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Abstract

Increasingly, the style of computation is changing. Instead of one machine running a
program sequentially, we have systems with many individual agents running in parallel.
The need for mathematical models of such computations is therefore ever greater.

There are many models of concurrent computations. Such models can, for example,
provide a semantics to process calculi and thereby suggest behavioural equivalences be-
tween processes. They are also key to the development of automated tools for reasoning
about concurrent systems. In this thesis we explore some applications and generalisations
of one particular model – event structures. We describe a variety of kinds of morphism
between event structures. Each kind expresses a different sort of behavioural relationship.
We demonstrate the way in which event structures can model both processes and types
of processes by recalling a semantics for Affine HOPLA, a higher order process language.
This is given in terms of asymmetric spans of event structures. We show that such spans
support a trace construction. This allows the modelling of feedback and suggests a se-
mantics for non-deterministic dataflow processes in terms of spans. The semantics given
is shown to be consistent with Kahn’s fixed point construction when we consider spans
modelling deterministic processes.

A generalisation of event structures to include persistent events is proposed. Based
on previously described morphisms between classical event structures, we define several
categories of event structures with persistence. We show that, unlike for the corresponding
categories of classical event structures, all are isomorphic to Kleisli categories of monads
on the most restricted category. Amongst other things, this provides us with a way of
understanding the asymmetric spans mentioned previously as symmetric spans where
one morphism is modified by a monad. Thus we provide a general setting for future
investigations involving event structures.
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Chapter 1

Introduction

The domain theory and denotational semantics developed by Scott and Strachey ([31])
has long provided a global mathematical setting for sequential computation. Denotational
semantics provides us with a way of relating programs to the mathematical functions be-
tween domains that they represent. This allows us to compare programs of different
languages and structures in a precise way as well as providing inspiration for new lan-
guages and type systems. It also allows the well-known mathematical results to be used
to prove properties of programs. In fact the possible applications are endless and di-
verse, ranging from analysis in optimising compilers to proving properties of programs in
theorem-provers.

As technology has progressed, the style of computation has changed from one machine
running one program which takes an input and terminates to produce output. Real
computer systems now run programs that do not terminate but rather interact with their
environment continuously. For example, consider a Windows-style operating system.
It waits for input from the user and responds accordingly. It does not terminate but
runs continuously. Also, parallel-processing and multi-machine systems are becoming
increasingly relevant, especially as we begin to hit the limits of the speed at which a single
processor can be run. So, functions from inputs to outputs are no longer appropriate to
model this kind of behaviour. Rather than sets and functions between them to base a
denotational semantics upon, we now require richer structures and constructions upon
them that can capture the additional behaviour.

Theories of concurrent computation aim to describe the behaviour of systems of com-
municating but autonomous processes. This is done with a view to providing a mathe-
matical framework for reasoning about them similar to that provided by domain theory
for sequential computations. However, there are many possibilities. Expressivity often
comes at the price of simplicity. Often the relationships between the various models are
not clear.

In this thesis we describe a particular model for concurrent processes – event structures
and their spans. They are easily understandable from an operational point of view and yet
expressive enough to describe the behaviour of many kinds of concurrent processes. We
investigate how this model could be extended to capture additional behaviours without
sacrificing the simplicity that makes it so easy to reason about.
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8 CHAPTER 1. INTRODUCTION

In this chapter we recall some of the possibilities for modelling concurrent compu-
tation, making a note of some of the choices available. We discuss some of the issues
associated with modelling non-deterministic dataflow and observe that it cannot be mod-
elled adequately with relations or powerdomains. We then introduce event structures. We
describe spans of event structures based on two different kinds of morphism, attempting
to give an intuitive description of the behavioural relationships between event structures
that they express. Some other kinds of morphism are described. We give an example of
how the universal constructions in the categories formed from these morphisms can be of
operational relevance. Next we discuss the possibility of varying the kinds of morphism
from which spans are constructed to allow additional behaviours to be captured. We
consider how such alterations might be done systematically. Finally, we give an overview
of each chapter of the thesis and its contribution.

1.1 Modelling Concurrent Computation

Models for sequential computations have been studied in great depth and include Turing
Machines, the Lambda Calculus and many others. These models have been shown to be
equivalent in the sense that their behaviours in terms of functions from inputs to outputs
are the same. Concurrent computations exhibit very different behaviours. They may be
viewed as a number of spatially separated activities communicating with the environment
and each other to accomplish a joint task. Models for concurrent computations need to
provide a representation of the patterns of actions the entire system can perform in order
to capture aspects such as mutual exclusion, starvation and deadlock.

Having developed such models we can use them as a foundation upon which to build.
For example, such models can provide a semantics to process calculi, thereby providing
a way to relate them and suggesting suitable behavioural equivalences. They can also be
used to formally define specification logics and therefore are key to the development of
automated tools for reasoning about concurrent systems.

One of the key behaviours of such processes is non-determinism, i.e., for a particular
input there may be several possible outputs. Clearly, continuous functions between do-
mains cannot express this. This suggests replacing continuous functions with relations
between domains. Another alternative is moving from domains to Plotkin’s powerdo-
mains [28]. Roughly, powerdomains allow us to represent relations between domains as
set-valued functions where the set contains all outputs that could be produced for a par-
ticular input. The Hoare powerdomains P [D] are constructed from domains D by taking
the set of downwards closed subsets of D that are also closed under existing least upper
bounds of directed sets in D. These are ordered by inclusion. It can be shown that P [D]
is itself a domain. This suggests we might be able to remain in the world of continuous
functions and domains. However, as will be shown in the next section, there are still
certain behaviours that cannot be modelled adequately in this setting.
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1.2 Models for Dataflow

The dataflow paradigm for concurrent computation was introduced in the work of Jack
Dennis and others [19, 12]. The key idea is that there is a flow of data between many asyn-
chronous computing agents. These agents are interconnected by communication channels
which can be viewed as unbounded buffers. Such behaviour is becoming increasingly
common in the real world where the desire for low power and low electrical interference
from circuits is encouraging the development of clockless systems.

If the computing agents in the system are deterministic then, as shown in [19], a
denotational semantics can be given in terms of the fixed point of a set of equations
describing each of the components. This result was used by several authors, for example
in the work of Faustini [13], and Lynch and Stark [21].

Brock and Ackerman showed in [5] that giving a semantics to dataflow processes
where the components were non-deterministic was far from easy. In particular, input-
output relations between sequences of values on input and output channels carry too
little information about the behaviour of networks to support a compositional semantics
such as that given by Kahn. The following example is essentially that presented in [29].
Let A1 be the non-deterministic process that either outputs a token and stops, or outputs
a token, waits for a token on input and then outputs another token. Let A2 be the process
that either outputs a token and stops, or waits for a token on input and then outputs two
tokens. The input-output relations between strings of tokens of both A1 and A2 are the
same:

{(ε, t), (t, t), (t, tt)} ,

where ε represents the empty string of tokens and the presence of a token is represented
by the symbol t. Let F be the process that copies every input to two outputs through
which the output of the process Ai is fed back to the input channel.

�
�-�



-

-

FAiC[Ai] =

Observe that the process A1, placed in this context, produces a process which can output
two tokens whereas the process A2 results in a process that can only output a single
token. This confirms that there is no denotational semantics of non-deterministic dataflow
in terms of traditional input-output relations. For similar reasons traditional uses of
powerdomains also fall short.

Although traditional relations are insufficient, it was shown in [15, 16] that a compo-
sitional form of relational semantics is possible, but at the cost of moving to generalised
relations - profunctors.

As will be shown in Chapter 4, another alternative is to use spans of event structures

E
d
~~~~

~~ out
  @

@@
@

A B
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where d : E → A models the demands on the input channels and out : E → B the output
on the output channels. In fact, such spans correspond to profunctors of the kind used
in [15, 16]. In the following section, we make the definition of spans precise by defining
event structures and two kinds of morphism between them – demand morphisms and rigid
morphisms.

1.3 Event Structures

In this thesis we concentrate on one particular independence model: event structures.
Event structures, an invention of Nielson, Plotkin and Winskel, were first seen in [35]
and [36]. Often there is no point in analysing exactly where and when events occur in
concurrent computations. Instead what is important is to select the significant events
and describe how the occurrence of an event causally depends on those that have already
occurred. Event structures model concurrent computations as a tuple

(E, ≤, #),

a set of events E accompanied by a causal dependency relation ≤ on E and a conflict
relation # between events in E to express how the occurrence of certain events prevents
the occurrence of others. The tuple must have the following properties.

• The relation ≤ is a partial order.

• The set {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E.

• If e1#e2 and e2 ≤ e3 then e1#e3.

An event in a computation can be anything that can be viewed as atomic, i.e., once
started, it must finish and it has no internal structure. An example of an event in a
computation is two independent agents synchronising. What constitutes an event in a
computation depends entirely on the level of abstraction required.

Event structures are members of the collection of models that describe the behaviour
of concurrent computations in time. Their future behaviour is dependent entirely on
which of their events have occurred so far. They therefore have a built in notion of state
consisting of the set of events that have already occurred. The set of states of an event
structure E is known as its configurations and is denoted by C(E).

Event structures provide a simple and intuitive model of concurrent computation. It is
easy to define constructions to describe non-determinism, parallel composition and many
other relevant behaviours (see Section 2.3).

Processes are often constructed from other processes. Also, one process may be the
refinement of a second process. The corresponding relationships between behaviours are
often expressed as morphisms in a category with objects that are instances of the model.
Often, different kinds of morphism can be chosen according to which kinds of relationship
need to be described. We now describe two possible choices of morphism between event
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structures.

Let (E,≤, #) be an event structure. Define [e] for e ∈ E by

[e]
def
= {e′ ∈ E | e′ ≤ e}.

Rigid morphisms : Let (E1, ≤1, #1) and (E2, ≤2, #2) be event structures. A function
f : E1 → E2 is a rigid morphism between them if f is total and, for all e1, e2 ∈ E1,

• [f(e1)] = f [e1],

• if f(e1) = f(e2) or f(e1)#f(e2) then e1 = e2 or e1#e2.

In other words, f preserves the causal dependency relation and downwards closure when
extended to act over sets, reflects conflict and can only map two distinct events to the
same event when they are in conflict.

If an event structure E1 has a rigid morphism into E2 then E2 can behave exactly like
E1 although it may have fewer non-deterministic choices. For example, there is a rigid
morphism between the event structures

e′3

e2 # e3 and e′2

OO

e1

^^>>>>>>>>>

@@���������
e′1

OO

(where the causal dependency partial order is shown graphically such that e ≤ e′ is
represented as e→ e′) mapping e1 to e′1 and mapping e2 and e3 to e′2.

We can further restrict rigid morphisms to preserve conflict. They are then called
rigid embeddings. Taking only those rigid embeddings that preserve events, we can view
event structures as a large CPO [36]. We can therefore make use of the fixed point of
any operation on event structures based on continuous constructions with respect to this
ordering.

Demand morphisms : Let (E1, ≤1, #1) and (E2, ≤2, #2) be event structures. Let
C0(E2, ≤2, #2) be the set of finite downwards closed subsets of E2 with respect to ≤2

and where no two events in any one subset are related by #2. A function d between E1

and C0(E2, ≤2, #2) is a demand morphism between them if

• e1 ≤1 e2 implies d(e1) ⊆ d(e2),

• if there exist e′1, e
′
2 ∈ d(e1) ∪ d(e2) such that e′1#2e

′
2 then e1#1e2.
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Unlike the rigid morphisms which can be viewed as expressing the way in which one event
structure can simulate another, demand morphisms relate events of an event structure to
the states of another event structure. A demand morphism between two event structures
E1 and E2 can be thought of as relating an event e in E1 to the minimum set of events
in E2 that must have occurred in order for e to occur. If d(e) = x for some e ∈ E1 and x
a configuration of E2, we say e demands x.

So, recalling Section 1.2, dataflow processes can be modelled as spans of event struc-
tures

E
d
~~~~

~~ out
  @

@@
@

A B

where d is a demand morphism and out is a rigid morphism. For an event e ∈ E to occur
in a process, we require input d(e) and our output will be out(e).

Another example of the use of such spans can be found in the work of Nygaard
and Winskel [26]. The powerful meta-language Affine HOPLA can be given an event
structure semantics that corresponds to the profunctor semantics given in [26] for first
order processes. An Affine HOPLA process Γ ⊢ t : P can be represented as a span of
event structures

Et
d
}}{{

{{ out
!!C

CC
C

JΓK JPK

where JΓK and JPK are the event structures representing the types in the context Γ and
the type P. This is explained fully in Chapter 3. So, spans of event structures can be
used to model higher-order processes. We can interpret the span as follows. For an event
e to occur in Et, we demand d(e) from the environment and output out(e).

1.4 Alternative Choices of Morphism

As well as rigid and demand morphisms, there are many other choices of morphism. We
also discuss augmentation morphisms and partial morphisms. The definitions arose nat-
urally during the study of event structures representing the synchronous and partially
synchronous parallel composition of processes of the style found in CCS and CSP. For ex-
ample, consider relating the event structure E3 representing P3, the partially synchronous
parallel composition of two processes P1 and P2, to the event structure E1 representing
P1. Not all events in E3 will correspond to an event in E1. Therefore, if we wish to
base the relationship on a function between the event sets, partiality is required. Also,
the causal dependency relation of E3 will be a combination of that of E1 and the event
structure representing P2. This means there may not be a function from the events of E3

to those of E1 that preserves causality.
We define partial and augmentation morphisms below. The reader is referred to Sec-

tion 2.1.1 for more details.



1.4. ALTERNATIVE CHOICES OF MORPHISM 13

Partial morphisms : Given event structures (E1, ≤1, #1) and (E2, ≤2, #2), f : E1 → E2

is a partial morphism between them iff it is a partial function and, for all e1, e2 ∈ E1,

• if f(e1) is defined then [f(e1)] ⊆ f [e1],

• if f(e1) and f(e2) are defined then if either f(e1) = f(e2) or f(e1)#f(e2) then
e1 = e2 or e1#e2.

So, partial morphisms may be seen as a relaxation of rigid morphisms to allow partial
functions such that the causal dependency relation is not necessarily preserved.

For example, there is a partial morphism between

e3

e2

OO

and e′2 e′3

e1

OO

which is undefined for e1, maps e2 to e′2, and e3 to e′3.

Augmentation morphisms : These are partial morphisms with underlying functions that
are total. Like partial morphisms, augmentation morphisms f : E1 → E2 express when
one event structure E2 can behave like E1 although the events in E2 may be subject to
fewer dependency and conflict constraints. Their name derives from the fact that E1 may
be thought of as having an augmented causal dependency relation between its events in
comparison to E2.

As an example, consider the following. There is an augmentation morphism between

e2

e1

OO

and e′1 e′2

that maps e1 to e′1 and e2 to e′2. Observe that e1 must occur before e2 but the events they
map to can occur concurrently.

The universal constructions in the categories of event structures formed from rigid,
augmentation and partial morphisms are often of interest operationally. For example, the
coproduct of event structures in all three categories behaves like the non-deterministic
sum of two processes. Below we show an example of a product in the category of event
structures and partial morphisms and compare it to a sort of CCS-style (see [23]) partially
synchronous parallel composition.
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Let E1 be the event structure

e2

e1.

OO

Let E2 be the event structure consisting of a single event e3.

The product E1 ×⋆ E2 in the category of partial morphisms is (E, ≤, #) which we
define graphically below.

e2 # (e2, e3) # e′2

e1

^^>>>>>>>>>

#

;;xxxxxxxxx
e3

#

# (e1, e3)

OO

We can relate (E, ≤, #) to E1 and E2 by observing that the events e1 and e3 in E
correspond to themselves in E1 and E2. The events e2 and e′2 in E correspond to e2 in
E1. The events (e2, e3) and (e1, e3) correspond to synchronisations of events in E1 and
E2. So, the event structure (E, ≤, #) behaves like E1 and E2 placed in parallel where
their events may or may not synchronise.

The product E1 × E2 in the category of augmentation morphisms consists of a sin-
gle event. It forces all events in E1 to synchronise with events in E2 and therefore e1

synchronises with e3 but no other synchronisations are possible.

In general, it is difficult to describe products in categories of event structures. To
see why, observe how the event e2 in E1 is split into three different events in (E, ≤, #)
according to what events come before it and how it synchronises with other events. In
Section 2.2 we describe a way of constructing these products in terms of another structure
– the stable family. Products in categories of stable families are easy to construct. To sum-
marise, the categories of rigid, augmentation and partial morphisms and event structures
are related to categories of stable families by a series of coreflections. We can therefore
construct products by including the event structures in the category of stable families,
constructing the product and using the right adjoint to produce an event structure from
it.

As well as stable families, there are other extensions and generalisations of event
structures and their morphisms. In [34], probability is added to event structures. The
possibility of allowing multiple consistent causes for events is explored in [37, 7, 4]. In [33],
event structures are generalised in order to model disjunctive causality and resolvable
conflict. A new kind of morphism is described in [1] that provides us with a notion of
quotient event structures. Event structures appear in the study of security where they are
known as strand spaces [10, 11]. Also, event structures underlie concrete data-structures
and sequential algorithms [20] and later development in game semantics.

In this thesis, we concentrate on event structures of the kind described in Section 1.3
and rigid, augmentation, partial and demand morphisms.
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1.5 Varying Spans of Event Structures

In the previous section, we discussed how the product of event structures in the category
of augmentation morphisms behaved like a synchronous parallel composition of processes.
Such a construction on spans based on rigid and demand morphisms does not fit well. This
is because the projections out of the product in the category of augmentation morphisms
may not be rigid. This together with other examples suggests that varying the kind
of morphisms in spans may yield a more expressive model for higher order concurrent
processes. In order to do this systematically we can adopt a similar approach to that of
Moggi [24] and consider varying the types of morphisms via monads (and comonads) on
the bicategory of spans of rigid morphisms. For example we would seek to model the kind
of span

E
d
~~~~

~~ out
  @

@@
@

A B

consisting of a demand morphism and a rigid morphism as a span of rigid morphisms

E
d′

||xxx
xx out

��>
>>

>

T (A) B.

Such monads (and comonads) on spans can be induced by cartesian monads on the cate-
gory of event structures with rigid morphisms (a consequence of Burroni’s work in [6]). Let
R, A, P and D be the categories of rigid, augmentation, partial and demand morphisms.
A sensible approach to constructing monads on R is to attempt to find adjunctions be-
tween the categories. The monads can then be constructed as the composition of the
adjoint functors. Clearly R is a subcategory of A. In Chapter 5 we show that there is a
right adjoint to the inclusion functor from R into A.

R � u 77⊤ A
ww

We can construct a monad T on R such that the category A is isomorphic to RT where
RT is the Kleisli category of T . However, there is no adjunction between R and P
or D as R has no terminal object unlike P and D. In this thesis we seek to address
this issue by extending the definition of event structures to include persistence such that
the corresponding categories of rigid, augmentation, partial and demand morphisms are
related by adjunctions. Let RP , AP , PP and DP be the categories of event structures
with persistence and rigid, augmentation, partial and demand morphisms. We show that
there are adjunctions between RP and the other categories.

RP
j


��

� v 55⊤ AP

uu
� v 66⊤ Pp

vv

⊢

DP

GG
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1.6 Synopsis

We give an overview of each chapter of the thesis. We describe the subjects covered and
discuss the overall contribution of each chapter.

Chapter 2: In this chapter we introduce the main categories and constructions that are
required for the rest of the thesis. We define event structures together with several differ-
ent sorts of morphism between them including rigid, augmentation, partial and demand
morphisms. We recall how adjunctions with the related categories of stable families allow
limits in the categories of event structures to be easily constructed. We then go on to de-
scribe asymmetric spans of event structures consisting of a demand morphism and a rigid
morphism as discussed in Section 1.3. A composition operation is defined and we confirm
that spans form a bicategory with event structures as objects and spans as morphisms.

Chapter 3: We recall the work of Nygaard and Winskel in [26] where spans are used to give
a denotational semantics to Affine HOPLA. After giving the types, grammar and term
formation rules for Affine HOPLA, we present the constructions described in [26] in greater
detail than previously seen. This semantics is consistent with the profunctor semantics
described in [27] when only first-order terms are considered. Finally, in Section 3.3, we
show several example processes and describe the spans that represent them.

The purpose of this chapter is to demonstrate how event structures can be seen as
both types and processes. We also familiarise the reader with the behaviours captured by
the various constructions on event structures and their morphisms introduced in Chap-
ter 2. The examples section makes clear the operational nature of the way in which event
structures can model concurrent computations.

Chapter 4: We give another example of the types of process that can be modelled by spans
of event structures – dataflow processes. Event structures are shown representing types
of data at channels in a dataflow process as well as the process itself. In order to model
dataflow processes, we need to define a feedback construction. Such constructions must
obey certain axioms and are called trace operations. We describe a trace operation on
spans of event structures. We also describe the relationship between event structures and
certain sorts of profunctor and use this relationship, together with the results in [15, 16]
to demonstrate that the operation obeys the axioms required. We define deterministic
spans in order to model deterministic dataflow, describing how they relate to functions
from input to output. We then show that the trace construction applied to these spans
is identical to using the fixed point construction described in [19] on the functions they
represent. We thereby show that the semantics given to processes with feedback by event
structures matches that given by other models but is more operational in nature than the
general relations given in [15, 16].

Chapter 5: We consider the possibility of extending event structures to capture additional
behaviour. As discussed in Section 1.5, the behaviours that can be expressed in terms of
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constructions on a category of event structures depend on the kind of morphisms chosen.
It is desirable to model the different morphisms between event structures as rigid mor-
phisms modified via monads. This would enable all the different behaviours expressible
to be defined as constructions based on one kind of morphism. The development of a
symmetric span category on which various asymmetric and symmetric span categories
could be built would then be possible. This would allow the use of spans obtained from
various morphisms while maintaining the ability to relate them to the simple symmetric
spans and therefore the spans previously described. In Section 5.1 we show that such
monads do not always exist for classical event structures.

In [14], a method for describing weak bisimulation in a categorical manner is given
in terms of a monad on the category of presheaves. After describing the presheaves that
represent event structures using the properties given in [38], we show that the application
of the monad results in a presheaf that does not represent an event structure and give
examples illustrating the extra behaviour that event structures cannot express.

The results described above are used to justify an alteration of the definition of event
structure to allow persistent events. These structures are known as event structures with
persistence. It is then shown that at least one of the desired adjunctions, that between the
category of augmentation morphisms and the category of partial morphisms, now exists.
The difficulties of constructing the other monads are discussed.

Chapter 6: We show an interesting relationship between events in an event structure
with persistence given by rigid morphisms from it into another event structure. There
is a correspondence between rigid morphisms where the domain has an empty conflict
relation and rigid pairs. These comprise an equivalence relation and a predicate on the
events of E which have certain properties. The equivalence relations may be reasonably
seen as providing some of the inspiration for the development of event structures with
symmetry [39]. Using these rigid pairs, we show how to construct adjunctions between
the category of rigid morphisms RP and the category of demand morphisms DP , and
also between RP and the category of augmentation morphisms AP . Finally, we use rigid
pairs to prove the existence of all finite limits in RP . This confirms that we can model
behaviours like the CCS-style parallel composition described in Section 2.2.2 as construc-
tions inRP . It also confirms that spans of morphisms ofRP do indeed form a bicategory.

Chapter 7 : We summarise the results described in the thesis and discuss what we can
conclude from them. We then discuss further work on event structures that addresses
some of the remaining open questions.



Chapter 2

Event Structures and Spans

In this chapter we introduce event structures and their categories. We also define some
constructions that will be used later in the thesis. Finally, we introduce spans of event
structures.

2.1 An Introduction to Event Structures

Event structures model a process as a set of event occurrences with relations to express
how events causally depend on others or exclude other events from occurring. An event
structure consists of a set of events, an ordering on the events and a conflict relation.

Definition 2.1.1. The tuple (E, ≤, #) is an event structure if it obeys the following:

• E is a set of events,

• ≤ is a partial order on E,

• [e] is a finite set for all e in E (where [e] is the set of events, e′, in E such that
e′ ≤ e),

• # is a binary, irreflexive, symmetric relation between the events in E such that if
e1 ≤ e2 and e1#e3 then e2#e3.

We use the name of the set of events interchangeably with the name of the event
structure. We also overload ≤ and # where it is clear from the context which relation is
being referred to.

Definition 2.1.2. The event structure (E, ≤, #) is an elementary event structure iff
# is the empty relation. It is described as being a prime elementary event structure iff
there exists e ∈ E such that e′ ≤ e for all e′ ∈ E.

We write (E, ≤) for the elementary event structure (E, ≤, ∅).
If E is a prime elementary event structure then we define max(E) to be the maximal

event of E with respect to ≤.

18
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Definition 2.1.3. Let E be an event structure. Let C(E) be the set of subsets of E that
are downwards closed with respect to ≤ and contain no conflicting events. These are
known as configurations of E. We write C0(E) for the set of finite configurations of E.

The set of configurations of an event structure when ordered by inclusion forms a
prime algebraic domain [25]; the complete primes of this domain have the form [e] for e
ranging over E. It follows that the set of primes is isomorphic to the set of events of an
event structure.

Definition 2.1.4. Two configurations x and y of E are consistent, denoted x ↑ y, iff there
exists z ∈ C(E) that contains them both, i.e., they have a common upper bound when C(E)
is ordered by set-theoretic inclusion. This can be extended to a set of configurations X
where we write X ↑.

Observe that e1 ≤ e2 in an event structure E iff [e1] ⊆ [e2] and e1#e2 iff [e1] 6↑ [e2] in
C(E).

A behavioural interpretation of the definition of event structures is to see ≤ as describ-
ing when one event must occur before another and # as describing when the occurrence of
one event prevents the occurrence of another. The conditions imposed on these relations
ensure that they behave consistently. The reader is referred to [36] for further details.

The following example illustrates the graphical representation used throughout the
document.

w # m cr

c1

__????????

??~~~~~~~~
c2

OO

The above event structure represents two vending machines, running concurrently. Each
machine can accept a coin corresponding to the events c1 and c2. One machine can then
dispense either a bar of white chocolate (w) or a bar of milk chocolate (m) and the other
a bag of crisps (cr).

The example also demonstrates an event structure being used to model a process.

2.1.1 Categories of Event Structures

Taking event structures as the objects, it is possible to form categories of event structures
where the morphisms are functions between the sets of events with particular properties.
The morphisms express relationships between the behaviours of the event structures as
explained in Sections 1.3 and 1.4.

Let ⋆ represent undefined.

Definition 2.1.5. Given event structures (E1, ≤1, #1) and (E2, ≤2, #2), f : E1 → E2

is a partial morphism between them iff it is a partial function and

• if f(e) 6= ⋆ then [f(e)] ⊆ f [e] for all e in E1,

• (f(e1) = f(e2) 6= ⋆ or f(e1)#f(e2)) ⇒ (e1 = e2 or e1#e2) for all e1 and e2 ∈ E1.
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Composition of morphisms is simply function composition.
The category given by partial morphisms is referred to as P .

Definition 2.1.6. Given event structures (E1, ≤1, #1) and (E2, ≤2, #2), f : E1 → E2

is an augmentation morphism between them iff it is a partial morphism whose underlying
function is total.

The category given by augmentations is referred to as A.

Definition 2.1.7. Given event structures (E1, ≤1, #1) and (E2, ≤2, #2), f : E1 → E2

is a rigid morphism between them iff it is an augmentation morphism and

[f(e)] = f [e]

for all e in E1.

The category given by rigid morphisms will be referred to as R.
The following property of rigid morphisms proves useful several times in future chap-

ters.

Lemma 2.1.8. Let f : E1 → E2 be a rigid morphism that preserves conflict and also an
isomorphism between the set E1 and the set E2. Then f−1 : E2 → E1 is a rigid morphism.

Proof. We show that [f−1(e)] = f−1[e] for all e ∈ E2.
Suppose e1 ≤ e2 in E2. Then, as f is an isomorphism between the event sets, there

exists an e′1 and an e′2 in E1 such that f(e′1) = e1 and f(e′2) = e2. As f is rigid, e′1 ≤ e′2 and
therefore f−1(e1) ≤ f−1(e2) and so f−1[e] ⊆ [f−1(e)] for all e ∈ E2. Suppose e1 ≤ f−1(e)
in E1. Then, as f is rigid, f(e1) ∈ [e]. As f−1 ◦ f(e1) = e1 we have that e1 ∈ f

−1[e] and
therefore that [f−1(e)] ⊆ f−1[e].

Let e and e′ be events in E2. Finally we show that e = e′ or e#e′ if f−1(e) = f−1(e′)
or f−1(e)#f−1(e′). If f−1(e) = f−1(e′) then e = e′ as f is an isomorphism between the
sets of events. If f−1(e)#f−1(e′) then, as f preserves conflict, e#e′.

Definition 2.1.9. Given event structures (E1, ≤1, #1) and (E2, ≤2, #2), the function
f : E1 → C

0(E2) is a demand morphism between them iff it is total and

• if e1 ≤ e2 then f(e1) ⊆ f(e2) for all e1 and e2 in E1,

• if f(e1) 6↑ f(e2) then e1#e2 for all e1 and e2 in E1.

Let d : E → E ′ be a demand morphism. Define the function d† : C(E)→ C(E ′) by

d†(x) =
⋃

e∈x

d(e)

for all configurations x of E. The composition of two demand morphisms d1 : E → E ′

and d2 : E ′ → E ′′ is defined to be d†2 ◦ d1.
The category of event structures with demand morphisms will be referred to as D.
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It is possible to view rigid morphisms as demand morphisms. We say that a rigid
morphism f : E1 → E2 corresponds to a demand morphism f ′ : E1 → E2 where f ′ is

defined by f ′(e)
def
= f([e]). So, R is included in A which is included in P and clearly there

is a faithful functor F : R → D.

D R
Foo �

� // A
�
� // P

2.1.2 Labelled Event Structures

Often a process can perform an action multiple times. An event structure can only
perform each event once. So, if an event structure is used to model such a process, each
occurrence of an action must be modelled by a different event. It is therefore sometimes
useful to label events in an event structure. We can do this by extending event structures
from being of the form (E, ≤, #) to being a tuple (E, ≤, #, l) where l is a function
from E to a set of labels L. As for event structures without labels, we can form categories
of these event structures where the morphisms have the properties described above but in
addition preserve the labelling function, i.e., if f : (E1, ≤1, #1, l1)→ (E2, ≤2, #2, l2)
is a morphism then l1(e1) = l2(f(e1)) if f(e1) is defined. We write RL for the category of
labelled-event structures with labelling set L and rigid, label-preserving morphisms.

2.2 Stable Families

2.2.1 An Introduction to Stable Families

Instead of defining a global causality on events, it is possible to make the causality local,
i.e., a single event may be dependent upon two inconsistent sets of events, requiring only
one set to be enabled. Consider the diagram below for an example, presented graphically
in the same way as for event structures.

Events : Output change, Make selection, Input money, Return money button.

Output change

Make selection

55llllllllllllll
# Return money button

jjTTTTTTTTTTTTTTT

Input money

iiRRRRRRRRRRRRRR

44jjjjjjjjjjjjjjj

Above we see a model of a vending machine that has two different sets of events that
trigger the output change event. The definition of an event structure would necessitate
two different events to represent this.

The purpose of this section is to define several categories of stable families and con-
structions, and to relate them to categories of event structures via adjunctions. For a
more detailed description of these structures, the reader is referred to [36].
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Definition 2.2.1. A stable family F is a set of sets with the following properties.

• Coherence: ∀X ⊆ F . (∀x, y ∈ X.x ↑ y)⇒
⋃
X ∈ F .

• Stability: ∀X ⊆ F . X ↑⇒
⋂
X ∈ F .

• Coincidence-freeness:

∀x ∈ F , e1, e2 ∈ x. e1 6= e2 ⇒

∃y ∈ F . y ⊆ x and ((e1 ∈ y and e2 6∈ y) or (e2 ∈ y and e1 6∈ y)).

• Finiteness: ∀x ∈ F .∀e ∈ x.∃y ∈ F . y ⊆ x and e ∈ y and y is finite.

Here ↑ has the same meaning it had for the set of configurations of an event structure.
The set of events of a stable family F is

⋃
F .

It can be deduced that a stable family, ordered by inclusion, forms a prime algebraic
domain [25, 36]. If x is a member of a stable family F and e ∈ x let

[e]x
def
=

⋂
{y ∈ F|e ∈ y and y ⊆ x}.

Then [e]x ∈ F and is called a prime configuration of F . (It is a complete prime of

(F , ⊆) in the sense of [25].) Because of coincidence-freeness, taking max([e]x)
def
= e is

well-defined.
Event structures, due to their simplicity, are, in general, more easily understood than

stable families. However, as will later be demonstrated, certain useful constructions are
more concisely described in terms of stable families.

2.2.2 Categories of Stable Families

As for event structures, it is possible to define three categories of stable families, PF ,
AF and RF . Each of the categories consists of stable families as objects and functions
between events as morphisms. Let F1 and F2 be stable families.

The partial function f :
⋃
F1 →

⋃
F2 is a morphism between F1 and F2 in PF iff

i) f(x) ∈ F2, for all x ∈ F1,

ii) ∀e1, e2 ∈ x. f(e1) = f(e2) 6= ⋆ ⇒ e1 = e2 for all x ∈ F1. (We again use ⋆ to
represent undefined.)

The function f :
⋃
F1 →

⋃
F2 is a morphism between F1 and F2 in AF iff it is a

morphism between F1 and F2 in PF and is total.
The function f :

⋃
F1 →

⋃
F2 is a morphism between F1 and F2 in RF iff it is a

morphism in AF and

y ⊆ f(x) ⇒ ∃x′ ∈ F1. x
′ ⊆ x and f(x′) = y
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for all y ∈ F2 and x ∈ F1.
All the categories have products. Behaviourally, these can be thought of as describing

several sorts of parallel composition.
Let X and Y be sets. Define X ×∗ Y to be (X ∪ {⋆} × Y ∪ {⋆})\{(⋆, ⋆)}.
The set x is a member of F1 ×F2, the product of F1 and F2 in PF iff

i) x ⊆ (
⋃
F1)×∗ (

⋃
F2),

ii) π1(x) ∈ F1 and π2(x) ∈ F2,

iii) ∀e, e′ ∈ x. π1(e) = π1(e
′) 6= ⋆ or π2(e) = π2(e

′) 6= ⋆ ⇒ e = e′,

iv) ∀e, e′ ∈ x. e 6= e′ ⇒ ∃y ⊆ x. π1(y) ∈ F1 and π2(y) ∈ F2 and
((e ∈ y and e′ 6∈ y) or (e 6∈ y and e′ ∈ y)),

v) ∀e ∈ x. ∃y ⊆ x. π1(y) ∈ F1 and π2(y) ∈ F2 and e ∈ y and y is finite.

This product in PF is referred to as the partially synchronous product. It behaves in much
the same way as the parallel composition of two CCS processes [23]. Events in F1 and
F2 can occur independently, i.e., be paired up with ⋆ or synchronise with each other.

If we have two morphisms f : F1 → F3 and g : F2 → F3 then we can construct the
pullback by taking the product of F1 and F2 and restricting it to those events (e1, e2)
for which f(e1) = g(e2).

The product and pullback in AF are defined in a similar way. Here, x ⊆
⋃
F1 ×

⋃
F2

is a member of F1 ×F2 iff conditions (ii), (iv) and (v) hold and

π1(e) = π1(e
′) or π2(e) = π2(e

′) ⇒ e = e′

holds for all e, e′ ∈ x. This construction is referred to as the synchronous product. Here
all events in F1 must synchronise (be paired up) with an event in F2.

The product and pullback in RF are defined in the same way as for AF but with the
additional requirement that

∃x′ ⊆ x. π1(x
′) ∈ F1 and π2(x

′) ∈ F2 and πi(x
′) = y

holds for all y ∈ Fi that are subsets of πi(x).
Other limits and colimits can be constructed based upon the corresponding limits and

colimits in the category of sets.

2.2.3 Relating Stable Families and Event Structures

In Section 1.4 we mentioned the existence of adjunctions between the categories of event
structures and those of stable families. We make this precise below.

There are functors, FR : R → RF , FA : A → AF and FP : P → PF between the
categories. Let (E, ≤, #) be an event structure and f : E1 → E2 be a morphism. Define
FX by

FX(E, ≤, #)
def
= C(E)

FX(f)(e)
def
= f(e)
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for X = R, A, P .
Each of these functors has a right adjoint GX : XF → X. Let F be a stable family and

g : F1 → F2 be a morphism in XF . Define GX(F) to be the event structure (E, ≤, #)
defined below.

• E is the set of prime configurations of F ,

• x ≤ x′ iff x ⊆ x′,

• x#x′ iff x 6↑ x′.

We define the action of GX on morphisms by

GX(g)([e]x)
def
= [g(e)]g(x).

The reader is referred to [36] for the proof that these functors do indeed form adjunc-
tions between the categories.

For X = R, A or P we have that FX is a full embedding and therefore that the
adjunction is a coreflection. As discussed in Section 1.4, this means that definitions of
products and indeed all limits in the categories of event structures can be given in terms
of stable families.

2.3 Constructions on Event Structures

We now define some constructions that prove useful when describing processes in terms
of event structures.
Restriction: The restriction of an event structure (E, ≤, #) to S, where S is a subset of
E downwards closed with respect to ≤, is (S, ≤′, #′) where e1 ≤

′ e2 iff e1 ≤ e2 and e1#
′e2

iff e1#e2 for e1, e2 ∈ S, i.e., we use the standard notion of restriction of relations. We
write E ↾ S for (S, ≤′, #′). It follows that the injection of S into E is a rigid morphism.

Sum: Given a set A and a set of event structures {Ea | a ∈ A} we write their sum as
the event structure

∑
a∈AEa. Take

⊎
to be the disjoint union constructor on sets. Then

define
∑

a∈AEa by
∑

a∈A

Ea
def
= (

⊎

a∈A

Ea, ≤, #)

where (a1, e1) ≤ (a2, e2) iff a1 = a2 and e1 ≤ e2. Also, conflict in
∑

a∈AEa is defined
by (a1, e1)#(a2, e2) iff a1 6= a2 or (a1 = a2 and e1#e2). This construction allows us to
model non-determinism. The occurrence of an event in one of the event structures in the
set prevents any of the events in the other event structures occurring. It is easy to show
that the sum construction is the coproduct in all the categories of event structures. When
we are taking the sum of two event structures E1 and E2 we write E1 + E2.
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Tensor : Given event structures E1 and E2, define ⊗ by

E1 ⊗ E2
def
= (E1 ⊎ E2, ≤, #)

where (i, e1) ≤ (j, e2) iff i = j and e1 ≤ e2 and where (i, e1)#(j, e2) iff i = j and e1#e2.
This construction acts as an asynchronous parallel composition of the event structures,
i.e., it allows them to run concurrently with each other. Where there is no ambiguity
we write events (i, e) as e and write the extraction of Ei events from a configuration of
E1⊗E2 as intersection with Ei. We can also define ⊗ for rigid and demand morphisms. If
f1 : E1 → E2 and f2 : E3 → E4 are rigid morphisms then let f1⊗ f2 : E1⊗E3 → E2⊗E4

be defined by (f1 ⊗ f2)(i, e) = (i, fi(e)) for i = 1, 2. If d1 : E1 → E2 and d2 : E3 → E4

are demand morphisms then define d1 ⊗ d2 by (d1 ⊗ d2)(i, e)
def
= {i} × di(e) for i = 1, 2.

Lifting : Given an event structure E we define E⊥ by

E⊥
def
= ({∅} ∪ {[e] | e ∈ E}, ⊆, ↑).

This construction has the action of prefixing the original event structure with an event
that must occur before all others. We can define a lifting operation on rigid morphisms.
If f : E → E ′ is a rigid morphism then f⊥ : E⊥ → E ′

⊥ is defined by f⊥(∅) = ∅ and
f⊥([e]) = [f(e)] for all e ∈ E.

Function Space: We describe this constructor in terms of a stable family. Let E1 and E2

be event structures. For any set f ⊆ C(E1) × E2, we write π2(f, E) for {e ∈ E2 | ∃x ∈
C(E1). x ⊆ E and (x, e) ∈ f}. We also make use of the shorthand π2(f) = π2(f, π1

†f)
where π1

†f is defined to be
⋃

(x, e)∈f x. We define E1 ⊸ E2 to be GR(FE1⊸E2
) where f

is a member of FE1⊸E2
if

i) π†
1f ∈ C(E1)

ii) ∀x ∈ C(E1). π2(f, x) ∈ C(E2)

iii) ∀(x, e), (x′, e) ∈ C(E1)× E2. (x, e) ∈ f and (x′, e) ∈ f ⇒ x = x′.

Fixed Point : It was shown in [36] that the collection of event structures could be viewed
as a large CPO, i.e., there is an ordering on event structures that has all the character-
istics of a CPO except for the fact that event structures form a collection and not a set.
Given event structures E1 and E2 we say E1 ⊑ E2 iff E1 = E2 ↾ E1. The categories
of event structures can therefore be viewed as domains with the empty event structure
∅ as ⊥. It is shown in [26] that all the above constructions are continuous with respect
to this ordering. This shows that fixed points exist for any operation built from these
constructions. So, if F is an expression based on the constructions described and contains
a variable X, then µX.F is well-defined.
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2.4 Spans of Event Structures

It has been well-known since [25] that event structures can represent both processes and
datatypes, which at the time of [25] was remarked on as creating a curious mismatch with
classical denotational semantics (where a process denotes an element of a domain). The
double role of event structures can be resolved by working with spans of event structures.
A span

E
d
~~~~

~~ out
  @

@@
@

A B

represents a computation process from a type, represented by event structure A, to the
type B, an event structure, as again an event structure E. The morphisms d and out
specify how the event structure inspects input and delivers output. There are many
possible variations on spans as the morphisms d and out can have different natures.

For the purposes of this thesis, we will take a span of event structures to be defined
as follows.

Definition 2.4.1. If we have event structures E, A, B, a rigid morphism out : E → B
and a demand morphism d : E → A then

E
d
~~~~

~~ out
  @

@@
@

A B

is a span of event structures.

If the demand morphism d : E → A of A
d
← E

out
→ B maps every event to the empty

set then we write it as E
out
→ B.

Where there is no ambiguity, we refer to spans by their vertex.

For all event structures A and B we have a category of spans Span(A, B). The
morphisms between spans are rigid morphisms with certain properties.

Definition 2.4.2. The rigid morphism f : E1 → E2 is a morphism between the spans

A
d1← E1

out1→ B and A
d2← E2

out2→ B iff out2 ◦ f = out1 and d2 ◦ f ⊆ d1.

E1

out1

��:
::

::
::

::
:d1

��

f

��

⊇

A E2
d2oo out2 // B

2.4.1 Composition of Spans

We define the composition of spans as follows.
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Definition 2.4.3. Given two spans,

E1

d1

~~}}
}}

}}
}

out1

  A
AA

AA
AA

E2

d2

~~}}
}}

}}
}

out2

  A
AA

AA
AA

A B C

their composition is the span E2 ◦ E1

d

{{vvvvvvvvv
out

##H
HHHHHHHH

A C

.

E2 ◦ E1 is defined as follows:

• Events: {(x, e) ∈ C(E1)× E2 | out1(x) = d2(e)},

• Causality: (x1, e1) ≤ (x2, e2) iff x1 ⊆ x2 and e1 ≤ e2,

• Conflict: (x1, e1)#(x2, e2) iff x1 6↑ x2 or e1#e2.

In fact, viewing the rigid morphisms as demand morphisms, this corresponds to con-
structing a pullback in D (see page 127 of [26]).

Lemma 2.4.4. Given three spans A
d1← E1

out1→ B, B
d2← E2

out2→ C and

C
d3← E3

out3→ D, the span

P2

π1

~~}}
}}

}}
}}

π2

  @
@@

@@
@@

@@
@@

@@
@@

@@
@@

P1

π1

~~}}
}}

}}
}} π2

  A
AA

AA
AA

A

E1

d1

~~}}
}}

}}
}

out1

  B
BB

BB
BB

B
E2

d2

~~||
||

||
|| out2

  A
AA

AA
AA

E3

d3

~~}}
}}

}}
}

out3

  A
AA

AA
AA

A

A B C D

is isomorphic to

P4

π1

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~

π2

  A
AA

AA
AA

A

P3

π1

~~}}
}}

}}
}} π2

  A
AA

AA
AA

A

E1

d1

~~}}
}}

}}
}

out1

  A
AA

AA
AA

E2

d2

~~}}
}}

}}
}

out2

  B
BB

BB
BB

B
E3

d3

~~||
||

||
|| out3

  A
AA

AA
AA

A

A B C D.
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Proof. Recall that the composition of two spans corresponds to a pullback in D, the
category of demand morphisms. We show that Lemma 2.4.4 follows from the first part
of Proposition 2.5.9, page 54 of [3]. The proposition states that, in a category, given the
diagram

A
a //

c

��

B

d

��

b // C

e

��

(I) (II)

D
f

// E g
// F ,

if squares (I) and (II) are pullbacks then the outer square is also a pullback.
Observe that E1

π1← P1
π2→ E2 and E2

π1← P3
π2→ E3 are also spans and can therefore be

composed. We show that the vertex X of this span is isomorphic to both P1 and P2 via
the above result.

Consider the diagram

X
π2 //

π1

��

P3

π1

��

π2 // E3

d3

��
P1 π2

// E2 out2
// C

.

We know from the proposition that the outer square must be a pullback also and there-
fore, from the uniqueness of pullbacks, we have that X is isomorphic to P2. A similar
argument shows us that X is isomorphic to P4 and therefore that P2 is isomorphic to P4.
Composition is therefore associative up to isomorphism.

It follows from the results in [22] pages 283-285 that the category with event structures
as objects, spans as arrows and the morphisms described in Definition 2.4.2 as 2-cells is
a bicategory. The identity span for an event structure E is

E[ ]

~~~~
~~

idE

  @
@@

@

E E .

In fact there is a relationship between spans of event structures and the stable functions
of Berry [2]. These functions correspond to deterministic spans which we will give details
of in Section 4.3.



Chapter 3

Affine HOPLA

Affine HOPLA is a meta-language that is sufficiently expressive to encode many kinds of
processes. Affine languages are of particular interest as, in many environments, a process
cannot be copied but may be discarded, i.e., a process is used at most once. In [27],
Affine HOPLA was given a denotational semantics by making use of profunctors. Here
we describe in detail a semantics in terms of event structure spans first seen in [26]. It
can be shown that this semantics corresponds to the profunctor semantics for first-order
processes. The purpose of this chapter is to illustrate the use of spans of event structures
to give a semantics to a higher-order process calculus.

3.1 Modelling the Types of Affine HOPLA

In this section, we show how event structures can be used to model Affine HOPLA types.
The types of Affine HOPLA are given by the following grammar.

T ::= T1 ⊸ T2 | T1 ⊗ T2 |
∑

α∈A

Tα | T⊥ | T | µj
~T.~T.

The variable T is taken from a set of type variables and

µj
~T .~T abbreviates µjT1, ..., Tk.(T1, ...,Tk)

and represents the jth-component of the least solution to the equations,

(T1 = T1), ..., (Tk = Tk),

where T1, ..., Tk may contain the Tjs.
The types model the behaviours of which processes are capable. A process is of type

• T1⊗T2 if it behaves like the asynchronous parallel composition of a process of type
T1 with a process of type T2,

•
∑

a∈A Ta if it behaves like the non-deterministic sum of a set of processes with types
Ta for a ∈ A,

29
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• T⊥ if it can perform an action and then behaves like a process of type T,

• T1 ⊸ T2 if, given a process of type T1, it behaves as a process of type T2, i.e., it is
a function type.

Recursive types can be used to express the repeated combinations of the other construc-
tions.

Making use of the constructions described in Section 2.3, we can model these types
as event structures. So, the empty event structure ∅ with no events is a type of processes
that can do nothing. We build up the more complex types as follows. Let JTK be the
event structure that models T. We define this by

JT1 ⊗ T2K = JT1K⊗ JT2K

J
∑

a∈A

TaK =
∑

a∈A

JTaK

JT⊥K = JTK⊥

Jµj
~T .~TK = µj

~T .J~TK

JT1 ⊸ T2K = JT1K⊸ JT2K .

In the earlier cases, it is easy to see that the constructions on event structures capture
the correct behaviour. In order to see that the function type behaves in the correct way,
consider the following.

The adjunction between event structures and stable families defined in Section 2.2.3
yields a bijective correspondence between rigid morphisms between E and A⊸ B in R
and morphisms in RF from C(E) to FA⊸B. Making use of this we can show that for all

spans A
d
← E

out
→ B there is a unique morphism m : E → A⊸ B for which the following

diagram commutes.

E
d

zzvvvvvvvvvv

m

��

out

$$H
HHHHHHHHH

A A⊸ B
GR(π1)

oo
GR(π2)

// B

So, the span A
d
← E

out
→ B corresponds to a rigid morphism from E to A⊸ B and there-

fore to a span ∅
∅
← E

out′

→ (A⊸ B). This shows how A⊸ B internalises spans from A to
B.

Also, it is the case that (A⊗B)⊸ C ∼= A⊸ (B⊸ C) holds for all event structures
A, B and C. For further details, the reader is referred to [26].

3.2 A Compositional Semantics

We now describe a compositional semantics for Affine HOPLA in terms of spans of event
structures.
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Affine HOPLA has terms given by

t, u ::= x | rec x .t |
∑

i∈I

ti | λx.t | t u | βt | πβt | !t | t⊗ u |

[u > !x ⇒ t] | [u > w ⊗ x ⇒ t] | abs t | rep t.

Note that the x in [u > !x ⇒ t] binds all free occurrences of x in t and, similarly, w
and x are binding occurrences in [u > w ⊗ x ⇒ t].

The term formation rules are shown below.

Structural rules: x : P ⊢ x : P
Γ⊢t:Q

Γ,x:P⊢t:Q

Γ,y:Q,x:P,∆⊢t:R
Γ,x:P,y:Q,∆⊢t:R

Recursive definition:
Γ,x:P⊢t:P

Γ⊢rec x.t:P

Non-deterministic sum:
Γ⊢tj :P ∀j∈I

Γ⊢
∑

i∈I ti:P

Function space:
Γ,x:P⊢t:Q

Γ⊢λx.t:P⊸Q
Γ⊢t:P⊸Q ∆⊢u:P

Γ,∆⊢t u:Q

Sum type:
Γ⊢t:Pβ β∈A

Γ⊢βt:
∑

α∈A Pα

Γ⊢t:
∑

α∈A Pα β∈A
Γ⊢πβt:Pβ

Prefixing:
Γ⊢u:P

Γ⊢!u:P⊥

Γ,x:P⊢t:Q ∆⊢u:P⊥
Γ,∆⊢[u>!x⇒t]:Q

Tensor:
Γ⊢t:P ∆⊢u:Q
Γ,∆⊢t⊗u:P⊗Q

Γ,x:P,y:Q⊢t:R ∆⊢u:P⊗Q
Γ,∆⊢[u>x⊗y⇒t]:R

Recursive type definitions:
Γ⊢t:Tj [µ~T .~T/~T ]

Γ⊢abs t:µj
~T .~T

Γ⊢t:µj
~T .~T

Γ⊢rep t:Tj [µ~T .~T/~T ]

Define JΓK to be the event structure consisting of the types in Γ tensored together.
We use Γ as shorthand for JΓK. Similarly, JPK is confused with P.

For clarity, as described in the definition of the tensor construction in Section 2.3,
we make the following assumption. In an event structure A⊗ C constructed from event
structures A and C, we assume A and C are disjoint and therefore that A ⊗ C is given
by union and that the projection of a configuration y ∈ C(A⊗ C) to its component in C
can be written as y ∩ C.
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It is useful to extend the tensor operation to spans. We define

(A
d1← E1

out1→ B) ⊗ (C
d2← E2

out2→ D)

by
E1 ⊗ E2

d1⊗d2

wwoooooo out1⊗out2

''OOOOOO

A⊗ C B ⊗D.

Using the above and previously defined constructions on event structures, we can now

give a semantics for Affine HOPLA. Throughout the rest of the chapter, Γ
dt← Et

outt→ P is
taken to be the span JΓ ⊢ t : PK.

Variable: Jx : P ⊢ x : PK

P
[ ]

����
�� idP

��>
>>

>

P P

Other Structural Rules: If the span JΓ ⊢ t : QK is Γ
d
← Et

out
→ Q then we define JΓ, x : P ⊢

t : QK to be
Et

d′

{{vvvvv out

��@
@@

@

Γ⊗ P Q

where d′ is defined by d′(e) = d(e) for all e ∈ Et (making use of the previously explained
assumption that P and Γ are disjoint).

If the span JΓ, y : Q, x : P ⊢ t : RK is Γ⊗Q⊗ P
d
← Et

out
→ R then we define JΓ, x : P, y :

Q ⊢ t : RK to be
Et

d′

xxqqqqqqq out

��?
??

?

Γ⊗ P⊗Q R

where d′ is defined by d′(e) = d(e) for all e ∈ Et (making use of our assumption that Γ,
P and Q are disjoint).

Recursion: JΓ ⊢ rec x .t : PK

We construct this span in terms of the span JΓ, x : P ⊢ t : PK. Let S = Γ
[ ]
← Γ

idΓ→ Γ.
Define the (i+1)th approximation Si+1 to JΓ ⊢ rec x .t : PK to be

JΓ, x : P ⊢ t : PK composed with S ⊗ Si.

Let S0 be ∅
∅
→ P. The span JΓ, x : P ⊢ t : PK is defined to be S∞. Observe that λx.t can

be viewed as a continuous operation on event structures and therefore the vertex of S∞

is isomorphic to µx.t.
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Sum: JΓ ⊢
∑

i∈I ti : PK

If the span JΓ ⊢ ti : PK is Γ
di← Ei

outi→ P for all i ∈ I then the sum is

∑
i∈I Ei

d

zzuuu
uu

u out

$$II
II

II

Γ P

where d(j, e)
def
= dj(e) and out(j, e)

def
= outj(e) for all (j, e) ∈

∑
i∈I Ei.

Function: JΓ ⊢ λx.t : P⊸ QK

If JΓ, x : P ⊢ t : QK is Γ⊗ P
dt← Et

outt→ Q then we define JΓ ⊢ λx.t : P⊸ QK to be

Et
d′

����
�� out′

$$JJ
JJJ

J

Γ P⊸ Q

where d′(e) is dt(e) ∩ Γ and out′(e) is {(dt(e
′) ∩ P, outt(e′)) | e′ ∈ [e]}.

Application: JΓ,∆ ⊢ t u : PK

If JΓ ⊢ t : Q ⊸ PK is the span Γ
dt← Et

outt→ Q⊸ P and J∆ ⊢ u : QK is the span

∆
du← Eu

outu→ Q then JΓ,∆ ⊢ t u : PK is the span

(Γ⊗ Eu) ◦ Et
π1

uulllllll π2

''OOOOOOOO

(Γ⊗ Eu)
[ ]⊗du

wwpppppp idΓ⊗outu

))SSSSSSSS
Et

d′t

wwoooooooo out′t

��>
>>

>

Γ⊗∆ Γ⊗Q P.

We define d′t and out′t as below, making use of the previously explained assumption that
P and Q are disjoint. We let e′ be max(outt(e)), viewing outt(e) as a complete prime for
the stable family FQ⊸P (see Sections 2.2.1 and 2.3). Define d′t by d′t(e) = dt(e) ∪ π1(e

′)
and define out′t(e) = π2(e

′) for all e ∈ Et.

Injection: JΓ ⊢ βt :
∑

α∈A PαK

If the span JΓ ⊢ t : PβK is Γ
dt← Et

outt→ Pβ then the injection into
∑

α∈A Pα where β ∈ A is

Et
dt

����
��

out′t
%%KK

KK
KK

Γ
∑

α∈A Pα

where out′t(e) = (β, outt(e)) for all E ∈ Et.
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Projection: JΓ ⊢ πβt : PβK

Et ↾ S
dt↾S

{{xxx
xx

x out′t

##H
HHHH

Γ Pβ

where S = {e ∈ Et | ∃e
′ ∈ Pβ. outt(e) = (β, e′)} and out′t(e) = π2(outt(e)).

Prefixing : JΓ ⊢!u : P⊥K

(Eu)⊥
du

′

||xx
xx

x outu⊥

$$H
HH

HH

Γ P⊥

We define d′u by d′u(∅) = ∅ and d′u([e]) = du(e). (Recall the definition of lifting in Sec-
tion 2.3.)

Prefix Match: JΓ, ∆ ⊢ [u > !x ⇒ t] : QK
We can construct a span from P⊥ to P:

P
[[ ]]

~~}}
}} idP

��=
==

=

P⊥ P.

If J∆ ⊢ u : P⊥K and JΓ, x : P ⊢ t : QK are ∆
du← Eu

outu→ P⊥ and Γ⊗ P
dt← Et

outt→ Q then
the prefix match is the composition of

Γ⊗ Eu
[−]⊗du

xxppp
ppp

idΓ⊗outu ''NNNNNN Γ⊗ P
[−]⊗[[−]]

xxqqq
qqq

idΓ⊗P
%%LL

LLL
L Et

dt

{{vvvvv

outt ��@
@@

@

Γ⊗∆ Γ⊗ P⊥ Γ⊗ P Q.

Tensor : JΓ, ∆ ⊢ t⊗ u : P⊗QK

Et ⊗ Eu
dt⊗du

wwpppppp outt⊗outu
''NNN

NNN

Γ⊗∆ P⊗Q

Tensor Match: JΓ, ∆ ⊢ [u > x⊗ y ⇒ t] : RK
If the span J∆ ⊢ u : P⊗QK is

Eu
du

~~}}
}} outu

$$I
II

II

∆ P⊗Q

and JΓ, x : P, y : Q ⊢ t : RK is

Et
dt

xxqqqqqqq outt

��?
??

?

Γ⊗ P⊗Q R
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then JΓ, ∆ ⊢ [u > x⊗ y ⇒ t] : RK is

(Γ⊗ Eu) ◦ Et
π1

uulllllll π2

''OOOOOOOO

(Γ⊗ Eu)
[ ]⊗du

wwpppppp idΓ⊗outu

))SSSSSSS
Et

dt

wwoooooooo
outt

��>
>>

>

Γ⊗∆ Γ⊗ P⊗Q R.

Recursive Types : JΓ ⊢ abs t : µj
~T .~TK and JΓ ⊢ rep t : Tj[µ~T .~T/~T ]K

Recall that, from the properties of fixed points, µj
~T .~T and Tj[µ~T .~T/~T ] are equal. The

semantics for rep and abs is therefore given by

Et
dt

����
��

� outt
##F

FF
FF

Γ µj
~T .~T,

Et
dt

����
��

� outt
&&MM

MMM
MM

Γ Tj[µ~T .~T/~T ].

When only the first order fragment of Affine HOPLA is considered, the event structure
semantics corresponds to the presheaf semantics (see [26]).

3.3 Examples

To give a greater insight into the way spans of event structures can model higher or-
der processes, we discuss the spans representing five simple higher-order Affine HOPLA
terms. We also show the results when they are applied to other terms.

Example 1 : The empty process — λy.y : ∅⊸ ∅.
Following the construction in Section 3.2, we construct Jλy.y : ∅ ⊸ ∅K in terms of
Jy : ∅ ⊢ y : ∅K.

∅
∅
����

�� ∅
��;

;;
;

∅ ∅

So, Jλy.y : ∅ ⊸ ∅K is ∅
∅
→ (∅ ⊸ ∅). As (∅ ⊸ ∅) = ∅, the span is equal to ∅

∅
→ ∅. The

vertex of this span is not capable of any events and therefore may be thought of as the
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nil process.

We next show the constructors for prefixing and asynchronous parallel composition.

Example 2 : Prefixing a process — λx.!x : P⊸ P⊥.
The span Jλx.!x : P⊸ P⊥K is constructed from the span Jx : P ⊢!x : P⊥K which is itself
constructed from Jx : P ⊢ x : PK.

P
[ ]

����
�� id

��>
>>

>

P P

So Jx : P ⊢!x : P⊥K is

P⊥
d

��~~
~~

id⊥
!!C

CC
C

P P⊥

where d is defined by d(e) = e for all e ∈ P⊥.
The span Jλx.!x : P⊸ P⊥K is therefore

P⊥

out

��
P⊸ P⊥

where out : P⊥ → (P⊸ P⊥) is defined by out(e) = {(e′, id⊥(e′)) | e′ ∈ [e]} for all e ∈ P⊥.
(The vertex of the span has no demands for any of it’s events.)

Below we show an example of the application of λx.!x : P⊸ P⊥. Let Jt : PK be the span

Et
outt−→ P where Et consists of two independent events e1 and e2. Then J(λx.!x) t : P⊥K

will be the composition

E
π1

~~~~
~~

~~
~

π2

  A
AA

AA
AA

A

Et

outt

��@
@@

@@
@@

@
P⊥

d

~~~~
~~

~~
~~ id

!!B
BB

BB
BB

B

P P⊥.

The event structure E will be

({e1}, [outt(e1)]) ({e2}, [outt(e2)])

(∅, ∅)

ggPPPPPPPPPPPP

77nnnnnnnnnnnn
.

So, the vertex of the span E can perform an event and then behave like the vertex of the
span Et. Thus we have demonstrated the way in which our function takes a process and
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prefixes it with an extra event that must occur before all the others.

Example 3 : Asynchronous parallel composition — λx.(x⊗ t) : P⊸ (P⊗Q).

Let Jt : QK be Et
outt−→ Q. Assume that P and Et are disjoint and therefore that the action

of ⊗ on P and Et can be defined as union. We construct Jλx.(x⊗ t) : P⊸ (P⊗Q)K from
Jx : P ⊢ x⊗ t : P⊗QK.

P⊗ Et
[ ]⊗( 7→∅)

{{vvv
vv

v id⊗outt
&&MMMMM

P P⊗Q

So Jλx.(x⊗ t) : P⊸ (P⊗Q)K is

P⊗ Et

out
��

P⊸ (P⊗Q)

where out is defined by

out(e) = {([e′], e′) | e′ ∈ [e]} if e ∈ P

= {(∅, outt(e
′)) | e′ ∈ [e]} otherwise.

If we apply this function to a process s : P with corresponding span Es
outs−→ P then the

resulting process is represented by the composition

E
π1

~~}}
}}

}}
}

π2

##G
GG

GG
GG

GG

Es

outs ��@
@@

@@
@@

@
P⊗ Et

[ ]⊗( 7→∅)

{{xxxxxxxxx
id⊗outt

%%K
KKKKKKKK

P P⊗Q.

The events of E will either be of the form (∅, e) where e ∈ Et or ([e′], outs(e)). It is easy
to show that E is isomorphic to Es ⊗ Et and indeed that the span E is isomorphic to

Es ⊗ Et

outs⊗outt
��

P⊗Q.

So the function λx.(x ⊗ t) : P⊸ (P ⊗ Q) has the action of placing a process in parallel
with the process t : Q.

We complete this section by showing examples of the use of the destructors for pre-
fixing and asynchronous parallel composition.
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Example 4 : Matching a prefixed event — λy.[y >!x => x] : P⊥⊸ P.
We construct Jλy.[y >!x => x] : P⊥ ⊸ PK from Jy : P⊥ ⊢ [y >!x => x] : PK, i.e., the
composition of

P⊥
[ ]

}}||
||

||
|| idP⊥

!!B
BB

BB
BB

B P
[[ ]]

��~~
~~

~~
~~ idP

��=
==

==
==

= P
[ ]

����
��

��
�� idP

��=
==

==
==

=

P⊥ P⊥ P P

.

However, P
[ ]
← P

idP→ P is the identity span for P and P⊥
[ ]
← P⊥

idP⊥→ P⊥ is the identity span

for P⊥ and so Jy : P⊥ ⊢ [y >!x => x] : PK is isomorphic to P⊥
[[ ]]
← P

idP→ P. The span
Jλy.[y >!x => x] : P⊥⊸ PK is therefore isomorphic to

P

out
��

P⊥⊸ P

where out : P→ (P⊥⊸ P) is defined by out(e) = {([[e′]], e′) | e′ ∈ [e]} for all e ∈ P.

Let us consider the application (λy.[y >!x => x])t : P where Jt : P⊥K is Et
outt−→ P⊥.

This will be isomorphic to the composition

E
π1

}}||
||

||
|| π2

  @
@@

@@
@@

@

Et

outt

  A
AA

AA
AA

A P
[[ ]]

��~~
~~

~~
~~ idP

��=
==

==
==

=

P⊥ P.

The events of E will be of the form ([e], max(outt(e))) such that e ∈ Et and outt(e) 6= ∅.
For events ([e1], max(outt(e1))) and ([e2], max(outt(e2))) in E, we have

([e1], max(outt(e1))) ≤ ([e2], max(outt(e2))) iff

[e1] ⊆ [e2] and max(outt(e1)) ≤ max(outt(e2)).

There is a bijective correspondence between the prime configurations of an event structure
and its events. Also [e1] ⊆ [e2] iff e1 ≤ e2. A similar argument shows the relationship
between the conflict relation of Et and that of E. It follows that E behaves exactly as
Et would after the occurrence of its minimal (prefixed) event. So, our function has been
shown to remove the minimal event of a process it is applied to.

Example 5 : Tensor matching — λy.[y > w ⊗ z => w] : (P⊗Q)⊸ P.
We construct Jλy.[y > w ⊗ z => w] : (P ⊗ Q) ⊸ PK from the span representing
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y : P⊗Q ⊢ [y > w ⊗ z => w] : P.

E
π1

yyssssssssss
π2

""F
FFFFFFFF

P⊗Q
[ ]

zzttttttttt
idP⊗Q

%%J
JJJJJJJJ P

[ ]

||yy
yy

yy
yy

y
idP

��=
==

==
==

=

P⊗Q P⊗Q P

(We again make use of the assumption that P and Q are disjoint and therefore that ⊗
can be defined in terms of union.)

As P⊗Q
[ ]
← P⊗Q

idP⊗Q

→ P⊗Q is the identity span for P ⊗ Q, the span E will be
isomorphic to

P
[ ]

{{vvvvv idP

��=
==

=

P⊗Q P.

So Jλy.[y > w ⊗ z => w] : (P⊗Q)⊸ PK is isomorphic to the span

P

out
��

(P⊗Q)⊸ P

where out : P→ (P⊗Q)⊸ P is defined by out(e) = {([e′], e′) | e′ ∈ [e]} for all e ∈ P.
We now show that the application of this function to a term t : P⊗Q acts to extract

the part of t that behaves like a process of type P and discards the rest.

Let Jt : P⊗QK be Et
outt−→ P⊗Q. Then J(λy.[y > w⊗z => w])t : PK is the composition

E
π1

{{wwwwwwwww
π2

""F
FFFFFFFF

Et

outt

##F
FF

FF
FF

FF
P

[ ]

||yy
yy

yy
yy

y
idP

��=
==

==
==

=

P⊗Q P.

The events in E will be of the form ([e], outt(e)) for e ∈ Et such that outt(e) ∈ P. It is
clear that E is isomorphic to the restriction of Et to those events that are mapped into

P by outt, i.e., E is isomorphic to E ↾ S where S
def
= {e′ ∈ Et | outt(e

′) ∈ P}. Indeed, the
span E is isomorphic to the span

Et ↾ S

out′t
��

P

where out′t is the restriction of outt.
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3.4 Concluding Remarks

In this chapter, by recalling the work of Nygaard and Winskel, we have demonstrated
event structures as both types and processes with the aim of helping the reader to become
familiar with event structures and their spans. The event structure semantics for Affine
HOPLA illustrates the way in which spans of event structures are an operational and
intuitive model of higher order processes. We have shown that they support many useful
constructions and, via our examples, given an intuition of the behaviours they capture.



Chapter 4

Event Structure Spans for

Non-Deterministic Dataflow

Recall that, in order to model dataflow, we require a feedback operation. In more recent
years feedback of the kind found in dataflow has reappeared in a variety of new contexts,
which are condensed in a more abstract and general formulation of the properties a
feedback operation, called trace, should satisfy. Let C be a category with a symmetric
monoidal structure, ⊗. A trace operation for C is defined to be a family of operations,

TrC
A,B : C(A⊗ C, B ⊗ C)→ C(A, B)

satisfying a number of axioms.

i) Bekic: If f : A⊗ U ⊗ V → B ⊗ U ⊗ V is a morphism in C then

TrU⊗V
A,B (f) = TrU

A,B(TrV
A⊗U,B⊗U(f)).

ii) Yanking : Define σA,B : A⊗B → B ⊗ A to be the isomorphism between A⊗B and
B ⊗ A for A, B in C. Then, if U is an object in C,

TrU
U,U(σU,U) = idU

where idU : U → U is the identity morphism of U .

iii) Superposing : If f : A⊗ U → B ⊗ U and g : V → W are morphisms in C

TrU
A⊗V,B⊗W ((idB ⊗ σU,W ) ◦ (f ⊗ g) ◦ (idA ⊗ σV,U)) = TrU

A,B(f)⊗ g.

iv) Naturality I : If f : C ⊗ U → B ⊗ U and g : A→ C are morphisms in C

TrU
A,B(f ◦ (g ⊗ idU)) = TrU

C,B(f) ◦ g.

v) Naturality II : If f : A⊗ U → C ⊗ U and g : C → B are morphisms in C

TrU
A,B((g ⊗ idU) ◦ f) = g ◦ TrU

A,C(f).

41
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vi) Dinaturality : If f : A⊗ U → B ⊗ V and g : V → U are morphisms in C

TrU
A,B((idB ⊗ g) ◦ f) = TrV

A,B(f ◦ (idA ⊗ g)).

The intuition behind this operation is illustrated in the following diagram.
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The reader is referred to the work of Verity, Joyal and Street [18] for more information
about the trace construction and to [15, 16] for a fuller set of references to this rich area.

In this chapter, which covers much of the same material as [30], we show that the
bicategory of spans of event structures supports a trace construction. Event structure
spans can therefore be used to model non-deterministic dataflow processes. Having defined
the trace operation, we argue that it possesses the correct properties. This is done by
relating spans of event structures to certain kinds of profunctor and showing that the
definition of trace for profunctors in [15, 16] corresponds to that for event structures.
Finally, we define deterministic spans, show that they correspond to continuous functions
and that, for these spans, the trace operation corresponds to the fixed point construction
given by Kahn in [19].

4.1 Trace for Event Structures

This section is devoted to defining a trace operation TrC
A,B which takes a span from A⊗C

to B ⊗ C to a span from A to B. Consider a span

E
d
zzuuuuu out

%%KKKKKK

A⊗ C B ⊗ C .

We first build a stable family out of those configurations of E which are secure. Roughly,
a configuration x is secure if the demand d(e) of each event e ∈ x is either met by the
input in A, or by previous output to C, which we imagine is fed back as input. This idea
is formalised below.

In defining the trace it is convenient, as in previous sections, to assume that both
pairs of sets A, C, and B, C are disjoint, so that we can treat the parallel compositions
A⊗C and B⊗C as given by union and write y∩C for the ‘projection’ of a configuration
y ∈ C(A⊗ C) to its component in the event structure C.

Definition 4.1.1. Let x be a configuration of E. A securing sequence in x with respect

to the span A⊗ C
d
← E

out
→ B ⊗ C consists of a sequence of events e1, · · · , en in x such

that
{e1, · · · , ei} ∈ C(E) and d(ei) ∩ C ⊆ out{e1, · · · , ei−1}
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for all i ≤ n. An event e is secured in x iff there is a securing sequence e1, · · · , en in x
with en = e. Finally, the configuration x is secure if each of its events is secured in x.

The subset of C(E) consisting of all the secure configurations will be shown to be a
stable family, from which we then obtain an event structure. Our proofs will make use of
a relation ≺x expressing the extra causal dependency on a configuration x of E which is
introduced through feedback.

Definition 4.1.2. Let x be a configuration of E. For all events e1 and e2 in x, define

e1 →x e2 iff out(e1) ∈ d(e2) ∩ C, and

e1 ≺x e2 iff e1 < e2 or e1 →x e2.

We define {e}x ⊆ x to be the set {e′ ∈ x | e′ ≺x
⋆ e} for all e ∈ x. (Note that because {e}x

must be a downwards closed subset of x with respect to causal dependency it is necessarily
a configuration.)

Lemma 4.1.3. An event e is secured in configuration x iff

i) ≺x is well-founded on {e}x, and

ii) (d†({e}x)) ∩ C ⊆ out(x).

Proof. if : Assume (i) and (ii). To prove that event e is secured in x, we require a securing
sequence for e. First note that the set {e}x is finite as ≺x is well-founded and the set of
≺x-predecessors of an event is also finite. Thus, tentatively we may take the securing
sequence to be a choice of order {e1, · · · , en} of the set {e}x which respects ≺x, i.e., for
0 < i, j ≤ n,

(ei ≺x ej ⇒ i < j) and en = e .

We now check that the chosen sequence is indeed securing. Observe that the set
{e1, · · · , ei}, with i ≤ n, is a configuration of E because it is a downwards closed subset
of x – this follows immediately from the definition of ≺x. It remains to confirm that
d(ei) ∩ C ⊆ out{e1, · · · , ei−1}, for all i ≤ n. Consider an event c ∈ d(ei) ∩ C for some
i ≤ n. As d†({e}x) ∩ C ⊆ out x, we have that c = out(e′) for some e′ ∈ x. By definition,
e′ →x ei, so e′ ≺x ei. Thus e′ ∈ {e}x and, as the sequence respects ≺x, we see that
e′ = ej for some j < i. This confirms that c ∈ out{e1, · · · , ei−1}. Hence {e1, · · · , en} is a
securing sequence.

only if : Assume that e1, · · · , en = e is a securing sequence in x.
We first show that for i ≤ n

e′ ≺x ei ⇒ e′ ∈ {e1, · · · , ei−1} (†)

and therefore that e′ = ej for some j < i.
By definition, if e′ ≺x ei then either e′ < ei or e′ →x ei. As {e1, · · · , ei} is a configura-

tion and therefore downwards closed with respect to <, if e′ < ei then e′ ∈ {e1, · · · , ei−1}.
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If e′ →x ei then out(e′) ∈ d(ei) ∩ C. But we have d(ei) ∩ C ⊆ out{e1, · · · , ei−1} by the
property of a securing sequence. So out(e′) = out(ej) where ej ∈ {e1, · · · , ei−1}. As both
e′ and ej are in x and out is a rigid morphism, we have e′ = ej and so e′ ∈ {e1, · · · , ei−1}.

Now we can show (i) and (ii).
(i) By (†), a ≺x-descending chain in {e}x induces a strictly descending chain of finite sets
under inclusion. This chain is certainly well-founded. Hence ≺x is well-founded on {e}x.
(ii) From (†) we have {e}x ⊆ {e1, · · · , en}, so d†({e}x) ⊆ d†({e1, · · · , en}). Thus

(d†({e}x)) ∩ C ⊆ (d†({e1, · · · , en}) ∩ C

⊆ (
⋃

i≤n

d(ei)) ∩ C

⊆
⋃

i≤n

(d(ei) ∩ C)

⊆
⋃

i≤n

out{e1, · · · , ei−1} as e1,. . . ,en is a securing sequence,

⊆ out(x) .

Corollary 4.1.4. A configuration x is secure iff

i) ≺x is well-founded on x, and

ii) d†(x) ∩ C ⊆ out(x).

Proof. if: Assume that a configuration x satisfies (i) and (ii) above. Let e ∈ x. Then
certainly ≺x is well-founded on {e}x and

(d†({e}x)) ∩ C ⊆ d†(x) ∩ C ⊆ out(x).

Thus e is secured in x by Lemma 4.1.3. But e was an arbitrary event in x. Hence x is
secure.
only if: Assume the configuration x is secure. By Lemma 4.1.3, ≺x is well-founded on x,
i.e., (i) . To show (ii):

d†(x) ∩ C = (
⋃

e∈x

d†({e}x)) ∩ C

=
⋃

e∈x

(d†({e}x) ∩ C) ⊆ out(x) , by Lemma 4.1.3.

In proving that the family of secure configurations forms a stable family, we will make
use of the following lemma.

Lemma 4.1.5. Suppose x and y are secure configurations of E with x ↑ y. Let e ∈ x∩ y.
Then,
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i) e′ ≺x e iff e′ ≺y e, for all events e′, and

ii) {e}x = {e}y.

If x is a secure configuration and e ∈ x, then {e}x is the least secure sub-configuration of
x containing e.

Proof. (i) Assume e ∈ x∩ y where x ↑ y. Suppose e′ ≺x e. Then either e′ < e or e′ →x e.
In the former case, e ∈ y and e′ ≺y e. In the latter case, out(e′) ∈ d(e) ∩ C with e′ ∈ x.
As y is secure,

d(e) ∩ C ⊆ (d†(y)) ∩ C ⊆ out(y) .

Thus out(e′) = out(e′′) with e′ ∈ x and some e′′ ∈ y. But x ↑ y and out is a rigid
morphism, so e′ = e′′ making e′ ∈ y. It follows that e′ →y e, and e′ ≺y e. In either case,
e′ ≺x e implies e′ ≺y e. The same argument proves the converse implication, establishing
(i).

(ii) Obvious from (i).

Assume e ∈ x where x is a secure configuration. From Corollary 4.1.4, to establish
that {e}x is secure it suffices to check (i) that ≺{e}x

is well-founded on {e}x and (ii)
that (d†({e}x)) ∩ C ⊆ out {e}x. Now (i) follows directly because ≺x, which includes
≺{e}x

, is well-founded on {e}x by Lemma 4.1.3. We now concentrate on showing (ii). By
Lemma 4.1.3, as x is secure, we have that (d†({e}x)) ∩ C ⊆ out(x). Thus any event of
(d†({e}x))∩C takes the form out(e′) for some e′ ∈ x. But supposing out(e′) ∈ (d†({e}x))∩
C, then out(e′) ∈ (d(e′′))∩C, i.e., e′ →x e

′′, for some e′′ ∈ {e}x. Consequently, e′ ∈ {e}x.
Hence (d†({e}x)) ∩ C ⊆ out {e}x.

Suppose e ∈ y ⊆ x where y is a secure configuration. Then certainly x ↑ y, so
{e}x = {e}y ⊆ y. Thus, {e}x is the least secure sub-configuration of x containing e.

Theorem 4.1.6. The family consisting of all secure configurations of E is a stable family.
For any e ∈ x, a secure configuration, [e]x = {e}x.

Proof. Let S = {x ∈ C(E) | x is secure}. We show S is a stable family.

Coherence: ∀X ⊆ S. (∀x, y ∈ X. x ↑ y)⇒
⋃
X ∈ S.

Assume X is a pairwise compatible subset of S. It is clear that
⋃
X is a configuration of

E. If e ∈
⋃
X then e ∈ x for some x in X. As e is secured in x and x ⊆

⋃
X, there is a

securing sequence for e in
⋃
X.

Stability : ∀X ⊆ S. X ↑ ⇒
⋂
X ∈ S.

Suppose X ⊆ S and X ↑. Then there exists a secure configuration y of E for which
∀x ∈ X. x ⊆ y holds. For such a y, consider the set

Y
def
= {{e}y | e ∈

⋂
X } .
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It consists of secure configurations which are certainly pairwise compatible, with upper
bound y. By coherence,

⋃
Y is a secure configuration. Clearly,

⋂
X ⊆

⋃
Y as each

e ∈
⋂
X is a member of {e}y. For any e ∈

⋂
X and x ∈ X, then {e}y = {e}x ⊆ x, by

Lemma 4.1.5. So we also have the reverse inclusion
⋃
Y ⊆

⋂
X ensuring the equality⋂

X =
⋃
Y , and that

⋂
X is a secure configuration.

Finiteness : ∀x ∈ S∀e ∈ x∃y ∈ S. y ⊆ x & e ∈ y & |y| <∞.
If x is secure then each event e in x must have a securing sequence. This determines a
finite secure configuration in S which contains e.

Coincidence-freeness : ∀x ∈ S, e1, e2 ∈ x. e1 6= e2 ⇒

∃y ∈ S. y ⊆ x & ((e1 ∈ y) & (e2 6∈ y)) or ((e2 ∈ y) & (e1 6∈ y)).

Assume e1, e2 ∈ x ∈ S and e1 6= e2. Consider the secure configurations {e1}x and {e2}x. If
e2 is a member of {e1}x then e2 ≺

+
x e1. As x is secure, it cannot be the case that e1 ≺

+
x e2

– otherwise we would contradict the well-foundedness of ≺x. Therefore e1 6∈ {e2}x if
e2 ∈ {e1}x and vice versa.

Finally, let e ∈ x, a secure configuration. Both [e]x (by definition) and {e}x (by
Lemma 4.1.5) are the smallest secure sub-configurations of x which contain e, and hence
equal.

We can now define the trace operation.

Definition 4.1.7. We define Tr(A⊗ C
d
← E

out
→ B ⊗ C) to be A

d′

← P
out′

→ B where P is
the event structure with

• Events, the prime configurations p of S, the stable family of secure configurations
of E, for which out(max(p)) ∈ B, with

• Causal dependency, p1 ≤ p2 iff p1 ⊆ p2, and

• Conflict, p1#p2 iff p1 6↑ p2 in S,

and where we define d′(p)
def
= d†(p) ∩ A and out′(p)

def
= out(max(p)) for p ∈ P .

We should check that the definition of trace does indeed yield a span. In order to
show that out′ is rigid we observe the following.

Lemma 4.1.8. For e1 and e2 in x ∈ C(E), if e1≺x
⋆e2 and e1 6≤ e2 then out(e1) ∈ C.

Proof. By a simple induction on the length of chain e1 ≺x · · · ≺x e2.
Basis: Suppose that e1 ≺x e2. In this case e1 6≤ e2 implies that e1 →x e2, so out(e1) ∈ C.
Induction step: Suppose that the property holds for all chains of length less than or
equal to k, i.e., assume that if e1≺x

ke2 and e1 6≤ e2 then out(e1) ∈ C. Suppose e1≺x
k+1e2

and e1 6≤ e2. Then there exists an e′ with e1≺x
ke′ and e′ ≺x e2. If e1 6≤ e′ then, by the

induction hypothesis, out(e1) ∈ C. If e1 ≤ e′ then, as e1 6≤ e2, we have e′ 6≤ e2 and so
out(e′) ∈ C. But then out(e1) ∈ C as out is a rigid morphism.



4.2. SPANS AND ROOTED PROFUNCTORS 47

Lemma 4.1.9. The map out′ is a rigid morphism:

Proof. We first show that out′ preserves causal dependency. Suppose p′ ≤ p in P . Write
max(p′) = e′ and max(p) = e. Then, e′ ≺p e as [e]p = {e}p. Now, by Lemma 4.1.8,
e′ ≤ e as out(e′) ∈ B. Thus out(e′) ≤ out(e), as out is rigid, which directly yields
out′(p′) ≤ out′(p).

Now let X be a configuration of P . First observe that

out′X = B ∩ out(
⋃

X) .

Clearly we have the inclusion out′(X) ⊆ B ∩ out
⋃
X. To show the reverse inclusion,

suppose e ∈
⋃
X and out(e) ∈ B. Then, e ∈ p for some p ∈ X. Write p′

def
= [e]p. Because

p′ ≤ p and X is downwards closed, p′ ∈ X, with out′(p′) = out(e) – as required.
As out′(X) ∈ C(B) for all X ∈ C(P ) we have out′[p] ⊆ [out′(p)] for all p ∈ P . So, as

causality is preserved, we have out′[p] = [out′(p)].
The preservation of configurations by out′ also implies that it must reflect conflict.
Suppose p, p′ ∈ X and out′(p) = out′(p′). The union

⋃
X is a secure configuration,

compatible with both p and p′. Thus p = [e]S X and p′ = [e′]S X for some e, e′ ∈
⋃
X.

From the definition of out′ it follows that out(e) = out(e′). Because out is a rigid morphism
sending both e, e′ ∈

⋃
X to a common event we must have e = e′. Hence p = p′.

Theorem 4.1.10. The trace Tr(A⊗ C
d
← E

out
→ B ⊗ C) is a span.

Proof. In the definition of the trace Tr(E) as the span A
d′

← P
out′

→ B it is easily seen that
P is an event structure as it is formed from S as described in Section 2.2.3. Lemma 4.1.9
confirms that out′ is indeed a rigid morphism. That d′ is a demand morphism follows
directly from its definition.

In [15, 16], a trace operation was given for stable rooted port profunctors and shown
to obey the trace axioms. In the next section we will show that spans of event structures
represent certain stable, rooted profunctors and that the representation respects both
sequential and parallel composition as well as the trace operation. It follows that, for
the limited case where the spans represent port profunctors, the trace axioms hold up to
isomorphism for our definition of trace. In fact it is believed that the definition of trace
for profunctors obeys the axioms for all stable rooted profunctors. If this is indeed proved
to be the case, the results in the next section are sufficient to show that the axioms hold
for our definition of trace in general.

4.2 Spans and Rooted Profunctors

In this section, we show how spans of event structures correspond to certain profunctors
and that the trace operation defined in the previous section coincides with the trace
defined on stable profunctors in [15, 16]. In this case, the profunctors will be between
partial orders of finite configurations of event structures (regarded as categories). We
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shall write C0(E) for the partial order of finite configurations of an event structure E
under inclusion.

It is helpful to give an alternative characterisation of rigid morphisms between event
structures before describing the profunctors determined by event structure spans.

Proposition 4.2.1. Let E1 and E2 be event structures. A function f from the set of
events E1 to the set of events E2 is a rigid morphism f : E1 → E2 iff

∀x ∈ C(E1). f(x) ∈ C(E2) & ∀e, e′ ∈ x. f(e) = f(e′)⇒ e = e′ , and

∀x′ ∈ C(E1), y ∈ C(E2). y ⊆ f(x′) ⇒ ∃x ∈ C(E1). x ⊆ x′ & f(x) = y .

(x is necessarily unique and given by x = {e ∈ x′ | f(e) ∈ y}.)

We now define the operation ( ) that maps a span A
d
← E

out
→ B to a functor

E : C0(A)× C0(B)op → Set,

i.e., a profunctor between C0(A) and C0(B).

Definition 4.2.2. Define E for an event structure E by

E(a, b)
def
= {x ∈ C0(E) | d†(x) ⊆ a & out(x) = b}

E(a ⊆ a′, b′ ⊆ b)(x)
def
= {e ∈ x | out(e) ∈ b′}

for a, a′ ∈ C0(A) and b, b′ ∈ C0(B).

We show that E is a rooted stable profunctor in the sense of [15, 16].

Proposition 4.2.3. The operation E is a rooted stable profunctor.

Proof. We first show that E is a functor from C0(A)× C0(B)op to Set.
Suppose a ⊆ a′ in C0(A). Then E(a, b) ⊆ E(a′, b) because any configuration x of E

with demand d†(x) ⊆ a will make d†(x) ⊆ a′. So, E(a ⊆ a′, b) is an inclusion map from
E(a, b) into E(a′, b). Therefore E respects the inclusion order on configurations in C0(A)
covariantly.

Suppose b′ ⊆ b in C0(B). Then E(a, b′ ⊆ b) is a map from E(a, b) to E(a, b′). Let
x be a member of E(a, b′). It follows from Proposition 4.2.1 and out being rigid that
{e ∈ x | out(e) ∈ b′} is a member of E(a, b′). So, E respects the inclusion order on
configurations in C0(B) contravariantly.

It is easy to see that E respects identities and compositions of inclusions, so we have
a functor to the category of sets

E : C0(A)× C0(B)op → Set ,

i.e., a profunctor from C0(A) to C0(B). As ∅ ∈ C0(B) and only ∅ is mapped to ∅ by out
we have E(a, ∅) = {∅} for all a ∈ C0(A). It is therefore rooted.

It can easily be shown from the stability of out that E preserves pullbacks in its second
argument. It is therefore stable in the sense of [15, 16].
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We now define the action of ( ) on span morphisms (Definition 2.4.2).

Definition 4.2.4. Let f : E1 → E2 be a morphism between spans.

E1

d1

����
��
��
��
��
��
��
�

f

��
out1

��0
00

00
00

00
00

00
00

E2

d2~~}}
}}

}}
}

out2   A
AA

AA
AA

A B

Define the family of operations f by

fa,b(x)
def
= f(x)

for all x ∈ E1(a, b)

Proposition 4.2.5. For all morphisms f : E1 → E2 between spans of event structures

A
d1← E1

out1→ B and A
d2← E2

out2→ B, we have that f is a natural transformation from E1 to
E2.

Proof. We show that the following diagram commutes.

E1(a, b)

E1(a⊆a′, b′⊆b)
��

fa,b // E2(a, b)

E2(a⊆a′, b′⊆b)
��

E1(a
′, b′)

fa′,b′

// E2(a
′, b′)

Let x be a member of E1(a, b). As x is a configuration of E1 we know that f(x) is a
configuration of E2. It follows from Definition 2.4.2 that we have d†2(f(x)) ⊆ d1

†(x) and
out2(f(x)) = out1(x). So, fa,b(x) is a member of E2(a, b). It is easy to show that

E2(a ⊆ a′, b′ ⊆ b) ◦ fa,b = fa′, b′ ◦ E1(a ⊆ a′, b ⊆ b′).

In fact, spans embed faithfully in the bicategory of profunctors and the embedding
reflects isomorphisms.

The tensor operation for profunctors given in [15, 16] is also a simple parallel compo-
sition.

Definition 4.2.6. Let X : C0(A1) × C
0(B1)

op → Set and Y : C0(A2) × C
0(B2)

op → Set

be profunctors. As before, assume without loss of generality that A1 and A2 are disjoint
and also that B1 and B2 are disjoint. Define X ⊗ Y by

(X ⊗ Y )(a, b)
def
= X(a ∩ A1, b ∩B1)× Y (a ∩ A2, b ∩B2)

for all a ⊆ A1 ∪ A2 and b ⊆ B1 ∪B2.



50 CHAPTER 4. EVENT STRUCTURES FOR DATAFLOW

The tensor operation for profunctors corresponds to that for spans.

Proposition 4.2.7. Let E1 and E2 be spans of event structures. There is a natural
isomorphism between E1 ⊗ E2 and E1 ⊗ E2.

Proof. Define θ : S1 ⊗ S2 → S1 ⊗ S2 by

θa,b(x)
def
= (x ∩ E1, x ∩ E2)

θ−1
a,b(w, z)

def
= w ∪ z

for all x ∈ S1 ⊗ S2(a, b) and (w, z) ∈ (S1 ⊗ S2)(a, b). It is routine to check that θ is
indeed a natural isomorphism.

We now show that the trace construction on event structure spans coincides with that
given for profunctors in [15, 16]. So, it inherits the properties of trace proved there.

We define trace on stable rooted profunctors (Definition 18 in [15]) by the usual coend
operation on profunctors (see [9]) restricted to elements which are secure. Here, the
concept of secure is expressed without the benefit of concepts from event structures. We
recall the definitions with respect to E for a span of event structures

E
d
zzuuuuu out

$$I
IIII

A⊗ C B ⊗ C .

We assume this span from now on.
We recall the definition of an element of a profunctor.

Definition 4.2.8. An element of the profunctor E is a triple (y, z;x) where x ∈ E(y, z).

The definition of trace on stable rooted profunctors relies on three relations between
the elements.

Definition 4.2.9. Let (y, z;x) and (y′, z′;x′) be elements of E. Define

(y, z;x)
A
→ (y′, z′;x′) iff z = z′ & x = x′ & ∃a ∈ A. y ∪ {a} = y′ , and

(y, z;x)
B
→ (y′, z′;x′) iff ∃b ∈ B. z ∪ {b} = z′ & x = {e ∈ x′ | out(e) ∈ z}

& y = y′ .

Define (y, z;x) (y′, z′;x′) iff (y, z′;x′) is an element with

y ⊆ y′ and z ⊆ z′ and

y ∩ A = y′ ∩ A and z ∩B = z′ ∩B and

y ∩ C = z ∩ C and y′ ∩ C = z′ ∩ C and

x = {e ∈ x′ | out(e) ∈ z} .
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The relation
A
→ describes the change of element associated with an input in A. Sim-

ilarly,
B
→ describes the change of element associated with an output on B. The relation

 may be thought of as describing the input in C that is matched by prior output on C.
It is used in the definition of trace to identify those elements requiring no more input in
C than they output.

The proposition below is used several times in the remainder of this section.

Proposition 4.2.10. A finite configuration x of E is secure iff there is a securing sequence
e1, ..., en such that x = {e1, ..., en}.

Proof. If : This follows directly from the definition of a securing sequence.
Only if : Assume that x is a secure configuration. From Corollary 4.1.4, the relation ≺x

is well-founded and d†(x) ∩ C ⊆ out x. As x is finite, we can order its events in a way
that respects ≺x, i.e., e1, ..., en, such that ei ≺x ej implies i < j. This will be a securing
sequence.

The definition of secure element as described in [15, 16] is recalled below.

Definition 4.2.11. Let (y, z;x) be an element of E. Then (y, z;x) is a secure element

iff (∅, ∅; ∅)(
A
→ ∪

B
→ ∪ )⋆(y, z;x).

We now show that the notion of secure element corresponds to that of secure config-
uration.

Lemma 4.2.12. Let (y, z;x) be an element of E. Then (y, z;x) is a secure element iff
the configuration x is secure.

Proof. Only if : Define the property Q of an element (y, z;x) of E by

Q(y, z;x) iff x is secure and y ∩ C ⊆ out x.

Clearly we have Q(∅, ∅; ∅). In order to show that Q holds for all secure elements it
therefore suffices to show the following. In the cases

i) (y, z;x)
A
→ (y′, z′;x′),

i i) (y, z;x)
B
→ (y′, z′;x′) or

iii) (y, z;x) (y′, z′;x′),

if Q(y, z;x) holds then Q(y′, z′, x′) holds.

i) If (y, z;x)
A
→ (y′, z′;x′) then, from the definition, x = x′ and y′ ∩ C = y ∩ C. So

Q(y, z;x) clearly implies Q(y′, z′;x′).

ii) Suppose (y, z;x)
B
→ (y′, z′;x′) and Q(y, z;x). Then, from the definition of

B
→, we have

y = y′ and x′ = x ∪ {e′} for some e′ ∈ x such that out(e′) ∈ B. As out(x′) therefore
contains out(x) and y∩C = y′∩C, we have that y′∩C ⊆ out(x′). From Proposition 4.2.10
and the fact that x is secure, a securing sequence e1, ..., en exists such that {e1, ..., en} = x.
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If we extend the sequence to e1, ..., en, e
′ we also have a securing sequence. This is the

case because

d(e′) ∩ C ⊆ d†(x′) ∩ C

⊆ y′ ∩ C

= y ∩ C

⊆ out(x)

⊆ out{e1, ..., en}.

Hence x′ is secure. So, Q(y′, z′;x′) holds.
iii) Assume (y, z;x)  (y′, z′;x′) and Q(y, z;x). As before, take a securing sequence
e1, ...en such that x = {e1, ..., en}. As x′ is a finite configuration and x ⊆ x′, we can
choose a sequence of events e′1, ..., e

′
m such that x′ = x ∪ {e′1, ..., e

′
m} and x ∪ {e′1, ..., e

′
i} is

a configuration of E for all 0 < i ≤ m. We now show that the concatenated sequence is a
securing sequence. It follows from the definition of  that (y, z′;x′) must be an element
of E and therefore we have d†(x′) ⊆ y. Hence

d(e′i) ∩ C ⊆ y ∩ C

⊆ out(x) (from the holding of Q(y, z;x))

⊆ {e1, ..., en, e
′
1, ..., e

′
i−1}.

So, from Definition 4.1.1 and Proposition 4.2.10, we have that x′ is secure. From the
definition of  , we have y′ ∩ C = z′ ∩ C. Also, because (y′, z′;x′) is an element of E, we
have z′ ∩ C = out(x′) ∩ C. So, y′ ∩ C ⊆ out(x′).

If : Define the relation
e
→ between configurations of E by x

e
→ x′ iff x and x′ are secure

configurations of E such that e 6∈ x and x′ = x ∪ {e}.
We first show that if x

e
→ x′ and (y, z;x) is an element with z ∩ C ⊆ y, then

(y, z;x)(
A
→ ∪

B
→ ∪ )⋆(y′, z′;x′)

for some element (y′, z′;x′) with z′ ∩ C ⊆ y′.
Assume x

e
→ x′ and (y, z;x) is an element with z ∩ C ⊆ y. As x is secure, there

must exist a securing sequence e1, ..., en such that x = {e1, ..., en}. As x′ is secure and

x′ = x ∪ {e}, we have d(e) ∩C ⊆ out(x). In proving that (∅, ∅; ∅)(
A
→ ∪

B
→ ∪ )⋆(y, z;x),

we must consider two cases: (i) when out(e) ∈ B and (ii) when out(e) ∈ C.
(i) Suppose out(e) ∈ B. Observe that d(e)\y ⊆ A because

d(e) ∩ C ⊆ (out(x)) ∩ C

= z ∩ C

⊆ y.

So, we have

(y, z;x)
A
→

⋆

(y ∪ d(e), z;x)
B
→ (y ∪ d(e), z ∪ {out(e)};x′).
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Also, as out(e) ∈ B, we have (z ∪ {out(e)})∩C = z ∩C and therefore (z ∪ {out(e)})∩C
is a subset of y and therefore of y ∪ d(e).
(ii) Suppose out(e) ∈ C. Again, we have d(e)\y ⊆ A, via the same argument as before.
So, we have

(y, z;x)
A
→

⋆

(y ∪ d(e), z;x) (y ∪ d(e) ∪ {out(e)}, z ∪ {out(e)};x′).

Also, we have

(z ∪ {out(e)}) ∩ C = (z ∩ C) ∪ {out(e)}

⊆ y ∪ d(e) ∪ {out(e)}.

Assume that x is a secure configuration of E. As (y, z;x) is an element of E, x is
necessarily finite. From Proposition 4.2.10, we can choose a securing sequence e1, ..., en

such that {e1, ..., en} equals x. Define xi to be the set {e1, ..., ei}, for 0 ≤ i ≤ n. So, each
xi is secure and, from the definition of

e
→, we have

∅ = x0
e1→ x1

e2→ x2...
en→ xn = x.

From this chain and the previous result, we can inductively produce a chain

(∅, ∅; ∅)(
A
→ ∪

B
→ ∪ )⋆(y, z;x)

to the element (y, z;x) of E.

We now define the trace of a stable rooted profunctor E from [15, 16]. This construc-
tion mimics the definition of the construction of a coend in the category of sets but is
restricted to secure elements. It is defined in terms of an equivalence relation ∼ between
secure elements. For the benefit of readers unfamiliar with coends, we define the trace
operation without the notation associated with them.

Definition 4.2.13. Define ∼ to be the symmetric, transitive closure of  .
Define the stable rooted profunctor

Tr(E) : C0(A)× C0(B)op → Set

as follows.

Tr(E)(y0, z0)
def
=

{[y, z;x]∼ | (y, z;x) is a secure element and y ∩ A = y0 and z ∩B = z0}

for all y0 ∈ C
0(A) and z0 ∈ C

0(B).
If y0 ⊆ y′0 in C0(A) then

Tr(E)(y0 ⊆ y′0, z0) : Tr(E)(y0, z0)→ Tr(E)(y′0, z0)
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is defined to map an equivalence class of elements [y, z;x]∼ ∈ Tr(E)(y0, z0) to the equiv-
alence class [y ∪ y′0, z;x]∼.

If z0 ⊆ z′0 in C0(B) then

Tr(E)(y0, z0 ⊆ z′0) : Tr(E)(y0, z
′
0)→ Tr(E)(y0, z0)

is defined to map an equivalence class of elements [y, z;x]∼ in Tr(E)(y0, z
′
0) to [y, z′;x′]∼

where z′ = (z ∩ C) ∪ z0 and x′ = {e ∈ x | out(e) ∈ (z ∩ C) ∪ z0}.

To see that Tr(E)(y0 ⊆ y′0, z0) is well-defined, consider the following. Let [y, z;x]∼
be a member of Tr(E)(y0, z0). To see that [y ∪ y′0, z;x]∼ is a member of Tr(E)(y′0, z0),

observe that we have (y, z;x)
A
→

⋆

(y ∪ y′0, z;x). Therefore, as (y, z;x) is a secure element,
we know (y ∪ y′0, z;x) is secure. It is also clear that (y ∪ y′0) ∩A = y′0 as y0 ⊆ y′0. Finally,
suppose (y′, z′;x′) ∈ [y, z;x]∼. Observe that (y, z;x) ∼ (y′, z′;x′) implies (y ∪ y′0, z;x) ∼
(y′ ∪ y′0, z

′;x′).
To see that Tr(E)(y0, z0 ⊆ z′0) is well-defined, consider the following. Let [y, z;x]∼

be a member of Tr(E)(y0, z
′
0) and let [y, z′;x′]∼ be Tr(E)(y0, z0 ⊆ z′0)[y, z;x]∼. That x′

is a configuration of E follows from Proposition 4.2.1. Clearly, out maps x′ to z′. We

have (y, z′;x′)
B
→

⋆

(y, z;x) and so (y, z′;x′) is secure. So, [y, z′;x′]∼ is indeed a member
of Tr(E)(y0, z0). Finally, suppose (y′′, z′′;x′′) ∈ [y, z;x]∼. Let z′′′ = (z′′ ∩ C) ∪ z0

and x′′′ = {e ∈ x′′ | out(e) ∈ (z′′ ∩ C) ∪ z0}. Observe that (y, z;x) ∼ (y′′, z′′;x′′) implies
(y, z′;x′) ∼ (y′′, z′′′;x′′′).

Definition 4.2.14. Let x be a secure configuration of E. Define min(x) by

min(x)
def
=

⋂
{s ⊆ x | s ∈ C(E) and s secure and out(s) ∩B = out(x) ∩B}.

Observe that, because the secure configurations of E form a stable family (see Theo-
rem 4.1.6), min(x) is the minimum secure sub-configuration of x that outputs the same
events in B as x.

Lemma 4.2.15. For secure elements, we have

(y, z;x) ∼ (y′, z′;x′) iff

y ∩ A = y′ ∩ A and z ∩B = z′ ∩B and min(x) = min(x′).

Proof. If : Assume y ∩ A = y′ ∩ A and z ∩ B = z′ ∩ B and min(x) = min(x′). Let x0 =
min(x), y0 = d†(x0) ∪ (y ∩ A) and z0 = out(x0). It follows from the definition of  that
we have (y0, z0;x0) (y, z;x) and (y0, z0;x0) (y′, z′;x′). Hence (y, z;x) ∼ (y′, z′;x′).
Only if : Assume (y, z;x)  (y′, z′;x′). From the definition of  (Definition 4.2.9), we
have y∩A = y′∩A and z∩B = z′∩B and that x is a subset of x′. From Definition 4.2.14,
min(x) is the least secure configuration s such that s ⊆ x and out(s) ∩ B = z ∩ B. As
z′∩B = z∩B, we know out(x′\x)∩B = ∅. So, min(x) is also the least secure configuration
s such that s ⊆ x′ and out(s) ∩B = z′ ∩B. It must therefore be equal to min(x′).
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Theorem 4.2.16. There is a natural isomorphism

θ : Tr(E) ∼= Tr(E)

with components θy0,z0
: Tr(E)(y0, z0)→ Tr(E)(y0, z0) defined by

θy0,z0
([y, z;x]∼)

def
= {p ∈ Tr(E) | p ⊆ x}.

Proof. Let x be a secure configuration of E. As the secure configurations of E form a
stable family S, it follows from the properties of stable families that x is the union of all
the prime configurations p in S below it. As Tr(E) has the prime configurations of S for
which out(max(p)) ∈ B as its events, we have

min(x) =
⋃
{p ∈ Tr(E) | p ⊆ x}.

We argue that this implies θy0,z0
is a well-defined function. We have that θy0,z0

([y, z;x]∼)
consists of those p ∈ Tr(E) for which p ⊆ min(x). It is therefore a configuration of
Tr(E). It follows directly from the definition of Tr(E) that, as min(x) ⊆ x, the demand
of θy0,z0

([y, z;x]∼) is a subset of y0 = y ∩A. Also, because out(min(x))∩B = out(x)∩B,
the output for θy0,z0

([y, z;x]∼) is equal to z0 = z ∩ B. Finally, the definition of θy0,z0

is independent of the choice of element in the equivalence class. Suppose (y′, z′;x′) ∈
[y, z;x]∼. It is easy to show min(x) = min(x′) and therefore

{p ∈ Tr(E) | p ⊆ x} = {p ∈ Tr(E) | p ⊆ x′}.

Define ϕy0,z0
: Tr(E)(y0, z0)→ Tr(E)(y0, z0) by

ϕy0,z0
(X)

def
= [y, z;x]∼

where x =
⋃
X, y = d†(x) ∪ y0 and z = out(x). Then we have

ϕy0,z0
θy0,z0

([y, z;x]∼) = ϕy0,z0
({p ∈ Tr(E) | p ⊆ x})

= [d†(min(x)) ∪ y0, out min(x);min(x)]∼

= [y, z;x]∼,

from the above observations. Also

θy0,z0
ϕy0,z0

(X) = {p ∈ Tr(E) | p ⊆
⋃

X} = X,

from the properties of primes as X is downwards closed. So, ϕy0,z0
is the inverse of θy0,z0

.
It is routine to verify the naturality of θy0,z0

.
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4.3 Deterministic Dataflow

Selinger ([32]) describes a deterministic dataflow process as a dataflow process

- -

for which the process

�
�

��*

H
H

HHj

-

is indistinguishable from the process

-

-

�
�

��*

H
H

HHj

where the splitting arrows represent the fork process.

To connect with Kahn’s classic treatment of deterministic dataflow, we define the
notion of a deterministic span. Such spans represent stable functions between domains of
configurations, and can be used to model deterministic dataflow. The trace construction
on event structures is shown to correspond to the least fixed point construction detailed
in [19].

Definition 4.3.1. A span

E
d
~~~~

~~ out
  @

@@
@

A B

is deterministic iff d(e1) ↑ d(e2)⇒ ¬(e1#e2) for all e1, e2 ∈ E.

The extra requirement of the demand morphism ensures that no two conflicting events
of E can require consistent configurations of A. Such spans represent stable functions
(see [2]) between domains of configurations.

Definition 4.3.2. Let A
d
← E

out
→ B be a deterministic span. Define

∼

E(y)
def
= out{e ∈ E | d(e) ⊆ y} , for all y ∈ C(A).

Theorem 4.3.3. The mapping
∼

E determines a function C(A)→ C(B) that is continuous
and stable for all deterministic spans E. Moreover, any stable function from C(A) to C(B)
can be represented in this way.
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Proof. To show
∼

E(y) ∈ C(B), as out preserves configurations, it is sufficient to demon-
strate that the set {e ∈ E | d(e) ⊆ y} is a configuration of E. Let x = {e ∈ E | d(e) ⊆ y}.
To see that x is downwards closed, let e ∈ x and suppose e′ ≤ e. Then d(e′) ⊆ d(e) due
to the properties of demand morphisms and so d(e′) ⊆ y. So, we have e′ ∈ x. That all
the events are consistent follows from the definition of deterministic spans.

As the demand of an event is a finite configuration, it follows straightforwardly that
∼

E is continuous. To see it is stable we observe that
∼

E factors into the composition out◦F
where F is defined by

F (y) = {e ∈ E | d(e) ⊆ y} , for y ∈ C(A) .

The function F : C(A) → C(E) preserves all intersections so it is certainly stable, while
out is a rigid morphism so a stable function on configurations, from C(E) to C(B). Their

composition
∼

E is therefore stable.
To see that any stable function f : C(A)→ C(B) can be represented by a deterministic

span, define a corresponding event structure E as follows. Its events E are pairs (y, b)
where y is a finite configuration of A and b is an event of B for which y is a minimal
configuration such that b ∈ f(y), i.e., b is a member of f(y) and for no configuration
y′ ⊂ y do we have b ∈ f(y′). (Because f is stable, if b ∈ f(w) then there is a unique,
minimal y ⊆ w with (y, b) ∈ E.) Define

(y, b) ≤ (y′, b′) iff y ⊆ y′ & b ≤ b′ , and

(y, b)#(y′, b′) iff y 6↑ y′ or b#b′ .

That ≤ is a partial order follows immediately from the subset relation and the causality
relation being partial orders and the continuity of f . Let (y1, b1), (y2, b2) and (y3, b3) be
events in E. That [(y, b)] is finite for all (y, b) ∈ E follows immediately from the finiteness
of y and [b]. Clearly the conflict relation is irreflexive and symmetric. In order to confirm
that E is an event structure, we must show that (y1, b1)#(y2, b2) and (y2, b2) ≤ (y3, b3)
implies (y1, b1)#(y3, b3). There are two cases to consider – y1 6↑ y2 and b1#b2. In the first
case, as y2 ⊆ y3, we have y1 6↑ y3 and therefore (y1, b1)#(y3, b3). In the second case we
have b2 ≤ b3 and b1#b2 so, as B is an event structure, b1#b3. So E is an event structure.

Define d : E → C(A) by d(y, b)
def
= y. We now show that d is a demand morphism. Let

(y1, b1) and (y2, b2) be events in E. That (y1, b1) ≤ (y2, b2) implies d(y1, b1) ⊆ d(y2, b2)
and also that d(y1, b1) 6↑ d(y2, b2) implies (y1, b1)#(y2, b2) is obvious from the definitions
of d and E. So, d is indeed a demand morphism. We also show d(y1, b1) ↑ d(y2, b2)
implies ¬(b1#b2). Assume d(y1, b1) ↑ d(y2, b2). Then we have y1 ↑ y2. It remains to
check ¬(b1#b2). If y1 ↑ y2 then there exists z ∈ C(A) such that y1 ⊆ z and y2 ⊆ z. As f
is continuous, f(y1) ⊆ f(z) and f(y2) ⊆ f(z) and f(z) ∈ C(B). So b1 and b2 are members
of f(z) and therefore are not in conflict.

Define out : E → B by out(y, b)
def
= b. We show that out is a rigid morphism. First

we show [out(y, b)] = out[(y, b)] for all (y, b) ∈ E. Let b′ ∈ [out(y, b)]. Then b′ ≤ b so
b′ ∈ f(y). From the stability of f , there is a unique minimal y′ ⊆ y with (y′, b′) ∈ E and
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clearly (y′, b′) ≤ (y, b). So b′ ∈ out[(y, b)]. Let b′ ∈ out[(y, b)]. Then there exists a y′

such that (y′, b′) ≤ (y, b). So b′ ≤ b and therefore b′ ∈ [out(y, b)]. It is obvious from the
definition of conflict in E that out reflects conflict. Finally we show out(y, b) = out(y′, b′)
implies (y, b) = (y′, b′) or (y, b)#(y′, b′). Assume out(y, b) = out(y′, b′) for distinct
(y, b) and (y′, b′) in E. Then b = b′ but y 6= y′. As f is stable, there cannot be z ∈ C(A)
containing both y and y′ and therefore y 6↑ y′. So (y, b)#(y′, b′).

We therefore have that E, d and out together form a deterministic span. It is clear

that
∼

E = f .

Theorem 4.3.3 and its proof provide two operations, one from deterministic spans to
stable functions, and an inverse operation from stable functions to deterministic spans.
These operations are part of a bi-equivalence between the bicategory of deterministic
spans and the order-enriched category of stable functions on coherent prime algebraic
domains.

Another interesting point to note is that the morphisms between deterministic spans
now correspond to a continuous ordering of the continuous functions to which the spans
correspond. Let f1 and f2 be continuous functions between the configurations of two event
structures A and B. The ordering given by span morphisms corresponds to defining f1

as being below f2 iff f1(a) ⊆ f2(a) for all a ∈ C(A).

Proposition 4.3.4. The composition of two deterministic spans is deterministic.

Proof. Let A
d1← E1

out1→ B and B
d2← E2

out2→ C be deterministic spans with composition

A
d
← E3

out
→ C, which we check is deterministic.

Let (x1, e2) and (x′1, e
′
2) be events in E3 and assume d(x1, e2) ↑ d(x

′
1, e

′
2). This is true iff

d1
†(x1) ↑ d1

†(x′1). As the span E1 is deterministic, x1 ↑ x
′
1. Consequently, d2(e2) ↑ d2(e

′
2),

because, by the definition of composition, d2(e2) = out1(x1) and d2(e
′
2) = out1(x

′
1) and

out1 reflects conflict. This implies ¬(e2#e
′
2), as the span E2 is deterministic. As x1 ↑ x

′
1

and ¬(e2#e
′
2) it follows that we have ¬((x1, e2)#(x′1, e

′
2)).

For the remainder of this section, let

A⊗ C
d
← E

out
→ B ⊗ C

be a deterministic span. We explore the properties of its trace. As usual, we assume that
A ∩ C = ∅ and B ∩ C = ∅ and take the parallel compositions A ⊗ C and B ⊗ C to be
unions as described in Section 2.3.

Lemma 4.3.5. Let y ∈ C(A). For s ⊆ E define ϕ by

ϕ(s)
def
= {e ∈ E | d(e) ⊆ y ∪ (C ∩ out s)} .

This determines a continuous function ϕ : C(E)→ C(E) such that Sec(y)
def
= µs.ϕ(s), the

least fixed point of ϕ, is a secure configuration of E.
Moreover, Sec(y) is the maximum secure configuration x of E such that

d†(x) ∩ A ⊆ y .
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Proof. That ϕ is a function between configurations follows from determinism, while con-
tinuity follows from finiteness of demands, as in the proof of Theorem 4.3.3.

Then µs.ϕ(s) =
⋃

i∈ω si, a union of an ⊆-increasing chain of configurations of E given
inductively by

s0 = ∅

si+1 = ϕ(si).

Observe that, as ϕ is a function from configuration to configuration, si is a member of
C(E) for all i ∈ ω.

We show by induction that si is secure for all i ∈ ω.
Base case: The property trivially holds for s0.
Inductive step: Assume that sk is secure. Each event in sk is secured and therefore has a
securing sequence within sk. Any additional events e in sk+1 have d(e) ∩ C ⊆ out sk. We
can therefore give a securing sequence for e by combining the securing sequences of the
events upon which it depends according to ≺sk+1

. Therefore sk+1 is secure. This shows
that Sec(y) is secure for all y ∈ C and it is clear that d†(Sec(y)) ∩ A ⊆ y.

Suppose x ∈ C(E) is secure and d†(x)∩A ⊆ y. By Corollary 4.1.4, ≺x is well-founded.
We show by well-founded induction on ≺x that

∀e ∈ x. e ∈ Sec(y) .

Suppose e′ ∈ Sec(y) for all e′ ≺x e. Then d(e) ∩ C ⊆ out(Sec(y)) as x is secure and
by assumption d(e) ∩ A ⊆ y; because x is secure d(e) ∩ C ⊆ out(x) (Corollary 4.1.4)
and if out(e′) ∈ d(e) ∩ C then e′ →x e, so e′ ∈ Sec(y) inductively. Hence d(e) ⊆
y ∪ (C ∩ out(Sec(y))) and therefore e ∈ ϕ(Sec(y)) = Sec(y).

Corollary 4.3.6. The trace Tr(E), of a deterministic span E, is deterministic.

Proof. Suppose p1, p2 ∈ Tr(E) have compatible demands d′(p1) and d′(p2), i.e., there is
a configuration y of A such that

d†(p1) ∩ A ⊆ y and d†(p2) ∩ A ⊆ y .

From Lemma 4.3.5, Sec(y) is the maximum secure configuration x of E such that

d†(x) ∩ A ⊆ y.

Both p1 and p2 are secure configurations. Hence both p1 ⊆ Sec(y) and p2 ⊆ Sec(y), so p1

and p2 are compatible as secure configurations, and hence not in conflict as events of the
trace.

Lemma 4.3.7. For all y ∈ C(A),

T̃ r(E)(y) = B ∩ (out(Sec(y))) .
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Proof. By definition

T̃ r(E)(y) = out′{p ∈ Tr(E) | d†(p) ∩ A ⊆ y} ,

where out′(p) = out(max(p)) ∈ B for p ∈ Tr(E). If d†(p) ∩ A ⊆ y with p ∈ Tr(E) then
p is secure, so, from Lemma 4.3.5, p ⊆ Sec(y) by the maximum property of Sec(y). It

follows that T̃ r(E)(y) ⊆ B ∩ (out(Sec(y))). To see the reverse inclusion, note that for
any e ∈ Sec(y) with out(e) ∈ B we have [e]Sec(y) ∈ Tr(E).

In conclusion we can understand the trace of the deterministic span in terms of the
least fixed point of its associated function; the trace of deterministic event structures
reduces to the trace known to Kahn [19].

Theorem 4.3.8. For all w ∈ C(A),

T̃ r(E)(w) = B ∩ (µz ∈ C(B ⊗ C).
∼

E(w ∪ (C ∩ out z))) .

Proof. By Lemma 4.3.7,

T̃ r(E)(w) = B ∩ out(µx. ϕ(x))

where ϕ : C(E)→ C(E) is the continuous function given by

ϕ(x) = {e ∈ E | d(e) ⊆ w ∪ (C ∩ out(x))}

for x ∈ C(E).
Define the continuous function ψ : C(B ⊗ C)→ C(B ⊗ C) by taking

ψ(u) =
∼

E(w ∪ (C ∩ u))

for u ∈ C(B ⊗ C).
It is easy to see that out : C(E) → C(B ⊗ C) induces a strict continuous function

between the domains of configurations. Directly from their definition we see that

out ϕ(x) = ψ(out x)

for x ∈ C(E). So both expressions equal

out{e ∈ E | d(e) ⊆ w ∪ (C ∩ out x)} .

By the well-known uniformity property of least fixed points (making use of the fact
that out is strict) we now know that µu. ψ(u) = out(µx. ϕ(x)), which gives the result
directly.

4.4 Concluding Remarks

Spans of event structures provide an intuitive semantics for both deterministic and non-
deterministic dataflow. The semantics provides another good example of the way in which
event structures can be used to represent both types and processes acting between types.



Chapter 5

Extending Event Structures

We have shown in the previous two chapters that event structure spans are expressive
enough to model a variety of processes. However, there are some behaviours that cannot
be modelled. For example, synchronous or partially synchronous parallel composition can
be modelled by event structures as the product in the category of augmentation morphisms
A or partial morphisms P as demonstrated in Section 2.2.2 but not by spans based on the
categories of demand morphisms and rigid morphismsD andR (see Section 1.5). Roughly,
this is because the projections out of these constructions are not rigid morphisms. In order
to capture these behaviours, we would like to vary the kinds of morphisms used in the
spans but be able to relate them. In this chapter we examine how to relate different
sorts of morphism as a step towards this. We use these investigations and other results
to justify an extension to the definition of event structures to allow persistent events.

In Section 5.1 we discuss how categories of event structures can be related. In Sec-
tion 5.2, labelled event structures are related to certain kinds of presheaf. The results
recalled therein are used in Section 5.3 to highlight some behaviours that event structures
cannot model. Section 5.4 introduces a new kind of event structure and describes rigid,
augmentation, partial and demand morphisms relating them. Using the new definitions,
in Section 5.5, an adjunction between the category of augmentation morphisms and the
category of partial morphisms is described. Finally, in Section 5.6, we discuss how to
relate the other categories. We describe some of the associated difficulties and give an
intuition for how they can be overcome.

5.1 Relating Categories of Event Structures

Let R and A be the categories of event structures defined in Section 2.1.1. In this section
we define a coreflection between the categories R and A. This is used to construct a
monad for which the Kleisli category is isomorphic to A. We would like to be able to do
the same for the other event structure categories P and, in particular, D. This would
provide us with an alternative way of understanding the spans described in Section 2.4.
However, we show that no right adjoints exist to the inclusion functors from R into P and
D. A small alteration to the definition of event structures is shown to be sufficient for an
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adjunction to exist between the category with augmentation morphisms and the category
with partial morphisms. However, we end the section by showing that, for this alteration,
we no longer have a right adjoint to the inclusion of the category of rigid morphisms into
the category with augmentation morphisms. Thus, we demonstrate the requirement for
an additional alteration to the definition of event structures.

Observe that the conditions on morphisms in A are a relaxation of those on morphisms
in R. It follows that R is a subcategory of A. In this section we define a right adjoint to
the inclusion functor I : R → A.

Definition 5.1.1. An augmentation of an event structure E is an elementary event
structure (x, ≤) where x ∈ C0(E) and e1 ≤ e2 in E implies that e1 ≤ e2 in x for all
e1, e2 ∈ x.

Observe that there may be more dependencies between events in x than between those
events in E. Hence we can think of the causality relation as having been augmented.
Following Definition 2.1.2, we say that an augmentation is prime if it has a maximum
element.

We now define a functor Aug : A → R.

Definition 5.1.2. Let the action of Aug on objects in A be defined by

Aug(E, ≤, #)
def
= (E ′, ≤′, #′)

where

• the set E ′ consists of the prime augmentations of (E, ≤, #),

• (x, ≤x) ≤
′ (x′, ≤x′) iff x ⊆ x′ and ≤x⊆≤x′ and e1 ≤x e2 iff e1 ≤x′ e2 for all

e1, e2 ∈ x,

• (x, ≤x)#
′(x′, ≤x′) iff x 6↑ x′ or there exists e ∈ x ∩ x′ such that [e] for (x, ≤x) is

not equal to [e] for (x′, ≤x′).

Observe that the causality relation could be described equivalently by

(x, ≤x) ≤
′ (x′, ≤x′) iff (x, ≤x) = ((x′, ≤x′) ↾ x).

It is therefore a partial order.
Let f : E1 → E2 be a morphism in A. Let the action of Aug on morphisms be defined

by

Aug(f)(x, ≤)
def
= (f(x), f(≤))

for all prime augmentations (x, ≤) of E1 and where f(e1) f(≤) f(e2) iff e1 ≤ e2 holds for
all e1, e2 ∈ x. (This is well-defined as, from the definition of augmentation morphisms,
we know that f is injective when restricted to domain x.)

It is routine to show that Aug(E) is an event structure for all event structures E.
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Lemma 5.1.3. For all morphisms f : E1 → E2 in A, we have that Aug(f) is a rigid
morphism between Aug(E1) and Aug(E2).

Proof. We first show Aug(f)(x, ≤x) ∈ Aug(E2) for all (x, ≤x) ∈ Aug(E1). Let (x, ≤x)
be an event in Aug(E1). As f preserves configurations we have that f(x) ∈ C(E2). As
f is an augmentation morphism it reflects causality and so if f(e1) ≤ f(e2) in E2 for
e1, e2 in x then f(e1) f(≤) f(e2). It remains to check that f(≤) is a partial order with
a maximum event. Recall that, as f is an augmentation morphism, if f(e1) = f(e2) for
non-conflicting events in E1 then e1 = e2. It follows that, as x is a configuration of E1,
f will be injective on x. This implies that (x, ≤) is isomorphic to (f(x), f(≤)) and
therefore that f(≤) is a partial order with a maximum event. We therefore have that
(f(x), f(≤)) is an event in Aug(E2).

We next show [Aug(f)(e)] = Aug(f)[e] for all e ∈ Aug(E1). As explained above,
Aug(f)(e) is isomorphic to e for all e ∈ Aug(E1). It follows immediately from the defi-
nition of causality for Aug(E1) and Aug(E2) that [Aug(f)(e)] = Aug(f)[e] holds for all
e ∈ Aug(E1).

In the following let (x1, ≤1) and (x2, ≤2) be events in Aug(E1).
We now show that Aug(f) reflects conflict. Suppose Aug(f)(x1, ≤1) is in conflict

with Aug(f)(x2, ≤2) in Aug(E2). There are two cases to consider – f(x1) 6↑ f(x2) or
there exists e ∈ f(x1) ∩ f(x2) such that [e] for (f(x1), f(≤1)) is not equal to [e] for
(f(x2), f(≤2)). In the first case, as f reflects conflict, it must be that we have x1 6↑ x2.
Recall that (f(xi), f(≤i)) is isomorphic to (xi, ≤i) for i = 1, 2. So, assuming the
second case, even if x1 is compatible with x2, then as f is injective on x1 ∪ x2, there
exists e ∈ x1 ∩ x2 for which [e] in (x1, ≤1) is not equal to [e] in (x2, ≤2). Therefore
(x1, ≤1)#(x2, ≤2). Hence conflict is reflected by Aug(f).

Finally, we show that if Aug(f)(x1, ≤1) = Aug(f)(x2, ≤2) then (x1, ≤1) equals
(x2, ≤2) or (x1, ≤1)#(x2, ≤2). Assume (x1, ≤1) 6= (x2, ≤2). As (x1, ≤1) is isomorphic
to Aug(f)(x1, ≤1) and therefore to (x2, ≤2) it must be the case that x1 6= x2. So, as
f(x1) = f(x2) there exist events in x1 and x2 that are distinct but map to the same thing.
This implies x1 6↑ x2 given the properties of f and therefore that (x1,≤1)#(x2, ≤2).

Proposition 5.1.4. The operation Aug is a functor between A and R.

Proof. The result follows from Lemma 5.1.3 and that it is obvious from its definition that
Aug will preserve identities and distribute over composition. We therefore have that Aug
is a functor.

Theorem 5.1.5. The functor Aug : A → R is right adjoint to the inclusion functor
I : R → A.

Proof. Define the family of operations ǫ by

ǫE(x, ≤x)
def
= max(x, ≤x)

for all event structures E and (x, ≤x) ∈ Aug(E).
We now show that ǫE : Aug(E)→ E is an augmentation morphism.
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We first show [ǫE(x, ≤x)] ⊆ ǫE[(x, ≤x)] for (x, ≤x) ∈ Aug(E). Suppose e ≤ ǫE(x, ≤x)
for some e ∈ E. Then, as e ≤ max(x, ≤x), we know that e must be in x as (x, ≤x)
is an augmentation of E. The smallest restriction of (x, ≤x) that contains e will be a
prime elementary event structure and, from the definition of Aug(E), will be a member
of [(x, ≤x)]. Also, its maximum element will be e. We therefore have e ∈ ǫE[(x, ≤x)].
So, we have

[ǫE(x, ≤x)] ⊆ ǫE[(x, ≤x)].

Let (x1, ≤1) and (x2, ≤2) be events in Aug(E).
We now show that ǫE reflects conflict. If ǫE(x1, ≤1) is in conflict with ǫE(x2,≤2) then

we have max(x1, ≤1)#max(x2, ≤2) and therefore x1 6↑ x2. So, (x1,≤1)#(x2, ≤2) in
Aug(E). Hence, ǫE reflects conflict.

Finally, we demonstrate that ǫE(x1, ≤1) = ǫE(x2, ≤2) implies (x1, ≤1) = (x2, ≤2) or
(x1, ≤1)#(x2, ≤2). Assume that ǫE(x1, ≤1) = ǫE(x2, ≤2) and (x1, ≤1) 6= (x2, ≤2). So,
we have x1 6= x2 or ≤1 6=≤2. We know x1 6= x2 implies ≤1 6=≤2. Also, x1∩x2 is non-empty
because max(x1, ≤1) equals max(x2, ≤2) and, by the assumption (x1, ≤1) 6= (x2, ≤2),
it cannot be the case that x1 or x2 equals ∅. So, there must exist e in x1 ∩ x2 for which
[e] for (x1, ≤1) is not equal to [e] for (x2, ≤2). From the definition of Aug(E), it follows
that (x1, ≤1)#(x2, ≤2).

We now demonstrate I ⊣ Aug by showing the following. Let f : E ′ → E be a
morphism in A. We show that the diagram below commutes for a unique rigid morphism
f#.

Aug(E)
ǫE // E

E ′

f#

OO

f

;;wwwwwwwwww

Define f# : E ′ → Aug(E) by

f#(e)
def
= (f [e], f(≤e))

for all e ∈ E ′ where ≤e is the restriction of the causality relation of E ′ to [e].
We show that f# is indeed a rigid morphism. We first demonstrate that [f#(e)] =

f#[e]. Let e1 and e2 be events in E ′. If e1 ≤ e2 then [e1] ⊆ [e2] and also ≤e1
⊆≤e2

. This
implies (f [e1], f(≤e1

)) ≤ (f [e2], f(≤e2
)) in Aug(E) and therefore f#(e1) ≤ f#(e2). So

we have
f#[e] ⊆ [f#(e)]

for all e ∈ E ′.
Suppose we have (x, ≤x) ≤ f#(e1). Then, from the definition of causality for

Aug(E), (x, ≤x) is a restriction of (f [e1], f(≤e1
)). As f is injective on [e1] we know that

(f [e1], f(≤e1
)) is isomorphic to ([e1], ≤e1

) and therefore there is a restriction (x′, ≤x′) of
([e1], ≤e1

) for which (f(x′), f(≤x′)) = (x, ≤x). So, f#(max(x′, ≤′
x)) = (x, ≤x). Also,

as (x′, ≤x′) is prime and a restriction of ([e1], ≤e1
), we know max(x′, ≤x′) ≤ e1. It

follows that (x, ≤x) ∈ f
#[e1] and therefore

[f#(e)] ⊆ f#[e]
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for all e ∈ E ′.
We next show that f# reflects conflict. Assume f#(e1)#f

#(e2). Then f [e1] 6↑ f [e2]
as ≤e1

and ≤e2
are restrictions of the same causality relation. As f reflects conflict, this

implies [e1] 6↑ [e2] and therefore e1#e2. So, conflict is reflected.
Finally, we show that f#(e1) = f#(e2) implies e1 = e2 or e1#e2. Assume f#(e1) =

f#(e2) and e1 6= e2. As f [e1] = f [e2] but [e1] 6= [e2] we know that f is mapping an event in
[e1] and a different event in [e2] to the same thing. From the properties of f , this implies
that these events are in conflict and therefore [e1] 6↑ [e2]. So, we have e1#e2.

Clearly we have f = ǫE ◦ f
#. Having proved that f# : E ′ → Aug(E) is a rigid

morphism for which the diagram commutes, we now show that it is unique. Suppose
that the diagram commutes for another rigid morphism g : E ′ → Aug(E). We show by
induction on the number of causal dependencies of events in E ′ that g = f#.

Let e be an event in E ′.
Base Case: Assume |[e]| = 1. As g is rigid and max(g(e)) = f(e) we have g(e) =
({f(e)}, {(f(e), f(e))}) as this is the only event in Aug(E) that ǫE maps to f(e) and
that only depends on itself. So, g(e) = f#(e).
Inductive Step: Assume g(e′) = f#(e′) for all events e′ in E ′ for which we have 1 ≤
|[e′]| ≤ k. Suppose |[e]| = k + 1. From the assumption, g(e) and f#(e) must depend on
precisely the same events as g and f# are both rigid and e′ < e implies g(e′) = f#(e′).
We also know that max(g(e)) = max(f#(e)) = f(e). This uniquely defines an event in
Aug(E), given by the union of the events and causality relations of all the events upon
which g(e) and f#(e) depend with f(e) added as the maximum event. To see that this is
so, recall that, for an event (x, ≤x) in Aug(E), we have that [(x, ≤x)] is the set of prime
restrictions of (x, ≤x). This implies |[(x, ≤x)]| = |x|. So, (x, ≤x) can be defined as the
union of all its restrictions not equal to it with max(x, ≤x) added as the maximum event.
So, as g is rigid, there is only one event in Aug(E) to which it can map the event e. This
event is f#(e).

By induction, g = f# and therefore f# is unique.

Using this adjunction we can construct a monad (Aug ◦ I, η, Aug ◦ ǫ ◦ I) where η is
the unit of the adjunction and ǫ is the counit. We overload Aug to be this monad as well
as the right adjoint.

Recall that the Kleisli category CT of a monad (T, η, µ) on a category C is defined to
have the objects of C and morphisms f : A → B where f is a morphism between A and
T (B) in C. The composition of a morphism f : A → B and g : B → C in CT is defined
to be µ ◦ T (g) ◦ f . (See page 147 of [22] for further details.)

Proposition 5.1.6. Consider an adjunction F ⊣ G where F is a functor from A to B

that is identity on objects, (i.e., A and B contain the same objects and F maps objects
to themselves). If T = (GF, η, GǫF ) then the comparison functor AT → B is an
isomorphism.

Proposition 5.1.6 is a special case of Exercise 2, page 148 of [22].

Corollary 5.1.7. The Kleisli category RAug of Aug is isomorphic to A.
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So, augmentations can be described as certain rigid morphisms.
There are clearly functors ID : R → D and IP : R → P where IP maps objects

and arrows to themselves and ID maps objects to themselves and the action of ID on

morphisms is defined by ID(f)(e)
def
= f [e] for f : E1 → E2 in R and e ∈ E1.

Proposition 5.1.8. There are no right adjoints to ID and IP .

Proof. We show that D and P both have terminal objects whereas R does not. As any
right adjoints to ID and IP must preserve limits, this implies that they cannot exist.

The terminal object in both D and P will be the empty event structure ∅. If E is an
event structure then the unique arrow in D from E into ∅ will map e to ∅ for all e ∈ E
and the unique arrow in P will be undefined for all e ∈ E.

Suppose there exists a terminal object E inR. Then there must be a unique morphism
f from the event structure E ′ containing two independent events e1 and e2 into it. As e1

and e2 are not in conflict and are distinct, f(e1) 6= f(e2). Also, as f reflects conflict, f(e1)
and f(e2) must be independent. However, this means that there exists another morphism
g : E ′ → E in R that maps e1 to f(e2) and e2 to f(e1). So, f is not unique and therefore
the terminal object cannot exist.

Observe that this implies that, if I ′P is the inclusion functor from A to P that maps
objects and morphisms to themselves, there can be no right adjoint to I ′P .

If we wish such right adjoints to exist, we must consider altering the definition of event
structures. An initial idea was to allow independence events.

Definition 5.1.9. Define (E, I, ≤, #) to be an event structure with independence with
set of events E and set of independence events I if

• I ⊆ E,

• (E, ≤, #) obeys the conditions listed in Definition 2.1.1,

• e1#e2 implies e1 and e2 are not members of I and

• e1 < e2 implies e1 and e2 are not members of I.

Observe that the events in I in the above definition may be thought of as being com-
pletely causally unrelated to and consistent with all other events in the event structure.

We can define categories RI , AI , PI and DI with event structures as objects and
where the morphisms f : E1 → E2 have the properties defined previously in Section 2.1.1
but where f preserves independence events and

f(e1) = f(e2) ⇒ f(e1) is an independence event

holds for e1, e2 ∈ E1 where e1 6= e2 and ¬(e1#e2).
It is routine to verify that the categories RI and AI have a terminal object consisting

of a single independence event.
It is now possible to define an adjunction between AI and PI .
We define a functor Ptl : PI → AI as follows.
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Definition 5.1.10. Let the action of Ptl on objects be defined by

Ptl(E, I, ≤, #)
def
= (E ⊎ {⋆}, I ⊎ {⋆}, ≤′, #).

For clarity, we assume that ⋆ is not a member of E and therefore write (1, e) as e and
(2, ⋆) as ⋆ and define ≤′ to be ≤ ∪{(⋆, ⋆)}. Let the action of Ptl on morphisms be
defined by

Ptl(f)(e)
def
= f(e) if f(e) defined
def
= ⋆ otherwise.

for all f : E1 → E2 in PI .

Proposition 5.1.11. The operation Ptl is a functor.

Proof. That Ptl(E) is an event structure for all event structures in PI follows directly
from its definition.

Let f : E1 → E2 be a morphism in PI . We now show that Ptl(f) is a morphism
from Ptl(E1) to Ptl(E2) in AI . Clearly, from its definition, Ptl(f) is total. We first show
[Ptl(f)(e)] ⊆ Ptl(f)[e] for all e ∈ Ptl(E1). Suppose e1 ≤ Ptl(f)(e) for some e ∈ E1. Then
there are three cases to consider – e = ⋆, e 6= ⋆ and f is defined for e, e 6= ⋆ and f is
undefined for e. If e 6= ⋆ and f is defined for e we have that e1 ≤ f(e) which, given the
properties of f , implies e1 ∈ f [e] and therefore e1 ∈ Ptl(f)[e]. Otherwise, Ptl(f)(e) = ⋆
and so e1 = ⋆ and is therefore trivially a member of Ptl(f)[e]. So, we have

[Ptl(f)(e)] ⊆ Ptl(f)[e]

for all e ∈ Ptl(E1).
We next show that Ptl(f) preserves independence. Suppose e is an independence

event in Ptl(E1). If e = ⋆ then Ptl(f)(e) is defined to be ⋆ which is an independence
event. Otherwise, as f must preserve independence where defined, Ptl(f)(e) must also
produce an independence event. Hence, independence is preserved.

Let e1 and e2 be events in Ptl(E1).
We show that Ptl(f) reflects conflict. Suppose Ptl(f)(e1)#Ptl(f)(e2). From the

properties of event structures with independence, this implies that neither Ptl(f)(e1)
nor Ptl(f)(e2) can be ⋆. So, f(e1)#f(e2) in E2 and therefore e1#e2 in E1. From the
definition of Ptl , this implies that we have e1#e2 in Ptl(E1). So, conflict is reflected.

Finally, we show that Ptl(f)(e1) = Ptl(f)(e2) implies e1 = e2 or e1#e2 or Ptl(f)(e1)
is an independence event. Suppose Ptl(f)(e1) = Ptl(f)(e2) and e1 6= e2. If Ptl(f)(e1) 6= ⋆
then f(e1) and f(e2) must be defined and therefore the correct property follows from the
properties of f . Otherwise, ⋆ is an independence event as required.

It is trivial to check that Ptl preserves identities and distributes over composition.

Theorem 5.1.12. The functor Ptl : PI → AI is right adjoint to the inclusion functor
from AI into PI .
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Proof. Define ǫE : Ptl(E)→ E by

ǫE(e)
def
= e if e 6= ⋆

for all event structures E and e in Ptl(E). It is clear that ǫE is a partial morphism as it
behaves exactly like the identity morphism except for being undefined for ⋆.

In order to show I ⊣ Ptl , we demonstrate the following. Let f : E ′ → E be a mor-
phism in PI . We show that the following diagram commutes for a unique augmentation
morphism f# : E ′ → Ptl(E).

Ptl(E)
ǫE // E

E ′

f#

OO

f

;;xxxxxxxxx

Define f# by

f#(e)
def
= f(e) if f(e) is defined
def
= ⋆ otherwise

for all e ∈ E ′. That f# is indeed an augmentation morphism follows from the properties
of f and the independence of ⋆.

Clearly f = ǫE ◦ f
#. We now show that it is the unique augmentation morphism

for which this is true. If this was true for another morphism f ′ then we would have
ǫE ◦ f

′ = ǫE ◦ f
#. As ǫE is injective in the sense that it maps all events to themselves

except for ⋆ for which it is undefined, this implies that f ′ = f# and therefore that f# is
unique. So, Ptl is right adjoint to the inclusion functor.

However, we will now show that the addition of independence events means that there
is no right adjoint to the inclusion functor from RI to AI .

Theorem 5.1.13. Let IAI
: RI → AI be the functor that maps objects and morphisms

in RI to themselves in AI . There is no right adjoint to IAI
.

Proof. Suppose that a right adjoint G : AI → RI to IAI
exists and we will derive a

contradiction.
Let E be the event structure consisting of two independence events i1 and i2. Then

AI(E, E) ∼= RI(E, G(E)).

There are four different augmentation morphisms from E to E so

|RI(E, G(E))| = |AI(E, E)| = 4.

As independence must be preserved, this implies that G(E) must contain at least two
independence events.
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Consider the event structure E ′ that consists of two independence events and another
non-independence event. Then |AI(E

′, E)| = 8. Suppose G(E) contains another event
e in addition to the two independence events. Then there are more than eight rigid
morphisms from E ′ into G(E) and so |RI(E

′, G(E))| 6= |AI(E
′, E)|, contradicting the

initial assumption. It follows that, if G exists, G(E) is the event structure only containing
two independence events.

Let E ′′ be

e2

e1

OO

.

Then, |AI(E
′′, E)| = 4 and |RI(E

′′, G(E))| = 2. This contradicts the assumption that
a right adjoint exists.

Observe that the lack of existence of a right adjoint is caused by disallowing causal
relationships between independence events and other events. This suggests a further
extension to the definition of event structure which we explore in Section 5.4. Before this,
we describe another justification for extending event structures. To do this we must first
describe the presheaves that are represented by labelled event structures.

5.2 Labelled Event Structures as Presheaves

In this section we recall that labelled event structures represent certain kinds of presheaf.
We use this relationship in the following section to demonstrate some of the behaviours
that presheaves are capable of expressing but that cannot be captured by event structures.

Recall that a presheaf is simply a contravariant functor into the category of sets.
Presheaves over a path category can be used to model concurrent processes [8]. With
the correct choice of path category, we can form a category of presheaves for which the
category of labelled event structures is isomorphic to a sub-category.

Definition 5.2.1. Let PomL be the skeleton of the category of labelled elementary event
structures with labelling set L and rigid, label-preserving morphisms (see Definition 2.1.2
and Section 2.1.2).

We refer to the objects in PomL as pomsets – partially ordered multisets. We make
use of a shorthand notation when reasoning about pomsets, i.e., an event’s label will be
used instead of the name of the event itself where it is clear from the context which event
is being discussed.

Let P̂omL be the category of presheaves over the category PomL. An object in P̂omL

represents a labelled event structure E if it is isomorphic to the presheaf

⌢

E : PomL
op → Set
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where
⌢

E is defined by

⌢

E(x)
def
= RL(x, E)

⌢

E(f)(g)
def
= g ◦ f

where f : p→ q is a morphism in PomL and g ∈
⌢

E(q).
In [38], Winskel demonstrated that such presheaves X : PomL

op → Set possess the
following two properties.
mono: For all morphisms j1, j2 : p→ q in PomL where p is prime

∀x ∈ X(q).X(j1)(x) = X(j2)(x) ⇒ j1 = j2.

separated : For all x, x′ ∈ X(q)

(∀j : p→ q such that p is prime X(j)(x) = X(j)(x′)) ⇒ x = x′.

5.3 Weak Bisimulation from Open Maps

In this section, we recall a categorical characterisation of weak bisimulation in terms of
open maps and demonstrate a curious discrepancy where event structures are concerned.

In [17], the notion of a bisimulation being a span of open maps is described and
shown to correspond to strong, history-preserving bisimulation for event structures. Fiore,
Winskel and Cattani extended this idea to give a categorical description of weak bisimula-
tion and observational congruence [14]. Firstly, presheaves are generalised to bundles via
the Grothendieck fibration. A bundle is an object in Cat/P for some category P. We now
give an intuition into the way in which a bundle models a process. Let J : C → P be a
bundle in Cat/P. We can view the objects of C as computation states and the morphisms
as transitions between states. The category P may be viewed as representing possible
observations. For example, let x be an object in C, i.e., a computation state. Then J(x)
represents what has been observed at that point in the computation.

Let P and Q be categories of observations. Let H : P → Q be a functor. Then H
induces a functor (H ◦ ) : Cat/P→ Cat/Q. Both the Grothendieck fibration and (H ◦ )
have right adjoints.

P̂
F --
Cat/P

G

ii
hide --

Cat/Q
sat

mm

(Where P̂ is the category of presheaves over P, F is the Grothendieck fibration and
hide = (H ◦ ).)

Let T : P̂→ P̂ be the monad on P̂ given by the composition of these functors. Then, in
order to determine whether two presheaves X and Y are weakly bisimilar, it is sufficient
to check that there is a span of open maps between T (X) and T (Y ) (see [17] for more
details about open maps). We provide more precise definitions of these functors below.

First, we recall the Grothendieck construction.
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Definition 5.3.1. Let X be an object in P̂. Then E l(X) is the category with objects (x, y)
where x ∈ P and y ∈ X(x). Define the morphisms f : (x1, y1)→ (x2, y2) in E l(X) to be
morphisms f : x1 → x2 in P such that X(f)(y2) = y1.

Further details on this construction can be found in [14].
The functor F maps a presheaf X ∈ P̂ to the bundle in Cat/P given by the functor

πX : E l(X) → P that maps (p, x) ∈ E l(X) to p and morphisms f : (p1, x1) → (p2, x2)
to the underlying morphism from p1 to p2. Its right adjoint G : Cat/P→ P̂ is defined by

G(π : Y → P)(p) = Cat/P(P/p→ P, π : Y → P)

for a bundle π in Cat/P and p ∈ P.
Let P and Q be categories of pomsets with rigid morphisms and labelling sets L

and L′ such that L′ is a subset of L. Having defined the adjunction F ⊣ G, we now
define the adjunction hide ⊣ sat for our particular choice of P and Q. The functor
hide : Cat/P → Cat/Q acts to remove invisible events. We define hide in terms of
another functor H : P → Q. Let (x, ≤, l) ∈ P. Define the action of the functor
H : P→ Q on objects by

H(x, ≤, l)
def
= (x′, ≤′, l′)

where x′ = {e ∈ x | l(e) ∈ l′} and ≤′ and l′ are the corresponding restrictions of ≤ and l.
Its action on morphisms f : (x, ≤, l)→ (x′, ≤′, l′) in P is to restrict their domain to x′.
Let π : Y → P be a bundle in Cat/P. The functor hide : Cat/P→ Cat/Q is defined by

hide(π : Y → P)
def
= H ◦ π.

Its right adjoint sat takes a bundle in Cat/Q and pulls it back along H to form a bundle
in Cat/P. Using these adjunctions, we can define the monad T on P̂ where the functor
T : P̂→ P̂ of the monad is defined by

T
def
= G ◦ sat ◦ hide ◦ F.

When T is applied to a presheaf that represents an event structure, the resulting
presheaf may not represent an event structure, i.e., it may be capable of behaviour that
cannot be expressed in terms of an event structure. We give two examples of event
structures for which this is the case together with an intuition for the additional behaviours
introduced.

For the examples, let P be the category of pomsets and rigid, label-preserving mor-
phisms with labelling set L ∪ {τ} where τ 6∈ L and let Q be the sub-category of P with
labelling set L.

Example 1 : The empty event structure ∅.

The presheaf
⌢

∅ ∈ P̂ representing this event structure produces a singleton when given the

empty pomset and gives ∅ for all other arguments. Applying T to
⌢

∅ produces a presheaf
X that gives a singleton for any pomset consisting entirely of τ labelled events. Consider
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the two possible morphisms j1 and j2 : τ → (ττ) in P. While these are distinct, it is the
case that X(j1) = X(j2) and therefore the (mono) property is violated.

The presheaf T (
⌢

∅) may be thought of as describing a process that can do the same τ
event multiple independent times. It is clear that such a process cannot be expressed as
an event structure.

Example 2 : The event structure E defined to be

e1 e2 e3 # e4

where e4 is labelled τ and the other three events are labelled a, b and c respectively.

The set T (
⌢

E)(ab) contains two items x and y where x represents the occurrence of e1

and e2, and y the occurrence of e1, e2 and e4. There are morphisms f1 : a → (ab) and
f2 : b→ (ab) in P from prime pomsets into ab. Observe that

T (
⌢

E)(f1)(x) = T (
⌢

E)(f1)(y) and

T (
⌢

E)(f2)(x) = T (
⌢

E)(f2)(y)

but x and y are distinct. This demonstrates that T (
⌢

E) does not possess the (separated)
property.

The additional behaviour beyond that of an event structure can be seen by considering
whether or not e3 can occur after observing two events labelled a and b. The state of an
event structure, i.e., its future capabilities, is determined entirely by its history. This is

not the case with the process represented by T (
⌢

E).
This provides yet another justification for extending the definition of event structures.

In the next section, we describe event structures with persistence in an effort to capture
some of the extra required behaviour.

5.4 Event Structures with Persistence

In this section we describe event structures with persistence. The definitions of rigid,
augmentation, partial and demand morphism are extended accordingly. As will be shown
in Section 5.5 and Chapter 6, unlike for classical event structures, the categories of aug-
mentation, partial and demand morphisms are isomorphic to Kleisli categories of monads
on the category of rigid morphisms.

Definition 5.4.1. Define an event structure with persistence to be a tuple

(E, P, ≤, #)

where (E, ≤, #) is an event structure as defined in Definition 2.1.1 and P ⊆ E is a set
of persistent events.
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The configurations for an event structure with persistence (E, P, ≤, #) are to be the
configurations of (E, ≤, #) (see Definition 2.1.3).

As for the other types of event structure, we can define partial, augmentation, rigid
and demand morphisms between event structures with persistence.

Definition 5.4.2. Let f : E1 → E2 be a partial function. It is a partial morphism
f : (E1, P1, ≤1, #1)→ (E2, P2, ≤2, #2) if

i) e ∈ P1 and f(e) defined ⇒ f(e) ∈ P2, i.e., f preserves persistent events where
defined,

ii) if f(e) and f(e′) are defined then

f(e) = f(e′) or f(e)#f(e′) ⇒

e = e′ or e#e′ or f(e) = f(e′) ∈ P2,

iii) if f(e) defined then [f(e)] ⊆ f [e].

Let PP be the category of event structures with persistence and partial morphisms.

Definition 5.4.3. Let f be an augmentation morphism between the event structures with
persistence (E1, P1, ≤1, #1) and (E2, P2, ≤2, #2) if it is a partial morphism between
them whose underlying function is total.

Let AP be the category of event structures with persistence and augmentation mor-
phisms.

Definition 5.4.4. Let f be a rigid morphism between (E1, P1, ≤1, #1) and (E2, P2, ≤2

, #2) if it is an augmentation morphism between them such that

[f(e)] = f [e].

Let RP be the category of event structures with persistence and rigid morphisms.
Again, composition in PP , AP and RP is simply function composition.

Lemma 5.4.5. A rigid morphism f : (E, P, ≤, #) → (E ′, P ′, ≤′, #′) between event
structures with persistence is a rigid isomorphism iff it is a bijection and it reflects per-
sistence and preserves conflict.

Proof. We can use the same argument as that in the proof of Lemma 2.1.8 to show that f
can be viewed as an isomorphism between the event structures without persistence given
by (E, ≤, #) and (E ′, ≤′, #′). This argument gives us a definition of a possible inverse
f ′ of f . In order to show that f−1 is a rigid morphism between (E ′, P ′, ≤′, #′) and
(E, P, ≤, #) it remains to show f−1 preserves persistence. This follows immediately
from f reflecting persistence. So, f is an isomorphism between (E, P, ≤, #) and
(E ′, P ′, ≤′, #′).
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Definition 5.4.6. Let d be a demand morphism between event structures with persistence
(E1, P1, ≤1, #1) and (E2, P2, ≤2, #2) iff it is a demand morphism between (E1, ≤1, #1)
and (E2, ≤2, #2) in D.

Composition of demand morphisms is defined in the same way as for morphisms in D,
i.e., the composition of two demand morphisms d1 : E → E ′ and d2 : E ′ → E ′′ is d†2 ◦ d1.

Let DP be the category of event structures with persistence and demand morphisms.
Observe that D is in fact equivalent to DP .
It is trivial to see that, for all the categories, identities exist and composition is defined

and associative. The constructions detailed in Section 2.3 can easily be extended to
constructions on event structures with persistence. For the next chapter, it is particularly
relevant to note that restriction can be defined exactly as for classical event structures.

In order to gain an intuition for the extra behaviour captured by event structures
with persistence, observe that the key difference is the loss of local injectivity of event
structure morphisms, i.e., two non-conflicting events can be mapped to the same event
if it is persistent. We can therefore interpret persistent events as being in some sense
repeatable as, viewing morphisms as simulations, one persistent event can simulate mul-
tiple events, possibly at the same time. Alternatively, we can think of persistent events as
happening continuously over a period as opposed to non-persistent events which happen
instantaneously.

We can now define an adjunction between AP and PP . In Section 5.6 we discuss the
problems involved with defining adjunctions between RP and AP and RP and DP that
will be the topic of Chapter 6.

5.5 An Adjunction between AP and PP

It is clear that AP is a subcategory of PP . We define a right adjoint Par : PP → AP to
the inclusion functor I : AP → PP .

Definition 5.5.1. Let the action of Par on objects (E, P, ≤, #) in PP be defined by

Par(E, P, ≤, #)
def
= (E ⊎ {⋆}, P ⊎ {⋆}, ≤′, #′).

For clarity, we assume that ⋆ 6∈ E and therefore treat E ⊎ {⋆} as E ∪ {⋆} and define ≤′

and #′ such that, for e, e′ ∈ E ∪ {⋆},

• e ≤′ e′ iff e ≤ e′ or e = e′ = ⋆ and

• e#′e′ iff e#e′.

Let the action of Par on morphisms be defined by

Par(f)(e)
def
= f(e) if e 6= ⋆ and f(e) is defined
def
= ⋆ otherwise.

for all f : E1 → E2 in PP .
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We could alternatively define Par(E) to be the event structure E ⊗ ⋆ (where we use
⋆ to represent the event structure that consists only of the independence event ⋆).

It is clear that Par(E) is an event structure with persistence for all event structures
with persistence E and therefore is a member of AP . Observe that this definition corre-
sponds to that for event structures with independence events in that we are placing the
original event structure in parallel with a completely independent persistent event. In
fact, PI is a subcategory of PP .

Lemma 5.5.2. If f : E1 → E2 is a morphism in PP then

Par(f) : Par(E1)→ Par(E2)

is a morphism in AP .

Proof. From the definition, Par(f) is clearly total. We now show that [Par(f)(e)] is
a subset of Par(f)[e] for all e ∈ Par(E1). Suppose e′ ∈ [Par(f)(e)]. We must show
e′ ∈ Par(f)[e]. Now, either e ∈ E1 or e = ⋆. In the former case, then if f(e) is
defined then e′ ∈ f [e] by the properties of partial morphisms. Therefore e′ ∈ Par(f)[e].
Otherwise, if e ∈ E1 but f(e) is undefined or e = ⋆, then Par(f)(e) = ⋆. As [⋆] = {⋆}, we
have that e′ = ⋆ and e′ is therefore a member of Par(f)[e]. So, [Par(f)(e)] ⊆ Par(f)[e].

We now explain why f preserves persistence. Suppose that e is a persistent event in
Par(E1, P1, ≤1, #1). Then either e ∈ P1 or e = ⋆. In the first case, f(e) is persistent
or undefined according to the properties of partial morphisms. If f(e) is persistent then
Par(f)(e) is persistent. If f(e) is undefined then Par(f)(e) = ⋆ which is persistent.
Finally, if e = ⋆ then Par(f)(e) = ⋆. So, persistence is preserved.

In the following, let e1 and e2 be events in Par(E1).
We show that conflict is reflected. Suppose Par(f)(e1)#Par(f)(e2) holds. Then, as

it is defined that ⋆ is not in conflict with anything, f(e1)#f(e2) and therefore e1#e2 in
E1 and in Par(f)(E1). Conflict is therefore reflected.

Suppose that Par(f)(e1) = Par(f)(e2). We must show that either e1 = e2 or e1#e2 or
Par(f)(e1) ∈ P2. There are two cases to consider – Par(f)(e1) = ⋆ and Par(f)(e1) 6= ⋆.
If Par(f)(e1) = ⋆ then the property holds as ⋆ is persistent. If Par(f)(e1) 6= ⋆ then
f(e1) and f(e2) are defined so f(e1) = f(e2) so, from the properties of partial morphisms,
e1 = e2 or e1#e2 or f(e1) is persistent. From the definition, if f(e1) is persistent then
Par(f)(e1) is persistent. The condition is therefore satisfied.

Proposition 5.5.3. The operation Par is a functor.

Proof. It is clear that, for all event structures E with persistence, Par(E) is also an
event structure with persistence and therefore a member of AP . From Lemma 5.5.2, if
f : E1 → E2 is a morphism in PP then Par(f) is a morphism between Par(E1) and
Par(E2) in AP .

We show that Par preserves identities. Let idE : E → E be the identity morphism
for the event structure with persistence E in RP . It follows directly from the definition
of Par that Par(idE)(e) = e for all e ∈ Par(E) and so

Par(idE) = idPar(E).
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Let f : E1 → E2 and g : E2 → E3 be morphisms in PP . Then

Par(g ◦ f)(e) = g ◦ f(e) if g ◦ f(e) is defined for e

= ⋆ otherwise.

We show that Par(g ◦ f) = Par(g) ◦ Par(f). There are three cases to consider: i) e = ⋆;
ii) e 6= ⋆ but f(e) is undefined; iii) e 6= ⋆ and f(e) is defined. If (i) or (ii) then
Par(f)(e) = ⋆ and Par(g)(⋆) = ⋆ so Par(g) ◦ Par(f)(e) = ⋆. If (iii) then Par(g) ◦
Par(f)(e) = Par(g)(f(e)). So, Par(g)(f(e)) = g ◦ f(e) if g is defined for f(e) or ⋆ other-
wise. It follows that Par(g) ◦ Par(f) = Par(g ◦ f) and therefore that Par : PP → AP is
a functor.

Theorem 5.5.4. The functor Par : PP → AP is right adjoint to the inclusion functor
I : AP → PP .

Proof. Let E be an event structure with persistence and let the family of partial mor-
phisms ǫ be defined by

ǫE(e)
def
= e if e 6= ⋆

ǫE(⋆) undefined.

Observe that ǫE : Par(E) → E is indeed a morphism in PP as Par(E) is isomorphic to
E placed in parallel with the event structure consisting of a single event ⋆ and ǫE maps
all events to themselves in E except for ⋆.

To show I ⊣ Par , we show that, if f : E1 → E2 is a morphism in PP , then the diagram
below commutes for a unique morphism f# in AP .

E2 Par(E2)
ǫE2oo

E1

f

ddHHHHHHHHHH
f#

OO

Indeed, let f# be defined by

f#(e)
def
= f(e) if e 6= ⋆ and f(e) is defined
def
= ⋆ otherwise.

We now show that f# is indeed an augmentation morphism. It follows immediately from
the definition that f# is a total function. First we show [f#(e)] ⊆ f#[e] for all e ∈ E1.
Let e be an event in E1. Consider e′ ∈ [f#(e)]. We must show that e′ ∈ f#[e]. There are
two cases to consider – f#(e) = f(e) and f#(e) = ⋆. If f#(e) = ⋆ then e′ = ⋆ as ⋆ has
no dependencies and so e′ ∈ f#[e]. Otherwise f#(e) = f(e) and [f(e)] is a subset of f [e]
implying that e′ ∈ f#[e]. So,

[f#(e)] ⊆ f#[e]



5.6. TOWARDS OTHER ADJUNCTIONS 77

holds for all e ∈ E1.
In the following, let e1, e2 ∈ E1.
We now show that f# reflects conflict. As ⋆ is not in conflict with anything, the

holding of f#(e1)#f
#(e2) implies f(e1)#f(e2) and therefore, as f reflects conflict, that

e1#e2 holds. Conflict is therefore reflected.
We next show that f#(e1) = f#(e2) implies e1 = e2 or ¬(e1#e2) or f#(e1) is persistent.

Suppose f#(e1) = f#(e2) for distinct e1 and e2 in E1. There are two cases to consider
– f#(e1) = ⋆ and f#(e1) = f(e1). If f#(e1) = ⋆ then, as ⋆ is defined to be persistent,
the correct condition is met. Otherwise, f#(e1) = f(e1) = f#(e2) = f(e2) and therefore,
from the properties of f , either e1#e2 holds or f(e1) is persistent, implying that f#(e1)
is persistent as required.

We now show that persistence is preserved. Let e be a persistent event in E1. Then
either f#(e) = ⋆, a persistent event, or f#(e) = f(e) and, as f preserves persistence, f(e)
is a persistent event, confirming the preservation of persistence by f# and therefore that
f# is a morphism in AP .

Observe that ǫE2
is injective and therefore that f# must be unique. It therefore follows

that Par is right adjoint to I.

The result below follows from Proposition 5.1.6.

Corollary 5.5.5. The Kleisli category of (Par ◦ I, η, Par ◦ ǫ ◦ I) (where η is the unit of
the adjunction) is isomorphic to PP .

5.6 Towards other Adjunctions

In this section we discuss the difficulties involved in constructing right adjoints to the
inclusions of RP into AP , and RP into DP . This acts as a justification for the method
described in the following chapter.

An augmentation x (as defined in Definition 5.1.1) of an event structure E without
persistence may be viewed as a morphism f : x→ E in A such that f(e) = e for all e ∈ x.
We extend this idea to define the augmentations of an event structure with persistence.

Definition 5.6.1. An elementary event structure with persistence is a triple (x, y, ≤)
with y ⊆ x such that (x, ≤) is an elementary event structure. An augmentation of an
event structure with persistence E is a pair

((x, y, ≤), f)

where (x, y, ≤) is an elementary event structure with persistence and f is a morphism
in AP between (x, y, ≤) and E.

As before, an augmentation may be seen as adding causality between the events of E
but now it is possible for an augmentation to have two events corresponding to the same
event in E. For example, let E be the event structure consisting of a single persistent
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event e. The elementary event structure consisting of two persistent events e1 and e2
paired with a morphism mapping both e1 and e2 to e is an augmentation of E. Consider
the event structure

e1 e2 e3

where e1 is persistent. The event structure

e1 e′1

e2

OO

e3 ,

OO

where e1 and e′1 are persistent, together with a morphism mapping e1 and e′1 to e1, e2
to e2 and e3 to e3, is an augmentation. This is an example of how augmentations, in
addition to having extra dependencies, can split persistent events.

Definition 5.6.2. Let the rigid morphism g : (x, y, ≤) → (x′, y′, ≤′) be a morphism
between augmentations ((x, y, ≤), f) and ((x′, y′, ≤′), f ′) of E iff f ′ ◦ g = f

Define AE to be the category with objects the augmentations of E and morphisms as
above.

A prime augmentation is an augmentation ((x, y, ≤), f) where (x, y, ≤) is a prime
elementary event structure, i.e., x has a maximum event with respect to ≤.

As before, we wish to define our right adjoint in terms of prime augmentations. We
wish to select those prime augmentations p with the property that, if x maps into p in
AE then it does so uniquely. To gain an intuition as to why this is required, consider the
following. To obtain the correct universal property for the adjunction, we require that,
if AugP : AP → RP is the right adjoint, each morphism f : E1 → E2 in AP induces a
unique morphism f ′ : E1 → AugP (E2) in RP . So, there must be only one choice of prime
augmentation that an event in E1 can be mapped to for f ′ to be rigid. When attempting
to develop a right adjoint to the functor from RP into DP , a similar problem occurs. In
the next chapter we describe a method of characterising such extremal elementary event
structures and use them to define adjunctions between RP and AP and between RP and
DP .



Chapter 6

The Rigid-Pairs Method

In the previous chapter we discussed the difficulties involved in defining right adjoints to
the inclusions of the category of event structures with persistence and rigid morphisms
RP into the categories with augmentation morphisms and demand morphisms AP and
DP . Also, if spans of rigid morphisms are to form a bicategory, we require RP to have
pullbacks. Without corresponding categories of stable families in which to construct
limits, it is by no means obvious how to construct these pullbacks. We address these
issues in this chapter.

Let x be an elementary event structure with persistence and let f : x → E be a
morphism of any kind (partial, augmentation, demand or rigid). In this chapter we
describe a method for factorising f into a rigid epimorphism g : x→ x0 and a morphism
h : x0 → E of the same kind as f with the following property. If h′◦g′ = f and g′ : x→ x′

is a rigid epimorphism and h′ : x′ → E is of the same kind as f , the following diagram
commutes for a unique rigid epimorphism m : x′ → x0.

x
f //

g

''

g′

$$

E

x0

h

GG

x′
m

OO
h′

OO

In Section 6.3, we use these factorisations to define an adjunction between RP and DP .
We do the same for RP and AP in Section 6.4. Finally, in Section 6.5, we show how these
factorisations can be used to construct limits in RP .

6.1 Pre-rigid and Rigid Pairs

We introduce pre-rigid pairs and rigid pairs. These consist of a relation and a property
on the events of an elementary event structure x. We describe the properties these pairs
must have. We define an ordering on pairs based on the subset relation and show that for
any pre-rigid pair (R, P ) there is a maximal rigid pair (X, Φ) below it in this ordering.

We begin by defining pre-rigid pairs.

79
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Definition 6.1.1. Let x be an elementary event structure. A pre-rigid pair for x is a
pair (R, P ) where R is an equivalence relation on the events of x and P is a property of
events of x that holds of all persistent events.

In order to define rigid pairs we require the following.

Definition 6.1.2. A relation R on an elementary event structure x is a ≤-bisimulation
if

e1Re2 ⇒ i) ∀e′1 ≤ e1.∃e
′
2 ≤ e2. e

′
1Re

′
2 and

ii) ∀e′2 ≤ e2.∃e
′
1 ≤ e1. e

′
1Re

′
2. (6.1)

A property P on x respects a relation R on x if

e1Re2 and e1 6= e2 ⇒ P (e1) and P (e2). (6.2)

Definition 6.1.3. A rigid pair for an elementary event structure x is a pre-rigid pair
(R, P ) for x such that R is a ≤-bisimulation and P respects R.

We define an ordering on pairs of relations and properties for an elementary event
structure in terms of the subset relation.

Definition 6.1.4. Let R′ be a relation on the events of an elementary event structure x
and let P ′ be a property on these events. We say a pair (R′, P ′) is a sub-pair of (R, P )
if R′ is a subset of R and P ′(e)⇒ P (e) holds for all e ∈ x. We write (R′, P ′) ⊆ (R, P ).

Proposition 6.1.5. Let (R, P ) be a pre-rigid pair for an elementary event structure x.
Let X =

⋃
{R′ ⊆ R | R′ is a ≤−bisimulation and P respects R′}. We have that

(X, P ) is a rigid pair and indeed is the greatest rigid sub-pair of (R, P ).

Proof. We first show that X is a ≤-bisimulation and that P respects X. We will use
Tarski’s Fixed Point Theorem to do this. Define the function φ : Pow(R)→ Pow(R) for
R′ ⊆ R by

e1 φ(R′) e2 iff i) ∀e′1 ≤ e1.∃e
′
2 ≤ e2. e

′
1R

′e′2,

ii) ∀e′2 ≤ e2.∃e
′
1 ≤ e1. e

′
1R

′e′2 and

iii) e1 6= e2 ⇒ P (e1) and P (e2).

Clearly φ is monotonic. Also R′ is a ≤-bisimulation and P respects R′ iff R′ is a post-fixed
point of φ, i.e., R′ ⊆ φ(R′). By Tarski’s fixed point theorem, X is the greatest post-fixed
point of φ. It is therefore a ≤-bisimulation and P respects X. It is also the greatest such
relation.

It remains to show that X is an equivalence relation.
Reflexivity : Follows immediately from R being reflexive and the identity relation being a
≤-bisimulation that P respects.
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Symmetry : If R′ is a ≤-bisimulation that P respects then R′op is clearly also a ≤-
bisimulation that P respects. So, the symmetry of X follows from the symmetry of
R.
Transitivity : We show that, if R′, R′′ ⊆ R are both ≤-bisimulations respected by P then
so is R′ ◦ R′′. It is clear that P respects R′ ◦ R′′ and that R′ ◦ R′′ ⊆ R because R is
transitive. It remains to check that R′ ◦R′′ is a ≤-bisimulation. Assume e1 (R′ ◦ R′′) e2,
i.e., there exists e3 such that e1 R

′ e3 and e3 R
′′ e2. Assume e′1 ≤ e1 in x. We show

∃e′2 ≤ e2. e
′
1 (R′ ◦R′′) e′2.

Given that R′ and R′′ are ≤-bisimulations, we have the following. If e′1 ≤ e1 then there
exists e′3 ≤ e3 such that e′1 R

′ e′3. Since e′3 ≤ e3 then there exists e′2 ≤ e2 such that
e′3 R

′′ e′2. So there exists e′2 ≤ e2 such that e′1 (R′ ◦ R′′) e′2. Because R′ ◦ R′′ ⊆ R and
therefore R′ ◦R′′ ⊆ X, it follows that X is transitive.

So (X, P ) is indeed the greatest rigid sub-pair of (R, P ).

Definition 6.1.6. Let (R, P ) be a pre-rigid pair. Its maximal rigid sub-pair is the
extremal rigid sub-pair of (R, P ).

6.2 Rigid Morphisms as Rigid Pairs

We show a bijective correspondence between rigid epimorphisms f : x→ x′, where x is an
elementary event structure, and the rigid pairs for x. We then show that the morphism
corresponding to the extremal rigid sub-pair of a pre-rigid pair (R, P ) factors uniquely
through the morphisms corresponding to rigid sub-pairs of (R, P ).

We first define the pair to which a rigid epimorphism corresponds.

Definition 6.2.1. Let f : x→ x′ be a rigid morphism. Define (Rf , Pf ) by

e1 Rf e2 if f(e1) = f(e2) and

Pf (e) if f(e) is a persistent event

for all e, e1, e2 ∈ x.

Proposition 6.2.2. If f is a rigid epimorphism then (Rf , Pf ) is a rigid pair.

Proof. It is clear from the definition that Rf is an equivalence relation. We know that
Pf holds for all persistent events because f preserves persistence. So, (Rf , Pf ) is a pre-
rigid pair. We must next show that Rf is a ≤-bisimulation. Assume e1Rfe2 so that
f(e1) = f(e2) and e′1 ≤ e1 for some e1, e2 ∈ x. If f(e1) = f(e2) then [f(e1)] = [f(e2)]
and, as f is rigid, f [e1] = f [e2]. It must therefore be the case that there exists an e′2 ∈ [e2]
such that we have f(e′1) = f(e′2). A symmetric argument suffices for the second part of
the property.

Finally we show that Pf respects Rf . If f(e1) = f(e2) and e1 6= e2 then, as f is a rigid
morphism, it must be the case that f(e1) is persistent.



82 CHAPTER 6. THE RIGID-PAIRS METHOD

In fact, every rigid pair of an elementary event structure x corresponds to a rigid
epimorphism with domain x.

Definition 6.2.3. Let (R, P ) be a rigid pair for an elementary event structure x. Define
(x′, p′, ≤) by

• x′
def
= {[e]R | e ∈ x} where [e]R is the equivalence class of e according to R,

• [e]R ∈ p
′ iff P (e),

• [e]R ≤ [e′]R iff ∃e1 ∈ [e]R, e2 ∈ [e′]R. e1 ≤ e2.

Define 〈R, P 〉 : x→ x′ by
〈R, P 〉(e) = [e]R.

The following property is used in the remainder of the chapter.

Lemma 6.2.4. Let g : x→ y be a rigid morphism. The following are equivalent.

• The morphism g is a surjective function.

• The morphism g is an epimorphism.

It is trivial to see that, if g is surjective, it is an epimorphism. To see the reverse,
recall that h ◦ g = h′ ◦ g implies h = h′ for all rigid morphisms h and h′ with domain y.
If g was not also a surjective function, we could easily construct morphisms h and h′ for
which h ◦ g = h′ ◦ g and h 6= h′.

Theorem 6.2.5. Let x be an elementary event structure. The constructions in Defini-
tions 6.2.1 and 6.2.3 define a bijective correspondence between rigid pairs for x and rigid
epimorphisms with domain x up to isomorphism of the codomain.

Proof. In order to prove the theorem we must show that, if (R, P ) is a rigid pair for x,
then

i) 〈R, P 〉 : x→ x′ is a rigid epimorphism and

ii) it is the unique epimorphism corresponding to (R, P ) up to isomorphism of the
codomain.

i) We must show that x′ is an elementary event structure and that 〈R,P 〉 has the correct
properties to be a rigid epimorphism. We begin by proving that the causality relation of
x′ is a partial order.
Reflexivity : Obvious.
Transitivity : Suppose [e1]R ≤ [e2]R and [e2]R ≤ [e3]R. Then there exist e′1 ∈ [e1]R,
e′2, e

′′
2 ∈ [e2]R and e′3 ∈ [e3]R for which we have e′1 ≤ e′2 and e′′2 ≤ e′3. We have e′2Re

′′
2 and

e′1 ≤ e′2 so, as R is a ≤-bisimulation, there must exist e′′1 ∈ x such that e′′1 ≤ e′′2 and e1Re
′′
1.

By transitivity of ≤ on x, we have e′′1 ≤ e′3 and therefore [e1]R ≤ [e3]R.
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Anti-symmetry : Suppose [e1]R ≤ [e2]R and [e2]R ≤ [e1]R. Then there exist e′1, e
′′
1 ∈ [e]R

and e′2, e
′′
2 ∈ [e′]R for which we have e′1 ≤ e′2 and e′′2 ≤ e′′1. It follows from R being a

≤-bisimulation that there exists e′′′2 ∈ x, related by R to e′′2 such that e′′′2 ≤ e′1. As e′′′2 is
related to e′′2 by R, we have, from the transitivity of R that e′′′2 is related to e′2. As we
have e′1 ≤ e′2, there exists an e′′′1 for which we have e′′′1 ≤ e′′′2 and e′′′1 Re

′
1. The argument

can be continued similarly to produce a descending chain of events that alternate between
being related to e1 and being related to e2. As [e] is finite for all events e in x, the chain
must eventually become constant and so there is an e3 related by R to both e1 and e2,
implying [e1]R = [e2]R.

Let f = 〈R, P 〉. We next prove that f : x→ x′ is a rigid morphism.
We first show [f(e)] ⊆ f [e] for all e ∈ x. Apologising for the notation we let

[e1]R ∈ [f(e)]. This implies that there exist e′1 ∈ [e1]R and e′ ∈ f(e) for which we have
e′1 ≤ e′. So, as e′Re holds, there must exist e′′ ∈ x, for which e′′ ≤ e and e′1Re

′′. Therefore
we know [e1]R ∈ f [e].

We next show f [e] ⊆ [f(e)]. Suppose [e1]R ∈ f [e]. There must exist e′ ≤ e such that
f(e′) = [e1]R, i.e., such that e′Re1. As [e1]R contains an event upon which e depends, it
follows from the definition that [e1]R ∈ [f(e)].

That f behaves correctly concerning persistence follows directly from P respecting R.

ii) We show that f is the unique epimorphism for which (Rf , Pf ) = (R, P ) up to
isomorphism of the codomain. As the underlying function of f is surjective, it is clearly an
epimorphism. Suppose there exists another epimorphism g : x→ y for which (Rg, Pg) =
(R, P ). Define α : x′ → y and α−1 : y → x′ by

α([e]R)
def
= g(e) and α−1(e′)

def
= [e′′]R

for all e ∈ x and e′ ∈ y where e′′ ∈ x is such that g(e′′) = e′ (making use of Lemma 6.2.4).
We have that α and α−1 are well-defined as we have e1Re2 iff g(e1) = g(e2). To see
that α is an isomorphism on the set of events consider that (α−1 ◦ α)([e]R) = [e′′]R where
g(e′′) = g(e) and therefore we have e′′Re and so [e′′]R = [e]R and (α ◦ α−1)(e) = g(e′)
where e′ ∈ x with g(e′) = e. Having shown that α is a bijection on events, we now
show that α is a rigid morphism that reflects persistence. The result then follows directly
from Lemma 5.4.5. As g corresponds to the same property of events as f , we have that
α behaves as required with persistence. We show that [α([e]R)] = α[[e]R] for [e]R ∈ x

′.
Suppose e′ ∈ [α([e]R)]. Then e′ ∈ [g(e)] and therefore e′ is in g[e] as g is rigid. So, there
exists e′′ ∈ [e] such that g(e′′) = e′. As we have e′′ ≤ e we also have [e′′]R ≤ [e]R and so
e′ is in α[[e]R]. So, [α([e]R)] ⊆ α[[e]R]. Assume e′ ∈ α[[e]R]. Then there exists e′′ ∈ x such
that [e′′]R is in [[e]R] and e′′ ≤ e holds and g maps e′′ to e′. This implies e′ ∈ g[e] and
therefore that e′ is in [α[e]R] as g is rigid. So, α is a rigid morphism that is a bijection
on events, reflects persistence and (trivially) preserves conflict. From Lemma 5.4.5, it is
therefore an isomorphism between x′ and y.

As all rigid pairs correspond to rigid epimorphisms, the extremal rigid sub-pair of a
pre-rigid pair for x corresponds to a rigid epimorphism.
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Definition 6.2.6. Let (R, P ) be a pre-rigid pair and (X, P ) its extremal rigid sub-pair.
If 〈X, P 〉 : x→ x0 is the morphism corresponding to (X, P ) (see Definition 6.2.3) then
we refer to x0 (and all things isomorphic to it) as extremal elementary event structures
for (R, P ).

Throughout the rest of the chapter, we treat extremals as having events of the form
[e]X .

Proposition 6.2.7. Let x be an elementary event structure and let (R, P ) be a pre-rigid
pair on x. Let f0 : x→ x0 be a rigid epimorphism between elementary event structures.

The following are equivalent.

i) (Rf0
, Pf0

) is extremal for (R, P ).

ii) If g : x → x′ is a rigid epimorphism and (Rg, Pg) ⊆ (R, P ) then there exists a
unique rigid epimorphism m : x′ → x0 such that the following diagram commutes.

x
f0 //

g ��@
@@

@@
@@

@ x0

x′

m

OO

Proof. We first show that (i) implies (ii). Assume (i). Let (X, P ) = (Rf0
, Pf0

). We
begin by defining m and demonstrating that it is a rigid morphism. Define m(e) to be
f0(e

′) where e′ ∈ x is such that g(e′) = e for all e ∈ x′ (making use of Lemma 6.2.4). This
is well-defined as, because (X, P ) is extremal, if g(e1) = g(e2) for e1, e2 ∈ x then e1Xe2.
Rigidity of m: We first show that [m(e)] = m[e]. Assume e′ ∈ m[e], i.e., that there exists
e1 ∈ [e] such that m(e1) = e′. As g is rigid and therefore reflects dependency and we have
e1 ≤ e, there exist e′1, e

′′ ∈ x such that g(e′1) = e1 and g(e′′) = e for which e′1 ≤ e′′ holds.
As f0 is rigid, it preserves dependencies and so we have f0(e

′
1) ≤ f0(e

′′). This implies
m(e1) ≤ m(e) as f0(e

′
1) = m(e1) and f0(e

′′) = m(e) so m[e] ⊆ [m(e)] holds for all e ∈ E.
As x0 is an extremal elementary event structure for (R, P ), we can assume it has

events of the form [e′′]X (see Definition 6.2.6). Assume e′ ∈ [m(e)], i.e., assume e′ ≤ m(e).
We must show e′ ∈ m[e], i.e., that there exists e′′′ ≤ e such that m(e′′′) = e′. From the
definition of x0, if e′ ≤ m(e) then there exist e1 ∈ e′ and e2 ∈ m(e) such that e1 ≤ e2
holds in x. As g is rigid, we have g(e1) ≤ g(e2). It follows from the definition of m that
(m◦g)(e2) = m(e) and that (m◦g)(e1) = e′. As e2 ∈ m(e) it must be that X relates e2 to
all the events e3 ∈ x for which g(e3) = e. From the properties of ≤-bisimulations we can
deduce that, as we have e1 ≤ e2, there must exist e′3 such that e′3 ≤ e3 and e1Xe

′
3 hold.

So, we have g(e′3) ≤ e and therefore g(e′3) ∈ [e]. Recall that (m ◦ g)(e′3) = (m ◦ g)(e1) = e′

and so e′ ∈ m[e] implying [m(e)] ⊆ m[e] for all e ∈ E.
We next show that m(e1) = m(e2) implies e1 = e2 or m(e1) is persistent. If m(e1) =

m(e2) for two distinct events e1 and e2 ∈ x
′ then for all e′1 ∈ x such that g(e′1) = e1 and

e′2 ∈ x such that g(e′2) = e2 we have f0(e
′
1) = f0(e

′
2). As f0 is a rigid morphism, this

implies that f0(e
′
1) is persistent and therefore that m(e1) is persistent.
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Finally, we show that m preserves persistence. If e1 ∈ x
′ is persistent then, because

(Rg, Pg) ⊆ (R, P ), it follows that P holds for all events e′1 in x that are mapped to e1

by g. So f0(e
′
1) is persistent for all such events and therefore m preserves persistence.

Uniqueness of m: Suppose there exists m′ : x′ → x0 such that m′ ◦ g = m ◦ g = f0. As g
is an epimorphism, this implies that m = m′.

Surjectivity of m: The morphism f0 = m ◦ g is surjective from its definition. Therefore
m must be surjective and is therefore an epimorphism.

We now show that (ii) implies (i). Observe that f0 = m ◦ g implies (Rg, Pg) is a
subset of (Rf0

, Pf0
). Also, from Theorem 6.2.5, all rigid sub-pairs of (R, P ) correspond

to rigid epimorphisms. So, from this and the assumption of (ii), all rigid sub-pairs of
(R, P ) are subpairs of (Rf0

, Pf0
). It is therefore the largest and so, from Definition 6.1.6,

the extremal rigid sub-pair of (R, P ).

The following examples show the construction being applied to two different elemen-
tary event structures and pre-rigid pairs.
Example 1 : Consider the case where x is given by

e1 e2 e3

e4

``BBBBBBBB

>>||||||||
e5

OO

where e1 is a persistent event. Let R be the equivalence relation with classes {e1, e2, e3}
and {e4, e5} and let P be true for e1, e2, e3, and e5. Although (R, P ) is a pre-rigid pair
for x, it is not rigid because P does not respect R, i.e., e4Re5 but P (e4) does not hold.
The extremal elementary event structure for (R, P ) is shown below.

{e1, e2} {e3}

{e4}

OO

{e5}

OO

where {e1, e2}, {e3} and {e5} are persistent events.
Example 2 : For any elementary event structure x, if R is the equivalence relation that
relates all the events in x to each other and if P is true for all events, then the extremal ele-
mentary event structure for (R, P ) is an event structure consisting of one persistent event.

An intuition for the relationship between an elementary event structure x and the
extremal elementary event structure x0 for a particular pre-rigid pair (R, P ) for x is that
x0 merges the events of x in such a way that there is a rigid morphism respecting R into
x0 from x and that x0 is the minimum such elementary event structure, i.e., the event
structure with the fewest events but the most persistent events.
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6.3 The Category of Demand Morphisms as a Kleisli

Category

In this section we show how to construct an adjunction between the categories RP and
DP via rigid pairs.

We first describe a functor from RP to DP .

Definition 6.3.1. Define F to map objects in RP to themselves in DP and define its
action on arrows f : E1 → E2 in RP by

F (f)(e)
def
= f [e]

for all e ∈ E1.

Proposition 6.3.2. The operation F : RP → DP is a functor.

Proof. We first show that, if f : E1 → E2 is a rigid morphism, then F (f) is a demand
morphism between E1 and E2. As f is a rigid morphism, it preserves configurations
and therefore F (f)(e) ∈ C0(E2) for all e ∈ E1. We next show that e1 ≤ e2 implies
F (f)(e1) ⊆ F (f)(e2). If we have e1 ≤ e2 then we also have [e1] ⊆ [e2] and therefore
f [e1] ⊆ f [e2]. Finally, we show that F (f)(e1) 6↑ F (f)(e2) implies e1#e2. If f [e1] 6↑ f [e2]
then there is no configuration of E2 with both f [e1] and f [e2] as subsets. This implies
that [e1]∪ [e2] cannot be a configuration of E1 as f preserves configurations and therefore
e1#e2.

The definition of F ensures that identities are preserved. We show it also distributes
over composition. Let f : E1 → E2 and g : E2 → E3 be morphisms in RP . Then
F (g ◦ f)(e) = (g ◦ f)[e] and

(F (g) ◦ F (f))(e) = (F (g)† ◦ f)[e]

=
⋃

e′∈f [e]

g[e′]

=
⋃

e′∈[f(e)]

g[e′] (rigidity of f)

= g[f(e)] (because e′ ∈ [f(e)] implies [e′] ⊆ [f(e)])

= (g ◦ f)[e].

This confirms that F is indeed a functor between RP and DP .

We will define a right adjoint Dem : DP → RP by giving an object Dem(E) ∈ RP

and an arrow ǫE : F (Dem(E))→ E universal from F to E.
In the remainder of this section, we describe an event structure Dem(E) and a mor-

phism ǫE : F (Dem(E))→ E for each E ∈ DP with the aid of rigid pairs. In order to do
this we must first derive some properties of factorisations of demand morphisms.
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Definition 6.3.3. Let d : x → E be a demand morphism. Define the pre-rigid pair
(R, P ) associated to d as follows.

e1Re2
def
⇔ d(e1) = d(e2).

Define P to be true for all events in x.

For convenience, we occasionally use demand morphisms to denote the pre-rigid pairs
to which they correspond.

Proposition 6.3.4. i) The rigid sub-pairs (R′, P ′) of the pre-rigid pair (R, P ) of
a demand morphism d : x → E induce factorisations of d into the rigid morphism
〈R′, P ′〉 : x→ x′ (see Definition 6.2.3) followed by a demand morphism d′ : x′ → E
where we define d′ by

d′[e]R′

def
= d(e)

for all [e]R′ in the image of 〈R′, P ′〉.
ii) Any factorisation of d into a rigid epimorphism f followed by a demand morphism
induces a rigid sub-pair of (R, P ).

Proof. (i) That d′ is well-defined follows from the definition. It is clear that d′ ◦ 〈R′, P ′〉
equals d. We show that d′ is a demand morphism. Suppose [e1]R′ ≤ [e2]R′ in x′. Then
there exists e′1 ∈ [e1]R′ such that e′1 ≤ e2 holds and therefore, as d(e′1) is a subset of
d(e2) and e′1 R

′ e1 implies d(e′1) = d(e1), we have d′[e1]R′ ⊆ d′[e2]R′ . Observe that, as
d†x ∈ C(E), we have d′[e1]R′ ↑ d′[e2]R′ for all [e1]R′ , [e2]R′ in x′. Therefore d′ is a demand
morphism.
(ii) The rigid epimorphism f corresponds to a rigid pair (Rf , Pf ). As P always holds, Pf

is a subset of P and, as f is part of a factorisation of d, if f(e1) = f(e2) for any e1, e2 ∈ x
then d(e1) = d(e2) and so we have (Rf , Pf ) ⊆ (R, P ).

In particular, the greatest rigid sub-pair (X, P ) for a demand morphism d induces a
factorisation of d into d′ ◦ [ ]X .

Lemma 6.3.5. Let d : x → E be a demand morphism with pre-rigid pair (R, P ). Let
(X, P ) be the greatest rigid sub-pair of (R, P ) with associated factorisation

d = x
[ ]X
→ x0

d0→ E.

For any rigid epimorphism f : x→ x′ and any demand morphism d′ : x′ → E, if d′◦f = d
then the following diagram commutes for a unique rigid morphism m : x′ → x0.

x d //

[ ]X

  @
@@

@@
@@

@

f

##

E

x0

d0

>>}}}}}}}}

x′

m

OO
d′

NN
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Proof. It follows from Proposition 6.2.7 that there exists a unique rigid morphism m such
that m ◦ f = [ ]X . It remains to check that d0 ◦m = d′. We have d0 ◦m ◦ f = d′ ◦ f . As
f is an epimorphism, this implies d0 ◦m = d′.

Let E be an event structure with persistence. We now describe the construction
of an event structure Dem(E) and a demand morphism ǫE such that for all demand
morphisms d : E ′ → E in DP the diagram below commutes for a unique rigid morphism
m : E ′ → Dem(E).

E ′ d //

m $$

E

Dem(E)

ǫE

::vvvvvvvvv

Definition 6.3.6. Let DE be the category of demands for the event structure E with
objects (x, d) where x is an elementary event structure with persistence and d is a demand
morphism from x into E. A morphism f between (x1, d1) and (x2, d2) in DE is a rigid
morphism f : x1 → x2 such that d1 = d2 ◦ f .

Definition 6.3.7. The pair (x0, dx0
) in DE is extremal for dx : x → E if there exists a

rigid epimorphism f : (x, dx) → (x0, dx0
) in DE such that (Rf , Pf ) is the extremal of

dx. The pair (x0, dx0
) is extremal in DE if it is extremal for some dx : x → E. It is

prime if x0 is prime, i.e., iff there exists e ∈ x0 such that e′ ≤ e for all e′ ∈ x0.

Note that, if (x0, dx0
) is extremal inDE, then it is extremal for dx0

(follows immediately
from Proposition 6.2.7).

Let Skl(DE) be the skeleton of DE. Making use of Skl(DE) removes multiple isomor-
phic event structures when making definitions. The properties of extremals and primal-
ity are stable under isomorphisms and so we consider them as properties of objects in
Skl(DE).

Definition 6.3.8. If (E, P, ≤, #) is an event structure, define Dem(E) to be the event
structure (E ′, P ′, ≤′, #′) where

• E ′ is the set of prime extremals in Skl(DE),

• P ′ = E ′,

• e ≤′ e′ iff there exists a morphism f : e→ e′ in DE,

• e#′e′ iff there is no object in DE with morphisms from e and e′ into it.

In order to prove that Dem(E) is an event structure, we make use of the following
properties of extremals in DE.

Proposition 6.3.9. If (x0, dx0
) ∈ DE is extremal, all the morphisms in the category DE

with domain (x0, dx0
) are injective functions on x0 that reflect persistence. Surjections

out of (x0, d0) are isomorphisms.
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Proof. Let f : (x0, d0)→ (y, dy) be a morphism in DE. Let y′ be the restriction of y to
the image of f .

By Proposition 6.2.7, we have a unique epimorphism m : y′ → x0 such that the
following diagram commutes.

x0
dx0 // E

y′

m

OO

dy

??~~~~~~~~

Now, we also have dx0
◦m ◦ f ◦m = dy since

dx0
◦m ◦ f ◦m = dy ◦ f ◦m

= dx0
◦m from the definition of f

= dy.

Since m is the unique such morphism, we have m ◦ f ◦m = m and since m is an epimor-
phism, we have m ◦ f = idx0

. So, f is a split monic, hence injective.
If f is a surjection then it is an epimorphism. So, as split monomorphisms that are

epimorphisms are isomorphisms, f is an isomorphism.

Proposition 6.3.10. If (x0, dx0
) is extremal for dx : x→ E and there is a rigid surjection

f : (x′, dx′)→ (x0, dx0
) then (x0, dx0

) is extremal for dx′.

Proof. Follows immediately from Proposition 6.2.7.

Definition 6.3.11. Let x be an elementary event structure. We say x′ is a restriction
of x if x′ = x ↾ S for some S ⊆ x that is downwards closed with respect to ≤. An object
(x′, dx′) of DE is a restriction of (x, dx) ∈ DE iff x′ is a restriction of x and dx′ is dx

with domain restricted to x′.

In the following, if x′ is a restriction of the elementary event structure x and (x, dx)
is a member of DE, we sometimes write (x′, dx) for the object in DE consisting of x′ and
the restriction of dx to a morphism from x′ to E.

Proposition 6.3.12. The restriction of an extremal is also extremal.

Proof. In order to show the above we first prove the following more general property.
Let (y, dy) be a member of DE and let (x, dx) be a restriction of (y, dy). If (R, P )

is a rigid sub-pair of dx then (R, P ) is the restriction of a rigid sub-pair of dy, i.e.,
(R, P ) = (R′ ∩ (x× x), P ′ ∩ x) for some (R′, P ′) that is a rigid sub-pair of dy.

Define (R′, P ′) to be (R ∪ Idy, P ∪ S) where Idy is the identity relation on events in

y and S
def
= {e ∈ y | e persistent}. It is clear from the definition that (R′, P ′) is pre-rigid

and a sub-pair of dy. We now show that it is a rigid pair.
R′ is a ≤-bisimulation: Assume e1R

′e2 so e1 (R ∪ Idy) e2 and assume e′1 ≤ e1. Then
either e1 and e2 are in x and therefore part (i) of property 6.1 holds because it holds for



90 CHAPTER 6. THE RIGID-PAIRS METHOD

R or e1 and e2 are in y and therefore e1 = e2. A symmetric argument demonstrates that
the second part of property 6.1 also holds.
P ′ respects R′: Suppose e1R

′e2 so e1 R ∪ Idy e2 and e1 6= e2. Then e1 must be related to
e2 by R and therefore P (e1) and P (e2) hold and so P ′(e1) and P ′(e2) hold.

We can now prove that the restriction of an extremal is also extremal.
Let (x, dx) ∈ DE and let (x0, dx0

) be the extremal of dx. As explained earlier, we
assume the events of x0 are equivalence classes of the maximal rigid pair (X, P ) for dx.
Let S be a downwards closed subset of x0. We show that a restriction (x0 ↾ S, dx0

) is
the extremal for a restriction dx′ : x′ → E of dx. Define x′ to be the elementary event
structure x ↾

⋃
S. We know that x′ is indeed an elementary event structure because,

from X being a ≤-bisimulation and S being downwards closed, we know that
⋃
S is a

downwards closed subset of x. Define dx′ to be dx with domain restricted to x′. There
is a rigid morphism f : (x′, dx′) → (x0 ↾ S, dx0

) given by the restriction of 〈X, P 〉 to
domain x′. We show that (Rf , Pf ) is the maximal rigid sub-pair of dx′ by showing that
all the rigid sub-pairs of dx′ are sub-pairs of (Rf , Pf ). Suppose (R, P ) is a rigid sub-pair
of dx′ . Then, from the above, it is the restriction of a rigid sub-pair of dx. As (Rf , Pf )
is the restriction of (X, P ) to the events x′, we have (R, P ) ⊆ (Rf , Pf ). It is therefore
the maximum rigid sub-pair of dx′ , making (x0 ↾ S, dx0

) extremal.

Theorem 6.3.13. Dem(E) is an event structure for all event structures E.

Proof. Let ≤ be the causality relation of Dem(E).
Properties of ≤: We first show that ≤ is a partial order. Reflexivity and transitivity
follow immediately from the properties of morphisms. Let (x0, dx0

) and (y0, dy0
) be

events in Dem(E). In order to show anti-symmetry, we note that, if there is a morphism
f : (x0, dx0

) → (y0, dy0
) and a morphism g : (y0, dy0

) → (x0, dx0
) between extremals

in DE, then they must be isomorphic (Proposition 6.3.9 and the Schroeder-Bernstein
Theorem). As (x0, dx0

) and (y0, dy0
) are in Skl(DE), this implies (x0, dx0

) = (y0, dy0
).

Therefore ≤ is a partial order. We now show that for all events (x0, dx0
) ∈ Dem(E), we

have that [(x0, dx0
)] is finite. As (x0, dx0

) is a prime elementary event structure, it has
only a finite number of sub-primes, i.e., restrictions of x0 that are prime. For all prime
extremals (y0, dy0

) with morphisms f into (x0, dx0
) we have f(y0) = [f(max(y0))], i.e.,

they will be mapped to one of the sub-primes within x0 due to the rigidity of f . So, if
there are an infinite number of prime extremals mapping into (x0, dx0

), two distinct prime
extremals (y1, dy1

) and (y2, dy2
) with morphisms f1 and f2 into (x0, dx0

) must map to
the same sub-prime (x0 ↾ [e], dx0

) where e is some event in x0. We show that this implies
that they are isomorphic. The restrictions of f1 and f2 to morphisms into (x0 ↾ [e], dx0

)
are surjective. It follows from Propositions 6.3.12 and 6.3.9 that (x0 ↾ [e], dx0

) is extremal
and therefore isomorphic to both (y1, dy1

) and (y2, dy2
). So (y1, dy1

) = (y2, dy2
) as they

are objects in Skl(DE) and therefore [(x0, dx0
)] is finite.

Let # be the conflict relation of Dem(E).
Properties of #: It follows immediately from the definition that # is irreflexive and
symmetric. Let e1, e2 and e3 be events in Dem(E) such that e1#e2 and e2 ≤ e3. We now
show e1#e3 by contradiction. If e1 and e3 are not in conflict then there exists x ∈ DE



6.3. THE CATEGORY OF DEMAND MORPHISMS AS A KLEISLI CATEGORY 91

with morphisms f : e1 → x and g : e3 → x into it. However, e2 ≤ e3 means there is a
morphism from e2 to e3 and therefore, by composition of this with g, that e1 and e2 are
not in conflict. This is a contradiction and therefore we have e1#e3.

Define ǫE : F (Dem(E))→ E by

ǫE(x, d)
def
= d†(x)

for all (x, d) in Dem(E). Note that, as e1 ≤ e2 implies d(e1) ⊆ d(e2) for all e1, e2 ∈ x,
we could equivalently define ǫE by ǫE(x, d) = d(max(x)).

Proposition 6.3.14. The function ǫE is a demand morphism from Dem(E) to E.

Proof. Let (x, dx) and (y, dy) be events in Dem(E). We first show that (x, dx) ≤ (y, dy)
implies ǫE(x, dx) ⊆ ǫE(y, dy). If (x, dx) ≤ (y, dy) then there exists a morphism
f : (x, dx) → (y, dy) such that dy ◦ f = dx and therefore (d†y ◦ f)(x) = d†x(x). As
f(x) ⊆ y, this implies ǫE(x, dx) ⊆ ǫE(y, dy). Finally, we show that ǫE(x, dx) 6↑ ǫE(y, dy)
implies (x, dx)#(y, dy). Assume ǫE(x, dx) 6↑ ǫE(y, dy). Then there can be no object in
DE that both (x, dx) and (y, dy) map into. This is because, if such an object (z, dz)
existed, dz(z) would have to contain both dx(x) and dy(y), thus contradicting the initial
assumption. We therefore have that ǫE is a demand morphism.

In the proof of Proposition 6.3.16, we make use of the following.

Lemma 6.3.15. Let (z, dz) ∈ DE. Let (y, dy) be a restriction of (z, dz) with corre-
sponding morphism r : (y, dy)→ (z, dz). Let (y0, dy0

) and (z0, dz0
) be the extremals of

dy and dz. Then there exists a morphism f : (y0, dy0
)→ (z0, dz0

) such that the following
diagram commutes where my : (y, dy)→ (y0, dy0

) and mz : (z, dz)→ (z0, dz0
) are the

unique morphisms from (y, dy) and (z, dz) into their extremals.

(y, dy)
r //

my

��

(z, dz)

mz

��
(y0, dy0

)
f

// (z0, dz0
)

Proof. Restrict z0 to mz ◦ r(y). Observe that mz ◦ r is surjective into the restriction.
From Proposition 6.3.12 and Proposition 6.3.10, this restriction is extremal for (y, dy)
and therefore isomorphic to (y0, dy0

). There must therefore be a morphism from (y0, dy0
)

into (z0, dz0
) as required.

Proposition 6.3.16. For every event structure E ′ with a demand morphism d : E ′ → E,
there exists a unique rigid morphism m : E ′ → Dem(E) such that the following diagram
commutes.

Dem(E)
ǫE // E

E ′

m

OO

d

::vvvvvvvvvv
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Proof. We first define m : E ′ → Dem(E). For all e ∈ E ′, the restriction of E ′ to [e]
paired with the corresponding restriction of d is clearly a member of DE as d is a demand
morphism. Define m by

m(e)
def
= (x, dx)

where (x, dx) is the extremal of d restricted to domain [e] in Skl(DE).
Let h : (E ′ ↾ [e], d) → (x, dx) be the unique morphism in DE from (E ′ ↾ [e], d) into

(x, dx).
As h is rigid and max(E ↾ [e]) = e we have (dx ◦ h)(e) = dx(max(x)) = d(e) and

therefore that d = ǫE ◦m.

Rigidity of m: That m preserves persistence holds trivially because all events in Dem(E)
are persistent.

In the following let e1 and e2 be events in E ′ and let (x1, dx1
) equal m(e1) and (x2, dx2

)
equal m(e2).

We show that m reflects conflict. If m(e1)#m(e2) then there is no (y, dy) in DE that
m(e1) and m(e2) both map to. We show by contradiction that this implies that there is
no configuration z of E ′ that contains both e1 and e2. Assume such a z exists. Let (z, dz),
([e1], d[e1]) and ([e2], d[e2]) be the objects in DE given by the restrictions of E ′ and d to
z, [e1] and [e2] respectively. Observe that ([e1], d[e1]) and ([e2], d[e2]) are restrictions of
(z, dz). This implies from Lemma 6.3.15 that the extremals of d[e1] and d[e2] and therefore
m(e1) and m(e2) map into the extremal of dz, contradicting the initial assumption. It
follows that we have e1#e2 in E ′ and so m reflects conflict.

That m(e1) = m(e2) implies e1 = e2 or e1#e2 or m(e1) is persistent is trivially true as
all events in Dem(E) are persistent.

We next show m[e] ⊆ [m(e)]. If e1 ≤ e2 then (E ′ ↾ [e1], d) is a restriction of
(E ′ ↾ [e2], d) and therefore, from Lemma 6.3.15, there is a morphism from (x1, dx1

) to
(x2, dx2

). This implies m(e1) ≤ m(e2) and so m[e] ⊆ [m(e)] holds for all e ∈ E ′.
Finally, we show [m(e)] ⊆ m[e]. If (x, dx) ≤ m(e1) for some (x, dx) in Dem(E)

then there is a morphism f : (x, dx) → (x1, dx1
) in DE. We show that there is a

restriction (x′, dx′) of (E ′ ↾ [e1], d) and an epimorphism f ′ : (x′, dx′) → (x, dx). Let
m[e1] : (E ′ ↾ [e1], d) → (x1, dx1

)) be the unique morphism from (E ′ ↾ [e1], d) into its
extremal. Define x′ to be the largest restriction of (E ′ ↾ [e1]) such that m[e1](e) ∈ f(x)
for all e ∈ x′. Define f ′ by

f ′(e)
def
= f−1 ◦m[e1](e)

for all e ∈ x′. This is well defined because, from Proposition 6.3.9, the morphism f is
injective. We now show that f ′ is rigid. As f is rigid,

f [(f−1 ◦m[e1])(e)] = [m[e1](e)] = m[e1][e]

holds for all e ∈ x′ and so (f−1 ◦m[e1])[e] = [f−1 ◦ m[e1](e)]. Next we show that f ′

preserves persistence. If e is persistent in x′ then it is persistent in (E ′ ↾ [e1]) and so
m[e1](e) is persistent. From Proposition 6.3.9, the morphism f must reflect persistence
and so f−1 preserves it. Therefore f ′(e) is persistent. Finally, we show that f ′(e) = f ′(e′)
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implies e = e′ or f ′(e) is persistent for all e, e′ ∈ x′. Suppose f ′(e) = f ′(e′) for distinct
e, e′ ∈ x′. As f is injective, it must be the case that m[e1](e) = m[e1](e

′). So, as m[e1] is a
morphism, m[e1](e) is persistent in x1. As f reflects persistence we have that (f−1◦m[e1])(e)
is persistent.

Taking dx′ : x′ → E to be the restriction of d to x′ we clearly have that dx′ = dx ◦ f
′

as required. It therefore follows from Proposition 6.3.10 that (x, dx) is the extremal for
dx′ .

As (x, dx) is prime and we know that f ′(x′) = x, we know that there must exist e ∈ x′

such that f [e] = x as f is rigid. So there is a prime restriction (x′ ↾ [e], dx′) of (x′, dx′)
with a surjective morphism into (x, dx). It follows from Proposition 6.3.10 that (x, dx)
will be its extremal and therefore that m(e) = (x, dx). Also, as all elements in x′ are
below e1 we have e ≤ e1 and therefore (x, dx) ∈ m[e1]. So, [m(e)] ⊆ m[e] for all e ∈ E ′.

Uniqueness of m: Suppose there exists a rigid morphism m′ : E ′ → Dem(E) for which
ǫE ◦ m

′ = d. Suppose m′(e) = (x, dx) for some e ∈ E ′ and (x, dx) ∈ Dem(E). We
show that (x, dx) must equal m(e). In order to prove this, we first show the following.
Let x′ be the restriction of Dem(E) to [(x, dx)] and let dx′ be the restriction of ǫE to x′.
Then (x′, dx′) is isomorphic to (x, dx). We define an isomorphism f : x → x′. Define

f : x→ x′ by f(e)
def
= (z, dz) where (z, dz) is the event in x′ that is isomorphic to ([e], dx)

(the restriction of (x, dx) to the events [e]). It follows from Proposition 6.3.12 that all
restrictions of (x, dx) are extremal. It is clear that ([e], dx) is prime and the restriction
corresponds to a map from ([e], dx) to (x, dx). So, as Dem(E) is constructed from a
skeletal category, there is a unique event (z, dz) in x′ that is isomorphic to ([e], dx) and a
member of [(x, dx)]. Therefore f is well-defined. We now show that f is a rigid morphism.
First we demonstrate [f(e)] ⊆ f [e] for all e ∈ x. Assume (y, dy) ≤ f(e). Then there
is a morphism g : (y, dy) → ([e], dx) in DE. As g is rigid and y is a prime elementary
event structure, g(y) = [e′] where e′ ∈ [e]. So g can be seen as a surjective morphism into
([e′], dx), the restriction of ([e], dx) to ([e′], dx) and so (y, dy) is isomorphic to ([e′], dx)
from Proposition 6.3.9. As Skl(DE) is skeletal, this gives us f(e′) = (y, dy) and therefore
[f(e)] ⊆ f [e]. We next show f [e] ⊆ [f(e)] for all e ∈ x. Assume e ≤ e′ for some e, e′ ∈ x.
This implies that ([e], dx) is a restriction of ([e′], dx). So, there must be a morphism
between f(e) and f(e′) in DE. Therefore f(e) ≤ f(e′) in Dem(E). So, f [e] ⊆ [f(e)] for
all e ∈ x. That f preserves persistence follows directly from the definition of Dem(E).
Finally, f is injective due to the uniqueness up to isomorphism of prime extremals. Thus
f is a rigid morphism between x and x′.

In order to show that f is an isomorphism, we observe that it is a morphism between
(x, dx) and (x′, dx′) in DE and show that it is a surjective function. The required result
then follows from Proposition 6.3.9. If (z, dz) is an event in x′ then it is isomorphic to a
prime restriction of (x, dx). Therefore there exists an event e in x such that (x ↾ [e], dx)
is isomorphic to (z, dz). So, there exists e ∈ x such that f(e) = (z, dz). It follows that
the morphism f is therefore surjective.

As m′[e] = [(x, dx)], there is a surjective morphism from (E ′ ↾ [e], d) into (x, dx).
However, from Proposition 6.3.10, (x, dx) must be the extremal of (E ↾ [e], d) and there-
fore m(e) = (x, dx). It follows that m = m′.
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Definition 6.3.17. Let d : E → E ′ be a demand morphism. Define the action of Dem on
morphisms by letting Dem(d) : Dem(E)→ Dem(E ′) be the unique rigid morphism that
makes the following diagram commute (see Proposition 6.3.16).

Dem(E)

Dem(d)
��

ǫE // E

d

��
Dem(E ′)ǫE′

// E ′

Theorem 6.3.18. The functor Dem is right adjoint to F .

The result below follows from Theorem 6.3.18 and Proposition 5.1.6.

Corollary 6.3.19. The Kleisli category of (Dem ◦ F, η, Dem ◦ ǫ ◦ F ) (where η is the
unit of the adjunction) is isomorphic to DP .

6.4 The Category of Augmentation Maps as a Kleisli

Category

In this section we use rigid pairs to construct a right adjoint to the inclusion functor from
the category of rigid morphisms RP to the category of augmentation morphisms AP . We
describe an object AugP (E) in RP and an augmentation morphism ǫE : I(AugP (E))→ E
that is universal from the inclusion functor I : RP → AP to E for each event structure
E.

Let x be an elementary event structure and let f : x → E be an augmentation
morphism. Define R by

e1Re2
def
⇔ f(e1) = f(e2)

for e1, e2 ∈ x and define P (e1) to be true iff f(e1) is persistent in E. Clearly, (R, P )
is a pre-rigid pair for x. As for demand morphisms, we sometimes use f to denote the
pre-rigid pair to which it corresponds.

Lemma 6.4.1. Let x be an elementary event structure. Let (R, P ) be the pre-rigid pair
corresponding to an augmentation morphism f : x→ E.
i) The rigid sub-pairs (R′, P ′) of (R, P ) yield factorisations of f into 〈R′, P ′〉 : x→ x′

followed by an augmentation morphism f ′ defined by

f ′[e]R′

def
= f(e)

for all [e]R′ in the image of 〈R′, P ′〉.
ii) Any factorisation of f into a rigid epimorphism followed by an augmentation morphism
amounts to a rigid sub-pair of (R, P ).
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Proof. i) It follows from the definition of R that f ′ is well-defined. It is obvious that
f ′ ◦ 〈R′, P ′〉 = f . We show that f ′ is an augmentation morphism.

In the following, let [e1]R′ and [e2]R′ be events in x′.
We first show that f ′ preserves persistence. Suppose that [e1]R′ is persistent. Then

P ′(e1) holds and therefore, as P ′(e1) implies P (e1), we have that f(e1) and therefore
f ′([e1]R′) is persistent.

Suppose f ′[e1]R′ = f ′[e2]R′ . We show [e1]R′ = [e2]R′ or f ′[e1]R′ is persistent. If
f ′([e1]R′) = f ′([e2]R′) then f(e1) = f(e2). As f is an augmentation morphism and e1 is
not in conflict with e2, this implies e1 = e2 or f(e1) is persistent. So, either [e1]R′ = [e2]R′

or f ′[e1]R′ is persistent.
We now show [f ′[e1]R′ ] ⊆ f ′[[e1]R′ ]. Suppose e ≤ f ′[e1]R′ for e ∈ E. Then e ≤ f(e1)

and, from the properties of f , we know e ∈ f [e1]. Let e′ be an event in [e1] for which f(e′)
equals e. As e′ ≤ e1 holds we have [e′]R′ ≤ [e1]R and therefore e is a member of f ′[[e1]R′ ].
This concludes our proof of (i).
ii) Suppose f can be factorised into a rigid morphism g followed by an augmentation mor-
phism h. Let (Rg, Pg) be the rigid pair corresponding to g. We show (Rg, Pg) ⊆ (R, P ).
As h ◦ g = f and h preserves persistence, Pg is a subset of P . Also, g(e1) = g(e2) implies
f(e1) = f(e2) so Rg is a subset of R. This implies

(Rg, Pg) ⊆ (R, P ),

thus concluding the proof of (ii).

Let x be an elementary event structure, f : x → E an augmentation morphism with
associated pre-rigid pair (R, P ) and (X, P ) the greatest rigid sub-pair of (R, P ) with
associated rigid epimorphism [ ]X : x → x0. The factorisation of f into f0 ◦ [ ]X , where
f0 : x0 → E is the augmentation morphism defined by f0[e]X = f(e) for all e ∈ x, has the
following property. For any rigid epimorphism g : x → x′ and augmentation morphism
f ′ : x′ → E, if f ′◦g = f then the following diagram commutes for a unique rigid morphism
m.

x
f //

[ ]X

  @
@@

@@
@@

@

g

##

E

x0

f0

>>}}}}}}}}

x′

m

OO
f ′

NN

Proof. It follows from Proposition 6.2.7 that a unique rigid morphism m : x′ → x0 exists
such that m ◦ g = [ ]X . It remains to check that f0 ◦m = f ′. We have f0 ◦m ◦ g = f ′ ◦ g.
So, as g is an epimorphism, f0 ◦m = f ′.

In Section 5.6, we defined the category of augmentations AE for an event structure
E (Definitions 5.6.1 and 5.6.2). We recall the definition here. The objects in AE are
pairs (x, f) where x is an elementary event structure and f : x → E an augmentation
morphism. These pairs are called augmentations. If (x, f) and (x′, f ′) are objects of AE
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and g : x→ x′ is a morphism in RP then g is a morphism between (x, f) and (x′, f ′) if
f ′ ◦ g = f .

Definition 6.4.2. The pair (x0, f0) in AE is extremal for the augmentation morphism
f : x → E if there exists a rigid epimorphism g : (x, f) → (x0, f0) in AE such that
(Rg, Pg) is the extremal of f . The pair (x0, f0) is extremal in AE if it is extremal for
some f : x→ E. It is prime if x0 is prime, i.e., iff there exists an e ∈ x0 such that e′ ≤ e
for all e′ ∈ x0.

Note that, if (x0, f0) is extremal in AE, then it is extremal for f0 (follows immediately
from Proposition 6.2.7).

The prime extremals are precisely those augmentations in AE with the properties
described in Section 5.6. We use them to define a functor from AP to RP .

As for DE we can define when one augmentation is the restriction of another.

Definition 6.4.3. An object (x′, f ′) of AE is the restriction of (x, f) in AE if x′ is a
restriction of x and f ′(e) = f(e) for all e ∈ x′.

Let Skl(AE) be the skeleton of AE.

Definition 6.4.4. If (E, P, ≤, #) is an event structure, define AugP (E) to be the event
structure (E ′, P ′, ≤′, #′) where

• E ′ is the set of prime extremals in Skl(AE),

• P ′ = {x ∈ E ′ | max(x) ∈ P},

• e ≤′ e′ iff there exists a morphism g : e→ e′ in AE,

• e#′e′ iff there is no object in AE with morphisms from e and e′ into it.

Observe that AE is for augmentation morphisms what DE was for demand morphisms.
Many of the properties proved in the previous section do not rely on the objects in DE

being based on demand morphisms rather than augmentation morphisms. The following
result is obtained in a similar manner to Theorem 6.3.13. The result does not depend
in any way on the properties of demand morphisms; it only relies on demand morphisms
being functions with events of event structures as their domains. By definition, this is
also true of augmentation morphisms.

Theorem 6.4.5. AugP (E) is an event structure for all event structures E.

Define ǫE : AugP (E)→ E by

ǫE(x, g)
def
= g(max(x))

for all events (x, g) ∈ AugP (E).

Proposition 6.4.6. The operation ǫE is an augmentation morphism from AugP (E) to
E.
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Proof. Let (x1, g1) and (x2, g2) be events in AugP (E).
We first show that ǫE : AugP (E) → E preserves persistence. If (x1, g1) is persistent

then max(x1) is persistent and, as g1 preserves persistence, g1(max(x1)) is persistent. So,
ǫE preserves persistence.

Next we show that ǫE reflects conflict. Assume g1(max(x1))#g2(max(x2)) in E. There
cannot be (y, g) ∈ AE such that both g1(max(x1)) and g2(max(x2)) are in g(y) as g would
not reflect conflict. So, there cannot be an object in AE that both (x1, g1) and (x2, g2)
map to, implying that they are in conflict and therefore that ǫE reflects conflict.

Suppose ǫE(x1, g1) = ǫE(x2, g2), i.e., g1(max(x1)) = g2(max(x2)). We show that
(x1, g1) equals (x2, g2) or (x1, g1)#(x2, g2) or ǫE(x1, g1) is persistent. Suppose (x1, g1)
is not equal to (x2, g2). If (x1, g1) is not in conflict with (x2, g2) then there must exist
(y, g) in AE that they both map to. Therefore g1(max(x1)) and g2(max(x2)) are in the
image of g. Let hi be the morphism mapping (xi, gi) into (y, g) for i = 1, 2. The hi are
injective and reflect persistence (by analogy to Proposition 6.3.9). It follows that (x1, g1)
is isomorphic to the restriction of (y, g) to the image of h1 and (x2, g2) is isomorphic
to the restriction to the image of h2. So, h1(max(x1)) cannot be equal to h2(max(x2))
otherwise (x1, g1) = (x2, g2), contradicting one of the initial assumptions. It follows
that g maps two distinct events in y to g1(max(x1)) and therefore that g1(max(x1)) is a
persistent event.

Let (x, f) be an event of AugP (E). We conclude our proof by showing [ǫE(x, f)] ⊆
ǫE[(x, f)]. Suppose e ≤ ǫE(x, f) in E. Then e is in [f(max(x))] and, as f is an
augmentation morphism, e is a member of f [max(x)], i.e., there exists an event e′ ∈ x
that f maps to e. The restriction of (x, f) to the events [e′] is an extremal (by analogy
to Proposition 6.3.12) and is clearly prime. Also, ǫE will map it to e. So, e is a member
of ǫE[(x, f)] and therefore [ǫE(x)] ⊆ ǫE[x] holds for all (x, f) ∈ AugP (E).

Proposition 6.4.7. For every augmentation morphism f : E ′ → E, there exists a unique
rigid morphism m : E ′ → AugP (E) such that the following diagram commutes.

AugP (E)
ǫE // E

E ′

m

OO

f

::uuuuuuuuuuu

This can be proved exactly as Proposition 6.3.16 is proved with the exception of
showing that m preserves persistence and that m(e1) = m(e2) implies e1 = e2 or e1#e2
or m(e1) is persistent for all e1, e2 ∈ E

′. We show this below.

Recall that m : E ′ → AugP (E) is defined for all e ∈ E ′ by m(e)
def
= (x, g) where (x, g)

is the extremal of f restricted to [e] in Skl(AE).
Suppose e ∈ E ′ is persistent. Then f(e) is persistent in E. So, from the definition

of m, there is a rigid morphism from (E ′ ↾ [e], f) into m(e). This implies that the
maximum event in the elementary event structure of m(e) must be persistent. So, from
the definition of AugP (E), m(e) is persistent.

Let e1 and e2 be events in E ′. Let (x1, g1) = m(e1) and (x2, g2) = m(e2). Suppose
(x1, g1) = (x2, g2) but e1 6= e2. As ǫE ◦m = f it follows that we have f(e1) = f(e2).
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This implies e1#e2 or f(e1) is persistent as f is an augmentation morphism. It remains
to show that f(e1) being persistent implies (x1, g1) is persistent. We know that, because
ǫE ◦m = f , we have f(e1) = g1(max(x1)). Also, from Proposition 6.2.7, as (x1, g1) is
extremal, it is extremal for g1 and therefore g1(max(x1)) being persistent implies max(x1)
is persistent. Therefore, from the definition of AugP (E), (x1, g1) is persistent.

Definition 6.4.8. Let f : E → E ′ be an augmentation morphism. Define AugP (f) to be
the unique morphism AugP (E)→ AugP (E ′) that makes the diagram below commute.

AugP (E)

��

ǫE // E

f

��
AugP (E ′)ǫE′

// E ′

Theorem 6.4.9. AugP is right adjoint to the inclusion functor I : RP → AP .

The result below follows from Theorem 6.4.9 and Proposition 5.1.6.

Corollary 6.4.10. The Kleisli category of (AugP ◦ I, η, AugP ◦ ǫ ◦ I) (where η is the
unit of the adjunction) is isomorphic to AP .

As there is an adjunction between RP and AP and an adjunction between AP and
PP (Section 5.5), we have an adjunction between RP and PP . In fact we can use the
rigid pairs method to define the right adjoint to the inclusion functor from RP into PP

directly, i.e., not in terms of the composition of two functors. If f is a partial morphism
from an elementary event structure x to E then we can produce a pre-rigid pair on the
events of x where, for all e1, e2, e ∈ x, R is defined by e1Re2 iff f(e1) = f(e2) and P is
defined by P (e) iff f(e) is persistent or f(e) is undefined. The rigid sub-pairs of (R, P )
then correspond to factorisations of f into a rigid morphism and a partial morphism.
Following the same method as for demand morphisms and augmentation morphisms, the
right adjoint to the inclusion functor that is produced is isomorphic to that given by the
composition AugP ◦ Par .

6.5 Limits in RP

Unlike for the categories of event structures without persistence, we do not have corre-
sponding categories of stable families in which to construct limits. In this section we
show that the category of event structures with persistence and rigid morphisms RP has
a terminal object. We then go on to use the method of rigid pairs to show that it has all
pullbacks. It follows that RP has all finite limits.

Theorem 6.5.1. The event structure E consisting of a single persistent event p is terminal
in RP .
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Proof. Let E ′ ∈ RP . We show there is a unique morphism m : E ′ → E. Define m by

m(e)
def
= p for all e ∈ E ′. It is trivial to show that m is a rigid morphism. That m is

unique follows immediately from there being only one possible function from E ′ to E.

Theorem 6.5.2. The category RP has all pullbacks.

The rest of this section is devoted to proving Theorem 6.5.2.

Throughout this section, we fix a cospan E1
h //E3 E2

joo in RP . We construct a
pullback for this cospan.

Let x be an elementary event structure. Suppose that the following diagram commutes.

x
g //

f

��

E2

j

��
E1 h

// E3

Define (R, P ) on events in x as follows.

e1Re2 iff f(e1) = f(e2) and g(e1) = g(e2)

P (e) iff f(e) and g(e) are persistent.

Clearly, (R, P ) is a pre-rigid pair. The rigid sub-pairs (R′, P ′) of (R, P ) correspond to

factorisations of f and g into f ′ ◦ [ ]R′ and g′ ◦ [ ]R′ . We define f ′ and g′ by f ′[e]R′

def
= f(e)

and g′[e]R′

def
= g(e). The functions f ′ and g′ are well-defined as if e1, e2 ∈ [e]R′ then

f(e1) = f(e2) and g(e1) = g(e2), because (R′, P ′) is a rigid subpair of (R, P ). The
following diagram commutes in Set.

x

f

��

[ ]R′

�� g

��

x′

f ′

~~}}
}}

}}
}

g′

  A
AA

AA
AA

E1

h   A
AA

AA
AA

E2

j~~}}
}}

}}
}

C

In fact, f ′ and g′ are rigid morphisms. For instance, we show the rigidity of f ′ follows
from the rigidity of f and [ ]R′ . Let [e]R′ ∈ x′. As f is rigid and f ′ ◦ [ ]R′ = f we have

[f ′[e]R′ ] = f [e] = (f ′ ◦ [ ]R′)[e],

and as [ ]R′ is rigid we have (f ′ ◦ [ ]R′)[e] = f ′[[e]R′ ]. If [e]R′ is persistent then f(e) is
persistent and therefore f ′[e]R′ is persistent. Therefore f ′ preserves persistence. Suppose
f ′[e1]R′ = f ′[e2]R′ for distinct [e1]R′ and [e2]R′ in x′. Then e1 6= e2 but f(e1) = f(e2). So,
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from the properties of f , either e1#e2 or f(e1) and therefore f ′[e1]R′ is persistent. (The
rigidity of g′ is proved via an identical argument.)

Let C be the category with objects (x, f, g) where x is an elementary event structure
and f : x → E1 and g : x → E2 are rigid morphisms such that h ◦ f = j ◦ g. The
morphisms k : (x, f, g) → (x′, f ′, g′) of C are rigid morphisms k : x → x′ such that
f = f ′ ◦ k and g = g′ ◦ k.

x
f

}}{{
{{

{{
{{ g

!!C
CC

CC
CC

C

k
��

E1

h   B
BB

BB
BB

B x′
f ′

oo
g′

// E2

j~~||
||

||
||

E3

Observe that each (x, f, g) in C corresponds to a pre-rigid pair as described previously.
As for DE and AE, we can describe a notion of restriction for objects in C. We say

(x′, f ′, g′) is a restriction of (x, f, g) in C if x′ is a restriction of x and f ′(e) = f(e) and
g′(e) = g(e) for all e ∈ x′. Note that we sometimes write (x′, f, g) for (x′, f ′, g′).

Definition 6.5.3. The triple (x0, f0, g0) is extremal in C if there exists a rigid epimor-
phism h : (x, f, g)→ (x0, f0, g0) in C such that (Rh, Ph) is the extremal of the pre-rigid
pair corresponding to (x, f, g). It is prime if x0 is prime, i.e., iff there exists an e ∈ x0

such that e′ ≤ e for all e′ ∈ x0.

Let Skl(C) be the skeleton of C. We define the event structure E0 in terms of this
category as we did in the previous two sections.

The events of E0 are the prime extremals in Skl(C); the causality and conflict relations
of E0 are defined as follows.

x1 ≤ x2 if there is a morphism k : x1 → x2 in C;

x1#x2 if there is no object in C with a

morphism from both x1 and x2 into it.

The event (x, f, g) is persistent if max(x) is persistent.
The following result is obtained in a similar manner to Theorem 6.3.13. The result

does not depend in any way on the properties of demand morphisms; it only relies on
demand morphisms being functions.

Theorem 6.5.4. The structure E0 is an event structure.

We define rigid morphisms f0 : E0 → E1, g0 : E0 → E2 by

f0(x, f, g)
def
= f(max(x)),

g0(x, f, g)
def
= g(max(x)).

We now explain why the morphisms f0 and g0 are morphisms in RP . We prove that
f0 is rigid; the proof that g0 is rigid is symmetric.
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Let (x, f, g) be an event in E0.
We first show that [f0(x, f, g)] ⊆ f0[(x, f, g)]. Suppose e ∈ [f0(x, f, g)]. From

the definition, e is in [f(max(x))] and therefore, as f is rigid, it is in f [max(x)]. As x
is prime, [max(x)] = x so e is in f(x). Let e′ ∈ x be an event for which f(e′) = e. We
can restrict x to the events in [e′] to produce a prime extremal (x′, f, g) (by analogy
to Proposition 6.3.12). Clearly there is a morphism from (x′, f, g) to (x, f, g) and
f(max(x′)) = e and so e is in f0[(x, f, g)]. Thus we have shown

[f0(x, f, g)] ⊆ f0[(x, f, g)].

We now show that f0[(x, f, g)] ⊆ [f0(x, f, g)]. Suppose e ∈ f0[(x, f, g)], i.e., there
exists (x′, f ′, g′) ∈ [(x, f, g)] such that f ′(max(x′)) = e. As (x′, f ′, g′) ≤ (x, f, g),
there is a morphism h : (x′, f ′, g′) → (x, f, g) in C and f(h(max(x′)) = e. Now,
h(max(x′)) is in x and, as x is prime, we have h(max(x′)) ≤ max(x) and therefore
f(h(max(x′))) ≤ f(max(x)) as f is rigid. Therefore e is in [f0(x, f, g)]. Thus we have
shown

f0[(x, f, g)] ⊆ [f0(x, f, g)].

We next show that f0 preserves persistence. If an event (x, f, g) is persistent then,
from the definition of E0, it must be the case that max(x) is persistent and therefore
f(max(x)) is persistent since f is rigid. Thus f0(x, f, g) is persistent.

Let (x, f, g) and (x′, f ′, g′) be events in E0. We suppose f0(x, f, g) is equal to
f0(x

′, f ′, g′) and we will show that either (x, f, g) = (x′, f ′, g′) or (x, f, g)#(x′, f ′, g′)
or f0(x, f, g) is persistent. We know f(max(x)) equals f ′(max(x′)). Suppose that
(x, f, g) 6= (x′, f ′, g′) and that they are not in conflict. We will show that f0(x, f, g) is
persistent. There is an object (y, fy, gy) in C into which both (x, f, g) and (x′, f ′, g′)
map. Therefore, because (x, f, g) 6= (x′, f ′, g′), we know y contains two distinct events
which are mapped to f(max(x)) by fy. Hence f(max(x)) is persistent.

This concludes our proof that f0 is rigid.

Theorem 6.5.5. The diagram below is a pullback diagram in RP .

E0
g0 //

f0

��

E2

j

��
E1 h

// E3

Proof. Suppose there exists an event structure E and morphisms f and g such that the
following diagram commutes.

E

f

��

g // E2

j

��
E1 h

// E3

Define m : E → E0 on events of E by setting m(e) as the extremal of (E ↾ [e], f, g). The
proof that m is a rigid morphism and unique is analogous to the proof of Proposition 6.4.7.
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This concludes our proof of Theorem 6.5.2.
So, using rigid pairs, we have shown that RP has all finite limits. However, the

rigid pairs method does not allow us to construct limits in AP or PP . This is because
augmentation and partial morphisms may not preserve causality. We therefore have no
notion of extremals for these categories. We show that AP does not have all finite limits.
A similar counter-example can be found for PP .

Proposition 6.5.6. The category of augmentation morphisms AP does not have all finite
limits.

Proof. We show the proposition by contradiction.
Let E1 be defined by

e2

e1

OO

where e1 is persistent.
Let E2 be defined by

e3 e4 e5

where e4 and e5 are persistent.
Assume P is the product of E1 and E2.

E1 P
π1oo π2 // E2

Observe that E1 must be isomorphic to a restriction of P . This is because there
must exist a morphism m : E1 → P such that the following diagram commutes (where
f : E1 → E2 is defined by f(e1) = e4 and f(e2) = e3).

E1

id

~~||
||

||
||

m

��

f

  B
BB

BB
BB

B

E1 Pπ1

oo
π2

// E2

(†)

In addition, P must contain at least two independent persistent events. This is because
there must exist a morphism m : E2 → P such that the following diagram commutes.

E2

7→e1

~~||
||

||
||
m

��

id

  B
BB

BB
BB

B

E1 Pπ1

oo
π2

// E2

We see that E3 must be isomorphic to a restriction of P where E3 is defined by

e2

e1

OO

e3
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where e1 and e3 are persistent and, supposing without loss of generality that E3 is precisely
this restriction of P ,

π1(e) = e1 for e = e1, e3,

π1(e2) = e2,

π2(e1) = e4,

π2(e2) = e3,

π2(e3) = e5.

Observe that there are morphisms g : E3 → E1 and h : E3 → E2 defined by

g(e) = π1(e) for all e ∈ E3,

h(e1) = e5,

h(e2) = e3,

h(e3) = e4.

However, if P is isomorphic to E3, there will be no morphism j : E3 → P such that
π1 ◦ j = g and π2 ◦ j = h. It follows from the above and the existence of m : E1 → P in
diagram (†) that E4 must be a restriction of P where E4 is defined by

e2 # e4

e1

OO

e3

OO

where e1 and e3 are persistent and π1 and π2 behave as for E3 and π1(e4) = e2 and
π2(e4) = e3.

Let E5 be defined by
e2

e1

>>||||||||
e3

``BBBBBBBB

where no events are persistent.
Define f : E5 → E1 by

f(e) = e1 for e = e1, e3,

f(e2) = e2.

Define g : E5 → E2 by

g(e1) = e4,

g(e2) = e3,

g(e3) = e5.

Then there are at least two morphisms m1 : E5 → P and m2 : E5 → P such that
π1 ◦m = f and π2 ◦m = g for m = m1, m2, i.e., e2 ∈ E5 can be mapped to e2 or e4 in
E4 within P . As there is no unique m : E5 → P , we have a contradiction and therefore
AP does not have all finite limits.
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6.6 Concluding Remarks

As well as allowing us to relate the four categories of event structures RP , AP , PP and
DP , the results shown in this chapter give us a new way of understanding the spans
described in Section 2.4. We can view them as being spans in RP of the form

E
in
yysss

sss out

��>
>>

>

Dem(A) B

where A and B and therefore necessarily E are event structures without persistence.



Chapter 7

Conclusions

Here we summarise the work contained in the previous chapters and suggest what can be
concluded from it.

7.1 Summary

After introducing the reader to event structures in Chapter 1, we provided explicit defi-
nitions of event structures, their morphisms and the spans based upon them (Chapter 2).
In Chapter 3 we recalled the work of Mykkel Nygaard’s thesis on an event structure se-
mantics for Affine HOPLA, including a more detailed description of the semantics than
has previously been seen. We thus highlighted the curious ability of event structures to
represent both processes and types. In the final section of this chapter, the examples of
spans representing higher order processes helped to familiarise the reader with the oper-
ational nature of the way in which spans can model processes. In Chapter 4, we showed
that the bicategory of spans of event structures has a trace construction that allows us
to use it to model dataflow processes. This construction corresponds to that given in
[15, 16] for profunctors. We also described a restriction of the bicategory of spans to
deterministic spans. The trace construction applied to these was shown to be equivalent
to Kahn’s fixed point construction described in [19] for deterministic dataflow processes.

Several justifications for altering the definition of event structures were given in Chap-
ter 5. We showed that, for the classical event structure category of rigid morphisms R
and that of augmentation morphisms A, there exists a right adjoint to the inclusion of R
in A

R � u 77⊤ A
ww

and therefore that A is isomorphic to the Kleisli category of a monad on R. However, it
was shown that no such adjunctions exist between R and the categories of partial mor-
phisms and demand morphisms P and D. Also, a curious discrepancy, highlighted by the
work of Fiore, Cattani and Winskel in [14], was used to generate examples of behaviours
that event structures cannot capture. We then defined event structures with persistence
and extended the definitions of rigid, augmentation, partial and demand morphisms for

105
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classical event structures accordingly. This, together with the methods described in Chap-
ter 6, allowed us to describe adjunctions between the category of event structures with
persistence and rigid morphisms RP and the categories AP , PP and DP of augmentation,
partial and demand morphisms.

RP
j


��

� v 55⊤ AP

uu
� v 66⊤ Pp

vv

⊢

DP

GG

Thus, we showed that AP , PP and DP are isomorphic to Kleisli categories of monads
on RP . We also demonstrated that RP has all finite limits. Therefore a bicategory of
symmetric spans can be constructed from it.

7.2 Further Work

We examine some remaining issues and further work in this area.
As detailed in Section 5.2, Winskel characterised the presheaves that represent event

structures without persistence in [38]. At the time of writing, we do not have a char-
acterisation of the presheaves that represent event structures with persistence. Such a
characterisation would help us to relate event structures with persistence to other models
more easily. It would also provide us with another way of understanding the additional
behaviours that event structures with persistence can capture in comparison with those
without persistence.

We have discussed the wish to experiment with spans of event structures with varying
morphisms. In order to be able to relate the various kinds of span, we have proposed
making use of monads on the category of rigid morphisms. For example, in Section 6.6 we
discussed how a span between event structures without persistence A and B, constructed
from a demand morphism and a rigid morphism, could be modelled as a span of rigid
morphisms

E
d
yysss

sss out

��>
>>

>

Dem(A) B

where Dem is the monad induced by the adjunction described in Section 6.3. This suggests
it might be possible to construct a pseudo-comonad on the bicategory of spans of rigid
morphism based on Dem. As described in Section 1.5, we would like to model bicategories
of asymmetric spans as Kleisli and co-Kleisli categories of pseudo-monads and co-monads
on the bicategory of spans of rigid morphisms, constructed from the monads on RP

detailed in Chapters 5 and 6. In [6], Burroni shows the following. A monad on a category
C induces a monad and a comonad on the span category built from the morphisms of C
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precisely when the monad is cartesian. (A monad (T, η, µ) is defined to be cartesian
when T preserves pullbacks and η and µ are cartesian.)

However, the monads are not cartesian although the monad defined in Section 6.3 does
induce the spans defined in Section 2.4 when we restrict our attention to spans between
event structures without persistence. Roughly, the monads are not cartesian because
distinct, non-conflicting events may be mapped to the same event if it is persistent. Thus
the local injectivity property of morphisms between event structures without persistence
no-longer exists. However, relating two non-conflicting events in this way has been shown
to be necessary for the monads between the event structure categories to exist. Clearly
a compromise is needed, allowing two events to be related but not be made identical.
Winskel is currently studying event structures with symmetry [39]. Such event structures
allow different events to be identified as being symmetric.

Definition 7.2.1. An event structure with symmetry (E, l, r) consists of an event struc-
ture (without persistence) together with two open maps l : S → E and r : S → E from a
common event structure S such that the map (l, r) : S → E × E is an equivalence re-
lation, (i.e.,the map (l, r) is a monomorphism and satisfies the standard diagrammatic
properties of reflexivity, symmetry and transitivity).

Maps between event structures with symmetry are defined to be maps between event
structures which preserve symmetry.

Definition 7.2.2. If (A, lA, rA) and (B, lB, rB) are event structures with symmetry
then f : (A, lA, rA) → (B, lB, rB) is a map between them if f : A → B is a map of
event structures such that there exists a map of event structures h : SA → SB, where SA

is the domain of lA and rA and SB is the domain of lB and rB, ensuring

(lB, rB) ◦ h = (f × f) ◦ (lA, rA).

In fact, event structures with persistence are related by an adjunction to event struc-
tures with symmetry.

It is hoped that further study of event structures with symmetry will reveal new
expressiveness. It is believed that cartesian monads relating the various categories of
event structures with symmetry do exist.

7.3 Concluding Remarks

In Chapters 3 and 4 we demonstrated that event structures already provide us with a
versatile model for concurrent processes. They capture complex behaviour in a highly
intuitive manner, allowing us to give a formal yet still operational description of many
kinds of process. Also, as shown in Chapters 5 and 6, a simple extension to the definition
allows many categories of event structures to be modelled as Kleisli categories of monads
on a more restricted category. This extension also enables event structures to capture
additional behaviours without sacrificing their simplicity. We have simply described one
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step along the road. Various kinds of event structures and their spans have the potential
to provide a useful and easily understandable denotational semantics to many process
calculi. They, and constructions within the categories based upon them, may inspire new
process calculi. Indeed, as discussed in Chapter 1, the possible applications are numerous.
Event structures will provide a rich area of research both now and in the future.



Glossary of Symbols

C(E) The set of configurations of an event structure E, page 19

P The category of event structures with partial morphisms, page 20

A The category of event structures with augmentation morphisms, page 20

R The category of event structures with rigid morphisms, page 20

D The category of event structures with demand morphisms, page 20

RL The category of labelled event structures with labelling set L and rigid, label-
preserving morphisms, page 21

PF The category of stable families and partial morphisms, page 22

AF The category of stable families and augmentation morphisms, page 22

RF The category of stable families and rigid morphisms, page 22

Tr(E) The trace of an event structure span E, page 46

E The profunctor represented by the span E, page 48

∼

E The continuous function represented by a deterministic span E, page 56

Aug The right adjoint to the inclusion functor from R into A, page 62

RI The category of event structures with independence events and rigid morphisms,
page 66

AI The category of event structures with independence events and augmentation mor-
phisms, page 66

PI The category of event structures with independence events and partial morphisms,
page 66

DI The category of event structures with independence events and demand morphisms,
page 66

Ptl The right adjoint to the inclusion functor from AI into PI , page 67
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PomL The skeleton of the category of labelled event structures with labelling set L and
rigid, label-preserving morphisms, page 69

⌢

E The presheaf represented by the labelled event structure E, page 70

PP The category of event structures with persistence and partial morphisms, page 73

AP The category of event structures with persistence and augmentation morphisms,
page 73

RP The category of event structures with persistence and rigid morphisms, page 73

DP The category of event structures with persistence and demand morphisms, page 74

Par The right adjoint to the inclusion functor from AP into PP , page 75

AE The category of augmentations of the event structure E, page 78

Dem The right adjoint to the inclusion functor from RP into DP , page 88

DE The category of demands for the event structure E, page 88

AugP The right adjoint to the inclusion functor from RP into AP , page 96
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