
Technical Report
Number 693

Computer Laboratory

UCAM-CL-TR-693
ISSN 1476-2986

Automatic classification of
eventual failure detectors

Piotr Zieliński

July 2007

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Piotr Zieliński

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Automatic classification of eventual

failure detectors

Piotr Zieliński
piotr.zielinski@cl.cam.ac.uk

Cavendish Laboratory, University of Cambridge, UK

Abstract

Eventual failure detectors, such as Ω or ♦P, can make arbitrarily many mistakes
before they start providing correct information. This paper shows that any detector
implementable in a purely asynchronous system can be implemented as a function
of only the order of most-recently heard-from processes. The finiteness of this
representation means that eventual failure detectors can be enumerated and their
relative strengths tested automatically. The results for systems with two and three
processes are presented.

Implementability can also be modelled as a game between Prover and Disprover.
This approach not only speeds up automatic implementability testing, but also
results in shorter and more intuitive proofs. I use this technique to identify the new
weakest failure detector anti -Ω and prove its properties. Anti-Ω outputs process
ids and, while not necessarily stabilizing, it ensures that some correct process is
eventually never output.

1 Introduction

In purely asynchronous systems, messages between processes can take arbitrarily long to
reach their destinations. It is therefore impossible to distinguish a faulty process from a
very slow one [8], which causes many practical agreement problems, such as consensus or
atomic commit, to be unsolvable [5].

One method of dealing with this impossibility is by equipping the system with failure
detectors [3, 11]. A failure detector is an abstract distributed object that processes can
query to get information about failures in the system. Different kinds of failure detectors
provide different sorts of information, with different reliability guarantees. For example,
the eventually perfect detector (♦P) returns a set of “suspected” processes, and guarantees
that eventually it will equal the set of faulty processes. The eventual leader detector (Ω)
returns a single process, and guarantees that eventually it will keep returning the same
correct process.

Both ♦P and Ω are reliable only eventually. They can make mistakes for an arbitrarily
long but finite period of time, which is unknown to the application. Such detectors
are attractive because algorithms using them are indulgent ; they never fully “trust” the

3

detector, therefore they never violate safety, even if the detector violates its specification
[6]. This paper focuses exclusively on such detectors.

Different distributed tasks require different failure detectors. A detector is imple-
mentable if there is an algorithm that implements it, in a given model. A consider-
able amount of research has focused on determining the implementability relationships
both between problems and failure detectors, and between failure detectors themselves
(eg. [3, 4, 7, 9, 11]). For example, ♦P can implement Ω, by outputting the non-suspected
process with the smallest id. As a result, every problem solvable with Ω is solvable with
♦P, but not vice versa [3].

Despite a number failure detectors identified in the literature, no comprehensive ex-
ploration of their design space has yet been attempted. As a result, identifying new failure
detectors is difficult, and their properties must typically proved from scratch. This paper
presents a method that greatly simplifies these tasks: an efficient and fully mechanical
procedure for determining the implementability relationship between eventual failure de-
tectors in a system with a given number of processes. The overall strategy to arrive at
this result consists of the following steps:

• Section 2 shows that, under reasonable assumptions, all eventual failure detectors
can be completely specified by the list of allowed sets of symbols output infinitely
often. For Ω, this list consists of singleton sets, each containing a single correct
process.

• Section 3 shows that, assuming immediate reliable broadcast, any implementable
failure detector can be implemented as a function operating solely on the sequence
of past process steps.

• Section 4 shows that only the order of last occurrences of processes in the above
sequence matters. With finitely many possible such orderings, this opens the door
to automatic enumeration of failure detectors.

• Section 5 shows that any failure detector implementable in the immediate reliable
broadcast model remains so in the purely asynchronous model. In particular, all
results from Section 3 and 4 still apply.

• Section 6 generalizes the above results to automatically comparing relative strengths
of different failure detectors.

• Section 7 introduces a more intuitive, game-theoretic interpretation of the results
from previous sections. It also identifies the weakest non-implementable failure
detector anti-Ω, and proves its properties.

• Section 8 presents the results of automatic enumeration of failure detectors and their
relative implementability in a three-process system. Game-solving techniques are
used to speed up the search.

2 System model and failure detector specifications

The system consists of a fixed set P = {1, 2, . . . , n} of processes, which communicate
using asynchronous reliable channels: messages between correct processes eventually get

4

delivered, but there is no bound on message transmission delay.
Processes can fail by crashing. In any run, the failure pattern is a function alive(t),

which returns the set of non-crashed processes at any given time t ∈ N. Crashed pro-
cesses do not recover, therefore alive(t) ⊇ alive(t + 1). Processes that never crash
(C =

⋂
t alive(t) 6= ∅) are called correct, the others are faulty. Runs are fair : correct

processes perform infinitely many steps.
The system may be equipped with a failure detector. When queried, the detector

returns a symbol, for example, a process id (Ω) or a set of processes (♦P). The detector
history is a function hist(q, t), which gives the symbol returned by the detector at process
q at time t. A failure detector specification H is a function that maps each pattern failure
alive into a set of allowed functions hist. For example, for Ω, we have

HΩ(alive) = {hist | ∃t∈N ∃p∈(
T

t
alive(t)) ∀p′∈P∀t′>t hist(p′, t′) = p }. (1)

2.1 Failure detector assumptions

The standard failure detector specification method [3] described above is very general,
but this results in complicated specifications (1). This section simplifies this specification
method by making the following assumptions:

1. The detector can behave arbitrarily for any finite amount of time.

2. The set of possible symbols output by the detector is finite.

3. The detector cannot distinguish otherwise indistinguishable runs.

For example, a detector that “eventually keeps outputting the process that crashed
first” violates Assumption 3: even knowing the entire infinite sequence of system states in
a given run is not enough to determine any upper bound on processes’ crash times. This
is because we cannot distinguish between a process that crashed and one that simply does
not take steps.

On the other hand, the set of correct processes, provided by ♦P, is deducible from
such an infinite sequence of states. As other detectors, ♦P is useful because it provides
this information about the entire infinite run at a finite time.

This paper additionally assumes that the detector is querier-independent, that is,
function hist depends only on time t, not on the querying process p. I do not list this
with other assumptions, because detectors not satisfying this assumption can be emulated
by ones that do (Section 3.1, (6)).

2.2 Failure detector specification

Assumptions 1–3 allow us to considerably reduce both the space of considered failure
detectors as well as the complexity of their descriptions. First, Theorem 3 shows that H
depends only on the set C =

⋂
t alive(t) of correct processes, not on the exact form of

alive. This simplifies (1) to

HΩ(C) = {hist | ∃t∈N ∃p∈C ∀t′>t hist(t′) = p }. (2)

5

Ω ♦S ♦P ♦?P

infset(1) 1
infset(2) 2
infset(12) 1,2 ,

: only process 1 is correct
: only process 2 is correct
: either 1 or 2 faulty
: no failures

Figure 1: Specifications infset(C) for various failure detectors in a system with two pro-
cesses 1 and 2 (left), and the interpretation of the output symbols (right).

Theorem 4 shows that whether “hist ∈ H(C)” depends only on the set of values that
hist(t) takes infinitely often, not on the exact form of hist. Therefore, we can specify
a failure detector as the set infset(C) of allowed sets of symbols output infinitely often.
The description (2) simplifies to

infsetΩ(C) = { {p} | p ∈ C }. (3)

In general,
infset(C)

def
= { inf (s1 . . .) | sk = hist(k), hist ∈ H(C) }. (4)

where inf (s1 . . .) =
⋂

k=1,2,... {sk, sk+1, . . .} is the set of symbols si’s that occur infinitely
often in s1 . . ., for example, inf (32413512212122 . . .) = {1, 2}. Since a failure detector can
behave better than required, S ⊆ T ∈ infset(C) implies S ∈ infset(C) (Theorem 5). All
free set variables in this paper, such as S, T , C in the previous sentence, are implicitly
assumed to be non-empty.

Examples. Figure 1 shows the specifications of several known detectors, in a two-
process system. Detectors Ω and ♦P have already been introduced. Anonymous ♦?P
eventually detects whether all processes are correct () or not (), without revealing the
identities of faulty processes. Detector ♦S is similar to ♦P: it also outputs a set of sus-
pected processes, however, ♦S can forever suspect some, but not all, correct processes [3].
Figure 1 represents a set of suspected processes as a vertical bitmap (eg.), with one
entry per process; black entries mean “suspected”, white entries “not suspected”.

For each detector, Figure 1 on page 6 shows the value of infset(C) for C = {1}, {2},
{1, 2}. For brevity, sets {a, b, . . .} are abbreviated to ab . . ., non-maximal elements of
infset(C) removed (Theorem 5), and external braces omitted. For example,

infset♦S({1, 2}) = {{ }, { }, { }, { , }, { , }} =⇒ infset♦S(12) = , . (5)

This de-cluttering convention is used throughout the paper.

3 Implementability in the immediate broadcast model

Our goal is to determine whether a given failure detector, as specified by its infset , is imple-
mentable. Sections 3 and 4 will investigate this question in the immediate broadcast model.
This model is significantly stronger than the purely asynchronous model, for example, its
basic broadcast primitive of implements atomic broadcast, which in non-implementable
in the asynchronous model [3, 5]. Surprisingly, however, as far as implementability of
(eventual) failure detectors is concerned, these two models are equivalent (Section 5).

6

In the immediate broadcast model, all messages are transmitted instantaneously and
reliably. Processes take steps in any fair order: correct processes take infinitely many
steps, faulty ones finitely many steps. Processes never fail in the middle of a step.

3.1 Failure detector implementations

Immediate and reliable broadcast ensures that each process always knows the complete
state of the system: the sequence p1 . . . pk of processes that have taken steps until this
moment. For example, the state at the end of

→ → → → → → → → time → → → → → → → →

2

1

2

3

2 2

3

is p1 . . . p7 = 2123223. Assuming determinism, all other state information can be inferred
from p1 . . . pk (the initial state is fixed). Therefore, the complete state of any algorithm in
this model depends only on p1 . . . pk. In particular, any failure detector implementation
can be modelled as a function output from sequences of processes p1 . . . pk to output
symbols sk.

A failure detector sensitive to the identity of the querying process has n functions:
output1, . . . , outputn, one per process. However, these can be transformed into a single,
querier-independent function outputting a composite symbol:

output(p1 . . . pk) = [sk1 . . . skn], where ski = outputi(p1 . . . pk). (6)

The original detector output at process i is the ski in the composite symbol [sk1 . . . skn].
Thus, for any failure detector implementation output1, . . . , outputn, there is a querier-
independent detector implementation output that can emulate it. For this reason, this
paper focuses on querier-independent detectors.

3.2 Failure detector specifications

From (4), an implementation output is consistent with a specification infset iff, for any
infinite sequence p1 . . . of processes, we have:

inf (s1 . . .) ∈ infset(C), where sk = output(p1 . . . pk) and C = inf (p1 . . .). (7)

For example, consider a trivial failure detector:

infset trivial(C) = {X | X ⊆ C } for all C ⊆ P , (8)

which eventually outputs only correct processes. It can be implemented by returning the
most recent process to take a step, that is, output(p1 . . . pk) = pk. Similarly, returning the
least recent process, for example, output(2123223) = 1, will eventually keep outputting
one stable faulty leader, if it exists:

infset faulty(C) = { {p} | p /∈ C } for all C ⊂ P . (9)

7

(Compare with (3).) By convention, the undefined case C = P allows arbitrary behaviour.
For any set X, let perms(X) be the set of all permutations of elements of X. Let

order(p1 . . . pk) ∈ perms(12 . . . n) be obtained from p1 . . . pk by retaining only the last
occurrence of each process (eg. order(312233143433131) = 2431)1. The implementations
of failure detectors (8) and (9) can be succinctly written as

outputtrivial(p1 . . . pk) = last element of order(p1 . . . pk)

outputfaulty(p1 . . . pk) = first element of order(p1 . . . pk)
(10)

Note that both implementations above ignore all information in p1 . . . pk, except for
order(p1 . . . pk). Theorem 1 shows that all implementable failure detectors can be imple-
mented this way, with sk = output(p1 . . . pk) = map(order(p1 . . . pk)) for some function
map from perms(12 . . . n) to output symbols. For example,

maptrivial(q1 . . . qn) = qn, mapfaulty(q1 . . . qn) = q1.

With a fixed number n of processes, the number such functions map is finite, which
enables us to automate implementability testing (Section 8).

In any run, as the sequence of steps p1 . . . pk grows, order(p1 . . . pk) keeps changing.
Since faulty processes take finitely many steps, eventually the prefix of order(p1 . . . pk)
consisting of all faulty processes will stabilize, while the rest, consisting of correct pro-
cesses, will keep changing. Therefore, the implementation map is consistent (7) with the
specification infset iff for any order q1 . . . qk of faulty processes

⋃
{map(q1 . . . qkr1 . . . rn−k) | r1 . . . rn−k ∈ perms(C) } ∈ infset(C), (11)

where C = P \ {q1 . . . qk}.
For example, we can show that Ω is not implementable. To obtain contradiction,

assume that it is. By Theorem 1, there is an implementation

outputΩ(p1 . . . pk) = mapΩ(order(p1 . . . pk)).

For any order q1 . . . qn, we must have mapΩ(q1 . . . qn) = qn because qn might be the only
correct process (11). In other words, this implementation of Ω always outputs the last
process to take a step. However, if more than one process is correct, the output may never
stabilize, violating the properties of Ω.

4 Order map theorem

Section 3 used the fact that any implementable failure detector can be implemented using
some function map acting solely on the order of recent process steps. This section proves
this theorem. It is important because it restricts the originally infinite number of possible
functions output to those induced by one of the functions map, whose number is finite.

Theorem 1. Any implementable failure detector has an implementation of the form
output(p1 . . . pk) = map(order(p1 . . . pk)) for some function map.

1To ensure that order(p1 . . . pk) always contains all processes, even if some do not occur in p1 . . . pk, I
implicitly prefix each p1 . . . pk with 12 . . . n.

8

1 function update(q1 . . . qn) is
2 simulate qn taking a step
3 set map(q1 . . . qn)← failure detector output in the simulation

4 function update(q1 . . . qk<n) is
5 repeat
6 for each q /∈ q1 . . . qk do
7 update(q1 . . . qkq)
8 until (11) holds for q1 . . . qk

9 task construct map is
10 update(ε), where ε is the empty sequence

Figure 2: Generating a map for a given failure detector implementation using failure
detector outputs in a specially constructed simulated run.

Proof. Figure 2 presents an algorithm that, for any implementable failure detector, con-
structs a map that implements it, that is, is consistent (11) with the detector’s infset .
It takes the algorithm implementing the failure detector, and collects its outputs in a
simulated run. This run is constructed by function update(q1 . . . qi), which updates map
so that (11) holds for all q1 . . . qk starting with q1 . . . qi. Therefore, update(ε) in line 10
produces a map that satisfies (11) for all q1 . . . qk.

The implementation of update(q1 . . . qi) covers two cases. For q1 . . . qn consisting of all
processes, update makes the last process step, queries the detector, and sets map(q1 . . . qn)
to its output (lines 1–3). It trivially satisfies (11), because no valid sequence of faulty
processes can contain all processes.

For shorter q1 . . . qk, function update recursively ensures that (11) holds for all exten-
sions of q1 . . . qk, and then tests whether (11) holds for q1 . . . qk itself. If not, the process
is repeated until success (lines 5–8). This cannot go on forever, because update(q1 . . . qk)
makes only processes in C = P \ {q1 . . . qk} take steps. Therefore, any implementable
detector will eventually start outputting symbols from some S ∈ infset(C), passing the
test in line 8.

Example. Consider the faulty-leader detector (9) implemented by returning the process
that took least steps (not the least recent one to step), favouring lower ids to break ties.
This results in the following run of the algorithm in Figure 2 on page 9:

→ → → → → → → time → → → → → → →

q1 111111112222222222222222233333333333333333 +: line 8 succeeded
q2 222333 11133333 111333 11111222 111222 -: line 8 failed
q3 3 2 3 1 1 3 1 2 2 1 2 1 ← step (line 2)

map 1+ 1++ 1+ 1-2+- 2+ 2++ 2-1+ 2+- 3+ 3+++ ← det output (line 3)

Function update() calls update(1), update(2), update(3). The recursion in update(1)
eventually makes processes 2 and 3 step. In both cases, the detector outputs 1, which
results in mappings map(123) = map(132) = 1, which pass the line 8 test in update(12),
update(13), and then update(1).

9

1 maxstep[i]← 0 for all processes i

2 when process i takes its k-th step do
3 reliably broadcast “process i, step k”

4 when reliably receive “process i, step k” do
5 maxstep[i]← max {k,maxstep[i]}

6 when queried do
7 return the list of all processes i, ordered wrt increasing maxstep[i]
8 (ties broken deterministically)

Figure 3: An implementation of Order Oracle in an asynchronous system.

Function update(2) encounters more problems. It first calls update(21), which pro-
duces map(213) = 1, and then update(23). Function update(23) calls update(231), which
produces map(231) = 1. Since 1infset(1), line 8 in update(23) fails and update(231) is
called again. It sets map(231) = 2, which passes the test in update(23), but (together
with map(213) = 1) fails the test in update(2) because 12infset(13). Calling update(231)
and update(213) again results in map(213) = map(231) = 2, which passes the test in
update(2).

Similarly, update(3) results in map(312) = map(321) = 3. The algorithm in Figure 2
on page 9 has therefore transformed the original least-often-stepping implementation of
(9), into the least-recent-to-step implementation map, highlighted above.

5 Implementability in the asynchronous model

This section shows that any failure detector implementable in the immediate broadcast
model (Sections 3 and 4) remains so in the purely asynchronous model. (The opposite
implication is obvious.) This result implies, for example, that for any implementable
failure detector, there is a querier-independent, implementable failure detector that can
emulate it (Section 3.1).

Consider a failure detector implementable in the immediate broadcast model. Section 4
showed that there is a map consistent with it (11), which acts on the process order q1 . . . qn.
This process order must satisfy (11): (i) faulty processes precede correct ones, and (ii) the
order of faulty processes is fixed. Let Order Oracle be an abstraction that, when queried,
outputs an order that eventually satisfies (i) and (ii). It is sufficient to show that Order
Oracle is implementable in purely asynchronous settings.

As an example, consider a four-process system with only processes 3 and 4 correct.
Order Oracle can keep switching between 1234 and 1243 or between 2134 and 2143 in
the same run. However, outputting both 1234 and 2134 infinitely often in the same run
would violate (ii), and 2314 would violate (i).

In the algorithm in Figure 3 on page 10, processes reliably broadcast a message when-
ever they take a step. Each process keeps track of steps taken by others by storing the
highest-numbered step for each process in the vector maxstep. When the algorithm is
asked for an order on processes, it returns them in the increasing order of maxstep.

10

This simple algorithm is similar to the heartbeat failure detector [1], with one im-
portant difference: it uses reliable broadcast [10] rather than ordinary broadcast. This
ensures that not only maxsteps of correct processes keep increasing without limit (i), but
also that eventually maxsteps corresponding to faulty processes will be the same at all
correct processes (ii). Note that the agreement on the order of faulty processes is only
“eventual” in the same sense as reliable broadcast makes correct processes agree on the
set of broadcast messages. In particular, it does not contradict FLP [5].

Conclusion. By taking the results from Section 4 and this section together, we can
conclude that a failure detector is implementable in the purely asynchronous system iff
there is a map consistent (11) with its specification infset .

6 Comparing relative strengths of failure detectors

This section shows that the theory developed in previous sections allows us not only to me-
chanically test implementability, but also to compare relative strength of failure detectors.
In other words, we can test whether a given failure detector (eg. ♦P) is implementable in
the asynchronous system equipped with another detector (eg. Ω).

For any failure detector S, consider a purely asynchronous system consisting of real
processes P and virtual processes RS, one for each possible output of S (its range). For
example, with a two-process ♦P, we have processes P = {1, 2} and R♦P = { , , }. In
general, the set of processes is the disjoint union [P,RS], in which members of P and RS

keep separate identities2, even if they have identical names (eg. RΩ = P).
The scheduler ensures that virtual processes behave according to the detector speci-

fication, that is, the set [C, S] ⊆ [P,RS] of correct processes satisfies S ∈ infset(C). (A
process is correct iff it takes infinitely many steps.) Given this assumption, real processes
p ∈ P can emulate the failure detector by always outputting the most-recently heard-from
virtual process s ∈ RS (Theorem 6).

To check whether a failure detector S can implement another detector T , we need
to test whether T is implementable in the system [P,RS]. The specification of T in this
system is

infsetT ([C, S]) = infsetT (C) for all S ∈ infsetS(C). (12)

By convention (9), the undefined cases [C, S] with S /∈ infsetS(C) allow arbitrary be-
haviour: infsetT ([C, S]) = {X | X ⊆ RT }.

Example 0. Consider the eventually anonymously perfect detector ♦?P, which eventu-
ally consistently outputs or , depending on the actual state (Figure 1 on page 6). Let
us first show that, in a two-process system, ♦P implements ♦?P. In a system equipped
with ♦P, detector ♦?P is defined by (5) (12):

infset([1,]) = , infset([2,]) = , infset([12,]) = .

This specification can be easily implemented by looking just at the last output of ♦P: if
it is , output , otherwise output . The map function, defined for all orders s1 . . . s5 ∈
perms(12), returns if is the last non-digit in s1 . . . s5, and otherwise.

2Formally, [A1 . . . Ak] = { (a, i) | a ∈ Ai }. Then, [A,B] ⊆ [A′, B′]⇔ A ⊆ A′ ∧B ⊆ B′.

11

12

1̂

1

1̂

2

2̂

1 2

2̂

C1 =

S1 =

C2 =

S2 =

123

1̂

12

1̂

1

1̂

2

13

1̂

1

1̂

3

23

2̂

12

2̂

2

2̂

2

13 23

2̂

2

2̂

3

3̂

12 13

3̂

3

3̂

1

23

3̂

3

3̂

2

C1 =

S1 =

C2 =

S2 =

C3 =

S3 =

Figure 4: Game trees for Ω with two processes (left), and three process (right).

Example 1. Consider a two-process system equipped with ♦?P (Figure 1 on page 6).
To show that ♦P is implementable in such a system, consider the requirements (12):

infset♦P([1,]) = , infset♦P([2,]) = , infset♦P([12,]) = .

To implement ♦P, output if ♦?P outputs . Otherwise output or , depending whether
the most recently heard-from process is 1 or 2. This strategy corresponds to the following
map, which satisfies (11):

21 , 2 1, 21, 2 1, 2 1 , 21 7→ 12 , 1 2, 12, 1 2, 1 2 , 12 7→

12 , 1 2, 21 , 2 1, 12, 21 7→ 12 , 1 2 , 1 2, 21 , 2 1 , 2 1 7→

Example 2. To show that Ω cannot implement ♦?P, consider the requirements

infset♦?P([1, 1̂]) = , infset♦?P([2, 2̂]) = ,

infset♦?P([12, 1̂]) = infset♦?P([12, 2̂]) = .

(I use 1̂, 2̂ for Ω outputs to avoid name collisions with processes 1, 2.) First, infset([12, 2̂]) =
and (11) imply that map(1̂122̂) = . However, infset([2, 2̂]) = implies map(1̂122̂) = ,

which contradicts map(1̂122̂) = .

7 Game-theoretic interpretation of implementability

Two players, YES and NO, play the following game. In the k-th turn, NO chooses a set
Ck ⊆ P , and YES chooses Sk ∈ infset(Ck). The sets must satisfy C1 ⊃ C2 ⊃ · · · 6= ∅, and
S1 ⊇ S2 ⊇ · · · 6= ∅. The first player unable to make a move loses. Theorem 7 shows that
YES has a winning strategy iff the failure detector is implementable.

Figure 4 (left) shows the game tree for the two-process Ω. Each path C1, S1, . . . ,
starting at the root, represents a sequence of moves. For example, “12, 1̂, 1, 1̂” is a
victory for YES, and “12, 2̂, 1” for NO. White nodes are wins for YES, black ones for
NO. The colour of a node can be easily computed using the minimax algorithm [12]: Ck

(resp. Sk) nodes are black iff all (resp. some) of their children are black. Since C1 = 12 is
black, NO has a winning strategy, so the two-process Ω is not implementable. As Figure
4 on page 12 (right) suggests, similar reasoning works for general n > 2 (Theorem 9).

12

root

12, 1̂

1, 1̂

12, 2̂

2, 2̂

[C1, S1] =

T1 =

[C2, S2] =

root

1, 2, 12,

root

12,

1, 2,

13,

1, 3,

23,

2, 3,

123,

(a) Ω, ♦?P, 2 (b) ♦?P, ♦P, 2 (c) ♦?P, ♦P, 3

Figure 5: Game trees corresponding to implementing detector T in a system equipped
with detector S in an n-process systems, for three different (S, T, n).

123

12

12

1

1

2

2

13

12

1

12

3

12

23

12

2

12

3

12

13

12

13

1

13

2

13

13

1

1

3

3

23

13

2

13

3

13

23

12

23

1

23

2

23

13

23

1

23

3

23

23

2

2

3

3

C1 =

S1 =

C2 =

S2 =

C3 =

S3 =

Figure 6: Game tree for the three-process anti-Ω.

7.1 Comparing relative detector strengths using game theory

With the modifications described in Section 6, the game-theory approach can also be
used to check whether one failure detector S can implement another detector T . Since
the system is now equipped with S, player NO chooses [C1, S1] ⊃ [C2, S2] ⊃ · · · 6= ∅. YES
chooses T1 ⊇ T2 ⊇ · · · 6= ∅ with Tk ∈ infsetT ([Ck, Sk]).

We can assume that Sk ∈ infsetS(Ck) and Ck−1 ⊃ Ck, because otherwise YES could
always repeat its previous move, which cannot benefit NO (Lemma 8). With (12), this
implies Tk ∈ infsetT (Ck).

Figure 5 shows game trees corresponding to implementing detector T in a system
equipped with detector S in an n-process systems, for three different (S, T, n). Case
(a) shows that Ω cannot implement ♦?P in a two-process system. Detector ♦?P can
implement ♦P with two processes (b), but not with three (c).

7.2 Anti-Ω: the weakest failure detector

The anti-Ω failure detector is specified as

infsetanti-Ω(C) = {S | C * S ⊆ P }. (13)

It outputs process ids, and ensures that some correct process id will eventually never be
output. Note that the classic Ω ensures that such an id will eventually always be output.

Theorem 10 shows that anti-Ω is not implementable: NO can win by playing C1 = P
and then always copying YES’s last move Ck+1 = Sk. This strategy corresponds to the
black nodes in the three-process anti-Ω game-tree shown in Figure 6 on page 13. In this
tree, each Sk-node has exactly one black child; the minimax rule therefore implies that

13

whitening any black node would make the game winnable by YES. In a sense, anti-Ω is
therefore a “locally weakest detector”.

Theorem 12 uses the method from Section 7.1 to prove a stronger result: anti-Ω is the
(globally) weakest non-implementable eventual failure detector in the sense that it can be
implemented by any non-implementable detector. In particular, anti-Ω is strictly weaker
than Υ, the weakest stable detector [9]:

infsetΥ(C) = { {T} | C 6= T ⊆ P }. (14)

(A detector is stable iff it eventually outputs the same symbol, that is, all infset(C)’s
consist of singleton sets only.) As a by-product, this shows that some failure detectors,
such as anti-Ω, have no stable equivalents.

Anti-Ω is also the weakest detector that solves set agreement [13].

8 Automatic failure-detector discovery results

Section 6 introduced a mechanical procedure for comparing failure detector strength in
a system with a given number of processes. The game-theoretic approach of Section
7 dramatically improved the efficiency by using standard game solving techniques (eg.
alpha-beta cutting [12], proof-number search [2]). This section gives a glimpse at the
failure detector specification space by enumerating eventual failure detectors and their
relationships in systems with two and three processes.

8.1 Two processes, all detectors

This section enumerates and compares all failure detectors with two processes and at
most three outputs. The sets infset(1), infset(2), and infset(12) can each take 18 possible
values, giving the total of 183 = 5832 failure detectors. Computer testing shows that they
all fall into 5 equivalence classes, shown below (left) with several members (right).

imple-

mentable Ω ♦?1 ♦?2 ♦P

infset(1) 1 1
infset(2) 2 2
infset(12) 12 1,2

equivalent to −→

♦S ?Ω ♦?12 ♦?21 ♦?P

1
2

, 1 , 2

Ω Ω ?1 ?2 ♦P

The implementability relationship between these classes is

implementable Ω ♦?1

♦?2

♦P

implementable < Ω < ♦?1 < ♦ P
implementable < Ω < ♦?2 < ♦ P

Detectors ♦?1 and ♦?2, which eventually detect whether process 1 (resp. 2) is correct, are
of incomparable strength.

14

infset(p) =

infset(pq) =

infset(pqr) =

imple-
mentable

qr

pr, qr

pq, pr, qr

anti-Ω
p

p, q, r

pqr

qr

pq

pq, pr, qr

12

1, 3

2, 3

1, 2

1, 3

2, 3

qr

p, q

pq, pr, qr

p

r

pqr

1, 2

1

2

pq, pr, qr

p, q

p, q, r

pq, pr, qr

r

p, q, r

1

2

1, 2

1

2

1

qr

p, q, r

p, q, r

p

p, q, r

pq, pr, qr

qr

pq

p, q, r

qr

p, q

p, q, r

p

r

pq, pr, qr

p

pq, r

p, q, r

1

1, 2

2

p

pq

p, q, r

p

p, q, r

p, q, r

1

1

2

♦?P

p

p, q

p, q, r

Ω

p

r

p, q, r

qr

r

p, q, r

1

2

2

1

2

3

♦P

Figure 7: Three-process failure detectors with three outputs.

8.2 Three processes, symmetric detectors

The number of three-process failure detectors with three outputs is 187 ≈ 6×108. For this
reason, this section considers only symmetric failure detectors, which treat all processes
equally, that is, do not favour any particular permutation of processes or group of such
permutations. Such detectors fall into two categories: (i) those that output process-
independent symbols, such as ♦?P, and (ii) those that output process ids, such as Ω.
There are 6024 such detectors, grouped into 28 equivalence classes shown in Figure 7.

Figure 7 contains several known failure detectors, such as Ω, anti-Ω, and ♦?P. The
strongest detector in Figure 7 on page 15 eventually outputs the number k of correct
processes. It is equivalent to ♦P, which it can emulate by suspecting the n − k least
recently heard-from processes.

The 28 equivalence classes in Figure 7 on page 15 do not contain all symmetric de-
tectors. Detectors that behave as class (i) or (ii), depending on the number of correct
processes, form 654 such classes. Allowing non-symmetric detectors and/or more output
symbols might increase this number even more. Based on the relatively few failure de-
tectors identified in the literature, such a high number is rather unexpected (and we are
only considering systems with three processes here!).

9 Conclusion

This paper investigated the space of eventual failure detectors. The key result is The-
orem 1: every implementable detector is a function of the order of recently heard-from
processes. By emulating failure detectors with virtual processes corresponding to their
outputs, we can use the same technique to compare the strengths of different detectors.

Implementability is also equivalent to a winning strategy in a particular two-player
game. The advantage of this approach is that it has more structure and a more intuitive
visual representation. This makes failure detectors easier to analyse, and leads to more
succinct, intuitive, and elegant proofs, using existing results from game theory. As an

15

example, this paper identified the weakest eventual failure detector anti-Ω. Every query
returns a single process; the detector might not stabilize, but there is a correct process
that eventually will never be output.

Both approaches produce a finite number of failure detectors, thereby making com-
prehensive computer search possible. Such a search, applied to three-process detectors
with three outputs, generated many known detectors, but also revealed an unexpected
richness of non-equivalent failure detector classes. I hope that a similar methodology can
be used to explore the space of distributed problems such as consensus, renaming, etc.

The benefits of computer search extend to theoretical results as well, many of which
would have been difficult to derive without it. For example, the ability of quick imple-
mentability verification was very valuable in identifying anti-Ω and proving its properties.
I believe that using computer search as a tool for developing and testing one’s intuition
about a problem is a useful and productive technique that should become more popular
in distributed-computing research.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: A timeout-free failure detector
for quiescent reliable communication. In 11th WDAG, pages 126–140, Saarbrücken,
Germany, September, 1997.

[2] L. V. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
University of Limburg, the Netherlands, September 1994.

[3] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
Consensus. Journal of the ACM, 43(4):685–722, 1996.

[4] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and
S. Toueg. The weakest failure detectors to solve certain fundamental problems in
distributed computing. In 23rd PODC, pages 338–346. St. John’s, Newfoundland,
Canada, 2004.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed Con-
sensus with one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

[6] R. Guerraoui. Indulgent algorithms. In Proceedings of the 19th Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 289–298, NY, July 2000. ACM
Press.

[7] R. Guerraoui and P. Kouznetsov. Finally the weakest failure detector for Non-
Blocking Atomic Commit. Technical Report LPD-2003-005, EPFL, Lausanne,
Switzerland, December 2003.

[8] R. Guerraoui, M. Hurfin, A. Mostéfaoui, R. Oliveira, M. Raynal, and A. Schiper.
Consensus in asynchronous distributed systems: A concise guided tour. In Advances
in Distributed Systems, number 1752 in Lecture Notes in Computer Science, pages
33–47. Springer, 2000.

16

[9] R. Guerraoui, M. Herlihy, P. Kouznetsov, N. Lynch, and C. Newport. On the weakest
failure detector ever. In 26th PODC, Portland, OR, US, August 2007.

[10] V. Hadzilacos and S. Toueg. Fault-tolerant broadcast and related problems. In
S. Mullender, editor, Distributed Systems, chapter 5, pages 97–146. ACM Press, New
York, 2nd edition, 1993.

[11] M. Raynal. A short introduction to failure detectors for asynchronous distributed
systems. ACM SIGACT News, 35(1):53–70, 2005.

[12] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

[13] P. Zieliński. Anti-Ω: the weakest failure detector for set agreement. Technical Report
UCAM-CL-TR-694, Computer Laboratory, University of Cambridge, July 2007.

17

A Proofs

A.1 Failure detector specifications infset(C)

Lemma 2. Let warp be a strictly increasing function N → N. For any history hist, let
hist′(i) = hist(warp(i)). If

⋂
t alive(t) =

⋂
t alive′(t), then hist ∈ H(alive) =⇒ hist′ ∈

H(alive′).

Proof. Consider two runs r and r′, in which steps are taken only by correct processes (C).
In r, all processes in C take steps at times ti = i, whereas in r′ all processes in C take
steps at times t′i = warp(i). Both r and r′ are fair and consistent with the failure pattern
alive. Without failure detector output, these runs are indistinguishable.

Run r′ with a valid history hist′ ∈ H(alive) produces a sequence of outputs s′i =
hist(t′i) at each process. By Assumption 3, the same sequence of outputs si = s′i must
be possible in run r. Therefore, the history uniquely determined by hist(i) = si = s′i =
hist′(warp(i)), must be also be valid, which proves the assertion (hist ∈ H(alive)).

Theorem 3. ⋂

t

alive(t) =
⋂

t

alive′(t) =⇒ H(alive) = H(alive′).

Proof. Lemma 2 applied to function warp(i) = i gives us hist′ = hist, so hist ∈
H(alive) =⇒ hist ∈ H(alive′). Similarly, hist ∈ H(alive′) =⇒ hist ∈ H(alive),
which implies the assertion.

Let

inf (hist)
def
= inf (s1 . . .), where si = hist(i).

This allows us to rewrite (4) as

infset(C) = { inf (hist) | hist ∈ H(C) }.

Theorem 4.

inf (hist) = inf (hist′′) =⇒
(
hist ∈ H(C) ⇐⇒ hist′′ ∈ H(C)

)
.

Proof. We shall prove that hist ∈ H(C) =⇒ hist′′ ∈ H(C). Let I = inf (hist) =
inf (hist′′). Consider a history hist′ which is the same as hist′′ but with all symbols /∈ I
is replaced by some symbol ∈ I. Since hist′(t) and hist′′(t) differ only for finitely many
t, Assumption 1 implies that hist′ ∈ H(C) ⇐⇒ hist′′ ∈ H(C). Therefore, we only need
to show that hist ∈ H(C) =⇒ hist′ ∈ H(C).

We will construct a strictly increasing function warp : N→ N that satisfies hist′(i) =
hist(warp(i)). Let us start by introducing an artificial warp(0) = 0. Then, let warp(i)
be the smallest value larger than warp(i − 1) such that hist′(i) = hist(warp(i)). Such
warp(i) exist because hist′(i) ∈ I, so hist(t) = hist′(i) for infinitely many t, some of them
larger than warp(i−1). Having constructed the function warp, the assertion follows from
Lemma 2.

Theorem 5. If ∅ 6= S ′ ⊆ S ∈ infset(C), then S ∈ infset(C).

18

Proof. The assumption implies that there is a hist ∈ H(C) with inf (hist) = S. Consider
a subsequence hist′ of hist, consisting only of the elements in S ′. Since S ′ 6= ∅, hist′

has infinitely many elements. Thus, hist′(i) = hist(warp(i)) for some strictly increasing
function warp. Lemma 2 implies hist′ ∈ H(C), and inf (hist′) = S ′ implies the assertion.

Theorem 6. The virtual-processes and failure-detector models can emulate each other.

Proof. On the one hand, virtual processes can emulate the failure detector. If each query
outputs the id of the most-recently heard-from virtual process, eventually only ids si of
correct virtual processes S will be output. In other words, inf (s1 . . .) ⊆ S ∈ infset(C),
which implies inf (s1 . . .) ∈ infset(C) (Lemma 8).

On the other hand, the detector can emulate virtual processes. When the detector
returns a symbol s, the enquiring process should broadcast an “I’m alive” message pre-
tending to be from the virtual process s.

A.2 Game-theoretic approach

A.2.1 Non-dominated strategies.

In the game described in Section 7, YES never benefits from choosing Sk over another
valid move S ′

k ⊃ Sk. The same applies to NO and C ′

k ⊃ Ck. Such dominated moves Sk

and Ck can be eliminated from the game analysis [12]. In particular, we can assume that
C1 ⊃ C2 ⊃ · · · can be obtained by removing one process at a time from C1 = P . In
other words, Ck+1 = P \{q1 . . . qk}, for some order q1 . . . qn ∈ perms(P). Note that, when
choosing Sk+1, YES knows only the prefix q1 . . . qk.

Theorem 7. YES has a winning strategy iff the failure detector is implementable.

Proof. (⇐=). As explained above, assume that Ck+1 = P \ {q1 . . . qk} for some sequence
q1 . . . qn. YES has the following winning strategy:

Sk+1 =
⋃
{map(q1 . . . qkr1 . . . rn−k) | r1 . . . rn−k ∈ perms(Ck+1) }.

This implies S1 ⊇ S2 ⊇ · · · 6= ∅, and Sk+1 ∈ infset(Ck+1) from (11).
(=⇒). If YES has a winning strategy, let Sk+1(q1 . . . qk) be YES’s response to NO

playing Ck+1 = P \{q1 . . . qk}. Define map(q1 . . . qn) as any element of Sn(q1 . . . qn−1). For
k < n, we have

map(q1 . . . qkr1 . . . rn−k) ∈ Sn(q1 . . . qkr1 . . . rn−k−1) ⊆ Sk+1(q1 . . . qk) ∈ infset(Ck+1),

which, by Theorem 5, implies (11).

Lemma 8. In the game from Section 7.1, assuming Sk ∈ infset(Ck) and Ck−1 ⊃ Ck does
not change the winner of the game.

Proof. We will prove that, if the above assumptions do not hold, YES can always repeat
its previous move Tk−1 (assume T0 = RT). Playing Tk = Tk−1 does not put any new
restrictions on YES’s future play, which implies the assertion.

19

If Sk /∈ infset(Ck), then (12) implies Tk = Tk−1 ∈ infsetT ([Ck, Sk]), so the conclusion
follows. Therefore, assume Sk ∈ infsetS(Ck) for all moves [Ck, Sk]. We have [Ck−1, Sk−1] ⊇
[Ck, Sk] =⇒ Ck−1 ⊇ Ck. Thus, Ck−1 6⊃ Ck implies Ck−1 = Ck. Therefore, Sk−1 ∈
infset(Ck−1) implies that (12):

Tk = Tk−1 ∈ infsetT ([Ck−1, Sk−1]) = infsetT (Ck−1) = infsetT (Ck) = infsetT ([Ck, Sk]).

A.3 Anti-Ω results

Theorem 9. Ω is not implementable.

Proof. After NO’s C1 = P , YES has to choose S1 = {p} with p ∈ P . NO wins the
game by C2 = P \ {p}. This forces YES to pick S2 = {q} ⊆ S1 = {p} with q 6= p
(impossible).

Theorem 10. Anti-Ω is not implementable.

Proof. NO has the following winning strategy: start with C1 = P and then always copy
YES’s last move Ck+1 = Sk. To show C1 ⊃ C2 ⊃ · · · , we need to prove that Sk ⊂ Ck.
This is equivalent to Sk ⊆ Ck, as Sk 6= Ck (13). Obviously, S1 ⊆ P = C1. Then,
Sk+1 ⊆ Sk = Ck+1.

Theorem 11. If n > 2, anti-Ω cannot implement Υ [9].

Proof. Consider a game in which YES plays Ck and Sk ∈ infsetanti-Ω(Ck) (13), and NO
plays Tk ∈ infsetΥ(Ck) (14). We need to prove that NO has a winning strategy.

NO starts with C1 = P and S1 = P \{p} for some p ∈ P . YES has to choose T1 = {T}
with T 6= C1 = P . Then, NO plays C2 = T ⊂ C1 and S2 = P \ {p, t} + C2, for some
t ∈ T . Since C2 = T , YES cannot choose T2 = T1 = {T}, and loses.

This proof assumes that S2 = P \ {p, t} 6= ∅, which requires n = |P | > 2. In two-
process systems, detectors Ω, Υ, and anti-Ω are all equivalent.

Theorem 12. Any non-implementable failure detector S can implement anti-Ω.

Proof. Consider two games:

G. Implementing S in the purely asynchronous system. In the k-th turn, NO chooses
Ck and YES chooses Sk ∈ infsetS(Ck). Since S is not implementable, NO has a
non-dominated winning strategy.

Ĝ. Implementing anti-Ω using S. In the k-th turn, N̂O chooses Ĉk and Ŝk ∈ infsetS(Ĉk),

ŶES chooses T̂k ∈ infsetanti-Ω(Ĉk) (13).

We need to show that ŶES has a winning strategy in Ĝ. It consists of two stages. In
Stage 1, he copies NO’s winning strategy in G while he is forced to output T̂k ⊆ Ĉk. As
soon as ŶES can play T̂k * Ĉk, he moves to Stage 2, in which he just outputs the same

T̂ = T̂k \ Ĉk 6= ∅ for the rest of Ĝ.

20

Stage 1. In the k-th turn, N̂O chooses Ĉk and Ŝk ∈ infsetS(Ĉk). ŶES checks whether

Ĉk = Ck, NO’s optimal move in G, and proceeds to Stage 2 if not. If Ĉk = Ck, ŶES
replies with T̂k being the optimum move Ck+1 for NO in G after YES’s Sk = Ŝk. Such a
move exists because NO has a winning strategy in G. Since T̂k = Ck+1 ⊂ Ck = Ĉk, we
have T̂k ∈ infsetanti-Ω(Ĉk) and T̂1 ⊃ T̂2 ⊃ · · · 6= ∅.

Stage 2. NO’s strategy in G is not dominated, so |Ck| ≥ |Ĉk|. Therefore, Ck 6= Ĉk

implies Ck \ Ĉk 6= ∅. As soon as game Ĝ reaches this state, ŶES can then output the
same T̂ = Ck \ Ĉk 6= ∅ for the rest of the game, because for any i ≥ k:

(
x ∈ Ĉi ⊆ Ĉk =⇒ x /∈ T̂

)
=⇒ Ĉi * T̂ =⇒ T̂ ∈ infsetanti-Ω(Ĉi).

21

