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Summary

Standards in the computer industry have made basic components and en-
tire architectures into commodities, and commodity hardware is increas-
ingly being used for the heavy lifting formerly reserved for specialised plat-
forms. Now software and services are following. Modern updates to vir-
tualization technology make it practical to subdivide commodity servers
and manage groups of heterogeneous services using commodity operating
systems and tools, so services can be packaged and managed independent
of the hardware on which they run. Computation as a commodity is soon
to follow, moving beyond the specialised applications typical of today’s
utility computing.

In this dissertation, I argue for the adoption of service clusters—
clusters of commodity machines under central control, but running ser-
vices in virtual machines for arbitrary, untrusted clients—as the basic
building block for an economy of flexible commodity computation. I
outline the requirements this platform imposes on its storage system and
argue that they are necessary for service clusters to be practical, but are
not found in existing systems.

Next I introduce Envoy, a distributed file system for service clusters. In
addition to meeting the needs of a new environment, Envoy introduces a
novel file distribution scheme that organises metadata and cache manage-
ment according to runtime demand. In effect, the file system is partitioned
and control of each part given to the client that uses it the most; that client
in turn acts as a server with caching for other clients that require concur-
rent access. Scalability is limited only by runtime contention, and clients
share a perfectly consistent cache distributed across the cluster. As usage
patterns change, the partition boundaries are updated dynamically, with
urgent changes made quickly and more minor optimisations made over a
longer period of time.

Experiments with the Envoy prototype demonstrate that service clus-
ters can support cheap and rapid deployment of services, from isolated
instances to groups of cooperating components with shared storage de-
mands.
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Chapter 1

Introduction

This dissertation presents the design and implementation of a distributed
file system. The design is motivated by the requirements of a new environ-
ment that emerges at the intersection of three trends: the renaissance of
machine virtualization as a tool for hardware management, the increasing
use of commodity hardware and software for server applications, and the
emergence of computation as a commodity service.

Providing computing services for hire is nothing new, but previous of-
ferings have always been on a limited scale, restricted to a specific type of
application or tied to the tool stack of a single vendor. Web and email host-
ing services are commonplace, and many applications like tax preparation
software and payroll management are available as hosted services. Nu-
merous frameworks for hosted computing have been proposed [Ami98,
Vah98, Tul98] and commercially implemented [Ama06, Sun06, Kal04],
but these require using a specific distributed framework or middleware
that introduces a “semantic bottleneck” between the application and the
hosting environment [Ros00a]. The only way to make hosted computing
a commodity is to convince vendors and customers to agree on a common
set of interfaces so that applications can be easily moved from one host to
the next and an open marketplace can emerge.

Seeking universal agreement on a new application environment is a
daunting task, but one that can be circumvented by using an existing plat-
form that already enjoys wide acceptance: the PC. Machine virtualization
technology makes it possible to emulate a standard PC with low overhead,
while still controlling the resources clients have access to and giving them a
secure, reliable environment. Using virtual machines as basic deployment
units gives applications access to standard tools and operating systems,
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Introduction

and lets them move more easily from a local testing environment to a re-
mote host, or between competing vendors. A combination of flexibility,
compatibility, and manageability makes virtual machines stand out as a
commodity hosting container.

In this dissertation, I propose that a platform for a commodity com-
putation service be built on clusters of commodity hardware using vir-
tual machines as the management unit. Designing for clusters introduces
scale at the implementation level that platform providers can exploit to
reduce costs, support a wider range of applications, improve resource util-
isation, and foster an ecosystem of intermediate service providers. Instead
of managing a complete tool stack demanding a diverse range of exper-
tise, vendors can specialise in hardware provision and management while
still achieving the scale to make it worthwhile and leave room for ser-
vice differentiation. More specialised services and middleware can exist
as a value-added service from the same vendor, or third-party providers
can layer their services above the virtualized hardware and sell their soft-
ware and expertise to end users. In this way, vendors of hosted services
can focus their efforts on their core expertise without having to build a
widely-distributed network or branch out into hardware management as
a prerequisite.

Numerous research and engineering challenges are posed by this en-
vironment, but this dissertation focuses on providing storage to hosted
virtual machines. Unlike other cluster file systems that focus on parallel
computation and other scientific workloads, the Envoy file system pro-
posed here is optimised for the requirements of commodity computation.
Managers must be able to migrate running services to balance load and
make efficient use of hardware resources, so storage cannot be tied to
a specific host. Most virtual machines require private boot images, but
some also need to coordinate their efforts through shared storage, with
flexible control over shared access. The storage system must offer efficient
shared access to images with strong consistency guarantees, but it must
also accommodate many private images per machine across thousands of
machines.

Forcing clients to start from scratch with each deployment and upload
an entire operating system image would be costly and slow, and hosting
multiple file system images per machine adds a new multiplier to scaling
requirements, particularly capacity scaling [War05]. Expanding the def-
inition of the environment to include a base of commodity software as
well as a commodity hardware interface offers a solution to both prob-
lems. A few well-known software distributions can be installed by the
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vendor and offered to clients as templates that they can customise accord-
ing to their own requirements. By deliberately injecting redundancy into
client images, the storage demands can be reduced to a few template im-
ages plus the customisations and other data unique to each client. Besides
easing storage demands and making inter-client caching more effective,
this ties the cost of commodity computation to the degree of customisa-
tion required. Clients using standard tools enjoy lower deployment costs
than those requiring extensive customisation, encouraging standardisation
through economic pressures without imposing artificial restrictions.

Storage systems are normally measured by their performance, but their
suitability to the environment they serve is equally important. If clusters
of untrusted virtual machines are to succeed as a commodity computa-
tion platform, they must be served by a storage system optimised for the
expected workload and with adequate features to make management prac-
tical.

1.1 Contributions

The thesis of this dissertation is that clusters hosting virtual machines
provide a viable platform for commodity computation, and a file system
optimised for that environment can support the commodity computation
model by providing useful management features and scaling to accommo-
date arbitrary numbers of file system images under expected workloads.

The first contribution of this work is a definition of the requirements
of a flexible commodity computation environment. Commodities are ho-
mogeneous enough to make suppliers interchangeable, and have a large
enough market for economic forces to ensure that the cost to clients is
directly related to the marginal costs of the product or service. I argue
specifically for clusters of commodity hardware as the basis of a compu-
tation platform, with computation in a virtual machine as the product
offered to customers.

The second contribution of this dissertation is the design and prototype
implementation of a file system designed for the outlined environment. It
builds on previous work on cluster storage systems, but addresses the man-
agement needs and scaling characteristics of a platform supporting many
independent clients. It also exploits its environment to use the cheap stor-
age available on commodity machines, reduce complexity by integrating
with the virtual machine structure, and reduce capacity requirements by
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Introduction

explicitly acknowledging the redundancy resulting from a template-based
deployment model.

1.2 Outline

The remainder of this dissertation is structured as follows:

Chapter 2 discusses the relevant background, including the state of
commodity computation and the developments in machine virtualization
that underpin this work. Special attention is given to the extensive body
of work on storage systems, with a focus on how storage systems are
shaped by their intended environments, and how they relate to the new
environment proposed here.

In Chapter 3 I define the problem of flexible commodity computation,
and argue for virtual machines hosted by clusters of commodity hardware
as the platform for a computation economy. The first part of the argument
is that virtual machines decouple hardware management from software
management, encouraging transparent competition and specialisation that
is not tied to a particular application domain. The second point is that
clusters take advantage of economies of scale and allow unrelated clients
to share hosting, where careful management can balance the demands of
diverse users and make efficient use of resources. The chapter concludes
with a discussion of the role of the storage system in this environment.

Chapter 4 presents Envoy, a file system for clusters of virtual machines.
Like many cluster file systems it builds a distributed file system above a
separate object storage layer. Envoy partitions management of the global
namespace along hierarchical lines, assigning control of a territory to the
machine that uses it most, and territory boundaries are dynamically up-
dated in response to runtime conditions. Objects are cached and served
directly by the machine that controls the associated territory, eliminating
distributed cache coherency protocols while still permitting cache sharing
between clients.

The prototype implementation of Envoy is described in Chapter 5 and
evaluated in Chapter 6. The basic functionality of Envoy is fully imple-
mented, with file systems exported to clients using a Linux implementation
of the 9p protocol from the Plan 9 operating system. The evaluation tests
the performance and scalability of the prototype, validating the overall
design and suggesting possible improvements in specific areas.
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Finally, Chapter 7 concludes and discusses directions for future inves-
tigation.
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Chapter 2

Background

This dissertation builds on the rich body of research and systems that have
preceded it. In this chapter I present relevant background material to
establish the context of the current work. First comes a discussion of
commoditisation within the computer industry and how it relates to the
proposal in Chapter 3 for a commodity computation platform. Next, the
current state of machine virtualization—an important component of the
proposed platform—is presented with an emphasis on recent systems for
the x86 architecture. The chapter then turns to influential storage systems
and other work that relates to the Envoy file system described in later
chapters.

2.1 Commodity computing

Commoditisation relates to computing in two distinct ways, both of which
are relevant here. The first is the general consolidation of PC hardware
into a series of commodity parts, which are cheap enough and powerful
enough to take over many applications that were the domain of specialised
“big-iron” hardware in the past. The second is the push to offer compu-
tation as a service instead of as a product, where billing is based on work
done rather than on hardware and software delivered. This dissertation
proposes using clusters of commodity hardware as a platform for offering
commodity computation services.

14



2.1. Commodity computing

2.1.1 Commodity big iron

The scale of the PC market ensures that the best the semiconductor market
has to offer is available for PCs. The difference between cheap commod-
ity hardware and expensive mainframes and supercomputers is in scala-
bility, reliability, and manageability. High-end equipment is designed to
offer high bandwidth on buses and I/O channels and to scale through
highly-parallel configurations. Redundant components mask some classes
of faults, and others can be isolated and repaired without interrupting
the operation of unaffected components. While these features could be of-
fered in commodity machines, they add too much cost to be worthwhile in
environments where service interruption is more annoying than expensive.

Networks of workstations

The proposal for Networks of Workstations (NOW) was an early argu-
ment for using networks of smaller computers for large problems instead
of seeking parallelism through specialised hardware [And95a]. While in-
dividual components are less performant, the aggregate capacity of a large
collection of machines is immense. Commodity disks may be slow, but
accessing them in parallel yields high bandwidth as well as high capac-
ity. Reliability and fault tolerance can be designed as a property of the
combined system, rather than being engineered into individual hardware
components. This has the advantage of transferring the expense from a
per-unit manufacturing overhead to a one-time cost in the software de-
sign.

PCs have encroached on the workstation market and the two terms are
largely synonymous now. The same trends that prevailed in the mid 90s
for workstations continue today, however. Switched networks lead to ag-
gregate bandwidth that scales with the number of hosts. Single-threaded
performance on cheap PCs is a significant fraction of that on the fastest
server hardware. Disks continue to grow in capacity, but their perfor-
mance improves at a much slower rate. Performance is best scaled through
parallelism, and a collection of many machines that all have cheap disks
has the potential to outperform even the fastest single controller or collec-
tion of high-performance disks attached to a single machine.
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Clusters

While workstations in an organisation can be profitably pooled for large
jobs, clusters are specially built for that purpose and eliminate the work-
station role from a node’s list of duties. The basic principles behind clus-
ters were laid down in the 1960s [Amd67], but the power and afford-
ability of recent commodity hardware has brought clusters to renewed
prominence. The same hardware used in high-street PCs powers some of
the most powerful computing sites in the world [Top06].

Dedicated clusters have a few advantages over more loosely-organised
structures. Nodes are typically housed in a controlled environment with
redundancy built into power supplies, network links, and cooling equip-
ment. While many clusters grow incrementally, they are still relatively
homogeneous, being built from batches of identical hardware. They are
also professionally managed and monitored with central control over all
resources, unlike looser amalgamations of machines.

As parallel computing vehicles, clusters are mainly used for large “em-
barrassingly parallel”1 problems that can be neatly decomposed into dis-
crete tasks. Google has been prominent among commercial users of com-
modity clusters, and their search engine architecture is an example of
a highly-parallel task. The search index can be cloned to serve many
concurrent transactions, and partitioned to split processing for a single
query over multiple nodes [Bar03b]. Scientific workloads, simulations,
and graphics rendering farms are all characterised by repetitive computa-
tions over huge data sets, and are similarly well-suited to cluster imple-
mentation. Beowulf is a popular system specifically designed for address-
ing these kinds of tasks on clusters of commodity hardware running Linux
or other Unix-like operating systems [Rid97].

These problems are generally large enough to warrant custom soft-
ware solutions as well as dedicated hardware resources. Management
software for clusters usually assumes that the application is trusted and
cooperative. Systems like TranSend [Fox97] and CARD [And97] require
application software to be divided into discrete application units that the
monitoring software can direct. Migrating tasks from node to node and
compensating for failed nodes requires cooperation from the application,
or interaction with a transaction interface that exposes application seman-
tics. Beowulf [Rid97] is a lower-level toolkit, providing libraries of useful
tools for building a custom cluster application.

1See http://en.wikipedia.org/wiki/Embarrassingly_parallel
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2.1. Commodity computing

For some classes of problems, clusters dominate as the architecture of
choice, with clusters of commodity hardware increasingly winning over
clusters of specialised hardware. This dissertation does not seek to sup-
plant them for inherently parallel tasks, but rather to extend their advan-
tages into other problem domains. While clusters are a sound choice for
problems requiring the dedicated effort of thousands of machines, they
can be an equally viable platform for problems too small to require the
undivided attention of even a single node. Clusters are normally built and
located for a specific user and a specific task, but they can also be built
where conditions are best—perhaps near network interconnect points or
where cheap resources abound or a favourable regulatory environment ex-
ists; strategic choices can give vendors a competitive edge. The advantages
of scale can be brought to bear on small and medium-sized problems, not
just on the largest of tasks.

2.1.2 Computation for hire

Computer hardware is cheap enough that most organisations can afford to
buy systems with sufficient power for their needs. However, because of the
complexity of managing computer systems and the ongoing operating and
maintenance costs, this is not always the best way to proceed. Numerous
avenues exist for clients wanting to hire computation services instead of
owning and managing their own hardware and software.

Replacing the machine room

The primary motivation for outsourcing computation as considered here
is to reduce or eliminate the role of the machine room. Dedicated server
hardware comes with expenses that may outweigh the benefits of local
ownership and control.

The most obvious costs are direct: physical space required, electric-
ity consumed, and heat produced. Commodity hardware is cheap enough
that these runtime costs may exceed the capital cost of the hardware over
its service lifetime [Bar05]. Hardware must either be located at a company
site, where appropriate facilities must be installed and internet connectiv-
ity hired, or at a dedicated hosting facility, where managing it is more
complicated and may require sending staff to a remote location.

Maintaining servers also requires qualified staff, another significant ex-
pense. The skills required to manage computer systems are unrelated to
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the core mission of many organisations, forcing them to develop a sizable
technical staff to support operations that have little to do with technology.
Running a parallel group outside an organisation’s core expertise may lead
to additional inefficiencies.

These costs are even less palatable when the computation facilities are
only needed intermittently. Unpredictable demand may force planning
based on peak requirements, but many costs are fixed and do not drop
during periods of low demand. When asked about the expenses of their
large computing infrastructure, Jeff Bezos of Amazon claimed that cost
from lack of utilisation dominated the costs of power, servers, and people
[Bez06].

Hosted services

Some services are generic enough to be hosted remotely by specialised
providers, who make money by offering the same inexpensive service to
many clients. Basic applications like email, payroll management, web
hosting, and other common services have already attracted commercial
interest. Hosting them locally brings all the negative aspects of manag-
ing an on-site machine room, while adding little or no value over using a
remote provider.

Hosted software eliminates the need for the client to buy or manage
dedicated hardware, and the application is managed by specialists who
can amortise fixed costs over a large customer base. Upgrades do not
require work from the client, making it practical to keep all customers
synchronised and further reduce support costs. The unpredictable demand
of individual clients can become predictable in the aggregate, allowing
more efficient hardware use.

Similar arguments apply to storage outsourcing [Ng02], for those
wishing to hire managed storage while retaining local control of applica-
tions. Multi-site backups, capacity planning, and other domain-specific
concerns can be turned over to a specialist, leaving local staff to focus on
the problems unique to the organisation.

Hosted services fit well with the present proposal, which takes the
concept a step further by splitting management of hardware from man-
agement of software. In the service cluster model advocated here, service
providers can focus entirely on their applications, leaving hardware man-
agement to a dedicated hosting service. Alternatively, clients can hire soft-
ware management services from one vendor and hardware hosting directly
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from another, isolating the specific value offered by a software vendor
from the basic operating costs that all software applications require.

Utility computing

Application hosting is most practical for widely-used services, where few
differences exist between clients. The proposal in this dissertation is a
form of utility computing, where hardware resources are made available
for custom applications at a cost related to resource consumption. Utility
computing refers to a range of computing models, with the common char-
acteristic of on-demand resource provision. Hosted services as described
above, and grid computing as described below, fall under the umbrella of
utility computing.

Existing work focuses mainly on large applications where abundant re-
sources are needed, but not necessarily over a long enough period to justify
building a suitable hardware solution. An example is rendering feature-
length animated films, which requires vast computing power and complex
interactions, but only until the project is finished. Vendors with sufficient
resources can manage them like batch processors on early mainframes,
assigning hardware to a series of applications that have been suitably
prepared for the environment [Wil04]. HP’s Utility Data Center (UDC)
[Kal04] uses virtualization to manage services, much like the service clus-
ters described in Chapter 3, but focuses on large projects that can be in-
dividually adapted to the UDC environment. Amazon’s Elastic Compute
Cloud (EC2) service uses the Xen virtual machine manager to offer hosted
computing at large or small scales, with billing by the instance-hour and by
bandwidth used [Ama06]. Like the current proposal, it relies on commod-
ity software environments to minimise the changes required to migrate
from a locally-owned machine to a hosted service.

The Collective project also uses virtualization to isolate services, and
proposes turning the desktop PCs of an organisation into a pool of utility
computing hosts to simplify administration [Sap03]. To end users, inter-
active applications and services appear as virtual appliances that can be
instantiated on a local PC. This allows specialised staff to manage desktop
software as well as machine-room applications. Desktop PCs act some-
what like terminals for managed software, but terminals that also host
computation for their own clients. In some sense, this is the reverse of
other utility computing environments; it delivers managed software ser-
vices to local hardware instead of offering hosted hardware to run client
applications.

19



Background

Grid computing

Grid computing [Fos03, Sun06] seeks to combine resources in the wide
area to provide on-demand computation. Utility computing gets its name
from basic utilities like power, water, and sewer service, offering a com-
mon service to many clients who pay according to what they use. Grid
computing styles itself after power grids, which provide a meshed infras-
tructure to match power producers with consumers across the boundaries
of a single utility.

Pooling the resources of many organisations has the potential to put
vast resources at the disposal of clients, but it also introduces new prob-
lems. Unlike the cluster environments typical of utility computing, grid
applications must communicate over the wide area with its low bandwidth
and high latency. This makes the grid model most suitable for highly par-
allel CPU-intensive jobs, which can be parcelled into discrete units and
distributed to remote nodes. Moving from a single, trusted management
environment makes security considerations more complex as well.

Grid computing requires special middleware, though using virtual ma-
chines to support more general-purpose clients has been proposed [Fig03,
Zha04]. Even then, poor connectivity makes it slow and expensive to
transfer large data sets or share data extensively between nodes. The dis-
tribution model of grid computing makes it poorly suited to interactive
applications or those that require close cooperation between nodes.

Existing utility computing solutions do little to address the needs of
an organisation with a relatively small computing infrastructure hoping to
stay out of the hardware management business. A few applications can
be outsourced to a service provider, and large jobs can be run on hired
hardware, but these systems are only applicable to a small subset of the
applications running in a typical organisation’s machine room. To achieve
the scale necessary to make an offering profitable, vendors have focused on
hosting widely-used applications and projects that are already large. This
differs from the current proposal, which aims to make hosted computation
a commodity service practical for a wider range of client applications.

2.2 Virtualization

Resource virtualization makes it possible to put familiar tools and inter-
faces in new environments without substantial modifications. Virtual ma-
chine abstractions allow standard operating systems to share hardware
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even when they are designed to assume exclusive control. Virtual disk
abstractions provide a block interface like that of a standard disk, but
without tying it directly to a single piece of hardware. Virtualization is
used for a variety of reasons, but the relevant purpose here is for resource
management and sharing.

2.2.1 Virtual machine monitors

IBM VM/370 [Gum83] first virtualized hardware to support legacy code
without modification. Modern commercial systems like VMWare [Dev98]
and Microsoft Virtual Server [Mic06] are often used for similar purposes,
allowing standard operating systems to run unmodified as guests in new
environments. This is useful for testing labs, which can test applications
against a range of software configurations on limited hardware, and for
end users who need access to applications from multiple software plat-
forms. While this allows access to a wide range of guest software, it
comes at a performance cost on some hardware—including the standard
x86 platform—which was not designed with virtualization in mind.

Virtual machine monitors (VMM) work by imposing a thin software
layer between the operating system and the bare hardware. Unlike emula-
tors or simulators, VMMs allow code to execute directly on the hardware
whenever possible. Certain operations break the illusion of isolation, how-
ever, particularly those involving I/O, memory protection, and interrupt
management. The VMM must intercept these operations and simulate the
desired effects on the virtual machine. If the hardware does not allow the
VMM to directly intercept such operations, it must do so using software
means, such as code rewriting or emulation. The overhead of such vir-
tualization techniques is highest when I/O operations are frequency, as is
common in server applications.

The Xen hypervisor uses paravirtualization, where the operating sys-
tem is explicitly ported to the hypervisor environment. By eliminating
expensive virtualization techniques for I/O operations, paravirtualization
leads to low overhead even for network and database applications with
heavy I/O components [Bar03a]. This does not affect userspace appli-
cations, whose I/O operations are already virtualized by the operating
system, so unmodified binaries can still be used with the modified oper-
ating system. The down side is that paravirtualization does not provide
support for systems that are not modified to support it, including legacy
systems. The combination of high performance and support for modern
commodity systems makes it suitable as a host for a managed platform
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like the one proposed here. Recent updates to the x86 platform support
full hardware virtualization [Ada06], allowing unported systems to run as
well, although explicit support for the paravirtualized environment is still
beneficial in reducing overhead.

Virtualization allows a commodity computation platform to isolate
hosted services from each other and allow them to be managed without
explicit cooperation at the application level. Multiple guest operating sys-
tems can run on the same hardware, and virtual machines can be migrated
transparently to balance load, collocate related services, or free a machine
for servicing [Cla05]. Virtual machines can even be frozen and migrated
to remote sites [Sap02], a deployment strategy used by vMatrix [Awa02]
to migrate and replicate specialised internet services.

The IBM zSeries [IBM06] platform provides a managed hosting envi-
ronment for paravirtualized Linux, but it does so on specialised mainframe
hardware and ties clients to a single vendor solution. The availability of
fast, secure virtualization for cheap commodity hardware opens up the
possibility of applying these techniques to create an open commodity mar-
ket for computation.

2.2.2 XenoServers

A public computing platform requires more than just hosting technology.
The XenoServers project [Ree99, Kot04a] explores the infrastructure re-
quired to host network services on a public computing platform. The Xen
hypervisor started as part of the XenoServers project, which motivated its
emphasis on performance over compatibility with legacy code. Applica-
tion binaries can run without modification in a paravirtualized system, so
the modifications Xen requires only affect the operating system.

The XenoServers project also addresses the problem of helping clients
find a suitable host [Spe03]. Network services may have specific connec-
tivity requirements, especially when being deployed for use by a small
group or an individual. For example, a game server connecting a group of
players requires low latency to a specific set of clients to support real-time
interaction. To support a large number of hosting providers, XenoServers
also defines the infrastructure for billing through a trusted third party.

This dissertation is not directly linked to the XenoServers project, but it
is related. XenoServers provides much of the general framework for public
computing, but it does not specify the architecture for hosts beyond the use
of the Xen hypervisor. In this work I propose using clusters of commodity
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hardware as the basis for public computing, and I offer a storage system
suitable for that environment. The Envoy file system proposed here also
supports a deployment strategy similar to the one we described as part of
the XenoServers project [Kot04b].

2.3 Storage systems

Storage is a fundamental component of all general-purpose computer sys-
tems. A combination of high storage density, random access, and low cost
has made magnetic storage on rotating platters the dominant medium for
durable storage. The time to access a random byte of data from a disk
is typically measured in milliseconds, while for DRAM this time drops
roughly six orders of magnitude to a nanosecond scale, and that gap is
continuing to grow.

Because disks are so slow, storage systems are designed around the goal
of accessing the disk as little as possible, and favouring sequential access
to avoid costly seek delays. Effective use of cache is vital to this goal,
and specialised storage systems tuned to specific system architectures and
expected workloads are worthwhile because of the potential speed gains
over more general systems.

Storage systems have been studied extensively, and one purpose of this
section is to survey related work that has influenced this dissertation. A
second purpose relates to the thesis of this work, which argues that an en-
vironment can only succeed with an appropriate storage architecture. The
works discussed here are presented in the context of the environments they
support, in part to establish a pattern of symbiosis between storage archi-
tectures and computation environments. Envoy, the file system introduced
in this dissertation, is discussed briefly in this section to relate it to prior
work, but details of its design are reserved for later chapters.

2.3.1 Local file systems

Disks are mechanical devices and their performance is limited primarily
by the need to physically position the disk head over the correct part of
the platter to access data. File systems designed for local disks achieve
performance by minimising the physical movement required. Disk access
can be reduced through caching, and hardware latency can be minimised
by arranging data on the disk to minimise movement. Correctness and
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reliability tend to trump performance as design considerations, however,
and the wide variety of possible workloads makes it difficult to pick clear
winners from competing designs.

The Berkeley Fast File System (FFS) was the first to optimise data lay-
out for performance by clustering related information. Block metadata is
distributed across the disk to be near the file data it describes, file meta-
data is grouped for files in the same directory, and blocks in the same
file are grouped whenever possible [McK84]. Clustering, as this design is
called, exploits concepts that extend beyond local file systems: the same
expectations of correlated access can be exploited to reduce latency when
accessing data across the network [Ame02].

File system tracing reveals how files are accessed in real systems
[Ous85]. Most files accessed are small, but size distributions are skewed
enough that most data transferred is from large files. Writes are less com-
mon than reads, and most files are short-lived. Files access is typically
sequential, and most files are read from or written to in their entirety.
These trends have proved resilient over time, though the scale has in-
creased and the largest files in typical systems have grown much larger
[Rue93, Gib98b, Ros00b].

As cache sizes grow, more requests can be satisfied without consulting
the disk, and designs can assume that many read requests can be served
from memory. All writes whose effects are not quickly undone have to go
to disk eventually, so despite being less frequent overall, writes requests
can dominate the mix of operations that penetrates the cache and reaches
the disk. Furthermore, updates often involve metadata changes as well,
potentially requiring multiple costly disk seeks even for small updates.

Log-structured file systems (LFS) address this problem by borrowing
from database design and making the entire file system an append-only
log. Writes are gathered and written as sequential chunks on disk, with
relevant metadata rewritten instead of updating existing structures directly
[Ros91]. Journaling file systems apply the same idea to other file system
types, logging only the intent to update metadata. Once the log is com-
mitted, the conventional structures can be updated asynchronously while
still guaranteeing durability in the face of a system crash [Hag87, Swe96,
Twe98]. Breaking the chain of synchronous metadata commits is also the
objective of soft updates, a technique that involves careful rearrangement
of data in the buffer cache to permit delays and reordered writes [Gan94].

Studies comparing FFS with LFS [Sel95] and journaling with soft up-
dates [Sel00] reveal a complicated picture. Transaction workloads force
frequent synchronous writes to support their own semantics, negating the
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benefits of aggregated writes, and updates to clustered file systems reduce
the ordered-write problem enough to keep it competitive with LFS for
small file updates. Very different strategies can lead to comparable results,
but for all local file systems it is careful attention to the motion of the disk
head that leads to good performance.

2.3.2 Client-server file systems

If local file systems can be characterised by how they manage disk head
motion, distributed file systems are dominated by concerns of data place-
ment and cache management. For a single host, cache management is easy.
The OS has a monopoly on the disk and can reconcile any concurrent re-
quests. Complications are mainly concerned with deciding when to com-
mit writes to disk to ensure durability in the face of a system crash. Dis-
tributed systems must also consider consistency between caches on mul-
tiple machines. If a cache delivers an out-of-date version of a file, the
application may be led to produce incorrect results.

The Sun Network File System (NFS) was the first widely used file sys-
tem for sharing files across hosts [San85]. NFS serves many clients from
a single access point (typically a server or a dedicated storage appliance
[Hit94]), which hosts the persistent and canonical version of a file. Cache
policy is unspecified, with no explicit support from the server. Clients gen-
erally cache reads and writes in memory and check with the server before
relying on old cache entries (typically in the range of 10s of seconds). Thus
an update made by one client is only detected by another when the first
has sent the update to the server and the second has checked for an update.
Clients can send a constant stream of stat requests to check for updates,
but they cannot hasten a delayed update from another client, so they can
never be assured of having the latest version of a file. An update to the pro-
tocol helped reduce traffic somewhat by performing implicit stat requests
and including the results with common operations [Paw94, Cal95], but
the fundamental problem remains as clients still delay writes to the server.
The latest update, NFSv4, includes features to improve cache manage-
ment for uncontended data by delegating complete control of individual
files to clients and revoking the delegation when other clients seek concur-
rent access, at which point it reverts to the consistency semantics of earlier
versions [She03].

Other client-server systems address the problem in different ways. The
Andrew File System (AFS) [Sat85, How88] uses the client’s disk as a per-
sistent cache with close-to-open semantics. In this scheme, the cache is
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validated at file open time, and changes forwarded to the server at file
close time. To reduce validity checks at file open time, a client can be given
a callback, meaning that it can assume the file is current unless explicitly
notified by the server. These changes improve scalability by enlarging the
effective cache size on clients and reducing the load on the server, but they
still leave open the possibility of conflicting updates by multiple clients.
Coda extends AFS to explore the problem of conflict resolution, open-
ing up access to mobile users and allowing clients to continue operating
when disconnected from the network [Sat90, Mum95]. DEcorum goes
the other way, extending AFS to strengthen cache consistency using token
passing—a scheme where each file has a single logical token that a client
must obtain before it can write to the file [Bur88]—as well as to interoper-
ate better with existing file systems and reduce recovery time after a crash
[Kaz90].

The Sprite team observed that—despite the popularity of NFS—few
applications explicitly address inconsistencies introduced by the file sys-
tem, so loosening consistency guarantees in favour of performance gains
is a dangerous tradeoff. They sacrificed some performance for full cache
consistency by disabling caching for files under contention [Bak91, Nel88,
Wel91]. Since concurrent access is relatively rare [Kis91], this does not
pose a significant problem for overall performance.

In all distributed file systems that permit sharing, there must either be a
canonical version of the file (or block [McG98]) or some way to reconcile
conflicting updates [Kis91]. In the former case, some participant is usually
nominated as the owner of a particular file through a lease [Gra89], token
passing [Bur88, Man94, Kaz90], or some other scheme. Any other host
wanting access to the latest version must coordinate through the owner.
Ownership may go to the host that provides storage, the one actively using
the file, or a management host that connects the two [Bla93, Kel94]. In
Envoy, ownership goes to an active user, which then acts as a synchronous
server to other users. Unlike Sprite, the principal user can continue to
cache the file locally and share its cache with other concurrent users.

Another possibility is to disallow write sharing. The Cedar file sys-
tem [Sch85] makes all shared files immutable, and turns the problem into
one of versioning [Gif88]. Venti takes this a step further by storing all
file versions permanently and addressing them by a hash of their contents
[Qui02]. Since files are never changed or deleted, the store collects a com-
plete history of all historical states of the file system. In workstation en-
vironments, it is possible for storage capacity to grow faster than storage
is consumed, making this a feasible system, or past versions can be selec-
tively removed as in the local file system Elephant [San99].
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A less drastic approach is to permit snapshots [Hit94], then mark his-
torical versions as read-only with no requirement for cache coordination
[War05]. Envoy employs this dichotomy between active and read-only file
versions, implementing cache management only for mutable objects. It
does not coalesce identical read-only objects like Venti or Farsite [Dou02].
It could be extended to do so using a lazy, asynchronous process, but it
reduces the need by promoting file system forking with copy-on-write as
a management tool to avoid creating many of the duplicates in the first
place.

Where snapshot systems typically use copy-on-write to transparently
combine old data with new, some systems allow explicit stacking of file
systems. Spring [Kha93] allows file systems to be layered with option-
ally synchronised updates as a mechanism for extending functionality by
layering in new features. Plan 9 [Pik90] allows any file system mount to
be layered over another and their contents combined to give each user a
custom view of local and remote file systems [Pik92]. The copy-on-write
NFS server I developed for the XenoServers project [Kot04b] allows layer-
ing instructions to be put in a file in any directory, directing the server to
immediately reconfigure the user’s view of the file system. These systems
can be used as a way to fork a file system, by sharing the common base
image and capturing changes in a private layer. Over time this can lead
to complex hierarchies of layers, and such systems rely on the semantics
of their backing file systems. Envoy can be used in conjunction with a
stacking layer, but it already provides explicit support for snapshots and
file system forks.

2.3.3 Serverless file systems

While creative caching can alleviate the problem somewhat, all client-
server architectures have inherent scaling problems. As a single point of
contact for all clients, a server is subject to load that grows in proportion
to the number of clients, and it also represents a single point of failure. In
addition, the duties of a server tend to make it unsuitable for other uses,
so such an architecture calls for a dedicated server. As workstations have
grown in power, harnessing their excess capacity to cooperate on large
problems has become increasingly attractive [And95a].

In xFS, the traditional roles of a server are split and distributed to the
clients to yield a serverless architecture [And95b]. Hosts can act as clients,
managers that coordinate data placement, and/or storage servers that pro-
vide disk space, similar to the file system of the earlier LOCUS distributed
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operating system [Wal83]. Cache coherency is achieved through an ex-
plicit consistency protocol where conflicting client requests are detected
and managed.

In addition, the xFS team observed that modern networks make re-
trieval from a peer’s cache faster than from a disk [Dah94a], so sharing
and coordinating cache across hosts can yield benefits over independent
local caches [Dah94b]. The resulting protocol was so complex that the
team had to employ a formal protocol verifier to get a working imple-
mentation [Wan98]. While a valid way to manage complexity, reducing
complexity through design may be preferable, especially in storage systems
where correctness is paramount.

Farsite also targets a workstation environment, but assumes that par-
ticipating machines are not trusted [Ady02]. This requires encrypting
data and using complex Byzantine agreement protocols instead of trusting
hosts that have been assigned management roles. It also calls for a higher
replication factor to guard against malicious attacks as well as hardware
failures [Dah94b], and makes cache sharing between hosts less practical.
These restrictions are imposed by the environment, again highlighting the
importance of matching storage design to expected conditions.

The downside of having workstations double as servers is that the
server function is not completely isolated from the other activities of the
workstation. Server load is normally determined by the aggregate activ-
ity of many clients instead of that of a single unpredictable user, and a
user may also switch a workstation off without notice. While a server can
also fail unexpectedly, careful administration generally makes this an in-
frequent event. Extra redundancy is necessary to make files available, even
when they are still reliably stored on a workstation that has been powered
down.

The same trends that lead to excess capacity in workstations make
dedicated servers cheap and powerful, without the additional complexity
of a heterogeneous management environment. Despite numerous studies
showing feasibility [Bol00, Dou99, Dou01] and systems developed and
tested [Ady02, Wal83], no serverless file system has seen widespread use
for general-purpose computing.

While Envoy has similar goals for serving a location-independent file
hierarchy to many untrusted clients, putting it in a trusted cluster envi-
ronment changes the assumptions significantly. Hardware virtualization
allows malicious clients to coexist on hardware with trusted server pro-
cesses, and the complexity of Byzantine failure models can be avoided.
Managed hardware also means that replication factors can be planned
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around hardware failure rates and load balancing without worrying about
hosts being switched off by desktop users.

2.3.4 Wide-area file systems

Carrying the idea of distributed file systems to the logical extreme leads
to global file systems, running on hosts throughout the world and serving
millions of clients located anywhere. Latency and available bandwidth be-
come major concerns in this environment, and the inability to trust hosts
forces widely-distributed file systems—as was true with Farsite in a smaller
setting—to focus mainly on managing replicas for availability and reliabil-
ity.

Systems with servers

Ficus [Guy90] and Echo [Bir93] link servers together to form a single,
global file hierarchy, with transparent navigation between the discrete vol-
umes that make up the system. In Echo, entire volumes are replicated
in tightly-synchronised groups with one primary server and one or more
standby servers. A token-passing scheme allows clients to cache files lo-
cally but still maintain global consistency [Man94]. Ficus relaxes the syn-
chronisation requirements in favour of optimistic concurrency, where con-
flicts must be resolved after being detected. Volume replicas are loosely
synchronised, and each may hold copies of only a subset of the files logi-
cally contained in the volume. Updates can be made to any file that has at
least one replica available [Pop90], permitting continued operation in the
face of network partitions or other failures, similar to Coda [Kis91].

An early version of xFS [Wan93] also follows a two-tier model, where
loose clusters of nearby hosts work together and share a single consistency
server. The consistency server acts as a proxy for the group when commu-
nicating in the wide area, and as a coordinator for operations within the
cluster. Requests are served from the cache of a local host when possible,
and forwarded to a remote cluster when necessary. Consistency is main-
tained through tokens that permit local caching for multiple readers or a
single writer. To reduce the state that must be tracked, tokens cover entire
groups of files.

JetFile [Grö99] and Pangaea [Sai02a] rely on pervasive replication with
little overall structure. JetFile uses specialised servers for a few metadata
functions, but most operations happen directly between clients. In both
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systems clients maintain replicas of all files they are interested in, and op-
timistic concurrency control permits disconnected operation. They differ
in how updates are propagated. Pangaea maintains a replica graph for
each file and pushes updates to other clients [Sai02b], while JetFile makes
extensive use of IP multicast to locate replicas and announce changes, and
clients pull updates when required. When conflicting updates are detected
in either system, the versions must be reconciled explicitly, generally using
a last-writer-wins policy.

Peer-to-peer systems

Relying on trusted servers restricts the audience for a wide-area file system
to large organisations and service providers who can maintain widely-
dispersed networks. Peer-to-peer systems use resources volunteered by
participants on large numbers of machines.

The simplest systems are read-only file distribution schemes. Bittor-
rent tracks all clients with a central manager, but data blocks are trans-
ferred mainly between clients [Coh03, Pou05], which request blocks they
have not yet received from peers that have already downloaded them.
Avalanche [Gka05] uses network coding to decrease the incidence of
“rare” blocks that make it difficult for clients to complete the last steps of
a file download. Both systems feature capacity that grows with the num-
ber of users, without consuming excessive bandwidth at the server. Such
systems are mainly useful for sharing the cost of distributing static content
with those who benefit from it, and not for general-purpose storage needs.

Wide-area file systems can also be built using distributed hash ta-
bles (DHT) such as CAN [Rat01], Pastry [Row01a], Chord [Sto01], and
Tapestry [Zha01], which provide distributed lookup services on peer-to-
peer networks. CFS [Dab01] and PAST [Row01b] implement read-only
systems using content-based addressing, similar to Venti [Qui02], but us-
ing an underlying DHT to locate object replicas. Other systems implement
mutable file systems over similar substrates, storing data blocks, files, or
content-based fragments [Rab81] as immutable objects distributed across
the network. Pasta [Mor02] stores metadata in special index blocks, each
of which is associated with an asymmetric cryptographic key. The key is
used to locate the index block (instead of using a hash of the contents as
for normal data blocks) and to protect changes to it, allowing the index
to change while retaining a unique static ID. Eliot [Ste02] stores metadata
outside the immutable substrate, creating a separate, writable system that
references the read-only data indexed by the DHT. Ivy [Mut02] stores
all user changes to the user’s log, which is then made available to others
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through the DHT, and each user consults as many logs as necessary to
construct a coherent view of the file system.

Peer-to-peer file systems all suffer from the transience of users. Volun-
teered resources can be withdrawn without notice, so high levels of repli-
cation are required to ensure accessibility and availability [Bla03, Rab89].
Latency is also high in the wide area, so further replication and caching
is necessary to make performance acceptable. OceanStore [Kub00] was
designed as a global network of highly-connected clusters that cooperate
closely, with additional clustering at the file level for groups of files that
are regularly accessed together. The prototype, called Pond [Rhe03], uses
Tapestry to organise virtual resources (data blocks and manager nodes),
but it also forms localised clusters of participants to implement Byzan-
tine agreement protocols without the high latency typical of DHTs. These
systems are tiered to reclaim some of the benefits of locality while still
providing a global service.

Envoy has some structural parallels with these systems. While latency
between machines in a cluster is much lower, Envoy still caches data on
disk and in memory near the client. Locality is pursued at the machine
level to aggregate the storage requirements of a set of virtual machines,
with data ultimately replicated and spread throughout the cluster as stor-
age objects.

The relationship of the present work to global storage systems is more
than just a passing architectural resemblance, however. Envoy and the ser-
vice clusters that host it are designed for commercial providers that locate
computational resources near storage and fast network access. Instead of
trying to hide the distance between users and data, service clusters share
the goal of XenoServers [Ree99] to move computation to a resource-rich
environment. As a basic platform, service clusters backed by Envoy stor-
age can form the building blocks of global service networks, including
storage services.

2.3.5 Cluster storage systems

The path from local file systems to wide-area file systems is generally pro-
gressive, with concerns about cache management, trust, latency, replica
placement, and reliability growing at each step. Clusters have networks
with low latency and high bandwidth, and large numbers of trusted,
centrally-managed hosts. Their mixture of characteristics from the largest
and smallest of systems partially explains their popularity as replacements
for traditional, monolithic supercomputer architectures.
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With a large number of redundant components, clusters have the po-
tential to be highly reliable (in the aggregate) with abundant bandwidth.
One of the principal drivers of cluster storage systems is avoiding bot-
tlenecks. While this is important in all systems, the vast aggregate disk
and network bandwidth available to a large cluster makes it easy to over-
whelm any single component [Hos04]. In addition, the opportunity cost
of wasted resources is potentially very high, so cluster systems must make
good use of the combined storage capacity and I/O bandwidth available
from the array of component machines.

Storage layers

A common approach for cluster storage systems is to divide the problem
into two distinct layers: one that manages the physical disks, balancing
load and capacity and handling the addition and loss of disks, and a sec-
ond layer that builds a file system above an abstract block- or object-level
interface provided by the first.

The Multi-Service Storage Architecture divides storage into two dis-
tinct services in order to support a wider range of client. The lower level
gives clients direct access to unstructured objects, while still enforcing ac-
cess restrictions and offering concurrency control. The higher level offers
a complete type system for composing objects and defining relationships
between them. Above these layers, applications can build a wide range of
traditional file systems, databases, and storage of structured multimedia
objects, all supported by a common infrastructure [Bac91].

Zebra [Har93] stripes data across multiple storage servers in a net-
work version of RAID [Pat88], but uses a single file manager to coordi-
nate metadata. Zebra is based on the Sprite LFS implementation, and
clients cache data and metadata the same as they would in Sprite. The file
manager assumes the role of a standard file server, but all log operations
are striped and clients direct data requests directly to the storage servers.
Swarm [Har99] removes the file manager to present a stand-alone layer
that exports striped logs to clients, which can be used to implement local
file systems or other high-level services.

Petal [Lee95, Lee96] pools storage devices to export sparse virtual
block devices to clients. Persistent state is distributed across the servers,
and global state is updated using a distributed agreement protocol that
tolerates node failures. By caching a small amount of metadata, clients
can direct most requests directly to the correct storage server, updating
metadata lazily when it proves to be out-of-date. Petal maintains a global
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map of servers for each virtual device, optionally using chained declus-
tering for redundancy. Chained declustering [Hsi89] allows simple load
redistribution when nodes fail and makes catastrophic failures more likely
to damage a few virtual disks extensively than cripple many virtual disks
with small corruptions.

Frangipani [The97] builds a file system over a Petal virtual disk. It
takes advantage of the large, sparse address space to simplify data struc-
tures, with large regions reserved for inodes, allocation bitmaps, logs,
small blocks, and large blocks. As with most layered systems, the physi-
cal layout is not determined by the virtual layout, so many of the layout
strategies of local file systems are inapplicable [Ste05]. Instead, the layout
of files is simple, with a map tracking up to sixteen 4 KB blocks for small
files, spilling into one of 224 large blocks that can store files up to 1 TB.
File systems can be shared by multiple clients; a distributed lock manager
coordinates caching and prevents corruption from concurrent access.

Object-based storage systems [Fac05, Mes03] provide an object-level
interface to disk space. Instead of exporting virtual disks to clients, they
manage storage as collections of objects with attributes, which gener-
ally correspond directly to files and directories in complete file systems.
Network-attached secure disks (NASD) drop storage servers and embed
management functions directly in the storage device to save costs [Gib97,
Gib98a], while metadata is controlled by a separate server. They require a
separate metadata server to manage security and coordination for shared
storage, but cryptographic techniques make these metadata operations
largely asynchronous. Synchronous communications are mainly confined
to direct requests from clients to the storage devices.

FAB [Frø03, Sai04] refines the ideas found in Petal and introduces the
idea of storage bricks—dedicated storage modules made from commodity
components that can be combined to form a storage pool. FAB randomly
assigns each data segment to a set of storage bricks and uses majority
voting to manage replicas. This allows it to tolerate failures and add new
bricks without pausing and temporarily ignore overloaded servers. It also
supports fast snapshot operations without a centralised coordinator [Ji05].

The Self-* Storage project aims to extend brick-based storage to auto-
mate many aspects of configuration and management of storage in order
to reduce administrative hassle and costs [Gan03]. Like the AutoRAID
storage device [Wil95], the Ursa Minor prototype [AEM05] focuses on
optimising data layout and failure tolerance for different workloads and
requirements. Using a unified infrastructure it supports multiple storage
policies and can convert existing data while still operating normally.
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Storage layers are complementary to the goals of Envoy. Indeed, the
Envoy prototype’s primitive storage layer is a stub intended to be replaced
by a system much like those described here. Envoy assumes a reliable and
performant storage layer, and builds a complete distributed file system
optimised for large numbers of untrusted virtual machines above it.

File systems

Built on storage layers that can deliver parallel access to many disks, clus-
ter file systems are left mainly with problem of managing metadata and
maintaining cache consistency. Lustre [Lus06] follows the model proposed
by the NASD group [Gib98a], with clients contacting storage devices di-
rectly for object-level data access. Metadata is controlled by a centralised
server with a failover replica.

The Google File System [Ghe03] focuses on a specific workload and
drops the POSIX file system interface. It, too, splits metadata management
from data storage, but is further optimised for large files with sequential
reads and append-only writes. Random reads and writes are supported,
but the overall emphasis is on high throughput rather than low latency. In
this environment, data caching has little value and metadata is minimised
by managing files as sequences of large, 64 MB chunks. Chunks are stored
as normal files using a Linux file system on commodity hardware.

Clusters are widely used as replacements for supercomputers, and
many cluster file systems are tuned to scientific-computing workloads.
Like the Google environment, they often require high sustained through-
put from large files. Unlike workstation environments where read-write
sharing is rare, scientific computing makes frequent use of parallel pro-
cesses writing to different parts of the same large file [Wan04]. GPFS
[Sch02] is optimised for large deployments where any centralised coor-
dination point is unacceptable. Based on a block-level storage system,
it supports a high degree of concurrency by replacing the centralised
metadata manager with a distributed lock manager with byte-range lock-
ing, and using extensible hashing to support large directories that can be
queried and updated concurrently. In addition, it allows write sharing for
non-conflicting metadata updates and pushes most of the communication
burden for token revocation to the client triggering it, further reducing
synchronous metadata operations in the lock manager.

Many commercial solutions use dedicated storage area networks
(SAN) to connect hosts with storage devices over a high-speed switch-
ing fabric. As with most of the systems described here, SANs let clients
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connect directly to storage devices and rely on a separate layer to mediate
sharing and form a file system. Storage Tank [Men03] uses manually-
configured partitions of the namespace to distribute control between
metadata servers and relies on the block-based interface provided by
SANs, but the overall structure is similar to systems like GPFS.

Ceph [Wei06] is also tuned to scientific cluster workloads, but is based
on object storage. It, too, distributes metadata management to avoid bot-
tlenecks, but instead of using distributed locks and having clients directly
modify metadata structures, it builds a distributed version of the meta-
data manager common in other object-based systems. Object replicas are
placed according to a special hash function, allowing clients to compute
the location of an object instead of having to consult the metadata man-
ager. Ceph handles the problem of heavy write sharing in scientific work-
loads by augmenting the POSIX interface to allow weakened consistency
semantics. This works for scientific computing, where applications are
generally custom-written anyway, but is less helpful when clients use com-
modity tools. Like Envoy, Ceph divides management of the hierarchical
namespace according to runtime activity, but it does so purely for load bal-
ancing within the distributed metadata service [Wei04]; no server benefits
more than another from controlling a particular region of the namespace.
Envoy, in contrast, delegates metadata management to the client dominat-
ing access to that part of the file system, making the placement of metadata
management a matter of absolute performance as well as load distribu-
tion. It also differs from Ceph’s distributed scheme by using a time-based
protocol to prioritise changes and promote stability (see Section 4.4).

While Envoy is also built for clusters, it is designed for many indepen-
dent clients with more traditional workloads, rather than large, scientific
systems bringing the power of thousands of machines to bear on a single
data set. Envoy creates a single hierarchical namespace, but it is arranged
as an administrative tree with discrete, client-level file systems as leaves.
Envoy is optimised to manage large numbers of these images, with full
administration of a private image being managed by the machine using
it, and control of shared images being distributed among the participat-
ing clients according to runtime demand. In this way, Envoy—with its
model of a cluster being host to more clients than machines—is largely
complementary to the systems described here, which attempt to make the
cluster act like a single, large machine. Instead of centralising metadata
management and then introducing distribution schemes to overcome the
limitations of centralisation, Envoy partitions the namespace according to
runtime demand and distributes metadata control to the clients, or more
precisely to a secure virtual machine hosted on the same node as the client.
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2.3.6 Virtual machines

A few storage systems have been designed specifically for virtual machine
environments. Operating systems hosted on virtual machines can use con-
ventional file systems implemented on private block devices. These can
be physical partitions assigned to individual virtual machines, or virtual
block devices accessed through a virtualized driver. In addition, network-
facing client protocols such as NFS operate the same on virtual machines
as on real machines.

My experience with two systems influenced the design of Envoy. The
first was CoWNFS, a stacking file system that uses copy-on-write tech-
niques and user-controlled layers to emulate snapshots and file system
forks [Kot04b]. CoWNFS operates as a userspace NFS server running in
an administrative virtual machine and exporting customised storage views
to clients. A private, writable layer can be stacked over a read-only tem-
plate to capture changes and isolate them from other users. Sharing is
possible between clients through the NFS protocol, but access is limited to
files already available in the namespace of the administrative VM.

The second system, Parallax [War05], exports private virtual block
devices to clients. Like CoWNFS and Envoy, Parallax operates through a
server in the administrative VM on each host. Template images with fork
and snapshot support assist rapid deployment of clients, using a copy-on-
write mechanism as clients diverge from their starting templates. Parallax
operates at the block level with no support for sharing between clients,
except when clients inherit read-only blocks from the same template. A
distributed block-storage layer makes use of cheap commodity disks in the
host machines for persistence and location-transparent access.

Ventana [Pfa06] is a file system for virtual machine environments with
similar goals to Envoy. Like Parallax and CoWNFS, both systems pro-
vide a single server for each machine, which clients access through a vir-
tual network or block device. Ventana also supports snapshots and forks
of file system images, and tracks versioning at the per-file level. Like
Envoy, it uses an object-based storage layer, but objects are immutable
and changes are tracked through successive file versions, similar to JetFile
[Grö99]. Ventana uses a centralised metadata server to track file versions
(unlike JetFile, which announces new versions through IP multicast) and
to manage image branches. It offers loose consistency, communicating
with clients over the NFSv3 protocol and requiring nodes to check with
the metadata server on each access to bound cache divergence. Persistent
caching at each node permits disconnected operation for clients, and any
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resulting conflicts are managed by applying all client changes to the repos-
itory after making a snapshot. To lessen the bottleneck of a centralised
metadata server, Ventana allows file system images to be marked as pri-
vate and all metadata to be cached at the node. Envoy targets clusters
of virtual machines where centralised servers are impractical. Metadata
control is distributed, and manual configuration of private and shared im-
ages is rejected in favour of dynamic algorithms that adapt to runtime
behaviour.

Virtual machines have also been used to support grid computing
[Fig03]. GVFS [Zha04] extends NFS with userspace proxies that im-
plement persistent caching, file prefetching, and per-file metadata hints,
allowing compressed transfers and other deviations from standard NFS
semantics to better support the wide-area grid architecture. Like other
virtual machine storage systems, GVFS exploits the redundancy in file
system images cloned from a template, using symbolic links to introduce
some transparency in the cloning process and facilitate shared caching.

2.4 Summary

Commodity computing refers to two basic trends. In the first, commodity
hardware is used in place of specialised devices for an increasing range
of tasks, particularly at the high end, where clusters of workstations have
replaced specialised supercomputers for many demanding applications. In
the second, computation is treated as a commodity service rather than just
as a product to be purchased and used. Utility computing refers to any
metered computation services, and is also called on-demand computing.

Machine virtualization is a technique for multiplexing hardware for
use by several virtual machines, each with its own operating system and
tools. Originally used on mainframes decades ago, virtualization is now
popular on commodity hardware, where the Xen virtual machine monitor
and others like it allow even I/O intensive server tasks to be hosted with
low overhead. Xen came from the XenoServers project, which uses it to
build a public computing platform where anyone can buy or sell comput-
ing resources on an open market.

Local file systems gain performance through caching and by minimis-
ing disk head movements. Client-server file systems must coordinate client
caching and address coherency in the presence of concurrent access by
multiple clients. Control over data can be delegated to clients, or conflict-
ing updates can be reconciled later. Serverless file systems have the same
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problems but lack a centralised server to coordinate, and must either as-
sign server-like roles to participants or use agreement protocols to ensure
consistency.

In the wide area, latency and reliability are major problems, particu-
larly with donated resources. Some systems form localised clusters within
the larger system to simplify communications and to reduce latency prob-
lems, or an explicit structure may be built into the network. Some peer-to-
peer systems use overlay networks for lookup services and routing, while
others form networks around individual objects or use multicasting to co-
ordinate updates and locate objects.

Cluster file systems are often built with a separate storage layer, which
provides a simple abstraction to the data pool. Object-based systems use
objects that roughly correspond to files and directories, while others pro-
vide virtual disks. Clusters have vast aggregate resources, so redundancy
and parallelism are used both to increase performance and to tolerate com-
ponent failure, which is commonplace with large numbers of nodes. Mov-
ing centralised metadata control out of the critical path or replacing it with
distributed locking or other distribution schemes helps prevent bottlenecks
from choking highly-parallel data paths. Explicit support for virtual ma-
chines is only beginning to be developed in storage systems.
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Chapter 3

Service Clusters

The standardisation of the shipping container revolutionised the logistics
industry, which in turn has had a significant impact on global commerce
over the past 50 years. Building a box hardly seems like the stuff of rev-
olutions, but the cheap availability of foreign goods and easy access to
global markets that characterises modern economies owes much to ex-
actly that. The significance of the container is illustrated partly by what
it offers, namely, flexibility and efficiency, but equally significant is what
it does not offer. It is not an engine, a vehicle, a route, a company, a ser-
vice, or any of the things necessary to transport goods from one place to
another. Instead, it is a neutral, common ground. Those wishing to ship
something can pack according to well-known dimensions using widely-
available tools, and those offering transport services can use trains, ships,
trucks, or whatever method of transport and whatever routing system al-
lows them to offer competitive service while making a profit.

The computer industry is in need of a shipping container. While the
computer hardware industry is increasingly viewed as a commodity busi-
ness, computation as a commodity service is still in its infancy. The com-
ponents are all there: PCs are powerful, networks are fast, disks are big,
operating systems are flexible and efficient, and everything is cheap. The
Top 500 supercomputer list is dominated by clusters make from commod-
ity hardware [Top06], and companies such as Google have used commod-
ity hardware to solve large commercial problems instead of relying on
special-purpose hardware that is more powerful and more reliable, but
also much more expensive [Bar03b, Ghe03]. These efforts have been
highly successful, but they still revolve around using commodity hard-
ware to build platforms that are customised for a particular task or class

39



Service Clusters

of tasks. Like oil tankers and passenger trains, they are efficient and well-
suited to their intended markets, but not easily adapted to other kinds of
clients.

Containers have succeeded for several reasons. They are generic
enough to support an enormous range of cargo, but rigid enough to
pack tightly together and stack neatly. They can be pulled individually
behind trucks, strung together on trains, or packed onto huge cargo ships
for ocean transport. They can be moved and loaded easily and quickly
using cranes, and they can move from one ship to the next without any
changes. Clients can fill as many containers as they need and only pay
according to what they use.

Many of these same characteristics would help to make commodity
computation a reality. Clients should be able to deploy a wide range of
computation and communication services, but vendors should also be able
to manage them in a generic way. Clients should be able to use their own
commodity machines and software to implement services, but have them
run equally well in a large, commercial setting. Likewise, deployment costs
should be low and procedures simple, and redeployment costs should not
create onerous barriers to changing vendors. Finally, small services using
very few resources and those spanning many dedicated machines should
be able to coexist without interfering with each other and with clients
paying according to what they use.

In this chapter I argue that a platform of service clusters approximates
this ideal, using commodity hardware and commodity operating systems
and tools, isolated and managed using virtual machine monitors. The ser-
vice is the unit of management, allowing arbitrary tasks to coexist, each
isolated in a virtual machine. While I do not prescribe a particular oper-
ating system or set of tools, I do suggest that vendors select a small set of
common, commodity platforms to offer as templates, and that clients and
vendors can both benefit from adhering to them. Clients can then package
their custom services as everything that differs from a standard platform
and send it to the vendor that can host it according to their needs.

Not every task is best served by a common platform—oil tankers will
continue to excel at transporting oil—but many jobs that run on custom
installations today could be better implemented as commodity computa-
tion tasks that are cheaper for clients to run and profitable for vendors to
host. Clusters are well suited to large, parallel problems, and are generally
built in response to a specific need; organisations develop cluster expertise
because they have problems that demand it, and the specifications of the
installation are driven by the budget and the demands of the application.
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This chapter argues for the reverse approach: build an efficient cluster
architecture and make it suitable for a wide range of applications.

Finally, I do not propose a complete solution. Instead, I argue for the
essential characteristics that distinguish service clusters from other large-
scale uses of commodity computers, while leaving much of the general
infrastructure to others. I focus on the storage needs of the platform and
identify how a suitably designed file system can use the commodity hard-
ware in a cluster to cheaply and easily support deployment and manage-
ment of services built on commodity tools.

3.1 Commodity computation

Services are harder to package as commodities than goods. The quality of
oil, the purity of precious metals, the strength of steel, and the composi-
tion of building materials can all be objectively measured. Compatibility
with standards, quality of workmanship, energy consumption, and feature
sets make consumer electronic devices comparable, and even food can be
graded and compared, at least at the level of basic ingredients. Services
can also be commodities, but only when competing offerings can be com-
pared on price and quality, and when customers can move freely between
providers without prohibitive lock-in effects.

3.1.1 Flexible commodity computation

Commodity computing describes a range of systems for exploiting the
cheap and plentiful computing power available in commodity PCs. In-
stead of building expensive, speciality servers to tackle complex problems,
commercial users and researchers are increasingly harnessing the power
of many smaller, cheaper machines to achieve the same end. Because of
the massive economies of scale in the PC market, the aggregate power
that can be had from a group of cheap PCs is much greater than what
the equivalent funds could purchase in more powerful, specialised server
hardware.

Efforts to use commodity hardware for large computation tasks are
orthogonal to the goal of treating computation power itself as a commod-
ity. While clusters of commodity machines may be part of the underlying
implementation of a commodity computation service, using specialised
server hardware is also a viable option. When considering a service as
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a commodity, the methods used to offer the service are left to the provider,
and innovation through proprietary techniques may prove a competitive
advantage. From the customer’s perspective, it is only the quality of the
service rendered and the cost that matter.

Utility computing, also called on-demand computing, describes the
business model of providing computing services and charging based on use
of resources. This may apply to specialised services such as databases or
web hosting platforms, or to any service where usage is metered and clients
pay based on what they use rather than the capabilities that are available.
By itself, utility computing answers only part of the problem. Customers
are isolated from the fixed costs, risk of component failure, and admin-
istrative expenses associated with hardware ownership, but they may be
restricted in the range of services offered or applications accommodated.
Just as early mainframes required customised software development and
incurred porting costs with each new iteration or change of vendor, utility
computing systems subject clients to the tools and infrastructure require-
ments of their hosts.

Flexible commodity computation is a form of utility computing that
allows standard commodity operating systems and tools as well as cus-
tomised services to be deployed quickly and cheaply, with the basic en-
vironment providing commodity operating systems and tools rather than
a specialised platform. Deployment costs are proportional to how far a
client deviates from a standard, commodity environment, e.g., a standard
Linux distribution, rather than the total amount of software their appli-
cation requires to operate. By providing standard tools and standard en-
vironments, one flexible commodity computation service can be swapped
for another without significant barriers such as porting costs and deploy-
ment costs, making computation itself a fungible commodity that can be
used for a wide range of tasks, large and small.

3.2 Service containers

The first step in commodity computation is packaging computation jobs
in manageable units, without unnecessarily restricting what clients can do.
Service containers must balance the conflicting goals of isolating clients
from each other and preventing bad behaviour, and supporting the max-
imum range of legitimate client activities. This section argues for isolat-
ing services in virtual machines and encouraging clients to use commodity
software.
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3.2.1 Decoupling hardware and software

The provider of services and the trader of physical commodities resemble
each other the most when the services of multiple providers are essentially
interchangeable, which requires agreement about not only what is to be
done, but what is being acted upon. Cars of the same make and model
can be repaired by a wide range of mechanics. Shipping firms can offer
to transport a container of a specific size and weight between two points
for a specific cost. Before the container was standardised, loading and
unloading procedures would vary based on what was being shipped and
how well it packed next to the goods of other customers. This would in
turn affect the cost structure and tie together two services that are more
efficient when separated and optimised individually: loading and shipping.

Likewise, a web services platform may offer compelling services for its
specific domains, allowing clients to host their web applications easier and
cheaper than they could with their own hardware and software stack, but
doing so would conflate two issues that could be better optimised indi-
vidually: providing and managing the hardware resources, and managing
the software infrastructure for web applications. The expertise required
for these two parts of the problem may be quite different, and combin-
ing them forces clients to choose a package deal when they may be better
served by independent choices. The skills of hardware managers may also
be put to better use serving the needs of multiple software platforms at a
larger scale, not just accommodating clients of a particular class of web
services.

Any domain-specific middleware will necessarily be limited, and cou-
pling the efficiency of a shared hardware infrastructure to a specific ap-
plication domain will limit the economies of scale that could otherwise
be achieved by more specialised providers. True commodity computation
will divorce the application domain from the provision of a hosting plat-
form, allowing specialists to excel in serving their respective functions. A
platform that supports only a restricted domain of applications is offer-
ing a computation service, but it is not offering computation itself as its
product. Attempting to port a service from a client’s own machines to
a hosted service provider to a competitor’s platform may reveal how far
each provider is from offering generic computation as a product.

The most flexible platform available to clients is wholly-owned and
managed hardware. The PC has proved to be extremely adaptable and
capable of hosting an enormous range of applications. Giving clients a
commodity hosting platform that approximates the flexibility of a stan-
dard machine gives them access to familiar tools and maximum latitude
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in designing their applications, without requiring them to conform to a
specific middleware structure or use custom programming interfaces. It
also protects the client from being locked-in to a single vendor through
dependence on proprietary software.

Partitioning physical machines using a virtual machine manager and
giving clients access to entire virtual machines pushes the dividing line be-
tween vendor- and client-management as close as possible to the hardware
itself. Constraints still remain to give vendors control of the hardware
and the ability to manage security concerns, but machine virtualization
currently represents the state of the art in minimally decoupling control of
the hardware from the concerns of the software stack.

3.2.2 Decoupling unrelated services

As hardware gets more capable, individual hosts can accommodate mul-
tiple applications. Organisations that wish to make efficient use of hard-
ware investments must measure or estimate the requirements of each ap-
plication and map them to machines in a way that maximises the use of
resources without overtaxing individual nodes. Managers are left with the
choice to under-utilise hardware resources, explicitly address load balanc-
ing in the applications, or manually allocate resources and re-balance as
necessary. Each has its costs and its advantages.

Modern virtualization managers like Xen have low enough overhead
[Bar03a] to justify partitioning a machine purely for convenient manage-
ment. By putting each application in its own virtual machine, the issue
of hardware allocation can be separated from the design and administra-
tion of the software itself. By assigning one application to one virtual
machine, VMs and the services they contain can be migrated as individual
management units in response to runtime demand, without the explicit
cooperation of the application.

Decoupling unrelated services separates the problems of load balancing
and maximising resource utilisation from the problems of software instal-
lation and deployment. Services contained in virtual machines become
generic units that can be managed with generic tools, ignoring many of
the intricacies of the actual software package. Isolating applications from
each other is useful even when they are hosted on the same machine, as
configurations may conflict. When vendors certify operating system plat-
forms for software applications, they often stipulate that the application
must have a dedicated environment to rule out untested interactions with
other applications.
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Isolating services in their own virtual machines also has the potential
to increase security. While the same operating system and tool chain may
be used, it can be stripped to include only those services and drivers nec-
essary to support a single task. By being deployed with a minimal set of
supporting software, a service can reduce its risk of being compromised
by flaws in unneeded software packages.

The disadvantage of this deployment model is that extra resources are
consumed. In addition to the application software, operating systems and
supporting libraries must be part of each service container. Overhead that
is shared in a traditional environment is duplicated in each VM when
services are partitioned in this way. This is a cost, but not one without
reward: it buys flexibility and the potential for automation and simpli-
fication of management. Tailoring the runtime environment to the spe-
cific task can reduce the memory and CPU overhead without significant
re-engineering, and suitable storage strategies can reduce the storage re-
dundancy that otherwise results from increasing the number of complete
with operating system images to support the additional VMs.

3.2.3 Supporting commodity tools

Any suitably designed framework can separate the management and con-
trol of hardware from that of software; this is one of the basic functions
of operating systems. Similarly, balancing the demands of applications
against the capabilities of hardware is a recurring theme in system de-
sign. Achieving both of these aims while permitting the use of a wide
range of standard, commodity tools and operating systems precludes cus-
tom frameworks, however. Virtualization and a discipline of packaging
applications into minimal service containers brings these capabilities to
existing applications without the expense of porting to a new software
platform.

Using commodity software when appropriate brings many of the same
advantages as commodity hardware. Commodity operating systems and
tools are cheap, powerful, and under constant development, so features
and improvements accrue over time. Just as using commodity hardware
allows users to benefit from the scale and competition of a thriving market,
relying on commodity software gives access to the benefits of industry-
wide testing and development efforts driven by competition and a large,
demanding user base.

An important characteristic of commodity software tools is that they
are widely used, and the most popular can be easily identified. Even
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without a formal process, standards emerge over time and change slowly,
both in proprietary and open source software communities. Computation
providers can streamline deployment and reduce costs by offering a small
set of file system images based around de facto standards, complete with
an operating system and standard tools. Clients can then customise an im-
age to support a specific service, and deploy it with little additional effort.
The setup time needed, bandwidth consumed, and storage required to cus-
tomise the image are related to the degree of customisation required, not
to the overall complexity of the service. As supporting tools become more
sophisticated and capable, and as the base of standard software evolves,
more intricate services can be deployed without increasing the deployment
costs.

The users best served by these base images are those whose needs are
met entirely by commodity software. Deploying a DNS server or a web
server requires little more than configuration and some content, all of
which can be transferred using standard tools on a private virtual ma-
chine. Offering standard base images as an option does not restrict clients
to what is provided, however. The architecture favours the use of standard
tools, but it does not prevent users from starting from scratch. As is true in
many product domains, departing from the standard is discouraged only
by the higher cost. As is also true in many kinds of product fabrication,
making a custom image incurs some one-time costs; using that image as
the base for many service instances makes it possible to amortise that cost.

3.3 Service clusters

One of the enduring goals of systems research is to provide a good plat-
form for running applications. Even early systems such as Multics were
explicitly intended as infrastructure for higher-level computing services,
seeking “continuous operation in a utility-like manner, with flexible re-
mote access,” with requirements such as “convenience of manipulating
data and program files, ease of controlling processes during execution
and above all, protection of private files and isolation of independent pro-
cesses” [Cor65]. Four decades has seen much progress, but similar goals
are still applicable.

The first part of the problem of commoditising computation is packag-
ing tasks into manageable units. As argued above, service containers are a
flexible way to isolate applications from the machines that host them and
from unrelated tasks with which they may share hardware. While service
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containers can be deployed on individual machines, networks of worksta-
tions, or other groups of hardware, it is in cluster environments that they
find their natural home. Service clusters are clusters of commodity ma-
chines managed centrally to support the deployment of arbitrary service
containers, either as isolated instances or as groups of interacting services.

3.3.1 Economies of scale

The most obvious benefits of hardware clusters are related to scale. Quan-
tity purchases generally lead to better prices, and dedicated facilities can be
streamlined for a single purpose to eliminate waste, e.g., temperature con-
trol, lighting, and physical layout can be optimised entirely for the hosting
machines, rather than for a mixed environment of machines and people.
Fixed costs can be amortised over large numbers of nodes, and running
costs can be negotiated for bulk quantities.

Scale also makes it possible to devote resources to system design that
would be impractical for smaller deployments. Staff can devote all their
time to managing the lower levels of the computation stack—from hard-
ware up to the virtual machine—and to optimising the platform without
specific applications in mind. Facilities can also be located away from
client buildings to take advantage of favourable business environments,
high-speed internet connections, and available staff. Scale and access to
a wide range of clients also increases the potential rewards for improving
efficiency and service quality.

Hardware can be added to clusters incrementally, which eliminates the
need for an accurate forecast of the lifetime demands of the system. In
addition, clusters of machines can achieve much greater overall scale than
even the largest single machines. Scalability over time and absolute scala-
bility are also features of non-clustered distributed systems, but those lack
the high-speed interconnects and coordinated administration possible in
managed environments.

The use of commodity hardware also allows rapid machine acquisition
and cheap prices. Incremental scaling means that newly added hardware
can always take advantage of the best price/performance ratios and benefit
from the constant downward pressure on prices in a competitive market
[Fox97]. Commodity disks are relatively unreliable, but they are also large
and cheap and offer a good source for storage capacity [Pat88, War05]
that comes standard with most machines.
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The independence of nodes in a cluster offers redundancy that can be
exploited for both reliability and availability. This is necessary not only to
exceed the expectations of a single system, but to match it as well. Having
many parts that can fail independently offers a much higher probability
that at least one will fail than that any single component will fail, and a
cluster that does not tolerate some component failures will quickly become
unusable [Bir93].

3.3.2 Heterogeneous workloads

Over-subscribing capacity is a common practice for businesses that offer a
fixed level of service, but expect some users to use only part of what is of-
fered. Airlines overbook flights with the expectation that some passengers
will forfeit their places, allowing the airline to capture revenue based on
the promised service, not the service delivered. Some web hosting services
over-subscribe their hardware capacity, a practice that allows them to pro-
vision based on expected average use rather than maximum potential use.

Since clusters can be expanded incrementally, observed average use can
become the metric for established providers, especially at large scale. It
may be prudent to hold some reserve capacity to handle bursts in usage,
but even burstiness becomes more predictable at large scales. The more
diverse the services using a cluster, the less likely an external event will
trigger a burst in usage that overwhelms the capacity of the entire cluster.
Heterogeneity and varied workloads may be difficult to manage at a small
scale because they are difficult to anticipate and plan for, but at larger
scales their uncorrelated fluctuations become a benefit.

Random variations in activity must be accommodated, but periodic
fluctuations in demand can sometimes be planned for and exploited to
make better use of resources. Predictable events like business hours, hol-
idays, academic calendars, and other stable cycles can significantly influ-
ence some service workloads. Planning for these by pairing complemen-
tary services in a dynamically configured cluster can help minimise idle re-
sources and reduce expenses. Systems used heavily during business hours
could share with systems used by game servers, assuming that the latter
are used more during leisure hours than on company time.
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3.3.3 Central management

Clustering groups of machines together enhances scalability and resilience
to failed components compared to a single system, but it does not simplify
application design. New failure modes, networked interconnects, the lack
of shared busses, and the lack of shared memory and processor control
all change the way systems must be designed. The simplicity of a single
system is lost in a cluster, but some of its features can be retained or at least
emulated. Clusters, unlike wide-area distributed systems, are generally
physically close to each other and managed under a single administrative
domain. Physical security and the level of trust placed in each node is
increased as a result.

Centralised administration and high-speed communication (via shared
memory and inter-process communication) are two advantages of tradi-
tional servers. Clusters typically put components on a single site with
high-speed local networking and a secure physical location. The machines
are all owned and administered by a single organisation and can be built
with appropriate cooling systems and redundant power supplies and net-
work links. Systems designed to prevent or avoid any centralised control
usually do so for privacy or legal reasons, neither of which is compelling
in the service cluster environment. On the contrary, some degree of central
administration is an essential feature of service clusters. The owner of the
cluster needs to control access and admission to the service pool as well
as monitor the services that are running to ensure that they do not ex-
ceed their alloted resources. Given physical proximity and central control,
central administration adds convenience without introducing unnecessary
penalties in flexibility.

To further emulate the desirable characteristics of centralised servers,
clusters must ensure global access to data in the storage system from any
constituent node. This is best achieved through a single, global name space
with a completely coherent view of all files in the cluster. Trading coher-
ence for performance represents a failure of global access, as concurrent
services effectively create private views of data, requiring a separate mech-
anism for restoring the consistency that the file system violated [Bir93].
While partial coherence is sufficient for some applications, it exposes dif-
ferences between local and distributed systems and weakens the guaran-
tees that the file system offers. This requires planning for all system de-
signers, even those that ultimately determine that the weaker guarantee
can be safely ignored [Wal94].
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While an important goal of virtualization is to isolate services on the
same machine from each other, they do still share hardware. If the hard-
ware fails, or if the virtual machine manager crashes, all of the services
hosted on that machine will also fail. The rest of the cluster can continue
operating, but other nodes that were cooperating with the failed machine
may still be affected. To minimise that impact, server functions can be
located on the same node as the clients that use them. This is the principle
of fate sharing, where the loss of server processes that fail when a machine
goes down mainly affects clients that also went down with the machine.

Service clusters bring together a wide range of clients under central
management, making it possible to monitor and model the behaviour of
unrelated services and plan resource allocation with more information
than a single client could provide. Unrelated clients may have comple-
mentary resource requirements, e.g., one demands many CPU cycles and
another much memory, which a cluster manager can detect and exploit
in mapping services to physical nodes. This applies to characteristics ob-
served over time as well, such as cycles of demand driven by external
factors like the time of day or day of the week. Putting a wide range of
services from a wide range of clients together in a single cluster allows
administrators to make decisions informed by pertinent, observed data,
coaxing out optimisations that would not be available to clients acting on
their own.

3.3.4 Supporting a software ecosystem

Service clusters have the ambitious goal of replacing the machine room
with hired resources. To achieve this they must support a similar range
of activities and offer tangible benefits compared to privately owned and
managed hardware. As a first step, commodity computation functions as
a direct replacement for owned and managed hardware resources, sup-
ported by maximum flexibility in the environment and access to a full set
of standard and customised tools with minimum overhead.

Packaging computation tasks as service containers yields advantages
for administration that could be equally useful in private machine rooms.
Isolating applications in fine-grained protection domains and maximising
resource utilisation through allocation and migration at the service level
benefits hardware owners and application writers alike. A resource for
hire with the same level of flexibility and control offers new possibilities
for service providers that narrower service offerings do not.
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With low-level services available, third parties can offer services ap-
propriate for end users. Instead of offering packaged applications, send-
ing consultants to assist with deployment, or hosting software themselves
on their own hardware, software vendors can sell their services on a ser-
vice cluster platform. Web hosting, group-ware, email hosting, payroll
services, etc., all exist currently as managed services, coupling the soft-
ware services with the hardware services. If desired, clients can separately
negotiate each aspect of a hosted service—the hardware hosting and the
software management—and retain greater control over their own data.

In addition to end-user services, a service cluster economy could sup-
port an entire ecosystem of intermediate services. While standard software
installations as base images form an important part of flexible commod-
ity computation, they will not be appropriate for everyone. Some clients
may wish to purchase database services, running on the same service clus-
ter as the client’s application but managed by a third party. Scalable and
widely-distributed web hosting middleware could be offered by a vendor
that buys hardware resources as needed from a range of service clusters,
then sells simple packages to individual clients. Expertise in building dis-
tributed services and managing complex software has value that need not
be coupled with hardware management.

In an ecosystem of hosted software, service clusters are the base en-
vironment upon which other services build. Clients may require only a
single service container or they may hire a large amount of capacity, either
to fill their own needs or to export their higher-level services to other users.
To support these different usage patterns, service clusters must address the
needs of shared groups of services as well as services in isolation.

3.4 Storage for service clusters

The design and intended applications of service clusters put specific de-
mands on the storage system. While many of the storage requirements
have been explored individually in other settings, the combination is
unique, and existing systems only partially address the needs of this en-
vironment. This section discusses those requirements, and how they
influence the design of Envoy, a storage system for service clusters.

Service clusters are a flexible platform for implementing arbitrary ser-
vices, and the storage system that supports them must be similarly flexible.
While the design must not impose unnecessary restrictions on what clients
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are allowed to do, it can draw on expectations about how they will be-
have to guide optimisations. The high-level goal is to predict and optimise
for the most common client demands, while degrading gracefully as they
stray from expected patterns. In addition, some specific requirements are
derived directly from the needs of the environment.

3.4.1 Running in a cluster

Service clusters are centrally managed clusters of physical machines, each
of which hosts any number of client services on private VMs. One of the
chief advantages of clustering independent services is that resources can
be alloted based on average requirements even though many individual
clients will be decidedly non-average. As actual demands are observed,
the manager can periodically migrate running services to new hosts and
redistribute the load to even out the demands on a single machine. To
facilitate transparent migration, the storage system must not tie images to
a single machine. Even private images used only by a single service must
be location independent within the cluster, or capable of moving without
forcing a restart or excessive disruption.

Incremental scaling is another important aspect of cluster environ-
ments. Using commodity hardware gives owners access to the best price
to performance ratios, and building the cluster gradually in response to
demand allows them to track the desired part of the curve as it evolves
over time. The storage system must be capable of accepting new hosts
without undue disruption to those already running. Unlike peer-to-peer
systems [Bla03] or networks of workstations [And95a], clusters are under
central control and are used for a single purpose, so the addition and loss
of machines is an exceptional event rather than the norm. Such events
must be accommodated, but they need not be optimised for.

Another issue related to scale is that crash recovery must be localised.
Transparent failover is not necessary, and recovering gracefully from fail-
ures rather than completely masking them [Bak94] is acceptable in this en-
vironment (note that hardware may fail as well; services that require spe-
cific reliability guarantees must implement redundancy at a higher level).
Clusters are expected to run in machine rooms with well-provisioned ma-
chines that are properly managed, so failures are not expected to be fre-
quent, but they are clusters of commodity hardware and failures will occur
regularly for large installations. Confining the effect of a crash to a small
area minimises the damage, and restricting the disruption to participants
with overlapping interests (sharing files, cache, etc.) is even better.
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Besides imposing specific requirements, a cluster of commodity ma-
chines provides useful resources for designing a storage system. Commod-
ity disks are big and cheap, and having them distributed throughout the
cluster provides a natural source of distributed storage capacity. Machines
may reserve some capacity for administrative use, for booting the machine,
or for providing swap space for clients, but most is available for use by the
storage system.

These disks are not of premium quality, but can be expected to perform
reasonably well. A disk can be no more available than the machine to
which it is connected. Other hardware faults besides disk failures can
disable a node, so the storage system must provide redundancy across
machines to tolerate failures even with reliable storage. Since that cannot
be avoided, combining disks into a RAID within a single node would only
significantly increase the reliability of only that node, not the system as a
whole. Envoy assumes that disks are independent, and that the failure of
a disk will disqualify the entire machine until it is fixed or replaced.

Commodity software is even more important than commodity hard-
ware in supporting flexible commodity computation. By being presented
with a choice of standard platforms and being charged according to how
much they deviate from those basic starting points, most clients will be
expected to draw heavily from common file system images. This can be
considered a basic property of service clusters and the storage system must
be designed to exploit it. Independent virtual machines introduce another
scalar factor in scalability demands that could otherwise lead to excessive
capacity requirements [War05]. Encouraging duplication in file system im-
ages can be a benefit for the file system, however, because it allows Envoy
to overlap caching even with unrelated clients.

3.4.2 Supporting heterogeneous clients

There is an inherent tension in service clusters between the goal of sup-
porting the widest range of client applications possible on the one hand,
while isolating them from each other and preventing unauthorised activ-
ities on the other. To address the latter concern, the storage system must
be resilient to arbitrary client behaviour or misbehaviour. Implementing
the file system as a cooperative service run by the client would expose it
to Byzantine failures and considerable additional complexity. Instead, En-
voy exploits the virtual machine architecture to isolate the cluster-wide file
system management from client code, just as individual clients are isolated
from each other.
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Combining file system functions at the physical machine level is not
an arbitrary choice nor merely an artifact of using a virtual machine con-
tainer. The host machine represents a new layer in the storage hierarchy
that would otherwise be present in a cluster. Just as an operating system
can aggregate the requests of unrelated processes, a file system manager
can bring together the activity of all virtual machines hosted on the node,
which may have no direct relationship or even awareness of each other.
The failure of a client need not interfere with the continued operation of
other clients or other machine-level nodes, and the vocabulary of the client
is restricted to the protocol with which it connects to the file service, min-
imising the damage that a misbehaving client can inflict on the rest of the
system. The approach described here is not a requirement of the envi-
ronment, but the security and performance characteristics enabled can be
considered minimum requirements for the intended use.

Containing and restricting clients is only one side of the struggle in
service cluster design. The other part is providing services with as much
flexibility as possible. For the storage system, this means that clients must
have as much control over file access as possible. Specifically, client oper-
ating systems must be able to both create and override their own file access
restrictions. For private file system images, turning over complete control
over access to clients would be sufficient, but arbitrating shared access to
images by multiple clients requires a more hands-on approach. To support
truly flexible scenarios, Envoy’s security model must accommodate both.

Clients also vary in their longevity. Short-lived tasks will only thrive as
part of the commodity computation ecosystem if they are cheap enough
and can be deployed quickly enough to be competitive with the end-user
owned and managed equivalents. Services that are tied to human activ-
ity may need to accommodate a human’s impatience and short attention
span. Interactive services or those that respond to other external condi-
tions may need to expand over multiple instances in response to changing
conditions, only to shut down excessive instances when a spike in demand
subsides. These scenarios require a lightweight deployment mechanism
that can rapidly produce not only standard base images, but also forked
copies of custom file system images produced by clients. Forking running
virtual machines is beyond the scope of this work, but file system support
for the process is essential and relevant.

Long-lived clients have their own requirements, which must also be
addressed in the storage system. Reliability can be considered a basic re-
quirement of general-purpose storage systems, but additional support for
backups and historical snapshots is also crucial especially for long-lived
tasks. Runtime snapshots give a stable version of a changing file system
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image that can be backed up offline, used for reverting changes, examined
for debugging purposes, or analysed for forensic purposes after a service
has been compromised [Kin03, Whi04]. Only clients can determine the
right tradeoff between the extra storage costs invoked by snapshots (which
retain files that would otherwise be deleted) and the convenience of a de-
tailed history, so Envoy must allow each client to dictate its own snapshot
policy.

Envoy must be able to provide a private, bootable image for each ser-
vice that launches. Platforms for embarrassingly parallel problems and
other homogeneous service platforms can install basic software at each
node and rely on a shared file system only for shared data. The profile
of service clusters admits this possibility for starting the virtual machine
manager and other administrative software, but individual services can-
not be tied to a specific machine. Even the possibility of supplying a range
of standard base images on each node and using a stacking file system to
export virtual private images falls apart as clients fork highly-customised
images, leading to inconsistency and excessive management complexity.
A better solution is to require that the storage system be able to supply
globally accessible images and location transparency, but do so in a way
that accommodates the common case (many private images used by a in-
dividual services that migrate infrequently) with good performance. The
convenience of global accessibility and transparent mobility must not cost
much when it is not used much.

Service clusters are a platform for flexible commodity computation,
which may take the form of distributed services as well as self-contained
computation processes. Private images may be the most common case,
but transparent file sharing is just as necessary for larger services. This
leads to the problem of controlling shared access as mentioned above, and
also to the necessity of managing concurrent file access. Past studies have
concluded that runtime contention is quite rare [Kis91, Wel91], but the
potential is always present in a shared file system. Envoy aims for perfectly
consistent file sharing, i.e., any set of concurrent reads and writes from
multiple clients appears to follow a logical sequence, and it does so with
the further requirement that scaling of shared images be limited only by
the extent of overlapping access. Subsets of a shared space that are used by
only a single client should perform like private images, again supporting a
range of access patterns but optimising for the most common case.
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3.4.3 Local impact

In normal clusters, the throughput of the whole system is the paramount
concern. In service clusters, good aggregate performance is still impor-
tant, but the cluster owner is no longer the primary client, and clients are
concerned primarily with the performance of their individual services.

Envoy is designed to encourage local impact, meaning that the re-
sources consumed directly or indirectly by a service should be as close to
that service as possible. If not in the same VM, then on the same machine,
or on another machine that has some specific reason to yield its resources
to a remote service.

By extension, this principle leads to a topology that is shaped accord-
ing to runtime conflicts. When there is no reason to suspect contention,
machines will prefer to assume complete control over the storage in active
use by their client services. If two machines must explicitly coordinate
their access to storage, they are treading on overlapping or neighbouring
storage and implicitly declaring that a conflict is likely to occur.

3.5 Summary

Flexible commodity computation is a form of utility computing based
around commodity tools and standards, allowing fast and cheap service
deployment. Packaging services in virtual machines helps with commodi-
tisation by abstracting the hardware interface, encouraging skill specialisa-
tion, and allowing services to be managed without explicit client coopera-
tion. Dividing individual services into individual service containers allows
finer-grained management and isolates unrelated services from each other.
Using standard tool sets and operating system distributions lets services
be defined as a set of changes to a base configuration, making deploy-
ment cheaper and making it easier to move services from one provider to
another.

Service clusters use clusters of commodity machines to manage ser-
vice containers as a commodity computation platform. Clusters bring
economies of scale in hardware purchasing and management, and amplify
the benefits of innovative administration and specialised skills. By pool-
ing unrelated services, cluster managers can benefit from heterogeneous
workloads to smooth resource demands and maximise the use of avail-
able hardware. As a basic computing platform, a service cluster can host
an ecosystem of service providers.
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The storage requirements of service clusters differ from other clusters.
Clients are not trusted, and each one typically needs a private boot image
as well as shared storage. The storage system must handle private data
quickly and provide consistent caching for shared data. Localising im-
pact increases scalability by reducing contention for shared resource, and
improves performance by reducing latency.
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Chapter 4

The Envoy File System

This chapter outlines the design of Envoy, a file system to support flexi-
ble commodity computing in service clusters. This chapter focuses on the
architecture and general features, along with the main algorithms and ad-
ministrative considerations. Details about protocols and implementation
decisions are reserved for the next chapter, which discusses the prototype
implementation.

The chapter starts with a discussion of the environment, including the
expectations placed on the hardware and tools outside the scope of this
dissertation. It then discusses the architecture of the entire system and how
individual operations are supported by it. A discussion of how private
and shared images are presented to and managed by clients is followed
by discussion of how they are managed internally to optimise the overall
system. The chapter concludes with a discussion of failure and recovery
concerns.

4.1 Assumptions

Envoy is designed for service clusters, with the needs of flexibly commod-
ity computation informing its assumptions about security and client de-
mands.

Service clusters are assumed to have well-provisioned networks. High-
speed local-area networking makes communication between nodes in the
cluster cheap and fast, and switched interconnects make communication
between pairs of nodes possible without significantly affecting the rest of
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the cluster. Redundant connections reduce the impact of failures, so net-
work partitions—while still possible—are expected to be rare.

Nodes are also assumed to fail independently. Clusters are expected to
run in machine rooms with redundant power sources and ample cooling.
While commodity hardware is prone to failure, well-managed hardware
can still be reliable and well-engineered clusters can isolate failing nodes,
preventing groups of machines from failing together.

Service clusters run jobs for untrusted clients, but the environment it-
self is assumed to be trustworthy. Virtual machine managers isolate clients
and prevent many malicious forms of behaviour. In particular, the net-
work is assumed to be secure, with address spoofing and packet sniffing
by clients prevented by the virtual machine managers and related systems.
In addition, Envoy’s own services can run in a secure environment, isolated
from untrusted clients.

This work also assumes that other aspects of service-cluster manage-
ment are provided by suitable solutions. Procedures for billing, managing
client sessions, balancing load, allocating resources, etc., are omitted from
this dissertation. It is further assumed that Envoy can cooperate with
management software when necessary, though specific details are ignored.
Envoy provides mechanisms to support client file system image manage-
ment, but it does not prescribe procedures or management practices, as
these must necessarily depend on other aspects of the system in addition
to the storage system.

4.2 Architecture

Services access Envoy using a client-server file system interface. Each phys-
ical machine in the service cluster runs an administrative virtual machine
that manages the storage processes for all services on that machine. These
processes partition the local disk between a contribution to the shared
storage pool and a local persistent cache as well as provide a standard in-
terface allowing clients on the machine to access the file system. Figure 4.1
illustrates a typical machine. Client access to the system is restricted to a
simple, well-understood client-server protocol, and a trusted server pro-
cess acts as a proxy to the complete system [Sha86]. Byzantine failure
from clients is less of a problem, because they have a limited interface to
the system and hold no trusted data.
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Figure 4.1: Each physical machine has a single administrative VM that hosts the
Envoy services. This VM exports a network file system protocol to other service
VMs running on the same machine.

The file system management processes join a cluster-wide service that
is comprised of two primary layers, as illustrated in Figure 4.2. Storage is
managed by the lower level, which allows a small set of basic file opera-
tions on objects. The storage interface is stateless and the storage service
makes no attempt to prevent or manage concurrent requests or to enforce
any kind of security policy. Objects are extents of bytes with a small set of
attributes.

On top of the storage service is the envoy layer, which builds a hi-
erarchical file system out of objects, coordinates access to files, provides
authentication and access control services, manages caching, and exports
a standard network file system interface for services to access.

In the remainder of this section I detail the functionality and require-
ments of these systems and consider the tradeoffs of various design deci-
sions.

4.2.1 Distribution

Figure 4.3 depicts a commonly-used storage arrangement using a series of
dedicated file servers to handle the needs of many clients. This architecture
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Figure 4.2: The envoy service coordinates access to provide a single, coherent
view of the distributed file system. It relies on the storage service, which provides
a repository of objects referenced by unique identifiers.

Figure 4.3: A popular storage solution for groups of clients involves a series
of dedicated servers. Content on the servers is carefully managed to distribute
storage demand and transaction load between the servers.

is successfully used in many settings, and, despite alternatives developed
over the years, is still the dominant storage model in practical use.

The client-server model has obvious flaws when applied to clusters
with many transient clients. Data placement decisions must balance space
requirements and expected access rates in order to avoid overloading a
particular server. Rebalancing—a disruptive and time consuming job—
may be necessary in response to added clients, added servers, added disks,
variations in client workload, and accumulation of data over time.

With the service cluster model, the problem is made even worse. To
make efficient use of increasingly powerful hardware, each physical ma-
chine may host many services, each of which requires a boot image as well
as access to the data relevant to its intended task. Dividing each machine
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means that there may be an order of magnitude more virtual machines
than physical machines, putting excessive demands on a centralised stor-
age infrastructure [Hos04]. Single-purpose services may also be short lived
and demand may vary by time of day, making manual balancing imprac-
tical.

The client-server model has not endured as long as it has simply for
lack of alternatives, however. It has many strengths that can inform the
design of a more distributed architecture. With a single server managing
shared data, concurrent access can be managed simply through explicit
leases and cache invalidation, centralised caching with synchronous ac-
cess, or through a lock manager. Whatever the mechanism for resolving
conflicts, a centralised server is ideally suited to detecting and responding
to concurrent requests because it is the point on the access graph at which
all requests converge. The consistency of data that has reached the server
is as good as its backing store.

The simplicity of a server is also a virtue. A failstop model for reli-
ability can generally be assumed, backups are relatively straightforward,
the server is typically dedicated to a single task or is shared with other
trusted services, and the semantics are simple to define in terms of client
behaviour1.

The chief faults of a centralised system are the introduction of a single
point of failure and the inability to scale beyond the network and disk
bandwidth that can be hosted by a single server. While these limits are
unacceptable at large scales, they are quite serviceable for small groups of
clients.

For clients that are sharing data, it is difficult to improve on a cen-
tralised server. For sufficiently overlapping data sets, any consistent model
will degrade to something resembling a server during periods of contention
because all interested clients will have to synchronise their access to the
contended bits. A single arbitrator will ultimately oversee each bit of data,
whether it is a traditional server, a lease-holding client, or a quorum of co-
operating peers.

Sharing cache space is also a benefit of consolidated control of shared
data. As the performance gap between disk access and memory access
continues to grow, efficient use of available cache space becomes increas-
ingly important. Once again, a single centralised cache fails the scalability

1NFS versions 2 and 3 have notoriously complicated consistency semantics, but this
is almost entirely due to client policies. NFS server semantics are straightforward.
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requirement, but a shared cache for a smaller set of clients with overlap-
ping data needs provides attractive properties. Accessing a cache across
a high-speed network can be faster than accessing a local disk [Dah94a],
so in a cluster setting, organising data to maximise the aggregate cache is
more valuable than organising it to localise access [Fra92]. Stated another
way, the effective cache size of the combined cluster is greater when redun-
dant entries are consolidated, and maximising the combined cache size to
avoid disk seek penalties is becoming more important than avoiding the
network hops that arise from using a shared cache.

While a server cannot handle an unlimited number of clients, it can
serve many clients under typical workloads. In the case of overlapping
requests from different clients, a shared cache on a shared server can out-
perform a series of unshared servers that each must retrieve the same data
from disk, despite the overhead of network latency. Envoy is designed to
move file management to the client’s machine when there are no apparent
conflicts, but to pick one participant to control files that are shared and
act as a server to the others.

This principle of localising control where possible, but reverting to a
simple, well-understood client-server model when sharing is necessary is
fundamental to Envoy. It leads to fate sharing among clients with over-
lapping interests in the areas of performance, resource usage, and failure
recovery. In each case, services with overlapping resource demands coop-
erate directly with each other and disinterested parties are not involved.

The overall distributed architecture of Envoy is based around parti-
tioning control of the file system to put data and metadata management as
close to interested clients as possible. Entire file system images or parts of
images that are used exclusively by a single service (or a group of services
hosted on a single physical machine) are managed directly by the envoy
service on the same machine. Where sharing occurs, the client with the
highest demand retains direct control and acts as a proxy for other clients
accessing the same storage, thus sharing a single cache and avoiding com-
plicated coordination protocols.

4.2.2 Storage layer

The objective of the storage layer is to provide a simple, stateless interface
for accessing objects. The storage layer provides redundancy to enhance
availability and reliability, and distributes objects to balance the load on
individual servers. Like many of the cluster file systems described in Sec-
tion 2.3.5, Envoy uses an object-based interface to storage [Fac05]. Disk
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Switching
Fabric

Envoy Servers Storage Servers

Figure 4.4: Envoy service instances connect to each other when necessary to form
a single distributed service. Storage servers are stateless and act as independent
nodes. All connections are direct, with no network overlay structure. In practice,
both services are hosted on the same set of machines.

layout policies are left to individual storage nodes, and replica placement is
left to the storage system. Figure 4.4 depicts the connectivity between the
Envoy file system layer and the object storage system layer. Envoy servers
actively connect to each other to form a coherent service, while stateless
storage servers are passive, waiting for data requests and functioning as
independent nodes.

Envoy puts a memory cache and a persistent disk cache between the
object storage layer and the file system layer. File system traces show
that with large caches, the operations that go to storage are dominated
by writes and non-sequential operations [Rue93], and traditional layout
optimisation in layered systems is of questionable value [Ste05], so the
envoy layer does not take an active role in object placement decisions.

Numerous strategies are available for distributing objects across the
cluster, including random distribution, chained declustering [Hsi89], par-
titioning based on object ID ranges, collocating objects created together,
etc. These can be managed through a separate service [Gib98a], by stor-
ing maps on the servers and caching lookup tables on the client nodes
[Lee96], or by using a mapping function that allows clients to compute
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Figure 4.5: Envoy’s namespace is hierarchical, and participating machines claim
branches of the tree as territories to be managed locally. Branches within a terri-
tory can be split off into new territories to be managed by a other machines. The
overall system structure is a federation of territories.

the appropriate storage server based on the object ID and other metadata
[Wei06].

The contributions of this dissertation are at the file system level, not
at the object storage level, so the details of object storage are omitted
here and readers are referred to the relevant literature as discussed in Sec-
tion 2.3.5.

4.2.3 Envoy layer

The envoy layer forms a file system from the objects provided by the stor-
age layer, coordinating and caching access to the file hierarchy, and export-
ing a client-server protocol to client services. The entire cluster shares a
global, hierarchical namespace, but clients typically mount a subtree from
the hierarchy and treat it as a complete file system.

Territories

A single instance of the envoy service runs on each physical machine, and
the global name hierarchy is divided among participating instances in the
cluster. When a given instance takes responsibility for some part of the
namespace, it is said to own a territory covering the relevant subtree of
the hierarchy, as illustrated in Figure 4.5. All operations within local ter-
ritories are handled locally. Storage objects may be cached locally both in
memory and in the persistent cache, which is used exclusively for territo-
ries local to the machine.
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This partitioning of the global namespace and the resulting federation
of constituent parts is what gives Envoy its name. When clients request
operations that stray from local territories, the requests are handed off
to the envoy on the appropriate machine. It follows that each instance
must know not only the boundaries of its own territories, but how to find
the envoy for neighbouring territories, i.e., those that can be reached by a
single directory traversal (up or down) from a local territory.

The envoy service is stateful, and tracks not only its territories and
neighbours, but the state of all files and directories in use by its client
services, as illustrated in Figure 4.6. When a client navigates beyond the
boundaries of a local territory, requests are forwarded directly to the en-
voy that owns the neighbouring territory. If further navigation moves
beyond the boundaries of the neighbour’s territories, the neighbour does
not forward it to the next envoy, but instead bounces the request back to
the originator with the address of the envoy that can answer the request.

Under this system, two envoys maintain a direct relationship with each
other only when they are immediate neighbours in territory ownership,
or when one is serving requests for a client of the other. It follows that
if territories are alloted such that the owner of a territory is also its most
active user, traffic on an envoy instance will generally be dominated by its
local clients.

Often, the best that can be achieved in a steady-state system is to have
the owner of a territory be the envoy driving a plurality of traffic, not
a majority. Sometimes this is an inevitable consequence of overlapping
client demands, but often some further gerrymandering of the territory
boundaries can improve access locality. Since the needs of the clients and
the needs of the envoys are generally aligned, a practice that in politics
usually serves those in power at the expense of those they represent serves
both equally well in file systems.

Files

Files and directories can be mapped easily to objects as provided by the
storage layer. Files are stored as objects with a set of attributes, and direc-
tories as files with special semantics and a different interface. Special files
are stored as normal objects with special contents, accessible through the
interfaces appropriate to the file types.

Unix file systems are organised around inodes, which organise the con-
tents of a file and its attributes, but not its name. Envoy employs a similar
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file

fwd: file

filefile

fwd: filefwd: file

file file file

file

Figure 4.6: Files that are part of locally-owned territories (enclosed in boxes) are
accessed directly, while those in remotely-owned territories are accessed through
forwarded requests. Envoy instances connect to each other when they have
shared territory boundaries, or when one is forwarding requests for a file in the
territory of another.

structure, with file contents and attributes separate from the name hierar-
chy. Objects have numeric identifiers like inodes, but a file can be backed
by different objects during its lifetime, so an object ID is not suitable for
directly identifying a file.

Directories are files containing listings of other files. In Envoy, direc-
tories are managed at the block level, with each block containing some
number of entries. An entry consists of a file name, the object ID that
links to its contents and attributes, and a flag indicating the file’s copy-on-
write status. When this flag is set, the object is considered read-only, and
will be cloned before any changes are committed to the file’s contents or
attributes. This process is completely opaque to clients.
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Special files, such as device nodes and symbolic links, are stored as
regular files whose contents follow a defined format. For symbolic links,
the file contents are the target of the link, for devices they are an ASCII
string identifying the major and minor device numbers, etc.

4.2.4 Caching

The cache in a distributed file system must balance performance with con-
sistency and durability. While maintaining a coherent view of the file
system that is tolerant to software and hardware faults, a cache should
reduce latency, improve throughput, and increase overall capacity. The
latter is achieved by reducing network and disk congestion and freeing
input/output channels to absorb additional load.

Enhancing performance is the primary reason for employing a cache
in the first place. The growing gap in performance between main memory
and disk makes effective cache management critical, as a random disk ac-
cess is five or six orders of magnitude slower than a similar memory access.
The service cluster environment does not provide much insight into the ex-
pected access patterns of its constituent services, as one of the purposes of
the environment is to support arbitrary clients. While application-specific
cache hints are not available to aid in cache replacement decisions, ser-
vice clusters do imply many file system images with overlapping content.
Many images are private to a single client, while others may be accessed
by multiple concurrent services.

In a 2002 interview, Eric Schmidt of Google observed that for seek-
intensive workloads, DRAM can be cheaper to deploy than disks [Spr02].
The seek time of a single disk cannot be improved significantly, so increas-
ing disk performance requires adding redundant spindles. With many mir-
rored disks, many seeks can proceed in parallel and a random request
can be satisfied fastest by the disk whose head position happens to be
nearest to the requested datum. Because of the large performance gap,
Google found it cheaper and faster to store their entire web search index
in DRAM, which can serve many requests quickly, than to create enough
replicated disks to handle the same transaction load.

While Google’s implementation revolved around an inherently parallel
task [Bar03b], it can still inform the design of a cache solution for Envoy.
A single, commodity machine cannot hold as much memory as would be
required for an index of the web, but by considering the aggregate capacity
of a cluster instead of focusing on the capabilities of a single machine,
they arrived at the surprising but sensible conclusion that “it costs less
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money and it is more efficient to use DRAM as storage as opposed to
hard disks”. Finding data in a local cache is ideal, but with a high-speed
network connecting machines in a cluster, it is faster to query the cache of
another machine than a locally-attached disk [Dah94a], suggesting that it
would also be prudent for the design of Envoy to rely on the combined
cache of the cluster as well as the cache of individual nodes.

Envoy is designed to compromise between the competing goals of max-
imising local cache hit rates and maximising the aggregate cache capacity
of the cluster. Two design features are particularly relevant to addressing
these goals. The first is that all client requests are served synchronously by
the envoy service without the aid of a local cache. Instead they rely entirely
on the shared cache hosted by the envoy service in its private virtual ma-
chine. The local envoy directly services all requests—local and remote—
for territories it owns, so the entire cluster caches at most a single copy of
a given file. Multi-level caching is most effective when lower levels are sig-
nificantly larger than higher levels (as with the persistent cache compared
to the in-memory cache), otherwise the lower level ends up shadowing the
higher level and contributing little to overall hit rates [Mun92].

This could potentially strain the envoy that owns a particularly popu-
lar file, as it funnels all traffic for that file to a single node. For light to
moderate sharing, this is not an issue, and in practice the envoy will be ac-
cessing the file mainly from its cache and can handle significant traffic. For
extreme instances of sharing, services should use explicit network-facing
protocols instead of relying on the file system as a poor man’s distributed
shared memory system.

The second design feature has a more complex impact on the aggre-
gate cache capacity. Territorial borders are drawn along boundaries in
the namespace hierarchy, but because of the copy-on-write mechanism in
snapshots and file system forking, multiple names may refer to the same
underlying storage layer object. This only happens when the object (but
not necessary the file) is read-only, so cache consistency need not be con-
sidered, but it does mean that multiple envoys may cache the same under-
lying object. While this mechanism introduces redundancy in the cluster-
wide cache, it also has the potential to consolidate cache entries within a
single envoy instance. If multiple file system images have files backed by
the same object, they will occupy the same place in the persistent cache as
well as the in-memory cache.

Cache utilisation is most effective when clients on a single machine use
file system images forked from a common template, and the more complete
the template image the more likely it is that services will rely on common
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Figure 4.7: Individual requests may be filled through one of several possible data
paths, each with higher latency than the last. High-latency paths are designed
to be less common than low-latency paths, and Envoy introduces caching and
dynamically re-arranges territories to reduce the average data path length.

rather than custom-installed files. This fits nicely with the stated goals of
flexible commodity computation, where both the host and the client gain
from using the most popular commodity tools. The host by reducing client
footprint and increasing capacity, and the client by reducing deployment
costs and maximising performance through increased cache hits.

4.2.5 Data paths for typical requests

To summarise the architecture of Envoy, consider the data paths followed
by typical file system requests. The best case is retrieval from in-memory
cache on the same machine and is designed to be the most common. Extra
steps are required in progressively less-common operations until the worst
case, where a request travels from a client to the local envoy service, is
forwarded to a remote envoy, misses the local cache and is forwarded to
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Figure 4.8: File system requests proceed from service VMs to the local envoy
service. A request from a local territory may be filled by the local in-memory
cache, the local disk cache, or by a single network hop to a storage server. A
request for a foreign territory adds a single network hop in each case, as the local
envoy acts as the client to a remote envoy.

a storage server instance where the data is retrieved from disk. This se-
quence is summarised in Figure 4.7, and depicted graphically in Figure 4.8.

Read operations

The best case is a request for hot data in a local territory. In this case, data
can be served from the in-memory cache of the local envoy server. With a
fully optimised implementation using Xen or a similar VM environment,
this data transfer can occur with a single data copy from the cache to a
data page, and that page can then be swapped directly to the client VM via
page table manipulation. Since the client’s OS does not keep a cached copy,
that page can likewise be passed on directly to the client application. While
the prototype is not this optimised, the design permits a very lightweight
operation involving a single data copy and some metadata manipulation.

Warm data from a local territory follows a similar path, prefaced by
retrieving the requested data from the local persistent cache (on disk) into
the in-memory cache. With large, cheap commodity disks, the persistent
cache can easily hold several operating system images and typical appli-
cation suites. Typical Linux installations occupy no more than a few gi-
gabytes, and even that includes many supporting files that are rarely used
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and may never be referenced in common service deployments [Gib98b]. If
services have forked from standard base images as proposed, it is realistic
to assume that most operating system and standard applications files will
be available in the local cache hierarchy for a service being deployed on
an active node [Klo02].

When the local cache fails to deliver, the envoy service must retrieve
requested data from the storage layer. In the prototype the persistent cache
holds only complete objects, so an entire object must be transfered before
the envoy service can begin fulfilling requests from the local cache. If
the object is replicated, it can be retrieved through parallel transfers from
multiple storage servers for higher throughput. The cache implementation
could also be refined to store ranges of bytes instead of just entire objects,
which would complicate bookkeeping but permit faster access to partially-
transferred files. It would also allow partial caching for files that are too
large for the cache. Sequential access to large files merely scrubs the cache
when using a least-recently-used eviction policy, but other access patterns
could benefit from caching regions of the file, and non-sequential access to
large files is becoming more common [Ros00b].

Operations in territories outside local control add an extra network
hop between the local and remote envoys for all operations. The data is
not stored in the local cache, so locality of reference does nothing to re-
move this network penalty. It does offer another optimisation opportunity
(the data, once received from the network, can be passed to the client ap-
plication without any further copying) but this is minor compensation for
a guaranteed latency penalty.

Fortunately, this penalty need not be too great nor too common. The
remote envoy handles the request just as it would one from a client local
to it, including caching, so referential locality does improve performance
from the cold- and warm-cache cases. In addition, service clusters have
high-speed local area networking across switched connections. Finally,
because of the way territories are decided, in a steady state system foreign
envoy requests generally imply some degree of sharing. While relatively
uncommon in itself, runtime sharing requires some form of synchronous
network communication to guarantee consistency, so Envoy’s goal of re-
ducing synchronous inter-node traffic to cases of either concurrent or in-
frequent access seems a reasonable one.
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Write operations

Write operations are less common than reads, but much of the complexity
in file system design comes from supporting them. While a good cache
satisfies many read requests from memory quickly and with no correct-
ness concerns (provided coherency is maintained in the case of distributed
systems), write operations cached in memory raise concerns about dura-
bility. If the server acknowledges a write operation as being complete but
has only committed it to an in-memory cache, then there is a window of
vulnerability before the data is stored to disk. If the system crashes in this
time, it will lose data that the client expects to be resilient to crashes. In an
isolated client, this may be acceptable. The client will simply be forced to
restart from the state that was committed to disk and will lose a bounded
amount of work. It is particularly problematic for distributed systems and
others with external side-effects, however, where other participants may
cue subsequent actions on the premise that a write has been successfully
and durably committed to disk. The problem is further exacerbated in a
commodity hardware environment where failures are routine.

At the other extreme, one can commit all writes to disk before complet-
ing the transaction. This makes it clear to the client when a write operation
has been consummated, and it is free to either wait for the acknowledge-
ment or proceed asynchronously with explicit knowledge of the risk it is
assuming. While this is a simple and appealing model, it ignores two im-
portant realities. The first is that the default action for most commodity
operating systems is to cache writes and acknowledge them immediately
while delaying the disk write. Changing the expected performance charac-
teristics of a basic operation like writing to disk would severely affect the
performance of many standard tools in a negative way and not provide
an environment friendly to commodity software. The second is that most
files created are short-lived temporary files that are soon deleted [Ous85],
so synchronously writing them to disk introduces not only unnecessary
latency but also unnecessary disk contention.

Several intermediate possibilities exist. Instead of having write requests
proceed directly to the storage layer, the local persistent cache could be
used as a staging area, with write requests being committed locally and
then forwarded to the storage layer after some delay. This would do little
to improve performance, however, as synchronous disk access is slower
than synchronous network access, so this would not eliminate the slowest
link in the event chain. Specialised hardware with involatile memory could
also act as a staging area, giving good write performance while retaining
durability. The latter approach violates our goal of using widely-available
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commodity hardware, however, and neither approach is resilient to hard-
ware faults that result in the entire node failing.

Another approach is to only guarantee synchronous durability when
explicitly requested by the client, using the equivalent of the Unix fsync

system call. This matches the semantics of local file systems, and thus what
most software is written to assume. It is not without faults, however, as
the popularity of high-level scripting languages and middleware frame-
works (especially for network services, exactly the types of clients service
clusters are designed to support) means the connection between applica-
tion actions and disk operations is often obscured. Requiring low-level
controls to get correct behaviour may be a popular compromise, but it is
not ideal. Recent results suggest that the latency of synchronous writes
can be effectively hidden by the operating system, supporting the choice
to support synchronous semantics at the distributed system level [Nig06].

The solution Envoy employs is based on exploiting the cluster envi-
ronment. While commodity hardware is expected to fail occasionally,
simultaneous failure of multiple machines is still rare, provided that the
nodes are sufficiently isolated from each other in terms of power and cool-
ing. Since service clusters are intended for professional hosting environ-
ments, it is reasonable to assume that hardware faults occur in isolation.
With that assumption, durability is less about committing data to disk and
more about redundancy. A write request is considered final when it is in
the memory of all of the storage servers that will eventually commit it to
disk. If the envoy server fails, the storage servers are unaffected. If one
or more of the storage servers fail before committing the data to disk, the
recovery mechanism must restore consistency using the most up-to-date
of the replicas. Having storage servers potentially out of sync due to a
failed asynchronous write in this scenario is fundamentally no different
from having one fail while trying to satisfy a synchronous request. In both
cases, the inherent asynchrony of the network means that replicas may
be out-of-sync with each other. Only the degree of the problem changes.
This scheme allows temporary files to be written and deleted before reach-
ing the disk, but does not do so by gambling with durability for some
arbitrary time window, which may or may not be suited to the client’s
workload [Ros00b].

4.3 File system images

A single, hierarchical namespace unites all the participants in an Envoy
cluster, but for management purposes there are two distinct levels. The
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administrative file tree starts at the root of the namespace and has as its
leaves the file system images that are normally accessed by clients. Impos-
ing this additional structure in the tree codifies the intended usage pattern,
which simplifies administration and allows for some simple but effective
optimisations.

4.3.1 Security

Service clusters must accommodate a heterogeneous collection of clients,
some of which may trust each other, but most of which do not. To support
standard operating systems and tools, Envoy must support familiar seman-
tics, including granting complete control over private images, while also
accommodating shared images that grant limited access to various clients.
In addition, clients themselves may wish to arbitrate access to shared stor-
age, rather than expecting the cluster owner to manage credentials for any
combination of services.

Enforcement

Simple security is one of the benefits of the service cluster model. Physical
machines are controlled by trusted software that isolates clients from each
other and from the administrative tools. Hosting the cluster in a managed
environment similarly secures physical access to the machines and makes
a trusted environment possible. Virtual network devices connect client
VMs within a machine, and they also route network packets from clients
to the rest of the cluster and the outside world. With well-defined and
controlled boundaries, packets cannot be spoofed within the cluster and
network addresses can be an accurate and reliable indication of the origin
of network data.

For Envoy, this means that client access to the file system can be strictly
isolated to the client-server interface exported by a client’s local envoy.
The clear lines of trust provided by the environment make enforcement
of security policies relatively simple. Envoys communicating with each
other can be authenticated by their network address as well as by the
credentials they provide, as can connections between envoys and storage
servers. Encryption of traffic is possible, but since the cluster contains only
trusted machines, the threat of packet sniffing is much less than in other
environments.
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Policy

Access to files is controlled at two levels. The first governs entry to the file
system. When a client mounts a directory, be it a file system image or an
administrative directory, it supplies its credentials and a pathname relative
to the global root of the file hierarchy. The supplied credentials determine
the client’s identity and maximum privilege level for access to the requested
directory and all of its descendents. The second level manages access to
individual files according to the identity the client supplied at mount time
and the permission attributes of the files.

Administrative directories support all normal file operations, and con-
figuration is done through ordinary files with special formats and naming
conventions that are recognised by the envoy service. A credential file can
grant access to descendents of the directory that contains it, descendents
that may be image roots or further levels of the administrative hierarchy.
Permission granted at one level cannot be revoked at a lower level; cre-
dentials are established at mount time and are unaffected by subsequent
configuration changes. Special files lose their meaning within file system
images, so credentials apply to entire images or groups of images.

A noteworthy feature of this system is that clients can manage their
own stable of images and the credential files that govern access to them.
A set of mutually-trusting clients can share a single credential file and a
pool of images with minimal structure, or a client can create a deeper
hierarchy of images with fine-grained credentials granting limited access to
less trusted clients. A client’s credentials may specify its identity or permit
it to assume any identity at mount time. This lets Envoy arbitrate shared
access between clients or grant them root-like control over the identity
space of an image.

File-level credentials are stored as file attributes. A client’s identity is es-
tablished at mount time, and after that access follows the semantics of the
client-server protocol used to access Envoy. Unix-style user/group/world
permissions and fine-grained access control lists can both be stored as file
attributes and enforced by the server. The system used by a particular
implementation is largely determined by what the client access protocol
supports. In the case of the Envoy prototype, the 9p protocol dictates
Unix-style permissions. Depending on the credentials supplied at mount
time, superuser privileges can be granted or denied to a client to support
the Unix root user or emulate NFS-style root squashing [Paw94].

A few examples are illustrated in Figure 4.9:
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Figure 4.9: Credential files give clients control over access to images and assign-
ment of user IDs. Within images, normal file system semantics govern access to
individual files. (a) This two-part access control lets cluster managers grant lim-
ited access to template images while giving clients control over their own branches
of the namespace. Clients can use their own credentials or grant more limited con-
trol in their own hierarchies. (b) Clients may use their own credentials to access
images, (c) create their own custom templates for resale along with shared data
areas, or (d) create a mixture of private images and shared images.

(a) The cluster owner creates a variety of templates with well-known op-
erating system installations and grants all clients access to fork them
as needed. He gives clients individual credentials that give them con-
trol over a private branch of the namespace, which they can use as
they see fit. Clients can retain exclusive access to their branches, or
they can create new credential files to control sharing among their
own VM instances and between other clients in the same cluster.

(b) An isolated client registers with a host and is given credentials granting
full control over an empty administrative directory. In addition, cre-
dentials are supplied that let her fork several image templates, access
that is equivalent to letting her mount those templates as a read-only
user. She forks a Linux distribution and assumes root privileges over
what is now a private image. After configuring the image, she forks it
again to support two cooperative VMs. User accounts on her virtual
machines access storage through the kernel, which uses her single set
of master credentials to authenticate any arbitrary user, but mounts
them as individual users with access limited according to Unix-style
permission control.

(c) A service provider starts with a similar empty directory, but creates
a few levels of directories. He, too, forks a Linux distribution, but
customises it with applications fully configured to support a specific
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kind of server. He forks his own images to prepare several variations
that will be useful for different clients. These images are collected
under a single directory, where he creates a file with custom creden-
tials to give his clients access to fork the templates he has prepared.
In addition, a different directory with different credentials governs
access to a shared image that his clients use to share data with each
other. They can mount the shared image with limited access, but
they can get full read-only access to the templates, or fork one and
assume full control over the copy.

(d) A distributed service starts out with the same empty directory. The
manager prepares a custom template from a forked FreeBSD image,
then forks it many times for different instances of the service. Each
instance is assigned randomly-generated credentials that give it full
control over a single cloned image, limited access to a shared data
image, and nothing else. Each private image is housed in its own
directory to isolate credentials, but all of those directories can be
accessed by the manager with her master credentials.

Client-owned hierarchies can be used to support many scenarios, from
simple single-user images to complex interactions between different clients
with limited trust. Templates can be customised and shared, and images
can be opened for sharing with client-configured but Envoy-enforced ac-
cess limitations, or clients can take full control of images and grant access
to data through their own network-facing protocols. Flexibility is derived
from enforcing normal file access semantics, but letting clients control ac-
cess to images and manage the assignment of identities within those im-
ages. Client-managed credentials can apply to administrative directories
as well, letting cluster users further delegate management responsibilities
to their own clients.

4.3.2 Forks and snapshots

To support the rapid deployment of services, standard installations of
commodity operating systems and software can be provided to clients as
a starting point. This is accomplished in Envoy by creating a small set of
well-known template images and allowing clients to fork them as a start-
ing point for their own private images. Using copy-on-write techniques,
many clients can diverge from a single image, sharing unchanged files and
consuming resources only for the changes made.
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The copy-on-write mechanism in Envoy works at the level of an object
in the storage system. Files and empty directories are leaves in the object
tree, with non-empty directories acting as interior nodes that branch out.
Modifications to privately-owned objects can be made directly to those
objects, but changes to a shared object can only be made by cloning it and
applying the changes to the copy.

An object clone has a different object ID than the original, so directory
links to the object must be updated, which in turn may require cloning the
directory object. Changing a leaf in the file system tree requires cloning
a path from a writable ancestor to the object itself, a process that resem-
bles modifying an immutable tree structure in a functional language: an
entirely new tree is produced that links back into the old tree wherever
possible.

Image versions

While snapshots could be taken at any point in the file hierarchy, a few ad-
ditional rules simplify management. The root of the namespace is always
writable, as are all administrative directories, i.e., those that are not de-
scendents of a directory whose reserved name marks it as an active image
root or a snapshot of one. Existing snapshots are always immutable, and
new ones can only be taken from the root of an image, not from arbitrary
points in the client’s directory structure.

A new image is started by creating a specially-named directory in an
administrative area that does not already contain an image. Naming con-
ventions distinguish the active version of the image and identify its snap-
shots. The naming scheme restricts the history of an image to a linear
series of snapshots taken over time. For management purposes, the entire
collection is considered a single image with an active head and a series of
historical versions.

Forking an image

The word “snapshot” implies that a copy of the state of an image is frozen
and set aside as though an external observer captured a view of the en-
tire active system, but in reality it is the active version that is frozen and
set aside, while a newly-created head takes the place of the old one and
diverges from it over time. The continuity of the active image is pre-
served through sleight-of-hand as active file state is transparently trans-
ferred from the old head to the new.
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The process of forking an image is the same, except that it starts with
a snapshot already frozen as part of the history of another image. To fork
a running image, a snapshot must first be taken, after which the forked
image and the new head of the old image can both start from the same
immutable tree and move forward independently.

Snapshots and territories

Because of the copy-on-write mechanism, changing a single file may re-
quire modifying a path all the way back to the root of the image, poten-
tially crossing territory boundaries and involving multiple envoys in the
process. This would violate the goal of local impact for normal file oper-
ations and complicate the protocol between envoys. To simplify matters,
Envoy requires that the root of each territory be writable (unless it is part
of a read-only snapshot). The worst case is reduced from cloning a path
back to the root of the image to cloning a path to the root of the territory,
making it always possible for write operations to be completed by a single
envoy.

To satisfy this requirement, the snapshot operation must clone a path
to each territory exit after freezing the territory. In practice this process
works in reverse, starting at the leaves of the tree and working toward the
root of the image. Child territories are frozen and their roots cloned, then
parent territories are frozen and paths from their roots to their children
cloned. Eventually, the root object of the image is replaced by a clone; the
old object becomes the root of the snapshot and the new clone becomes
the root of the active head of the image.

This process simplifies writes, but it also creates unnecessary cloning
for territories that do not serve any write requests before the next snap-
shot. This is a tradeoff between simplicity of design and space efficiency.
Cheap and ample disk space is one of the motivating advantages to using
commodity hardware, so this tradeoff is consistent with the goals of the
Envoy file system.

4.3.3 Deleting snapshots

Storage space is cheap and plentiful, and systems such as Venti are de-
signed to keep a complete history of all files ever created [Qui02]. This
may be appropriate for some workstation environments, where the in-
crease in storage capacity can out-pace typical data creation rates, but
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deleting files permanently is still a necessity for many other users. In ser-
vice clusters, users are charged according to the resources they use, so they
must have the flexibility to completely remove old files. Also, when clients
leave a particular service cluster, the owner may wish to reclaim the space
for future use, as there is little incentive to keeping it around on behalf of
a client that is no longer paying. Also, concern for privacy and compliance
with data retention laws may require data to be completely removed.

The only backups mechanism in Envoy is the snapshot operation. Since
anything created and deleted in the window between two successive snap-
shots is no longer accessible anywhere, it is deleted immediately. This is
easily detected through the copy-on-write mechanism, which identifies all
files that were created since the most recent snapshot. All files with copy-
on-write flags (either explicit in a directory link or implicit through an
ancestor’s link) are backed by objects referenced by one or more read-only
snapshots, so envoys never delete these objects when their corresponding
files are deleted.

The problem comes when trying to delete old snapshots, as it can be
difficult to determine which storage objects are only referenced by that
snapshot.

An obvious solution is to implement reference counting in the storage
layer. This has the advantages of simplicity, accuracy, and immediacy. The
main disadvantage is that it puts the performance burden in the wrong
place: every time a directory object is cloned (a frequent operation when
a snapshot is followed by write requests) the reference count of all objects
in that directory must be incremented. This requires updating all storage
replicas of all files in the directory, making the copy-on-write mechanism
expensive in order to support an infrequent operation that is not timing
critical.

The copy-on-write mechanism in Envoy is similar to the one in Paral-
lax, as is the problem of deleting snapshots [War05]. The problem was
simpler in Parallax, however, which uses a copy-on-write radix tree to
map logical blocks to physical blocks in a virtual block device. The virtual
block numbers do not change between snapshots, so comparing the phys-
ical blocks mapped to by two successive snapshots reveals which blocks
from the first were unlinked during the lifetime of the second.

With Envoy and its hierarchical file tree, the problem becomes more
complex. While it is still a simple matter to compare the object IDs of di-
rectory entries to detect changes between snapshots, it is harder to distin-
guish between the effects of objects being cloned and objects being deleted
and created. In Parallax, the two radix trees are recursively walked in
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parallel, and changes always denote cloned blocks. In Envoy, files and di-
rectories can be renamed, so there is no easy way to match an object in an
old snapshot with a cloned version of the same object in a newer snapshot.
The static virtual block IDs in Parallax are replaced by variable names in
Envoy, making the process of comparing two snapshots more difficult.
Supporting hard links makes it even harder to define a one-to-one cor-
respondence between object references in two successive snapshots, since
multiple references may exist to a single object.

This potentially messy problem can easily be solved by brute force. In-
stead of imposing extra runtime overhead for normal file operations or at-
tempting to walk two file systems and identify matching files within them,
it is simple and practical to gather a complete list of objects referenced by
an image. Using 64-bit object IDs, such a list takes 8 megabytes for every
million files. A 1999 study of workstations at Microsoft found an aver-
age of 13,309 files on each of 10,568 machines, with the subset running
NTFS (the newest file system studied and the one with the largest average
number of files) averaging 24,229 files over 3,332 machines [Dou99]. Av-
erage file counts will no doubt continue to grow, but anecdotal tests found
the number still in the low millions for typical, modern desktop Linux
installations.

Gathering a complete list of objects and sorting it for each snapshot
makes the identification of object creates and deletes a simple matter of
scanning two catalogues in order and finding differences. It requires some
storage space to implement, but not much. Deleting snapshots is not a
critical-path operation and for typical image sizes the brute force approach
requires little enough space that that no amount of reduction would be
worth more than a very small complexity increase.

This asynchronous process bears some resemblance to the cleaner of
log-structured file systems [Ros91], which asynchronously recovers disk
space from the tail of the log. The snapshot-delete problem has a critical
difference, however: Envoy runs in a cluster environment, where the asyn-
chronous process can run on a different node to prevent the interference
caused by the cleaner under some workloads [Sel93, Sel95]. In addition,
successive snapshots will typically have much overlap in the directory ob-
jects referenced, so the machine-level cache can absorb much of the traffic.

A sorted file listing all object IDs referenced in the snapshot can easily
be stored in the administrative directory that contains the image. To delete
a snapshot, the objects of it and its immediate successor and predecessor
are compared in order. Each object that appears in the snapshot but disap-
pears in the successor can be safely deleted from the storage layer. To make
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it safe and resilient to crashes, the envoy service ensures that no clients are
currently accessing the snapshot, then it unlinks the root of the image first,
and deletes the list of object IDs last. At recovery time, an object ID file
found without a corresponding image indicates that a crash occurred be-
fore the operation completed, and it can be safely restarted. The image
itself isn’t necessary at this stage, and as long as the cleanup process can
tolerate objects having already been deleted, it can work entirely from the
object lists.

The only other complication in this process is image forks, where mul-
tiple successors may exist for a single snapshot. Forking an image does not
directly affect the snapshot used as the starting point, so the easiest way
to detect forks is to log them. The log is consulted before any snapshot
delete attempt, and deleting images that have more than one immediate
successor is not permitted.

A few other corner cases are worth mentioning. The current version
of an image can be deleted using the same procedure, but it must be made
read-only or client access must be disallowed before gathering the list of
object IDs (note that access is normally only forbidden when deleting
starts; the catalogues of predecessors and successors must be assembled
as well as those of images marked for deleting, but normal access can con-
tinue during this process). Otherwise, the normal procedure suffices, with
the successor object catalogue taken to be empty. The log of image forks
must also account for deletes, so that entire trees of images can eventually
be pruned back to the root if desired.

4.4 Territory management

The Envoy file system model is based on the idea of presenting a single,
large file tree connecting arbitrary images, but providing incentives to use
it in ways that can be exploited to provide good performance and scala-
bility. The service cluster model makes it simple to isolate control of the
file system from the clients who use it, while still keeping synchronisation
logic and caching on the same machine most of the time. Providing a
global namespace gives a great deal of flexibility, but inferring usage pat-
terns and collocating ownership of branches of the tree with the clients
that use them yields short data paths and good performance.
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4.4.1 Design principles

A variety of approaches to distributing territory ownership are possible,
and only a realistic usage model drawn from empirical study of real-world
deployments can accurately inform optimum choices. Lacking that, terri-
tory management in Envoy is designed with a few goals in mind.

The first is to favour optimising long-term patterns over tracking short-
term trends. High-speed switched networks minimise the penalty for serv-
ing a request from a remote envoy compared to handling it on the client’s
envoy, and the growing gap between memory and disk performance makes
flushing the cache to support a territory realignment continually more ex-
pensive. Based on this and on the past success of client-server file sys-
tems, Envoy favours slow evolution of the namespace topology to capture
steady-state client behaviour. Instead of attempting to track each change
in runtime usage patterns, it offers a client-server model that gradually
optimises itself over time by collocating servers with clients.

The second is to avoid complexity whenever possible. This applies to
the runtime behaviour of the system as well as the algorithms and imple-
mentations that drive it. For debugging, recovery, and runtime analysis,
territories with simple boundaries that do not change frequently are pre-
ferred. Painting control of the namespace tree in broad strokes makes it
easier for humans to comprehend and analyse, minimises perverse cases
that can threaten correctness and the success of recovery operations, and
makes global logging of changes practical. With this in mind, Envoy
favours using a few territory divisions to give good results over making
many divisions in an attempt to approach optimal results.

4.4.2 Special cases

Token passing is a popular way to coordinate access to file system ob-
jects. Before a client can access a file, it must be granted an appropriate
token, and the token must be transferred to a second client before it can
operate on the same file. Multiple reader/single writer tokens may permit
some concurrent access, but synchronous token transfers are frequently
necessary before a request can be satisfied. While these operations can be
optimised, fundamentally they operate on a pessimistic model analogous
to locking in shared memory schemes.

Territories in Envoy are related to leases and token systems, but they
are based on an optimistic model where large groups of files can be granted
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to an owner on the assumption that sharing is uncommon. Synchronous
token transfers are avoided; every request from a client can be processed
immediately either by the client’s envoy or by a direct, already-established
link to the owner, with complete access to the owner’s cache. Performance
is best when the territory’s owner is on the same machine as the client, but
because of the cluster environment the penalty of an extra network hop
for remotely-owned territories is not excessive.

The decision to cede all or part of a territory to another envoy is always
made by the current owner. While a client’s envoy may be able to recognise
the client’s ongoing demand for a particular region of the file tree, only the
envoy that manages it can account for all clients that are accessing it and
act based on complete information. Territories form a tree overlaid on the
file system tree, and territory transfers are always driven by the parent of
the territory being transferred. The parent only initiates a transfer when
the owner of the territory requests it, leading to the first special case in
territory realignment: when a territory is dormant, it is ceded to its parent.
Dormancy is determined through the general mechanism described below,
but this is highlighted as a special case because no other envoy can detect
a territory that has fallen out of use. Territories are also ceded when an
envoy is shutting down.

Another special case is based on the expectation that most images (es-
pecially those used as boot images) will be used by only a single client:
when a client mounts an image that is not in active use, the image is im-
mediately ceded to that client’s envoy. The first client to mount an image
may not be the one that will use it the most, and the dynamic algorithm
would sort it out eventually anyway, but this heuristic avoids a warm-
up period of degraded performance for the most common usage pattern.
For services with no sharing, this is sufficient to completely localise non-
administrative traffic. This is also an example of how imposing a little
structure on the file tree can not only simplify administration, but also
improve performance.

4.4.3 Dynamic boundary changes

Control of a private image is handed over to the relevant envoy when
the client mounts it, but control of shared images is initially given to the
first client to access it, which may not necessarily be the heaviest user.
Envoys observe the access patterns of their local clients and compare them
to forwarded traffic from remote envoys, periodically ceding control of
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parts of territories, or even handing over control of an entire territory in
an attempt to improve locality of access.

Territories are transferred in response to observed usage, with one of
two goals: to improve locality or to simplify the territory layout. The
latter occurs when traffic to a territory falls below the idle threshold, and
the benefits of local ownership are not considered worth the extra cost in
topological complexity. In this case, the territory is handed to the neigh-
bouring envoy with the most boundaries in common with the old owner,
either the parent or the owner of one or more child territories.

Traffic is monitored by the number of requests from each remote en-
voy, with all client requests combining to form the owner’s contribution.
A single value for each participant is computed as the total number of re-
quests, exponentially decayed over time with a configured half-life. This
approach allows envoys to continually monitor load and react not only to
the presence of imbalances, but to their severity as well. Sub-optimal lay-
outs are addressed more urgently when traffic volumes—and the potential
benefits of optimisation—are high, with a slower response given in low
traffic, where waiting can confirm that the trend is lasting and that a fix is
likely to be worthwhile.

For simplicity, only a single new territory is created in each realign-
ment; if two branches of a territory need to be ceded to a remote envoy,
they will not be combined into a compound transfer, but will instead be
evaluated and transferred independently. To aid in accurately predicting
the effect of a given transfer, the traffic value for a directory combines re-
quests for its descendents with those for the directory itself. To the extent
that recent traffic trends continue, the combined traffic values for a partic-
ular object summarises the overall effect of ceding it as the root of a new
territory.

For each object in a territory, the owner considers ceding a new ter-
ritory rooted at that object to each envoy that has driven traffic to that
branch. The harm to the local envoy and the benefit to the remote envoy
are weighted equally by subtracting local traffic from that envoy’s traffic,
yielding the expected benefit of the transfer. Requests from third-party
envoys will be unaffected, as they will just be transferred from one remote
envoy to another. In this way, the expected benefit of each territory change
(including transferring control of the entire territory) can be considered
and compared with the alternatives.

Before actually initiating a transfer, two conditions must be met: the
transfer must be the one that will yield the maximum expected benefit,
and the urgency of the proposed change must be sufficient to justify the
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disruption of a boundary change. A highly beneficial transfer is considered
urgent, but if the improvement is modest then it is delayed to encourage
stability in the topology and discourage thrashing of the cache. A simple
linear scale has the urgency requirement decreasing as time elapses since
the most recent boundary change affecting the envoy. A minimum delay
and the idle threshold guard against extreme cases.

Scanning an entire territory after each request would be prohibitively
expensive, but the scheme outlined here can be approximated in a straight-
forward fashion. As each request is recorded and the traffic value for af-
fected objects updated, the envoy computes the expected benefit of trans-
ferring that object to the originator of the request. This process is re-
peated as the request is recorded for parent directories all the way to the
root of the territory. The maximum benefit observed is compared to the
time elapsed since the most recent transfer, and the envoy decides if a new
transfer is warranted.

With this implementation, a transfer that was rejected at the time of
a request for insufficient urgency may become viable as the territory ages,
and the envoy will not notice it in the absence of a new request to trigger a
re-evaluation. While this violates a strict interpretation of the procedure,
it does so only in the absence of traffic from the remote envoy, a condition
that casts doubt on the efficacy of the transfer anyway.

4.5 Recovery

Putting commodity computation in a managed environment with well-
provisioned hardware reduces the rate of node failure, but all computer
systems are subject to the hazard of failure, whether from hardware faults
or software problems. A viable recovery procedure is essential for any
storage system, and minimising the disruption to other nodes is also im-
portant in a cluster environment.

The controlled environment has its advantages, however, in that the
expectation of failure for a given node is low enough that it can be treated
as an exceptional condition, rather than a routine part of operation. This
stands in contrast to distributed systems running on machines owned and
managed by a wide range of people, whether peer-to-peer systems on vol-
unteered machines or networks of workstations in a corporate environ-
ment, where the needs and habits of the node owners preempt the interests
of the whole system.
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As a commodity platform, failure of an individual node can reasonably
disrupt the services running on it. Uptime guarantees and other reliability
requirements must come from higher-level services, which may be imple-
mented as a series of clients on a service cluster or across multiple clusters.
The latter is necessary for the most stringent requirements anyway, since
catastrophic failures such as natural disasters may affect all machines at
a location no matter how well cared for. Since prevention of failure is
impossible, and failover capabilities for all clients would be complex and
expensive, a more practical approach is to assume that nodes will occa-
sionally fail, and seek to minimise the disruption to the rest of the cluster
while restoring the service of the lost node as quickly as possible.

The basic assumption implicit in Envoy’s recovery model is that the
failure of a machine or any of its parts (including management software)
may result in lost service to the clients hosted on that machine. Moving
outward, envoys that were interacting with the failed machine should be
able to recover fully with some disruption, while nodes with no overlap-
ping interests should be unaffected.

The other philosophy that drives failure recovery is that it should be as
simple as possible. Recovery scenarios are both difficult to predict and dif-
ficult to simulate. In a distributed system, interactions involving multiple
participants can be complex enough when they work, and an unantici-
pated failure at an unexpected time can often lead to conditions that are
hard to anticipate. Enumerating cases that must be handled is an error-
prone process that can become intractable with too many sources of faults.
Even when complex failure cases are correctly identified, simulating them
under realistic conditions to test equally complex recovery code is another
difficult and error-prone process. Ongoing field testing is dominated by
correct behaviour (one hopes) so recovery code is rarely exercised as well
as normal code paths. Finally, because recovery procedures are only in-
voked in response to failure, they represent the last line of defence against
lost data and the last chance to retain the trust of users, a critical element
in storage systems.

Some of the most successful systems reflect these concerns. Database
systems typically log transactions in a simple, append-only structure be-
fore applying changes to complex data structures. At recovery time, no
attempt to diagnose the exact conditions of failure is necessary—instead
the log can be replayed to complete committed transactions or even re-
sume an interrupted recovery process. Similar journaling schemes are in-
creasingly common in modern file systems for many of the same reasons.
Careful ordering of writes can ensure that a crash at any stage leaves the
system in a sane state, offering the same principal benefit: recovery from a
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wide range of failure conditions can proceed even without knowing what
actually caused the failure.

4.5.1 Prerequisites

Some amount of redundancy of runtime state is necessary to allow com-
plete recovery after a node failure. The fate of a client is already tied to
that of its local envoy, so envoys track the state of all active file handles for
local clients, including those files that are owned by remote envoys. The
local envoy acts as a proxy server for remote files, so it can easily peek at
request and reply messages to observe state updates. For local and remote
file handles, an envoy tracks the full pathname of the file, the user creden-
tials used to access the file, and any state related to file status and position
required to support the client-server protocol used by the client.

A client’s envoy can track its file handle state locally, but file data is not
duplicated for forwarded requests. Duplicating runtime state can prevent
disruption, but preventing data loss requires redundancy in written data
and attributes. The write-through persistent cache in Envoy answers this
requirement by ensuring that data has reached the storage servers for all
replicas before reporting a write operation as complete. As long as enough
storage servers are able to write the data to stable storage, the crash of an
envoy node will not affect the stability of data, nor its immediate avail-
ability to the recovery process.

Depending on the storage layer implementation, a window of vulner-
ability may exist between the time the first and last storage servers have
been notified of an update, during which an envoy crash would result in
an inconsistent state between replicas. The problem resembles that of a
storage node failure, and in both cases recovery of the storage node would
necessitate it “catching up” with missed transactions. This is fundamen-
tally a part of the storage layer design, not part of the envoy service.

4.5.2 Recovery process

With runtime state and file data available, it is possible for envoys that
were interacting with a failed node to recover fully from the disruption,
with temporarily degraded performance as the only effect visible to clients.
The affected envoys include all those with which the crashed node had any
kind of relationship, including the owners of the parents of its territories,
the owners of the children of its territories, remote envoys accessing files in
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its territories, and remote envoys to which it forwarded requests for local
clients.

The first step in recovery is recognising that something has gone wrong.
Envoys monitor the status of their neighbours in the territory tree as well
as that of the envoys with which they share files. These connections can
be monitored closely without imposing a significant burden on the net-
work, as they are always unicast messages between small sets of hosts.
Normal interactions can double as heartbeat messages most of the time,
and explicit messages are only necessary on otherwise idle connections.

Once a node fails, the territories it owned and their descendents are
immediately dissolved and annexed into the parent territory. In-flight op-
erations no longer act under the authority of a territory owner and are
suspended. Forwarded operations between two otherwise-healthy envoys
are rejected with a suitable error so that the client’s envoy is made aware of
the failure. Parents notify children recursively, resulting in a pool of envoys
that hold file handles for their clients but have nowhere to send transac-
tions. The envoys then reconnect each file handle to a territory owner by
walking from the root of the file system tree to find the new owner. Un-
like normal directory navigation requests, these traversals always succeed,
even if directory permissions have recently changed. Envoys can nominate
themselves to reclaim ownership of territories, or they can leave it to the
normal demand-driven process to sort out boundaries over time.

In keeping with the goal of simplicity and blanket coverage of failure
cases, this handles failures that occur in the middle of territory ownership
transfers as well as simpler, steady-state cases. The canonical version of
the file tree is maintained by the storage system, not by the soft state of
territory ownership. Once the ownership tree is corrupted by a failure, the
corrupt branch is pruned and re-grown from its former root. Similarly, the
canonical version of a file handle is maintained by the client’s envoy, not
by the territory owner. Envoys champion the needs of their own clients by
restoring their file handles to working status and resuming their suspended
operations, while the operations initiated by failed envoys are forgotten
and their files implicitly closed.

If certain write operations were in progress when the failure occurred,
it is possible that orphaned objects may result. The operations can still
succeed, but objects that were created but not linked to may be lost to the
system. Snapshots and the copy-on-write mechanism expose particular
vulnerabilities with their leaf-to-root clone-and-update procedure, poten-
tially losing chains of cloned directory objects if interrupted by an ill-timed
failure. This does not result in data loss, but it may leave an occasional
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object that cannot be reached through the file tree. The potential for mi-
nor capacity loss is regrettable, but the likelihood and magnitude of the
problem are both low and can be ignored.

4.5.3 Special cases

Throwing away damaged soft state and rebuilding it instead of trying to
patch it makes recovery from a node failure simple and uniform across a
range of failure conditions. An important step in the process depends on
the ability of newly-ostracised envoys to rejoin the collective by starting at
the root of the tree and pushing file handles back down to their appropri-
ate locations. Two problems can inhibit this process: failure of the root
node, or a change in the path from the root to the target node.

Every node that joins the Envoy system must know how to locate the
root node. Whenever a client attempts to mount a file system image, it
specifies it as the path from the root of the global namespace to the root
of the image. Locating the root initially may be part of the startup process
for an envoy, or it may integrate more closely with a higher-level service-
cluster management tool. Other management services must exist to instan-
tiate and monitor client VMs, and it is sensible to have Envoy coordinate
directly with those services. Monitoring the root node and anointing a
replacement when it fails could fall to the management tools as well, or
envoys could instead be started with an ordered list of root nodes, the next
taking over when the previous fails.

The rest of the recovery process need not be changed for the root node,
as the existing procedure would suffice. It may prove worthwhile to treat
it as an exception, however. In the prototype, all of the top-level admin-
istrative directories are managed by a single envoy, with the transition
to individual images being the first point at which territory ownership
changes are allowed. While this is just a simplification for the prototype,
an implementation with no such restriction would probably follow that
pattern quite often, as most clients would mount an image and then never
interact with administrative directories again. The root node may end up
with many more children than a typical node, and dissolving all territory
boundaries would disrupt the whole cluster instead of localised regions
of related clients. As an optimisation, the root node could log territory
changes that it observes into a regular file with a well-known name (peri-
odically checkpointing by dumping a complete list). Its successor would
then start in the normal way, read the log file, and then contact each child
to inform it of the change. This would also require that children of the
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root be aware of their special status so that they would not dissolve their
branch of the tree upon detecting the root node failure.

Renaming a directory always throws file handles for its descendents
temporarily out-of-sync. A recursive update procedure ensures that this
does not last too long, but node failure could interrupt the propagation of
the update, or the update could happen after a descendent fails but before
other affected nodes have fully recovered; in either case the file handles
that they use to reconnect would have incorrect pathnames. Renaming
high-level directories is already quite rare, and having it coincide with a
node failure is quite unlikely. It would be reasonable to simply report a
stale file handle to the client when this happens, forcing it to locate its files
again and re-open them. Alternatively, the messages used to propagate re-
names down the territory tree could be adapted to implement a two-phase
commit protocol. This would also prevent other potential race conditions
that might come up when renaming directories.

Besides envoy failure, storage node failure and network partitions can
also disrupt a running system. Both problems are the province of the
storage layer. The occasional failure of a storage node is expected and is
one of the reasons for replication of all stored objects. A failure can be
tolerated and repaired without disrupting the running system (other than
possible performance degradation), though the details of recovery are part
of the object storage system and omitted from this dissertation.

The network partition case is more serious, as it resembles the simul-
taneous failure of many nodes. The most important consideration is to
prevent permanent data loss, which means preventing conflicting updates
that cannot later be resolved. By relying on the storage layer, this can be
easily resolved: envoys can only make binding changes in the storage layer
when they can contact a majority of the replicas. If a small part of the
network is isolated, it will soon fail until connectivity is restored. If the
larger portion retains enough storage servers, it can continue on uninter-
rupted, but it may also happen that both parts of the network are disabled
until the problem is resolved. Network partitions are a traditional bane
of distributed systems, but they are less of a concern in cluster settings,
because of redundancy in the network itself. Redundant network inter-
faces, routers, and switches make it unlikely that groups of machines will
be isolated, so requiring a repair before resuming normal operation is rea-
sonable. Using SCTP [Ste00] instead of TCP gives built-in multihoming
support, so isolated network failures can be tolerated without the envoy
service taking any explicit action.
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4.6 Summary

The Envoy file system is a distributed storage system designed for service
clusters. It assumes a cluster environment with well-maintained machines
and sufficient redundancy to prevent correlated component failures.

Envoy runs a service on each node in a trusted administrative virtual
machine, which exports file services to clients on the same node. A sep-
arate storage layer provides an object-level data abstraction, which the
envoy layer uses to compile a file system. Control of the file tree is divided
into territories, or subtrees which may themselves be further subdivided.
A territory is owned by one envoy node, which maintains a persistent and
in-memory cache for it and acts as server to all clients that access it. Client
requests for remote territories are forwarded by the local envoy. Relation-
ships between envoys are maintained only when they have neighbouring
territories, or when one is handling client requests on the other’s behalf.

File system images are subtrees within the global namespace that are
treated as management units. Lightweight snapshot and fork operations
use copy-on-write techniques to enhance performance and encourage shar-
ing even between unrelated clients. After a snapshot, all objects become
globally read-only and can be cached anywhere in the cluster without fur-
ther coordination. Each writable object is owned by a single envoy that
coordinates all access to it, and clients share a node-level cache, so consis-
tency is guaranteed.

Control of an image is initially handed to the envoy of the first client
that mounts it, but territories may be migrated, split, and re-merged in re-
sponse to demand. A greedy algorithm monitors client usage and finds the
most urgent transfer, or the one that will benefit the remote node the most
while hurting the current owner the least. The level of urgency determines
how quickly the transfer will happen, with low urgency migrations being
delayed to promote stability and effective cache use, while more pressing
moves are made quickly.

The fate of clients is tied to their local envoys, which maintain copies
of all their runtime file system state. The failure of an envoy dissolves
all territories below it in the hierarchy, forcing descendents in the tree to
re-join the active system by walking from the global root down to the
locations of files that are still active. Node failure only requires action
from envoys that had some kind of working relationship with the failed
node.
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The Envoy Prototype

Even the simplest file systems involve complex interactions between nu-
merous hardware and software components, and distributed file systems
compound that complexity. While all modern designs tend to draw heavily
on prior work, the particular combination of classic components and new
innovations that make up a new system like Envoy can only be validated
with empirical results.

I have implemented a prototype of Envoy to make testing possible and
to permit a level of refinement in the design that is only possible with prac-
tical experience. This chapter first details the goals and parameters of the
prototype, then discusses aspects of the implementation that shed further
light on the design, expose its limitations, or show how implementation
choices have shaped the prototype.

5.1 Scope and design coverage

The goals of the prototype are more modest than the goals of the En-
voy design. The design addresses the storage needs of a complex system,
and its suitability for the problem at hand is determined partly by how
accurately the problem was described. Including appropriate features ad-
dresses some of the needs of service clusters, and only production experi-
ence can fully determine how successful some features are. Because this
dissertation addresses only the storage aspect of the commodity computa-
tion problem, a complete evaluation must be deferred.

Other aspects of the design and its suitability for the intended task can
be validated by testing an implementation of the file system, even in the
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absence of a complete service cluster environment. The prototype was
implemented to allow empirical testing of the basic structure of Envoy,
and to expose practical issues that could lead to refinement of the design.
The design presented in the previous chapter reflects many lessons learned
from the prototype implementation, and the next chapter presents mea-
surements from using it.

The remainder of this chapter describes the artefact itself. The Envoy
design calls for a client-server file system interface for connecting individ-
ual clients to the distributed system, but it does not require a specific one.
The prototype is written to support a specific interface, and the rest of the
prototype takes design cues from that interface. While the storage layer
structure is not specified in the general design, a prototype supporting the
general interface and redundant layout required by Envoy was necessary
for testing; its implementation is also described here.

5.1.1 Implementation shortcuts

The prototype is designed to validate the basic design and performance
of the Envoy system. Features with little effect on performance, such as
authentication schemes and recovery procedures, are omitted because their
implementation would prove little. Other shortcuts in the implementation
supported faster implementation at the expense of runtime performance.
For a prototype this is an appropriate tradeoff, as validation of the overall
design is more important than particular benchmark results. A few such
shortcuts are described here.

Synchronisation

The prototype uses a simplified concurrency model based on a few as-
sumptions. Concurrent transactions are permitted and executed on indi-
vidual processor threads, but only one is allowed to execute at any given
time. A global lock is held by the running thread, and is released whenever
a network or disk operation is invoked. This simplifies shared-memory
management considerably, and is justified as long as the processing time
for transactions is dominated by I/O latency.

Deadlock is avoided by forcing transactions to release all held locks
when an attempt to acquire a new one fails. The transaction then waits
on a queue and is restarted when the contended object becomes available.
This forces transactions to acquire all necessary locks before introducing
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any side-effects that cannot easily be rolled back, but in exchange it al-
lows locks to be acquired in any order and simplifies lock management.
Multiple-reader/single-writer locks are also available for controlling ac-
cess to territories, so transaction queueing is mostly limited to concurrent
operations on a single file.

Caching

The prototype runs under Linux or other Unix systems, and takes advan-
tage of the buffer cache of its host rather than implementing its own cache.
This is a deliberate choice rather than a shortcut, as it takes advantage of
the ongoing refinement of the host operating system. This is in line with
the goal of taking advantage of commodity hardware and software, where
continuing improvements are expected over time. The cache can be man-
aged by managing the VM that hosts the envoy services.

Garbage collection

The prototype is implemented in C and uses the Boehm-Demers-Weiser
conservative garbage collector [Boe93]. Garbage collection is unusual in
file system implementations, and may come at a performance cost, but it
is useful for simplifying and speeding up the implementation of the proto-
type.

5.2 The 9p protocol

Clients access Envoy using a client-server file system protocol between the
virtual machine of the client and that of the envoy service. While a custom
protocol would offer the greatest flexibility, it would also make the imple-
mentation considerably more complicated and would have little value in
demonstrating the viability of the design.

5.2.1 Alternatives

With Linux as the client operating system of choice, a few prominent pro-
tocol options were available but ultimately rejected for the prototype.
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NFS version 3

The NFS protocol is popular, simple, well-understood, and has a robust
implementation. Most of the complexity is implemented in the client
drivers, so servers can be quite simple [San85, Paw94, Cal95]. I also
had experience with the protocol after implementing a stackable, copy-on-
write file system (CoWNFS) to support service deployment in XenoServers
[Kot04b].

For user mode servers generally and Envoy in particular, however, the
stateless model of NFS complicates implementation. File handles assigned
by the server and given to the client are expected to be immutable and al-
ways available (there are no explicit open and close operations), making it
difficult to maintain pairings between active files and the envoy instances
that own them. With transparent copy-on-write, these handles must ei-
ther be cached indefinitely or tied to some other file identifier, such as its
complete pathname. Changing territory boundaries makes caching im-
practical, and allowing higher-level directories to be renamed makes the
latter difficult to make robust.

Security under NFSv3 is based on Unix user and group IDs, which
proves to be an inflexible mechanism when diverse clients become in-
volved. The ID space must be shared between clients that share file sys-
tems, or the server must provide a mapping service to reconcile the dif-
ferences. While not an insurmountable problem, this can get unnecessar-
ily complicated when a client mounts multiple file system images, many
clients share some images, and parts of those images are forked from stan-
dard base images.

The caching model of NFS is entirely under the control of the client
driver, which generally sends frequent stat requests to check if its cache is
still current. Write operations are generally asynchronous, however, and
the lack of control would have defeated the cache coherency guarantees
that Envoy seeks to achieve. Caching at the client level also prevents con-
solidation of duplicate caches at the physical machine level, another of the
aims of the Envoy design.

NFS version 4

The most recent update to NFS addresses many of these concerns by intro-
ducing a stateful model and using leases to manage client caching [She03].
These client delegations could work well with Envoy, allowing private files
to be cached by the client and shared files to be held back and cached by
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the envoy, though in the latter case the consistency semantics are no better
than in earlier NFS versions. More flexible file handles and explicit state
management are also a better match. NFSv4 would be a viable candidate
for a future implementation, but at the time the Envoy prototype imple-
mentation was started, it was still relatively immature and the supporting
tools were complicated to use and poorly documented.

AFS

The Andrew File System is another popular client-server system with a
mature implementation [Sat85, How88]. It employs persistent caching at
the client, which is a poor fit for the Envoy model, and it is not intended
as a general-purpose protocol for implementing custom servers. Adapting
it to a system with very different semantics and basic assumptions would
negate the benefits of using an established protocol and implementation.

FUSE

The FUSE driver and tools support custom userspace file systems under
Linux. The FUSE interface is modelled after the Linux VFS interface and
exposes some of its complexity, but the main point against using FUSE
for the Envoy prototype is that it is not a network-facing protocol. A
userspace tool for the client would be required that would in turn connect
to the envoy service across the virtual network device. Besides adding an
unnecessary layer of indirection, this would complicate using Envoy as a
root file system.

Custom Envoy client driver

Another possibility would be to implement a custom kernel driver for the
Envoy client as well as the Envoy server. This would permit an exact
match between the expectations of the client and the semantics supported
by the server. It would also permit optimisations precluded in standard
drivers by the need to support a diverse range of servers.

Using a custom driver would have disadvantages, among them the need
to divert implementation time away from the server or to extend the total
time required. A custom driver would not be available in standard soft-
ware distributions, either, requiring additional deployment effort for end
users. Finally, a custom protocol would make evaluation more difficult by
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making it harder to isolate the costs of the Envoy deployment model from
the costs of the protocol and client implementation. Being able to com-
pare Envoy performance against other servers using the same client driver
may penalise the overall performance, but it also allows a more detailed
analysis of the results.

9p

The Envoy prototype is implemented using the 9p protocol from the Plan 9
operating system [Pik90, Pik92], which is specified in section 5 of the
Plan 9 manual [Pik95]. Plan 9 breaks from Unix semantics in many ways,
so the Linux port of 9p has been extended to better support Unix seman-
tics [Hen05]. The 9p protocol is intentionally simple. Individual connec-
tions are established for each user, and file ownership is tracked using user
and group names, not numeric identifiers. The protocol includes no ex-
plicit support for client-side caching beyond the availability of file version
tagging that could simplify NFS-style cache validation checks.

The 9p protocol is based around the thirteen messages listed in Ta-
ble 5.1. Authentication is achieved through an arbitrary sequence of reads
and writes to a special file handle established with the auth message, and
after the server is satisfied the client can follow-up by attaching to a spe-
cific point in the file hierarchy. Access to the rest of the hierarchy is
through walk messages that move new or existing file handles through
the namespace, and normal operations that can then access files and direc-
tories through the associated file handles.

5.2.2 Mapping Envoy to 9p

For basic file operations, an envoy acts like a 9p server to the client.
The client operating system connects over a virtual network device that
connects its VM to the VM hosting the envoy service. While the pro-
totype uses a standard TCP connection for communicating, 9p supports
any transport layer and could use an interface for virtual machine envi-
ronments that swaps memory pages between VMs instead of copying data
through the standard network protocol stack. While this has not yet been
implemented for 9p servers, it is a potential optimisation that could re-
duce the additional cost of retrieving data from the machine-level cache
over retrieving it from an OS-level cache in an individual VM.
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Message name Description
version Initial handshake; establish message size limits.
auth Authenticate a user to mount a specific path name.
flush Cancel a pending request.
attach Mount a specific path for a specific user.
walk Navigate directories and/or clone a file handle.
open Open a file or directory.
create Create a file or directory.
read Read bytes from a file or entries from a directory.
write Write bytes to a file.
clunk Release a file handle and close the file.
remove Delete a file or empty directory.
stat Read attributes for a file.
wstat Change a file’s attributes.

Table 5.1: The messages in the 9p protocol. version and auth prepare a con-
nection for an attach request, which establishes a single file handle. walk can
clone or move existing file handles, giving access to the rest of the file tree. flush
relates to an individual transaction, but all other messages operate relative to an
active file handle.

File handles and state management

When a file is owned remotely, the local envoy acts as a proxy server and
forwards requests to the appropriate envoy. Like client connections, for-
warded transactions are tracked relative to file handles owned by specific
users.

File handles are tracked by small positive integers, which are unique
in the context of a specific connection. When acting as proxies, envoys
map client identifiers to remote identifiers, which are unique for a given
envoy instance. This allows envoys to combine all requests from their
constituent services when contacting a remote envoy, effectively making
the envoy appear as a single client. By making the identifiers unique for all
outgoing requests from the envoy instead of for each local-remote envoy
pair, no re-mapping is required when file handles migrate from one remote
envoy to another during territory realignments.

Security

Individual users mount the file system in 9p, and file identifiers are subse-
quently tied to a single user. The server authenticates a specific user and
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authorises the creation of a specific file handle at mount time, and addi-
tional file handles are produced by cloning existing ones and walking the
directory structure to find the desired files.

This system is simple and matches the distributed layout of Envoy well.
Envoys trust each other, so authentication need not be repeated as clients
cross territory boundaries. Identifying individual users instead of authen-
ticating hosts and leaving user management to them also makes shared
images easier to manage. A user or process on one client can connect to
a shared image using its own credentials, without requiring administra-
tive access even on its own virtual machine. Likewise, the administrative
user can be restricted and treated like a normal user on a shared volume
without requiring any specific trust in the client’s operating system.

9p does not specify the protocol for authenticating users, but instead
offers a mechanism for arbitrary exchanges to take place before a user suc-
ceeds in attaching an image. This allows flexibility in the server implemen-
tation, which may rely on the network address (which can be securely con-
trolled in service clusters) in addition to security protocols that exchange
credentials. A generic implementation is possible within the bounds of 9p,
as is closer integration with the cluster’s administrative services.

Caching

9p does not explicitly manage caching, and the Linux client driver does
not implement any client-side caching. This supports Envoy’s model of
consolidated node-level caching by forwarding all requests immediately to
the envoy. No further configuration is necessary for clients.

Because all requests cross the virtual network device between a client
VM and the envoy service, the efficiency of the protocol is important to
the performance of the file system. 9p permits any transport layer to be
introduced under its message protocol, so an implementation that avoids
copying data through the network stack and instead swaps physical mem-
ory pages between two virtual machines is viable. The prototype does not
implement this, but 9p would permit it as an optimisation.

5.3 Storage service

The storage layer is implemented in two parts, called the top and bottom
halves.
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The bottom half is implemented in a stateless storage daemon hosted
on each physical server. While the storage daemon instances form a col-
lective pool of storage, they do not communicate directly with each other.
At the local level, each storage manager is unaware of any global state,
and responds blindly to incoming requests from the envoy layer. Instances
do not attempt to balance load, resolve conflicting requests, or manage
redundancy, nor do they monitor which object IDs they considered valid.
Instead, they provide a thin, simple storage service for numbered objects
with attributes.

To make these servers more useful, the top half of the storage layer is
implemented in the envoy daemon. It is responsible for mapping an ob-
ject ID to the set of storage server instances that host the referent object.
Combined with the persistent cache, the storage layer top half provides a
simple procedural interface to the storage layer, where objects are named
by unique IDs. The top half is responsible for creating and locating repli-
cas, detecting and masking/recovering from failures, allocating new object
IDs when needed, and reading and writing data and attributes.

An object ID is considered a globally unique name for that object and
all replicas are identified by the same object ID. One object server from a
replica group is nominated as the master, with the added responsibility of
allocating available ranges of object IDs to individual envoy instances.

The remainder of this section describes the protocol used by the storage
servers, and discusses the implementation of the object store.

5.3.1 Protocol

The storage server protocol is implemented as an extension of the 9p pro-
tocol. It uses the same RPC mechanism and shares the same hand-shaking
messages. Like 9p, it does not define an authentication protocol, but in-
stead provides a framework for implementations to exchange credentials.
In its intended setting, authentication could also be based solely on IP ad-
dresses, since the entire network is controlled and virtual machines can
easily be prevented from spoofing their addresses. Table 5.2 lists the mes-
sages unique to the storage server.

The clone operation, which copies an object from one given ID to an-
other, is the only procedure that differentiates regular file objects from
directory objects. When the attributes indicate that an object being cloned
is a directory, the storage server will expect it to follow a particular for-
mat (described in Section 4.2.3) and will set the copy-on-write flags within
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Message name Description
reserve Claim a range of unallocated object IDs.
create Create a new object.
clone Copy an existing object.
read Read a byte range from an object.
write Write a byte range to an object.
stat Query an object’s attributes.
wstat Modify an object’s attributes.
delete Remove an object.

Table 5.2: The messages in the storage service protocol. reserve, used only by
the master of a replica group, returns a range of previously unallocated object
IDs. clone copies an object, and if it is a directory it also sets the copy-on-write
flag for all entries in the new copy. All operations except reserve are stateless,
requiring an object ID as well as operation-specific parameters.

each block as it makes the copy. It is not essential that this functionality
be part of the storage service; indeed, the clone operation itself could be
implemented in terms of the other procedures. It is merely a performance
optimisation to avoid extra network round trips when possible. When a
clone operation requires copying a file from one storage server to another
(when the new object ID is allocated to a different server than the existing
object) a more conventional sequence of reads and writes must occur.

The other operations are straightforward, though it is worth noting
that they differ from the related 9p operations in an important way: they
require an object ID as a parameter instead of an active file handle. En-
voys can make and break connections to storage servers as needed without
losing any state. A pool of connections to frequently used storage servers
is an obvious optimisation, but is not strictly necessary.

5.3.2 Implementation

The storage service is implemented as part of the same executable as the
envoy service. The two must be run as separate processes even on the same
virtual machine, but since they share an executable image the operating
system can map the read-only segments of the executable to the shared
memory blocks.

Combining these two services in one implementation is convenient be-
cause they share a lot of code. The protocols for 9p clients, the storage
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service, and the envoy service are implemented as one single set of mes-
sages, only some of which are considered valid for each connection type.
This allows shared code for network management, concurrent message
dispatch, and numerous lower-level libraries. The code for storing objects
on disk is also shared by the envoy service for managing the persistent
cache.

Disk layout

Each object is stored as a file in a normal Linux file system. Objects are
stored in a hierarchy of directories, arranged to create a radix tree indexed
by the object ID. In this scheme, a 64-bit object ID is broken into a series
of smaller bit sequences, each of which (as a hexadecimal string) names a
directory in the path to the object.

The least-significant bits of the object ID are used in constructing the
file name. Each node name in the tree need only identify the few bits
that distinguish the branch of which it is the root—the entire path taken
together identifies the full ID of the object.

The number of bits partitioned into each directory level is significant.
It is chosen to be the largest value n such that a directory with 2n entries
named by hexadecimal strings encoding n bits each will fit in a single disk
block on the underlying file system. This structure turns the file system
into a crude radix tree with block-sized nodes, and uses the OS buffer
cache for the indexing structure in place of a custom cache.

The bit-splitting process starts with the least-significant bits and pro-
ceeds to the most-significant bits, ensuring that if any level of the index
has a smaller fan-out factor than any other, it will be the root. This is
for two reasons: squandering space in a single root block is preferable to
wasting an equivalent factor of space in every leaf node, and less critically,
changing the number of bits in the object ID for an existing object store
can be done by manipulating a few entries at the root and leaving all other
nodes untouched.

Directories and metadata

The number of bits from the object ID stored in the file name at the leaf
node is also different from the higher-level directory nodes. While some of
the object attribute fields are provided by the backing file system, others
fields are stored as strings in the file name itself. File names are of fixed
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length, and encode both the bits that distinguish the object from its im-
mediate neighbours and object attributes that are not easily stored as file
attributes.

As with the interior nodes of the radix tree, the number of files in a
leaf directory is chosen to keep the directory in a single disk block. When
the system looks for an object, it reads the entire directory that will hold
that object and caches the results. This gives it the precise file name for
the object (along with the metadata stored in that name) and also primes
the buffer cache with the directory block, so when the object file itself is
accessed it will be located through the cached directory. In this way, extra
attributes can be accessed from the file names without incurring extra disk
seeks.

The attributes stored in the file names are the file mode and names of
the user and group that own the file. The mode (including access permis-
sions and the file type) cannot be freely read from and written to in its
entirety in normal file systems, so encoding a device or a directory as a
normal file requires storing the type somewhere else. While access per-
missions could be stored in the standard mode attribute, they would be
honoured by the underlying file system and would prevent unfettered ac-
cess by the storage manager, particularly when it runs as an unprivileged
user. User and group names in Envoy are stored symbolically, while most
Linux file systems store them as numeric IDs, and again the file system’s
recognition of their semantic meaning would interfere with the storage
manager. Storing any of these fields as a prefix to the actual file contents
would violate block alignment assumptions that many clients make about
file data, so an external mechanism was desirable.

While access to files in the object store is stateless, the access patterns
of normal file system use are applicable to objects. Because the persistent
cache only stores complete files, entire files are typically read from the
storage server in sequence, a common pattern for client operations as well.
The storage service caches open handles to the most recently accessed files,
both to avoid having to re-open them on each request and to avoid giving
the backing file system a false hint that the file is no longer needed. Open
file handles are kept on a strict least-recently-used basis, as are the cached
lists of file names in the leaf-node directories mentioned above.

Caching

Envoy considers a write request finished when it is in the memory of the
storage servers for all replicas. While this opens a window during which
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the data could be lost by a system crash, it is unlikely that multiple servers
would crash during the same window (assuming that nodes in the cluster
are sufficiently isolated from each other). The storage server immediately
passes all requests through to the underlying file system, and relies on
the OS buffer cache to implement delayed writes. This is the simplest ap-
proach to implementation (use someone else’s) but is also a sensible choice.
Little would be gained by a custom solution, and this approach takes ad-
vantage of continuing improvements in the operating system. Indeed, tak-
ing advantage of continuing improvements in commodity hardware and
software is one of the primary motivations for this work.

5.3.3 Limitations

The storage server implementation is meant to be as simple as possible
while still supporting realistic workloads. With the intention that a pro-
duction design would take advantage of other work in object storage sys-
tems, the prototype neglects several important characteristics of a com-
plete system.

Despite the absence of these essential features, the storage prototype
does implement replicated storage with all the characteristics necessary to
support the envoy layer. As that is sufficient for the stated purposes of this
dissertation, the prototype is also considered sufficient.

Security

While the mechanism for authenticating envoys at connection time ex-
ists, no authentication is attempted in the prototype. From a performance
standpoint, a challenge-response scheme or something similar would be a
startup cost that is ignored in the prototype. It would be largely hidden
by even a moderately-sized connection pool, but it would be present. In
a controlled environment like a service cluster, a scheme based on IP ad-
dresses would be faster, simpler, and nearly as secure. IP addresses could
be assigned according to the role of the owner, so traffic from client VMs
could be easily identified by all, and the VM hosting envoy and storage ser-
vices could employ a firewall to prevent storage servers from ever seeing
client requests.
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Replica groups

The top half of the storage layer, i.e., the part that maps object IDs to
storage servers, is essentially absent from the prototype. For any large
deployment, a suitable dispersal of objects across storage servers is essen-
tial. Different degrees of failure protection may be desirable as well, with
increased replication being available to clients at a premium cost.

Redistribution

When nodes are added or removed from the cluster, objects must be moved
and copied to maintain a suitable replication factor. While this could
be controlled by a centralised service, no mechanism currently exists for
copying directly between storage servers (other than systems such as rsync
that bypass the storage service and go directly to its object store). These
capabilities are critical to a system that will change over time, which is a
basic characteristic of any realistic cluster deployment.

Failure recovery

Recovery of a crashed envoy node is addressed in Section 4.5, but re-
covery of a failed storage node is an equally important problem. While
redundancy allows the envoy layer to continue serving files, changes made
during the downtime must be propagated to the restored node to ensure
consistency, and nodes that do not recover must be replaced or their stored
objects redistributed.

These basic requirements of an object storage system are best addressed
in a coherent design. The reader is referred to the work described in Sec-
tion 2.3.5 for examples of how this could be done.

5.4 Envoy service

The envoy service runs on each node to form a single, distributed service
across the cluster. It exports a view of the global namespace by acting as
a 9p server to VM clients running on the same physical machine. Each
instance assumes responsibility for specific territories, or branches of the
namespace tree. The name Envoy comes into play in two respects: it
negotiates contact between local clients and the larger system, and acts as
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representative for its local territories to other nodes in the cluster and their
constituent clients.

This section starts by describing the protocol used for inter-envoy com-
munication, and then proceeds to discuss some internals in the envoy im-
plementation. This includes details about basic file operations and navi-
gation between envoy instances, the copy-on-write mechanism behind the
fork and snapshot operations, and the coordination of state during terri-
tory boundary realignment.

For operations that require the synchronous cooperation of multiple
envoy instances, dependency cycles and deadlock become a concern. To
minimise these issues, Envoy is designed with a top-down locking protocol
where synchronous operations only directly involve immediate neighbours
in the tree of territories, and owners of parent territories always initiate
and coordinate transactions with those lower in the tree. While operations
with wide-ranging impact may require communicating with every node in
the cluster, they never require a cycle in the connectivity graph and are not
prone to distributed deadlock.

5.4.1 Protocol

As with the storage service, the envoy service protocol is implemented as
a series of extensions to 9p. The integration is closer at the envoy level,
however, as forwarded transactions from remote clients use the standard
9p messages when appropriate, depending on the extensions listed in Ta-
ble 5.3 for territory management and to handle operations that straddle
territory boundaries.

Envoys establish connections with each other only when they need
to, specifically when they own neighbouring territories or when transac-
tions from one envoy’s clients involve a territory owned by another envoy.
Neighbouring territories always form a tree structure, with one territory
in each pair (and by extension its envoy) being considered the parent of
the other.

New connections between envoys must be authenticated in a way sim-
ilar to connections between envoys and storage servers. The handshake
messages from 9p are used, with the protocol string in the version mes-
sage identifying the connection as one between envoys so that the appro-
priate range of messages will be understood. Authentication can proceed
through an exchange of credentials, or the controlled environment of the
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Message name Description
snapshot Take a snapshot of a territory.
nominate Request that the parent transfer a territory.
grant Give the target control of a territory.
revoke Reclaim control of a territory.
migrate Inform an envoy of file handles that have moved.
walkremote Change directories across a territory boundary.
statremote Query file attributes across a territory boundary.
closefid Release a file handle that has walked to a new host.
renametree Inform descendents of a directory rename.

Table 5.3: The messages in the envoy service protocol. The first five support the
major state management operations, while the remainder handle cases where an
operation affects multiple territories.

service cluster can be exploited and network addresses can be used to iden-
tify authorised service hosts.

9p messages from Table 5.1 are all considered valid coming from other
envoys, with the exception of the walk and attach messages. They are
replaced by an augmented version of walk called remotewalk that accom-
modates territory boundary changes. Transactions still proceed in relation
to normal file handles, with the further restriction that an envoy will never
act as a proxy for another envoy, only for clients.

5.4.2 Data structures

Unlike the stateless storage servers, envoy instances must track two main
classes of state related to the two main roles an envoy assumes, namely
those of 9p file server and territory owner.

Territories and claims

An envoy may own zero or more territories, each of which is a branch
of the global file tree, possibly with exits to child territories owned by
other envoys as depicted in Figure 5.1. When a territory is given to an
envoy through a grant message, it is also given the object ID that currently
backs the root directory or file (a territory can be a single file) and a flag
indicating if the object is writable. A territory may cover a snapshot image,
in which case all objects are read-only. The root of the territory is never
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Figure 5.1: Territories are trees, and their boundaries (yellow squares) are defined
by the territory root and the exits, which point to child territories owned by
remote envoys. Claims (blue circles) represent individual storage objects, and
within a territory they form a tree overlaying a subset of the territory, with leaves
at each territory exit and at each active file or directory.

flagged as copy-on-write, so thaw operations (described in Section 5.4.3)
can always operate locally.

Overlaid on the file tree within a territory is another tree of claims, or
references to storage layer objects. Claims are maintained for all file han-
dles, territory exits (or more precisely, the immediate parent directories of
exits), and the path from any other claim back to the root of the territory.
It is possible for multiple claims to exist for a single storage object, but
only when it is named by multiple nodes of the file system tree. In this
case the claims must all be read-only or copy-on-write, and thus the asso-
ciated objects are read-only, making coordination for accessing the object
unnecessary. Despite being referenced by multiple claims, the file cache
will recognise it as a single object and avoid duplication

File handles

File handles in 9p are identified by small positive integers picked by the
client, so the envoy interprets them in relation to the incoming connection.
This gives each client a separate ID space, preventing confusion when re-
solving file handle IDs to file handles. All client handles represented by a
single remote envoy are merged into a single ID space, so the envoy receiv-
ing the requests treats the entire envoy and all the clients it represents as a
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Figure 5.2: File handles for incoming connections are grouped and distinguished
by the source, be it a client VM or a remote envoy. Each handle is tied to a
specific claim in a local territory. A Client handle may also be forwarded to a
remote envoy, in which case it is assigned an entry from the envoy’s single remote
file handle pool.

single client, as illustrated in Figure 5.2. Since user credentials are associ-
ated with individual file handles, this does not confuse security handling.
Envoys-as-clients are not quite like regular clients, as their file handles are
never re-forwarded; instead, when a file handle moves to a new territory
the handle is sent back to the original envoy, which can forward it directly
to the appropriate target.

When forwarding client requests to remote territories, an envoy re-
maps the client ID to an envoy-specific remote ID. A single pool of remote
IDs serves all outgoing connections, regardless of their targets, which sim-
plifies territory migration as described in Section 5.4.6. The envoy also
maintains a local file handle stub for remote files, which is kept up-to-date
by peeking at the requests and responses for remote operations. In this
way, state for local clients is lost when an envoy fails, but remote envoys
preserve the state for their clients and can use it to recover from the failure.

Persistent cache

The persistent cache is the other major source of state in an envoy. On-
disk objects are managed using the same code as the storage service uses
for managing the object store, with the same disk structure and the same
reliance on the underlying file system for in-memory caching.
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The significant difference between the cache that an envoy maintains
and the object store tended by a storage server is that the envoy must de-
termine which objects are properly synchronised with the storage layer.
Validating an unknown entry (one found in the persistent store but whose
status is unknown) can be accomplished with a simple metadata compar-
ison, so it is worthwhile keeping old objects even when the envoy has
ceded the territory that referenced them, as it may eventually come back.
Objects in the cache are removed immediately when the same object is
deleted from the storage layer, but otherwise objects are cleared using a
least-recently-used policy. Envoy guarantees that objects referenced by a
local territory will never be changed by a remote envoy, so once an object
has been validated in the context of local territory, it’s validity need not be
refreshed until the object has left local control.

5.4.3 Freezing and thawing

Synchronisation at the object level is governed by an important invariant:
an object in the system may be referred to by exactly one name in the hi-
erarchical namespace, or it must be read-only. The storage layer makes no
attempt to detect or enforce the read-only case, so it is left to the envoy
layer to ensure that this invariant is preserved. To make this straightfor-
ward, objects can transition from being writable to read-only, but they can
never go back. Note that this refers only to objects in the storage layer,
not to the access control of the file system interface.

The same invariant makes cache management simple: the envoy that
owns a given territory can cache it without any invalidation concerns,
and read-only objects can be safely cached at any number of envoy nodes
without fear of interference. Objects in the cache become invalid only
when a territory boundary changes, but even then objects that are part
of a ceded territory are not explicitly flushed from the cache. Keeping
them active helps in two cases: a read-only object may still be referenced
by another name in a local territory, and the cache entry (in-memory or
on-disk) may still be useful if a file backed by that object is later returned
to local control. In the latter case the object must be verified to match
the version in the storage layer, but this can be done with a lightweight
metadata comparison.

The single mutable/multiple immutable dichotomy in the storage layer
is tracked in the envoy layer through the copy-on-write flag in directory
entries. The immutable property is not directly assigned to objects, but
instead is imbued by the link from directory to file object. Furthermore,
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when the immutable object is itself a directory, the property is applied
recursively to all of its children, overriding the individual copy-on-write
flag in the link to each child. To be regarded as mutable, an object must be
reachable by a path from the root of the global namespace to the directory
entry linking to the object without traversing any set copy-on-write flags.

One immediate consequence of this is that taking a read-only snapshot
of a directory and its descendents requires only setting the copy-on-write
flag in the link to it, an operation known as freezing. Once a directory
or file is frozen, the storage layer objects that back the branch rooted at
that point are considered immutable. To simplify bookkeeping, this op-
eration is only performed from the root of client images when a snapshot
operation is requested, with an exception discussed in Section 5.4.5.

The complementary operation is called thawing. While the freeze op-
eration works at the root of a subtree and affects it in its entirety, thawing
aims to leave as small a footprint as possible; it is always performed with
the goal of modifying a particular file. To thaw a file, the owning envoy
starts walking up the line of its ancestors until it finds one that is already
thawed. As the root of the namespace cannot be frozen (one can consider
it as having a single, implicit link from the envoy service itself, but there is
no mechanism provided to set the copy-on-write flag on this implicit link),
this search is guaranteed to succeed. From there the envoy walks back to
the target file, cloning intermediate directories as it goes. In addition to
making a copy of the directory as its name implies, cloning sets the copy-
on-write flag of every directory entry in the copy, effectively transferring
the copy-on-write property from the single link leading into the directory
to all the links leading out of the directory. The implicit property that each
child inherited becomes explicit after being passed down a generation. Af-
ter thawing each directory for mutability, the parent is updated to reflect
both the new object ID and the cleared flag. Eventually the intended target
itself (be it a file or directory) is cloned, its immediate parent link updated,
and the file is fully thawed.

Thawing resembles the procedure for modifying a value in an im-
mutable tree in a functional language. In addition to changing the value
itself, the path from that item to the root of the tree must be copied if
the item is to be reachable from the root. In the thawing operation, it
is only the root of the immutable subtree in which the item resides that
must be copied. While the analogous procedure in a functional language
copies everything exactly except for the path being changed, the thaw op-
eration must clear the copy-on-write flag as it goes, and thus must push it
down from parent link to sibling links at each level in order to preserve
the immutable status of the unaffected branches.
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The prototype clones an entire object, but it could be optimised to store
deltas or otherwise compress changes, especially for directories and other
metadata [Sou03].

5.4.4 Read operations

Most basic file and directory operations have a straightforward implemen-
tation. The need to cross territory boundaries makes some more complex,
however, as they must coordinate with remote envoys to complete.

Reading files and attributes

The most straightforward operations are read and stat, which read the
data and metadata of files, respectively. These requests can be filled using
the data paths described in Section 4.2.5. The only complication involved
is handling the atime attribute, which tracks the last time the data from a
file was accessed by a read or write operation. Read operations always
proceed through a single envoy, so this attribute can be tracked accurately:
the envoy can send a message with the time stamp (to ensure that it is
consistently applied to all replicas, even if all clocks are not in sync or
network latencies between the different storage servers vary) to all replicas
in the storage layer which can then update the attribute.

The intended meaning of the atime attribute becomes obscured when
applied to frozen files, however. Since attributes are part of the object,
akin to inodes in traditional Unix file systems, changing the attribute will
affect all files that are backed by that same object. Those instances may
be in read-only snapshots of the same file system image, or in common
files available in an unrelated file system image. In the former case, the
read-only property of the snapshot is broken, and in the latter case the
isolation of the two images is compromised. Updating the atime attribute
would give an unrelated client using the same template file system image
the ability to loosely track file accesses, which could represent a security
risk.

Accurately tracking the atime attribute is problematic with frozen files,
and if it is only updated on some files (the set of which may change over
time as successive snapshots are taken), it is too unreliable to be useful.
It also generates network and disk traffic for every read, even those that
can be satisfied from the cache. For these reasons, the atime attribute is
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present in Envoy for compatibility, but it effectively mirrors the modified
time attribute.

Reading from directories

Reading from directories introduces two complications. The first—that
successive readdir requests require state that must be transmitted from
the client each time or transferred to another envoy when territories are
realigned—is just an implementation issue. The second—that a directory
may span multiple territories—requires the cooperation of all affected en-
voys. The list of contents for a single directory is considered an atomic unit
when drawing territory boundaries, but the files and directories named
may be remote. If the client-server protocol used to export the file sys-
tem to a service only requests names, then the implementation footprint
resembles that of file reads. If the response includes attributes as well—as
with 9p—additional requests must be forwarded to the respective envoys
for all files that are across a boundary in order to ensure consistent results.
These requests are sent directly by the envoy that owns the directory, so if
the client is remote, readdir may require the cooperation of three or more
envoys to complete a single request.

Multi-step directory navigation can also create a star pattern of re-
quests, but they always centre around the client’s local envoy. Navigating
down a series of directories—walking in 9p parlance—may involve cross-
ing a territory boundary at each step in the extreme case. Because an
envoy confines itself to knowledge of its local territories and their imme-
diate boundaries, it cannot always predict the endpoint envoy for a navi-
gation. Even if it could, intermediate steps must always be taken to allow
permission checking at each level. When a remote territory must be con-
sulted, the client’s envoy forwards all remaining steps in the walk request
to the remote owner, which proceeds as far as it can with the navigation.
It may return one of three results: if the result is successfully completed,
the two envoys store any state necessary to handle future requests; if the
result is a failure, an appropriate error code is returned; if the navigation
reaches another territory boundary, the partial result comes back along
with a pointer to the envoy that must be consulted to continue the navi-
gation. The client’s envoy then repeats the procedure with the remaining
navigation steps.

Because these operations are all asynchronous, and because the navi-
gated directories may be owned by remote envoys that are not even neigh-
bours to the client’s envoy, walk may encounter transient failures. Between
the time a remote envoy returns instructions for forwarding the remainder
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of a request and the time the next step is attempted, the target territory
may migrate to a new owner and the request will fail. Because the envoy
that sent the forwarding instructions was an immediate neighbour of the
target, its information must have been correct at the time, and careful co-
ordination can ensure that by the time the target bounces the request back
with a failure notice, the referrer knows of the change to its immediate
neighbourhood. The solution is simply to restart the walk request from
the beginning, which also handles problems that occur when walk opera-
tions overlap with recursive updates due to higher-level directories being
renamed.

Generally, having territory boundaries closely aligned with demand
benefits everyone, but if multi-step directory navigations are frequent,
their performance will be hurt by frequent boundary crossing. Caching
walk results can be done safely with a few precautions. First, note that a
navigation that succeeds one time and fails another implies one of three
things: one of the steps was deleted or renamed, permissions changed
somewhere, or a different user requested the navigation. The prototype
caches walk results keyed by the path traversed and the user that requested
it. With the assumption that directory renames and permission changes
are uncommon (particularly across boundaries determined by locality of
reference—these changes are probably most common in a region being
actively modified by a single user, not in higher-level directories whose
descendents are in active use by different clients), envoys broadcast notifi-
cation of such changes down the hierarchy when they occur, invalidating
cached navigation results. The notification of permission changes is imple-
mented as a special case of directory renaming where the directory is given
the same name it had before, which is sufficient to invalidate the cached
walk results.

Attributes at the endpoint of the navigation are always confirmed di-
rectly with the owner, as are all of the final steps that occurred on territory
owned by that same envoy. With a hot cache, multi-step directory naviga-
tions are satisfied from the cache of the client’s envoy and a single step to
the envoy hosting the target of the navigation.

5.4.5 Write operations

Redundancy in soft state and dependencies in permanent state make write
operations more complex. Some updates must be made in a specific order
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to minimise the damage done by a system crash, and others must be man-
aged carefully to preserve the coherency of the cache and to keep metadata
in different nodes synchronised.

Writing data and attributes

Like the corresponding read operations, writes to files and changes to file
metadata are largely a matter of directing the request to the appropriate
envoy. The first change to a file since a snapshot or fork will first require
the file to be thawed, but subsequent changes can be made directly to the
local cache entries and propagated to all replicas in the storage layer. As
discussed in Section 4.2.5, changes are considered complete when they
have been received by all storage servers, but not necessarily committed to
stable storage.

To ensure consistent time stamps, the modification time is determined
by the envoy that owns the file and transmitted to the storage layer along
with the data being written. While the clocks of machines within a clus-
ter can be synchronised within reasonable bounds, network latencies and
variations in storage server load levels would make it difficult to rely on
strict synchronisation for consistent time stamps. The envoy is a natural
location for deciding on the canonical time for its territories.

Thawing a file requires walking back in the file tree until an already-
thawed directory is found. To bound the complexity of this procedure and
to avoid deadlocks, the root of every local territory is always thawed un-
less it is part of a read-only snapshot image. While thawing may require
cloning multiple levels of the directory hierarchy, this confines the direct
impact to a single envoy. It also preserves the top-down rule for syn-
chronous inter-envoy operations by preventing an envoy from demanding
a coordinated change from its parent in the tree of territory ownership.

Deleting files

The inode-like disconnect between directories and the files they name
means that one envoy may own a territory consisting of a single file,
while another envoy owns the directory containing that file. Most oper-
ations involve either the file itself or the directory, but not both, so it is
obvious which envoy should serve the request. Removing a file or direc-
tory is a case where the possibility of divided ownership complicates the
implementation.
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Deleting a file affects both envoys in this case, but the operation needs
to appear atomic to clients. The normal rule in Envoy is that the parent
should drive bilateral operations, meaning in this case that the owner of
the directory should coordinate the removal with the owner of the file.
This is a mismatch with 9p, where removal is an operation initiated on a
file, not on the directory that contains it.

A higher-level consideration ultimately drives the design of the delete
operation, however. Removal can only succeed on files or empty direc-
tories, so the envoy that owns the target of a successful delete will have
nothing left to own afterward. Instead of trying to atomically coordinate
a multi-step operation between two envoys, the parent instead revokes the
child envoy’s ownership and reclaims it before proceeding.

Since 9p initiates removal with the file to be deleted and not its con-
taining directory, this requires a minor slight-of-hand to maintain the top-
down coordination rule. A nominate request is sent from the file’s envoy
to that of the parent directory, requesting that it reclaim the removal tar-
get. Since nominate operations are implemented strictly in terms of names
(not 9p file handles) this request cannot trigger a deadlock, and the re-

move transaction running on the child envoy effectively becomes a passive
observer while control of the territory is transferred. After the transfer is
complete, the envoy aborts the transaction and starts it over. Since the file
is no longer local, the envoy will either forward the request (if it happens
to be the client’s local envoy) or reject it, forcing the client’s envoy to redi-
rect it to the new owner. nominate requests do not return until all state has
been transferred, so the restarted transaction can proceed immediately.

Deletes happen in four basic steps. The first checks that the file is a
suitable candidate for deletion, namely that it is a file or an empty di-
rectory. The second verifies that the client has permission to remove it
from the parent directory, and the third actually removes it. In the case
where the territory ownership must change, the envoy owning the file can
complete the first step, but it does not know if the second step will suc-
ceed and blindly proceeds to initiate the transfer of control. This could
cause unnecessary activity if the permission check fails, but in practice the
Linux driver used in the prototype does an explicit check before making
the delete request, so the possibility of failure is remote: it would indicate
an unlikely race condition and would not compromise the correctness of
the operation even then.

The fourth step in deleting a file is to actually delete the object that
backs it and reclaim the storage space. This is simple enough to do, but
deciding when to do it is slightly more complicated. An object can only
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be deleted when no more names link to it, and to support Unix semantics
it should also be preserved until all clients accessing it have closed the file.
The former case is easy to detect: if the link to the file was marked as
copy-on-write, it shares a link with at least one snapshot and should not
be removed. Otherwise, it was created or cloned since the most recent
snapshot and can be completely removed.

To support familiar Unix semantics, the envoy instance waits until all
file handles are closed before deleting the file. 9p is stateful, so this is
straightforward, but it does create a few corner cases that must be dealt
with. A new file with the same name could be created, so the envoy cannot
continue to track the object by its former name. Without a name the file
does not belong to any territory, so it becomes an orphan. Opening a file
and deleting it is often done to provide a temporary scratch file that will
delete itself if the process dies, but it may still be long-lived. The envoy
must still be prepared to thaw it if it was frozen at delete time, migrate it
to another envoy in response to demand or to the owning envoy shutting
down, and delete the storage layer object even in the event of a failure. The
prototype does not address all of these issues, but it does support arbitrary
use of the file until the last file handle is closed, at which point the object
is deleted from the storage layer if appropriate.

Renaming files

Renaming a file exposes the same coordination issues as deleting a file. In
9p a rename request is part of a wstat operation, which treats the file name
as a property of the file object rather than of the directory that contains
it. With rename the issue is even worse than with delete, because up to
three objects and three envoys may be involved: one owning the directory,
one owning the file to be renamed, and the third owning an old file with
the target name that will be implicitly deleted when the rename completes.
To further complicate the issue, Unix programs assume that rename-with-
delete will complete atomically. Note that the original 9p protocol does
not support this (it calls for a failure if the target name is already in use)
but the Linux implementation does support this arrangement, and many
clients demand it.

As with delete, the prototype simplifies the problem by consolidating
ownership of all participating objects under a single envoy before making
any changes. Unlike the delete case, the renamed file exists afterward
and may be a non-empty directory. If it was owned by a different envoy
before, that envoy probably drives most of the traffic to it and annexing
it into the parent territory may be a poor move for matching ownership

119



The Envoy Prototype

with usage. One solution would be to transfer control back to the original
owner after the rename completes. It would have to re-validate some cache
entries, but they would still be mostly unchanged, and even the in-memory
cache would still be usable after a single metadata check on each file. A
second possibility would be to engineer a distributed version of rename for
these cases, driven by the parent (as with all synchronous operations) and
handling transient failures appropriately. A third approach (the simplest
and the one taken by the prototype) is to assume that such renames are
rare and do nothing. Correct behaviour is still maintained, and eventually
traffic patterns will force the owner to cede the territory once again if
appropriate.

Renames of directories present another difficulty that cannot be safely
ignored. Territory boundaries are all managed using directory and file
names, so renaming a directory that is ancestor to other territories throws
management state out of sync. On the assumption that renaming high-
level directories is relatively rare, the prototype handles them by recur-
sively propagating rename events from parent territory to child territory
and from owner envoy to client envoy, rather than trying to assign im-
mutable aliases for directories or some other similar scheme. In handling
an uncommon corner case, minor overhead is preferred to complexity.

In addition to updating territory and file handle names, these recursive
rename messages flush the walk cache described in Section 5.4.4. While
a more fine-grained invalidation could be implemented, in practice an oc-
casional flush has very little effect on performance. As a special case, this
message can be used to rename a directory to the same name, forcing a
flush of the walk cache for descendent territories but not changing any-
thing else. This is useful when directory ownership or attributes change
and cached walk results may no longer be valid. Explicit cache invalida-
tion for this uncommon case makes it possible to maintain an accurate
cache indefinitely without any overhead for the normal case.

Hard links

Unix file systems allow multiple names to refer to the same file. While
symbolic links merely contain the name of their target, hard links allow
multiple links from directories to resolve to the same inode. File operations
are coordinated internally with reference to the inode, not the file path, so
handling concurrent access is no different than if the clients all opened
the same file through the same name. Because inode numbers are only
meaningful in the context of a file system, hard links are not permitted
across file system mount points. This mechanism is widely used both for
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aliasing, where two names are given to the same file, and as a way of
moving a file without copying it, where the original name is unlinked after
the alias has been created. 9p does not support hard links, but the Linux
extensions to it do.

While Envoy’s structure of names and object IDs resembles the Unix
system of file paths and inodes, it does not behave quite the same way.
Access coordination in Envoy is done with reference to file names, not
storage layer object IDs. When the latter are shared, the objects are as-
sumed to be read-only and can be cached freely on different nodes with
no attempt to synchronise access. Different references to the same object
ID, even within the same file system image, may be split into different
territories and owned by different envoy instances.

For this reason, Envoy offers only partial support for hard links: a
file must be frozen before additional names can be linked to it. If future
changes are made to the file through any of its references, the changed
versions will be thawed independently and will diverge.

The implementation of the hard link operation is also unique in that
the client’s envoy intercepts the request before passing it on to the owning
envoy if the link is being created in a foreign territory. The Linux exten-
sions to 9p implement hard links by walking to the target of the link, then
creating the new link as a file whose contents name the file handle of the
referent. Full file handle state for the client is only available to the client’s
envoy—not to a remote envoy that owns the file—so it uses the handle to
freeze the target file (if necessary) and re-writes the request to include the
object ID instead of the file handle. The envoy (remote or local) can then
link the new name to the object.

Hard links also complicate snapshot removal by allowing objects to be
frozen outside of whole-image snapshots. If an object is created and a hard
link made to it before a snapshot is taken, it’s copy-on-write flag will make
it appear just like objects inherited from a previous snapshot. If all links
to it are subsequently deleted or cloned, the corresponding storage object
will not be removed because the normal mechanism will assume a link still
exists from a previous snapshot. To ensure that these objects are deleted
correctly, a special file is created in the root of the image listing qualifying
objects, i.e., those frozen to make a hard link possible. This hidden file
is consulted at snapshot delete time to augment the list of files created
since the last snapshot. The file is overwritten rather than cloned after a
snapshot, and its contents ignored if the copy-on-write flag indicates it has
been carried over from a previous snapshot.
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Figure 5.3: Territory migrations are always driven by the parent in the namespace
tree, which can annex a neighbouring territory, cede territory to another envoy,
or coordinates the transfer of a territory from one neighbour to another. For a
child to initiate a transfer, it must send a nominate request to the parent, which
then carries out the transfer.

5.4.6 Modifying territory ownership

Misaligned boundaries do not prevent correct behaviour, nor do they in-
troduce a heavy performance penalty. The algorithms to trigger changes
are designed to promote good long-term layout choices based on steady-
state traffic patterns. Cache effects penalise excessive changes, while the
low network latency in a cluster environment reduces the cost of relying on
a remote envoy even when local ownership would be preferable. In cen-
tralised server systems, all file access is routed across a high-speed LAN
to a server with many clients. In Envoy, this pattern is also quite service-
able, even when it is not ideal, and Envoy is designed to favour gradual,
long-term changes over a quick response in short-term traffic patterns.

Realigning territories requires careful coordination between multiple
envoys. In addition to agreeing on new boundaries, state related to active
file handles has to be migrated and updated. This includes both the terri-
tory owner’s state and that of the envoys representing clients, which need
to be directed to the new owner. Inflight operations—those that have been
initiated by a client but not completed—must also continue and succeed
despite concurrent territory changes.

Like other operations involving multiple envoy instances, territory mi-
gration is driven by the owner of the parent territory, as illustrated in Fig-
ure 5.3. If an envoy wants to merge a territory with its parent, or transfer
it to another specific envoy, it sends a nominate request to the parent,
giving the root path of the territory and the envoy to which it should be
transferred. If a territory owner wants to cede part of a territory to an-
other envoy or annex a neighbour that is a child of a local territory, it
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begins the process unilaterally. In practice, annexing is only done in re-
sponse to a nomination from the child, but the process is always driven in
a strictly top-down fashion.

Transferring state

When an envoy is granted a new territory, the first thing that it needs is
a description of the boundaries. A territory is just a branch of the global
namespace hierarchy, so it is uniquely identified by its root pathname. In
addition to that, the parent envoy sends a list of exits from the territory.
An exit is a link to an already-established territory that branches off from
the one being granted. Since the boundary description may include any
number of exits, multiple messages may be required to transmit the full
set.

The new owner also receives a full set of active file handles for the new
territory. With the 9p protocol, a file handle may identify an opened or
unopened file, a file or directory used for walk or stat calls, or a directory
in the process of being read. To facilitate territory changes and transpar-
ent crash recovery, the envoy must be able to recreate any state needed to
continue a directory read given the number of bytes returned so far in the
sequence of reads. Transfers that interrupt readdir sequences are uncom-
mon, so the prototype simply starts over from the beginning and throws
away enough data to find the appropriate place in the directory when the
need arises.

Every element of state transferred to the new owner, including bound-
aries and file handles, has a counterpart maintained by a partner envoy
that must be notified of the changes. The exit through the root comes
from the parent, which already knows about the transfer (since it initi-
ated it), but the boundary exits and file handles require that notifications
be sent to their respective envoys. The previous owner is a special case,
and since it is also identified as part of the grant message, the new owner
can safely assume that the old has completely adjusted to the new order
of things and not explicitly notify it of each file handle and shared border
the two have in common. Some neighbouring territories and file handles
may be local to the new owner; the goal of territory migrations is to bring
the territory to the main user, so this is an expected and hoped-for case,
requiring neighbouring territories to be merged and remote file handles to
be made local. For all other cases, the grant recipient sends a notification
to the other envoy immediately, grouping multiple entries where possible.
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The other half of the process is having a territory ownership revoked.
As with all such operations, the process is coordinated by the parent. The
child responds to the revoke request by transferring all necessary state to
the parent, whether the territory is being merged into its parent or trans-
ferred to a third envoy. In the latter case, the child is given a hint about
where the territory is going to end up and is expected to update its file
handles and territory boundaries accordingly.

A revoke operation works much like a grant operation in reverse: the
envoy receives a revoke message identifying the root of the territory, and
it responds by sending back the current borders and active file handles.
It updates its own state for local file handles that become remote, but
otherwise leaves notifications to the new owner as described above. This
is important for synchronising the transfer with client requests, as detailed
below.

Together with nominate messages, grant and revoke transactions give
full flexibility for arranging territories. An envoy may cede part of its
territory by granting it to a remote envoy and establishing a parent/child
relationship with it. An owner may likewise cede its territory to the parent
or to a third envoy by issuing a nominate request. Compound requests that
carve up territories in more detail are not directly supported, though some
could be simulated through sequences of transactions. If traffic patterns
remain constant, future refinements will yield a similar result.

In general, complicated control decisions made by a central player are
avoided in preference to localised choices. The owner of a territory is
the only envoy that knows the recent history of requests, and is thus best
suited to make realignment decisions.

Inflight operations

Top-down coordination of synchronised transactions helps prevent dead-
lock, but other synchronisation issues still exist in territory boundary
changes. File operations may be at any stage of completion when the
transfer begins, and all must complete successfully without interrupting
the client.

The prototype is designed to favour simplicity over other virtues in
complex transactions, and this is no exception. Each participant in a mi-
gration waits for all inflight transactions directly involving the territory
in question to complete before locking it and queueing up any further in-
coming requests. When the transfer is complete, the lock is released and
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Figure 5.4: The sequence of events when a client file request conflicts with a
territory transfer.

the queue examined. Significantly, a revoke transaction always completes
after a grant (when the two are paired), and only after all other envoys
involved have been notified of the change.

For some requests this will result in nothing more than a pause, while
for others the immediate consequence is a failed result. The envoy may
no longer recognise a file handle that has been transferred, and can do no
more than send the request back to its originator to try again. Forwarding
it as a special case would be an option, but a dangerous one. The mes-
sage could still end up at the wrong place due to bad timing (and a second
transfer of the target), it would involve just as many network round trips
(originator to old owner to new owner vs. originator to old owner fol-
lowed by originator to new owner), and the new owner would reject the
request anyway as coming from the wrong owner (recall that remote file
handles are associated with the client’s envoy).
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Figure 5.4 illustrates a request that conflicts with a territory transfer. A
request coming from a client’s envoy that reaches its target before the ter-
ritory is locked is allowed to run to completion. If it arrives after the lock,
then it is suspended (this is true if the territory owner is the same as the
client’s envoy, or if it is remote). The revoke transaction only completes af-
ter the corresponding grant has completed and the client’s envoy has been
notified of the update, so when the old owner bounces the request back,
the client’s envoy knows the new forwarding address and can immediately
retry the request with the new owner. If a request comes after a particu-
lar file handle has been updated but before the grant has completed, the
new owner simply holds the request until the transfer transaction is com-
plete, at which point it can safely start processing requests, even before the
revoke operation has been finalised.

5.4.7 Limitations

The prototype includes some limitations that are artifacts of the implemen-
tation, rather than being inherent to the Envoy model. These are problems
that can be solved with some routine engineering, and would need to be
addressed in a production system. For the prototype, however, solving
them adds little value at the expense of extra complexity.

Envoys as failure points

The first issue is that a failing envoy loses all state for its local clients. This
makes the failure of a single service affect all services on the same phys-
ical machine without an option for recovery. While services also depend
on other node-wide management software, including the virtual machine
manager, this is a dependency that could be removed.

The 9p protocol does not include any provision for recovering from
a server failure, and the TCP connection used between the client and the
envoy cannot be recovered transparently using standard network stacks.
Both issues can be resolved by introducing a proxy between the client and
the envoy (much as the envoy serves as a proxy for connections to remote
envoys) that tracks the state of file handles, and is capable of restoring that
state to a restarted envoy. Better yet, the client driver could be modified
to maintain this state, and a recovery protocol introduced to synchronise
and validate the state with a restarted envoy.
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Migrating clients

A related problem is restoring state for VM instances that have been mi-
grated to a different machine. With the current prototype, those instances
will continue to send all requests to the envoy on the old machine, as
they will not be aware of the migration. The envoy could easily trans-
fer the state by employing a mechanism similar to that used to transfer
territories, but a way to detect the migration would be necessary, prob-
ably through direct cooperation with the management process invoking
the migration. The IP address of the new envoy would be different than
the old, so some cooperation from the client would also be necessary to
restart the TCP connection. Tricks involving the virtual network device
connecting the client to the envoy may also be possible, but it is unlikely
that the additional transparency gained would be worth the complexity
introduced.

A related problem is virtual machines that are suspended to disk and
restarted later, on either the same or a different physical machine. This
can be viewed as another form of client migration, but from the client’s
perspective it more closely resembles the condition when the envoy fails
and restarts. The solution proposed for that—clients retaining copies of
file handle state and envoys validating and accepting it—would also be
applicable here.

Control of administrative directories

For simplicity, territories control is only transferred starting at an image
root, so all administrative directories are controlled by a single envoy.
Traffic to these levels of the hierarchy are normally confined to mount
requests and administrative actions, and for the latter most of the work
for snapshot creation and removal is still done by territory owners.

Still, nothing precludes this area from being split up. Tracking authen-
tication credentials and resolving the target of fork requests would become
a bit more complex, but not substantially so.

The more serious issue is that the prototype cannot migrate control of
the root to another envoy. The standard mechanism for migrating terri-
tories is applicable, but in addition all envoys need to be notified of the
change so that mount requests (which always start from the root of the
namespace) could be properly routed. Straightforward solutions exist, but
they were of little value in accomplishing the goals of the prototype and
so were not pursued.
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5.5 Summary

The Envoy prototype uses the 9p protocol to export the file system to
clients, and uses extensions of 9p for its internal messages. The file system
and cache system of the underlying operating system are both exploited to
avoid duplicate work and to gain access to optimised systems.

The storage layer is a simple placeholder that exports a stateless object
interface. Objects are stored as files in the host file system, with extended
attributes stored as part of the file name. Redundant storage nodes are
supported, but object placement is hard-coded and no recovery facilities
are implemented.

The envoy layer creates a file system from storage objects. Territories
are a basic management unit, and the root of each territory is always made
writable to prevent requests from involving multiple envoy nodes. Dead-
lock is prevented by following a top-down locking discipline along the
territory hierarchy when multiple envoys are involved. Some operations
require cooperation between multiple envoys, but others can be localised
by changing territory boundaries before performing the requested action.
Careful coordination ensures that dynamic territory re-alignments do not
interfere with pending requests.
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Chapter 6

Evaluation

Envoy is designed based on assumptions about a platform that does not
yet exist. This limits how the system can be evaluated in two ways. The
first is scalability. While common bottlenecks can be avoided and the ar-
chitecture examined for potential scalability limitations, a system without
a large-scale implementation can never be fully tested for issues that only
appear at large scales. The best that can be achieved is to identify the
most likely sources of problems and extrapolate the results of testing on a
smaller scale. The architecture can also be evaluated against assumptions
about the workloads it is intended to support, which leads to the sec-
ond limitation: workloads cannot be accurately forecast. Predicting and
simulating client access patterns is a difficult problem even for existing
environments [Gan95], and the problem is amplified for service clusters.
As a general purpose platform, service clusters are intended to support a
wide range of existing workloads and to enable a flourishing ecosystem of
computation services that create entirely new workloads. The design and
the evaluation must necessarily rely on assumptions about how the system
will be used, and those assumptions limit the applicability of the results.

In this chapter I evaluate the Envoy prototype with three principal
goals: to measure the impact of specific design choices, including the basic
distributed organisation and cache layout, to assess the scalability of the
system, and to evaluate Envoy’s ability to support the types of workloads
expected in service clusters.
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6.1 Methodology

The absence of a realistically sized service cluster limits the scope of
system-level testing and the usefulness of many application-level results.
The performance side-effects of interacting components and the access
patterns of different clients are particularly difficult to predict. The per-
formance characteristics of the storage layer depend on design elements
and implementation choices beyond the scope of this dissertation. These
factors combined with the poor public availability of many comparable
systems limit direct comparisons to previous work.

Building and evaluating a prototype of the Envoy file system is not a
futile exercise, however. The artefact may reveal little about real-world
usage and behaviour, but measuring it can still do much to justify or con-
demn the design. This section starts by outlining assumptions about ser-
vice clusters that influence the design, how the design reflects them, and
how measuring the prototype helps to evaluate the decisions made. It con-
cludes with a description of the testing environment and the benchmarks
used.

6.1.1 Assumptions and goals

Envoy’s success in achieving its stated goals is evaluated partly through ar-
gument and comparison to other work as described in previous chapters.
Other aspects can be tested directly on a small installation and the results
extrapolated to larger configurations. While not comprehensive, this ap-
proach is consistent with Envoy’s role as one part of a complete service
cluster environment. Further research and engineering will be necessary
before service clusters can be fully evaluated on their own merits. Some
of the assumptions that underpin them can be tested directly, while others
must rest on arguments and an appeal to past and future work.

Independent clients

Though efficient sharing is important, individual clients accessing un-
shared data dominates most workloads. Even when data sets overlap,
time may divide access from different clients, effectively yielding exclusive
access that is transferred from one client to the next over time. Envoy
seeks to capture these patterns by subdividing territories to distribute file
ownership and control, and by dynamically updating the boundaries over
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time in response to changing usage. When this is successful, or when
access is exclusive in the first place, Envoy resembles a simple client-server
system serving files from an administrative virtual machine to a client
virtual machine on the same host.

Since one of Envoy’s goals is to create this intra-host configuration
whenever possible, the evaluation starts by considering system perfor-
mance under this circumstance. Maximising raw performance is not the
focus of the prototype implementation, but comparing it to systems with
a similar topology creates baseline expectations for a production system,
and examining absolute performance figures helps confirm the sanity of
the overall design.

Section 6.2 evaluates the performance of Envoy as a file server within
a single host. Composite performance numbers are compared to other
client-server systems, and tests using different configurations help to
demonstrate where performance costs are embedded in Envoy. In ad-
dition, performance for remote hosts is evaluated to show that the drive
to localise traffic benefits performance as well as scalability.

Shared images

Section 6.3 turns the evaluation to shared data. The emphasis of this sec-
tion is not on performance—which is dependent largely on runtime topol-
ogy as evaluated in Section 6.2 and the quality of the implementation—but
rather on the behaviour of the system under shared workloads. In effect,
Section 6.3 evaluates Envoy’s ability to localise traffic, and Section 6.2
explores the benefits and costs that result from its success or failure.

Some aspects of Envoy’s dynamic behaviour cannot be adequately
tested in the limited environment available for this evaluation. The Envoy
design prizes simplicity and stability in the layout of territories, both to
simplify testing and recovery, and to encourage cache sharing even in
the presence of runtime conflicts. The latter goal is achieved by delaying
territory transfers until traffic is clearly dominated by a remote partici-
pant or until a more slight imbalance has persisted for a longer period of
time. Resisting change allows the cache on the owning host to serve all
participants at the expense of a network hop from the remote client to the
envoy. Rearranging boundaries more eagerly may reduce network hops,
but it creates some migration latency and the new host may have to prime
its cache before service can resume at full speed.
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While the parameters controlling dynamic behaviour can be config-
ured, the ideal balance of stability and layout optimality can only be ade-
quately determined with realistic workloads. Oscillating demand could be
best handled by reacting quickly and varying the territory layout in lock-
step with traffic changes, or being reluctant to change in order to maximise
cache efficacy on one of the hosts may prove better. In the absence of a
larger test system and realistic workloads to evaluate specific parameters,
this evaluation relies on artificial traffic loads that can be controlled and
varied to test the response of the system.

Scalability

Envoy’s scalability is not evaluated directly. To do so convincingly would
require a large cluster with a diverse client base, and direct testing on a
reduced scale would prove little. The presumed scalability of the system
depends on successfully localising as much traffic as possible. If all re-
quests are satisfied by the same physical machine that hosts the client,
then a cluster’s capacity to host clients grows linearly with the number of
machines added to the system. If most requests are handled locally and
neighbouring hosts are consulted mainly to resolve runtime conflicts, then
scalability is limited primarily by the degree of runtime sharing. Envoy’s
goal of scalability is based on a design that attempts to approximate that
limit.

The storage layer is another source of traffic and inter-host dependence,
but it is not fully specified in this work and cannot be evaluated fairly. A
large persistent cache on each host reduces the direct load on the storage
layer just as it does for AFS [Sat85], but by coupling storage nodes with
envoy hosts and using switched networking, the overall transaction ca-
pacity of the storage layer should scale with the number of hosts anyway,
and the number of hosts limits the number of clients. The systems consid-
ered in Section 2.3.5 have already demonstrated the scalability of similar
storage architectures; conflict management and the coordination of meta-
data differentiate each system, but in Envoy that burden is not left to the
storage layer.

132



6.1. Methodology

machine druid
processor AMD Opteron 240 1.4GHz (×2)
memory 6 GB
disk Maxtor Diamond Plus 9 160GB SATA/133 7200 RPM
network Tigon3 BCM95704A7 10/100/1000BaseT Ethernet

machine skiing
processor AMD Opteron 250 2.4GHz (×2)
memory 4 GB
disk Seagate Cheetah 10K.6 73GB Ultra320 SCSI 10000 RPM
network Tigon3 BCM95703A30 10/100/1000BaseT Ethernet

machine moonraider
processor Intel Xeon 2.4GHz with Hyper-threading (×2)
memory 2 GB
disk Western Digital Caviar 120GB EIDE ATA/100 7200 RPM
network Intel 82545EM Gigabit Ethernet Controller

Table 6.1: Evaluation machines used throughout this chapter. druid is the root
server for most tests, while skiing is the remote client for most comparisons.
moonraider is used when more than two nodes are required, and both skiing and
moonraider host the storage layer services except where noted.

Features

Rapid and inexpensive deployment of services requires support from the
file system, and is one of the principal motivations for Envoy. The de-
mands of a software ecosystem are difficult to predict, and Envoy’s suit-
ability for this environment is likewise difficult to assess. Features allowing
rapid cloning and snapshots of file system images contribute to the flexibil-
ity of service clusters and are intended to promote the use of commodity
software, but their actual impact in a production system is a matter of
speculation. The speed with which images can be cloned and new services
launched is measured in Section 6.4.

6.1.2 Test environment

Three test machines, named druid, skiing, and moonraider, are referenced
in this chapter. Each runs SUSE Linux Enterprise Server 10 configured
to use Xen. Virtual machines are suffixed with a number, where zero
is always the administrative VM that controls hardware directly. Other
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VMs access devices through virtualized interfaces. Each administrative
VM is configured with 512 MB of memory, and client VMs are given
256 MB. The machines themselves are described in Table 6.1. All network
connections use gigabit ethernet, and all three machines have more RAM
than is allocated to the running virtual machines.

Clients access Envoy using the 9p client driver from version 2.6.18 of
the Linux kernel, back-ported to the 2.6.16 kernel included in the Linux
distribution. When the test requires it, client VMs are booted from Envoy,
but for other tests they are each given a private partition. All services
on each machine, including all VMs, Envoy’s persistent cache, the storage
layer object repositories, and file systems exported by NFS and 9p servers,
are run from partitions on a single hard drive on each machine.

druid-0 is the root server for all Envoy tests, and the only server
for NFS and 9p tests. Additional Envoy nodes run on skiing-0 and
moonraider-0, and Envoy clients on each machine connect to their respec-
tive nodes unless otherwise noted. NFS and 9p clients on other machines
connect to the server on druid-0 in order to compare network overhead
and other effects that arise when using multiple machines. The storage
layer in this setup consists of two storage instances hosted on skiing-0
and moonraider-0. Additional tests move the moonraider-0 instance to
druid-0, but this is noted in the text when it happens.

Benchmarks

Bonnie is a benchmark designed to expose performance bottlenecks
[Bra96]. Bonnie is used in this evaluation to provide some baseline perfor-
mance numbers and to compare Envoy with other file systems. The Linux
driver for 9p was also tested using Bonnie, and that evaluation compares
some of the performance characteristics of 9p with NFS [Hen05]. Some
similar comparisons are made here, but the emphasis is on Envoy and its
architecture rather than the 9p protocol and its driver.

Bonnie runs in six phases, all involving a single file several times larger
than the available memory. It starts by writing the file a character at a
time, then it scans the file a block at a time, writing a change back to each
block as it goes. The next pass reads the file a block at a time, then it
rewrites it (without reading) using blocks, followed by a final pass reading
the file a character at a time. Finally, it creates three child processes that
seek randomly in the file in parallel.
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Figure 6.1: The distribution of file size in the Linux kernel source tree. 18,703 out
of the 20,208 files are 32k or smaller and can fit in a single 9p protocol message.

Bonnie does not exercise metadata operations, and the character op-
erations test aspects of the system that are not relevant here. Bonnie also
fails to flush all buffers to disk between tests, leading to possibly skewed
results in some cases. Nevertheless, it provides a useful starting point in
evaluating Envoy that allows comparison with other published results.

To further explore the design of Envoy, a more controlled test is nec-
essary. The Linux 2.6.18 kernel source tree provides a large block of data
that can be used for various tests. Figure 6.1 shows the distribution of
file sizes in the source tree. The kernel has 1238 directories, each holding
an average of 16.32 files (not including subdirectories). The distribution
is skewed, with a standard distribution of 31.95 and the largest directory
holding 713 files. The median size is 8 files.

The largest file is 853k, but 92.6% of the files can be transmitted within
a single 32k message using the 9p protocol. File sizes are significant par-
ticularly for read tests when files must be retrieved from the storage layer.
Large files are read in parallel from the two storage servers, but for most
files a single request to a randomly chosen storage node is sufficient, so
parallel reads do not make a significant impact on the results. The proto-
type implementation also reads the entire file from the storage layer and
writes it to the persistent cache before answering any requests from the
client. For these reasons, latency will likely affect Linux kernel read tests
more than transfer rates.
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For write tests, the file tree is extracted from a compressed tar archive
hosted on a local disk partition. For each test, the compressed archive
is first loaded into memory to prime the cache. When compressed, the
archive is small enough to fit in memory on the clients, and decompression
is quick enough to have negligible effect on the results. The uncompressed
archive is 229 MB, and the extracted tree occupies about 350 MB of disk
space due to internal fragmentation.

Reading all the files back into a new (uncompressed) tar archive pro-
vides one read test. The archive is piped to /dev/null to avoid incurring
any local storage costs. rsync is also used to read the files, again piping all
results to /dev/null. rsync differs from tar in that it reads multiple files
concurrently, reducing the overhead of latency from synchronous read re-
quests. Both tests scan all directories and read metadata for each file in
addition to reading file contents.

Three different cache settings are relevant for Envoy. The first is a
cold cache, which requires retrieving all data and metadata from the stor-
age layer. The second is a warm cache, where data is available from the
node-local persistent cache, but not in memory. For cold and warm cache
tests, all servers are restarted and all partitions remounted to ensure that
in-memory buffers are empty. This also forces Envoy to verify persistent
cache data with the storage layer before using it, but this is a quick meta-
data operation that adds little overhead to the results. Hot cache results
pull data from the in-memory cache, but server processes are still restarted
between tests and the storage layer must still be consulted to verify data
validity.

For npfs, a multi-threaded userspace 9p server used for comparison
testing, a cold cache environment corresponds most closely to the warm
cache setting for Envoy. unfsd, a userspace NFS server, has client-side
caching with three basic configurations, where data is retrieved from the
server’s disk, the server’s memory, or the client’s local cache memory re-
spectively. In the final case, the server is not restarted and the client not
remounted to avoid flushing the cache. Individual tests are accompanied
by details of the cache status for each server.

6.2 Independent clients

Much of the complexity in distributed file system design is related to data
sharing, but sharing is less common than individual clients accessing pri-
vate data. A service derived from a stand-alone machine typically requires
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a private boot image, and lightweight fork operations in Envoy encourage
the cloning of entire images for private use by related and unrelated service
instances.

To succeed as a distributed file system on a large scale, Envoy must
provide a useful service to isolated clients that obviates the need for ad-
ditional storage services for most clients. While there is no technical or
administrative distinction between private and shared images, Envoy’s de-
sign and runtime behaviour under these two conditions can be evaluated
separately. This section focuses on Envoy’s performance and behaviour in
the absence of sharing.

6.2.1 Performance

The prototype is not optimised, and absolute performance is not the focus
of this evaluation. Nevertheless, it is helpful to establish baseline perfor-
mance numbers to show that Envoy is viable as a file system. For context,
the results are compared to npfs, a multi-threaded userspace 9p server,
and unfsd, a single-threaded userspace NFS server. Userspace servers have
additional overhead when compared to in-kernel implementations, but the
penalty is assumed to be similar for all of the implementations tested. Stan-
dard benchmarks do a poor job of isolating the costs involved in Envoy’s
data paths, and most of the evaluation in this chapter eschews them in
favour of more controlled tests, but this section starts with the Bonnie
benchmark to provide some raw performance figures comparable to those
from other systems.

Figure 6.2 shows the block write results of the Bonnie benchmark on a
2 GB dataset. Envoy is competitive with the 9p and NFS servers, despite
writing to two storage servers and the local persistent cache. Bonnie does
not flush buffers to disk after writing, so this represents a conservative
result for Envoy. When the write is complete, Envoy has flushed the data
to two storage servers and can tolerate a node failure without loss, while
the 9p and NFS servers both have a dirty cache on a single node with no
replicas.

For sustained writes, the disk is the primary bottleneck, as demon-
strated by the result labelled envoy-ls, which has one of the two storage
servers on the same machine as the envoy. In this case, data must be writ-
ten twice using the same disk, once for the cache and a second time for
the storage instance. In addition, the in-memory cache is split between
the two functions, cutting its effective size in half. The nocache figure is

137



Evaluation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

envoy envoy-ls nocache 9p nfs

kil
ob

yt
es

 p
er

 s
ec

on
d

Figure 6.2: Bonnie benchmark results for block writes on a 2 GB dataset. Results
for Envoy, Envoy using a local storage server instance, Envoy with no persistent
cache, a userspace 9p server, and a userspace NFS server are compared. Error
bars show the standard deviation over ten runs.

an Envoy server with the persistent cache disabled, a change that has lit-
tle effect in this test because the writes are performed in parallel on each
node.

Envoy nodes all host storage servers, and it is reasonable to assume
that each node generates a similar amount of traffic on average, but sus-
tained writes are not typical of average workloads. Storage is distributed
throughout the cluster, so it is not likely that a node with a write-heavy
client will also host storage for other write-heavy clients at the same time;
envoy-ls represents a worst-case scenario rather than a common case.

Figure 6.3 shows the block read results from the same benchmark.
Bonnie’s test uses a single file, so the Envoy servers are reading data from
a single file in the persistent cache. All of the tests except nocache involve
transfers from a single file in one VM to a client in another VM, with
similar overall results. As in the write tests, the results are dominated by
disk speeds.

With no persistent cache, Envoy must fetch each block from one of the
storage servers. The prototype limits files to one outstanding transaction
each, so parallelism is not exploited in this test, and requests are randomly
distributed to the two storage servers, so neither ends up with a sequential
read through the entire file. A more sophisticated storage layer would
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Figure 6.3: Bonnie benchmark results for block reads on a 2 GB dataset. Results
for Envoy, Envoy using a local storage server instance, Envoy with no persistent
cache, a userspace 9p server, and a userspace NFS server are compared. Error
bars show the standard deviation over ten runs.

likely reduce the penalty of omitting the persistent cache, but in normal
operation most data is expected to be in the persistent cache anyway.

Bonnie’s re-write test reads the same file in sequence, writing back a
change to each block as it is encountered, with results displayed in Fig-
ure 6.4. The Envoy results reflect the write penalty for a local storage
server and the read penalty for no persistent cache, with no surprises. The
poor showing from NFS relative to 9p is due to an artifact in the test that
interacts with the client-side cache. The rewrite test is preceded by the
write test with no explicit sync operation to flush the write cache to disk.
All of the re-write tests start with a dirty cache, but NFS adds the client’s
cache to that of the server, leaving more writes from the previous test that
are billed to the current one.

The results from testing with Bonnie show Envoy to be competent at
serving files in a simple client-server configuration between two virtual
machines. Results are comparable to a simple 9p or NFS server for op-
erations on datasets larger than the in-memory cache size. In these tests,
the speed of the disk appears to be the primary bottleneck, which is the
expected result for basic operations involving bulk data transfer with few
metadata operations. The remainder of this section explores the results
in more detail to reveal the effect that the network and virtual machine
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Figure 6.4: Bonnie benchmark results for block re-writes on a 2 GB dataset.
Each block in the dataset is read, modified, and written back in sequence. Results
for Envoy, Envoy using a local storage server instance, Envoy with no persistent
cache, a userspace 9p server, and a userspace NFS server are compared. Error
bars show the standard deviation over ten runs.

architecture have on performance and how caching, both in-memory and
on-disk, influences performance.

6.2.2 Architecture

An important goal of the Envoy design is to localise data and metadata
control when possible, and minimise the involvement of disinterested
nodes when not possible. Private images are always controlled by the
envoy instance on the same machine as the client using it, and territories
in shared images are managed by the most active participant. Besides re-
ducing collateral impact in a bid to improve scalability, localising control
and caching has direct performance benefits for clients.

As described in Section 4.2.5, requests follow one of several paths to
completion depending on whether or not the required data is cached and
whether ownership is local or remote. The impact of network and vir-
tual machine layout is measured here, with four layouts. druid-0 is an
administrative virtual machine that hosts all server processes, and owns
all territories in the case of Envoy. skiing-0 is an administrative VM on a
different machine, hosting Envoy server processes but no others. druid-1
and skiing-1 are client VMs on the two machines. These tests focus on
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Figure 6.5: Time to tar the Linux kernel source tree with a hot cache over var-
ious data paths. NFS results are included for a hot client-side cache and for a
hot server-side cache only (labelled nfs-warm). Error bars show the standard
deviation over ten runs.

hot cache results to prevent disk access time from masking other sources
of overhead.

For the 9p and NFS results, druid-0 acts as the server in all instances,
and results are included for all four client locations. Envoy clients attach to
their local envoy instance in each case, so for clients on skiing, all requests
are forwarded on to the envoy instance running on druid-0.

Figure 6.5 shows the time required to tar the Linux kernel source tree
from each client location with a hot cache. In each case, the file data is
available from the buffer cache of druid-0, so the differences are largely
due to network, protocol, and implementation overhead. The Envoy and
9p results show a significant difference between druid-0 and druid-1 re-
sults, which comes from the virtual network device that connects the two
VMs. Much of this overhead could be eliminated through a Xen-specific
transport between the VMs combined with optimisations in the 9p driver
to eliminate data copying, as suggested in Section 4.2.5.

Envoy is consistently slower in this test than in the Bonnie read test,
which measured bulk operations from a single file. The tar test exercises
metadata operations much more heavily, which exposes the extra over-
head of a prototype-quality implementation of Envoy. For the skiing-0
and skiing-1 results, requests are considered and forwarded at the skiing-
0 envoy instance, so overhead is inherent to the design. For druid-0 and
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Figure 6.6: Time to tar the Linux kernel source tree from the persistent cache
(for Envoy), with the in-memory cache cold for all servers. Error bars show the
standard deviation over ten runs.

druid-1, however, both 9p and Envoy are using the same protocol to de-
liver the same data across the same network paths, and the data is coming
from the buffer cache in each instance. Optimisation of the prototype
would probably result in something closer to parity between these results.

The NFS results for druid-0 are an exception caused by the client-side
cache. Because the client and server must compete for cache space, the
cache is not sufficient to hold the file tree and disk access is required.
While seemingly an unfair circumstance for the NFS results, this result
is included to illustrate the benefit of shared caching. Allowing a larger
unified cache on each host instead of having each client provide its own
smaller cache reduces this kind of cache duplication and increases the ef-
fective cache space available cluster-wide. While the local cache can im-
prove performance, it can also cause more disk access and reduce both
performance and the overall transaction capacity of the cluster.

A second anomaly caused by the client-side cache is the result for
skiing-0, where the entire file tree fits in the client-side cache. The dis-
played result is only applicable when the test is repeated within the 30-
second window in which the Linux NFS client considers data valid. The
test completes in an average of 22.38 seconds and makes this possible, but
if a delay is introduced between each iteration, the average time nearly
doubles to 44.05 as each cache entry must be validated against the server.
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Figure 6.7: Time to read the Linux kernel source tree using tar and rsync after
priming the in-memory cache with all file data. Error bars show the standard
deviation over ten runs.

Figure 6.6 supplements these results with the same tests with the in-
memory cache flushed before each iteration. Data is resident in the persis-
tent cache in the case of Envoy, so for each of the three servers the data is
coming from the same disk. NFS suffers from the same double-buffering
issue on druid-0, but otherwise its client-side cache proves very helpful for
the metadata-intensive operations in this test. This is clearest in the jump
to a remote machine, where 9p must consult a remote server for many
operations that are absorbed by the client-side cache in NFS. If the op-
timisations already suggested prove insufficient, an approach like that of
NFSv4—where a limited token-passing scheme lets clients access unshared
files without fear of conflicts but reverts control of shared files to the server
[She03]—may be useful for Envoy, allowing it to retain strong consistency
guarantees while allowing local caching for unshared files. Testing with a
representative workload on an optimised implementation of Envoy would
better inform such a choice.

These tests do show a clear performance benefit to coupling control of
territories with the clients that use them, particularly in the difference be-
tween Envoy results for druid-1 and skiing-1. Comparing the two graphs
also shows that Envoy is faster serving warm data controlled by the same
machine than hot data from a remote machine, suggesting that territory
boundaries can be relatively fluid without destroying performance.
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Figure 6.7 compares using tar and rsync to read the Linux kernel
source tree from cache using Envoy and 9p. rsync reads asynchronously
from multiple files at one time, whereas tar reads one file to comple-
tion before starting the next. The increase in time required for both
tests between druid-1 and skiing-1—which are the two important client
locations—is reasonably consistent. Envoy sees a time increase of 88%
for tar and 85% for rsync, while 9p sees 67% for tar and 63% for
rsync.

Connecting skiing-1 directly to druid-0 instead of to the envoy instance
on skiing-0 yields increases of 40% for both tests over the respective druid-
1 results, or a reduction of 34% and 33% compared to the same tests using
the envoy on skiing-0. The average times—168.97 for tar and 118.71
for rsync—compare more favourably to the simpler 9p server, taking 8%
longer for both tests.

Envoy uses the 9p protocol to connect to clients, and it also uses an
extended version of it between envoy instances. Comparisons between
Envoy and a simple 9p server using similar data paths and cached results
demonstrates that the 9p server is consistently faster, but performance de-
grades at a similar rate for both systems as obstacles are introduced to
the data paths. The 9p server passes most requests directly to the file sys-
tem, while Envoy is a more complex system that tracks additional state
and offers more features. Nevertheless, the correlation between the two
optimistically suggests that the Envoy prototype could be optimised to a
performance level close to that of the 9p server without introducing any
architectural changes. A roughly 33% overhead beyond network costs
for remote transactions is imposed by the forwarding system, but this is a
reasonable tradeoff for simplified recovery and the possibility of removing
forwarding overhead completely through territory migration. Any con-
sistent system will require coordination for overlapping requests; Envoy’s
territory scheme ensures that sharing can be coordinated and still benefit
from an in-memory cache.

6.2.3 Cache

In addition to the data paths imposed by the architecture, Envoy requests
interact with different cache states. When the cache is hot, data is available
from the in-memory cache on the envoy that owns the relevant territory. A
warm cache holds data in the local on-disk cache, but not the in-memory
cache. When data must be retrieved from the storage layer, the cache is
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Figure 6.8: Cold cache read and write tests with the persistent cache enabled and
disabled. tar times are faster with the cache, even though it requires writing all
data to the local disk. untar, the write test, is faster with the cache disabled.

said to be cold, and for all tests the storage servers themselves are restarted
and data partitions remounted to empty in-memory buffers.

For all Envoy tests, the server was restarted between each iteration,
reseting the server’s internal state. For both hot and warm cache tests, the
server must initially validate cached objects against the storage servers, but
can then proceed to use them from the local cache. Testing found this to
have little effect on the results, so all figures presented here use the more
conservative method.

The persistent cache stores objects on the same node as the envoy that
uses them, which is generally a performance win. For write operations,
however, it simply adds another write destination for data that is already
being sent to multiple storage nodes. The untar part of Figure 6.8 shows
modest overhead for write operations, since the writes proceed in parallel
with those on the storage nodes.

Reads in the tar test are faster with the cache, even though all data
must come from the storage layer in either case, and enabling the cache re-
quires writing everything to the local disk in addition to returning it to the
client. This is because the disk is otherwise idle, and most of the write op-
erations can be absorbed by the buffer cache and proceed asynchronously.
In return, having the data in memory on the local node prevents addi-
tional read operations from being directed back to the storage layer. The
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Figure 6.9: tar and rsync tests run with the persistent cache disabled. The cache
status (hot or cold) refers to the in-memory cache on the storage servers. Error
bars show the standard deviation over ten runs.

in-memory cache is provided by the host operating system through oper-
ations on the object store, so disabling the persistent cache disables the
in-memory cache as well. Even though the test is primarily based on write
operations, disabling the cache results in a 41% increase in the number of
messages sent to the storage layer in this test.

Even with the persistent cache disabled, there are still other cache fac-
tors to consider. Figure 6.9 examines read test results with the persistent
cache disabled, varying the status of the in-memory cache on the storage
servers. As expected, a hot cache improves performance considerably. The
improvement in cold cache results moving from tar to rsync is particu-
larly dramatic, because rsync is able to schedule reads from both storage
servers at once, whereas tar leaves one completely idle while waiting for
the other.

Figure 6.10 compares the tar test run on Envoy’s three basic cache
states. As demonstrated earlier when the persistent cache was disabled,
many requests are absorbed by the in-memory cache even when it starts
out empty. Micro-benchmarks would probably show a greater difference
between the three cache states, but reading a series of files is a common and
realistic workload. In addition to the performance gained from caching
objects on each host, the load on storage servers is reduced. Particularly
when storage servers and envoy servers are hosted on the same nodes, lo-
calising traffic as much as possible helps both performance and scalability.
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Figure 6.10: tar test results for hot, warm, and cold cache states on all client
locations. Error bars show the standard deviation over ten runs.

A cold cache is at less of a disadvantage over a warm cache using
rsync, as demonstrated in Figure 6.11. Overlapping requests employ both
storage servers in parallel, making better use of additional disk spindles.
As with other tests, there is a clear advantage to accessing data on the local
node. In the rsync results, a hot cache with a remote client (skiing-1) is
faster than a cold cache with a local client (druid-1), but not by a wide
margin. In the more common hot and warm cache scenarios, network
latency and the cost of forwarding requests outweigh differences in cache
performance.

Many cluster file systems use parallel transfers to increase throughput
on large file transfers. Nothing prevents Envoy from doing so except for
the current implementation. The Envoy prototype does transfer large files
from all available storage servers in parallel when transferring them to the
local persistent cache, but it transfers entire objects at file open time before
answering any read requests. Because of this simplistic implementation,
parallel reads serve to reduce latency at file open time rather than increase
throughput at file read time.

If the transferred file fits in the buffer cache, then reads that commence
after the transfer completes will find a hot cache and proceed quickly, but
large files will incur an unfortunate performance penalty, particularly in
the common pattern of sequential file reads. In addition to the lag of
transferring the entire file to the local node, clients will have to wait for
much of the file to be written to the local object store, and then sequential
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Figure 6.11: rsync test results for hot, warm, and cold cache states on all client
locations. Error bars show the standard deviation over ten runs.

reads will create congestion on the disk as the file is read back into memory
from the beginning and forces the remaining dirty blocks to be written to
disk. The throughput advantage of striped reads will be completely lost.

A more refined implementation could cache partial results, and feed
striped reads from the storage layer back to the client in real time, per-
haps issuing read-ahead requests to keep the queue full. Similarly, reads
that saturate the local disk could be supplemented with streamed reads
from the storage layer, making use of multiple disks. More sophisticated
write policies could also improve storage layer performance. With a large
persistent cache at each node, a log-structured storage layer may be prof-
itable, since write requests are likely to dominate storage layer traffic. Log-
structured systems suffer under certain workloads, particularly when ap-
plication semantics demand frequent checkpointing. With Envoy, writes
are considered stable once they have reached enough storage nodes, so
checkpointing would not need to interfere with the storage layer’s bulk
write policies as they do on local file systems. The results examined here
show clear advantages to the simplistic persistent cache implemented in
the prototype, but it leaves much room for improvement in conjunction
with a fully-developed storage layer.

Client-side caching was advantageous to NFS in some tests, but proved
little benefit in others. Envoy, which eschews client-side caching in favour
of a larger shared cache at the machine-level, does surprisingly well in
many tests despite the increased traffic to the envoy service. Some form of
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client-side caching would be essential for a production system, particularly
when hosting shared libraries and other memory-mapped files. Achieving
the right balance between cluster-wide cache capacity and performance at
local nodes will require further research.

6.3 Shared images

When file system images are shared, Envoy manages territory boundaries
dynamically as described in Section 4.4. Territories are split and merged
in response to runtime demand, with control being granted to the machine
that is generating the most traffic for a portion of the file tree. When the
current owner generates slightly less traffic than a remote node, it waits
between changes for a time proportional to the degree of imbalance in
request traffic. Severely skewed loads trigger more rapid changes, while
minor sub-optimalities are tolerated longer to establish a longer-term trend
and avoid thrashing the cache.

The dynamic algorithm is configured by specifying the two endpoints
of the urgency/delay line. The minimum delay between migrations is
paired with the minimum traffic imbalance that will trigger a migration
after waiting out that delay. At the other end, the smallest imbalance that
will ever prompt a change is paired with its minimum delay. Urgency is
defined by the number of requests to a region of the territory, decayed over
time with a configured half-life.

Determining suitable values for these parameters requires knowledge
of workloads and the demands of the specific environment. If stability is
valued over a fine-grained territory layout, the system can be made more
reluctant to enact changes. If workloads change more rapidly, a more
eager policy can be adopted. The previous section compared the perfor-
mance of local and remote clients, and concluded that local control yields
a performance advantage as expected. Private images are always ceded to
the client’s envoy at mount time, so it is only in the presence of workloads
with actual sharing that the dynamic algorithm comes into play.

The previous section explored the performance of the Envoy prototype
under various condition, and this section turns to dynamic behaviour un-
der shared conditions. Migrating active state between nodes is a quick
operation, similar to the metadata operations discussed in the next sec-
tion. The prototype also completes the operation that triggers a territory
change before executing the transfer, so any pause happens between client
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requests. Write operations are always committed to the storage layer be-
fore returning, so no cache flush needs to take place, either. Cache effects
will create some extra delays as the new owner loads active objects that
were already in memory on the previous host, but the results of the pre-
vious section suggest that these will largely be offset by the improvements
derived from local control.

6.3.1 Dynamic behaviour

A series of typical sharing scenarios were laid out and simulated, and the
response of the dynamic territory algorithm observed. For the tests, a half-
life of five seconds was used to give a gradual and predictable response to
simulated traffic. An urgency of 100 triggers a change after five seconds,
while a modest threshold of five triggers a change after 120 seconds.

To generate load, a script walks to and opens files at random within
a subtree of the Linux kernel sources at a specified rate. Each operation
sends multiple requests to the server, walking from the root of the tree
(the Linux 9p driver generates a new request for each step in the directory
traversal), opening the file, and immediately closing it. The script can
generate load in multiple trees and can ignore subtrees within a target
region.

The prototype is instrumented to output a report after each transfer,
including a graph of the complete territory structure at each end of the
transfer. After being combined and plotted using the graphviz graph-
drawing package [Gan00], the output represents a live snapshot of the
territories and active claims in the running system.

Home directories

One common pattern in using existing file servers is to share a file system
divided into home directories. While multiple users share a single image, in
practice their activities are largely partitioned into specific subdirectories.
As the root server and host to the first client to mount the image, druid-0
starts out owning the entire territory. Four directories within the Linux
tree are assigned to clients on the three servers, which start opening two
randomly chosen files per second in each directory. The tree on the left of
Figure 6.12 depicts the territory tree as planned, with the four directories
at the bottom acting as home directories. The tree on the right is the actual
result from testing this configuration on Envoy.
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Figure 6.12: The territory graph when sharing an image divided into home di-
rectories. Rectangles denote territory roots, and colours indicate the host that
owns a directory. druid (red) is the root server and directs its requests to char,
skiing (blue) accesses block, and moonraider (green) sends requests to net and
usb. The tree on the left depicts the setup, while the one on the right shows the
actual layout created by Envoy.

While druid had its own client traffic, it also had requests coming at
an equal rate from skiing and twice as many from moonraider, which was
assigned two directories. The envoy on druid had the options of ceding
control of one directory to skiing and the other two to moonraider, or
transferring control of the whole image to moonraider and allowing it
to make further splits. The imbalance as viewed at the root of the im-
age would be equal to that at the root of each target directory (note that
moonraider’s doubled traffic is offset by local traffic when viewed from
the root, making the combined urgency equal to that at the root of each
target directory), except that each client request traversed from the root
of the tree. The extra overlapping traffic near the root tipped the balance
in favour of ceding control of the whole territory to moonraider, which
then waited until enough time had elapsed to transfer control of the two
remotely-accessed directories to their respective hosts.

The order in which transfers occur affects the final layout. Had moon-
raider introduced its requests one directory at a time, druid would have
retained control of the top-level directories. The greedy algorithm used
in Envoy does not guarantee optimal layouts, but it does try to produce
useful behaviour with simple rules.
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Figure 6.13: The territory graph when sharing a directory hosting privately-
accessed files. Rectangles denote territory roots, and colours indicate the host
that owns a directory. Clients on each of the three servers were given three files
each within one directory to access at a constant rate. The tree shows the final
steady-state result produced by Envoy.

Log files

Directory boundaries are not always the ideal place to partition shared
files. Multiple clients may also access individual files that are stored in
a common directory. A common example of this is in log files that col-
lect data and results from multiple servers in a shared directory. For this
situation, there is no sharing within the files themselves.

Figure 6.13 shows the result of this test, where three files were assigned
to each client. It took longer to achieve the final layout with this test for
two reasons. Instead of accessing random files in a directory, clients ac-
cessed individual files, so fewer requests were generated. Navigation steps
leading to the file went through shared directories and did not contribute
to the urgency of transfers. In a more realistic setting, the client would
likely hold an open handle for each file yielding a similar effect, so this
difference is a artifact of the test script. The second reason is that more
transfers had to take place, with enforced minimum delays between each.
druid was the only host to initiate transfers, and each one involved the
same root territory, so the process was completely sequential.

After reaching a steady state, no further traffic between envoys would
be necessary if each client maintained an open handle to each file. True to
Envoy’s goal, having the files in the same directory would be convenient
but not prevent individual machines from handling file traffic locally. With
no actual sharing taking place and a consistent traffic load, no overhead
for coordination is necessary.
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Sharing files

The next test involves actual sharing between clients. All three hosts ac-
cessed random files within the same directory at the same rate. The ex-
pected result would be to have no territory changes, as no remote client
would generate more traffic than the initial owner. An artifact of the im-
plementation makes this dependent on the configuration parameters. Di-
rectory navigation results are cached on each envoy, even for remotely-
owned territories. To minimise stale cache effects, the final target of each
9p walk requests is contacted directly if it is remote, even when a cache
entry exists. Since the Linux 9p driver issues a separate walk request for
each directory, this means that the navigation cache is effectively disabled
for remote hosts. It is active for locally-owned territories, however, which
effectively reduces the number of steps for local clients but not for remote
clients. Because of this, remote clients appear to generate more requests
despite the uniformity that is carefully maintained by the clients.

With a slight urgency boost for remote clients, an equal sharing sit-
uation can have one of two effects on territory boundaries. If the idle
threshold is high enough, the extra navigation traffic generated by the test
will not be enough to trigger a transfer, and control will remain with the
initial owner indefinitely. If the idle value is too small, however, control
will eventually be passed to one of the remote hosts, which will then face
the same situation. Since this thrashing happens on a slow time scale
(nearly 120 seconds between transfers in this particular test), the detri-
mental effects on caching are minimal. One might argue that periodically
passing control between equally active clients is ultimately fairer, if not an
absolute win in terms of system-wide performance and capacity.

6.4 Image operations

Service clusters must be able to easily manipulate file system images to
achieve their promised flexibility. Providing templates with commodity
software and allowing clients to easily clone and customise them makes
service instantiation a relatively lightweight operation. When combined
with functionality in the virtual machine monitor to suspend, clone, and
resume running services, this could allow rapid instantiation of common
services. Envoy provides support for rapid forking of file system images,
along with the ability to take snapshots of active images. This section
measures the performance of these two management operations, along
with the time and space required to deploy new services.
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6.4.1 Forks

New images can be created from scratch, or they can be forked from an
existing image. Forks always start from a snapshot of an existing image,
and snapshots are always read-only. With the copy-on-write mechanism
described in Section 4.3.2, this makes forks a fast and efficient operation.
Even if the template snapshot is in active use, only the root of the image
needs to be copied to distinguish the new image from the old.

The time required to fork an image was measured in two ways. In the
first, the server was instrumented to record the time spent completing the
operation. Over fifty iterations, the average fork took 339 µseconds with
a standard deviation of 32 µseconds. Over the same fifty iterations, the
client VM observed the time required to fork the template and create a
new file in the new image. /usr/bin/time reported 10 milliseconds for
each iteration, which corresponds to its timer resolution.

6.4.2 Snapshots

Forking an existing template is fast because few operations are involved.
Snapshots can be taken of active images, which may involved cloning stor-
age objects as well as copying runtime state. If an image has been divided
into multiple territories, the snapshot operation will span multiple envoy
instances and will required cloning a path from the root of the image to
each territory root, as discussed in Section 4.3.2. Forking an active image
also involves taking a snapshot and then performing a fork operation, so
cloning an active system is dependent on the snapshot mechanism as well.

In the simple case, snapshots are nearly as fast as forks. When an
image is inactive, taking a snapshot requires cloning the root, adding the
new snapshot to the parent directory, and updating the link to the active
view of the image. Over fifty iterations, an instrumented server reported
an average of 1258 µseconds per snapshot with a standard deviation of
108 µseconds.

To evaluate more complex snapshot cases, a tree of territories involv-
ing three machines was created. Control of a Linux kernel source tree
was divided such that every directory was the root of a territory owned
by a different envoy than its parent, i.e., every territory was forced to cede
control of subdirectories equally between the other two servers. druid-0
was the root server and hosted 439 territories, skiing-0 hosted 421, and
moonraider-0 hosted 379 territories, for a total of 1239 territories. This
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is far beyond what one would expect in a normal deployment for a sin-
gle image, but serves to exercise the snapshot mechanism under extreme
conditions.

After constructing the territory tree, fifty snapshots were taken of the
kernel image in an average of 13.71 seconds each with a standard devia-
tion of 3.13 seconds, or approximately 11.1 milliseconds per territory in
the tree. Most of this time was spent cloning objects to ensure that the
root of each territory was writable in the active image after the snapshot
completed. Under Envoy’s consistency semantics, this requires submitting
changes to the storage servers before considering the operation complete,
but not flushing their buffers to disk. If the snapshots are done in rapid
succession, the storage server buffers cannot absorb the traffic and disk
write times increase the time. After a warmup run of several snapshots,
fifty more were done without pause in an average of 73.13 seconds each
with a standard deviation of 26.8 seconds, or approximately 59 millisec-
onds per territory. The high variability comes from the lack of coordi-
nation between the client operations and the buffer cache on the storage
servers.

The snapshot timings reflect a combination of network messages, in-
ternal state updates, and storage object updates. The bulk of the time
is spent doing storage object updates, though this is not measured di-
rectly. To approximate this, another operation can be measured that per-
forms similar state updates and has the same network message profile, but
does not involve updating storage objects. Renaming the root directory
requires recursively notifying child territories of the pathname change,
which makes it a suitable choice. Fifty such operations complete in an
average of 96.7 milliseconds each with a standard deviation of 1.09 mil-
liseconds, approximately 78 µseconds per territory.

6.4.3 Service deployment

Besides making service deployment quick, an important goal of snapshot
and fork operations using copy-on-write is to encourage the use of com-
modity software and exploit the redundancy that results. Objects inherited
from a common template or a previous snapshot can be read by any envoy
without coordination, as higher-level semantics guarantee that the object
will not be modified again. This allows cache sharing for read-only ob-
jects between unrelated services. Besides cutting down the cache required
on a given node, this makes it likely that common template objects will
already be loaded into the persistent cache of typical nodes, allowing the
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cold cache hot cache
client requests/bytes 70,016/ 1,264,742 71,648/ 1,296,578

client responses/bytes 70,016/79,457,018 71,648/81,323,281

storage requests/bytes 2,764/ 288,858 2,059/ 285,429

storage responses/bytes 2,764/ 17,476,789 2,059/ 675,196

Table 6.2: Messages and bytes transferred when virtual machines boot from forks
of the same Linux template image. The first was booted with a cold cache, and the
second after restarting Envoy but not clearing the in-memory or on-disk cache. In
the hot cache case, objects had to be validated against the storage server because
of the server restart, hence the similar message counts, but data could be retrieved
from the cache.

most common objects to be served locally and reducing the cluster-wide
load on storage servers.

To measure this effect, a template image was prepared with SUSE
Linux Enterprise Server 10, and a virtual machine booted from a fork
of this image with a cold cache. Another VM booted from a second fork
of the image, this time with the cache primed from the first one. Boot
times as measured with a stopwatch were about 50 seconds in either case,
with the hot cache a few seconds faster (compared to about 30 seconds
when booting from a local partition). Boot times were hurt by the lack
of client-side cache, particularly for shared libraries loaded as memory-
mapped files. While optimisations could make node-level caching suffi-
cient for most conventional file operations, support for executables and
shared libraries is rather poor in the current cache model.

Table 6.2 shows the results collected by an instrumented version of
Envoy. The server was restarted between tests, so the hot cache results
include message traffic to validate cached objects with the storage servers.
Booting the second image pulled less than 4% of the bytes retrieved from
the storage layer when starting the first image, showing a heavy over-
lap between read-only data in the two instances. Combined with the
lightweight snapshot and fork operations, this suggests that service in-
stances can be created and deployed quickly and with little impact beyond
the local machine.
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6.5 Summary

The prototype is evaluated on a small deployment to test and validate de-
sign decisions, to explore possible bottlenecks, and to explore the dynamic
behaviour of the system.

Performance is measured on static system layouts. Envoy compares
favourably with userspace NFS and 9p servers on bulk reads and writes,
but is slower when more metadata operations are involved. Comparison
to 9p for similar data paths suggests that significant overhead is due to an
unoptimised implementation, but other costs are due to the architecture.
Forwarding requests to a remote envoy costs roughly 33% more than con-
necting the client directly to the remote server. Caching makes predictable
improvements in read performance, though the local persistent cache hurts
write performance in many cases.

In the presence of sharing, dynamic territory management works
largely as predicted for common sharing cases. Shared images with
privately-accessed directories and files are successfully partitioned along
appropriate boundaries. When files are shared and accessed at similar
rates by multiple clients, the system is reluctant to transfer ownership,
though slight imbalances can trigger changes over a longer time scale.

Image-level operations are fast, with performance limited mainly by the
amount of disk activity they incur. Booting multiple virtual machines from
forks of a common template image demonstrates a high degree of sharing.
Traffic to the storage layer for the second is only 4% of that of the first
by bytes transferred. While the lack of per-client caching is acceptable
for many operations, it hurts the performance of memory-mapped shared
libraries enough to significantly slow down the boot process.
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Chapter 7

Conclusion

This dissertation concludes with a discussion of opportunities for future
research and a summary of the work presented here.

7.1 Future Work

Storage clusters are only partially specified in this work, and additional re-
search is necessary to make them a reality. Even ignoring the storage layer,
virtual machine tools, cluster management tools, and economic modelling
that are outside the scope of this dissertation, several aspects of Envoy’s
design suggest avenues for future research.

7.1.1 Caching

Envoy eschews client-side caching in favour of a unified node-level cache.
This works well for some workloads, but poorly for others, particularly
for memory-mapped files. Besides being part of Envoy’s cache consistency
mechanism, this design allows consolidation of redundant cache entries
that would otherwise exist on multiple clients. While template images en-
courage object sharing, many objects will still be used privately by only
one client at a time, where issues of consistency and consolidation do not
apply. Two questions remain unanswered: how much of the performance
penalty from moving the cache outside the client’s VM can be optimised
away, and how could a hybrid cache that uses client-side caching with
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token-passing for some data and a consolidated cache for the rest be con-
structed to balance competing concerns of individual client performance
and aggregate cache capacity and performance.

7.1.2 Territory partitioning

Envoy uses a simple greedy algorithm to decide on territory boundary
changes, with a unique time-based mechanism to promote stability while
still permitting minor optimisations over time. Further testing with realis-
tic workloads would improve understanding of the algorithm’s behaviour,
and may suggest improvements. The existing implementation could be en-
hanced to make more sophisticated recommendations, for example keep-
ing a subtree and migrating the rest of the territory whereas now it can
only recommend the converse. Also, finding optimal configuration pa-
rameters that balance the benefits of locality with the costs of moving to
an unprimed cache in realistic conditions remains future work.

7.1.3 Read-only territory grants

Territories in Envoy divide and subdivide file system images to align own-
ership with access. Currently, a single owner monopolises each territory
and maintains its cache, resulting in performance penalties for remote
clients. Implicit sharing is available through image forking, but since most
file data is never modified, additional sharing of territories could be en-
abled. Territories could be extended to permit read-only grants to multi-
ple nodes, which are revoked and consolidated when write operations are
requested, effectively extending write-exclusive/read-shared locks to the
territory level. It remains to be seen whether or not this would provide
significant benefits for realistic workloads.

7.1.4 Storage-informed load balancing

Envoy entrusts territory management decisions to the current territory
owners because they have the most information to make good allocation
decisions. Similarly, the file system in a service cluster would be a good
place to collect information about client behaviour to inform load bal-
ancing and service placement decisions. Envoy’s structure already detects
clients with overlapping interests in active images, and could also infer
common interest in objects shared through image forking. Gathering and
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using this information could make it possible to optimise system-wide ser-
vice layout to minimise storage-layer demand and enhance the value of
shared caching, as well as increasing the aggregate performance and ca-
pacity of the service cluster.

7.2 Summary

This dissertation argues for the commoditisation of computation services
using virtual machines as containers hosted on clusters built from com-
modity hardware. In particular, it addresses the storage demands of this
environment, a need not adequately filled by existing systems. After an
introduction to the problem in Chapter 1, Chapter 2 discusses relevant
background work in commodity computing, machine virtualization, and
storage systems.

Chapter 3 describes the proposed environment in more detail, and ar-
gues its merits as well as describing its requirements. Service containers
are defined as virtual machines customised from template images of com-
modity software, and service clusters are cluster environments optimised
for deploying client services in a flexible way. This combination permits
management of untrusted client software in ways that maximise the use
of hardware resources and separate hardware management from software
deployment.

The Envoy file system is introduced in Chapter 4 and its implementa-
tion described in Chapter 5. Envoy runs in a trusted virtual machine on
each node, which exports a standard client-server file system interface to
locally-hosted clients. A global namespace tree includes file system images
that can be managed and shared under client control. Control of images
is given to the envoy node on the same host as the client, and control of
shared images is partitioned into territories by a dynamic process that re-
sponds to runtime demand. In a stable state, nodes need to communicate
with each other only when the interests of their respective clients overlap.
Lightweight snapshot and fork operations allow simple image manage-
ment, and encourage implicit sharing of underlying objects even when no
relationship exists between clients.

Evaluation of the Envoy prototype in Chapter 6 demonstrates that
baseline performance in the most common configuration is comparable
to simple client-server file systems. The forwarding architecture imposes a
33% overhead for remote requests in addition to added network latencies,
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7.2. Summary

making it beneficial to optimise territory boundaries but not overly expen-
sive to tolerate sub-optimal layouts with light traffic. Caching, both in-
memory and on-disk, improves read performance, though on-disk caching
comes at a minor cost for write operations. The dynamic territory algo-
rithm successfully optimises common sharing scenarios. Booting multiple
services from forks of a common template image yields implicit object
sharing that results in a significant reduction of traffic to the storage layer.

Envoy supports the storage needs of service clusters, allowing flexible
and efficient management of storage and optimising for expected usage
patterns, with an architecture that promotes scalability by localising stor-
age management and encouraging cache sharing.
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