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Abstract

Embedded security devices like ‘Trusted Platforms’ require both scalability
(of power, performance and area) and flexibility (of software and countermea-
sures). This thesis illustrates how data parallel techniques can be used to
implement scalable architectures for cryptography. Vector processing is used
to provide high performance, power efficient and scalable processors. A pro-
grammable vector 4-stage pipelined co-processor, controlled by a scalar MIPS
compatible processor, is described. The instruction set of the co-processor
is defined for cryptographic algorithms like AES and Montgomery modular
multiplication for RSA and ECC. The instructions are assessed using an in-
struction set simulator based on the ArchC tool. This instruction set simu-
lator is used to see the impact of varying the vector register depth (p) and
the number of vector processing units (r). Simulations indicate that for vec-
tor versions of AES, RSA and ECC the performance improves in O(log(r)).
A cycle-accurate synthesisable Verilog model of the system (VeMICry) is
implemented in TSMC’s 90nm technology and used to show that the best
area/power/performance trade-off is reached for r = p

4
. Also, this highly

scalable design allows area/power/performance trade-offs to be made for a
panorama of applications ranging from smart-cards to servers. This thesis is,
to my best knowledge, the first attempt to implement embedded cryptography
using vector processing techniques.
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Nomenclature

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

ATM Automated Teller Machines

CISC Complex Instruction Set Computer

CPA Correlation Power Analysis

CPU Central Processing Unit

CRT Chinese Remainder Theorem

DES Data Encryption Standard

DPA Differential Power Analysis

DRM Digital Rights Management

DSP Digital Signal Processor

ECC Elliptic Curve Cryptography

EEPROM Electrically Erasable Programmable ROM

EMV Europay Mastercard Visa

FIB Focussed Ion Beam

FPOS Floating Point Operations per Second

GLOPS Giga Floating point Operations Per Second

GPC General Purpose Co-processor

GPP General Purpose Processor

HSM Hardware Security Module

ILP Instruction Level Parallel

ISA Instruction Set Architecture
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LFSR Linear Feedback Shift Registers

LSB Least Significant Byte

LSb Least Significant bit

MIMD Multiple Instruction Multiple Data

MSb Most Significant bit

NVM Non-Volatile Memory

OS Operating System

PK Public Key

PKC Public Key Cryptography

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RSA Rivest Shamir Adleman algorithm

SIM Subscriber Identity Module

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SK Secret Key

SPA Simple Power Analysis

SSL Secure Sockets Layer

TLS Transport Layer Security

TPM Trusted Platform Modules

VeMICry Vector MIPS for Cryptography

VLIW Very Long Instruction Word

VPU Vector Processing Unit
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Chapter 1

Introduction

At the dawn of this new century, mankind has fully stepped into the digital age. Every-
thing around us has become information, a string of zeros and ones. This dematerializa-
tion of things has raised new security issues. Our money and bank account details are no
longer stored in a heavily guarded vault in a bank but on (may-be-heavily-guarded-as-
well) computer servers and in the small chips of our bank cards. Our personal things like
mail, personal contacts, family pictures, video recordings are all in digital format on our
laptops, phone, PDA or portable game, at the mercy of anyone having access to them.
Payments and communications are increasingly wireless making them easy for discrete,
un-noticed spying. Identification documents are all going digital as well raising the awk-
ward question: How can we distinguish between an original string of zeros and ones and
a copied or falsified identical string of zeros and ones?

Fortunately these risks have been well studied and understood and adequate solu-
tions have been proposed. In the industry, special electronic devices like smart-cards (for
portable systems) and Hardware Security Modules (for computers, servers, ATMs. . . )
are the secure platforms used for their respective domains of application. Other industry
driven initiatives like the Trusted Computing Group work to define the security require-
ments pertaining to the deployment of new applications. The number of security related
conferences has exploded during the past decade (CHES, CARDIS, ACNS, ARITH,
ASAP, DRMtics, RSA, FSE, eSMART. . . ) with strong participation from acad-
emic research groups. Security issues in digital applications is now a hot topic both for
academia and industry.

Until now there have been what could be qualified as being two worlds of secure com-
puter hardware, each defined by their respective constraints. The first one is that of
“conventional” computing like “fixed” computers, HSMs (Hardware Security Modules) or
servers where the challenge is to achieve high data throughput for security-related com-
putations like encryption, signing or hashing. Such devices integrate enough hardware
resources to run cryptographic algorithms rapidly and physical tamper-proof shields to
protect any sensitive unit. The second “world” is that of embedded systems where the
hardware constraints are different. Such devices are limited in size, power and packaging
capabilities. These have a direct impact on performance and of course on the level of
security that could be reached. This second “world” has been dominated by smart-cards.
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1. INTRODUCTION

But now, we are witnessing the emergence of a new breed of computer hardware which
is the convergence of the two worlds of “conventional” and “embedded” computing. This
means that portable devices like PDAs, laptops or mobile phones are expected to be
equipped with “Trusted Platforms” that could offer the same high level of security as
smart-cards while targeting the high computing powers of devices like HSMs. In this view,
the aim of this research work is to propose an architecture for cryptography satisfying the
requirements of this new generation of computers:

• Performance, in this work, relates to the ability of a given circuit to achieve a high
data throughput for commonly used cryptographic algorithms.

• Security has a direct impact on performance since software countermeasures in-
crease the time taken to execute cryptographic algorithms and hardware counter-
measures increase the critical path of the circuit (i.e. lower the maximum frequency
at which the circuit could be clocked) or increase the power of the chip. So this
research favors the concept of adaptive security in the sense that hardware resources
are made available to optimize the implementation of countermeasures in software
depending on the level of security required by the target application.

• Scalability is the key point here. For different applications and devices, the area
and power constraints may not be the same. The architecture can be resized to
allow area, power and performance tradeoffs.

In the research described in this thesis, these constraints are studied and an architec-
ture based on the concept of a programmable vector microprocessor is proposed. The
adaptation of some commonly used cryptographic algorithms to such an architecture is
illustrated. As a proof-of-concept, a cycle-accurate synthesisable Verilog model of the vec-
tor microprocessor (called VeMICry) is implemented. The described features are limited
to modular multiplications in binary fields (for applications like Elliptic Curve Cryptog-
raphy), which is enough to study all the pipelining and parallelization issues of such a
design. The measurements made are extrapolated to analyze the behavior of such a design
for modular multiplications on large numbers (e.g. 1024-2048 bits RSA).

1.1 Organization of this document

The organization of this report reflects the chronological order in which this research work
has been conducted.

Chapter 2 provides background information. First, an overview of security-related ap-
plications is given and the corresponding requirements are defined, leading to the study of
required cryptographic algorithms, the potential attacks on them and some of the coun-
termeasures that are proposed. A brief survey of hardware architectures used in today’s
security devices is then given before going back to a general exploration of the hardware
architecture design space resulting in a focus on vector processors. This chapter ends
with the study of some of the attempts that have been made in the past to parallelize
cryptographic calculations.

16



1.2 Refereed Publications

Chapter 3 defines the features and requirements upon which this research focusses.
A case for choosing a vector processing approach is built. A focus on algorithms like the
AES and modular multiplication in binary and prime fields is made to show how such
algorithms can be expressed as operations on vectors of data. The latter analysis helps
to define a first set of vector instructions that would have to be implemented on VeMICry.

Chapter 4 provides a theoretical definition of the proposed vector microprocessor.
This chapter also defines the way in which the design can be made scalable and what the
parameters are. The pipelined architecture of the vector co-processor is studied. In order
to validate the functional relevance of the identified vector instructions, a simulator was
built using an architecture simulation tool called ArchC. The simulator was used to test
the vector codes written for AES and modular multiplication. This chapter ends with an
analysis of how performance (in terms of instructions issued) is affected by playing with
the different parameters of the vector architecture, which provides a first order approxi-
mation of the kind of behaviour to expect from such an architecture.

Chapter 5 describes the implementation of a cycle accurate Verilog model of VeMICry.
The detailed implementations of the scalar general purpose processor and that of the vec-
tor co-processor are given. Both architectures were individually synthesized into TSMC’s
90nm technology. In both cases, pipelining issues and the handling of hazards were taken
into account with the aim of ultimately reaching an instruction issue rate of one instruc-
tion per clock-cycle. This chapter also describes what scalar and vector instructions are
implemented on this model, how the two kinds of instructions interact with each other
and what the restrictions to these interactions are.

Chapter 6 describes the quantitative analysis carried on the Verilog model of VeMICry.
The impact of changing the design parameters of the vector co-processor were analysed in
terms of performance, area and power. The study was also extended to scenarios where
the size of the data being worked on was varied. Finally a brief look was taken at the
kind of side-channel power information leakage that can be expected from such a circuit.

Chapter 7 is the conclusion in which the main achievements of this research work are
summarised.

The appendices provide details of the vector instructions and the vector codes for the
AES algorithm and the modular multiplication routines for ECC and RSA. The Verilog
source code of the scalar and vector units of the cycle accurate model of VeMICry are
also provided.

1.2 Refereed Publications

Several aspects of the research work in this thesis have been presented at refereed con-
ferences. The concept of having a vector approach to cryptography was first described in
[Fournier & Moore (2006b)]. In this paper, I talked about why and how cryptographic
computations like AES and modular multiplication can be expressed in a vector form (c.f.
Chapter 3). I also gave a high level description of the hardware architecture of VeMICry.

17



1. INTRODUCTION

In [Oikonomakos et al. (2006)] I explained how a vector based co-processor for Elliptic
Curve Cryptography can be used for secure key exchanges in a secure display application.
In [Fournier & Moore (2006a)] I detailed the architecture of VeMICry used for Public Key
Cryptography and published simulation results obtained from the instruction set simula-
tor built from ArchC (c.f. Chapter 4).

Prior to the above publications, I have studied the security of asynchronous circuits
for smart-card applications. During this research work (which is not presented in this
thesis), I have put into practice attacks like Correlation Power Analysis (CPA) and fault
injections. In this context, I have co-authored several refereed papers as in [Fournier
et al. (2003); Moore et al. (2003)] and have been invited to publish an article in a French
technical journal [Fournier & Moore (2004)]. More recently, I have also been looking at
new attack techniques based on side-channel information leakage resulting from the use
of caches in smart-cards’ processors [Fournier & Tunstall (2006)].
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Chapter 2

Security Devices: Functions &
Architectures

2.1 Description of Security Devices

In the digital world, the devices managing and implementing security can be regrouped
into two categories which are rather characteristic of two (up-to-now) distinct families of
the computer world:

• In the embedded (portable) world of mobile phones and PDA-like devices, there are
smart-cards into which we will also include devices like RFID tags and USB tokens.

• In the world of classical computing (PCs, servers, network computers. . . ), there are
dedicated security modules called HSMs (Hardware Security Modules).

CPU ROM
NVM

RAM
CRYPTO
ENGINES

OTHERS
(Power,
Timer...)

ISO 7816
contact

interface

ISO 14443
contactless

interface

Figure 2.1: Architecture of a smart-card

Smart-cards have become a widely used commodity. In countries like France, such de-
vices have been used for decades in pay phone applications (simple memory cards with
a secured access to data stored in these memories) and in bank cards (cards with a
microprocessor, volatile memory, non-volatile memory and cryptographic capabilities).
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2. SECURITY DEVICES: FUNCTIONS & ARCHITECTURES

Nowadays, standards like the Europay Mastercard Visa standard [EMV (2004)] are be-
ing deployed throughout the world under the common name of Chip & PIN which are
microprocessor based smart-cards. The chip of such smart-cards would usually have the
features illustrated in Figure 2.1. The type of smart-cards illustrated in Figure 2.1 has
also been deployed in electronic identity cards. For example, Belgium has already started
the deployment of identity cards for its citizens [BelgianID (2006)]. Similar identity cards
holding information like picture, personal details and biometric data are to be deployed
in the UK from 2009. The contactless version of smart-card chips are being fitted into
passports for securely holding similar information. However smart-cards are more widely
deployed in the SIM (Subscriber Identity Module) used in mobile phones: in the GSM
or 3G mobile communication schemes, the SIM card is used to identify the end-user to
the network, to hold some personal data like phone-book, short-messages etc. and hence
is used by the network operator for billing purposes. Pilot initiatives have recently been
launched to also use the coupled mobile phone + SIM card for contactless payment appli-
cations or for accessing mobile TV networks similar to the way they are used in pay TV
applications. According to Eurosmart (an industry driven consortium of major players of
the smart-card industry), the volume of smart-cards being sold has been steadily growing
by around 20-24% every year. For the telecommunications industry alone (mainly under
the form of SIM cards) the annual volume of smart-cards has steadily been growing from
430 million in 2002 to 1.39 billion in 2005. All this illustrates that with smart-cards, what
we are looking at here is a huge deployment of secure tokens used in most everyday life
situations. Recently, smart-card manufacturers have been proposing a new type of smart-
cards that integrates high density memories (like NAND Flash memories) for secure data
storage along with interfaces that offer much higher communication speeds (e.g. the USB
interface is currently being standardized by the ETSI as a smart-card standard). Such
smart-cards are often called MegaSIM, HD-SIM or MultiMedia SIM.

The other main family of security devices is that of HSMs (Hardware Security Modules
or also called Host Security Modules). HSMs offer secure storage and cryptographic capa-
bilities for PCs, for securing communications and sensitive data storage in banks or for the
personalization of other security devices like smart-cards. An example for the architecture
of an HSM is given in Figure 2.2. HSMs like the HSM8000 (Thales) or the IBM4690 are
used in ATMs (Automated Teller Machines) as well as in POS (Point of Sale) Terminals
used in shops for paying with a bank card. nCipher, another HSM manufacturer, has
for its part recently launched the miniHSM which is the first HSM designed for embedded
applications for devices like POS but also for TPMs (Trusted Platform Modules) for lap-
tops or other portable devices like mobile phones or PDAs. The TPM itself is the concept
of a secure device defined by a consortium of major industry players called the Trusted
Computing Group (TCG - http://www.trustedcomputinggroup.org/home). The ap-
plications targeted by such devices are Digital Rights Management (DRM), protection of
on-line games, identity protection, security against viruses and spywares, biometric au-
thentication and management and verification of digital certificates and signatures. More
interestingly, the definition of the TPM has also been extended to the embedded world for
specific mobile applications like accessing numerous networks (wireless, ADSL. . . ), per-
forming “mobile” financial transactions, protecting against malicious embedded software
or transferring confidential data among devices [TPG (2006)].
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Figure 2.2: Architecture of a Hardware Security Module

2.2 Requirements for Security Devices

The world of smart-cards (with devices like MultiMedia SIM) and that of HSMs (with
devices like miniHSM) are converging to a new family of security devices that are small
enough to be fitted into portable devices and with enough features to target as many
security applications as possible. Such security applications are based on well identi-
fied use-cases, often involving standardized secure communication and data management
schemes. The latter themselves implement a plethora of cryptographic algorithms mean-
ing that such security devices handle and store sensitive data. Hence such devices have
to offer protection against any attempt to retrieve or corrupt the sensitive data. In this
section, we look at the security requirements for such devices and how the conformance
to these requirements is measured.

The most talked-about use-case, given the power of media conglomerates backing it,
is that of Digital Rights Management (DRM) [OMA (2005)]. The aim of this scheme is to
protect the intellectual property linked to the use of software and the portability of digital
media. In this scenario, the secure device guarantees the identity of the user and binds
the media contents to that user. The secure device stores the authentication keys of the
user and provides a tamper-resistant environment to sign the purchase of media content
(and its associated rights). The Right Objects (which contain sensitive information like
the encryption keys of the content, the number of times the content can be accessed etc.)
can be stored in the secure device whose role is then to check these rights every time
the data is accessed and to decrypt it. For devices like the MultiMedia SIM, the SIM
card would both store the data and securely manage its rights, and all this into one same
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portable device such that the user can easily transfer his media from one mobile phone to
another. From the latter description, we can see that another use of these secure devices
is to securely store user data like professional e-mails and even personal data to ensure
the privacy of the user’s content. Another emerging market is that of mobile ticketing or
mobile payment: in this example the mobile phone is used, via a contactless interface, to
perform electronic payments for transport applications or in shops for small purchases.
The mobile phone, in this case, is fitted with a secure device, which can be an HSM-like
chip or a smart-card, which contains the banking information and performs the banking
transaction. The latter operation is performed by the secure device itself thanks to the
fact that the secure device is also a platform whose integrity is guaranteed. Hence the
integrity and security of the applications running on the devices can also be guaranteed.
For open platforms like JavaCard, software can be securely downloaded onto such secure
devices and installed to offer new services to users.

2.2.1 Cryptographic protocols & algorithms

In most use-cases, the core of the problem is for the devices to securely communicate with
the external world by guaranteeing the authenticity of the end-user and preserving the
confidentiality of the data being transmitted. Such secure communications are based on
protocols of which some commonly known ones are the following:

• SSL (Secure Sockets Layer), more recently transformed into TLS (Transport Layer
Security) defines a set of cryptographic protocols for secure on-line transactions
[OpenSSL (2000)]. The cryptographic protocols cover all the possible applications
of cryptography going from digital signature schemes (RSA, DH, DSA and involving
Hash functions like SHA and MD5), block ciphers (DES, AES, IDEA, RC2, RC4. . . )
and stream ciphers.

• IPSec (IP Security) provides a set of protocols to secure IP packets. IPSec defines
the key establishment between two entities and the way the packets are encrypted,
involving the same lot of secret and public key cryptographic algorithms as those
described in SSL.

The main tool used by security devices to offer such services is cryptography. Cryp-
tography can be described as the art of transforming input data, called a message, into an
output, called a cipher, sometimes using a secret key such that knowing the cipher no in-
formation can be inferred about the message. The aim here is neither to detail the history
of cryptography (like [Singh (2000)]) nor to go into the mathematics behind cryptogra-
phy (see [Menezes et al. (1997); Schneier (1995)]) but to give an overview of the principal
cryptographic techniques. There are four major types of cryptographic functions. First
there are Hash functions which transform data of arbitrary length into a hash of fixed
length: the input of arbitrary length is decomposed into elementary data blocks on which
arithmetic, Boolean or permutation operations are applied in order to obtain an output
whose length, which is fixed, is smaller than the input message. Some examples of Hash
functions are given in [NIST (2002)] in which the NIST (National Institute of Standards
and Technology) has defined FIPS (Federal Information Processing Standard) approved
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Hash functions, namely the SHA algorithms. Other examples are MD4, MD5 and MAC
functions [Menezes et al. (1997)]. The major properties of Hash function are uniqueness
(that is two different input data must not produce the same output, if such an incident
happens then a collision is said to have been produced) and one-way-ness (that is given
a hash one must not be able to infer what the input data was).

A second category of cryptographic functions is that of stream ciphers. As its name
suggests, a stream cipher encrypts the individual bits of the message (which can be of any
length) into a stream of bits of the cipher which is of the same length as the message in
such a way that the transformation applied to each bit varies at every cycle. Details about
stream ciphers can be found in [Menezes et al. (1997)], some examples of stream ciphers
being those based on LFSRs (Linear Feedback Shift Registers). Block ciphers, also called
Secret Key (SK) algorithms constitute a third category of cryptographic algorithms. A
Secret Key algorithm transforms an input message of fixed length into a cipher text of
the same length based on a secret key (encryption). For a “good” block cipher, even if its
algorithm is known, an attacker must not be able to decrypt the cipher text unless she
has the secret key. Numerous block ciphers have been proposed in the past and are be-
ing used today, some being “secret” algorithms while others like RC6, IDEA or Skipjack
are public. But the two which are more widely deployed and more commonly used are
the FIPS-approved DES (Data Encryption Standard) or Triple-DES as defined in [NIST
(1993)] and the FIPS-approved AES (Advanced Encryption Standard) [NIST (2001b)].
The DES algorithm is based on a secret key of 56 bits onto which straight-forward attacks
like exhaustive search is made easy today given the power of available computers. For
this reason, DES is meant to progressively disappear in favour of the AES which can use
keys of 128, 196 or 256 bits [NIST (2001b)].

Since Block ciphers are among the fastest encryption algorithms, they are the most
common tool used to implement a secure communication channel. For example, if Alice
and Bob want to exchange data securely using a Secret Key scheme, they both must share
the same secret key. One can see that there is the issue of ‘distributing’ the key between
Alice and Bob, in other words how they manage to securely decide on which key to use
while having Charlie in between eavesdropping their communication channel. A solution
to this is offered by the forth class of cryptographic algorithms called Public Key (PK)
Algorithms (or asymmetric algorithms). For such algorithms, two keys are used: a public
one which is used for encryption and a private one which is used for decryption. The
mathematical algorithms used in PK Algorithms are such that even if an attacker (for
example Charlie) has the public key, it is computationally impractical for him to derive
the private key. For Alice and Bob’s problem, each one will generate her/his own key
pair and they will share their respective public keys while secretly keeping their private
keys. Hence Alice will encrypt the data with Bob’s public key and send the encrypted
data to Bob who will be the only one to be able to decrypt it using his private key. In
such schemes, the decryption process is also known as signature generation because if
Alice wants to know if Bob is really on the other end of the communication channel, she
would send some ‘random’ message to Bob and ask Bob to encrypt it with his private
key (just like physically “signing” a document). Alice would then verify the encrypted
document using Bob’s public key and be certain that it was truly Bob on the other end.
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Usually to strengthen the security of such schemes a third party, called a Certification
Authority is involved to guarantee to Alice that the public key she has been using to
verify Bob’s encrypted message was truly Bob’s. The drawback with PK cryptography
is that they take much more time than SK algorithms. This is why, for example, PK
algorithms are used to help Alice and Bob exchange a common secret key which they
use in an SK algorithm to encrypt the rest of their communication. The first example of
such asymmetric schemes was proposed by Diffie and Hellman in [Diffie & Hellman (1976)].

The most commonly used Public Key algorithm is RSA [Rivest et al. (1978)]. RSA
is based on modular exponentiation algorithms on large integers. In such a scheme the
public key (also known as the public exponent denoted e is used for encryption/verification
following equation 2.1 and the private key (or private exponent), denoted d is used for
decryption/signing following equation 2.2.

c = me mod n (2.1)

m = cd mod n (2.2)

where n is a large modulus (usually of 1024 bits) chosen such that it is the product of two
large primes p and q. Note that n is part of the public key as well. A straight-forward way
to implement such a modular exponentiation is to use the Square-and-Multiply algorithm
shown in Figure 2.3.

Input : m,n and d = {dl−1dl−2 . . . d2d1d0}2

Output : c = md mod n

1. c← 1

2. for j = l − 1 downto 0 do

3. c← c2 mod n

4. if dj = 1 then c← c×m mod n

5. endfor

6. return c

Figure 2.3: Square and Multiply Algorithm for RSA

A faster method is to use arithmetic based on the Chinese Remainder Theorem (CRT)
which states that if p and q are relatively prime to each other, for a < p and b < q, there
is a unique x < p.q solution to the equations x = a mod p and x = b mod q. Hence
we have the algorithm in Figure 2.4 for implementing modular multiplication using the
CRT algorithm [Menezes et al. (1997)]. The main advantage with this method is that the
modular exponentiations are done (mod p) and (mod q) where p and q are approximately
half the size of n.

During the past decade, Elliptic Curve Cryptography (ECC) [Blake et al. (1999)]
has been emerging as an attractive alternative to RSA, attractive because ECC work on
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Input : m, p, q, dp = d mod (p− 1), dq = d mod (q − 1)

: and Iq = q−1 mod p

Output : Sn = md mod n

1. sp ← mdp mod p

2. sq ← mdq mod q

3. Sn ← sq + (((sp − sq).Iq) mod p).q

4. return Sn

Figure 2.4: CRT Algorithm for RSA signature

smaller data values than RSA for an equivalent level of security (for example the security
provided by a 163-bit ECC is equivalent to that provided by a 1024-bit RSA). ECC is,
therefore, faster and consumes less memory. In ECC calculations are done on an elliptic
curve. The computations are done over a field K which can be a prime (Fp where p is a
prime) or a binary (F2m where m is a positive integer) field. The elliptic curve for a prime
field is given by equation 2.3.

y2 = x3 + ax + b with {a, b} ∈ Fp for p > 3 (2.3)

In a PK cryptosystem based on ECC, encryption/verification consists in performing the
multiplication between a given point G on the elliptic curve and a scalar value k to have
another point on the elliptic curve called Q.

Q = k.G (2.4)

The robustness of this scheme relies on the fact if we have Q and G, finding k is considered
to be a very difficult problem (called the Elliptic Curve Discrete Logarithm Problem), just
like in the case of RSA (equation 2.2), of we know c and m it is a difficult to find d.

2.2.2 Certification of security devices

In order to verify that security devices are compliant with the stringent functional and
security features required by some applications, certification schemes have been devised.
Such schemes provide guidelines on what such devices should incorporate and the levels of
security that are required. The certification schemes not only check that a given security
device can offer the computation functionalities to perform cryptographic computations
but also that the computations are ‘securely’ executed and that the secret data manipu-
lated and stored within the security device are protected against attempts of finding or
corrupting them. We first have a look at the two main certification schemes that exist
today and then detail the kind of attacks which the security device should offer protection
against.

The Common Criteria (CC) scheme is an industry driven scheme that provides guide-
lines and recommendations to evaluation centers on how to certify a security device [CC
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(1999)]. The device’s level of security is measured based on the definition of a Protec-
tion Profile (PP) which defines the security functionalities and the countermeasures to be
tested on the Target Of Evaluation (TOE). Seven security levels are defined:

• EAL 1 : The evaluator performs functional tests.

• EAL 2 : The evaluator does structural tests requiring the developer’s cooperation.

• EAL 3 : The evaluator methodically checks and tests the TOE, searching for poten-
tial vulnerabilities.

• EAL 4 : The evaluator verifies that the TOE has been methodically designed, tested
and reviewed and that it provides a high level of security.

• EAL 5 : The evaluator ensures that the TOE has been semi-formally tested. The
TOE must offer protection against attackers with “moderate” capabilities.

• EAL 6 : The evaluator requires that the design has been semi-formally verified and
tested. The TOE must offer protection against attackers with “high” capabilities.

• EAL 7 : The evaluator requires that the design has been formally verified and tested.
The TOE must be able to still offer highly secure services even in extremely high
risk situations.

In the world of smart-cards, the most commonly used Protection Profile is the PP9806
[CC (1998)], EAL4 or EAL5 being the security levels that are usually required.

The second certification model is specified by the Federal Information Processing Stan-
dards (FIPS), which focusses more on the hardware itself. The FIPS 140-2 [NIST (2001a)]
defines the cryptographic algorithms, the interfaces, the life cycle, the testing and valida-
tion procedures, the physical security and the key management for cryptographic modules.
Four levels of security are specified:

• Level 1 only requires that the computation functionalities are met, no specific coun-
termeasure is required, for e.g. a PC.

• Level 2 requires tamper-evident casing, authentication to the cryptographic module
and an OS at least equivalent to a Common Criteria EAL 2 security level.

• Level 3 imposes tamper resistance (i.e. detecting and responding to physical access),
requires that the authentication to the cryptographic module is identity-based, reg-
ulates the personalization of the security device and demands that the OS be at
least equivalent to a Common Criteria EAL 3 security level.

• Level 4 adds the requirement that the security device can be used in a non-trusted
environment. This means that upon any attempt to access the security device, the
secret assets shall be deleted. The security device has to detect abnormal physical
working conditions (voltage, temperature). The OS must be at least equivalent to
a Common Criteria EAL 4 security level.

In addition, the FIPS 140-2 also defines how random numbers are generated and how
cryptographic keys are generated and personalized.
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2.2.3 Attacks and Countermeasures

Both the CC and the FIPS schemes refer to attacks against which the security device
must offer protection. A good survey of possible attacks on security devices is given in
[Anderson & Kuhn (1996, 1997)]. The first class of attacks on cryptographic algorithms
is one called cryptanalysis [Sinkov (1966)]. In cryptanalysis, an attacker tries to find
weaknesses in the construction of the algorithm under study and tries to infer informa-
tion either about the secret key used or to establish a predictable correlation between
the input message and the cipher text. A recent example of cryptanalysis that has been
shaking the world of cryptography recently has been the set of collision attacks that have
been published against MD5 and SHA1 (both being Hash algorithms used to generate
SSL web server certificates) since 2004. Since such attacks are directly linked to the
mathematical definitions of the cryptographic algorithms, they are of a lesser concern
to the research work described in this thesis. My primary concern is the devices which
run the cryptographic algorithms, how an attacker might exploit weaknesses in the algo-
rithms’ implementation or in the way the secret data is stored and handled by the devices.

Another family of attacks is that of invasive attacks whereby the attacker has physical
access to the security device and tries to directly observe the signals from within the chip
(through techniques like micro-probing) or read the bits from within the memories them-
selves or to use tools like a FIB (Focussed Ion Beam) to short-circuit some of the security
sensors of the circuit or re-connect some other parts which had intentionally been dis-
connected for security purposes [Walker & Alibhai-Sanghrajka (2004)]. Such techniques
could be destructive, but the attacker would have gained knowledge either on the way
the security device has been implemented (both from a hardware and a software point of
view) or on the secret keys it stores, which would be particularly interesting if this same
key is shared with other security devices. Such attacks are not a primary concern to this
thesis because the latter focusses on architectural techniques for cryptography which is
independent from the transistor-level considerations or packaging aspects that are directly
linked to invasive attacks.

A less destructive class of attacks is based on side channel information leakage where
there is, in most cases, no need to tamper with the security device. They are usually
called non-invasive attacks. Information about the internal processes of the chip and the
data it is manipulating can be derived by observing external physical characteristics of the
chip (like the power consumed or the Electromagnetic waves emitted or the time taken by
a given process). Timing Attacks are a class of side-channel attack as described in [Dhem
et al. (1998); Kocher (1996)]. An easy example of such attacks targeted what we call now
“näıve” implementations of RSA: a straight-forward and fast way of implementing the
modular exponentiation, given by equation 2.2, on devices where all data have a binary
representation is to perform recursive square and multiplies by scanning the bits of the
d as given in Figure 2.3. From the latter algorithm, we can see that for each bit of d,
the time taken when dj is equal to 1 is longer than the time taken when dj is equal to 0.
Hence by measuring only one power curve during such an exponentiation, one can retrieve
the entire private exponent d. In this particular case, the attacker can also look at the
timing taken by each for loop but may also look at the power profile in cases where the
square operation of line 3 generates a different power profile from the multiply operation
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of line 4. This is an example of a Simple Power Analysis . Power Analysis attacks were
first published by Paul Kocher in 1999 [Kocher et al. (1999)] and since then side channel
attacks have been a major concern to the security world, in particular for the smart-card
industry. Differential Power Analysis mainly targets Secret Key algorithms: such attacks
are based on the fact that for each bit of the secret key, the power consumed by a 0 is
different from the power consumed by a 1. Later researchers showed that Electromagnetic
radiation from a chip could also be used as a source of side-channel for SPA or DPA to
give what they call SEMA (Simple Electromagnetic Analysis) and DEMA (Differential
Electromagnetic Analysis) [Gandolfi et al. (2001); Quisquater & Samyde (2001)]. More
recently, Correlation Power Analysis has been proposed to quantitatively correlate the
power or Electromagnetic waves measured with the Hamming Weight (in other words the
number of ones) in a data being manipulated by a security device [Brier et al. (2003,
2004)]. For example, we applied these techniques when we evaluated the security of the
asynchronous XAP processor on the Springbank chip. The Springbank chip [Moore et al.
(2002)] was composed of five different versions of the 16-bit XAP processor. One of those
versions was an asynchronous implementation integrating some security mechanisms (like
dual rail encoding and fault detection mechanisms) for smart-card applications [Moore
et al. (2003)]. In the stage of characterizing the information leakage of such a processor,
we applied DEMA techniques on the Electromagnetic waves emitted by the asynchronous
XAP processor during a simple XOR operation.

Figure 2.5: DEMA during an XOR on the asynchronous XAP

In Figure 2.5, the uppermost curve illustrates one of the Electromagnetic curves mea-
sured. The lowermost curve shows the resulting curve when DEMA was done on the first
operand. The curve just on top of the latter is the same applied to the second operand.
We can clearly see that DEMA peaks are obtained at the instants when these operands
are manipulated and loaded. Finally an even higher DEMA peak is obtained when we cor-
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related the Electromagnetic curves with the expected result of the XOR operation. Despite
showing that the asynchronous XAP leaked information, we also showed that the leakage
was still less important than for the synchronous XAP demonstrating some security im-
provement [Fournier et al. (2003)]. Other architecture-related attacks have recently been
published. One example of such attacks is cache-based side-channel analysis as described
in [Fournier & Tunstall (2006)]: in this case we show how, by analyzing the timing and
power profile characteristics of cache hits and cache misses occurring during the table
look-up stage of the AES algorithm, we can infer information about the secret key and
hence reducing the exhaustive search spectrum for the secret key. Another example of
an architecture-based attack as proposed in [Aciicmez et al. (2006a,b)] is based on the
side-channel leakage induced by hardware branch prediction mechanisms.

Finally, another class of attacks are Fault Attacks. With this technique an attacker
will try to corrupt the data being transported over a bus or stored in a register or memory
at a specific time of a cryptographic calculation. From the results of a correct execution
and those of a corrupted execution, the attacker will then try to retrieve part or all of
the secret key by using techniques like Differential Fault Analysis as described in [Biham
& Shamir (1997)]. To inject faults, an attacker will play on the physical conditions into
which the chip is functioning by, for example, causing glitches on the power supply, or by
irradiating the chip with a laser source or even simply light [Skorobogatov & Anderson
(2002)]. Fault attacks can also be used to corrupt the correct flow of a program in order
to make it take a given branch of the program or to cause memory dumps. For example,
we experimented with such techniques on the asynchronous XAP of the Springbank chip.
Using a laser source, we tried to corrupt the execution of the XOR operation at several
instants in time. During most of the time, the security feature implemented in the dual
rail encoding [Moore et al. (2002)] seemed to work in the sense that the faults generated
were detected [Fournier et al. (2003)]. We then tried power glitches. The power was cut
for a certain amount of time and restored. We made sure that once the power was restored
the normal program flow was resumed.

In Figure 2.6, the upper curve shows a power profile during a normal execution flow
and the lower curve shows a power profile when a fault has been injected. In the latter
case, when the power is recovered, the “normal” flow of the program is resumed but in
the meantime the data stored in some control registers seemed to have changed resulting
in a large part of the RAM being dumped onto the serial port of the chip. The value
contained in the register containing the size of the UART’s buffer had been corrupted
leading to larger part of the RAM being dumped during the communication that followed
the fault injection.

The attacks that we have been describing until now (invasive, side-channel and fault
attacks) are powerful threats against security devices and against the sensitive crypto-
graphic algorithms that they execute. We had the opportunity to put into practice two
of them (side-channel and fault attacks) on the secure asynchronous XAP chip to actu-
ally realize how dangerous and efficient such attacks are if no countermeasure is applied.
Security devices implement countermeasures against such attacks, whether they are of a
hardware nature or of a software one. For obvious reasons of security and Intellectual
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Figure 2.6: Power Glitch Attack on the asynchronous XAP

Property protection, little detailed information is publicly available about the counter-
measures that are actually implemented in security devices like smart-cards or HSMs.
This is why we mainly focussed on the mechanisms proposed by the research community.

Hardware Countermeasures. Against invasive attacks like those described in [Ander-
son & Kuhn (1996, 1997)], the authors in [Kömmerling & Kuhn (1999)] propose techniques
like randomized clock signals or “randomized multithreading” to make synchronization
more difficult, random combination logic to hinder reverse-engineering, use of sensors with
built-in self tests and other design practices like removing all test logic and circuitry to
avoid leaving a door open to easy probing. As we already mentioned, the use of asyn-
chronous design techniques as described in [Moore et al. (2002, 2003)] can help to reduce
side-channel information leakage and can provide coding techniques that can detect some
types of fault injections. The efficiency and limitations of this latter technique has been
demonstrated in [Fournier et al. (2003)]. This work on asynchronous circuits has been
inspiring other research groups whose work are being now published. For example in [Ku-
likowski et al. (2006)], the authors propose a design tool that implements cryptographic
processors in quasi delay insensitive asynchronous logic with the “balancing” of power
consumption to hinder side-channel information leakage. The use of balanced logic has
also been proposed in [Tiri & Verbauwhede (2003)] where the authors describe a balanced
logic structure which they use to implement a DES hardware accelerator. Another pro-
posed hardware solution is based on the insertion of parity checks on the data paths in
order to detect errors introduced by malicious fault injections. In [Bertoni et al. (2002);
Karri et al. (2003)], such techniques are applied on hardware implementations of the AES
algorithm. Another way of handling the security problem in hardware is to analyze the
circuit at design time and adapt the countermeasures until all attacks fail at least at
simulation time. This design-time security analysis is proposed in [Li et al. (2005)]. The
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problem with hardware countermeasures is that even though simulations may show that
they are efficient, there is no absolute guarantee that this will be the case on the final
chip where other considerations like final place & route, manufacturing processes etc. may
have a huge impact on security. And by the time the final chips are obtained, if a security
flaw is identified, it would be expensive to have another iteration of the design cycle to
“patch” the design in hardware (in some cases metal fixes may be used but this would
not apply to any part of the circuit). Or given that attack techniques are constantly be-
ing upgraded, it is difficult for hardware designers to keep pace with the evolving attack
techniques [Clavier et al. (2000)]. It is hence highly recommended to use these hardware
countermeasures with software ones.

Software Countermeasures. The basic principle behind most software countermea-
sures is

• to make sure that all the calculations’ timings are independent from the data or key
being manipulated.

• to ‘hide’ the internal calculations of the cryptographic algorithm so that the attacker
has no mastery of the data being manipulated and no means to understand what is
happening.

In the case of Public Key Algorithms like RSA, to achieve constant timing for exponen-
tiation algorithms, constant-time “square and multiply” algorithms have been proposed:
in Figure 2.3 for example, the multiplication can always be done even when dj = 0 where
a ‘fake’ multiplication is executed. Likewise, for ECC, constant-time “double and always
add” algorithms exist [Coron (1999)]. Or, as suggested in [Clavier & Joye (2001)], the use
of addition chains can inherently provide a constant time exponentiation algorithm. To
protect RSA against power analysis attacks as presented in [Messerges et al. (1999)], tech-
niques like message blinding and exponent blinding have been proposed [Kocher (1996);
Messerges et al. (1999)]. The principle behind the blinding technique is, prior to the ex-
ponentiation algorithm, the message is multiplied by a random value and to the exponent
we add a random multiple of φ(n)1. With this the attacker cannot master the inputs to
the exponentiation algorithm and is less likely to find any correlation between the power
(or Electromagnetic even) curves measured and the inputs he fed to the algorithm. This
is because the attacker is likely to perform a chosen message attack by having a small
message to accentuate the difference between the power profiles of the square operation
and those of the multiplication operation. Other message blinding techniques are pro-
posed in [Akkar (2004)]. Similar blinding countermeasure techniques have been proposed
for Secret Key Algorithms where this time the technique is called data randomisation or
data masking [Akkar & Giraud (2001)]. The data and tables involved in algorithms like
DES and AES are XORed with random masks in such a way that, again, the attacker
cannot find any correlation between the power or Electromagnetic curves measured and
inputs of the algorithm.

1φ(n) is the Totient function of n. Given that n = p × q and that p and q are primes then φ(n) =
(p− 1)(q − 1)
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2.3 Architectures used in Embedded Systems

Application use-cases, certification schemes, cryptographic algorithms, attacks and coun-
termeasures all help to define what is expected from security devices like smart-cards and
HSMs. However the implementation options (that is their hardware and software architec-
tures) can be numerous and diverse. In this thesis I mainly focus on the hardware issues
because the performance and security issues pertaining to the sensitive cryptographic al-
gorithms mainly depend on the way the latter interact with the hardware. The details
of the hardware architectures of smart-cards and HSMs are often kept confidential due
to the sensitive nature of the applications and also for Intellectual Property protection
reasons. Yet, the general outlines of the hardware architectures are available enough to
help us proceed during the exploration phase of our research work. Moreover, a few scien-
tific publications do provide insight into what could lie underneath the ‘golden’ contacts
of a smart-card or the thick metal shields of an HSM. I further narrowed my interest to
embedded security devices (most of which today are smart-cards) because such devices
face challenging constraints of cost, area, power, performance and security: area because
it is directly correlated to the cost of the chip and that the latter has to be cost effective
(for smart-cards, the chip’s surface area is limited to 25mm2); power because the batteries
used today in portable devices like mobile phones have a limited energy storage capacity
(for example, GSM SIM cards can consume a maximum of 6mA peak current); perfor-
mance because the processing time of the device has to be “user-friendly” (i.e. not take
too long); and security because such embedded chips are within the reach of everyone, in
particular of hackers. In the next paragraphs we shall be talking about performance for
an RSA signature which will be given at different frequencies.

The chosen point of comparison in this thesis is the number of clock cycles taken for
a 1024-bit modular multiplication. In order to compare the architectures discussed in
this thesis, for cases where the actual number of clock-cycles is not given, extrapolations
are made. For this we make the following assumption: if we suppose that in a 1024-bit
value we have as many zeros as there are ones, then doing a exponentiation would result
in doing 1024 squares and 512 multiplications. If we further suppose that the square is
implemented as a multiplication, then a 1024-bit RSA signature could be approximated
to 1536 modular multiplications. Then the number of clock-cycles taken by a 1024-bit
modular multiplication is given by the following equation (f is the number of MHz of
clock frequency and t is the number of microseconds taken by the RSA signature):

T1024 =
f.t

1536
cycles (2.5)

Most smart-cards consist of the building blocks illustrated in Figure 2.1: a CPU (or mi-
croprocessor) to run the OS or execute simple operations, ROM to store the OS and
constant data, NVM (which can be EEPROM or Flash) to store other pieces of code and
personalization data like secret keys, RAM to store transient data, cryptographic engines
to accelerate the computation demanding cryptographic algorithms, the interfaces (which
can be contact or contactless) to communicate with the external world among other things
like power regulators, timers or data and address buses [Rankl & Effing (2000)]. Most of
the smart-cards on the field today embed 8-bit microprocessors, having a CISC architec-
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ture, usually based on an Intel 8051 Instruction Set Architecture (ISA): for example the
SmartMXTM products from Philips Semiconductors (now called NXP), the SLE66 from Infi-
neon or the ST16 from ST Microelectronics. A few smart-cards have 16-bit CPUs like in
the SmartXATM family from NXP. Today’s high end smart-cards embed 32-bit microproces-
sors. To our knowledge, the first 32-bit smart-card was designed in the CASCADE project
between 1993 and 1996 [Dhem (1998)]. In this project the smart-card was based on an
ARM7 processor. Since then ARM has been developing its offer for microprocessors for
security devices through its SecurCoreTM family, of which chip manufacturers like Atmel,
Samsung or Philips are publicly known licensees. MIPS Technologies has also developed
a secure version of its MIPS-IV architecture, the SmartMIPSTM [MIPS (2005)] which has
been deployed in the HiPerSmartTM chips of Philips. Other chip manufacturers have been
developing their own 32-bit CPU like Infineon in its SLE88 chips [Infineon (2003)].

The latter 32-bit microprocessors can also be used to run cryptographic operations.
However, in order to improve the performance of some commonly used, computation inten-
sive cryptographic algorithms, cryptographic engines are usually added to the smart-card
architecture. The engines usually appear as ASIC-like co-processors, slave to the main
microprocessor. For Secret Key algorithms like DES or AES, the implementations can be
rather straight-forward and easy to implement [Gaj & Chodowiec (2002)]. Some flexibility
may be found in the hardware countermeasures that can be added (like those proposed
in [Kömmerling & Kuhn (1999)]) or in the decomposition of the cipher’s structure into
pipelines to improve throughput. For Public Key algorithms, there is a high degree of
mathematical flexibility in the way basic operations like modular multiplication may be
implemented (e.g. using Montgomery’s method or Quisquater’s method, Barrett’s method
or Sedlak’s approach, all of which are explained in [Dhem (1998)]). The first (and only
one to our knowledge) survey made on commercial Public Key accelerators for smart-
cards was carried out by Naccache and M’Räıhi in [Naccache & M’Raihi (1996)]. Even
though this survey relies on figures collected more than 10 years ago, this paper pro-
vides a good panorama of the main families of Public Key accelerators implemented on
smart-cards back then. Each chip manufacturer made design choices based on a specific
reduction algorithm, for example Montgomery’s method for Motorola and Thomson (ST),
Quisquater’s method for Philips (NXP), Barrett’s method for Amtel and Sedlak’s method
for Siemens (Infineon). Some of the best-in-class solutions presented in this paper are

• the one from Philips which proposed an accelerator of 2.5mm2 in 1.2µm CMOS
technology with which a 1024-bit signature could be generated in 2000ms with a
clock of 5MHz, which, by equation 2.5, gives a T PHS

1024 of 6510 clock-cycles.

• the one from Siemens (on an SLE44) whose area is 24.5mm2 in 0.7µm CMOS with
a performance of 630ms for a signature on 1024 bits at 5MHz. By equation 2.5,
we have a T IFX44

1024 of 2050 clock-cycles.

In the latter paper we see that the crypto-accelerators were already limited in the size of
RSA keys that could be used (at that time, the common sizes were 512-1024 bits). Two
years later [Handschuh & Paillier (2000)], Handschuh and Paillier proposed a follow-up
to [Naccache & M’Raihi (1996)] with some updated information including

• on an ST19 chip, with an internal clock of 10MHz, a signature of 1024 bits was
executed in 380ms which allows us to infer that by equation 2.5, we have a T ST19

1024 of
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2473 clock-cycles. A signature of 2048 bits could on the same chip be done in 780
ms.

• on an SLE66 chip, at 5MHz, a 1024-bit signature was done in 880ms (and hence we
have a T IFX66

1024 of 2864 clock-cycles) while a 2048-bit signature took 1475ms.

Some performance figures can be obtained for some more recent architectures from the
manufacturer’s websites:

• MIPS4KscTM (general purpose processor): 1024-bit RSA signature (with CRT and
using Montgomery’s modular multiplication) performed in less than 15ms with a
clock frequency of 200MHz [MIPS (2005)]. By equation 2.5 and since the modular
multiplication was implemented using the CRT method we have the time for a 512-
bit modular multiplication TMIPS

512 = 1953 clock-cycles. Since it is Montgomery’s
method applied to a 32-bit architecture, doubling the data size would mean multi-
plying the time taken by 4. Hence we would have TMIPS

1024 = 7812 clock-cycles.

• ARM SC200 (general purpose processor): 1024-bit RSA signature without CRT in
980ms at 20MHz [ARM (2002)]. By equation 2.5, we have T SC200

1024 = 12760 clock-
cycles.

• Philips SmartMx (contactless smart-cards): 2048-bit RSA in 25ms (asynchro-
nous Tangram implementation of the FAMEXe), 128-bit AES in 11µs and 3-key
TripleDES in less than 50µs [Philips (2004)].

• Infineon Crypto@1408 (on SLE88CFx4000P): RSA signature (with CRT) on 1024
bits in 14ms and on 2048 bits in 58ms at 66MHz [Infineon (2003)], which means
that T IFX88

1024 = 1245 clock-cycles.

Note that in most of the above examples, the 1024-bit signatures are done in the
straight-forward conventional way while the 2048-bit signatures were done using the Chi-
nese Remainder Theorem (CRT). In the latter method (as given in Figure 2.4), in the
case where n = p.q, the multiplications are done (mod p) and (mod q) on data lengths
which are twice as short and the individual results are re-combined to give the end result
(mod n). With such a method, 2048-bit modular multiplication can be done even on
a hardware that was initially limited to 1024-bit data. A more recent survey was pro-
posed on Public Key accelerators by Batina et al. in 2002 (published in 2003) [Batina
et al. (2003)]. In this paper, the authors focus more on the architectures that have been
proposed and published by the Research community. This paper mentions two other ap-
proaches to the design of Public Key accelerators. The first one is based on the use of
systolic arrays for performing modular multiplication. In this approach bit multipliers are
arranged in a rectangular array to allow a matrix multiplication between the two operands
while doing the reduction as well. One can easily foresee that by resizing the size of the
matrix, one could re-scale such systolic arrays to work on data of any length. This leads
to the second approach mentioned in [Batina et al. (2003)] which is that of scalable ar-
chitectures like the ones proposed in [Savaş et al. (2000); Tenca & Çetin K. Koç (1999)].
In the latter papers, Koç et al. propose an architecture that implement Montgomery’s
algorithm where scalability is done at the level of the size of the modular multiplier that
is implemented. In [Batina et al. (2003)] the authors illustrate that the same approaches
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have been applied to accelerators for Elliptic Curve Cryptography, specially with dual
field multipliers as described in [Gutub et al. (2003); Savaş et al. (2000)].

Another attractive approach for the implementation of cryptography in embedded
chips is instead of having bulky, highly power consuming co-processors, we could add
dedicated instructions to more General Purpose Processors. A commercially known ex-
ample for this is the SmartMIPSTM which is a derivative of the MIPS-IV architecture to
which instructions have been added to accelerate both Secret Key and Public Key al-
gorithms [MIPS (2005)]. A similar approach is proposed in [Großschädl & Kamendje
(2003)] while in [Eberle et al. (2005)] the authors illustrate how dedicated instructions
can be added to a Sparc processor in order to accelerate Elliptic Curve Cryptography in
Binary Fields.

2.3.1 Classification of computer architectures

In order to address the constraints of performance, size, power, scalability and security
pertaining to embedded cryptographic hardware platforms, let us first have a look at the
possibilities in terms of high performance architectures.

In [Flynn (1995)], Michael Flynn mentions two factors that define the architecture of
a processor, namely

• the definition of the hardware resources, or the “model”, of the processor.

• the type of work that must be performed by the processor, in other words the
“instruction level workload”.

These two elements form the orthogonal axes of an architecture design space that Flynn
defined in [Flynn (1972)]. Such a design space, known as Flynn’s taxonomy is illustrated
in Figure 2.7.

In his decomposition, Flynn distinguishes among four families of computer architec-
tures:

• SISD (Single Instruction Single Data) would refer to ‘uniprocessors’ where a proces-
sor executes only one stream of program. The latter program simply consists of a
sequential flow of instructions where each instruction works on a single set of data at
a time (performs only one calculation at a time). Scalar processors like Motorolla’s
68000, Intel’s x86, the ARM or the MIPS are typical examples of SISD architectures.

• SIMD (Single Instruction Multiple Data) would also execute from a single stream
of instructions but each instruction is defined to work on several data elements in
parallel. The same calculation is performed on different sets of data at the same
time. Examples of SIMD architectures, also called Data Parallel Architectures, are
vector processors. The logic behind SIMD processors comes from the observation
that in most software loops the same operation is performed on several data and that
having a hardware that could be programmed to apply these operations to a set of
data in parallel would result in significant performance gains through, for example,
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Figure 2.7: Architecture Design Space based on Flynn’s taxonomy

the removal of the “loop controls”. Hence this helps to improve code density and
boost instruction issue rate.

• MISD (Multiple Instruction Single Data) would not correspond, to my best knowl-
edge, to any real application today. One could, to some extent, assimilate redundant
fault tolerant systems (as used in planes or space craft and satellites) to such an
architecture. A given operation would be done in different ways in parallel on the
same set of data to guarantee fault tolerant results.

• MIMD (Multiple Instruction Multiple Data) Multiple Instruction Multiple Data
would refer to multi-processor cores where several program streams are executed in
parallel on the individual processors, with or without synchronization between the
different processors, for example dual processor cores like ARM’s MPCore, IBM’s
Power4 or Intel’s Core Duo.

The above architecture design space can be slightly modified to illustrate the notion of
Instruction Level Parallel (ILP) architectures as illustrated in Figure 2.8. In such archi-
tectures, the program is executed from a single flow of instructions but each instruction
can be considered as a group of independent ‘scalar-like’ instructions working on separate
data in parallel. This is why, in Figure 2.8, ILP architectures are put as an intersection
between the SIMD space and the MIMD space. The ‘shaded’ regions illustrate ‘uniproces-
sor’ architectures.

One type of ILP is the VLIW (Very Long Instruction Word) architecture. For a such
processor, the parallelism among the instructions is determined at software compilation
time. The compiler is tailored to suit the hardware resources available and to determine
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the data dependencies. Then the instructions that can be executed in parallel are re-
grouped by the compiler into VLIW machine words. The processor will then fetch one
“machine word” at a time. The hardware itself does not have to manage the scheduling
among the instructions as this would have been taken care of by the compiler. In contrast
to that, in Superscalar architectures, which are also ILP architectures, everything is man-
aged by the hardware [Flynn (1995); Hennessy & Patterson (2003)]. The parallelization
is determined at execution time by the hardware itself. The compiler just compiles and
links the instructions as a sequence of machine words. During execution, the processor
will pre-fetch several instructions and dynamically determine the dependency among them
and will dispatch them to the parallel computation units.

2.3.2 Vector architectures

In Chapter 3, I will explain why and how cryptography can be implemented on a vector
co-processor by decomposing the operations on long precision numbers into parallel op-
erations on smaller data units. This comes from the observation that when cryptography
is implemented on a scalar (Sequential) processor, especially for Public Key algorithms,
the resulting code involves loops working on elementary data units.

Vector processors are designed to work on linear arrays. A typical vector architecture
can be considered to be organized into elementary lanes [Asanovic̀ (1998)] which can be
replicated to offer a scalable degree of parallelism. Each lane would consist of at least
one computation unit (also called a Vector Processing Unit - VPU), vector registers,
control units and internal RAM memory (which can be caches). The lanes could then
be made to interface with a shared memory or with a scalar control processor. Vector
processors can be Memory-Memory Vector Processors where the vector instructions work
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directly on data banked in memories or Register-Register Vector Processors where the
vector instructions work on data buffered in registers. Vector processors are characterized
by their vector instructions such that

• each vector instruction replaces a software loop (as illustrated in Figure 2.9) where
the computation of each result is independent from previous results.

• each vector instruction corresponds to an entire software loop, hence reducing in-
struction bandwidth.

• control hazards are reduced as loops are removed and so are the branch controls
associated with them.

Other advantages of vector architectures, as described in [Espasa et al. (1998)], are the
simple control units, the deterministic timing of vector instructions thus simplifying their
scheduling, the possibility of switching off other blocks during vector computations and
scalability both in terms of performance (by increasing the number of Vector Processing
Units (VPUs)) and in terms of balancing performance in terms of power consumption.
In [Flynn (1995)], Flynn points out that the performance of a vector processor is also
determined by the throughput of each VPU (which in turn depends on its pipelining),
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the number of vector registers, the data caching mechanism between the scalar part
and the vector processor, the vector start-up cost (which also depends on the pipeline)
and above all, from the software perspective, the amount of the program that can be
effectively transformed into vector operations. Asanovic̀ [Asanovic̀ (1998)] explores how
the performance of a vector processor is determined by the properties of the software it
runs in terms of:

• data dependencies, i.e. how much a given calculation depends on the previous one.

• name dependencies, i.e. what are commonly known as Data Hazards, i.e. whether a
given operation will try to access a given register that has just been modified.

• control dependencies, i.e. to what extent control instructions like branches depend
on the instructions being executed.

The latter issues also depend on the compiler techniques that are used. Compiler tech-
niques and optimizations for extracting data parallelism out of a scalar software is well
understood. Some of these techniques, including common techniques like register renam-
ing or instruction re-ordering, are summarized in [Padua & Wolfe (1986)].

The availability of efficient compilers has been a constant major issue in the history
of vector processors. For example it was one of the drawbacks for the legendary Cray
machine. The CRAY-I [Russell (1978)] machine was among the first super-computers to
implement vector processing techniques back in 1977. The CRAY-I had 12 functional
units, 16 memory banks and 4KBytes of registers. It had an instruction issue rate of 1
instruction per clock cycle and could target a clock of 80MHz. The CRAY-I could reach
a throughput of 138 million FPOS (Floating Point Operations per Second) on average
and 250 million FPOS when in a burst mode. Another example of a “historical” vector
processor was the vector part that was added to the IBM370 [Padegs et al. (1988)] as an
extension to the scalar processor. Then there is of course the MMX extension to the Intel
architecture [Peleg & Weiser (1996)] for multimedia applications. By then, there were
clear indications that vector processors had stopped being the ownership of the “super-
computing” world and that they were being vulgarized onto the world of microprocessors,
especially for digital signal processing. In [Kozyrakis & Patterson (2002)] the authors
present the VIRAM architecture (32 vector registers, 4 lanes with 2 arithmetic units
and two DRAM banks per lane) where they show that vector processing techniques were
better suited than VLIW approaches for multimedia applications: smaller code, twice as
fast, 10 times less power consumption and more scalable. Further examples are given
in [Esapasa et al. (2002)] where the authors propose a Floating Point vector extension
(consisting of 32 functional units) to the Alpha processor. In [Krashinsky et al. (2004)],
the authors present a vector microprocessor, the SCALE-0 which consists of a scalar 32-bit
MIPSII-compatible-ISA processor and a Vector Thread Unit which consists of a command
management unit, a stream unit and 4 parallel lanes. Each lane consists of an instruction
buffer, computation units, local register files and inter-lane data transfer units. This
vector microprocessor can work at 400MHz to reach a throughput of 3.2 GLOPS (Giga
Floating point Operations Per Second).
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2.3.3 Cryptography on parallel architectures

When looking back at the previous work on embedded parallel processors, most of them
targeted applications like multi-media signal processing applications. Attempts at having
a parallel approach to the implementation of cryptography have been relatively scarce,
not to mention attempts to actually design a parallel cryptographic engine.

Most of the known examples of parallel implementations of cryptography are in non-
embedded computers. In the latter ‘conventional’ or non-embedded computing world,
most of the research has concentrated on parallelizing the cryptographic operations in or-
der to take advantage of the SIMD architecture originally developed for media applications
[Aoki et al. (2001)]:

• In [Page & Smart (2004)], the authors implement a long precision modular multipli-
cation on a Pentium4 using the SSE2 (Streaming SIMD Extensions 2 ) instructions.
The authors execute four exponentiations in parallel, each exponentiation being im-
plemented using a Redundant Representation of Montgomery’s multiplication. The
authors report that a 1024-bit modular multiplication takes 60µs, which roughly
corresponds to 120000 clock cycles for a 2GHz Pentium4 processor.

• Crandall and Klivington illustrate in [Crandall & Klivington (1999)] how the Veloc-
ity Engine of the PowerPC can be used to implement long precision multiplications
for RSA. Based on the figure given in the paper, we can infer that a 1024-bit mul-
tiplication takes about 3600 clock cycles with their approach. However, no figures
were reported for a full modular multiplication.

• The AltiVec [Diefendorff et al. (2000)] extension to the PowerPC was originally
developed to target media applications. This vector extension is made of 32 128-bit
vector registers. AltiVec also offers some superscalar capabilities since instructions
belonging to different ‘classes’ can be executed in parallel. Galois Field arithmetics
have been implemented on the AltiVec in [Bhaskar et al. (2003)]. In the latter
paper, the authors show how the Rijndael algorithm [NIST (2001b)] can execute in
162 clock cycles on the AltiVec or, even better, in only 100 clock cycles if a bit-sliced
approach is used.

• Parallel approaches have also been studied in order to factorize large integers for
“breaking” curves used for Elliptic Curve Cryptography [Dixon & Lenstra (1992)].
Implementations on the Fujitsu AP100 (with 128 RISC processors working in paral-
lel), on the Fujitsu VP220/10 vector processor and on the Fujitsu VPP500 (made up
of four interconnected vector processors) consist in having each processor perform
calculations independently until a factor is found [Eldershaw & Brent (1995)]. But
the operations used during each calculation (for example the multiplications and
divisions) are not themselves vectorized.

For embedded applications, studies around the use of SIMD architectures for cryptography
are even more scarce:

• In the embedded world, Data Parallel architectures are mostly deployed in DSPs
(Digital Signal Processors) for signal processing. In [Itoh et al. (1999)], the authors

40



2.4 Conclusion on Security Devices

describe how modular multiplication based on Montgomery’s method [Montgomery
(1985)] can be implemented on a TMS320C6 201 [TI (2004)] DSP. With their ap-
proach, a 1024-bit RSA verification (with e = 216+1) takes 1.2ms. If we suppose that
we need approximately 17 modular multiplications for this, then, with a processor
clock at 200MHz, we can infer that the one 1024-bit modular multiplication takes
about 14000 clock cycles. Applying the same reasoning to other data given in the
paper, we find out that one 2048-bit modular multiplication takes 53000 clock cycles
on this architecture.

• In the fascinating world of smart-cards, some work on parallel architectures for
cryptography has been reported in [Fischer et al. (2002); Izu & Takagi (2002)]. In
both papers, the authors focus on fast elliptic curve multiplications. In [Izu & Takagi
(2002)], the authors show how, with a projective coordinates representation [Blake
et al. (1999)], calculations can be parallelized on the Crypto2000. On the other
hand Fisher et al [Fischer et al. (2002)] focus more on elliptic curve implementations
resistant to side channel attacks.

• Some research groups are currently undertaking some work on designing parallel
architectures for cryptography. For example, very recently, Sakiyama et al, in
[Sakiyama et al. (2006a,b)] have proposed a programmable superscalar scalable co-
processor for fast Elliptic Curve Cryptography. In this work, the co-processor is
designed to interface with an 8051 processor. The core of the approach revolves
around the design of a modular multiplier whose data sizes are scalable. However,
the modular multiplier is designed for one particular curve. The design of this co-
processor required the design of a dedicated tool called Gezel for simulation and
performance analysis.

2.4 Conclusion on Security Devices

The emergence of new applications like Digital Rights Management (DRM), on-line pay-
ment transactions and mobile banking has given birth to a new breed of security devices
which can be viewed as the convergence of small portable devices like smart-cards and
larger ones like HSMs. Such devices are required to run a whole plethora of cryptographic
algorithms, namely Hash functions, Secret Key or Public Key algorithms and offer tam-
per resistance capabilities to protect the execution of cryptographic algorithms and to
guarantee the confidentiality of the secret data being manipulated. The level of security
is measured against the different attacks that can be performed during the execution of
such algorithms.

From a hardware point of view, side channel and fault attacks are the dangerous ones.
The countermeasures against such attacks can be implemented in hardware or in software.
With respect to all of these requirements, we went back to exploring the architecture
design space in order to seek for an architecture that would offer a choice between security,
performance, area and power for a particular application. Vector architectures seem to
be suited to that kind of approach: performance, area and power can be controlled by
varying the number of units working in parallel while the security part can be handled
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by making sure that the hardware performance figures can good enough to implement all
the required software countermeasures. Until now, vector architectures have been mainly
deployed for media applications like in DSPs. There have been attempts to implement
cryptography on DSPs but to the best of my knowledge, no one has tried to define a
vector architecture for cryptography.
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Chapter 3

Vectorizing Cryptographic
Algorithms

Security chips are widely deployed today in products like smart-cards, hardware security
modules (used in secure readers or trusted platforms, ATMs or secure personalization
facilities for such secure products), electronic passports and tags. Given the different
physical, power, size constraints pertaining to those different cases, the corresponding
chips used may have totally different architectures, leading to different designs for the
security and cryptography modules and hence different performance characteristics and
levels of security.

In this chapter, I first define the security and cryptography requirements upon which
to focus in order to propose a generic architecture applicable to all of these cases. I then
present the advantages of having a vector processing approach. Next I talk about the
cryptographic algorithms on which this thesis focuses: the AES (Advanced Encryption
Standard) and ECC (Elliptic Curve Cryptography). In these 2 cases, I study how the
internal calculations can be modified to suit a data parallel architecture and define the
required vector instruction set architecture.

3.1 Requirements for Secure Chips

When it comes to cryptography and security, devices like smart-cards are bench-marked
on the following items:

1. The performance of the critical cryptographic algorithms, i.e. the speed with which
the algorithms like DES (Data Encryption Standard), AES and 1024-bit RSA
(Rivest-Shamir-Adleman scheme) based signature/verification are executed. 2048-
bit RSA and Elliptic Curve based Public Key Cryptography are starting to be
deployed.

2. The level of security of the chips, i.e. their ability to resist invasive attacks like prob-
ing, non-invasive attacks like Power or Electro-Magnetic Analysis or semi-invasive
attacks like fault injections.
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These items have been discussed in Chapter 2. In the following sections, I explain which
of these factors are addressed in this thesis and why.

3.1.1 Requirements for cryptographic applications

The performance of cryptographic algorithms is not only linked to the structure of the
algorithm itself but also to the resources available on the processor chip and above all, in
particular for embedded systems, to the energy consumed by the resulting chip. For em-
bedded processors, power consumption determines the maximum frequency at which the
chip is clocked. In such cases we have to look for the best trade-off between hardware and
software. Designers of secure systems must be able to achieve a high degree of flexibility
(in terms of choice of algorithm), high performance and a low power-consumption.

In this study, the benchmarks used look at only some of the most commonly used
cryptographic algorithms and do not target all the algorithms used in protocols like SSL
[OpenSSL (2000)] or PKCS♯11-v2 [RSA (2000)]. Moreover, most cryptographic algo-
rithms can be viewed to use the same ‘basic’ operations like permutations, table look-ups
or modular multiplications.

Cryptographic algorithms can be classified into three families1:

• Secret Key (SK) algorithms like DES, AES, RC2/4/5/6, IDEA, Skipjack which are
fast encryption/decryption algorithms, usually involving data/key blocks of several
hundred bits.

• Hash Functions which map binary strings of arbitrary lengths to one of fixed length,
examples of which are MD5 and SHA1

• Public Key (PK) algorithms like RSA, DSA, DH or ECC which are mainly used for
authentication, signing and verification.

By grouping the algorithms like that, we are able to identify basic operations that are
common to them and which would be worth implementing as specific instructions.

Secret key algorithms and Hash functions

We regroup SK algorithms and Hash ones because they require more or less the same
basic operations. Identified operations/instructions are:

Cyclic Shift Operations Data dependent/independent variable ‘rotation’ operations
are used in most of these algorithms. Such instructions are usually already imple-
mented on GPP (General Purpose Processors).

1Random Number Generators (RNG) have deliberately been put aside as they are more optimally
implemented as separate peripherals since they usually have physical and timing characteristics of their
own.
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Permutations Permutation operations are a useful way of shuffling bits within a word,
as used in algorithms like DES [NIST (1993)]. Work on efficient permutation in-
structions already exists. In [Shi et al. (2003)], the authors implement a 64-bit
permutation in 2 clock cycles and in [McGregor & Lee (2003)], the authors work on
permuting 64 bits with repetition in 11 clock cycles. In both cases, these permuta-
tions are done at the expense of quite cumbersome hardware. There could be room
for progress if for example we are working on smaller data paths (16-32 bits) or also
find a better trade-off between the cost of the hardware and ‘speed’ at which these
permutations are done - like probably working on smaller ‘butterfly structures’ as
exposed in [Shi et al. (2003)].

Table Look-ups This is another widely used operation in SK algorithms. The principle
used is extremely simple but implementing this in software is very time and memory
consuming. Most, if not all, of these substitution operations work on bytes. If we
have a 32-bit architecture, for example, the challenge is to perform 4 byte substi-
tutions in parallel from any address. Performing packed memory accesses through
one instruction have recently been proposed in [Fiskiran & Lee (2005)].

Byte-wise modular operations Algorithms like AES [NIST (2001b)] involve the ad-
dition and multiplication of bytes in GF (2m). It would be interesting to have such
operations modulo any primitive polynomial of degree 8. Better still if, say we are
on a 32-bit architecture, we can manage to perform four of those in parallel.

Public Key Cryptography

This class of cryptographic operations involves the use of long precision numbers. A
significant amount of work has already been done on how to manipulate long precision
numbers on GPPs with ‘small’ data paths [Dhem (1998)]. When we look at the modular
multiplication of two large numbers in RSA or that of two long polynomials in ECC, we
see that there are several efficient ways of implementing such operations. As explained
in [Dhem (1998)], the Barrett algorithm (and one of its variant which is the Quisquater
algorithm) along with Montgomery algorithm [Montgomery (1985)] constitute the most
interesting possibilities. Both algorithms involve steps where we perform word by word
multiply and add operations. The authors in [Tenca & Çetin K. Koç (1999)] have already
looked at ways of tailoring multipliers to suit the Montgomery Multiplication. They make
the multiplier ‘scalable’ by resizing the basic multiplier that can be replicated to suit the
data path needed. In [Savaş et al. (2000)], the same authors go from their first idea and
make the functional block suitable for multiplications both in GF (p) and GF (2m). In
this case, the design of an appropriate dual-field multiplier is mandatory. The challenges
lie in the trade-off to be found between the data path (in other words the size of the word
to work on), the design’s size and its performance, without impacting the execution of
simpler basic operations.

Another time-consuming operation which is often overlooked is loop-counting. This
could apply to any kind algorithm in general but it is particularly true for PK algo-
rithms where multiplication of two long numbers involves the use of nested loops. Hence
counter’s increment and decrement, test instructions and branch instructions are often
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called thousands of times during a Public Key signature, exponentiation algorithm for
RSA or multiplication by a scalar for ECC. In terms of performance, a panorama of the
calculation speeds of some commercially used security devices is given in Section 2.3.

3.1.2 Security Requirements

As explained in Chapter 2, the security of devices like smart-cards are measured by certi-
fied security laboratories who perform tests based on requirements set by Certifying bodies
like the Common Criteria Certification [CC (1998, 1999)] or the FIPS [NIST (2001a)].
These processes not only focus on the security of the hardware used, but also on the
security of the software and protocols used. Since this thesis focusses on the hardware
architecture, we concentrate on the different threats and attacks linked to the hardware
itself.

Invasive Attacks

Invasive attacks require that we have physical access to the chip for doing things like
micro-probing, scanning memories to identify bit values, scanning the chip to reverse-
engineer architectures or physically modifying the values contained in memory cells or
registers. To circumvent such attacks, one needs to work on the technology itself and
on the manufacturing processes used: use of ‘intelligent’ defense grids, use of special
manufacturing or lay-out processes among others, which are outside the scope of this
thesis.

Side channel information leakage

Since the first publications on timing attacks [Dhem et al. (1998); Kocher (1996)], side-
channel information leakage has been of primary concern to designers of secure systems.
By externally observing the variations in power consumed, timings taken or Electro-
Magnetic waves emitted, one can infer information about the type of operations being
executed, the value of the bits being manipulated or the value or Hamming Weight of the
data1 being manipulated. Recently, an interesting quantitative method of measuring the
side-channel information leakage, called Correlation Power Analysis (CPA), has been pro-
posed in [Brier et al. (2003, 2004)] whereby, based on statistical methods, we can compare
different systems by looking quantitatively at how their side-channels correlate with the
value of the data being manipulated. Other architecture-related attacks, like cache-based
side-channel analysis [Bernstein (2004); Bertoni et al. (2005); Fournier & Tunstall (2006);
Page (2002, 2004); Tsunoo et al. (2003)] or branch prediction attacks [Aciicmez et al.
(2006a,b)], have been proposed to illustrate how a chip’s architecture can also be used to
perform side-channel attacks.

The sine-qua-non conditions for performing successful side-channel attacks are

• Having a deterministic process where we can identify the portions of code being
executed in order to synchronize our measuring tool with the part that we are

1The Hamming Weight of a data corresponds to the number of ones present in its binary representa-
tion.
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interested in.

• Having an architecture whereby the time taken, the power consumed or the EM
radiated depends on the data (whether its value or its Hamming Weight) being
transported over the buses or stored into registers.

A potentially secure design should take the above factors into consideration by, for exam-
ple:

1. having functional units and data paths whose timings are independent from the
data or instruction.

2. having a scheduling that is random from one execution to another in order to ‘hide’
the actual processes being executed. For example random instruction scheduling has
been proposed in [Leadbitter et al. (2007); May et al. (2001)]. A judicious trade-off
has to be found between the timing penalty induced by such randomization and the
fact the latter has to resist to any statistical analysis by an attacker.

3. having a data path which is able to ‘hide’ the value or Hamming weight of the data
it transports and uses.

Fault Attacks

The ‘timing issue’ is also vital when it comes to attacks linked to the generation of faults
inside a chip. Fault attacks consist in corrupting the data being transported over a bus
or stored in a register or memory at a specific time to corrupt a sensitive calculation in
order to bypass a security mechanism or to retrieve part or all of the secret key being
used (by differential cryptanalysis for example [Biham & Shamir (1997)]). Hence, to have
a successful fault attack, one must have a device onto which any fault injected remains
undetected and one needs to be able to synchronize with the program so as to corrupt
the part of the cryptographic algorithm to allow to ‘cryptanalyze’ or reverse-engineer the
latter.

In practice, such a mandatory synchronization is done by observing external physical
characteristics like timing, power consumption profiles or Electro-Magnetic waveforms.
In that sense, protecting against fault analysis and protecting against side-channel in-
formation leakage could lead to a common set of countermeasures built on processes’
randomization for example .

The second aspect to consider is how to construct a fault resistant system. We then
face the terrible dilemma of either having a fault-detecting system or a fault-correcting
one. The latter being extremely tedious and expensive to make, we could favour the
study of a fault-detecting architecture. The first right steps have already been taken in
systems like Dual Rail encoding as depicted in [Moore et al. (2002)] where the principle
was adapted to an asynchronous circuit. The security evaluation of such a system has
then been carried out [Fournier et al. (2003)]. The latter study showed that, putting
aside the ‘design flaws’ for which solutions have since been proposed, dual encoding is
effective in detecting certain types of faults but that complementary solutions have yet
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to be sought. In fault-tolerant systems where the fault is corrected, we must assume that
the system is first able to detect the fault. However, initial studies show that the simplest
of error/fault-correcting systems would require a circuit which is twice bigger, which is
unacceptable price to pay for embedded processors.

As a first approach, detecting the fault would be enough. Most fault attack scenarios
exploit the faulty result obtained when a cryptographic algorithm is corrupted. Detecting
the fault involves a mechanism that triggers an exception/alert upon any attempt of fault
attacks. We could then leave it to the Operating System or software to securely manage
that exception to stop the process for example.

3.1.3 Introduction to the detailed case studies

We have browsed through the performance and security issues for processors executing
cryptography. From a purely hardware point of view, while the first aspect can be handled
in a universal sense, the security aspect is very much architecture and technology depen-
dent. Moreover, a lot of work has already been done to propose software countermeasures
for most of the commonly used cryptographic algorithms [Akkar & Giraud (2001); Bertoni
et al. (2002); Clavier & Joye (2001); Zambreno et al. (2004)]. Hence from now on, we will
mainly focus on the performance aspect while providing flexibility for the implementation
of these software countermeasures. In later sections, we focus on two case studies where
we evaluate the performance of these two algorithms on a general purpose processor, iden-
tify the bottlenecks and identify in what way a data parallel approach could improve the
performance of those algorithms on such a general purpose processor. But before that we
will choose an architectural approach to induce such performance enhancements.

3.2 Architecture Definition for Parallel Cryptographic

Calculations

In Section 2.3.1, a general presentation of computer architectures has been given, with
a focus on vector processors. In this section, the arguments in favour of Data Parallel
architectures are given.

3.2.1 A case for general purpose programmable architectures

Secure embedded tokens like smart-cards have to face tight timing constraints for the
execution of the cryptographic algorithms they execute. For that purpose, these systems
usually embed dedicated cryptographic co-processors that either implement a complete
secret key algorithm (like DES or AES) or which performs modular operations on long
precision numbers (512-1024 bits) for Public Key Cryptography (mainly for RSA). Some
publications might even infer that hardware implementations “can be secured more eas-
ily” [Kuo & Verbauwhede (2001)]. But with such systems we can usually associate the
following inconveniences:

1. Co-processors are usually bulky. For example, in Table 3b of [Naccache & M’Raihi
(1996)], we can see that the area of arithmetic co-processors for cryptography is
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between 10-20% of the chip’s total area.

2. The above point also implies that the power consumed by these co-processors is
huge. In smart-card applications like GSM where the current is limited to 6mA and
in 3G where we are granted a maximum of 10mA, this implies that either the clock
has to be slowed down or that the main processor has to be switched off during the
cryptographic calculation (or both in some cases).

3. Such hardware systems are usually difficult to protect against side-channel or fault
attacks. Even if countermeasures are added at design time, only tests performed
on the final chips can prove the effectiveness of the countermeasures (and it’s usu-
ally too late to make changes then). In addition to this, updating such hardware
countermeasures when new attacks are published usually means re-designing the
chip.

4. Most of these co-processors are proprietary designs for which circuit designers and
eventually end-users have to pay royalties. Moreover, there is usually no software
compatibility from one design to another.

5. Such implementations also provide little flexibility in terms of evolution of the cryp-
tographic algorithms used (like increasing the key length of RSA or ECC).

For all of these reasons, it would be more interesting to integrate crypto-oriented instruc-
tions into the instruction set of a general purpose co-processors (GPCs). The first steps
have been taken by academia like in [McGregor & Lee (2003)] where bit permutation
instructions are proposed. Instruction set extensions for Elliptic Curve Cryptography
on pseudo-Mersenne curves have been proposed by [Großschädl et al. (2004)] but these
instructions are not suitable for any curve. A reconfigurable architecture is depicted in
[Kumar & Paar (2004)], but is based on a multiplier limited to 163 bits. Dedicated instruc-
tions for ECC on any curve for 32-bit architectures have been suggested [Großschädl & Ka-
mendje (2003); Großschädl & Savas (2004)] but the proposed hardware is not scalable. A
similar approach is used on the SmartMIPSTM [MIPS (2005)]. Dedicated instructions for
Elliptic Curve Cryptography have also been implemented on the Sparc processor [Eberle
et al. (2005)], instructions which can also be used to accelerate the AES algorithm [Tillich
& Großschädl (2005, 2006)]. But, to the best of my knowledge, none has yet embraced
the problem by going back to the computer design space and look for the architecture
that would integrate the functionality together with the growing need for adaptive secu-
rity. Such evolutionary moves are not new to the computer industry. For example, some
20 years ago, Floating Point arithmetic was done by peripheral co-processors and today,
given the common use of such calculations, the associated functionality has been added
to the processor core itself. Examples of these are the way in which processors like ARM,
MIPS, x86. . . have evolved.

I propose to go from an available General Purpose Processor, which is currently largely
used in the embedded computer industry, and design new processing units that handle
cryptography in the most efficient and flexible way in terms of performance, area and
power consumption.
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3.2.2 A case for vector architectures

As already mentioned, the basic architectural requirements behind the system we are
trying to build are those of

• Scalability : being able to adapt the algorithm itself, the size of keys or the level of
security as a function of the software countermeasures implemented.

• Performance: being able to offer high performance.

• Low Power : being able to adapt, through “architectural adjustments”, the power
consumed by the final design to the targeted application.

• Security : in our case, providing the proper hardware configuration to implement
efficient countermeasures.

In Chapter 2, I presented a decomposition of the computer architecture design space
as illustrated in Figure 3.1.

Hardware 

Model

SIMD
Single

Instruction
Issue

Instruction

Workload 

Model

SISD

MIMDMISD
Multiple

Instruction
Issue

Single Data Access Multiple Data Access

ILP

Figure 3.1: (Flynn’s) Architecture Design Space

Single Instruction Issue processors are chosen in order to maintain compatibility with
existing smart-card chips. Having a Multiple Instruction Issue processor would imply
having a multi-processor system which does not fit with actual power and size constraints
on embedded chips. Instruction Level Parallel architectures were also put aside because
having parallel instruction executions:

• requires complicated instruction decoding and scheduling units, which do not help
reducing complexity.
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• implies the use of very sophisticated instruction decoders and issuers, which consume
a lot of power as illustrated in [Folegnani & González (2001)]. In the latter paper, the
authors show that in a superscalar microprocessor, the instruction issue and queue
logic accounts for nearly one quarter of the total energy consumed by the processor
while another quarter is accounted for by the instructions’ reorder buffers.

• is not well suited for these particular applications: most cryptographic algorithms
involve the sequential use of precise instructions/operations leaving little room for
parallelism at this level.

A Data Level Parallel approach was chosen because

• the data used by these cryptographic algorithms can be decomposed into a vector of
shorter data onto which operations can be applied in parallel (or partially-parallel)
as it will be illustrated in Sections 3.3 and 3.4.

• The instruction decoding is simpler, i.e. no dedicated logic is required for dynamic
instructions’ schedule and reordering.

• The extra logic required for the parallel processing resides mainly in the data path
and not in the control path.

• In terms of security, working on data in parallel can in theory reduce the relative
contribution of each data piece to the external power consumption as announced in
[Brier et al. (2003)].

Hence Data Level Parallel techniques are used to design the cryptographic processing unit
described in this thesis. The vector machine is controlled by a general purpose processor
(GPP) which also allows the optimal execution of ‘scalar’ codes1.

3.2.3 Having a MIPS-based approach

The first choice made was relative to the GPP upon which our architecture had to be
based. We decided to go for the MIPS4K architecture because:

• The MIPS32TM architecture is simple, open with a consequent amount of docu-
mentation available off the web like [MIPS (2001a)], [MIPS (2001b)] and [MIPS
(2001c)].

• A derivative of the MIPS4KcTM is already used in the smart-card industry and it
makes sense to try to stick to an architecture which is already in use.

• This architecture also provides support for optional Application Specific Extensions
(ASE) and an interface for optional co-processor (namely the CP2)

• It has a simple 5-stage pipeline which is easy to understand:

– Instruction Fetch (IF): instruction cache fetch and virtual-to-physical ad-
dress translation

1In this paper, a scalar code is an algorithm’s code implemented on a scalar machine (MIPS-I) and
a vector code is an algorithm’s code implemented on a vector machine.
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– Instruction Decode (ID): instruction decode, check for inter-lock conditions,
instruction virtual address calculation, next instruction calculation and register
file read

– Execution (EX): arithmetic & logic operations, branch compare, data virtual
address calculation

– Data Cache Read (DC): data cache read, load data alignment, data cache
tag check.

– Write Back (WB): data cache write, register file write.

• The MIPS4KscTM (SmartMIPSTM) will be a good way of benchmarking the perfor-
mance of the proposed architecture. Some independent research work has also been
done on adding scalar crypto-oriented instructions like in [Großschädl & Kamendje
(2003)] and this would be another way of assessing the quality of the work done in
our research.

• Some simulation tools (like SimpleScalar or ArchC) already propose MIPS-like
ISAs for simulation

From there, we make the choice of having a MIPS-based architecture to have a vector
approach to implement cryptography. For AES and modular multiplications, relevant
vector instructions are identified and they now have to be integrated into a simple MIPS
structure. In Sections 3.3 and 3.4, we will see that for the two strategic cases of AES and
modular multiplications, the inner cryptographic calculations could be made to work on
vectors of data, suggesting that there is room for parallelism within such operations.

3.3 Case Study: AES encryption algorithm

The AES algorithm is described in [NIST (2001b)]. The algorithm can involve keys of
128, 192 or 256 bits but we concentrate on the 128-bit version of the AES as it is very
representative of what is happening in the algorithm. Moreover, if we look more closely
to the algorithm’s specifications in [NIST (2001b)], the difference between the AES-128,
AES-192 and AES-256 lies in the key-schedule where we have longer keys: for the encryp-
tion/decryption processes, the data length is always on 128 bits and only the number of
rounds changes (respectively 10, 12 and 14). Moreover, we only focus on the encryption
process as the decryption process uses almost the same operations but in a different order,
except for the INV MIXCOLUMNS operation which slightly differs from the MIXCOLUMNS used
during encryption, but their ‘constituent’ operations are the same.

In this case study, we look at the implementation of the AES-128 on a MIPS processor
architecture: implement and simulate the algorithm on a MIPS-I compatible ISA, identify
the most time-consuming operations in the algorithm’s structure and from there identify
which points are worth upgrading in order to obtain maximum speed-up.

3.3.1 The Advanced Encryption Standard

The structure of the AES-128 is given in Figure 3.2. In our test implementation, the key-
schedule is done first and the sub-keys stored in RAM memory: the encryption/decryption

52



3.3 Case Study: AES encryption algorithm

processes are then done and for each round the corresponding sub-keys were fetched from
the RAM memory.

The 128-bit data or key is considered as a matrix of 4× 4 bytes. The operations are
performed column-wise except for the SHIFTROWS which is defined in rows. Hence, on a
MIPS-I 32-bit architecture, we represent our matrix on four 32-bit words where each word
is one column of the 4× 4 matrix.

Key Schedule. This simple operation is shown in Figure 3.2. The TRANSFORM done
on K3 consists of

• Rotating K3 by 1 byte to the left.

• Then performing a SUBBYTE operation of the individual bytes.

• Then XORing the left-most byte by xi−1 in GF(28) where i is the sub-key’s index.
The various xi−1s are simply pre-calculated and accessed through a look-up table.

Add-Round-Key. The ADDRNDKEY operation is illustrated in Figure 3.2 by the ‘big’
XOR symbol. It consists of a byte-wise XOR between the data matrix and the corre-
sponding sub-key matrix.

SubByte. The SUBBYTE is specified as a look-up table of 256 bytes where to each
byte of the data matrix corresponds to a substitution byte in this look-up table.

ShiftRows. The SHIFTROWS operation is a simple leftwise rotation operation on each
row of the data matrix: the first row is unchanged; the second row is rotated by 1 byte;
the third row by 2 bytes; and the forth row by 3 bytes.

MixColumns. The MIXCOLUMNS operation is a matrix multiplication working on each
column as defined below:
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Each of the individual byte multiplications is done in the field GF(28), modulo the irre-
ducible polynomial given by

m(x) = x8 + x4 + x3 + x + 1 (3.2)

whose binary representation is given by the hexadecimal value 11B.

3.3.2 Performance study

The AES-128 is implemented using the MIPS-I instruction set as defined in [MIPS (1996,
2001b)]. No countermeasure is implemented. As already mentioned, the key schedule is
executed first, the sub-keys stored in RAM memory and then the encryption/decryption
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Figure 3.2: AES-128 structure
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processes executed. Table 3.1 gives the number of clock cycles taken by the different
processes: the programs’ execution times were simulated using the MIPSSimTM simulator
tool.

AES-128 Number of clock-cycles

ENCRYPTION 3042
DECRYPTION 5134

Table 3.1: Performance of the AES-128 on MIPS-I

In table 3.2, we detail the time taken by each different process: the most time consuming
operations are the SUBBYTE and the MIXCOLUMNS operations.

Sub-Process clock-cycles times called Total % of total encryption

KEY-SCHEDULE 508 1 508 16
ADDRNDKEY 16 11 176 6
SUBBYTE 68 10 680 22
SHIFTROWS 26 10 260 8.5
MIXCOLUMNS 143 9 1287 42

Table 3.2: Decomposition of the AES-128 encryption

3.3.3 Improvement study

Based on the data in table 3.2, we can look at what kind of instructions (like those given
in Appendix A), if added to a general purpose co-processor, could enhance the perfor-
mance of the encryption algorithm. We study how a vector processor1 could enhance the
execution time. It makes sense to leave the key-schedule operation for the time being
because on one side it does not represent the most critical operation in terms of perfor-
mance and on the other side in some application cases, the AES-128 is used to encipher
large tables of data using one key, in which case the key-schedule is done once for all and
the encryption process executed several times.

In the following study, we will assume that each vector instruction can be issued at
every clock cycle and hence take an effective 1 clock-cycle. This is supported by the way
these instructions are executed and pipelined. This assumption provides an upper bound
for the improvement that can be achieved.

1The justification for having a vector approach is given in Section 3.2.
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Add Round Key

The ADDRNDKEY operation is applied to each column of the data matrix. On each column
we do

LOAD R0, 0(adr_key)

LOAD R1, 0(adr_data)

XOR R2, R1, R0

STORE R2, 0(adr_data)

where adr key is the register containing the address of the key and adr data is the reg-
ister containing the address of the message. Since there are four columns this is repeated
four times. On a vector architecture, assuming that the vector instructions as described
in the Appendix A take 1 clock-cycle 1, the ADDRNDKEY can be implemented in only four
instructions for all four columns of the data matrix

VLOAD V0, (adr_key), 4

VLOAD V1, (adr_data), 4

VXOR V2, V0, V1

VSTORE V2, (adr_data), 4

The gain in performance is calculated according to the following equation:

GAIN =
(Times − Timev)× occurrence

T imeTOTAL

where Times is the time taken by the sub-process on the scalar MIPS architecture, Timev

is the time taken by the sub-process with the proposed vector instructions, occurrence is
the number of times the sub-process is called during the entire encryption algorithm and
TimeTOTAL is the time taken for the entire AES-128 encryption on the scalar MIPS. For
the ADDRNDKEY the maximum gain that could be expected is

GAINADDRNDKEY =
(16− 4)× 11

3042
= 4%

Substitute Byte

The SUBBYTE is a byte-wise look-up process. For this purpose we have a VBYTELD Vx,

Ry, m instruction as explained in Appendix A. Such an instruction can be implemented
if we suppose we have the memory organization described in Section 4.1. Note that this
optimization is also useful for the KEY-SCHEDULE. The expected maximum gain would

1Architectural and Implementation issues will be considered in subsequent chapters. For the time
being, we focus on the functional definition of these vector instructions
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then be

GAINSUBBY TE =
(68− 1)× 10

3042
= 22%

Shift Rows

Originally the SHIFTROWS function is composed of left rotations on each row of the data
matrix and if we had represented each row of the data matrix on a 32-bit word, the
SHIFTROWS would have been very simple. But in our implementation, each 32-bit word
is one column of the data matrix, hence the difficulty of implementing this operation.
Suppose we have the operations VTRANSP and VBCROTR (Vector-Bit-Conditional-Rotate-
Right) as described in Appendix A, the SHIFTROWS operations can be implemented as
follows:

VLOAD V0, (adr_data), 4 # loads data into V0

VTRANSP V1, V0, 4 # V1 = V0 transposed

ADDIU R11, 0x000E

MTVCR R11 # VCR = 1110b

VBCROTR V2, V1, 24 # V2 = V1 whose words indexed 1,2,3

# have been rotated right by 24 bits

ADDIU R11, 0x000C

MTVCR R11 # VCR = 1100b

VBCROTR V1, V2, 24 # V1 = V2 whose words indexed 2,3

# have been rotated right by 24 bits

ADDIU R11, 0x0008

MTVCR R11 # VCR = 1000b

VBCROTR V2, V1, 24 # V2 = V1 whose word indexed 3

# is rotated right by 24 bits

VMOVE V0, V2, 4 # V0 = V2 transposed

VSTORE (adr_data), V0, 4 # stores result into memory

Assuming that each of the above vector instructions takes one clock cycle, the maximum
performance gain that could be achieved is

GAINSUBBY TE =
(26− 10)× 10

3042
= 5%

Mix Columns

The MIXCOLUMNS operation is the most time consuming one accounting for 42 % of the
AES-128 encryption as shown in Table 3.2. The MIXCOLUMNS operation is a matrix mul-
tiplication acting on every column of the data matrix as shown by equation 3.1. Each
byte of the column can be viewed as a polynomial in x of degree 7 which is multiplied
by a matrix of polynomials in x of degree 7. Hence equation 3.1 can be switched into a
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polynomial representation and further developed into the following:









a′

b′

c′

d′









=









x · a + (x + 1) · b + c + d
a + x · b + (x + 1) · c + d
a + b + x · c + (x + 1) · d
(x + 1) · a + b + c + x · d









=









x(a⊕ b)⊕ b⊕ c⊕ d
x(b⊕ c)⊕ a⊕ c⊕ d
x(c⊕ d)⊕ a⊕ b⊕ d
x(a⊕ d)⊕ a⊕ b⊕ c









(3.3)

Equation 3.3 shows that the central operation in the MIXCOLUMNS is the multiplication
operation by x modulo m(x) (which is given in equation 3.2), specially since this multi-
plication is done on the individual bytes within every 32-bit word. For this purpose, we
defined the vector instruction VMPMUL (Vector-Modulo-Polynomial-Multiplication): this
instruction works on every byte within a vector register and multiplies each of them
by x in GF(28), i.e. modulo an irreducible polynomial of degree 9 stored in one of the
processor’s scalar registers. Given these instructions, the MIXCOLUMNS operation can be
implemented as follows

VLOAD V0, (adr_data), 4 # loads data into V0.

# V0 is made up of bytes (a,b,c,d)

ADDIU R11, R0, 0xFFFF

MTVCR R11 # VCR = 0xFFFF

VBCROTR V1, V0, 8 # Each word of V1 = (d,a,b,c)

VBCROTR V2, V0, 16 # Each word of V2 = (c,d,a,b)

VBCROTR V3, V0, 24 # Each word of V3 = (b,c,d,a)

VXOR V4, V0, V3 # Each word of V4 = (a+b,b+c,c+d,d+a)

ADDIU R11, R0, 0x011B

MTVCR R11 # VCR = 0x011B

VMPMUL V5, V4, R0 # Each byte of V4 is shifted

# by 1 bit left and XORed with

# last byte of VCR if outgoing

# bit is 1. Mult by ’x’ mod 0x011B.

# 1 word of V5 =

# (x(a+b),x(b+c),x(c+d),x(d+a))

VXOR V0, V5, V1 # 1 word of V0 = (x(a+b)+d,x(b+c)+a,

# x(c+d)+b,x(d+a)+c)

VXOR V0, V0, V2 # 1 word of V0 =

# (x(a+b)+d+c,x(b+c)+a+d,

# x(c+d)+b+a,x(d+a)+c+b)

VXOR V0, V0, V3 # 1 word of V0 =

# (x(a+b)+d+c+b,x(b+c)+a+d+c,

# x(c+d)+b+a+d,x(d+a)+c+b+a)

VSTORE V0, (adr_data), 4

From this we can infer that the maximum gain in performance would be
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GAINMIXCOLUMNS =
(143− 12)× 9

3042
= 39%

Note that the VMPMUL instruction in itself is very simple. The Polynomial multiplication by
x on a byte comes down to XORing the 8 LSb (Least Significant bits) of the ‘byte-shifted-
by-one-position-to-the-left’ with the 8 LSB of the modulus if the MSb (Most Significant
bit) of the original byte is 1. We could work on 4 bytes (32 bits) for every clock cycle and
pipeline with the next instruction from one 32-bit word to another.

Overall Performance Gain

Based on the vector instructions defined in Appendix A, the maximum overall gain in
performance that could be achieved by switching from a scalar implementation to a vector
one is

GAINTOTAL = (143−12)×9+(68−1)×10+(26−10)×10+(16−4)×11
3042

= 70%

Under those same assumptions, we could further increase the gain by factorizing the vec-
tor loads and stores and work directly with the intermediate ‘states’ in vector registers.

In the above calculations we suppose that we have to encrypt 128 bits of data. If the
vector register’s depth is p (i.e. each vector register is an array of p 32-bit words), we could
work on p

4
different data matrices inputs at the same time. The time taken for ciphering

p

4
data matrices on the scalar processor is then given by

Time p

4

= 508 + (3042− 508)×
p

4
= 508 + 633.5p clock-cycles (3.4)

where we have factorized the key schedule. The gain on four data matrices input can be
calculated as

GAIN p

4

=
p

4
×(16×11+68×10+26×10+143×9)−(4×11+1×10+10×10+12×9)

508+633.5p
= 600.75p−262

508+633.5p
(3.5)

Hence from equation 3.5, we can derive the following gain table as a function of the depth
of the vector registers.

3.4 Case Study: Elliptic Curve Cryptography

The second case study is based on the critical modular multiplication used for Public Key
Cryptography There are two main schemes for implementing Public Key Cryptography:
one based on integer modular multiplications as used in RSA and the other based on
polynomial arithmetics in finite fields over a given elliptic curve as used in ECC. The
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Depth of vector register p GAIN

8 81%
16 87%
32 91%

Table 3.3: Gain in performance for varying vector register depths

main reason for choosing ECC against RSA is that for the past decade, Elliptic Curve
Cryptography has been promoted as an attractive alternative to RSA as a scheme for
Public Key Cryptography especially for the embedded world. RSA is based on modular
exponentiation algorithms involving large values of 512-2048 bits (or even higher if need
be). ECC relies on the scalar multiplications of points found on an elliptic curve such
that the size of the data (of the order of 200 bits) involved is much smaller than those
used in RSA. For example the level of security attained with a 1024-bit RSA is the same
as that obtained doing an ECC on 163 bits. This means that the computation time for
ECC-based PKC is very small when compared to that for RSA-based PKC as both use
the same modular arithmetic algorithms.

We also have to decide on which kind of ECC implementation to choose. Elliptic
Curves can be implemented on different fields, with different representations and different
bases. In the next sections, we give a brief overview of the theory behind ECC (more
details can be gathered from [Blake et al. (1999)]) before giving the motivations behind
the choices made to code our test program.

3.4.1 A brief overview of ECC theory

In Elliptic Curve Cryptography, calculations are done on an elliptic curve over a field K

given by the general equation

y2 + a0xy + a1y = x3 + a2x
2 + a3x + a4 with ai ∈ K (3.6)

The field in question can either be a prime finite field or a binary finite field.

Prime Finite Field: The elliptic curve is defined over Fp where p is prime. Operations
are done mod p over the curve defined by

y2 = x3 + ax + b with {a, b} ∈ Fp for p > 3 (3.7)

Binary Finite Field: The elliptic curve is defined over F2m where m is a positive integer.
The curve’s equation is given by

y2 + xy = x3 + ax2 + b with b 6= 0 and (a, b) ∈ F2m (3.8)

As F2m is isomorphic to F2[x]/f(x), all calculations in a binary field representation are
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done modulo the irreducible polynomial f(x) of degree m and with coefficients in F2.
Each point on the binary field elliptic curve can have two possible representations:

• Polynomial Basis Representation where the coordinates of each point are repre-
sented over {xm−1, xm−2, . . . , x2, x, 1}

• Normal Basis Representation where the coordinates of each point are represented
over {θ2m−1

, θ2m−2

, . . . , θ22

, θ2, θ} where θ is an element of F2m

Choosing the binary field representation

In our study, we focus on elliptic curves in binary finite fields. We use a polynomial
representation which is simpler to map to machine words. Nevertheless, working with ECC
in F2m is the slowest case when working on General Purpose Processors. As detailed in
the following sections, the basic operations involved are polynomial multiplications which
are rare operations on processors like the MIPS as opposed to integer multiplications used
for ECC in Fp. Thus

1. By looking at binary fields, we deal with the slowest case, at least on General
Purpose Processors. In a more general sense, working on F2m is slower than working
in Fp for an equivalent level of security.

2. Once we have defined schemes, architectures and instructions to optimize ECC in
F2m , it is easy to transpose these principles to work on Fp since in the latter we only
need to propagate the carry for multiplication operations.

3. Once we are working in Fp, we also have schemes to work on RSA-based cryptog-
raphy as the same basic mathematical principles apply except that we would be
working on larger sizes of data.

The above transpositions are made possible because for the basic modular multiplication,
we use Montgomery’s algorithm whose structure is exactly the same whether we are doing
a RSA on 1024 bits or an ECC in F2m or an ECC in Fp.

3.4.2 Scalar multiplication over F2m

We focus on fields of characteristic 2 for which the general equation for an elliptic curve is
given by (3.8). Each coordinate of a point on the curve defined by (3.8) is represented by
a polynomial of degree m−1: the corresponding m binary coefficients hence constitute an
m-bit word array. All operations are performed modulo an irreducible polynomial f(x).
For further details please refer to [Blake et al. (1999)].

When doing ECC, the critical operation is the multiplication between a scalar and
a point on the curve. For example in an ECDSA scheme [ANSI (1997)], the signature
is generated using the x coordinate of the point resulting from such a scalar multiplica-
tion operation. The easiest way of doing this scalar multiplication operation is to do the
straight forward double and add algorithm.
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Input : Point P, scalar k = (km−1km−2 . . . k0)2

Output : Q = kP in F2m

Suppose km−1 = 1

Q← P

for i = m− 2 downto 0 do

Q← 2Q

if (ki = 1) then Q← Q + P

endfor

return Q

Figure 3.3: Double and Add algorithm

From Figure 3.3, if we suppose that on average k can contain an evenly distributed
number of zeros and ones, we can deduce that one scalar multiplication over F2m requires
(m−1) point doublings and m−1

2
point additions. There are certainly other ways of doing

such multiplications, especially if we want to have an algorithm which is resistant to power
attacks. An example of a secure implementation is given in [Joye & Tymen (2001)] where
Joye and Tymen propose methods to “randomize” P to hide information leakage due to
the signature of the base point P . In addition to the latter method one could ensure
constant timing by implementing a Double and Add always by having a fake addition for
the case when ki = 0. However, the point here is only to show that the basic operations
involved are the point addition and the point doubling and our aim is to accelerate those
two critical operations. As we will see in the next sections, the way of representing these
points will directly influence the performances of the point addition and doubling.

Moreover, for representing a point on an Elliptic Curve, one can either use its affine
coordinates in (x, y) or one can use its projective coordinates in (X,Y, Z). In the following
sections, we investigate these two alternatives in terms of number of basic operations
involved before actually looking closely at those basic operations and evaluate their costs
in terms of performance.

Point addition and doubling in F2m using affine coordinates

Operations in F2m are performed modulo an irreducible f(x) of degree m. Since we use
a polynomial representation, adding two points P (Px, Py) and Q(Qx, Qy) from the curve
defined by equation (3.8) yields a point R whose affine coordinates Rx and Ry are given
by the following equations:

Rx = λ2 + λ + Px + Qx + a

Ry = λ(Px + Rx) + Rx + Py (3.9)

with λ =
Py + Qy

Px + Qx

Note that with such a representation additions mod f(x) are simple bitwise XOR opera-
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tions. Moreover, we see that this point addition operation requires 2 modular multiplica-
tions, 1 modular square, 9 modular additions and 1 inversion. Likewise the coordinates
of R obtained by doubling a point P (Px, Py) are calculated using the following equations:

Rx = λ2 + λ + a

Ry = (λ + 1)Rx + P 2
x (3.10)

with λ = Px +
Py

Px

In this case we see that we need 2 modular multiplications, 2 modular squares, 5 modular
additions and 1 modular inverse.

Point addition and doubling in F2m using projective coordinates

Instead of representing a point P with its x and y coordinates Px and Py, P is represented
using three coordinates PX , PY and PZ as explained in [Blake et al. (1999)] or [Lopez &
Dahab (1999)].

Notations: From now on, we will use small caps x and y to denote the x and y coor-
dinates for an affine representation and large caps X, Y and Z to denote the x, y and z
coordinates for a projective representation.

In [Hankerson et al. (2000)], the authors provide a comprehensive study of the per-
formance figures associated with several possible projective coordinates. The one which
seems to be the most efficient is the one using the Jacobian representation. The Jacobian
projective coordinates do offer very interesting performance figures. In such a represen-
tation, we have the following conversion equations Px = PX

P 2

Z

and Py = PY

P 3

Z

. Using these

conversion equations, the general binary elliptic curve equation 3.8 becomes:

Y 2 + XY Z+ = X3 + aX2Z2 + bZ6 (3.11)

Putting those same conversion equations into equations (3.9) and (3.10), we can show
that using the Jacobian projective coordinates a point addition can be done into 15 mul-
tiplications, 3 squares and 8 additions as illustrated in Figure (3.4).

Moreover, a point doubling using Jacobian coordinates would require 5 multiplications,
5 squares and 4 additions as seen in Figure (3.5).

To sum up, we gather the following Table 3.4 regarding the different the number of
operations needed for the a point addition and a point doubling. These operations are all
operations done on data of m-bits modulo an irreducible polynomial f(x).

The point to remember is that calculating a modular inverse is extremely expensive: an
inverse can be 35-40 times longer than a modular multiplication for example. This is why
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Calculate: R(RX , RY , RZ) = P (PX , PY , PZ) + Q(QX , QY , QZ)

λ4 = P 2
Z

λ5 = Q2
Z

λ0 = PXQ2
Z + QXP 2

Z

λ1 = PY Q3
Z + QY P 3

Z

λ2 = QZλ0

RZ = PZλ2

λ3 = λ1 + RZ

RX = λ1λ3 + aRZ + λ3
0

RY = RXλ3 + λ2
3[λ1PX + λ0PY ]

Figure 3.4: Point addition in Jacobian coordinates

Calculate: R(RX , RY , RZ) = 2P (PX , PY , PZ)

λ0 = P 2
Z

λ1 = P 2
X

λ2 = λ2
1

RZ = PXλ0

RX = λ2 + bλ4
0

RY = RZλ2 + RX [λ1 + PY PZ + RZ ]

Figure 3.5: Point doubling in Jacobian coordinates

projective coordinates are usually preferred since the point additions and doublings do not
require any modular inverse operation. In our study, we can hence focus on the modular
multiplication operation (a modular square can be viewed as a modular multiplication
where both operands are the same) for our analysis. For modular additions these are
simple XOR operations.

Modular multiplications in F2m

Modular multiplications have been thoroughly studied and optimized methods like those
proposed in [Koç & Acar (1998)] based on Montgomery’s method are quite rapid algo-
rithms, especially since we are concerned with rather short words of only a few hundred
bits. The same practical methods can be applied to modular squares. As already men-
tioned, the structure of this algorithm, as it will be depicted for modular multiplication in
F2m , also applies for modular multiplications in Fp and by extension to the RSA algorithm.

A modular multiplication process can be divided into two phases, namely the multi-
plication phase followed by the reduction phase. The scheme proposed in Montgomery’s
method [Montgomery (1985)] basically accelerates the reduction phase. However, in order
to improve performance and reduce storage space, the multiplication and reduction phases
can be interleaved into what we will refer to as Montgomery’s Algorithm. As explained
in [Koç & Acar (1998)], Montgomery’s algorithm can be adapted to work on any data
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Modular Operation Addition Inverse Multiplication Square

Affine Point Addition 8 1 2 1
Affine Point Doubling 6 1 2 2
Projective Point Addition 8 0 15 3
Projective Point Doubling 4 0 5 5

Table 3.4: Number of operations for ECC point additions and doublings

word size, in particular on data which is decomposed into 32-bit words as we expect them
to be on a typical MIPS-I architecture. In the latter paper, the authors show that if we
want to multiply two polynomials a(x) and b(x) modulo an irreducible polynomial f(x),
we can use Montgomery’s algorithm bearing in mind that the latter will give the result
c(x) such that c(x) = a(x) · b(x) · r(x)−1mod f(x). Given that we are working in the field
F2m , the polynomials involved in this algorithm are of length m, the authors in [Koç &
Acar (1998)] show that r(x) can be chosen such that:

r(x) = xk where k = 32M and M =
⌈m

32

⌉

(3.12)

If we suppose that the multiplicand a(x) can be decomposed into a linear combination of
32-bit polynomials denoted by Ai(x) such that

a(x) = AM−1(x).x32(M−1) + AM−2(x).x32(M−2) + . . . + A1(x).x32 + A0(x) (3.13)

we then have the following algorithm for the implementation of Montgomery’s Modular
Multiplication on our 32-bit MIPS-I architecture:

Input : a(x), b(x), f(x),M and N0(x)

Output : c(x) = a(x).b(x).x−32M mod f(x)

c(x)← 0

for j = 0 to M − 1 do

c(x)← c(x) + Aj(x) · b(x)

M(x)← C0(x) ·N0(x) mod x32

c(x)← c(x) + M(x) · f(x)

c(x)← c(x)/x32

endfor

return c(x)

Figure 3.6: Montgomery Modular Multiplication on a 32-bit architecture

where C0(x) is the least significant 32-bit word of the polynomial c(x) and N0(x) is the
‘Montgomery’s constant’, which is pre-calculated, such that N0(x)·F0(x) mod x32 = 1. As
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we can see, N0(x) depends only on the modulus and can be pre-calculated at the beginning
of the Double&Add algorithm. Moreover, if we work with projective coordinates, we get
rid of the ‘inversion’ problem since we don’t need any (except if we need to change
the points’ representation at the beginning of the Double&Add algorithm from affine to
projective, but then only one inversion is needed). Hence the operation that really impacts
the performance of the points’ multiplication and doubling (and hence the Double&Add
algorithm) is the modular multiplication as detailed in Figure 3.6. In the next sections,
we will study the performance of the latter scheme and identify the bottlenecks and/or
the critical operations, hereby allowing us to suggest ways of improving the modular
multiplication algorithm.

3.4.3 Performance study

In this section, we study the implementation of a modular multiplication in F2m based on
Montgomery’s algorithm as given in Figure 3.6. The target processor runs a MIPS-I ISA
(Instruction Set Architecture). If we suppose that each polynomial on which we work can
be decomposed into arrays of 32-bit words such that:

a(x) = AM−1(x).x32(M−1) + AM−2(x).x32(M−2) + . . . + A1(x).x32 + A0(x)

b(x) = BM−1(x).x32(M−1) + BM−2(x).x32(M−2) + . . . + B1(x).x32 + B0(x) (3.14)

f(x) = FM−1(x).x32(M−1) + FM−2(x).x32(M−2) + . . . + F1(x).x32 + F0(x)

c(x) = CM−1(x).x32(M−1) + CM−2(x).x32(M−2) + . . . + C1(x).x32 + C0(x)

as a result of which each polynomial can be represented by arrays of 32-bit words:

a = [AM−1, AM−2, . . . , A1, A0]

b = [BM−1, BM−2, . . . , B1, B0]

f = [FM−1, FM−2, . . . , F1, F0] (3.15)

c = [CM−1, CM−2, . . . , C1, C0]

In our implementation, c will be temporarily stored on M + 1 words. The algorithm
implemented has the following structure:

The “pseudo instruction” PolyMultAdd performs the polynomial multiplication (i.e.
a multiplication where from one bit to another the carry is not propagated and where
the addition is replaced by an XOR) between the two registers, putting the most sig-
nificant 32 bits of the result into the scalar register t7 and XORing the least significant
32 bits of the result with the contents of t6 and writing the result into t6. The division
by x32 (i.e. here it is a shift by 32 bits) from Figure 3.6 is taken into account in line 05
of Figure 3.7. Implementing the PolyMultAdd routine on such a processor (where we
only have arithmetic multiplications, i.e. with carry propagations) is not so straight for-
ward. The latter alone takes about 412 clock-cycles when implemented with the MIPS-I
ISA. As a result of that, the entire modular multiplication takes about 22300 clock-cycles.
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01. for i = 0 to M − 1 do

02. (t7, t6)← (0, 0)
03. for j = 0 to M − 1 do

04. (t7, t6)← PolyMultAdd(Ai, Bj)
05. Cj ← Cj+1 ⊕ t6
06. t6← t7
07. endfor

08. CM ← t7
09. (t7, t6)← (0, 0)
10. (t7, t6)← PolyMultAdd(N0, C0)
11. t1← t6
12. (t7, t6)← (0, 0)
13. for j = 0 to M − 1 do

14. (t7, t6)← PolyMultAdd(t1, Fj)
15. Cj ← Cj ⊕ t6
16. t6← t7
17. endfor

18. CM ← CM ⊕ t7
19. endfor

20. return c = [CM , CM−1, . . . , C2, C1]

Figure 3.7: Modular Multiplication Implementation

In this test program, we used test values from the field F2191 with a modulus f(x) =
x191 + x9 + 1. Hence each of the polynomials were represented by an array of 6 32-bit
words. As a result, for some of these values, we could store them directly into registers,
thus sparing additional memory accesses.

There are several ways of further improving the implementation of modular multipli-
cations over binary fields, some of which are explained in [Blake et al. (1999)]. Most of
those techniques however make a lot of assumptions about the modulus used (like know-
ing the exact locations of the non-zero elements of the irreducible polynomial). But the
algorithm as depicted in Figure 3.7 works for any f(x). Moreover it can also be easily
transposed to the case where we work in Fp, and by extension for the RSA algorithm, as
we will briefly see in the next paragraph.

Modular multiplication in Fp

The same Modular Multiplication implementation in Fp takes far fewer clock-cycles be-
cause here we are concerned with arithmetic multiplications: we can use the MULTU op-
eration between two registers, an instruction which is already available on MIPS-I archi-
tectures. The difficulty in this case comes from the fact the MIPS-I architecture does not
handle the carry bit. Unfortunately, this has to be emulated every time an addition has
to be executed. The PolyMultAdd routine at lines 04, 10 and 14 of Figure 3.7 have
to be replaced by an ArithMultAdd where the XORs are replaced by ADD operations
and the addition of the carries on registers t6 and t7 with the addition of a third register
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t9 to store an eventual carry bit. Manipulating a carry bit costs 10 clock-cycles per ad-
dition. As a result of which, the ArithMultAdd takes 40 clock-cycles. Hence the entire
Modular Multiplication in Fp takes about 3200 clock-cycles (which is much less than the
22K clock-cycles for the same operation in F2191 for the same data lengths).

3.4.4 Improvement Study

Like for the AES case study, we look at vector instructions that can help to enhance the
execution of this ‘interleaved’ Montgomery Modular Multiplication. As a result of which,
the code for Modular Multiplication in F2191 would be:

.global MultBinPoly

.ent MultBinPoly

MultBinPoly:

lw $24, 16($29) # loading value of M (size of data)

lw $2, 20($29) # loading the value of N0

vload $v0, $5, 6 # v0 <= b(x)

vload $v1, $6, 6 # v1 <= f(x)

vsmove $v3, $0, 8 # v3 cleared; (v3 == c(x))

addiu $15, $0, 0 # ’j’ init. for main loop

sll $24, $24, 2 # $24 <= 4M

LoopBin:

add $8, $15, $4 # $8 <= j-th word of a(x)

lw $8, 0($8) # loading j-th word of a(x)

vspmult $v5, $v0, $8 # v5 <= a[j] * v0; (v0 == b(x))

vxor $v3, $v5, $v3 # v3 <= v5 + v3

vextract $9, $v3, 1 # $9 <= C_0

vsmove $v2, $9, 1 # v2[0] <= $9 ($9 == C_0)

vspmult $v4, $v2, $2 # v4 <= N0 * v2

vextract $9, $v4, 1 # $9 <= M(x)

vspmult $v5, $v1, $9 # v5 <= v4[0] * v1; (v1 == f(x))

vxor $v3, $v3, $v5 # v3 <= v3 + v5

vwshr $v3, $v3, 1 # v3 <= v3 shifted right by 1 word

addi $15, $15, 4 # Increase index by 4 bytes

bne $15, $24, LoopBin

nop

vstore $7, $v3, 5 # writes result in memory

j $31 # return from sub-routine

nop

.end MultBinPoly

For the time being, we will not look at how these vector instructions can be pipelined and
cascaded for optimum performance. The above code is also valid for Modular Multiplica-
tions in Fp if the VSPMULT instruction is replaced by VSAMULT and the VXOR operation by
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VADDU. And by extension, once we are in Fp, we can generalize the code for any algorithm
based on arithmetic modular operations like in RSA, given that instead of working on 6
words of the vector registers, we would involve 32 of them for a RSA-1024.

Performance: Even to forecast the best case scenario, it would not be a realistic assump-
tion to suppose that the arithmetic vector instructions used in this chapter are capable
taking one clock cycle each. This is because most of these instructions do not strictly work
on independent sets of data within each vector. This issue is further discussed in Chapter
4 where we not only figure out how those instructions function but also the number of
clock-cycles they effectively take and whether they can be pipelined. But in case each
instruction can effectively be issued every clock cycle, the routine would take 90 clock
cycles.

3.5 Summary

In this section, we have browsed through the basic requirements for hardware accelera-
tors for embedded cryptography, details of which had been given in Chapter 2. We then
explained why we chose to have a vector approach. We then illustrated how algorithms
like AES and modular multiplications as used in RSA and ECC could be implemented by
having a vector representation of the data. We defined vector instructions and we eval-
uated the kind of performance gains that could be expected for each of these algorithms
compared to a purely scalar approach on a MIPS-I architecture. The point of comparing
the vector approach with the scalar one is to compare two approaches which inherently
offer the same degree of software flexibility in terms of functional and secure implemen-
tations. For an AES-128 encryption, the performance would drop from 3042 clock-cycles
to 912 clock-cycles. For modular multiplication in GF (2m) on 192 bits would drop from
22300 clock-cycles on the MIPS-I to 90 clock-cycles with a vector co-processor.
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Chapter 4

VeMICry Architecture & Functional
Simulation

The ‘long’ data involved in calculations of algorithms like AES or of the modular mul-
tiplications for RSA and ECC can be decomposed into vectors of smaller data on which
calculations can be done in parallel. In order to have such an approach while satisfying
the requirements of scalability, flexibility and high performance, a hardware architecture
based on vector processing is favoured as explained in Section 3.2. In order to also satisfy
high performance for scalar code, a scalar General Purpose Processor is also used. Hence
the VeMICry (Vector MIPS for Cryptography) is defined: a simple MIPS-like scalar
processor and a general purpose vector co-processor that can execute the cryptographic
vector instructions and which has the attractive feature of being scalable.

In this chapter, we define the architecture of the vector part of VeMICry (the scalar
part being a MIPS-like architecture), notably how the vector instructions defined in Ap-
pendix A can be pipelined. We then present the functional simulation model built for the
VeMICry. For each of the simulated cryptographic algorithms, we perform performance
studies on the scalar MIPS-I architecture to which we compare the performances obtained
on this first model of the VeMICry. Performance figures are given in terms of instructions
cycles1. We also show how a quantitative analysis can be performed to have a first order
approximation of the impact on performance implications of varying the parameters of our
design. With this functional simulator we demonstrate that the vector codes defined for
AES and modular multiplication do work and we have a first idea about the performances
to be expected from such a scalable design.

4.1 The VeMICry Architecture

4.1.1 Architecture specification

The VeMICry architecture is composed of a scalar MIPS-like General Purpose Processor
and of a vector co-processor. The core of the vector co-processor depends on how the
register files are organized and how the processing units interface with these vector reg-

1i.e. the number of instructions executed
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isters. The architecture of the register file, as shown in Figure 4.1, is determined by the
following factors:

• m: The size of each element of the vector elements. Currently m = 32.

• q: The number of such vector registers.

• p: The number of elements in each vector register. This will be called the depth of
each vector.

• r: The number of lanes into which the vector registers are organized. The concept
of “stride” is explained in [Flynn (1995)]. It is associated to the number of VPUs
(Vector Processing Units) available to the VeMICry. We have as many lanes as
there are VPUs. Ideally we would have r = p allowing us to work on the p elements
in parallel: the jth VPU for example would be ‘associated’ with a register file made
of all the jth elements of all the vector registers. However, in some cases, size and
power constraints mean that we cannot have p VPUs. We leave r as a parameter for
our analysis as to what would be the best performance to size trade-off. As a result,
the jth VPU will be associated not only to the jth elements across the register file
but also j + rth, j + 2rth. . . as illustrated in Figure 4.1.

[0] [1] [r-1] [r] [r+1] [2r-1] [p-r] [p-r+1] [p-1]
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..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

VPU0 VPU1 VPUr-1

Figure 4.1: Vector Register File

Note that in this definition, each operation is applied to all p elements of each vector reg-
ister. In the initial definition of the vector co-processor, we thought about the possibility
of defining another parameter l which would be the number of elements onto which each
instruction is applied (with l ≤ p). But in the current implementation of the VeMICry
such functionality was not mandatory and given the complexity of the corresponding con-
trol unit, we decided to leave it as such for the time being.

For the vector processor memory interface we chose a simple scheme. We suppose that
the memory is a one-cycle access fast memory (RAM) that could, on a final chip, be cache
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memory. Eventually, we could have a software managed memory bank per lane. Within
each ‘bank’ we have 4 parallel concurrently accessible byte arrays of say 1 kilobytes each.
Such a structure allows each VPU to smartly fetch four bytes in parallel for the VBYTELD

instruction.

4.1.2 Vector instructions set architecture

Among the vector instructions defined in Appendix A, we can distinguish among three
classes:

Definition 4.1 (GIVI) A Genuinely Independent Vector Instruction is one where
the transformation applied to every element of the operand vectors is independent from
the application of that same transformation to neighbouring elements.

Definition 4.2 (PIVI) A Partially Independent Vector Instruction is one where
the transformation applied to every element of the operand vectors depends partially on
the result of the same operation applied to one of its neighbors.

Definition 4.3 (MAVI) A Memory Accessing Vector Instruction is a vector register-
memory instruction where a memory access is required for the application of the required
transformation on every element of the operand vectors.

The instruction decoding is handled by the scalar MIPS as part of its conventional
five stage pipeline.

• IF: Instruction Fetch.

• ID: Instruction Decode.

• EX: (Scalar) Execution Stage.

• MEM: Memory access stage.

• WB: Write Back stage.

Upon the detection of a vector instruction, each VPU enters into its own four stage
pipeline defined as follows:

• Data Fetch (VDF) stage where each VPU fetches the two (depending on the
instruction) elements from the target vector registers. If a scalar register is involved,
the value is fetched from the latter scalar register and written back into a register
of the VPU called SBI (Scalar Buffer Interface).

• Execute-Multiply (VEXM) stage where the VPU performs the corresponding
multiplication or addition calculation for a PIVI. For a GIVI or a MAVI, nothing is
done.
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• Execute-Carry (VEXC) stage where the ‘carry’ selection is done for the PIVIs
and the latter’s calculation is completed. For a GIVI or a MAVI, the corresponding
calculation/manipulation is done onto the arguments fetched in stage VDF.

• Write Back (VWB) stage where the result from the VPU is written back to the
corresponding element of the destination vector register.

Let’s study how each of the classes of vector instructions can be decomposed into each of
the above vector pipeline stages.

GIVI execution

IF ID EXE MEM WB

VDF3 VEXM3 VEXC3 VWB3

VDF1 VEXM1 VEXC1 VWB1

VDF2 VEXM2 VEXC2 VWB2

VDFp/r VEXMp/r VEXCp/r VWBp/r

Scalar Pipeline

E
ac

h 
V

ec
to

r 
L

an
e 

P
ip

el
in

e

On element 1 of vector registers

On element 2 of vector registers

On element 3 of vector registers

On element p/r of vector registers

. .
 . 

. .
 

. . 
. . 

. 

Figure 4.2: Timing relationship between scalar & vector executions

Let’s consider the general case where p is ‘too’ large and that we only have r VPUs
where r ≤ p (could be specially true for embedded processors). This means each VPU
will have to perform

⌈

p

r

⌉

times the same operation in order to apply the required transfor-
mation on all p elements of the targeted vector registers as shown in Figure 4.21. Hence
the next vector instruction will only be issued

⌈

p

r

⌉

cycles later.

In Figure 4.2, at each ith stage (comprised of VDFi, VEXMi, VEXCi and VWBi), within
each vector register, elements ranging between ir and (i + 1)r − 1 are processed. Note
that the i + 1st stage can be started at the very next clock cycle because we assume we
have two read ports and one write port per VPU or lane (in our simple case each lane
has only one VPU). If we refer back to the instructions defined in Appendix A, we can
build the following table (Note we don’t show the VEXM stage because nothing is done
during that stage for a GIVI).

1In the Figure 4.2, V DFi means that it is the first element of the vector register that is found in the
VDF stage. The same nomenclature applies to the other vector pipeline stages illustrated in this figure.
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4.1 The VeMICry Architecture

PIVI execution

In a Partially Independent Vector Instruction, the calculation on every element of the
vector instruction depends on the calculation of the neighboring elements: the functions
concerned by this category are VADDU, VSPMULT, VSAMULT and VMOVE. For optimal schedul-
ing of the PIVI instructions we will assume that each VPU has an internal ‘temporary’
32-bit register.

We assume that each VPU has a 32-bit Carry Select Adder (CSA): for each addition op-
eration, the addition is performed for both cases where ‘incoming’ carry is 0 or 1 and the
‘correct’ output is determined once the correct carry is known as illustrated in Figure 4.3.
The bottleneck here would be the propagation of the carry during the VEXC stage. The
larger r is, the longer the critical path will be thus most probably reducing the maximum
clock frequency.

VADDU V2, V1, V0: The VADDU instruction performs the addition of two long precision
numbers made up of the l-least significant elements of V0 and V1.

• VDF stage: Fetching the r elements of V1, V0.

• VEXM stage: Addition of the corresponding ith elements using the CSA. The CSA
performs two addition operations in parallel: one for an incoming 0 carry and one
for an incoming 1 carry.

• VEXC stage: The correct ith result is chosen as a function of the carry from the
i − 1st addition. For the least significant word (index 0 for example) the carry is
taken from the CAR register.

• VWB stage: The result is written to V2.

Following instructions can be issued
⌈

p

r

⌉

cycles later.

VSPMULT V2, V1, R0: The VSPMULT instruction multiplies R0 to V1 where the scalar
register is considered as a polynomial of degree 31 (max) in a Galois Field of character-
istic 2 and the vector register as a polynomial whose coefficients are represented by the
different elements of the vector (the element 0 being the least significant terms. The basic
operations involved are

• Multiplication of each element j of V1 by R0, giving in each case a 64-bit value (so
holding on two words which we will call from now on the ‘Lower’ (LOj) and the
‘Higher’(HIj) words for respectively the 32 least significant bits and the 32 most
significant bits of the result.

• For each element j, XORing the Lower word of the result with the Higher word of
the from position j − 1. The result is written as the jth element of the destination
vector register.

Actually this is the simplest of the PIVIs to be executed in the sense that there is no
carry propagation. We ‘only’ have to propagate once the Higher words to the successive
elements of the vector register. Hence we have the following schedule for each stage i of
the VPU’s pipeline:
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Figure 4.3: Execution of VADDU instruction

• VDF stage: Fetching the r elements of V1 and R0 (which is written to SBI).

• VEXM stage: Polynomially multiplying each element i of the r elements of V1 with
SBI producing for each i a LOi and a HIi.

• VEXC stage: Each element LOi is XORed with HIi−1 and (LO0) with CAR.

• VWB stage: For each i the result is written to V2. (HIr) is written to CAR.

Following instruction can be issued
⌈

p

r

⌉

clock-cycles later.

VSAMULT V2, V1, R0: The sequence of operations performed in this operation is more
or less similar to the previous one except that this time instead of working on polynomials
we execute arithmetic operations and the XOR operations are replaced by additions. We
hence have the following decomposition:

• VDF stage: Fetching the r elements of V1 and R0 (which is written to SBI).

• VEXM stage: Multiplying each element i of the r elements of V1 with SBI producing
for each i a LOi and a HIi.

• VEXC stage: Each element LOi is added to HIi−1 (and (LO0) with CAR) with the
CSA. The carry selection is then done.

• VWB stage: For each i the result is written to V2. (HIr) is written to CAR.

Following instruction can be issued
⌈

p

r

⌉

clock-cycles later.
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MAVI execution

Looking back at the Appendix A, we have three MAVI instructions: VBYTELD, VLOAD and
VSTORE. Each VPU would have its own software managed memory through which the
VPU performs accesses by bytes (with 4 bytes in parallel) for the VBYTELD instruction
and by 32-bit words for VLOAD and VSTORE. With such an arrangement the issue rate
would be

⌈

p

r

⌉

.

Chaining of vector instructions & hazard elimination

At this stage, the main type of hazard we are confronted with is the data hazard. Data
hazards occur when the instruction I has as an operand the result from the preceding
instruction (I − 1). With our vector operations, data hazards occur when an instruc-
tion takes only 1 or 2 cycles. For instructions having a larger number of iterations, the
latency incurred by the multi-iteration process diffuses the data dependency. Table 4.3
summarises the hazards. Note that whenever a pipeline stall occurs after the Instruction
Decode stage of instruction I, this stall is echoed to instruction (I +1) which suffers from
a similar stall after the Instruction Fetch stage.

I-1 I Description Pipeline
Stall

Bypass Required

GIVI GIVI Calculation done
at the VEXC
stage

No stall Data forwarded from the
VEXC stage of I − 1 to the
VEXC stage of I

GIVI PIVI The PIVI needs
the result at its
VEXM stage

After ID stage Data forwarded from the
VEXC stage of I − 1 to the
VEXM stage of I

PIVI GIVI The GIVI needs
the result at its
VEXC stage

No stall Data forwarded from the
VEXC stage of I − 1 to the
VEXC stage of I

PIVI PIVI The PIVI needs
result at the
VEXM stage

After ID stage Data forwarded from the
VEXC stage of I − 1 to the
VEXM stage of I

Table 4.3: Data Dependencies on the vector instructions
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4.2 The VeMICry Functional Simulator

This section discusses simulation tools, the functional simulation of VeMICry and results
obtained.

4.2.1 Simulation tools

The SimpleScalar simulation tool

SimpleScalar is an architecture simulation tool which allows software modelling of micro-
architectures for program performance analysis [Burger & Austin (2004)]. The point in
this section is not to give the details of this tool but to explain why we started to look at it
before dropping it in favour of ArchC. For further details about the tool itself, obtaining
the source and install files, please refer to [Burger & Austin (2004)] or to the website
www.simplescalar.com.

We used the (cycle-accurate) sim-outorder simulator to parameterize the PISA1 to
make it as close as possible to the MIPS modelled in MIPSsimTM (which is the cycle
accurate instruction set simulator from MIPS Technologies) used to test the scalar codes
for AES and for modular multiplication. SimpleScalar also provides a program compiler
and assembler which is a “modified” version of GNU’s GCC which can target the PISA’s
instruction set architecture. Using the latter tools, we compiled the scalar AES previously
simulated on MIPSsimTM. For the generated code, we had the following figures.

Scalar AES MIPSsimTM SimpleScalar

Code Size(bytes) 9232 18384
♯ of instruction executed 2308 2298
♯ of clock cycles 3264 4128

Table 4.4: Scalar AES-128

From Table 4.4 we see that AES running on PISA had a CPI (Cycles Per Instruction)
which was 1.5 times too high even when we removed the cache from the architecture.
The explanation for this major difference is that PISA has a pipeline where most instruc-
tions complete in 5 stages except for the LOAD/STORE instructions which each take 6
stages. The additional stage is the MEMORY SCHEDULER in between the DISPATCH and the
EXECUTION stages. A further analysis showed that the simulated AES code contains 593
LOAD instructions and 375 STORE instructions giving a total of 968 which, in terms of
order of magnitude, is close to the difference in number of clock-cycles in Table 4.4.

PISA is an implementation of the 32-bit MIPS-IV architecture but each instruction
is coded on 64 bits. This explains why SimpleScalar yielded a code whose size was twice
bigger than that of MIPSsimTM.

1PISA is an architecture implemented in SimpleScalar to simulate a MIPS-compatible Instruction
Set Architecture.
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We then tried to modify SimpleScalar to insert new scalar instructions (namely MOVZ

and MOVN) to first see how difficult it is to ‘hack’ this tool before modifying the archi-
tecture to add the vector architecture. We updated the pisa.def file. Prior to re-
compiling the tool we have to modify and compile the binary utilities (notably the files
./include/opcode/mips.h and ./opcodes/ss-opc.c). But we never managed to suc-
cessfully recompile the binary utilities not even to get the modified PISA architecture
running. Given this big impediment and the complexity of the PISA architecture which
generated large differences in simulation statistics with the commercial MIPSsimTM, we
decided to concentrate on another architecture toolset.

The ArchC simulator

The ArchC tool is an architecture description language which is developed by the Com-
puter Systems Laboratory of the Institute of Computing of the University of Campinas
(www.archc.org). With this tool we built an architectural instruction simulator which is
composed of:

• A language description illustrating the target architecture including the memory
hierarchy and the instruction set architecture.

• A simulator generator which uses the above description language to generate a
Makefile which is then used to build a SystemC model.

Apart from being neatly constructed and well documented [ArchC (2004)], ArchC is based
on a widely used commercial tool SystemC. It allows us to build quite simple architectures
but it is sufficient for our needs. Moreover, the simulation software builder is based on the
original GCC tool available at www.gnu.org. Hence it is easier to modify the instruction
set.

Several architectural descriptions can be downloaded from www.archc.org, two of
which are particularly interesting for us, being compatible with the 32-bit MIPS-I in-
struction set architecture:

• A functional simulator called MIPS-I which already implements most of the 32-bit
scalar MIPS instructions

• A Cycle-Accurate simulator called the R3000 which is a pipelined description of the
MIPS-I

4.2.2 Building the functional VeMICry

Installing the ArchC tools

Before installing the ArchC tool, the SystemC tool has to be installed from www.systemc.org.
Then the ArchC tool can be downloaded and installed as explained in the first chapter
of [ArchC (2004)]. The GNU compiler has to be installed as detailed in [ArchC (2003)],
especially the part where GCC has to be re-targeted for ArchC.
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Building the functional model

For the compiler, we modified the GCC tools to add our vector instructions inside the
assembler. Concerning the architecture simulator, the backbone of the VeMICry model
is composed of the definition files of the MIPS-I model which we have upgraded to add
our vector instructions. In the initial model:

• We have 8 vector registers.

• Each vector is composed of 8 elements of 32-bits each (depth of 8)

• We assume that we have also 8 functional units.

• We assume that each instruction is executed in 1 clock-cycle (only a functional
model).

The VeMICry is described in the following files:

• vemicry.ac: To define the hardware resources available, the hardware architecture
of our processor

• vemicry-isa.ac: To define the instruction decoding

• vemicry-isa.cpp: To define the instruction execution (and hence the architecture
of the VeMICry).

Once the architecture has been defined in these three files, the acsim tool is used to
generate the makefile Makefile.archc. The latter is run to build the SystemC simulator
model called vemicry.x. The generated simulator is called to run an input object file
which is in fact our test cryptographic software compiled with GCC. The simulator gener-
ates a series of basic statistics like the sequence of instructions executed (vemicry.dasm),
a trace of the Program Counter (vemicry.trace) and the occurrences of each instruction
along with the number of cycle-counts (vemicry.stats).

4.2.3 Simulating the AES

Scalar AES: The functional simulation of the scalar AES code revealed that the number
of instruction cycles to be 3283 for the encryption part and 519 cycles for the key schedule.
This more in line with the 3264 cycles of the MIPSsim tool than the figure previously
given by the SimpleScalar simulator.

Vectorised AES: The vector instructions are used to optimize the SHIFTROWS, MIXCOLUMNS,
ADDROUNDKEY and SUBBYTE operations. The KEY SCHEDULE is implemented as a separate
routine. We validated the results generated by our vector AES encryption code. Sim-
ulations show that encrypting 16 bytes (for a 128-bit AES) takes 160 instruction cycles
(see code in Appendix B.1). In addition to this the KEY SCHEDULE took 246 instruction
cycles. These figures represent a large gain in performance when compared to the same
algorithms run on the scalar MIPS. There is a significant gain in performance not only
because we are able to work on the all four columns of each AES block in parallel but
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also because we have dedicated instructions tailored for some of the AES basic operations.

More performance gain is achieved when we encrypt larger data files. We ran sim-
ulations where we encrypted 32 bytes with one same key, i.e. we ran the KEY SCHEDULE

once and the encryption codes was modified to work on 8 words of each vector register.
Encrypting 32 bytes took 182 instruction cycles. This illustrates a major advantage of
our architecture: depending on the depth of vector registers, we are able to encrypt large
data tables with little performance penalty: for example the masking (and un-masking) of
the data or the key can be done at little cost (with the VXOR operation) at the beginning
(and end) of the algorithm. Moreover, the look-up tables can be dynamically randomized
to thwart classical DPA-like attacks.

Another big advantage with our approach is that robust software countermeasures
(like those described in [Akkar & Giraud (2001)]) can be implemented to compensate for
any side-channel information leakage.

4.2.4 Modular multiplication in binary fields

We implemented Montgomery’s modular multiplication in F2m as described in Figure 4.4.

Input : a(x), b(x), f(x),M and N0(x)

Output : c(x) = a(x).b(x).x−32M mod f(x)

c(x)← 0

for j = 0 to M − 1 do

c(x)← c(x) + Aj(x) · b(x)

M(x)← C0(x) ·N0(x) mod x32

c(x)← c(x) + M(x) · f(x)

c(x)← c(x)/x32

endfor

return c(x)

Figure 4.4: Montgomery Modular Multiplication on a 32-bit architecture

Scalar Montgomery multiplication in GF (2m)

The scalar code corresponding to the modular Montgomery’s Multiplication in F2m was
compiled and simulated on the functional VeMICry architecture. Calculating the constant
N0(x) takes 984 instruction cycles and the multiplication takes 22331 instruction cycles.

Vector modular multiplication for ECC

Vectorised code for modular multiplication is given in Appendix B.2. The calculation of
N0 takes 22 instruction cycles and the main part of the modular multiplication takes 97
instruction cycles.
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Note that our test values are taken from the field GF (2191), which means that the
data values have a maximum length of 192 bits. If each vector register has 8 elements,
we could work on up to 256-bits ECC with the same code, which would be far from what
would be required for the next 20 years or so [Lenstra & Verheul (2001)].

In the above example, we perform a reduction by 32 bits each time. However, one
could envisage performing a reduction by 64 bits as this would mean that we would have
half as many loops. In the algorithm depicted in Figure 4.4, each word is on 64 bits,
which means that the calculated N0 is also on 64 bits and also the we shift by 64 bits at
the end. We only perform half the number of loops. While doing so, we found out that
the calculation of N0 took 72 instruction cycles and the modular multiplication itself took
84 instruction cycles. Given that the calculation of N0 depends only on the irreducible
polynomial (modulus), it can be calculated only once at the beginning of the signature
algorithm. To compare performance results, we can focus only on the multiplication
algorithm. Hence the performance gain when doing a 64-bit reduction is of the order of
13% compared to the same algorithm implemented with a reduction by 32 bits. Even if
we have only half as many loops, this advantage is largely counter-balanced by the fact
that we have a rigid 32-bit architecture (for the vector registers) and the ‘cost’ to emulate
a 64-bit one.

4.2.5 Modular multiplication for RSA

For RSA Rivest et al. (1978), we work with the modular multiplication in prime fields.
We work on much larger data fields which can range between 1024 to 2048 bits or even
4096 bits. This is where we will see the real impact of our design choices (like the depth
of each vector register) on the size and performance of the generated code size.

Modular Multiplication is implemented based on Montogomery’s method [Montgomery
(1985)]. Efficient implementations of the latter algorithm are given in [Çetin Koç et al.
(1996); Tenca & Çetin K. Koç (1999)]. We first implemented the CIOS (Coarsely Inte-
grated Operand Scanning) method as described in [Çetin Koç et al. (1996)]1. To calculate
R = A×B mod N we use Montgomery’s method which yields R′ = A×B× r−1 mod N
where N is long precision modulus of length l bits and r can be chosen such that r = 2l. If
each l-bit data Y can be decomposed into a linear combination of 32-bit integers denoted
by Yi such that (with M = ⌈ l

32
⌉):

Y = YM−1.2
32(M−1) + . . . + Y1.2

32 + Y0 (4.1)

We then have the algorithm in Figure 4.5 for the RSA’s modular multiplication. J0 is
pre-calculated as the multiplicative inverse of N0 modulo 232.

The algorithm is implemented in Assembly language using the vector instructions
given in Appendix A. The resulting code is given in Appendix B.3. On the functional
simulator, the code takes 4095 instruction cycles. In this first version of the VeMICry,
each vector register has 8 elements. Hence to run a 1024-bit modular multiplication we

1Note that this was the approach implemented for the ECC modular multiplication in the previous
section.
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Input : A,B,N,M and J0

Output : R′ = A.B.2−32M mod N

1. R′ ← 0

2. for j = 0 to M − 1 do

3. R′ ← R′ + Aj ·B

4. J ← R′

0
· J0 mod 232

5. R′ ← R′ + J ·N

6. R′ ← R′/232

7. endfor

8. return R′

Figure 4.5: Modular multiplication for RSA with the CIOS method

have to implement an inner loop working on chunks of 256 bits (each vector register being
composed of 8 words of 32 bits each) to calculate R′ ← R′ + Aj · B or R′ ← R′ + J · N
while taking care to propagate the carries1.

Improving the inner loop

We also investigated the FIOS (Finely Integrated Operand Scanning) approach [Çetin Koç
et al. (1996)]. The instruction cycle count is reduced to 3296. This 19.5% gain in perfor-
mance is achieved at the expense of one additional vector register. These results seem to
be in contradiction to those shown in [Çetin Koç et al. (1996)] where the CIOS method
outperforms the FIOS one by around 7.6%. This is because in the latter paper, even if
there are fewer loops in the FIOS method, the potential gain is counterbalanced by the
higher number of memory reads and writes. In our vector architecture, this increase in
memory accesses has less impact because of the architecture of our vector register file.

Input : A,B,N,M and r

Output : R′ = A.B.2−32M mod N

1. R′ ← 0

2. for j = 0 to M − 1 do

3. J ← (R′

0
+ B0 ·Aj) · r mod 232

4. R′ ← R′ + Aj ·B + J ·N

5. R′ ← R′/232

6. endfor

7. return R′

Figure 4.6: Modular Multiplication for RSA with FIOS method

1One important observation is that when calculating D = C + A×B where C and B are on k words
each and A is one word long, in the worst case, D will be on k + 1 words.
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4.3 Quantitative Analysis

In this section, we perform a quantitative analysis of our vector cryptographic processor
using the functional simulator built using ArchC. We look at the performance of the
modular multiplication between two long precision numbers, which is the building bloc of
the RSA encryption scheme. Other algorithms like AES or ECC can provide a very high
level of security with relatively short keys (usually between 160 and 256 bit-long) and only
RSA is the interesting situation to consider for large numbers (of the order of thousands of
bits) [Lenstra & Verheul (2001)]. The performance of the modular multiplication (based
on Montgomery’s algorithm as explained earlier) is studied for different configurations of
the VeMICry, i.e. by changing the depth p of each vector register and the number of lanes
r (in other words the number of processing units working in parallel).

4.3.1 Tools set-up & methodology

The simulator for the functional VeMICry has been built in such a way that the depth
of the vector registers can be redefined through the variable vrb p in the file vemicry.h.
The simulator is then recompiled as explained in Section 4.2.2.

Simulating the variation in the number of lanes is a little more tedious because we
have only built a ‘functional’ simulator. To emulate the lanes, we will suppose that for an
architecture of depth p having r lanes, each of the vector instructions will have a latency
of ⌈p

r
⌉ clock cycles. From there we can redefine the latency of the vector instructions to

simulate this behavior. ArchC allows us to define a minimum and maximum limit for
the number of clock cycles for each instruction using the object cycle range(min,max).
During simulation, the simulator feeds two accumulators where one is increased by the
min value and the other by the max value each time an instruction is executed. The
content of these two accumulators are then presented as the min and max number of
clock cycles taken by the program in the generated vemicry.stats file. Note that when,
for a given instruction, the cycle range is not defined, the min and max values are taken
to be equal to 1 for that instruction.

To quantify the number of cycles taken by the Mongo routine (given in Appendix B.3),
we execute the test program once with the routine to collect the number of cycles returned
in the file vemicry.stats before executing a second time without the routine and note
the number of cycles. The difference between the two numbers of cycles gives the one
corresponding to the Mongo routine.

The measurements are taken for some characteristic values of data length, register
depth and number of lanes. The collected data are displayed on graphs. The curves are
plotted using MATLABTM by fitting the best curve that passes through the measured
values: the best curve was determined using MATLABTM’s cubic spline interpolant. The
resulting spline is a cubic polynomial that passes through all the measured points and
provides a continuous and smooth function. Note that our multiplication routine supports
any key length.
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4.3.2 Varying key size

We first varied the size of the key length used and we measured the number of cycles taken
to execute a modular multiplication (This also allowed us to verify that the implemented
vector code can work for different key sizes). We performed measurements for key sizes
of 512, 1024, 2048 and 4096 bits. In theory we expect the number of clock cycles to be
multiplied by 4 every time we double the size of the key. This is because, if we refer back
to the algorithm described in Figure 4.6, we not only double the size of the outer loop
starting at line 2 but we also double the size of the inner loop required to calculate line
4, hence the factor of 2× 2 = 4.
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Figure 4.7: Number of cycles versus key size (Vector Depth= 32)

In Figure 4.7, the red curve represents what is expected and the blue one represents what
is actually implemented. We can see that the performance penalty decreases as the size
of the key increases.

4.3.3 Changing depth of vector registers

We repeated the above experiment but this time for different values of the depth p. In
our functional model the latter can be modified by changing the variable vrb p before
recompiling the sources and generating the simulator. The assembly code was adequately
modified.

The vectorization effect on varying key sizes

From the graphs shown in Figure 4.8 we can note that as p decreases, the measured vari-
ation in performance gets closer and closer to the theoretical result. Up to the case where
p = 1 where in fact the practical results match the theoretical ones. The case of p = 1 is
the limit where our vector architecture approaches a scalar one. This supports the fact
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4. VEMICRY ARCHITECTURE & FUNCTIONAL SIMULATION

that with the vector architecture, we can work on larger key sizes with a performance
penalty which is less than the expected one. This can be viewed as a relative gain in
efficiency. This behaviour could be explained by the fact we have a register-to-register
vector architecture where large data words are loaded at once, thus reducing the accesses
to external memory.
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Figure 4.8: Number of cycles versus key size for different vector depths p

Profiling the rate of performance change with increasing depth

The other interesting aspect with the collected figures is to see how, for a given key size,
the performance of modular multiplication routine is affected by changing p. Figure 4.9
shows that, for a given data size, the number of cycles is inversely proportional to the
depth p.

However we can also note that the rate at which the number of cycles changes de-
creases with p. To have a closer look at this phenomenon, we had a look at how the rate
of decrease in the number of cycles varies by doubling p. We obtain the curve in Figure
4.10 where we see that, for any data length, there is a characteristic drop in the rate of
gain in performance beyond the point where p = 16.
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Figure 4.9: Performance versus Vector Depth

The above observation is particularly interesting for calibrating our vector architecture
because then we can bear in mind that the gain in performance in going from p = 16 to
p = 32 (which is actually about 37%) would be lower than the gain in performance when
going from p = 8 to p = 16 (about 43%). This could be counter-balanced with other
consequences of doubling the size of the vector register (like die size, power consumption,
etc).

4.3.4 Varying the number of lanes

The other aspect we looked at was the effect of varying the number of lanes. Since we
are only working on a functional simulator, we did not actually implement different num-
ber of lanes (i.e. have different numbers of VPUs). Instead we simulate the variation of
the number of lanes r by varying the latency of the vector instructions as depicted in
Section 4.3.1. By latency, we actually refer to the instruction issue rate. From Figure
4.2, we can be made to wait

⌈

p

r

⌉

cycles before issuing the next instruction, where p is
the vector length or depth and r is the number of lanes. Only the VEXTRACT, MTVCR and
MFVCR instructions can be considered to take one cycle in any case as they only transfer
one word from one register to another.

The curves in Figure 4.11 show how the number of cycles for a 1024-bit modular mul-
tiplication varies when increasing the number of lanes. For each value of p, we increase
r from 1 to p, doubling the value of r every time. We then ‘interpolated’ among the
measured points to obtain the ‘trend’.

We see that the number of cycles taken is more or less inversely proportional to r and
that as r gets larger this proportionality factor decreases. This is illustrated in Figure
4.12: the gain in performance decreases more or less linearly.
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Figure 4.11: Performance versus number of lanes for different vector depths

4.4 Summary and Conclusions

The definition of the VeMICry architecture has allowed us to build a simulator using the
ArchC tool. First of all, we verified that the vector instructions defined in Appendix A
allowed us to execute algorithms like AES or RSA’s and ECC’s modular multiplications
in an efficient and performant way.

The vector implementation of the AES takes 246 cycles for key schedule and 160 in-
struction cycles for the encryption part. With our vector architecture we can encrypt
twice as much data in only 182 cycles. For the Montgomery’s Modular Multiplication
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Figure 4.12: Rate of change in performance versus log2r

over binary fields for Elliptic Curves’ Cryptography, the vector code for the main modu-
lar multiplication loop takes 95 instruction cycles. With the default model (p = r = 8)
we can work on up to 256-bit ECC with these same performance figures.

We also provided the vector implementation of a 1024-bit modular multiplication for
RSA based on Montgomery’s modular multiplication. The functional simulator shows that
a 1024-bit modular multiplication can take 4095 instruction cycles. We studied two ways
of improving our approach of the Montgomery’s method: the first one is by performing
64-bit reductions instead of 32 bits and on 192-bit values we had a performance gain of
13%. The second improvement was used in cases where we work on values larger than 256
bits. We anticipate the reduction factor and perform only one inner loop (FIOS method).
For a 1024-bit modular multiplication, we have a performance gain of 19.5% (3296 cycles)
for a 1024-bit modular multiplication. We performed a quantitative analysis for RSA’s
modular multiplication on our VeMICry architecture. We found out that:

1. As key size gets bigger, the rate of increase of cycles is smaller than the theoretical
values. Actually the rate of increase of instruction cycles decreases as the data sizes
get bigger.

2. The above difference between the theoretical and experimental behaviours gets more
important as p increases.

3. For a given length of data, increasing p decreases the number of instruction cycles
logarithmically. From p = 1 to p = 16 the rate of loss in performance decreases
more or less linearly but beyond p = 16 there seems to be a more important loss.

4. Increasing the number of lanes decreases the number of instruction cycles logarith-
mically. For a given p, the more lanes we have the smaller is the relative gain in
performance.
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During the functional simulations performed on the modular multiplications, we saw that
the codes are executed in constant time (measurements are made in terms of number of
instruction cycles), which is a sine-qua-non condition for an SPA1-proof implementation.
Moreover, having such a co-designed hardware-software approach is efficient for flexi-
ble secure implementations as software countermeasures can be implemented with little
performance loss as opposed to a fully hardware implementation where it is sometimes
impossible to have a fully secure implementation or where the cost of added security can
be prohibitive.

1Simple Power Analysis
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Chapter 5

Cycle Accurate Verilog Model of
VeMICry

This chapter describes the implementation of the synthesisable Verilog model of the
VeMICry architecture. This implementation of the VeMICry architecture follows the
description given in Chapter 4 and is composed of:

• a scalar RISC processor implementing an instruction set which is compatible to a
MIPS-I instruction set.

• a vector co-processor to execute RISC-like vector instructions that are tailored to
have secure software implementations of modular multiplication in fields of charac-
teristic 2.

This implementation does not integrate all of the vector instructions described in Ap-
pendix A: the aim here was to study how pipelining and architectural hazards would be
handled on a concrete implementation of the VeMICry. The other aim is to have an idea
of how area and estimated power varies as a function of the different parameters of the
vector co-processor.

5.1 Verilog Implementation of Scalar Processor

The scalar processor is a 5-stage pipelined 32-bit scalar MIPS-like processor. The memory
architecture is a Harvard, i.e. separate memories for instructions and data. In the current
implementation, the Instruction Memory and the Data Memory are implemented as simple
single cycle memories, which on a ‘real’ processor could be instruction and data caches
that can be accessed in one clock cycle. The memories are implemented as arrays of bytes
meaning that even if we have a 32-bit architecture, the memories are byte addressable.
Let us now look at the five stages of the pipeline:

• Instruction Fetch Stage (IF): The instructions are fetched from the Instruction
Memory. The address of the fetched instruction is stored in the Program Counter
(PC) register. The value of the PC is incremented by 4 and is stalled when there
is a load stall or a jump stall or a vector pipe stall. Likewise, in case of a “taken
branch” or a jump, the target address, which has been calculated in the EX stage,
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Figure 5.1: Architecture of the scalar MIPS
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5.1 Verilog Implementation of Scalar Processor

is written to PC. Note that this stage only accesses the Instruction Memory from
which 32-bit instruction words are fetched.

• Instruction Decode Stage (ID): The fetched instructions are decoded and the
“Jump” control signal is determined. The ID stage also decodes the vector in-
structions (see details in Section 5.2). Data fetch from the scalar register bank is
performed at this stage. To take into account data hazards (see Section 5.1.2), the
first level of register forwarding is implemented at this stage (from the outputs of
the MEM and the EX stages, as illustrated in Figure 5.1).

• Execute Stage (EX): The execute stage performs the arithmetic and logic oper-
ations of the processor. A second level of register forwarding is also implemented
in this stage on input registers RT and RS (from the outputs of the MEM and EX
stages). The control signals “Branch Taken” and “Jump Taken” are also set at this
stage and the corresponding new PC addresses are also determined at this stage
and passed to the IF stage at the following clock cycle. Note that in the current im-
plementation, the multiplier is directly implemented using Verilog’s multiplication
operator: the results are written to two dedicated registers namely HI and LO.

• Memory Access Stage(MEM): The memory stage sets signals for either reading
or writing data from or to the Data Memory. At this stage only the Data Memory
can be accessed. At any given clock cycle, only one instruction reaches that stage,
which means that we never have the case were there are conflicting accesses (for
example trying to read and write data during the same clock cycle) to the Data
Memory. At this stage, the scalar processor will also fetch data from the vector
co-processor if a VEXTRACT instruction is in the pipe.

• Register Write Back Stage (WB): At this stage, any result from the EX or the
MEM stage is written to the register bank. The register bank consists of 32 registers
of 32-bits each. The zero register is read only and always returns zero.

5.1.1 Scalar Instruction Set

The instruction set of the scalar processor is a subset of the 32-bit MIPS-I instruction
set [MIPS (1996)]. The instructions can be classified into three types: the R-Type, the
I-type and the J-Type as illustrated in Figure 5.2 with the following fields:

• OP : Operation code

• RS : Source register

• RT : Target register

• RD : Destination register

• SHMT : Immediate shift value

• FUNC : Function code for OP = 0

• IM16 : Immediate value (16 bits)

95



5. CYCLE ACCURATE VERILOG MODEL OF VEMICRY

• ADDR26 : Absolute address (26 bits)

• [x] : Size ‘x bits’ of field

OP[6] RS[5] RT[5] RD[5] SHMT[5] FUNC[5]

R-Type Scalar Instructions

OP[6] RS[5] RT[5] IM[16]

I-Type Scalar Instructions

OP[6] ADDR[26]

J-Type Scalar Instructions

Figure 5.2: Scalar Instructions’ Structures

The list of scalar instructions supported by the current design of the scalar processor is
given in the table below. Note that instructions that are “not implemented” are simply
decoded by the instruction decoder but it is a NOP that is actually executed. Note also
that in the current implementation, instructions like ADD, ADDI, SUB, MULT, SLT and SLTI

actually only work on unsigned numbers, even if by definition they are supposed to work
on signed numbers.

ADD Rd, Rs, Rt R-Type Rd ← Rs + Rt on signed values

ADDI Rt, Rs, im16 I-Type Rt ← Rs + im16 on signed values

ADDIU Rt, Rs, im16 I-Type Rt ← Rs + im16 on unsigned values

ADDU Rd, Rs, Rt R-Type Rd ← Rs + Rt on unsigned values

AND Rd, Rs, Rt R-Type Rd ← Rs & Rt (logical AND)

ANDI Rt, Rs, im16 I-Type Rt ← Rs & im16 (logical AND)

BEQ Rt, Rs, im16 I-Type if Rs = Rt branch, PC ← PC + (im16 << 2)

BGEZ Rs, im16 I-Type if Rs ≥ 0 branch, PC ← PC + (im16 << 2)
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BGEZAL Rs, im16 I-Type if Rs ≥ 0 branch, RA← PC, PC ← PC + (im16 << 2)

BGTZ Rs, im16 I-Type if Rs > 0 branch, PC ← PC + (im16 << 2)

BLEZ Rs, im16 I-Type if Rs ≤ 0 branch, PC ← PC + (im16 << 2)

BLTZ Rs, im16 I-Type if Rs < 0 branch, PC ← PC + (im16 << 2)

BLTZAL Rs, im16 I-Type if Rs < 0 branch, RA← PC, PC ← PC + (im16 << 2)

BNE Rt, Rs, im16 I-Type if Rs 6= Rt branch, PC ← PC + (im16 << 2)

BREAK R-Type not implemented

DIV Rd, Rs, Rt R-Type not implemented

DIVU Rd, Rs, Rt R-Type not implemented

J ADDR26 J-Type PC ← (ADDR26 << 2)

JAL ADDR26 J-Type RA← PC, PC ← (ADDR26 << 2)

JR Rs R-Type PC ← Rs, jump to address in Rs

JALR Rd, Rs R-Type not implemented

LB Rt, (im16)Rs I-Type Rt ← (024 ‖MEM [Rs + im16]) (8 bits)

LBU Rt, (im16)Rs I-Type Rt ← (024 ‖MEM [Rs + im16]) (8 bits)

LH Rt, (im16)Rs I-Type Rt ← (016 ‖MEM [Rs + im16]) (16 bits)

LHU Rt, (im16)Rs I-Type Rt ← (016 ‖MEM [Rs + im16]) (16 bits)

LUI Rt, im16 I-Type Rt ← (im16 ‖ 016)

LW Rt, (im16)Rs I-Type Rt ←MEM [Rs + im16] (32 bits)

LWL Rt, (im16)Rs I-Type not implemented
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LWR Rt, (im16)Rs I-Type not implemented

MFHI Rd R-Type Rd ← HI

MFLO Rd R-Type Rd ← LO

MOVN Rd, Rs, Rt R-Type if Rt 6= 0 then Rd ← Rs else NOP

MOVZ Rd, Rs, Rt R-Type if Rt = 0 then Rd ← Rs else NOP

MTHI Rs R-Type HI ← Rs

MTLO Rs R-Type LO ← Rs

MULT Rs, Rt R-Type (HI, LO)← Rs ×Rt on signed values

MULTP Rd, Rs, Rt R-Type Rd ← Rs ×Rt in GF(2)

MULTU Rs, Rt R-Type (HI, LO)← Rs ×Rt on unsigned values

NOP R-Type No operation

NOR Rd, Rs, Rt R-Type Rd ← ∼ (Rs|Rt)

OR Rd, Rs, Rt R-Type Rd ← Rs|Rt

ORI Rt, Rs, im16 I-Type Rt ← Rs|im16

SB Rt, (im16)Rs I-Type MEM [Rs + im16]← Rt (8 bits)

SH Rt, (im16)Rs I-Type MEM [Rs + im16]← Rt (16 bits)

SLL Rd, Rs, shmt R-Type Rd ← Rs << shmt bits (to the left)

SLLV Rd, Rs, Rt R-Type Rd ← Rs << Rt bits (to the left)

SLT Rd, Rs, Rt R-Type if Rs < Rt (signed) Rd ← 1 else Rd ← 0

SLTI Rt, Rs, imm16 I-Type if Rs < im16 (signed) Rt ← 1 else Rt ← 0
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SLTIU Rs, Rt, im16 I-Type not implemented

SLTU Rd, Rs, Rt R-Type if Rs < Rt (unsigned) Rd ← 1 else Rd ← 0

SRA Rd, Rs, shmt R-Type not implemented

SRAV Rd, Rs, Rt R-Type not implemented

SRL Rd, Rs, shmt R-Type Rd ← Rs >> shmt bits to the right

SRLV Rd, Rs, Rt R-Type Rd ← Rs >> Rt bits (to the right)

SUB Rd, Rs, Rt R-Type Rd ← Rs −Rt on signed values

SUBU Rd, Rs, Rt R-Type Rd ← Rs −Rt on unsigned values

SW Rt, (im16)Rs I-Type MEM [Rs + im16]← Rt (32 bits)

SWL Rt, (im16)Rs I-Type not implemented

SWR Rt, (im16)Rs I-Type not implemented

SYSCALL R-Type not implemented

XOR Rd, Rs, Rt R-Type Rd ← Rs ⊕Rt

XORI Rt, Rs, im16 I-Type Rt ← Rs ⊕ im16

Compiler for scalar code

The test programs used to debug and test the scalar design were mostly written in As-
sembly language. The compiler used is the GNU GCC tool, revision 3.3.1 available from
[GNU (2005)], that can target MIPS architectures. The encoding and register/memory
addressing used for the above instructions is fully compatible with the MIPS one defined
in the GCC tools.

5.1.2 Implementation details

The scalar processor was designed from scratch. It is expected to have a behavior simi-
lar to publicly known features of the MIPS architecture. However differences may exist,
namely some simplifications have been made (due to the targeted applications) and some
sophisticated mechanisms have been omitted. For example, the register bypass mecha-
nisms or the multiplier architecture may be different.

In the following subsections, we detail some of the architectural design choices made,
most of which have an impact on the software written, in other words anyone writing a
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program (or eventually a dedicated compiler) for that processor should have the following
processor behavior in mind. We also detail how data hazards are taken into account.

Processor start-up

First note that the processor is big endian, i.e. within a 32-bit data the most significant
byte is at the lowest address.

In order to start the processor, an asynchronous reset must be applied on the reset input
of the processor. This input is active High. Upon reset, the PC is set to zero and the first
instruction is automatically fetched at that address on the next rising clock edge. This
means that the first fetched instruction is at address zero of the Instruction Memory.

Upon reset, the control signals are set to zero in order to make sure that the pipeline is
not stalled and the program execution is not stopped. Thus the asynchronous reset signal
has been propagated to the clocked blocks in between each combinational block within
each pipeline stage.

Pipeline hazards

Pipeline Hazards are fully explained in [Hennessy & Patterson (2003)] and the design of
the scalar processor takes into account these hazards. Given the architecture of the scalar
processor we are concerned with three types of hazards: branch hazards, data hazards
and structural hazards.

Branch Hazards: Branch hazards occur during the execution of a branch or jump in-
struction as the pipeline is disrupted by the fetch of an instruction which is not necessarily
the following one. The main effect of such hazards is to reduce the performance of the
processor. To limit the ‘cost’ of having a branch that is ‘taken’ we chose to first make
sure that

• the instruction immediately after a branch or jump instruction is always executed.
This is anyway a classic MIPS behaviour.

• when a branch or a jump instruction is decoded in the ID stage, at the next rising
clock edge, a NOP instruction is injected at the IF stage.

The above features are illustrated in Figure 5.3 when the following sequence of instructions
is executed:

BR Skip

INST1

INST2

INST3

INST4

INST5

...

Skip: INST6
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INST7

...

Note that the branch instructions are relative branches and the resulting jump address is
coded as a signed ‘immediate’ 16-bit values.

I F I D E X E M E M W B

C

C+1

C+2

C+3

BR

INS1

C+4

C+5

NOP

NOP

pipeline stage

c
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k
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e

INS6

INS7

BR

BRINS1

INS1

INS1

INS1

NOP

NOP

NOP

NOP

INS7INS8

INS6

INS6

Figure 5.3: Execution of a taken branch instruction

Data hazards: Data hazards occur when an instruction I has one of its operands which
is the result of the instruction I-1 or instruction I-2, result which is not yet ready at the
moment the instruction I performs its data fetch. In our architecture, data is fetched at
the ID stage and results are available after the EX or the MEM stage. There are two
main types of data hazards.

• Write After Read (WAR) hazards: These occur when an instruction I attempts to
write data while an instruction I-1 is trying to read it. This hazard is not rele-
vant to our architecture because the instructions are executed in sequential order.
Regarding the register file, such a hazard cannot occur because data fetches from
the register file are done during the ID stage and data is written to the register file
during the WB stage which comes after the ID stage. For memory-accessed data,
we have a Data Memory interface that assumes that any data is accessed within
one clock cycle. Moreover all memory accesses are done by the MEM stage which
ensures that, at a given clock cycle, we exclusively have a memory read or a memory
write.

• Read After Write (RAW) hazards: These are a bigger concern to our architecture.
RAW hazards occur when an instruction I tries to read data that has just been
modified by a previous instruction and that the new value has not yet been written
at the targeted register or memory location. In our architecture, this is particularly
relevant to data accessed from the register file.
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We will distinguish between three levels of RAW hazards.

• A Level 0 RAW hazard occurs when, at a given clock cycle C1, a given pipeline
stage needs to perform a calculation on data which it has just calculated at the
clock cycle C-1 (and for which the write-back occurs at a later pipeline stage). In
our architecture this would happen at the EXE stage for which a register bypass
mechanism has been implemented from the output of the EXE stage to the input
of the same EXE stage. Note that such a register bypass is not implemented for
memory-accessed data because in our architecture, data is read from or written to
the Data Memory only during the MEM stage.

• A Level 1 RAW hazard occurs when, at a given clock cycle C, a pipeline stage
needs to fetch data that was calculated by a following pipeline stage at cycle C-
1. To account for such hazards without any performance penalty register bypass
mechanisms have been implemented

– from the output of the EXE stage to the input of the ID stage (for cases where
a register value is updated following an arithmetic or logic operation and then
this register is read two instructions later).

– from the output of the MEM stage to the input of the EXE stage (for cases
where an instruction tries to load data from memory into a register which
is then the source register of the next instruction for an arithmetic or logic
operation).

– from the output of the MEM stage to the input of ID stage (for cases where
an instruction tries to load data from memory into a register from which data
needs to be fetched from two instructions later).

Note that in the case of registers HI and LO2, if instruction I-1 is one that modifies
them, then instruction I must not be one that attempts to read or use them.

• A Level 2 RAW hazard occurs when, at a given clock cycle C, a pipeline stage
fetches a data that will be calculated at cycle C+1 by a following pipeline stage.
Typically this would occur when the instruction I-1 is a LOAD to register Ri and the
instruction I is some arithmetic operation on that register Ri. To account for such
hazards, a load stall is injected in the pipeline in order to wait for the correct result
to be available on the output of the MEM stage (see Figure 5.5).

The Level 0 and Level 1 RAW hazards are illustrated in Figure 5.4 and a load hazard is
illustrated in Figure 5.53.

1i.e. at the rising edge of clock cycle C
2described when the EX stage was described
3Note that in simulations of the (post-synthesis) netlist of the scalar processor, the load stall signal

does not seem to propagate properly. It is hence strongly recommended to avoid data dependencies in
which the preceding instruction is a LOAD
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Figure 5.4: RAW Hazards & Register Bypasses

Structural hazards: Structural hazards occur when resources are shared by different
pipeline stages. This is not the case in our design because each pipeline stage has its own
resources. We also have separate Instruction and Data Memories.

5.1.3 Performance and area figures

The model is a cycle accurate one. On this architecture, a 192-bit modular multiplication
routine in a binary field takes 25133 clock cycles. The same operation on a commer-
cial MIPSsimTM simulator takes 22331 clock cycles, showing a discrepancy of 12% of
our model. This difference may arise from the fact that the architecture simulated by
the MIPSsimTM is not exactly the same as the one implemented here. Moreover, the
MIPSsimTM is only a software simulator of the hardware (and not the actual hardware
architecture itself) and hence it can be thought to have some behavioural (and hence
performance) differences with the real core itself.

Synthesised scalar processor

The scalar processor was synthesized in a TSMC 90nm technology using Design CompilerTM

from Synopsis and further measurements were done on the resulting netlist.
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Figure 5.5: LOAD stall on scalar processor

First note that there are different versions of the synthesized scalar part: the ID stage
of the scalar part has been fitted with a small state machine that stalls the instruction
fetch pipeline during vp

vr
cycles when a vector instruction is being executed (see Section

5.2.1). This fraction is hardwired in the scalar processor, so different netlists had to be
produced for values of vp

vr
∈ {1, 2, 4, 8, 16, 32, 64}.

The resulting circuit area is around 0.08545mm2. Timing reports provided by Design
CompilerTM showed that we could expect the processor to run at frequencies as high as
129MHz. During the execution of the code in Appendix C, the peak power measured
by PrimePowerTM (see Section 6.6) was around 5.3mW and the mean power was 350µW
(excluding the memories).

5.2 Verilog Model of the Vector Co-processor

Just like the scalar part, the vector co-processor is big endian. The architecture of the vec-
tor co-processor is determined by the way the vector register files are distributed across
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Figure 5.6: Vector Register File

the Vector Processing Units (VPUs). The general architecture is shown in Figure 5.6
where we have the following parameters:

• m: The size of each element of the vector elements. Currently m = 32.

• vq: The number of such vector registers.

• vp: The number of elements in each vector register. This will be called the depth of
each vector register.

• vr: The number of lanes into which the vector registers are organized. Each lane
consists of a Vector Processing Unit (VPU). In an ideal situation, we would have as
many VPUs as there are lanes but in our scalable design vr is independent from vp.

The architecture of the vector co-processor is such that the vector registers are directly
entangled into the design block defining a ‘vector lane’. The first limitation of the design is
that vp has to be a multiple of vr and given that the counter of the internal state-machine
of the vector co-processor is coded on 8 bits vp

vr
must be less than 256.

The vector co-processor is a pipelined design as shown in Figure 5.8. The Instruction
Fetch and the Instruction Decode are handled by the scalar processor. Upon detection
of a vector instruction, the ID stage of the scalar sends the proper control signals to the
vector co-processor which then executes the decoded vector instruction. The execution of
such vector instructions is decomposed into the following stages:

• Data Fetch (VDF) stage where each VPU fetches the two (depending on the in-
struction) elements from the source vector registers. If a scalar register is involved,
the value is fetched from the latter scalar register during the ID stage. Note that
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Figure 5.7: Architecture of the Vector co-processor

given this design feature, the register bypass mechanisms of the scalar register can-
not account for potential data hazards. As a consequence, when using the VSMOVE

instruction, data hazards must be avoided on the targeted scalar register, by having
for example at least 4 instructions in between. In other words, the pipeline is flushed
in software.

• Execute-Multiply (VEXM) stage where the VPU performs the corresponding
multiplication or addition calculation for a PIVI. For a GIVI or a MAVI1, nothing
is done.

• Execute-Carry (VEXC) stage where the ‘carry’ selection is done for the PIVIs
and the latter’s calculation is completed. For a GIVI or a MAVI, the corresponding
calculation/manipulation is done onto the arguments fetched in stage DF.

• Write Back (VWB) stage where the result from the VPU is written back to the
corresponding element of the destination vector register.

1See definitions of PIVI, GIVI and MAVI in Section 4.1.1
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Figure 5.8: Architecture of a Vector Lane

5.2.1 Vector instruction execution

Consider the general case where we have vr VPUs where vr ≤ vp (could be specially true

for embedded processors). This means each VPU will have to be iterated
⌈

vp

vr

⌉

times in

order to apply the required operation on all vp elements of the targeted vector registers

as shown in Figure 5.9. Hence the next vector instruction will only be issued
⌈

vp

vr

⌉

clock

cycles later in the case where each “iteration” takes 1 clock-cycle.

Note that in our design, the vector registers are directly distributed across the lanes. Since
vp and vr are parameters that are set at compile time, each vector lane is thus compiled
with a register bank comprised of vq vector registers which each in turn consists of vp

vr

32-bit registers. With respect to the ‘software’ which, on the whole, sees vq vector reg-
isters of vp elements each, the distribution is done following the scheme from Figure 5.6.
From a hardware point of view, at each ith stage (comprised of VDFi, VEXMi, VEXCi

and VWBi with 0 ≤ i < vp

vr
) as shown in Figure 5.9, within each vector lane, the corre-

sponding vector operation is performed on the ith element of the vector register within the
lane. From a software point of view, this vector operation is actually being performed on
element j+(i×vr) of the targeted vector register where j is the lane number (0 ≤ j < vr).

This is two dimensional pipelining: one in space where each instruction executed is
spread over the resources of the four stages (VDF, VEXM, VEXC and VWB) and one in
time where each instruction is virtually decomposed of vp

vr
executions working on different
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Figure 5.9: Timing relationship between scalar & vector executions

indices of the vector registers. The time dimension could also be considered as a way
of handling structural pipeline hazards [Hennessy & Patterson (2003)]. To handle the
“second dimension” of the pipeline, a small state machine has been implemented in the
ID stage of the scalar processor. Upon detection of a vector instruction, an 8-bit counter
is set to vp

vr
− 1 and an index variable is initialized to zero. At each subsequent clock cycle

(and until the counter reaches 0):

• a V STALL signal is generated stalling the instruction fetch of the scalar processor,
in other words no new instruction is fetched.

• the index variable is incremented to tell the vector co-processor which elements of
the vector registers need to be worked on.

• the counter is decremented.

Note that with such a state machine, when vr = vp the counter remains at zero and no
stalling signal for the scalar processor is generated. Another design choice could have
been to continue fetching and executing scalar instructions but on one side this would
have generated additional control signals and hazard management units and on the other
side, as we will see, our use cases comprise of test codes where there are mainly consecutive
vector instructions.

5.2.2 Implemented vector instructions

We identified three classes of vector instructions as given in Definitions 4.1, 4.2 and 4.3.
The structure of the vector instructions is similar to that of the scalar ones illustrated in
Figure 5.2. There are only R-Type and I-Type vector instructions. The test programs are
implemented in Assembly language which is compiled with the GNU GCC tools which
have been modified to compile the vector instructions1. Table 5.1 lists all the vector in-
structions identified during the theoretical study. However, only a subset of these vector

1Note that to do so, we have replaced the ‘floating point instructions’ of the MIPS by our vector
instructions, as a result of which the vector register addresses always have to be even numbers. This is
taken into account by the “hardware” at the VDF stage.
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5.2 Verilog Model of the Vector Co-processor

instructions are today operational on the implemented vector co-processor as we imple-
mented only those required as a proof-of-concept.

All of the vector instructions operate on all vp elements of the vector registers, i.e. we
don’t limit the operations on only vl with vl ≤ vp elements as suggested in the earlier
theoretical studies performed for that design. This is because it makes the design much
simpler and because there was no need for it in our use cases. Typically for the VLOAD and
the VSTORE instructions, data are read from and written to the Data Memory in packets
of vr words at a time until all vp data elements have been accessed.

5.2.3 Vector pipeline hazards

The vector co-processor pipeline is actually handled within each vector lane itself, i.e.
each lane has its own VDF, VEXM, VEXC and VWB stages. When designing each lane,
data hazards (as defined in Section 5.1.2) have been considered. Note that in this section,
we only consider hazards among vector instructions themselves: the interaction between
scalar and vector instructions is detailed in Section 5.3.

RAW data hazards in vector lanes

In order to account for RAW hazards without performance penalty, the following register
bypass mechanisms have been implemented as illustrated in Figure 5.8.

• A data register bypass from the output of the VEXC stage to the input of the VDF
stage.

• A data register bypass from the output of the VEXC stage to the input of the
VEXM stage.

For the scalar processor, data hazards were mainly detected based on the address of the
targeted registers. For the vector lanes, a data hazard occurs when the targeted registers
have the same address and the same index within the vector registers.
The above data register bypass mechanism does not account for cases when we have data
hazards for two consecutive PIVI instructions when vr = vp. A pipeline stall is generated
(as illustrated in Figure 5.10). This stall signal holds the execution of the scalar IF and
ID stages and the vector VDF and VEXM stages. This stall only occurs when vr = vp.
For other case where vr < vp, the pipeline is already stalled to account for the structural
hazard incurred by the smaller number of VPUs. In other words, when vr < vp, RAW data
hazards have no performance penalty on the software. The above scenarios are illustrated
in Figures 5.10 and 5.11 for the following code.

VSPMULT V2, V1, R6

VSPMULT V3, V2, R3

...

In Figure 5.10, we have the case where vp = vr = 4. We have 4 VPUs working in parallel.
The result of the first VSPMULT is available at cycle C +2 at the output of the VEXC stage
and in order for the calculation of the second VSPMULT to begin (at the VEXM stage), a
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VADDU Vd, Vs, Vt R-Type not implemented

VBCROTR Vt, Vs, im16 I-Type not implemented

VBYTELD Rt, Vs, im16 I-Type not implemented

VEXTRACT Rt, Vs, im16 I-Type if im16 = 0 Rt ← CAR else Rt ← Vs[im16]

VFVCR Rd, Vs, Rt R-Type not implemented

VLOAD Vt, Rs, im16 I-Type stores in Vt the vp 32-bit words from address Rs

VMPMUL Vd, Vs, Vt R-Type not implemented

VSADDU Vd, Vs, Rt R-Type not implemented

VSAMULT Vd, Vs, Rt R-Type not implemented

VSMOVE Vt, Rs, im16 I-Type if im16 = 0 CAR ← Rs, if im16 < vp Vt[0...im16 − 1] ← Rs, else
Vt[0...vp − 1]← Rs

VSPMULT Vd, Vs, Rt R-Type (CAR ‖ Vd[vp−1] ‖ Vd[vp−2] ‖ . . . Vd[0])← ((Vs[vp−1] ‖ Vs[vp−2] ‖
. . . Vs[0])×Rt)⊕ CAR in binary fields

VSTORE Rt, Vs, im16 I-Type stores the vp 32-bit words of Vs in MEM from address Rt

VTRANSP Vt, Vs, im16 I-Type not implemented

VTVCR Vd, Rs, Rt R-Type not implemented

VWSHL Vt, Vs, im16 I-Type (Vt[vp−1] ‖ Vt[vp−2] ‖ . . . Vt[0])← CAR← Vs[vp−1] , (Vs[vp−2] ‖
Vs[vp − 3] ‖ . . . Vs[1] ‖ 032)

VWSHR Vt, Vs, im16 I-Type not implemented

VXOR Vd, Vs, Vt R-Type Vd ← Vs ⊕ Vt

Table 5.1: Implemented Vector Instructions
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stall is required to wait for the correct result of V2 to be available. In Figure 5.11, we
have the case where vp = 4 and vr = 2. In this case, by the time the first ‘half’ of the
second VSPMULT reaches the VEXM stage, the corresponding result of the first VSPMULT

is already available at the output of the VEXC stage. So no pipeline stall is needed.
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Figure 5.10: Pipeline stall for RAW data hazard when vr = vp

Structural hazards in vector lanes

In addition to the structural hazard that occurs when we have vr < vp and that we have
to stall the IF stage (as described in Section 5.2.1), a structural hazard may occur during
vector loads and stores. This occurs because the same data and bus addresses (connected
to the external Data Memory) are used during these operations and conflicts occur spe-
cially in cases when vr < vp. This hazard is not corrected by the hardware and as a result
we recommend that a VLOAD and a VSTORE instruction must never follow each other, at
least one instruction must be added in between.

Another point to note is that in the vector co-processor all the internal registers are
updated at the end of the VWB stage except the CAR register which is updated one clock
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Figure 5.11: RAW data hazard when vr < vp

cycle ahead.

5.3 VeMICry system

The final design joins the scalar processor and the vector co-processor as illustrated in
Figure 5.12. As already mentioned, we have two separate memories, one for the instruc-
tions and one for the data. The Instruction Memory is only read by the scalar processor’s
IF while the Data Memory is accessed by both computing entities. In Sections 5.1 and 5.2,
we have looked at how, for each separate unit, we deal with eventual conflicting accesses
to the Data Memory. Here, once both units are connected to the Data Memory, we added
access control logic (a switch) to guarantee exclusive accesses of one or the other to the
Data Memory. In our design, both units cannot be made to access the Data Memory at
the same time because the scalar and vector units cannot work in parallel. Even if there
is a scalar memory instruction in the pipe when a vector memory instruction is fetched,
by the time the latter reaches its VEXC stage where it accesses the memory, the former
will already have been completed.
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Figure 5.12: Final Architecture with scalar & vector parts

The management of data hazards between the scalar processor and the vector co-
processor is mainly undertaken in software by following the rules. This choice has been
made because we wanted to limit the number of control signals and control logic in the
scalar processor. We want to be able to run the scalar processor on its own and this is
why we limited the ‘vector-related’ logic inside the scalar part to one additional IF stall
signal and a state-machine to manage the ‘iterations’ of the vector co-processor.

5.3.1 Rules for executing scalar and vector code

When executing a program that involves both scalar and vector instructions, problems
might occur when we have data dependencies between successive (or neighbouring) in-
structions. This originates from the fact the scalar pipeline and the vector lane pipelines
are independent from each other and that the latter has one more stage than the former
(the ‘execute’ stage of the vector lanes is composed of two stages, VEXM and VEXC).
Since most of our test codes are coded directly in Assembly language it was quite straight-
forward and easy to test and incorporate these rules. These rules would have to be taken
into account when designing a dedicated C compiler for this processor. Suppose we have
two consecutive instructions INST1 and INST2 where one of the inputs of INST2 is the
output of INST1:

1. In general, if INST1 is a scalar instruction and INST2 is a vector instruction, insert
an independent1 instruction in between. This can be done by either re-organizing
the code or by inserting a NOP.

2. If the INST1 is a scalar LD and INST2 is a vector instruction, insert at least two
independent instructions in between.

1One that does not use the ‘conflicting’ data
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3. In general, if INST1 is a vector instruction and INST2 is a scalar one, insert at least
three independent instructions in between. Given the set of vector instructions
in Section 5.2.2, the only case where this can happen is for the when INST1 is a
VEXTRACT.

4. If INST1 is a VEXTRACT and INST2 is a vector instruction (even with no data
dependency), insert a NOP in between.

These rules are quite easy to follow in software and would have added unnecessary com-
plexity to the hardware.

5.4 Summary

In this chapter, we have presented a Verilog cycle accurate synthesizable model of our
vector co-processor. We first implemented a cycle accurate scalar processor based on the
MIPS-I instruction set. This scalar processor has a five stage pipeline designed in such
a way as to have an issue rate of 1 instruction per clock cycle. To achieve this, pipeline
hazards are resolved. The design offers register bypass mechanisms to remove data haz-
ards. Structural hazards are avoided by having exclusive resources for each pipeline stage,
e.g. having separate Instruction and Data Memories. For Branch hazards, a “not taken”
branch prediction is implemented whereby the instruction following a branch is always
executed. The scalar part has been synthesized in TSMC’s 90nm technology. The result-
ing circuit has a area of 0.085mm2 and could reach clock frequencies as high as 129MHz.
The scalar processor is also used to drive the vector co-processor. The former fetches and
decodes the vector instructions and sends the control signals to the latter. The vector
co-processor has been designed to be scalable in the sense that the vector register depth vp

and the number of lanes vr can be configured at compilation/synthesis time. The vector
co-processor is a proof-of-concept and this is why the implemented vector instructions are
for the time being limited to those needed to implement modular multiplication in binary
fields (for Elliptic Curve Cryptography). It is composed of 4 pipeline stages where data
hazards have been taken into account through register bypasses. Structural hazards may
occur on the vector part when vr < vp, in which case the instruction fetch and decode are
stalled. For the overall system (scalar + vector parts), the memory models used for the
Instruction and Data memories are simple RAM memories, which, in a real system, could
be a first model for caches. To test the design(s), software test code is assembled using the
same compiler used for testing the functional simulator. Scalar and vector commands can
be executed from the same stream of program given the ‘rules’ detailed in this chapter are
followed in order to account for synchonisation issues between the scalar and the vector
parts. Detailed performance, area and power studies are given in the following chapter.
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Chapter 6

Analysis of Verilog VeMICry

With the design described in the previous chapter, we have a synthesisable, cycle accurate
model of VeMICry for performing long precision modular multiplication in binary fields
(for Elliptic Curve Cryptography). This chapter focuses on the performance, power and
size of the vector part of the VeMICry processor (the analysis of the scalar part was rather
straight forward - see Section 5.1.3). Note that even if the current implementation only
supports instructions for Elliptic Curve modular multiplication in binary fields (where
data lengths are of the order of 160-256 bits), we perform our quantitative analysis on
data lengths of 256-2048 bits which are more relevant to RSA that requires modular mul-
tiplication in prime fields. By doing so, a wider spectrum of data lengths is covered. We
can do so since for each vector instruction working in binary fields, we also defined an
“equivalent” function working in prime fields (as shown in Appendix A). And given the
pipelining used, these “equivalent” pairs of instructions are expected to take the same
number of clock-cycles for the same depth of vector registers (p), the same number of
lanes (r) and the same data sizes. A possible difference would be that, in the case of the
instructions working in prime fields, due to the carry propagation, the area, power and
critical path for each individual lane can be larger. But the vector co-processor’s area and
power consumption can be expected to scale in the same way for instructions working in
binary fields.

The vector part was synthesized in TSMC 90nm technology using Design CompilerTM

from Synopsis. The constraints were set to target a maximum area optimization. Differ-
ent configurations of the vector co-processor were synthesized for different values of vector
register depths (p) and vector lanes (r) for a fixed number of vector registers (q) of 4.
The resulting areas measured of course depended on the values of p and r. In Figure 6.1,
we see that, for a given value of p the area of the resulting circuit varies linearly with
the number of lanes used. This result confirms the modularity of our design and that the
“SCHEDULER” shown in Figure 5.12 is not very much modified by the number of lanes
present.

The Synopsis tool also provided timing analysis figures for the minimum clock pe-
riod for the vector processor and hence the maximum clock frequency. From these data
(illustrated in Figure 6.2), we can first see that the maximum frequencies are of the or-
der of 220MHz to 290MHz. This variation is obtained by varying the number of lanes.

115



6. ANALYSIS OF VERILOG VEMICRY

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9
x 10

5

Number of lanes(r)

A
re

a 
(s

q 
um

) 
on

 T
S

M
C

 9
0n

m
 te

ch
no

p=32
p=16
p = 8
p = 4

Figure 6.1: Area of vector co-processor versus number of lanes

Typically, increasing the number of lanes would increase the timing of the critical path
to the registers shared among these lanes. However, as illustrated by the curves in Fig-
ure 6.2, for a fixed value of p, a peak is reached when we have four lanes working in parallel.
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Figure 6.2: Max frequencies versus number of lanes

To analyze the performance of the vector part (in terms of clock cycles), we vary the
size of the data on which a modular multiplication based on Montgomery’s [Montgomery
(1985)] FIOS [Çetin Koç et al. (1996)] method is performed for sizes ranging from 256
bits to 2048 bits. The test code used is presented in Appendix C.
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6.1 Functional versus Cycle-accurate Simulation

Input : A,B,N,M and r

Output : R′ = A.B.2−32M mod N

1. R′ ← 0

2. for j = 0 to M − 1 do

3. J ← (R′

0
+ B0 ·Aj) · r mod 232

4. R′ ← R′ + Aj ·B + J ·N

5. R′ ← R′/232

6. endfor

7. return R′

Figure 6.3: FIOS Method for Montgomery’s Modular Multiplication

6.1 Functional versus Cycle-accurate Simulation

In Figure 6.4, we show how the number of cycles varies for varying data sizes for a targeted
architecture where p = r = 32. With this figure we can see that, for a given hardware
configuration (i.e. same values of p and r), the timing behaviours of the functional sim-
ulator and that of the cycle-accurate simulator are quite similar, with a multiplicative
factor in between. This shows that the functional simulator based on the ArchC tool is
useful in determining proportional performance improvements for different architectural
parameters.
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Figure 6.4: Comparing functional and cycle accurate simulators

6.2 Comparing Expected and Measured Results

From the equations in Figure 6.3, we can derive the following theoretical rules:
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1. For M ≤ p, doubling the data size would double the number of clock cycles taken
by the modular multiplication routine (twice the number of loops).

2. For M > p, doubling the data size would multiply the number of clock cycles by 4
(twice the number of ‘for’ loops within which the line 4 is also a ‘for’ loop which is
doubled).
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Figure 6.5: Ratio of theoretical over measured variations in performance

However, as we can see from the curves in Figure 6.5, the measured performance figures
are 1.5 to 2 times faster than the expected trend. The curves show the ratio of expected
number of cycles over the number of measured clock cycles for a constant p and for
different number of lanes r. This shows that, for the same hardware configuration (i.e.
the same value of p and the same value of r), as we increase the size of the input data,
the performance penalty generated by this increase in size of the data is less important
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6.3 Performance versus Vector Register Depth

than one could expect theoretically. One of the reasons for this is that with our register-
to-register vector register, the software is liable to make fewer memory loads and stores
than expected.

6.3 Performance versus Vector Register Depth

For the case where p = r, the number of cycles taken by the modular multiplication
is inversely proportional to the depth p. This trend was already seen on the functional
simulator. Figure 6.6 illustrates this trend (where we have a near-straight line) when
working on data of 2048 bits.
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Figure 6.6: Performance versus depth on 2048-bit data

6.4 Performance versus Number of Lanes

Figure 6.7 illustrates a typical case where the performance varies by increasing the number
of lanes. The illustrated example is for the case where p = 32 for 1024-bit data. Like the
results obtained on the functional simulator, there seems to be some kind of inflection
point for values of r . p

2
giving the hint that there may exist a critical point beyond

which, for a given p, it is no longer interesting to increase r.

6.5 Area × Performance versus Number of Lanes

The aim of having a scalable design is to find the best performance, power and area
trade-off. The first way to perform such an analysis would be, for a given p, see how the
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Figure 6.7: Performance versus number of lanes on 1024-bit data (p = 32)

product Area × Performance varies by changing the number of lanes. Actually, we would
target a smaller area and a small number of clock cycles. The curves in Figure 6.8 show
that there is a minimum for r ≈ p

4
for any data length.

6.6 Power Characteristics of VeMICry

Using Design CompilerTM, every time a version of the vector processor is synthesized
(that is for different values of p and r), in addition to the netlist, the corresponding
SDF is generated. An SDF is a Synthesis Design File into which timing and switching
information are stored for each net of the targeted module. Then at simulation, the
SDF file is used by PrimePowerTM to annotate the module whose power characteristics
are measured (here it the vemicry module). This provides a first order approximation
for the power characteristics of the vector architecture (99.9% of nets and 98.9% of the
leaf cells were annotated) during the simulation of the vector processor’s netlist. The
power measurements were done for calculations on the same set of 1024-bit data1. Ideally
we would perform the same manipulation using different sets of the 1024-bit data and
perform an average but here our aim was to compare different architectures rather than
obtain average power figures. We studied two aspects of the power profiles obtained:

• the max power which is the maximum instantaneous power reached by the module
during the simulation. This characteristic is important because the maximum power
allowed is a critical value for embedded processors.

1Note that working with other data lengths only changed the duration of the calculation
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6.6 Power Characteristics of VeMICry
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Figure 6.8: Area × Performance versus number of lanes

• the mean power which can then be correlated to heat dissipation of the circuit. In
our experiments, for each power profile, the histogram of the different power values
are plotted. From such an histogram, we ignore that values corresponding to the
static power. The rest (the more significant dynamic power) followed some kind of
normal distribution. The mean power is then determined as the value for which the
maximum occurs for this distribution.

We looked at the relationship between vector register size and the power consumption.
In Figure 6.9, measurements were taken for the case where we had only one lane (r = 1).
There is a linear dependency with a gradient of about 1.25 mW per “register structure”.
Here the “register structure” encompasses the 32-bit register and control logics associated
with each register.

We also looked at the influence on the power of having more lanes (for a constant p).
There is a linear dependency between the mean power and the number of lanes. From the
data collected, this dependency is of the order of 4.3 mW/lane, bearing in mind that each
lane has p

r
registers. Note that there is a similar linear relationship for the max power

consumed.
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Figure 6.9: Mean power versus depth p for one lane

Finally we also looked at how the product of mean power × Performance varies as a
function of the number of lanes for a constant depth. As illustrated in Figure 6.11, there
is a minimum for the case when r ≈ p

4
, which is not surprising given that the same

conclusion was drawn for the area.

6.7 Security issues

In the design of the vector processor, there was no attempt to introduce any hardware
countermeasures against side-channel or fault injection attacks. The “general purpose”
nature of the vector co-processor allows a lot of flexibility in terms of implementation of
software countermeasures like described in [Akkar (2004); Clavier & Joye (2001); Zam-
breno et al. (2004)]. In the following discussion, we focus on attacks based on power
analysis, notably Simple Power Analysis (SPA) and Differential Power Analysis (DPA)
[Messerges et al. (1999)].

An SPA attack on algorithms like RSA or ECC consists in observing the current
measured during an exponentiation algorithm and in trying to distinguish between a
modular multiplication operation and a square operation. If such a distinction is possible,
the attacker can infer information about the bits of the secret exponent used during a
signature. In practice, the difference between a multiplication and a square can either be
in terms of the:

• the timing taken by each of these operations.
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Figure 6.10: Power versus number of lanes for p = 16

• the difference in amplitude or ‘shape’ of the power profile for each of these operations.

For the second feature, the difference could originate from the type of instruction(s) used
or would depend, as it is on most architectures in practice, on the value or Hamming
Weight of the data used. The latter aspect would also open the way to DPA attacks.
In order to have a first idea about how such a vector processor would leak information,
we looked more closely at how the simulated power profiles varied for some characteristic
values for the two operands of the modular multiplication.

The code in Appendix C calculates R = A×B×2−k mod F by parsing the words of B
and multiplying each of these words to A. We hence wanted to investigate how differential
power could be used to infer information about A or B. To do so, we did three power
simulations on 512-bit values, for p = 8 and r = 1, where A had some random ‘constant’
value and B would take the following values given in hexadecimal.

B1 = 0x000000010000000100000001...000000010000000100000001

B2 = 0x0FFFFFFF000000010FFFFFFF...000000010FFFFFFF00000001

B3 = 0x000000010FFFFFFF00000001...0FFFFFFF000000010FFFFFFF

Note that for B2 and B3, we have alternate high Hamming Weight and low Hamming
Weight 32-bit values. Since we are on a 32-bit machine, we wanted to see whether the
‘structure’ of the two values could be revealed by power analysis. We subtracted the curve
for B2 from that of B1 and the curve for B3 from that of B1 to obtain the two curves
illustrated in Figure 6.12. In the latter figure, the lower curve corresponds to “B2−B1”
and the upper curve to “B3 − B1”. Such an illustration shows that for each lane, the
value or Hamming Weight of one of the operands does have a significant influence on the
power signature.
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Figure 6.11: Performance × Power versus number of lanes (p = 32)

In order to investigate the effect of parallelism on the power signature, it made more
sense to vary this time the value of A because from our code it is the words of A that are
distributed across the lanes. We studied two cases on 256-bit values for some constant
‘random’ value of B. In Case 1 {p = 8, r = 4}, we performed power simulations for A1
and A2 below and subtracted the second from the first. In Case 2 the experiment was
repeated for {p = 8, r = 8}.

A1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000001000000010000000100000001

A2 = 0x00000001000000010000000100000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

In Case 1, since we have twice as many elements in each vector register as there are
lanes, each ‘main loop’ (where the words of B are multiplied to A) is executed in two
stages on each half of Ai. Hence for the cases of A1 and A2, because of the difference
in Hamming Weight or value between the two halves, we expect the difference between
the power curves for A2 and A1 to give significant signatures. This is confirmed in the
upper curve of Figure 6.13. In Case 2, since we can work on all the elements of the
vector registers (and hence of all the elements of A) in parallel, we would expect to have
no significant difference between the two curves. This difference is shown in the lower
curve of Figure 6.13. The trace in the lower curve takes less time than that of the upper
curve, which is normal because there are twice as many lanes in parallel. For each ‘main
loop’, there is at some point some significant difference but less spread over time within
the loop. This illustrates that the parallelization has an effect on the power signature.
But this also illustrates that there are other design artifacts that influence the power
signature like, for example, the leakage during data fetches. Another explanation could
come from the observation that, no matter the value of r > 1, the first lane (i.e. Lane
0) seems to consume slightly more power and have a longer critical path than the other
lanes. Moreover, such power curves are to be considered with great caution because they
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are gross approximations in terms of power and also because the scalar processor’s power
consumption is not taken into account.

The above manipulations show that, as expected, the vector co-processor does leak
data dependent information. There are hints that show that, with the vectorization affect,
this data dependant power signature is less spread over time. The leakage also depends
on the software used and the way the data are manipulated, which could be considered
as a positive thing because it provides a lot a flexibility in order to implement adequate
countermeasures to counteract such attacks. For example, message blinding is a technique
whereby the input message of a PK algorithm is randomized in software to decorrelate
the input data from the power consumption measured: for RSA, the input message m is
replaced by m′ such that m′ = m + tn where n is the modulus and t is a small random
value (could be on 32 bits) [Akkar (2004)]. The scalability of the design of the vector co-
processor offers the flexibility to easily implement such a countermeasure. Say we want to
design a vector co-processor optimised for 1024-bit RSA. The natural choice would be to
have vector registers that can hold 1024 bits (i.e. a depth of p = 32). But if the software
is going to implement message blinding we would have to work on 1056 bits and would
rather have a vector register depth of p = 33 or p = 34 and r to be a corresponding factor.
Our architecture was successfully tested for these parameters (for example for p = 33 and
r = 3).
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Figure 6.12: Difference Power for varying Hamming weights of B on 512 bits
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Figure 6.13: Power Traces for different Hamming Weight data on 256 bits
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Chapter 7

Conclusion

In this research work, a new approach for the design of cryptographic accelerators is stud-
ied. Current solutions either involve the use of scalar general purpose processors which
have limited compute power or include the implementation of dedicated hardware which
lack flexibility in terms of algorithms implemented or the level of security. The main
motivation is, therefore, to propose an architecture which can achieve high performance
while providing the flexibility of software implementations of cryptographic algorithms and
countermeasures against fault or side-channel attacks. The software could be upgraded
either to adapt to new application requirements or to insert countermeasures against new
attacks. Moreover, since I also identified the need to satisfy different applications with
different constraints of performance, power or area on the chips being used, I wanted to
give to the hardware designer the flexibility of resizing his chip (area and power) as a
function of the targeted market requirements. As a result, by redefining the resources
available in such a chip, the same architectural approach is suited to embedded devices
(like smart-cards or mobile phones) as well to laptops, desktop computers or HSMs.

During the past decades, from the CRAY-I [Russell (1978)] up to the MMX graphics
extensions [Peleg & Weiser (1996)], vector processing has been used to provide high perfor-
mance through data parallelism. Vector processing is power efficient thanks to the simple
instruction scheduling and low circuit complexity through little control logic overhead
[Espasa et al. (1998)]. Compared to instruction parallel architectures where statistically
nearly half of the power is spent in instruction decoding and scheduling [Folegnani &
González (2001)], in vector processors most of the additional transistors end up in data
storage and computing logic. Given the efficiency of vector processing, my research goal
was to determine whether cryptography could be efficiently executed in a vector form.
I have demonstrated that algorithms like AES and Montgomery-based modular multi-
plications (both in binary or prime fields) can be expressed in a vector form given a
vector instruction set which I defined (Appendix A). The architecture of such a vector
co-processor is determined by the number of lanes r, the depth of each vector register
p and above all by how the elements of these vector registers are distributed across the
lanes. With such a definition, scalability is achieved by changing the values of p and r.
The instruction set that was defined has been decomposed into three groups (the GIVI,
PIVI and MAVI) where each group has a characteristic decomposition across the pipeline
stages of the vector co-processor.
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7. CONCLUSION

An instruction set simulator, built using the ArchC [ArchC (2004)] tool, was built in
order to test and validate cryptographic code implemented using the vector instructions
that I identified. Such a functional simulator provides a first order approximation of the
performance to be expected from such a vector machine assuming that the design has
an instruction issue rate of 1 instruction per clock cycle. Initial results showed that the
AES encryption (excluding the key schedule) can be implemented on the VeMICry (with
p = r = 8) in 160 cycles which is a large gain in performance when compared to the 3283
cycles measured on a scalar processor for the same degree of software flexibility. For a
modular multiplication on 192 bits on the same vector architecture, the cycle count is
95 which, again, compares favorably with the 3200 cycles for a purely scalar approach
(and again for an equivalent degree of freedom in terms of software implementation). I
also looked at how performance would be affected by varying the vector co-processor’s
parameters p, r and the size of the data. First, it could be seen that the impact on
performance of working on larger data sizes is less important than theoretically expected
and that this difference between the expected and measured variations gets larger as p
gets bigger. Moreover I also saw that increasing r increases performance logarithmically
for a given p.

A cycle-accurate synthesizable Verilog model of VeMICry was then implemented. The
design is made up of a scalar 5-stage pipelined processor (MIPS-I compatible) and a vec-
tor 4-stage pipelined co-processor. In this model I focus mainly on the vector instructions
for Public Key cryptography because on one side algorithms like AES are much faster in
hardware (unless security is the primary concern, in which case a software approach would
be more sensible) and on the other side PK algorithms are more interesting for a vec-
tor architecture because they involve large data sets and hence would require more data
parallelism. The current design only implements the instructions necessary for binary
field modular multiplication. Given the pipeline decomposition, the vector instructions
for prime field modular multiplications would be taking the same number of clock cycles
as for binary field multiplications.

The Verilog model of VeMICry is synthesized in TSMC’s 90nm technology. The scalar
part has an area of 0.085mm2 and an average power of 350µW during the execution of
one of the vector modular multiplications. The theoretical maximum clock frequency for
the scalar processor is 129MHz. For the vector part, the performance, area and power
consumption figures depend on the values of p and r. The impact on performance of
varying p and r, for different sizes of data, is the same as that already observed on the
functional simulator. However, if we add the area and power factor, I clearly demonstrate
that the best area/power/performance trade-off is reached for r = p

4
. In order to appreci-

ate how this approach compares to other cryptographic processors, I compiled Table 7.1.
The latter compares the performance of different configurations of VeMICry with other
commercially available hardware platforms for a 1024-bit modular multiplication. From
this table it can be seen that, in terms of performance, the VeMICry architecture pro-
vides performance figures that are similar to what could be identified as the best-in-class
solutions. Moreover we can note that the VeMICry, through its scalability, can address a
vast panorama of markets. However, the Table also reveals that for some configurations
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of the VeMICRy (for p = 8 for example) the vector co-processor does not offer better per-
formances than processors like the MIPS4KscTM or the SC200TM. This can be explained
by the fact that such architectures have more powerful instructions like multiply and add
instructions which can be executed in 1-2 clock-cycles on 32-bit words. Moreover, to bet-
ter compare these commercial architectures with the VeMICry, one would need detailed
area and power figures for each of them.

Finally, in terms of security, a quick look at power simulation curves of the VeMICry
show that, as expected, there are data dependent power signatures, but there are hints
that show that this signature depends on the structure of the software and the degree of
parallelization. Software countermeasures would be easy to add.

Target Co-processor Source Clock-
Cycles

Infineon SLE88 Crypto@1408 Infineon (2003) 1245
VeMICry Vector (p=32, r=32) 1721

Infineon SLE44 “Sedlak” accelerator Naccache & M’Raihi (1996) 2050
VeMICry Vector (p=32, r=16) 2267

STM ST19 MAP accelerator Handschuh & Paillier (2000) 2473
VeMICry Vector (p=16, r=16) 2687

Infineon SLE66 ACE accelerator Handschuh & Paillier (2000) 2864
VeMICry Vector (p=32, r= 8) 3423
Power PC Velocity Engine Crandall & Klivington (1999) 3600
VeMICry Vector (p=16, r= 8) 3714
VeMICry Vector (p= 8, r= 8) 4619
VeMICry Vector (p=16, r= 4) 5896

Philips P83 FAME co-processor Naccache & M’Raihi (1996) 6510
VeMICry Vector (p= 8, r= 4) 6608
MIPS4Ksc none MIPS (2005) 7812
VeMICry Vector (p= 8, r= 2) 10842

ARM SC200 none ARM (2002) 12760
TMS320C6201 DSP Itoh et al. (1999) 14000

Table 7.1: Performance Comparison for 1024-bit modular multiplication

Possible Future Work

With the current Verilog implementation of the VeMICry, I have reached the main goals of
this research work which were to study whether it was possible to design a vector crypto-
accelerator, to show how it could be done and to illustrate how its scalability can help to
make design choices based on power, area, performance to fit application constraints.
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7. CONCLUSION

In terms of design of the VeMICry, a follow-up to this project would be to implement
all of the vector instructions that have been defined in Appendix A and not decoded by
the current Verilog model and then perform exhaustive tests both on the scalar and vector
parts and in particular test all the possible configurations of interactions and synchroniza-
tion between the scalar and the vector part. It would be interesting to see in what sense
the area and power figures change once all the instructions have been implemented. All
this could be done with the aim of designing a real chip and hence performing side-channel
information leakage characterization.

In terms of research, now that the concept of vector processing for cryptography has
been demonstrated, it would be interesting to investigate about how other cryptographic
algorithms could be vectorised and investigate whether additional vector instructions
would be beneficial. Another field of study could be to implement secure versions of the
cryptographic algorithms and investigate the impact on performance of adding software
countermeasures.

132



Appendix A

Vector Instructions

The VeMICry processor is composed of two families of instructions: the scalar instructions which
correspond to the conventional MIPS-I instruction set and the vector instructions tailored to
suit cryptographic requirements.

Suppose we have a vector processor having q vector registers. Each vector register is a vector
of p words of 32 bits each. We also have a Vector Condition Register (VCR) which contains
p bits and which is used for conditional vector instructions to show if the condition is applied
to each of the individual words of the vector. Moreover, we have a second ‘scalar’ register
called the Carry Register (CAR) which, for some instructions, ‘carry bits/words’ are written
back. In the definitions below, most of the accesses to the vector registers are done with a
stride of 1. The notion of stride is explained in [Flynn (1995)] and in Annexe A of [Hennessy &
Patterson (2003)]. A stride of ‘1’ means that the words that are consecutively stored in the vec-
tor register are fetched by parsing the specified memory with a step of 1 word unit (here 4 bytes).
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A. VECTOR INSTRUCTIONS

Vi ith vector register
Rj jth scalar regsiter
n 16-bit immediate value

VADDU Vd, Vs, Vt performs the unsigned addition between the ith elements of Vs

and Vt, writing the result as the ith element of Vd ∀0 ≤ i < p.
The carry is propagated and added to the i+1st element of Vl.
The carry from the addition of the corresponding pth words is
added to the content of CAR.

VBCROTR Vd, Vs, n The Vector-Bit-Conditional-Rotate-Right operates on each ith

word of Vs. If VCR[i] is 1, then Vs[i] is rotated by n bits to the
right and the result is written to Vd[i]. If VCR[i] is 0, then Vs[i]
copied to Vd[i] without transformation.

VBYTELD Vd, Rs, n each word of Vd is treated as four bytes. Each byte is an offset
which is added to the address stored in Rs and the byte stored
at that address is read from the VPU’s corresponding memory.
The read byte is written to the same location as that of its
original corresponding byte. This process is executed for n
words of Vd.

VEXTRACT Rd, Vs, n copies the value of the Vs[n − 1] into Rd. If n = 0, then it is
CAR which is written to scalar register.

VLOAD Vd, Rs, n loads in Vd the p consecutive 32-bit words from memory starting
from address stored in Rs with a stride of 1. n is not used.

VMPMUL Vd, Vs The Vector Modular Polynomial Multiplication treats each ith

word of Vs as four bytes: each byte is a polynomial in GF (28)
which is multiplied by x modular the polynomial represented
in the 9 least significant bits in scalar register VCR. The result
is written to Vd.

VSADDU Vd, Vs, Rt Vector-Scalar-Addition does the unsigned arithmetic addition
of value in Rt to every ith word of Vs and writes the result to
Vd. The carry is not propagated but is instead written as the
ith bit of the register CAR.

VSAMULT Vd, Vs, Rt Vector-Scalar-Arithmetic-Multiplication: multiplies Rt by
Vs[p]||Vs[p− 1]|| . . . ||Vs[0] with carry propagation and result is
written to Vd. The most significant carry bits are written to
register CAR.
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VTRANSP Vd, Vs, n copies vector in Vs to register Vd. If n is zero, there is a direct
copy without transposition. If n is non-zero, Vs is viewed as a
4× p matrix which is transposed and written to vector register
Vd with a stride of n.

VSMOVE Vd, Rs, n copies the value in register Rs to the first n words of Vl. If n is
zero, then Rk is copied to CAR. If n ≥ p then Rs is copied to
every word of Vd.

VSPMULT Vd, Vs, Rt Vector-Scalar-Polynomial-Multiplication: does the polynomial
multiplication of Rt by Vs[p]||Vs[p−1]|| . . . ||Vs[0] and the result
is written to Vd. The previous value of CAR is XORed to the
result in Vd[0]. The most significant p + 1st word is written to
the register CAR.

VSTORE Rd, Vs, n stores the p consecutive 32-bit words from register Vs to mem-
ory starting from address stored in Rd with a stride of 1. n is
not used.

VWSHL Vd, Vs, n Vector-Word-Shift-Left shifts the contents of vector Vs by 1
position to the left inserting zeros to the right. The resulting
vector is written to Vd and the outgoing word to CAR. n is not
used.

VWSHR Vd, Vs, n Vector-Word-Shift-Right shifts the contents of vector Vs by 1
word position to the right inserting the data stored in CAR to
the left. The resulting vector is written to Vd. n is not used.

VXOR Vd, Vs, Vt XORs corresponding words between Vs and Vt and stores the
result in Vd.

MTVCR Rs Copies Rs to VCR.

MFVCR Rd Copies the value in VCR to the scalar register Rd.
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Appendix B

Vector Codes

B.1 AES vector code

/* Begin ShiftRows */

vload $f0, $4, (4*2)

vtransp $f2, $f0, (4*2)

addiu $11, $0, 0x00EE

mtvcr $11

vbcrotr $f4, $f2, 24

addiu $11, $0, 0x00CC

mtvcr $11

vbcrotr $f2, $f4, 24

addiu $11, $0, 0x0088

mtvcr $11

vbcrotr $f4, $f2, 24

vtransp $f0, $f4, (4*2)

/* Begin MixColums */

addiu $11, $0, 0xFFFF

mtvcr $11

vbcrotr $f2, $f0, 8

vbcrotr $f4, $f0, 16

vbcrotr $f6, $f0, 24

vxor $f8, $f0, $f6

addiu $11, $0, 0x011B

mtvcr $11

vmpmul $f10, $f8

vxor $f0, $f10, $f2

vxor $f8, $f0, $f4

vxor $f0, $f8, $f6

/* Add Round Key */

vload $f2, $5, 4

vwshl $f4, $f2, 4

vload $f4, $5, 4

vxor $f2, $f0, $f4
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vstore $4, $f2, (4*2)

B.2 ECC vector code

.global CalcN0

.ent CalcN0

CalcN0:

addi $9, $0, 1

vsmove $f0, $4, 1

move $8, $4

loop_calcn:

move $2, $8

vspmult $f0, $f0, $4

vextract $8, $f0, 1

bne $8, $9, loop_calcn

nop

j $31

nop

.end CalcN0

.global MultBinPoly

.ent MultBinPoly

MultBinPoly:

lw $24, 16($29) # loading size of data

lw $2, 20($29) # loading the N0

vload $v0, $5, 5 # v0 <= b(x) on 6 words

vload $v1, $6, 5 # v1 <= f(x) on 6 words

vsmove $v3, $0, 8 # v3 cleared; (v3 == c(x))

addiu $15, $0, 0 # initialization for loop

sll $24, $24, 2 # $24 <= 4M

LoopBin:

add $8, $15, $4 # addr. of j-th word of a(x)

lw $8, 0($8) # j-th word of a(x)

vspmult $v5, $v0, $8 # v5 <= a[j] * v0; (v0 == b(x))

vxor $v3, $v5, $v3 # v3 <= v5 + v3

vextract $9, $v3, 1 # $9 <= C_0

vsmove $v2, $9, 1 # v2[0] <= $9 ($9 == C_0)

vspmult $v4, $v2, $2 # v4 <= N0 * v2

vextract $9, $v4, 1 # $9 <= M(x)

vspmult $v5, $v1, $9 # v5 <= v4[0] * v1; (v1 == f(x))

vxor $v3, $v3, $v5 # v3 <= v3 + v5

vwshr $v3, $v3, 1 # v3 shifted right by 1 word

addi $15, $15, 4 # Increase index by 4

bne $15, $24, LoopBin
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nop

vstore $7, $v3, 5

j $31

nop

.end MultBinPoly

B.3 RSA vector code

.global Mongo

.ent Mongo

Mongo:

lw $24, 16($29) # loading value of M

lw $2, 20($29) # loading the value of r

sll $24, $24, 2 # $24 <= 4*M

vsmove $v0, $0, 0 # v0 all cleared

addiu $15, $0, 0

LoopClear: # [1] Loop to clear R in memory

add $8, $7, $15 # [1] $8 <= @R + offset

vstore $8, $v0, 7 # [1] at addr. $8,clear data

addi $15, $15, 128 # [1] $15 <= $15 + (p*4)

bne $15, $24, LoopClear

nop

add $8, $7, $15 # [1] Clearing one more word in R

sw $0, 0($8)

addiu $15, $0, 0 # [2] Initializing j to 0

LoopB:

add $8, $5, $15 # [3] $8 <= addr of Aj

lw $8, 0($8) # [3] $8 <= Aj

vsmove $v3, $0, 0 # [3] Clearing v3 (carry)

addiu $9, $0, 0 # [3] Initializing loop counter i

LoopMult:

add $10, $9, $4 # [3] $10 <= addr of Bi

vload $v0, $10, 31 # [3] v0 <= Bi (p=32)

vsamult $v1, $v0, $8 # [3] v1 <= Aj * Bi

vaddu $v0, $v1, $v3 # [3] v0 <= v1 + v3 (v3 has carry)

add $10, $9, $7 # [3] $10 <= addr of Ri

vload $v1, $10, 31 # [3] v1 <= Ri (p=32)

vaddu $v0, $v1, $v0 # [3] v0 <= Ri + Aj * Bi

vstore $10, $v0, 7 # [3] Ri written back to memory

vextract $25, $v0, 0 # [3] $25 <= CAR (i.e. carry)

vsmove $v3, $25, 1 # [3] v3 <= carry

addi $9, $9, 128 # [3] $9 <= $9 + (p*4)

bne $9, $24, LoopMult

nop

add $10, $9, $7 # [3] R has one more word

sw $25, 0($10) # [3] Storing one more word of R
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lw $8, 0($7) # [4] $8 <= Ro

mult $8, $2 # [4] (HI,LO) <= r * Ro

mflo $8 # [4] J <= (r * Ro) mod 2^32

vsmove $v3, $0, 0 # [5] Clearing v3 (carry)

addiu $9, $0, 0 # [5] Initializing loop counter i

LoopReduc:

add $10, $9, $6 # [5] $10 <= addr of Ni

vload $v0, $10, 7 # [5] v0 <= Ni (p=32)

vsamult $v1, $v0, $8 # [5] v1 <= J * Ni

vaddu $v0, $v1, $v3 # [5] v0 <= v1 + v3 (v3 has carry)

add $10, $9, $7 # [5] $10 <= addr of Ri

vload $v1, $10, 7 # [5] v1 <= Ri (p=32)

vaddu $v0, $v1, $v0 # [5] v0 <= Ri + J * Ni

addi $10, $10, -4 # [6] implicit right shift

vstore $10, $v0, 7 # [5] Ri written to memory

vextract $25, $v0, 0 # [5] $25 <= CAR (carry)

vsmove $v3, $25, 1 # [5] v3 <= carry

addi $9, $9, 128 # [5] $9 <= $9 + (p*4)

bne $9, $24, LoopReduc

nop

add $10, $9, $7 # [5] R has one more word

lw $11, 0($10) # [5] $11 <= R(M-1)

addu $25, $25, $11 # [5] $25 <= carry + R[M-1]

addi $10, $10, -4

sw $25, 0($10) # [5] R[M-1] in memory

addi $15, $15, 4 # [2] j = j+1

bne $15, $24, LoopB # [7] End of loop

nop

j $31

nop

.end Mongo
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VeMICry Test Code

@008

8f b8 00 00 // lw $24,0($29) (loading value of M)

8F a2 00 04 // lw $2,4($29) (loading precalculated H0)

00 18 c0 80 // sll $24, $24, 2

68 00 01 00 // vsmove $f0,$0,64

27 a4 00 08 // addiu $4, $29, 8 (A)

00 98 28 21 // addu $5, $4, $24 (B)

00 b8 30 21 // addu $6, $5, $24 (F)

00 d8 50 21 // addu $10, $6, $24 (Res minus 1 word)

25 47 00 04 // addiu $7, $10, 4 (Res)

24 0f 00 00 // addiu $15, $0, 0

<LoopClear>

00 ef 40 20 // add $8, $7, $15 <LoopClear>

21 ef 00 20 // addi $15, $15, 32 (p*4)

f4 08 00 20 // vstore $8, $f0, 32

15 f8 ff fc // bne $15, $24, LoopClear

00 00 00 00 // nop

24 0f 00 00 // addiu $15, $0, 0

<LoopB>

00 af 40 20 // add $8, $5, $15 <LoopB>

8d 08 00 00 // lw $8, 0($8) (Loading Bi)

8c 89 00 00 // lw $9, 0($4) (Loading A0)

8c ec 00 00 // lw $12, 0($7) (Loading R0)

68 00 00 00 // vsmove $f0, $0, 0

01 09 00 0E // multp $8, $9

00 00 50 12 // mflo $10

01 4c 50 26 // xor $10, $10, $12

24 09 00 00 // addiu $9, $0, 0

01 42 00 0e // multp $10, $2

24 19 00 00 // addiu $25, $0, 0

24 0b 00 00 // addiu $11, $0, 0

00 00 70 12 // mflo $14

68 06 01 00 // vsmove $f6, $0, 256 (p)

00 00 00 00
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<LoopMult>

01 24 50 20 // add $10, $9, $4 <LoopMult>

00 00 00 00

f9 40 00 20 // vload $f0, $10, 32

00 00 00 00

fc 08 10 08 // vspmult $f2, $f0, $8

69 66 00 01 // vsmove $f6, $11, 1

01 27 50 20 // add $10, $9, $7

fc 46 00 01 // vxor $f0, $f2, $f6

f9 42 00 20 // vload $f2, $10, 32

01 26 60 20 // add $12, $9, $6

fc 40 20 01 // vxor $f4, $f2, $f0

6c 8b 00 00 // vextract $11, $f4, 0

00 00 00 00

68 00 00 00 // vsmove $f0, $0, 0

f9 80 00 20 // vload $f0, $12, 32

6b 26 00 01 // vsmove $f6, $25, 1

fc 0e 10 08 // vspmult $f2, $f0, $14

00 00 00 00

fc 46 00 01 // vxor $f0, $f2, $f6

6c 59 00 00 // vextract $25, $f2, 0

00 00 00 00

fc 80 00 01 // vxor $f0, $f4, $f0

21 4a ff fc // addi $10, $10, -4 (implicit right shift)

21 29 00 20 // addi $9, $9, 32 (p*4)

68 02 00 00 // vsmove $f2, $0, 0

f4 0a 00 20 // vstore $10, $f0, 32

15 38 ff e5 // bne $9, $24, LoopMult

00 00 00 00 // nop

01 27 50 20 // add $10, $9, $7

03 2b c8 26 // xor $25, $25, $11

21 4a ff fc // addi $10, $10, -4

ad 59 00 00 // sw $25, 0($10)

21 ef 00 04 // addi $15, $15, 4

15 f8 ff cf // bne $15, $24, LoopB

00 00 00 00

00 00 00 00 // nop

00 00 00 00 // nop

00 00 00 00

00 00 00 00

00 00 00 0D
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VeMICry Verilog

D.1 Scalar Processor Verilog

//*** Instruction Set Definition in "instruction_set.v" ***//

//*** TOP LEVEL MODULE ***//

module scamips (clock, reset,inst_read, inst_add , IF_INST,

debugw, typ, access, data_read, data_write, data_add,

data_in_mem, memdataout, rs_add, rt_add, rd_add, shamt, op, func, imm16,

vindex, rs_val, rt_val, pipe_stall, sbi_sig, sbi_add, sbi_val, eID_VEX_RT_ADD);

// Parameters

parameter period = 20 ;

parameter pWIDTH = 32; // data path width

parameter pNUMREG = 32; // number of scalar registers

parameter vq = 4;

parameter vp = 1;

parameter vr = 1;

parameter vp_over_vr_width = 8;

parameter vp_over_vr_minus1 = (vp/vr)-1;

wire [vp_over_vr_width-1:0] v_o_v_m1;

// Register Bank

reg [pWIDTH-1:0] SCAREG[0:pNUMREG-1];

reg [pWIDTH-1:0] NPC;

reg [pWIDTH-1:0] PC;

reg [pWIDTH-1:0] LO;

reg [pWIDTH-1:0] HI;

// IF Internal Registers

reg [pWIDTH-1:0] IF_EX_RES;

// IF-ID connections

reg [pWIDTH-1:0] IF_ID_INST;

// ID Internal Registers

reg [pWIDTH-1:0] ID_INST;

reg ID_JMP_STALL;

reg [pWIDTH-1:0] ID_RS_VAL;

reg [pWIDTH-1:0] ID_RT_VAL;

reg [pWIDTH-1:0] ID_VRS_VAL;

reg [pWIDTH-1:0] ID_VRT_VAL;

reg [4:0] ID_RS_ADD;

reg [4:0] ID_RT_ADD;

reg [4:0] ID_RD_ADD;

reg [4:0] ID_SHAMT;

reg [5:0] ID_OP;

reg [5:0] ID_FUNC;
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reg [15:0] ID_IMM16;

reg [25:0] ID_ADDR;

reg ID_MEMO_WRT;

reg ID_MEMO_RD;

reg ID_RT;

reg ID_STALL;

reg [7:0] vstall_index;

reg [7:0] ID_VSTALL_INDEX;

reg VSTALL;

wire ID_VSTALL;

reg [vp_over_vr_width-1:0] ID_VDF_INDEX;

wire [vp_over_vr_width-1:0] ID_INDEX;

reg id_is_vector;

// ID-EX connections

reg [pWIDTH-1:0] ID_EX_RS_VAL;

reg [pWIDTH-1:0] ID_EX_RT_VAL;

reg [4:0] ID_EX_RS_ADD;

reg [4:0] ID_EX_RT_ADD;

reg [4:0] ID_EX_RD_ADD;

reg [4:0] ID_EX_SHAMT;

reg [5:0] ID_EX_OP;

reg [5:0] ID_EX_FUNC;

reg [5:0] ID_VEX_OP;

reg [5:0] ID_VEX_FUNC;

reg [15:0] ID_EX_IMM16;

reg [25:0] ID_EX_ADDR;

reg ID_EX_MEMO_WRT;

reg ID_EX_MEMO_RD;

reg ID_EX_REG_WRT;

reg [pWIDTH-1:0] ID_VEX_RS_VAL;

reg [pWIDTH-1:0] ID_VEX_RT_VAL;

reg [4:0] ID_VEX_RS_ADD;

reg [4:0] ID_VEX_RT_ADD;

reg [4:0] ID_VEX_RD_ADD;

reg [4:0] ID_VEX_SHAMT;

reg [15:0] ID_VEX_IMM16;

// EX Internal Registers

wire [pWIDTH-1:0] EX_RT_VAL;

wire [pWIDTH-1:0] EX_RS_VAL;

wire EX_REG_WRT;

reg EX_BR_TAKEN;

wire EX_JMP_TAKEN;

wire EX_LD_STALL;

reg [(2*pWIDTH)-1:0] EX_MULT;

reg [pWIDTH-1:0] EX_RD_VAL;

wire [pWIDTH-1:0] EX_IMM16;

wire [4:0] EX_RD_ADD;

wire [5:0] EX_OP;

wire [5:0] EX_FUNC;

wire EX_MEMO_WRT;

wire EX_MEMO_RD;

reg [3:0] EX_ALU_OTP;

wire [15:0] EX_CONST;

reg [1:0] EX_ACCESS;

wire [4:0] EX_SHAMT;

wire [4:0] EX_RT_ADD;

wire [25:0] EX_ADDR;

// EX-MEM connections

reg [pWIDTH-1:0] EX_MEM_RES;

reg [4:0] EX_MEM_RD_ADD;

reg EX_MEM_REG_WRT;

reg EX_MEM_MEMO_WRT;

reg EX_MEM_MEMO_RD;

reg [5:0] EX_MEM_OP;

reg [5:0] EX_MEM_FUNC;

reg [pWIDTH-1:0] EX_MEM_RT_VAL;

reg EX_MEM_LD_STALL;
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reg [1:0] EX_MEM_ACCESS;

// MEM Internal Registers

reg [pWIDTH-1:0] MEM_RES;

reg [1:0] MEM_ACCESS;

// MEM-WB connections

reg [pWIDTH-1:0] MEM_WB_RES;

reg MEM_WB_REG_WRT;

reg [4:0] MEM_WB_RD_ADD;

reg MEM_WB_LD_STALL;

reg [pWIDTH-1:0] MEM_RES_ADD;

reg MEM_MEMO_RD;

reg MEM_MEMO_WRT;

// Control Signals

wire BR_TAKEN;

reg JMP_STALL;

reg LD_STALL;

wire IS_LD_STALL;

wire debug;

reg pipe_stall_int;

reg [pWIDTH-1:0] sbi_val_int;

// Module IOs

input clock;

input reset;

input [pWIDTH-1:0] IF_INST;

output reg [pWIDTH-1:0] inst_add;

output inst_read;

input [pWIDTH-1:0] memdataout;

output debugw;

output typ;

output [1:0] access;

output data_read;

output data_write;

output [pWIDTH-1:0] data_add;

output [pWIDTH-1:0] data_in_mem;

input pipe_stall, sbi_sig;

input [4:0] sbi_add;

input [pWIDTH-1:0] sbi_val;

output [4:0] rs_add, rt_add, rd_add, shamt;

output [5:0] op, func;

output [15:0] imm16;

output [pWIDTH-1:0] rs_val, rt_val;

output [vp_over_vr_width-1:0] vindex;

assign v_o_v_m1 = vp_over_vr_minus1[vp_over_vr_width-1:0];

/*** Control Signals ***/

assign IS_LD_STALL = ((!reset)&&(ID_EX_MEMO_RD && ((IF_ID_INST[25:21] == ID_EX_RD_ADD) ||

((IF_ID_INST[31:26] == ‘nop) && (IF_ID_INST[20:16] == ID_EX_RD_ADD)))) &&

(IF_ID_INST[31:26] != ‘j) && (IF_ID_INST[31:26] != ‘jal)) ?

1’b1 : 1’b0;

assign BR_TAKEN = (reset) ? 1’b0 :

(EX_BR_TAKEN||EX_JMP_TAKEN);

always @(posedge clock or posedge reset)

if (reset)

pipe_stall_int <= 1’b0;

else

pipe_stall_int <= pipe_stall;

always @(posedge sbi_sig or posedge reset)

if (reset)

sbi_val_int <= 0;
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else

sbi_val_int <= sbi_val;

always @(posedge clock or posedge reset)

if (reset) begin

JMP_STALL <= 1’b0;

LD_STALL <= 1’b0;

end

else begin

JMP_STALL <= ID_JMP_STALL;

LD_STALL <= IS_LD_STALL;

end

/*** Instruction Fetch ***/

assign inst_read = (reset) ? 1’b0 :

((JMP_STALL) ? 1’b0 : 1’b1);

always @*

if (reset)

inst_add <= 0;

else if (LD_STALL||VSTALL||pipe_stall_int)

inst_add <= PC-4;

else if (!JMP_STALL)

if (BR_TAKEN)

inst_add <= EX_MEM_RES;

else

inst_add <= PC;

always @*

if (LD_STALL||VSTALL||pipe_stall_int)

NPC <= PC;

else if (!JMP_STALL)

if (BR_TAKEN)

NPC <= EX_MEM_RES+4;

else

NPC <= PC+4;

always @(posedge clock or posedge reset) begin

if (reset) begin

PC <= 0;

IF_ID_INST <= 0;

end

else begin

if (LD_STALL||(VSTALL==1)||(pipe_stall_int==1))

PC <= PC;

else if (JMP_STALL) PC <= NPC;

else if (BR_TAKEN) PC <= EX_MEM_RES+4;

else PC <= PC+4;

IF_ID_INST <= IF_INST;

end // else: !if(reset)

end // end always for IF

// To stop simulation //

assign debug = (IF_ID_INST==’h0D) ? 1’b1 : debug;

/*** Instruction Decode ***/

always @*

if (reset)

ID_INST <= 0;

else if (!(VSTALL||LD_STALL||pipe_stall_int))

ID_INST <= IF_ID_INST;

always @*

if (reset)

id_is_vector <= 1’b0;

else if (!(VSTALL||LD_STALL))

id_is_vector <= (ID_INST[31:26]==‘vr1) || (ID_INST[31:26]==‘vload) ||
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(ID_INST[31:26]==‘vstore) ||

(ID_INST[31:26]==‘vextract) || (ID_INST[31:26]==‘vwshl) ||

(ID_INST[31:26]==‘vwshr) || (ID_INST[31:26]==‘vsmove);

always @*

if (reset)

vstall_index <= 8’b0;

else if (VSTALL||LD_STALL) begin

if (ID_VSTALL_INDEX!=0)

vstall_index <= ID_VSTALL_INDEX-8’b1;

end

else if (id_is_vector)

vstall_index <= v_o_v_m1;

else

vstall_index <= 8’b0;

always @*

if (reset)

ID_JMP_STALL <= 1’b0;

else if (!(VSTALL||LD_STALL))

ID_JMP_STALL <= (ID_INST[31:26] == ‘j) ||(ID_INST[31:26] == ‘jal) ||

((ID_INST[31:26] == ‘nop) && (ID_INST[5:0] == ‘jr)) ||

((ID_INST[31:26] == ‘nop) && (ID_INST[5:0] == ‘jalr)) ||

(ID_INST[31:26] == ‘beq) || (ID_INST[31:26] == ‘bne) ||

(ID_INST[31:26] == ‘blez) || (ID_INST[31:26] == ‘bltz) ||

(ID_INST[31:26] == ‘bgtz);

always @*

if (reset)

{ID_OP,ID_RS_ADD,ID_RT_ADD,ID_IMM16} <= 0;

else if (!(VSTALL||LD_STALL))

{ID_OP,ID_RS_ADD,ID_RT_ADD,ID_IMM16} <= ID_INST;

always @*

if (reset)

{ID_SHAMT,ID_FUNC} <= 0;

else if (!(VSTALL||LD_STALL))

{ID_SHAMT,ID_FUNC} <= ID_INST[10:0];

assign ID_VSTALL = ((!reset)&&(vstall_index>0)) ? 1’b1 :

1’b0;

assign ID_INDEX = v_o_v_m1 - vstall_index;

always @*

if (!((VSTALL)||(LD_STALL)))

ID_ADDR <= ID_INST[25:0];

always @*

if (reset)

ID_RT <= 1’b0;

else if (!(VSTALL||LD_STALL))

ID_RT <= (ID_OP == ‘bne) || (ID_OP == ‘beq) || (ID_OP == ‘lwl) || (ID_OP == ‘lwr);

always @*

if (!(VSTALL||LD_STALL))

ID_MEMO_RD <= (ID_OP == ‘lb) | (ID_OP == ‘lh) | (ID_OP == ‘lwl) | (ID_OP == ‘lw) |

(ID_OP == ‘lbu) | (ID_OP == ‘lhu) | (ID_OP == ‘lwr);

always @*

if (reset)

ID_MEMO_WRT <= 1’b0;

else if (!(VSTALL||LD_STALL))

ID_MEMO_WRT <= (ID_OP == ‘sb) | (ID_OP == ‘sh) | (ID_OP == ‘swl) | (ID_OP == ‘sw) | (ID_OP == ‘swr);

always @*

if (reset)

ID_RD_ADD <= 5’b0;

else if (!(VSTALL||LD_STALL))

if ((ID_OP == ‘nop) || (ID_OP == ‘vr1))

ID_RD_ADD <= ID_INST[15:11];
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else

ID_RD_ADD <= ID_INST[20:16];

always @*

if (reset)

ID_RT_VAL <= 0;

else if (!(VSTALL||LD_STALL) && ((ID_OP == ‘nop) || (ID_OP == ‘vr1) || ID_RT || ID_MEMO_WRT ||

(ID_OP == ‘vstore)))

if ((ID_RT_ADD == EX_MEM_RD_ADD) && (EX_MEM_REG_WRT == 1))

ID_RT_VAL <= EX_MEM_RES;

else if ((ID_RT_ADD == MEM_WB_RD_ADD) && (MEM_WB_REG_WRT == 1))

ID_RT_VAL <= MEM_WB_RES;

else

ID_RT_VAL <= SCAREG[ID_INST[20:16]];

always @*

if (reset)

ID_RS_VAL <= 0;

else if (!(VSTALL||LD_STALL))

if ((ID_RS_ADD == EX_MEM_RD_ADD) && (EX_MEM_REG_WRT == 1))

ID_RS_VAL <= EX_MEM_RES;

else if ((ID_RS_ADD == MEM_WB_RD_ADD) && (MEM_WB_REG_WRT == 1))

ID_RS_VAL <= MEM_WB_RES;

else

ID_RS_VAL <= SCAREG[ID_INST[25:21]];

always @*

if (reset)

ID_VRS_VAL <= 0;

else if (!(VSTALL||LD_STALL))

if (ID_OP==‘vload)

ID_VRS_VAL <= ID_RS_VAL;

else if (ID_OP == ‘vstore)

ID_VRS_VAL <= ID_RT_VAL;

else

ID_VRS_VAL <= 32’h0;

always @*

if (reset)

ID_VRT_VAL <= 0;

else if (!(VSTALL||LD_STALL))

if ((ID_OP==‘vr1)&&(ID_FUNC==‘vspmult_func))

ID_VRT_VAL <= ID_RT_VAL;

else if (ID_OP == ‘vsmove)

ID_VRT_VAL <= ID_RS_VAL;

always @(posedge clock or posedge reset) begin

if (reset) begin

ID_EX_OP <= 0;

ID_EX_FUNC <= 0;

ID_EX_RS_VAL <= 0;

ID_EX_RT_VAL <= 0;

ID_EX_RS_ADD <= 0;

ID_EX_RT_ADD <= 0;

ID_EX_RD_ADD <= 0;

ID_EX_SHAMT <= 0;

ID_EX_IMM16 <= 0;

ID_EX_ADDR <= 0;

ID_EX_MEMO_RD <= 0;

ID_EX_MEMO_WRT <= 0;

ID_EX_REG_WRT <= 0;

ID_VEX_OP <= 0;

ID_VEX_FUNC <= 0;

ID_VEX_RS_VAL <= 0;

ID_VEX_RT_VAL <= 0;

ID_VEX_RS_ADD <= 0;

ID_VEX_RT_ADD <= 0;

ID_VEX_RD_ADD <= 0;

ID_VEX_SHAMT <= 0;

ID_VEX_IMM16 <= 0;
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ID_VSTALL_INDEX <= 0;

VSTALL <= 0;

ID_VDF_INDEX <= 0;

end

else begin

if (! id_is_vector) begin

ID_EX_OP <= ID_OP;

ID_EX_FUNC <= ID_FUNC;

ID_EX_RS_VAL <= ID_RS_VAL;

ID_EX_RT_VAL <= ID_RT_VAL;

ID_EX_RS_ADD <= ID_RS_ADD;

ID_EX_RT_ADD <= ID_RT_ADD;

ID_EX_RD_ADD <= ID_RD_ADD;

ID_EX_SHAMT <= ID_SHAMT;

ID_EX_IMM16 <= ID_IMM16;

ID_EX_ADDR <= ID_ADDR;

ID_EX_MEMO_RD <= ID_MEMO_RD;

ID_EX_MEMO_WRT <= ID_MEMO_WRT;

ID_EX_REG_WRT <= ID_JMP_STALL;

ID_VEX_OP <= 0;

ID_VEX_FUNC <= 0;

ID_VEX_RS_VAL <= 0;

ID_VEX_RT_VAL <= 0;

ID_VEX_RS_ADD <= 0;

ID_VEX_RT_ADD <= 0;

ID_VEX_RD_ADD <= 0;

ID_VEX_SHAMT <= 0;

ID_VEX_IMM16 <= 0;

end

else if (vstall_index==v_o_v_m1) begin

ID_EX_OP <= 0;

ID_EX_FUNC <= 0;

ID_EX_RS_VAL <= 0;

ID_EX_RT_VAL <= 0;

ID_EX_RS_ADD <= 0;

ID_EX_RT_ADD <= 0;

ID_EX_RD_ADD <= 0;

ID_EX_SHAMT <= 0;

ID_EX_IMM16 <= 0;

ID_EX_ADDR <= 0;

ID_EX_MEMO_RD <= 0;

ID_EX_MEMO_WRT <= 0;

ID_EX_REG_WRT <= 0;

ID_VEX_OP <= ID_OP;

ID_VEX_FUNC <= ID_FUNC;

ID_VEX_RS_VAL <= ID_VRS_VAL;

ID_VEX_RT_VAL <= ID_VRT_VAL;

ID_VEX_RS_ADD <= ID_RS_ADD;

ID_VEX_RT_ADD <= ID_RT_ADD ;

ID_VEX_RD_ADD <= ID_RD_ADD;

ID_VEX_SHAMT <= ID_SHAMT;

ID_VEX_IMM16 <= ID_IMM16;

end // else: !if(! id_is_vector)

ID_VSTALL_INDEX <= vstall_index;

VSTALL <= ID_VSTALL;

ID_VDF_INDEX <= ID_INDEX;

end

end

/*** Assigning output values for VeMICry interface ***/

assign rs_add = ID_VEX_RS_ADD >> 1;

assign rt_add = ID_VEX_RT_ADD >> 1;

assign rd_add = ID_VEX_RD_ADD;

assign shamt = ID_VEX_SHAMT;

assign op = ID_VEX_OP;

assign func = ID_VEX_FUNC;

assign imm16 = ID_VEX_IMM16;

assign vindex = ID_VDF_INDEX;

assign rs_val = ID_VEX_RS_VAL;
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assign rt_val = ID_VEX_RT_VAL;

/*** EXecute stage ***/

assign EX_LD_STALL = LD_STALL;

assign EX_OP = ID_EX_OP;

assign EX_FUNC = ID_EX_FUNC;

assign EX_RD_ADD = ID_EX_RD_ADD;

assign EX_MEMO_RD = ID_EX_MEMO_RD;

assign EX_MEMO_WRT = ID_EX_MEMO_WRT;

assign EX_REG_WRT = !(ID_EX_REG_WRT) &&

(ID_EX_RD_ADD != 0) &&

!(ID_EX_MEMO_WRT);

assign EX_JMP_TAKEN = (!reset) ? (((ID_EX_OP == ‘nop) && ((ID_EX_FUNC == ‘jr) ||

(ID_EX_FUNC == ‘jalr))) | (ID_EX_OP == ‘j) |

(ID_EX_OP == ‘jal)) : 1’b0;

assign EX_RS_VAL = ((EX_MEM_LD_STALL && (ID_EX_RS_ADD == MEM_WB_RD_ADD))||

((ID_EX_OP != ‘j) && (ID_EX_OP != ‘jal) && (!EX_MEM_LD_STALL)&&

(ID_EX_RS_ADD == MEM_WB_RD_ADD) && (MEM_WB_REG_WRT))) ? MEM_WB_RES:

((((ID_EX_OP != ‘j) && (ID_EX_OP != ‘jal) && (!EX_MEM_LD_STALL)&&

(ID_EX_RS_ADD == EX_MEM_RD_ADD) && (EX_MEM_REG_WRT))) ? EX_MEM_RES: ID_EX_RS_VAL);

assign EX_RT_VAL = ((EX_MEM_LD_STALL && (ID_EX_OP == ‘nop) && (ID_EX_RT_ADD == MEM_WB_RD_ADD)))||

((ID_EX_OP != ‘j) && (ID_EX_OP!= ‘jal) && (!EX_MEM_LD_STALL)&&

(((ID_EX_OP == ‘nop) || ID_EX_MEMO_WRT) && (ID_EX_RT_ADD == MEM_WB_RD_ADD) &&

MEM_WB_REG_WRT))) ? MEM_WB_RES:

((ID_EX_OP != ‘j) && (ID_EX_OP != ‘jal) && (!EX_MEM_LD_STALL)&&

(((ID_EX_OP == ‘nop) || ID_EX_MEMO_WRT) && (ID_EX_RT_ADD == EX_MEM_RD_ADD) &&

EX_MEM_REG_WRT)) ? EX_MEM_RES : ID_EX_RT_VAL;

assign EX_CONST = ((ID_EX_IMM16 & ’h8000) == 0) ? 16’h0000:

16’hFFFF;

assign EX_IMM16 = {EX_CONST,ID_EX_IMM16};

assign EX_SHAMT = ID_EX_SHAMT;

assign EX_RT_ADD = ID_EX_RT_ADD;

assign EX_ADDR = ID_EX_ADDR;

always @(posedge clock or posedge reset)

if (reset) begin

EX_BR_TAKEN <= 1’b0;

EX_MEM_RES <= 0;

EX_MEM_ACCESS <= 0;

HI <= 0;

LO <= 0;

EX_MEM_LD_STALL <= 0;

EX_MEM_OP <= 0;

EX_MEM_FUNC <= 0;

EX_MEM_RD_ADD <= 0;

EX_MEM_MEMO_RD <= 0;

EX_MEM_MEMO_WRT <= 0;

EX_MEM_REG_WRT <= 0;

EX_MEM_RT_VAL <= 0;

end

else begin

if ((!LD_STALL)&&(!pipe_stall_int)) begin

if (EX_MEMO_RD || EX_MEMO_WRT) begin

EX_MEM_RES <= EX_RS_VAL + EX_IMM16;

EX_MEM_ACCESS <= ((EX_OP == ‘lh)|| (EX_OP == ‘lhu)|| (EX_OP == ‘sh)) ? 1:

((EX_OP == ‘lb)|| (EX_OP == ‘lbu)|| (EX_OP == ‘sb)) ? 2:

0;

end

else begin

// Instructions Execution

case (EX_OP)

‘nop: begin

case (EX_FUNC)

‘sll: EX_MEM_RES <= EX_RT_VAL << EX_SHAMT;

‘srl: EX_MEM_RES <= EX_RT_VAL >> EX_SHAMT;

//‘sra: to be implemented

‘sllv: EX_MEM_RES <= EX_RT_VAL << (EX_RS_VAL & ’h1F);

‘srlv: EX_MEM_RES <= EX_RT_VAL >> (EX_RS_VAL & ’h1F);
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//‘srav: to be implemented

‘jr: EX_MEM_RES <= EX_RS_VAL;

‘jalr: begin

EX_MEM_RES <= EX_RS_VAL;

end

‘movz: if (EX_RT_VAL == 0) begin

EX_MEM_RES <= EX_RS_VAL;

end

‘movn: if (EX_RT_VAL != 0) begin

EX_MEM_RES <= EX_RS_VAL;

end

//‘syscall:

//‘break:

‘mfhi: EX_MEM_RES <= HI;

‘mthi: begin

HI <= EX_RS_VAL;

end

‘mflo: EX_MEM_RES <= LO;

‘mtlo: begin

LO <= EX_RS_VAL;

end

‘mult: {HI,LO} <= EX_RS_VAL * EX_RT_VAL; //sign?

‘multu: {HI,LO} <= EX_RS_VAL * EX_RT_VAL;

‘multp: {HI,LO} <= binmult(EX_RS_VAL , EX_RT_VAL);

//‘div:

//‘divu:

‘add: EX_MEM_RES <= EX_RS_VAL + EX_RT_VAL; //sign?

‘addu: EX_MEM_RES <= EX_RS_VAL + EX_RT_VAL;

‘sub: EX_MEM_RES <= EX_RS_VAL - EX_RT_VAL; //sign?

‘subu: EX_MEM_RES <= EX_RS_VAL - EX_RT_VAL;

‘and: EX_MEM_RES <= EX_RS_VAL & EX_RT_VAL;

‘or: EX_MEM_RES <= EX_RS_VAL | EX_RT_VAL;

‘xor: EX_MEM_RES <= EX_RS_VAL ^ EX_RT_VAL;

‘nor: EX_MEM_RES <= ~(EX_RS_VAL | EX_RT_VAL);

‘slt: EX_MEM_RES <= (EX_RS_VAL < EX_RT_VAL); //sign?

‘sltu: EX_MEM_RES <= (EX_RS_VAL < EX_RT_VAL);

default: ;

endcase // endcase for R-instructions

EX_BR_TAKEN <= 1’b0;

end // End R-type instructions

‘bltz: begin

case (EX_RT_ADD)

’h00: begin //‘bltz

EX_BR_TAKEN <= ((EX_RS_VAL & ’h80000000) != 0);

EX_MEM_RES <= (((EX_RS_VAL & ’h80000000) != 0) & !EX_JMP_TAKEN) ?

PC + (EX_IMM16 << 2) - 4 : EX_MEM_RES;

end

’h01: begin //‘bgez

EX_BR_TAKEN <= ((EX_RS_VAL & ’h80000000) == 0);

EX_MEM_RES <= (((EX_RS_VAL & ’h80000000) == 0) & !EX_JMP_TAKEN) ?

PC + (EX_IMM16 << 2) - 4 : EX_MEM_RES;

end

’h10: if (EX_RS_VAL & ’h80000000) begin

EX_BR_TAKEN <= 1;

if (!EX_JMP_TAKEN)

EX_MEM_RES <= PC + (EX_IMM16 << 2) - 4;

end //‘bltzal

’h11: if (!(EX_RS_VAL & ’h80000000)) begin

EX_BR_TAKEN <= 1;

if (!EX_JMP_TAKEN)

EX_MEM_RES <= PC + (EX_IMM16 << 2) - 4;

end //‘bgezal

endcase // rt for branch instructions

end // case: ‘bltz

‘beq: begin

EX_BR_TAKEN <= (EX_RT_VAL == EX_RS_VAL);

EX_MEM_RES <= ((EX_RT_VAL == EX_RS_VAL) & !EX_JMP_TAKEN) ?

PC + (EX_IMM16 << 2) - 4 : EX_MEM_RES;

end

‘bne: begin
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EX_BR_TAKEN <= (EX_RT_VAL != EX_RS_VAL);

EX_MEM_RES <= ((EX_RT_VAL != EX_RS_VAL) & !EX_JMP_TAKEN) ?

PC + (EX_IMM16 << 2) - 4 : EX_MEM_RES;

end

‘blez: begin

EX_BR_TAKEN <= ((EX_RS_VAL == 0) || (EX_RS_VAL[pWIDTH-1]));

EX_MEM_RES <= (((EX_RS_VAL == 0) || (EX_RS_VAL[pWIDTH-1]))& !EX_JMP_TAKEN) ?

PC + (EX_IMM16 << 2) - 4 : EX_MEM_RES;

end

‘bgtz: begin

EX_BR_TAKEN <= ((EX_RS_VAL > 0) && !(EX_RS_VAL[pWIDTH-1]));

EX_MEM_RES <= ((EX_RS_VAL > 0) && !(EX_RS_VAL[pWIDTH-1])& !EX_JMP_TAKEN) ?

PC + (EX_IMM16 << 2) - 4 : EX_MEM_RES;

end

‘addi: begin

EX_MEM_RES <= EX_RS_VAL + EX_IMM16;

EX_BR_TAKEN <= 1’b0; end

‘addiu: begin

EX_MEM_RES <= EX_RS_VAL + EX_IMM16[15:0];

EX_BR_TAKEN <= 1’b0; end

‘slti: begin

EX_MEM_RES <= (EX_RS_VAL < EX_IMM16);

EX_BR_TAKEN <= 1’b0; end

‘andi: begin

EX_MEM_RES <= EX_RS_VAL & EX_IMM16[15:0];

EX_BR_TAKEN <= 1’b0; end

‘sltiu: EX_BR_TAKEN <= 1’b0; // to implement

‘ori: begin

EX_MEM_RES <= EX_RS_VAL | EX_IMM16[15:0];

EX_BR_TAKEN <= 1’b0; end

‘xori: begin

EX_MEM_RES <= EX_RS_VAL ^ EX_IMM16[15:0];

EX_BR_TAKEN <= 1’b0; end

‘lui: begin

EX_MEM_RES <= {EX_IMM16[15:0],16’h0000};

EX_BR_TAKEN <= 1’b0; end

‘j: begin

EX_MEM_RES <= (PC & ’hF0000000) | (EX_ADDR << 2);

EX_BR_TAKEN <= 1’b0; end

‘jal: begin

EX_MEM_RES <= (PC & ’hF0000000) | (EX_ADDR << 2);

EX_BR_TAKEN <= 1’b0;

end

default: EX_BR_TAKEN <= 1’b0;

endcase // endcase for main execution

end // if no load/store instruction

end // If for load stall

EX_MEM_LD_STALL <= EX_LD_STALL;

EX_MEM_OP <= EX_OP;

EX_MEM_FUNC <= EX_FUNC;

EX_MEM_RD_ADD <= EX_RD_ADD;

EX_MEM_MEMO_RD <= EX_MEMO_RD;

EX_MEM_MEMO_WRT <= EX_MEMO_WRT;

EX_MEM_ACCESS <= ((EX_OP == ‘lh)||(EX_OP == ‘lhu)||(EX_OP == ‘sh)) ? 1:

((EX_OP == ‘lb)||(EX_OP == ‘lbu)||(EX_OP == ‘sb)) ? 2:

0;

if ((EX_OP==‘nop)&&(((EX_FUNC==‘movz)&&(EX_RT_VAL!=0))||

((EX_FUNC==‘movn)&&(EX_RT_VAL==0))||(EX_FUNC==‘mthi)|| (EX_FUNC==‘mtlo)))

EX_MEM_REG_WRT <= 0;

else

EX_MEM_REG_WRT <= EX_REG_WRT;

if ((EX_OP==‘nop)&&(EX_FUNC==‘jalr)&&(EX_RD_ADD!=0))

EX_MEM_RT_VAL <= PC-4;

else

EX_MEM_RT_VAL <= EX_RT_VAL;

end // end always for EX stage

/*** MEMory Stage ***/

always @*
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if (!EX_MEM_LD_STALL)

MEM_MEMO_RD <= EX_MEM_MEMO_RD;

always @*

if (!EX_MEM_LD_STALL)

MEM_MEMO_WRT <= EX_MEM_MEMO_WRT;

always @*

if (!EX_MEM_LD_STALL)

MEM_ACCESS <= EX_MEM_ACCESS;

always @*

if (!EX_MEM_LD_STALL) begin

if ((!(EX_MEM_MEMO_RD || EX_MEM_MEMO_WRT))&&(EX_MEM_OP == ‘nop) &&

(EX_MEM_FUNC == ‘jalr)) begin

MEM_RES <= EX_MEM_RT_VAL;

end

else MEM_RES <= EX_MEM_RES;

end

always @(posedge clock or posedge reset)

if (reset) begin

MEM_WB_REG_WRT <= 0;

MEM_WB_RD_ADD <= 0;

MEM_WB_RES <= 0;

MEM_WB_LD_STALL <= 0;

end

else begin

if (sbi_sig) begin

MEM_WB_REG_WRT <= sbi_sig;

MEM_WB_RD_ADD <= sbi_add;

MEM_WB_RES <= sbi_val_int;

end

else begin

MEM_WB_REG_WRT <= EX_MEM_REG_WRT;

MEM_WB_RD_ADD <= EX_MEM_RD_ADD;

MEM_WB_LD_STALL <= EX_MEM_LD_STALL;

if (EX_MEM_MEMO_RD) begin

MEM_WB_RES <= memdataout[pWIDTH-1:0];

end

else begin

MEM_WB_RES <= MEM_RES[pWIDTH-1:0];

end

end // else: !if(sbi_sig)

end // always @ (posedge clock)

/*** Output signals to (vector) data memory ***/

assign debugw = debug;

assign typ = (MEM_MEMO_WRT || MEM_MEMO_RD);

assign access = MEM_ACCESS;

assign data_read = MEM_MEMO_RD;

assign data_write = MEM_MEMO_WRT;

assign data_add = MEM_RES;

assign data_in_mem = EX_MEM_RT_VAL;

/*** Register Write stage ***/

always @(posedge clock or posedge reset)

if (reset)

for (i=0; i<pNUMREG; i=i+1)

SCAREG[i]<=0;

else begin

if ((MEM_WB_REG_WRT == 1) && (MEM_WB_RD_ADD != 0) && (!MEM_WB_LD_STALL)) begin

SCAREG[MEM_WB_RD_ADD] <= MEM_WB_RES;

end

else begin

SCAREG[0] <= 32’h0;

end

if ((ID_EX_OP == ‘jal) || ((ID_EX_OP == ‘jalr) && (ID_EX_RD_ADD == 0)) ||

((ID_EX_OP == ‘bltz)&& (((ID_EX_RT_ADD==’h10)&&(EX_RS_VAL & ’h80000000)) ||
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((ID_EX_RT_ADD==’h11)&&(!(EX_RS_VAL & ’h80000000)))))) begin

SCAREG[‘RA] <= PC - 4;

end

end // always @ (posedge clock)

function [(2*pWIDTH)-1:0] binmult;

input[pWIDTH-1:0] op1;

input[pWIDTH-1:0] op2;

reg[7:0] loop;

reg [(2*pWIDTH)-1:0] temp;

reg [pWIDTH-1:0] optemp;

begin

temp = 0;

for (loop=pWIDTH; loop > 0; loop=loop-1) begin

optemp = (op2[loop-1] == 1)? op1:32’h00000000;

temp = (temp << 1) ^ optemp;

end

binmult = temp;

end // always @ (op1 or op2)

endfunction // binmult

endmodule // Module scamips

D.2 Vector Processor Verilog
//*** Instruction Set Definition in file "instruction_set.v" ***//

//*** TOP LEVEL MODULE ***//

module vemicry_module ( clock, reset, typ, data_read, data_write,

data_add, data_in_mem, memdataout, ID_VDF_VS_ADD, ID_VDF_VT_ADD, ID_VDF_VD_ADD,

ID_VDF_SHAMT, ID_VDF_OP, ID_VDF_FUNC, ID_VDF_IMM16, ID_VDF_INDEX, ID_EX_RS_VAL,

ID_EX_RT_VAL, pipe_stall, sbi_sig, sbi_add, sbi_val);

// Parameters

parameter period = 20;

parameter pWIDTH = 32;

parameter pSIZEMEM = 2080;

parameter vq = 4;

parameter vp = 32;

parameter vr = 32;

parameter vp_over_vr_width = 8;

parameter vp_over_vr_minus1 = (vp/vr)-1;

reg [pWIDTH-1:0] CAR;

reg [pWIDTH-1:0] SBI;

// Vector Lanes IOs

reg [vp_over_vr_width-1:0] VDF_VEXM_INDEX;

reg [vp_over_vr_width-1:0] VEXM_VEXC_INDEX, VEXC_VWB_INDEX;

reg [15:0] VDF_VEXM_IMM16;

reg [15:0] VEXM_VEXC_IMM16;

reg [pWIDTH-1:0] VEXM_VEXC_RS_VAL;

reg [pWIDTH-1:0] VDF_VEXM_RS_VAL;

wire [0:(pWIDTH*vr)-1] LANE_OUT_VAL;

reg [4:0] VDF_VEXM_RD_ADD, VEXM_VEXC_RD_ADD, VEXC_VWB_RD_ADD;

// Data Memory Control Signals

reg [0:(pWIDTH*vr)-1] memaddress;

wire [0:(pWIDTH*vr)-1] LANE_CARRIES;

wire [0:(pWIDTH*vr)-1] LANE_CARRIES_32;

reg [0:(pWIDTH*vr)-1] LANE_CARRIES_REG;

wor SHIFT_CARRIES;

wor WAY;

reg debug;
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wor mem_write_wire;

wor mem_read_wire;

wor car_write_wire;

reg [pWIDTH-1:0] sbi_reg;

wor sbi_write_wire;

// Module IOs

input [4:0] ID_VDF_VS_ADD;

input [4:0] ID_VDF_VT_ADD;

input [4:0] ID_VDF_VD_ADD;

input [4:0] ID_VDF_SHAMT;

input [5:0] ID_VDF_OP;

input [5:0] ID_VDF_FUNC;

input [15:0] ID_VDF_IMM16;

input [vp_over_vr_width-1:0] ID_VDF_INDEX;

input [pWIDTH-1:0] ID_EX_RS_VAL;

input [pWIDTH-1:0] ID_EX_RT_VAL;

input clock;

input reset;

input [0:(pWIDTH*vr)-1] memdataout;

output typ;

output data_read;

output data_write;

output [0:(pWIDTH*vr)-1] data_add;

output [pWIDTH-1:0] data_in_mem;

output pipe_stall;

output sbi_sig;

output [4:0] sbi_add;

output [pWIDTH-1:0] sbi_val;

reg sbi_sync;

// Control Signals

reg [7:0] ID_VSTALL_INDEX;

wire PIPE_STALL;

wire FLOAT_WIRE;

// VeMICry - Delaying Index Signal & OP signal and imm16 signals//

always @(posedge clock or posedge reset)

if (reset) begin

VDF_VEXM_INDEX <= 0;

VEXM_VEXC_INDEX <= 0;

VEXC_VWB_INDEX <= 0;

VDF_VEXM_IMM16 <= 0;

VEXM_VEXC_IMM16 <= 0;

VDF_VEXM_RS_VAL <= 0;

VEXM_VEXC_RS_VAL <= 0;

VDF_VEXM_RD_ADD <= 0;

VEXM_VEXC_RD_ADD <= 0;

VEXC_VWB_RD_ADD <= 0;

end

else begin

if (!PIPE_STALL) begin

VDF_VEXM_INDEX <= ID_VDF_INDEX;

VEXM_VEXC_INDEX <= VDF_VEXM_INDEX;

VEXC_VWB_INDEX <= VEXM_VEXC_INDEX;

VDF_VEXM_IMM16 <= ID_VDF_IMM16;

VEXM_VEXC_IMM16 <= VDF_VEXM_IMM16;

VDF_VEXM_RS_VAL <= ID_EX_RS_VAL;

VEXM_VEXC_RS_VAL <= VDF_VEXM_RS_VAL;

VDF_VEXM_RD_ADD <= ID_VDF_VD_ADD;

VEXM_VEXC_RD_ADD <= VDF_VEXM_RD_ADD;

VEXC_VWB_RD_ADD <= VEXM_VEXC_RD_ADD;

end // if (!PIPE_STALL)

end

assign typ = (mem_read_wire || mem_write_wire);

assign data_read = mem_read_wire;

assign data_write = mem_write_wire;

assign data_add = LANE_OUT_VAL;
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assign data_in_mem = (VEXM_VEXC_RS_VAL+(VEXM_VEXC_INDEX*4*vr));

assign pipe_stall = PIPE_STALL;

// VeMICry - Generate Parallel Lanes //

genvar i;

generate

for (i=0; i < vr; i=i+1) begin : VLANES

if (i==0) begin

vector_lane #(pWIDTH, vr, vq, vp_over_vr_minus1, vp_over_vr_width, i)

vector_lane (clock, reset, ID_VDF_OP, ID_VDF_FUNC, ID_VDF_IMM16, ID_VDF_SHAMT,

ID_VDF_VS_ADD, ID_VDF_VT_ADD, (ID_VDF_VD_ADD >> 1),

(ID_EX_RS_VAL+((i+(vr*ID_VDF_INDEX))<<2)), ID_EX_RT_VAL,

ID_VDF_INDEX, memdataout[(pWIDTH*i):((pWIDTH*(i+1))-1)],

LANE_OUT_VAL[(pWIDTH*i):((pWIDTH*(i+1))-1)],

CAR, LANE_CARRIES[(pWIDTH*i):((pWIDTH*(i+1))-1)],

SHIFT_CARRIES, WAY, mem_read_wire,

mem_write_wire, car_write_wire, sbi_write_wire, PIPE_STALL);

end

else begin

vector_lane #(pWIDTH, vr, vq, vp_over_vr_minus1, vp_over_vr_width, i)

vector_lane (clock, reset, ID_VDF_OP, ID_VDF_FUNC, ID_VDF_IMM16, ID_VDF_SHAMT,

ID_VDF_VS_ADD, ID_VDF_VT_ADD, (ID_VDF_VD_ADD >> 1),

(ID_EX_RS_VAL+((i+(vr*ID_VDF_INDEX))<<2)), ID_EX_RT_VAL,

ID_VDF_INDEX, memdataout[(pWIDTH*i):((pWIDTH*(i+1))-1)],

LANE_OUT_VAL[(pWIDTH*i):((pWIDTH*(i+1))-1)],

LANE_CARRIES_REG[(pWIDTH*i):((pWIDTH*(i+1))-1)],

LANE_CARRIES[(pWIDTH*i):((pWIDTH*(i+1))-1)],

SHIFT_CARRIES, WAY, mem_read_wire,

mem_write_wire, car_write_wire, sbi_write_wire, FLOAT_WIRE);

end // else: !if(i==0)

end // block: VLANES

endgenerate

// VeMICry - CAR register management //

assign LANE_CARRIES_32 = LANE_CARRIES << 32;

always @*

if (car_write_wire == 1) begin

if (SHIFT_CARRIES == 1) begin

if (WAY == 0) begin // shift left

LANE_CARRIES_REG <= LANE_CARRIES >> 32;

end

else begin

LANE_CARRIES_REG[0:((pWIDTH*vr-1)-1)] <= LANE_CARRIES_32[0:((pWIDTH*vr-1)-1)];

LANE_CARRIES_REG[(pWIDTH*(vr-1)):((pWIDTH*vr)-1)] <= CAR;

end

end

else begin

LANE_CARRIES_REG <= LANE_CARRIES;

end // else: !if(SHIFT_CARRIES == 1)

end

// VeMICry - SBI registers management //

always @*

if ((ID_VDF_OP == ‘vextract) && (ID_VDF_INDEX == 0))

sbi_reg <= 0;

else

if (sbi_write_wire)

sbi_reg <= sbi_reg | LANE_CARRIES[0:31];

always @(posedge clock or posedge reset)

if (reset) begin

CAR <= 0;

SBI <= 0;

sbi_sync <= 0;

end
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else begin

if (car_write_wire) begin

CAR <= (WAY == 0)? LANE_CARRIES[(pWIDTH*(vr-1)):((pWIDTH*vr)-1)]:

32’h0;

end

if (sbi_write_wire) begin

if (VEXM_VEXC_IMM16 == 0)begin

SBI <= CAR;

end

else begin

SBI <= sbi_reg;

end

sbi_sync <= (VEXC_VWB_INDEX == vp_over_vr_minus1);

end

else begin

sbi_sync <= 0;

end // else: !if(sbi_write_wire)

end // always @ (posedge clock)

assign sbi_sig = sbi_sync;

assign sbi_val = SBI;

assign sbi_add = VEXC_VWB_RD_ADD; //SBI_RD_ADD;

endmodule // Top Level VeMICry

//*** Vector Processor Lane Definition ***//

module vector_lane (clock, reset, op, func, imm16, shamt, vs_add,

vt_add, vd_add, sbi, scalar, index, data_in,

data_out, carry_in, carry_out, shift, way,

mem_read, mem_write, car_write, sbi_write, is_pipe_stall);

// Parameters

parameter lawidth = 32;

parameter vr = 1;

parameter vq = 2;

parameter vpvr = 2;

parameter vp_over_vr_width = 8;

parameter i_number = 0;

// Vector Register File defined per lane

reg [lawidth-1:0] VECREG[0:vq-1][0:vpvr]; // vector register file

// Module IOs

input [vp_over_vr_width-1:0] index;

input clock;

input reset;

input [5:0] op;

input [5:0] func;

input [4:0] shamt;

input [15:0] imm16;

input [4:0] vs_add;

input [4:0] vt_add;

input [4:0] vd_add;

input [lawidth-1:0] sbi;

input [lawidth-1:0] scalar;

input [lawidth-1:0] data_in;

input [lawidth-1:0] carry_in;

output mem_read;

output mem_write;

output car_write;

output sbi_write;

output is_pipe_stall;

output [lawidth-1:0] data_out;

output shift;

output way;

output [lawidth-1:0] carry_out;
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// VDF internal registers

reg [lawidth-1:0] vdf_vt_val;

reg [lawidth-1:0] vdf_vs_val;

reg [5:0] vdf_op;

reg [5:0] vdf_func;

reg [4:0] vdf_vs_add;

reg [4:0] vdf_vt_add;

//reg [4:0] vdf_vd_add;

//reg [4:0] vdf_shamt;

//reg [15:0] vdf_imm16;

//reg [lawidth-1:0] vdf_sbi;

reg [vp_over_vr_width-1:0] vdf_index;

// VDF-VEXM pipeline

reg [lawidth-1:0] VDF_VEXM_VT_VAL;

reg [lawidth-1:0] VDF_VEXM_VS_VAL;

reg [5:0] VDF_VEXM_OP;

reg [5:0] VDF_VEXM_FUNC;

reg [4:0] VDF_VEXM_VS_ADD;

reg [4:0] VDF_VEXM_VT_ADD;

reg [4:0] VDF_VEXM_VD_ADD;

reg [4:0] VDF_VEXM_SHAMT;

reg [15:0] VDF_VEXM_IMM16;

reg [lawidth-1:0] VDF_VEXM_SBI;

reg [lawidth-1:0] VDF_VEXM_SCALAR;

reg [lawidth-1:0] VDF_VEXM_CARRYIN;

reg [vp_over_vr_width-1:0] VDF_VEXM_INDEX;

reg VDF_PIPE_STALL;

// VEXM Internal Registers

reg [lawidth-1:0] vexm_vt_val;

reg [lawidth-1:0] vexm_vs_val;

wire[5:0] vexm_op;

reg [5:0] vexm_func;

reg [4:0] vexm_vs_add;

reg [4:0] vexm_vt_add;

reg [4:0] vexm_vd_add;

reg [4:0] vexm_shamt;

reg [15:0] vexm_imm16;

reg [(2*lawidth)-1:0] vexm_res_val;

reg [lawidth-1:0] vexm_scalar;

reg [lawidth-1:0] vexm_sbi;

wire vexm_mem_read;

wire vexm_mem_write;

wire vexm_car_write;

wire vexm_sbi_write;

reg [vp_over_vr_width-1:0] vexm_index;

wire vexm_shift;

wire vexm_way;

// VEXM-VEXC pipeline

reg [lawidth-1:0] VEXM_VEXC_VT_VAL;

reg [lawidth-1:0] VEXM_VEXC_VS_VAL;

reg [lawidth-1:0] VEXM_VEXC_CARRY;

reg [5:0] VEXM_VEXC_OP;

reg [5:0] VEXM_VEXC_FUNC;

reg [4:0] VEXM_VEXC_VS_ADD;

reg [4:0] VEXM_VEXC_VT_ADD;

reg [4:0] VEXM_VEXC_VD_ADD;

reg [4:0] VEXM_VEXC_SHAMT;

reg [15:0] VEXM_VEXC_IMM16;

reg VEXM_VEXC_MEM_READ;

reg VEXM_VEXC_MEM_WRITE;

reg VEXM_VEXC_CAR_WRT;

reg VEXM_VEXC_SBI_WRT;

reg [vp_over_vr_width-1:0] VEXM_VEXC_INDEX;

reg VEXM_VEXC_SHIFT;

reg VEXM_VEXC_WAY;

// VEXC Internal Registers
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wire [lawidth-1:0] vexc_vt_val;

wire [lawidth-1:0] vexc_vs_val;

wire [5:0] vexc_op;

wire [5:0] vexc_func;

wire [4:0] vexc_vs_add;

wire [4:0] vexc_vt_add;

wire [4:0] vexc_shamt;

wire [15:0] vexc_imm16;

wire [vp_over_vr_width-1:0] vexc_index;

wire [4:0] vexc_vd_add;

wire vexc_reg_wrt;

reg [lawidth-1:0] vexc_res_val;

wire [lawidth-1:0] vexc_carryin;

wire vexc_mem_read;

wire vexc_mem_write;

// VEXC-VWB pipeline

reg VEXC_VWB_MEM_WRT;

reg VEXC_VWB_MEM_READ;

reg VEXC_VWB_REG_WRT;

reg [4:0] VEXC_VWB_VD_ADD;

reg [vp_over_vr_width-1:0] VEXC_VWB_INDEX;

reg [lawidth-1:0] VEXC_VWB_RES;

reg [lawidth-1:0] VEXC_VWB_DATAIN;

wire pipe_stall;

// Vector Lane - Vector Data Fetch //

assign pipe_stall = (VDF_PIPE_STALL) ? 1’b0 :

((((VDF_VEXM_VD_ADD == vs_add) && (VDF_VEXM_INDEX == index) &&

(op != ‘vload) && (op != ‘vsmove) && (op != 0)) ||

((VDF_VEXM_VD_ADD == vt_add) && (VDF_VEXM_INDEX == index) &&

(op == ‘vr1) && (func == ‘vxor_func))) &&

(VDF_VEXM_OP != 0));

always @*

if (!VDF_PIPE_STALL)

vdf_op <= op;

always @*

if (!VDF_PIPE_STALL)

vdf_func <= func;

always @*

if (!VDF_PIPE_STALL)

vdf_vs_add <= vs_add;

always @*

if (!VDF_PIPE_STALL)

vdf_vt_add <= vt_add;

always @*

if (!VDF_PIPE_STALL)

vdf_index <= index;

always @*

// Register Bypass for VS

if (vdf_op != 0) begin

if ((vdf_vs_add == VEXC_VWB_VD_ADD) && (vdf_index == VEXC_VWB_INDEX) &&

(VEXC_VWB_REG_WRT)) begin

if (VEXC_VWB_MEM_READ) begin

vdf_vs_val <= VEXC_VWB_DATAIN;

end

else begin

vdf_vs_val <= VEXC_VWB_RES;

end

end

else begin

vdf_vs_val <= VECREG[vdf_vs_add][vdf_index];

end

end // if (vdf_op != 0)

always @*
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// Register Bypass for VT

if ((vdf_op == ‘vr1) && (vdf_func == ‘vxor_func)) begin

if ((vdf_vt_add == VEXC_VWB_VD_ADD)

&& (vdf_index == VEXC_VWB_INDEX)

&& (VEXC_VWB_REG_WRT)) begin

if (VEXC_VWB_MEM_READ) begin

vdf_vt_val <= VEXC_VWB_DATAIN;

end

else begin

vdf_vt_val <= VEXC_VWB_RES;

end

end

else begin

vdf_vt_val <= VECREG[vdf_vt_add][vdf_index];

end

end

always @(posedge clock or posedge reset)

if (reset) begin

VDF_VEXM_VT_VAL <= 0;

VDF_VEXM_VS_VAL <= 0;

VDF_VEXM_OP <= 0;

VDF_VEXM_FUNC <= 0;

VDF_VEXM_VS_ADD <= 0;

VDF_VEXM_VT_ADD <= 0;

VDF_VEXM_VD_ADD <= 0;

VDF_VEXM_SHAMT <= 0;

VDF_VEXM_IMM16 <= 0;

VDF_VEXM_SBI <= 0;

VDF_VEXM_INDEX <= 0;

VDF_VEXM_SCALAR <= 0;

VDF_PIPE_STALL <= 0;

end

else begin

if (!VDF_PIPE_STALL) begin

VDF_VEXM_VT_VAL <= vdf_vt_val;

VDF_VEXM_VS_VAL <= vdf_vs_val;

VDF_VEXM_FUNC <= vdf_func;

VDF_VEXM_VS_ADD <= vdf_vs_add;

VDF_VEXM_VT_ADD <= vdf_vt_add;

VDF_VEXM_INDEX <= vdf_index;

VDF_VEXM_SCALAR <= scalar;

end

VDF_VEXM_OP <= vdf_op;

VDF_PIPE_STALL <= pipe_stall;

if (!VDF_PIPE_STALL)

VDF_VEXM_VD_ADD <= vd_add;

if (!VDF_PIPE_STALL)

VDF_VEXM_SHAMT <= shamt;

if (!VDF_PIPE_STALL)

VDF_VEXM_IMM16 <= imm16;

if (!VDF_PIPE_STALL)

VDF_VEXM_SBI <= sbi;

end

assign is_pipe_stall = VDF_PIPE_STALL;

// Vector Lane - Vector EXecute Multiply //

assign vexm_op = (VDF_PIPE_STALL!=1) ? VDF_VEXM_OP :

6’b0;

assign vexm_mem_read = (vexm_op == ‘vload);

assign vexm_mem_write = (vexm_op == ‘vstore);

assign vexm_car_write = (((vexm_op == ‘vr1) && (VDF_VEXM_FUNC == ‘vspmult_func)) ||

(vexm_op == ‘vwshl) || (vexm_op == ‘vwshr) ||

((vexm_op == ‘vsmove)&&(VDF_VEXM_IMM16==0)));

assign vexm_sbi_write = (vexm_op == ‘vextract);

assign vexm_shift = (((vexm_op == ‘vr1) && (VDF_VEXM_FUNC == ‘vspmult_func)) ||

(vexm_op == ‘vwshl) || (vexm_op == ‘vwshr));

assign vexm_way = (vexm_op == ‘vwshr); // if zero, shift left else right
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always @*

if (((vexm_op != ‘vload) && (vexm_op != ‘vsmove)) && ((VDF_VEXM_VS_ADD == VEXC_VWB_VD_ADD) &&

(VDF_VEXM_INDEX == VEXC_VWB_INDEX) && (VEXC_VWB_REG_WRT))) begin

if (VEXC_VWB_MEM_READ) begin

vexm_vs_val <= VEXC_VWB_DATAIN;

end

else begin

vexm_vs_val <= VEXC_VWB_RES;

end

end

else if (!VDF_PIPE_STALL)

vexm_vs_val <= VDF_VEXM_VS_VAL;

always @(posedge clock or posedge reset)

if (reset)

{VEXM_VEXC_CARRY,VEXM_VEXC_VS_VAL} <= 0;

else

case (vexm_op)

‘vextract: VEXM_VEXC_CARRY <= (((VDF_VEXM_INDEX*vr)+i_number+1)==VDF_VEXM_IMM16)

? vexm_vs_val : 32’h0;

‘vsmove: {VEXM_VEXC_CARRY,VEXM_VEXC_VS_VAL} <= {VDF_VEXM_SCALAR,VDF_VEXM_SCALAR};

‘vload: VEXM_VEXC_VS_VAL <= VDF_VEXM_SBI;

‘vwshl: {VEXM_VEXC_CARRY,VEXM_VEXC_VS_VAL} <= {vexm_vs_val, 32’h0};

‘vwshr: {VEXM_VEXC_CARRY,VEXM_VEXC_VS_VAL} <= {vexm_vs_val, 32’h0};

‘vr1: begin

case (VDF_VEXM_FUNC)

‘vspmult_func: {VEXM_VEXC_CARRY,VEXM_VEXC_VS_VAL} <= binmult(vexm_vs_val, VDF_VEXM_SCALAR);

‘vxor_func : VEXM_VEXC_VS_VAL <= vexm_vs_val;

endcase

end

default: VEXM_VEXC_VS_VAL <= vexm_vs_val;

endcase

always @(posedge clock or posedge reset)

if (reset) begin

VEXM_VEXC_VT_VAL <= 0;

VEXM_VEXC_OP <= 0;

VEXM_VEXC_FUNC <= 0;

VEXM_VEXC_VS_ADD <= 0;

VEXM_VEXC_VT_ADD <= 0;

VEXM_VEXC_VD_ADD <= 0;

VEXM_VEXC_SHAMT <= 0;

VEXM_VEXC_IMM16 <= 0;

VEXM_VEXC_MEM_READ <= 0;

VEXM_VEXC_MEM_WRITE <= 0;

VEXM_VEXC_INDEX <= 0;

VEXM_VEXC_CAR_WRT <= 0;

VEXM_VEXC_SBI_WRT <= 0;

VEXM_VEXC_SHIFT <= 0;

VEXM_VEXC_WAY <= 0;

end

else begin

if ((vexm_op == ‘vr1) && (VDF_VEXM_FUNC == ‘vxor_func)&& (VDF_VEXM_VT_ADD == VEXC_VWB_VD_ADD)

&& (VDF_VEXM_INDEX == VEXC_VWB_INDEX) && (VEXC_VWB_REG_WRT))

if (VEXC_VWB_MEM_READ)

VEXM_VEXC_VT_VAL <= VEXC_VWB_DATAIN;

else

VEXM_VEXC_VT_VAL <= VEXC_VWB_RES;

else if (VDF_PIPE_STALL != 1)

VEXM_VEXC_VT_VAL <= VDF_VEXM_VT_VAL;

VEXM_VEXC_OP <= vexm_op;

if (!VDF_PIPE_STALL)

VEXM_VEXC_FUNC <= VDF_VEXM_FUNC;

VEXM_VEXC_VS_ADD <= VDF_VEXM_VS_ADD;

VEXM_VEXC_VT_ADD <= VDF_VEXM_VT_ADD;

VEXM_VEXC_VD_ADD <= VDF_VEXM_VD_ADD;

VEXM_VEXC_SHAMT <= VDF_VEXM_SHAMT;

VEXM_VEXC_IMM16 <= VDF_VEXM_IMM16;

VEXM_VEXC_MEM_READ <= vexm_mem_read;
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VEXM_VEXC_MEM_WRITE <= vexm_mem_write;

VEXM_VEXC_INDEX <= VDF_VEXM_INDEX;

VEXM_VEXC_CAR_WRT <= vexm_car_write;

VEXM_VEXC_SBI_WRT <= vexm_sbi_write;

VEXM_VEXC_SHIFT <= vexm_shift;

VEXM_VEXC_WAY <= vexm_way;

end // always @ (posedge clock)

assign carry_out = VEXM_VEXC_CARRY;

assign car_write = VEXM_VEXC_CAR_WRT;

assign sbi_write = VEXM_VEXC_SBI_WRT;

assign shift = VEXM_VEXC_SHIFT;

assign way = VEXM_VEXC_WAY;

assign vexc_vt_val = VEXM_VEXC_VT_VAL;

assign vexc_vs_val = VEXM_VEXC_VS_VAL;

assign vexc_vs_add = VEXM_VEXC_VS_ADD;

assign vexc_vt_add = VEXM_VEXC_VT_ADD;

assign vexc_shamt = VEXM_VEXC_SHAMT;

assign vexc_reg_wrt = (((VEXM_VEXC_OP == ‘vr1) && ((VEXM_VEXC_FUNC == ‘vxor_func)||

(VEXM_VEXC_FUNC == ‘vspmult_func))) || (VEXM_VEXC_OP == ‘vload) ||

(VEXM_VEXC_OP == ‘vwshl) || (VEXM_VEXC_OP == ‘vwshr) ||

((VEXM_VEXC_OP == ‘vsmove) &&

(((VEXM_VEXC_INDEX*vr) + i_number) < VEXM_VEXC_IMM16)));

assign data_out = ((VEXM_VEXC_OP==‘vwshl)|| (VEXM_VEXC_OP==‘vwshr)) ? carry_in :

((VEXM_VEXC_OP==‘vr1)&&(VEXM_VEXC_FUNC==‘vxor_func)) ?

(VEXM_VEXC_VT_VAL ^ VEXM_VEXC_VS_VAL) :

((VEXM_VEXC_OP==‘vr1)&&(VEXM_VEXC_FUNC==‘vspmult_func)) ?

(carry_in ^ VEXM_VEXC_VS_VAL) : VEXM_VEXC_VS_VAL;

assign mem_read = VEXM_VEXC_MEM_READ;

assign mem_write = VEXM_VEXC_MEM_WRITE;

always @(posedge clock or posedge reset)

if (reset) begin

VEXC_VWB_REG_WRT <= 0;

VEXC_VWB_VD_ADD <= 0;

VEXC_VWB_INDEX <= 0;

VEXC_VWB_RES <= 0;

VEXC_VWB_DATAIN <= 0;

VEXC_VWB_MEM_WRT <= 0;

VEXC_VWB_MEM_READ <= 0;

end

else begin

VEXC_VWB_REG_WRT <= vexc_reg_wrt;

VEXC_VWB_VD_ADD <= VEXM_VEXC_VD_ADD;

VEXC_VWB_INDEX <= VEXM_VEXC_INDEX;

VEXC_VWB_RES <= data_out;//vexc_res_val;

VEXC_VWB_DATAIN <= data_in;

VEXC_VWB_MEM_WRT <= VEXM_VEXC_MEM_WRITE;

VEXC_VWB_MEM_READ <= VEXM_VEXC_MEM_READ;

end

// Vetor Lane - Vector Register Write back //

always @(posedge clock) begin

if (vexc_reg_wrt == 1) begin

if (VEXM_VEXC_MEM_READ == 1) begin

VECREG[VEXM_VEXC_VD_ADD][VEXM_VEXC_INDEX] <= data_in;

end

else begin

VECREG[VEXM_VEXC_VD_ADD][VEXM_VEXC_INDEX] <= data_out;

end

end

end

endmodule // Vector_Lane Module
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Measurements on Cycle-accurate
VeMICry

p: number of elements per vector register.
r: number of lanes.

Area of vector co-processor in µm2 for q = 4

p 1 2 4 8 16 32 64
r
1 30586 34410 41820 57280 87474 144999 263565
2 � 56409 64052 78889 108375 166976 285364
4 � � 106252 121272 150918 211918 329106
8 � � � 207723 237787 297070 418940
16 � � � � 410831 471026 589579
32 � � � � � 817523 937961
64 � � � � � � 1626447

Mean power of vector co-processor in mW for q = 4

p 1 2 4 8 16 32 64
r
1 7.7 9.4 11.5 17.0 27.0 68.0 �

2 � 14.0 15.8 21.0 31.0 52.0 �

4 � � 25.0 27.0 40.5 61.0 �

8 � � � 45.0 58.0 77.0 �

16 � � � � 90 144 �

32 � � � � � 185 �

64 � � � � � � �

163



E. MEASUREMENTS ON CYCLE-ACCURATE VEMICRY

Performance of 512-bit Modular Multiplication in clock − cycles

p 1 2 4 8 16 32 64
r
1 � 6236 5450 5156 5207 9847 19127
2 � 4275 3328 2968 2887 5207 9847
4 � � 2331 1874 1727 2887 5207
8 � � � 1359 1147 1727 2887
16 � � � � 873 1147 1727
32 � � � � � 873 1147
64 � � � � � � 873

Performance of 1024-bit Modular Multiplication in clock − cycles

p 1 2 4 8 16 32 64
r
1 31666 23972 20734 19310 18988 19607 38103
2 � 16211 12396 10842 10260 10359 19607
4 � � 8483 6608 5896 5735 10359
8 � � � 4619 3714 3423 5735
16 � � � � 2687 2267 3423
32 � � � � � 1721 2267
64 � � � � � � 1721

Performance of 2048-bit Modular Multiplication in clock − cycles

p 1 2 4 8 16 32 64
r
1 � 94004 80870 74690 72374 72764 76055
2 � 63123 47812 41374 38542 37900 39127
4 � � 32307 24716 21626 20468 20663
8 � � � 16899 13168 11752 11431
16 � � � � 9195 7394 6815
32 � � � � � 5343 4507
64 � � � � � � 3417
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de la Revue de l’Electricité et de l’Electronique des Technologies de l’Information et de la
Communication. 18

Fournier, J. & Tunstall, M. (2006). Cache Based Power Analysis Attacks on AES. In L.M.
Batten & R. Safavi-Naini, eds., 11th Australasian Conference on Information Security and
Privacy — ACISP 2006 , vol. 4058 of Lecture Notes in Computer Science, 17–28, Springer-
Verlag. 18, 29, 46

Fournier, J.J. & Moore, S. (2006a). Hardware-Software Codesign of a Vector Co-processor
for Public Key Cryptography. In V. Muthukumar, ed., Proceedings of the ninth EuroMicro
Conference on Digital System Design (DSD’06), 439–446, IEEE Computer Society, Cavtat,
Croatia. 18

Fournier, J.J. & Moore, S. (2006b). A Vector approach to Cryptography Implementation.
In R. Safavi-Naini & M. Yung, eds., Proceedings of 1st International Conference on Digital
Rights Management - Technologies, Issues, Challenges and Systems (DRMtics’2005), vol.
LNCS, 277–297, Springer-Verlag Berlin Heidelberg 2006. 17

Fournier, J.J., Moore, S., Li, H., Mullins, R. & Taylor, G. (2003). Security Evaluation
of Asynchronous Circuits. In C. Walter & al., eds., Proceedings of the 5th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES’03), vol. LNCS, 137–
151, Springer-Verlag, Cologne, Germany. 18, 29, 30, 47

Gaj, K. & Chodowiec, P. (2002). Comparison of the hardware
performance of the AES candidates using reconfigurable hardware.
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/papers/22-kgaj.pdf% /.
33

Gandolfi, K., Mourtel, C. & Olivier, F. (2001). Electromagnetic Analyis: Concrete
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