delivery (top) and total number ofeopent (bottom) ifReality, for
several controlled flooding schemes: time-TTL is set to 24r&.0

2.6.3 Delay and Impact of Time-TTL

Impact of the hopFTL andmwere analysed in the previous section, for a fixed value dtithe-
TTL. In this section, | focus on two controlled flooding algonitk, (hopTTL=2, m=10) and
(hop-TTL=4, m=4) that offer different performance-cost trade-off, asvgh above. | compare
their dependence on the values of tifig-.

The delivery success with a fixed tinT@L value gives the proportion of packets, which reach
their destination within a certain time, hence it also diéss the delay distribution of pack-
ets forwarded by this algorithm. | plot this distributionfigure[Z.IP for these two different
parameter settirE.The cost of each algorithm with these values of tim&- is shown in Fig-
ure[ZIB. Note that the delivery success for both algoritfotisws the same trend at every
time scale. The algorithm with 4 hops and smaller value:@&mains close to the optimal at all
time-scales. The algorithm with 2 hops and larggields a significant benefit when compared

8Because | have plotted the 95th percentile in previous@gdtiere | show the maximum and minimum in the
graph for additional information.
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Figure 2.12: Success delivery seen as a function of timeduringInfocomOSor three differ-
ent controlled flooding parameters.

to wait-and-forward. One thing to notice is that their diffiece tends to be much reduced when
time-TTL is large. Analyzing the cost of both algorithms as a functibtine timeTTL confirms
that using 2 hops with large m is the best candidate when Timels large, as it allows a simi-
lar performance improvement while keeping the number okeisccreated reasonablely small
(under 10).

2.7 Related Work

My opportunistic communication model is related to bothdyeTolerant Networking and Mo-
bile Ad-Hoc NetworkinE. Research work oMANET, DTN, and more recently PSINISHCDO06]
confirms the importance of the problem | address, as sevanabpitions were made to use mo-
bile devices as relays for data transport. Such an approasitansidered to enable communi-
cation where no contemporaneous path may be folnd [VBO@pgtteer information efficiently
in a network of low-power sensors_[JS84,[JOW 02H], or to improve the spatial reuse of
denseMANETs [GT02[SMSO06]. All these work has proved that the mobilitydel used has a
strong impact on the performance of the algorithms they gsep

| did not find any previous work studying the characterisatater-contact time for users of

Swww.dtnrg.org and www.ietf.org/html.charters/maneguthr.html
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Figure 2.13: Average cost of a message seen as a functiomeffiL during InfocomO5 for
three different controlled flooding parameters.

portable wireless devices. However, | have identified eglatork in the area of modeling and
forwarding algorithms.

A common property of many mobility models found in the litenz is that the tail of the inter-

contact distribution decays exponentially. In other words these models, the inter-contact
time is light-tailed. This is the case for i.i.d. locationsdevices in a bounded region (as
assumed in(JGT02]), or in the case of the popular random wanyt poodel as demonstrated
in [SMSO06]. It was shown recently that, by opposition, degienoving according to Brown-

ian motion in a bounded region, exhibit heavy-tailed irdgentact time, with a finite variance

(corresponding in my analysis to the case- 2) (see [SMS06] and references therein).

The most relevant work is the algorithm proposed by Grossglaand Tse i [GT02], further
analysed in[SMS06]. The two-hop relay forwarding algaritivas initially introduced to study
how the mobility of devices impacts the capacity of the nekwdly work starts from very dif-
ferent assumptions. Most notably, | do not model the banthwidhitation due to interference,
as | focus only on the delay induced by mobility. However, safithe results that | show could
be used to characterise the delay obtained in such contexts.
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2.8 Conclusion

| have analysed several network scenarios for opportegrdstia transfer among mobile devices
carried by humans, using eight experimental datasets. |[Fdatasets, | observe that the inter-
contact time between two devices can be approximated by amplew on the [10 minutes; 1
day] range. | prove in a simple model the following major tesupower-law condition may
be addressed by naive forwarding algorithms as long as theykail index of the power-law
is greater than 1. When, by opposition, the heavy-tail indesmaller than 1, the expected
delay cannot be bounded for any forwarding algorithm of thia¢, even when one neglects the
queuing occurring in each relay device. | have measuredwgad index smaller than 1 in all
datasets. As a consequence, the expected delay is at |¢astdrder of one da@

These observations bring new practical recommendatioesdlate the performance of for-
warding algorithms. Most of the mobility models commonlyddoday are characterised by a
light tailed inter-contact distribution for any pair of negl That seems at odds with the empir-
ical evidence of inter-contact distribution, for valuestogl day, which is well approximated
by a heavy-tail distribution. Some of these models can inthde modified to account for
this last property, this may be a future research directidnother complementary direction,
which is chosen in this chapter, is to directly model oppaittes between devices instead of
geographical locations. This approach has the advantagé ttan be directly compared with
a growing set of real-life connectivity traces, now publieivailable. | believe that this is a
practical solution, at least for some of the issues to beesms@d in opportunistic networking.

More generally my results deal with the feasibility of fomatang in opportunistic networks and
their consequences require more attention. At least thfiseant directions may be followed.

e First, it might be that reasoning with expected value of yletanot suitable, since the
possible occurrence of a long delay is unavoidable, whaterevarding algorithm is
used. Applications for such networks should therefore begied to cope with this
aspect of opportunistic communication.

e Second, note that | did not model the general case wherea@rtacesses for a pair of
nodes are heterogeneous or contain significant correldtiestill possible that a finite
expected delay exists in a more complex model that repradaceurately the statistical
properties of the datasets. This direction is appealingtibatuires to remove one of the
modeling assumptions that | have made and that is instriahBntmost of the results
currently known in this area. It also necessitates to deaifprwarding algorithm that
differentiates between nodes; some schemes of that tyjeddesn only recently proposed
[DEGVO03,[DS04[TECTB].

101t sounds bad, right? But actually for many applications,c&ee more about how many percentages of the
messages can be delivered instead of the expected delsyudt like best effort and QoS.
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e Third, one can investigate how to add connection oppolgsimh a mobile network, using
special devices or partial infrastructure, that could imeaases be already available. It
looks promising but the impact of this partial infrastruetshould be carefully studied.

Although the results showed in the chapter are not positivéofwarding inPSN we still need
to do forwarding. The two “oblivious” algorithms | introded in this chapter provides two
bounds for all kind of forwarding algorithms. If | do not cader wireless contention and loss
rates, no algorithm can achieve better performance thadifigan terms of delivery delay. And
in terms of delivery cost, wait-and-forward would be corsatl to be the best choice. But for
overall performance, neither approach is ideal. Wait-fomdrard is too slow and will have low
delivery ratio. Flooding packets has a very high cost, nst i link utilisation, but for other
resources such as node storage and battery life, whichkatg to be highly valued by users.
Controlled flooding is not only easy to implement but it casoabe used to achieve several
performance-cost objectives. Getting close to the optaekly is possible with a small number
of intermediate relays, but it remains costly with such dargbgorithms. | envision that success
delivery rate and cost could be further optimised using nsoghisticated techniques.

In the research community, it has been a widely held belegfittentifying community informa-
tion about recipients can help select suitable forwardard,reduce the delivery cost compared
to “oblivious” flooding. This is a reasonable intuition, senpeople in the same community are
likely to meet regularly, and hence be appropriate forwarder messages destined for other
members of their community. However, to date as far as | anrgwihere has been no ex-
perimental evaluation of this belief, and no-one knows Wweett is valid or not. In the rest
of the dissertation, | will focus on exploring the possilyiland effectiveness of using social
information for forwarding. In the next chapter, | will firgtok at how can we infer human
communities from the datasets.



Chapter 3
Inferring Human Communities

In last chapter, | have shown that human inter-contact tiamele approximated by a power-
law in the [10 minutes; 1 day] range, which gives us some radgh about pair interaction.
In order to understand more about human mobility and intenacl want to look at group-
level interaction in this chapter. | apply some complex retnanalyses such as-CLIQUE
community detectiol [PDEV05] and Newman’s weighted nekwamalysis YWWNA) [I.NO4] to
the human mobility traces, which allow us to understand tinmdm clustering behavidin
different environments and we can also use these detectachonities for further study of
social-aware forwardirﬂ; For online applications, | also propose three distribw@ehmunity
detection algorithms. This is joint work with my superviderof. Jon Crowcroft, Dr Eiko
Yoneki and my fellow PhD student Shu-Yan Chan. Shu-Yan ltefpe to implemen®NA in
Java, and | coordinated and completed the remaining parts.

3.1 Introduction

A social network consists of a set of people forming sociallganingful relationships, where
prominent patterns or information flow are observed. In PSdtjal networks could map to

computer networks since people carry the computer deviths.aims of this chapter are to
uncover the social community structures from the mobiligcés using centralised commu-
nity detection methods, and to develop distributed versiagetection algorithms for practical

online applications.

Mobility traces can be represented in the form of weighteghs called contact graphs, with the
weight of an edge representing the contact duration/cofreeguency of the two end vertices.
Understanding human interaction can be tackled from theadtoof weighted network analysis.
One possible outcome of studies of the weighted contachgresocommunity detection. Many

1This includes how people form cliques and interact with eztbler on a group basis.
2For K-CLIQUE detection, | apply the algorithm directly, but fo¥NA | find two different versions of the
algorithm in the original paper and | need to choose the couersion and implement it.

a7
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real-life networks are weighted, but because of compleriya great deal of analysis has been
done in this area. The seminal work iSVNA paper by Newmari[J.ND4]. The advantage about
weighted analysis is that, unlike other algorithms, we dioveed to threshold the weight on the
contact graphs. The disadvantage is that it cannot detectapping community structures, yet
in human society one person may belong to multiple comnesifio address this problem, |
also use thé(-CLIQUE community algorithm proposed by Pa#iaal. [PDEV05], which allows
overlapping of communities.

| evaluate the algorithms on mobility traces, which haveriori knowledge of community so

that | can compare the detected communities to reality. #aidilly, | evaluate the impact of

the detected communities on message forwarding efficien€hiaptef¥4 and Chapter 5, and |
find out that such community information improves forwagletficiency quite significantly.

As we are targeting online forwarding applications, | alsaght distributed community de-
tection algorithms which can allow the mobile devices tcedetheir own local communities
instead of relying on a centralised server. Here | proposeethlgorithms, namelgIMPLE,
K-CLIQUE, andMODULARITY , which are demonstrated to achieve quite close perform@ance
the centralised methods, in the best case around 90% agagirac

The structure of this chapter is as follows. | survey exgtiommunity detection algorithms in
Sectior 3R, followed by the characteristics of contacpgsan Sectiof3]3. | go into the details
of the methodologies, includingyNA in Sectionl[3.# and{-CLIQUE community detection in
Section[3b. | present the algorithms on distributed comtypudetection and the results in
Sectior:3b and SectidnB.7. Finally | conclude with a bris€dssion.

3.2 Community Detection

Community detection in complex networks has attracted aflattention in recent years. There
is still no universally accepted definition of communityt lou most versions, community is a
subgraph of a network whose nodes are more tightly connagtbaach other than with nodes
outside the subgraph. Detecting community is equivalemvtestigating statistical properties
of a graph, disregarding the roles played by specific sulbg,and hence identifying substruc-
tures/subgraphs which could correspond to important fanst In the case of the World Wide
Web, examples of communities are sets of Web pages dealthglve same topic[ [ELGC02].
In biological networks, it is widely believed that moduldrusture results from evolutionary
constraints and plays a crucial role in biological funcdRIHLM99] [RSM*02]. In social net-
works, community structures correspond to human sociahconities [New04b][[LNO4]. Fi-
nally on the Internet, community structures corresponditorzomous systemg [LND4], which
are a connected segment of a network consisting of a caleofisubnetworks interconnected

3The whole trace is used for the training in order to compatk thie centralised methods, which use the whole
trace for the calculation.
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by a set of routers. In theSNsl studied, community structure would correspond to human
communities or some structures which are beneficial for #odng efficiency. Given the rel-
evance of the problem, it is crucial to construct efficiemgadures and algorithms for the
identification of the community structure in a generic nekvdrecent reviews [New04b] and
[DDDGAODS] may serve as introductory reading, which alsdude methodological overviews
and comparative studies of the performance of differerdraigms.

Quialitatively, a community is defined as a subset of nodesinvthe graph such that connec-
tions between the nodes are denser than connections witeghef the network. The detection
of community structure in a network is generally intende@d @socedure for mapping the net-
work into a tree [[RCC04], known in social science as dendrogram. In this treeletines are
the nodes whereas the branches join nodes or (at highe) ¢goeelps of nodes, thus identifying
a hierarchical structure of communities nested within ezbler.

There are two main approaches to clustering: nodes arer giined successively in an ag-
glomerative manner starting from single nodes, or the whetaork is recursively partitioned.
Hierarchical clustering is a representative of the agglatine approachH [WFI94] . Using this
method, nodes are grouped into larger and larger commsnéied the tree is built up to the
root, which represents the whole network. For the divismeraach, the order of construction
of the tree is reversed: one starts with the whole graph @&mdtively cuts the edges, thus di-
viding the network progressively into smaller and smaliscdnnected subnetworks identified
as the communities. The crucial step in a divisive algoriierthe selection of the edges to
be cut. Girvan and Newman (GN) have introduced a divisiveralgm in which the selection
of the edges to be cut is based on the value of their edge betess [[NGO04], a generalisa-
tion of Freeman betweenness centralify [Fie77]. The beiness of an edge is the number
of shortest paths between all node pairs running througlt is clear that, when a graph is
made of tightly bound clusters, each loosely interconmk etk shortest paths between nodes in
different clusters have to go through the few inter-clustainections, which therefore have a
large betweenness value. Recursively removing these letygeenness edges would partition
the network into communities of different sizes. The GN ailfpon represents a major step
forward for the detection of communities in networks, siit@voids many of the shortcomings
of traditional method<dING04].

Quantitatively, however, we need metrics to measure howthvelcommunity splitting is pro-
gressing, otherwise most of the algorithms would contimié every node is split into a single
community. Newman and Girvan proposed [n_[NG04] a measuretforks callednodular-
ity. Such as for a division witlp groups, they define & x g matrix e whose elements;; are
the fractions of edges in the original network that connectiges in group to those in group
j. The modularity is defined to be

Q = Zeii — Zeijeki = Tr e — ||ez|| (31)

ijk

wherel|¢?|| indicates the sum of all elementsdf andTr eis the trace of matrie, which is the
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sum of the diagonal elements. This measure essentially @@sphe number of links inside a
given module with the expected value for a randomised gréafitecsame size and same degree
sequence. The concept of modularity has gained such pdayutzat it has not only been used
as a measure of the community partitioning of a network; & algso been used as a heuristic
indicator in various community detection algorithmis _[NG@d also as the sole quality or
fitness function in community detection algorithnris JCNMO4]will revisit the concepts of
modularity in the next section.

Neither the agglomerative nor the divisive methods comdite overlapping of communities,
butin nature many nodes may belong to several communititee aame time, justas a humanin
the society may belong to many different social groups.aeakl. define ak-clique community

as a union of alk-cliques (complete subgraphs of size k) that can be reacheddach other
through a series of adjacehicliques [PDEVO5]. Twak-cliques are said to be adjacent if they
sharek — 1 nodes. This definition is based on their observation thatsaergial feature of a
community is that its members can be reached through welkected subsets of nodes, and
that there could be other parts of the whole network that ateeachable from a particular
k-clique, but they potentially contain furthérclique communities. Or in other words, the
cligue communities of a network with = 2 are equivalent to the connected components, since
a 2-clique is simply an edge and a 2-clique-community is tneruof those edges that can be
reached from each other through a series of shared nodesheCanother hand, a 3-clique-
community is the union of triangles that can be reached fromanother through a series of
shared edges. Ak is increased, thé-clique communities shrink in size, but become more
cohesive since their member nodes have to be part of at Ieagtdique.

Most of the algorithms mentioned above are dealing withiyiggaphs, which are undirected
and unweighted. There are many everyday examples of nesw&ukh as the Internet, the world
wide web, and various biological and social systems. Marthede are intrinsically weighted,
their edges having differing strengths, e.g. in a socialosgk there may be stronger or weaker
social ties between individuals. However, there are so n@sgs where edge weights are
known for networks, and to ignore them is to throw away a lodata that, in theory at least,
could help us to understand these systems better. As | haeeired in Sectioh 3.1, Newman
[0.NOZ] proposed a transformation of the edge-betweenc@ssnunity detection algorithm
from an unweighted network to a weighted version. | will diss the details of this algorithm
in later sections.

3.3 Contact Graphs

My first contribution is to introduce the notion obntact graphas a way to help represent the
mobility traces, and to choose a threshold for communitectein. The way | convert human

mobility traces into weighted contact graphs is based omtimeber of contacts and the contact
duration, although | could use other metrics. The nodes @ftiaphs are the physical nodes
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from the traces, the edges are the contacts, and the weights @dges are the values based on
the metrics specified such as the number of contacts dureexperiment.

We can measure the relationship between two people by how timaes they meet each other
and how long they stay with each other. We naturally think thimvo people spend more time
together or see each other more often, they are in a closgiorehip. In this chapter | am not
going to provide a specific threshold to infer actual soamatext. | just use these two metrics
to produce maps which may prove useful to guide forwarditthpagh later we will find out
that the detected communities match well with the real $aommunities.

Here | explore further properties of the experimental sdesgand present statistics concerning
the contact graphs for each dataset.

3.3.1 Weight Distribution of Contact Graphs

First | show that the statistical properties for the two @wafice scenarios are quite similar.
Figure[3.1(d) and 3.1(b) show the contact duration distidibufor Infocom06andInfocom05
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(a) Infocom06 (b) Infocom05
Figure 3.1: Contact duration distribution flmfocomO6andinfocom05

respectively. Ther-axis is the contact duration in seconds andykexis is the probability of
contact durations larger than the value on thaxis. We can see that their distributions are
quite similar, with a mean difference as small as 0.0003 .(@3&8). More similarities will be
seen in the next section as well. To prevent redundanciedatér sections | only selectively
show one example, in most case®comO6 since it contains more participants.

Figurd 3.2 and Figuled.3 show the contact duration and nuaflsentacts distribution for each
pair in four experiments. For thdongKongexperiment | include the external devices, but for
the other three experiments | use only the internal devicgisow later that for thédongKong
experiment | need to use the external devices to help to fonivee data because of network
sparseness.
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3.3.2 Correlation between Regularity and Familiarity

| assume contact duration indicates familiarity. Two peaglaring the same office might hate
each other, and not talk, but | will ignore this kind of extreituation here. The number of
times two people meet each other implicitly reveals thegpattvith which they meet. In this
work, I infer regularity of meetings from the number of carita Two people might meet a lot
of times in a short period (e.g. a day), and then not at all. él@s short periods with many
contacts are less likely to contribute to the upper quadétse distribution, and here | will
ignore these too as outliers.
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Figure 3.4: Number of contacts versus the contact duratmmnsairs ofCambridgeStudents.

Figure[34 shows the correlation between regularity andlifatity in the Cambridgedatas&
Here regularity is positively correlated to familiarity tia correlation coefficient of 0.9026.
| define four kinds of relationships between a pair of nodesm@unity, Familiar Strangers,
Strangers, and Friends. A pair of nodes which has long codiaation (high familiarity)
and large number of contacts (high regularity) is likely tldng to the same community. A
pair of nodes which meet regularly but do not spend time watheother, could be familiar
strangers[[PG04] meeting everyday. People who do not mgelarty and do not spend time
with each other would be in the category of strangers. Binfali node pairs which do not meet
very frequently but spend quite a lot of time together forreaeeeting, | count as friends. It

“Here, byCambridgedata | refer to th&CambrigeO5data in SectidnZl3. The details of other datasets can also
be found in this section.
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IS not necessary that the division of the four quarters aaetgxat the middle. It is just as a

reference or example. A clear-cut division may need moreigecapexperimental results. But

here | provide the methodology to classify these four kirfdelkationship based on pure contact
duration and frequency. Additional difficulties faced bypartal social network research are
well described in work by Watt§ WatP9].

Figure[3b shows the correlation between the number of ctséand contact durations for the
other four experiments. We can see that conference enveotsare quite similar, both with a
narrow stripe in the left bottom quarter. This stripe shdwat people in the conference tend to
meet each other more often than spend long time togetheriSTa#ypical conference scenario,
since people may meet each other many times in coffee brealtgjors, the registration desk
etc. They may stand together and chat for a while, and théntelchat with others instead
of spending all the time togethelinfocomO6contains double the number of participants, and
hence more data points. TRealityset is similar to th€ambridgeone, with most of the points
lying on or above the diagonal line. However, it seems thaipfealso have more contacts
instead of spending time together. In tHengKongfigure, we can find two pairs of friends,
two pairs of close community members, and two pairs of fangirangers. All the other pairs
lie in the strangers quarter. This is in line with our exp&otes for an experiment designed to
contain little social correlation.
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Figure 3.5: Number of contacts against contact durationalf@airs in the four datasets, with
correlation coefficient.
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These correlation graphs give us an overview idea aboutitialsharacteristics of the people
in these environments. And later in the community deteqgpiart, | will detect different types
of relationships by choosing suitable threshold tbe contact duration and number of contact
similar to the four quadrants division in Figdrel3.4.

3.4 Weighted Network Analysis

In this section, | implement and use NewmawslA for data analysis, even though the algo-
rithm was proposed two years ago and yet no reference impi@ti@n publicly exist£ And

| also extend unweigheehodularityproposed in [[NG04] to a weighted version and use it as a
measurement of the fitness of the detected communities.| ktaiit from themodularityand
then move to théetweennesalgorithm.

3.4.1 Clustering by Modularity

As mentioned previously, Newman and Girvan proposed[in_[BlGOmeasure of network
cohesiveness calladodularity The concept of modularity has gained such popularity that i
has not only been used as a measure of community partiti@iiaghetwork, it has also been
used as a heuristic indicator guiding various communitectan algorithms[[NG04], and also
used as the sole quality or fitness function in communityatate algorithms[[CNMOH].

For each community partitioning of a network, one can compl corresponding modularity
value using the following definition ahodularityQ:

AUw vtw
Q= Y15 - Gali(c.c) 32)

where A,,,, has valuel if verticesv andw are connected an@ otherwise,m = %va Ay,
¢; is the index of vertex, and hence(c,,c,,) = 1 iff verticesv andw belong to the same
community, and= 0 otherwise. Therefore the term in the formu?a%é(cv,cw) is equal
to W which is the fraction of the edges that fall within commiest Modularity
is defined as the difference between this fraction and thetiém of the edges that would be
expected to fall within the communities if the edges weregaesl randomly but keeping the
degrees of the vertices unchanged. Under such a conditioanoiom edge allocation, the
probability for a given edge connected to verteis f—m wherek, is the degree of vertex
defined as _,, A, . It follows that the probability for a given edge connected¢rtexv andw

is (’“27533 Summation of this term over atlandw results in the fraction of the edges that would

SMany community detection algorithms only work on binarygta, and we need to convert a weighted graph

into a unweighted graph by setting a threshold.
6During the implementation, | found two different intergatons of the algorithm in the paper. | believe that |

have chosen the correct one after the confirmation of theoauth
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expected to fall within the communities if the edges weregaesi randomly, and hence forms
the term used in the above formula f@r

In [CNM04], Clausett al. proposed an optimised algorithm to detect community Stnecbf
unweighed graph, based solely on the concept of modulasityguan agglomerative approach.
It first assigns each individual node to its own communitgntithooses the two communi-
ties to merge together which would give the maximum increaslkee modularity value of the
community partitioning.

As stated in [[J.NO4] according to the “general” transforiorabf algorithms for unweighted
networks, the modularitg) for weighted networks has the same formula

AUU} kvkw
Q= %;[ - (2m)2]5(0v,cw) (3.3)
provided A, now represents the weight of the edge betweemndw, and the degreg; is
defined to be A, as before .

However, instead of calculating the adjacency matrix ofgtagph and calculating at each step
the possible changes ¢ due to further merging/A@;;), the optimised (unweighed) algorithm
in [CNMO4] maintains and updates a sparse matrix contairigg; for each pair;,;j of com-
munities with at least one edge between them. [In_[CNMO4] irtkt&al value for AQ);; is set
0 1 kik
89 = 30 ™ amy?
if 4,7 are connected, an@;; = 0 otherwise (in these caseg,; is set to0 as an optimisation
since joining two communities with no edge between them carenproduce an increase in
@, so we do not need to consider joining them). At each itematioe two communities and
J with the largestAQ);; are chosen to merge together, until only one community nesnaihe
AQ;; value is updated according to the rule set. The weightedoredf the algorithm and
program remain the same efficiency as the original versiofndLog(n)) for a network that
hasm edgesp vertices, and wheré is the depth of the “dendrogram” describing the network’s
community structure. In this casey is the number of edges in the weighted version of the

graph, not the number of edges in the transformed multigraph

(3.4)

| observe that the original formula purposed [n_J[CNMO04] hasiatake in it. There is a factor
of 2 missing in the initial value ofAQ);;. The correct formula should be:

1.
2 2kik;
ANQyj = — — —2 .
@ 2m  (2m)? (3.5)
if 7,5 are connected, anl();; = 0 otherwise, for unweighted networks.
2 2A 2k;ik
ANQ.. = S50 iy 3.6
@ 2m  (2m)? (3.6)

if 7,5 are connected, and();; = 0 otherwise, for weighted networks.
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For both the weighted and unweighted version, if verticasd j; are merged, the difference
in the—%é(cv,cu}) term in the modularity value before and after the merge%%g since
after the mergej(c,,c,,) = 1forv =4, w =jorv=jw=1.

The ;& term in the definition forAQ;; in [CNMU04] is derived from the}" . 4:§(c,,c,)
term in the original definition of), of which after vertices and j; were merged to a single
community,d(c,,c,,) = 1 forv =1i,w = j orv = j,w = i, so the newy value should include
the new tern% and%’; in the summation, and for a unweighted network with no patall
edges A, andA,,, both only equal. Therefore, for the unweighted version of the algorithm,

the correct term should b&- and for the weighted versioﬁ;%.

The algorithm is essentially a genetic algorithm in disguissing modularity as the measure
of fitness. Instead of testing some mutations of the currest bolutions, it enumerates all
possible mergings of any two communities in the currenttsmiy and evaluates the relative
fitnesses of the resulting merges. The merge is considerbd fi if it leads to an increase

in modularity value. The algorithm proceeds with the merdpch gives the highest increase
in modularity value as the next current solution, and teaten if no possible merge would
increase the modularity value.

In this chapter, | use a community detection algorithm baseedge betweenness, which | will
talk about in following section, and which uses modularitgvaluate the fitness of a particular
division.

3.4.2 Clustering by Edge Betweenness

As has also been briefly introduced before, Newman and Gifi&Ba04] proposed a commu-
nity detection algorithm based on edge betweenness forighteel networks. They defined the
edge betweenness$ an edge in a network as the number of geodesic (shorte$i3 patween
all node pairs that run along that edge. If there are two ggodmths joining a given node
pair, then each one counts as a half of a path, and similariynfee or more. At each iteration
of the community detection algorithm, edge betweennesd efiges are (re-)computed, then
the edge with the highest edge betweenness is then remownezkiging community may then
be split into two because the removed edge might be the soleection between these two
communities (the reason behind this algorithm is that therioommunity edges will be the
ones visited most by the geodesic path). Eventual all nogesgit into their own communi-
ties. Then the modularity values of the community partitignat each iteration are computed.
According to Newman and Girvari_[NGO04], the local peaks ofrttaglularity value correspond
to “satisfactory” splits.

Although the impression given in_[J.NO4] is that they obtdiair weighted version of the al-
gorithm by following the general mapping of a weighted netwto a multigraph with multiple
edges of unit length, there are actually two completelyedght interpretations in the paper. |
call theminterpretation BadandInterpretation Final respectively.
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Interpretation bad The author stated “To derive an answer we employ our magdpamg the
weighted network to a multigraph. Suppose we have a weigigeaslork with integer weights
on the edges and as before we replace each edge of weight ndoglliepedges of unit weight.
The adjacency matrix remains unchanged. Now we apply thealamweighted version of our
algorithm to the resulting multigraph.”

Interpretation Final: In the same paper, Newman also summarised the adaptatibis @lgo-
rithm (which itself is based on Dijkstra’s shortest path) &oweighted network as following:
“first calculate the betweennesses of all edges in a weigtgdork ignoring the weights. Then
divide each such betweenness by the weight of the corregppadge, remove the edge(s) with
the highest resulting score, recalculate the betweensiesmse repeat.”

Interpretation Badis only equivalent tdnterpretation Finalfor graphs which have shortest
paths without cycles. | provide the following example tagirate the different results these
contradictory interpretations will produce:

40 // edges

/ each has
weight 1

a0 // edges
each has
weight 1

Figure 3.6: lllustration of Newman edge betweenness

In the network given in Figure—3.6(a), if we want to compute #uge betweenness, then ac-
cording tolnterpretation Fina) we will calculate the betweennesses of all edges in ourhted
graph in the normal way, ignoring the weights. So if we coesttie contribution of the shortest
path fromS to I of the network, we first compute its contribution to the tfansied network

as shown in Figure3.6(b). There are 2 shortest paths ffoeon/’, and their contributions to the
betweenness of each of the edge®,D,F are 1/2. Then the next step is to divide each such
betweenness by the weight of the corresponding edge. Trer¢ie betweenness values of the
edgesarenowd = B=1/2,D=FE =1/(2 x 50) = 1/100.

However, if we followInterpretation Bagdwe will replace each edge of weightby n parallel
edges of unit weight as shown in Figlrel3.6(c). Then we agmynbrmal unweighted version
of our algorithm to the resulting multigraph. When travglinom S to £ in the network, there
will be 1 + 50 x 50 equal-length shortest paths, so the contribution to thevdxtness value
by edgesA and B will be 1/2501, but the contribution by each of tti® parallel edges will be
50/2501.
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As we can now see, the ratio of the contribution of the sante (4o F') to the edges’ between-
ness values are quite different according to the differgetrpretations of the algorithm. Fhr-
terpretation Badhe ratio of betweenness contribution4to H (the original edge with weight
50) = 1/2501 : 50/2501 = 1 : 50. ForInterpretation Fina) the ratio= 1/2 : 1/100 = 50 : 1
The appearance &f) in both ratios are coincidental. If we change the originaigheof edge
J to 30, then the calculation fointerpretation Badwill become1/1501 : 30/1501 = 1 : 30
while Interpretation Finalwill give the ratio=1/2: 1/(2 x 50) = 50 : 1.

Interpretation Finalcan be restructured into the follow generic structure, anble version that
our further discussion of community detection on weightetiworks will be based on:

1. For each pair of vertices in the network, compute the ‘&sbmpath” between them ac-
cording to some “shortest path” measurement [fioerpretation Final the path length is
equal to the number of hops along the path), accumulate timbeuof “shortest paths”
passing through each edge and repeat for the other paifseref tire multiple “shortest
paths”, their contributions to the accumulated values gffarticular edge is the fraction
of the multiple paths passing through that edge.

2. The edge betweennesses are then the values accumulagatiioedge divided by their
edge weights.

3. Remove the edge with the highest edge betweenness. arat fepn1 until there are no
more edges in the network.

4. For each step i8 that splits a community into two smaller ones, recalculagemodular-
ity value of the network with the current community partiting. Select those splittings
with local maxima of modularity.

As it can now be seen in step 2 above, along any “shortest peath&nalises heavy edges’
(e.g. edges that indicate high proximity) shares of therdaution of that path to their final
edge betweenness. The aim of this step is to force the intarrunity links along the shortest
path to be selected by the algorithm to have the highest eslgeebnness, as Newman suggests
in [J.NO4] that the inter-community edges should alwayseHawer weight then those intra-
community edges.

In this chapter, | will use the above version of weighted retwanalysis and also th&'-
CLIQUE detection algorithm to study the human interactions in thaskts. They both have
advantages and disadvantages, but together they are vyl tols for our study. In the
following subsection, | will first give the results by the whted analysis.

3.4.3 Results by Weighted Analysis

As | mentioned before, the traces are converted into wetjbdatact graphs. In this chapter,
| create contact graph based only on two metrics: one is th#eu of contacts and the other
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one is contact duration. These contact graphs are fed lgiretd the algorithm for community
detection.

Tabld31 summarises the communities detected using Nelwadgorithm on all three datasets.
Nonzero(@ values indicate deviations from randomness; values ar@u®ar more usually
indicate good divisions. For thefocomO6case, the&),,.. value is low. This indicates that
the community partition is not very good in this case; thsoahgrees with the fact that in a
conference, the community boundary becomes blurred (pasiph different affiliations mix
with each other). For thRealitycase, the&) value is high. This also reflects the more diverse
campus environment. Out of the 100 participants, 75 areregtudents or faculty in the MIT
Media Laboratory, while the remaining 25 are incoming stuglat the adjacent MIT Sloan
Business School. Of the 75 users at the Media Lab, 20 are ingomasters students and 5
are incoming MIT freshmen. For theéambridgedata, the two groups split by the algorithm
exactly match the two groups (2nd year and 3rd year) of stsderiected for the experiment.
The scenario ofnfocom05is similar toInfocom06so | will not go into the details. | do not
want to claim that the communities detected by the algorigxactly match the real social
communities, but at least reflect some of the social relatigps. In my study here, my main
focus is to see how these detected communities have impdotwarding efficiency.

Experimental dataset| Infocom06 | Cambridge | Reality | Infocom05
Qmaz 0.2280 0.4227 | 0.5682 0.3039

Max. Community Size 13 18 23 13
No. Communities 4 2 8 4
Avg. Community Size 8.000 16.500 9.875 6.5
No. Community Nodes| 32 33 73 26
Total No. of Nodes 78 36 97 37

Table 3.1: Communities detected from five iMote datasets

To prevent redundancy, | will not provide visualisation b€ WNA communities detected. In-
stead | will show that for thé-clique communities. It is more interesting to show the taer
ping of community structures than only showing the starmh@lversion.

3.5 Finding k-cligue Communities

| use theK-CLIQUE community algorithm proposed by Paba al. [PDEV0S], since overlap-
ping of communities is allowed, and it is apparent that in harsociety one person may belong
to multiple communities. | have calculated all the resultsubing both contact duration and
number of contacts for all five experiments but to prevenaineldncies | just show two cases of
contact duration and two cases of number of contacts.

I will show both graphically and quantitatively the ovenapg communities within all these
environments in the following.
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3.5.1 k-clique University Communities

In the visualisation, an edge is added between two nodegyf dhne direct neighbors to each
other in the community. The length of the edges is not propaat to any property of either the
communities or the nodes. However the width of the edgesapgrtional to the link-weight
that is the number of shared nodes between the two commsinitie

Figure[3.¥ shows thk-clique communities detected from tBambridgedata using number of
contacts.

Figure 3.7: Communities based on number of contacts witlghtehreshold =29k = 34,5,
and10 (Cambridg@.

The duration of the experiment is 11 days. For the number ofawts, | used a threshold of
29 contacts, which represents an average of almost 3 cerpactdaﬂ In this case, around
8.5% of all the edges are taken into account. | observe tlahddes mainly split into two
communities of size 11 respectively withas high as 10. Next | examine lower valueskof
We can see also from Figure 3.7, whiee= 3 there is a big community of 31 nodes, and when
k = 4 the big community splits into two overlapping communitigsszes 14 and 17 with
overlapping size of 1, and whén= 5 the two overlapping communities split into two disjoint
communities of size 14 and 16 respectively. The two disjoamhmunity structures are visible
until £ = 11, with a gradual decrease in the community size. For the codtaation metric,

| set the contact duration threshold to be 10 hours for thelevihd days of the experiment
(Figure[3:8). | also mainly observe two communities whemgshis metric. The membership
of these two communities is more or less the same as that wdieg the number of contacts
metric. This agrees with Figute_B.4 where we can observdhlbatontact duration and number
of contacts for th&€ambridgedata are highly correlated.

’Considering some students may be taking the same coursiesthisesame supervision group, and live in the
same College, and hence using the same dining hall, thie i@heasonable.
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A

K=7

Figure 3.8: Communities based on contact durations witlgatethreshold = 10 hourg; =
3,5,7,and11 (Cambridge.

The output from the algorithm clearly illustrates that tlatipants can be seen as two com-
munities in this case. When we look at the experimental dagafwo communities classified
by this algorithm match well with the two groups of Yearl areh2 students selected for the
experiment. Of course, in each group students tend to knotv ether and meet each other,
and hence the clique size can be as large as 10.

3.5.2 k-cligue Communities in Reality Mining

This is another campus environment but the environment i diverse than th€ambridge
one. We will see that unlike th€ambridgedata, which consists mainly of two classes of
students, this dataset consists of more groups.

First | look at communities detected by using a threshold3&,800 seconds or 4.5 days on the
9-monthRealitydataset. Here | assume 3 lectures per week and 4 weeks pen arahfor a
total of 9 months, | get this threshold value (2% of the tatat$ are taken into consideration).
Research students in the same office may stay together albdagir contact duration threshold
could be very large. For students attending lectures, gtimate can be reasonable. A looser
threshold still detects the links with much stronger fit. ketve 8 communities of size (16,
7,7,7,6,5, 4, 3) wheit = 3 in this case. The 4-size one overlaps at one node with the
16-size one which also overlaps with another 7-size comiyahianother nodes. Two other 7-
size communities overlap each other with overlapping siZBht other three communities are
disjoint. Whenk = 4, the 3-clique community is eliminated and other commusisibrink or
are eliminated, and only 5 communities of size (13, 7, 5, %e#) All of these 5 communities
are disjoint. Wherk = 5, 3 communities of sizes (9, 6, 5) remain. The 9-size one am8-ize



CHAPTER 3. INFERRING HUMAN COMMUNITIES 63

Figure 3.9: Communities based on contact durations witlyktehreshold = 388,800 seconds
(4.5 days)k = 3,4,5, and7 (Reality).

one are split from the 13-size one in the 4-clique case. Mptork = 6 andk = 7, there are 2
communities and 1 community respectively.
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Figure 3.10: Communities based on contact durations witght¢hreshold = 648,000 seconds
(7.5 days)k = 3,4 (Reality).

| am also interested in knowing about small groups whichigtely knit. | set a strict threshold
of 648,000 seconds, that is on average 1 hour per weekdayeKsvper month, and for a total
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of 9 months. Around 1% of the links are taken into accountliercommunity detection. When
k = 3, there are three disjoint communities of size (12, 7, 3). iMhe- 4, there are only two
communities left of size (8, 6). FiguEte=3110 shows the 3t@i@nd 4-clique communities with
648,000-second threshold and 388,800-second threshadihghe 7-size community remains
inthek = 5 andk = 6 cases. This 7-cliqgue community is the same as in the 3888606nd
case. These 7 people could be people from the same reseatg) tirey know each other and
have long contact with each other.

3.5.3 k-cligue Conference Communities

In this section, | will show the community structures in a f®ance environment. Here |
takeInfocomO6as an example since it contains more participants thiotom05and | have
more participant information. Infocom is a multiple-trac&nference with several programs
running at the same time. | do not expect all the 80 experimparticipants to attend the same
sessions, so will not expect the clique size to be as big dsfhihe Cambridgedata. The
total dataset only covers 3 days, hence | will not expect tineshold to be very big. People
usually socialise during conferences in small groups, sgeet clique sizes of 3, 4 or 5 to be
reasonable. And foinfocomO06 the participants were specially selected so that 34 ouDof 8
form four subgroups according to academic affiliations. @fuhese four groups, there were
two groups from institutes in Paris with sizes of four and tespectively (named Paris Group
A and Paris Group B), and there is one group from Lausannez&sand of five people, and
another, larger group of 15 people from the local orgarosaith Barcelona. But for this local
organisation group, the volunteers are from differentllatstitutions and also responsible for
different sessions in the conference, so | will not expeentito all be together. After collecting
the data, for privacy purposes, all the personal infornmatibout the participants is deleted
except the Node ID, the affiliation and the nationality.

Figure[3T1l shows the 3-clique communities with thresh6l@@0 seconds or 5.6 hours, that is
approximately 1.85 hours per day. 1.68% of all edges arentatte account for the community
calculation. | observe 6 communities of size (25, 11, 6, 63)5in this case. The 25-size
one overlaps at one node with a 6-size one which also oventdpghe 11-size community at
another node and the 3-size one at another node. The 2nd 6esizmunity also overlaps the
3-size and 11-size one at another two nodes. The 5-size caitystands alone. Although |
know that during a conference people from different sub+oomities tend to mix together and
hence the boundary of affiliation communities should bectase clear, | still find hints of the
original affiliation communities from the figure. The algbm correctly classified the nodes
belonging to the local organisers into a community (see tlwe@&ona Group at the right hand
side of the figure), and the members of the Lausanne Grougi@ther community. There are
several nodes which do not belong to these affiliations aadikso falsely classified into the
same communities, but this also truly reflects the naturecohderence, to socialise with people
in other institutions. The two Paris groups are also clededytified; they tend to socialise with
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each other. Node 47 belongs to both groups, it is importahihkahese two groups together.
There are many members in the 25-size group not belongingtonemon institution but they
are here linked together by different small groups mixingetber in the conference.

. | o
Paris Groups I QM
=, 9
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Paris Group A
Paris Group B
Lausanne Group

Figure 3.11: 3-clique communities based on contact duratrath weight threshold equals 5.6
hours (nfocomOQ§.

When | increasé from 3 to 4, the graph splits into 8 communities of size (8,,8,%, 4, 4, 4).
The number of nodes decreases a lot, but we can also seedltattbsiveness of the affiliation
communities is quite strong. The Barcelona Group and thed&mue group are still there, with
the numbers change from 7 to 5 and 5 to 4, respectively. The from node 47 linking two
detected communities containing Paris Group memberspksapbut we still observe a mixing
of five Paris Group A and Group B nodes together to form a conitystructure.

Paris G A (French i
@ Italian . aris Group A (French) O Barcelona Group (Spanish)

A Paris Group B (French)

Figure 3.12: 5-cliqgue communities based on contact duratrath weight threshold equals 5.6
hours (nfocom0§.

Figure[3.IP shows the communities when k is equal to 5. Ther@@v only 3 communities
of size (5, 5, 5). All small communities with size less tham% i= 4 case are eliminated. We
can observe that the Barcelona Group and a Paris Group khitbeste. Another group mainly
consisting of Italian-speaking people overlaps with thenéh group. | do not want to claim
that the division byK-CLIQUE community algorithm matches real social groups perfebtly,
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at least it gives us rich information about the underlyingnlan interaction. A preliminary
conclusion here is that affiliation or even nationality iagly linked human contacts, even in
the highly mixed environment of a conference.

3.5.4 k-cligue Metropolitan Communities

As we can see from Figufe_B.5, most pairs have a low number mficts and low contact

duration. | do not expect to discover a rich social strucfuven this data. However, in this

case, we can see how some internal nodes without much sacralation are nevertheless
connected together by external Bluetooth devices, by dernisig all of the 869 nodes detected,
including 37 iMotes and 832 external devices.

The experiment lasted 6 days. First | set the threshold todrec8unters which is equal to an
average of one encounter per 2 days. Around 8% of the toted Ane taken into consideration.
In this case | observed 10 communities sized (18, 10, 8, 6, 8, 3, 3, 3) respectively when
k = 3, which is shown on the Figufe=3113.

From the same figure we also see that the internal nodes aabyusined together by external
nodes. They themselves may not have social correlatior, ditdlare connected together by
these unknown external devices which may belong to coliesgufriends or familiar strangers
of the iMote owners. This gives us optimism about the pobsitaf city-wide PSNdata com-
munication.

Whenk = 4, communities shrink to only two small communities of sizendl &, respectively.
It seems thak = 4 is too strong in this case. | tried to increase the number ofamis to be 6,
on average one contact per day; in this case only 2.4% ofrike &re taken into consideration.
There are only 6 small communities of size (6, 4, 4, 3, 3, 3peetively, with only two over-
lapping with each other at a single node. This again confimaséry sparse social cohesion in
the experiment.

The communities detected by theNA and the K-CLIQUE methods are not necessarily the
same, and most probably they will not exactly match becatiseecoverlapping community
feature ofk-clique. But clearly, they can be useful tools for us to asalyhe datasets and
extract the important clustering features out of them. | uske these detected communities to
test my forwarding algorithms in later chapters.

As | know that there are many community detection algorittinad have been proposed and
studied in the literature, the key point is to select the omegh are suitable for our applica-
tions. | want to uncover overlapping structures and | alsotw@reduce manual intervention in
choosing the threshold for the data, so | choASE€LIQUE andWNA.. | believe there are some

8Although we have observed an expected delay of 1-day in @nptpower-law distribution also implies a
lot of short inter-contacts. If we can design communicapatterns to make use of these short inter-contacts and
avoid or ignore the very long inter-contacts (e.g.nighdjnenunication is still possible. | will show that in the next
two chapters.
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242

Figure 3.13: Communities based on number of contacts wiilgiwehreshold = 3 and k=3
(HK).

other suitable methods, but this work introduces dataetigj techniques into human mobility
trace studies.

3.6 Distributed Community Detection

The centralised detection methods introduced above afel Giseoffline data analysis on mo-
bility traces [DF04] [EP06] to explore structure in the data and hence desigfuliforwarding
strategies, security measures, and killer applications.aB self-organizing networks, | would
also ask whether the mobile devices can sense and detaocbwrelocal communities instead
of relying on a centralised server, which leads to the aredistfibuted community detection.
However, to date as far as | am aware, detecting communitydtgilited approaches has not
yet drawn much attention from researchers, especially fasila applications. Clauset[Cla05]
defines a measure of local community structure and an ahgoribat infers the hierarchy of
communities that encloses a given vertex by exploring thplyone vertex at a time. Although
its original design was for static graphs with a known togglinstead of dynamic temporal
graphs such aBSNs it provides a motivation for us to examine different celided community
detection algorithms and investigate the possibility ofedeping a distributed version.

In this section, | will introduce three distributed commiyrdetection algorithms, namezim-
PLE, £-CLIQUE, and MODULARITY . The difference between these three algorithms are the
admission criteria for a node into a local communi§IMPLE uses classic Jaccard similar-



CHAPTER 3. INFERRING HUMAN COMMUNITIES 68

ity [Jac01],k-CLIQUE is based on the clique size, amdDULARITY uses the local modularity
measure proposed by Clauset [Cla05]. Except from borrowingl modularity as a fithess
measurement of detected communities from the static g@afitetdynamic graph in one of the
algorithms, all the other parts of the algorithms are my gbuations.

In the rest of this section, | will first introduce definitioasd terms and then go into the details
of these algorithms.

3.6.1 General Framework

Before introducing the basic structure of the algorithnvailifirst define some terms which are
common to all the three algorithms and also specific to aqadati algorithm. As | mentioned
above, we can detect different kinds of social communitiesgecifying the contact duration
and number of contacts threshold, but in order to make theeptation easier and in order to
compare with other centralised detection methods, whithalow one metric to be specified,

| constrain the discussion in this section to the communditected by contact duration. In the
language of graph theory, | refer to a mobile device as axerte

The common terminologies for all these algorithms are:

Familiar set: | assume each vertex (mobile device) will keep a map of westit has en-
countered with the corresponding cumulative contact thrat When the cumulative contact
duration with a vertex exceeds a certain thresh)g it is promoted to be included into its
familiar setf . These two vertices now have an undirected edge between fhgiven vertex,
v;, has perfect knowledge of its own familiar set (by definijiaenotedr ;. The same vertex
also could have gathered incomplete knowledge of othercesftfamiliar sets, e.g. a local
approximation of the familiar set for vertex would be denoted ;.

Local Community: a vertex’s local community, denoted I8 contains all the vertices in its
familiar set(its direct neighbors) and also the vertices that are ssddoy my following com-
munity detection algorithms (the selection criteria ofteatgorithm to be further elaborated).
Because of a lack of temporal synchronisation, each vedtxaly in the same community
may detect a different local community.

The basic structure of my algorithms is as follows. When a iteatevice v, first initialises
its community detection procedure, the local communigyonly contains this source vertex.
Whenever it encounters another devigethey will exchange part of their local knowledge of
the network.v, then has to decide on the following based on certain acceptaiteria:

1. whether to place the encountered vertein its familiar setf , and/orlocal community
Co.

2. whetherC; should merge with all or part af;.

The general framework for the detection algorithms is suns®d below:
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Algorithm 1: The generic framework of the algorithms (running on verigk
Initialisation: adduv, to Cy;
vy exchanges local network information with (the vertex it encounters);

var consider Merging <« false

while in contact withv; do
keep counting the contact histories;

if v; can be promoted tp , then
putv; in Co;

consider Merging < true,

break;

if v; ¢ FoandComuni t yAccept (v;) then
putv; in Co;

| consider Merging < true

if consider Merging == true then
| MergeComuni ties(Cy, C))

The three algorithms | introduced here follow this framekvarhe difference is just the imple-
mentation of the function€ommunityAccepit() andMergeCommunities(,, C;), and we will
look at them in increasing order of complexity fra8tMPLE, to K-CLIQUE, to MODULARITY .

3.6.2 SIMPLE
CommunityAccept (v;) = true iff
\FinNCol/|Fil > A

(where) is the merging threshold, which I will vary in this chapterstee the differences of the
final communities detected). See Figlre B.14.

MergeCommunities(Cy, C;): if v; is added toC,, we will consider merging the two local
communitiesff
|CO N Cz| > ’7|CQ U Cz|

See Figur€315.

As its name implies, this is a reallsimpleapproach. In essence, we admit a ventexnto
our local communityCy (even if it is not in the familiar set of))) if most of its connec-
tion are to vertices that are in our local community alreadyad we merge the two local
communities if the main parts of them already overlap (Semrfei.[3I5). Both functions
CommunityAcceptf) and MergeCommunities(,, C;) preserve the intuition that there should
be more intra-community connections than inter-commuuritgs.
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We want to see whether v, So we first count the number
should be addedto  C, of vertices in e
v/'s familiar set = (g(_:' +i -)
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Figure 3.14: Admission criteria for SIMPLE

We only consider merging
the two communities C,&C,
if the fraction of them in

common > 'Y

Figure 3.15: Communities merging criteria for SIMPLE

3.6.3 k-CLIQUE
CommunityAccept (v;) = true iff
|F;NCo|l >k —1.

l.e. thefamiliar set [, contains at least — 1 members of the local community,, (See
Figure[316).

MergeCommunities(Cy, C;): if v; is added taC,,, we consider each vertex inside C; (the
local community of;), and if CommunityAccept() (its familiar set /; contains at least — 1
members ol’y), v; is also added to the local community, i.e. the admission criterion for



CHAPTER 3. INFERRING HUMAN COMMUNITIES 71

a
) C,
‘
\
We want to see whether Vv, So we count the number of
should be added to  C vertices in both Vs familiar set

. I
and also in the local

. "
community of vz {}

. . s
) Andweadmit vio Ciff i >k

"

Figure 3.16: Admission criteria fdr-CLIQUE

eachv; is
[F;NGCol >k—1

This approach is based upon the concept-ofique communities [PDEV05], where each com-
munity is a union ok-cliques(smaller complete, fully connected, subgraph4 ofodes) that
can be reached from each other through a seriesljaicent k-cliqueswvhere twok-cliques are
said to be adjacent if they shate- 1 nodes.

3.6.4 MODULARITY

Clauset introduced the concept of Local Modularify [Clafi]distributed community detec-
tion. The following are the relevant definitions (Figlre:1

Boundary Set: For a given vertex, and its local community’,, the associated boundary set
By is defined as the subset of verticesil whose members have edges connecting to one or
more vertices outsid€), i.e.

By = A{vi | (vi € Co) and ((Fi \ Co) # 0)}

Local Modularity: The local modularityR for a givenC, with By is defined as

I

RO — T
T

whereT is the set of edges with one or more endpoint®&i) while | is the number of those
edges with both of their endpoints@,. If B, = ), R, is defined to have value af

Each vertex can use Local Modularity as a measure of the sésspof its local community
boundary, and the measure is independent of the size of thesex community.
CommunityAccept (v;) = true iff (F; # () and either

a)(FZ - CO and By # (Z)) or
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Figure 3.17: The higher the local modularity of a commurtityg fewer the number of edges
connecting it to its Adjacent Set. A community has a Local Madty value of 1 when it has
an empty Boundary Set.

b) AR} > 0 (the difference between the local modularity measure kedad after adding; to
Cp is +ve).

MergeCommunities(Cy, C;): the algorithm only considers adding the vertices in theSet
{ui. | there exisyj s.t.v; € Co N C; andvy, € F; andv, € C; \ Co}

For eachy, € K, it evaluates whethgr;, C (. If this condition is satisfied, the corresponding
vy is added ta”,. The rest of the, are then considered in descending ordeAdi:. Vertices
with a negative or zero contribution th R will not be added ta’,, and the values oA R are
re-evaluated after each additiondg.

Figure 3.18: Explanation of set K MODULARITY

Figure[3IB illustrates how and why set K is chosen. The ghadea in Figur€3.18(a) shows
the vertices in the sek’. When considering merging parts of two communities togetbee
first considers locating all the vertices that are commoheddcal communities of both vertices
(Co N C;, shaded area in Figuke_3118(b)). Then we consider thosee®that are adjacent to
the set of vertices iny N C; (shaded area in Figufe-3]118(c)), which are more closely ected
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to the common vertices of the two local communities and heoadable for merging int@’.
But since a portion of them are alreadydl, and a portion of them are in neither of the local
communities, we only consider the set of vertice&in

Both functionsCommunityAccept() and MergeCommunities(,, C;) make sure that the ra-
tio of intra-community connections to inter-community engould always increase for each
addition of a community member.

Clearly, theSIMPLE algorithm requires less storage and less computations¥1eQUE algo-
rithm is in the middle andMODULARITY is the most demanding one - because of the need to
re-evaluate\ R in each iteration, hence MergeCommunities(,, C;) only part of the commu-
nity (K) is considered to be merged, as a resource/performana»tfad

3.7 Evaluation of Distributed Detection

In this section, | evaluate the communities detected by iteilouited methods against the cen-
tralised methods. In order to do the comparison, | need tod@gelop similarity measurements.

3.7.1 Similarity Measures

Newman [New04a] introduce a metric callédction of vertices correctly identifieth evalu-
ate the communities detected against pre-known comman#iecording to the definition, the
largest set of vertices that are grouped together by theidigoin each of the known commu-
nities is found first. If the algorithm puts two or more of tedsiown communities in the same
set, then all vertices in those sets are considered indbyritassified. Otherwise, they are con-
sidered correctly classified. All other vertices not in thggkest sets are considered incorrectly
classified.

Another measurement metric is used in_[DDDGAO05] by Daeoral., which is callednor-
malised mutual informatiomeasure. It is based on defining a confusion matkixvhere the
rows correspond to the "real” communties, and the column®spond to the "found” commu-
nities. Each element &, V;; is the number of nodes in the real communitigat appear in the
found community. Thenormalised mutual informatiois then defined as following:

c & Nz'jN
-2y 4 Zjil Nileg(Ni“N-j)
c ; c N
>ite Ni.log(]]\i}‘) + Zjil N jlog(F)

wherec, is the number of real communities; is the number of found communitied; is the
sum over row of matrix V;; and .V ; is the sum over colump

NMI(A,B) = (3.7)

| can adapt these two measurements to evaluate my distlibatamunity detection algorithm
against its corresponding centralised method. Howevearbehoving forward, | need to con-
sider the fairness problem. Since, for distributed commnyuhétection, each node will detect
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the local communities to which it belongs, if a system hasodes, there would be at least
communities detected (i.ez > N). Denote the number of real communitiescgsas above.

If N > cy4, the evaluation of:4 againstcg would be unfair, especially if over weighted by
the big community. Also, considering that the network israggeral graph and some nodes are
more popular than others, nodes belonging to the real contynmay not have the same local
view of the communities detected. Therefore we need to densi modification to address this
problem. My approach is to choose the biggest detected caonmynmove it to thecore com-
munitylist and then discard the communities detected by all theesaatcluded in it, and then
repeat this for the remaining biggest one on the list andicoatuntil no more communities are
left. | then evaluate, against thecore communityist. The biggest communities are not nec-
essarily the best communities detected: they may contaoh @ redundancy so the selection
of the biggest communities does not necessarily favor mgrakgns. This shrinking process
will remove the smaller groups of the overlapping commesitiwhich may also penalise my
results.

Newman’s method is a little bit harsh; as he mentioned in &jsep, there are cases in which one
might consider some of the vertices to have been identifiecctly, and this method would
not. Also considering that for all three datasets, theraraaey more single-node communities
than bigger communities, this will make the NMI measure tewiards 1. Hence here | con-
sider another modified similarity measurement. Here | ohige similarity by using the classic
Jaccard indeX]JacD1] which was proposed by Jaccard ovenumdred years ago to evaluate
the similarity of two communities.

ALY
0 Jaccard = |Fz UFJ‘ (38)

wherel’; is the members of communityand|T';| is the cardinality of the sdt;, that is equal to
the number of members in communityln this chapter, | will compare theore communities
detected by distributed methods with the communities detday centralised algorithms using
this similarity measurement.

3.7.2 Results of Detection

To evaluate the community detection algorithms, | replagy tiobility traces of the three ex-
periments and emulate the gossiping of community inforomedin each encounter. Here | only
evaluate the communities detected after the whole tradeishviasted 9 months fdreality, 3
months forUCSDand 11 days foCambridge As a first step | do not evaluate the time needs
for the communities to be well developed at the middle of timellation.

Figure [3.ID shows the similarity between the communitiésaled by the distribute8IMPLE
method and thé-CLIQUE against the communities detected by the centralisedIQUE algo-
rithm with a threshold of 389k seconds for tRealitydataset, 78k seconds for thkCSD, and
36k seconds fo€Cambridge These threshold values for the centralised methods wezeted
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Figure 3.19: Impact of Familiar Set thresholdCLIQUE and SIMPLE

following many trials and also by studying the nature of theup of experimental objects.
Some of them are found to agree with the real experimentaipg,csuch as for th€ambridge
data, the two groups detected correspond to the two mairtiparit groups. Figuré_31L9 also
shows the different similarity values with different farail set thresholds. We can see that the
k-CLIQUE method shows better results most of time thangmW¢PLE method. With a suitable
threshold, the distributed algorithms for b&MPLE andk-CLIQUE can reach around 80% of
the performance of the centralised algorithm. For $iWdPLE case, | use a merging thresh-
old, A\, of 0.6. | also find out that varying the merging thresholdirf.5 to 0.9 makes little
difference; whereas the Familiar Set threshold changesithigarity values quite significantly.
Figure[3.2D shows an example for tRealitydata using th&IMPLE approach.

Since we know the network is highly intermittently connegtdhe local community informa-
tion for each node within the same community may not be symgked. | want to know how
different these local community views are. From are Communitigswe can compare the
local community detected by each member in edoe Communityvith its Core Community
calculate the similarity values and then plot the distitmg of all these similarity values. Fig-
ure[3.Z1 shows these distributions for the three datasetg éreReality UCSDandCambridge
respectively) using distributed CLIQUE. We can see that for bofRealityandCambridge the
local community views are quite similar to the selectedéat@ore Community This would
be probably because of the relatively smaller dataset sidenagher connectivity. And these
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two groups of nodes also agree with the two main groups ofestisdparticipating in the ex-
periment. ThaJCSDdata relies on users connecting to centralised accesspostéad of peer
contacts and hence is more sparse. In general, the local soitywiews have bigger variation
when usingSIMPLE. Figure[3.2P gives an example of tRealitycase. Similar variations are
also observed in the other two datasets. And | also find ottlikeee is no impact of the merging
threshold\ (from 0.5 to 0.9) on the distribution if using the same Faanifet threshold.

—=-60K
1.0 & — 1.0 —5—80K
—¥—100K
——120K
0.8 ‘ 0.8
\
. \9\& \\\ 5
= \ =
5 06 5 0.6
© \m\\ © \
a \ ke
o \ o
ju. \ p -
& 0.4 ==—200K & 04 \
& 250K \
—%— 300K \
0.2 0.2
[CE ¥= )
if
0.0 T T T T T T T T T 0.0 T T T T T T T T T
0.0 0.1 0.2 03 04 05 06 0.7 08 09 1.0 0.0 0.1 0.2 03 04 05 06 0.7 08 09 1.0
Similarity (KClique) Similarity (KClique)
1.0 &

o
o

&
/Z

Probability

0.4
—=-20K
0.2 —o— 30K
—%— 40K E
—-—-50K i
0.0

T T T T T T T T T
0.0 0.1 0.2 03 04 05 06 0.7 08 09 1.0
Similarity (KClique)
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Figure[3.2B also shows the comparison$/afDULARITY andSIMPLE with centralised New-
manWNA [I.NOZ]. Since theODULARITY and Newman methods both used modularity, it
is fairer to compare them than comparing with the centrdlis€LIQUE method. We can see
that in theReality case,MODULARITY has better performance th&MPLE with the same
threshold, and it has a best performance of around 80% sityildhe SIMPLE approach also
generally has good performance with a 75% similarity for #gale threshold setting. For
UCSD, the similarity values are in general low for both algorighand this is also true for the
k-CLIQUE algorithm. For theCambridgedata, at high threshold valueslODULARITY be-
haves better tha8IMPLE and the other way round at low threshold values, but they tsztbh

a maximum point above 80%.

| conclude this section with TadleB.2, which summariseitpkest similarity values calculated
by each distributed algorithm. F&MPLE, | show both its comparison with the centralised
k-CLIQUE (first) and the centralised Newman method (second). We carths¢ generally
MODULARITY andk-CLIQUE have slightly better accuracy (i.e. more similar to the @dised
methods) than the®IMPLE counterpart. That is to be expected since they require nnéoe- i
mation and calculation, especially as the computation ¢exity of MODULARITY is O(n?)

in the worst case, whene is the size of the network explored so far. However, sincectofa
of n? is contributed by the evaluation of eac¢hz, which in reality is likely to be bounded
by O(k?) wherek is the average degree of a vertex in the graph, the worst eafermance

is thusO(n2k?). Considering its computational and storage requireméimgsperformance of
SIMPLE s quite acceptable, so | would sugg88¥PLE, with O(n), for the mobile devices with
strong constraints on storage and computational compleiithe mobile devices can afford
the storage for a local copy of the Familiar Set of their comityumembersk-CLIQUE would

be a good choice for its reasonably good similarity values @so quite low computational
complexity, O(n?) in the worst caseMODULARITY requires the most computational power
but it does not have significant better performance in thasesx This may be biased by the
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Figure 3.23: Impact of Familiar Set threshalttQDULARITY and SIMPLE

limitations of the experimental datasets, but | will nobsigly recommend it at this moment.

Experimental datasef SIMPLE | k-CLIQUE | MODULARITY
Reality 0.79/0.76 0.87 0.82
UCSD 0.47/0.56 0.55 0.40

Cambridge 0.85/0.85 0.85 0.87

Table 3.2: Summary of best performance of the algorithms

3.7.3 Limitations

There are several limitations to my study in this chapted, lamant to point them out here:

e As afirst study, | only evaluate the communities detectest #ffie replaying of the whole
traces, but did not evaluate the communities at differexget of the emulation. Evolution
of the communities detected at different times could alsarbmteresting study topic.

e The Familiar Set threshold values | used in the emulatioasrace-dependent and were
chosen based on the whole duration of a trace. In a real apiplc we may want to
specify them in more general terms such as number of hoursrober of times per day,
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per week or per month. Here | just want to compare the perfoc@af the distributed
algorithms with the centralised ones so | simply specifyntha relation to the whole
experimental durations.

¢ | did not evaluate the detection of different categoriesetdtionship in this chapter. In
real applications, however, the mobile devices should tetaldetect the different cate-
gories of relationship in Figuile_3.4 by specifying the FaaniBet thresholds for contact
durations and number of contacts.

¢ In the current version of the algorithms, | need to speciffatic Familiar Set threshold,
but maybe in future versions more dynamic methods such aghivaveraging, which
dynamically choose the threshold by considering the aeevadue of the weights over
the edges connecting all the neighbours, could be used tceedanual configuration.

¢ | did not consideagingof the contacts at this moment, but we need to look into it e th
future. Some previous contacts may become irrelevantsdtee time, but which take up
storage and cause false-positive impact for detectionpsd gging mechanisms about
contacts should be considered.

3.8 Conclusion and Future Work

I have applied Newman®WNA and K -CLIQUE community detection to severENsand found
the communities detected match well with real social comitres These two offline analysis
tools would be very useful for us to analyse and extract humtaraction patterns from all
experimental datasets. There are a lot of community deteatgorithms in the area of complex
networks; one key point is to pick the correct ones for a paldir application. | believe that
there are other algorithms which can also serve the samegeirpBut my most important
contribution here is opening a new aspect of mobility trataysis that the research community
can follow and further improve and a lot of different reséacan be done based on it. For
example, we can use these detected communities to testes sérsocial-aware forwarding
algorithms, data sharing overlay design, and securityciadiin the future. In the later chapters,
| will evaluate the impact of the detected communitieP@Nforwarding efficiency compared
with “oblivious” flooding or using randomly generated greupith the same size.

| also proposed three distributed community detectionrélyms with different levels of com-

putational complexity and resource requirements. | evatighem on three human mobility
experimental datasets with Bluetooth peer-to-peer and Wignt-access point logging traces.
| discovered that the communities detected by the disedbalgorithms can satisfactorily ap-
proximate the centralised algorithms which require the lemetwork topology. | also com-

pared the performance of these three algorithms and prd@oseenario in which each could
be used. These distributed algorithms are not part of offlata analysis but they provide the
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possibility for each mobile device to identify its local comanity and hence can be used for
online applications. To the best of my knowledge, this isfitst work that uses mobile devices
to infer human communities.

In future, I would like to evaluate my algorithms on more niitpiraces, such as the WiFi traces
from the Crawdad project [HKAD4], and also some forthcomiiigte experiments to make a
more conclusive statement about the accuracy and applicatienarios of these algorithms.
And | would also like to develop my studies further with redjdo the limitations | listed in

sectio 3.713.



Chapter 4

How Small Labels Create Big
Improvements

Following up the mathematical and empirical analysis ofifobus” forwarding algorithms in
Chaptei®, | want to start looking at using social contexttpriove forwarding efficiency in
this chapter. Society naturally divides into communitiesading to needs for cooperation
or selection. In sociology, the idea obrrelated interactions that an organism of a given
type is be more likely to interact with another organism ofie type than with a randomly
chosen member of the population _[OkRa05]. If the correlatedraction concept applies, then
our intuition is that using this community information tdflirence forwarding paths may be
advantageous. In this chapter, | study the impact of affilatabels onPSN forwarding. To
the best of my knowledge, this is the first empirical work imstarea. This is a joint work
with my supervisor Prof. Jon Crowcroft. Dr. Meng-How Lim,.Dfames Scott, Dr. Augustin
Chaintreau, Richard Gass, Dr. Christophe Diot, and Dr Eikneki were also involved in the
organizing of this experiment.

4.1 Introduction

In Section[Zb, | have shown empirically that traditionalveamultiple-copy-multiple-hop
(MCP) flooding schemes work well in dense environments such ateatia conferences, and
provide fair performance in sparser settings in terms aiesgl ratio and delay. However, in
terms of delivery cost, the naive approach is far from satisiry, as it creates a lot of unwanted
traffic as a side-effect of the delivery scheme, and the @aathrapidly becomes unacceptable
in a mobile network characterized by resource scarcityyenability, and contention.

In the research community, it has been a widely held beligf ithentifying community infor-

mation about recipients can help in selecting suitable #oders, and reduce the delivery cost
compared to “oblivious” flooding. This is a reasonable ititun, since people in the same com-
munity are likely to meet regularly, and hence be appropifiatwarders for messages destined

81
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for other members of their community. However, to date aa$dram aware, there has been no
experimental evaluation of this belief, and no one knowstiweit is valid or not.

I conducted a human mobility experiment during IEEE Infoc2@®6, with the participants

labeled according to their academic affiliations. Aftedeciing 4 days of data during the con-
ference period, | replayed traces using an emulator, amdesed that a small label indicating
affiliation can indeed effectively reduce the delivery ¢e@gthout trading off much against de-
livery ratio. The intuition that simply identifying commiiyp can improve message delivery
turns out to be true even during a conference, where the péaph different sub-communities
tend to mix together.

Inspired by the inter-contact time analysis, | also propase early model for temporal graphs
based on community and temporal attachment.

The rest of this chapter is arranged as follows. | first inaclrelated work in Sectidn4.2; then
followed by the “labeling” strategy in Sectidn #.3. In SectiZ.3, | analyse the inter-contact
time within communities and between communities. | introglthe evaluation methodology
and present the results in Sectlonl4.5 and Seéfidn 4.6 rasggc | also introduce a simple

model for temporal graphs with community topologies and @oelaw temporal attachment in
Sectior 4T . Finally | give a short conclusion of the chapter

4.2 Related Work

Forwarding strategies under intermittently connected iteadd hoc networks have been ex-
plored by a number of research groups. | have presented dtiealfoundation on the impact
of human mobility on the design of opportunistic forwardalgorithms based on six real human
mobility traces from four different research groups in Cieaf@ (also see [CHEDE]). Lind-
grenet al. considered the community concepts for controlled floodig304]. They have the
assumption that nodes mainly remain inside their commuamty sometimes visit others. To
route a message to a destination, a node may transfer thaageeto a node that belongs to
the same community as the destination. Their work providgsaal theoretical hypothesis for
community-based routing, but there has not been any erapavaluation. Musolest al. pro-
posed a community-based mobility model for mobile ad hoeassh [MMO06]. In [HCS 0],
we took a similar measurement of human mobility in a confeeegmvironment but community
issues have not been touched. In this chapter, | am lookiting giroblem using an experimental
approach. Empirical results could be helpful for both modghnd theoretical work of other
research groups.
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4.3 Labeling Before Throwing out

The forwarding scheme | used here is called tA8EL strategy. We imagine that each node
has a label telling others about its affiliation/group, jlilse the name badge in a conference.
The strategy chosen is exclusively to forward messagestddhtination, or to next-hop nodes
belonging to the same group (same label) as the destinaiibie. assumption | make here
is that people with same affiliation tend to meet more ofteantpeople outside the affilia-
tion, and hence can be good forwarders to relay messages tattier members in the same
affiliation/with the same label. This is similar to tleerrelated interactiorconcept in sociol-
ogy [Oka0%]. This strategy requires little information abeach individual and is believed to
be easy to implement in real life, by just “tapping” (imagiwken we use a small pen to hit on
the touch screen a PDA and write on it) mobile device and mgitiown the affiliation of the
owner, which is what we are usually required to input when axeha new PDA.

Here, | do not require a node to know all the other nodes wighstime label. Two encounter
nodes only need to know whether they have the same label. agpsoach is much more
scalable since each node only need to store its own labeldbinformation about other nodes
with the same label. This is doable if there is a pre-agrekdlilag scheme (e.g. affiliatiH)]

or | call it explicit communitywhich can be explicitly named. For some communities, which
cannot be explicitly namednplicity communitﬁ), each device can detect its own community
by using distributed community detection algorithms | haveoduce in Chaptell]3. In this
chapter, | will limit to studya priori affiliation groups, and leave all the detail discussion abou
communities in the next chapter.

4.4 Analysis of Inter-contact Times

Before moving into the detailed performance evaluationABEL, | want to first verify the
correlated interaction from the dataset watlpriori group information. Inter-contact time dis-
tribution is a good indication for this relationship. For &en pair of nodes A and B, the
time-line can be divided into two regions, contact times amdr-contact times. The contact
times are when A and B are in range of one another, and couldftite have sent data if they
had wished to. Inter-contact time is the time elapsed beatvi&e successive contact periods
for a given pair of devices (see Sectionl2.4), hence the-ouetact time distribution simply
indicates the frequency of interaction. In last chaptesq@HCS 05]), | have shown that inter-
contact time follows a power-law distribution, the biggeatvalue of the power coefficient, the
more frequently the node pairs interact. In this work, | egt¢his to look at the inter-contact
distribution for all the nodes inside a group and also theriobntact distribution between two

LAll the Intel employees in the world share the same Intelllabe
2For example, Bob usually hang out together with some fridrata his high school, some colleagues from

his company, and also his neighbour, but there is not an@klalbel to describe this group.
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groups. | believe the power-law coefficient of these interg inter-contact time distributions,
if they are following a power-law, indicates the closenddsvo groups.

Figure[4.1(d) shows a typical inter-contact time distiitnfor a pair of nodes in one commu-
nity, and a pair of nodes from different communities. We ca@ that the intra-community pair
has a higher power-law coefficient than the inter-commupeiy; that is, node pairs in the same
community tend to meet more often. Figlire 4.]1(b) also shbeisggregated inter-contact time
distribution for a node with all the other nodes in its commtyras well as for all other nodes
in another community; we can also observe a variation in tivegp-law coefficient. To avoid
the bias caused by a single node, | also calculate the aggckeigaier-contact time distribution
for all the nodes within the same group and also the samelwistn with all nodes outside the
group; the results are shown in Figlirel4.2. We can see a sigmiifly steeper slope for the intra-
community aggregated inter-contact distribution. Thisvites empirical evidence that people
from the same organisation tend to meet more often than edgph different organisations.
This provides good hints to identify forwarders for messdejevery.

1 1
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Time Time

(a) inter-contact (b) aggregated inter-contact

Figure 4.1: Comparison of inter-contact and aggregatest-antact time for intra and inter
community nodes

Here | also want to introduce the concept of friendship comitres [Dun98]. The University
of Cambridge’s Computer Laboratory researchers may beeadly community towards Intel
Research Cambridge staff, since these two groups of pespléhe same buiIdngand have a
number of collaborations. Hence people from one group mayoloe forwarders for people in
the corresponding friendship group. In the experimenttd,daere are two groups from Paris,
and | want to look at whether they have a closer relationstiprmcompared to other groups,
based on the inter-contact time distribution. As shown guFke[4.8, we can see that within the
same group, the power-law coefficient is the largest, antllaggest with the nodes in a friend-

3We do not share a building anymore!!
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Figure 4.2: The aggregated inter-contact time distrimgifor all nodes inside a same group
and also with all other nodes outside the group.

ship group, and lowest for an arbitrary group. Although tifeecence is not very significant,
we can still observe it. Later, | will also look at how helpfhls friendship community can be

when used explicitly to forward messages.
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Figure 4.3: The aggregated inter-contact time distrimgifor all nodes inside a same group,
with a friendship group and a normal group.
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4.5 Evaluation Methodology

4.5.1 HaggleSim Emulator

In order to evaluate different forwarding algorithms, | deped an emulator callddaggleSim
which can replay the mobility traces collected and emul#terént forwarding strategies on
every contact event. This emulator is driven by contact eveifhe original trace files are
divided into discrete sequential contact events, and fedlthre emulator as inputs. The event
granularity depends on our choice of balance between replegd, and the degree of accuracy
desired. In all the simulations in this work, | divided thades into discrete contact events with
granularity of 100 seconds. | analyse the successful dgliage, the delivery cost, the delay
distribution, the hop count distribution for all succedsfeliveries, and the popularity of a node
as a relay based on the log files produced by the emulator.

Table [41 shows a snapshot of my emulation source file. My Isitmureads the file line by
line, treating each line as a discrete encounter event, ak&sna forwarding decision on this
encounter based on the forwarding algorithm under studywésan see from the source file,
some events happen at the same time stamp, and should leel tisaimultaneous. Just reading
the file line by line artificially imposes an order on eventsirsstead | keep contacts in a buffer
while reading multiple lines ahead: if the next event hagdrithe same time, and there would
be an exchange of messages between the nodes referencediimetdue to the forwarding
strategy, | will re-read the contacts in the buffer, and gppé same forwarding strategy to the
newly exchanged messages. This removes the artificialiogder

Node | Node | Time Stamp
6 24 14991
25 11 14991
25 240 14991
24 240 | 14991
6 240 | 14991
35 511 | 14991
24 11 14991
6 24 15001
25 11 15001
25 240 | 15001

Table 4.1: Snapshot of Simulation Source File
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4.5.2 Simulation Parameters

There are three parameters | used in my simulation to ackmveolled flooding inMMCP strat-
egy.

e Number of copies (m)The maximum number of duplicates of each message created at
each node.

e Number of hops (Hop-TTLJhe maximum number of hops, counted from the source, that
a message copy can travel before reaching the destinatisnstsimilar toTTL value in
the Internet.

e TimeTTL The maximum time a message can stay in the system afteedai@n. This is
to prevent expired messages from further circulation.

45.3 Performance Metrics

For all the simulations | have conducted for this work, | heneasured the following metrics:

e Delivery ratia The proportion of messages that have been delivered obédabtal num-
ber of messages created.

e Half-life delivery timeTTL: This is the timeTTL value that would allow half of the mes-
sages created to be delivered; in other words it is equivatetine delay time that half
of the created messages experienced. It measures how thsfffanient a forwarding
strategy is for message delivery.

e Hop-count-distribution for deliveriesThe distribution of the number of hops needed
for all the deliveries. This metric gives some idea of how averding strategy picks
forwarders. In theLABEL strategy, it reveals the social distance between souraks an
destinations.

e Delivery cost For cost, | measure the total number of medium accessddsttiee total
number of messages (includes duplicates) transmittedsitine air. To normalise this, |
divide it by the total number of unique messages cr%ted.

4Same as the evaluation MCP in SectiolZb
SPacket loss in the wireless environment will add more cast,| bvill not look at it in this work, as | have

explained in Chaptdi 2.
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45.4 Simulation Scenario

In order to study exclusively the effect of community on farding, | created the following
scenario: all the seventy-seven noHe}reate a total of 1000 messages, destined only to the
thirty-four nodes belonging to the four groups; the messagation times are uniformly dis-
tributed throughout the experimental duration.

In order to compare the performance of the labeling strategly a naive strategy, | run an
emulation of theMCP strategy. To ensure that the performance improvement islnetto
arbitrary limited number of forwarders, for every round ohslation, | created four random
groups of same group sizes as the original groups but witesocandomly selected from all
the seventy-seven nodes. | refer to the labeling stratedytl@ncontrol experiment dsABEL
andCONTROLrespectively, in my analysis. To achieve statistical f'es$) | run the emulation
20 times with different traffic patterns.

4.6 Results and Analysis

In this section, | compare the performance of four strategCP, LABEL, CONTROL, and
WAIT (wait-and-forwarg; this entails waiting until the source of a message hastaentact
with the destination. In this simulation | used 4-copy-4iior theMCP scheme which has been
shown by experience (see Sectlon] 2.6) to be the best naieengchn this kind of conference
scenario in terms of delivery and cost.
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Figure 4.4: Comparison of delivery ratio and cost of différstrategies

In Figure[4.4(d) we can see that, as expecte®BEL has a delivery ratio betweeviCP and

5Because of hardware problems, three out of eighty did ndd yiey data.
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WAIT, and the trend is for it to approach closer to the perfance ofMCP, as the allowed time
TTL of the messages increa&m terms of cost, in Figurg 4.4(b) we can see thi&tP costs
much more thahABEL , especially when the timeTL is increased up to 1 day, whevkCP has
less than a 10% improvement ouskBEL, but it has around 6 times higher cost. Of course,
WAIT has the lowest cost: since it is during a conference pgsinot need to wait too long
to meet the destination directly, hence the delivery ratiaat too low. Figuré4]5 shows the
number of other nodes met directly by each node during theraxental period. It shows that
almost every node has the chance to meet most of the othes dadeg that period. However,
if we look at the half-life delivery value, we can see that Hadf-life delivery is 3 hours for
MCP, 9 hours forLABEL and around 1 day for WAIT. In other words, if you can tolerate a
day delay, you could use the WAIT strategy, otherwi88EL would perform the best in terms
of delivery ratio, delay and cost.
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Figure 4.5: The number of other nodes met directly by eacrerthding the experimental
period.

The randomly generated groups scen@@NTROL is around 5% worse in terms of average
delivery thanLABEL in many cases, but it has a wider confidence interval tieBEL . (I also
plotted the maximum and minimum bounds. And | find out thatrtfi@mum bounds oCON-
TROL are usually around 10% lower than the average value dfAlBEL strategy.) This means
that a badly generated combination of groups would affexti#livery quite significantly. Con-
sidering that 34 out of the 78 nodes have a community relstig it is not difficult for the
random groups generated to consist of members which betorepat affiliation groups. Fur-
thermore, considering that during a conference, peopie ffifferent research groups often mix
together, this kind of performance is reasonable.

Figure[4® shows further the improvement&BEL 's performance compared KCP in terms
of delivery against cost. Each point represents a diffeieré TTL value, and we can see that
as we vary this, the delivery almost varies linearly with tdost. The anomaly after the cost
is equal to 22 for thé1CP case, where the slope slightly decreases is due to the fatcthi
system is going into saturation, and further increases $hlmong slower increases in delivery.

’Readers can observe that around 50% of the messages caivieedelithin 3 hours using MCP. Although
I have shown in Chapté&l 2 that for power-law coefficientsmall than 1, expected delay is a day or even longer
for all the datasets, if a system does not require expectiegt daarantee for all packets (like this examplREN
is still possible.
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ClearlyLABEL has a much steeper slope thag@P: this means that this strategy is much more
cost effective.
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Figure 4.6: The Delivery-Cost Graph fotCP, LABEL andCONTROL strategies.

In Figure[4Y, | also look at the hop distribution, which i® tlistribution of the number of
hops required for all the delivered messages. In this caset the timeTTL to 3 hours as

| have done in Sectiond.6. Theaxis shows the number of hops and thraxis shows the
probability for a message to be delivered with at least thablmer of hops. Here | show the
maximum and minimum bounds as well. For this value of tiff&, an maximum of 50%
of the total messages created can be deliveredy(tha&ue at 1-hop). FoMCP, half of the
messages delivered traversed 4 hops{tialue at 4-hop minus thevalue at 5-hop), because
MCP sends out messages on a blind first-come-first-send apprBatinstead, foL ABEL, the
delivery ratio is almost the same for 1-hop and 4-hop, amghsi bigger in the 3-hop case. The
direct contact case (1 hop) only helps to deliver less th&s &0the messages; much of the
delivery relies on intermediate social relays.

In order to ascertain whether the friendship group concepeipful for message delivery, | ran
another series of simulations. In these, members of diffédreendship groups are allowed to
act as relays for each other. I assigned the two groups freim t®de friendship-groups of each
other, and they help to relay messages. The result | expextee is that the use of friendship
groups can help to improve the delivery ratio, without toocinincrease in the delivery cost.
A controlled experiment is also done, by using a random ghgsen as a friendship group,
rather than one with a known affiliation.

We can see from Figufe 4.8(a) and Figpire 418(b) that thedskip group did indeed help to
improve delivery, with only slightly increased cost, Alss expected, the randomly generated
friendship group just increased the cost, without any inapneent in delivery. It is difficult

to study group and friendship group behavior in a confergsicee the people are often mix-
ing promiscuously: that is one of the purposes of a conferehat we can still make some
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Figure 4.8: Comparison of delivery ratio and cost on diffiesgrategies, with friendship groups.

observations about the correlation we see. | further belteat the techniques and metrics |
have developed here can be used for research on friendshipgwith more easily specified
boundaries.

4.7 Modeling as Temporal Graphs

As a priori measurement work reported in Chadier 2 and Sefidn 4.4;dotdact time of
humans follows a power-law distribution with a power-lavetfcient smaller thari. In this
section, | introduce howSNscan be modeled as temporal graphs with power-law distribute
inter-contact time and also with nodes forming a commurtitycsure, as described in Chap-
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ter[3. There is still no empirical proof about the topologyad®SN but usually communica-
tion networks are modeled as Erdés-Rényi random grepbf3 (ER model) or scale-free
graphs[[CJWU6]. Here | aim to model the underlying topolo§y8Nsby both of these two
kinds of graphs. This section is not about forwarding, butdea by combining community
detection in the previous chapter and inter-contact tinadyais in this chapter.

The modeling oPSNshere is divided into three phases, 1) the topological attectt phase, 2)
the community detection phase, and 3) the temporal attactphase. In the topological attach-
ment phase, the topology of the graph is created by eithéeRmodel or the Barabasi-Albert
model [ABO2] with the clustering size controlled by a lingiprobability. In the community
detection phase, the graph created in phase one is splitamionunities. (some communities
may only contain a single node.) In the third phase, intertact time distributions with differ-
ent power-law coefficients are assigned to node-pairs ghifgit within-community and lower
for between communities.

4.7.1 Topological Attachment Phase

On Erdos-Rényi graphs, a network is characterised by tararpeters: the size N and the
link probability p. The mean degree 5= p(N-1). The percolation transition takes place at
p = p. = 1/N, wherep is the probability that two vertices are connected &hi the total
number of vertices in the graph. The appearance of a gianpeoant, which is also referred
to as the percolating component, results in a dramatic ahamiipe overall topological features
of the graph.

In scale-free networks, some nodes act as "highly connéxtes’ (high degree), although most
nodes are of low degree. Scale-free networks’ structuredgndmics are independent of the
system’s size N, the number of nodes the system has. Thetrdistsiguishing characteristic
is that their degree distribution follows a power-law redaship, where the coefficient may
vary approximately from 2 to 3 for most real networks. To maale-free networks, | use the
Barabasi-Albert model. The algorithm of the Barabasi-Atlmeodel is the following:

(1) Growth Starting with a small numberr{,) of nodes, at every time step, a new node is added
with m(< my) edges that link the new node todifferent nodes already present in the system.

(2) Preferential attachmentWhen choosing the nodes to which the new node connects, the
probability Il that a new node will be connected to nadkepends on the degréeof nodei is
assumed, such that .
(k) = =7 (4.1)
Zj kj

After t time steps this procedure results in a network Wth= ¢ + m, nodes anant edges.

The first step of building up the temporal graph is to build ki topological attachment. We
can control the cluster sizes by varying the linking probabp. Whenp < p., the cluster size
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decays exponentially for large s:
P,(|C] =s) ~ e s g o, (4.2)

wherea(p) — oo asp — 0 anda(p.)=0. Whenp > p,, the cluster sizé’,(|C| = s) follows

a stretch exponentiat; #®s“""* 'whered is the dimension of the lattice, but this dependence
also vanishes a$ — oo. By using these percolation thresholds, we can have a gdectnee

to control the cluster sizes of the graphs we created.

4.7.2 Community Detection Phase

The second phase is to run the community detection algorithsplit the graphs from the
previous stages into communities. | have tested the algordn 220 random graphs of 1000
vertices. The percolation threshold of a random graph oDMtices isl /1000 = 0.001. |
usell different linking probabilities, ranging froim.0004 to 0.003 so we see the change before
and after the percolation threshold, and for each linkingppbility | create 20 topologies.

| measured the number of communities:{n), maximum community size$,...), average
community size without counting the size-2 communisy,(,), and average community size
including the size-2 communitys(,;»)for each graph; Figurje 4.9]a) arjd_4.9(b) summarise all
the results.
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Figure 4.9:num(left) and s, .. (right) against?;, ..

We can see théf,,,,. increases almost linearly with the linking probabiliy,{,;). This tells us
that in order to increase the maximum community size of thmufadion, we can just increase
the linking probability. The number of communitiesym, first increases with increasing;,
until a maximum and then decreases wih,.. When P;;,,;. is very low (e.g. 0.0004), the
network created is very sparse and more nodes are not cedrteciny other nodes, and when
P, Increases, the network becomes more and more connecteg¢noel imore clusters form.
When P, increases to a certain value, more big clusters form andehiemeer communities.

The average community size increases slowly and linearty 0ro01 and increases more
rapidly after this threshold. This observation is similar both S,,.» andS,,;». And we can
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also see that,,, is quite different fromsS,,;» until P;,, = 0.002. This indicates that quite a
significant amount of communities are size-2 communitidgese graphs give us some guide-
lines on how to use the linking probability to estimate therage community size, the number
of communities and also maximum community size of the grdaphse created, and also give
us some information about the working performance of thimmmuoinity detection algorithm.
Because this is not a main focus of the dissertation, | wal/eethe community detection of
random graphs with higher linking probability and scakeefgraphs as future work. After this
phase, we can move to create the temporal attachment footteepairs.

N
o
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> ©
Average Community Size

4.7.3 Temporal Attachment Phase

As measured in [[CHE06] and [HCS 05], the inter-contact time of a node pair follows a
power-law distribution. Here | will show empirically thate power-law coefficients are quite
different for node pairs within communities and between oamities. Figurd_4.11 shows
the inter-contact time distribution extracted from a tgbinode with nodes within the same
community and also nodes in another community in@anbridgedataset. The two graphs
contain the same number of node pairs. We can see that forithmmywommunity case, the
inter-contact time betweeg00 seconds and0000 seconds can be approximated by a power-
law distribution with power-law coefficient varying betwee;,,, anda,,,,. We can also see from
the right figure that the number of contacts significantlyrdases between communities. This
results in many discrete steps. We also observed fewerilind®e between-community figure
even though they contain the same number of node pairs. §bscause some nodes have no
contacts with that node. Similar observations for withamenunity and between-community
inter-contact distributions are also found for other nodegin the same dataset and also other
datasets. This gives us hints on how to model the tempoeadtatient of the nodes.

After the above community detection phase, the random dedme graphs generated are
split into communities. Then | assign a series of inter-aohtimes for each node pair. For
a within community pair, the power-law coefficient of itsentcontact time distributiony, is
picked uniformly between a predefined upper boung and a;,,,, that isa,, < a < oy.
And for node pairs between communities and also for noded@loinging to communities,
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their power-law coefficients of inter-contact time distriion are picked uniformly between 0
and(ay, + au0p)/2. Here all the node pairs | mentioned above are all conneaddsion the
random graphs created in the topological attachment plsasthney should have at least one
contact. After this phase, the temporal graphs are readgeo u

The limitation of my model is that it is contact-based andsdoet incorporate spatial infor-
mation, so it cannot be used to test spatial-based algasitten landmark routing. But it did
incorporate the two main features of human interaction oreasin the literature, structurally
local cohesive and temporal preferential attachment, ahd&va useful step for better mobil-
ity modeling. Instead of random graphs and power-law grapiant to use real online social
network topologies at the topological attachment phas@éemear future, which may reflect
better real human community structures [MM@¥]. Although this section is not on the main
track of forwarding algorithm design, it provides early adeon modeling and generating hu-
man mobility traces, which can be used to test forwardingratlgms. Hence it is related and |
include it here for the readers’ interest.

4.8 Conclusions

The addition of even a small amount of state information, iremy experiments an affilia-
tion label used to choose nodes preferentially, is showrrit@lsignificant improvement in
forwarding performance over oblivious or naive forwardaigorithms inPSN This is the first
empirical result of evaluating groups wighpriori information. One experimental dataset may
not be able to draw us a very general conclusion, but thid ishelve with a priori labeling.
One way to further confirm this result is to evaluate it on mexperimental datasets with the
communities detected by the algorithms in Chapler 3.

Another problem with the simpleABEL is that the source needs to wait until the community
members of the destination or the destination are at onedigtgance from itself to start the
forwarding. This may be not acceptable in many situationggsit may happen that the sender
will never be in reach of a member of the community of the mgssacipient. We need to
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consider more efficient ways of moving the messages awaytiheraource so we can combine
several ways together to improve the overall performancéné next chapter, | look into these

two problems.



Chapter 5

Social Based Forwarding in Small World
DTNs

In this paper | seek to understand human social context aipteulevels of detail and use it
in the design of forwarding algorithms for Pocket SwitcheetWorks (PSNs). From human
mobility traces taken from the real world, | discover thednegeneity of human interaction,
including communities and hubs. Society naturally dividee communities, and individuals
have varying popularity. | propose a social based forwardilgorithm,BUBBLE, which is
shown empirically to improve forwarding efficiency signémly. This is a follow-up chap-
ter based on the community detection methodologies in @n&band the. ABEL strategy in
ChaptefH.

5.1 Introduction

Thefirst generation of human network models were probably the EREisyi random graphs
[BalO1]. More recently, heterogeneity has been introduiced models through the use of
power-law and small-world graphs, especially in analybth® AS-level of the Internef [CIMW05]
[CIW06]. This is thesecondgeneration of modeling. It is well known that some nodes n&y b
more highly connected to each other than to the rest of theankt The set of such nodes are
usually called clusters, communities, cohesive groupsamtutes. Many different approaches to
community detection in complex networks have been propesel ask -CLIQUE [PDEV0E],
betweenness [NGD4], modularity [New06] and more recentithods based on information
theory [RBOED] and statistical mechani€s [RBO6a]. Othethrods can be found in survey pa-
pers [NewO04b][DDDGAOB]. Community detection can help uslenrstand the local structure
in mobility traces, and therefore help us design good gjrasefor information dissemination.
It may be that communities detected from mobility data dcambnially match well to real social
communities, but still help with improved forwardir%.

1| have found out that actually they match quite well in Chafte
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The first goal of this chapter is to move to a third generatibhuman mobility models, under-
standing heterogeneity at multiple levels of detail.

Our previous work[[CHE06] (ChaptefR) established inter-contact intervals, amtact du-
rations for a wide range of typical human mobility patternsl or a variety of today’s radio
devices. Critically, it was shown that stateless forwagdichemes would not provide a bounded
expected mean delivery latency across such systems. Orthtbel@and, flooding packets has
a very high cost, not just in link-utilisation, but for othexsources such as node storage and
battery life, which are likely to be highly valued by users.

The second goal of this chapter is to devise efficient forimgralgorithms for PSNs which
take advantage of both priori and learned knowledge of the structure of human mobility, to
provide improved performance trade-of between deliveopability, latency and cost.

In this chapter, | focus on two specific aspects of societynmainity and centrality.Com-
munityis an important attribute of PSNs. Cooperation binds, bst divides human society
into communities. Human society is structured. Within a owmity, some people are more
popular, and interact with more people than others (i.eméghcentrality); we call them hubs.
Popularity ranking is one aspect of the population. As | hax®duced the correlated inter-
action in the last chapter, an organism of a given type is rkety to interact with another
organism of the same type than with a randomly chosen menflibe gopulation[[Okad5].
This correlated interaction concept also applies to hureanye can exploit this kind of com-
munity information to select forwarding paths. To date utjlo, there have been few results to
support this conjecture that | am aware of, except my verlirpieary analysis on the use of
as users’ affiliation[[HCU7]. Betweenness centrality measthe number of times a node falls
on the shortest path between two other nofies [Fre77]. Thisep is also valid in a temporal
network. In aPSN it can represent the importance of a node for relaying trédfi others in the
system. Hence, | will look at whether hierarchical searchksavith this centrality metric, and
how to acquire the metric in a practical, decentralised way.

| evaluate the impact of community and centrality on forviragdand propose a hybrid algo-
rithm, BUBBLE, that uses both. | demonstrate a significant improvementnwdrding effi-
ciency. | focus on empirical analysis; | do not consider ersing a mathematical model in this
work, but evaluate the forwarding schemes directly on thbiktyptraces.

There are five specific contributions in this chapter thagpss towards my two top-level
goals. First, | explore human heterogeneity in the datgSatstion5.R). Second, | show em-
pirically that identifying nodes according to their cetitsaor ranking can improve delivery
cost-effectiveness over a greedy forwarding approachti®gb.4). Third, | demonstrate the
limitations of theLABEL algorithm (introduced in Chaptét 4) of solely using comntyaim-
formation (Sectiofi 5]5). Fourth, | combine community andteadity together, making use of
both local and global structures. This reduces the deac#ect caused by global ranking, by
forming a hybrid forwarding strateggUBBLE, which improves over the delivery performance
of naive multiple-copy-multiple-hopMCP) flooding schemes arROPHET]LDS04], but with
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much lower cost (Sectidn3.6). Finally, | use average unmetdegree to approximate centrality,
and show that this achieves nearly the same performanceeadygranking (Sectidn3.7).

5.2 On Human Heterogeneity

The human heterogenous structures | want to explore are coityr(heterogeneity in cohe-
siveness) and hubs (heterogeneity in centrality). Cobesiss indicates the local clustering and
centrality identifies the importance of the role of a nodenm metwork.

5.2.1 Experimental Datasets

| use experimental datasets gathered by my for a period obBsyeferred to aslong Kong
CambridgE, InfocomO5Infocom06and one other dataset from the MIT Reality Mining Projedt(g],
referred to aRkeality Previously the characteristics of these datasets suctiexrscontact and

contact distribution, have been explored in several ssud@@HCT06] [HCST05] [LLST08]
and also Chaptél 2 of this thesis, to which | refer the reaatdufther background information.

5.2.2 Heterogeneity in Cohesiveness

As | studied in Chaptdil 3, the participants among all thegegments form local clusters or
community structures. This community structure is an ingrarcharacteristic to be considered
in human mobility modeling, forwarding algorithms, and kpgtions to design foPSNs In
Chaptei¥, | have done an early study on using affiliationrmfation to improve forwarding
efficiency in the conference scenario. In this chapter, 1 vétify it in different environments
and hence to draw more general conclusions.

There are two features about human communities to emphlasise One is the overlapping
characteristic and the other is the hierarchical charsti@r As | analysed the data usirfg-
CLIQUE community detection, | found out that some of the commusitieerlap each other.
One person may belong to multiple communities, and bridge olaepidemics from one com-
munity to another community. So it is important to consided &entify this kind of bridge
node in algorithms. Also when we increased the thresholdegafor the detection criteria,
we observed the shrinking in the community sizes and somedsgnunities further split into
smaller stand alone communities. This is the hierarchiatine of human communities. | will
show how | can use these two features in my forwarding desidime later sections.

2Here,Cambridge | refer toCambridge05n Sectior Z.B.
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5.2.3 Heterogeneity in Centrality

In many mobility models such as random way point, nodes anenasd, explicitly or implicitly,

to have homogeneous speed distributions, importance gnalgdy. My intuition is that the
last two assumptions, at least, are not true. People hdegatit levels of popularity: salesmen
and politicians meet customers frequently, whereas coenmaientists may only meet a few
of their colleagues once a year. Homogeneity might favoffierdint forwarding strategies for
PSNs. In contrast, | want to employ heterogeneous popylarihelp design more efficient
forwarding strategies: | prefer to choose popular hubslagseather than unpopular ones. To
date | am not aware of any empirical evidence for using hunogularity or node centrality for
information dissemination in mobile networks.

A temporal network is a kind of weighted network. The ceiilyameasure in traditional
weighted networks may not work here since the edges are wessarily concurrent (i.e. the
network is dynamic and edges are temporal-dependent). eHeacneed a different way to
calculate the centrality of each node in the system. My aggres as follows:

1. Carry out a large number of emulations of unlimited flogawnith different uniformly
distributed traffic patterns created using HeggleSimemulator.

2. Count the number of times a node acts as a relay for othersmmalall the shortest delay
deliveries. Here the shortest delay delivery refers to #seavhen the same message is
delivered to the destination through different paths, wHesnly count the delivery with
the shortest delay.

I call this number calculated above tbetweenness centraliyf this node in this temporal
graplﬁ. Of course, it can be normalised to the highest value founéreH use unlimited
flooding since it can explore the largest range of delivetgrahtives with the shortest delay.
This definition captures the spirit of Freeman centraliiielH .

Initially, I only consider the homogeneous communicatiattg@rn, in the sense that every des-
tination is equally likely, and | do not weight the traffic matby locality. | then calculate the
global centrality value for the whole homogeneous systeaiell. | will analyse the heteroge-
neous system (Secti@nb.6).

Figure[5 shows the number of times a node falling on thetebibpaths between all other
node pairs. We can simply treat this as the centrality of &nondhe system. | observed a very
wide heterogeneity in each experiment. This clearly shtwasthere is a small number of nodes
which have extremely high relaying ability , and a large nemiif nodes have moderate or low
centrality values, across all experiments. One interggtaint from the HK data is that the node

3] have calculated the weighted node centrality for each nlaalefound out that the weighted centrality is not
well correlated to the centrality on the temporal graph. éoldaving high static weighted centrality may have low
temporal centrality.
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Figure 5.1: Number of times a node as relays for others ondatasets.

showing highest delivery power in the figure is actually ateexal node. This node could be
some popular hub for the whole city, i.e.postman or a newspayan in a popular underground
station, which relayed a certain amount of cross city traffice 30th, 70th percentiles and the
means of normalised individual node centrality are showFeinle[5.1 and the distributions are
show in FigurdL12.

Experimental datasgt 30th percentilel Mean | 70th percentile
Cambridge 0.052 0.220 0.194
Reality 0.005 0.070 0.050
Infocom06 0.121 0.188 0.221
Hong Kong 0.000 0.017 0.000

Table 5.1: Statistics about normalised node centralityexgleriments

5.3 Interaction and Forwarding

In the first half of this chapter and in Chapliér 3, | have shdwnexistence of heterogeneity at
the level of individuals and groups, in all the mobility tesc This motivates us to consider a
new heterogeneous model of human interaction and mobility.
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Figure 5.2: Distribution of normalised node centrality onif datasets.

Categories of human contact patternsHuman relationships can be modeled by using corre-
lation of contact duration and number of contacts. | defiren fypes of human relation-
ship based on the correlation of contact duration and nuwi@rntacts (Section 3.3).

Cligues and Community | explored the community structures inside different soemviron-
ments, and found these community structures match quitewitdl the real underlying
social structures (Secti¢n 8.4 dndl3.5).

Popularity Ranking We shall see that popular hubs are as useful inPtBie context as they
are in the wireline Internet and in the Web.

| also provide the details of the statistics of interactiforshe experiments (see Chapér 3) so
that they can be used by other researchers in future modelingbootstrap larger experiments
of composites of these.

From Sectiol5]4 to Sectign.7, | look at how can we use thi@mnmation to make smart for-
warding decisions. The following three pre-existing scherprovide lower and upper bounds
in terms of cost and delivery success. All of these schengemafficient because they assume a
homogeneous environment. If the environment is homogesd@n every node statistically
equivalent(i.e. every node has the same likelihood of delivering thesages to the destina-
tion). As | showed in the first half of this chapter, the enmimeents and nodes are diverse,
and hence all these naive schemes are doomed to have poompente. We need to design
algorithms which make use of this rich heterogeneity.
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-WAIT Hold onto a message until the sender encounters the recgirently, which represents
the lower bound for delivery and cost.

- FLOOD Messages are flooded throughout the entire system, whiobseqts the upper bound
for delivery and cost.

- MCP Multiple-Copy-Multiple-Hop. Multiple Copies are sent gabt to a time-to-live hop
count limit on the propagation of messages. By exhaustivéaions, the 4-copy-4-hop
MCP scheme is found to be the most cost-effective scheme in tefislivery ratio and
cost for all naive schemes among all the datasets exceptidhgKongdata (see also
Sectio2.B). Hence for fair comparison, | would like to exse my algorithms against
the 4-copy-4-hopMCP scheme in most of the cases.

The Mobile network has a dual nature: it is both a physicalwwk and at the same time it
is also a social network. A node in the network is a mobile@e\vand also associated with a
mobile human.

Figure[E3B shows the design space for the forwarding alyostin this chapter. The vertical
axis represents the explicit social structure, that isttasEnodes that can specifically identified
such as affiliation, organisation or other social contextisTs the social or human dimension.
The two horizontal axes represent the network structuaaigl which can be inferred purely
from observed contact patterns. The Structure-in-CobkeGikoup axis indicates the use of
localised cohesive structure, and the Structure-in-Deegrés indicates the use of hub structure.
These are observable physical characteristics. In my ddésagnework, is not necessary that
physical dimensions are orthogonal to the social dimengiahsince they are represent two
different design parameters, | would like to separate th&me design philosophy here is to
consider both the social and physical aspects of mobility.

| introduce four forwarding algorithms in this chapter, relynLABEL, RANK, DEGREE and
BUBBLE.

LABEL Explicit labels are used to identify forwarding nodes thaloing to the same organi-
sation. Optimisations are examined by comparing label efbtential relay nodes and
the label of the destination node.This is in the human dineenslthough an analogous
version can be done by labeling:eclique community in the physical domain.

RANK This is analogous to the degree of a node in a fixed networke busiodified ranking
scheme, namely the node centrality in a temporal network. essage is forwarded to
nodes with higher centrality values than the current notls. Based on observations in
the network plane, although it also reflects the hub popylarithe human dimension.

DEGREE A heuristic based on the observed average of the degree afeaawver some longer
interval. Either the last interval window (S-Window), or @nf-term cumulative esti-
mate, (C-Window) is used to provide a fully decentralisegragimation for each node’s
centrality, and then that is used to select forwarding nodes
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Figure 5.3: Design space for forwarding algorithms.

BUBBLE The BUBBLE family of protocols combines the observed hierarchy of i@ty of
nodes with explicit labels, to decide on the best forwardindes.BUBBLE is an exam-
ple algorithm which uses information from both human aspecid also the physically
observable aspects of mobility.

BUBBLE is a combination o£ ABEL andRANK. It usesRANK to spread out the messages and
used.ABEL to identify the destination community. For this algoritHhmake two assumptions:

e Each node belongs to at least one community. Here | allowesimgde communities to
exist.

e Each node has a global ranking (i.e. global centrality) mwhole system and also a
local ranking within its community. It may belong to multgptommunities and hence
may have multiple local rankings.

In the following sections, | will show how can we make use @@ different metrics to improve
forwarding performance in a heterogeneous system and dlen they will fail.

5.4 Greedy Ranking Algorithm

The third contribution of this chapter is to modify the grgeanking search scheme over power-
law networks to apply to temporal graphs, and evaluate thdtreg algorithm.
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5.4.1 The Power of Greedy Ranking

Here | use a similar greedy strategy to the one Adaghial. introduced in[[AHLPOIL]. APSN

is not a static network like the Internet: we do not know whedonaal maximum is reached
since the next encounter is unexpected. We cannot emploisphg the same strategy as they
propose. Here | assume each node knows only its own raﬂmm the rankings of those it
encounters, but does not know the ranking of other nodesei$ dot encounter, and does not
know which node has the highest rank in the system. My styatelgich | call RANK, is very
simple: we keep pushing traffic on all paths to nodes whictetahigher ranking than the
current node, until either the destination is reached, ®@ntlessages expire.

If a system is small enough, the global ranking of each nodetsally the local ranking. If
we consider only the Systems Research group (around 40g)eaptubset of the Cambridge
Computer Laboratory (235 people), this is the ranking oheaade inside the group. If we
consider the whole Computer Laboratory, we are considexilagger system of many groups,
but they all use the same building. A homogeneous rankingsténvork. But when we
consider the whole city of Cambridge, a homogeneous rankystem would exclude many
small scale structures. In this section, | show that in netit small and homogeneous systems,
a simple greedy ranking algorithm can achieve good perfooma
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Figure 5.4: Comparison of delivery ratio (left) and cosgkit) of MCP andRANK on 4 copies
and 4 hops casdrgality).

Figure[5.4(a) shows that the simple greedy ranking perf@m®st as well asCP for deliv-
eryt Figure[5.4(b) also shows that the cost is only around 40%ofCP, which represents a
marked improvement.

Hierarchical organisation is a common feature of many cempystems. The defining feature
of a hierarchical organisation is the existence of a hiéiaat path connecting any two of its

4A node can know its own ranking from a central server or usisgributed approximations, which | will show

in Sectior &J7.
5In general, most of the deliveries experience a large lgtenthe Realitydataset (e.g. take up to one week to

deliver 50% of the created messages). The reason is thadtziset is quite sparse. Some participants may switch
off their Bluetooth radios sometimes to save power of theones.
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nodes. Trusinat al. [TMMS04] address how to detect and measure the extent ofiénarhhy
manifested in the topology of a given complex network. Thefireed the hierarchical path
based on node degrees. A path between two nodes in a netwoakasd hierarchical if it
consists of amp pathwhere one is allowed to step from nod® node; only if their degrees
k;, k; satisfyk; < k;, followed by adown pathwhere only steps to nodes of lower or equal
degree are allowed. Either the up or down path is allowed ve karo length. Because of the
good results from the greedy ranking algorithm, | analy$edaercentage of hierarchical paths
inside all the shortest paths. Tablel5.2 summarises thésesu

Experimental dataset % hierarchical paths
Cambridge 87.2 (-2.4,+4.3)
Reality 81.9 (-3.1,+3.3)
Infocom05 62.3 (-2.5,+2.5)
Infocom06 69.5 (-4.1,+2.4)
Hong Kong 33.5(-4.0,+4.0)

Table 5.2: Hierarchical paths analysis of all shortestpath

The percentage of hierarchical paths is calculated as tihmauof hierarchical paths divided
by the number of non-direct deliveries. We can see thaCmmbridgedata andReality, the
percentage of hierarchical paths is very high, so our gjyaté pushing the messages up the
ranking tree can find a lot of these paths, and the performaiitbe ranking strategy here is not
much different from that oMCP. ForInfocomO6andinfocom05 the percentage of hierarchical
paths is also high, hence the gredRIfNK strategy can as well discover many of the shortest
paths. However, for thelong Kongexperiment, the network is too sparse and a lot of shortest
paths are hidden. (This occurs because | could not know theetedetected by the external
devices, and most of the resulting paths used for deliveryaatually not the shortest) We can
see that percentage of hierarchical paths controls theeiglsuccess achieved by the greedy
RANK algorithm. | conclude from this that a high percentage ofghertest paths are actually
hierarchical paths.

5.4.2 When the Greedy Ranking Fails

RANK appears to work in small and homogeneous systems, but whdooket a more di-
versified system, for example tlidong Kongdataset, it may work differently. In thidong
Kong experiment, the 37 participants are intentionally setkgtghout any social correlation.
They live and work throughout the whole city. Relying on direontact, less than 4% of the
messages can be delivetetdnlike what | did to all the previous datasets, here all thiemal

5The confidence interval in this case is similar to Reality dataset. | show the maximum and minimum
instead to demonstrate the upper and the lower bounds fod#taset.
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Bluetooth devices detected need to be used for construtttegaths. But, because we do not
know the devices detected by all these external device$ o pmtential paths were not found.
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Figure 5.5: Comparison of delivery ratio and cosMifP and GreedyRANK on no constraints
case (HK)

Figure[®b shows the delivery ratio and delivery cost usingding, and using uncontrolled
greedy ranking (i.e. not controlled by number of hops andex)p We can see that using
flooding, we can deliver more than 40% of the total traffic asrthe whole city by using only
the 37 iMotes and the external devices detected by theseegvid¥ithout knowing the devices
detected by the external devices, that will be a huge numiiqeaitbs out of these 869 devices.
However the cost is also very high: to deliver one messageneesl to make around 180
copies. But in this case, greedy ranking can only deliver i%he messages, although the
cost is much lower as well. In terms of delivery and cost, dyenking is still more cost-
effective than flooding, but clearly the delivery succegs ra still too low. One explanation
for this low performance is that since the participants haveocial correlation, and belong to
different social communities, high global ranking of a naday not represent a good choice
of relay for some local communities. Messages keep beinggzlgp to some globally higher
ranking nodes, and getting stuck at some maxima, rathettiiegrtrickling down to some local
community. Figuré€®l6(a) shows that the maximum number péHor greedy Rank is 4 hops
and after that the messages get stuck. Fifule 5.6(b) shewartk distribution of the sources,
destinations and dead-ends of all the undelivered messadesting that message delivery has
typically failed at highly-ranked nodes. This supports nypdthesis concerning the dilemma
of the messages getting stuck at maxima.

5.5 Direct Labeling Strategy

In the LABEL strategy [[HCOI7] in Chaptdd 4, each node is assumed to haveetlzat tells
others its affiliation, just like a name badge in a conferefi¢es directLABEL strategy refers to
the exclusively using of labels to forward messages to dastins: next-hop nodes are selected



CHAPTER 5. SOCIAL BASED FORWARDING IN SMALL WORLD DTNS 108

0-5 T T T T 1

MCP +—+— Deadend
- RANK s Source
0.4 0.8 \\\ Destination —
s 03 0.6
z Ty -
i _~Mcp T \\\\ Dead-end
£ o
o 02 04
RANK ?N Y
(a L W)
0.1 0.2 < "\
& M X‘—\:\ Destination
0 =— 0 = i
01 2 3 45 6 7 8 9101112 0 0.2 04 06 0.8 1
N : Number of hops c:Normalized Centrality

Figure 5.6: The hop distribution of the delivered (left) &hd rank distribution of undelivered
(right) on HK data.

if they belong to the same group (same label) as the destmadti was demonstrated thias-
BEL significantly improves forwarding efficiency over “obliwie” forwarding usingnfocom06
dataset. This is a beginning of social based forwardirRSN but lack of mechanisms to move
messages away from the source when the destinations aed\sdai away (such aReality).
My third contribution is to demonstrate the limitationsl.BEL strategy and move to a new
forwarding algorithm using both community and centralitformation.

5.5.1 The Problem with Direct Labeling

As | mentioned before, for all the datasets we have, tmiiycomO6dataset haa priori affili-
ation labels. But fortunately, a human community also regnés one type of long term, stable
relationship. An outside observer of human society wouldknow at first to which group each
person belongs. As time goes by, we gain higher confidenagecoimg who usually socialises
with whom. In this part of the analysis, | use the communitlegected from the nine month
Realitytraces. Nine months is a long enough period for us to have ¢ogfidence to believe
that the communities extracted from the dataset truly reflee social communities existing
between the participants. | evaluate thBEL strategy on this dataset.

We can see from Figufe’$.7 theABEL only achieves around 55% of the delivery ratio of
the MCP strategy and only 45% of the flooding delivery although thsté® also much lower.

However, it is not an ideal scenario foABEL. In this environment, people do not mix as well
as in a conference. A person in one group may not meet memban®ther group so often, so
waiting until the members of the other group appear to dordresimission is not effective here.

Figure[5.B shows the correlation of th&h-hop relay nodes to the source and destination groups
for the messages on all the shortest paths, that is the pageeaf the nth-hop relay nodes that
are still in the same group as the source or already in the gamup as the destination. We can
see that more than 50% of the nodes on the first hops (from tBeo8p plot) are still in the
same group as the source group of the message and only arfuoittse first hop nodes (from
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Figure 5.7: Comparison of delivery ratio (left) and cosgfit) of MCP andLABEL on 4 copies
and 4 hops casdgality).

the D-Group plot) are in the same group as the destinatiois.eéX{plains why direct labeling is
not effective, since it is far from discovering the shorfesth. \We can also see that on going to
the 2nd hop, S-Group correlation drops to slightly less B@¥, and when going to 4th-hops,
almost all (90%) messages have escaped from this source.gfowcalculate the percentage for
each hop | divide the number of messages which belong to thapgS-Group or D-Group)
by the total number of messages destined beyond nodes aiattiaular hop, but not the total
messages created. In the 4-hop case, there are perhap00niyeksages to forward further,
and only 10 out of these 100 relay nodes belong to the souocgilhis explains whizABEL

Is not effective, since it is far from discovering the shettgath. In the next section, | will talk
about how to use centrality to improve the delivery ratih. ABEL .
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Figure 5.8: Correlation of nth-hop nodes with the sourceigrand destination grouiRéality).
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5.6 Centrality Meets Community

The fourth contribution in this chapter is to combine the iemige of both the centrality of
nodes and the community structure, to achieve further pmedoce improvements in forward-
ing. | show that this avoids the occurrence of the dead-endsustered with pure global
ranking schemes. 1 call the protocols h&@BBLE, to capture our intuition about the social
structure. Messages bubble up and down the social hierdrabgd on the observed community
structure and node centrality, together with explicit ladeta. Bubbles represent a hybrid of
social and physically observable heterogeneity of mghbaliter time and over community.

5.6.1 Two-community Case

In order to make the study more systematic, | start with the-tammunity case. | use the
Cambridgedataset for this study. By experimental design, and confirastng my community
detection algorithm, we can clearly divide tBambridgedata into two communities: the un-
dergraduate year-one and year-two group. In order to makexperiment more fair, | limit
myself to just the two 10-clique groups found with a numbkcantact threshold of 29; that is
where each node at least meet another 9 nodes frequently Sadents may skip lectures and
cause variations in the results, so this limitation makesamslysis yet more plausible.

(@) Group A (b) Group B
Figure 5.9: Node centrality in 2 groups @ambridgedata

First | look at the simplest case, for the centrality of nodethin each group. In this case,

the traffic is created only for members within the same comitypwamnd only members in the

same community are chosen as relays for messages. We cey séesafrom Figureg 5.9(a) and
that inside a community, the centrality of each naddifferent. In Group B, there are

two nodes which are very popular, and have relayed most dfaffec. All the other nodes have

low centrality value. Forwarding messages to the populdesavould make delivery more cost
effective for messages within the same community.
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Then | consider traffic which is created within each group anly destined for members in
another group. To eliminate other outside factors, | usg orémbers from these two groups
as relays. Figurg5.I0{a) shows the individual node cetytrahen traffic is created from one
group to another. Figufe 5.10[(b) shows the correlation ofeneentrality within an individual
group and inter-group centrality. We can see that pointsliee or less around the diagonal
line. This means that the inter- and intra- group centesifare quite well correlated. Active
nodes in a group are also active nodes for inter-group conuation. There are some points on
the left hand side of the graph which have low intra-groupregity but moderate inter-group
centrality. These are nodes which move across groups. Teayod important for intra-group
communication but can perform certainly well when we neethdwe traffic from one group to
another.

Centrality
Between

1
0
5 10

(a) Centrality (b) Correlation

‘LHHLM 03‘.

Nod Within

Figure 5.10: Inter-group centrality and correlation bedwentra- and inter-group centrality
(Cambridge

| can show now why homogeneous global ranking in Sediioh Be&sdot work perfectly.
Figure[EI1l shows the correlation of the local centralityGebup A and the global central-
ity of the whole population. We can see that quite a numbeiodes from Group A lie along
the diagonal line. In this case the global ranking can helpugh the traffic toward Group A.
However the problem is that some nodes which have very higitedrankings are actually not
members of Group A, for example node D. Just as in real so@epyplitician could be very
popular in the city of Cambridge, but not a member of the Caieipuaboratory, so may not
be a very good relay to deliver message to the member in thep@@mLaboratory. Now we
assume there is a message at node A to deliver to another mefmBeoup A. According to
global ranking, we would tend to push the traffic toward B, C,abd E in the graph. If we
pushed the traffic to node C, it would be fine, and to node B itldibe perfect. But if it push
the traffic to node D and E, the traffic could get stuck thererastdbe routed back to Group A.
If it reaches node B, that is the best relay for traffic withie group, but node D has a higher
global ranking than B, and would tend to forward the traffiatale D, where it would probably
get stuck again. Here | propose tBEBBLE algorithm to avoid these dead-ends.
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Algorithm 2: BUBBLE RAP
begin
foreach EncounteredN ode_i do

if (LabelOfcurrentNode) == LabelOf(destination)) then
if (LabelOf(EncounteredN ode_i) == LabelOf(destination))

and

(LocalRankOffyncountered N ode_i) > LocalRankOf¢urrent N ode)) then
| EncounteredN ode_i.addMessageToBufferfessage)

else
if (LabelOf(EncounteredN ode_i) == LabelOf(destination))

or

(GlobalRankOfffncounteredN ode_i) > GlobalRankOf¢urrent N ode)) then
| EncounteredN ode_i.addMessageToBufferfessage)

end

Forwarding is carried out as follows. If a node has a messagengd for another node, this
node would first bubble this message up the hierarchicalimgrtkee using the global ranking
until it reaches a node which has the same label (commurstif)eadestination of this message.
Then the local ranking system will be used instead of theajlcdnking and continue to bubble
up the message through the local ranking tree until the risgtin is reached or the message
expired. This method does not require every node to knoweahkimg of all other nodes in the
system, but just to be able to compare ranking with the nodetertered, and to push the mes-
sage using a greedy approach. | call this algorigluBBLE-A, since each world/community
is like a bubble. FigureE512 illustrates tB&IBBLE algorithm and Algorithnll2 summarise the
operations in a flat community (not hierarchi@alspace.

This fits our intuition in terms of real life. First you try t@fward the data via people more
popular than you around you, and then bubble it up to wellkmpopular people in the society,

"We will discuss the hierarchical structures in the condosection.
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Figure 5.12: lllustration of theUBBLE forwarding algorithm.

such as a postman. When the postman meets a member of theatdesticommunity, the
message will be passed to that community. This community Ipeemwill try to identify the
more popular members within the community and bubble thesawgs up again within the
local hierarchy until the message reach a very popular merabée destination itself, or the
message expires.

A modified version of this strategy is that whenever a messad@ivered to the community, the
original carrier can delete this message from its buffer&vent it from further dissemination.
This assumes that the community member would be able toeddlns message. | call this
protocol with deletion, strategyUBBLE-B.

We can see from Figufe 5.13(a) that b8IhBBLE-A and BUBBLE-B achieve almost the same
delivery success rate as the 4-copy-4-M§D3.H AlthoughBUBBLE-B has the message deletion
mechanism, it achieves exactly the same deliverB@BBLE-A. From Figurd 5.13(), we can
see thaBUBBLE-A only has 60% the cost afiCP andBUBBLE-B is even better, with only
45% the cost oMCP. Both have almost the same delivery succesd@B.

8Here, | use the “perfect” centrality calculated using knedge of the entire period, then use this knowledge
in forwarding decisions throughout the same entire pefioskems a little bit unfair for the evaluations, but | will
show in Sectiofi’5.712 that the centrality measured in theipasseful as a predictor for the future, hence it is a
fair way to use “perfect” centrality. | have to take this apgech because some of the datasets are really short in
experimental periods and | cannot afford using a portionddi@set to train the individual centrality.



CHAPTER 5. SOCIAL BASED FORWARDING IN SMALL WORLD DTNS 114

0.9

25

< =
MCP —+—i g 4 MCP +—+—i /i
0.8 [~"BUBBLE-A “--x--- — BUBBLEA -
BUBBLE-B :--%---: BUBBLE-B &%+
RANK :& LRAABEIE a8
0.7 |- LABEL f
20
FLOOD {

0.6 5
05 / 15 Tk

0.4 g
3 SE e
/ 10 v
0.3 & 0@

0.2 :
{ 5
gL

Ao

Total Cost

Delivery success ratio

01 A A
et R
0 Il Il 0 L L Il
2 min 10 min lhour 3h 6h lday2d 4d1w 3weeks 2 min 10 min lhour 3h 6h lday2d 4d1w 3weeks
Time TTL Time TTL
(a) Delivery (b) Cost

Figure 5.13: Comparisons of several algorithmsambridgedataset, delivery and cost.

5.6.2 Multiple-community Cases

To study the multiple-community cases, | use Realitydataset. To evaluate the forwarding
algorithm, | extract a 3-week session during term time froewhole 9-month dataset. Emu-
lations are run over this dataset with uniformly generatatffict.

There is a total of 8 groups within the whole dataset. Figufd Shows the node centrality in
4 groups, from small-size to medium-size and large-sizegraNVe can see that within each
group, almost every node has different centrality.

In order to make my study easier, | first isolate the largestgiin Figurd 514, consisting of
16 nodes. In this case, all the nodes in the system creatie fafmembers of this group. We
can see from Figurg 5.15[a) thBUBBLE-A and BUBBLE-B perform very similarly toMCP
most of the time in the single group case, and even outperfo@® when the timerTL is set
to be larger than 1 week. From Figdre 5.Ib(b), we can seeBthaBLE-A only has 70% and
BUBBLE-B only 55% of the cost oMCP. We can say that thBUBBLE algorithms are much
more cost effective thaMCP, with high delivery ratio and low delivery cost.

After the single group case, | start looking at the case ofyegeoup creating traffic for other
groups, but not for its own members. | want to find the uppet bosind for theBUBBLE
algorithm, so | do not consider local ranking; messages oanbe sent to all members in the
group. This is exactly a combination of dire ®®BEL and greedyRANK, using greedyRANK to
move the messages away from the source group. | do not imptehemechanism to remove
the original message after it has been delivered to the gnoeimber, so the cost here will
represent an upper bound for tREBBLE algorithms.

From Figurg 5.16($) and Figufe 5.18(b), we can see that aBedipoding achieves the best
performance for delivery ratio, but the cost is 2.5 timeg t#faMCP, and 5 times that odBUB-
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Figure 5.15: Comparisons of several algorithmdR@alitydataset, single group.
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BLE. BUBBLE is very close in performance tdCP in multiple groups case as well, and even
outperforms it when the tim€TL of the messages is allowed to be larger than 2 waersw
ever, the cost is only 50% that bfCP.
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Figure 5.16: Comparisons of several algorithmdR@alitydataset, all groups.

In order to further justify the significance of social basexdarding, we also compaBJBBLE
with a benchmark ‘non-oblivious’ forwarding algorithrRROPHETLDS04]. PROPHETuUses
the history of encounters and transitivity to calculate phabability that a node can deliver a
message to a particular destination. Since it has beenatedlagainst other algorithms before
and has the same contact-based natuBBBLE (i.e. do not need location information), it is
a good target to compare wWiBUBBLE.

PROPHEThas four parameters. We use the def@ROPHETparameters as recommended in
[CDS04]. However, one parameter that should be noted isithe €lapsed unit used to age
the contact probabilities. The appropriate time unit uséeérd depending on the application
and the expected delays in the network. Here, we age theatgrababilities at every new
contact. In a real application, this would be a more prattparoach since we do not want to
continuously run a thread to monitor each node entry in thietand age them separately at
different time.

Figured 5.17(@) and 5.17]b) show the comparison of the elgliatio and delivery cost of
BUBBLE andPROPHET Here, for the delivery cost, | only count the number of cepieeated
in the system for each message as | have done before for thgacison with the “oblivious”
algorithms. | do not count the control traffic created”ASOPHETfor exchanging routing table

9 Two weeks seems to be very long, but as | have mentioned héi@Realitynetwork is very sparse. | choose
it mainly because it has long experimental period and herare meliable community structures can be inferred.
The evaluations here can serve as a proof of concept of theBBHRalgorithm, although the delays are large in
this dataset.
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Figure 5.17: Comparisons 8UBBLE andPROPHEToN Realitydataset.

during each encounter, which can be huge if the system is [RROPHETuses flat addressing

for each node and its routing table contains entry for eadwkimode). We can see that most

of the time,BUBBLE achieves a similar delivery ratio #ROPHET but with only half of the

cost. Considering th&UBBLE does not need to keep and update an routing table for each node
pairs, the improvement is significant.

Similarly significant improvements by usiByBBLE are also observed in other datasets. These
demonstrate the generality of tB&BBLE algorithm, but for lucidity of the dissertation, | do
not include the results here. There are several other ‘tdimtous’ forwarding algorithms,
for example the pattern based Mobyspace Rouling [LFC06] égulyet al., the location-
based routing[[Leb05] by Lebruet al., and adaptive routing by Musolest al. [MHMO5].
Mobyspace and location-based routing both required looatlated information, buBUBBLE
only use contact-based information. They are in differgliaation categories and hence
are not comparable. Adaptive routing provides a nice fraomkvior choosing relays based
on utility calculation, but strictly speaking it is not a ¥earding algorithm. There is a social
based forwarding algorithm called SimBet routihg [DHO7dposed independently at the same
time asBUBBLE, because they happened at the same time so | also did not dortigarison.
SimBet routing uses ego-centric centrality but without camnity information to forward data.
The RANK algorithm | introduced in this thesis would provide a defweatio upper bound for
this algorithm. But overall, | evaluateBUBBLE againstwAIT, FLOOD, the optimizedVICP,
LABEL, RANK, and the benchmafRROPHET it is enough to justify the powerful performance
of BUBBLE.
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5.7 Making Centrality Practical

For practical applications, | want to look further into h@wBBLE can be implemented in a
distributed way. To achieve this, each device should be tabtletect its own community and
calculate its centrality values. In Chapkér 3 (alsd in [HY3@/]), | have proposed three algo-
rithms, namedIMPLE, K-CLIQUE andMODULARITY , for distributed community detection,
and | have proved that the detecting accuracy can be up to 8%8e eentralised<-CLIQUE
algorithm. The next step is to ask how can each node know itscantrality in a decentralised
way, and how well past centrality can predict the future.

The final contribution of this chapter is to provide early\aass to these two questions.

5.7.1 Approximating Centrality

| found that the total degree (unique nodes) seen by a nodaghout the experiment period
is not a good approximation for node centrality. Insteaddégree per unit time (for example
the number of unique nodes seen per 6 hours) and the nodaligritave a high correlation
value. We can see from Figure 518 that some nodes with a vgmtdital degree are still not
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Figure 5.18: Correlation of rank with total degree and raitkwnit time degreeReality).

good carriers. It also shows that the per 6 hour degree is gutl correlated to the centrality
value, with correlation coefficient as high as 0.9511. Thaans how many people you know
does not matter too much, but how frequently you interadt Wiese people does matter.

In order to verify that the average unit-time degree is agigmoor close tRANK, | run another
sets of emulations using greedy average unit-time degrésifply call it DEGREE) instead of
the pre-calculated centrality. Figdre 5.19(a) 4nd 5.18¢mpare the delivery ratio and delivery
cost of using greedRANK and greedyDEGREE We can see th&®ANK andDEGREEperform
almost the same with the delivery and cost lines overlappaxch other. They not only have
similar delivery but also similar cost.
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Figure 5.19: Comparisons of delivery ratio and cosRaNK andDEGREEonN Realitydataset.

However, the average unit-time degree calculated throuigthe whole experimental period is
still difficult for each node to calculate individually. 1¢h consider the degree for the previous
unit-time slot (I call this the slot window) such that whenotwodes meet each other, they
compare how many uniqgue nodes they have met in the previatime slot (e.g. 6 hours).

| call this approach single window (S-Window). Another aggch is to calculate the average
value on all previous windows, such as from yesterday to tiwew calculate the average degree
for every 6 hours. | call this approach cumulative windowW@dow). This technique is
similar to a statistics technique called exponential siiogt [Win60] and | would like to do
further theoretical investigation.

We can see from Figufe 5.20(a) gnd 5.2D(b) that the S-Winggwoach reflects more recent
context and achieves a maximum of 4% improvement in delivatip overDEGREE but at
double the cost. The C-Window approach measures more ofutinellative effect, and gives
more stable statistics about the average activeness ofea Rimdvever, its cumulative measure-
ment is not as good an estimateCd8GREE which averages throughout the whole experimental
period. It does not achieve as good deliveryD&GREE (not more than 10% less in term of
delivery), but it also has lower cost.

5.7.2 Human Predictability

The second question above can be generalised to: how mutiunzam interaction be predicted
from past contact history? In this section, | use vertex lsinty, which has been well studied
in citation networks, to study the predictability of humameraction from the contact graph.
Additionally, | run emulations on traces to see how much pasittrality can predict future
centrality.
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Figure 5.20: Comparisons of delivery ratio and cosD&GREE S-Windowand C-Window on
Realitydataset

Vertex Similarity

There are several ways to compare structural vertex siityilarprevious work. Two vertices
are consideredtructurally equivalentf they share many of the same network neighbors,

IFIAIY
0 Jaccard=— :Fi‘ BF]} (5.1)
¢ J

I¥IREY1
O eosing = ————=— 5.2
cosine |FZ| |Pj| ( )
I¥IRY1
o B Bl B 5.3
7min = nin (ITIT,) 5-3)

wherel’; is the neighborhood of vertaxn a network, which is the set of vertices connected to
vertexi via an edge|l’;| is the cardinality of the sdt;, that is equal to the degree of the vertex
i. The Jaccard indeX[Jad01] above is the same one introdacgdatio 36, and the cosine
similarity has a long history of study on citation networE&Il89]. Here | use vertex similarity
to measure the predictability of human interaction: we camgare the vertex similarity of
the contact graphs over two days and tell how similar humgeraetion is on these two days.
Averaging over all the vertices, we get an estimate for thelespopulation. | call this simply
graph similarity. | have studied all three metrics, but the trends are sipalad so | just present
the results of the classic Jaccard measurement here.

I look at the dataset of tHeealityexperiment from 1st February to 30th April 2005. The reason
for choosing this period is that it is far from the new acadeysar so the human relationships
are already relatively stable and also it is term time so #ré@pants will be more active in the
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campus. | study the vertex similarity and the simple grapflarity for every two consecutive

days and also for every pair of days against the date of theflisebruary for these three
months. | consider it as a binary graph; | do not consider tb@t for the edges, but just
consider the existence of an edge. The three metrics prd@isee do not apply to a weighted
graph.
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Figure 5.21: Vertex similarity of every consecutive dayrpaif a single node

FigurdB5.Zll shows the Jaccard vertex similarity of an actode, i.e. a node with high centrality
value, for the 88 consecutive day pairs. The horizontal éihéhe middle shows the average
value. In the calculation, when two comparing vertices hawth cardinalities equal to O, |
count their similarity to be 1, the maximum Jaccard simiyariWe can see that the trough
(minimum) points are corresponding to a change from weekoayeekend and also weekend
to weekday; and the peak (maximum) points are corresportdimagtransition from Saturday
to Sunday, so there is always a peak surrounded by two trodgasee that the nodes met by
this node during the week-days are very different from tles¢énodes met during the weekend.
For the weekend, the nodes met have a very high probabilityetet again the second weekend
day. But even during week-day, there are around 50% of theshatkt one day that will be
met again the second day. This is the case for the active nodefr the less active nodes, i.e.
the nodes with a low centrality value, they have the highestex similarity value: 1 almost
everyday. These nodes usually see exactly the same nodgdayeT his also explain why they
have low centrality values.

Figure[5. 2P shows the simple graph similarity for the congsaphs of every consecutive day.
We can see that the average value is as high as 0.7, for the wbpulation studied the human
interaction pattern is quite predictable for every two @msive days. The peaks here are also
corresponding to the transition from a Saturday to a Sunday.

In order to see more clearly the phase transition from wegkalawveekend, and also to look at
whether there is any long-term attenuation for the humaeraation in this system, | compare
every day with the first day of the period | studied, which is Bsbruary and is a weekday.
Figure[5.2ZB shows the vertex similarity of every day pair. &la see that the vertex similarity
drops to zero from a weekday to a weekend transition and gtgsfor the whole weekend.
And we did not observe the long term attenuation effect fram graphs produced. Similar
trends of changes are also observed in the graph similaaphg
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Figure 5.23: Vertex similarity of every day pairs with a rantdy chosen weekday of a single
node

But if we want to further look at whether the same node paiy sianilar amount of time

together for a day pair and also whether they meet for similsmber of times everyday, we
need to consider a weighted version of measurement for hdsd€ similarity. Since | cannot
find useful metrics from the literature, | need to devise myiow

> o min(w;)

(5.4)

wheren = |T';|JT';|, min(w;) is the minimum andnax(w;) of the weight for an edge con-
necting node and one of its neighbours, notlein the two graphs. If there is no edge in the
graph, | count its weight to be 0. Here | count the number otacts as the weight and then
calculate the vertex similarity for all nodes, as well asghaph similarity. Figur€5.24 shows
the weighted vertex similarity for every consecutive day fma the same node as shown before.
We still observe the transition from weekday to weekend dod-versa. The horizontal lines
in the middle show the average. It is around 0.3. That is not kiggh because of the transition
from weekday to weekend and weekend to weekday would prosa® values. However, if
we look at the whole population in Figure 5125, we can seedbean the contact frequencies of
two consecutive days are quite predictable, with an averég®se to 0.7.

I will look at the similarity of different time durations, ¢nmpact of different periods of the day
(i.e. the nodes seen during the day time should be different the nodes during night time),
and different data analysis techniques such as correlatidnmatrix analysis will be used. The
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Figure 5.24: Weighted vertex similarity for every cons@aitlay pair of a single node

current result is limited to an academic campus but | wilkk@d more complex environments
in the future. An early conclusion | can make here is thatydauiman interaction is quite
predictable. Nodes that met on one day have a high probatalineet again on the next day.
This provides an indirect answer to the predictability aftcality as well.
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Figure 5.25: Vertex similarity of every day pairs with a rantdy chosen weekday of a single
node

Predictability of Centrality

In order to further verify whether the centrality measunethie past is useful as a predictor for
the future, | extracted three temporally consecutive 3kgassions from thRealitydataset and

then run a set of greedyANK emulations on the last two data sessions, but using theatiéntr
values from first session.

Figure[5.26(d) and 5.26(b) show the delivery ratio and cO&ANK on the 2nd data session
using the centrality values from the 1st data session. thsebat the performance &ANK is
not far fromMCP but with much lower cost, i.e. it is as good as running the atnh on the
original dataset which the centrality values derived fr@milar performance is also observed
in the 3rd data session. These results imply some level digiebility of human mobility, and
show empirically that past contact information can be usdtieé future.

All these approachesPEGREE S-Window, C-Window and predictability of human mobil-
ity) provide us with a decentralised way to approximate theti@lity of nodes in the system,
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Figure 5.26: Delivery ratio (left) and cost (right) BIANK algorithm on 2nd data session, all
groups Reality)

and hence help us to design appropriate forwarding algostiCombining these approximate
methods and the distributed community detection, we caBPBBLE into reality. | will briefly
discuss how distributeBUBBLE works for a city wide environment, but leave the evaluation
details as future work when | can get a larger scale of dataset

Suppose there is a network of mobile users, perhaps spaaniegtire city, each device can
detect its own local community using one of the three digtgld detection algorithms (e.¢ -
CLIQUE) from ChaptefI3. At the same time, it also counts its own 6rameraged degree (i.e.
C-Window). Its global ranking can be approximated as ito6rkaveraged degree for all nodes
and its local ranking can be approximated as its 6-houra@ezt degree only for nodes inside
its community. With all these metrics, each node can forwaedsages usirglUBBLE.

5.8 Related Work

For distributed search for nodes and content in power-latwarks, Sarshaet al. [SOR04]
proposed using a probabilistic broadcast approach: sgdita query message to an edge with
probability just above the bo@ipercolation threshold of the network. They show that if each
node caches its directory via a short random walk, then tfa¢ hamber of accessible contents
exhibits a first-order phase transition, ensuring very Higlhrates just above the percolation
threshold.

For routing and forwarding idTNs and mobile ad hoc networks, there is much existing lit-
erature. Vahdaget al. proposed epidemic routing, which is similar to the “oblw#j flood-

10A percolation which considers the lattice edges as the aalsantities.
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ing scheme | evaluated in this chapter [VB00]. Spray and Wainhother “oblivious” flooding
scheme but with a self-limited number of copies [SPR05].sSgtauseet al. proposed the two-
hop relay schemes to improve the capacity of dense ad hooret({(sT02]. Many approaches
calculate the probability of delivery to the destinatiomlapwhere the metrics are derived from
the history of node contacts, spatial information and sthfoifhe pattern-based Mobyspace
Routing by Leguayet al. [LECOE€], location-based routing by Lebrut al. [Leb05], context-
based forwarding by Musolest al. [MHMO5] and PROPHETRouting [LDS04] fall into this
category.PROPHETuses past encounters to predict the probability of futusmenters. The
transitive nature of encounters is exploited, where iradiyeencountering the destination node
is evaluated. Message Ferry by Zhetcal. [ZAZ04] takes a different approach by controlling
the movement of each node.

Recent attempts to uncover a hidden stable network steigtUdTNs such as social networks
have been emerged. For example, SimBet Roufing [DHO7] upesentric centrality and its
social similarity. Messages are forwarded towards the mottehigher centrality to increase the
possibility of finding the potential carrier to the final dastion. In Chapterl4 (also i [HCD7]),

| use small labels to help forwarding in PSNs based on thelsimpuition that people belong-
ing to the same community are likely to meet frequently, dntact as suitable forwarders for
messages destined for members of the same community. Tlhragwa demonstrates that even
such a basic approach results in a significant reductionuting overheadsRANK algorithm
introduced in this chapter uses betweenness centralitysimaar manner to SimBet routing.
On the other handBUBBLE exploits further community structures and combines it VRENK
for further improvement of forwarding algorithms. The mldgtassisted Island Hopping for-
warding [NSDGOB] uses network partitions that arise dudéodistribution of nodes in space.
Their clustering approach is based on the significant lonatfor the nodes and not for cluster-
ing nodes themselves. Clustering nodes is a complex taskderstand the network structure
for aid of forwarding.

Finally, | emphasise that | take an experimental rather thaoretical approach, which makes
a further difference from the other work described above.

5.9 Conclusion and Future Work

Based on a diverse set of real world traces, | have detecta@aieristic properties of social
grouping, and also showed how such characteristics canféetieély used in designing for-
warding algorithms. | proposed the noBIBBLE algorithm which is based on a delay-tolerant
network environment, and built out of human-carried devidehas similar delivery ratio to, but
much lower resource utilisation than flooding, controllesbéling (e.g.MCP), andPROPHET
and hence is a powerful forwarding strategy R@Ns

In Sectiof5.711 | chose a window size of 6 hours from the timithat daily life is divided into
4 main periods, morning, afternoon, evening and night, ediost 6 hours. This appears to
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work, however, future work will look at how sensitive the 8s is to the choice of this period.

For betweeness centrality, | will look at the egocentrictcaity which is a localised centrality
measurement used in social network analysis and found tmtvelated to the global social
centrality [Mar02]. Using this egocentric centrality mess we may not need concerning the
global centrality measurement and we can make the problera distributed.

On the forwarding aspect, | want to look at the use of realldvgpeographic landmarks as a part
of the landscape within which forwarding algorithms canrape and be optimised further. In
principle, BUBBLE is supposed to work with a hierarchical community structbre because
of the limited size of data (each experiment is not large ghdor me to extract hierarchical
structure), the current algorithm and evaluation focus dlatacommunity structure. This can
later be extended to a hierarchical structure. | will furtherify my results when more mobility
traces are available.

Further experimental work involving large-scale expenisés required to confirm my results
with more confidence in a wider variety of settings. Furthem | believe that it should be
possible to abstract mathematical models of mobility thatam my empirical results. We can
use these models to generate further datasets with whickatoage my and other forwarding
systems.

| believe that this chapter represents a first step in comginch multi-level information about

social structures and interactions to drive novel and gffeecneans for disseminating data in
DTNs. A great deal of future research can follow. Based orktimvledge gained from this

chapter and previous chapters, | will look at many-to-mamyunication as ongoing work in

the next chapter.



Chapter 6
Conclusion

In this dissertation | have studied human mobility and iat&on patterns by deploying ex-
periments, inferred human communities from the traces,iaindduced several social-aware
forwarding algorithms foPSNs Considering real deployment, several distributed comtyiun
detection algorithms have also been suggested for mobiieae In this chapter | summarise
my contributions and describe some ongoing work and patesatenues for future research.

6.1 Ongoing Work

In the last chapter | introduced tB&BBLE algorithm which uses both community and central-
ity information to disseminate messages to some knownragggins. This is a useful unicasting
protocol for other communication paradigms to make use aflikg a traditional IP network,
one-to-one is not necessarily the most popular communitatiode forPSNs instead multi-
point communication such as data sharing and emergencyuaoement are more likely to
be the killer applicationsﬂ because of the broadcast nature of the wireless channellsmd a
given the intermittent connectivity of the network. | amenxtling this thesis work by looking
at designing a social-aware overlay for publish/subsadremunication, which makes use of
the social knowledge (community and centrality) | discdssethis thesis. Overlay nodes are
the high centrality nodes in communities, for exampldaseness centralityode has the best
visibility to the other nodes in the community. Distributemmmunity detection operates when
nodes (i.e. devices) are in contact and subscription pedaygis performed along with this
operation. | validate my message forwarding algorithmgptdslish/subscribe with the mobility
traces that | presented in Chagdier 2.

Figurd®.1 depicts a publish/subscribe broker overlayctvis dynamically constructed through

IAlthough the expected delay for unicast messages is 1 daynéaian delay can be much smaller as we have
observed in thénfocomO&dataset. For multi-point communication, the delay can lemewore optimistic because
of multiple sources.
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the gossipping stage for community detection. Constraatiothe broker overlay is indepen-
dent from the underlying unicast routing algorithms.

Multiple centrality nodes can be used as a group of brokeig.[E2 depicts the community
structure and closeness centralities detected in MIT Belsllining trace. 8 communities are
detected and the large€ommunity 1contains 21 membersCommunities 4-&ontain 3-4
members. There are 24 devices that do not belong to any comes,inamed.oners Multiple
centrality nodes are selected, which are in the inner cirdtleCommunity 1 13 nodes are
closeness centrality nodes, thus, these nodes form a bgo&ep. Alternatively one of the
centrality nodes is named a single broker, which is markédeatentre of the circle in Fig.8.2.
All the detected centrality nodes have a single hop counit tbemembers of the community,
and an average 93% of nodes in the community can take thefreleent broker. Note that 24
nodes (25% of community members) do not belong to any comtiesrar do not get a chance
to be detected.
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| have some early evaluation results of the overlay on thktyeaining dataset (details can
refer to our papel [YHCCO07]), and | am now evaluating it on ditteer datasets and compare it
with random gossiping. | am also looking at some potentigkiPSNapplications (i.e. hazard
alert, data sharing, environment monitoring), which cakenase of my overlay structure.

6.2 Future Research

Future research could include looking into more genericroomty detection algorithms, better
modeling of temporal graphs, studying betweenness cégtoal temporal graphs with differ-

ent topologies, and large-scale mobility experiments.hinforwarding aspect, | also want to
study multi-point communication, the impact of altruismforwarding, the study of the impact
of infrastructure at the city hot spots, strategies for dgplent of infrastructure to improve
communication, and comparing with other proposed forwayailgorithms.

As | mentioned in the above Ongoing work section, multi-pemmmunication is an important
research topic and | am looking into it, especially the issoleusing community members to
cache data in order to enable an ad Gmogleservice.

The current distributed community detection algorithmsenaome inherent issues, such as
reliance on choosing the appropriate threshold valuesaslgorithms’ parameters, and the
time-varying nature of some communities, which is a probénthe algorithms use accumu-
lated information from the contact history, so obsolete samity memberships would always
persist. At present each device stores all its contactowittieleting. But in reality we need to
consideragingfor the contacts, since some previous contacts may becoeteviant after some
time, but this takes up storage and may cause false-pasititbe detection, especially for big
networks.

For human communities we can further classify them into t@m@pcommunities and non-
temporal communities, with temporal communities only ddbr a particular time such as
during a conference. According to the current distribut@ehiunity detection algorithms, the
temporal community will be outweighed by non-temporal eatd and will never be detected,
but they can also be useful during that time period and we wakhow about them. So it
seems that in some situations it is desirable for a selfagusg distributed community detection
algorithm to have the ability to “forget” a dormant commumnin other situations, it is desirable
for the algorithm to be able to “remember” communities thatraot currently active. The ideal
solution is for each device to keep the records of the timedamdtion, for each encounter, so
that it would be possible to compute on demand the local conitires information within any
given period. However, such computation would also reghiechistories of all its neighboring
vertices (it is not enough to just know one’s familiar set itsfamiliar set’s familiar set as well).
Given the likely applications of distributed community eeion algorithms are in environments
with limited resources and bandwidth, it is not likely thhetrequirements of keeping copies
of complete histories and the need to constantly exchandeupdate neighboring devices’
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histories can be satisfied. Therefore, a possible soluitimel use of timestamping on the most
recent encounters as a resource/accuracy compromise.t kavaddress these weaknesses in
the future and also look at the issues about the temporal conties.

| have briefly introduced a simple method to model human awtison as a temporal graph with
a random topology but a higher power-law coefficient for imtemmunity edges and lower
power-law coefficient for intra-community edges (see Cédg). | want to improve the model
by considering also the contact time distribution and grajth different topologies such as
scale-free (with cut-off), small world, and real world salanetworks (e.g. OrkHt YouTubE,

and FlickH) [MMG¥07].

| intend to correlate a node’s centrality value to its degreeonnectivity. This is probably
true for a static graph but not necessarily for a temporgblgraAs | found when studying the
node betweeness centrality on the traces in Chépter 5, theenof people you know does not
matter but how often you interact with them matters. | wantidoa complete study on node
centrality on temporal graphs with different topologiesalso want to look at the centrality
from the social aspect, such as how the socio-centric daptiraa social network correlates to
the temporal graph centrality, and also how the local meaggocentric centrality, can be used
for decentralised centrality approximation (definitiofisacio-centric and egocentric centrality
can be found in[[MarQ2]).

Altruism refers to behavior which is costly to the organisenfprming the behavior but which
benefits other organisms. In a Pocket Switched NetwB8d\|, helping others to carry and
forward data is an altruistic behavior. Correlated inteogicrefers to the idea that an organism
of a given type might be more likely to interact with anothegamism of a same type than
with a randomly chosen member of the population. | assunme tlkemore altruistic behavior
within communites/groups and less altruistic behavioweeih communities/groups, and | want
to study how this heterogenous altruistic behavior affedisrmation dissemination for both
single source to single destination, and single source taptaudestinations.

Looking at the city structure in order to decide where to petllaggle access points to improve
communication can be an interesting topic as well. The idéa map the city (i.e. Cambridge,
Hong Kong) into a complex network with junctions as nodes #reroads connecting two
junctions as edges (in this case, | count the actual widthefaad to be the weight of the edge
and length of the road as the distance, not the topologigaldmgth) [CLPOB]. | would then
run my WNA implementation (community detection, edge betweenneas$ nentrality) on it
and use this to decide where to put the access points (i.eitireut between two community
structures). We can even do an iMote experiment in the ciavhbridge to verify whether the
number of Bluetooth devices detected matches the cegtadlihe streets.

On the forwarding aspect, | want to look at the use of realldvgpeographic landmarks as a part

2ywww.orkut.com
Swww.youtube.com
“www.flickr.com
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of the landscape within which forwarding algorithms canrape and be optimised further. In
principle, BUBBLE is supposed to work with a hierarchical community structbre because
of the limited size of data (each experiment is not large ghdor me to extract hierarchical
structure), the current algorithm and evaluation focus dlatacommunity structure. This can
later be extended to a hierarchical structure. | will furtherify my results when more mobility
traces are available.

I am planning to do a larger scale mobility experiment with ttumber of participants ranging
from five hundred to one thousand using mobile phones andedlof large experiment is
necessary to verify my observations and results to eliraitieg biases from limited sampling.

6.3 Summary

In ChaptefdL | began by introducing some background infoionaabout Delay Tolerant Net-
works OTNs), Pocket Switched Network®§EN9g, forwarding inPSNs and social network anal-
ysis. | then presented my thesis, that adding social knaydezhn improve the forwarding
efficiency inPSNs | stated the four main contributions for this thesis inahgdiMote experi-
ments, inferring communities from the data, distributechomunity detection, and social aware
forwarding algorithms. After that | gave a road map of thestbe

In Chaptei 2 | reported the iMote experiments | have condlated also analysed the inter-
contact time distribution of each node pair for all datasetsch was found to follow a heavy-

tailed distribution with a power-law coefficient smallelathl in the range of 10 minutes to
1 day. | also presented analytical results about the impfatteopower-law coefficient on

forwarding and the empirical results of “oblivious” forvekng.

In Chapte B | showed how to apply weighted network analygisi4) and the K-CLIQUE
community detection algorithms to infer community struetifrom the traces, which was then
used for the community based forwarding study in Chapterafisd presented three distributed
community detection algorithms with different computaabcomplexity and accuracy. These
algorithms achieve quite high accuracy when compared vg¢hcentralised detection algo-
rithms.

In Chaptet | presented a simple social-aware forwardiggriaghm called_.ABEL which makes
use ofa priori group information. | evaluated it on tiefocomO6dataset, which haa priori
affiliation information from the design of the experimentound out thaL ABEL can improve
the forwarding efficiency in terms of delivery ratio and costmpared to the “oblivious” con-
trolled flooding schemes. | also presented some early ssitthe modeling of temporal graphs
using community structure and power-law distribution fater-contact time.

In Chaptefb | presented tiBJIBBLE algorithm, which makes use of both community and cen-
trality information. | extracted human heterogeneity mfi@tion from the traces and proposed
this algorithm based on the observations. Most of the cupeposed forwarding algorithms
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are not based on real human mobility analysis and are useediijpated on simple mobility
models. BUBBLE is a practical forwarding algorithm that is completely ged from human
mobility measurements. | evaluated this algorithm by ragremulations on the traces and
found the forwarding efficiency to be significantly improved



Appendix A

Haggle: A Clean-slate Architecture for
PSN

In this chapter, | concentrate on describing a clean-slatatacture for mobile devices. Current
mobile computing applications are infrastructure-centdue to the IP-based API that these
applications are written around. This causes many frustratfor end users, whose needs
might be easily met with local connectivity resources bubwsé applications do not support
this (e.g. emailing someone sitting next to you when thersoisvireless access point). |
identify the general scenario faced by the users of PocketicBad Networking PSN), and
discuss why the IP-based status quo does not cope well iriiisonment. | present a set of
architectural principles fd?SN and the high-level design of Haggle. Haggle is an asyna@usn
data-centric network architecture which addresses thelitygiroblem by raising the API so
that applications can provide the network with applicaterel Data Objects¥O) with high-
level metadata concernimgp identification, security and delivery to user-named en{soi

This chapter is joint work with Jing Su, Dr. James Scott, mgesuisor Prof. Jon Crowcroft,
Dr. Christophe Diot, Dr. Eben Upton, Dr. Meng How Lim, Dr. Ash Goel, and Dr. Eyal
de Lara. The texts and figures of this chapter are mainly ebettlaand summarised from a
paper [SHCDOB] presented in the IFIP WONS2006 conferentle Bi. James Scott as the
first author and me as a second author and also from another papbicomp 2007 with Jing
Su as the first author and me as the third author. My main daion is in the architecture
design at the WONS paper stage and Jing Su’s main contribigian the prototyping and
refining of the architecture at the Ubicomp paper stage. &mek Scott is the the manager for
the architecture design and prototyping. The other cotlaioos also have strong input in both
software engineering and technical opinions.
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A.1 Introduction

Miniaturisation, Moore’s Law and convergence have had éopirad impact on portable devices,
such as smart phones, notebooks, and PDAs. The result ip@bpte are able to carry their
previously desktop-based computing environments witmthagith the aim of having ubiqui-
tous access to applications such as email and web browseng atways-on, always-available
fashion. However, the low speed (e @PR9 , high price (e.g.GPR9 and constrained avail-
ability (e.g. 802.11) of wireless Internet access meansttiese devices are often discon-
nected from the Internet, or have only a slow or expensiveection. These devices use the
same, OSl-layered, IP based networking approach as deBkitspwhich assume a fixed net-
work. This fixed network design sometimes performs badlyairat all in the environment
that mobile devices find themselves in, which can bear maemélance to Pocket Switched
Networks [HCG 05] or Delay Tolerant Network§ [FalD3].

The Underlying Problem

In SectionLLB, | listed two motivating examples f88Ns The root cause of the deficiencies
highlighted in the stories lies in the current network at@tture for mobile devices (the IP suite
of protocols and the Berkeley sockets API), which presepmieations with a synchronous,

end-to-end connectivity model using numeric addressesrfdpoints. In order to satisfy user-
level tasks such as messaging and web-browsing, apphsatice effectively forced by this

model to act in ways that include inherent reliance on ndtimgrinfrastructure, i.e. Internet

connectivity.

Due to the use of a synchronous model, applications areddaéecome aware of the con-
nectivity state of the node and to handle changes in thig,stat(typically) simply assume
always-on connectivity and avoid solving the problem. Byp@ying end-to-end connections,
applications are prevented from making use (without exterend explicit support) of network
routes that may involve non-contemporaneous connectityrequiring numeric addresses,
user-memorable endpoint identifiers suchuaer@domain.orgind www.server.conmust be
translated before the interface can be used, forcing ancgian the presence DNS.

In reality, while our devices may often have cheap, fastrirgeconnectivity for some periods
(e.g. when we are at home or work), at other times they ar@dmsrcted from the Internet, or
only connected through an expensive and/or slow netwogk GPRS pay-to-use 802.11 APS).

However, while they are disconnected, devices may ofterobeexted to other devices in the
neighborhood, and, as described in the motivating exangilese, this limited connectivity

may often be enough to provide significant value to userscihuld be put to work.
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Chapter Contributions and Structure

In the rest of this chapter, | present the Haggle architecauground-up redesign of networking
for mobile devices, to support the mobile user scenario.

The contributions of this chapter are as follows. First,Jyegan overview abouPSN (Sec-
tion[Ad). Then | present the problem with the status quo tiSefA.3). After an overview of
the core concepts behind Haggle, (Secliod A.4), | preseetaildd description of the Haggle
architecture (SectidnAl.5). While many of the ideas thatistegrated into Haggle are built on
existing researé]n a key contribution of this chapter is their organisatioiia coherent archi-
tecture. Other contributions include the comparison ofdfiagrchitecture and the curredtN
architecture (Sectidn A.6), and the description of theqixgte and applications (SectibnA.7).
Finally | conclude this Chapter in Sectibn'A.8.

A.2 Pocket Switched Networking

In designing a new network architecture, it is first impottadefine the scenario in which that
architecture will be used. IP, for example, was designedhaga backdrop of a multitude of
existing networks, and with the primary needs being resilad-to-end communications in the
presence of node failures, as befits its originator, the UgabBiment of Defensé [ClaB8].

PSNis the term we use to describe the situation faced by todapkils information user.
Such users have one or more devices, some/all of which mayithetvem at any time, and
they move between locations as part of a normal scheduleo Inaving, the users can spend
some (or much) of their time in islands of connectivity, i.places where they have access
to infrastructure such as 802.11 access points (APs) whigjh¢an use to communicate with
other nodes via the Internet. They also occasionally mott@mwvireless range of other devices
(either stationary or carried by other users) and are abéxtbange data directly with those
devices.

Thus, inPSN there are three methods by which data can be transferrewlpaneighborhood

connectivity with local devices, infrastructure conneyi to the global Internet, and user mo-
bility, which can physically carry data from place to pladeor the former two methods, the
connectivity is subject to a number of characteristics|uding those of bandwidth, latency,
congestion, synchronicity (e.g. email or SMS are asynauenwhile ad-hoc 802.11 is syn-
chronous), the duration of the transfer opportunity (ilee time till the device moves out of

range), and also monetary cost (usually only for infrastme). For the latter method of user
mobility, users acting as data mules can transfer signifiaamounts of data, and while users
movements cannot in general be controlled, they can be mexhsand patterns in those move-
ments can be exploited. | will go into the details of mobihltyasurement in the next chapter.

1| provide references in the main body of the text rather tinesseparate section.
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In addition to the issue of network connectivity, we musbatensider the usage model for
PSN While different applications have different network demds, we can distinguish partic-
ular broad classes which are known to be useful:ofg-to-manywhere one node needs to
transfer data to a user-defined destination. The destmatay be another user (who may own
many nodes), all users in a certain place, users with a nentée (e.g. police), etc. The key
point is that, often, the destination is not a single nodediristead a set of nodes with some
relationship, e.g. the set of nodes belonging to a messageaet. (b)flooded queryn which

a device requires data of some sort, e.g. the current newssdirce for this data can be any
node which is reachable using any of the three connectiyfigg, including via infrastructure
(e.g. a news webpage), neighbors (e.g. a recent cache ofsawedwpage) or mobility (e.g. the
arrival of a mobile node carrying suitable data). In botlssks described above, the endpoints
of a network operation are no longer described by netwoykfladdresses, but are instead a set
of desirable properties. As a result, general network djgera no longer have single source
and destination nodes.

Finally, in PSN situations, resource management is a key issue. MobileegVviave limited
resources in terms of storage, network bandwidth, proeggswer, memory, and battery. The
latter is perhaps the most important, since the others ctenpally be reclaimed without the
users assistance, while charging the battery requiresstitad@ perform the physical act of plug-
ging it in, and restricts the devices’ mobility while chargi Other resources are also precious,
particularly in the face of demands imposed by the usageasicasnabove, where devices may
need to use storage and network bandwidth to help forwardages for other devices. How-
ever, there is also much cause for optimism: storage cagmeite increasing exponentially,
wireless networking has the useful property of spatialegasd processing power on mobile
devices is growing with Moores Law. For power, many deviagespgugged in more often than
not, e.g. notebook computers, and low-power electronicsvaturrent mobile phones to last
for many days on a single charge.

From the discussion above, | extract three motivations feetavorking architecture in thieSN
environment, in order of importance:

¢ Allow applications to take advantage of all types of datagfar (neighborhood, infras-
tructure, mobility) without having to specifically code feach circumstance

¢ Allowing networking endpoints to be specified by userlevaining schemes rather than
node-specific network addresses, thus each network operedsin potentially involve
many endpoints.

¢ Allowing limited resources to be used efficiently by mobikvites, taking into account
user-level priorities for tasks.
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A.3 Problem with the Status Quo

Current applications perform badly in tiRSNenvironment, since they are typically designed
around some form of infrastructure which is not always adé. While some applications can
cope with infrastructure blackout, e.g. with a disconnécteoffline mode, most do not. Direct,
neighborhood connectivity is used by very few widely usepliptions, and human mobility is
deliberately used by almost none. Thus, when infrastreaginot present, users are presented
with huge inconveniences since the applications which amreliar to them stop working, and
are forced to take on the task of understanding these sihsasio that they can be productive
despite this application failure. For instance, users reguire many alternative applications in
order to do a single task depending on the situation, e.ge &dih be exchanged by email, by
putting it on a website for download, by using an instant ragsxj client, by direct Bluetooth
or infrared transfer. More likely, the user will simply irstan auSB key and manually bypass
the huge inconvenience of the status quo.

The root cause of this is the fact that applications are plexviwith a networking interface that
only understands streams of data directed at anonymousrituemelpoints (namely TCP/IP).
This forces developers to implement protocols for naminiglressing and data formatting in-
ternally in the applications themselves, eSMTP, IMAP andHTTP. While at the GUI level,
applications have general user-level tasks such as “sesdilehto James”, once a particular
network protocol such aSMTPis imposed on that task, it becomes a more specific task, e.g.
“send this file to the server pointed at by the MX record inDNS record of the domain name
part ofjames.w.scott@intel.cdmThe latter task is specific to a particular kind of conneityi
scenario, in this case infrastructure-based. It is theegfopossible to execute even if James’
device is in the neighborhood at that time i.e. even if the-lses| task could be satisfied.

Another problem with the current networking API is that isisichronous. Applications cannot
indicate a network task to be performed and then exit, simighied applications have all their
TCP/IP sockets closed. For example, an email applicatitim pgnding outgoing email in the

outbox will not be able to use a passiAg to send this email if the application is not running
when theAP is passed. Therefore, an application in BE&Nenvironment has to be constantly
on and monitoring the connectivity status of the device. sTihcreases the complexity of a
disconnection-aware application, since it must be abledi through periods of bad connec-
tivity and detect and perform networking actions when aadlé endpoint is again visible. It

also increases the load on mobile device resources, sinog apgplications would have to be

present in the background at all times.

Another problem is that persistent user data is kept by egipdins in a file system which, in
the current node architecture, is disconnected from th@arking system. This means that all
sharing of data between nodes must often be conducted hgafpphs themselves. The biggest
example of this is the device synchronisation problem. Wéneser has multiple devices, they
must explicitly run an application on each which pulls thtEta out of the file system and shares
it with their other device(s). Such synchronisation is oféesource of much inconvenience for
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users, since the sync tools must understand the differerg thiat each user application uses the
file system to store data and metadata, and often has todtaitsso that different applications
can be synced with the same data. Another example is inlaistd web caching. The exact
web page that a user wants may be in the cache of a neighbariteg but since web browsers
do not explicitly support the transfer, there is no way totpet off the neighbour’s file system
and into the network to be shared with the user.

The final problem identified is that applications have no ey to prioritise the use of a mo-
bile device limited resources. These resources includgigtent storage, network bandwidth,
and battery energy. Currently, an application such as a w@bkder must estimate by itself how
much of the storage can be used for non-critical history ic&gtor how much network band-
width should be used for pre-fetching of web pages. Thisgil@eis often passed on to the user,
who might have to adjust settings manually, at the appbedgvel (e.g. how much disk to use
as cache), at the hardware level (e.g. turning on or off es®hetwork interfaces depending on
the battery level), or by only running certain apps when ttheyot want to prioritise network
bandwidth for other tasks (e.g. network-hungry file-shguapps). These controls are coarse
at best, and require expert understanding in order to pioprercise them. The result is that
resources are often used inefficiently.

A.4 Core Concepts of Haggle

In previous work [SHCDO6] | explored the principles behime esign of Haggle (though |
had not built a working prototype at that time). In this disggon, | reiterate the key concepts
before diving into the architectural description thatdalk.

The key idea behind Haggle is to have a data-centric ar¢hie¢ASST where applications
do not have to concern themselves with the mechanisms dtoating data to the right place,
since that is what has made them infrastructure-depenBgritelegating to Haggle the task of
propagating data, applications can automatically takeuaidge of any connection opportunities
that arise, both local neighborhood opportunities and eotivity with servers on the Internet
when available. | identify four design decisions for Hagilat follow on from this.

A.4.1 Data Persists inside Haggle

The data on each node in Haggle must be visible to and sedecbgplother nodes (with ap-
propriate security/access restrictions applied). Thegifates operation of our motivating web
example, in that the public webpage needed by one personectnubd despite it being in an-
other person’s device. In practice, this means that Hagglet manage persistent data storage
for applications, instead of applications storing data separate file system.
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A.4.2 Networking Protocols inside Haggle

Any application-layer networking protocol includes inggdiassumptions about the type of net-
work available. For example, client-server protocols sag®MTP, POPandHTTP assume that
Internet-based servers are contactable. With Haggleceplatworking protocol support inside
Haggle itself, allowing me to present a data-centric rathan connection-centric abstraction
to applications.

A.4.3 Name Graphs supporting Late Binding

Since Haggle aims to be infrastructure-independent, it ineigable to use protocol-independent
names for delivery (since many protocols imply infrastametof one sort or another). Since we
are in an environment where we cannot predict the best pattata a priori, we must perform
late binding from protocol-independent names such as apsrsame to protocol-specific
names such as MAC addresses or email addresses [AWSBL]. ldHdgggefore maintains its
own naming repository (it obviously cannot rely on remotakap of this data), with mappings
from user-level names to protocol-specific names spedgfthe various ways to get to the user-
level name. Furthermore, the whole set of mappings (the engraph”) is transmitted along
with the data, allowing even intermediate (i.e. non-sounmeles to bind to protocol-specific
names as late as possible.

A.4.4 Centralised Resource Management

One role of the networking architecture on every device iddoide what to do with each of
its network interfacesow. In the current architecture, this decision does not tat@account
resource management — the decision to spend resources etisogis taken by applications
individually. This makes it very hard for applications to peactive, since they must make
sure themselves that only a suitable level of resourcesad.uslaggle therefore contains a
centralised resource management component, which desmdesost/benefit comparison basis
what tasks it chooses to perform on each network interfaaegaten moment.

A.5 Haggle Architecture

The Haggle architecture is shown in FiglirelA.1. Haggle is miaaro-scale comprised of six
Managers the Data, Name, Forwarding, Protocol, Connectivity anddrece Managers. In
addition, many of the Managers themselves have well-defibsttactions for their contents, as
shown in italics/parentheses on the diagram - e.g. the &ybkdanager encapsulates a number
of “Protocol” objects.
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Figure A.1: Haggle overview

Haggle is a layerless architecture, in that we do not passatat control signals up and down
between layers as for the current network architecturée#us all Managers provide interfaces
which other Managers can communicate with. In terms of threeott model, Haggle spans
the link layer through to the application layer, inclusiieink layer functionality in Haggle
includes, for example, the choice of whether the 802.1Tfexte is in infrastructure mode or
ad hoc mode, while Haggle’s Protocols include applicatayer protocols such e8MTP and
HTTP. Rather than present a “cross-layer design” where layasimteliberately broken, I in-
stead acknowledge that this model is not appropriate foigiéad he key value of layering, in
that between layers there are well-defined abstract imtesfiacilitating modularity, is kept: the
six Managers provide abstract interfaces and are modutaairthey can be replaced indepen-
dently.

As there is no top layer, the API that Haggle provides to ajapilons is composed of a sub-
set of the APIs that each Haggle manager provides to each. othehis chapter | do not
list the APIs explicitly due to an excessive level of detailirterested readers are referred to
http://cvs.sourceforge.net/projects/hagghdiere these interfaces are available.

I now describe the design of each of the managers, includiagkey data abstractions and
components, and how they communicate to perform networtdsks. In this section | restrict
myself to describing architectural decisions, and do netuss specific implementations (e.qg.
the SMTP protocol, or the 802.11 connectivity) — this is left to latarthe chapter where |
discuss the prototype that has been built and evaluatedheAend of this section, | discuss
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Message
DO-Type Data
Content-Type | message/rfc822
From Bob
To Alice
Subject Check this photo out!
Body [text]
_1 Attachment
DO-Type Data
Content-Type | image/jpeg
Keywords Sunset, London
Creation time | 05/06/06 2015 GMT
Data [binary]

Figure A.2: Example DOs: Message and Attachment

potential security and privacy issues that Haggle raises.

A.5.1 Data Manager

As stated previously, Haggle maintains users’ data persistrather than relying on a separate
file system. Haggle's data format is designed around the teebéstructuredandsearchable

In other words, relationships between application datésyeig. a webpage and its embedded
images) should be representable in Haggle, and applicasioould be able to search both lo-
cally and remotely for data objects matching particulafuisgharacteristics. | draw inspiration
from desktop search products (e.g. Google Desktop) whigk bhanged the way that many
users file and access their ddia [CDIT06], allowing us to aklamng to methodically place
data in a file/directory structure. | propose that applaraican use a combination of structured
data and search, with the former providing the kind of cdpiss expected of a traditional
file/directory system, and the latter allowing applicatido easily find and use data that they
themselves did not store.

Data Objects

The data format is simple. A Data Obje€t@) comprises mangttributes each of which is a
pair consisting of aypeandvalue Types and values are typically strings, though some values
may also be binary packed representations, e.g. the datenpa file. | encourage and expect
applications to expose as munietadataas possible about an item of application data using
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attributes, including application data. Two example DQssdrown in Figur&_Al2, representing
a message from Bob to Alice, and a photo of the sunset. NoteHhggle does not require
users to enter more metadata about their objects than apphs would require themselves;
the value of exposing metadata is in searchability usiodilters described later.

In order to facilitate multi-application environments aodavoid cache consistency issue§)
attributes are immutable after creation. (Haggle itsely maitate attributes for internal record-
tracking, but applications may not). Applications mustateeca newDO instead of modifying

a DO, and cause their existing links and claims to point at the D@v This provides useful
guarantees for applications that their data will not be redi“under their feet”, although
the disadvantage is that if they wish to use the most up-te-dersion of data, they must be
proactive, and use the search functionality described tatget updates either proactively or
reactively. Another potential disadvantage of copying Didat of the time and storage costs of
data replication, can be minimised by using standard capy#ate techniques present in many
filesystems.

Links between DOs

DOs can be linked into a directed graph. Links can take twm$orThe first is to link data to
embedded or prerequisite data, e.g. a photo album’s metadatlink to the set of photos in
the album, a webpage can link to its embedded objects, oh@arsin FigurdCAR) an email
can link to its attachments. This provides applicationdwaitvay to structure data, akin to the
way that some applications use the placement of files in a comdirectory but more explicit.

It allows Haggle to keep track of the prerequisite objects thust be shared alongside a top-
level object in order to properly transmit a given applicatdata unit. The second purpose of
linking is for applications to themselves link to the DOs aththey require for their operation,
which can be regarded as an “ownership claim.” In this wayyrepplications can claim the
sameDO, e.g. a photo gallery application can claim a photo thatnkdd to by a message
(which brought it into the node) which is in turn claimed by thessaging application. Linking
and claiming are accomplished using the same mechanism.thagwo terms to differentiate
between the parent being anotied or a different entity.

Since Haggle allows many applications to claim DOs, it do#shave a “delete” call, instead,
just “unlink”. When the last link is removed fromzO, it becomes eligible for garbage collec-
tion, though this is not necessarily performed immediasatge the node may have plenty of
persistent storage space. The data remains searchablenetgeanclaimed state, which is an
advantage since data is not lost unless space is actuallyreddor new data.

DO Filters

In addition to the ability to retrieve DOs via a unique ID pided at creation time, the Data
Manager also supports searching of DOs usin@a filter”. This comprises a set of regular-
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expression-like queries about the attributes of an obgegt,“mime-type” EQUALS “text/html”
AND “keywords” INCLUDES “news” AND “timestamp™ (now() - 1 hour) would return DOs
matching recent news webpages. A filter can be made persiatehsince it is itself stored in
aDO, it can be sent remotely. This flexibility allows a single hagism to be used for multiple
purposes: a non-persistent local filter is a search on loat, ch persistent local filter is a
registration of interest in incoming data of a particulgseywhich functions analogously to a
TCP socket “listen”), a non-persistent remote filter is auesy for data which is sent across
the network as appropriate (depending on the Forwardingityms, Protocols and Neighbors
available), and a persistent remote filter allows “subsicns” to particular data to be registered
with other nodes (e.g. a home PC registers interest in recgall photos generated on a mobile
phone).

The Data Manager is responsible for matchidg filters to DOs, and performs this when-
ever new data appears (which may match an existing persfdter) or whenever a new filter
appears (which may match existing DOs). If there are matdhes the source of the filter
(whether local or remote) is notified. The ability of Haggteunilaterally, without invoking
application processes, answer remote queries is a keyéealufacilitates sharing of infor-
mation between nodes beyond what we have today, since oageftiimation is provided to
Haggle, any and all connection opportunities that the neds san result in the sharing of that
information, given appropriate security concerns sucmasyption and access control.

A.5.2 Name Manager using Name Graphs

Endpoint descriptions for data transmissions in Hagglenatgoerformed in the usual method
of the nested headers found on the front of current phy&gar packets (e.g. Ethernet ad-
dress, IP address, TCP port, aadTPs RCPT TO field describing the endpoint for an email
message). This is because | aim to be able to make use of algbéead-hoc or infrastructure
connectivity opportunity. Since we cannot assume knowdaxfghe best end-to-end path, either
when a communication is generated or even at an intermeaiate once the communication
IS in-transit, we cannot perform the ahead-of-time dirgctookups that are currently used to
map a user-level endpoint, e.g. “Bob Smith”, to #8idTPs RCPT TO field (b@a.org) and so
on, in order to construct those addresses ahead of time. MNpiit the case that some of
these lookups require infrastructure services suchNSthat may not be available, but even
more importantly it is not possible to perform the initialne-to-email-address mapping that
is implicit in the users’ choice of an email client ratherrran Instant Messaging or mobile
phone text message (SMS) client. The choice of client pradra the user is currently equiv-
alent to making them choose a networking protocol (e.g. Emailies use ofSMTP) and may
be equivalent to making them choose a device on which thevexogill receive the message
(e.g. text message implies use of a particular phone).

We require a more general form of naming notation that alletesbinding of user-level names,
independent of the lower-level addressable name, as pedpns3 [SAZT]. We achieve this
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John Doe

johndoe@freemail.org / GUID-123456
+1 416-555-9898 / l

(802.11bg) 00:12:34:56:78:90

(Bluetooth) OO:07:EO:07:E9:80

Figure A.3: Example of a name graph

by usingname graphsinspired by the intentional naming systemg) [AWSBL], which are

hierarchical descriptions of all known mappings from a tiseel endpoint to lower-level names
(which may imply particular protocols/connectivity meti®), and by using the whole name
graph as the “recipient” for a message, both on the source and at intermediate nodes for
the message. This is one of the “layerless” aspects of Haggteit contrasts with the existing
Internet architecture where names are only meaningfulratp&ar layers of the protocol stack.

What's in a Name?

An example name graph is shown in FiglirelA.3. These graphs fspm top-level nodes

such as personal names through to leaves comprising gertsisethods of reaching them (e.g.
an email address), but do not include transient addressitegfdr those methods (e.g. an IP
address for the email server, or MAC address for the nexj-Hogt us first discuss the choice

of this partition [KKP].

In Haggle, we regard all of the nodes in a name graph as “ngraadany of these names can
be an “address” if there exists a suitable protocol on theengldich understands that name.
For example, an SMS-capable device regards a phone numéere ras an “address”, but a
non-SMS-capable device would not. This allows for the faat,tas a message moves between
nodes, different methods of mapping names to transmissathods become available. Thus a
layered model of name-to-address mapping is not alwayoappte.

| note that while a given node may need to “resolve” a naménéurin order to effect sending
to that name, e.g. taking an email address, discoverinGMiEP server suitable, and using
IP routing and a next-hop MAC address to send towardsSNatP server, it is not sensible
to regard these looked-up values as members of the name, giapd another node with the
same message would need completely different values, anttiave to resolve them inde-
pendently.

While persistent information is stored in name graphs,sieant information is captured using
the notion of a Neighbor, which identifies the next-hop inplagh for the data in order to reach
the name. Neighbors are discovered by Connectivities {ghisscussed in the next section),
and their properties are used by Protocols to establish mdraes a given communication can
be forwarded to.
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Name Objects

Haggle represents name graphs using DOs with a particulésuaé containing the name as
a string, which are known as Name Objects (NOs). These akedinsing the normabO
linking function to provide name graphs. The use of DOs fanimgy allows names to be easily
managed and made persistent.

Before Haggle can send data to a name graph, the NOs and ludtdo@ constructed somehow.
There are many potential sources for NOs. Firstly, althabhghname graph concept seems at
odds with existing user devices, actually much of what ippeed is simply a consolidation
of naming information from disparate sources already priese a device. For instance, name-
to-email-address mappings, name-to-instant-messdBimgappings, etc are already kept by
the respective applications. In addition, names can alg@atieered from Connectivities such as
Bluetooth or 802.11, as MAC addresses of nearby Hagglebtapades are regarded as Names.
A third discovery method follows on from this, whereby thelhaManager can detect nearby
Haggle nodes (via the existence of neighbours) and dirsethgd them a message containing
both theNO graph corresponding to the node, arid@filter requesting the recipient’s owNO
graph (analogous to the node saying “Hi stranger, I'm Bolp ate you?”). A fourth discovery
method is in the receipt of messages where the node is adiagaurier, or is the destination.
These messageBIO graphs can be mined for information. A fifth method may be fame
graphs to be maintained and distributed during periods alflstconnectivity with a trusted
server on the Internet.

Finally, it is worth noting that a name graph used as an addoesa message need not remain
static. Intermediate nodes could potentially add to thesbr either adding hints for forwarding
algorithms to perform better routing, e.g. “This MAC addregas seen recently”, or filling
in missing sections of the graph. As an extreme example, amigght be told the name of
someone that they wish to send a message to, but not havetamnjimformation such as their
email address. By simply using the person’s name, a messadaeccreated which can only be
delivered by (controlled) broadcasting. However, one efribdes in the room might have the
name graph corresponding to that name, and could add thesaygeNOs as destinations for
the message so that it can be delivered properly.

A.5.3 Connectivity Manager and Connectivities

Haggle aims to support and embrace the use of many diffesnionking technologies at the
same time. Networking technologies differ by their ranggehcy, bandwidth, infrastructure
available, cost of using the infrastructure, battery comstion, availability, and so on. It is
therefore appropriate for different Connectivities to lsedi depending on the particular type
of communication being sent, e.g. a small but urgent messagje use (relatively) expensive
GPRS while large, non-urgent data could wait until a free conlo@copportunity arises (either
locally or via a “free” access point).



APPENDIX A. HAGGLE: A CLEAN-SLATE ARCHITECTURE FOR PSN 146

The job of the Connectivity Manager in Haggle is simply to apsulate a number of Con-
nectivity objects and to initialise the appropriate numagestart-of-day. Each Connectivity
must support a well-defined interface including functiatyalor neighbor discovery, open-

ing/using/closing communications channels, and estimgdtie costs (in terms of money, time
and energy) of performing network operations. The Conwi#gtmust interface with the un-

derlying hardware to provide this functionality.

There will be one Connectivity instance per instance of avagk interface on a node (so if
there were two 802.11 interfaces there would be two Conviges created during initialisa-
tion). This is because a Connectivity is regarded by the ResoManager as a schedulable
resource, so it must be clear exactly how many resources #rer Since the Resource Man-
ager expects to schedule the network interface, all opermtihat result in network activity,
including operations initiated by the Connectivity’s catself, must be passed to the Resource
Manager as “Tasks” (to be discussed in Sediion A.5.6).

Connectivities also interact with Protocols, providingiinwith Neighbor lists gained during
neighbor discovery. A Neighbor is a potential next-hop bychitparticular Protocols may know
how to send data of particular types to particular NOs. Webhtiate between “non-Internet”
Neighbors which are direct next hops running Haggle, antetiret” Neighbors which are next
hops supporting IP for accessing the Internet. TypicaligheProtocol will only be interested
in one type of Neighbors.

Neighbor discovery can take various forms. In 802.11, ardenwith reception turned on can
see beacons from access points (APs) which announce tlieterce. For Bluetooth, neighbor
discovery is an active (and time-consuming) process GrRRS neighbor discovery is implicit
in that when base station coverage is present, an Internghbla is visible.

A.5.4 Protocol Manager and Protocols

The Protocol Manager is only responsible for encapsulatiagt of Protocols, and initializing
that set at start-of-day. A Protocol is a method by which D@s be forwarded to Names,
e.g. SMTP, HTTP, a direct peer-to-peer protocol etc. This highlights arhiectural differ-
ence between Haggle and traditional network stacks, shresetprotocols are normally at the
application layer and forwarding decisions are normallgsidered to be taken at the IP layer
underneath.

Each Protocol monitors the Neighbors visible through ther@ativities, and using these Neigh-
bors it can determine which NOs it can deliver to. This decisian also take into account the
type of data being forwarded, e.g. 8MTP protocol can send a message to an em@ail but it
may refuse to accept non-message data (e.g. applicatioalisig) since that is not suitable to
appear in an inbox.

For Protocols which must accept incoming connections,gedirect peer-to-peer protocol, they
must provide each Connectivity with enough informationfsat it can redirect incoming data
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to that protocol. This is akin to listening sockets in thesérg architecture. Some Protocols
do not accept incoming connections; typically, all Intérasing ProtocolsHTTP, SMTP, POB
act as clients to existing servers and so must initiate odiores themselves. While seemingly
simpler, this proves a source of additional work due to pgllequirements — for example, the
POPProtocol must use Resource Manager “Tasks” in order to sghat email accounts be
checked (if Internet connectivity is available).

A.5.5 Forwarding Manager and Algorithms

The Forwarding Manager provides an API to applications wseadata to be sent remotely,
encapsulates a number of Forwarding Algorithms, and sdmel$orwarding Tasks that are
produced by them to the Resource Manager.

Applications request data transfers by specifying a set ©s the heads of a larger set of
linked DOs) and a set of NOs (the heads of name graphs). TheaFding Manager constructs
a Forwarding ObjectRO) which is aDO with metadata about the forwarding operation, and
which is linked to the destinatioNO graphs, to the DOs, and to &0 graph describing the
sender (useful for replies either from applications or frAaggle’s internal replies with DOs
matchingDO filters). The metadata can include expiry times and expiny ¢munts, security
information and routing hints for forwarding algorithmsegtribed below), as well as a list of
NOs to which the data has already been sent. Other metadatsmabe present — theO
format allows for simple extensibility, and unknown fieldsxde easily ignored across different
implementations/instantiations of Haggle.

Forwarding Algorithms

Once arFOis created, it is the job of one or more Forwarding Algorithimdgetermine suitable
next hops. In Haggle, we precisely define the role of a Forimgrdlgorithm as: for each
FO, propose a set ofProtocol,NO, Neighbo# tuples which thisFO could be sent to, and a
scalar “forwarding benefit” associated with each tuple,olhg an estimate of the probability
that sending it that way would result in successful endrd-gelivery. The tuples and benefit
levels change continuously, depending on the availabl@edion opportunities, the known
information about th&0O (e.qg. if it expires or has already been delivered), etc.

Haggle has the useful feature of allowing many Forwardingofithms to be in ussimulta-

neously Note that | donot mean that traffic is generated according to the wishes ofaH F
warding Algorithms, since the Resource Manager will be oasfble for accepting or denying
the proposed actions of every algorithm. The simplest &lgoris a direct forwarding algo-
rithm, which only proposes to send &Q if it can directly reach amNO which is present in

its graph of destinations (i.e. it does not make use of anytirhap communication), with a
forwarding benefit of 100% by definition. Another algorithenthe epidemic forwarding al-
gorithm [VBO0], which sends the data to every Name that ishahble, i.e. it floods the data,
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but with a correspondingly low forwarding benefit. Haggl®e @édso make use dMANET al-
gorithms such as geographic [MWHO1] or distance-ve¢talRBPB3], as well as opportunistic
store-and-forward [SRIB[[ZAZ04] such as mobility-basBi€CET 05, [AAOU3,[LFCO6] algo-
rithms. Haggle is able to use many of these algorithms sanehusly, obtaining the “best of
many worlds” in that for each forwarding operation, a diffler Forwarding Algorithm may
prove best, due to availability or not of per-algorithm stisformation. Such state information
can be exchanged in Haggle by Forwarding Algorithms thevesatreating Forwarding Tasks
targeted at nearby nodes.

For eachFO, and each Protocol, Name, Neighbor thatRhnis proposed to be sent to (with
associated benefit), the Forwarding Manager creates a d&dmg Task”, to be executed when
the Resource Manager decides on doing so. When executeBotivarding Task causes the
associated Protocol to send th@ to theNO, via the Neighbor.

A.5.6 Resource Manager using Tasks

As referred to many times above, all outgoing or incomingvoek operations in Haggle are
proposed to the Resource Manager and executed only if/vieeRésource Manager chooses;
they are not necessarily executed in order or at all. A Taskxses a method of accomplish-
ing the work, the benefits of achieving the Task, and the aafsperforming the Task. This
definition is deliberately abstract so that the Resourcedgancan compare between different
possible actions while knowing little about the actual natbms or details of formulating or
carrying out Tasks.

Both the costs and benefits of Tasks are re-evaluated by tbeuR® Manager each time a
Task is considered for execution, using callback functipmided at Task creation time. A
Task’s cost describes measurable, true costs to the nogiesssed in terms of energy, money
and time-on-network. Time-on-network refers to connetgtigpecific nature of the Tasks being
scheduled, and represents the opportunity cost of not dmngething different with that time.
Task benefits describe the estimated utility to end usersaxfiging a Task. This is not a simple
calculation to make. Components of this benefit include &ding benefit which, as described
above, is the likelihood that this action will result in a sessful end-to-end transmission, but
also application benefit (how worth it to the applicationhatttransmission), and user benefit
(what priority is the action to the user). We would also likelte able to take into account
priorities specified by the owner of the devices, e.g. “I devant to spend money on others’
traffic, but I will allow Haggle to share a limited percentagfany battery”)

Tasks can be either asynchronous or immediate. Asynchsohasks are the norm, and (as
the name suggests) the Resource Manager is provided witlbadaato asynchronously call

when it wants the Task performed. Asynchronous Tasks capémsistent”, i.e. once they are
executed they persist to be executed again later — otheravigesk is only called at most once.
Immediate Tasks are used when a particular operation ntast éie done now or not at all, and
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they are used to deal with events such as incoming netwonkemtions which must either be
accepted or rejected.

Benefits and Costs for asynchronous Tasks are often varigtiday owner over time. For

persistent Tasks, the benefit of a Task that has just beenitexewill be low, e.g. checking

for new email on a server or checking for new Neighbours igimatt beneficial if the operation
was last performed 1 second ago, and the benefit would rigetiowe. On the other hand, an
FO with an imminent application-set expiry time becomes leggklass beneficial to forward in
a multi-hop fashion, since the likelihood of reaching thetdtion in time for the application

purpose becomes low. Costs are calculated with the assestdithe Connectivity that the Task
will be using — typically, the Task owner would provide aniegtte of the number of bytes
to be sent/received via a particular Neighbor, and the Cciivity can translate that into the
expected money, energy, and time that this transmissidnaki.

Once a Task is being executed, the Resource Manager caneasskéd for a “continuation”,
l.e. if the scope of the work being done by the Task increases the initial cost/benefits
specified, then the Resource Manager can be synchronouldg far permission (with additive
cost/benefit over the existing Task) to authorise work oretttended Task. This is useful for
circumstances such as email checking, which may discosge Email waiting for download.

The Task model is in marked contrast to the traditional netvetack, where networking op-
erations proposed by applications or operating systentifure are always attempted. The
centralisation of decision-making about what Tasks ard¢twdoing at all, and which are more
important at any time, allows Haggle to have a number of aidpgaous features.

The Resource Manager is a key illustration of how Haggleagétless” since Tasks come from
many different managers. | have already described examplessks generated by the Name
Manager (querying nearby Neighbors for name informatiBajywarding Manager (exchanging
state information), Protocols (email checking), and Catiagies (Neighbor discovery).

In the current version of Haggle, security and privacy hastbeen addressed as key concerns.
| have briefly discussed them in Sectignl1.7, but no real impletation has be done. | will
strongly raise these important issues in the next versiaheoprototype.

A.6 Comparison with the DTN Architecture

DTN [Eal03] is a network architecture designed for challengetivorks, which are networks
that may violate one or more of the three key assumptionstabewnderlying link character-
istics: an end-to-end path exists between a data sourcésgpelar(s), the maximum round-trip
time between any node pairs in the network is not excessitee end-to-end packet drop
probability is small. Examples of these networks includasetstrial mobile networks, exotic
media networks, military Ad-Hoc networks, and sensor nekaoClearly,PSNis one kind of
challenged network and hence it falls un@am.



APPENDIX A. HAGGLE: A CLEAN-SLATE ARCHITECTURE FOR PSN 150

As a proposed architecture feSN Haggle shares some design principles VN, such as
both of them use application-level message switchingnlatee binding, and custody-persistent
storage for store-and-forward. For message switchdmgy uses Application-level Data Units
(ADUs) and Haggle useBOs. In DTN, ADUs are typically sent by and delivered to applications
in complete units. They are transformed by the bundle lay&r one or more protocol data
units called “bundle” for forwarding, bundles may be furtfi@gmented during transmission.
The data-centric design of Haggle®) enables them to be used by many parties. This design
approach is driven by “ad hoc Google” applications.

Because of the data-centric principle and applicationaxttaristics oPSNs Haggle has clear
architectural differences from tHgTN architecture.DTN adopts an overlay architecture, and
Haggle uses the layerless concdpIN aimed to provide interoperability for different networks
such as the Internet, Bus networks, and exotic media nesyitfkas to be designed as an over-
lay architecture. It laid on top of the transport layer oresthetwork layer. It relies on the
implementation of the convergence layer to adapt the buagier to the underlying transport
layer. Different underlying protocols i.e. TCP and UDP, ch@ecorresponding convergence
layer implementation. Becau®'N only has specifications for its bundle layers but no spec-
ification for the underlying network type, the underlyingwerk type can be sockets, sensor
networks and Haggle.

Haggle is a clean-slate design tailor-made for mobile d=vizased on the characteristics of
mobile networks (i.e. lack of end-to-end connectivity, iatality of local peer-to-peer), and
expected applications such as asynchronous messagindgyraebing, and ad hoc Google (one
reason for taking a data-centric approach). Consideriadriternet as a useful medium for re-
laying data for mobile device communication, Haggle incogbes popular Internet application
protocols such aSMTP, POR, andHTTP into its Protocol manager, so Haggle can talk to the
Internet directly, instead of using proxies. But unlix&N, Haggle did not aim to be a universal
interoperability platform to link different networks frosensors to near-Earth satellite commu-
nications. It is specific to mobile deviceBTN can run on top of Haggle by implementing a
Haggle convergence layer, or Haggle can providediil protocol in the protocol manager
for interoperability. Because these two architectureseskize same vision about challenged
network characteristics and some key design principles, easy for them to be compatible
with each other, and actually Haggle can be a clean-slatzléss implementation reference
for DTN.

A.7 Short Summary of Prototyping

We have developed a Haggle prototype using Java initialigeting Windows XP. This devel-
opment has been conducted ussugirceforge.netan open source development site, under the
GNU General Public License (GPL), and remains open-sourdeagailable to other research
groups. The implementation of the prototype is not a mairirdmution of this dissertation, so
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Figure A.4: Haggle Email and Web Applications

I will not go into the details here, but give a brief summaryttte completeness of this work.

We implemented Haggle’s Data Manager using Java’s stai@@tdnterface, backed by MySQL.
Although any SQL back-end will work, we chose MySQL becauss freely available. We
chose SQL as the storage mechanism for the Data Managerdeeitguovides an easy inter-
face for persistence and sear@© Filters are implemented as regular expression-like gsgrie
and for the most part these queries can be translated giretilSQL select statements, to take
full advantage of SQL's optimised environment. We choseottu$ on 802.11 connectivity for
our prototype. This is because it is a widely used wirelesesgnetwork, and is available for
a range of devices from laptops to mobile phones. It alsa®fieth neighborhood and infras-
tructure connections (through ad hoc mode and infrastrecthode respectively) which allow
us to explore the range of Haggle capabilities using a siogimectivity type. Implementing
802.11 support requires a native driver component whichnsonicates with the NDIS driver
interface for Windows XP. We implemented this in C++ resigtin a dll file, which provides
our Java code with capabilities such as putting the 802 t&tfate in ad hoc mode @&P mode.
We implemented two forwarding algorithms so far, namelyedirand epidemic. The direct
algorithm only proposes to send &0 to aNO if that NO appears as a destination of the.
The epidemic algorithm proposes to send evedyto everyNO where a Protocol says it can
support that transfer, but does so with a lower forwardinggtiesince it has no idea whether it
will reach the destination this way.

Based on our introductory motivating examples, we have emas target email and the web
as our prototype applications. To be clear, by “email” an@t¥vwe mean the messaging and
hyperlinked-information applications, rather than thetpcols that underly them. Both of these
applications enjoy huge support from the pre-existingastiructure deployment of servers and
content. Itis a crucial feature of Haggle that we can takeathge of this infrastructure as well
as providing new functionality (operation when infrastire is not available). This makes
Haggle much more compelling to existing users of that inftecture, and the value added by
Haggle provides motivation for its deployment. To providgdcy support for existing email
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and web applications, we implement localh®MTP/POPandHTTP proxies alongside Haggle.
This allows users to keep using the same applications theyuadly use (we have tested Out-
look Express, Thunderbird, Internet Explorer and Firefaxh only minimal reconfiguration.
The modes of communication and operation of email and webcapipns using Haggle are
highlighted in Figur€A}. For the details of the prototyfies readers may refer to the separate

technical reporf [SSHOT].

A.8 Conclusion

Haggle is a clean-slate node architecture for mobile deviekaggle allows applications to be-
come infrastructure-independent, freeing them from hgwmexplicitly handle different and

changing connectivity environments. | prototype Hagglmg€xisting email and web appli-

cations, showcasing their ability to operate in ad hoc netimg circumstances where they
would previously have failed. This allows people to use thmea application across different
connectivity scenarios, something they cannot do todalyouit manual configuration.

Haggle provides a uniform interface for exposing applaatiayer names and naming meta-
data to allow late-binding of data delivery. This allows Igbgto select the best protocols and
connectivities to use, under any given network constraiotsreaching the destination. The
Resource Manager provides a single informed decision goinhanaging the usage of net-
work resources, allowing the node to coordinate the needls afpplications with the user’s

preferences.

On the another hand, this architecture and prototype worktpas to an important issue of
PSN the forwarding algorithms, which led to the main contribos of this thesis, social-based
forwarding. At this moment | only implement direct transfesait for destination) and epidemic
forwarding for the prototype, | want to implement and testBBBLE algorithm on the Haggle
testbeds in the near future.
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