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Abstract

This work investigates a computational model of first language acquisition; the Categorial
Grammar Learner or CGL. The model builds on the work of Villavicenio, who created a para-
metric Categorial Grammar learner that organises its parameters into an inheritance hierarchy,
and also on the work of Buszkowski and Kanazawa, who demonstrated the learnability of a
k-valued Classic Categorial Grammar (which uses only the rulesof function application) from
strings. The CGL is able to learn ak-valued General Categorial Grammar (which uses the
rules of function application, function composition and Generalised Weak Permutation). The
novel concept of Sentence Objects (simple strings, augmented strings, unlabelled structures
and functor-argument structures) are presented as potential points from which learning may
commence. Augmented strings (which are strings augmented with some basic syntactic infor-
mation) are suggested as a sensible input to the CGL as they arecognitively plausible objects
and have greater information content than strings alone. Building on the work of Siskind, a
method for constructing augmented strings from unordered logic forms is detailed and it is sug-
gested that augmented strings are simply a representation of the constraints placed on the space
of possible parses due to a string’s associated semantic content. The CGL makes crucial use of a
statistical Memory Module (constructed from a Type Memory and Word Order Memory) that is
used to both constrain hypotheses and handle data which is noisy or parametrically ambiguous.
A consequence of the Memory Module is that the CGL learns in an incremental fashion. This
echoes real child learning as documented in Brown’s Stages ofLanguage Development and also
as alluded to by an included corpus study of child speech. Furthermore, the CGL learns faster
when initially presented with simpler linguistic data; a further corpus study of child-directed
speech suggests that this echos the input provided to children. The CGL is demonstrated to
learn from real data. It is evaluated against previous parametric learners (the Triggering Learn-
ing Algorithm of Gibson and Wexler and the Structural Triggers Learner of Fodor and Sakas)
and is found to be more efficient.
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Chapter 1

Introduction

For a normal child, acquiring language is a natural phenomena that requires no conscious effort.
After only 12 months, and with no formal teaching, a normal child is making verbal reference
to objects, people and actions. These first words occur in isolation and might not sound like
any recognisable adult words but within the subsequent 12 months a child starts forming under-
standable declarative sentences such as‘ ‘i want cookie” (Naomi at 1;11—the Sachs corpus [87],
CHILDES [63]). Over the next few years a child’s linguistic ability rapidly develops. A child is
able to form questions, use inflections, produce clauses anduse a whole range of other linguistic
construction.
Eventually a child’s linguistic growth settles down. At theage of seven she is speaking with
the full fluency of an adult; by which time she has the ability to process the infinite number of
sentences belonging to her language and she is capable of producing an infinite number of sen-
tences herself. This would be remarkable even if the procedure for producing (and understand-
ing) sentences could be described by a well defined set of rules: however, human languages are
so complicated that we have not yet managed to settle upon a theory that describes all linguistic
phenomena satisfactorily.
Despite huge advances in cognitive science over the last 50 years, little is understood of how
the human brain accomplishes the task of storing, processing and acquiring language. As native
speakers, we are not conscious of how we put together sentences, how we access our mental
lexicon or how this lexicon is stored; any rules that we thinkwe know about our language are
prescriptive rules for‘ ‘standard” usage that have been repeated to us at school.
A key issue that remains to be resolved is that ofwhychild language differs from adult language.
We know that ability to speak a specific language is not genetically bestowed: a child growing
up in a French speaking environment will become a Francaphone; the same child growing up
in a English speaking environment would speak English. Clearly, a child learns their native
language on exposure to it. However, the exact description of what is beinglearnt is an issue of
much controversy.
The Continuity Hypothesis([73], [62]) says that, given there is no evidence to the contrary, a
child’s cognitive system is to be assumed identical to that of an adult’s (i.e. the mechanics of
brain operation are the same in both an adult and child). If this is true, then we can explain the
differences between child and adult language from two possible standpoints:

1. At one extreme we can assume a child to be born with a complete language faculty: the
grammar for every possible language is innately available to the child (often referred to
asnativism). For such a bestowed child, language acquisition is the task of selecting one
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grammar from all those available to it. This can be achieved by subconsciously “noticing”
the linguistic properties of the environmental language.

The mechanism for selecting the correct grammar is sometimes described as a process of
setting language parameters (e.g. [39], [90]). For example, a possible language parameter
may relate to subject drop (to be clear, Italian is an exampleof a language which allows
subject drop—in Italian it is possible to saycredo nel destino(“[I] believe in destiny”)
without explicitly specifying the subject of the sentence). If a child is exposed to a lan-
guage where subjects can be dropped she will hopefully set her subject drop parameterto
true; thus excluding all grammars that don’t allow subject drop and reducing the number
of possible grammars left to choose from. At any given time the child selects one of the
remaining possible grammars in order to produce and understand language; the idea being
that once all parameters are set, one grammar is uniquely identified from all possibilities.

An alternative method is to associate each possible grammarwith a score indicating its
likelihood of describing the target (parental) language. The probability of a grammar is
incremented (or decremented) in response to evidence of linguistic features in the lan-
guage environment. As such, grammars are “competing” for selection by the child (e.g.
[109] or [12]); the child’s current grammar being the most highly ranked (or perhaps se-
lected according to the probability distribution over the grammars). By using a scoring
mechanism the child never has to rule out any grammar completely (as may occur with
the parameter setting model). Instead, the probability of ill-fitting grammars becomes
incrementally smaller so that the probability of them beingselected by the child becomes
very small.

Under both these models, differences between child and adult language are explained by
the child’s current grammar being different to that of the adults in their environment.

Nativist theories come under criticism for relying too heavily on the requirement of innate
knowledge. In particular, the question of how an innate language faculty might develop
is much debated (see [77] for a review).

2. At the other extreme we assume a child is a “blank-slate” inwhich linguistic skills de-
velop in response to language stimulus. This viewpoint is referred to asempiricismsince
language is being acquired purely from observation.

Empiricist theories come under fire from Arguments from the Poverty of Stimulus [23].
One such argument states thatgiven the limited evidence in the language examples that
children are exposed to, it is impossible to extrapolate thecomplicated generalizations
required to acquire a language. The problem here is that, given unconstrained scope,
there are an enormous number of ways to describe the examplespresented and not enough
evidence is provided to refute all false grammatical hypotheses.

Since empiricist theories rely on the child’s ability to extract linguistic patterns from
examples of the parental language, they are often investigated with connectionist models
(computational models based on the architecture of the brain which are useful for pattern
recognition from raw data).

Unfortunately, connectionist models tend to require exposure to hundreds (or even thou-
sands) of iterations of a training set before they can reliably recognise patterns. Here
again the empiricist models come under scrutiny regarding data sparsity; the argument
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being that a connectionist model can not be a viable model of acquisition because of the
amount of data it requires to learn and the comparatively limited number of language
examples that children are exposed to.

The real explanation of acquisition may exist on some middleground where there is some
innate linguistic information (albeit as simple as a desireto communicate and build mental
compositional structures) but there is also much inferred from the empirical evidence in the
language environment.
Either way, any model of acquisition is going to have to be able to learn despite the varying qual-
ity of data presented to a language learner. Frequently the language examples that a child hears
contain mistakes: “umms” and “ahs”; slips of the tongue; or even incomplete sentences due
to distraction or interruption. A child must be able to learnthe correct grammar despite these
errors or be able to identify sentences that contain errors and “choose” not to learn from them.
A possible solution here is to consider the statistical properties of the language; hopefully gram-
matical sentences will greatly outweigh the error prone sentences and consequently linguistic
rules or patterns can be extracted with an associated confidence measure from evidence that is
greatly skewed towards the grammatical.
There are further difficulties regarding the design and evaluation ofrealisticacquisition models;
it is one matter to design a model that can acquire a target grammar, but it is another to design
a model that does so in the same way as a child. If the goal of acquisition is to acquire a target
grammar, then the success of a model may easily be measured bycomparing the finally acquired
grammar with the grammar of the target language. However, for a realistic model, it is required
that the model’s internal grammar is similar to that of a child’s at all stages of the acquisition.
Unfortunately, a child’s internal grammar is difficult to ascertain because articulatory skills are
not fully developed at birth. Linguistic performance is hindered throughout acquisition due
to linguistic competence. This brings the challenge of separating these issues to the study of
acquisition and creates problems for design since it is unclear exactly what to model.
It should be noted here that it is NOT possible to investigatefirst language acquisition post
development of articulatory skills by studying the acquisition of second languages later in life.
First language and second language acquisition are two verydifferent processes. The acquisi-
tion of a second language is a labour of much hard work and memory effort whereas acquiring
your native language requires no conscious effort at all. The study of second language acquisi-
tion can perhaps tell us as much about our memory as our language faculty.
The study of first language acquisition can be approached from many directions. The oldest
method is that of corpus analysis. Several types of corpora have been complied:diary studies
are the traditional method for tracking child language development and usually involve a single
child who’s caretaker keeps a diary of when new constructions are first produced;large sam-
ple studiesinvolve a large number of children and generally record an experiment looking for
a specific language phenomena;longitudinal language samplinginvolves regularly recording/-
transcribing a single child’s language (for instance, a child may be recorded for a few hours once
a week over a period of several months or years). Linguists analyse such studies to collate data
and speculate on how acquisition may proceed given the evidence. An example that is relevant
to this thesis is Snow’s small scale corpus analysis of speech directed towards children [94]. In
this study Snow recorded conversational speech between mothers and children. She analysed
the mothers’ speech and concluded that adults talk amongst each other in a way different from
that in which they talk to their children.
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Psycho-linguists study language acquisition by carefullyanalysing the way we respond to dif-
fering linguistic stimuli; this will often involve measuring tiny differences in response times
that we can not ourselves perceive. An example is Jean Gleason’s famouswug test[40] that
was designed to investigate the acquisition of the inflection. The experiment proceeded by pre-
senting a child with a picture of a fictional creature and stating “This is a wug”. The child was
then shown a picture of two of these creatures and invited to complete the sentence“now there
are two ...?”. A child that learnt to generalise the inflection rule for plurals was able to answer
two wugs. Younger children were just confused and at best answeredtwo wug. Furthermore, it
was demonstrated that the three plural allophones (/z/, as in dogs;/s/, as in cats; and/ez/, as
in horses) are acquired separately. The experiment shows that children can generalise rules (or
patterns) from the language that they have been exposed to and apply these generalisations to
novel terms. The wug test has since been used to investigate the acquisition of other inflection
rules (such as the past tense and possessives).

Computational linguistics can contribute to the study of language acquisition formally by in-
vestigating the mathematical constraints of linguistic theory. The most well-known example of
such work must be Gold’s theory [42] which showed that an infinite language (i.e. one that has a
hierarchical structure capable of recursion) is unlearnable from examples of the language alone
(see Chapter 3 for a more precise description). Computationallinguists can also contribute to
the study of acquisition experimentally by producing learning simulations: two examples rele-
vant to this work include Gibson and Wexler’s [39] simulation of acquisition in a parametrically
defined grammar-space; and also Rumelhart and McClelland’s connectionist model for acquir-
ing past tenses [86]. Simulations can provide useful insight into the problems of time and space
complexity for acquisition algorithms.

This work investigates a computational model of first language acquisition. The model can nei-
ther be classed as a pure nativist or a pure empiricist model,rather it lies on the middle ground
between the two extremes. As with a nativist model, it assumes some innate linguistic func-
tionality; in particular the ability to associate a meaningwith a sentence, to recognise objects,
segment words and combine constituents. The possibility that such functionality can be pro-
vided by some previous empirical processing will not be discussed in this thesis. As with an
empirical model, this model infers linguistic patterns from language examples. Furthermore,
it makes crucial use of a linguistic memory and is able to dealwith mistakes in the input by
employing statistical techniques to filter noise. The modelacquires language from real data.
The functionality of the model is described algorithmically however its statistical nature leads
one to believe that it could possibly lend itself to a connectionist model if one had the time and
resources.

In order to aid the design and evaluation of the model, corpusstudies have been conducted on
the model’s input (child-directed speech) and output (child speech). Its mathematical rigidity
has also been explored and a comparison is made between this and previous computational
models.

The outline of this thesis is as follows: Chapter 2 investigates verbal constructions in a child’s
input stimulus and output productions. Two corpora are extracted from parts of the CHILDES
database [63]; one containing child speech and another containing child-directed speech. For
comparison a corpus of adult speech has also been constructed from the spoken section of
the British National Corpus [56]. Corpora are compared for verbfrequency and verb subcat-
egorization frames. We discuss the possible role of child-directed speech as an aid to learn-
ing and notice that, in concurrence with Brown’s stages, children might acquire verbal frames
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incrementally—using more complex constructions only after simpler constructions have been
learnt. We use this idea of incremental learning as a basis for the model presented in this thesis.
Chapter 3 investigates the problems of modelling language acquisition in general and discusses
the pros and cons of methods that have previously been adopted. Chapter 4 looks at pre-
vious categorial grammar learners—categorial grammar being the chosen formalism for this
work. The Learning System of Waldron/Villavicencio ([105], [104]) and the algorithms of
Buszkowski/Kanazawa ([17], [49]) are summarised in detail since they form the basis of the
learner presented here. This investigation of previous learners leads us to explore the different
types of input that a categorial grammar learner could be presented with in order to learn from.
The concept of asentence objectis introduced to refer to any input structure that carries atleast
as much information as a string. The complexity of learning from different types of sentence
objects is discussed as well as the cognitive plausibility of such objects. We select one particular
type of sentence object (the augmented string) as suitable input for models learning from real
data. We finish the chapter by outlining how augmented strings could be created and suggest
that they are simply representations of the constraints placed on the search space of possible
parses by the semantics associated with a string.
Chapter 5 presents the Categorial Grammar Learner. This chapter builds on the work of Wal-
dron/Villavicencio and Buszkowski/Kanazawa. It details a learner that uses the categorial gram-
mar rules of function application, function composition and Generalised Weak Permutation.
The learner makes use of a memory module which is used to constrain hypothesised grammars
and also makes the learner robust to noise. An example of the operation of the learner is given.
In Chapter 6 the Categorial Grammar Learner is evaluated. The efficiency of the model is
investigated in comparison with two previous models (the Triggering Learning Algorithm [39]
and the Structural Triggers Learner [38]). Further experiments demonstrate the learner to be
robust to noise caused by indeterminacy of meaning and indeterminacy in parameter setting.
This chapter concludes with a discussion of the developmental compatibility of the model in
relation to Brown’s stages of acquisition.
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Chapter 2

Analysis of Child I/O

In order to design and evaluate a model of language acquisition it is necessary to have a good
understanding of the properties of the input and output. With this mind, the following chap-
ter details a corpus study on some of the lexical properties of child-directed speech and child
speech.

2.1 Linguistic Input

A child’s environment is rich with stimulus but the degree towhich this stimulus contributes
to learning is much debated. With respect to language acquisition, stimulus is provided in
the form of language examples rather than direct teaching and is primarily provided by the
child’s caretaker. The importance of the linguistic interaction between caretaker and child is
still unclear; acquisition theories vary considerably in their input requirements. However, there
is one requirement beyond dispute; that of some sort of linguistic interaction. A child growing
up in a French speaking environment acquires French, the same child growing up in an English
speaking environment would acquire English; thus, a certain quantity of linguistic interaction
is needed to determine which language is to be acquired. Furthermore, linguistically isolated
children are known not to develop language spontaneously (the most well documented example
being Genie [30]).
The exact quantity and quality of linguistic input requiredfor successful acquisition is unknown.
Linguistic interaction with children is very much culturally defined ([92], [91]), consequently
broad statements regarding the nature of the input are very difficult to make. However, there
is evidence to suggest that there is a minimum thresholdquantity for successful acquisition;
a study by Sachs and Johnson [88] reported that a hearing child of deaf parents did not learn
spoken English despite having been exposed to television. Other research has suggested that
thequality of language can be fairly poor and acquisition still be successful; hearing children
of deaf parents do not just imitate the limited spoken language of their parents [6] but add to it.
The linguistic input to a child arrives from a number of sources; not all of which are specifically
directed at the child. Furthermore, it is apparent that a child will not attend to all the linguistic
input she is exposed to. Input can thus be divided into subcategories as shown in Figure 2.1: the
outer circle shows all the linguistic input available to a child (including television, overheard
conversations etc.); the circle labelled Child-Directed Speech (CDS) indicates the input which
is spoken directly to the child; the remaining circle indicates the input which the child actually
attends to.
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L i n g u i s t i cI n p u t C h i l d D i r e c t e dS p e e c h
I n p u tA t t e n d e d T o

Figure 2.1: Linguistic input to a child

2.1.1 Child-Directed Speech

Understanding the role of child-directed speech (CDS) is of fundamental importance to lan-
guage acquisition. Several manual small scale studies (seeSnow [94] for an overview) have
suggested that CDS is very different from speech between adults: intonation is often exagger-
ated, a specific vocabulary can be used, and sometimes even specific syntactic structures that are
not found in adult speech appear. Perhaps contrastingly, there is considerable evidence that ac-
curate and complex syntactic structures are informative during language acquisition (e.g. [58],
[67] and [36]). Consequently, the role of CDS is by no means clear. Pine [72], amongst others,
speculates that the purpose of CDS is to merely engage the child in conversation. Snow [94],
on the other hand, suggests that CDS is actually teaching the child language. Clearly, larger-
scale studies into the nature of CDS are required before we canbegin to establish its role in
acquisition. In this work we will look in particular at the role of subcategorization frames in
CDS.

2.1.2 Subcategorization Frames

Verbs may be categorised according to the types ofcomplementthey take; the partially ordered
list of complements being referred to as the verb’s subcategorization frame (SCF). The term
complementincludes obligatory and optional arguments but NOTadjuncts: complements are
understood to be selected by the verb and complete its meaning; adjuncts extend the meaning
of the central predication.
Examples 1a, 1b and 1c below demonstrate how verbs vary in their number of obligatory argu-
ments; i.e arguments which arerequiredin order to complete the meaning of the sentence. In
1a,surf does not require any arguments; we can assignsurf to the SCF categoryNULL. In 1b,
boughtselects the noun phrasea juicer to complete its meaning; we can assignbuy to the SCF
categoryNP. In 1c put requires both the noun phraseHarvey and the prepositional phraseon
the floor to be selected in order to complete its meaning; we shall assign it to SCF category
NP-PP.
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1. (a) Stephen surfs

(b) Andrew boughta juicer

(c) Lindsay putHarvey on the floor

Obligatory arguments may be identified by the“elimination” test (e.g. [95]), which involves
eliminating an element from a sentence and observing whether the remaining sentence is still
grammatical; sentences that do not contain all their obligatory arguments are not grammatical
(see 2a, 2b and 2c).1

2. (a) * Andrew bought

(b) * Lindsay puton the floor

(c) * Lindsay putHarvey

Now consider the sentences 3a, 3b and 3c. We have already stated that SCFs are classified by
complements—which includes both obligatory and optional arguments but not adjuncts. Oblig-
atory arguments may be identified by elimination but how do weidentify optional arguments
from adjuncts? For instance, the sentence in example 3b doesnot require the prepositional
phrasein the garden to be grammatical. So isin the garden an optional argument towork or
an adjunct?

3. (a) William dranklager

(b) Vic workedin the garden

(c) Harvey satlicking his paws

Unfortunately, there is disagreement in the literature over the classification of optional argu-
ments versus adjuncts. Some linguists address this problemby proposing an argument-adjunct
scale ( [64], [95]). Somers distinguishes a six-point scale:

i integral complements(as inJon doesn’t havea hope);

ii obligatory complements(as in 1c);

iii optional complements(as in 3a);

iv middlesas (in 3b);

v adjuncts(as in 3c);

vi extra-peripherals(as inBobby can eat,as you know).

The COMLEX lexicographers [66] distinguish adjuncts from arguments using a set of criteria
and heuristics. For instance, they state that PPs headed byto tend to be arguments, whereas PPs
expressing time, manner, or place are mostly adjuncts. Theyalso state that adjuncts occur with
a large variety of verbs at a similar frequency whereas arguments occur with a high frequency
with specific verbs.
In general SCFs can be made more specific (i.e. we can increase the number of possible
frames) by parameterising the frames for lexically-governed particles and prepositions. 4a il-
lustrates a SCF containing the particleup (NP-up-NP) and 4b a SCF with the prepositionto
(NP-to-NP).

1It should be noted that we are referring to syntactic grammaticality: Somers [95] points out that the elimination
test is not foolproof in that it may be complicated by the distinction between syntactic and semantic obligatoriness.
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4. (a) Cheryl took Ewanup a pint.

(b) Tom tookthe light sabre to Dave.

Semantic constraints might also be usefully captured within subcategorization frames. Such
constraints are usually referred to as selectional restrictions. For instance, the verbmooprefers a
cow as its subject andeatprefers an edible things as its object. Sentences that violate selectional
restrictions sound jarring.

5. (a) The cat was mooing because she was hungry.

(b) Stephen ate geography for breakfast.

Henceforth, the set of SCFs referred to in this chapter will bethe union of the SCFs found
in the ANLT [7] and COMLEX [43] dictionaries. These SCFs abstract over specific lexically
governed particles, prepositions and specific predicate selectional preferences but include some
derived semi-predictable bounded dependency constructions, such as particle and dative move-
ment (see Appendix A for a complete listing).

2.1.3 Subcategorization Frames in Acquisition

Landau and Gleitman [54] suggest that children use verb subcategorization frames (SCFs) to
identify novel word meanings; arguing that in many cases surface-structure/situation pairs are
insufficient or even misleading about a verb’s interpretation. Consider the sentencesDid you eat
your cookie?andDo you want me to take that away?According to Landau and Gleitman the
SCFs ofeat andwant cue their interpretations, i.e.want occurs with sentential complements,
suggesting a mental component to its interpretation. Furthermore, they suggest that SCFs pro-
vide convergent evidence on the meaning of a verb. For instance, if John zirks bill the bookthe
learner assumeszirk to be an active verb of transfer (such asbring, throw, explain), whereas if
John is zirking that the book is dullthe learner interpretszirk to be a mental verb.
Such a syntactically intensive theory of acquisition can only be supported if the input to children
is sufficiently complex and diverse in its SCFs. In general, CDSis thought to be syntactically
simpler than adult speech [94]. If the role of CDS is to teach language, as Snow suggests, then
we may have a conflict with acquisition theories that requiresyntactic complexity and diversity.

2.1.4 Automatic Extraction of Subcategorization Frames

Manual analysis of SCFs is very costly and therefore not idealfor large scale studies in specific
domains, such as CDS. Automatic acquisition of SCFs from corpora now produces fairly accu-
rate lexical data useful for (psycho)linguistic research (e.g. Roland et al. [85]). However, these
methods are yet to be applied to CDS.
In the following, the most comprehensive English subcategorization system available is used to
automatically acquire large scale empirical data related to verb SCFs from CDS. Both qualita-
tive and quantitative methods are used to compare the resulting data against that obtained from
a corpus of adult speech. Section 2.1.4 describes the methodfor subcategorization frame acqui-
sition and section 2.1.4 introduces the corpora used. The metrics involved in the analysis are
explained in section 2.1.5. Sections 2.1.6 and 2.1.7 look atthe difference in verb frequencies
and SCF distribution between the two corpora respectively. We conclude with a discussion and
summary of the observations. This work was carried out in conjunction with Anna Korhonen
and is originally published in [21].
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Methodology

For subcategorization acquisition, Korhonen’s version [51] of Briscoe and Carroll’s system [10]
was used. This system incorporates 163 SCF distinctions; theunion of those found in the
ANLT [7] and COMLEX [43] dictionaries (see Appendix A).
The system first extracts sentences containing specific predicates from a corpus. The resulting
data is tagged, lemmatised and parsed using the RASP system (Robust Accurate Statistical
Parser; [11]). Local syntactic frames including the syntactic categories and head lemmas of
constituents are then extracted from parses. The resultingpatterns are classified to SCFs on the
basis of the feature values of syntactic categories and the head lemmas in each pattern. Finally
a lexical entry is constructed for each verb and SCF combination.

Corpora

In order to make valid comparisons between SCF frequencies inCDS against those in adult
speech it is necessary to first ensure that the corpora are controlled for all other variables. Roland
and Jurafsky [84] have shown that there are subcategorization differences between written and
spoken corpora and, furthermore, that subcategorization is affected by genre and discourse type.
Hence, we use only spoken data for both corpora and restrict data to face-to-face conversation
between family members and friends.
To ensure sufficient data for subcategorization acquisition, we have had to use an American
English source for the CDS corpus although we had a British English source for the adult speech
corpus. However, we do not expect this to be a problem: Rolandet al [85] have shown that
subcategorization probabilities are fairly stable acrossAmerican vs. British English corpora;
finding any exceptions to be the result of subtle shifts in verb sense due to genre rather than the
dialect. The two corpora that were investigated are described below:

Child-Directed Speech—CHILDES1 Corpus The CHILDES database [63] contains transcripts
(and also media data) collected from conversations with young children. Most of the
transcripts record spontaneous conversational interactions. The speakers involved are
mostly young, monolingual, normally developing children talking with their parents or
siblings. There are also transcripts from“bilingual children, older school-aged children,
adult second-language learners, children with various types of language disabilities, and
aphasics who are trying to recover from language loss”[63]. The transcripts cover 26
different languages.

The CDS (or CHILDES1) corpus has been created from several sections of the CHILDES
database: Demetras1 [32]; Demetras2 [31]; Higginson [45];Post [81]; Sachs [87]; Sup-
pes [99]; Warren-Leubecker [106]. These sections of the database contain natural inter-
actions between a child and caretaker (average child age 2;7). Speakers are both male and
female, from a variety of backgrounds and from several locations around the USA. Child
speech has been removed from the corpus and there is no reading. The corpus contains
534,782 words and has an average utterance length of 4.8 words.

Adult Speech—BNC Corpus The British National Corpus (BNC) [56] isa 100 million word
collection of samples of written and spoken language from a wide range of sources, de-
signed to represent a wide cross-section of current British English, both spoken and writ-
ten.
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Our adult speech corpus has been manually selected from the demographic part of the spo-
ken BNC such that it contains friend/family interactions where no children were present.
The speakers were recruited by the British Market Research Bureau and come from a
variety of social backgrounds. Speakers are both male and female, from several locations
around the UK and all have an age of at least 15. Conversations were recorded unobtru-
sively over two or three days, and details of each conversation were logged. The corpus
contains 835,461 words and has an average utterance length of 7.3 words.

2.1.5 Methods of SCF Analysis

For each corpus, verbs with more than 50 occurrences were identified. Subsequently, a set of
up to 5000 verb-occurrence-utterances was extracted for each of these verbs. In practice the set
size was often much smaller than the maximum 5000. This was due to the highly Zipfian nature
of verb distributions in corpora; most verb types occur extremely infrequently in language (see
e.g. Korhonen [51] for a discussion). Verb sets containing less than 50 utterances were not used
since experience has shown that SCF acquisition from such small sets is unreliable. To make
the results comparable, an equal number of utterances were used per verb per corpus. Hence,
set size was often constrained by CHILDES1, which was the smaller of the two corpora.
Both qualitative and quantitative methods were used to compare the data in two SCF lexicons.
Korhonen and Krymolowski [52] found that, when comparing subcategorization frame distri-
butions, similarity measures vary in their robustness depending on the noise in the original data.
Consequently, similarity between SCF distributions in the lexicons has been examined using
several measures of distributional similarity (describedbelow). In the followingp = (pi) and
q = (qi) wherepi andqi are the probabilities associated withSCFi in the two distributions.

Intersection: the intersection of non-zero probability SCFs inp andq [61].

IS(p, q) =
2 ∗ com(p, q)

supp(p) + supp(q)

wheresupp(p) = the number of SCFs with non-zeropi andsupp(q) similarly. com(p, q)
is the number of SCFs with both non-zeropi and non-zeroqi.

Rank correlation: calculated by first ranking the SCFs in each distribution by probability and
then finding the Pearson correlation,corr(), between ranks [96]. More specifically, ifpi

is thekth smallest of thep’s then definerp
i to be equal tok, (similarly for q).

RC(p, q) = corr(rp, rq)

Rank correlation lies in the range[−1; 1], with values near 0 denoting a low degree of
association and values near -1 and 1 denoting strong association.

Cross entropy: a measure of the information needed to describe a true distributionp using a
model distributionq. Cross entropy is minimal whenp andq are identical.

CE(p, q) =
∑

i

−pilog(qi)
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Kullback-Leibler distance: a measure of the additional information needed to describep us-
ing q. KLD is always≥ 0 and= 0 only whenp ≡ q.

KLD(p||q) = CE(p, q) − H(p) =
∑

i

pilog(
pi

qi

)

whereH(p) is the Shannon entropy ofp.

Jenson-Shannon divergence:a measure which relies on the assumption that ifp and q are
similar, they are close to their average [61].

JS(p, q) =
1

2
[KLD(p||

p + q

2
) + KLD(q||

p + q

2
)]

Skew divergence:smoothesq by mixing withp [55].

SD(p, q) = KLD(p||α ∗ q + (1 − α) ∗ p)

SD(p, q) approximates KLD asα → 1. In this workα = 0.99).

2.1.6 Differences in Verb Types

Before conducting the SCF comparisons, the 100 most frequent verbs in the BNC corpus versus
the CHILDES1 corpus are examined in order to obtain a more complete picture of the differ-
ences between the two data. It was discovered that some verbstend to be frequent in both
corpora, e.g.go, get, think, like, make, come, take. However, closer analysis of the data re-
vealed large differences. In general, simple action verbs (e.g. put, look, let, sit, eat, play) are
more frequent in CHILDES1, while mental state verbs (e.g.know, mean, suppose, feel, seem)—
which tend to have richer argument structure—are more frequent in BNC. The 40 most frequent
verbs in the two corpora are listed in Figure 2.2 in the order of their frequency, starting from
the highest ranked. Mental state verbs have been roughly grouped and highlighted in bold. For
a list of the top 100 verbs see Appendix B.
Notice that in general the mental state verb counts are much higher in the BNC corpus; the
exceptions are the verbswant, try andneed. These verbs appear to be intrinsically tied with
the demands of the child (in the case ofwant, need) or with gaining the corporation of the child
(in the case oftry ). This could be seen to back the claims of Pine [72] who claimsthat the main
purpose of CDS is to simply engage the child in conversation.

2.1.7 SCF Comparison

A subset of the constructed lexicons were compared for subcategorization similarities between
the BNC corpus and CHILDES1 corpus. To obtain reliable results, we restricted our scope to
104 verbs; those for which the total number of sentences analysed for SCFs was greater than 50
in both corpora, and which were thus less likely to be affected by data sparsity problems during
SCF acquisition.
The average number of SCFs taken by studied verbs in the two corpora proved quite similar,
although verbs in BNC took on average a larger number of SCFs (17) than those in CHILDES1
(13). However, we found that most verbs (regardless of theirfrequency in the corpora) showed
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Rank BNC n CHILDES1 n
1 get 5000+ go 5000+
2 go 5000+ be 5000+
3 say 5000+ do 5000+
4 be 5000+ see 4200
5 know 5000+ put 4037
6 do 5000+ get 4018
7 think 4074 want 3411
8 see 2852 can 3409
9 like 2827 let 2771
10 can 2710 look 2585
11 come 2602 think 2280
12 want 2148 like 2038
13 mean 2078 know 1768
14 look 1930 say 1755
15 put 1776 come 1693
16 take 1443 make 1692
17 tell 1122 okay 1593
18 make 1092 take 1356
19 use 1016 eat 1172
20 will 1007 give 990
21 give 920 play 944
22 buy 590 tell 860
23 leave 548 find 661
24 keep 545 happen 581
25 pay 543 sit 580
26 let 536 read 571
27 remember 517 remember 563
28 work 495 try 556
29 suppose 489 fall 546
30 play 477 will 537
31 talk 475 need 531
32 ask 469 hold 527
33 find 464 turn 492
34 start 445 call 439
35 need 443 talk 426
36 call 431 thank 408
37 try 430 show 404
38 eat 394 wait 395
39 hear 370 bring 389
40 stop 345 mean 379

Figure 2.2: 40 most frequent verbs in adult speech (BNC) corpusvs. child-directed speech
(CHILDES1) corpus
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CHILDES1 vs. BNC
intersection 0.608
rank correlation 0.463
KL distance 1.022
cross entropy 2.698
JS divergence 0.083
skew divergence 0.533

Figure 2.3: Average similarity values: BNC vs. CHILDES1

substantially richer subcategorization behaviour in the BNC than in CHILDES1. A total of
78 frame types were hypothesised for the 104 studied verbs inthe BNC, while 69 were hy-
pothesised in CHILDES1. The intersection between the frame distributions in the corpora was
not large (0.61). The maximum possible intersection in thiscase is 0.92 (when the SCFs in
CHILDES1 are always a proper subset of those in the BNC); the figure of 0.61 indicates that
CHILDES1 is actually substantially different to the BNC.
The distributions of SCFs in the two corpora are fairly different. In order to compare distribu-
tions we have included only a verb’s SCFs whose relative frequency is higher than a defined
threshold (in this case 0.015); this should remove some noise from the data. We looked at
several measures when comparing subcategorization frame distributions since similarity mea-
sures vary in their robustness depending on the noise in the original data [52]. However, in
this case, all the measures show the same lack of similarity (see Figure 2.3). For instance, a
rank correlation measure lies in the range of -1 to 1 with values near 0 denoting the lowest
degree of association; here there is only a weak rank correlation between the frames in the dis-
tributions (0.46). The Kullback-Leibler distance is 0 whentwo distributions are identical; the
value 1.02 denotes a low degree of correlation. The cross entropy would have a value of 1.68
if the distributions were identical; the value of 2.70 againshows low correlation. Neither JS
distance nor skew divergence have any significance as stand alone values but are included here
for comparison with a second SCF study of child speech later inthis chapter.
Thorough qualitative analysis of SCF differences in the two corpora reveals reasons for these
differences. The most basic SCFs (e.g. intransitive and simple NP and PP frames; which
describehe slept, he ate an appleandhe put the book on the table) appear equally frequently in
both corpora. The same is true for prepositional and nominalcomplements (she asked him his
name, he put the toy in the box). However, a large number of more complex frames are either
very low in frequency or altogether absent in CHILDES1. For example, the verbhearappears
only in the following kind of constructions in CHILDES1:

1. I heard you(24 NP)

2. I heard(22 INTRANS)

3. I heard that you came(106 S-SUBJUNCT)

while in BNC it also appears in the following kind of constructions:

1. I heard it from him(49 NP-PP)
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2. Can you hear this out?(76 NP-PART)

3. I heard about it(87 PP)

4. I heard him singing(35 NP-ING-OC)

Several types of SCFs are poorly covered or largely absent in CHILDES1. Many of these were
frames involving sentential, adjectival and predicative complementation (e.g.they admit that
they did it(97 PP-THAT-S) , he painted the car black(25 NP-ADJP), I considered him
foolish (26 NP-ADJP-PRED)). However, particle constructions (e.g.I picked up the ball
(76 PART-NP)) are well covered. The total number of subjunctive constructions (e.g.I want
that you stop now(106 S-SUBJUNCT)was much higher in CHILDES1 than in BNC; as was
the number of infinitival constructions (e.g.you wanted to go(112 TO-INF-SC)). For a full
listing of all acquired frames per verb see Appendix C and fora comparison of the total number
of acquired SCFs see Appendix D.
While the SCF differences seem fairly big, they are perhaps notaltogether arbitrary. Rather, they
seem to be correlated with different verb senses and SCFs typically permitted by the senses.
To gain a better understanding of this, we looked into Levin’s taxonomy [59] which divides
English verbs into different classes on the basis of their shared meaning components and similar
syntactic (mostly subcategorization) behaviour. For example, in Levin’s resource, verbs such
asfly, move, walk, runandtravel belong to the same class since they not only share a similar
meaning but also take similar SCFs.
By grouping verbs together into their Levin’s classes, it wasnoticed that the SCFs within a Levin
class in CHILDES1 were a subset of those in the BNC for the same Levin class. For example,
Levin classes that take multiple sentential and predicative complements took a small range of
those SCFs in CHILDES1 and a greater number in the BNC. In the lightof this small scale
investigation with Levin classes, it seems that to gain a better understanding of SCF differences
in adult and CDS speech and the role of SCFs in language acquisition, it would be useful, in the
future, to investigate to what extent SCF learning is mediated by the sense of the predicate and
its membership in classes such as Levin’s.

Observations

A great number of subjunctive and infinitival constructionswere present in CHILDES1. This
can be explained by the fact that the semantic content of CDS ismostly concerned with the
child’s desires and wishes or with giving commands to the child; for instance, the phrasewant
to counts for almost half of the infinitival constructions. Theprevailance of these structures is
therefore a consequence of the subject matter.
In general, the empirical results shown here, obtained fromSCF analysis of large-scale data,
suggested that CDS is not only significantly simpler but also syntactically very different than
speech between adults.
Some prevailing theories of language acquisition (e.g. that of Landau & Gleitman [54]) suggest
that verb SCFs provide convergent evidence on the meaning of averb. These theories rely on
the assumption that the frames provided in a child’s input are adequately diverse to support
learning. Meanwhile, Snow [94] suggests that CDS plays an important role in the facilitation of
acquisition. If Snow and Landau & Gleitman are both correct then we would perhaps expect to
find that CDS is diverse in terms of its SCFs. However, previous small-scale empirical studies

28



(e.g. [94]) suggest that, while CDS is quite complex (displaying, for example, the full range of
conventional indirectness), it is syntactically much simpler than speech between adults. Perhaps
then, the role of CDS is to encourage the acquisition of simpleframes, providing a basis from
which more complex frames may be developed.
The fact that there is not significant correlation between the SCFs in two corpora is a little
surprising; one might expect CDS to contain a subset of adult speech’s SCFs. However, as the
small scale experiment with Levin classes suggests, the SCFsseem nevertheless correlated via
related verb meanings. While this issue requires further investigation, it is important to also
note that some CHILDES1 SCFs absent in BNC may not be altogether absent in adult speech.
Due to the Zipf-like nature of the SCF data, they may just occurin adult speech with a very low
frequency and may have been cut off by our relative frequencythreshold on frames. If this turns
out to be the case after further larger scale experiments, itwould indicate that most CDS SCFs
are indeed a subset of those in adult speech but the frequencies of the SCF in the two corpora
differ substantially.2

The results may also support Valian’s [102] findings that 4% of parental replies to children
are ungrammatical, and 16% grammatical but not fully acceptable (examples from our CDS
corpus include“play this together?”, “another one missing.”). Such utterances explain at least
partly why there are SCFs present in the CHILDES1 lexicon that are missing from the BNC.3

Valian also found that adults tend to reply to children usingan utterance which is lexically and
structurally similar to the child’s sentence (5% verbatim,30% structurally similar). Since child
speech at 2;7yrs (the average age of child subject in our CDS corpus) is usually simpler than
adult speech ([69] and [13]) such repetition could help to boost the relative frequency of simpler
frames in the CHILDES1 lexicon.

2.2 Linguistic Output

Language development and production in children has been more widely studied than the input
they learn from. Data has been collected in a variety of forms:

Diary Studies: the traditional method for tracking child language development. The studies
usually involve a single child whos caretaker keeps a diary of when new constructions
etc. are first produced. The diary is generally kept over a long period of time (several
years).

Large Sample Studies: involve a large number of children and generally record an experiment
looking for a specific language phenomena.

Longitudinal Language Sampling: generally involves regularly recording/transcribing of a
single child’s language; for instance, a child may be recorded for a few hours once a
week. Longitudinal studies are generally continued over a period of several months or
years.

2It should also be noted that, despite painstaking attempts to ensure transcriptions were standard across corpora,
any inconsistencies may cause systematic erroneous SCFs tobe acquired.

3Future work will check the precision of the CDS corpus against a suitable gold standard.
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2.2.1 Stages of Language Acquisition

The most generally cited stages of language acquisition are“Brown’s Stages” [13]. These stages
provide a framework within which to discuss and predict the path that normal language devel-
opment usually takes. Brown’s stage boundaries are defined bythe learner’s average utterance
length. Utterance length, in this case, is calculated as theaverage number of morphemes per sen-
tence. It is this particular measurement of average utterance length that differentiates Brown’s
Stages from other stage definitions. The alternative measure would be the average number of
words per utterance but this measure is less sensitive to changes in the acquired grammar; in-
flectional morphology, for instance, is bound to words. The utterance “Ducks eating bread” has
5 morphemes whereas “Duck eat bread” has only 3 but both phrases contain exactly the same
number of words. Brown refers to his measure as the Mean Lengthof Utterance or MLU and
to make it reliable he defined a set of criteria to specify precisely what constitutes a morpheme.
There are five Brown Stages specified by ranges of MLU’s:

Stage 1 (1.0–2.0 MLU):At around 12 months old children start to make reference to objects,
people and actions that are important to them. The child’s first words do not necessarily
sound much like adult words and are usually produced in isolation. At this part of Stage
1 the child will generally use a raised intonation to indicate that they are asking a yes/no
type of question.

At around 18 months vocabulary starts to increase rapidly and the child starts to produce
two-word utterances. Words which express negativity such as “no”, “gone” and “allgone”
are generally the first to be used in two-word combinations. These are followed by two-
word combinations of the typeagent+actionandaction+objecti.e. “I sit” or “See baby”.
Children’s two-word combinations are similar across cultures [77]:

Children tend to announce when objects appear, disappear, and move about,
point out their properties and owners, comment on people doing things and
seeing things, reject and request objects and activities, and ask about who,
what, and where.

During late Stage 1 (at the time when about half of the child’sutterances are two words
long) three and four word utterances begin to be introduced.Now children begin to
form declarative statements of the formsubject+verb+objectand start to introduce the
prepositions “in” and “on” as well as the conjunction “and”.

Stage 2 (2.0–2.5 MLU):During Stage 2 grammatical morphemes appear such as “ed”, “ing”
and “s”. The child overextends their use during most of this stage; possibly using words
like “go-ed”. Possessive pronouns start to be used as well aspreliminary auxiliary verb
forms (such as “wanna” and “gonna”). Question forms also become more complex during
this stage. The child begins to use “what”, “where” and “why”and also uses a rising
intonation at the end of a phrase to indicate a yes/no question.

The child is now more aware of the interactive nature of language. She will attempt to
repair utterances that were not understood and is able to sustain a topic for one or two
turns.

Stage 3 (2.5–3.0 MLU):Possessive pronouns and the modal verbs “can”, “will” and “do” be-
gin to be used consistently and the copular and auxiliary forms of “to be” are introduced.
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The child also starts using a few quantifiers such as “two” and“some”. The question set
now expands to incorporate “who” and “how”.

The child is still only capable of holding a topic for one or two turns. Its primary method
for doing this is to repeat part or all of the utterance of its conversation partner. Conversa-
tional repairs now involve trying to use another word for that which has been misunder-
stood, even if sometimes it is an inappropriate word.

Stage 4 (3.0–3.75 MLU):The child starts to use past tenses of the common modal verbs such
as “could”, “would” and “should”. Contractions like “didn’t” become common in nega-
tive sentences. “When” questions begin to be asked.

The child has now learnt that short pauses indicate that conversation exchange will con-
tinue whereas long pauses indicate that responses will not be forthcoming. Conversation
can be sustained for for more than two turns by the end of this stage and has become more
interactive. The child has become aware of what informationthe listener will need and
tries to provide it.

Stage 5 (3.75–4.5 MLU):More than half of the grammatical morphemes have been mastered
by Stage 5. The remaining morphemes (such as the irregular past tense, regular and
irregular third person) are mastered just after the child has finished Stage 5 and has MLU
of greater than 4.5. The child now understands superlativesbut not comparatives. She is
also using negative past tense forms like “weren’t”.

Question forms tend to now have properly inverted words e.g.“Is he playing?”. The
child is also starting to use indirect requests although themajority of utterances still refer
to direct requests.

Sources of Variation Amongst Children

One child’s language development may vary from another’s for several reasons. For instance,
variation may be due to biologically determined individualcapacities or abilities of the child
that lead to preferences for (or better skill at) particularlinguistic subsystems [46]. Further
variation may be caused by environmental effects. These range from obvious differences such
as the need to hear a language to speak it, to more subtle differences such as the effect of the
frequency of specific language forms [46] in the input.

2.2.2 Internal vs. External Language

Data-collection for the study of language development is a laborious but straightforward task;
the interpretation of the data, however, is not so straightforward. First, children are not born
with a fully developed articulatory system and consequently their productions, particularly in
the early years, are likely to be hindered by their linguistic performance. Furthermore, children
(as well as adults) understand a great many lexemes and constructs that they do not ever use
themselves. These points would suggest that we are likely tounder-estimate a child’s com-
petence. However, it is also easily possible to over-estimate a child’s linguistic competence
by generalising from a few isolated productions; a child that has produced the worddogshas
not necessarily learnt how to form plural inflections. Psycho-linguistic experiments (such as
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Gleason’s previously mentioned wug test [40]) can help to provide evidence for linguistic com-
petence that could not easily be recognised from child production transcripts alone, but since
these experiments are difficult to design and time consumingto perform, we cannot expect to
discover a child’s entire internal grammar from experimentation. By using the following guide-
lines we can reduce the risk of over- or under-estimate a child’s linguistic competence:

The Competence Assumptionassumes that a child’s linguistic performance is relatively close
to their linguistic competence. We can never presume a linguistic construct is known by
the child until there is evidence for it in the child’s performance [46].

The Productive Performance Criteria states that a child’s linguistic production can only be
said to have been produced by a rule when there is evidence that the rule is productive,
i.e. when the child creates new instances of the structure under discussion [46].

2.2.3 Child Production and Computational Modelling

From a computational linguistic viewpoint an interesting question is can a computer model
stages of language acquisition echoing those of a child? It is one matter to design a model
that acquires a language but another to design one that does so in the same way as a child. A
realistic model of acquisition (i.e. one that learns from real data and is attempting to learn a real
grammar) could hopefully exhibit similar learning stages to that of a child. However, we can
not expect too much of a model in this respect since there are other factors to take into account.
A child’s cognitive functionality is developing in parallel with language ability. It is therefore
possible that some aspects of language are completely barred to a learner until a particular
milestone in cognitive development has been reached. Having passed such a milestone a learner
would be capable of processing language units in such a way that new grammatical information
can be acquired. A computer model does not develop in this manner. Its ability to manipulate
symbols remains constant throughout the learning process.
At the very least a computational model of language acquisition should be generally supportive
of the observed stages of child language acquisition. I refer to this property as thedevelopmental
compatibilityof the model. In Chapter 6 I shall evaluate the developmental compatibility of the
learning model presented in this thesis with reference to Brown’s stages and the evidence of
produced subcategorization frames from a child speech corpora (presented below).

2.2.4 Subcategorization Frames in Child Speech

In the following section the subcategorization frames found in child speech are compared with
the frames found in linguistic input. In particular the CDS corpus (CHILDES1 corpus) and the
adult speech corpus (BNC corpus) are contrasted to a child speech corpus. The child speech
corpus is constructed from all of the child utterances that were removed from the CHILDES
database to construct CHILDES1. The child speech corpus is referred to as CHILDES2. It
contains 273831 words and 81086 utterances; the MLU over thewhole corpus is 3.4 and the
children’s average age is 2;7.4

4Note that future work will investigate the interaction and alterations in SCF distribution within CDS and child
speech at different child ages; the sizes of the currently available corpora are not sufficient for such a task.
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Rank BNC n CHILDES1 n CHILDES2 n
1 get 5000+ go 5000+ go 3018
2 go 5000+ be 5000+ get 2361
3 say 5000+ do 5000+ want 2069
4 be 5000+ see 4200 put 1682
5 know 5000+ put 4037 see 1188
6 do 5000+ get 4018 let 971
7 think 4074 want 3411 make 849
8 see 2852 can 3409 eat 781
9 like 2827 let 2771 look 765
10 can 2710 look 2585 take 699
11 come 2602 think 2280 okay 623
12 want 2148 like 2038 know 563
13 mean 2078 know 1768 come 496
14 look 1930 say 1755 need 467
15 put 1776 come 1693 give 442
16 take 1443 make 1692 play 427
17 tell 1122 okay 1593 like 391
18 make 1092 take 1356 do 335
19 use 1016 eat 1172 fall 329
20 will 1007 give 990 read 315
21 give 920 play 944 say 287
22 buy 590 tell 860 sit 272
23 leave 548 find 661 thank 254
24 keep 545 happen 581 hold 253
25 pay 543 sit 580 sleep 224
26 let 536 read 571 cause 207
27 remember 517 remember 563 open 199
28 work 495 try 556 watch 194
29 suppose 489 fall 546 be 182
30 play 477 will 537 find 169

Figure 2.4: 30 most frequent verbs in adult speech (BNC) corpusvs. child-directed speech
(CHILDES1) corpus vs. child speech (CHILDES2) corpus.

2.2.5 Differences in Verb Types

Figure 2.4 shows the 30 most frequent verbs in all three corpora; the child speech corpus is
shown in the third column. Notice that, as predicted by Brown,the most frequent verbs tend
to describe the properties of objects and their owners (e.g.take, give, fall, hold, open); or the
actions of people (e.g.get, put, make, say, watch); or relate to the child’s desires (want, eat,
need, sleep).

2.2.6 SCF Comparison

The distribution of subcategorization frames found in the child speech corpus (CHILDES2)
was compared to both the child-directed speech corpus (CHILDES1) and adult speech corpus
(BNC). As in the previous experiment the verbs selected for SCF comparison were chosen
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BNC CHILDES1 CHILDES2
Average No. of Frames 15 11 10
Total No. of Frames 73 67 58

Figure 2.5: Frame comparison: BNC, CHILDES1, CHILDES2.

CHILDES1 vs. BNC CHILDES1 vs. CHILDES2
intersection 0.608 0.621
rank correlation 0.463 0.492
KL distance 1.022 0.682
cross entropy 2.698 1.986
JS divergence 0.083 0.074
skew divergence 0.533 0.404

Figure 2.6: Average similarity values: BNC vs. CHILDES1, CHILDES1 vs. CHILDES2

because of their quantity of occurrence in the corpora; eachcorpus had to contain at least 50
utterances for a verb if it was to be analysed.
The average number of SCFs taken by the verbs studied in the child speech (CHILDES2) corpus
was 10; this compared to an average of 15 SCFs for the same verbsin the adult speech (BNC)
corpus and an average of 11 SCFs for the child-directed speech(CHILDES1) corpus. In the
child speech corpus a total of 58 frames were acquired for the78 verbs studied, while the
CHILDES1 and BNC hypothesised 67 and 73 respectively. The adult speech corpus is clearly
the most syntacticly rich of the three and, as one might expect, the child speech corpus is the
least so. It is interesting, however, to notice that the child-directed speech corpus sits right
between the two (see Figure 2.5).
The average similarity values, shown in Figure 2.6, clearlyindicate that the distribution of SCFs
in the child speech corpus is much closer to that of the child-directed speech corpus than the
adult speech corpus. To remind the reader, rank correlationvalues closer to 1 denote a stronger
similarity; KL distances closer to 0 indicate the same. If the distributions were identical the
cross entropy would have a value of 1.68 for CHILDES1 vs. BNC and1.30 for CHILDES1
vs. CHILDES2. Both JS divergence and skew divergence are comparative measures; the fact
that JS divergence and skew divergence are lower for CHILDES1vs. CHILDES2 indicates that
they are more closely correlated than CHILDES1 vs. BNC.
The average intersection between SCFs was higher for the child speech and child-directed
speech corpora (0.621) than for the child speech and adult speech corpora (0.590). This differ-
ence might suggest that children more readily pick up the frames occurring in speech directed
to them than from the speech between adults around them. However, we can not be sure of
this since we are unable to tell how greatly the similarity between CHILDES1 and CHILDES2
is due to the utterances being two halves of the same conversations. This shall have to be
investigated further.
For some verbs,how-toconstructions (such ashe explained how to do it(17 HOW-TO-INF))
and verb particle plus infinitive constructions (such ashe set out to win(139 SC-INF,
PRT, SUBTYPE EQUI)) are found both in CHILDES1 and CHILDES2 but are entirely
missing from the adult speech corpus. It is possible that these frames, missing from the adult
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speech, might have been acquired by the SCF system in error dueto the issue, as reported by
Valian [102], that adults often (30% of the time) reply to a child in a manner that structurally
echoes the child’s last utterance, even if that utterance isungrammatical.
The total set of acquired SCFs for the child speech corpus forma proper subset of those acquired
for the child-directed speech corpus; largely this is also applies on a per verb basis. However,
we can not infer from this that children never generalise incorrectly from one verb to another
since the phenomena might be both too rare and subtle to be picked up in this data.
Figure 2.7 shows the SCFs acquired from the three corpora for the verbshit andpull. Notice
that, for the verbhit, the two SCFs that are common to child speech and child-directed speech
but not to adult speech (to hit pleases youandhit it that it breaks) are most likely an illustration
of parental imitation. Also notice that, for the verbpull, the SCFs common to child speech
and adult speech but not child-directed speech (he hit her the ballandhe pulled it to him) are
answers to questions (e.g.what is he doing?); this suggests that the child-directed speech is
also being used to engage children in conversation as suggested by Pine [72].
The corpora studies presented here show that child-directed speech is syntactically less diverse
than speech between adults and that it contains a similar distribution of SCFs to child speech.
Why parents alter their language in this way is a still a matterof debate; are they attempting
to match the child’s linguistic competence or trying to aid acquisition by providing simpler
constructions to learn from? Either way, it is clear that a good deal of the language that children
are exposed to contains a reduced set of less complex SCFs. Furthermore, children produce
language using a small and less complex set of SCFs than adults. Adhering to the Competence
Assumption these observations lead towards the conclusionthat human learners acquire and use
complex syntactic constructions only after simpler constructions have been learnt (concurring
with Brown’s stages); the acquisition model presented will operate in a similar manner.
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C h i l d S p e e c h A d u l t S p e e c h
C h i l d D i r e c t e d S p e e c h

1 0 42 4 2 27 7 61 0 61 2 3 1 2 9 2 5 1 61 1 73 78 1
H I T C h i l d S p e e c h A d u l t S p e e c h

C h i l d D i r e c t e d S p e e c h
2 4 2 2 7 61 0 68 73 7 1 1 7 81 0 42 65 2 1 9P U L L

No. SCF Example
1 ADJP his ball hit high
7 S-SUBJ-NP-OBJ that she hit amazed them
8 TO-INF-SUBJ-NP-OBJ to hit pleases him
16 HOW-S he hit where she told him to
19 ING-NP-OMIT her hair needs pulling
22 INTRANS you hit
24 NP he hit her
25 NP-ADJP he hit the ball hard
26 NP-ADJP-PRED it pulled her hard
37 NP-NP he hit her the ball
52 NP-S he pulled it so it would go higher
76 PART-NP he pulled his socks up
87 PP he pulled it to him
104 S it hits that it knocks it off
106 S-SUBJUNCT pulls it that it breaks
117 NP-NP-up he pulled him up a chair
123 MP he hit 5
129 SFIN, AGR S[FIN +], SUBTYPE EXTRAP that it hits counts

Figure 2.7: SCFs acquired for the verbshit andpull
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Chapter 3

Learnability and Learning Models

A normal child will learn the language of their environment and is theoretically capable of
learning any language; a child living in an English speakingenvironment learns English but the
same child brought up in a Chinese speaking environment wouldlearn Chinese. Assuming that
low level brain functionality is standard in normal humans,it follows that it must be possible
to learn any member of the class of natural languages using a fixed set of mental mechanisms.
Formally, a class of languages islearnableif there exists a learning function that can success-
fully learn the grammar of any language in the class. The definition of successful learningwill
depend on the learning model.

Gold’s Model: Gold [42] modelled language learning as an infinite process in which a learner
is presented with an infinite stream of sentences of the target language. Every time the
learner encounters a new sentence a guess is made as to the grammar of the target lan-
guage on the basis of all the sentences encountered so far.

Gold made two assumptions about the input stream: first, onlygrammatical sentences of
the target language appear in the stream; secondly, every sentence of the target language
eventually appears in the infinite stream.

Formally, we have:

1. Ω—an hypothesis-space of grammars (or grammar-space);

2. Φ—a sample set of grammatical sentences;

3. F—a learning function that maps finite subsets ofΦ (languages) to elements ofΩ.

Gi = F ({s0, s1, s2, ..., si})

whereGi ∈ Ω ands0, s1, ..., si ∈ Φ

Gold’s criterion for success was if the learner reached a point after which its guess no
longer changed; i.e. if the learner converged on a grammar. He called thisidentification
in the limit. Formally, letSi be the set of sentences{s0, s1, s2...si} thenF converges to
G ∈ Ω if there exists ann ∈ N such that for alli ≥ n, F is defined onSi and is equal to
G.

Unfortunately, using this criterion, it is impossible to ever distinguish if learning has been
successful, since the learner may always guess a new grammarwhen presented with the
next sentence.
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Statistical Models: Other work has shown that learning can be modelled as a statistical com-
petition between all the grammars within the hypothesis-space (see [12] and [109] for
natural language examples). Using a statistical model,F returns a probability distri-
bution over the grammar-space. The distribution represents each grammar’s fitness to
describe the sentences encountered so far. The current grammar,Gi, (after encountering
Si) is selected according to the distribution. Under this model of learning, we can give a
similar criterion for success:F converges toG ∈ Ω if there exists andn ∈ N such that
for all i ≥ n, F is defined onSi and returns a distribution overΩ such thatG is most
likely.1

For learning in general, Gold provides us with a model from which specific details must be
fleshed out; in particular the definition of the hypothesis-space and the learning function.
Linguistically, the spectrum of learning models is marked at one end by nativism and by em-
piricism at the other. The pure nativist viewpoint asserts that the input stimulus presented to
children is too impoverished for successful acquisition. Consequently nativists assume the ex-
istence of some innate linguistic knowledge or language faculty (referred to by Chomsky as the
Universal Grammar). Models derived from this viewpoint will generally have a comparatively
small grammar hypothesis-space since it is constrained by the innate knowledge. Learning
functions for nativist models tend to be algorithmic in nature—analysing an input string and
then moving systematically from one grammar to the next within the small hypothesis-space.
The pure empiricist, on the other hand, believes that language may be acquired without the aid of
any innate language faculty. For empiricist models, the hypothesis-space is unconstrained and
consequently very large. Learning functions for empiricist models tend to be highly statistical
and consequently data demanding—identifying the target grammar only after a great deal of
data has been observed.

3.1 Principles and Parameters

Chomsky is a particular advocate of nativism. He claims [22] that, given the “relatively slight
exposure” to examples and “remarkable complexity” of language, it would be “an extraordinary
intellectual achievement” for a child to acquire a languageif not specifically designed to do
so. HisArgument from the Poverty of the Stimulussuggests that if we knowX, andX is
undetermined by learning experience, thenX must be innate. For an example consider structure
dependency in language syntax:
A question in English can be formed by inverting the auxiliary verb and subject noun-phrase:
(1a) “Dinahwasdrinking a saucer of milk”; (1b) “wasDinahdrinking a saucer of milk?”
Upon exposure to this example, a child could hypothesise infinitely many question-formation
rules, such as: (i)swap the first and second words in the sentence; (ii) front the first auxiliary
verb; (iii) front words beginning with w.
The first two of these rules are refuted if the child encounters the following: (2a) “the cat
who was grinning at Alicewas disappearing”; (2b) “was the cat who was grinning at Alice
disappearing?”
If a child is to converge upon the correct hypothesis unaided, she must be exposed to suffi-
cient examples so that all false hypotheses are refuted. Unfortunately such examples are not

1Note that the statistical nature of competitive models makes them robust to noise and amenable to language
change. These properties will be discussed later in this chapter.
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readily available in child-directed speech; even the constructions in examples(2a) and (2b)
are rare [57]. To compensate for this lack of data, Chomsky suggests that some principles
of language are already available in the child’s mind. For example, if the child had innately
“known” that all grammar rules are structurally-dependentupon syntax, she would never have
hypothesised rules(i) and(iii) . Thus, Chomsky theorises that a human mind contains a Uni-
versal Grammar which defines a hypothesis-space of “legal” grammars.2 This hypothesis-space
must be both large enough to contain grammars for all of the world’s possible languages and
small enough to ensure successful acquisition given the sparsity of data. Language acquisition
is the process of searching the hypothesis-space for the grammar that most closely describes
the language of the environment. With estimates of the number of living languages are around
6800 [35] (and this being only a sample of all possible languages), it is not sensible to model the
hypothesis-space of grammars explicitly, rather it shouldbe modelled parametrically. Language
acquisition is then the process of setting these parameters.

A grammar can be located in the hypothesis-space by its properties: if setA contains all the
grammars that produce asubject-verb-object(SVO) ordering and setB contains all grammars
that producesubject-drop, then the grammar of Italian, for example, lies in the intersection ofA
andB. Once enough properties are specified then a grammar can be uniquely identified in the
intersection of all the sets it belongs to. The hypothesis-space itself is defined by all the possible
combinations of properties. The properties are defining thegrammar-space parametrically; and
the innate knowledge of the existence of these properties isan example of Chomsky’s Universal
Grammar (UG). To be clear, Chomsky speculated that the UG is composed ofprinciples(the
aspects of language that are common to all languages) andparameters(language variables to
be observed during the process of acquisition). Here, the learner is provided with the innate
knowledge that all grammars are definable by the presence or absence of particular properties,
and also the knowledge of what those properties are; these are Chomsky’s language principles.
The grammar search is refined by observing properties in the language environment; observing
a property is analogous to setting one of Chomsky’s parameters.

The properties of a grammar may be represented as an array that contains as many elements as
there are property sets; the value in each element indicating whether or not the grammar in ques-
tion belongs to the property set associated with that element. Each grammar will have a unique
configuration of the array. Language acquisition is the process of finding the right configuration
from all the possibilities; a search on a search-space of size2N whereN is the number of prop-
erty sets (henceforth referred to a parameters). Acquisition would be most efficient when the
number of parameters needed to distinguish between all grammars is small; i.e. when each set
is maximally discriminatory. With 6800 world languages, atleast 13 parameters are required
for a realistic model of language acquisition (213 = 8192). However, it is unlikely that children
are predisposed to maximally discriminate between all the world’s languages. Chomsky [24]
suggested that parameters should represent points of variation between languages; following
this idea it has suggested that perhaps30+ parameters are required. If this is the case then the
UG is describing a hypothesis-space of over a billion grammars.

2Discussion of structural dependence as evidence of the Argument from the Poverty of Stimulus is illustrative,
the significance being that innate knowledge in any form willplace constraints on the hypothesis-space.
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Figure 3.1: A property array; identifying the location of grammarG in the intersection of sets
A andB (where setA, for example, contains all those grammars exhibiting property A).
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Figure 3.2: The hypothesis-space; the shaded area being thelocation of the same grammar,G.

3.1.1 Triggers

To converge upon the grammar of the environment language thelearner needs to set the values
of all N parameters. The learner can set an element when evidence hasbeen provided from
language examples to show that a property is (or is not) exhibited; these language examples
are referred to as triggers. In the best case a learner need only be exposed toN triggers before
acquisition is complete.
But what exactly constitutes a trigger? And how does a learnerknow whether an utterance con-
tains a trigger. Clark [28] suggests that every parameter is associated with a trigger that causes
the learner to set the parameter’s value immediately upon exposure to it. Fodor’s Structural
Trigger Learner (STL) [38] adopts this definition of a trigger.
Triggers are easily found if the properties the learner is looking for are independent of each
other. However, there is a conflict between using independent properties and using sufficient
properties to uniquely identify all grammars; Clark [27] andKayne [50] estimate that between
30 and 40 properties are needed (which is significantly more than the minimal 13). This has the
consequence that in practice, triggers are difficult to comeby; very often language examples
contain ambiguous evidence for the properties that the learner is looking for [27]. For instance,
sentences of English (subject-verb-object ordering) might be misclassified as a subject-object-
verb ordering with an activeV 2 (verb movement), as in German. When faced with an ambigu-
ous trigger the learner has two choices:

(a) choose one of the possible interpretations and set the parameter values according to that
interpretation;

(b) ignore the trigger entirely and wait for an unambiguous one.

The first approach is adopted in Gibson and Wexler’s Triggering Learning Algorithm (TLA) [39].
This learner analyses incoming triggers using the current property settings and modifies their
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values if they conflict with the properties of the incoming trigger. Unfortunately, this method of
dealing with an ambiguous trigger has been found to put the learner at risk of never converging
on the correct grammar.
Fodor’s original Structural Triggers Learner (STL) [38] recognises ambiguous triggers by car-
rying out some structural analysis and then ignores them entirely; instead waiting for unambigu-
ous triggers. This method avoids converging on the wrong grammar but relies on the learner
encountering unambiguous triggers for every property. As mentioned above, the existence of
such triggers is questionable [27]. Also, the STL learner iswasteful of the language examples it
is provided with; exerting a lot of effort in the structural analysis of triggers only to throw most
of them away — so, neither approach(a) or (b) are without problem.
Dresher and Kaye [33] suggest that the problem of ambiguous triggers can be avoided if there is
a constraint placed on the order in which the learner looks for properties; so the learner ignores
triggers demonstrating propertyB until a trigger demonstrating propertyA has been observed.
Dresher and Kaye’s model was designed to learn metrical phonology but we can extend the
general idea; the hope being that by placing a careful ordering on the properties, the decision
of which interpretation to use for an ambiguous trigger can be made for free. For example,
consider a trigger that may be interpreted as either exhibiting propertiesB andC or properties
A andD. If the ordering on properties isA beforeB beforeC beforeD, then a learner will
choose the second interpretation (propertiesA andD) and set the element relating to property
A. Note, that the learner can not set propertyD element because propertiesB andC have not
yet been observed. Having seen propertyA, the learner can now wait for a trigger exhibiting
propertyB. Using this type of model increases the size of the learner’sinnate knowledge since
now it not only knows what properties to look for but also which order to look for them in.

3.1.2 The Triggering Learning Algorithm

Gibson and Wexler [39] designed the Triggering Learning Algorithm (TLA) to investigate learn-
ing over a grammar-space defined by binary valued parameters. The original work investigated
learning in a grammar-space defined by three binary parameters: specifier, complement andV 2
(see Figure 3.3). The specifier and complement parameters defined word order. The specifier
parameter is concerned with the location of the specifier (determiner etc.) with regard to its
head (in this case the main verb). Setting the specifier parameter to1 for example, indicates
that the language is specifier-final (i.e. specifiers occur after the head-word); setting the same
parameter to0 would then indicate a specifier-initial language. This follows similarly for the
complement (or object) parameter. TheV 2 parameter (when set) indicates that verb movement
is allowed from its base position as defined by the word-orderparameters to second position. In
other words, if theV 2 parameter is set then the surface order of the words may be altered even
though the base order is unchanged. This phenomena is seen inthe Germanic languages. Us-
ing these parameters an English type subject-verb-object language and Germanic type language
would be represented as in Figure 3.4.
This setting of the parameters allows for the base word orderto be complement-initial but for
the verb to take 2nd position in root declarative clauses.

• ... dass Christopher der Ball kauft.

• Christopher kauft der Ball.
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PARAMETER NAME VALUE 0 VALUE 1
Specifier initial final
Complement initial final
V 2 on off

Figure 3.3: The 3-parameters of the Triggering Learning Algorithm.

LANGUAGE SPECIFIER COMPLEMENT V 2
English 0 (initial ) 1 (final) 0 (off)
German 0 (initial ) 0 (initial ) 1 (on)

Figure 3.4: English and German type languages in Gibson and Wexler’s parameter-space.

The TLA is error driven; put simply, its function is to randomly modify a parameter value every
time the learner cannot parse the current input. The algorithm is bound by two constraints: the
first is the Single Value Constraint [26], which ensures that the TLA only ever considers gram-
mars that differ from the current hypothesis by one parameter; and the second is the Greediness
Constraint [26], which ensures that the current hypothesis is only changed if there is something
to gain in doing so. For ann-parameter-space a single iteration of the algorithm proceeds as
follows:

1. Attempt to parse the current input utterance,S1:

(a) if S1 can be parsedthen leave the parameters unchanged;

(b) elserandomly select and toggle one parameter (with probability1/n of selecting
each parameter).

i. if S1 can be parsed with the new settingsthen adopt the new settings;

ii. elserevert to the original parameter settings.

The TLA has the following problems (which will be discussed further in Chapter 6):

local maxima: the phenomena where a non-target grammar is reached from which the learner
can never reach the target grammar;

ambiguous triggers: some input examples can be parsed by more than one grammar in the
hypothesis-space (i.e. there is more than one way to configure the parameter settings
to achieve a successful parse). By choosing grammars blindly(randomly choosing a
parameter to toggle) an “unwise” grammar could be adopted that, in the worst case, might
lead to a local maxima;

noise: the algorithm is deterministic and will modify parameters even when the input example
is erroneous.
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3.1.3 The Structural Trigger Learner

The Structural Triggers Learner (STL) [90] addresses some of the problems with ambiguity that
are faced by the TLA. The model provides a set of schematic treelets as part of its Universal
Grammar. A treelet can be thought of as a subtree that is used in the derivation of a full parse.
The STL associates a treelet with each feature of the language and consequently they may be
thought of as parameters. A language is identified by the subset of treelets that are required to
parse the language.
During learning, all Universal Grammar treelets are available to the algorithm. If an unam-
biguous parse is found that requires a treelet that has not already been collected into the subset
required for the language, then that treelet is adopted. There are several versions of the STL
which differ in how to handle ambiguous parses. The algorithm with the least processing is
called theWeak STL; it proceeds as below:

1. Attempt to parse the current input utterance,S1, with current subset of treelets:

(a) if S1 can be parsedthen the subset of treelets remains unchanged;

(b) elseattempt to parseS1 with all treelets in the Universal Grammar.

i. if at some point during the parse there is a choice of treelets then disregardS1

for all learning.
ii. elseadopt all novel treelets that have been used in the parse intothe subset of

treelets.

The STL allows several treelets (parameters) to be learnt during a single parse. This is useful
for speedy learning. However, the wait for an unambiguous parse to learn from might be very
long; especially at the early stages of acquisition when allthe treelets are “in play”.
Although able to deal with ambiguity, the STL (like the TLA) can not handle noisy input.
The following section discusses the problem of noisy input data and explains an important
requirement—that models should be robust to noise.

3.2 Noise and Learning Models

A child is exposed to evidence of her target language that must exclusively belong to one of three
possible classes: positive evidence is information that describes which utterances are allowed
in the target language; negative evidence is information that describes which utterances are
not allowed in the target language; errors are pieces of information that have been mistakenly
classified as either positive or negative evidence.3

Positive Evidence: Positive evidence can be presented to a child in the form of example utter-
ances spoken by proficient members of her language community. A large proportion of
the language a child is exposed to will be positive evidence.In fact Pinker [77] goes as far
as saying that “effectively the input to the learneronly includes grammatical sentences”.
Following Gold’s paradigm [42], a child hypothesises her language based on accumulated
positive evidence; all previously heard utterances form a subset of the current hypothe-
sised language. Learning is completed once the hypothesised language no longer needs
to be updated.

3This discussion is previously published as [20].
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Negative Evidence:Negative evidence might be provided by correcting a child when they pro-
duce an ungrammatical sentence. Evidence of this sort couldbe used to constrain the child
from hypothesising a grammar that describes a superset of the target language. A child
that is only ever exposed to positive evidence can not be corrected if she hypothesises a
grammar that is too unspecific. However, in general childrendo not learn from correc-
tion [14]. This indicates that there must be some other mechanism for constraining the
hypothesised language: a possible solution is Minimum Description Length learning [83]
(where the child only ever hypothesises the simplest language that describes the evidence
seen so far).

Errors and Noise: Lacking any discerning information, a child is likely to assume that all the
utterances she hears are grammatical and therefore constitute positive evidence. However,
spoken language can contain ungrammatical utterances, perhaps in the form of interrup-
tions, lapses of concentration or slips-of-the-tongue. When a child misclassifies such
utterances as positive evidence, an error has occurred.

Situations also arise where entirely grammatical sentences can produce an error because
of misclassification due to indeterminacy. For instance, indeterminacy of the input may
lead to noise within the parameter settings of the UniversalGrammar [27]: sentences
of English (subject-verb-object ordering) can be misclassified as a subject-object-verb
ordering with an activeV 2 (verb movement) parameter, as in German.

In general, any environment that contains ambiguity can introduce errors. Often a child
is exposed to input from more than one target language and yetmanages to learn one
(or more) consistent grammar(s), rather than a grammar thatallows all possible combina-
tions of the sampled input. Specific examples of this includediglossia [53] and language
change [60]. In such situations, misclassification of one ofthe input languages is an ex-
ample of an error. Furthermore, there are documented situations where a conflicting and
inconsistent input is “regularised” and fashioned into a single consistent generative gram-
mar; as in the cases of rapid creolization [5] and the acquisition of sign language from a
source of non-expert signers (the case of Simon [68]).

Errors of these sorts are always accidental and lead to the false assignment of an utterance
to the class of positive evidence. A child is somehow able to cope with such erroneous
assignments.

A malicious error would occur if a deliberate attempt was made to confound the child’s
acquisition of language. An example might be if the child is corrected on her grammat-
ically correct utterances or if she is deliberately exposedto utterances that are ungram-
matical. Malicious errors are unlikely in spoken language but deliberate errors do occur
in some very early child-directed speech in the form of nonsense words, and also in later
child-directed speech due to parental imitation of children’s ungrammatical utterances.

To summarise: in an ideal learning situation a learner wouldhave access to an oracle [103] that
can correctly identify every utterance heard as either a positive evidence, negative evidence or
noise. However, a child learning its first language can not rely on receivinganynegative evi-
dence; at best she can hope to receive positive evidence or, more realistically, positive evidence
that is also noisy. Without an oracle a child is, of course, unaware of when an erroneous utter-
ance has been encountered. She is also unaware of when an ambiguous utterance has caused an
error to occur. Any simulation or explanation of language acquisition should therefore attempt
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to learn from every utterance it encounters and should be robust to errors whether caused by
erroneous utterances or general ambiguity.

3.2.1 How do Errors Affect Learning?

Consider a simplified learning problem, a game for two players: the first player, the exampler,
thinks of a set of numbers that can be defined by a rule, such as multiples of two{x|x/2 ∈ Z};
the second player, the guesser, attempts to reproduce the set by discovering the rule which
defines it. The only information available to the guesser is acontinuous stream of examples
provided by the exampler.
A possible scenario might be that the first two examples provided are 4 and 8. At this point
the guesser may well hypothesise that the set contained multiples of four{x|x/4 ∈ Z}. The
guesser doesn’t need to revise this hypothesis until she encounters an example that breaks the
rule. If the guesser ever arrives at the hypothesis that the set contains multiples of two she’ll
never have to revise her hypothesis again.4

Now if the same game was played in a noisy room or with a distracted exampler the guesser
might receive erroneous examples. For instance, in attempting to guess the set{x|x/2 ∈ Z},
the guesser may have heard the examples 2, 4, 7, 8,... If the guesser classifies all the examples
as positive evidence then there are two possible outcomes: either the guesser fails to find a rule
or she hypothesises the wrong rule.
The guesser could only arrive at the correct hypothesis if she is aware that some of the exam-
ples may be erroneous. The guesser’s best chance of winning is to figure out which hypothesis
is most likelyto be correct. Before the game begins the guesser will consider all hypotheses
equally likely. As the game proceeds the working hypothesisis selected if it is the most likely
given the accumulated evidence. In other words the guesser must adopt a statistical methodol-
ogy to cope with the erroneous examples.

3.2.2 Introducing a Hypothesis Bias

Now, the interesting problem is: how many erroneous examples could the guesser encounter
before she is completely unable to guess the rule. The answerlies in the type and the frequency
of the errors encountered as well as any bias the guesser may have towards certain hypotheses.
For example, consider the set{x|x/5 ∈ Z}. With no examples the guesser considers all hy-
potheses equally likely. After being exposed to the examples 15, 30, 45 the guesser has to
consider the hypotheses{x|x/5 ∈ Z} and{x|x/3 ∈ Z} to be equally likely. Too many er-
roneous examples that happen to be multiples of three but notmultiples of five may lead the
guesser to eventually choose the later and incorrect hypothesis,{x|x/3 ∈ Z}. However, if the
guesser had been initially biased towards the{x|x/5 ∈ Z} hypothesis, perhaps because her
favourite number is five, then she may have continued to select this hypothesis despite the ac-
cumulated evidence. In terms of language acquisition, hypothesis biases would need to be part
of the innate principles of the Universal Grammar.

4The situation where the guesser hypothesises a rule that produces a superset of the original set is not discussed
here. This situation would be avoided by allowing the exampler to provide negative evidence (i.e. examples of
numbers not in the set) or by constraining the hypothesis-space.
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3.3 Statistical Models of Language Acquisition

The Triggering Learning Algorithm and the Structural Triggers Learner are deterministic mod-
els. The next parameter to be set is ascertained from the current trigger and the current parame-
ter settings only; the models have no memory of the utterances that have been previously seen.
Since parameters can be set on the basis of evidence from a single trigger, the models rely on
the input to the learning system being free from error. Considering the evidence above, these
models can not be considered realistic.
A statistical model can “consider” the distribution of evidence before committing to a course of
action. In terms of the principles and parameters paradigm,a parameter is only set when enough
evidence is accumulated; when there is not enough evidence the parameter remains unchanged.
This might be achieved by setting a lower bound on the number of triggers that need to be
encountered in support of a parameter before that parameteris set. As long as the target pa-
rameter values are the most statistically likely in the datathen the learner will eventually obtain
enough evidence to set the parameters correctly despite anyerroneous utterances. Furthermore,
a statistical parametric learner has some ability to deal with the problem of ambiguous triggers.
For a simple illustration consider a language which exhibits propertyA and not propertyB
and a trigger from that language that may be interpreted either as exhibiting propertyA or as
exhibiting propertyB. If the learner has been keeping track of the distribution ofproperties
over all triggers then it will have hopefully seen evidence for the propertyA many more times
than evidence for propertyB. The learner can choose the correct interpretation on the basis
of the accumulated evidence and update the parameters’ values and distribution of properties
accordingly.
For a more complicated but realistic example, consider again Gibson and Wexler’s parameter-
space and the confusable SVOV 2-(English-like) and SOVV 2+ (German-like) languages. The
3 stringssubj-verb, subj-verb-objandsubj-aux-verboccur in both languages and may be parsed
with parameter settings[010] or [001] (see Figure 3.3 for a reminder of the parameter meanings).
However, for the English-like language the 5 stringssubj-aux-verb-obj, adv-subj-verb, adv-
subj-verb-obj, adv-subj-aux-verb-objandsubj-aux-verb-objalso occur. These strings can not
parse if theV 2 parameter is set to 1. If all strings are equally likely then we will get more
parses withV 2 set to 0 than set to 1. Eventually there will be enough accumulated evidence to
confidently set theV 2 parameter to 0.
Unfortunately, this method will not work as efficiently in a realistic model because there is not
a uniform distribution over sentence constructions in realdata. The constructionssubj-verband
subj-verb-objare the most common in both English and German. Consequently,we might be
a long time waiting for enough evidence to set theV 2 parameter. If the learner has a method
for detecting ambiguity (such as the STL), then the parameter setting rate could be increased by
adding greater weighting to evidence acquired from unambiguous triggers.
In general, if we assume that the majority of language provided to a learner is grammatical,
then linguistic evidence from erroneous utterances will become statistically insignificant and
will be ignored. Furthermore, a statistical model has scopefor dealing with errors caused by
ambiguity; the only downfall being the need for a larger amount of input data.
By using a statistical model we are required to endow the learner with an innate ability for
statistical retention of data. How this is achieved and exactly what is retained is a matter of
debate. Should the learner analyse the triggers and record the distribution of all possible in-
terpretations (a possible statistical extension to Fodor’s STL) or perhaps, attempt to parse the
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if Gi parsess then p′i = pi + γ(1 − pi)
p′j = (1 − γ)pj if j 6= i

if Gi does not parses then p′i = (1 − γ)pi

p′j = γ

N−1
+ (1 − γ)pj if j 6= i

Figure 3.5: Bush and Mosteller’s Linear Reward-Penalty scheme: given an input sentences and
total number of grammarsN , the learner selects a grammarGi with probabilitypi.

trigger with the current settings, rewarding parameters for a successful parse and penalising
them when unsuccessful? In the second case, how does the learner discover which parameters
contributed to a failed parse and subsequently decide whichparameters to punish and which to
reward? Briscoe [12] has implemented a Bayesian Incremental Parameter Setting (BIPS) algo-
rithm which addresses this issue. In this model a partially-ordered hierarchy of parameters are
each associated with a probability. During learning, the probability associated with a “success-
ful” parameter is increased while the probabilities of “unsuccessful” parameters are reduced. A
parameter is considered successful if it is involved in a valid parse of a trigger. Probabilities are
evaluated using Bayes theorem,

p(a|b) =
p(b|a)p(a)

p(b)

which has the added benefit of allowing priors to be assigned to parameters before learning com-
mences. By assigning priors the hypothesis-space can be biased as described in section 3.2.2.
Another reward-penalty learner, implemented by Yang [109], is discussed below.

3.3.1 The Variational Learner

Yang’s Variational Model involves associating each parameter with a weight representing the
prominence of that parameter in the learner’s hypothesis-space; consequently this associates a
probability to every grammar in the hypothesis-space. Grammar selection for parsing (and also
production) is a function on the probability distribution over the grammars. The parameters
in the selected grammar are either rewarded or penalised depending on whether or not it is
able to parse the incoming utterance. Rewards and penalties are calculated in accordance with
the Linear Reward-Penalty Scheme [15] (see Figure 3.5 for a general Linear Reward-Penalty
Scheme for competing grammars): a successful grammar has all of its parameters probabilities
increased; an unsuccessful grammar has all its parameters probabilities decreased. Acquisition
is complete when the grammar weights become approximately constant. The method is passive
and requires the learner to do nothing other than select a grammar from the distribution and then
reward or punish the parameters as appropriate.
Even in a noiseless environment, this method of setting parameter weights will never allow
them to become constant; they will tend towards a limit. In reality, due to the noise inherent in
speech, the parameter weights are likely to fluctuate withina tolerance threshold.
A problem with the Variational Model is that it does not reward or penalise parameters indi-
vidually. When a grammar parses, all parameter’s probabilities are increased; so every time
the successful grammar is not actually the target grammar then some parameters have been
rewarded unjustifiably. Contrastingly for unsuccessful grammars, unless the grammar’s param-
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Figure 3.6: A schematic diagram of a typical neuron.

eters are the inverse of the target grammar then some parameters are being penalised unjustly.
Yang admits that this approach is naive but hopes that “in thelong run, the correct parameter
values will prevail”. Experimentation backs this claim.
Another problem with this learner is that the problem of local maxima is not definitely solved.
Yang’s model selects a grammar for parsing according to the current probability distribution: if
that particular grammar is successful its parameters are rewarded while all others are penalised.
The learner has no method of knowing if the input utterance was ambiguous (being parsable by
another grammar), unlike in the STL for example. So what happens if a grammar that describes
a superset of the actual target takes an early lead in the probability distribution? This grammar
will be selected more often than any other grammar as a possibility for parsing and it will
always have its parameters rewarded since it is capable of parsing all sentences that the actual
target could. The more it is rewarded, the more often it is selected, until finally the learner
converges on the wrong target. During the entire learning process the learner was unaware
that the utterances it received were ambiguous; and since the superset grammar can never be
penalised, it could never realise its mistake.
These problems aside, Yang’s model has been shown to be a formally specified model capable
of making quantitative predictions over developmental language patterns, as well as giving
an explanation for continuity between adult and child language. Furthermore, he is able to
“formalise historical linguists’ intuition that grammar competition is a mechanism for change”.
It is also possible to envisage Yang’s model extending to other problems in acquisition. In fact,
the model could be used in any situation where learning can beexpressed as a competition
between forms. For an example, consider the acquisition of aphoneme set: adults identify and
use only the phonemes of their own language despite being born able to recognise the phonemes
of all languages; such a learning process is easily modelledwith a distribution on a phoneme-
space.

3.4 Connectionist Modelling

The models discussed so far have all fallen within the principles and parameters paradigm.
However, a study of language models is not complete without adiscussion of connectionism.
Connectionist models are often closely associated with empiricism since they begin as a “blank
state”. There is no concept of an innate Universal Grammar. Everything is learnt from linguistic
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U N I TJ1011
0 . 7 50 . 5 0 . 7 50 . 5 1 U N I TK1010

0 . 7 50 . 5 0 . 7 50 . 5 0
Net input to unitJ = (1 ∗ 0.75) + (0 ∗ 0.5) + (1 ∗ 0.5) + (1 ∗ 0.75)

= 0.75 + 0 + 0.5 + 0.75
= 2.0

Net input to unitK = (1 ∗ 0.75) + (0 ∗ 0.5) + (1 ∗ 0.5) + (0 ∗ 0.75)
= 0.75 + 0 + 0.5 + 0
= 1.25

Figure 3.7: The operation of a unit in a neural network.

input.
The models are based upon the architecture of neural networks in the brain. Each network
consists of units (which are analogous to neurons) that are connected together by weighted
links (modelling synapses). Each unit is assigned an activation level which determines whether
the unit will produce data at its output: much like the activation energy required by a neuron
in order to fire. Thus neural networks consist of four parts (units, activations, connections, and
connection weights) each of which corresponds to a particular structure or process in biological
neural networks (Figure 3.6).
Figure 3.7 shows the operation of a typical unit. To determine the net input to the unit, all the
input values are scaled by the weight of their connection andthen summed. In Figure 3.7 both
unitsJ andK have a simple activation threshold of1.5: if the net input is≥ 1.5 the output will
be1; and if> 1.5, the output will be0. The net input to unitJ exceeds the activation threshold
so the unit responds with output1. The input to unitK does not exceed the activation threshold;
the unit responds with output 0.
More generally, connection weights are found to be expressed both positively and negatively; a
negative weight being taken to represent inhibitance of thereceiving unit due to the activity of
a sending unit. The function for calculating activation maybe any function that is dependent on
all the weighted input. Furthermore, the unit output need not simply toggle at a threshold value
but may fall within the range[0, 1] as determined by a function on the weighted input (e.g. a
simple scaling on the activation function). Whatever the activation method, it is assumed that
all units in a particular network operate in the same way.
Units in a neural net are usually arranged in several layers (see Figure 3.8): the input layer, the
output layer and one or more hidden layers. The units in the input layer receive input stimulus
in the form of an encoded pattern. The activated output of these units is transferred to units in
the hidden layer. Finally the signal propagates to the output level where the response signal is
recorded.
Training a neural network involves finding the right set of connection weights to prompt the
correct response for a given input. The simplest method of training is calledback-propagation.
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Figure 3.8: The architecture of a neural network.

Initially the weights of the net are set randomly. Next, a pattern from the training set is placed at
the input units. This pattern is allowed to propagate through the hidden layer to the output units
where the resulting pattern is compared to the desired output. Then all the weights in the net are
adjusted slightly in the direction that brings the output pattern closer to the desired output. This
process is continued with the rest of the training set. In order to achieve the required connection
weights the network will often have to undergo hundreds or thousands of iterations of training.

3.4.1 Connectionism as a Model of Language Acquisition

The first connectionist models used to model language were concerned with verb morphology.
Rumelhart and McClelland [86] trained a neural network to predict the past tense of English
verbs. The network performed well, trained on a set of mostlyirregular verbs. It was even
shown to have generalised for patterns within the irregularverbs that were not in the training
set. The network was then trained on an additional set of verbs containing mostly regular forms
(420 verbs in total). During training, the network was shownto have over-generalised regular
forms or even combine regular and irregular forms: producing breakedor broked instead of
broke. A similar phenomena is seen in children learning English; between the ages of 2 and 5
children appear to over-regularize often producing such errors:

“It breaked”—Naomi, age 2, The Sachs Corpus, CHILDES.

Over-generalisation in the network was corrected with sufficient training; after 200 iterations
all verbs had been correctly learnt. The similarity betweenover-generalisation in children and
Rumelhart and McClelland’s neural network has prompted the suggestion that this network is a
good model of acquisition. However, this claim is fiercely opposed by classical computational
linguists and by those who tend towards algorithmic models.Pinker and Prince [79] argue
that the network has a problem generalising rules and that this is a failing of neural networks
in principle. Thewords and rulesalgorithm provided by Pinker [78] assigns regular verbs to
the default -ed rule. Meanwhile, irregular verbs pre-empt the default rule; their past tenses are
memorised by rote. Hence, Pinker’s model will never give an incorrect past tense for a regular
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verb. This is not the case for the Rumelhart and McClelland’s model which might very well
predict the past tense ofthink to be thunkby “generalising” from the pattern of the irregular
verbsink/sunk; whether or not this is a useful trait is still up for discussion.
Indeed, the apparent inability of neural networks to mastergeneral rules is a major criticism of
connectionist modelling. However, Elman’s work using a recurrent network [34] has demon-
strated that it is possible for a neural network to exhibit behaviour similar to that of a very
simple ruled-based context-free grammar (albeit on a very small vocabulary of only 23 words).
It should be noted that the success of this model relies heavily on the manner in which it is
trained (much like the model presented in Chapter 5).
Another problem that need to be tackled within connectionist theories is that of “one-time”
learning. Humans display an ability to learn from single events (such as touching a hot object).
Since connectionist training techniques require many iterations they are as yet unable to explain
this phenomena. However, it should be remembered that a unitin a neural network is only a
crude model of the neuron. It is easy to forget that there are many types of neuron in the brain
whereas a neural network will generally only use one type of unit. Furthermore, the effects of
neurotransmitters are not modelled.
Neural networks are robust to noisy data in a similar manner to the statistical models; they can
exhibit robustness because they are both recording information about the previously seen data.
For a neural network, the values of its connection weights are a consequence of every input
that has been observed. Training requires an enormous amount of data, the majority of which
will be grammatically accurate. The networks “work” by generalising from patterns and are
consequently reasonably unaffected by the occasional erroneous input during training. Neural
networks do not have to be robust to ambiguous triggers (as the parametric learners do) since
there are no parameters to be set. Moreover, connectionist models are robust to “physical”
destruction of the model. If units are destroyed the gradualdegraduation of functionality is
observed; responses are still appropriate, though somewhat less accurate.
It is perhaps unfortunate that research in language acquisition has often vehemently adhered to
either connectionism or the principles and parameters paradigm. There is often an analogy that
can be found between the two. For instance, the introductionof a hypothesis bias in a nativist
model might also be modelled by initialising connection weights in a neural net (although the
latter is certainly more difficult to get right). All said, the main reason for rejecting connection-
ism to model language acquisition is that the training is just too expensive (with regard to both
data and computation).

3.5 Learning from Semantics

Thus far our discussion of learning and learnabilty has focused on learning from strings (or
surface-strings in the case of the TLA—see 3.1.2). This nextsection will investigate learning
from the semantic representations associated with strings. Learning from semantic represen-
tations is of particular interest when modelling language acquisition; we might assume that if
a child has attended to an utterance then she will have associated some semantic content to it.
However, most of the work in this area has not been carried outwith child language acquisition
in mind; rather it has focused on the automated constructionof natural language interfaces for
data-base queries—and as such, has been generally concerned with fairly limited domains.
Some of the earliest work in this area attempted to learn case-role assignments (e.g. agent,
patient) and was carried out using connectionist models (e.g. [65]). Subsequently, Mooney
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and colleagues improved on these connectionist models using their semantic acquisition sys-
tem called CHILL ([110], [111]) and its successor COCKTAIL [100] both of which employ
Inductive Logic Programming techniques. These systems cantrain on a corpus of sentences
paired with their corresponding semantic representationsand induce a grammar (actually a
shift reduce parser) that can subsequently be used to transform sentences directly into semantic
representations. Very recently further work has been published that automatically induces a
categorial grammar to map natural language sentences to lambda calculus encodings of their
meanings [112]. The major difference between this work and that of Mooney is that CHILL

and COCKTAIL require lexical semantics to be known before the commencement of learn-
ing (although Thompson and Mooney demonstrate how a lexiconfor CHILL may be acquired
in [101]).
All of the above work has been carried out on database query tasks: i.e inducing grammars to
map sentences to database queries. This is a neat semantic learning problem since a) system
evaluation for the task is straightforward—simply check that the system returns the correct an-
swer to the natural language query; and b) the training data is reasonably easy to come by—it
can be generated from users of the database in question with little extra effort. However, by
the nature of database queries, this work has focused on (sometimes fairly artificial) language
within a limited domain. As such, these methods are not easily extended to the task of real
language learning. For instance, Zettlemoyer and Collins postulate trigger rules which generate
only 8 categorial grammar categories for their induced categorial grammar. Real non-domain-
specific language requires many more categories available to the lexicon: a categorial grammar
manually constructed by Villavicencio [104] required89 categories to describe just2000 utter-
ances of child directed speech (which, as shown in Chapter 2 issyntactically less complicated
than speech between adults). Furthermore, for real language acquisition, all trigger rules must
be considered to be part of the principles of a Universal Grammar—thus imposing innate bur-
dens on the learner.
The basic principle of these semantic learners is very similar to the work presented in this thesis;
they are all attempting to induce a grammar from a string paired with a semantic representation.
The difference is in the application and implementation: the systems described above are trying
to solve a functional problem (that of mapping natural language interfaces to database queries)
whereas the work in this thesis attempts to be cognitively plausible and developmentally com-
patible with human learning.

3.6 Summary

In this chapter we have seen that for a language acquisition model to handle real data, it must
have a method of dealing with noise. Both connectionist and statistical models are robust to
noise because they record information about the language distribution as a whole; any model
that determines its next state based only on its current state and the current input can not be
robust to erroneous data.
A connectionist model, although most robust to noisy data, requires an enormous amount of
data and computation for learning. Models that follow a morenativist theme (the principles
and parameters learners) potentially require much less data since the hypothesis-space is con-
strained. However, to eliminate the possibility of reaching a local maxima these parametric
models must also have some mechanism for recognising ambiguity.
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The acquisition model presented in this thesis, will learn from input utterances paired with se-
mantic representations and will induce a grammar for parsing. It will make some use of a Uni-
versal Grammar. However, the model will not employ parameters in the traditional sense, but
instead make use of a memory module that keeps a statistical record of the syntactic constructs
that have been learnt so far. As alluded to by the analysis of child speech and child-directed
speech (see Chapter 2) the model learns incrementally. A benefit of this incremental learning is
that it avoids many of the issues of ambiguous input (similarto the ordered parameter learner
of Dresher and Kay).
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Chapter 4

Categorial Grammar Learners and the
Input they Receive

This chapter discusses the mechanisms of categorial grammar learners as well as the input they
receive. First, Section 4.1 presents an overview of categorial grammars; including a description
of common rules and the association between semantics and categorial grammar categories.
Section 4.2 then discusses previous categorial grammar learners. We notice that the input pro-
vided to categorial grammar learners is not standard. For instance, the categorial grammar
learner of Buszkowski ([16], [17]) learns from structures, where as the learning system of Wal-
dron/Villavicencio ([105], [104]) learns from string/semantic-form pairs. In order to determine
the complexity and cognitive plausibility of various type of inputs, Section 4.3 introduces the
concept ofsentence objects(the term I use for conceptual elements that carry at least asmuch
information as a string). Sentence objects are simply possible starting points from which learn-
ing can commence. A discussion is presented on the complexity of learning from different types
of sentence objects and on their cognitive plausibility. Having selected the type of sentence ob-
jects we will use as a input for our categorial grammar learner, Section 4.4 presents a learning
system that provides a cognitive model for creating such objects from semantic representations.

4.1 Categorial Grammars

4.1.1 Classic Categorial Grammars

In a classiccategorial grammar all constituents and lexical items are associated with a finite
number of types. Types are formed fromprimitive typesusing two operators,\ and/. If Pr is
the set of primitive types then the set of all types,Tp, satisfies:

Pr ⊂ Tp
if A ∈ Tp andB ∈ Tp, thenA\B ∈ Tp
if A ∈ Tp andB ∈ Tp, thenA/B ∈ Tp

One member ofPr is thesentence type, s. All other members ofPr are referred to as the
variables, V ar, such that:

Pr = {s} ∪ V ar.
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Members ofTp may be combined by considering them as arguments and functors. A type that
is acting as a functor encodes the following information:

1. the type of the argument(s) the function takes;

2. the directionality of the argument(s) (i.e. the whether the argument can be found to the
left or right of the function);

3. the type of the result.

Arguments are shown to the right of the operators and the result to the left. The forward slash
operator (/) indicates that the argument must appear to the right of the function and a backward
slash (\) indicates that it must appear on the left.

Function Application

For a classic categorial grammar, types may be combined using the rules of function application:

Forward Application(>) : A/B B → A (4.1)

Backward Application(<) : B A\B → A (4.2)

whereA andB range over types.
A sentence has a valid parse if the lexical types (the types assigned to the words in the sen-
tence) may be combined to produce a derivation tree with roots (the primitive sentence type).
Consider a grammar using variableV ar = {np}, (thus primitive typesPr = {s, np}, allowed
typesTp = {s, np, s\np, s/np, s\s...}) and lexicon,L1, which associates words with types—a
grammar that associates at most one type to each member of thelexicon is called arigid gram-
mar whereas a grammar that assigns at mostk types to a member of the lexicon is ak-valued
grammar.

L1 = { smudge → np,

chases → (s\np)/np,

mice → np }

GivenL1, the sentenceSmudge chases miceis parsed as follows:

Smudge

np

chases

(s\np)/np

mice

np
>

s\np
<

s

The types of the constituents in this parse are combined by acting as either functors or argu-
ments. The type ofchasesfor instance,(s\np)/np, is acting as a functor; taking annp argument
from the right to give the return type(s\np). For the purpose of this work, and for categorial
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grammars in general, the primitive categories must be regarded to include minor syntactic infor-
mation such as gender and number agreement. If inflectional information is explicitly required
it may be provide via agreement features (usually represented as subscripts to the syntactic
category) [98].
Note that classic categorial grammars have a simple correspondence with context-free gram-
mars. Given a classic categorial grammar,G, with lexiconΣ, then therangeof G is the set of
types thatG assigns to words inΣ, soTp(G) = {A | A ∈ range(G)∨A is a subtype ofrange(G)}.
The set of context-free grammar rules to describeG may now be defined as:

CF (G) = {B → A B\A | B\A ∈ Tp(G)}

∪ {B → B/A A | B/A ∈ Tp(G)}

∪ {A → lex | lex ∈ Σ}

4.1.2 Combinatory Categorial Grammars

Real natural language can not be modelled using the rules of function application alone. Several
other rules have been posited to provide more extensive syntactic descriptions. A selection are
illustrated in Figure 4.1 whereA,B,C, T ∈ Tp and | is a variable over\ and/ (see [98] for
an overview and also [12] for the rule of Generalised Weak Permutation). A grammar which
employs any of these rules in addition to those of the classiccategorial grammar, is called a
combinatorycategorial grammar.

Function Composition

The rules of composition (4.3 and 4.4) allow non-constituents to be created. A constituent is
considered to be a sequence of text that can be assigned a typeusing only the rules of function
application. Consider the sentence”Somebody might eat you”:

somebody

np

might

s\np/s\np

eat

s\np/np

you

np

The sequenceeat youfor example is a constituent whereasmight eatis not. The composition
rules can be used to assign a type tomight eatby allowing the argument of a function to be a
function itself:

Somebody

np

might

(s\np)/(s\np)

eat

(s\np)/np
> B

(s\np)/np

you

np
>

s\np
<

s
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Type Raising

The type raising rules (4.5 and 4.6) allow arguments to become functions (or more precisely,
allow arguments to become functions over functions over arguments). The utility of this is
in capturing co-ordinate structures. For instance, consider the sentenceAndrew throws and
Smudge chases the ball(see Figure 4.2); the forward type raising rule can be used totransform
thenp-subjects (AndrewandSmudge) into s/(s\np)’s, which may then be composed with the
verbs (throwsandchases) to allow co-ordination with the direct object, (the ball):
The unary type raising rules may be applied to any type at any point during the parse—providing
the undesirable possibility of an infinite parse tree. To avoid this pitfall the use of the type raising
rules is generally constrained. For instance, type raisingcan be restricted to only produce types
that already exist in the lexicon; or restricted to act only on the lexicon; or restricted to use only
as a back-off parsing option when all other rules fail (although this can be dangerous if there
are ungrammatical strings).

Function Substitution

The substitution rules (4.7, 4.8, 4.9 and 4.10) are used for parasitic gap constructions; allowing
a single argument to used by two functors. Consider the sentence “Christopher watched with-
out enjoying the match between Manchester United and Villarreal” . HereChristopheris the
argument of bothwatchedandwithout enjoying.

Christopher

np

watched

(s\np)/np

without enjoying

((s\np)\(s\np))/np
< Sx

(s\np)/np

the match

np
>

s\np
<

s

Generalised Weak Permutation

The Generalised Weak Permutation (GWP) rule is a unary rule that allows arguments in a func-
tional category to be reordered. After reordering, the permuted category may be able to combine
with adjacent categories that were previously not compatible with the rules. The allowed per-
mutations of arguments is limited to rotations of the original ordering; for a functional category
of n arguments there will be onlyn permutations.
The GWP rule allows a flexible ordering on the constituents of oblique transitive verbs like
donatewhose original category is(s\np)/np/pp. The allowed argument rotations would parse
both sentencesKim donated the money to charityandKim donated to charity the money.
The GWP rule can also be used to parse sentences containing unbounded dependencies (rela-
tionships between non-adjacent constituents), which includes many wh-questions and relative
clauses. Figure 4.3 shows the sentenceChickens make the eggs that we eatand uses the GWP
rule to parse the relative clausethat we eat:
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Chickens
·
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·

np

make

(s\np)/np

the

np/n

eggs

n

that

(n\n)/(s/np)

we

np

eat

(s\np)/np
P

(s/np)\np
<

s/np
>

n\n
<

n
>

np
>

s\np
<

s

Figure 4.3: An example of Generalised Weak Permutation in CCG.

4.1.3 Generalised Weak Permutation vs. Type Raising

Note that GWP and the type raising rules can be used to capture similar linguistic constructs.
A Combinatory Categorial Grammar will tend to use either type raising or GWP but not both.
Since they are unary rules, both type raising and GWP can be applied almost anywhere in the
parse tree; consequently, their use is normally constrained. It is usually asserted that these rules
should only be used on items in the lexicon. The reasons for adopting one of these rules in a
CCG rather than the other will depend on the application. Type raising rules are more linguis-
tically pleasing since they functionally capture the nature of the phenomena being expressed.
However, for work on grammar inference (such as the work here) type raising increases the
search space over GWP.
If we restrict use of the rules to the lexicon, GWP may be applied as many times as there are
arguments in the lexical items of the sentence. Type raising, however, is bounded by the size
of Tp (i.e. the number of lexical types in the grammar—which is arguably infinite but at least
undefined in a learning situation). For an example consider the sentence‘Philip amuses Carol”.

Philip

np

amuses

s\np/np

Carol

np

Now, imagine we are trying to derive a parse tree for this sentence from the syntactic categories
by exhaustive application of the rules of a CCG. For this sentence the GWP rule can only be
used on the verbamusesand it can only be applied once (applying it twice yields the original
category). The type raising rule may be applied to every wordin the sentence in| Tp | possible
ways; since any word can be raised by any category inTp. This in itself is a problem because
while we are still learningTp is undefined: unless we make some very strong assumptions
about what is known by the learner before learning commences(cf. the predefined categories
of Villavicencio’s categorial grammar learner described in Section 4.2.1).
In general, the number of arguments in a sentence is proportional to the number of words,n. So,
for the GWP rule we add complexityO(n) but for type raising we add complexityO(nTp). For
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the example above,“Chickens make the eggs that we eat”, we can make3 possible applications
of GWP whereas for type raising we have at least9 ∗ 7 = 63 (sinceTp must contain at least as
many types as occur in this derivation and we can raise every word in the sentence by each of
these types). Although most of these applications of the type raising rule would lead to parses
that fail, it would have been preferable to not have considered them at all. It has been noted that
in English, type raising need only be used on primitive types(like np andpp) [97]. This would
reduce the number of possible applications to27 which is still 9 times more than for GWP.
Furthermore, if use of type raising is restricted to primitive types then there is a requirement
for the learner to be aware of this. In a real language learning situation this equates to either
a) having innate knowledge of which categories type raisingcan apply to or b) having some
method of learning which categories type raising can apply to.

4.1.4 Semantics and Categorial Grammars

A close relationship can be found between a categorial grammar type and semantic type. To
explain how we can represent and exploit this relationship it is first necessary to know a little
about lambda calculus. All lambda calculus expressionsE can be expressed using the following
context free grammar, wherex is a variable:

E → x

E → λx.E

E → (EE)

Consider the functiong(x) = 2x. In lambda calculus we may represent this function asλx.2x.
Thex in this expression is bound by theλ. Lambda expressions may be applied to arguments
using function application. For example,g(3) would be written(λx.2x)3. Function application
is left associative; we can express and evaluate the addition of numbersa andb as follows:

(λxλy.x + y)ab

≡ (λx(λy.x + y))ab

→ (λy.a + y)b

→ (a + b)

Instead of mathematical functions let us now consider semantic predicates. Let the expression
(LOVE’ bob’ helen’ ) be the semantic representation of“Helen loves Bob”. Here the predi-
cateLOVE’ has two arguments;helen’ is the actor andbob’ the undergoer. Using function
application we could represent the same semantic expression in lambda calculus as:

(λxλy.LOVE′xy)bob′helen′

The expressionλxλy.LOVE′xy tells us how the word“love” behaves semantically and can be
recorded in the lexicon along with its syntactic category.
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love : (s\np)/np : λxλy.LOVE′xy

Notice the relationship between the syntactic category andlambda expression; they both ex-
press a functor that takes an argument and becomes another functor that takes another argument
in order to be evaluated. The only difference is that the syntactic category expresses the direc-
tionality of the arguments.

Indeed, thePrinciple of Categorial Type Transparency[98] states that:

For a given language, the semantic type of the interpretation together with a number
of language-specific directional parameter settings uniquely determines the syntac-
tic category of a word.

A consequence of this principle is that if the semantic type of a lexical item is known then
a certain amount about its syntactic category is also known.For example, from the semantic
expression (LOVE’ bob’ helen’ ) we know thatLOVE’ is a two argument predicate. Hence,
the syntactic category of “love” will also take two arguments (but we don’t know their direc-
tionality). This knowledge can be represented in a skeletonsyntactic category asA|B|C where
A,B,C ∈ Tp and | is a variable over\ and/. Furthermore, we know that if the argument
is a semantic entity (such ashelen’ or bob’) then the associated syntactic argument will be a
primitive syntactic category. This could be represented asA|a|b wherea, b ∈ Pr. The abil-
ity to extract syntactic information from semantic representations is fundamental to the learner
presented here.

All of the rules of the categorial grammar can be representedin lambda calculus; this allows us
to combine semantic constituents to evaluate the semantic content of a sentence. Some CCG
rules and their semantic lambda expression are shown below;η-conversion1 has been used to
simplify the reading:

Forward Application(>) : A/B : f B : a → A : fa

Backward Application(<) : B : a A\B : f → A : fa

Forward Composition(> B) : A/B : f B/C : g → A/C : λx.f(gx)

Backward Composition(< B) : B\C : g A\B : f → A\C : λx.f(gx)

Forward Type Raising(> T ) : A : x → T/(T\A) : λf.fx

Backward Type Raising(< T ) : A : x → T\(T/A) : λf.fx

Generalised Weak Permutation(P ) : ((A | B1)... | Bn) : λyn...λy1.fy1...yn →

((A | Bn)... | B1) : λy1λyn....fy1...yn

The following shows an example of how these rules can be applied to the sentence“Smudge
chases mice”to derive the semantic predicateCHASE’ mice’ smudge’.

1λx.fx ≡ f whenx is not free inf
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Smudge

np : smudge′

chases

(s\np)/np : λxλy.CHASE′xy

mice

np : mice′

>
s\np : λy.CHASE′mice′y

<
s : CHASE′mice′smudge′

4.2 Previous Categorial Grammar Learners

The purpose of this work is to create a categorial grammar learner that can learn from real
data and echos real learning. Several previous attempts have been made to learn categorial
grammars computationally. However, many of these attemptshave produced learners that are
unable to acquire language from real data. These systems have generally involved learning
categorial grammars that use only the rules of functional application (e.g. Osborne and Briscoe
[70], Buszkowski [16] and Kanazawa [49]); as explained above, real natural language can not
be modelled using the rules of function application alone. Often learning has been from an
artificially generated corpus (e.g.Watkinson and Manandhar [107]) and even negative feedback
has been allowed (e.g. Adriaans [1]), which does not reflect real learning (see Chapter 3 for a
discussion).
Below two previous categorial grammar learners are discussed in detail. First, the learning sys-
tem of Waldron/Villavicencio ([105], [104]) is presented.This system learns from real data
using a parametric model that has greatly influenced the direction of my own work. Secondly,
the formal categorial grammar learners of Buszkowski ([16],[17]) and its extensions [49] are
discussed. Both of these learning systems have influenced thecategorial grammar learner pre-
sented in Chapter 5.

4.2.1 The Waldron/Villavicencio Learning System

Waldron’s Semantic Learner

Waldron [105] has implemented a system that learns categories using the rule of Generalised
Weak Permutation as well as those of function application. As with this learner, Waldron’s
system does not use negative evidence and will learn categories from real data.
The learner assumes that the mapping from words to primitivesyntactic types (such asnp or n)
is known. The input to the learner is an utterance paired witha set of associated semantic predi-
cates or primitive syntactic types. First, the algorithm enumerates all possible ways of combin-
ing the members of this set using function application. These are recorded as a list of equations.
For example if we receive the utterancenaomi likes georgiwith the set{np,LIKE′,np} then the
algorithm would build the following equations (where> and< represent forward and backward
application respectively):

(np > LIKE′) > np

(np > LIKE′) < np
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(np < LIKE′) > np

(np < LIKE′) < np

np > (LIKE′ > np)

np > (LIKE′ < np)

np < (LIKE′ > np)

np < (LIKE′ < np)

Next, equations which will definitely result in failure are removed from the list. These equations
are identified by means of a set ofequation validity rulessuch as: a primitive syntactic type must
act as the argument in function application. This would reduce the example list of equations to:

(np < LIKE′) > np

np < (LIKE′ > np)

The remaining equations are associated with a weighting. This weighting is1/n wheren is the
number of equations left. The predicate names are then looked up in a lexicon of predicate-
category mappings and substitutions are made for as many predicates as possible. If after sub-
stitutions, the equations still have more than one unknown in them then nothing can be learnt
so the equations are stored along with their weightings. If,however, there is only one unknown
then its category is inferred using theinference rules. These rules are shown below wherea, b,
c, d are syntactic categories, ? is the unknown predicate and>, < are forward and backward
application:

(a <?) = b → ? = b\a

(? > a) = b → ? = b/a

(c/d >?) = c → ? = d

(? < c\d) = d → ? = d

If the syntactic category associated with a predicate is successfully inferred it is recorded in
the lexicon together with a weighting derived from the weight of the equation it was inferred
from. Armed with this new predicate-category mapping all the previously stored equations are
re-examined. If they contain the predicate it is substituted for its (now known) category and
further inferences are attempted.

Waldron’s algorithm makes large demands on memory since it is necessary to remember all
past equations as well as the lexicon. This is possibly not a very realistic model of learning.
It is unlikely that children store all utterances they’ve heard for batch processing. Using an
unrestricted search-space the system was found to over-generate considerably; producing the
following category forred in the phrasered ball rather thann/n:

red 7→ (((((s\np)\(np\n))\((s/np)/np))/n)/np)

Performance was improved by using Villavicencio’s Universal Grammar and Parameter Learner
to restrict the search-space to only categories known to exist in the target language.
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Villavicencio’s Universal Grammar and Parameter Learner

Villavicencio’s Universal Grammar is represented by an under-specified unification-based cat-
egorial grammar. The Principles of her Universal Grammar specify a subset (cardinality89) of
all the possible categorial grammar categories that take upto five arguments. The grammar uses
the primitive typess, n, np, pp andprt. Syntactic categories are defined usingattribute-value
specifications. Both syntactic and semantic properties are specified as attribute-value pairs; for
instance, the specification for an intransitive verb (whichhas categorial grammar types\np)
might include the attribute pairssubject: 7→ np andsubject-dir: 7→ backward. Syntactic cate-
gories are arranged in a hierarchy so that child types inherit all attribute-value pairs from their
parents; this encodes the Universal Grammar more efficiently than specifying each category
separately.
The parameters of this Universal Grammar are embedded within the attribute-value specifica-
tions. Each category has an attribute (e.g.intransitive-parameter) that will take a Boolean
value. If the category is part of the current grammar then this attribute is set totrue; otherwise
it is false. The learner is further endowed with the ability to group these parameters according
to the type of the category they are associated with. These groups are arranged into hierarchies
according to the similarity of attribute-value pairs within the categories they are associated
with; the hierarchies follow Pollard and Sag [80]. Villavicencio also defines a hierarchy on the
direction-attributes (such assubject-dir); this hierarchy is very flat being only 3 levels deep. Ad-
ditionally, each direction-attribute is associated with ascore that is used to determine whether
the value for that attribute should beforwardor backward.
The input to Villavicencio’s grammar is a set of possible syntactic assignments (as hypothesised
by Waldron’s syntactic learner) and a semantic representation of the utterance. On receiving this
input the set of assignments is filtered by theValid Category Assignment Detection Model. Fil-
tering is achieved by removing all assignments that have invalid syntactic categories; a syntactic
category is deemed valid if it both adheres to thePrinciple of Categorial Type Transparency(see
Section 4.1.4) and is type compatible with its semantic predication. For an example of the latter,
the worddo hypothesised with the syntactic categorynp/np is invalid because the verbdo is
not compatible with a nominal predication. Note here that this degree of semantic validation
places large innate requirements on the learner; for instance, in the example above, the learner
is required to ‘know” which predicationsdo is compatible with. This is not information that can
be directly extracted from the semantics unless the verb acts as a predicate on semantic entities
(which have a direct mapping to primitive types in the categorial grammar). Also, the need to
check at this stage for adherence to thePrinciple of Categorial Type Transparencyhighlights
an inefficiency of this learning system: the syntactic categories were inferred from the semantic
representations in the first instance and should inherentlyadhere to the principle.
After the filtering process, surviving assignments are analysed for triggers. Following Dresher
and Kaye [33], Villavicencio models a learner that knows howto detect triggers in the input, and
also knows which parameters are being expressed. This is implemented by means of aTrigger
Detection Moduleusing the properties of the syntactic categories in the Universal Grammar.
Once detected, triggers are used to set parameters.
First, category parameters (such as theintransitive-parameterdescribed above) are updated. A
categorial parameter can be set totrue if its associated trigger has been detected and if its direct
parent in its group hierarchy is also true. Next, if the trigger relating to a direction-attribute has
been seen, then the score associated with that attribute is recalculated; the Bayesian Incremental
Parameter Setting algorithm is used for this purpose (see Chapter 3 for a description). Since
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the Universal Grammar is defined hierarchically the direction of the direction-attributes are
inherited in all allowed categories.
Together, Waldron and Villavicencio present a system for learning to set the parameters of a
Universal Grammar. The acquired grammar can then be used to parse and produce language.
However, in order to acquire the parameter settings, the learner has to first use Waldron’s syn-
tactic learner to hypothesis categories for the utterance heard. The mechanisms for acquisition
are distinct to those for utilising the grammar being acquired.

4.2.2 Formal Categorial Grammar Learners

Buszkowski ([16], [17], [18]) developed an algorithm for learning rigid grammars from functor-
argument structures. A functor-argument structure is a binary branching derivation tree whose
leaf nodes are labelled with the words of the input sentence and whose internal nodes are la-
belled with either> or <; indicating whether forward or backward application is used at that
node. The functor-argument structure for the sentenceSmudge chases micewould be as follows:

<
PPPP

����
smudge >

b
b

"
"

chases mice

Buszkowski’s algorithm proceeds by inferring types from theavailable data and then unifying
variables across all encountered structures.

Inferring types: if the functor-argument structure shows an instance of forward application>
then there must be an argument on the right,A, and a functor on the leftB/A (where
A,B ∈ Tp).

1. Forward Application:
>
SS��

? ?

→ B
ll,,

B/A A

(4.12)

2. Backward Application:
<
SS��

? ?

→ B
ll,,

A B\A

(4.13)

Unifying variables: a substitutionσ (or unifier) unifies a set of typesA if for all typesA1, A2 ∈
A, σ(A1) = σ(A2). Furthermore,σ unifies a set of sets of typesA if σ unifies all sets
of typesA,B ∈ A . σ1 is amore general unifierthanσ2 if there is a substitutionσ3 such
thatσ2(A) = σ3(σ1(A)).

Baader and Siekman [2] summarise algorithms for deciding whether a unifier exists for
A and, if so, discovering the most general unifier. The most efficient algorithms are linear
in time complexity.

The algorithm, which will be referred to as the Bus-CGL (Buszkowski’s categorial grammar
learner), is illustrated below:

67



Recall thatSi = {s0, s1, s2...si} is the set of the firsti sentence objects in the input stream.
Consider:

S1 =

{

<
HHH

���
christopher plays

, <
PPPP

����
christopher <

b
bb

"
""

plays quietly

}

Step 1: Assign types to the structures.

(a) Assign the sentence type primitives to each root node.

(b) Assign distinct variables to the argument nodes:

s [<]
HHH

���
x1

christopher

plays

s [<]
PPPP

����
x3

christopher

[<]
b
bb

"
""

x4

plays

quietly

(c) Compute types for functor nodes using equations 4.12 and 4.13:

s [<]
HHH

���
x1

christopher

s\x1

plays

s [<]
PPPP

����
x3

christopher

s\x3 [<]
HHH

���
x4

plays

〈s\x3〉\x4

quietly

Step 2: Collect the types assigned to the leaf nodes:

christopher → x1, x3

plays → s\x1, x4

quietly → (s\x3)\x4

soA = {{x1, x3}, {s\x1, x4}, {(s\x3)\x4}}

Step 3: Unify A (the sets of types). If unification fails then fail:

σ = {x3 7→ x1, x4 7→ s\x1} (4.14)

where{a1 7→ b1, ..., an 7→ bn} denotes the unifierσ such thatσ(a1) = b1, ..., σ(an) = bn

andσ(y) = y for all other variables y.

Step 4: Output the grammar (a lexicon with associated types):

G1 : christopher → x1

plays → s\x1

quietly → (s\x1)\(s\x1)
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Buszkowski’s algorithm was designed to learn a rigid grammarfrom a finite set of functor-
argument structures. Kanazawa [49] constructed a proof to show that the algorithm could learn
the class of rigid grammars from aninfinite streamof functor-argument structures—as required
to satisfy Gold’s learning model. The following is a suggestion for modification to Bus-CGL
so that it may learn from astreamof structures rather than aset. The algorithm will be referred
to as Bus-stream-CGL. The main difference between Bus-CGL and Bus-stream-CGL is that in
Bus-CGL unification occurs over all structures in the languagein one go whereas in Bus-stream-
CGL unification occurs repeatedly (every time the next structure in the stream is presented).
Let Gi be the current grammar (or guess) of Gold’s learning model after having seeni structures
from the stream:

Gi : christopher → x1

plays → s\x1

and let the next encountered structure in the stream be:

<
PPPP

����
christopher <

b
bb

"
""

plays quietly

Step 1: Assign types to the new functor-argument structure as in Bus-CGL.

s [<]
PPPP

����
x2

christopher

s\x2 [<]
HHH

���
x3

plays

〈s\x2〉\x3

quietly

Step 2: Look up words at the leaf nodes of the new structure inGi. If the word exists inGi,
add types assigned to current leaf nodes to the existing set of types for that word; else
create new word entry.

christopher → x1, x2

plays → s\x1, x3

quietly → (s\x2)\x3

A = {{x1, x2}, {s\x1, x3}, {(s\x2)\x3}}

Step 3: Unify the set of types. If unification fails then fail.

σ = {x2 7→ x1, x3 7→ s\x1} (4.15)
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Step 4: Output the lexicon

Gi+1 : christopher → x1

plays → s\x1

quietly → (s\x1)\(s\x1)

Presented with structures from ak-valued grammar, Bus-CGL (and Bus-stream-CGL) will ei-
ther over-generalise (arriving at a grammar that generatesa proper superset of the language) or
fail on unification. Natural language is better described byk-valued grammars so Kanazawa [49]
has modified Buszkowski’s algorithm to learn fromk-valued structures. The modification relies
on the notion ofk-partial unification, i.e. unification that will construct at mostk types for each
member of the lexicon. Note that a 1-partial unifier is simplya unifier as in 4.14. A case of
2-partial unification is illustrated below.
Consider that afterStep 2of the Bus-CGL algorithm we have collected the following word-type
associations from the leaf nodes:

word1 → x1, x2\s, s/x2 (4.16)

word2 → x2, x3, s/x3 (4.17)

soA = {{x1, x2\s, s/x2}, {x2, x3, s/x3}}
Thenσ1 is an example of a 2-partial unifier:

σ1 = {x1 7→ (x1/s)\s, x2 7→ x1/s, x3 7→ x1/s} (4.18)

giving us:

word1 → (x1/s)\s, s/(x1/s)

word2 → (x1/s), s/(x1/s)

Kanazawa showed that the complete set ofk-partial unifiers forA may be found in exponential
time—by running the linear unification algorithm over allpartitionsof A (where a partition of
A , B, is defined to be:

B =
⋃

{Bi|1 ≤ i ≤ n} (4.19)

whereBi = {B(i,1), ...,B(i,n)} is a partition ofAi, for 1 ≤ i ≤ n.)
Continuing with examples 4.16 and 4.17 , Steps 3 and 4 of Buszkowski’s algorithm are now
adjusted as follows to give the Kan-CGL (Kanazawa’s categorial grammar learner):

Step 3: Unify A . If unification fails then allowk-partial unification. Ifk-partial unification
fails then fail:

σ1 = {x1 7→ (x1/s)\s, x2 7→ x1/s, x3 7→ x1/s}

σ2 = {x1 7→ x2\s, x3 7→ x2}

σ3 = {x1 7→ (s/x3)\s, x2 7→ s/x3}
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σ4 = {x1 7→ s/x2, x3 7→ x2}

Step 4: Output all possible grammars.

Applying σ1 to A :

G1 : word1 → (x1/s)\s, s/(x1/s)

word2 → x1/s, s/(x1/s)

Applying σ2 or σ4 to A :

G2 : word1 → x2\s, s/x2

word2 → x2, s/x2

Applying σ3 to A :

G3 : word1 → (s/x3)\x3, s/(s/x3)

word2 → s/x3, x3

Step 5: Select one grammar from the output set by placing an orderingon the languages they
produce and then choosing the minimal element.

Kanazawa showed thatStep 5of Kan-CGL is exponential in time in the size of the grammars.
As with Bus-CGL, Kan-CGL learns from asetof structures rather than astream. Kan-CGL may
be modified to learn from astreamin exactly the same manner that Bus-CGL was modified to
give Bus-stream-CGL. The stream accepting version of Kan-CGL will be referred to a Kan-
stream-CGL.

Learning from Strings

Kanazawa shows thatk-valued classic categorial grammars are also learnable from strings.
The algorithm (String-CGL) is very expensive; applying the Kan-CGL to all possible functor-
argument structures of the input strings. String-CGL is described below:

Step a: Form a setS containing all the possible functor-argument structure combinations for
the input strings inSi.

Step b: For each element ofS, carry outstep 1to step 4of Kan-CGL.

Step c: Select one grammar usingstep 5of Kan-CGL.

Consider example input setS1 = {s0, s1} with:

s0 = christopher plays

s1 = christopher plays quietly
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There are two functor-argument structures that could yields0:

s01 = >
HHH

���
christopher plays

s02 = <
HHH

���
christopher plays

And there are eight functor-argument structures that couldyield s1:

s11 = >
PPPP

����
christopher >

b
bb

"
""

plays quietly

s12 = >
PPPP
����

christopher <
b
bb

"
""

plays quietly

s13 = <
PPPP

����
christopher >

b
bb

"
""

plays quietly

s14 = <
PPPP
����

christopher <
b
bb

"
""

plays quietly

s15 = >
PPPP
����

>
HHH

���
christopher plays

quietly

s16 = >
PPPP

����
<
HHH

���
christopher plays

quietly

s17 = <
PPPP
����

>
HHH

���
christopher plays

quietly

s18 = <
PPPP

����
<
HHH

���
christopher plays

quietly

Giving the sixteen element setS = {{s01, s11}, {s01, s12}, ..., {s02, s18}}. Kan-CGL will
succeed on six elements from this set.
For example{s02, s14} yields:

G1 : christopher → x

plays → s\x

quietly → (s\x)\(s\x)

and{s02, s18} yields:

G2 : christopher → x

plays → s\x

quietly → s\s

For learning from astreamof strings rather than asetthe algorithm would be:

Step a: Form a setS containing all the possible functor-argument structures for the new input
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string.

Step b: For each element ofS, carry outstep 1to step 4of Kan-stream-CGL.

Step c: Select one grammar usingstep 5of Kan-stream-CGL.

Basic Categorial Grammar Learner Summary

Buszkowski created an algorithm to learn rigid classic-categorial grammars from a set of functor-
argument structures. Kanazawa modified this algorithm to learnk-valued categorial grammars
by introducing partial unification. Further, he showed thatk-valued categorial grammars may
also be learnt from a set of strings. Simple modification to these algorithms allow the input to
be a stream rather than a set (in line with Gold’s learning model).
There are three main sections to a general algorithm for learning ak-valued classic-categorial
grammar from a stream of strings:

Step a—Form Search-Space:Form a setS of all possible functor-argument structures to
describe the strings.

Step b—Hypothesise Grammars:Iterate throughS assigning types to each functor-argument
structure. Unify (using partial unification) the assigned types with the current grammar.
If unification fails, then fail, else add possible grammar togrammar set,G.

Step c—Select Grammar: Choose one grammar from setG.

4.3 Sentence Objects

In our discussion of previous categorial grammar learners we noted that the form of input pro-
vided to learners is not standard: for instance, the Waldron/Villavicencio system ([105], [104])
takes strings with an accompanying semantic representation; and more recently Clark and Cur-
ran [29] developed a method for learning parameters of a CCG given fully annotated parse
trees.
Traditionally, studies in CCG learnability (and learnability in general) have concentrated on
models that take streams of strings (literally the ordered words of a sentence) as input. However,
Buszkowski ([16] and [17]), developed an algorithm for learning categorial grammars from a
stream ofstructures, which carry more information than strings.
We would like to know what is the most sensible form of input (in terms of efficiency and cogni-
tive plausibility) to a categorial grammar learner that is attempting to learn from real language.
This section discusses methods of learning categorial grammars from streams ofsentence ob-
jects, which is the collective term for elements that carry at least as much information as a
string.
Gold’s general learning model (see Chapter 3) is updated as follows:

1. Ω—a hypothesis-space of grammars;

2. Φ—a sample set of grammatical sentence objects;

3. F—a learning function that maps finite subsets ofΦ (languages) to elements ofΩ.
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Gi = F ({s0, s1, s2...si})

whereGi ∈ Ω ands0, s1, si ∈ Φ

The cognitive plausibility of4 different types of sentence object (simple strings, augmented
strings, unlabelled structures and functor-argument structures) is considered below followed by
methods for learning from them:

4.3.1 Simple Strings

A simple string is simply the words of the input sentence, presented in the correct order. The
string for the sentenceSmudge chases miceis simply:

smudge chases mice

Cognitively this is equivalent to a real learner being able torecognise word boundaries and
creating word token for each word. This is clearly plausible(otherwise we would not be able
to use language at all) but it seems likely real learner will have access to more information than
just word tokens.2

4.3.2 Augmented Strings

In additional to simple word order an augmented string has some word type information. The
type of words which are associated with primitive types (belonging toPr) are declared. Words
with complex types are not fully declared but some general information about their structure
is displayed. For example, the information declared for theword chasesmight be that it is of
the form(A|B)|C whereA,B,C ∈ Tp and | is a variable over\ and/. The extra syntactic
information here may be extracted from the semantics following the Principle of Categorial
Type Transparency as explained in Section 4.1.4. This of course requires that the semantic type
of each word is known. For a real learner to form augmented strings from an utterance they
would have to:

a) segment the utterance on word boundaries;

b) hypothesise a semantic expression for the utterance;

c) map parts of the semantic expression to word tokens.

smudge

np

chases

〈A | B〉|C

mice

np

Augmented strings appear to be fairly cognitively plausible. It is extremely likely that when
a child attends to an utterance they hypothesise some semantic meaning to associate with it.
Pinker [76] and Siskind [93] among others have offered methods for mapping parts of semantic
expressions to individual words. This will be discussed in more detail in Section 4.4 where we
will explain how an augmented string is simply a means of representing the constraints placed
on a space of possible parses due to the string’s associated semantic form.

2There is no particular reason why we talk about word tokens rather than morpheme tokens.
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4.3.3 Unlabelled Structures

An unlabelled structure is a binary branching derivation tree whose leaf nodes are labelled with
the words of the input sentence. The unlabelled structure for Smudge chases micewould be:

PPPP
����

smudge
b
b

"
"

chases mice

Cognitively it is difficult to imagine how a learner would cometo associate such a structure
with an input utterance prior to learning a grammar. Some of the information is derivable from
the Principle of Categorial Type Transparency but not without prior analysis.

4.3.4 Functor-Argument Structures

A functor-argument structure is much like a unlabelled structure except that the internal nodes
are labelled with either> or <; indicating whether forward or backward application is used at
that node. The functor-argument structure for the sentenceSmudge chases micewould be as
follows:

<
PPPP

����
smudge >

b
b

"
"

chases mice

Again some of the information is derivable from the semantics (i.e. which word is the functor)
but, as for unlabelled structures, it is difficult to imaginehow the learner could associate this
structure with their input utterance.

4.3.5 Information Content of Sentence Objects

This section discusses the information content of sentenceobjects. Each sentence object will
be compared to the functor-argument structure (since this is the object that carries the most
content); every other type of sentence object may be thoughtof as an under-specified functor-
argument structure. In each case the number of functor-argument structures that could yield the
sentence object will be counted.

Simple Strings: To find the number of functor-argument structures that derive a string of length
n it is necessary to find all of binary trees withn leaves and then enumerate all the ways
of labelling the nodes of those trees with forward or backward application (> or <). For
example, a two word string (word1 word2) may be derived from two functor-argument
structures; there is one binary tree with two leaves and two ways to label it with> or <.

>
b
bb

"
""

word1 word2

<
b
bb

"
""

word1 word2
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A three word string may be derived from eight functor-argument structures; there a two
binary trees with three leaves and four ways to label each tree.

>
aaaa

!!!!
word1 >

b
bb

"
""

word2 word3

>
aaaa

!!!!
word1 <

b
bb

"
""

word2 word3

<
aaaa

!!!!
word1 >

b
bb

"
""

word2 word3

<
aaaa

!!!!
word1 <

b
bb

"
""

word2 word3

>
aaaa
!!!!

>
b
bb

"
""

word1 word2

word3

>
aaaa

!!!!
<
b
bb

"
""

word1 word2

word3

<
aaaa

!!!!
>
b
bb

"
""

word1 word2

word3

<
aaaa
!!!!

<
b
bb

"
""

word1 word2

word3

In general the iterative rule for finding the number of binarytrees withn leaves is:

Xn =
n−1
∑

r=1

XrX(n−r) (4.20)

The rule uses the fact that a tree withn leaves is equivalent to a tree with1 leaf joined to
a tree withn − 1 leaves, and also equivalent to a tree with2 leaves joined to a tree with
n − 2 leaves etc; so, the rule sums the number of ways each combination of trees may
be drawn. From this iterative rule, the general rule for the number of binary trees withn
leaves may be derived:

number of binary trees withn leaves=
(2n − 2)!

n!(n − 1)!
(4.21)

To find the number of functor-argument structures for a string of lengthn, it is necessary
to multiply the number of binary trees withn leaves by the number of ways of labelling
the tree nodes with< or >. A tree withn leaves is always made up fromn − 1 binary
branch nodes of the form,

∧

. Each node may be labelled one of two ways (< or >) so for
a tree withn leaves there are2n−1 labellings. Hence the general formula for the number
of functor-argument structures that derive a string of length n is:

number of functor-argument structures= 2n−1 (2n − 2)!

n!(n − 1)!
(4.22)

Augmented Strings: The information content of augmented strings is not simply dependent on
the length of the string but also on the the types associated with each word. At worst, the
information content of an augmented string is the same as fora simple string of the same
length. The occurrence of primitive types within an augmented string reduces the number
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of possible functor-argument structures. Primitive typeswill always be the argument of
a function (they can not be a function themselves). Thus, thepresence of primitive types
can provide us with information regarding allowed functiondirectionality and also viable
tree structures.

1. Function direction:

Consider the following augmented string wherex is a primitive type andp ∈ Tp:

word1

x

word2

p

Sincex is a primitive type it must be acting as a argument and thereforep must be a
function. Thus, there is only one possible functor-argument structure:

<
b
bb

"
""

word1

x

word2

p|q

Whenever a primitive type occurs, the function directionality of the associated node
will be known, as illustrated in the partial tree below.

<
QQ��

x
@@��

>
JJ


x

For every primitive type in the augmented string we can reduce the number of pos-
sible functor-argument structures by a factor of 2.

2. Tree Structure:

The location of primitive types within an augmented string places constraints on
the deriving tree structures. Consider the following augmented string, wherex is a
primitive type andp ∈ Tp:

word1

x

word2

x

word3

p

The tree structure for this string has to be of the form:

ll,,
x

SS��
x p

The other possible tree structure would leave two primitivetypes together on one
branch node with no means of being combined.
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ll,,

\\��
x x

p

Whenever primitive types occur adjacently in an augmented string, all trees that
would place them on the same branch node can be ruled out. Recall that the number
of binary trees withn leaves isXn. Two adjacent primitive types in an n-length
augmented string will reduce the number of possible binary trees byXn−1.

Unlabelled Structures: An unlabelled structure withn leaves is made up fromn − 1 binary
branch nodes of the form,

∧

. Each node may be labelled one of two ways (< or >) so for
a tree withn leaves there are2n−1 labellings.

The following table shows a comparison of information content for sentence objects.n refers
to the number of words in a sentence. The column figures indicate the number of functor-
argument structures that can derive the given sentence object. In the case of augmented strings
(whose information content is word-type dependent as well as sentence-length dependent), two
illustrative columns are included; one to indicate a stringwith two adjacent primitive types
(Augmented String (a)), and another to indicate a string with two non-adjacent primitive types
(Augmented String (b)).

n Functor-Argument Unlabelled Augmented Augmented Simple
Structure Structure String (a) String (b) String

2 1 2 - - 2
3 1 4 1 2 8
4 1 8 6 10 40
5 1 16 36 56 224
6 1 32 168 280 1120
...

...
...

...
...

...

For unlabelled structures there are always2n−1 functor-argument structures that can be derived.
It can be shown mathematically thatXn (the number of binary trees withn leaves) can be
bounded by4n−1. Hence, for the number of derivable functor-argument structures for the simple
strings is bounded by8n−1. An augmented string of type (b) will have exactly a quarter as many
structures. Augmented strings of type (a) will have roughly3

4
of those for type (b).

The type of sentence object that carries the most cognitively realistic data is the augmented
string since the extra information it carries can be learnt directly from semantics. Learning
from augmented strings also reduces the search space by a constant factor, whose size is shown
above to be dependent on the content of the string. In order tocreate augmented strings a
mapping is required from the words in the string to their semantic representation. Section 4.4
below describes a mechanism by which free order semantic representations may be mapped to
their associated words.

4.4 Mapping Words to their Semantic Representation

In order to create augmented strings from real world data it is necessary to provide a mapping
between words and their semantic representations. Pinker [76] and Siskind [93] have offered
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methods for how children map parts of semantic expressions to individual words. Following
these methods, Buttery [19] implemented a semantic learner that can be used to provide the
word-meaning mapping required to form augmented strings. The inputs to this learner are ut-
terances annotated with semantic representations and the output is a lexicon of word-to-meaning
mappings.
For this work Siskind’s cognitive model [93] is assumed. This is a simple model representing
the interaction between a speech perception system and a conceptual system. On hearing an
utterance, the purpose of the speech perception system is tobreak up the acoustic signal and pass
a series of word symbols to its output. At the same time, the conceptual system is responsible
for producing semantic hypotheses for the utterance.

SEMANTIC MODULE

CONCEPTUAL SYSTEM

SPEECH PERCEPTION SYSTEM

observations audio signal

augmented strings

semantic hypotheses

word symbols

The word symbols (produced by the speech perception system)have thus far been written in
italics; the semantic symbols (produced by the conceptual system and forming the constituent
parts of the semantic hypotheses of an utterance) have been written in bold. So, a child hear-
ing the utterance “Kitty eats biscuits” would theoretically produce the word symbolsKitty,
eatsand biscuits from their speech perception system. If the child was simultaneously ob-
serving the cat eating something they would hopefully also produce the semantic expression
EAT’biscuit’kitty’ from their conceptual system.3

A possible problem with the conceptual system is that it could produce an infinite number of se-
mantic hypotheses for a given utterance. Siskind avoids this problem by stating that the learner
will only entertain likely semantic hypotheses. However, he does not specify the distinction
between likely and unlikely. Pinker [76], on the other hand,suggests that semantic hypotheses
are constrained for two reasons: first, they are constrainedby the semantic structures that con-
stitute mental representations of a word’s meaning (this isreferred to as the Universal Lexical

3Note that the conceptual system need not only rely on visual observation to produce semantic hypotheses.
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Semantics [48] and is somewhat analogous to Chomsky’s Universal Grammar for syntax); sec-
ondly, hypotheses may be constrained by the way the child’s lexicon is constructed—it seems
that children are fairly unwilling to admit true synonyms totheir lexicon and consequently a
child would rather not hypothesise an existing word’s meaning for a new word [25]. Even when
these constraints are taken into account there may still be several plausible semantic hypotheses
for a given utterance. The conceptual system is therefore expected to produce a set of semantic
hypotheses.
The output of the the speech perception system and the conceptual system are simulated as
follows:

Simulation of word symbols: Segmenting an audio signal to produce word symbols is not a
straight-forward task [9]; speech doesn’t contain any reliable markers analogous to the
blank spaces between words in English text. For adults segmentation is an easier (al-
though not fool-proof) task. For this task we will assume a fully developed speech per-
ception system; i.e. we will not deal with a child’s segmentation problem. The output of
the system will be very simply simulated by using a written corpus; the symbols required
can be simply created from the textual representation of each utterance.

Simulation of the semantic hypotheses:Simulating the output of the conceptual system is
more difficult. The approach used here was to parse utterances using an existing gram-
mar and then extract the semantic representations produced. Let the set of all semantic
representations be calledSem. The set of semantic expressions hypothesised for an input
utterance is then simulated by selecting a subset ofSem. This method gives control over
how much noise the learner is exposed to; at one extreme the set of semantic hypotheses
could contain the one single correct hypothesis and at the other extreme many incorrect
hypotheses.

4.4.1 Mechanics of the Semantic Learner

The mapping mechanisms of the semantic learner are based on Siskind’s investigation of Cross
Situational Techniques [93] and include the following: cross situational learning; covering con-
straints; constraining hypotheses with partial knowledge; and using the principle of exclusivity.

Cross Situational Learning: cross situational learning has been suggested as a method of
learning for hundreds of years but more recently by Pinker [75] amongst others. The
theory speculates that lexical acquisition may be achievedby finding the common factors
across all observed uses of a word. Hearing a word in enough contexts should therefore
allow the learner to rule out all incorrect hypotheses and converge on a unique meaning.

For a trivial example consider the utterances “Naomi laughs” and “Naomi eats cookies”.
They would have word symbol sets and semantic expressions asfollows:

{naomi, laughs} 7→ LAUGH’naomi’
{naomi, eats, cookies} 7→ EAT’cookie’naomi’

From these two utterances it is possible to ascertain that the meaning associated with the
word symbolnaomimust benaomi’ since it is the only semantic element that is common
to both utterances.
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Covering Constraints: the idea of covering constraints is essentially the reverseof cross-
situational learning. The idea requires that the semantic expression representing a com-
plete utterance is built up only from the semantic expressions relating to words within
that utterance, i.e. it doesn’t contain any external semantic information.

Consider the situation where the semantic mapping for all butone of the word symbols
is known. The semantic expression associated with the final word symbol is necessarily
what is left over when all the known semantic expressions areremoved from the expres-
sion representing the entire utterance.

Consider the example “Grinch hates Xmas”. If the following isalready known:

{grinch, hates, Xmas} 7→ HATE’xmas’grinch’
grinch 7→ grinch’

hate 7→ HATE’xy

Then the necessary conclusion is:

xmas 7→ xmas’

Principle of Exclusivity: the principle of exclusivity becomes useful when word-meaning map-
pings have already been acquired. The principle is based on the work of Berwick [3],
requiring that each word in an utterance contributes a non-overlapping portion of the
meaning.

For instance, given the utterancedinah likes milkwith the hypothesised meaningLIKE’milk’dinah’ ,
and the previous knowledge that the word symboldinah maps todinah’ and thatmilk
maps tomilk’ . Thenlikemust map toLIKE’xy rather thanLIKE’milk’y , orLIKE’xdinah’ ,
or evenLIKE’milk’dinah’ because these latter semantic constituents would overlap with
the constituents associated withdinahandmilk.

Constraining Hypotheses with Partial Knowledge: cross situational learning and covering
constraints are most useful if the correct semantic expression is known. In the situa-
tion where there are several semantic hypotheses, the semantic learner first attempts to
reduce the number before applying these techniques.

Hypotheses can be constrained by removing all those that areimpossible given what has
already been learnt. To show how this works, imagine the learner has heard the utterance
“Mice like cheese” and hypothesised the following semanticexpressions:

LIKE′cheese′mice′ (4.23)

MADEOF′cheese′moon′ (4.24)

MADEOF′cake′moon′ (4.25)

If it has already been established thatcheesemaps tocheese’then 4.25 can be ruled
out as a possible meaning since it doesn’t contain the necessary semantic expression.
Hypothesis 4.24, however, can not be ruled out. The learningalgorithm attempts to learn
from all remaining hypotheses. If all semantic hypotheses are ruled out then the learner
assumes that one of the words in the utterance has multiple senses.
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In an ideal situation a child will hypothesise the correct meaning for every utterance heard.
However, assigning a meaning is not straight-forward; there is unlikely to be only one obvious
candidate. When the correct meaning is not hypothesised, error has been introduced. An error
of this type introduces a false association between word andmeaning. To combat this problem
a statistical error handler can be adopted: a confidence score can be assigned to word meanings
according to their frequency and consistency. Word meanings whose confidence scores fell
below a threshold value can be systematically pruned.

4.4.2 Forming Augmented Strings

To recap, for each utterance heard the learner receives an input stream of word tokens paired
with possible semantic hypotheses. For example, on hearingthe utterance “Dinah drinks milk”
the learner may receive the pairing: ({dinah, drinks, milk}, DRINK’milk’dinah’ ). The seman-
tic learner attempts to learn the mapping between word tokens and semantic symbols, building
a lexicon containing the meaning associated with each word sense; this is achieved by using
cross-situational techniques. The learning system then can create augmented strings by using
the Principle of Categorial Type Transparency; allowing basic syntactic information to be in-
ferred from the semantic type and thus producing augmented strings. Remember that, from the
semantic expression (DRINK’ milk’ dinah’ ) we know thatDRINK’ is a two argument pred-
icate. Hence, the syntactic category of “drink” will also take two arguments. This knowledge
can be represented in a skeleton syntactic category asA|B|C whereA,B,C ∈ Tp and | is a
variable over\ and/. An innate mapping is assumed from semantic entities to primitive types.
In terms of a real learner this primitive-type-mapping is equivalent to having an innate ability to
recognize groups of entities linked by some common theme; and then labelling all the entities
in that group with the same mental tag. This can’t be too far off what children must actually do.
For instance, it seems probable that children are innately aware of the concept of an object [71]
and might therefore label books, tables and chairs with the same object tag.
In summary, to form augmented strings from the pairing ({dinah, drinks, milk}, DRINK’milk’dinah’ )
a learner has to:

1. segment the utterance on word boundaries using the speechperception system;

dinah, drinks, milk

2. hypothesise a semantic expression for the utterance using the conceptual system;

DRINK’milk’dinah’

3. map parts of the semantic expression to word tokens using the semantic learner;

{dinah, drinks, milk} 7→ DRINK’milk’dinah’
dinah 7→ dinah’
drinks 7→ DRINK’xy

milk 7→ milk’

4. use the Principle of Categorial Type Transparency and knowledge of primitive types to
assign skeleton categories to words; thus forming an augmented string.
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dinah 7→ np
drinks 7→ 〈A | B〉 | C

milk 7→ np

whereA,B,C ∈ Tp (the set of all categorial grammar types—primitive or otherwise)
and| is a variable over\ and/.

dinah

np

drinks

〈A | B〉 | C

milk

np

Note in this case we could have directly inferred the mappingdrinks 7→ 〈A | np〉 | np
since the arguments toDRINK’ were semantic entities which map directly to primitive
types. We use the mappingdrinks 7→ 〈A | B〉 | C here (and in the following chapters) to
illustrate the more general cases where the type of the arguments are unknown.

Augmented strings are simply a method of representing how the search space of parses is con-
strained by the unordered semantic representation. The next chapter will describe how concepts
from the previous categorial grammar learners of Buszkowskiand Waldron/Villavicencio may
be updated and combined to form a new categorial grammar learner that can learn from real
data; using augmented strings to constrain the search spaceof possible parses by representing
the information provided in the associated semantic form.
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Chapter 5

The Categorial Grammar Learner

Section 4.2.2 of Chapter 4 detailed Buszkowski’s algorithm [17] to learn rigid classic-categorial
grammars from a set of functor-argument structures. Kanazawa [49] modified this algorithm to
learnk-valued categorial grammars by introducing partial unification. Further, he showed that
k-valued categorial grammars may also be learnt from a set of strings. Simple modification to
these algorithms allowed the input to be a stream rather thana set (in line with Gold’s learning
model). In this Chapter (Section 5.1) we will adapt this algorithm to learn from augmented
strings, which (as discussed in Section 4.3) are structuresthat embody the constraints placed on
possible parses by the semantic representation of a string.Section 5.2 details further alterations
that must be made to the learner in order for it to learn from real data. These improvements
to Buszkowski’s learner are inspired by the work of Villavicencio’s parameter learner [104]
(see 4.2.1 for a summary). Section 5.3 provides a step-by-step example of the operation of the
Categorial Grammar Learner.

5.1 Learning from Augmented Strings

As described in Section 4.2.2, there are three main sectionsto a general algorithm for learning
ak-valued classic-categorial grammar from a stream of simplestrings:

Step a—Form Search-Space:Form a setS of all possible functor-argument structures to
describe the new string.

Step b—Hypothesise Grammars:Iterate throughS assigning types to each functor-argument
structure. Unify (using partial unification) the assigned types with the current grammar.
If unification fails, then fail, else add possible grammar togrammar set,G.

Step c—Select Grammar: Choose one grammar from setG.

The complexity of the algorithm is critically dependent on the size ofS since we must iter-
ate over this set instep b. When learning from a stream of functor-argument structures(as
Buszkowski originally suggested),S had a cardinality of1; when learning from strings of
lengthn it will have a cardinality of8n−1.
To understand this let’s considerstep bin more detail. To learn from a stream of simple strings,
types must be assigned to every possible functor-argument structure of the current string. As
explained in Section 4.3.5 a string of lengthn will produce a number of functor-argument
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structures bounded by8n−1. Therefore, for strings of lengthn, the learner has to make around
8n−1 iterations ofstep b.
Section 4.3.5 showed that simple strings carry minimum information content and therefore pro-
duce the maximum possible number of functor-argument structures as possible parses. Using
other types of sentence objects as input to the categorial grammar learner would reduce the size
of S and thus reduce the complexity of the algorithm. For generalcase we can rewritestep a
of the algorithm as:

Step a—Form Search-Space:Form a setS of all possible functor-argument structures to
describe the new sentence object.

In general, note that by expressing the input to a learner in terms of sentence objects it is possible
to contextualise the complexity of the problem the learner is solving.
Section 4.3 postulated that augmented strings carry a more cognitively realistic data content
than simple strings. Augmented strings were word tokens“augmented”by some extra syntactic
content which could be derived from semantics. By learning from augmented strings the search-
space is reduced by a constant factor, whose size is dependent on the extra syntactic information
provided with the string (see Section 4.3 for a discussion).
The basic algorithm for learning from a stream of augmented strings is similar to that for learn-
ing from a stream of simple strings; the difference being that the search-space (the size of setS )
is smaller. As mentioned in the previous Section 4.2.2, Kanazawa proved thatk-valued clas-
sic categorial grammars may be learnt from strings. Since augmented strings carry the same
(and more) information it is also possible to learnk-valued classic categorial grammars from
augmented strings.

5.2 Improving the Categorial Grammar Learner

Natural language can not be modelled using the rule of function application alone (as discussed
in Section 4.1.2). This section discusses improvements to the categorial grammar learners that
make it possible to learn from real language examples. Adding greater range to the describable
language will obviously increase the hypothesis-space of allowed grammars (referred to asΩ in
Gold’s language Model—Chapter 3). Steps are taken to reduce complexity; for instance, rule
selection is guided by a set of heuristics. In addition, someduplicated effort in the unification
step is removed by looking up word types in the lexicon beforeassigning types. A memory
module is introduced to help in the procedure of selecting one grammar from the many pro-
duced. Kanawaza’s method of selecting a grammar is exponential to the size of the grammars;
the method suggested here is linear—involving a series of validations based on the current state
of the memory. Additionally, the statistical methods used to maintain integrity of the Memory
Module ensure that the learner is robust to noise in the inputdata. The improvements to the
categorial grammar learner are discussed with relevance toaugmented strings, as this the most
appropriate type of sentence object for learning problems involving real data.

5.2.1 Introducing a Memory Module

The Memory Module is used as an aid to the learner in selectingone grammar from the many
produced. The categorial grammar learner can be entirely functional without its memory; gram-
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s
PPPPP

�����
s/s s\np

PPPP
����

〈s\np〉/np 〈s\np〉/〈s\np〉

Figure 5.1: A fragment of a categorial type hierarchy

mars could be selected by the same method as Kanazawa. However, the use of a memory signif-
icantly speeds the process of selecting one grammar from themany hypothesised. The method
Kanazawa uses to select a grammar is exponential to the size of the grammars (see Section
4.2.2). The method used here is linear: every item in each grammar’s lexicon is checked for
validity with respect to the current state of the memory.
Inspired by Villavicencio’s categorial and word-order parameters (see Section 4.2.1), the Mem-
ory Module records details of two distinct features; there is a type memory and a word-order
memory. There is no interaction between the two parts of the memory.

Type Memory

The lexicon for a language contains a finite subset of all possible types (a subset ofTp), the size
of which depends on the language—Pullum [82] suggests that for English the lexical functional
categories never need more than five arguments and that theseare needed only in a limited
number of cases (such as for the verbbet in the sentenceI bet you five pounds for England to
win).
Unlike Villavicencio’s parameter learner (which is restricted to 89 categories) the Categorial
Grammar Learner is completely unrestricted in the categories it is allowed to hypothesise for a
word. The type memory is used to keep track of which types havebeen inferred from the stream
of language examples thus far. The memory then facilitates grammar selection by placing con-
straints on the hypothesised set of grammars,G, based on its current content.
Following the principles of Villavicencio’s UG, the type memory is structured as a hierarchy.
Recall that complex types of a categorial grammar are a combination of simpler types: thus,
types may be arranged in a hierarchy with more complex types inheriting from simpler ones.
Consider a categorial grammar with primitive typesPr = {s, np}. Figure 5.1 shows a fragment
of a possible hierarchy.
A type is set to ACTIVE within the Type Memory if it has been successfully inferred by the
categorial grammar learner: letTACTIV E = {all ACTIVE types} and let all primitive types be
ACTIVE by defaultPr ⊂ TACTIV E. A type j is considered to be the direct descendant of
another type,k, if j has one extra argument thank and that argument is already ACTIVE in the
hierarchy (i.eargument ∈ TACTIV E). Originally only the primitive types are ACTIVE. Types
are deemed POSSIBLE if they are the direct descendant of an ACTIVE type. All other types
are INACTIVE (see Figure 5.2).
The grammar set returned by the learner,G, can be reduced in size by excluding grammars that
contain INACTIVE types. Let the hierarchy above,H1, be the current state of the Type Memory
and assume that the learner has returned grammar setG = {G1, G2}.
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H1 : tophhhhhhhhhh
((((((((((

np - ACTIVE s - ACTIVEhhhhhhhhhh

((((((((((
s/s - POSSIBLE

〈s/s〉/np - INACTIVE

s\np - ACTIVEhhhhhhhh
((((((((

〈s\np〉/np - POSSIBLE 〈s\np〉/〈s\np〉 - POSSIBLE

Figure 5.2: An example state of the Type Memory

G1 : word1 → np

word2 → s\np

word3 → (s\np)/np
...

G2 : word1 → np

word2 → s\np

word3 → (s/np)\np
...

We can exclude grammarG2 because the type(s/np)\np is inactive.

Word Order Memory

The Word Order Memory keeps track of the underlying order in which constituents appear.
The information it stores is extracted directly from semantic content associated with the input
stream. We assume that a child associates a role (or argumenttype) with each argument of a
predication. For instance, let input string “Dinah likes Alice” be associated with the semantic
representation (LIKES’alice’dinah’ ); in this case we assume that the child knows thatdinah’
is the actor andalice’ is the undergoer. The Word Order Memory would“remember” that the
actor was found on the left of the word associated with the predication and the undergoer was
found on the right.
This might be represented in the Word Order Memory as:

W1: UNDERGOER-DIRECTION: /
ACTOR-DIRECTION: \
ARG1-DIRECTION: |

...
GENERAL-DIRECTION |

where/ indicates that the argument is generally found on the right,\ indicates that the argument
is generally found on the left and| indicates that a directional tendency is yet to be found. The
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directions of arguments within the memory are maintained statistically. The mechanism for
this is explained in Section 5.2.2 below. GENERAL-DIRECTION keeps track of the overall
directional tendency.
Now, letW1 be the current state of the Word Order Memory. Assume that thelearner has been
exposed to a sentence containingword1 word2, with a semantic representation that indicates
thatword1 is the actor ofword2. The learner has returned the grammar setG = {G1, G2}

G1 : word1 → np

word2 → s\np
...

G2 : word1 → np

word2 → (s\np)/np
...

GrammarG1 is chosen overG2 because the types\np takes arguments from the left, which is
the general preference for the location ofactorsin this language.

5.2.2 Setting the Memory and Memory Integrity

In order to combat noisy data a statistical method is used to maintain confidence in the settings
of the Memory Module. For every POSSIBLE and ACTIVE categoryC a count is kept,n(C),
which is the number of times that category has been hypothesised since it became POSSIBLE.
Now let N =

∑

C n(C) andNi be the sum of alln(C) for C that occur at leveli in the hier-
archy; letǫ be a threshold value between 0 and 1. If at the end of the current iteration any of
the POSSIBLE categories occurring in leveli satisfy n(C)

Ni

> ǫ then they become ACTIVE. If

any of the ACTIVE categories at leveli satisfy n(C)
Ni

< ǫ then they revert to POSSIBLE and all
of their children become INACTIVE. Hence ACTIVE tags are only assigned when sufficient
evidence has been accumulated, i.e. once the associated probability reaches a threshold value.
By employing this method, it becomes unlikely for memory settings to fluctuate as the conse-
quence of an erroneous utterance. The Word Order Memory operates similarly but with both a
low and high threshold to determine when to switch between| and\ or | and/.

Type Memory: an ACTIVE tag will only become set once enough evidence has been accumu-
lated; i.e. once a threshold value is reached.

Word Order Memory: each direction tag is associated with a value between 0 and 1;the tag
will remain as| unless it exceeds or subceeds a threshold.

5.2.3 Reducing Duplicated Effort

Consider the stringsmice scare elephantsandcats scare mice. Since the use ofscareis identical
in each string, it is a wasted effort for the categorial grammar learner to infer the type ofscare
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from both. If the learner is accurate, the type ofscarewill be inferred correctly the first time it
is encountered.
In order to reduce duplicated effort in type assignment and unification, the words of the current
string may be looked up in the current grammar (Gi) and assigned directly if appropriate:
Let the current grammar be:

Gi : you → np

eat → s\np

Consider the input stringlions eatwith semantic representationEAT’lion’ . This gives the
following augmented string:

Lions

np

eat

A | B

Looking upeat in the lexicon will return the types\np. Theskeleton typeA | B unifies with
s\np so it is directly assigned.

Lions

np

eat

s\np

If the skeleton type does not unify with any lexical entry then no assignment is made; the type
must be inferred. If there is more than one lexical entry which will unify with the skeleton type
then the most likely (according to the Type Memory) is chosen. On parse failure, the next most
likely type is selected—if no more types are available then the original skeleton type is used.
The benefit of this methodology is to build on previous knowledge; as alluded to in the study
of subcategorization frames in child speech and discussionof Brown’s stages (see Section 2.2.1
of Chapter 2). Assigning types can greatly reduce the search-space (the number of possible
functor-argument structures) and also place constraints upon how the rules might be used.

5.2.4 Using Additional Rules

Another improvement to the basic categorial grammar learner is to add the rules of function
composition and Generlised Weak Permutation (GWP); which are required to capture non-
constituent co-ordination and relative clauses etc. The motivation for selecting these particular
rules is primarily based on the corpus we use for testing thislearner. Villavicencio [104] built
a grammar to describe a section of the Sachs corpus of CHILDES [63] using the rules of ap-
plication, composition and GWP; we shall evaluate performance of our learner against this
grammar. Furthermore, use of function composition is standard for capturing non-constituent
co-ordination. In general, we have no particular preference for using GWP over type raising in
order to capture co-ordinate structures and unbounded dependencies. However, see Chapter 4
in Section 4.1.3 for a discussion of why GWP is preferable for this learning problem. Note that
use of GWP is restricted to use at the leaves of a derivation.
The algorithm is updated by selecting rules at each binary branch node according to a set of
heuristics. The following table lists the heuristics:x represents a primitive type (x ∈ Pr), A
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represents a non-primitive type (A ∈ Tp∧A /∈ Pr), K represents a fully specified non-primitive
type at a leaf node.

Scenario: Action:
(1) ?

\\��
x x

Fail.

(2) ?
ee%%

x A

?
ee%%

A x

Apply function application. On failure, con-
sider heuristic 4. If heuristic 4 is not applicable,
then fail.

(3) ?
ee%%

A A

Apply function composition. On failure, apply
function application. If application fails, then
consider heuristic 4.

(4) ?
b
bb

"
""

A

word1

K

word2

?
b
bb

"
""

K

word1

A

word2

If K is a fully specified non-primitive type and
is situated at a leaf node then allow Generalised
Weak Permutation. If permutation fails then
fail.

Since we always know something about the type of each leaf node, heuristics are always applied
from the leaves upwards. A failure percolates down the parsetree to the nearest node where a
next choiceoption still exists. When there are no next choice options left, the whole parse fails.
Heuristic (3) allows function composition to proceed in preference to function application. This
heuristic is necessary for the scenario when both composition and application will lead to valid
parses but the parse using application produces an over-generation.

s [<]hhhhhhh
(((((((

np s\np [>]
PPPPP

�����
〈s\np〉/np [> B]

PPPP
����

〈s\np〉/〈s\np〉 〈s\np〉/np

np

s [<]hhhhhhhhhh
((((((((((

np s\np [>]
XXXXX

�����
〈s\np〉/np [>]

XXXXXX
������

〈〈s\np〉/np〉/〈〈s\np〉/np〉 〈s\np〉/np

np

Heuristic (4) stops the blow up in complexity that would normally accompany the addition of
the rule for Generalised Weak Permutation. The rule is used only as a last resort and may only
be applied at the leaf nodes.
The basic algorithm has now been updated as follows:

Step a—Form Search-Space:Look up the string’s words in the current grammar (Gi). Make
assignments if appropriate (see Section 5.2.3). Form a set (S ) of all functor-argument
structures to describe the new augmented string.

Step b—Hypothesise Grammars:For eachsc ∈ S :

Step 1: Assign types to the structure:

(A) Assign sentence type to root node.

(B) (a) Infer types for remaining nodes using rules of function application, func-
tion composition and Generalised Weak Permutation in accordance with
the heuristics.
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(b) If (a) fails then, if there are more possible type assignments (including the
skeleton type), repeat fromStep ausing the next most likely assignments,
else exit.

Step 2: Create new grammar,Gi(c), by adding types at leaf nodes to the sets of types in
the current lexicon or by adding a new entry where necessary.

Step 3: Unify the sets of types in lexical entries ofGi(c).

Step 4: If Gi(c) is unique (i.e. not a duplicate of another possible grammar), then add it
to the setG.

Step c—Select Grammar: Select one grammar fromG using the Type Memory and the Word
Order Memory (as explained in Section 5.2.1). Update the Memory Module settings.

5.3 Categorial Grammar Learner—Worked Example

This Chapter is best illustrated by example. For the purpose of illustration a non-noisy context is
assumed (no thresholds); consequently Memory Module settings may be altered on the evidence
from a single input. The improved categorial grammar learner will be tracked as it learns from
three strings:lions eat; you eat biscuits; andlions might eat you.
Let the current grammarGi, current Type MemoryHi and current Word Order MemoryWi be
as follows:

Gi:

eat → s\np

you → np

Hi:

top
PPPPP

�����
np - ACTIVE s - ACTIVE

s\np - ACTIVE

Wi:

ACTOR-DIRECTION: \
GENERAL-DIRECTION: /

The learner now encounterssi = lions eat, with associated semantic contentEAT’lion’ , where
lion’ is the actor ofEAT’ . The augmented string will be:

Lions

np

eat

A | B
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Step a—Form Search-Space:The wordeat is in the lexicon and its type,s\np, unifies with
A | B giving:

Lions

np

eat

s\np

The presence of the primitive type,np, forces backward application; consequently there
is only one possible functor-argument structure (sa ∈ S ):

S =

{

<
cc##

np s\np

}

Step b—Hypothesise GrammarsUsing heuristic (2) we arrive at the following valid parse
tree and grammar:

s [<]
cc##

np s\np

Gi(a) : eat → s\np

lions → np

you → np

There are no unknowns in the grammar so there is no need to unify.

Step c—Select GrammarGi(a) is the only grammar inG. Gi(a) is selected to become the new
current grammar,Gi+1; none of its types are INACTIVE in the Type Memory. The Mem-
ory Module settings are recalculated as described. The counts for the ACTIVE tags\np is
incremented, as is the “leftwardness” of the ACTOR-DIRECTION and the GENERAL-
DIRECTION. The “rightwardness” of the GENERAL-DIRECTION is contradicted but
for this example we shall say it is not enough to switch the setting; this would mean
that the current utterance has not provided enough evidenceto outweigh the previously
accumulated evidence for this setting.

Gi+1:

eat → s\np

lions → np

you → np
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Hi+1:

top
PPPPP

�����
np - ACTIVE s - ACTIVE

s\np - ACTIVE

Wi+1:

ACTOR-DIRECTION: \
GENERAL-DIRECTION: /

The next string to be encountered isyou eat biscuits, with associated semantic contentEAT’biscuit’you’ ,
whereyou’ is the actor ofEAT’ andbiscuit’ is the undergoer. The augmented string will be:

you

np

eat

A | B | C

biscuits

np

Step a—Form Search-Space:The wordeat is in the lexicon,Gi+1, but its type,s\np, does
not unify with (A | B) | C.

Due to the presence of two primitive types there are only two possible functor-argument
structures,sa, sb ∈ S :

S =

{

>
aaaa

!!!!
<
b
bb

"
""

np A | B | C

np

, <
aaaa

!!!!
np >

b
bb

"
""

A | B | C np

}

Step b—Hypothesise GrammarsUsing heuristic (2) we arrive at the following valid parse
trees and grammars:

s [>]
PPPP

����
s/np [<]

HHH
���

np 〈s/np〉\np

np

s [<]
PPPP

����
np s\np [>]

HHH
���

〈s\np〉/np np

Gi+1(a) : biscuits → np

eat → s\np, (s/np)\np

lions → np

you → np
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Gi+1(b) : biscuits → np

eat → s\np, (s\np)/np

lions → np

you → np

There are no unknowns in the grammars so there is no need to unify.

Step c—Select GrammarGi+1(b) is selected as the new current grammar,Gi+2; the type(s/np)\np
in grammarGi+1(a) is INACTIVE in the Type Memory where as type(s\np)/np (from
Gi+1(b)) is POSSIBLE. The memory module settings are recalculated: the tag for(s\np)/np
is set to ACTIVE; the UNDERGOER-DIRECTION is activated; the “leftwardness” of
the ACTOR-DIRECTION is reinforced; and the “rightwardness” of the GENERAL-
DIRECTION is both contradicted and reinforced, thus remaining constant.

Gi+2:

biscuits → np

eat → s\np, (s\np)/np

lions → np

you → np

Hi+2:

top
XXXXX

�����
np - ACTIVE s - ACTIVE

s\np - ACTIVE

〈s\np〉/np - ACTIVE

Wi+2:

ACTOR-DIRECTION: \
UNDERGOER-DIRECTION: /
GENERAL-DIRECTION: /

The final string to be encountered islions might eat you, with associated semantic content
MIGHT’(EAT’you’lion’) , whereEAT’ is the argument ofMIGHT’ . The augmented string
will be:

lions

np

might

A | B

eat

A | B | C

you

np
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Step a—Form Search-Space:The word eat is in the lexicon (Gi+2) and one of its types,
(s\np)/np, unifies with(A | B) | C.

There are 10 possible functor-argument structures inS . The? symbol is being used as
shorthand for> or <:

sa, sb : ?
XXXXX

�����
<
ZZ��

np A | B

>
HHH

���
〈s\np〉/np np

sc, sd : >
PPPP

����
?
PPPP

����
<
ZZ��

np A | B

〈s\np〉/np

np

se, sf : <
PPPP

����
np ?

PPPP
����

A | B >
HHH

���
〈s\np〉/np np

sg, sh : <
XXXXX

�����
np >

PPPP
����

?
HHH

���
A | B 〈s\np〉/np

np

si, sj : >
XXXXXX

������
<
aaa

!!!
np ?

HHH
���

A | B 〈s\np〉/np

np

Step b—Hypothesise Grammarssa, sb, sc,, sd andsj fail to parse.se, sf , sg, andsh succeed,
making use of both heuristics (2) and (3).si succeeds using only heuristic (2).

se, sf : s [<]
PPPP

����
np s\np [< B]

PPPP
����

np\np s\np [>]
HHH

���
〈s\np〉/np np

sg, sh : s [<]hhhhhhh
(((((((

np s\np [>]
PPPPP

�����
〈s\np〉/np [> B]

PPPP
����

〈s\np〉/〈s\np〉 〈s\np〉/np

np
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si : s [>]hhhhhhhhh
(((((((((

s/np [<]hhhhhhh
(((((((

np 〈s/np〉\np [>]
XXXXXX

������
〈〈s/np〉\np〉/〈〈s\np〉/np〉 〈s\np〉/np

np

Giving three unique grammars:

Gi+2(e) : biscuits → np

eat → s\np, (s/np)\np

lions → np

might → np\np

you → np

Gi+2(g) : biscuits → np

eat → s\np, (s\np)/np

lions → np

might → (s\np)/(s\np)

you → np

Gi+2(i) : biscuits → np

eat → s\np, (s\np)/np

lions → np

might → ((s/np)\np)/((s\np)/np)

you → np

Step c—Select GrammarGi+2(g) is selected as the new current grammar,Gi+3. This is be-
cause i) the type((s/np)\np)/((s\np)/np) from grammarGi+2(i) is INACTIVE in the
Type Memory; ii) without any memory data relating specifically to the type of argument
that might takes, grammarGi+2(g) is chosen overGi+2(e) since the type(s\np)/(s\np)
takes arguments from the right, which is the general preference of the language. The
Memory Module settings are recalculated: the tag for(s\np)/(s\np) is set to ACTIVE;
the ARG1-DIRECTION is activated (since ARG1 is the type of argument taken byMIGHT’ );
and the “rightwardness” of the GENERAL-DIRECTION is reinforced.
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Gi+3:

biscuits → np

eat → s\np, (s\np)/np

lions → np

might → (s\np)/(s\np)

you → np

Hi+3:

tophhhhhhhh
((((((((

np - ACTIVE s - ACTIVE

s\np - ACTIVE
XXXXXX

������
〈s\np〉/np - ACTIVE 〈s\np〉/〈s\np〉

Wi+3:

ACTOR-DIRECTION: \
UNDERGOER-DIRECTION: /
ARG1-DIRECTION: /
GENERAL-DIRECTION: /

5.4 Categorial Grammar Learner Summary

This chapter has described a Categorial Grammar Learner thatcan learn from streams. In order
that it may describe real languages, the learner operates onsyntactic categories using the rules of
function application, function composition and Generalised Weak Permutation. This introduces
complexity over a learner that just uses the rules of function application. In order to reduce
complexity, heuristics are employed to guide rule selection. The introduction of a Memory
Module serves two major functions: the first is to aid in the selection of one grammar from
the many hypothesised; the second is to make the learner robust to the noise that is present
in real linguistic input (see Chapter 6). The Memory Module comprises of two sections; the
Type Memory, which records the syntactic categories that have been learnt and how often they
have been seen; and the Word Order Memory, which records the directional tendencies of the
language. By expressing the Type Memory as a hierarchical structure, constraints are placed
on the syntactic types that the learner is allowed to hypothesise; a type may only be learnt if its
direct parent has been learnt. Thus, the learner builds knowledge incrementally (as alluded to
in Chapter 2).
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Chapter 6

Evaluation of Model

In this chapter the Categorial Grammar Learner (CGL) will firstbe evaluated with respect to
other parameter based learners. In Section 6.1 we compare the characteristics of the CGL with
general parametric learners. In particular the influence ofand differences to the Waldron/Villav-
icencio Learning System are discussed. Section 6.2 then looks at the efficiency of the CGL when
learning within an ideal (noiseless) environment. Its performance is evaluated and compared
to the Triggering Learning Algorithm and the Structural Triggers Learner within Gibson and
Wexler’s 3-parameter grammar-space. In Section 6.3 the real world validity of the model will
be demonstrated with experimentation to show that the CGL canlearn from real (noisy) data.
Finally in Section 6.4 the model’s developmental compatibility will be discussed with reference
to Brown’s stages and the subcategorization frame acquisition experiments that were detailed
in Chapter 2.

6.1 Comparison to Previous Parameter Based Learners

The properties of the parameters used by the CGL are as follows: parameters are lexical; pa-
rameters are organised hierarchically; parameter settingis statistical.

Lexical Parameters: The CGL employs parameter setting as a means to acquire a lexicon;
differing from other parametric learners (such as the Triggering Learning Algorithm
(TLA) [39] and the Structural Triggers Learner (STL) [38], [90]), which acquire gen-
eral syntactic information rather than the syntactic properties associated with individual
words.1

The categorial grammar parameters of the CGL are concerned with defining the set of
syntactic categories present in the language of the environment. Converging on the correct
set aids acquisition by constraining the learner’s hypothesised syntactic categories for an
unknown word. A parameter (with value of either ACTIVE, INACTIVE or POSSIBLE) is
associated with every possible syntactic category to indicate whether the learner considers
the category to be part of the target grammar.

Some previous parametric learners (TLA and STL) have been primarily concerned with
overall syntactic phenomena rather than the syntactic properties of individual words.
Movement parameters (such as theV 2 parameter of the TLA) may be captured by the

1The concept of lexical parameters and the lexical-linking of parameters is to be attributed to Borer [8].
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>

s

Figure 6.1: Illustration of the interrogative “was the cat who grinned disappearing?”.

CGL using multiple lexical entries. For instance, Dutch and German word order is cap-
tured by assuming that verbs in these languages have two categories, one determining
main-clause order and the other subordinate-clause orders. Figure 6.1 illustrates how an
interrogative may be derived by using multiple lexical entries. The word “was” has two
entries in the lexicon; one determining auxiliary form and the other interrogative form.

Hierarchical Parameters: The complex syntactic categories of a categorial grammar are a
subcategorization of simpler categories; consequently categories may be arranged in a
hierarchy with more complex categories inheriting from simpler ones. Figure 6.2 shows
a fragment of a possible hierarchy. This hierarchical organization of parameters provides
the learner with several benefits. The hierarchy can enforcean order on learning; for
instance in the CGL presented here, a constraint is imposed such that a parent parameter
must be acquired before a child parameter (for example, in Figure 6.2, the learner must
acquire intransitive verbs before transitive verbs may be hypothesised). Another possi-
ble function of hierarchical parameters is that values may be inherited as a method of
acquisition. Such a CGL was implemented by Villavicencio [104].

s
PPPPP

�����
s/s s\np

PPPP
����

〈s\np〉/np 〈s\np〉/〈s\np〉

Figure 6.2: Partial hierarchy of syntactic categories

Statistical Parameter Setting: The CGL uses a statistical method to track the relative frequen-
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cies of parameter-setting-utterances in the input. Such anapproach sets parameters only
if there is enough accumulated evidence. This represents a compromise between two
extremes: implementations of the TLA are memoryless allowing parameter values to os-
cillate; while some implementations of the STL set a parameter once, for all time.2 The
CGL uses a threshold value to indicate when enough evidence has been accumulated. An
alternative method would be to maintain a probability distribution over parameters as in
Yang’s Variational Learner [109]. However, this method does not seem appropriate in
this case since parameters (possible type categories) are not predefined before learning
commences.

A further difference between the CGL and most parametric learners is that it induces its gram-
mar from string/semantic representation pairs (by means ofan augmented string) rather than
from a simple string alone. However, this has similarities with the very recent work of Zettle-
moyer and Collins [112] in that both systems infer a combinatory categorial grammar from
string/semantic representation pairs; although Zettlemoyer and Collins’ CCG uses type-raising
instead of permutation. The basic principles of the two learners are very similar; the difference
is in the application and implementation. For instance, rather than use a memory module to
select between hypothesised grammars, Zettlemoyer and Collins use dynamic programming to
create a probability distribution over parses. Furthermore, Zettlemoyer and Collins use prede-
fined trigger rules to hypothesise1 of 8 possible syntactic categories. The CGL, on the other
hand, is not constrained by a set of possible categories; only in the order that it acquires them.
All said, the systems are trying to solve two different problems. Zettlemmoyer and Collins
are mapping natural language interfaces to database queries, whereas the CGL attempts to be
cognitively plausible and developmentally compatible with human learning.

6.1.1 Influence of and Differences to Waldron/Villavicencio Learning Sys-
tem

The Waldron/Villavicencio Learning System (see Section 4.2.1) provides the inspiration for the
Memory Module of the CGL. Villavicencio defined the Principles of a Universal Grammar to
be a subset (cardinality89) of all the possible categorial grammar categories that take up to five
arguments. These syntactic categories are arranged in a hierarchy so that child types can inherit
syntactic/semantic information from their parents. The parameters of this Universal Grammar
are embedded within the hierarchy. For instance, each category has a categorial-parameter (e.g.
intransitive-parameter) that will take a Boolean value. If the category is active in the current
grammar then this attribute is set totrue; otherwise it isfalse. A categorial parameter can be set
to true if its associated trigger has been detected and if its directparent in its group hierarchy
is also true. The CGL adopts this type of category hierarchy and also the criteria for category
activation. However, the major difference between Villavicencio’s Universal Grammar param-
eters and the CGL Memory Module is that Villavicencio predefines parameters (and syntactic
categories) before learning commences; this approach requires an increase of innate knowl-
edge. The CGL Memory Module requires no predefinition; it is built during acquisition as a
consequence of the categories acquired and of the argumentsobserved in semantic expressions.
Furthermore, in Waldron/Villavicencio’s system, the current grammar plays no part in con-
straining hypothesised syntactic categories; the Memory Module of the CGL, however, con-

2Although there is one version of the STL (the Guessing STL) that does employ a statistical method [37]
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strains hypotheses to aid the speed of acquisition. In fact Waldron/Villavicencio are solving a
slightly different problem. They present a system for learning the settings of the parameters of
a Universal Grammar. The acquired grammar can then be used toparse and produce language.
In order to acquire the parameter settings, the learner has to first use Waldron’s syntactic learner
to hypothesise categories for the utterance heard. The mechanisms for acquisition are distinct
to those for utilising the grammar being acquired. Contrastively, in the CGL, a single set of
rules are required for acquisition, parsing and production. Acquisition occurs “naturally” as a
consequence of trying to parse the sentence as an adult learner would do. As a consequence the
CGL has no requirement for Villavicencio’sTrigger Identification Model. However, note here
another similarity; the incremental learning nature of both of the systems reduces the notion of
a trigger to “a string that contains only a small amount of unknown grammatical information”.
Computationally, the Waldron/Villavicencio’s learner displays inefficiencies over the CGL.
Waldron’s syntactic learner is burdened with the complexity of learning from simple strings.
All possible syntactic categories are discovered by his learner; invalid categories are only later
excluded by theValid Category Assignment Detection Module. In the case of the CGL (which
learns from augmented strings created from the associated semantic representations), categories
that are not compatible with a word’s associated semantic form are never hypothesised in the
first place.

6.1.2 Possible Problems with the Principle of Categorial Type Transparency

Both the Waldron/Villavicencio System and the CGL make crucial use of thePrinciple of Cat-
egorial Type Transparency: Villavicencio uses this principle to filter invalid categories in the
Valid Category Assignment Detection Module; the CGL uses the principle to create augmented
strings. It is commonly argued that the use of this principlecould potentially cause problems for
the CGL. The line of thought here is that it is not always the case that the number of syntactic
arguments for a word is the same as the semantic arity. For example, consider the following sen-
tence“Ian seems to be happy”. The wordseemsin this sentence has two syntactic arguments
Ian andto be happybut its semantic arity is one; having a semantic representation something
like SEEM’(HAPPY’ian’) .
However, these constructions are not a problem for the CGL norfor the Principle itself since it
only states a functional relationship between semantic type and syntactic category. Figure 6.3
shows how the CGL learns the syntactic category forseems. In Step 1, the skeleton category is
formed from the semantics:SEEM’x → A | B whereA andB are allowed to be any ACTIVE
syntactic categories. In Step 2, function application is used to infer the type ofB; also the parent
node (the result of the function application) is labelledA. At Step 3, the CGL utilises function
application again to infer that the type ofA must bes\np. This type percolates down the tree
in Step 4 giving the syntactic type ofseemsas(s\np)/(s\np) or simplys\np/(s\np) since the
categories are left associative. Thus the CGL is able to deal with the problem elegantly since
the only constraints placed on the categoriesA andB were that they were ACTIVE; the CGL
insists on an argument being a primitive type only if its semantic type is an entity likeian’ .
In general, this mode of operation of a learning system, whereby it uses the semantic properties
of words as a cue to their syntactic category, is referred to as semantic bootstrapping[74]. The
theory requires that semantic information is available in order for the syntactic learning process
to begin. Currently, the CGL can not learn anything about a word’s syntax until it knows
about its semantics. However, this doesn’t imply that it is impossible to learn syntax before
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Figure 6.3: Derivation ofIan seems to be happy.

semantics. Consider the case where the syntactic category ofevery word but one is already
known; the category of the new word could often be inferred byinspection of the parse tree
without reference to any semantic information. This would be a simple extension to the CGL.

6.2 Learning in an Ideal Environment

The CGL is formally sufficient(can be formally demonstrated to acquire language) for lan-
guages defined by a classic categorial grammar. Kanazawa proved thatk-valued classic cate-
gorial grammars may be learnt from strings. The augmented strings which this learner learns
from carry the same (and more) information; hence it is also possible to learnk-valued classic
categorial grammars from augmented strings.
In order to learn ak-valued classic categorial grammar from a stream of simple strings, is it
necessary to investigate every possible functor-argumentstructure derivable from every string.
For a string of lengthn the number of functor-argument structures is bounded by8n−1. For
augmented strings there will be somewhat less functor-argument structures; for instance, the
introduction ofm primitive types will reduce the number of trees by a factor ofat least2m. The
number of functor-argument structures is further reduced by the employment of the Memory
Module that filters functor-argument structures based on previous evidence. However, at the
same time the complexity is increased by the introduction ofthe rules of function composition
and Generalised Weak Permutation. The following investigates the efficiency of this learner in
comparison to the TLA and STL on Gibson and Wexler’s three parameter grammar-space.
The English-like language of the three-parameter system studied by Gibson and Wexler has
the parameter settings and associated unembedded surface-strings as shown in Figure 6.4. For
this task we assume that the surface-strings of the English-like language are independent and
identically distributed in the input to the learner.
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SPECIFIER COMPLEMENT V 2
0 (Left) 1 (Right) 0 (off)

1. Subj Verb
2. Subj Verb Obj
3. Subj Verb Obj Obj
4. Subj Aux Verb
5. Subj Aux Verb Obj
6. Subj Aux Verb Obj Obj
7. Adv Subj Verb
8. Adv Subj Verb Obj
9. Adv Subj Verb Obj Obj

10. Adv Subj Aux Verb
11. Adv Subj Aux Verb Obj
12. Adv Subj Aux Verb Obj Obj

Figure 6.4: Parameter settings and surface-strings of Gibson and Wexler’s English-like lan-
guage.

Efficiency of Triggering Learning Algorithm

For the TLA to be successful it must converge to the correct parameter settings of the English-
like language (see Figure 6.4). Berwick and Niyogi [4] modelled the TLA as a Markov process
(see Figure 6.5). Circles represent possible grammars (a configuration of parameter settings).
The target grammar lies at the centre of the structure. Arrows represent the possible transi-
tions between grammars. Note that the TLA is constrained to only allow movement between
grammars that differ by one parameter value. The probability of moving between GrammarGi

and GrammarGj is a measure of the number of target surface-strings that arein Gj but not
Gi, normalised by the total number of target surface-strings as well as the number of alternate
grammars the learner can move to. For example the probability of moving from Grammar3 to
Grammar7 is 2/12 ∗ 1/3 = 1/18 since there are2 target surface-strings allowed by Grammar7
that are not allowed by Grammar3 out of a possible of12 and three grammars that differ from
Grammar3 by one parameter value.

Using this model it is possible to calculate the probabilityof converging to the target from each
starting grammar and the expected number of steps before convergence. Consider starting from
Grammar3, after the process finishes looping it has a3/5 probability of moving to Grammar
4 (from which it will never converge) and a2/5 probability of moving to Grammar7 (from
which it will definitely converge), therefore there is a40% probability of converging to the
target grammar when starting at Grammar3.

Let Sn be the expected number of steps from staten to the target state. For starting grammars
6, 7 and8, which definitely converge, we know:

S6 = 1 +
5

6
S6 (6.1)

S7 = 1 +
2

3
S7 +

1

18
S8 (6.2)
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Figure 6.5: Gibson and Wexler’s TLA as a Markov structure.

S8 = 1 +
1

12
S6 +

1

36
S7 +

8

9
S8 (6.3)

and for the times when we do converge from grammars3 and1 we can expect:

S1 = 1 +
3

5
S1 (6.4)

S3 = 1 +
31

33
S3 +

2

33
S7 (6.5)

Figure 6.6 shows the probability of convergence and expected number of steps to convergence
for each of the starting grammars.

Initial Language Initial Grammar Prob. of Converging Expected no. of Steps

VOS -V 2 110 0.66 2.50
VOS +V 2 111 0.00 n/a
OVS -V 2 100 0.40 21.98
OVS +V 2 101 0.00 n/a
SVO -V 2 010 1.00 0.00
SVO +V 2 011 1.00 6.00
SOV -V 2 000 1.00 5.47
SOV +V 2 001 1.00 14.87

Figure 6.6: Probability and expected number of steps to convergence from each starting gram-
mar to an English-like grammar (SVO -V 2) when using the TLA.

The expected number of steps to convergence ranges from infinity (for starting grammars2 and
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4) down to2.5 for Grammar1. If the distribution over the starting grammars is uniform then the
overall probability of converging is the sum of the probabilities of converging from each state
divided by the total number of states:

1.00 + 1.00 + 1.00 + 1.00 + 0.40 + 0.66

8
= 0.63 (6.6)

and the expected number of steps given that you converge is the weighted average of the number
of steps from each possibly converging state:

5.47 + 14.87 + 6 + 21.98 × 0.4 + 2.5 × 0.66

1.00 + 1.00 + 1.00 + 1.00 + 0.40 + 0.66
= 7.26 (6.7)

Efficiency of Structural Triggers Learner

The STL does not define parameters in the same manner as the TLA. Rather, each parameter is a
schematic treelet that can be used within a parse tree to derive a successful parse. The Universal
Grammar consists of all the treelets that are required to parse all languages. For the STL to
converge on the correct grammar it must acquire the subset oftreelets needed for parsing the
target language; in this case the English-like language. Treelets may only be acquired if they
are found to contribute to an unambiguous parse and once learnt can not be removed from the
subset. On receiving new input, the STL first attempts to parse using the current set of treelets.
If this parse succeeds then the subset remains unchanged. Ifthe parse is unsuccessful then a
parse is attempted using all the treelets in the Universal Grammar. If a choice point is discovered
during parsing then no treelets are acquired. Otherwise, ifan unambiguous parse is found, the
treelets involved in that parse are added to the subset.
A set of Universal Treelets that can describe languages in Gibson and Wexler’s 3-parameter-
space are outlined below. We consider the treelets requiredto express each parameter:

SPECIFIER: this parameter determines whether specifiers occur in initial or final position. In
terms of Gibson and Wexler’s surface-strings, this is equivalent to whethersubj occurs
before or afterverb. Expressed as treelets in X-bar theory [47], this parameterdictates
the position of a specifier in anIP (Inflectional Phrase). This parameter might also have
determined the position of specifiers inCPs (Complementizer Phrases), however, in the
language descriptions provided by Gibson and Wexler the specifier of theCP is fixed in
the initial position; this is the reason whyadv always occurs in the leftmost position of
their surface-strings. The treelets required to express this parameter are as follows:

subj-initial: subj-final:
IP
ZZ��

subj V P

IP
ZZ��

V P subj

COMPLEMENT: this parameter determines whether complements occur in initial or final
position. In terms of Gibson and Wexler’s surface strings, whetherobj andauxoccur on
the left ofverbor to the right. This single parameter defines the behaviour of both objects
and auxiliaries (i.e. you can not haveauxoccurring on the right of the verb but theobj on
the left. The treelets required to express this parameter are:
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obj-initial: obj-final: aux-initial: aux-final:
V P
cc##

obj V P

V P
cc##

V P obj

V P
cc##

aux V P

V P
cc##

V P aux

V2: this parameter determines whether the finite verb in the string should be moved to the
second position. In Gibson and Wexler’s surface-strings the finite verb is expressed as
eitherverbor aux. If an aux is present it is this that is moved to the second position ifV 2
is activated, otherwise theverb is moved. Accompanying the verb movement eithersubj,
obj or adv is moved to the first position in the string. In terms of X-bar theory the finite
verb is moved to become the head of theCP and eithersubj, obj or adv is moved to the
specifier. To describe this parameter we require the following treelets:

spec-empty-CP: head-empty-C′: VMOV : specMOV :
CP
cc##

SPEC C ′

C ′

@@��
C IP

C

VMOV

SPEC

SPECMOV

HereVMOV andSPECMOV indicate the position of the finite verb and specifier after move-
ment.

In addition to the treelets required to express the parameters we will need the following treelets
to express the full range of surface-string in Gibson and Wexler’s languages:

adv-lex: verb-lex:
SPEC

adv

V P

verb

Figure 6.7 shows two possible derivations for the surface-string subj verb obj. The first deriva-
tion could occur in an language that is specifier initial, complement final and has noV 2 move-
ment. The second derivation could occur in a language that isspecifier final, complement initial
and hasV 2. In the second derivationverb is moved toVMOV andsubj to specMOV to give the
surface-string.
In order to parse the English-like language the STL must acquire the subset of treelets{subj-
initial , obj-final, aux-initial, adv-lex, verb-lex, spec-empty-CP, head-empty-C′}. The Markov
model in Figure 6.8 illustrates the operation of the STL whenthe 12 input sentences are uni-
formly distributed. The states represent the subset of treelets that have been learnt; in the starting
states this subset is empty. From this model the expected number of steps for convergence can
be calculated. LetSx be the expected number of steps to converge from the statex to the final
stated. We know thatSd = 0. From Figure 6.8 we see that the following equations also hold:

Sb = 1 +
9

12
Sb

Sc = 1 +
8

12
Sc

Sa = 1 +
7

12
Sa +

2

12
Sb +

1

12
Sc

Ss = 1 +
6

12
Ss +

1

12
Sa +

2

12
Sb +

1

12
Sc
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IP
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XXXXX
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SPECMOV
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PPPP
����

C
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���
V P
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obj V P

verb

subj

Figure 6.7: Alternative derivations for the surface-string subj verb obj.

These equations can be simply solved in sequence to giveSb = 4, Sc = 3, Sa = 23
5

and lastly,
Ss = 23

5
= 4.6 which is the expected number of steps from the initial states to the final stated.

Efficiency of Categorial Grammar Learner

The input data to the CGL system would normally be simple-string/semantic representation
pairs from which augmented strings would be derived. However, the only data available for
learning from in this experiment are Gibson and Wexler’s surface-strings, which consist of the
word typessubj, obj, verb, auxandadj (Figure 6.4). Since we have neither simple strings nor an
associated semantic representation available to us we haveto assume a mapping from semantic
categories to word types in order to create the augmented strings we require. For example, given
surface-string 1 (Subj Verb) the mappingsVerb 7→ VERB’ x andSubj 7→ subj’ are assumed.
By the Principle of Categorial Type Transparency, these semantic forms provideVerb with a
skeleton syntactic category of the formA|B (whereA andB are unknown syntactic categories
and| is an operator over\ and/) andSubjwith the primitive syntactic category that is called
np.
The criteria for success for the CGL when acquiring Gibson andWexler’s English-like language
is a lexicon containing the following (wheres, np are primitive categories which are innate to
the learner):3

Adv s/s
Aux (s\np)/(s\np)
Obj np
Subj np
Aux (s\np)/(s\np)
Verb s\np

(s\np)/np
((s\np)/np)/np

During the learning process the CGL will have constructed a type hierarchy in the Type Memory
by setting appropriate categorial parameters to ACTIVE (seeFigure 6.9). The learner will have

3Note that the lexicon would usually contain orthographic entries for the words in the language rather than
word type entries.
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1
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1
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9

1

state s-{}
state a-{spec-empty-CP, head-empty-C′, adv-lex, verb-lex, subj-initial}
state b-{spec-empty-CP, head-empty-C′, adv-lex, verb-lex, subj-initial, obj-final}
state c-{spec-empty-CP, head-empty-C′, adv-lex, verb-lex, subj-initial, aux-initial}
state d-{spec-empty-CP, head-empty-C′, adv-lex, verb-lex, subj-initial, obj-final, aux-initial}

Note that all transition probabilities have an understood denominator of 12.

Figure 6.8: The STL as a Markov structure.
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Figure 6.9: Category hierarchy required to parse Gibson and Wexler’s English-like language.

also updated the Word Order Memory, setting parameters to\ or/. The Memory Module is used
during the learning process to constrain hypothesised syntactic categories. For this task setting
the Word Order Memory becomes trivial and its role in constraining hypotheses is negligible;
consequently, the rest of our argument will relate to categorial parameters only. Parameters are
all originally set INACTIVE. Since the input is noiseless theswitching threshold is set such that
parameters may be set ACTIVE upon the evidence from one surface-string.
It is a requirement of the CGL that the parent-types of hypothesised syntax categories are AC-
TIVE before those categories themselves can become ACTIVE. Thus, the learner is not allowed
to hypothesise the syntactic category for a transitive verb((s\np)/np) before it has learnt the
category for an intransitive verb(s\np); additionally, it is usually not possible to derive a word’s
full syntactic category (i.e. without any remaining unknowns) unless it is the only new word in
the clause.
As a consequence of these issues, the order in which the surface-strings appear to the learner
affects the speed of acquisition. For instance, the learnerprefers to see the surface-stringSubj
Verb beforeSubj Verb Objso that it can acquire the maximum information without wasting
any strings. For the English-type language described by Gibson and Wexler the learner can
optimally acquire the whole lexicon after seeing only5 surface-strings (one string needed for
each new complex syntactic category to be learnt). However,the strings appear to the learner in
a random order so it is necessary to calculate the expected number of strings (or steps) before
convergence.
The learner must necessarily see the stringSubj Verbbefore it can learn any other information.
With 12 surface-strings the probability of seeingSubj Verbis 1/12 and the expected number of
strings before it is seen is12. The learner can now learn from3 surface-strings:Subj Verb Obj,
Subj Aux VerbandAdv Subj Verb. Figure 6.10 shows a Markov structure of the process. From
the model we can calculate the expected number of steps to converge to be24.53.

Comparison of Efficiency

To summarise, the TLA, STL and CGL were compared for efficiency(expected number of steps
to convergence) when acquiring the English-type grammar ofthe three-parameter space studied
by Gibson and Wexler. The TLA only converged63% of the time but on the occasions that it
did converge, the expected number of steps was given by7.26. In a noiseless environment both
the STL and CGL are guaranteed to converge; the expected number of steps for the STL and
CGL were4.6 and24.53 respectively.
In terms of the number of steps, the STL appears to greatly outperform the CGL. However,
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state S-{}
state a-{s\np}
state b-{s\np, s/s}
state c-{s\np, (s\np)/np}
state d-{s\np, (s\np)/(s\np)}
state e-{s\np, s/s, (s\np)/np}
state f -{s\np, (s\np)/np, ((s\np)/np)/np}
state g-{s\np, (s\np)/(s\np), s/s}
state h-{s\np, (s\np)/(s\np), (s\np)/np}
state i -{s\np, s/s, (s\np)/np, (s\np)/(s\np)}
state j -{s\np, s/s, (s\np)/np, ((s\np)/np)/np}
state k-{s\np, (s\np)/np, ((s\np)/np)/np, (s\np)/(s\np)}
state l -{s\np, (s\np)/np, ((s\np)/np)/np, (s\np)/(s\np), s/s}

Figure 6.10: The CGL as a Markov structure.

111



analysis of the complexity of each step shows that the CGL willconverge faster than the STL
on average. For a sentence of lengthn the CGL examines at most2n−1Xn parse trees; where
Xn is the number of binary branching trees withn leaves (see Chapter 4). The STL can only
learn from a unambiguous parses. To be certain there is no ambiguity present all combinations
of treelets must be checked for a given input. With a Universal Grammar containingT treelets
the STL must checkT nXn+1 parse trees.4 So, even if the STL reaches the target state within a
single step, it must have checkedT nXn+1 parse trees. As long asT > 2, for a given grammar-
space, the CGL out performs the STL asn increases.
The CGL learns incrementally; the hypothesis-space from which it can select possible syntactic
categories expands dynamically as a consequence of the hierarchical structure of parameters.
The further a category is located down the hierarchy the longer it will take to be learnt; the CGL
needs to see at least as many sentences as the category has arguments. Fortunately, since real
language is hypothesised to never contain constituents with more than 5 arguments [82], we
expect the hierarchical structure to be quite bushy; so thisdoes not constitute a great problem.
As a further consequence of incremental learning, the speedat which the CGL acquires cate-
gories increases over time. For instance, in the starting state there is only a1/12 probability of
learning from surface-strings, whereas in statek (when all but one category has been acquired)
there is a1/2 probability. It is likely that with a more complex learning task the benefits of this
incremental approach will outweigh the slow starting costs. A related work on the effects of in-
cremental learning on STL performance [89] draws similar conclusions. Furthermore it should
be noted, that in real world examples the start-up cost for the CGL (i.e. only being able to learn
from one string at first) is likely to be less burdening. This is because in real language there
is not a uniform distribution over sentence types; the sentence formSubj Verb, for example,
is very common. Furthermore, the STL can learn nothing from these very common sentence
forms since they have more than one possible derivation fromthe treelets.
As a final point, the CGL can be made robust to noise by increasing the probability threshold at
which a parameter may be set to ACTIVE; neither the TLA or the STL have a mechanism for
coping with noisy data.

6.3 Learning from Real Data

A learning system has been implemented to learn from real data. The system is composed of
three modules: a semantics learning module (which creates augmented string from free-form
semantic representation), a syntax learning module (the CGL) and a memory module (see Fig-
ure 6.11). For each utterance heard the learner receives an input stream of word tokens paired
with possible semantic hypotheses. For example, on hearingthe utterance “Dinah drinks milk”
the learner may receive the pairing: ({dinah, drinks, milk}, DRINK’milk’dinah’ ). The seman-
tic module attempts to learn the mapping between word tokensand semantic symbols, building
a lexicon containing the meaning associated with each word sense; this is achieved by using
cross-situational techniques (see Section 4.4 of Chapter 4). The learning system then links the
semantic module and syntactic module by using the Principleof Categorial Type Transparency;
allowing basic syntactic information to be inferred from the semantic type and representing
this as augmented strings (Section 4.4.2). The syntactic module attempts to learn syntactic
categories from augmented strings (as described in Chapter 5). The Memory Module (also de-

4The STL needs to check all trees ofn + 1 leaves because of the addition of theV 2-movement treelets rule.
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scribed in Chapter 5 in Section 5.2.1) records the current state of the hypothesis-space. The
syntactic module refers to this information to place constraints upon which syntactic categories
may be learnt and also as a means of being robust to noise.

6.3.1 Evaluation of the Learning System

The Sachs Corpus of the CHILDES database [63] was used as input to the learning system.
This corpus contains a selection of interactions between a child and her parents from the age of
one year one month to five years one month. The corpus was preprocessed so that the child’s
sentences were excluded; only the parents’ sentences are given as input to the system. Also, all
phonological annotations and hesitations have been removed. The corpus is annotated such that
all utterances are associated with their semantic representation(s).
A Unification-Based Generalised Categorial Grammar has been created by Villavicencio [104]
to describe 2000 utterances of this corpus. The grammar usesthe rules of application, composi-
tion and Generalised Weak Permutation (described in Section 4.1). Evaluation was carried out
with respect to this grammar which provides both a semantic and syntactic category for every
item in its lexicon.5

A problem with using Villavicencio’s grammar for evaluation is that it uses lexical rules to deal
with some linguistic phenomena. The CGL, however, has no equivalent of lexical rules, produc-
ing instead multiple lexical entries to describe the same phenomena. For an example, refer back
to Section 6.1 which gives a discussion of dealing withV 2 movement using multiple entries.
Also, Figure 6.12 illustrates how the interrogatives may beformed using the unary rule INV (as
in Villavicencio’s grammar) or multiple lexical entries (as in the CGL). For evaluation, a map-
ping had to be produced from the categories within lexical entries of Villavicencio’s grammar
to equivalent categories within this Learning System. For each item in Villavicencio’s lexicon
we enumerated all the lexical rules that could apply to that item. Possible categories for the
item were then generated by applying each of the lexical rules. If by applying a lexical rule, we
yielded a result that itself could be the argument of a lexical rule, we applied that rule and gen-
erated yet another category. This process was continued until either a closed set of categories
was generated or (rarely) a limit on categories was reached (e.g. 20 syntactic categories per
item).
A point to note in this section is that evaluation against another grammar has its problems;
for instance, Villavicencio’s grammar does not describe ellipsis or interjections which have
been included in the input. An alternative evaluation mightbe to demonstrate that the acquired
grammar is capable of producing the utterances produced by the child of this corpora. In fact,
we might hope to demonstrate that the grammar describes a superset of the productions; with
linguistic competence exceeding linguistic performance.However, such an evaluation is im-
practical since we do not have access to all the spoken utterances that the child has ever heard.

6.3.2 Noise Introduced by Indeterminacy of Meaning

If a child is to ever use language in a purposeful manner she must not only determine which
utterances belong to the language but also determine what they mean. Ideally a child will
hypothesise the correct meaning for every utterance it hears. However, assigning a meaning
is not straight-forward; there is unlikely to be only one obvious candidate. When the correct

5Note that the following evaluation experiments have been previously published as [20].
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Figure 6.12: Illustration of the use of unary rules versus multiple lexical entries.
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meaning is not hypothesised, error has been introduced. An error of this type introduces a false
association between word and meaning within the semantics module of out learning system.
To combat this problem within our learning system a statistical error handling methods were
adopted (see Sections 4.4.1 and 5.2.2).
We investigated the robustness of our learning system underincreasing levels of indeterminacy
of meaning. This was achieved by associating utterances from the corpus with a set of possible
semantic meanings (rather than just their single correct meaning). Indeterminacy could be
increased by increasing the size of this associated meaningset and also by not including the
actual meaning within the set.

Experiment 1a: The learner was run with increasing numbers of semantic hypotheses per ut-
terance. The extra hypotheses were chosen randomly and the correct semantic expression
was always present in the set. Hypotheses sets of sizes 2, 3, 5, 10 and 20 were used.

Experiment 1b: The learner was run with some utterances being completely mismatched with
semantic hypotheses (i.e. the correct hypothesis was not present amongst the set).

Experiment 1a.

Input utterances were associated with semantic hypothesessets rather than just the correct
meaning. The extra hypotheses were chosen randomly and the correct semantic expression
was always present in the set. Hypotheses sets of sizes 2, 3, 5, 10 and 20 were used. The learner
was run several times for each size of set. Recall remained fairly constant regardless of the
number of hypotheses. The precision also remained very highmoving only as low as 93% for
one of the runs with a hypothesis set of size 20.

77

78

79

80

81

82

0 5 10 15 20

F
1

Number of Hypotheses per Set

Figure 6.13: Experiment 1a: graph of size of semantic hypothesis set vs.F1

From Figure 6.13: as the number of hypotheses increases theF1 of the learner decreases, tend-
ing towards a steady state. The results can be interpreted asfollows:
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The confidence values associated with the word-meaning pairs of extremely common words in
the corpus (such as “kitty”) become very high, very quickly.This means that many incorrect
hypotheses in the hypothesis set can be ruled out (using the method of constraining hypotheses
explained above). Once this starts to happen the problem rapidly reduces to that of one with a
smaller starting hypothesis set. This accounts for the levelling off in F1. The precision remains
high for all hypothesis set sizes due to the statistical nature of the confidence factor; since the
surplus hypotheses (those extra to the correct hypothesis)were always chosen at random, the
real meaning of the word eventually emerges as the most likely.

Experiment 1b.

The learner was run with some utterances being completely mismatched with semantic hypothe-
ses (i.e. the correct hypothesis was not present amongst theset). This is analogous to the case
where the child was not able to understand the meaning of the utterance from its observations.
This experiment was investigated in a more qualitative fashion since the results were found to
be highly dependent on the utterances that were chosen to be mismatched. If many utterances
were chosen that contained infrequently occurring words then the recall would suffer a severe
drop. There is a clear reason for this result. The distribution of words in the corpus is Zipfian.
Most words appear very infrequently (over 250 words appear just once and more than 125 ap-
pear twice). In the original experiment (where only the correct hypothesis was paired with the
meaning) 36% of words could be learnt with only one exposure.This capability is useless if
a word that appears only once in the corpus is paired with an incorrect hypothesis. In such a
situation the word will never be learnt. This highlights theissue that statistical learning methods
are largely ineffective when data is extremely sparse.

6.3.3 Noise Introduce by Indeterminacy in Parameter Setting

It is claimed that children rarely mis-set syntactic parameters [108]. However, proposed meth-
ods of parameter setting, such as the Trigger Learning Algorithm (TLA) [39] or the Structural
Trigger Learner (STL) [38], allow a parameter to be updated on the basis of evidence from one
utterance. This type of approach can only work if a child exclusively receives positive evidence;
otherwise it is possible that an error may cause a parameter to be set incorrectly and there may
never be a chance to reset it (with the consequence that the correct grammar cannot be learnt).
The problem is even worse for this learning system, which learns incrementally, since an in-
correct setting in the Memory Module can lead to an entire sub-branch of the defining category
tree being incorrect also.
A solution is to use a statistical method that tracks relative frequencies (as described in Sec-
tion 5.2.2). Such an approach sets the Memory Module to the values that are most likely given
all the accumulated evidence. For this learning system, thesyntactic categories within the Type
Module can be considered ternary valued (ACTIVE, INACTIVE, POSSIBLE). To start with,
all categories may be labelled INACTIVE, although an initialbias can be set by assigning some
categories to be ACTIVE or POSSIBLE before learning commences. Evidence from input ut-
terances will either enforce the current parameter settings or negate them. Categories become
ACTIVE in the hierarchy as soon sufficient evidence has been accumulated, i.e. once their
relative frequency reaches a threshold value. By employing this method, it becomes unlikely
for categories to become ACTIVE as the consequence of an erroneous utterance (unlike for
parameters in the deterministic methods mentioned above).
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For this experiment, however, the Word Order Memory is investigated; in particular errors due
to misclassification of thematic role. For illustration consider the following example utterance
from the Sachs corpus: “he likes fish”. A child listening to this utterance may be unsure who
is doing the liking and who is being liked. Semantically, shecould consider there to be two
possibilitiesLIKE’fish’he’ or LIKE’he’fish’ . In the first case we have the actor on the left of
the verb and the undergoer on the right. In the second case we have the reverse. An error occurs
when an English speaking child hypothesises the latter interpretation of the utterance.
In order to investigate this phenomenon, the learner was exposed to increasing amounts of
misinterpreted thematic roles (from 0% up to 50% of all occurrences). This was achieved
by randomly selecting the appropriate number of utterancesand reversing the roles in their
semantic representation. Again, the Sachs’ corpus was usedas input. The order of constituents
was recorded in the Word Order Memory; the actor direction inACTOR-DIRECTION and
the undergoer direction in UNDERGOER-DIRECTION. Originally both were set to|. The
thresholds for setting direction parameters in the memory were set at0.25 and0.75: i.e. if the
relative frequency of the forward direction (/) reached0.75 then the parameter was set to/; and
if the relative frequency dropped to0.25 the parameter was set to\. The criteria for success is
for the learner to set ACTOR-DIRECTION to\ and UNDERGOER-DIRECTION to/ despite
the noise due to misinterpreted thematic role.
Figure 6.14 shows the relative frequency of/ for ACTOR-DIRECTION and UNDERGOER-
DIRECTION in the Word Order Memory at the end of learning. With misinterpretation of
thematic roles at0% both parameters easily obtain their target value while at50% the relative
frequency for neither parameter is great enough to be set. Notice that the line representing
ACTOR-DIRECTION does not deviate far outside the target< 0.25 zone. This is because of
the presence of intransitive verbs; with no undergoer to confuse with the actor, every time an
intransitive verb is seen the\ frequency is increased—this counteracts the effect of someof the
thematic role errors.
With thematic role error at50% we might expect the relative frequency of the/ in UNDERGOER-
DIRECTION to be0.5. However, this is not the case. There are two reasons for this: first, the
categorys/np\np can not be learnt (and hence the/ frequency incremented) unless the category
s/np has been learnt. This category is not learnt as readily as theintransitive category (s\np);
it is mainly associated with imperatives or noisy incomplete utterances. The second reason is
that once the ACTOR-DIRECTION is set, grammars which agree with this setting (i.e. with
undergoer direction/) are selected in preference.
These results show that by using statistical error handlingthis learning system can not only learn
from real data but is also robust to errors introduced by indeterminacy in parameter settings.

6.4 Developmental Compatibility

So far it has been demonstrated that the CGL is efficient compared to other parametric learners
and that it may learn from real data. The following section will discuss the developmental com-
patibility of the CGL; i.e can the model give an explanation for children’s language production?
The CGL learns incrementally: interaction with the Memory Module ensures that simple syn-
tactic categories are acquired before more complex categories. To investigate the compatibility
of such a model with a real learner, the acquired subcategorization frames in CHILDES2 have
been examined to see if they show evidence of incremental learning (where CHILDES2 is the
child speech corpus investigated in Chapter 2). Figure 6.15 shows all the SCFs that appear at
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least 100 times in CHILDES2. All of the SCFs directly inherit from each other. This does not
prove that children learn incremently but it does support the idea; we would run into problems
if children were producing syntactic categories that couldnot be attached to the hierarchy.
Referring back to Brown’s Stages we see that in Stage 1 the childfirst produces two-word utter-
ances of the formagent+actionor action+object. This is followed by production of declarative
statements of the formsubject+verb+objectand then by the introduction of preposition phrases.
In terms of our hierarchy this may be represented as shown in Figure 6.16. It is important to
notice that all of the verb types acquired in Stage 1 can be drawn as a continuous hierarchy;
there are no detached categories. Furthermore children learnt the categories further down the
hierarchy after acquiring those simpler categories nearerthe root. Thus, from Brown’s Stage 1
we see encouraging evidence that the CGL is adequately modelling incremental learning.
In Brown’s Stage 2 (Figure 6.17) children start using preliminary auxiliary categories like
“wanna”, possessives and simplewhat, whereandwhyquestions. Note that the two new ver-
bal categories can directly inherit from categories in the hierarchy representing Stage 1 (Fig-
ure 6.16) and that the category for the possessive inherits directly from np which is another
assumed primitive likes.
By Stage 3 the child is using modal verbs〈s\np〉/〈s\np〉, quantifiers〈s\np〉\〈s\np〉 and has
started to askwho and how questions〈np/np〉/〈s\np〉. Again these categories are directly
inherited from the current hierarchy. Stages 4 and 5 mainly involve acquisition of inflections
and an understanding of turn taking, which are not modelled by the CGL.
In general, evidence from both Brown’s Stages and the CHILDES2child-speech corpus suggest
that the incremental learning method of the CGL is not at odds with real child development.

6.5 Summary

In the first section of this chapter we demonstrated that the CGL is more efficient than previous
parametric learners (the TLA and the STL) when learning an English-like language under ideal
conditions in Gibson and Wexler’s 3-parameter-space. We also discussed differences and sim-
ilarities of the CGL to Waldron/Villavicencio Learning System, which is a parametric system
that also learns a categorial grammar and has inspired the Memory Module of the CGL. We
found that the CGL requires less innate knowledge than this previous system since it learns
from augmented strings (rather than strings) and uses a Memory Module to constrain hypothe-
ses. Section 6.3 of this chapter demonstrated that the CGL canlearn from real (noisy) data and
is also robust to ambiguity of parameter setting. The final section has discussed the validity
of the incremental learning method adopted by the CGL with relevance to a child-speech cor-
pus and Brown’s Stages; it was found that the incremental method is at least consistent with
observed productions.
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Figure 6.16: The syntactic categories involved in Brown Stage 1
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Chapter 7

Conclusions

This work investigates a computational model of first language acquisition; the Categorial
Grammar Learner or CGL. The CGL is neither pure nativist or pureempiricist in its ideol-
ogy; rather it lies on the middle ground between the two extremes. The model assumes some
innate knowledge but also relies on language examples to guide the learning process. In partic-
ular, the model assumes knowledge of the rules of a Generalised Categorial Grammar; those of
function application, function composition and Generalised Weak Permutation. Other concepts
assumed by the CGL are not specific to syntactic acquisition. For instance, the awareness of the
primitive type that has been callednp could stem from the ability to recognise objects;np being
merely a label for a class of such objects. Whether these concepts are innate or developed is
not argued here; although for this particular example, evidence leans towards development [71].
Either way, any linguistic universals that are present before language learning commences can
be considered to be the Principles of a Chomskian Universal Grammar.

In general, a premise for using a Principles and Parameters approach to modelling is that, with-
out constraining the hypothesis-space, learning is too complex. The CGL does not strictly ad-
here to the Principles and Parameters ideology in that parameters are not rigidly defined before
learning commences; rather it makes use of a Memory Module that is built dynamically and is
used to constrain hypothesised syntactic categories. However, in terms of efficiency, we have
seen that the CGL out performs both the TLA and the STL on a simple learning task in Gib-
son and Wexler’s three parameter domain. Furthermore, the utilisation of the Memory Model
ensures that the CGL is both more efficient and requires less innate knowledge than a previous
categorial grammar learner implemented by Waldron and Villavicencio.

In fact, the design of this Memory Module is key in the CGL; especially the Type Memory
hierarchy. The CGL does not learn a syntactic category until its direct parent in the type hier-
archy has been learnt. Thus the CGL learns incrementally, which is compatible with the child
development studies of Brown and also those of this work. A consequence of this incremental
learning is that the operation of the CGL relies on initially receiving short and simple sentences.
Corpora studies presented here have shown that child-directed speech is syntactically simpler
and less diverse than speech between adults; containing a similar distribution of SCFs to child
speech. Thus, child-directed speech facilitates the operation of the CGL.

The Word Order Memory also plays a key role in constraining hypotheses; if an argument di-
rection has been set to either/ or \ then syntactic categories that are compatible over arguments
of the same type are selected in preference. A consequence ofthis is that directionality in the
language as a whole is governed by the directionality properties of the very frequent categories.
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For instance, a language that is VSO will have its GENERAL-DIRECTION set to/ in the Word
Order Memory; consequently the CGL prefers/ (arguments on the right) to\ (arguments on the
left) and is therefore likely to exhibit prepositions in preference to postpositions. This agrees
with work by Hawkins on Implicational Universals [44].

As discussed in Chapter 3, a learner can deal with errors if it is allowed to choose the most likely
hypothesis in preference to one that incorporates every piece of evidence seen so far. This sug-
gests that some statistical retention of the data is necessary if a learner is going to cope with
errors. This is not to suggest that a child should consciously be counting events, but perhaps
rather that the brain has some capacity to store this information without any effort on behalf of
the learner. A possible method for doing this is to use a connectionist model; however, such
an approach is infeasible since it requires an enormous amount of data and computation for
learning. Models that follow a more nativist theme (the Principles and Parameters learners)
potentially require much less data since the hypothesis-space is constrained. However, to elim-
inate the possibility of reaching a local maxima these parametric models must also have some
mechanism for recognising parametric ambiguity. Hence, the Memory Module of the CGL is
statistical in its nature of operation; it relies on the recurrence of a linguistic phenomenon in or-
der to “keep it in memory”. The ability of the CGL to learn from real (noisy) data (and to learn
from some parametrically ambiguous data) demonstrates thestatistical utility of the Memory
Module.

For input the CGL receives augmented strings. The information content of sentence objects
(simple strings, augmented strings, unlabelled structures and functor-argument structures) has
been discussed. The concept of an augmented string (a stringaugmented with some basic
syntactic information) has been proposed as a sensible starting point for learning, since it is
a cognitively plausible object that also benefits from carrying more information than a simple
string. To form an augmented string from a simple string, syntactic information is extracted
from the semantic types of the words using thePrinciple of Categorial Type Transparency.
An augmented string is thus a representation of the constraints placed on the search-space of
possible parses due to the semantics associated with the string. A possible extension would
be to also included prosodic information in the augmented strings. Such an extension would
allow for clause structure and question types to be identified in English; which could help in
constraining hypothesised categories, especially for longer input strings.

Currently, the CGL can not learn anything about a word’s syntaxuntil it knows about its seman-
tics. However, this doesn’t imply that it is impossible to learn syntax before semantics. Consider
the case where the syntactic category of every word but one isalready known; the category of
the new word could often be inferred by inspection of the parse tree without reference to any se-
mantic information. This would be a simple extension to the CGL. Gleitman asserts that there
are some verbs for which the semantics can not possibly be learnt without resorting to their
subcategorization frame. This is what she callssyntactic bootstrapping([41] and [36]). Pinker
on the other hand says this information is interesting “likea puzzle” and therefore potentially
useful to clever children/adults but is not essential. If Gleitman is correct and it is impossible to
ascertain the meaning of some words without first resolving their syntactic category, then it will
be essential to provide feedback within the learning systemfrom the CGL back to the semantic
module.

The crucial and interesting elements of the CGL are the concepts of augmented strings and a
Memory Module (the Type Memory and Word Order Memory): augmented strings have been
shown to be cognitively plausible sentence objects that onecan sensibly learn from; and regard-
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ing the Memory Module, it seems that the incremental learning enforced by the Type Memory
together with the directional tendencies enforced by the Word Order Memory will be able to
explain someImplicational Universals(i.e the idea that if a language has a propertyP then it
also exhibits propertyQ). By making types ACTIVE in the Type Memory or by setting direc-
tion preferences in the Word Order Memory, the language becomes constrained in certain ways.
Properties set in the Memory Module early on in learning affect the properties that are available
to a language later on; thus we have an “ifP thenQ effect”. This matter will be investigated as
future work
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Appendix A

SCF Classification

The following is a list of all163 verb subcategorization frames employed by Briscoe and Car-
roll’s SCF acquisition system (RASP). The SCFs were merged fromthe SCFs found in the
COMLEX and ANLT syntax dictionaries and about 30 more SCFs wereadded by examining
unclassifiable patterns of corpus examples.
Most of the following records contain4 lines of information. The first is the COMLEX SCF
name together with the frequency with which that SCF appearedin ANLT. The second line
gives the frame specification using ANLT notation. The thirdgives a tagged example sentence
from corpus data where the SCF occurs. The final line gives the SCF specification according to
the grammar employed by RASP.
For entries after the117th there are only three entries per record – these are SCFs which do not
appear in COMLEX, thus the first line is in fact the frame specification in ANLT.

1. ADJP / 93
(SUBCAT SCAP, SUBTYPE EQUI) / XTAG: Tnx0Va1
his AT reputationNN1 sankVVD low JJ
(VSUBCAT AP)

2. ADJP-PRED-RS / 15
(SUBCAT SCAP, SUBTYPE RAIS) / XTAG:Tnx0Ax1
he NP1 appearsVVZ crazy JJ / distressedVVN
(VSUBCAT AP) / (VSUBCAT VPPRT)

3. ADVP / 64
(SUBCAT ADVP)
he NP1 meantVVD well RP
(VSUBCAT NONE, PRT +) well

4. ADVP-PRED-RS / 0 (in vppp)
(SUBCAT ADVP, SUBTYPE RAIS)
He NP1 seemsVVZ well RP
(VSUBCAT NONE, PRT +) well

5. AS-NP / 0 (in vppp with PRT 1 = end)
(SUBCAT SCNP, SUBTYPE EQUI, PREP as)
i NP1 workedVVZ as CSA anAT1 apprenticeNN1 cookNN1
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(VSUBCAT PP) as

6. EXTRAP-NP-S / 58
(SUBCAT NPSFIN, SUBTYPE EXTRAP, AGR N2[NFORM IT])
it PPH1 annoysVVZ them PPHO2 thatCST shePPHS1 leftVVD
it (VSUBCAT NP SCOMP) * * VVZ/D/G

7. S-SUBJ-NP-OBJ / 58
(SUBCAT NPSFIN, SUBTYPE EXTRAP, AGR S[FIN +]) / XTAG:Ts0Vnx1
that CST shePPHS1 leftVVD annoysVVZ them PPHO2
* VVD/Z/G (VSUBCAT NP)

8. TO-INF-SUBJ-NP-OBJ / 56
(SUBCAT OCINF, SUBTYPE EQUEXTRAP, AGR VP[FIN -])
to TO readVV0 pleasesVVZ them PPHO2
* VV0 (VSUBCAT NP)

9. EXTRAP-TO-INF / 4
(SUBCAT VPINF, SUBTYPE EXTRAP, AGR N2[NFORM IT])
it PPH1 remainsVVZ to TO find VV0 a AT1 cureNN1
IT (VSUBCAT VPINF)

10. EXTRAP-FOR-TO-INF / 0 (not in vppp)
(SUBCAT SINF, SUBTYPE EXTRAP, AGR N2[NFORM IT])
it PPH1 remainsVVZ for IF us PPHO2 toTO find VV0 a AT1 cureNN1
IT (VSUBCAT PPVPINF) for (PSUBCAT NP)

11. EXTRAP-NP-TO-INF / 56
(SUBCAT OCINF, SUBTYPE EQUEXTRAP, AGR N2[NFORM IT])
it PPH1 pleasesVVZ them PPHO2 toTO find VV0 a AT1 cureNN1
IT (VSUBCAT SINF)

12. EXTRAP-TO-NP-S / 5 (4 without EXTRAP)
(SUBCAT PPSFIN, SUBTYPE EXTRAP, PFORM to, AGR N2[NFORM
IT])
it PPH1 mattersVVZ to II them PPHO2 thatCST shePPHS1 leftVVD
IT (VSUBCAT PPSCOMP) to (PSUBCAT NP) *VVZ/D/G

13. EXTRAP-TO-NP-TO-INF / 1
(SUBCAT PPVPINF, SUBTYPE EXTRAP, PFORM to)
it PPH1 occurredVVD to II them PPHO2 toTO watchVV0
IT (VSUBCAT PPVPINF) to (PSUBCAT NP)

14. S-SUBJ-TO-NP-OBJ / 5
(SUBCAT PPSFIN, SUBTYPE EXTRAP, AGR S[FIN +])
that CST shePPHS1 leftVVD mattersVVZ to II them PPHO2
* VVD/G/Z (VSUBCAT PP) to (PSUBCAT NP)

15. FOR-TO-INF / 17
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(SUBCAT SINF)
iPPHS1 preferVV0 for IF her PPHO1 toTO do VV0 it PPH1
(VSUBCAT PPVPINF) FOR (PSUBCAT NP)

16. HOW-S / 155 (combined with other wh comps)
(SUBCAT WHS)
he PPHS1 askedVVD how RGQ shePPHS1 didVDD it PPH1
(VSUBCAT PP) HOW/WHY/WHERE/WHEN (PSUBCAT SFIN)

17. HOW-TO-INF / 100 (combined with other wh comps)
(SUBCAT WHVP)
he PPHS1 explainedVVD how RGQ toTO do VV0 it PPH1
(VSUBCAT PP) HOW/WHERE/WHEN (PSUBCAT VPINF)

18. INF-AC / ??
ANLT gap (SUBCAT VCBSE)
he PPHS1 helpedVVD bake VV0 the AT cakeNN1
(VSUBCAT VPBSE)

19. ING-NP-OMIT / 242
(SUBCAT SCING, SUBTYPE EQUI)
his AT hair NN1 needsVVZ combing VVG
(VSUBCAT VPING)

20. ING-SC/BE-ING-SC / 21
(SUBCAT SCING, SUBTYPE RAIS)
shePPHS1 stoppedVVD smoking VVG
(VSUBCAT VPING)

21. ING-AC / ??
ANLT gap (SUBCAT VCING)
shePPHS1 discussedVVD writing VVG novelsNN2
(VSUBCAT VPING)

22. INTRANS / 2985
(SUBCAT NULL)
he PPHS1 wentVVD
(VSUBCAT NONE)

23. INTRANS-RECIP(SUBJ-PL/COORD) / ??
(SUBCAT NULL)
They PPHS2 metVVD
* PP/NN*2 (VSUBCAT NONE)
JohnNP1 andCC herAT brotherNN1 metVVD
* CC (VSUBCAT NONE) ***

24. NP / 5281
(SUBCAT NP) / XTAG:Tnx0Vnx1
he PPHS1 lovedVVD her PPHO1
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(VSUBCAT NP)

25. NP-ADJP / 113
(SUBCAT OCAP, SUBTYPE EQUI)
he PPHS1 paintedVVD the AT car NN1 blackJJ
(VSUBCAT NP AP)

26. NP-ADJP-PRED / 46
(SUBCAT OCAP, SUBTYPE RAIS) / XTAG:Tnx0Vs1
shePPHS1 consideredVVD him PPHO1 foolishJJ
(VSUBCAT NP AP)

27. NP-ADVP / 9
(SUBCAT NPADVP)
he PPHS1 putVVD it PPH1 thereRL
(VSUBCAT NP, PRT +) * there

28. NP-ADVP-PRED / 281 (with PPs)
(SUBCAT NPLOC) / XTAG:Tnx0Vs1
they PPHS2 mistakenlyRA thoughtVVD him PPHO1 hereRL
(VSUBCAT NP, PRT +) here

29. NP-AS-NP / 3
(SUBCAT SCNP NP, SUBTYPE RAIS, PREP as)
iPPHS1 sentVVD him PPHO1 asCSA aAT1 messengerNN1
(VSUBCAT NP PP) (PFORM AS)

30. NP-AS-NP-SC / 3
(SUBCAT SCNP NP, SUBTYPE RAIS, PREP as)
shePPHS1 servedVVD the AT firm NN1 asCSA aAT1 researcherNN1
(VSUBCAT NP PP) (PFORM AS)

31. NP-FOR-NP / 90
(SUBCAT NPPP, SUBTYPE DMOVT, PFORM for)
shePPHS1 boughtVVD a AT1 book NN1 for IF him PPHO1
(VSUBCAT NP PP) (PFORM FOR)

32. NP-INF / 11
(SUBCAT OCBSE, SUBTYPE RAIS) / XTAG:Tnx0Vs1
he PPHS1 madeVVD her PPHO1 singVV0
(VSUBCAT SCOMP) *VV0

33. NP-INF-OC / 17
(SUBCAT OCBSE, SUBTYPE EQUI)
he PPHS1 helpedVVD her PP$ bakeVV0 the AT cakeNN1
(VSUBCAT SCOMP) *VV0

34. NP-ING / 28
(SUBCAT OCING, SUBTYPE RAIS) / XTAG:Tnx0Vs1
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iPPHS1 keptVVD them PPHO2 laughingVVG
(VSUBCAT SING)

35. NP-ING-OC / 45
(SUBCAT OCING, SUBTYPE EQUI)
iPPHS1 caughtVVD him PPHO1 stealingVVG
(VSUBCAT SING)

36. NP-ING-SC / ??
ANLT gap: real complement?
he PPHS1 combedVVD the AT woodsNN2 looking VVG for IF
her PPHO1
(VSUBCAT SING)

37. NP-NP / 231
(SUBCAT NPNP) / XTAG:Tnx0Vnx1nx2
shePPHS1 askedVVD him PPHO1 hisAT nameNN1
(VSUBCAT NP NP)

38. NP-NP-PRED / 38
(SUBCAT OCNP, SUBTYPE EQUI) / XTAG:Tnx0Vs1
they PPHS2 appointedVVD him PPHO1 professorNN1
(VSUBCAT NP NP)

39. NP-P-ING / 2
(SUBCAT OCPPING, PFORM from, SUBTYPE PVERBOR, ORDER
POSTNP)
iPPHS1 preventedVVD her PPHO1 fromII leaving VVG
(VSUBCAT NP PP) from (PSUBCAT VPING)

40. NP-P-ING-OC / 31
(SUBCAT OCPPING, PFORM, SUBTYPE PVERBOE, ORDER
POSTNP)
iPPHS1 accusedVVD her PPHO1 ofIO murderingVVG her AT hus-
bandNN1
(VSUBCAT SING, PRT +) of
(VSUBCAT NP PP) * (PSUBCAT VPING)

41. NP-P-ING-SC / ??
Gap in ANLT scheme, shld be: (SUBCAT SCPPING, PRT, ORDER
POSTNP)
he PPHS1 wastedVVD time NNT1 on II fussing VVG with IW his AT
hair NN1
(VSUBCAT NP PP) on (PSUBCAT VPING)

42. NP-P-ING-AC / ??
Gap in ANLT scheme (SUBCAT VCPPING)
he PPHS1 toldVVD her PPHO1 aboutII climbing VVG the AT moun-
tain NN1
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(VSUBCAT NP PP) about (PSUBCAT VPING)

43. NP-P-NP-ING / ??
ANLT gap (SUBCAT NPPPSING)
he PPHS1 attributedVVD his AT failure NN1 to II nooneNP1 buyingVVG
his AT booksNN2
(VSUBCAT NP PP) to (PSUBCAT SING)

44. NP-P-POSSING / ??
ANLT gap (SUBCAT NPPPSING)
They PPHS2 askedVVD him PPHO1 aboutII his PPHO1 participat-
ing VVG in II the AT conferenceNN1
(VSUBCAT NP PP) about (PSUBCAT SING)

45. NP-P-WH-S / 0 (not in vppp, and below)
(SUBCAT NPWHS, PREP)
they PPHS2 madeVVD a AT1 greatJJ fussNN1 aboutII whetherCSW
they PPHS2 shouldVM participateVV0
(VSUBCAT NP PP) about (PSUBCAT PP) whether (PSUBCAT SFIN)

46. NP-P-WHAT-S / 0
(SUBCAT NPWHS, PREP)
they PPHS2 madeVVD a AT1 greatJJ fussNN1 aboutII what DDQ
they PPHS2 shouldVM do VV0
(VSUBCAT NP WHPP) about (PSUBCAT WHS)

47. NP-P-WHAT-TO-INF / 0
(SUBCAT NPWHVP, PREP)
they PPHS2 madeVVD a AT1 greatJJ fussNN1 aboutII what DDQ to TO
do VV0
(VSUBCAT NP WHPP) about (PSUBCAT NP)

48. NP-P-WH-TO-INF / 0
(SUBCAT NPWHS, PREP)
they PPHS2 madeVVD a AT1 greatJJ fussNN1 aboutII whetherCSW
to TO go VV0
(VSUBCAT NP PP) about (PSUBCAT PP) whether (PSUBCAT VPINF)

49. NP-PP / 2010
(SUBCAT NPPP, PFORM, SUBTYPE NONE/PVERB?) /
XTAG:Tnx0Vnx1pnx2
shePPHS1 addedVVD the AT flowers NN2 to II the AT bouquetNN1
(VSUBCAT NP PP) to

50. NP-PP-PRED / 2010/50??
(SUBCAT NPPP, PFORM of, SUBTYPE NONE, PRD +)
iPPHS1 consideredVVD that AT problemNN1 of IO little JJ concernNN1
(VSUBCAT NP PPOF)

132



51. NP-PRED-RS / 12
(SUBCAT SCNP, SUBTYPE RAIS)
he PPHS1 seemedVVD a AT1 fool NN
(VSUBCAT NP)

52. NP-S / 33
(SUBCAT NPSFIN, SUBTYPE NONE) / XTAG:Tnx0Vnx1s2
he PPHS1 toldVVD the AT audienceNN1 thatCST hePPHS1 wasVBZ
leavingVVG
(VSUBCAT NP SCOMP) * * VVZ/D/G

53. NP-TO-INF-OC / 189
(SUBCAT OCINF, SUBTYPE EQUI)
iPPHS1 advisedVVD Mary NP1 toTO go VV0
(VSUBCAT SINF)

54. NP-TO-INF-SC / 1
(SUBCAT SCNP INF, SUBTYPE EQUI)
JohnNP1 promisedVVD Mary NP1 toTO resignVV0
(VSUBCAT SINF)

55. NP-TO-INF-VC / ??
ANLT gap
they PPHS2 badgeredVVD him PPHO1 toTO go VV0
(VSUBCAT SINF)

56. NP-TO-NP / 105
(SUBCAT NPPP, PFORM to, SUBTYPE DMOVT) / XTAG:Tnx0Vnx1Pnx2
he PPHS1 gaveVVD a AT1 big JJ kissNN1 to II his AT motherNN1
(VSUBCAT NP PP) to

57. NP-TOBE / 88
(SUBCAT OCINF, SUBTYPE RAIS)
iPPHS1 foundVVD him PPHO1 toTO beVB0 a AT1 goodJJ doctorNN1
(VSUBCAT SINF) BE

58. NP-VEN-NP-OMIT / 3
(SUBCAT OCPASS, SUBTYPE EQUI/RAISING)
he PPHS1 wantedVVD the AT children NN2 foundVVN
(VSUBCAT SCOMP) *VVN

59. NP-WH-S / 12
(SUBCAT NPWHS)
they PPHS2 askedVVD him PPHO1 whetherCSW hePPHS1 wasVBZ go-
ing VVG
(VSUBCAT NP PP) WHETHER/IF (PSUBCAT SFIN)

60. NP-WHAT-S / 12
(SUBCAT NPWHS)
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they PPHS2 askedVVD him PPHO1 whatDDQ hePPHS1 wasVBZ do-
ing VVG
(VSUBCAT NP SCOMP) S(WH +)

61. NP-WH-TO-INF / 12
(SUBCAT NPWHVP)
he PPHS1 askedVVD him PPHO1 whetherCSW toTO cleanVV0 the AT
houseNN1
(VSUBCAT NP PP) WHETHER (PSUBCAT VPINF)

62. NP-WHAT-TO-INF / 12
(SUBCAT NPWHVP)
he PPHS1 askedVVD him PPHO1 whatDDQ to TO do VV0
(VSUBCAT NP NP) * WHAT/WHO/WHICH

63. P-ING-SC / 100
(SUBCAT SCING, SUBTYPE EQUI, PREP)
they PPHS2 failedVVD in II attemptingVVG the AT climb NN1
(VSUBCAT PP) in (PSUBCAT VPING)

64. P-ING-AC / ??
ANLT gap (SUBCAT VCING, PRT)
they PPHS2 disapprovedVVD of IO attemptingVVG the AT climb NN1
(VSUBCAT VPING, PRT +) of
they PPHS2 arguedVVD about II attemptingVVG the AT climb NN1
(VSUBCAT PP) about (PSUBCAT VPING)

65. P-NP-ING / 8
(SUBCAT OCPPING, PFORM @p, SUBTYPE PVERBOR/OE, ORDER
PRENP)
they PPHS2 worriedVVD about II him PPHO1 drinkingVVG
(VSUBCAT PP) about (PSUBCAT SING)

66. P-NP-TO-INF(-SC) / 6
(SUBCAT SCPPINF, PFORM @p, SUBTYPE EQUI)
he PPHS1 conspiredVVD with IW them PPHO2 toTO do VV0 it PPH1
(VSUBCAT PPVPINF) with (PSUBCAT NP)

67. P-NP-TO-INF-OC / 29
(SUBCAT OCPPINF, PFORM @p, SUBTYPE PVERBOE/OR/EQUI)
he PPHS1 beckonedVVD to II him PPHO1 toTO comeVV0
(VSUBCAT PPVPINF) to (PSUBCAT NP)

68. P-NP-TO-INF-VC / ??
ANLT gap
shePPHS1 appealedVVD to II him PPHO1 toTO go VV0
shePPHS1 appealedVVD to II him PPHO1 toTO beVB0 freedJJ
(VSUBCAT PPVPINF) to (PSUBCAT NP)
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69. P-POSSING / 10
(SUBCAT OCPPING, PFORM @p, SUBTYPE PVERBOR, ORDER
PRENP)
they PPHS2 arguedVVD about II his PP$ comingVVG
(VSUBCAT PP) about (PSUBCAT SING)

70. P-WH-S / 37
(SUBCAT WHS, PRT/PREP @p)
he PPHS1 thoughtVVD about II whetherCSW hePPHS1 wantedVVD
to TO go VV0
(VSUBCAT PP) about (PSUBCAT PP) WHETHER/IF (PSUBCAT SFIN)

71. P-WHAT-S / 37
(SUBCAT WHS, PRT/PREP @p)
he PPHS1 thoughtVVD about II what DDQ hePPHS1 wantedVVD
(VSUBCAT WHPP) about (PSUBCAT WHS)

72. P-WH-TO-INF / 27
(SUBCAT WHVP, PREP @p)
he PPHS1 thoughtVVD about II whetherCSW toTO go VV0
(VSUBCAT PP) about (PSUBCAT PP) whether (PSUBCAT VPINF)

73. P-WHAT-TO-INF / 27
(SUBCAT WHVP, PREP @p)
he PPHS1 thoughtVVD about II what DDQ to TO do VV0
(VSUBCAT WHPP) about

74. PART / 3219
(SUBCAT NULL, PRT) / XTAG:Tnx0Vpl
shePPHS1 gaveVVD up RL
(VSUBCAT NONE, PRT +) up
shePPHS1 gaveVVD up II
(VSUBCAT PP) up (PSUBCAT NONE)

75. PART-ING-SC / 7
(SUBCAT SCING, SUBTYPE EQUI, PRT/PREP)
he PPHS1 ruledVVD out II paying VVG her AT debtsNN2
(VSUBCAT PP) out (PSUBCAT VPING)
he PPHS1 ruledVVD out RP payingVVG her AT debtsNN2
(VSUBCAT VPING, PRT +) out

76. PART-NP/NP-PART / 2134
(SUBCAT NP, PRT) (ORDER FREE) / XTAG:Tnx0Vplnx1
iPPHS1 lookedVVD up RL the AT entry NN1
(VSUBCAT NP, PRT +) up *
iPPHS1 lookedVVD the AT entry NN1 up RL
(VSUBCAT NP, PRT +) * up

77. PART-NP-PP / 312
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(SUBCAT NPPP, PFORM, PRT, SUBTYPE NONE/PVERB?) (ORDER
FREE)
iPPHS1 separatedVVD out II the AT threeJJ boysNN2 from II the AT
crowd NN1
(VSUBCAT PPPP) out (PSUBCAT NP) from (PSUBCAT NP)
iPPHS1 separatedVVD out RL the AT threeJJ boysNN2 from II the AT
crowd NN1
(VSUBCAT NP PP, PRT +) out from (PSUBCAT NP)

78. PART-PP / 234
(SUBCAT PP, PFORM, PRT, SUBTYPE PVERB)
shePPHS1 lookedVVD in II on II her AT friend NN1
(VSUBCAT PP) in (PSUBCAT PP) on (PSUBCAT NP)
shePPHS1 lookedVVD in RL on II her AT friend NN1
(VSUBCAT PP, PRT +) in on (PSUBCAT NP)

79. PART-WH-S / 20
(SUBCAT WHS, PRT, SUBTYPE NONE)
they PPHS2 figuredVVD out II whetherCSW shePPHS1 hadVHD n’t XX
doneVVD her AT job NN1
(VSUBCAT PP) out (PSUBCAT PP) WHETHER/IF (PSUBCAT SFIN)
they PPHS2 figuredVVD out RP whetherCSW shePPHS1 hadVHD
n’t XX done VVD her AT job NN1
(VSUBCAT PP, PRT +) out WHETHER/IF (PSUBCAT SFIN)

80. PART-WHAT-S / 20
(SUBCAT WHS, PRT, SUBTYPE NONE)
they PPHS2 figuredVVD out II what DDQ shePPHS1 hadVHD n’t XX
doneVVD
(VSUBCAT WHPP) out (PSUBCAT WHS)
they PPHS2 figuredVVD out RP whatDDQ shePPHS1 hadVHD n’t XX
doneVVD
(VSUBCAT SCOMP, PRT +) out S(WH +)

81. PART-WH-TO-INF / 22
(SUBCAT WHVP, PRT, SUBTYPE NONE)
they PPHS2 figuredVVD out II whetherCSW toTO go VV0
(VSUBCAT PP) out (PSUBCAT PP) whether (PSUBCAT VPINF)
they PPHS2 figuredVVD out RP whetherCSW toTO go VV0
(VSUBCAT PP, PRT +) out whether (PSUBCAT VPINF)

82. PART-WHAT-TO-INF / 22
(SUBCAT WHVP, PRT, SUBTYPE NONE)
they PPHS2 figuredVVD out II what DDQ to TO do VV0
(VSUBCAT WHPP) out (PSUBCAT NP)
they PPHS2 figuredVVD out RP whatDDQ to TO do VV0
(VSUBCAT NP, PRT +) WHAT/WHICH/WHO

83. PART-THAT-S / 48
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(SUBCAT SFIN, PRT, SUBTYPE NONE)
they PPHS2 figuredVVD out II that CST shePPHS1 hadVHD n’t XX
doneVVD her AT job NN1
(VSUBCAT PPSCOMP) out (PSUBCAT NONE) *VVG/Z/D
they PPHS2 figuredVVD out RP thatCST shePPHS1 hadVHD n’t XX
doneVVD her AT job NN1
(VSUBCAT SCOMP, PRT +) out *VVG/Z/D

84. POSSING / 27
(SUBCAT OCING, SUBTYPE RAIS)
he PPHS1 dismissedVVD their PP$ writingVVG novelsNN2
(VSUBCAT SING)

85. POSSING-PP / ??
ANLT gap (SUBCAT OCING PP)
shePPHS1 attributedVVD his PP$ drinkingVVG too RA muchRA to II
his AT anxiety NN1
(VSUBCAT SING PP) to (PSUBCAT NP)

86. ING-PP / ??
ANLT gap
they PPHS2 limitedVVD smoking VVG a AT pipe NN1 to II the AT
loungeNN1
(VSUBCAT VPING PP) to (PSUBCAT NP)

87. PP / 2465 (366 LOC)
(SUBCAT PP/LOC, PFORM, SUBTYPE NONE/PVERB) /
XTAG:Tnx0Vpnx1
they PPHS2 apologizedVVD to II him PPHO1
(VSUBCAT PP) to (PSUBCAT NP)

88. PP-FOR-TO-INF / 1
(SUBCAT PPSINF, PFORM)
they PPHS2 contractedVVD with IW him PPHO1 forIF the AT man NN1
to TO go VV0
(VSUBCAT PPPP) with (PSUBCAT NP) for (PSUBCAT SINF)

89. PP-HOW-S / 7
(SUBCAT PPWHS, PFORM)
he PPHS1 explainedVVD to II her PPHO1 howRGQ shePPHS1 didVDD
it PPH1
(VSUBCAT PPPP) to (PSUBCAT NP) HOW/WHY/WHERE/WHEN
(PSUBCAT SFIN)

90. PP-HOW-TO-INF / 3
(SUBCAT PPWHVP, PFORM)
he PPHS1 explainedVVD to II them PPHO2 howRGQ toTO do VV0
it PPH1
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(VSUBCAT PPPP) to (PSUBCAT NP) HOW/WHERE/WHEN (PSUBCAT
VPINF)

91. PP-P-WH-S / ??
Gap in ANLT scheme: (SUBCAT PPWHS, PFORM, PRT)
iPPHS1 agreedVVD with IW him PPHO1 aboutII whetherCSW hePPHS1
shouldVM kill VV0 the AT peasantsNN2
(VSUBCAT PPPP) with (PSUBCAT NP) about (PSUBCAT PP) WHETHER
(PSUBCAT SFIN)

92. PP-P-WHAT-S / ??
Gap in ANLT scheme
iPPHS1 agreedVVD with IW him PPHO1 aboutII what DDQ hePPHS1
shouldVM do VV0
(VSUBCAT PPWHPP) with (PSUBCAT NP) about (PSUBCAT WHS)

93. PP-P-WHAT-TO-INF / ??
Gap in ANLT scheme
iPPHS1 agreedVVD with IW him PPHO1 aboutII what DDQ to TO
do VV0
(VSUBCAT PPWHPP) with (PSUBCAT NP) about (PSUBCAT NP)

94. PP-P-WH-TO-INF / ??
Gap in ANLT scheme
iPPHS1 agreedVVD with IW him PPHO1 aboutII whetherCSW toTO
go VV0
(VSUBCAT PPPP) with (PSUBCAT NP) about (PSUBCAT PP) whether
(PSUBCAT VPINF)

95. PP-PP / 64 (22 PVERB)
(SUBCAT PPPP)
they PPHS2 flewVVD from II London NP1 to II Rome NP1
(VSUBCAT PPPP) from (PSUBCAT NP) to (PSUBCAT NP)

96. PP-PRED-RS / 0 (not in vppp)
(SUBCAT PP, SUBTYPE RAIS)
the AT matterNN1 seemsVVZ in II disputeNN1
(VSUBCAT PP) in (PSUBCAT NP)

97. PP-THAT-S / 22
(SUBCAT PPSFIN, SUBTYPE NONE, PFORM)
they PPHS2 admittedVVD to II the AT authoritiesNN2 thatCST
they PPHS2 hadVHD enteredVVD illegally RA
(VSUBCAT PPSCOMP) to (PSUBCAT NP) *VVD/Z/G

98. PP-THAT-S-SUBJUNCT / 2
(SUBCAT PPSBSE, PFORM, S[BSE, that])
they PPHS2 suggestedVVD to II him PPHO1 thatCST hePPHS1 goVV0
(VSUBCAT PPSCOMP) to (PSUBCAT NP) *VV0
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99. PP-TO-INF-RS / 1
(SUBCAT SCPPINF, SUBTYPE RAIS, PFORM, VP[to])
he PPHS1 appearedVVD to II her PPHO1 toTO beVB0 ill JJ
(VSUBCAT PPVPINF) to (PSUBCAT NP) BE

100. PP-WH-S / 7
(SUBCAT PPWHS, PFORM)
they PPHS2 askedVVD about II everybodyNP1 whetherCSW theyPPHS2
hadVHD enrolledVVN
(VSUBCAT PPPP) about (PSUBCAT NP) WHETHER/IF (PSUBCAT SFIN)

101. PP-WHAT-S / 7
(SUBCAT PPWHS, PFORM)
they PPHS2 askedVVD about II everybodyNP1 whatDDQ theyPPHS2
hadVHD doneVVN
(VSUBCAT PPWHS) about (PSUBCAT NP)

102. PP-WH-TOINF / 3
(SUBCAT PPWHVP)
they PPHS2 deducedVVD from II kim NP1 whetherCSW toTO go VV0
(VSUBCAT PPPP) from (PSUBCAT NP) whether (PSUBCAT VPINF)

103. PP-WHAT-TO-INF / 3
(SUBCAT PPWHVP)
they PPHS2 deducedVVD from II kim NP1 whatDDQ to TO do VV0
(VSUBCAT PPWHVP) from (PSUBCAT NP) WHAT/WHO/WHICH

104. S / 296
(SUBCAT SFIN, SUBTYPE NONE) / XTAG:Tnx0Vs1
they PPHS2 thoughtVVD that CST hePPHS1 wasVBZ alwaysRA late JJ
(VSUBCAT SCOMP) *VVD/Z/G

105. S-SUBJ-S-OBJ / 9
(SUBCAT SFIN, SUBTYPE EXTRAP, AGR S[FIN -])
for IF him PPHO1 toTO reportVV0 the AT theft NN1 indicatesVVD
that CST hePPHS1 wasVBZ n’t XX guilty JJ
* VV0 (VSUBCAT SCOMP) * VVD/Z/G

106. S-SUBJUNCT / 27
(SUBCAT SBSE)
ShePPHS1 demandedVVD that CST hePPHS1 leaveVV0 immedi-
ately RA
(VSUBCAT SCOMP) *VV0

107. SEEM-S / 9
(SUBCAT SFIN, SUBTYPE EXTRAP, AGR N2[NFORM IT])
it PPH1 seemsVVZ that CST theyPPHS2 leftVVD
IT (VSUBCAT SCOMP) * VVD/Z/G
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108. SEEM-TO-NP-S / 1
(SUBCAT PPSFIN, SUBTYPE EXTRAP, PFORM, AGR N2[NFORM IT])
it PPH1 seemsVVZ to II her PPHO1 thatCST theyPPHS2 wereVBDR
wrong JJ
IT (VSUBCAT PPSCOMP) to (PSUBCAT NP) *VVD/Z/G

109. THAT-S / 296 (with 104)
(SUBCAT SFIN, SUBTYPE NONE) / XTAG:Tnx0Vs1
he PPHS1 complainedVVD that CST theyPPHS2 wereVBDR com-
ing VVG
(VSUBCAT SCOMP) *VVD/Z/G

110. TO-INF-AC / ??
ANLT gap (SUBCAT VCINF)
He PPHS1 helpedVVD to TO saveVV0 the AT child NN1
(VSUBCAT VPINF)

111. TO-INF-RS / 27
(SUBCAT SCINF, SUBTYPE RAIS)
he PPHS1 seemedVVD to TO comeVV0
(VSUBCAT VPINF) be

112. TO-INF-SC / 179
(SUBCAT SCINF, SUBTYPE EQUI)
iPPHS1 wantedVVD to TO comeVV0
(VSUBCAT VPINF)

113. WH-S / 133
(SUBCAT WHS) / XTAG:Tnx0Vs1
he PPHS1 askedVVD whetherCSW hePPHS1 shouldVM come VV0
(VSUBCAT PP) WHETHER/IF (PSUBCAT SFIN)

114. WHAT-S / 133
(SUBCAT WHS) / XTAG:Tnx0Vs1
he PPHS1 askedVVD what DDQ hePPHS1 shouldVM do VV0
(VSUBCAT SCOMP) S(WH +)

115. WH-TO-INF / 78
(SUBCAT WHVP) / XTAG:Tnx0Vs1
he PPHS1 askedVVD whetherCSW toTO cleanVV0 the AT houseNN1
(VSUBCAT PP) whether (PSUBCAT VPINF)

116. WHAT-TO-INF / 78
(SUBCAT WHVP) / XTAG:Tnx0Vs1
he PPHS1 askedVVD what DDQ to TO do VV0
(VSUBCAT NP) WHAT/WHO/WHICH

117. NP-NP-up / 45
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(SUBCAT NPNP, PRT)
i PPHS1 openedVVD him PPHO1 upRP aAT new JJ bankNN1 ac-
countNN1
(VSUBCAT NP NP, PRT +) up

118. XTAG:Light-verbs (various classes) / ??
he PPHS1 madeVVD commentsNN2 on II the AT paperNN1
(VSUBCAT NP PP) (make comments) on (PSUBCAT NP)

119. (SUBCAT PP/LOC / PFORM, PRT, SUBTYPE NONE) / 881 (LOC 45)
he PPHS1 breaksVVZ away RP fromII the AT abbeyNN1
(VSUBCAT PP, PRT +) away from (PSUBCAT NP)

120. (SUBCAT NPPP / PFORM, PRT, SUBTYPE DMOVT) / 25
he PPHS1 broughtVVD a AT book NN1 backRP for IF me PPHO1
(VSUBCAT NP PP, PRT +) back for (PSUBCAT NP)

121. (SUBCAT PPPP / PFORM, PRT) / 3
he PPHS1 cameVVD down RP onII him PPHO1 forIF his AT bad JJ be-
haviourNN1
(VSUBCAT PPPP, PRT +) down on (PSUBCAT NP) for (PSUBCAT NP)

122. (SUBCAT NPPPPP, PFORM) / 16
he PPHS1 turnedVVD it PPHO1 fromII a AT disasterNN1 into II a AT
victory NN1
(VSUBCAT NP PPPP) from (PSUBCAT NP) into (PSUBCAT NP)

123. (SUBCAT MP) / 29
it PPHS1 costVVD ten MC poundsNNU2
(VSUBCAT NP) NNU/(NTYPE MEAS)
v np non transle (but cf v expl it subj np np cp inf le)

124. (SUBCAT NPMP) / 6
it PPHS1 costVVD him PPHO1 tenMC poundsNNU2
(VSUBCAT NP NP) NNU/(NTYPE MEAS)

125. (SUBCAT NPMP-back) / 1
it PPHS1 setVVD him PPHO1 backRP tenMC poundsNNU2
(VSUBCAT NP NP, PRT +) backNNU/(NTYPE MEAS)

126. (SUBCAT ADL) / 13
he PPHS1 cameVVD off RP badlyRP
(VSUBCAT NONE, PRT +) off (...PRT +) badly

127. (SUBCAT ADV PP / PFORM) / 2
thingsNN2 augurVV0 well RP for IF him PPHO1
(VSUBCAT PP, PRT +) well for (PSUBCAT NP)

128. (SUBCAT SFIN, AGR N2[NFORM IT], PRT) / 3
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it PPHS1 turnsVVZ out RP thatCST hePPHS1 didVVD it PPHO1
IT (VSUBCAT SCOMP, PRT +) out *VVD/Z/G

129. (SUBCAT SFIN, AGR S[FIN +], SUBTYPE EXTRAP) / 9
that CST hePPHS1 cameVVD mattersVVZ
* VVD/G/Z (VSUBCAT NONE)

130. (SUBCAT NPSFIN, SUBTYPE NONE, PRT) / 4
he PPHS1 hadVVD her PPHO1 onRP thatCST hePPHO1 attendedVVD
(VSUBCAT NP SCOMP, PRT +) on *VVD/Z/G

131. (SUBCAT PPSFIN, SUBTYPE NONE, PRT) / 4
shePPHS1 getsVVZ through RP to II him PPHO1 thatCST hePPHS1
cameVVD
(VSUBCAT PPSCOMP, PRT +) through to (PSUBCAT NP) *VVD/Z/G

132. (SUBCAT NPNP SFIN) / 4
he PPHS1 betVVD her PPHO1 tenMC poundsNNU2 thatCST hePPHS1
cameVVD
(VSUBCAT NP NP SCOMP) NNU*/(NTYPE MEAS) * VVD/Z/G

133. (SUBCAT NPSBSE) / 1
he PPHS1 petitionedVVD them PPHO2 thatCST hePPHS1 beVB0
freedVVN
(VSUBCAT NP SCOMP) * * VB0

134. (SUBCAT ITWHS, SUBTYPE IF, AGR N2[NFORM IT]) / 1
i PPHS1 wouldVM appreciateVV0 it PPHO1 ifCF hePPHS1 cameVVD
(VSUBCAT NP PP) if (PSUBCAT SFIN)

135. (SUBCAT PPWHS, PFORM, AGR N2[NFORM IT]) / 1
it PPHS1 dawnedVVD on II him PPHO1 whatDDQ hePPHS1 shouldVM
do VV0
IT (VSUBCAT PPWHS) on (PSUBCAT NP)

136. (SUBCAT SCNP, PRT, SUBTYPE RAIS/EQUI, PRD +) / 2
he PPHS1 turnedVVD out RP aAT fool NN1
(VSUBCAT NP, PRT +) out

137. (SUBCAT SCAP, PRT, SUBTYPE EQUI/RAIS) / 22 (RAIS 3)
he PPHS1 startedVVD out RP poorJJ
(VSUBCAT AP, PRT +) out
he PPHS1 startedVVD out II poor JJ
(VSUBCAT PPAP) out (PSUBCAT NONE)

138. (SUBCAT SCINF, PRT, SUBTYPE RAIS) / 6
he PPHS1 turnedVVD out RP toTO beVB0 a AT crook NN1
(VSUBCAT VPINF, PRT +) out BE
he PPHS1 turnedVVD out II to TO beVB0 a AT crook NN1
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(VSUBCAT PPVPINF) out (PSUBCAT NONE) BE

139. (SUBCAT SCINF, PRT, SUBTYPE EQUI) / 12
he PPHS1 setVVD out RP toTO win VV0
(VSUBCAT VPINF, PRT +) out
he PPHS1 setVVD out II to TO win VV0
(VSUBCAT PPVPINF) out (PSUBCAT NONE)

140. (SUBCAT SCING, PREP, PRT, SUBTYPE EQUI) / 32
he PPHS1 gotVVD aroundRP to II leaving VVG
(VSUBCAT PP, PRT +) around to (PSUBCAT VPING)

141. (SUBCAT SCPASS, SUBTYPE RAIS) / 4
he PPHS1 gotVVD given VVN a AT book NN1
(VSUBCAT VPPRT)

142. (SUBCAT SCBSE, SUBTYPE EQUI) / 3
he PPHS1 daredVVD danceVV0
(VSUBCAT VPBSE)

143. (SUBCAT SCNP AP, SUBTYPE RAIS, PREP as) / 3
he PPHS1 strikesVVZ me PPHO1 asCSA foolishJJ
(VSUBCAT NP PP) AS (PSUBCAT AP)

144. (SUBCAT OCNP, SUBTYPE RAIS) / 35
he PPHS1 considersVVZ Fido NP1 aAT fool NN1
(VSUBCAT NP NP)

145. (SUBCAT OCAP, SUBTYPE RAIS, PRT) / 3
he PPHS1 makesVVD him PPHO1 outRP crazyJJ
(VSUBCAT NP AP, PRT +) out

146. (SUBCAT OCAP, SUBTYPE EQUI, PRT) / 4
he PPHS1 sandsVVZ it PPHO1 downRP smoothJJ
(VSUBCAT NP AP, PRT +) down

147. (SUBCAT OCAP, SUBTYPE EQUI, PREP as) / 5
he PPHS1 condemnedVVD him PPHO1 asCSA stupidJJ
(VSUBCAT NP PP) AS (PSUBCAT AP)

148. (SUBCAT OCAP, SUBTYPE EQUI, PREP as, PRT) / 6
he PPHS1 putVVD him PPHO1 downRP asCSA stupidJJ
(VSUBCAT NP PP, PRT +) down AS (PSUBCAT AP)

149. (SUBCAT OCINF, SUBTYPE RAIS, PRT) / 3
he PPHS1 madeVVD him PPHO1 outRP toTO beVV0 crazy JJ
(VSUBCAT SINF, PRT +) out BE

150. (SUBCAT OCINF, SUBTYPE EQUI, PRT) / 19

143



he PPHS1 spurredVVD him PPHO1 onRP toTO try VV0
(VSUBCAT SINF, PRT +) on

151. (SUBCAT OCPPINF, SUBTYPE PVERBOE, PFORM, PRT) / 6
he PPHS1 keptVVD on RP atII him PPHO1 toTO join VV0
(VSUBCAT PPVPINF, PRT +) on at (PSUBCAT NP)

152. (SUBCAT OCPPING, SUBTYPE PVERBOE, PFORM, PRT) / 4
he PPHS1 talkedVVD him PPHO1 aroundRP into II leaving VVG
(VSUBCAT NP PP, PRT +) around into (PSUBCAT VPING)

153. (SUBCAT OCPPBSE, PFORM, SUBTYPE PVERBOE) / 1
he PPHS1 lookedVVD at II him PPHO1 leaveVV0
(VSUBCAT PPSCOMP) at (PSUBCAT NONE) *VV0

154. (SUBCAT VPINF, SUBTYPE EXTRAP, AGR VP[FIN-]) / 4
to TO seeVV0 them PPHO2 hurtsVVZ
VV0 (VSUBCAT NONE)

155. (SUBCAT NPADL) / 39
he PPHS1 stoodVVD it PPHO1 aloneRL
(VSUBCAT NP, PRT +) * * RL/A/P

156. NP-HOW-S / ?
he PPHS1 askedVVD him PPHO1 howRGQ hePPHS1 cameVVD
(VSUBCAT NP PP) HOW/WHY/WHERE/WHEN (PSUBCAT SFIN)

157. NP-FOR-TO-INF / ?
he PPHS1 gaveVVD money NN2 for IF him PPHO1 toTO go VV0
(VSUBCAT NP PP FOR (PSUBCAT SINF)

158. IT-PASS-SFIN / ?
it PPHS1 isVBZ believedVVN that CST hePPHS1 cameVVD
IT PASS (VSUBCAT SCOMP)

159. AS-IF-SFIN / ?
he PPHS1 seemsVVZ as CS if CS hePPHS1 isVBZ clever JJ
(VSUBCAT PP) AS (PSUBCAT PP) IF (PSUBCAT SFIN)

160. ADL)
it PPHS1 carvesVVZ easily RP
(VSUBCAT NONE) * RP/A

161. SCNP SUBTYPE EQUI)
he PPHS1 feltVVD a AT fool NN1
(VSUBCAT NP)

162. AS-VPPRT
he PPHS1 acceptedVVD him PPHO1 asII/CSA associatedVVN
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(VSUBCAT NP PP) AS (PSUBCAT VPPRT)

163. AS-VPING
he PPHS1 acceptedVVD him PPHO1 asII/CSA beingVBG normalJJ
(VSUBCAT NP PP) AS (PSUBCAT VPING)
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Appendix B

Verb Distributions in Adult Speech vs.
Child Directed Speech

The following is a table of the top100 most frequent verbs found in the BNC and the CHILDES1
corpora.

Rank BNC n CHILDES1 n
1 get 5000+ go 5000+
2 go 5000+ be 5000+
3 say 5000+ do 5000+
4 be 5000+ see 4200
5 know 5000+ put 4037
6 do 5000+ get 4018
7 think 4074 want 3411
8 see 2852 can 3409
9 like 2827 let 2771
10 can 2710 look 2585
11 come 2602 think 2280
12 want 2148 like 2038
13 mean 2078 know 1768
14 look 1930 say 1755
15 put 1776 come 1693
16 take 1443 make 1692
17 tell 1122 okay 1593
18 make 1092 take 1356
19 use 1016 eat 1172
20 will 1007 give 990
21 give 920 play 944
22 buy 590 tell 860
23 leave 548 find 661
24 keep 545 happen 581
25 pay 543 sit 580
26 let 536 read 571
27 remember 517 remember 563
28 work 495 try 556
29 suppose 489 fall 546
30 play 477 will 537
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31 talk 475 need 531
32 ask 469 hold 527
33 find 464 turn 492
34 start 445 call 439
35 need 443 talk 426
36 call 431 thank 408
37 try 430 show 404
38 eat 394 wait 395
39 hear 370 bring 389
40 stop 345 mean 379
41 sit 342 sleep 369
42 turn 301 build 367
43 feel 299 wear 363
44 wait 297 watch 308
45 bring 286 help 289
46 run 274 fit 288
47 live 271 use 286
48 walk 263 drink 284
49 watch 260 throw 268
50 seem 254 pull 266
51 pick 248 fix 260
52 love 247 ride 255
53 happen 246 leave 254
54 mind 244 break 253
55 send 241 pick 248
56 move 238 keep 244
57 write 236 open 243
58 finish 232 stay 243
59 show 226 draw 242
60 ring 226 hurt 235
61 wonder 224 stand 231
62 forget 224 stick 225
63 sell 209 push 221
64 bother 200 hear 212
65 okay 198 feed 195
66 speak 191 finish 182
67 stick 188 move 177
68 cut 187 pretend 175
69 stand 182 work 170
70 change 182 close 170
71 read 182 buy 169
72 stay 178 catch 168
73 lose 174 run 166
74 thank 172 hum 159
75 listen 160 cry 159
76 win 157 hit 158
77 help 149 ask 158
78 drive 148 walk 152
79 open 146 wash 151

148



80 throw 145 hang 148
81 draw 142 sing 143
82 reckon 140 bite 143
83 break 140 bet 140
84 fuck 139 jump 139
85 round 138 feel 137
86 hope 136 blow 134
87 bet 135 listen 132
88 wear 132 fly 130
89 believe 132 guess 127
90 pull 121 cut 126
91 drop 120 live 124
92 hate 119 start 121
93 fall 118 stop 121
94 matter 116 knock 121
95 expect 115 drive 120
96 meet 114 brush 119
97 sort 114 roll 114
98 spend 113 cook 112
99 hold 112 touch 112
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Appendix C

Full SCF Data in Adult Speech vs. Child
Directed Speech

For each of the following104 verbs, the following table gives pairs of numbers for the BNC and
the CHILDES1 corpora. The pairs of numbers represent the factthat a particular verb occurred
with a particular SCF a given number of times. For example, thefirst pair, 24 84, listed in the
table represents the fact that the verb “ask” occurred with SCF number24 a total of84 times in
the BNC.

ask
BNC: 24 84, 22 27, 37 10, 53 5, 26 4, 104 4, 106 4, 52 3, 59 2, 132 2, 133 2, 156 2,

47 1, 49 1, 62 1, 74 1, 76 1, 113 1, 147 1, 154 1
CHILDES1: 24 86, 22 28, 37 19, 87 6, 106 5, 104 4, 52 2, 59 2, 7 1, 8 1, 23 1, 49 1, 53 1,

62 1, 112 1, 129 1
bet

BNC: 104 44, 22 28, 24 25, 106 24, 26 9, 37 5, 25 1, 35 1, 52 1
CHILDES1: 106 66, 104 43, 22 17, 24 8, 133 2, 1 1, 52 1

break
BNC: 24 49, 22 33, 76 6, 37 3, 23 2, 49 2, 154 2, 1 1, 52 1, 78 1, 87 1, 104 1, 106 1,

113 1, 133 1
CHILDES1: 24 72, 22 38, 106 5, 37 3, 142 3, 8 2, 76 2, 123 2, 1 1, 50 1, 52 1, 87 1, 104 1,

133 1
bring

BNC: 24 108, 76 53, 22 26, 37 26, 106 11, 49 6, 2 1, 25 1, 53 1, 62 1, 74 1, 87 1, 104
1, 129 1, 142 1

CHILDES1: 24 112, 76 90, 37 29, 22 13, 106 8, 1 3, 104 2, 112 2, 83 1, 116 1, 123 1
build

BNC: 24 31, 22 17, 37 7, 49 3, 87 3, 76 2, 23 1, 26 1, 52 1, 74 1, 129 1,154 1
CHILDES1: 24 64, 22 17, 87 3, 106 3, 37 2, 25 1, 49 1, 104 1

buy
BNC: 24 63, 22 31, 37 28, 49 9, 106 9, 104 5, 52 3, 87 3, 7 2, 123 2, 147 2, 25 1, 35

1, 50 1, 53 1, 74 1, 75 1, 116 1, 117 1, 133 1, 142 1, 156 1
CHILDES1: 24 52, 22 33, 37 28, 87 19, 49 16, 106 4, 104 2, 7 1, 23 1,50 1, 52 1, 62 1, 77

1, 89 1, 116 1, 122 1, 133 1
call

BNC: 24 171, 22 63, 37 50, 106 9, 104 8, 1 5, 87 5, 76 3, 7 2, 52 2, 74 2, 154 2, 2 1,
15 1, 23 1, 25 1, 26 1, 113 1, 117 1, 124 1, 132 1, 142 1, 158 1
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CHILDES1: 24 146, 37 109, 22 89, 106 6, 104 3, 7 2, 62 2, 76 2, 2 1, 25 1, 35 1, 52 1, 116
1, 158 1
can

BNC: 22 43, 24 13, 106 11, 37 2, 19 1, 26 1, 52 1, 87 1, 112 1, 133 1
CHILDES1: 24 23, 22 20, 106 17, 104 5, 37 4, 52 4, 16 1, 117 1, 133 1

carry
BNC: 24 25, 22 10, 37 8, 76 3, 106 2, 7 1, 8 1, 154 1

CHILDES1: 24 40, 22 27, 76 2, 37 1, 129 1
catch

BNC: 24 41, 22 14, 49 7, 37 5, 104 4, 35 3, 52 2, 53 2, 76 2, 87 2, 1 1, 23 1, 25 1,
156 1

CHILDES1: 24 48, 22 17, 37 7, 104 7, 123 4, 8 3, 106 3, 1 1, 49 1, 52 1, 87 1, 129 1, 134 1
change

BNC: 24 32, 22 27, 37 2, 104 2, 7 1, 75 1, 107 1, 133 1, 142 1
CHILDES1: 24 57, 37 4, 22 3, 76 3, 106 3, 53 1, 154 1

check
BNC: 24 15, 22 11, 37 4, 104 3, 106 3, 133 3, 87 2, 26 1, 76 1, 83 1, 112 1, 156 1

CHILDES1: 24 32, 76 5, 22 3, 50 1, 57 1, 133 1
clean

BNC: 22 22, 24 16, 76 5, 106 5, 37 4, 49 2, 104 2, 26 1, 52 1, 87 1, 1071, 132 1, 133
1, 142 1

CHILDES1: 24 18, 22 8, 76 7, 37 4, 49 2, 52 2, 133 2, 25 1, 87 1
close

BNC: 24 19, 22 8, 37 2, 49 2, 52 2, 106 2, 26 1, 76 1, 87 1, 104 1, 156 1
CHILDES1: 24 26, 22 16, 106 8, 104 1

come
BNC: 22 535, 87 66, 24 62, 106 25, 112 18, 104 17, 74 13, 1 10, 23 9,123 9, 142 9,

37 8, 129 6, 16 4, 19 4, 52 4, 133 4, 49 2, 78 2, 117 2, 137 2, 7 1, 8 1, 14 1, 25
1, 26 1, 50 1, 76 1, 77 1, 97 1, 113 1

CHILDES1: 22 590, 106 110, 24 60, 87 54, 142 22, 112 21, 74 17, 1 12, 19 8, 23 8, 52 8,
37 7, 123 7, 133 7, 2 4, 76 4, 12 2, 83 2, 26 1, 49 1, 97 1, 116 1, 132 1
cook

BNC: 22 17, 24 17, 37 6, 104 6, 87 5, 49 4, 50 2, 1 1, 52 1, 78 1, 83 1
CHILDES1: 24 20, 22 13, 49 7, 87 4, 142 3, 104 2, 106 2, 133 2, 7 1, 37 1, 129 1

cover
BNC: 24 19, 22 13, 76 7, 87 6, 49 5, 23 1, 37 1, 106 1

CHILDES1: 24 33, 76 9, 22 7, 37 2, 7 1, 49 1, 106 1
cut

BNC: 24 30, 22 14, 76 14, 49 6, 37 5, 106 5, 25 4, 23 3, 117 3, 52 2, 104 2, 1 1, 26
1, 53 1, 74 1, 107 1, 116 1, 132 1, 133 1, 146 1

CHILDES1: 24 50, 22 17, 76 13, 49 8, 37 5, 87 4, 106 4, 7 2, 120 2, 133 2, 142 2, 154 2, 19
1, 47 1, 52 1, 59 1, 117 1, 158 1
do

BNC: 22 149, 24 93, 106 47, 37 17, 87 16, 142 14, 49 11, 104 10, 12910, 23 4, 116
4, 7 3, 50 3, 52 3, 76 3, 133 3, 154 3, 1 2, 107 2, 2 1, 14 1, 26 1, 74 1, 147 1,
156 1

CHILDES1: 22 131, 24 102, 106 93, 87 22, 142 13, 129 9, 104 4, 1164, 52 3, 1 2, 23 2,
111 2, 113 2, 154 2, 14 1, 19 1, 74 1, 123 1, 133 1
draw
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BNC: 24 56, 22 47, 37 6, 87 5, 106 4, 76 2, 104 2, 129 2, 1 1, 8 1, 23 1,133 1
CHILDES1: 24 61, 22 44, 87 6, 37 4, 52 4, 106 3, 7 1, 49 1, 76 1, 104 1, 123 1, 133 1, 142

1
drink

BNC: 24 38, 22 23, 37 9, 106 5, 133 4, 132 2, 26 1, 47 1, 50 1, 52 1, 591, 74 1, 87 1
CHILDES1: 24 53, 22 16, 37 10, 26 3, 52 3, 106 2, 23 1, 87 1, 133 1, 142 1

drive
BNC: 22 47, 24 28, 87 7, 37 2, 104 2, 106 2, 154 2, 1 1, 14 1, 19 1, 25 1, 75 1, 113

1, 129 1
CHILDES1: 24 49, 22 39, 87 4, 37 3, 1 1, 14 1, 23 1, 25 1, 76 1, 83 1, 116 1

drop
BNC: 24 20, 22 12, 76 7, 37 2, 52 2, 1 1, 77 1, 87 1, 104 1, 142 1

CHILDES1: 24 34, 22 7, 76 4, 106 3, 104 2, 8 1, 25 1, 62 1, 87 1, 116 1, 133 1
eat

BNC: 24 151, 22 114, 37 46, 106 24, 104 11, 1 6, 50 5, 76 4, 133 4, 124 2, 129 2,
132 2, 142 2, 2 1, 8 1, 23 1, 25 1, 35 1, 52 1, 97 1, 122 1, 134 1, 153 1,154 1,
156 1

CHILDES1: 24 175, 22 105, 37 40, 87 17, 104 16, 106 11, 49 10, 1296, 50 5, 76 5, 25 3, 7
2, 77 2, 116 2, 142 2, 1 1, 75 1, 132 1, 133 1
fall

BNC: 22 28, 1 11, 87 11, 24 3, 129 3, 74 2, 106 2, 9 1, 104 1
CHILDES1: 22 32, 87 6, 106 6, 2 2, 24 1, 104 1

feed
BNC: 24 14, 22 3, 1 2, 37 2, 49 2, 7 1, 8 1, 52 1, 87 1, 104 1, 132 1

CHILDES1: 24 38, 22 8, 37 2, 49 1, 104 1, 117 1
feel

BNC: 1 39, 22 39, 24 21, 106 18, 104 7, 26 4, 25 3, 2 2, 87 2, 75 1
CHILDES1: 1 53, 22 47, 24 18, 106 14, 116 2, 137 2, 26 1, 37 1, 104 1

find
BNC: 24 195, 22 70, 104 26, 106 24, 37 21, 25 14, 26 8, 1 5, 76 4, 50 3, 7 2, 112 2,

133 2, 16 1, 23 1, 52 1, 117 1, 123 1, 129 1, 134 1, 142 1, 156 1
CHILDES1: 24 303, 22 63, 106 30, 37 28, 104 18, 1 2, 50 2, 62 2, 74 2, 76 2, 133 2, 16 1,

117 1
finish

BNC: 22 56, 24 46, 37 12, 106 11, 19 6, 87 5, 76 4, 49 3, 104 2, 156 2,12 1, 74 1, 98
1, 133 1, 158 1

CHILDES1: 24 58, 19 33, 22 26, 37 10, 87 9, 49 6, 104 5, 25 2, 26 2, 52 2, 106 2, 133 2, 1
1, 142 1
fit

BNC: 22 23, 24 16, 76 4, 37 3, 129 2, 2 1, 74 1, 87 1, 106 1, 123 1, 1321
CHILDES1: 22 21, 24 8, 87 3, 76 2, 106 2, 123 2, 107 1, 113 1, 154 1

forget
BNC: 22 28, 24 23, 104 11, 87 5, 112 5, 52 3, 23 2, 37 2, 83 2, 106 2, 16 1, 26 1, 35

1, 49 1, 50 1, 76 1, 105 1, 133 1, 154 1
CHILDES1: 24 32, 22 24, 112 17, 104 5, 106 5, 52 3, 37 2, 49 2, 87 2,8 1, 25 1

get
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BNC: 24 1322, 22 903, 37 308, 1 141, 76 136, 2 131, 106 88, 104 75,49 73, 25 41,
50 32, 53 27, 117 27, 87 25, 112 24, 26 21, 52 16, 123 16, 132 16, 3515, 7 13,
133 12, 23 10, 19 7, 77 7, 142 7, 129 6, 8 5, 74 4, 124 4, 154 4, 59 3, 62 3, 86
3, 98 3, 122 3, 147 3, 116 2, 146 2, 158 2, 14 1, 16 1, 40 1, 43 1, 85 1,97 1,
107 1, 111 1, 120 1, 148 1, 150 1, 156 1

CHILDES1: 24 1703, 22 587, 1 283, 76 157, 106 147, 2 122, 112 102, 104 72, 25 19, 7 18,
123 17, 142 17, 50 14, 133 13, 52 10, 26 9, 116 9, 117 8, 23 6, 154 5,8 4, 62
3, 74 3, 129 3, 132 3, 9 2, 19 2, 53 2, 107 2, 111 2, 153 2, 75 1, 83 1, 103 1
give

BNC: 37 440, 24 283, 76 29, 106 25, 7 4, 117 4, 132 4, 8 3, 19 3, 120 2, 123 2, 133
2, 25 1, 53 1, 62 1, 107 1

CHILDES1: 37 450, 24 355, 76 27, 106 21, 1 11, 7 6, 117 5, 35 2, 62 2, 120 2, 116 1, 132
1, 133 1, 142 1
go

BNC: 22 2181, 24 353, 112 329, 87 221, 1 130, 106 74, 74 37, 23 35,142 21, 9 18,
19 18, 111 16, 129 13, 25 9, 26 9, 123 9, 76 7, 132 6, 154 6, 75 4, 1074, 133
4, 2 3, 67 3, 97 3, 113 3, 16 2, 53 2, 86 2, 43 1, 46 1, 83 1, 124 1, 137 1, 150 1

CHILDES1: 22 2265, 112 991, 106 211, 142 87, 9 34, 74 28, 1 27, 111 21, 19 20, 104 19,
129 19, 23 18, 2 10, 76 7, 123 7, 116 6, 14 5, 154 4, 62 3, 107 3, 6 1, 16 1, 86
1, 105 1, 113 1, 153 1, 158 1
hang

BNC: 22 18, 24 9, 37 5, 87 5, 76 4, 106 3, 104 2, 75 1, 133 1
CHILDES1: 22 23, 24 21, 87 10, 76 6, 106 5, 26 4, 74 4, 37 3, 104 2, 142 2, 129 1

happen
BNC: 22 142, 24 24, 87 13, 106 10, 104 8, 49 6, 74 4, 112 4, 1 1, 26 1,52 1, 59 1,

107 1, 111 1, 113 1, 129 1, 153 1
CHILDES1: 22 195, 87 10, 74 5, 104 4, 49 2, 9 1, 23 1, 24 1, 76 1, 1061, 153 1

hear
BNC: 24 73, 22 48, 104 23, 106 16, 37 7, 87 4, 49 3, 35 2, 76 2, 7 1, 8 1, 19 1, 23 1,

26 1, 52 1, 97 1, 113 1, 116 1, 117 1, 122 1, 133 1
CHILDES1: 24 117, 106 33, 22 24, 104 13, 37 4, 52 2, 117 2, 156 2, 11, 23 1, 62 1, 105 1,

123 1
help

BNC: 24 59, 22 37, 106 18, 37 7, 76 5, 104 3, 112 2, 19 1, 49 1, 50 1, 52 1, 53 1, 129
1, 133 1

CHILDES1: 24 81, 106 34, 22 22, 26 1, 37 1, 49 1, 76 1
hit

BNC: 24 36, 22 4, 104 3, 76 2, 7 1, 16 1, 25 1, 37 1, 117 1, 129 1
CHILDES1: 24 34, 22 10, 106 4, 1 1, 8 1, 76 1, 104 1

hold
BNC: 24 50, 22 10, 76 9, 37 8, 87 3, 106 2, 123 2, 7 1, 8 1, 25 1, 52 1, 107 1, 133 1,

142 1
CHILDES1: 24 72, 22 7, 76 7, 106 5, 123 4, 87 2, 104 2, 133 2, 142 2,37 1, 132 1

keep
BNC: 24 80, 19 48, 22 34, 76 16, 104 15, 106 12, 25 9, 1 7, 49 3, 7 1, 26 1, 35 1, 112

1
CHILDES1: 24 85, 19 72, 76 19, 106 17, 104 16, 25 9, 22 5, 1 3, 7 2, 49 2, 86 2, 8 1, 37 1,

40 1, 50 1, 75 1, 123 1
knock
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BNC: 24 20, 22 12, 76 12, 87 9, 49 3, 106 3, 37 2, 26 1, 74 1, 132 1, 156 1
CHILDES1: 76 37, 24 23, 22 12, 106 6, 87 5, 25 1

know
BNC: 22 1044, 24 204, 104 197, 106 142, 26 44, 37 30, 116 14, 154 9, 23 7, 113 7,

129 6, 16 5, 1 4, 133 3, 153 3, 142 2, 7 1, 35 1, 49 1, 103 1, 105 1, 1231, 139
1, 159 1

CHILDES1: 22 647, 104 499, 106 167, 24 159, 116 107, 26 40, 37 22, 113 12, 139 8, 17 7,
133 5, 154 5, 50 4, 87 3, 1 2, 23 2, 129 2, 7 1, 8 1, 35 1, 49 1, 62 1, 78 1, 137
1, 142 1, 147 1, 153 1
laugh

BNC: 22 42, 87 6, 24 5, 106 3, 26 2, 104 2, 113 2, 23 1, 37 1, 74 1, 83 1, 101 1, 133
1

CHILDES1: 22 53, 24 6, 87 2, 104 2, 1 1, 37 1, 142 1, 153 1
leave

BNC: 24 119, 22 52, 37 14, 106 11, 49 10, 76 6, 1 4, 25 3, 104 3, 132 3, 26 2, 52 2,
85 2, 87 2, 150 2, 16 1, 23 1, 35 1, 50 1, 98 1, 129 1, 133 1

CHILDES1: 24 141, 22 38, 76 22, 106 17, 49 9, 37 5, 104 5, 8 2, 25 2,123 2, 87 1, 107 1,
129 1
let

BNC: 106 388, 24 86, 22 25, 76 16, 52 2, 142 2, 7 1, 117 1
CHILDES1: 106 501, 24 13, 37 13, 22 11

like
BNC: 24 792, 22 733, 106 99, 112 74, 104 69, 19 25, 23 19, 1 18, 76 16, 26 14, 129

12, 7 11, 8 9, 154 8, 133 7, 142 7, 25 5, 83 5, 123 5, 2 3, 35 3, 107 3, 105 2,
111 2, 116 2, 124 2, 82 1, 98 1, 113 1

CHILDES1: 24 994, 112 404, 22 382, 106 55, 104 28, 19 18, 111 13,1 8, 52 6, 154 6, 8 5,
7 4, 25 4, 50 4, 116 4, 133 4, 23 3, 123 3, 35 2, 107 2, 142 2, 156 2, 621, 129
1
listen

BNC: 22 52, 87 38, 74 3, 97 3, 104 3, 106 3, 112 3, 24 2, 52 2, 16 1, 261, 53 1, 83
1, 98 1, 113 1

CHILDES1: 87 45, 22 37, 106 13, 24 4, 74 4, 104 4, 67 2, 77 2, 97 2, 23 1, 37 1, 52 1, 89
1, 112 1, 113 1, 133 1, 142 1
live

BNC: 22 32, 87 28, 24 7, 104 3, 74 2, 106 2, 133 2, 16 1, 98 1
CHILDES1: 22 48, 87 25, 24 5, 133 2, 106 1

look
BNC: 22 670, 87 386, 1 232, 24 105, 106 101, 104 67, 26 17, 74 16, 37 13, 159 13,

16 10, 25 10, 76 10, 23 8, 75 7, 142 7, 116 5, 129 5, 154 5, 107 4, 14 3, 49 3,
133 3, 69 2, 123 2, 2 1, 7 1, 8 1, 59 1, 82 1, 137 1

CHILDES1: 87 612, 22 437, 104 157, 106 147, 1 85, 24 64, 52 22, 2616, 74 16, 16 9, 142
9, 37 8, 69 5, 133 5, 154 5, 14 4, 23 4, 116 4, 129 3, 25 1, 35 1, 75 1, 76 1, 77
1, 78 1, 98 1, 101 1, 107 1
lose

BNC: 24 28, 22 17, 37 6, 50 2, 87 2, 106 2, 2 1, 25 1, 26 1, 52 1, 117 1
CHILDES1: 24 38, 22 12, 104 4, 50 2, 142 2, 1 1, 8 1, 37 1, 113 1, 1231

love
BNC: 22 44, 24 43, 52 4, 104 4, 112 4, 19 3, 37 3, 106 2, 23 1, 25 1, 761, 107 1

CHILDES1: 24 78, 22 11, 112 6, 37 4, 104 4, 106 4, 1 1, 2 1, 132 1, 133 1
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make
BNC: 24 476, 22 138, 106 132, 37 84, 25 35, 1 33, 104 32, 76 23, 7 7,117 6, 23 4,

123 4, 132 4, 26 3, 8 2, 53 2, 77 2, 133 2, 35 1, 40 1, 52 1, 62 1, 105 1,107 1,
112 1, 113 1, 129 1, 142 1, 147 1, 150 1, 154 1, 156 1

CHILDES1: 24 550, 106 214, 22 151, 37 34, 25 30, 76 12, 104 11, 7 10, 1 5, 8 3, 49 3, 62
3, 116 3, 87 2, 105 2, 123 2, 132 2, 26 1, 35 1, 52 1, 107 1, 117 1, 1331
mean

BNC: 22 175, 24 48, 104 47, 106 42, 26 14, 87 5, 112 5, 113 4, 49 3, 52 3, 57 3, 142
2, 19 1, 59 1, 75 1, 83 1, 133 1, 153 1

CHILDES1: 22 158, 24 67, 104 39, 106 30, 87 16, 112 9, 142 7, 1 5, 49 5, 83 5, 52 3, 26 2,
107 2, 113 2, 16 1, 23 1, 35 1, 57 1, 75 1, 97 1, 133 1, 147 1, 154 1, 156 1
miss

BNC: 24 54, 22 12, 37 7, 104 3, 8 1, 76 1, 123 1
CHILDES1: 24 49, 22 21, 37 2, 104 2, 106 2, 49 1, 107 1, 123 1

move
BNC: 24 50, 22 48, 87 8, 76 6, 37 5, 117 3, 106 2, 7 1, 23 1, 49 1, 74 1,104 1, 120

1, 123 1, 129 1, 133 1, 142 1
CHILDES1: 24 61, 22 51, 76 25, 106 6, 37 3, 87 2, 104 2, 117 2, 7 1, 16 1, 62 1, 74 1, 116

1, 129 1, 133 1, 153 1
need

BNC: 22 109, 24 108, 112 90, 37 31, 106 17, 19 11, 49 10, 104 10, 526, 133 6, 35
3, 50 3, 53 3, 8 2, 9 2, 76 2, 132 2, 147 2, 1 1, 7 1, 16 1, 23 1, 25 1, 57 1, 67 1,
75 1, 86 1, 97 1, 111 1, 117 1, 123 1, 124 1, 154 1, 156 1

CHILDES1: 24 153, 112 109, 22 60, 37 44, 49 19, 53 9, 106 7, 76 6, 104 5, 111 4, 19 3, 23
2, 25 2, 50 2, 133 2, 59 1, 116 1, 123 1, 129 1, 154 1
okay

BNC: 22 139, 24 21, 106 10, 104 5, 1 1, 7 1, 9 1, 23 1, 26 1, 87 1, 103 1, 113 1, 129
1, 142 1, 154 1, 156 1

CHILDES1: 22 188, 106 2, 142 2, 24 1, 77 1
open

BNC: 24 66, 22 42, 37 5, 104 5, 76 4, 106 3, 8 1, 25 1, 49 1, 83 1, 117 1, 123 1, 129
1, 142 1, 154 1

CHILDES1: 24 73, 22 42, 37 7, 106 3, 133 3, 76 2, 123 2, 50 1, 52 1, 104 1, 116 1, 142 1
pick

BNC: 76 62, 24 56, 22 23, 37 17, 106 8, 49 6, 104 6, 117 5, 87 4, 52 3,146 2, 1 1, 40
1, 77 1, 107 1, 132 1, 133 1

CHILDES1: 76 60, 24 28, 106 24, 22 14, 37 6, 49 6, 52 6, 77 6, 117 4,87 3, 7 2, 50 2, 133
2, 2 1, 104 1, 113 1, 124 1, 129 1, 132 1
play

BNC: 22 194, 24 132, 87 28, 76 7, 104 7, 117 6, 106 5, 7 3, 23 3, 129 3, 1 2, 26 2, 50
2, 19 1, 25 1, 52 1, 62 1, 74 1, 75 1, 98 1, 107 1, 123 1, 133 1, 142 1

CHILDES1: 22 159, 87 100, 24 70, 106 11, 1 6, 23 4, 76 2, 104 2, 1132, 142 2, 26 1, 62 1,
74 1, 83 1, 133 1
please

BNC: 22 36, 24 10, 106 5, 142 3, 52 1, 75 1, 104 1, 113 1
CHILDES1: 22 33, 106 17, 24 3, 35 1, 49 1, 87 1, 104 1, 142 1

pull
BNC: 24 45, 76 24, 22 11, 117 4, 37 3, 87 2, 7 1, 8 1, 19 1, 26 1, 106 1

CHILDES1: 24 55, 76 30, 106 12, 117 5, 8 4, 22 4, 37 1, 87 1, 104 1, 132 1
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push
BNC: 24 21, 76 12, 22 8, 37 7, 49 5, 106 5, 87 3, 117 2, 1 1, 7 1, 25 1, 40 1, 112 1,

123 1, 132 1, 133 1, 142 1, 150 1
CHILDES1: 24 27, 76 14, 22 9, 106 9, 37 3, 117 3, 133 3, 1 2, 87 2, 104 2, 25 1, 49 1

put
BNC: 24 702, 76 376, 22 214, 49 88, 37 75, 106 47, 104 24, 87 23, 117 16, 123 12,

7 10, 50 10, 25 7, 77 6, 52 4, 74 4, 133 4, 8 3, 23 3, 26 3, 40 2, 120 2, 122 2,
132 2, 142 2, 147 2, 16 1, 35 1, 53 1, 59 1, 75 1, 83 1, 89 1, 113 1, 1161, 124
1, 129 1, 148 1, 156 1

CHILDES1: 24 749, 76 541, 106 72, 117 27, 104 15, 77 12, 156 10, 75, 132 5, 87 3, 123
3, 129 3, 1 2, 50 2, 52 2, 142 2, 2 1, 8 1, 74 1, 124 1, 133 1
read

BNC: 24 80, 22 59, 106 6, 76 4, 104 4, 123 3, 37 2, 87 2, 129 2, 7 1, 191, 23 1, 52
1, 103 1, 116 1, 117 1

CHILDES1: 24 89, 22 37, 37 35, 106 4, 104 3, 87 2, 116 2, 23 1, 35 1,52 1, 83 1, 117 1,
129 1
remember

BNC: 22 156, 24 115, 104 67, 37 23, 19 20, 83 19, 106 19, 52 16, 26 8, 35 8, 112 5,
23 4, 133 4, 156 3, 53 2, 113 2, 116 2, 153 2, 1 1, 2 1, 7 1, 8 1, 16 1, 251, 43
1, 75 1, 98 1, 107 1, 129 1, 147 1

CHILDES1: 22 190, 104 87, 24 85, 83 24, 106 22, 52 16, 16 13, 37 10, 49 10, 112 7, 87 6,
19 4, 23 4, 129 4, 50 3, 133 3, 153 3, 154 3, 53 2, 142 2, 1 1, 35 1, 97 1, 156 1
roll

BNC: 24 21, 22 11, 106 5, 53 2, 76 2, 87 2, 142 2, 19 1, 26 1, 49 1, 59 1, 97 1, 104 1
CHILDES1: 24 29, 22 4, 49 3, 87 3, 76 2, 106 2, 117 2, 146 2, 25 1, 371, 52 1, 83 1, 122

1, 133 1
run

BNC: 22 41, 24 29, 87 14, 76 7, 37 3, 106 3, 1 1, 49 1, 153 1
CHILDES1: 22 67, 87 12, 24 7, 1 3, 74 1, 76 1, 104 1, 106 1, 129 1

say
BNC: 22 680, 24 323, 104 255, 106 254, 26 56, 52 24, 23 14, 133 14,116 13, 1 12,

129 6, 142 5, 7 3, 107 3, 8 1, 103 1, 113 1, 123 1, 124 1
CHILDES1: 24 643, 22 617, 106 211, 104 133, 1 38, 23 11, 116 10, 133 10, 19 8, 107 7,

26 6, 129 6, 142 5, 2 3, 7 2, 123 2, 62 1, 113 1, 153 1, 154 1
see

BNC: 22 1018, 24 909, 104 259, 106 225, 37 112, 26 54, 49 33, 116 17, 113 16, 16
15, 23 13, 35 9, 25 8, 129 8, 133 8, 1 6, 123 5, 7 4, 142 4, 154 4, 8 3, 59 3, 98
3, 19 2, 47 2, 112 2, 156 2, 2 1, 62 1, 83 1, 105 1, 124 1, 147 1, 153 1

CHILDES1: 22 1123, 24 929, 104 308, 106 247, 113 24, 76 20, 26 17, 16 12, 52 8, 116 7,
1 6, 133 6, 62 5, 154 5, 23 4, 35 4, 74 4, 25 3, 123 3, 129 3, 7 2, 8 2, 107 2,
137 2, 142 2, 153 2
send

BNC: 24 48, 22 15, 37 13, 76 11, 132 2, 8 1, 25 1, 49 1, 77 1, 117 1
CHILDES1: 24 44, 37 27, 22 24, 49 2, 50 2, 104 2, 1 1, 76 1, 77 1, 1231

set
BNC: 24 14, 22 9, 49 6, 37 4, 76 2, 87 2, 7 1, 52 1, 77 1

CHILDES1: 24 13, 76 12, 22 2, 49 2, 106 2, 25 1, 87 1
show
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BNC: 24 108, 37 36, 22 26, 104 10, 106 5, 49 4, 76 4, 87 4, 132 3, 1 2,8 2, 62 2, 52
1, 107 1, 156 1

CHILDES1: 24 143, 37 40, 62 7, 22 6, 52 4, 106 4, 104 3, 49 1, 59 1, 156 1
sing

BNC: 24 25, 22 22, 37 3, 87 3, 106 3, 76 2, 104 2, 23 1, 26 1, 49 1, 1421
CHILDES1: 22 19, 24 18, 87 9, 37 4, 49 4, 104 3, 112 2, 133 2, 74 1, 103 1, 106 1, 137 1,

142 1
sit

BNC: 22 141, 87 27, 24 10, 104 5, 74 4, 19 3, 106 3, 76 2, 1 1, 23 1, 401, 67 1, 69 1
CHILDES1: 22 122, 87 37, 106 4, 19 3, 142 2, 23 1, 74 1, 104 1, 129 1, 154 1

sleep
BNC: 22 51, 87 30, 24 5, 106 4, 104 2, 142 2, 14 1, 23 1, 25 1, 50 1, 771, 129 1

CHILDES1: 22 61, 24 20, 87 16, 106 3, 1 2, 104 2, 52 1, 77 1, 83 1, 116 1
sound

BNC: 1 14, 22 13, 106 8, 87 4, 7 2, 24 2, 37 2, 12 1, 49 1, 97 1, 104 1, 142 1, 154 1,
159 1

CHILDES1: 1 16, 106 10, 22 9, 142 7, 87 2, 23 1, 49 1, 75 1, 103 1
stand

BNC: 22 60, 24 29, 87 15, 49 3, 106 3, 7 2, 19 2, 37 2, 52 2, 104 2, 1 1,2 1, 14 1, 23
1, 74 1, 86 1

CHILDES1: 22 34, 76 19, 87 12, 24 9, 106 6, 104 4, 123 1, 133 1, 1421
start

BNC: 24 36, 22 35, 19 19, 112 6, 1 2, 37 2, 104 2, 9 1, 53 1, 76 1, 87 1,106 1
CHILDES1: 22 43, 24 21, 19 12, 112 8, 106 5, 52 2, 87 2, 104 2, 9 1, 76 1, 111 1, 142 1

stay
BNC: 22 96, 87 23, 24 8, 106 6, 104 5, 1 3, 23 1, 37 1, 74 1, 76 1, 97 1,113 1, 123

1, 154 1
CHILDES1: 22 91, 1 11, 106 9, 87 7, 24 6, 26 2, 35 2, 52 2, 129 2, 7 1,19 1, 37 1, 62 1

stick
BNC: 22 40, 24 39, 87 18, 37 11, 49 11, 106 5, 52 3, 76 3, 2 2, 14 2, 107 2, 156 2, 19

1, 35 1, 62 1, 74 1, 104 1, 112 1, 122 1, 129 1, 153 1, 154 1, 158 1
CHILDES1: 24 45, 22 43, 49 22, 87 22, 37 6, 52 5, 74 5, 158 3, 26 2, 106 2, 132 2, 133 2,

104 1, 107 1, 129 1
stop

BNC: 22 48, 24 31, 19 10, 35 6, 37 5, 106 3, 1 2, 104 2, 87 1, 116 1, 123 1, 133 1,
142 1

CHILDES1: 22 48, 24 46, 19 13, 106 7, 6 3, 142 3, 104 1
suppose

BNC: 22 28, 24 16, 104 13, 53 12, 106 11, 112 7, 26 3, 52 2, 57 2, 1112, 37 1, 49 1,
133 1, 142 1

CHILDES1: 112 35, 53 27, 22 13, 24 9, 9 4, 57 4, 106 4, 74 2, 111 2, 23 1, 26 1
take

BNC: 24 662, 76 174, 22 168, 37 71, 106 39, 104 23, 87 17, 49 16, 117 15, 1 9, 7 6,
77 5, 132 4, 9 3, 53 3, 112 3, 6 2, 11 2, 23 2, 26 2, 59 2, 116 2, 8 1, 19 1, 25 1,
67 1, 83 1, 98 1, 113 1, 120 1, 123 1, 124 1, 129 1, 133 1, 142 1, 156 1

CHILDES1: 24 694, 76 312, 22 85, 106 40, 37 25, 104 20, 7 14, 117 12, 49 10, 87 8, 1 4, 8
4, 77 4, 116 3, 133 3, 142 2, 23 1, 53 1, 59 1, 107 1, 129 1, 154 1, 1561
talk
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BNC: 22 164, 87 102, 24 25, 1 12, 74 7, 23 3, 123 3, 16 2, 75 2, 129 2,14 1, 25 1, 76
1, 97 1, 101 1, 106 1, 154 1

CHILDES1: 22 156, 87 137, 74 25, 1 8, 106 8, 75 2, 104 2, 14 1, 142 1, 153 1
tell

BNC: 24 511, 37 85, 52 48, 104 29, 62 26, 106 17, 133 14, 132 8, 7 7,49 6, 53 6, 76
6, 8 3, 26 3, 116 3, 6 2, 59 2, 117 2, 142 2, 1 1, 23 1, 50 1, 74 1, 83 1, 87 1,
107 1, 112 1, 124 1, 129 1, 156 1

CHILDES1: 24 585, 37 122, 104 23, 62 21, 106 21, 52 17, 133 6, 1 4,7 2, 8 1, 25 1, 35 1,
40 1, 50 1, 76 1, 83 1, 129 1, 139 1, 153 1, 156 1
thank

BNC: 24 123, 22 17, 37 8, 7 3, 52 3, 106 3, 49 2, 104 2, 25 1, 75 1, 1331
CHILDES1: 24 149, 22 9, 7 2, 106 2, 23 1, 49 1

think
BNC: 22 651, 104 611, 106 356, 24 350, 26 113, 133 13, 23 8, 1 6, 116 4, 154 4, 113

3, 19 2, 105 2, 123 2, 7 1, 35 1, 62 1, 67 1, 107 1, 111 1, 129 1, 142 1
CHILDES1: 104 870, 22 547, 106 543, 26 70, 35 5, 23 4, 129 3, 142 3, 2 2, 25 2, 116 2,

133 2, 154 2, 1 1, 8 1, 62 1
throw

BNC: 24 47, 76 37, 22 19, 37 7, 49 6, 106 2, 132 2, 26 1, 87 1, 103 1
CHILDES1: 24 59, 22 33, 37 10, 76 9, 8 8, 106 8, 49 6, 62 2, 154 2, 1 1, 133 1

touch
BNC: 24 34, 22 7, 37 4, 104 3, 8 2, 76 1, 123 1, 133 1

CHILDES1: 24 29, 106 10, 22 4, 8 2, 105 2, 133 2, 142 2, 35 1, 37 1, 154 1
try

BNC: 112 142, 22 109, 24 62, 106 13, 76 7, 1 5, 19 5, 104 5, 111 3, 7 1, 9 1, 35 1, 50
1, 83 1, 117 1, 132 1, 133 1

CHILDES1: 24 103, 112 78, 22 75, 37 49, 106 25, 19 20, 76 7, 9 3, 116 2, 1 1, 49 1, 50 1,
52 1, 104 1, 117 1, 132 1, 133 1
turn

BNC: 24 57, 76 56, 22 33, 1 10, 106 10, 37 7, 117 5, 2 4, 87 3, 104 3, 74 2, 120 2, 8
1, 23 1, 26 1, 49 1, 62 1, 75 1, 123 1, 133 1, 142 1, 150 1

CHILDES1: 24 118, 22 48, 37 31, 106 27, 76 26, 117 6, 104 5, 1 2, 7 2, 6 1, 8 1, 49 1, 52
1, 132 1
understand

BNC: 22 24, 24 24, 106 6, 37 2, 1 1, 23 1, 26 1
CHILDES1: 22 36, 24 23, 129 3, 106 2, 7 1, 116 1

use
BNC: 24 77, 22 74, 112 56, 106 8, 111 8, 37 7, 74 4, 75 4, 9 3, 87 3, 232, 40 2, 53

2, 104 2, 98 1, 116 1, 117 1, 133 1
CHILDES1: 24 139, 22 68, 112 28, 87 6, 106 5, 111 3, 104 2, 123 2, 81, 23 1, 53 1, 83 1,

147 1
wait

BNC: 22 103, 87 56, 24 43, 106 14, 112 12, 142 7, 23 5, 52 4, 15 3, 373, 75 2, 9 1,
74 1, 78 1, 83 1, 98 1, 103 1, 107 1, 132 1, 133 1, 154 1

CHILDES1: 24 92, 106 74, 22 52, 87 17, 104 10, 142 6, 112 5, 52 4, 26 3, 83 3, 133 3, 129
2, 7 1, 23 1, 117 1
walk

BNC: 22 60, 24 18, 87 12, 49 3, 106 3, 1 2, 23 2, 37 2, 74 2, 142 2, 59 1, 76 1, 78 1,
104 1, 129 1
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CHILDES1: 22 69, 87 25, 24 11, 1 1, 23 1, 76 1, 104 1, 106 1
want

BNC: 24 860, 112 519, 22 508, 106 53, 37 52, 104 41, 76 24, 111 18,19 17, 53 14,
87 10, 142 10, 1 8, 52 7, 49 6, 133 6, 8 5, 26 5, 35 4, 154 4, 7 3, 9 3, 233, 25
3, 116 3, 123 3, 132 3, 105 2, 117 2, 59 1, 75 1, 107 1, 113 1

CHILDES1: 24 848, 112 797, 22 237, 106 141, 76 22, 53 21, 111 17,1 15, 116 8, 142 8,
50 7, 7 6, 9 6, 35 5, 133 4, 57 2, 8 1, 11 1, 14 1, 77 1
wash

BNC: 24 35, 22 15, 37 6, 76 3, 106 3, 133 3, 104 2, 2 1, 26 1, 49 1, 52 1, 87 1, 153
1, 156 1

CHILDES1: 24 64, 22 5, 37 5, 49 3, 7 2, 76 2, 106 2, 52 1, 87 1, 133 1,142 1
watch

BNC: 24 143, 22 58, 106 19, 37 11, 104 9, 7 3, 8 2, 35 2, 23 1, 26 1, 761, 116 1, 123
1, 129 1

CHILDES1: 22 98, 24 84, 106 26, 104 16, 1 2, 7 2, 76 2, 116 2, 25 1, 26 1, 107 1, 133 1,
142 1
wear

BNC: 24 43, 22 24, 37 18, 49 7, 106 7, 1 5, 133 4, 87 3, 7 1, 23 1, 25 1,52 1, 76 1,
77 1, 83 1, 104 1, 147 1

CHILDES1: 24 49, 22 40, 87 9, 37 7, 104 6, 49 4, 106 4, 6 1, 23 1, 52 1, 53 1, 117 1, 132
1, 133 1
will

BNC: 22 39, 24 17, 106 8, 104 3, 37 2, 2 1, 19 1, 26 1, 78 1, 87 1, 111 1, 142 1
CHILDES1: 22 34, 24 15, 106 11, 116 2, 16 1, 37 1, 113 1, 133 1, 1531

wonder
BNC: 22 17, 104 16, 106 8, 113 8, 87 6, 16 5, 116 3, 17 1, 23 1, 37 1, 115 1

CHILDES1: 104 38, 113 10, 22 7, 106 7, 24 4, 16 2, 37 1
work

BNC: 22 93, 24 18, 87 14, 106 7, 37 4, 76 4, 1 1, 7 1, 16 1, 23 1, 26 1, 49 1, 104 1,
113 1, 142 1, 154 1

CHILDES1: 22 114, 87 10, 1 6, 24 6, 129 6, 23 3, 106 3, 37 1, 142 1
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Appendix D

SCF Distributions in Adult Speech vs.
Child Directed Speech

The following table gives the total frequencies of the SCFs that occured for the 104 selected
verbs in the BNC and the CHILDES1 corpora. The first column is theSCF number, the second
is the SCF name, the third is the frequency in the BNC and the fourth is the frequency in
CHILDES1.

N0. Type (example) BNC CHILDES1

1 ADJP 774 660
(his reputation sank low)

2 ADJP-PRED-RS 158 147
(he appears crazy / distressed)

6 EXTRAP-NP-S 4 6
(it annoys them that she left)

7 S-SUBJ-NP-OBJ 114 97
(that she left annoys them )

8 TO-INF-SUBJ-NP-OBJ 57 52
(to read pleases them)

9 EXTRAP-TO-INF 34 51
(it remains to find a cure)

11 EXTRAP-NP-TO-INF 2 1
(it pleases them to find a cure)

12 EXTRAP-TO-NP-S 2 2
(it matters to them that she left)

14 S-SUBJ-TO-NP-OBJ 12 13
(that she left matters to them)

15 FOR-TO-INF 4 0
(i prefer for her to do it)

16 HOW-S 54 42
(he asked how she did it)

17 HOW-TO-INF 1 7
(he explained how to do it)

19 ING-NP-OMIT 218 220
(his hair needs combing)

22 INTRANS 13677 11599
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(he went)
23 INTRANS-RECIP(SUBJ-PL/COORD) 194 93

(they met)
24 NP 12050 13042

(he loved her)
25 NP-ADJP 176 93

(he painted the car black)
26 NP-ADJP-PRED 429 186

(she considered him foolish)
35 NP-ING-OC 68 35

(i caught him stealing)
37 NP-NP 1895 1323

(she asked him his name)
40 NP-P-ING-OC 9 2

(i accused her of murdering her husband)
43 NP-P-NP-ING 3 0

(he attributed his failure to noone buying his books)
46 NP-P-WHAT-S 1 0

(they made a great fuss about what they should do)
47 NP-P-WHAT-TO-INF 4 1

(they made a great fuss about what to do)
49 NP-PP 396 180

(she added the flowers to the bouquet)
50 NP-PP-PRED 71 56

(i considered that problem of little concern)
52 NP-S 201 157

(he told the audience that he was leaving)
53 NP-TO-INF-OC 90 66

(i advised ary to go)
57 NP-TOBE 6 8

(i found him to be a good doctor)
59 NP-WH-S 20 6

(they asked him whether he was going)
62 NP-WHAT-TO-INF 40 61

(he asked him what to do)
67 P-NP-TO-INF-OC 8 2

(he beckoned to him to come)
69 P-POSSING 3 5

(they argued about his coming)
74 PART 124 122

(she gave up)
75 PART-ING-SC 34 11

(he ruled out paying her debts)
76 PART-NP/NP-PART 1272 1568

(i looked up the entry)
77 PART-NP-PP 27 32

(i separated out the three boys from the crowd)
78 PART-PP 7 2

(she looked in on her friend)
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82 PART-WHAT-TO-INF 2 0
(they figured out what to do)

83 PART-THAT-S 40 43
(they figured out that she hadn’t done her job)

85 POSSING-PP 3 0
(she attributed his drinking too much to his anxiety)

86 ING-PP 7 3
(they limited smoking a pipe to the lounge)

87 PP 1358 1374
(they apologized to him)

89 PP-HOW-S 1 2
(he explained to her how she did it)

97 PP-THAT-S 15 5
(they admitted to the authorities that they had entered illegally)

98 PP-THAT-S-SUBJUNCT 16 1
(they suggested to him that he go)

101 PP-WHAT-S 2 1
(they asked about everybody what they had done)

103 PP-WHAT-TO-INF 6 3
(they deduced from kim what to do )

104 S 2183 2595
(they thought that he was always late)

105 S-SUBJ-S-OBJ 10 6
(for me to report the theft shows that i am guilty)

106 S-SUBJUNCT 2689 3729
(he demanded that he leave immediately)

107 SEEM-S 36 28
(it seems that they left)

111 TO-INF-RS 54 65
(he seemed to come)

112 TO-INF-SC 1319 2623
(i wanted to come)

113 WH-S 63 59
(he asked whether he should come)

115 WH-TO-INF 1 0
(he asked whether to clean the house)

116 WHAT-TO-INF 82 192
(he asked what to do)

117 NP-NP-up 115 85
(i opened him up a new bank account)

120 (SUBCAT NP-PP / PFORM, PRT, SUBTYPE DMOVT) 9 4
(he bought a book back for me

122 (SUBCAT NP-PP-PP, PFORM) 9 2
(he turned it from a disaster into a victory)

123 (SUBCAT MP) 96 72
(it cost ten pounds)

124 (SUBCAT NP-MP) 16 2
(it cost him ten pounds)

129 (SUBCAT SFIN, AGR S[FIN +], SUBTYPE EXTRAP) 112 90
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(that he came matters)
132 (SUBCAT NP-NP-SFIN) 75 22

(he bet her ten pounds that he came)
133 (SUBCAT NP-SBSE) 163 128

(he petitioned them that he be freed)
134 (SUBCAT IT-WHS, SUBTYPE IF, AGR N2[NFORM IT]) 2 1

(i would appreciate it if he came)
137 (SUBCAT SC-AP, PRT, SUBTYPE EQUI/RAIS) 4 6

(he started out poor)
139 (SUBCAT SC-INF, PRT, SUBTYPE EQUI) 1 9

(he set out to win)
142 (SUBCAT SC-BSE, SUBTYPE EQUI) 138 237

(he dared dance)
146 (SUBCAT OC-AP, SUBTYPE EQUI, PRT) 5 2

(he sands it down smooth)
147 (SUBCAT OC-AP, SUBTYPE EQUI, PREP) as 15 3

(he condemned him as stupid)
148 (SUBCAT OC-AP, SUBTYPE EQUI, PREP as, PRT) 2 0

(he put him down as stupid)
150 (SUBCAT OC-INF, SUBTYPE EQUI, PRT) 7 0

(he spurred him on to try)
153 (SUBCAT OC-PP-BSE, PFORM, SUBTYPE PVERB-OE) 12 16

(he looked at him leave)
154 (SUBCAT VPINF, SUBTYPE EXTRAP, AGR VP[FIN-]) 68 49

(to see them hurts)
156 NP-HOW-S 28 19

(he asked him how he came)
158 IT-PASS-SFIN 5 6

(it is believed that he came)
159 AS-IF-SFIN 15 0

(he seems as if he is clever)
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Appendix E

SCF Distribution in Child Speech

The following table gives the total frequencies of SCFs occuring in studied verbs in the CHILDES2
corpus. They are ranked according to frequency. The first column is the SCF number, the sec-
ond is the SCF name and the third is the frequency with which it occured in CHILDES2.

N0. Type (exmaple) CHILDES2

24 NP 7904
(he loved her)

22 INTRANS 5547
(he went)

106 S-SUBJUNCT 1980
(he demanded that he leave immediately)

76 PART-NP/NP-PART 801
(i looked up the entry)

37 NP-NP 740
(she asked him his name)

87 PP 736
(they apologized to him)

112 TO-INF-SC 646
(i wanted to come)

104 S 430
(they thought that he was always late)

1 ADJP 231
(his reputation sank low)

49 NP-PP 121
(she added the flowers to the bouquet)

7 S-SUBJ-NP-OBJ 112
(that she left annoys them )

142 (SUBCAT SC-BSE, SUBTYPE EQUI) 111
(he dared dance)

123 (SUBCAT MP) 81
(it cost ten pounds)

133 (SUBCAT NP-SBSE) 64
(he petitioned them that he be freed)

2 ADJP-PRED-RS 58
(he appears crazy / distressed)
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19 ING-NP-OMIT 56
(his hair needs combing)

25 NP-ADJP 55
(he painted the car black)

129 (SUBCAT SFIN, AGR S[FIN +], SUBTYPE EXTRAP) 54
(that he came matters)

116 WHAT-TO-INF 40
(he asked what to do)

52 NP-S 40
(he told the audience that he was leaving)

53 NP-TO-INF-OC 39
(i advised ary to go)

74 PART 37
(she gave up)

23 INTRANS-RECIP(SUBJ-PL/COORD) 33
(hey met )

117 NP-NP-up 32
(i opened him up a new bank account)

26 NP-ADJP-PRED 26
(she considered him foolish)

132 (SUBCAT NP-NP-SFIN) 21
(he bet her ten pounds that he came)

8 TO-INF-SUBJ-NP-OBJ 17
(to read pleases them)

50 NP-PP-PRED 16
(i considered that problem of little concern)

111 TO-INF-RS 14
(he seemed to come)

35 NP-ING-OC 12
(i caught him stealing)

130 (SUBCAT NP-SFIN, SUBTYPE NONE, PRT) 9
(he had her on that he attended)

154 (SUBCAT VPINF, SUBTYPE EXTRAP, AGR VP[FIN-]) 9
(to see them hurts)

16 HOW-S 8
(he asked how she did it)

14 S-SUBJ-TO-NP-OBJ 8
(that she left matters to them)

9 EXTRAP-TO-INF 8
(it remains to find a cure)

77 PART-NP-PP 7
(i separated out the three boys from the crowd)

69 P-POSSING 5
(they argued about his coming)

17 HOW-TO-INF 4
(he explained how to do it)

156 NP-HOW-S 4
(he asked him how he came)

83 PART-THAT-S 4
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(they figured out that she had n’t done her job)
113 WH-S 4

(he asked whether he should come)
97 PP-THAT-S 4

(they admitted to the authorities that they had entered illegally)
153 (SUBCAT OC-PP-BSE, PFORM, SUBTYPE PVERB-OE) 4

(he looked at him leave)
62 NP-WHAT-TO-INF 4

(he asked him what to do)
139 (SUBCAT SC-INF, PRT, SUBTYPE EQUI) 3

(he set out to win)
120 (SUBCAT NP-PP / PFORM, PRT, SUBTYPE DMOVT) 3

(he brought a book back for me)
57 NP-TOBE 3

(i found him to be a good doctor)
124 (SUBCAT NP-MP) 3

(it cost him ten pounds)
40 NP-P-ING-OC 2

(i accused her of murdering her husband)
75 PART-ING-SC 1

(he ruled out paying her debts)
59 NP-WH-S 1

(they asked him whether he was going)
150 (SUBCAT OC-INF, SUBTYPE EQUI, PRT) 1

(he spurred him on to try)
107 SEEM-S 1

(it seems that they left)
158 IT-PASS-SFIN 1

(it is believed that he came)
105 S-SUBJ-S-OBJ 1

(for him to report the theft indicates that he was n’t guilty)
6 EXTRAP-NP-S 1

(it annoys them that she left)
15 FOR-TO-INF 1

(i prefer for her to do it)
47 NP-P-WHAT-TO-INF 1

(they made a great fuss about what to do)
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