
Technical Report
Number 672

Computer Laboratory

UCAM-CL-TR-672
ISSN 1476-2986

Decomposing file data
into discernible items

Calicrates Policroniades-Borraz

August 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2006 Calicrates Policroniades-Borraz

This technical report is based on a dissertation submitted
December 2005 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Hughes Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Summary

The development of the different persistent data models shows a constant pattern:

the higher the level of abstraction a storage system exposes the greater the payoff

for programmers. The file API offers a simple storage model that is agnostic of

any structure or data types in file contents. As a result, developers employ

substantial programming effort in writing persistent code. At the other extreme,

orthogonally persistent programming languages reduce the impedance mismatch

between the volatile and the persistent data spaces by exposing persistent data as

conventional programming objects. Consequently, developers spend considerably

less effort in developing persistent code.

This dissertation addresses the lack of ability in the file API to exploit the

advantages of gaining access to the logical composition of file content. It argues

that the trade-off between efficiency and ease of programmability of persistent

code in the context of the file API is unbalanced. Accordingly, in this dissertation

I present and evaluate two practical strategies to disclose structure and type in

file data.

First, I investigate to what extent it is possible to identify specific portions

of file content in diverse data sets through the implementation and evaluation

of techniques for data redundancy detection. This study is interesting not only

because it characterises redundancy levels in storage systems content, but also

because redundant portions of data at a sub-file level can be an indication of

internal file data structure. Although these techniques have been used by pre-

vious work, my analysis of data redundancy is the first that makes an in-depth

comparison of them and highlights the trade-offs in their employment.

Second, I introduce a novel storage system API, called Datom, that departs

from the view of file content as a monolithic object. Through a minimal set of

commonly-used abstract data types, it discloses a judicious degree of structure

and type in the logical composition of files and makes the data access seman-

tics of applications explicit. The design of the Datom API weighs the addition

of advanced functionality and the overheads introduced by their employment,

taking into account the requirements of the target application domain. The im-

plementation of the Datom API is evaluated according to different criteria such

as usability, impact at the source-code level, and performance. The experimental

results demonstrate that the Datom API reduces work-effort and improves soft-

ware quality by providing a storage interface based on high-level abstractions.

3

4

Acknowledgements

With the completion of this dissertation, there are several people to whom I

am indebted. They have all made of my time at Cambridge a once-in-a-lifetime

experience.

In the first place I would like to express my gratitude to my supervisor Ian

Pratt. His advice and guidance were of fundamental importance for the comple-

tion of this project. I would also like to thank Alan Blackwell, Steven Clarke,

Fred Douglis, and Tim Harris who directly influenced my research and whose

invaluable comments and suggestions are reflected in this dissertation.

I owe many thanks to my proof readers and reviewers, Tim Harris, Alex

Ho, Anil Madhavapeddy, Tim Moreton, Ian Pratt, and Pablo Vidales. Any

remaining errors in this dissertation are all my responsibility. Furthermore, I

am glad I had the opportunity to exchange interesting ideas and experiences at

the Computer Lab with Iñaki Berenguer, Rajiv Chakravorty, Boris Dragovic,

Evangelia Kalyvianaki, and Enrique Rodriguez.

I would also like to thank Annita for being there when it most mattered. I

was incredibly fortunate to have my old friends Emmanuel, Pablo, and Zyntya

with me in England during my PhD; our friendship was strengthened with all

the things we lived together here, at the other side of the Atlantic. My newer

friends, Luisa, Vito, and “the Mexicans” have all made my life outside the Lab

extremely pleasant with tequila, salsa, and football.

Throughout this project my parents, Temistocles and Blanca, and my sisters,

Palas and Damaris, have constantly supported me. They have always provided

me with their advice and guidance in all the important aspects of my life.

Last but not least, my gratitude is with my sponsors. Without the support

of the Mexican Government through the National Council for Science and Tech-

nology (CONACyT), it would have been impossible to accomplish this work. In

addition, I thank the Brockmann Foundation and the Cambridge Overseas Trust

for co-sponsoring my studies in the early stages of my PhD. Finally, I would like

to express my gratitude to my College, Hughes Hall, for providing partial sup-

port in the form of travel grants that enabled me to present my work at different

conferences.

5

6

Contents

List of Figures 11

List of Tables 13

Glossary 15

1 Introduction 17

1.1 Motivation . 18

1.2 Contribution . 20

1.3 Outline . 21

2 Background 23

2.1 Introduction . 23

2.2 File Systems . 24

2.3 Databases . 27

2.3.1 Relational Databases . 27

2.3.2 Object Oriented Databases 31

2.3.3 Object Relational Databases 34

2.4 Persistent Programming Languages 37

2.5 Semistructured Data . 47

2.6 Discussion . 52

3 Identifying Portions of File Content 56

3.1 Tracing Internal File Structure . 56

3.2 Related Work . 59

3.3 Methodology . 62

3.3.1 The Data Sets . 66

3.4 Experimental Results . 67

3.4.1 Mirror of sunsite.org.uk 67

3.4.2 Users’ Personal Files . 73

3.4.3 Research Groups’ Files . 75

7

3.4.4 Data Stored in Scratch Directories 76

3.4.5 Software Distributions . 78

3.4.6 Associated Overheads . 80

3.5 Summary and Discussion . 81

4 Datom: An Abstract View of File Content 85

4.1 Towards Meaningful Data Abstractions 86

4.2 The Rationale for an Alternative API 87

4.2.1 Flaws in Persistent Data Access 88

4.2.2 The Goals of the Datom API 90

4.3 Characterising the Target Applications 91

4.4 Data Model . 93

4.4.1 Composite Entities . 96

4.4.2 Elements . 107

4.5 The Datom API in the World of Persistence 110

4.6 Summary . 116

5 From Analysis to Implementation 117

5.1 Persistence Model . 118

5.2 The Big Picture . 119

5.3 Interface Subsystem . 122

5.3.1 Components . 123

5.3.2 Simplifying the Creation of Datom Elements 125

5.4 Storage Management Sublayer . 126

5.4.1 Components . 127

5.4.2 Main Processes . 131

5.5 Persistent Data Composer Sublayer 136

5.5.1 Persistent Items’ Translation 136

5.6 Physical Storage Subsystem . 138

5.6.1 On-Disk Storage of Persistent Items 138

5.7 Summary . 141

6 Evaluation 142

6.1 Practical Experiences with the Datom API 142

6.1.1 Source Code Measurements in Context 143

6.1.2 The Applications Ported 146

6.1.3 Removing the File API . 148

6.1.4 Removing the XML DOM API 153

6.1.5 Discussion . 156

8

6.2 Performance Evaluation . 159

6.2.1 Evaluation Description . 159

6.2.2 Persistent Item Faulting 163

6.2.3 Detecting and Logging Updates 166

6.2.4 Discussion . 170

6.3 Usability Aspects of the Datom API 171

6.3.1 Measuring Usability . 171

6.3.2 Usability of the Datom API 173

6.3.3 Review of Findings . 185

6.3.4 Future Versions of the Datom API 185

6.4 Summary . 188

7 Conclusions 190

7.1 Summary . 190

7.2 Future Research . 192

A Keyword Files 194

A.1 PCMT Keyword File Content for the Datom-Based Bibkeeper . . 194

A.2 PCMT Keyword File Content for the File-Based Bibkeeper 195

A.3 PCMT Keyword File Content for the Datom-Based Gradebook . . 196

A.4 PCMT Keyword File Content for the DOM-Based Gradebook . . 197

B Code Samples for Usability Scenarios 198

C Task Analysis for Usability Scenarios 204

Bibliography 209

9

10

List of Figures

2.1 Summary of storage technologies 24

2.2 Edge-labelled graph representing semistructured data 48

2.3 Development of storage paradigms 53

3.1 Whole file content analysis . 63

3.2 Analysis of fixed size blocks of data 64

3.3 Chunking file data using Rabin fingerprints 65

3.4 Distribution of chunk sizes . 70

3.5 Storage space reduction in compressed data 72

3.6 Discrete CDF of chunk occurrences on five Linux kernels 79

3.7 Storage overhead in redundancy elimination techniques 81

3.8 Summary of data duplication patterns 82

4.1 Graphical representation of Datom data 95

4.2 Abstract view of a Datom Element 108

4.3 An example of Composite Entities and Elements 109

4.4 Positioning Datom in the world of persistence 110

5.1 High-level architecture of the Datom API prototype 120

5.2 Data manipulation in the Datom API prototype 122

5.3 Public classes of the Datom API prototype 124

5.4 Example of a data Element definition file 125

5.5 Life cycle of persistent items . 127

5.6 Persistence Subsystem components 128

5.7 Management of persistent items 132

5.8 Physical Storage Subsystem modules 139

6.1 Screen shot of Bibkeeper . 147

6.2 Screen shot of Gradebook . 148

6.3 Bibkeeper’s graph of persistence 149

6.4 Gradebook’s graph of persistence 154

11

6.5 Read barrier performance: selective retrieval 164

6.6 Read barrier performance: one-way retrieval 166

6.7 Write barrier performance: selective retrieval 168

6.8 Write barrier performance: one-way retrieval 169

6.9 Usability of the Datom API . 175

12

List of Tables

3.1 Data profile of a 35 GB section of sunsite.org.uk 68

3.2 Identical data in a 35 GB section of sunsite.org.uk 69

3.3 Data similarity pattern observed in the sunsite.org.uk data set . . 71

3.4 Data profile of 44 home directories 74

3.5 Identical data in 44 home directories 74

3.6 Data profile of a research file system 75

3.7 Identical data in a research file system 76

3.8 Data profile of scratch directories 77

3.9 Identical data in a succession of five Linux kernels 78

4.1 Algebraic specification of a Datom Stack 99

4.2 Algebraic specification of a Datom Queue 102

4.3 Algebraic specification of a Datom Map 103

4.4 Algebraic specification of a Datom List 104

4.5 Algebraic specification of a Datom Matrix 107

6.1 Summary of source code metrics reported 145

6.2 High-level comparison of the two versions of Bibkeeper 150

6.3 Code measurements of the original version of Bibkeeper 151

6.4 Code measurements of the ported version of Bibkeeper 152

6.5 High-level comparison of the two versions of Gradebook 155

6.6 Code measurements of the original version of Gradebook 155

6.7 Code measurements of the ported version of Gradebook 156

6.8 Typical short scenarios of the Datom API 172

A.1 Persistent keywords of the Datom-based Bibkeeper 194

A.2 Persistent keywords of the file-based Bibkeeper 195

A.3 Persistent keywords of the Datom-based Gradebook 196

A.4 Persistent keywords of the DOM-based Gradebook 197

13

14

Glossary

ACID Atomicity, Consistency, Isolation, and Durability

ADO ActiveX Data Objects

ADT Abstract Data Type

API Application Programming Interface

ATU Address Translation Unit

AWT Abstract Window Toolkit

CAD Computer Aided Design

CAM Computer Aided Machines

CASE Computer Aided Software Engineering

CIM Computer Integrated Manufacturing

CLR Common Language Runtime

CORBA Common Object Request Broker Architecture

DDL Data Definition Language

DERD Delta-Encoding via Resemblance Detection

DML Data Manipulation Language

DOM Document Object Model

DTD Document Type Definition

ELF Executable and Linking Format

FIFO First-In, First-Out

GIS Geographical Information Systems

HTML Hypertext Markup Language

IDL Interface Definition Language

IO Input/Output

JAR Java Archive

JDBC Java Database Connectivity

JVM Java Virtual Machine

LBFS Low-Bandwidth File System

LIFO Last-In, First-Out

LINQ Language Integrated Query

15

LON Local Object Name

LORE Lightweight Object Repository

LRU Least-Recently Used

MPEG Moving Picture Experts Group

NTFS New Technology File System

ODBC Open Database Connectivity

ODL Object Definition Language

ODMG Object Data Management Group

OEM Object Exchange Model

OLE Object Linking and Embedding

OMG Object Management Group

OML Object Manipulation Language

OQL Object Query Language

PAS Persistent Application Systems

PCMT Persistent Code Measurement Tool

PDC Persistent Data Composer

PDF Portable Document Format

PID Persistent Identifier

PIDLAM Persistent Identifier to Local Address Map

POMS Persistent Object Management System

PPL Persistent Programming Language

RDF Resource Descriptor Framework

REBL Redundancy Elimination at the Block Level

ROT Resident Object Table

RVM Recoverable Virtual Memory

SAX Simple API for XML

SIS Single Instance Storage

SQL Structured Query Language

UFS UNIX File System

UnQL Unstructured Query Language

URI Uniform Resource Identifier

VBWC Value-Based Web Caching

W3C World Wide Web Consortium

WinFS Windows File System

WWW World Wide Web

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT XSL Transformations

16

Chapter 1

Introduction

This dissertation is concerned with the study of practical mechanisms used to

disclose and manipulate structure of data in storage systems contents. It focuses

on answering one main question: Do current storage systems’ programmatic in-

terfaces provide adequate support to developers dealing with file data rich in

structure and type? To answer this question, my work follows two main research

threads in which the first one poses issues addressed by the second one.

First, I assess the degree of internal structure and inter-file relationships that

can be disclosed with techniques that employ exclusively the basic file system API

(Application Programming Interface). This study exposes a number of limitations

that the current file system API presents, specially in providing a judicious degree

of transparency of persistent data types and structure.

Second, I have designed and implemented a semantically rich API called

Datom, which deliberately unveils persistent data abstractions and their rela-

tionships. Datom represents an API that not only facilitates data persistence

tasks but also provides useful hints about applications’ data access patterns to

its underlying implementation.

This introductory chapter is organised as follows. In Section 1.1, I present

the main issues that motivated my research and the thesis that steered my work.

Then, in Section 1.2, I summarise the contributions of this dissertation. Finally,

I outline the organisation of the rest of this document in Section 1.3.

17

1.1. Motivation

1.1 Motivation

The emergence of current persistence models has been an evolutionary process

which has been guided by well-defined application requirements. File systems are

the most general storage abstraction; they provide a flat storage space and an

API to efficiently operate on arrays of bytes. Relational databases manipulate and

represent tabular data; they support advanced query capabilities, transactions,

and are meant to provide support for data-intensive application contexts.

Object-oriented database systems aim to provide all the well-known advantages

of relational databases and, additionally, to efficiently support more complex data

representations through the use of the object-oriented data model. Additionally,

semistructured data appears as a way to support seamless data exchange and

as a solution to bring into the database context information that due to its

decentralised management cannot be restrained to strict database schemas.

Finally, persistent programming languages merge the programming language

and the data store into one system at runtime. Recent implementations of this

technology accomplish persistence in such a way that developers cannot perceive

the difference between persistent and volatile data. In this evolution of persistent

data models, there seems to be a constant pattern: the more abstraction a storage

system API is able to expose the greater the payoff for the programmer.

This observation becomes obvious if both extremes in the range of storage

systems APIs are compared. On the one side there is the file system API; it

provides simplicity and generality and is agnostic of any structure or type in

file contents. In order to manage applications’ persistent data, developers have

to repeatedly write large amounts of code using an API that makes this task a

tedious and error prone process. On the other side there is the persistent pro-

gramming languages’ approach; it aims to reduce at a maximum the impedance

mismatch between run-time and persistent abstractions by enabling orthogonal

persistence. As a result, programmers spend considerably less effort developing

persistent code (i.e. code concerned with loading and storing persistent data).

Whether the trade-off between efficiency and programmability in the context

of file systems applications is well balanced has received especial attention re-

cently. Core to this discussion is the lack of ability that the file system API

exhibits in handling any degree of abstraction in persistent data. This represents

an important disadvantage for developers in terms of the simplicity in which

sophisticated data access strategies are programmed.

18

1.1. Motivation

The analysis of persistent data in applications that employ file systems as their

persistent substrate indicates that there is a considerable amount of data rich in

structure and type. Furthermore, it suggests that data stored in files is amenable

to structural decomposition; even binary data such as bitmaps or sound files can

be included in a multimedia document where they can be explicitly distinguished

from each other under certain file organisations.

Exploiting these abstractions may be useful not only to improve some of the

most fundamental underlying mechanisms of storage systems such as caching,

data prefetching, and concurrency control but also to improve the development

of code related with the management of persistent data. Although the two afore-

mentioned issues are recurrent in the course of this dissertation, the research

effort is mainly focused on providing an answer to the latter.

Unfortunately, relying on the type of facilities that are offered by the current

storage APIs in order to improve the manipulation of file contents presents a

group of important shortcomings:

• Addition of overheads. Databases introduce overheads related to the

use of high-level query languages to access data. Furthermore, system

complexity considerably increases by the implementation of transactional

frameworks that support ACID semantics into its design. More intricacies

are added to the system if the object-oriented data model is supported.

• Loss of generality. Providing orthogonal persistence through the use

of a persistent programming language confines type support to a specific

language compiler and implies the adoption of a programming model. As a

consequence, developers are restricted into specific programming languages

with their very own features which may be difficult to implement or may

not be available in other programming languages. Ultimately, this reduces

not only the longevity of the persistent data but also the generality of this

type of solutions.

• Inefficient storage APIs. The group of programmatic APIs that rely

heavily on the stream-based data manipulation approach coined by semistruc-

tured data tend to be inefficient. They consume memory resources ag-

gressively or require programmers to write code in order to disclose typed

contents or internal file data layouts.

There are a number of application contexts running on top of file systems that

could benefit from higher levels of abstraction but in which paying the price of

19

1.2. Contribution

extra overheads or inefficiency is not ideal. Instead, these applications demand a

data-centric approach and are characterised by well-defined access patterns with

varying recoverability and consistency requirements.

This dissertation addresses the question of how to systematically augment

the degree of abstraction managed by a storage system API, whose application

context relates to that of applications using the file API, without heavily un-

balancing the before mentioned trade-offs. The strategy followed to attack this

problem is twofold.

First, I assess the amount of internal structure and data correlation that

is feasible to unveil through the implementation and evaluation of diverse data

redundancy detection techniques; these methods employ the generic IO services

provided by the file system API. This study represents an original piece of work

whose results provide important guidelines for the design and implementation

of storage systems. It also shows that there are important limitations in using

the file API to expose persistent data abstractions such as structure and data

type. Accordingly, in the second line of research of this dissertation I propose,

implement, and evaluate a storage API whose main tenet is the use of high-level

abstractions in the manipulation of persistent data.

It is my thesis that data manipulation strategies departing from the funda-

mental flat file paradigm to a more abstract data representation, capable of re-

taining a sensible amount of structure and data type, have important advantages

for programmers. They improve software quality, ease developers’ programming

duties, and support the creation of more sophisticated data access strategies with

less effort.

Data manipulation tools and interfaces in existing storage technologies prove

to be badly suited for an important group of applications; there is a mismatch

between their offer of persistence and the requirements of practical applications.

In contrast, my approach favours simplicity, efficiency, and generality while pro-

viding to application developers tools to systematically and gradually permeate

their programs with semantically rich persistent data abstractions.

1.2 Contribution

The key contributions of this dissertation are two. First, I have assessed the de-

gree of internal structure and inter-file relationship that can be disclosed through

20

1.3. Outline

the use of the facilities offered by the generic file system API. With this purpose,

I have implemented and evaluated three techniques that inspect file content at

different granularities such as whole-file analysis, page-aligned data segments,

and content-defined data chunks in search of meaningful portions of data.

Second, I have designed, implemented, and evaluated a novel storage system

API that captures a sensible degree of structure and data type. There are two

main distinctive features of this API. First, it enforces type safety in the ma-

nipulation of persistent abstractions. Second, it simplifies the management of

persistent data layouts through a minimal set of general data abstractions that

resemble the semantics of list, map, matrix, stack, and queue objects. The ma-

nipulation of persistent data through this API impacts in a positive way the

interactions of programmers with persistent code.

1.3 Outline

The rest of this dissertation is organised as follows. In Chapter 2, I provide the

background and research context that is useful for the rest of this document.

The rationale behind existing storage paradigms is presented and the trade-offs

faced by each technology are examined. Finally, I discuss some of the issues later

addressed in my proposal of a novel storage system API.

In Chapter 3, I evaluate the use of the file system API as a tool to unveil

structure and data correlations in file system contents. An essential observation

is that data redundancy at a sub-file level might well suggest internal file data

organisations and structure. Therefore, I study to what extent is possible to iden-

tify specific portions of data in considerably large data sets following a systematic

approach.

In contrast with the techniques analysed in the previous chapter, in Chapter

4 I introduce Datom, a storage API that departs from the view of file content as

a monolithic object by unveiling data types and internal data organisations. Its

main goal is to assist programmers to create advanced application-specific data

access strategies in a simple yet effective manner. Furthermore, it avoids the

addition of functionality that may add unnecessary overheads and compromises

for its target application domain.

In Chapter 5, I describe the architecture and implementation of the Datom

API. The prototype represents a fully operational implementation of the API that

21

1.3. Outline

advocates the data manipulation paradigm of the Datom API. The strength of

the implementation of the Datom API is levered by the provision of a persistence

model that supports its data model in an effective and efficient manner.

In Chapter 6, I present the evaluation of the Datom API according to different

criteria including its impact at the source-code level, performance, and usability

aspects. The results demonstrate that the Datom API reduces work-effort and

improves software quality by providing a storage interface based on high-level

abstractions.

Finally, in Chapter 7, I conclude this dissertation and present ideas for future

research.

22

Chapter 2

Background

In this chapter I present background information related to data access and ma-

nipulation services enabled by today’s storage systems. The goal of this chapter

is twofold. First, to provide a programmer’s point of view of the main data stor-

age technologies and their programmatic APIs. And second, to highlight how

particular storage systems’ architectures are shaped by both their data model

and the data access facilities they present to programmers.

2.1 Introduction

This chapter puts this dissertation in perspective with the main persistent data

manipulation paradigms; Figure 2.1 shows the road map including the major

sections that comprise this chapter. The main goal in this analysis is to recognise

the mechanisms that different technologies employ to disclose abstractions present

in storage systems content.

The technologies presented in Sections 2.2, 2.3, and 2.5 are analysed from

three perspectives: data model, data manipulation facilities, and implementation

and systems. The data model supported by a storage system has the biggest

impact on its potential to capture application persistent abstractions such as

type, structure, or data relationships. In addition, the data manipulation facilities

offered by each storage paradigm represent the main conduit to the manipulation

of the underlying storage system data model. These two features shape the way

in which developers manipulate persistent data abstractions at the application

level. The combination of a data model together with the data manipulation

23

2.2. File Systems

facilities that a particular storage system supports has also direct impact on its

implementation and systems.

Section 2.4 is dedicated to persistent programming languages and follows the

same lines of analysis. However, a more detailed presentation of the most in-

fluential works is done for two reasons. First, persistent programming languages

represent the peak of evolution in the manipulation of persistent data in the form

of programming abstractions. Second, the ideas supporting these systems highly

influenced the design of Datom. The adoption of a persistent technology is based

upon application-specific requirements. The trade-offs between programmabil-

ity, overhead, and applications’ functional requirements abound. This chapter

contains the necessary background to promote this discussion; a critical review

of the different storage paradigms analysed through this chapter is presented in

Section 2.6.

Persistent Programming Semistructured
Data

File
Systems Databases

(2.2) (2.3)
Languages

(2.4) (2.5)

Figure 2.1: Road map of different storage technologies analysed in this chapter.

2.2 File Systems

File systems trace their roots to a system proposal for secondary storage for

the Multics Operating System dated back in 1965 [DN65]. This proposal later

became the foundation of the UNIX File System (UFS) which in turn influenced

subsequent file systems designs. A core goal of this proposition was to hide

from programmers the complexities related to explicitly manipulating physical

addresses in the hierarchy of secondary storage devices, leaving all this work to

the file system itself.

In this way, developers would be able to focus their programming efforts

on developing code to recover applications’ persistent data without explicitly

managing the physical location of it. In words of the authors, “any consideration

which is not basic to a user’s ability to manipulate this information should be

invisible to him...”. File systems were, undoubtedly, an important improvement

to the way in which programmers accessed data in secondary storage. The initial

view and associated file system abstractions remain practically unchanged even

in current implementations of this technology.

24

2.2. File Systems

Data Model

File systems are one of the most general approaches to storing data. They present

two fairly simple data abstractions to programmers, files and directories. These

elements are uniquely identified through the use of symbolic names. The file

system structure is a tree-like hierarchy composed of files and directories. Thus, a

directory can be thought as a set of logically associated files and other directories.

From a programmer’s perspective, a file is simply a named collection of data

stored in a device. Storage devices store linearly addressed blocks of bytes. The

file system provides an abstraction on top of storage blocks to offer a data struc-

ture that logically represents a collection of information to programmers. Concep-

tually, such an abstraction allows programmers to store and retrieve an arbitrary

stream of linearly addressed bytes on the block-oriented storage device.

Data Manipulation

The file system API offers a basic set of calls to operate on the stream of bytes

that are part of a file. Each byte in the stream is addressed with a non-negative

integer and the file position is used to reference specific bytes in the file. To modify

the content of a file, programmers make use of the well-known read/write file

system API [Kle86] in which explicit handling of file position and byte indexes

are required.

In general, the majority of file system applications have a well-defined be-

havioural pattern. They open one or more files, process the data stored in them,

and then write the result of the computation back to a file again. Examples

of this pattern exist in large quantities: a word processing application opens a

document, presents it for editing, and then saves changes back to disk; the Java

compiler reads one or more source code files, transforms these files to bytecode,

and writes the output to the corresponding class files. Even the general UNIX

process model with the use of stdin, stdout, and stderr devices resembles the

aforementioned operational pattern.

Under this computational model various observations are important. First,

programmers have to repeatedly write code from scratch to translate byte streams

into run-time data structures. In the vast majority of cases this translation is to

be done using a third generation programming language that, although shown

to be practical, leaves an important amount of work still to be done by the

25

2.2. File Systems

programmer. This impedance mismatch [CM84] between two completely different

data representations (i.e. files and programming abstractions) imposes extra work

on programmers which is tedious and error prone. Second, when applications

operate on data, they rely on the presence of structure and data types ; these two

features are well embodied at run-time in collections of meaningful programming

abstractions such as structures, objects, or records.

Implementation and Systems

Leaving the translation work to applications is a deliberate design decision which

trades programmability in favour of efficiency. Thus, along the evolution of file

systems there has been constant work in improving performance. Initial file

systems used to exploit only 4-5% of raw disk bandwidth and compare very

poorly with modern implementations, which are reported to use near-raw IO

performance [BFH02]. However, the file abstraction has remained without major

change for decades regardless of the different on-disk data formats, underlying

implementations, or data location strategies that have been investigated [San86,

Sat89, Nag97, MT03].

In its simplest form a file is a collection of ordered bytes. However, some

systems place additional structure on files. Rather than reading single bytes or

seeking to arbitrary offsets, files are accessed in terms of records. Organising a file

in records implies the existence of a schema either embedded in the file in a way

that the operating system can read or separately in the system. Record-based

files impose a structure on the data and allow the operating system to keep that

structure intact. The main drawback of this approach is that it lacks flexibility

since adding a new format or translating between formats is frequently difficult.

Historically this kind of file was used in old mainframe systems [Nut00].

In an attempt to move from the traditional file system API to expose a finer

degree of data granularity the OLE Structured Storage Model [Bro94] was de-

veloped by Microsoft; it represents a solution to the problem of internal file

structure. The API isolates programmers from managing the exact placement

of application’s data within files. Programmers also avoid the burden of directly

dealing with internal file fragmentation issues leaving this task to the file system

infrastructure itself. However, the abstractions presented to programmers (i.e.

compound file, storage and stream) have a strong parallel with directories and

files respectively: they are organised hierarchically, and their respective inter-

faces show strong similarities to a conventional file system API.

26

2.3. Databases

Other groups have also explored the utility of data structures and higher-

level abstractions as a storage infrastructure replacing the traditional view of

a flat file. One of the main advantages of this approach is a more structured

interface in which operations are applied to a data structure instead of to a

range of bytes. Ultimately, this enables programmers to concentrate on creating

application services and focus on the application logic. Gribble et al. [GBHC00]

propose distributed data structures (e.g. hash tables, B-trees) as a persistent

data management layer to replace Internet services commonly provided by file

systems’ infrastructure.

Under the same line of reasoning, the Boxwood project [MMN+04] explores

the utility of high-level data structures as storage infrastructure. The rationale

behind both projects is that higher-level abstractions and structural information

inherent to the data abstractions can enable the system to perform better load-

balancing, data prefetching, or informed caching. They also point out that pro-

grammers’ coding duties are alleviated by having at hand high-level abstractions

instead of the file system API. However, no experimental proof of this assertion

is provided.

In summary, file systems represent a fundamental abstraction for storing ap-

plications’ persistent data. The potential benefits in efficiency and low overheads

enabled by their underlying infrastructure are highly valued in certain applica-

tion domains. In contrast, file systems’ data model is extremely simple and offers

few advantages to applications dealing with persistent data rich in structure and

type.

2.3 Databases

2.3.1 Relational Databases

Before the relational data model came into existence in the early 1970s, there were

two paradigms to build database systems: the hierarchical and the network data

models. In the hierarchical data model [EN00a] all data records are assembled

into a collection of trees. The logical model specifies a well-defined group of

root records with the rest of the records having unique parent records. The

query language permits to navigate the hierarchy by accessing one record at a

time [McG77]. In a different way, the network data model [EN00b] proposes the

27

2.3. Databases

organisation of data records into a directed graph. Similar to the hierarchical

data model, a navigational query language is used to move through records in

the graph [Bac73].

These two models exhibited important shortcomings for the sort of data access

requirements of the applications they were aimed to service. Presumably, their

main weakness was that of having a low-level programming interface between

application programs and the database system. Thus, changes in query require-

ments, application’s data types, or structural composition of the database used

to involve costly code updates and program maintenance. Both the hierarchical

and the network data models are currently in disuse and are briefly mentioned

here for completeness reasons.

Data Model

The relational data model [Cod70] proposed by E. F. Codd offered a concep-

tually different approach to data storage. Codd suggested to represent data as

tabular data structures to be accessed through a high-level non-procedural query

language. Thus, relational databases replaced the navigational model seen in

previous database APIs with a fully associative model.

All data in a relational database can be uniquely addressed by means of the

relation name, primary key value, and attribute name. Associative addressing of

this form isolates programmers from explicit manipulation of the low-level details

of data placement and of any explicit indication of the appropriate access paths

for retrieving data [Cod82].

Relational databases, and database systems in general, are designed to ful-

fil the data access requirements of a particular group of applications [SSU91].

These applications are representatives of data-intensive environments in which

large amounts of data have to be accessed, queried, and updated efficiently. Fur-

thermore, their data semantics are highly sensitive to risks associated with con-

currency and data contention, thus needing support to enforce a consistent policy

to control data access.

Additionally, persistent data has to survive in the face of hardware crashes

or software errors. Usually, these applications manipulate relatively simple ab-

stractions that can be mapped into the tabular data model offered by relational

databases.

28

2.3. Databases

Data Manipulation

Over the years, the database research community has extensively investigated,

amongst other issues, the creation of database APIs to define, query, and ma-

nipulate databases. In general, a database language is made of a data definition

language (DDL) to specify the database schema and a data manipulation lan-

guage (DML) to express database queries and updates.

DMLs can be subdivided in two categories [EN00c]. The first category is

commonly defined as high-level non-procedural DMLs (also referred as declarative

DMLs in the literature) whereas the second type is better defined as low-level

or procedural DMLs. The next paragraphs focus on discussing mainly high-level

non-procedural DMLs as they are the favoured mechanism employed in relational

databases. Procedural DMLs in the context of databases are more related with

object oriented database systems and persistence programming languages; for

that reason, they are discussed later in Section 2.3.2 and Section 2.4, respectively.

The Structured Query Language (SQL) is certainly the most popular example

of a non-procedural DML; it was designed from the outset to work with the

relational data model. SQL represents a comprehensive database language with

statements for data definition, query, and update. Additionally, it has facilities for

defining integrity constraints, for specifying transaction control, for defining views

on the database, and for declaring security and authorisation. Since its creation,

it has undergone many enhancements which have led to different standards known

as SQL [ANS86], SQL2 [ANS92], and SQL3 [ISO99].

From a programmer’s point of view, to manipulate the database it is necessary

to include database statements in a host language. In general, two mechanisms

are used with this purpose. The first option, presumably the most popular due

to the isolation that it provides between the host programming language and the

database system, facilitates an intermediate layer in the form of API calls that

send SQL statements to the database (e.g. ODBC [Gei95] or JDBC [FEB03]).

In this case, the role of the host language is limited to invoking API calls to

send queries to the database server and to receive the result generated by those

invocations. Therefore, similar to the file system API, programmers have to create

a set of routines and write code to perform any pertinent conversion between the

data returned by the database and the application run-time abstractions in the

host programming language.

29

2.3. Databases

The second strategy extends the host language syntax to embed database calls

in the application code [EM99]. Application developers can use the augmented

language to access and update the database; all query processing is done by

the database system. Application programs must be precompiled in order to re-

place embedded SQL statements with host-language declarations and procedure

calls that allow run-time execution of the database accesses [Moo91, PRO02a,

PRO02b]. Finally, the resulting program must be compiled by the host-language

compiler. In general, query results are stored in a temporary relation in the

database and fetched from the host language on a per-record basis using a com-

bination of looping control statements and traversal pointers provided by either

the extensions to the host programming language or the programming language

itself (e.g. iterators or database cursors).

Implementation and Systems

Having a high-level non-procedural DML such as SQL to manipulate database

content has direct implications on the way in which databases are designed. To

properly support relational database data access patterns [DYC95] in which dy-

namic querying of large volumes of data is commonplace, it is necessary to pro-

vide specialised functionality in charge of query execution [Gra93], and optimisa-

tion [JK84, RSSB00, DSRS01].

In addition, to manage data contention database systems rely on transac-

tional frameworks [GR93] which guarantee that data is read and updated safely

and efficiently regardless of concurrent access or media failure [KH98, LGWJ01].

Therefore, databases are complex systems made of various specialised software

modules, which altogether add important overheads in exchange of essential func-

tionality for those applications that employ them.

The main trend in the evolution of SQL has been the addition of features

to provide to developers a more comprehensive storage model; aiming to leave

behind the exclusive manipulation of tabular data by directly including in the

language and its API facilities for more complex data representations such as

those used in the object oriented world [SRL+90]. Thus, database schemas were

incorporated from SQL to SQL2.

In turn, the SQL3 standard enriched SQL with object-oriented features and

extended the syntax with programming language facilities such as control struc-

tures to make of SQL a computationally complete language. The addition of

30

2.3. Databases

object-oriented concepts into relational databases has gained importance and

therefore it is discussed separately in Section 2.3.3. SQL is supported by a

large number of commercial databases such as IBM DB2 [Pad02, DB205], Ora-

cle [Jak02, ORA05], Microsoft SQL Server [ABC+02, SQL05], Sybase [SYB05],

and MySQL [MYS05]; just to mention the most important.

2.3.2 Object Oriented Databases

Relational databases’ design was initially driven by requirements of applications

in business and administrative areas. These applications are characterised by

relatively simple data representations in which the tabular data model offered

by relational databases sufficed. Their application data is characterised by few

record types which are fairly small in size and their values are atomic (or can be

decomposed to be atomic).

However, relational databases failed to properly support other types of appli-

cations. Examples of these applications are commonly associated with engineer-

ing applications such as CAD/CAM (Computer Aided Design/Computer Aided

Machines), CASE (Computer Aided Software Engineering), and CIM (Computer

Integrated Manufacturing), or to multimedia systems such as GIS (Geograph-

ical Information Systems), image management systems, medical systems, and

decision support systems [BM93].

Data Model

An object oriented database system is built based on the object oriented

paradigm. They have been influenced by and finally adopted many of the ideas

that were originally created in the context of programming languages. Object

oriented programming languages are designed to better model the mapping be-

tween real-world and programming abstractions as well as their interactions. Al-

though the initial debate on which language and type system features should be

included into a full database object model is still under consideration [LOS02],

at the present time it is possible to distinguish a set of properties that can be

recognised as core requirements for a database object model.

These features were initially pointed out by Atkinson et al. [ABD+89] and

can be considered to be a definition of an object oriented database system. Ap-

plication data in an object oriented database is modeled as objects that have

31

2.3. Databases

associated a unique identifier [KC86]. An object is made of a group of attributes

which can include other objects, which enables the construction of more complex

objects and data representations. Additionally, objects encapsulate interfaces and

methods that can be accessed and invoked by other objects.

Objects have associated a type [Gut02] meaning mainly an Abstract Data

Type (ADT) of the object [ES90] or a class referring to a run-time notion through

which objects can be created and manipulated [GR83]. To a certain extent, both

concepts can be used to summarise the common features in a set of objects. To

augment the expressive power of the database system, complete hierarchies of

objects can be created through inheritance. A class can be defined as an instance

of one or more existing classes and thus inheriting the attributes and the methods

of the base class.

Inheritance has been identified as one the most powerful concepts of object

oriented programming as it enables reusability and augments the ability of the

database system to express complex abstractions [Ban88]. Finally, different meth-

ods can be defined to share the same name leaving to the system itself to deter-

mine which method should be called by using overloading, overriding, and late

binding properties.

A common object model has been historically pointed out as one of the main

weaknesses of this kind of technology. At the time of writing, the Object Data

Management Group (ODMG) [ODM05] has already proposed a standard which

is made of several parts [CBB+00]: the object model, the Object Definition Lan-

guage (ODL), the Object Query Language (OQL), and the bindings to program-

ming languages. The object model provides the data types, type constructors,

and other concepts that can be used in the ODL to specify object database

schemas. The ODL1 is independent of any particular programming language and

is designed to support the semantics defined by the ODMG object model. It is

mainly used to create object specifications such as classes and interfaces.

The OQL is very close to SQL with extensions to support ODMG’s object ori-

ented concepts such as object identity, complex objects, path expressions, poly-

morphism, method invocation, and late binding. An OQL statement written

inside any of the programming languages for which a binding is defined can re-

turn objects that match the type system of the host language. However, the type

system of the ODMG’s object model may be thought only as a subset of the

1The ODL is designed to be compatible with the Object Management Group (OMG) Inter-

face Definition Language (IDL) of the Common Object Request Broker (CORBA) [OMG05].

32

2.3. Databases

full type system that could be offered by the host programming language. The

OML is the language used for retrieving objects from the database and modifying

them. At the present time OML bindings have been defined for C++, Smalltalk,

and Java.

Data Manipulation

In object oriented databases, programmers manipulate data objects and define

the implementation of their methods through the programming languages sup-

ported by the database. In this respect, it is possible to distinguish three main

approaches. First, some systems provide support for various programming lan-

guages through a data definition language and bindings to different program-

ming languages, specially those commercially oriented and thus compliant to the

ODMG object model (e.g. [GEM05, OBJ05]). Others support a more integrated

view of the programming language and data objects through explicit insertions

and modifications to the host programming language [Car86, RCS93].

Finally, those in the third category provide tight integration of the database

and the programming language type systems with minimal modifications to the

semantics of the host programming language [ABC+83, SKW92, JA98]. These

systems are designed to support orthogonal persistence [AM95]. Section 2.4

presents the main trends in database programming languages in which a de-

tailed analysis of the programmatic facilities provided by these systems as well

as of their underlying implementations is done.

Implementation and Systems

From a databases point of view, it is indispensable to support the characteris-

tic functionality of a database system and adapt it to the application domain

for which object oriented databases are targeted. An object oriented database

must provide transactions and concurrency control not only for regular transac-

tions but ideally also for long transactions [KS90, Mil99]. Object databases have

commonly implemented concurrency control through two-phase locking proto-

cols [Deu91], and varying between optimistic and pessimistic concurrency control

schemes according to the amount of potential data contention [BOS91].

Version management and dynamic schema evolution are used to access mul-

tiple versions of an object, and to maintain historical databases; these features

33

2.3. Databases

have been supported in various object databases [CDG+90, BOS91, LLOW91].

Recovery and protection from media failures are also implemented in the major-

ity of these databases [FZT+92]. In general, object oriented databases are more

complex than traditional relational systems due to long-duration transactions

and the coexistence of different valid states (i.e. versions) of a particular object.

Furthermore, they are equipped to support highly complex data relationships.

Detailed comparative analyses of the features supported by different object

database systems can be seen in [Sol92, ZCC95, CO96]. A more technical re-

view of particular storage management architectures has been done by Wed-

dell in [Wed91]. Various object oriented database systems have been devel-

oped as research projects such as EXODUS/EXTRA [CDG+90], and some of

them have been been commercially exploited and have presence in the database

market at present including GemStone [BMO+89, BOS91, GEM05], ObjectStore

[LLOW91, OBJ05], O2[Deu91], and Versant [VER05].

2.3.3 Object Relational Databases

The success of the relational data model lies on a very robust infrastructure and

maturity of the mechanisms that have been developed to support it. However, the

relational data model and their programmatic APIs fell short in providing ade-

quate support for more complex kinds of data and manipulation requirements for

which the object oriented data model is better suited. This kind of applications

required support for complex data representations and rich querying services.

Data Model

Object relational databases are mainly characterised by a set of features and

properties defined by Stonebraker et al. [SRL+90]. Three tenets are the basis of

this proposal. The first tenet is concerned with the addition of richer objects

and rules to the database system. It stands for a rich type system, inheritance,

database procedures, methods, and encapsulation. Moreover, it includes con-

structors such as lists and bags to operate on objects or collections of objects.

The second tenet subsumes the traditional relational model into the object

relational data model and it is directly concerned with how database functions

should be written and accessed. This implies that all programmatic access to

a database must be done through a non-procedural high-level language (e.g.

34

2.3. Databases

SQL-like) while supporting data independence; any kind of low-level data ac-

cess dependent on the physical implementation of the database must be avoided.

Additionally, object relational databases should keep backward compatibility to

the traditional relational model.

The third tenet deals with the implementation of open systems and with the

API exposed by the new breed of object relational databases. It supports SQL

as the base high-level language from which access to the database has to be

done. Persistence in programming languages should be supported on top of a

common database system by compiler extensions to the programming language

and a run-time system.

As noted, many of these ideas are in opposition to those presented by Atkinson

et al. (Section 2.3.2), specially those related to the way in which object oriented

abstractions should be presented and manipulated by programmers. Object re-

lational databases incline towards query-based data access instead of physical

navigation through low-level procedural interfaces favoured in object oriented

databases.

Furthermore, a multi-lingual database environment contrasts with the tight

integration of particular programming languages to the database system; data

access strategies should use SQL and extend it where needed to facilitate con-

nectivity and interoperability between different software vendors. To a broader

extent, the core point of disagreement is that instead of creating from scratch a

whole new infrastructure for database systems, the object relational community

proposes to build on top of the already tested and matured relational technology.

Darwen and Date [DD95] manifesto presents a different view on the future

of database systems to those given by Stonebraker et al. [SRL+90] and Atkinson

et al. [ABD+89]. In general, they all agree on augmenting the database type

system with object oriented features. However, Darwen and Date criticise the

dismissal of the relational model in Atkinson et al. proposal. They discuss the

orthogonality of object oriented features and the relational model as initially

presented by Codd [Cod70] stating that the relational model does not need to be

extended to support them.

They agree with Stonebraker et al. on the use of the relational model and the

development of a new high-level language. However, they significantly differ on

the use of SQL as the database programming language of the future. For Darwen

and Date SQL should be rejected unequivocally, and instead, a new database

language that adheres firmly to the relational model of data should be designed.

35

2.3. Databases

Data Manipulation

According to the generally accepted relational database philosophy, query lan-

guages must be built on the ideas already proved in SQL. Thus, it is possible to

observe how different query languages augment features to the original relational

language. The O2 query language [BCD89] is an object oriented extension of

SQL implemented in the O2 object oriented database system [Deu91]. Similarly

XSQL [KKS92] is an object oriented extension to SQL that integrates extended

path expressions as well as type correctness.

UniSQL [DJ96] is a database-centric approach that provides discretionary

object oriented modeling features for inheritance, encapsulation, pointers, and

collections. It was conceived as a system to unify the relational and object ori-

ented data models in the context of databases. It empowers programmers with

navigational object access and an ad-hoc non-procedural language called SQL/X

which integrates class composition, collections, encapsulation, and inheritance

into the SQL language.

As part of the evolution of SQL, the SQL3 [ISO99] standard has been defined.

The SQL3 standard enriches SQL with object-oriented features, and extends the

syntax with programming language facilities such as control structures to make

of SQL a computationally complete language. SQL3 includes object oriented

features such as inheritance, overloading, resolution of functions based on the

type of the arguments, as well as user-defined data types, type constructors,

collection types, user-defined functions, and procedures.

Implementation and Systems

Ideally, an object relational database aims to exploit all the operational assets

of conventional relational technology (see Section 2.3.1). Consequently, the aug-

mented level of abstraction enabled by the object relational model is commonly

supported directly on top of traditional relational database technology.

A number of object relational database systems have been developed to date.

POSTGRES [SK91] is an early implementation of an object relational database

system. Its initial aim was to keep all the features of the relational model and to

make them work with enriched object oriented capabilities. The commercial reali-

sation of POSTGRES can be traced in the subsequent database products that fol-

lowed it (i.e. Illustra, Informix [INF05]). Similarly, the Iris [KLMW90] database

36

2.4. Persistent Programming Languages

system provides object oriented extensions on top of a relational database sys-

tem. OZ+ [WL89] is an object oriented database built on top of EMPRESS, a

relational database management system as the underlying disk storage and access

mechanism.

The largest database management systems vendors seem to support object

oriented features on top of the extensively tested and well-known relational in-

frastructure [McC97], while the object oriented database market is shared among

companies which are mainly offsprings of academic research. Although object ori-

ented databases are better adapted for the object oriented application domain,

today’s database market is dominated by the extensive support provided by large

database vendors to the object relational paradigm.

2.4 Persistent Programming Languages

Persistent Programming Languages (PPL) appear in the scene to fill the gap

between database systems and programming languages. As highlighted in the

previous two sections, database systems are primarily concerned with the cre-

ation and maintenance of large collections of data with particular data access

requirements (i.e. dynamic query, data sharing, and performance). On the other

hand, programming languages provide support for procedural control, and built-

in support for data type definitions and abstractions [CNTR97]. PPLs attempt

to merge the database and the programming language at runtime.

Historically, PPLs have been initially implemented as stand alone systems

which aimed to provide persistence to a programming language without giving too

much emphasis to data access requirements of database systems. Consequently,

they were built mainly by transforming particular programming languages and

not defined by any standards. As research in PPLs and database systems pro-

gressed (specially object oriented databases), PPLs began to provide access to

full-fledged database systems.

The goal of PPLs is to fulfil the requirements of a type of system often referred

in the literature as Persistent Application Systems (PAS). Typical examples of

these systems are CAD/CAM systems, office automation, CASE tools, software

engineering environments, large scientific databases and programs that analyse

them, and process modelling systems [AM95]. They require to support complex

data models, and concurrent access to large bodies of data and programs.

37

2.4. Persistent Programming Languages

The first attempt to provide some level of database functionality in a program-

ming language was Pascal/R [Sch77]. In this work, the programming language

is extended with two new data types: database and relation. From a modern

perspective of PPLs, this premier attempt suffered several downsides. First, a

database was restricted to store exclusively objects of type relation, hampering

the possibility of including any of the other Pascal types. Additionally, relations

were tuples whose fields had to be atomic base types such as int and char.

Given the important limitations in terms of the data types supported, pro-

grammers had to convert applications’ rich run-time structures into fairly simple

relations; similar to the way in which data has to be serialised to be stored in

a flat file. Furthermore, as databases were implemented on top of conventional

files, only one process was able to access the store. Finally, programs were run

in a single transaction which made data sharing impossible.

Plenty of research has been done in this direction since the appearance of

Pascal/R to overcome these and other problems. Next, a review of the most in-

fluential work in the area is discussed; the systems described below are presented

in chronological order to provide an evolutionary perspective of advance in the

field. The analysis concentrates on the data model presented to programmers,

and their implementation strategies.

PS-Algol

PS-Algol [ABC+83] was built by extending the facilities of a conventional pro-

gramming language, i.e. S-Algol [CM82]. It is generally acknowledged as the

first programming language that supported the notion of orthogonal persis-

tence [AM95]. As a result, any object in PS-Algol can persist irrespective of

its type. Furthermore, persistent type instances are of the same type as their

volatile versions, and can be operated in the same way. The definition of orthog-

onal persistence highlights three principles:

• Persistence Independence. The form of a program is independent of the

longevity of the data that it manipulates. Programs look the same whether

they manipulate short-term or long-term data.

• Data Type Orthogonality. All data objects should be allowed the full

range of persistence irrespective of their type. There are no special cases

38

2.4. Persistent Programming Languages

where objects are not allowed to be long-lived or are not allowed to be

transient.

• Persistence Identification. The choice of how to identify and provide

persistent objects is orthogonal to the universe of discourse of the system.

The mechanism for identifying persistent objects is not related to the type

system.

The persistent store is modeled as a collection of database files in which

persistent programming objects are stored and can be manipulated transparently

once the database file has been opened. Opening a database results in a root

object being returned. The root acts as a name service directory from which

other elements can be accessed. All objects reachable from a root of persistence

will be saved into the store at commit time. Updated and new objects are moved

automatically from the store to memory and vice versa by the runtime support

system. Objects are updated on a program completion call or by explicit closing

of the store by the programmer.

The best known implementation of PS-Algol is the Persistent Object Manage-

ment System (POMS) [CAC+90]. In this implementation objects are identified

with a 32-bit reference which can be either a persistent identifier (PID) or a local

object name (LON); a PID is identified by having the most significant bit of

the reference set to 1. Object faulting and swizzling are used to move data

between memory and stable storage. When in disk, objects can be located using

the PID which in turn has to be swizzled and converted to a LON format, i.e. a

memory reference.

This process is supported by a two-way accessible table called Persistent IDen-

tifier to Local Address Map (PIDLAM). This data structure has an entry for every

object in memory containing a mapping between the PID and its LON, or vice

versa. An attempt by a program to dereference a PID is trapped by the PS-

Algol interpreter which triggers a lookup in the PIDLAM. If an entry is found,

i.e. the object is already in memory, then the PID reference is replaced by its

corresponding LON. Otherwise, it has to be loaded from disk and a new entry

has to be created in the PIDLAM.

As POMS implemented a lazy strategy to solve persistent references, newly

fetched objects can hold PID references to other objects. These references will

not be resolved until the program attempts to use the objects to which they

refer. When an object has to be unmapped from memory, any swizzled references

39

2.4. Persistent Programming Languages

referring to that object must be unswizzled so that future faults of the object can

be detected. To avoid looking for the references of the evicted object in the set

of resident objects, unmapping objects takes place only at program termination.

CPOMS [BC85] uses the same underlying mechanisms as described above

with two optimisations. First, references to objects in the stack never contain a

PID. This is accomplished by adopting an eager swizzling strategy; all references

in an object are resolved at the moment of inclusion in the stack. Furthermore,

LONs are not addresses but the indexes of the corresponding object entry in

the PIDLAM. Thus, accessing an object always involves an indirection via the

PIDLAM. However, when an object has to be unmapped, it is only necessary to

update its PIDLAM entry to allow future faults of the object to be detected. It

enables efficient removal of objects from memory at any time in the execution of

the system. Napier88 [DCBM89] is recognised as a successor of PS-Algol, and it

was built on the same principles.

Amber

Amber [Car86] is a descendant of the ML programming language [Mil84]. Among

its main goals was to blend static typing with the dynamic requirements of a

programming language. Thus, multiple inheritance and persistent objects were

integrated in a strongly typed programming language.

In Amber any value in the programming language (i.e. value, data, or pro-

gram) can be exported to persistent storage and later imported and coerced, even

during different program sessions. Complex data structures can be exported and

imported without having to write ad-hoc routines to serialise and deserialise them.

The store and the programming language are weakly coupled; the store serves

only the purpose of persistent value archival. Amber’s persistent store sits on top

of the underlying file system; files are created accordingly to store the persistent

representation of objects. No support for persistent data sharing is supported as

the system is designed to be used in single-user environments.

Two routines are offered to programmers to manage data access in the store.

The export routine saves a value in the store under a given name. Later, pro-

grammers can use the import routine to recover values under associated string

identifiers. In Amber persistence is explicit, which means that the program-

mer has to write code indicating his/her intension to send a value to the store.

There is no effective restriction on the type of objects that can be stored in the

40

2.4. Persistent Programming Languages

database. However, to be persistent objects have to be converted into instances

of the Dynamic type. This means that persistent objects, once read, have to

be coerced back into a copy of their volatile type to be properly manipulated.

Updates to these objects will only reach the store if indicated explicitly by the

programmer.

E

The E programming language [RCS93] is an extension to C++ [ES90] developed

as part of the EXODUS database management system [CDF+86, CDG+90]. Al-

though originally designed to support the creation of database systems, it evolved

into a more general PPL. In addition to the persistence extension to C++, E also

provides support for generic classes and an iterator control abstraction inspired

by iterators in the CLU programming language [Lis93].

From a programmer perspective, the interaction with the data store is fairly

transparent and it is effectively manipulated as a natural extension of the C++

data space. However, orthogonal persistence is not supported due to the intro-

duction of a number of features in the programming language. E presents a new

persistent type hierarchy which mirrors that of C++, a new storage class

(persistent), and a predefined generic type (collection).

Database types in E can reside either in volatile memory or in the store. Any

data type that can be defined in C++ can also be defined as a database type. E

provides a set of fundamental database types such as dbint, dbchar, and a group

of database type constructors such as dbclass and dbstruct from which more

complex persistent types can be created. If a database type instance is declared

to be of persistent class, it will persist and its name will act as a handle for

those objects in the persistent store.

Additionally, programmers can also make use of the database class collection

to dynamically include objects into the persistent space. Objects in the collec-

tion are persistent as long as they remain in the collection and the collection

exists. As garbage collection is not supported in E, programmers have to ex-

plicitly manage (i.e. allocate and deallocate) objects in the collection. Iterators

were introduced in the programming language with the main purpose to support

structured query processing. However, they later proved their usefulness as a

general programming construct and were often used by programmers to operate

over elements of a persistent collection.

41

2.4. Persistent Programming Languages

The explicit distinction between the two groups of types, i.e. normal C++

types and E database types, is motivated by the optimisation of access to objects

which are known not to be persistent. In this way, overheads are incurred just

in the case in which persistent objects have to be managed. Although it would

be possible to build an application relying solely on database types, the authors

warn about the serious degradation in performance.

E’s storage manager pins persistent objects before they are needed by a pro-

gram [RC89]; it avoids object faulting and ensures that an object will be

resident when needed. This feature is accomplished with direct support of the E

compiler that generates code to pin and unpin objects in the storage manager’s

buffers [Ric90]. A pointer to an object of database type is composed of two values:

a persistent identifier of the object and an offset within the object. The persistent

identifier includes the physical address of the object while the offset allows em-

bedded objects and arrays of persistent objects to be supported. Non-persistent

instances of database types are addressed with a pointer of similar format. They

have a special persistent identifier and an offset to the object’s memory location.

E’s memory management strategy presents a trade-off. Access to a persistent

object is performed at normal computation time. However, accessing a resident

object implies the object to be previously pinned. Thus, efficient access to resi-

dent objects is favoured in place of fast retrieval of persistent items. More recent

implementations of the E language [SCD90] are based on the E Persistent Vir-

tual Machine (EPVM) which serves as the interface between the compiler and

the storage manager. It adds a cache to minimise the number of storage manager

calls required and introduces a form of reference swizzling.

OPAL

The OPAL language [BMO+89] is a derivative of the Smalltalk programming

language and data model developed by Servio Logic Corporation. The lan-

guage was initially designed to correct some of the evident deficiencies seen in

Smalltalk [GR83] in the context of object-oriented database environments. From

the features introduced next, it is possible to recognise how OPAL effectively

brings together the worlds of databases and programming languages.

As a conventional programming language, OPAL can be used to create data

definitions, to manipulate objects, and to execute general computations. As a

database programming language, it supports transactional manipulation of the

42

2.4. Persistent Programming Languages

store and associative data access. From a programmer point of view, no ex-

plicit distinction is made in the language between volatile and persistent objects.

The persistence model used in OPAL is based on reachability from a root object.

Accordingly, any object in OPAL is potentially persistent with no distinction of

its type. OPAL extends the Smalltalk heap into the persistent store; all types

and instances persist indefinitely as long as a reference to them exists. A garbage

collection technology is employed to manage the store.

To safely manipulate the database, programmers handle a snapshot of the

database content; actions of other programmers are not visible in a given snapshot

and they do not affect the execution of other users’ programs. This functionality

is supported by providing shadow copies of the objects in the database together

with transactional concurrency control that may be varied between pessimistic

and optimistic schemes according to objects’ type and potential for contention.

In general, the data model presented by OPAL [Ser90] to programmers is

very similar to the one offered by Smalltalk. However, some additions were done

mainly to better support database features such as associative access. Associative

access is supported by typing (i.e. class-kind constraints), path expressions, and

a limited calculus sublanguage. The latter feature was designed to be seen as

procedural OPAL code with little impedance between the query sublanguage

and the OPAL programming language.

The built-in types Set and Bag support three kinds of data-structuring mech-

anisms in OPAL: collections, records, and arrays. Unordered collection classes

have the standard semantics of set operations; named records keep a fixed num-

ber of fields which are addressed by name; and finally, arrays maintain a group

of numerically indexed objects that can be inserted or deleted from the array.

This contrasts with the initial design of Smalltalk which only supports arrays

and records, and with conventional database languages which normally support

only records and unordered collections.

OPAL is supported by GemStone [MSOP86, BOS91], a full-fledged object-

oriented database management system that aggregates secondary storage man-

agement, concurrency control, authorisation, transactions, and recovery. Gem-

Stone manages individual instances of objects through object-oriented pointers,

which act as unique surrogates for real objects. It uses an object table to map

these pointers to physical locations. Similar to the Smalltalk’s memory model,

GemStone uses reachability to remove temporary objects before a transaction

commits. Objects that have been created during a given transaction and can-

43

2.4. Persistent Programming Languages

not be accessed transitively from a root of persistence are temporary. Persistent

objects are garbage collected using a mark-sweep strategy.

Texas/C++

Texas [SKW92] is a persistent storage system for C++ [ES90] developed at the

University of Texas at Austin. Texas supports a limited form of orthogonal

persistence2 that enables applications to access transient and persistent objects

in the same way; the types of transient and persistent objects are the same.

Although, it enables a high degree of transparency in the use of the programming

language, it defines a special interface to create persistent object instances.

This language interface overloads the C++ new operator to allow ob-

jects to be created in a persistent heap that corresponds to a specific persistent

store [Tex96]. Programmers using Texas manipulate persistent data through

named and unnamed persistent objects. Named objects are the entry points to

the store; they reside in a root table and are associated with a name. Unnamed

objects are those that do not need to be explicitly distinguished by name but can

be referred by means of named objects (i.e. persistent roots).

The data store in Texas is built on top of a conventional file. The implemen-

tation strategy followed by Texas uses virtual memory protection fault trapping

together with swizzling referred in the literature as pointer swizzling at page

fault time [WK92]. Texas organises the data store as a collection of persistent

pages in which objects are stored. Resident objects contain references to other

objects in the form of virtual addresses; opposite to persistent objects which hold

references in the form of physical addresses. When an attempt to access a non-

resident object occurs, the page in which this object resides has to be memory

mapped. This is done by handling virtual memory page faults and loading the

requested page from the persistent store.

In addition to swizzling the reference contained in the requested object, Texas

will swizzle for free all the references contained in the mapped page. This has

the side effect of allocating further virtual memory pages for any non-resident

persistent page to which such addresses refer. As a consequence, programs never

2There seems to be an inaccuracy in the literature on the precise use of the orthogonal

persistence concept. Although a truly orthogonal system has to provide a form of object

identification by reachability [AM95], authors also employ this term even when the Persistence

Independence and Persistence Identification principles are slightly disregarded.

44

2.4. Persistent Programming Languages

handle persistent addresses. All references will have been swizzled and will refer

to either resident or protected pages [Kak98]. The location of addresses inside

an object are computed and precisely identified using type descriptors which

describe the layout of each class. Texas also includes a checkpointing facility

that employs a write-ahead logging scheme in order to securely store the content

of the persistent heap.

PJama

The PJama3 platform [ADJ+96] is a collaboration between the University of Glas-

gow and Sun Microsystems. It implements an orthogonally persistent version of

the Java programming language [AGH00]. Java was chosen due to specific fea-

tures in the language such as strong typing, single-inheritance, automatic memory

management, and an object-oriented model, as well as its increasing prominence

and platform neutrality.

The PJama design stresses a minimum of interference with the standard Java

programming language; PJama constitutes in this respect the closest implemen-

tation of orthogonal persistence to date. Values, whatever their type, have

equal rights to persistence including all base types, objects constructed from that

types, arrays, as well as classes and code. Persistence independence is enabled

by keeping the language semantics the same regardless of the longevity of the

data. Additionally, with respect to persistence identification PJama ensures that

objects continue to naturally exist for as long as they are transitively reachable

from a distinguished persistent root.

A PJama program usually executes together with an existing and populated

store specified by a default, an environment variable, or a command-line param-

eter. Programmers can access data in a store by manipulating an instance of the

class PJavaStore; it has a set of methods to manipulate the store and to register

new objects, which in turn act as applications’ roots of persistence. All the ob-

jects reachable from a persistent root are preserved and saved in the store. In this

way, the lifetime of the graph of persistence is naturally extended beyond a given

execution of a program. Objects in the graph of persistence can be manipulated

with the semantics and operations of any standard Java object.

3Although initially named PJava, it changed its name to PJama after Sun trademarked

PJava to denote Personal Java.

45

2.4. Persistent Programming Languages

However, matching programming language semantics with the general view

of orthogonal persistence creates some exceptions that have been pointed out in

the implementation of the system. For example, to manipulate external state

associated with native code, it is necessary to implement complex mechanisms to

coordinate the closed world provided by the Java platform and the native state

outside the Java environment. Furthermore, core features of the language such

as the Abstract Window Toolkit (AWT) library heavily rely on native code. This

creates a tension between the programming language and the completeness of

orthogonal persistence provided by the implementation of PJama.

Another complex issue is that of reconciling the difference between the tra-

ditional transaction semantics and the concurrency control enforced by the pro-

gramming language. The addition of a transaction model to PJama as used in

the database arena requires significant changes to the Java language and may

imply drastic changes to the current approach to concurrency control enforced

by the programming language [Jor96, JA98].

PJama’s persistence is mainly supported by an object cache and a buffer

pool [AJDS96]. PJama uses a level of indirection to handle persistent objects.

Objects in the object’s cache are addressed via handles, which hold their PIDs,

and grouped together in a resident object table (ROT). Different swizzling

strategies are adopted according to the object type to be loaded; eager indirect

swizzling is used for objects and lazy swizzling for arrays and methods [DA97].

This decision was taken because of the potential performance gains due mainly

to the observed size of these objects.

The buffer pool is implemented on top of the Recoverable Virtual Memory tool

(RVM) [SMK+93] using a no steal policy, i.e. memory pages that were modified

by a transaction cannot be evicted from the buffer pool until the transaction

commits or aborts. Objects are copied from the buffer pool to the object cache

as they are faulted in and are copied back to the buffer pool when a stabilisation

of the store occurs.

Objects are promoted as part of a stabilisation of the store; promotion is the

process of creating a copy of an object on disk for the first time. It causes the

allocation of handles in the ROT for the new objects. Although the design of

a custom-made store layer for PJama has been published [PAD+97], no actual

implementation has yet been reported.

46

2.5. Semistructured Data

2.5 Semistructured Data

Semistructured data, also called unstructured data, is commonly referred as

schemaless or self-describing. These terms indicate that there is not a sepa-

rate description of the type or structure of data, i.e. the schema is embedded

with the data and no a priori structure is assumed. This situation contrasts

with the traditional database approach in which it is necessary to know the data

definition (i.e. type or schema) before its manipulation.

The are three main aspects of research [Bun97] in the area of semistructured

data. First, the necessity to bring new types of data into the ambit of conventional

database technology. This kind of data contains a degree of structure and data

formats but cannot be constrained under a data schema due to its unmanaged

nature. Probably the best known example of this sort of data is the World Wide

Web (WWW) in which data type diversity is commonplace.

A second motivation is that of data exchange and transformation. The Tsim-

mis project pointed out the necessity to define a model of data exchange able

to capture most kinds of data and provide a common substrate in which almost

any other data structure could be represented [PGMW95]. It proposes the Ob-

ject Exchange Model (OEM) as an internal data structure for exchange of data

between database systems4.

Finally, the third motivation is to be able to query database content with-

out full knowledge of its schema; or even more, to be able to query database

content and schema simultaneously. Although in the context of relational and

object oriented databases, query languages including these features [KKS92] had

been suggested, they fell short in providing the flexibility to express complex con-

straints on data paths, i.e. how to reach variables from the root or from any other

node in a document.

Data Model

The data model associated with semistructured data is that of an edge labelled

graph (see Figure 2.2); although the unifying idea in semistructured data is the

representation of data as a tree structure. Semistructured data is represented by

4As history testifies, the temptation of querying data in its OEM format (e.g. XML) proved

irresistible.

47

2.5. Semistructured Data

a collection of objects whose type can be atomic or complex. The value of an

atomic object is of some base type such as integer, string, image, or sound.

The value of a complex object is a set of (attribute, object) pairs. An

attribute is any string representing a name for the object. The data graph is then

composed of nodes representing the objects and of edges labelled with attributes,

and in which some leaf nodes have assigned an atomic value. The graph has a

distinguishable object root from which all other objects are accessible [Suc98].

"Victor" "Vianu"

lastname

firstname

Bib

o1

paper

o12 o29o24

paper

references references

author

1997 "..." "..." "..." "..."

title

o43

year
title http

"...""..."

author
author

title page

o96 o24

author

author

publisher

133122

first lastlastnamefirstname

"Serge" "Abiteboul"

references

book

Figure 2.2: Edge-labelled graph representing semistructured data [Suc98].

This data representation model can be used to encode both relational and

object oriented data in a fairly simply way [ABS00]. The notion of object identity

is introduced into the model in order to be able to construct structures with ref-

erences to other objects. In practice, the meaning of particular object identifiers

is restricted to a certain domain. For example, for data loaded in memory, an

object identifier can be seen as a pointer to the memory address corresponding

to the referred node. For data stored on disk, an object identifier may be an

address on disk for the node. In the context of data interchange in the WWW,

an object identifier becomes part of a global namespace and has associated a

Uniform Resource Identifier (URI).

48

2.5. Semistructured Data

Data Manipulation

XML (eXtensible Markup Language) [BPS+04] is the standard adopted by the

World Wide Web Consortium (W3C) to complement HTML (Hypertext Markup

Language) for data exchange on the Web. The basic XML syntax is well suited

to describe semistructured data. As SQL is the dominant language for querying

relational data, XML is becoming the dominant format for manipulating and

exchanging semistructured data; although its initial roots are as a document

markup language. A general perspective of query languages for semistructured

data is analysed next and then linked with the development and application of

these concepts into the XML context.

Although there have been many proposals for XML query languages such

as XML-QL [DFF+99], XMAS [BCG+99], XQL [RLS98], XDuce [HP01], and

Quilt [CRF01], two of the most influential paradigms in semistructured query

languages are found in Lorel and UnQL. Lorel [AQM+97] is a query language

developed as part of LORE (Lightweight Object REpository), a general purpose

data management system. A query in Lorel consists of two parts, a pattern used

to extract bindings for a set of variables and a construct clause indicating how to

build the answer from the set of bindings found through the given pattern. The

pattern indicates how to reach the variables from the root or from each other

node by regular path expressions.

In Lorel, the depth of nesting of the construct clause is statically determined

by the syntax of the query. In contrast, UnQL [BDHS96] (Unstructured Query

Language) overcomes this limitation by using structural recursion, a construct for

programming with sets, bags, and lists [BNTW95]. For semistructured data, this

mechanism is particularly attractive as it enables the user to express both queries

and transformations using the same formalisms. In this approach, queries simply

return a subset of nodes from the input data while transformations may construct

a new graph. A more detailed analysis of the query languages for semistructured

data and XML is beyond the scope of this work; a comprehensive study on the

topic can be found at [Abi97].

It is possible to trace direct influence of these two main paradigms on the

implementation of different W3C proposals and data manipulation tools for

semistructured data represented as XML documents. XQuery [BCF+05], a pro-

posed standard for querying XML data, was particularly influenced by Quilt

which is a combination of features seen in XML-QL, a descendant of Lorel, and

49

2.5. Semistructured Data

XQL. Queries written in XQuery look similar to SQL queries and are organised

into FLWR expressions comprising four sections: for, let, where, and return.

XSLT [Cla99] was designed as part of the XSL style sheet system to control

the formatting of XML data into HTML or its transformation to a different XML

structure. It employs the concept of structural recursion introduced by UnQL

and can also be used as a query language. It employs the XPath [CD99] W3C

standard to create path expressions to address parts of an XML document.

The paraphernalia around XML extends to many other aspects. Different

proposals to document schemas have been used to overcome the limitations of

the self-describing nature of the pure semistructured data model such as storage

inefficiency and difficulties in query evaluation and formulation. The Document

Type Definition (DTD) serves mainly as a grammar for the underlying XML doc-

ument. However, it proved to lack expressive power and flexibility in many situa-

tions as it only supports limited type definitions. Thus, the XMLSchema [FW04]

constitutes a more sophisticated schema language which adds types, enables the

creation of user-defined types, allows uniqueness and foreign keys constraints,

and adds a form of inheritance. These are just the main features added to the

functionality provided by DTDs.

The XLink language [DMOW05] (XML Linking Language) allows elements to

be inserted into XML documents in order to create and describe links between web

resources. XPointer [GMMW03] is an extension of XPath which is used by XLink

to locate link resources on the web. The Resource Descriptor Framework (RDF)

is used for representing metadata in XML documents. The XML standards and

tools mentioned before are only the most common and they are not representative

of the whole activity done by the W3C in the XML context.

There are two standard models for programmatic manipulation of XML data,

each currently available in many programming languages. The Document Object

Model (DOM) [HHW+04] presents an object oriented tree view of XML docu-

ments. Each element in the XML document takes the form of a node with a

well-defined interface. Programmers can access specific parts of the document in

a navigational way.

For example, the Java DOM API provides a Node interface which defines

methods such as getParentNode() or getFirstChild(). Subelements of an

element can be accessed by name using getElementsByTagName(name) which re-

turns a list of child elements with the given name. In turn, elements in the list can

be accessed using the method item(i) which returns the ith element in the list.

50

2.5. Semistructured Data

Elements’ attributes can be obtained by using the method getAttribute(name).

Additionally, the DOM API provides a number of methods to update and cre-

ate documents by setting node values, or adding and deleting attributes and

elements.

The other dominant programming interface for XML documents is the Simple

API for XML (SAX) [SAX05]. It presents an event model aimed to provide a

common interface between XML parsers and applications (much in the way of

JDBC or ODBC for relational databases). Programmers using the SAX API

have to define event handlers to associate functions with parsing events. Parsing

events correspond to the identification of specific parts of an XML document.

SAX works at a lower level than DOM, and thus it is more efficient and gives

more control to the programmer. However, it requires more work than DOM

even for the simplest of the tasks. An important feature of SAX, that may

be a considerable disadvantage in several scenarios, is that it processes XML

documents sequentially and therefore backward navigation is not possible. The

only workaround is to store processed information in appropriate data structures.

Implementation and Systems

There are many approaches and strategies for storing XML data. Since XML is

a file format, a common storage medium for XML documents may be a file. A

range of tools provides support to access and query XML data with relative ease.

Currently, there are three prevalent ways to store and access XML documents in

a database environment.

The first approach exploits the infrastructure provided by relational database

systems [DFS99, KR01, SGT+99]. In general, converting XML data to its re-

lational form is a simple task, specially if the XML data was generated from

a relational database and it provides a schema. However, relational technology

proves inefficient if the data mappings produce many relations or if queries require

complex XML constructs which translate into many SQL queries. Another major

drawback is that even simple XML queries can lead to complex query patterns

that require multiple database joins to be evaluated.

The second approach uses native XML database engines. It offers as its key

advantage a more natural data model which is typically mapped to graphical or

hierarchical data representations [KM00, Sch01, JAKC+02, PAKC+03]. Finally,

object oriented technology has also been suggested as a suitable medium to man-

51

2.6. Discussion

age XML data [SYU99, RP02]. It provides a more expressive type system than

that used in relational databases and represents a more efficient mapping for

XML data. However, this option has not gained popularity in part because com-

mercially available database support for XML is provided by dominant software

vendors supporting relational technology [BKKM00, CX00, Rys01].

2.6 Discussion

The appearance of different storage paradigms has been an evolutionary process

guided mainly by well-defined application requirements. Figure 2.3 positions par-

ticular data storage paradigms according to their intrinsic ability to manipulate

programming abstractions against their data querying development. For simplic-

ity, it ignores databases supporting the hierarchical and network data models;

the figure illustrates these omissions with a double crossed arrow.

Before the development of the first file systems [DN65], programmers used

to spend considerable programming time and effort managing persistent appli-

cation data in the whole hierarchy of secondary storage. The file system API

removed authentic programming hassles associated with this storage model. It

isolates programmers from explicitly manipulating the secondary storage hierar-

chy and the physical addressing of persistent data in storage devices. The most

important contributions of the file system API are to present a simple abstraction

(i.e. a file) and to provide a standardised set of IO routines to access persistent

data. It relieves programmers from working on special-purpose pieces of code for

each application and from manipulating data directly on top of different storage

devices.

Data-intensive application environments with a highly structured set of in-

formation that needs to be accessed by a large number of users with dynamic

query requirements motivated the creation of database systems. This technology

consolidated with the introduction of the relational data model [Cod70] whose

manipulation was to be mainly done through a high-level non-procedural lan-

guage. The level of isolation between internal data representations and program-

ming abstractions that a high-level non-procedural database language enables has

proved extremely effective in the relational database application domain.

The development of persistent programming languages shows how to augment

languages in order to give programmers full command of applications’ persistent

52

2.6. Discussion

File Systems

Semistructured Data

Relational DBs

PPLs

OO DBs

OR DBs

Low

Abstraction Managed

[DN65]

Evolution of
Query Model

[ABC+83]

[ABD+89]

[SRL+90][PGMW95]

[Cod70]

High

High

Figure 2.3: Development of the main data storage paradigms based on their intrin-

sic capacity to manage programming abstractions versus the evolution of their query

models.

data abstractions through features in the host programming language. The most

prominent idea of this model is that of fully replacing the mapping between

persistent and volatile abstractions by coalescing them at run time and thus

totally eliminating the impedance mismatch associated with data longevity.

The data modeling power available in the object oriented paradigm, to-

gether with concepts taken from PPLs, influenced the database community. Ob-

ject oriented [ABD+89] and object relational databases [SRL+90] group features

of database systems with the manipulation of more powerful persistent abstrac-

tions to attack a set of applications that the limited tabular data model fails to

satisfy. Finally, semistructured data is proposed mainly as a common data

exchange format and as a mechanism to query content and structure in banks of

data in the absence of a known database schema [PGMW95].

In this evolution of data storage models, the constant addition of higher levels

of abstraction in programmatic interfaces has been a driving force. Higher levels

of abstraction in storage systems’ APIs enable direct benefits not only for the

operation of a system itself but for programmers who are provided with better

tools to solve problems. In turn, more suitable data storage APIs assist in the

creation of software of better quality with less effort.

53

2.6. Discussion

The impact that data storage programmatic tools have on programmers’ du-

ties is evident if the typical file system API is compared with, for instance, the

facilities offered by an orthogonally persistent object system. In the first case,

programmers have to spend considerable amounts of effort in the tedious and

error prone task of mapping application data to a flat file model while in the

second case there is a transparent transition between persistent and volatile data

abstractions. But more importantly, application data semantics are explicitly

manipulated, exposed, and preserved regardless of its longevity. This finally,

provides important advantages for programmers.

The persistence model presented by file systems provides simplicity and gener-

ality. It is fitted for applications looking for efficient streamed data manipulation;

the APIs introduce minimal overheads but, in exchange, rely heavily on develop-

ers writing code for every new application they create.

Although in many situations it would be ideal to enrich file systems’ data ma-

nipulation with higher levels of abstraction, richer storage systems’ programmatic

tools also result in the addition of overheads. For example, in the database

context an intermediate language is used to manipulate persistent abstractions

(e.g. SQL, ODL, OQL, XQuery) together with all the necessary infrastructure to

make them work properly (e.g. query optimisation and execution, programming

language bindings, and mappings).

Databases also provide data protection and data integrity services through

transactional and access control frameworks, as well as mechanisms to secure

data in case of media or system crashes. Management of rich data models also

introduce additional overheads and complexity into storage systems’ design.

The powerful capacity that persistent programming languages have to trans-

parently manipulate applications’ data independently of its longevity has many

advantages for programmers. However, type support is confined to specific lan-

guage compilers and restricts developers to particular programming languages.

Migrating file system applications to any of the available data storage models

is not a good option because they have a completely different set of data access

requirements in which the aforementioned overheads and compromises can be

reduced or completely eliminated. Moreover, they present APIs that are ineffi-

cient, rely heavily on programmers properly managing persistent abstractions, or

reproduce many of the problems that the impedance mismatch of data models

introduce.

54

2.6. Discussion

The trade-off between IO efficiency, a feature so valued in file system designs,

and programmability of many applications that run on top of file systems may

well be unbalanced according to the current state of affairs. Hence, the core

motivation of this dissertation is to augment the abstraction exposed by APIs

that deal with persistent data that exhibit file-like data access patterns.

Accordingly, Chapter 3 of this dissertation presents a practical study of file

systems content. It analyses a set of techniques that may be used to extract

internal file data organisations and structure in a systematic way using solely

the fundamental file IO API. Subsequently, Chapters 4, 5, and 6 are devoted

to the design, implementation, and evaluation of a storage system API that

deliberately exposes data structures and type information specially targeted to

assist file system applications whose persistent data is rich in abstractions.

55

Chapter 3

Identifying Portions of File

Content

In this chapter I present a detailed study of internal file content [PP04]. A

fundamental consideration is that redundancy of portions of data at a sub-file

level might well suggest internal file data organisations and structure. Thus, I

investigate to what extent it is possible to identify specific portions of data in

considerably large data sets following a systematic approach.

In Section 3.1 of this chapter I discuss the motivation for the study of internal

file content. After that, in Section 3.2, I introduce the techniques that have been

employed in different works with the purpose of finding data redundancy. Next,

I explain the methodology followed in this study and the experimental results

obtained in Sections 3.3 and 3.4, respectively. Finally, I discuss the key findings

of this analysis in the global context of this dissertation in Section 3.5.

3.1 Tracing Internal File Structure

Files represent the most common persistent abstraction used by applications to

store data. The vast number of tools, programming languages, and applications

using the services offered by file systems creates a great amount of diversity in file-

system contents [DB99]. Practically, every programming language offers bindings

to the basic file API. However, regardless of the capacity that data processing

tools offer for creating application abstractions at run-time, when data has to

56

3.1. Tracing Internal File Structure

be saved, abstractions are flattened in a file. This observation implies that at a

file level there is an important amount of structure and data type that is hidden

and unrecoverable unless application-specific libraries are used.

On the other hand, some applications may generate versions of a document

stored as separate files, but whose content differs only slightly. For example, soft-

ware development teams using a revision control system might open a number

of source code files to change a group of methods and create an up-to-date soft-

ware distribution; both the new source code and the compiled output files will

share portions of identical information [MCM01]. These files will also present

localised differences corresponding to the modified portions of data.

This situation repeats in several application contexts. In general, application

programs open files to update specific portions of data embodied in run-time

abstractions (e.g. objects, structures, or records) and then send the new ver-

sion of the file to disk. Thus, computer systems frequently store and manipulate

several copies of the same information. File synchronisers [BP98, Tri00, PV04],

backup systems [QD02], reference data managers [DH03], and peer to peer stor-

ages systems [CMN02, GRR+98, MPH02, SAS+96] report considerable amounts

of identical data.

In an attempt to exploit the advantages obtained by gaining access to the

internal composition of file content, plenty of systems break information into

discernible blocks of data. The recurring issue is that a block-level duplicate

detection study provides hints about internal file organisation that can be ex-

ploited in different ways. For example, email data in real-world data sets has

been studied by Denehy and Hsu [DH03]. They worked on diverse storage for-

mats such as Lotus Notes NSF, mbox, and mh. In brief, they point out that

email data has a recognisable structure made of header, body, and attachments

which is constantly repeated over the data sets. Their experimental results show

that increased levels of redundancy are found with those techniques that break

file data into parts. Of particular interest is that many attachments are similar

in terms of the data blocks they are made of, but not identical. This suggests

that a certain degree of structure in file data can be characterised by analysing

sub-file redundancy patterns.

In a different context, Broder proposed the concepts of resemblance and con-

tainment to determine whether two web documents are near-duplicate or con-

tained [Bro97]. In this work, vectors of shingles of a large number of web pages

are computed and used to measure the resemblance among them. A vector of

57

3.1. Tracing Internal File Structure

shingles can be interpreted as the structural sketch and summary of a larger doc-

ument. Ultimately, overlapping shingles of two documents correspond to over-

lapping sections of content in the web pages. This work has been extended and

applied to different types of data as is indicated in Section 3.2.

Mogul et al. [MCK04] and Rhea et al. [RLB03] describe methods for com-

puting checksums over real-world web resources (e.g. HTML pages) in order to

eliminate retrieval of identical portions of data, even when these resources have

been aliased or rotated. These examples indicate that, where a simple compari-

son of file name is impractical, more sophisticated data access strategies can be

designed if a deeper representation of file content is used.

A detailed analysis of data redundancy patterns in practical data sets has

broader implications and is also useful in other contexts. For example, efficient

data management solutions may be created if system designers are aware of the

amount of redundant data seen in diverse data sets. Although saving disk space

can be useful, over the past few years there has been a constant reduction in the

cost of raw disk storage [MT03] and some may argue that the disk space savings

obtained by suppressing identical data are of minimal significance.

However, storage systems may exploit data duplication patterns to optimise

the use of storage space and bandwidth. Single Instance Storage (SIS) [BCGD00]

explores the content of whole files to implement links with semantics of copies

instead of storing a file with the same content several times. Backup systems

such as Venti [QD02] store duplicated copies of fixed size data blocks only once.

LBFS [MCM01], Pasta [Mor02, MPH02], Pastiche [CMN02], and the Value-Based

Web Caching algorithm (VBWC) [RLB03] find identical portions of data using

Rabin fingerprints. In this method, data is divided into content-defined chunks

in order to exploit cross-file data duplication. Additional details of the content-

defined chunking method will be presented in Section 3.3.

File systems may obtain improved caching performance if they are aware of

contents shared between files. In this way, it would be possible to provide better

hit ratios for a given cache size. A potential size reduction of the main memory file

cache may have important performance effects. In mobile environments, devices

are often limited in storage and bandwidth. Furthermore, there are factors such

as energy consumption and network costs associated with data transmission that

can become critical [BA03, MCM01]. Under certain circumstances, it might

be desirable to perform significant computation to reduce the number of bits

transmitted over low-bandwidth or congested links.

58

3.2. Related Work

The recurring issue of all the works previously mentioned is that it is feasible

to unveil a degree of internal file structure through a data redundancy analysis.

Therefore, instead of using application specific libraries to unveil this structure,

they inspect file content in an attempt to identify portions of data that are

repeatedly manipulated by applications.

The study presented in the rest of this chapter considers whether it is also fea-

sible to disclose, in a systematic way, a degree of structure in file-system contents

by taking into account two factors. Firstly, that files certainly retain applications’

data abstractions which mirror update patterns at the application level, and sec-

ondly, that there is a considerable amount of redundancy in storage systems data.

Hence, overlapping sections of file content might suggest internal file organisation

and, probably, meaningful data types.

Therefore, this study reports the evaluation of three elementary methods used

to find identical sections of data: whole file content hashing, fixed size blocking,

and a chunking strategy that uses Rabin fingerprints [Rab81] to delimit content-

defined portions of data. These techniques have been frequently employed in

different systems and used as building blocks of more sophisticated strategies to

spot data similarity as pointed out in Section 3.2.

The goal of this study is twofold. First, it presents a head-to-head evaluation

of three elementary techniques used to disclose redundancy patterns of practical

data sets, and expose their trade-offs; due to the lack of a practical comparative

study, the typical performance of each method and their suitability for different

data profiles were not clear before this study. Moreover, it assesses up to what

extent these techniques are generally applicable to trace internal file data organ-

isations based solely on the study of data redundancy patterns.

3.2 Related Work

A number of strategies to discover similar data in files have been explored in dif-

ferent systems. Unix tools such as diff and patch can be used to find differences

between two files and to transform one file into the other. Rsync [Tri00] copies a

directory tree over the network into another directory tree containing similar files.

It saves bandwidth by finding similarities between files that are stored under the

same name.

59

3.2. Related Work

The Rabin fingerprinting algorithm [Rab81] has been employed with different

purposes such as fingerprinting of binary trees and directed acyclic graphs [Bro93,

KR81], or as a tool to discover repetitions in strings [Rab85]. However, this study

examines how Rabin fingerprints can be used to identify identical portions of data

in storage systems. In general, Rabin fingerprints have been used for this purpose

in two ways: to sample files in order to discover near-duplicate documents in a

large collection of files, or to create content-defined chunks of identical data.

Manber [Man94] employs Rabin fingerprints to sample data in order to find

similar files. His technique computes fingerprints of all possible substrings of a

certain length in a file and chooses a subset of these fingerprints based on their

values; the selected fingerprints provide a compact representation of a file that is

then used to compare against other fingerprinted files. Similarly, Broder applies

resemblance detection [Bro97] to web pages [Bro00] in order to identify and filter

near-duplicate documents. Rabin fingerprints of a sliding window are computed

to efficiently create a vector of shingles of a given web page. Consequently,

instead of comparing entire documents, shingle vectors are used to measure the

resemblance of documents in a large collection of web pages. The techniques used

by Manber and Broder have been adapted by Spring and Wetherall [SW00] to

eliminate redundant network traffic. However, they used Rabin fingerprints as

pointers into data streams to find regions of overlapping content before and after

the fingerprinted regions.

Different systems use blocking strategies that employ the Rabin fingerprint-

ing algorithm to create content-defined and variable-sized data chunks. Proba-

bly the first storage system that used Rabin fingerprints for this purpose was

LBFS [MCM01], specially designed to transmit data over low-bandwidth net-

works. Using the Rabin fingerprinting algorithm, LBFS finds similarities between

files or versions of the same file. It avoids retransmission of identical chunks of

data by using valid data chunks contained in the client’s cache and by trans-

mitting to and from the data server only the chunks that have been modified.

LBFS’s chunking algorithm was tested on a data set of 354 MB reporting that

around 20% of the data was contained in shared chunks.

Blocking in Pasta [Mor02, MPH02], an experimental peer to peer file system,

also exploits the benefits of common information between files. Caching and

replica placement are defined by data blocks’ content. These blocks are built

by computing Rabin fingerprints of the file data over a sliding window. Identical

blocks are stored only once and referenced using a shared key. A similar technique

is used in Pastiche [CMN02]. In Value-Based Web Caching [RLB03], web proxies

60

3.2. Related Work

index data according to their content and avoid retransmission of redundant

data to clients connected over low-bandwidth links. Although all these systems

show that improved block sharing levels can be obtained using content-defined

chunking strategies, they do not present broad experimental results based on

diverse data sets.

Data redundancy in storage systems has also been identified using fixed size

blocking strategies. Sapuntzakis et al. aimed to reduce the amount of data sent

over the network by identifying identical portions of data in memory [SCP+02].

They use a hash-based compression strategy of memory aligned pages (i.e. fixed

size blocks of data) to accelerate data transfer over low-bandwidth links and

improve memory performance.

Venti [QD02], a network storage system intended for archival data, aims to

reduce the consumption of storage space. It stores duplicated copies of fixed size

data blocks only once. Venti reports a reduction of around 30% in the size of

the data sets employing this method. Future implementations of Venti may also

incorporate a content-based blocking scheme based on Rabin fingerprints.

A different approach to eliminate data redundancy is used in SIS [BCGD00]

for Windows 2000. It saves space on disk and in main memory cache but with a

different approach; SIS explores the content of the whole file and implements links

with the semantics of copies for identical files stored on a Windows 2000 NTFS

volume. A user level service, called the groveler, is responsible for automatically

finding identical files, tracking changes to the file system, and maintaining a

database with the corresponding file indexes. When SIS was tested on a server

with 20 different images of Windows NT the overall space saving was 58%.

Although many systems have proposed different techniques to manage dupli-

cated data, it has been only lately that practical studies to assess their bene-

fits and applicability have been performed. Building on Manber’s observations,

Douglis and Iyengar [DI03] explore duplication in empirical data sets using Delta-

Encoding via Resemblance Detection (DERD) and quantify their potential ben-

efits. Their technique generalises the applicability of delta-encoding by choosing

an appropriate set of base versions in a large collection of files through resem-

blance detection.

As part of the design of a storage system specially crafted to manage reference

data [DH03], a comparison on the effectiveness of three duplicate suppression

techniques has been done; two of these techniques are similar to the methods

examined in this document: fixed size blocking and the content-defined chunking

61

3.3. Methodology

algorithm. The third technique, called sliding blocking, uses rsync checksums

and a block-sized sliding window to calculate the checksum of every overlapping

block-sized segment of a file. The sliding blocking technique consistently detected

greater amounts of redundant data than the other two strategies.

More recently, Redundancy Elimination at the Block Level (REBL) has been

proposed as an efficient and scalable mechanism to suppress duplicated blocks in

large collections of files [KDLT04]. REBL combines features of techniques such

as content-defined data chunks, compression, delta-encoding, and resemblance

detection. Empirical data sets were used to compare REBL with other techniques.

REBL presented the smallest encoding size in 3 out of the 5 data sets analysed

and consistently performed better than the other techniques.

Specifically, the effectiveness of this technique compared to the content-defined

chunking strategy varied by factors of 1.03-6.67, whole file compression by 1.28-

14.25, sliding blocks [KDLT04] by 1.18-2.56, object compression (tar.gz) by 0.59-

2.46, and DERD by 0.88-2.91. All these studies [DH03, DI03, KDLT04] used

Rabin fingerprints as a tool to eliminate data redundancy. Thus, their experi-

mental results relate highly to this work.

3.3 Methodology

Three methods were used in this work in order to spot identical sections of data

in large collections of files: whole file content, fixed size blocks, and Rabin fin-

gerprints. In this section, a detailed description of the programs that implement

each of these techniques is presented. When these programs are run on practical

data, they gather information in order to characterise file system content and

exhibit data duplication on different data profiles (see Section 3.3.1).

Whole file hashing

Similarity patterns at a whole file granularity are identified by calculating the

SHA-1 digest [SHA95] of individual files as shown in Figure 3.1. The first 64

bits of the resulting digest are used as the key to a hash table; identical files

are guaranteed to be indexed using the same hash table entry. This hash table

is used to store statistical data of identical files such as number of occurrences

and size of the original file. Although Henson [Hen03] warns about some of the

62

3.3. Methodology

dangers of comparing by hash digests, the highly unlikely event of false sharing

of the key space is not a crucial concern in this study1.

File Data

SHA-1

Compare with Stored

Values

Duplicate

Detected

Store New Hash

Value

?=

Figure 3.1: Whole file content analysis.

Fixed size data blocks

In order to find similarities using fixed size blocks of data an analogous procedure

is employed, but instead of obtaining digests for whole files, they are calculated

for contiguous non-overlapping fixed size portions of the files as can be seen in

Figure 3.2. In this case, hash table entries correspond to unique data blocks.

Content-defined data chunks

The third method analysed employs Rabin fingerprints; it offers the advantage

that the chunks generated are defined according to their contents. The mathe-

matical principles of Rabin fingerprints are well documented [Rab81]. A Rabin

fingerprint f(A) is the polynomial representation of some data A(t) modulus an

irreducible polynomial P (t). Such an irreducible polynomial is computed only

once and used in all the experiments in order to find identical pieces of data.

The algorithm for computing such a polynomial can be found in [CL01]. The

1The maximum number of blocks obtained for any single data set in all of the experiments

was n ≈ 18x106. These blocks were indexed using the first b = 64 bits of their SHA digests. The

probability of having one or more collisions is given by 1 − (1 − 2−b)n. This small probability

can be neglected in the experimental results.

63

3.3. Methodology

File Data ?

SHA-1

Compare with Stored

Values

Duplicate

Detected

Store New Hash

Value

SHA-1
SHA-1

= ?

Figure 3.2: Analysis of fixed size blocks of data.

implementation of the Rabin fingerprinting algorithm used in this study follows

the principles presented by Broder in [Bro93], which is an extension of the work

done by Rabin. Broder uses precomputed tables to process more than 1 bit at

a time, particularly, 32 bits are divided into four bytes and processed in one it-

eration. The value of k, which is the degree of the irreducible polynomial and

consequently the length of the fingerprint, should be a multiple of 32.

As shown in Figure 3.3, to divide a file into content-defined chunks of data,

the program incrementally analyses a given file using a sliding window and marks

boundaries according to the Rabin fingerprints obtained in this process. It in-

spects every w bytes of a sliding window that is shifted over the contents of the file.

Although the value of w can be tuned, changing the size of the sliding window does

not significantly impact the result. Experimental evidence in [Mor02, MCM01]

shows that by setting w = 48 bytes it is possible to discover significant levels of

data duplication.

Figure 3.3(a) shows that adding a new byte into the sliding window is ac-

complished in two parts. First, the value for the oldest byte in the window is

subtracted from the fingerprint. Second, the terms of the new byte are added

to the fingerprint. This is possible since the fingerprint is distributive over ad-

dition. When subtracting, precomputed tables are used in order to improve the

implementation performance.

Rabin fingerprints for each window frame are calculated and if the value ob-

tained matches the r least significant bits of a constant, a breakpoint is marked.

64

3.3. Methodology

These breakpoints are used to indicate chunk boundaries. In order to avoid patho-

logical cases (i.e. many small blocks or enormous blocks) the program forces a

minimum and a maximum block size.

In Figure 3.3(a), shaded boxes represent the 48-byte regions that generated

a boundary. The light striped rectangle corresponds to the current 48-byte win-

dow. At each step the byte in the oldest position of the sliding window (bi−48) is

subtracted from the fingerprint and the next byte in the file (bi) is added to the

fingerprint.

C1 C2 C3 C4

48-byte sliding window

bi-48 bi

(a) Computing Rabin fingerprints over a sliding window.

File Data ?

Fingerprint

Compare with Stored

Values= ?

Duplicate

Detected

Store New Hash

Value

Fingerprint
FingerprintFingerprint Breakpoint ??

SHA-1 YES NO

Slide Window

(b) Analysis of content-defined chunks of file data.

Figure 3.3: Chunking file data using Rabin fingerprints.

65

3.3. Methodology

As shown in Figure 3.3(b), once a boundary has been set, the SHA-1 digest

corresponding to the chunk’s content is calculated. Similar to the other two

techniques, the first 64 bits of the SHA-1 digest are used as the key for accessing

the hash table that stores statistical information about identical data chunks.

Results reported

Two kind of values are calculated and reported by the evaluation programs:

percentage of identical data and storage savings. To calculate the percentage

of identical data in shared blocks, the programs add for each duplicated block,

the product of its size and its number of occurrences. They report this value as

a percentage of the original data set size. To calculate storage space savings,

the sizes of every unique block in the hash table are added; replicated blocks are

counted only once. This value is presented as a percentage of the original data

set size. Additionally, storage space savings are compared with the space used by

simply tarring and compressing the whole collection of files in the different

data sets. The standard tar and gzip utilities were used for this purpose.

3.3.1 The Data Sets

Different collections of real-world data sets were explored to determine how sen-

sitive each of the methods are to diverse data profiles. These groups were:

• Mirrored section of sunsite.org.uk2. This data is a subset of an Inter-

net archive and its size is over 35 GB. Compressed and packed data were

common in this data set.

• Users’ personal files. The data analysed in this collection of files is

held in 44 home directories of different users in the Cambridge University

Computer Laboratory. The size of this data set is approximately 2.9 GB.

• Research groups’ files. This data set contains collections of files asso-

ciated with different research projects of the Computer Laboratory. This

is a data set with a potentially high level of data duplication because it

stores software development projects, shared documents, and information

accessed and manipulated by groups of people. The size of this data set

was 21 GB.
2ftp://sunsite.org.uk

66

3.4. Experimental Results

• Scratch directories. The 100 GB of information were taken from the

Computer Laboratory scratch space and represents the largest and most

diverse data set analysed. This collection of files is a good example of a

data set where no obvious interrelationship is previously known.

• Software distributions. To explore the sharing patterns of highly cor-

related data in different states, five successive Linux kernel distributions

in three different formats were studied: packed and compressed (.tar.gz),

uncompressed but still tarred (.tar), and uncompressed and untarred.

3.4 Experimental Results

The experimental results presented in this section characterise file system content

at different levels of granularity and in terms of the amount of redundancy that

is possible to disclose following a systematic approach. These results are used to

evaluate the benefits and performance of the three different duplicate detection

methods in each of the aforementioned data sets.

3.4.1 Mirror of sunsite.org.uk

In order to find commonality in data that resembles a standard Internet archive,

the programs were run on a 35 GB section of sunsite.org.uk. The total number of

files in the data set was 79,551, with an average file size of 464 KB. Table 3.1 shows

a partial characterisation of this data set. It shows the 15 most popular file-name

extensions and their percentage of the total number of files. The 15 most popular

file extensions account for over 82% of all files. Table 3.1 also indicates the 15 file

extensions that use the most storage space and the percentage of the total space

they consume; collectively, they cover almost 97% of the whole data set. Packed

and compressed files (e.g. rpm, gz, bz2, zip, and Z) represent an important

part of the data set (around 24.4 GB). A detailed analysis of compressed files is

presented in section 3.4.1.1.

The content-defined chunking method was run over the data using different

expected chunk sizes and sliding window lengths. Although in all the subsequent

experiments the maximum chunk size permitted was set to 64 KB, the minimum

chunk size was fixed to 1/4 of the expected chunk size; the expected chunk size

is set as a parameter in the algorithm. By fixing the maximum chunk size to

67

3.4. Experimental Results

Popularity Storage Space

Rank Ext. % Occur. Ext. % Storage

1 .gz 32.50 .rpm 29.30

2 .rpm 10.60 .gz 20.95

3 .jpg 7.54 .iso 20.40

4 .html 4.83 .bz2 6.26

5 .gif 4.43 .tbz2 5.65

6 – 4.16 .raw 4.44

7 .lsm 3.74 .tgz 2.66

8 .tgz 2.90 .zip 2.53

9 .tbz2 2.35 .bin 2.00

10 .Z 2.12 .jpg 0.94

11 .asc 1.84 .Z 0.65

12 .zip 1.59 .gif 0.43

13 .rdf 1.39 .tif 0.31

14 .htm 1.21 .img 0.21

15 .o 1.06 .au 0.19

Total —— 82.26 —— 96.92

Table 3.1: Data profile of a 35 GB mirrored section of sunsite.org.uk. Files without

extension are denoted by the – symbol.

64 KB despite changes in the expected chunk size, it is possible to maximise the

opportunities of finding identical portions of data in larger chunks. Minimum

and maximum chunk lengths are enforced to avoid pathological cases such as

very small or large chunks. Table 3.2 shows the amount of information in shared

chunks with two different window sizes and three different expected chunk sizes.

The last column of Table 3.2 illustrates the percentage of identical data that was

found using fixed size blocks.

Table 3.2 suggests that the window size does not significantly influence the

commonality levels; other studies [Mor02, MCM01] report similar findings. There-

fore, in all subsequent experiments the window size was fixed to 48 bytes. It is

also possible to observe that when the expected size of the chunks is shorter,

the percentage of shared data is larger because the probability of finding similar

chunks increases. However, the expected size of the blocks represents a trade-off

between the size of the hash table needed to maintain a larger number of entries

for each unique chunk and the potential storage space savings (see section 3.4.6).

The percentage of identical data in whole files was only 5%. Therefore, it was

possible to find a considerable amount of similar data in partially modified files.

68

3.4. Experimental Results

On the other hand, the percentages of identical data found using the content-

defined chunking method presented only slight differences when compared with

those obtained using fixed size blocks. These findings suggest that a storage sys-

tem handling this kind of data could easily select a fixed size blocking scheme

without losing significant storage space savings.

% of Data in Identical Blocks

Size 48 B window 24 B window Fixed Size

8 KB 16.43 16.12 12.13

4 KB 20.27 19.72 17.25

2 KB 25.00 24.18 22.23

Table 3.2: Percentages of identical data in a 35 GB section of sunsite.org.uk.

Figure 3.4 shows the distribution of block sizes under the content-defined

chunking method when the expected chunk size was set to 8 KB. In particular,

an average block size of 9.2 KB was obtained. The algorithm generated 3,730,576

blocks of which 7.6% have at least one identical copy. It is also possible to

appreciate the impact of pathological cases on the distribution: the chunks under

the minimum block size (2 KB) correspond to files that are shorter than the

minimum permitted or to final portions of files. Moreover, the peak at 64 KB

corresponds to chunks inserted because of the maximum size allowed.

Special attention was given to the set of files that accounted for 97% of the

total storage space; therefore, the levels of similarity of these 15 kinds of files were

explored. The expected chunk size was fixed to a value of 4 KB. Table 3.3 shows

the results and compares them against the percentage obtained with the whole

file approach. Remarkable patterns were found in the results. Firstly, it is very

difficult to exploit similarity in compressed files; practically all the duplicated

chunks were contained in identical files. The behaviour of compressed data will

be further investigated in Section 3.4.1.1.

Secondly, .iso and .img files presented the highest difference in percentage

of similarity against the whole file column. These findings suggest that varia-

tions between files can be efficiently isolated using the content-defined chunking

method, whereas under the whole file approach, even a small change in the file

leads to storing a new almost-identical file. The negative effects of this situation

are intensified in large files such as ISO image files in which the average size

was 280 MB. All other files showed only slight increments if they are compared

against the value obtained for the whole file scheme.

69

3.4. Experimental Results

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000

14000
Distribution of Chunk Sizes

Chunk Size (KB)

N
um

be
r

of
 C

hu
nk

s

Figure 3.4: Distribution of chunk sizes obtained from sunsite.org.uk using an expected

chunk size of 8 KB and a 48-byte sliding window size.

Keeping only one copy of the information saves storage space. Using the best

scenario, which was the content-defined chunking method with an expected chunk

size of 2 KB, the experimental results indicate that a file system would store only

30 GB of unique data instead of the original 35 GB, representing around 14% of

storage savings. Duplicate suppression proved to be somewhat more efficient in

saving storage space than the tar-compressed version of the data set; the tar.gz

file for this data set claimed around 33.3 GB of disk space.

An explanation for these numbers may be found in the detailed analysis of the

files that comprise this data set. As has been pointed out before, a large amount

of data is already compressed (see table 3.1); approximately 24.4 GB correspond

to rpm, gzip, bz2, zip, and Z files. Note that archives in rpm files are compressed

using gzip’s deflation method. To a certain extent, redundant data in these files

has already been removed as part of the LZ77 [ZL77] compression technique.

Compressing compressed data with the same algorithm normally results in more

data, not less.

However, it may still be possible to argue that if the content-defined chunking

method was able to remove duplicated chunks of data from the data set, the

compressed version of the data would do it as well, resulting in a smaller tar.gz

file. The gzip compression algorithm replaces repeated strings in a 32 KB sliding

window with a pointer of the form (distance, length) to the previous and nearest

70

3.4. Experimental Results

% of Identical Data

Format Content-defined chunks Whole file content

.rpm 9.08 7.07

.gz 6.71 5.29

.iso 31.26 0.54

.bz2 8.33 8.32

.tbz2 5.02 5.02

.raw 0.47 0.0

.tgz 13.55 13.55

.zip 2.79 1.43

.bin 2.57 0.0

.jpg 0.49 0.28

.Z 3.40 3.14

.gif 2.73 2.69

.tif 95.29 95.29

.img 33.84 8.69

.au 0.0 0.0

all ext. 20.27 5.03

Table 3.3: Detailed similarity pattern in our mirror of sunsite.org.uk. A 4 KB expected

chunk size and a 48-byte sliding window size were used in the content-defined chunking

method. The last row of the table shows the values obtained when all files in the data

set were analysed.

identical string in the window. Distances are limited to the size of the sliding

window (i.e. 32 KB) and lengths are limited to 258 bytes. As a consequence,

redundancy elimination occurs within a relatively local scope; identical portions

of data across files will be detected only if files are positioned close in the tar file.

In contrast, the content-defined chunking method is able to find data redundancy

across distant files in the data set and, in this particular case, to save more storage

space than the compressed tar file.

3.4.1.1 Compressed Data

Compressed files (e.g. gz, bz2, zip, and Z) constitute an important segment of

information within the sunsite data set: around 14 GB correspond to compressed

files. The next experiment reports the potential storage space savings that might

be obtained if, once data is decompressed, the content-defined chunking strategy

is used to suppress duplicates, and then compression is applied again on the

resulting set of unique chunks. The content-defined chunking method was selected

71

3.4. Experimental Results

to eliminate redundancy because it proved to be the most efficient strategy to

find data similarity over the four main categories of compressed files. Tools such

as zcat, bzcat, and unzip were used to decompress the files. The output stream

generated by all these utilities was set as the input to the redundancy elimination

program that used a 4 KB expected chunk size.

Figure 3.5 compares the storage space savings obtained in each of the four

categories of compressed files using three different methods to eliminate dupli-

cation. The first method suppress duplication from the original collection of

compressed files using the whole-file approach. The second method removes sim-

ilar chunks of data from the original compressed files using the content-defined

chunking method. Finally, in the third strategy the files are decompressed, redun-

dancy is removed using the content-defined chunking method, and the resulting

unique chunks are compressed again. Although the storage space savings are

maximised using the third method, it barely outperforms the result obtained

with the content-defined chunking strategy on the original files specially in the

cases in which the original data set is of considerable size (gz and bz2 formats).

gz bz2 zip Z
0

1

2

3

4

5

6

7
Storage Space Savings

File Format

S
to

ra
ge

 S
pa

ce
 R

ed
uc

tio
n

(P
er

ce
nt

 o
f T

ot
al

 D
at

a)

Whole File
Content−Defined Chunks
Dec/Content−Defined Chunks/Comp

Figure 3.5: Storage space reductions using three different methods to eliminate dupli-

cation in compressed data. Original sizes of the data sets: gz=8.13 GB, bz2=2.4 GB,

zip=1 GB, and Z=260 MB.

When duplication is removed from the uncompressed version of the files, the

value obtained for the zip category is substantially different to those seen in the

other two techniques. It also contrasts with the pattern observed in the other

three data sets in which the differences between columns are fairly small. It

72

3.4. Experimental Results

seems that redundancy elimination specially helped zip files. In general, zip is

used to deflate one file at a time to then include it into a single object; it limits

any potential size reduction to intra-file compression. In contrast, the other

compression tools also remove inter-file data duplication (e.g. from all the files

in a tar) which finally reduces the benefits of redundancy suppression due to the

content-defined chunking method. In conclusion, the improvement seen in zip

files can be attributed to the ability of the content-defined chunking method to

eliminate redundancy within a broader scope (i.e. inter-file redundancy); a gap

that zip compression fails to address.

It seems that the comparatively slight storage savings obtained by decom-

pressing files to eliminate redundancy, and compressing the result anew may not

be enough to justify the computational overhead of the whole process. Douglis

and Iyengar also analysed commonality patterns in compressed data [DI03]; they

reached a similar conclusion.

3.4.2 Users’ Personal Files

The data analysed in this section was held in 44 home directories of different

users of the Computer Laboratory. Although the total amount of data processed

was only 2.9 GB, this data set presented high diversity in the kind of files stored;

it reported to have 1,756 different file-name extensions in 98,678 files with an

average file size of 31 KB. However, the profile of the data set follows a clear

pattern. Table 3.4 shows the most common file-name extensions in terms of

popularity and storage space. Apart from the files without extension, home

directories are mainly used to store files related to word processing and source

code development. The 15 file-name extensions shown in Table 3.4 under the

column related to storage space account for over 69% of the whole data set.

In this case the percentage of identical data in whole files was 12.80%. Ta-

ble 3.5 shows the result of running the implementation of the content-defined

chunking algorithm over the data set using different expected chunk sizes. It also

shows the percentage of identical data found when the files were explored using

only fixed size blocks. Although the performance of the content-defined chunking

algorithm was better, significant storage space savings can also be obtained by

using fixed size blocks.

The results indicate that using the content-defined chunking method and an

expected chunk size of 2 KB, which is the best case, a storage utility would main-

73

3.4. Experimental Results

Popularity Storage Space

Rank Ext. % Occur. Ext. % Storage

1 – 19.47 .ps 17.24

2 .eps 4.83 – 11.73

3 .obj 3.98 .gz 10.66

4 .tex 3.82 .pdf 6.16

5 .c 3.43 .eps 4.58

6 .gz 2.85 .zip 4.13

7 .gif 2.45 .doc 3.13

8 .ps 2.28 .ppt 2.60

9 .dat 2.11 .obj 1.75

10 .html 1.81 .xls 1.53

11 .h 1.68 .tgz 1.29

12 .log 1.61 .tex 1.25

13 .aux 1.30 .c 1.24

14 .java 1.28 .so 1.19

15 .dvi 1.26 .txt 1.04

Total —— 54.16 —— 69.52

Table 3.4: Profile of the data in 44 home directories of the Cambridge University

Computer Laboratory. Files without extension are denoted by the – symbol.

% of Data in Identical Blocks

Size Content-defined chunks Fixed size blocks

8 KB 24.16 17.22

4 KB 26.76 18.05

2 KB 29.30 19.25

Table 3.5: Percentages of identical data obtained in 44 home directories of users of

the Cambridge University Computer Laboratory. A 48-byte sliding window size was

used in the content-defined chunking method.

tain only 2.3 GB of the original 2.9 GB. This represents a storage space reduction

of 20.6%. However, the compressed tar version of the data set used only 1.4 GB of

disk space; considerably outperforming the best duplicate suppression scenario.

Similar storage saving ratios were obtained in the next two data sets (research

groups’ files and scratch directories) when their corresponding compressed tar

files were generated.

74

3.4. Experimental Results

Popularity Storage Space

Rank Ext. % Occur. Ext. % Storage

1 .c 15.82 – 15.56

2 .h 14.51 .gz 10.20

3 – 13.90 .ps 8.01

4 .html 4.07 .c 6.66

5 .o 3.45 .a 3.29

6 .c,v 2.79 .pdf 3.15

7 .h,v 2.11 .o 2.97

8 .py 1.95 .eps 2.41

9 .gif 1.56 .tgz 2.18

10 .S 1.40 .h 1.93

11 .gz 1.23 .0 1.82

12 .if 1.14 .html 1.40

13 .m 1.01 .taz 1.29

14 .eps 0.97 .5 1.24

15 .s 0.85 .tar 1.23

Total —— 66.76 —— 63.34

Table 3.6: Profile of the data stored by different research groups of the Cambridge

University Computer Laboratory. Files without extension are denoted by the – symbol.

3.4.3 Research Groups’ Files

This data set represents a collection of files stored by work groups; it contains

the information of different research groups in the Computer Laboratory. This

data set presents high degrees of similarity because it contains software projects,

documents, and information shared among groups of people. This is an ideal

environment to save storage space or to reduce the amount of data transmitted

based on suppressing identical portions of data. The data set contained a total

of 708,536 files in 21 GB of disk space and a 32 KB average file size. Table 3.6

illustrates the main sections of information arranged by file-name extension pop-

ularity and storage space used. Although 2,820 different file extensions were

found, the 15 most popular extensions cover more than 66% of the files. More-

over, the percentage of data within the 15 extensions that use the most storage

space accounts for over 63% of the total size of the data set.

The percentage of identical data in whole files was 25%. It clearly demon-

strates an increment over the previous data sets. Table 3.7 shows the percentages

of data in shared blocks for the other two methods: content-defined chunks and

fixed size blocks for different expected block sizes. The rates of commonality

75

3.4. Experimental Results

% of Data in Identical Blocks

Size Content-defined chunks Fixed size blocks

8 KB 37.01 28.77

4 KB 39.61 29.62

2 KB 44.59 32.94

Table 3.7: Percentages of identical data found in several research groups’ directories

of the Cambridge University Computer Laboratory. A 48-byte sliding window size was

used in the content-defined chunking method.

obtained under the fixed size approach also present high levels of commonality

although they are substantially behind the content-defined chunks’ percentages.

Under this ideal scenario, not only due to the high amount of identical data

contained in whole files but also due to the potential relationships between the

files analysed, the use of Rabin fingerprints proved its efficiency. By using an

expected chunk size of 2 KB, as indicated by the experimental results, a storage

system would hold only 14 GB in unique blocks in contrast with the 21 GB of

the original data set. This means a reduction in storage space of around 33%.

Once more, the compressed collection of files (i.e. tar.gz format) used less storage

space than the duplicate suppression techniques; it claimed only 8.9 GB of disk

space.

3.4.4 Data Stored in Scratch Directories

The 100 GB of data explored in this section represents the largest data set stud-

ied. It contained a total of 1,959,883 files with an average file size of 55 KB.

Table 3.8 gives a partial characterisation of the data set. Once more, it presents

the information organised in two main columns according to file-name extension

popularity and storage space used. This time the top 15 files, in terms of storage

space, account for almost 70% of the total size. It is notable that a large portion

of the data set is contained in files without extension or with the .log extension;

they represent more than 57% of the whole data set. Apart from this fact, the

information was evenly distributed over the whole set of files.

This large data set was explored with an 8 KB expected chunk size which

enabled a reduction of the potential number of chunks generated. All the per-

centages of similarity dropped. Although the percentage of similar data in fully

identical files was 14%, the value obtained using the content-defined chunking

76

3.4. Experimental Results

Popularity Storage Space

Rank Ext. % Occur. Ext. % Storage

1 .c 16.47 .log 33.41

2 .h 15.05 – 24.04

3 – 13.14 .gz 2.76

4 .o 6.55 .c 1.52

5 .0 4.00 .txt 1.46

6 .d 3.99 .o 1.24

7 .gz 1.94 .ps 0.81

8 .3 1.89 .a 0.70

9 .S 1.47 .pdf 0.69

10 .py 1.26 .ul2 0.60

11 .s 1.25 .xls 0.57

12 .ih 1.09 .dl1 0.56

13 .al 0.92 .il1 0.55

14 .1 0.84 .prof 0.55

15 .ast 0.81 .frag 0.53

Total —— 70.67 —— 69.99

Table 3.8: Profile of the data stored in scratch directories in machines of the Cam-

bridge University Computer Laboratory. Files without extension are denoted by the –

symbol.

strategy was only slightly over 20%. The advantages of using the content-defined

chunking method are minimal considering that the fixed size blocking scheme

offered a value of 17.52%. According to the experiments, storage space used in

unique chunks for this data set would be 88.26 GB and 91.59 GB, using the

content-defined chunking method and fixed size blocks, respectively. The com-

pressed tar version of this data set claimed 49 GB of disk space.

The two main categories of files in the data set in terms of storage space

used were investigated separately: .log files and files without extension. Using

the content-defined chunking strategy, these files showed values of around 0.3%

and 30% of identical data, respectively. Files without extension represent a con-

siderably large amount of data that is difficult to characterise. However, they

presented better levels of correlation compared to those obtained for the whole

data set (20%). When the fixed size blocking strategy was used on files without

extension, the percentage of identical data reached a value of 24.5%.

On the other hand, files with the .log extension offered extremely low levels

of similarity and none of the .log files analysed were identical. It negatively

77

3.4. Experimental Results

8 KB 4 KB File

Version tar raw tar raw raw

2.5.34 1.49 2.39 2.26 3.18 1.5

+2.5.35 43.42 94.46 57.41 95.43 93.8

+2.5.36 44.17 96.33 58.24 96.94 95.12

+2.5.37 44.62 97.09 58.85 97.71 95.31

+2.5.38 44.99 98.33 59.25 98.70 96.86

Table 3.9: Sharing pattern percentages in a succession of five Linux kernel distribu-

tions. A 48-byte sliding window size was used in this experiment.

influenced the sharing levels of the whole data set. Pathological cases such as

these may be difficult to foresee and handle given the limited information that

file names in these two categories provide about their contents; no relationship

can be inferred a priori just by looking at the file names.

3.4.5 Software Distributions

In this experiment, five successive Linux kernel source distributions were explored.

Initially, the content-defined chunking method was run over one of the kernels

(i.e. 2.5.34) and then successive kernel versions were added one by one; the

results were recorded at each step. Furthermore, the three possible states of the

distributions (i.e. tar.gz, .tar, and raw files) were analysed.

When the files were in the tar.gz format the percentage of data in shared

chunks was 0% in all cases. Table 3.9 presents the values obtained in the other

formats (tar and raw files) with two different expected chunk sizes. The amount

of information shared was substantially greater in tar files when the expected

chunk size was smaller. Once more, this result suggests that a smaller expected

chunk size increases the likelihood of content overlap.

Furthermore, the last column of Table 3.9 shows the values obtained when

the whole file content of the original files was explored. Comparing these values

with those obtained in the 4 KB expected chunk size over raw files, which was the

best scenario, in none of the cases the difference is greater than 2%. This leads

to the conclusion that, although the content-defined chunking method efficiently

found identical portions of data, their main source was in wholly identical files.

As would be expected, no similarity was found among the files in their tar.gz and

tar formats when the whole file technique was used.

78

3.4. Experimental Results

Figure 3.6 shows the discrete cumulative distribution function of chunk oc-

currences that was obtained considering the five kernels in their raw state and

using an expected chunk size of 4 KB. These results indicate that the kernel dis-

tributions are very similar. When an ordinary file system holds different versions

of Linux kernels in its primal state, it is storing the same information almost as

many times as versions it holds. Storing a Linux kernel in its primal state adds

around 145 MB of data but at least 95% of this information is already contained

in chunks of preceding versions of the kernel. Therefore, a hypothetical storage

utility would add only 7 MB of new data if it reuses the chunks already stored.

However, distributing patches of the kernels in their compressed format continues

being the most efficient method of propagation. For example, the largest patch

in the set of kernels accounts for only 977 KB. Even if uncompressed, the size of

this patch file is smaller than the size of non identical chunks that were found

using the content-defined chunking method. Using the content-defined chunking

method a hypothetical storage utility would transmit 7 MB in new chunks while

the size of the uncompressed patch is only about 3.7 MB.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Occurrences

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e

Cumulative Distribution of Chunk Occurrences

Figure 3.6: Discrete cumulative distribution function of chunk occurrences of five

uncompressed and untarred kernels.

However, if these five kernels are decompressed and untarred, then processed

with the content-defined chunking method in order to eliminate repetitions, and

finally compressed again, the resulting size is only 38 MB. This value is consid-

erably smaller than the original 171 MB used by five tar.gz kernel files, and only

slightly over the 34 MB of an individual compressed kernel.

79

3.4. Experimental Results

3.4.6 Associated Overheads

System designers considering employing any of these techniques to reduce data

duplication must be aware of computational and storage overheads. Compu-

tational overheads are due to the calculation of SHA-1 digests and Rabin fin-

gerprints. Additional CPU time and memory is spent in maintaining the data

structures that keep track of the chunks generated (a hash table in this case) and

their reference counters.

To compare the computational overhead in the three methods analysed, a

300 MB file containing random chunks of data taken from the data set corre-

sponding to the Research Groups’ files was created. The three methods were

run on this synthetically created file. All the experiments were performed using

a network-isolated machine with an Intel Pentium III 500 MHz processor. The

content-based chunking method involves the generation of Rabin fingerprints and

SHA-1 digests of the chunks. It took around 340 CPU seconds to process all the

file. Around 76% of the total execution time was spent in tasks related to the

computation of fingerprints over a sliding window. The fixed size blocking method

took approximately 71 CPU seconds to compute all the necessary SHA-1 digests.

Finally, the whole file approach used a total of 62 CPU seconds to calculate the

digest. However, the reader should notice that the goal was to analyse data

sharing patterns and potential storage space savings in diverse data sets; the

prototypes were not implemented having performance as a compelling feature.

SHA-1 computations have been made extremely efficient. Commercially avail-

able hardware and operating systems’ cryptographic services can be used to com-

pute SHA-1 digests at very high speeds. Furthermore, Rabin fingerprints of a

sliding window can be computed efficiently in software due to their algebraic

properties, specially if the internal loop of the Rabin fingerprinting method is

coded in assembly language [Bro93]. An efficient implementation and computa-

tion of Rabin fingerprints on real-life data sets has already been reported [Bro00].

Storage overhead is related to the number of unique blocks produced and the

data structure used to keep track of them. As mentioned before, a hash table

was used with this purpose. Figure 3.7 shows the storage space needed to store

the hash table. The overhead has been computed for a 4 KB expected chunk size

and fixed block size. It compares these values with the overhead introduced by

the whole-file strategy in which only one digest per file is needed. In all the cases,

the amount of extra space required is small compared with the total size of the

data set, but would pose a significant burden were it to be stored in memory.

80

3.5. Summary and Discussion

Sunsite Users Research
0

0.2

0.4

0.6

0.8

1

1.2

Storage Overhead

Data Set

S
to

ra
ge

 O
ve

rh
ea

d
(P

er
ce

nt
 o

f T
ot

al
 D

at
a)

Whole File
Fixed Size
Content−Defined

Figure 3.7: Storage overhead in three different data sets using a 4 KB expected

chunk or fixed block size. Original data sets sizes: Sunsite=35 GB, Users=2.9 GB, and

Research=21 GB

3.5 Summary and Discussion

Remarkable data similarity patterns were found in the experimental results.

The content-defined chunking algorithm was the best strategy to discover redun-

dancy in the data sets studied. It consistently reported the largest amounts of

data duplication. However, the fixed size blocking strategy also revealed useful

levels of similarity. As may be expected, the whole-file approach was always at

the bottom of the ranking (see Figure 3.8).

The experimental evidence presented through this study indicates that a new

file will often be created by making a number of changes to an original file; in-

creased levels of duplication were found in data sets where this kind of update is

prevalent. Specially in these type of scenarios, a block or chunk-level characteri-

sation of storage systems’ content is worth exploring.

For instance, the experimental results proved that the content-defined chunk-

ing strategy is particularly efficient with potentially correlated data where the

aforementioned update pattern is dominant. Hence, high levels of similarity were

obtained when this method was run on data held by research groups (44.59%),

and expanded source code distributions and software projects (98.7%). When

this method was used on more diverse data sets, such as the sunsite.org.uk mir-

81

3.5. Summary and Discussion

Sunsite Research Home Scratch
0

10

20

30

40

50

60

Data Set

P
er

ce
nt

ag
e

of
 Id

en
tic

al
 D

at
a

Summary of Data Duplication Patterns

Whole−File Content
Content−Defined Chunks 8 KB
Content−Defined Chunks 4 KB
Content−Defined Chunks 2 KB
Fixed Size Blocks 8 KB
Fixed Size Blocks 4 KB
Fixed Size Blocks 2 KB

Figure 3.8: Summary of data duplication patterns in the four main data sets.

ror and scratch directories, the similarity levels dropped (25% and 20%, respec-

tively), and were noticeably closer to sharing levels found using a fixed size block

approach (22.23% and 17.53%, respectively). The whole file content approach

reported modest levels of similarity with exceptionally high values in research

groups’ data (25%) and expanded source code distributions (96.86%). In data

sets with a not-so-evident correlation and a more passive update pattern such as

the sunsite.org.uk mirror the similarity levels plummeted (5%).

In terms of storage space savings, the tar.gz version of the data sets con-

sistently outperformed the other techniques. However, for systems that need to

access and update separate files, probably in a distributed environment, compres-

sion is not easy to implement effectively. The main disadvantage of this technique

is that data has a strong correlation that is naturally embraced into one element

(i.e. the compressed object) in order to be properly manipulated, and thus los-

ing the potential benefits enabled by fine-grained data access strategies; chunk

or block-based strategies such as those explored in this study might be a better

option in this domain.

In general, packed (i.e. rpm) and compressed data presented low levels of

similarity; compression algorithms have already removed a degree of redundancy

in the data sets. Apparently, the storage space savings that can be obtained

by decompressing a large number of arbitrarily selected files in order to remove

82

3.5. Summary and Discussion

data duplication from their expanded versions and finally compressing only non-

identical chunks (see figure 3.5) does not justify the extra computational effort

involved in this process.

Storage overhead should not be a serious impediment in the construction

of data access technologies that fully exploit the benefits of data decomposition.

The data structures needed to keep track of the extra information (SHA-1 block

digests and reference counts) introduced a very small amount of storage over-

head. The amount of extra storage required depends on the number of unique

blocks managed by the hash table. As expected, the whole file approach created

only a very small number of unique entries in the hash table (i.e. one per file

in the data set). The fixed size and content-defined methods produced compa-

rable amounts of storage overhead, considerably greater than those exhibited by

the whole file approach (see figure 3.7). A practical study of computational

overheads incurred in each of the methods remains to be done. This analysis,

together with other experimental results [DH03], simply point out that there is

an important amount of extra computation that has to be considered when using

the content-based chunking method.

File access patterns should also be taken into consideration. Whole file

content and fixed size blocking strategies present the disadvantage that file up-

dates may lead to the recomputation of SHA-1 digests for large amounts of data.

File updates under the whole file technique create the need to recompute the

SHA-1 digest for the whole file. Using the fixed size blocking approach, any

update that causes a shift at any position of the file will invalidate the SHA-1

digests for the rest of the blocks. As a consequence, reference counters of these

blocks have to be decremented and SHA-1 digests have to be computed for the

new blocks. However, a fixed size blocking scheme may offer the advantage that

blocks can be page-aligned and consequently improve memory performance as

is pointed out by Sapuntzakis et al. [SCP+02]. On the contrary, updates in the

content-defined chunking scheme are self-contained into the blocks where they

occurred, thus SHA-1 digests are recomputed only for the modified blocks.

In light of all these results, it is possible to say there is no one method able

to perform satisfactorily on all data sets. The extra processing and storage space

required for each of the techniques, together with usage patterns and typical

workloads of specific data sets can be decisive factors when deciding to employ

these techniques. The fixed size blocking method offers high processing rates,

which make it a good candidate for interactive contexts. Despite the fact that

the recomputation of SHA-1 digests could represent an inconvenience, specially

83

3.5. Summary and Discussion

under workloads in which file updates are common, the experimental results

showed that the similarity patterns seen in passive data sets were relatively close

to those obtained using the content-defined chunking strategy.

The question seems to be whether in practice the majority of the common

blocks would remain valid after file updates and how often these updates occur.

File access patterns [RLA00, Vog99] indicate that file updates present signifi-

cant locality: only a very small set of files is responsible for most of the block

overwrites. Files tend to have a bimodal access, they are either read-mostly

or write-mostly. Finally, an important percentage of files, even under different

workloads, are accessed only to be read [RLA00]. Considering this experimental

evidence one feels persuaded to believe that, in the general case, an important

number of blocks will remain valid for their lifetime.

Overall, the levels of data redundancy that can be identified using the fixed

size blocking strategy are respectably high and sometimes close to those obtained

using the content-defined chunking method. With file access patterns in consider-

ation, the fixed size blocking strategy seems to be a sensible option for the general

case; it is simple, acceptably effective, and quite efficient. The content-defined

chunking method is justified only in contexts in which potential data repetition is

high and the costs of not identifying redundant portions of data due to scattered

updates throughout the file are elevated. Suppressing duplication at the file level

still seems to be a good option specially where the amount of duplicated data

is high and enclosed in a group of well connected machines [BCGD00]. System

designers should take a decision based on the practical trade-offs between saving

storage space, bandwidth consumption, and the computational and storage over-

heads necessary to support each of these methods; the results presented in this

work can assist them in such a decision.

84

Chapter 4

Datom: An Abstract View of

File Content

In this chapter I introduce Datom, a storage API that departs from the view

of file content as a monolithic object by unveiling data types and internal data

organisations [PP05]. Its main goal is to assist programmers to create advanced

application-specific data access strategies. The Datom API represents an alterna-

tive storage interface to be of use for applications that exhibit file-like data access

patterns whose application data is rich in structure and type. Consequently, it

avoids the addition of functionality that may add unnecessary overheads and

compromises for its target application domain.

In Section 4.1, I contrast the techniques analysed in Chapter 3 with the mo-

tivation of disclosing file data organisations through high-level abstractions. In

Section 4.2, I present the rationale behind the creation of the Datom API. After

that, in Section 4.3 I discuss the functional requirements of applications running

on top of the file API in order to identify the type of functionality that the Datom

API aims to provide. In Section 4.4, I introduce the data model supported by the

Datom API. Finally, I compare the Datom API with other storage paradigms in

Section 4.5.

85

4.1. Towards Meaningful Data Abstractions

4.1 Towards Meaningful Data Abstractions

In an attempt to disclose internal file data organisations through the file API,

Chapter 3 analysed a set of techniques that make use of the generic file API

to characterise file data according to their content. The experimental results

demonstrate to what extent it is feasible to reveal particular fragments of file data

using the generic services of the file API. They confirm that there are important

amounts of repetitive data that might, ultimately, suggest the presence of internal

file data layouts. This redundancy in storage system contents can be exploited

to design improved data access strategies, as has been shown by diverse storage

technologies [PP04]. However, from a programmer’s point of view, there are some

observations to this approach:

• The understanding about file content is limited. The level of ab-

straction that can be manipulated by developers based on the results of a

redundancy analysis hides existing relationships between portions of data.

Furthermore, it proves to be a deficient approach in terms of the seman-

tic abstraction that is provided to developers since they keep manipulating

opaque chunks of file content.

• Data identification is only approximate. The structural composition

in storage systems contents that is unveiled with a redundancy study can

only be considered a rough hint to real programming abstractions. The data

chunks created do not necessarily match applications’ abstractions mapped

into file content.

If the primary goal is to disclose internal file data organisations with benefits

for mainstream programmers, the previous two observations indicate that there

are limitations in the use of these techniques. Furthermore, from the point of

view of the implementation of these strategies, there are two more issues that

should be considered:

• Redundancy detection becomes subject to overheads. Redundancy

analysis techniques incur computational overheads to process file content

and compute fingerprints of the analysed data chunks. Furthermore, stor-

age overheads are also involved since these techniques need to hold block

identifiers to track data redundancy.

86

4.2. The Rationale for an Alternative API

• Addition of management layers. Ultimately, aside from the degree

of structural composition in file systems contents that could be disclosed

through a redundancy analysis, it is necessary to adopt a management

layer to properly manipulate the generated data blocks. Depending on the

implementation, this might involve the use of a database or hash table, and

the modification of the original semantics of the storage system [MCM01,

MPH02, CMN02].

Taking into account these observations, one of the core motivations for the

creation of the Datom API is to move away from the services provided by the

file API and to provide an API that enables a more fine grained and intelligent

manipulation of application data. The advantages of the file API should be pre-

served only for those application domains whose functional requirements include

streamed data manipulation as a must.

4.2 The Rationale for an Alternative API

The persistence model presented by file systems provides simplicity and gener-

ality. To enable these key features, it does not make any assumptions on the

applications’ data model or on their type of file contents. Traditional file systems

technologies are agnostic of any applications’ data structure or type, which finally

results in developers having to write large amounts of code in order to access and

manage persistent data. Developers find themselves repeatedly implementing the

same IO services over an API that makes this task a tedious process.

Besides the historical reason of files being the most common persistent data

abstraction in computing systems, file systems are a recurrent option in many

application contexts for an important reason: efficiency. They represent a ma-

ture technology which introduces minimal overheads into applications’ execution

context. However, the data manipulation paradigm enabled by the current file

system model was coined many years ago when the computational resources were

more limited and applications imposed simpler requirements on both storage and

developers.

By analysing the set of persistent data and applications that use file systems as

their primary data repository, it is possible to observe that there is a vast amount

of data rich in structure and type (e.g. PDF, HTML, XML, ELF, MPEG, JAR

files, etc.). An important amount of data stored in files is amenable to structural

87

4.2. The Rationale for an Alternative API

decomposition. Even binary data such as bitmaps or sound files can be included

in a multimedia document where they can be explicitly distinguished from each

other under certain document organisation.

The rest of this section explores the rationale behind Datom’s design. It first

points out the most significant drawbacks that programmers experience when ma-

nipulating persistent data through the services provided by the file system API.

These shortcomings are used to identify the areas of major impact in the inter-

action between the programmer and the storage system interface. This analysis

is later used to define the goals of the Datom API.

4.2.1 Flaws in Persistent Data Access

The file API handles applications’ requests in a generic and untyped way, which

is mainly concerned with storing application data as blocks of bytes and with

managing a reduced set of associated attributes in the form of metadata [DN65,

Kle86, San86, Nag97]. From a developer point of view, the most crucial disad-

vantage of the file API is in its inability to recognise and manipulate persistent

abstractions used by applications. The file API disregards particular applications’

data access semantics and consequently promotes the creation of file formats that

do not map well to the persistent abstractions manipulated by programs. As a

result, writing code to manipulate persistent data with the file API exhibits the

following shortcomings:

• No support for data abstraction. Any degree of structure, type, or se-

mantic knowledge about applications’ persistent abstractions that is present

at runtime is lost within the file. As a consequence, developers spend sig-

nificant amounts of time creating and debugging application-specific IO

libraries in order to create meaningful abstractions in the host language.

Changes in the format of persistent elements or file layouts automatically

render the IO libraries of an application invalid.

• Limited support for fine-grained data access. Data manipulation

through the file API greatly assumes access to a file as a whole, or in

the best case to opaque regions of data within the file [CPS95]. It is a

programmer concern to identify which sections of the file correspond to the

elements requested by applications, to keep track of their location in the

file, or to manage sharing of file content.

88

4.2. The Rationale for an Alternative API

• Lack of type-safe data access. Not having the type-safe data access

guarantees provided by the run-time abstractions that hold applications’

persistent data is a potential source of programming mistakes and data

corruption problems. Once more, it is the responsibility of programmers to

ensure that data is fetched and restored from the appropriate programming

data types.

• Dismissal of application-specific update requirements. Poor guar-

antees over the actual moment and extent in which persistent data is pushed

to stable storage gives place to data corruption problems. Developers have

to rely on system-wide mechanisms (e.g. bdflush kernel daemon) to trans-

fer updates to disk. Under this approach, there is not a straightforward

way to support application-specific update and consistency requirements.

These major deficiencies in the file API make effortless manipulation of persis-

tent data elements unfeasible; they heavily impact the way in which file content

is queried, updated, and managed by programmers. The ultimate consequence is

that developers find themselves writing code to solve the same set of generic prob-

lems on a per-application basis. Using the file API to manipulate persistent data

as arrays of bytes is a tedious task prone to errors and data corruption. Recov-

ering persistent abstractions from file formats makes code abundant and wastes

programmers’ effort in tasks that should be automated or at least simpler.

Furthermore, the code written with these disadvantages violates, to an impor-

tant degree, the properties that may lead to the creation of software of improved

quality [GSAW98]. The manipulation of persistent data through plain arrays of

bytes negatively affects the understandability of persistent code (i.e. code con-

cerned with loading/storing persistent data) and forces programmers to maintain

a mental mapping of two completely different data formats (i.e. runtime abstrac-

tions and their file mappings).

Reusability of persistent code is usually a painstaking process as it forces pro-

grammers to have a deep understanding of the on-disk data formats and layouts

as well as of their management routines. Maintainability effort increases due to

the explicit manipulation of low-level abstractions, the augmented code size, and

the management of persistent data in two different states. To sum up, from a

programmer perspective, development of persistent code with the file API is far

from ideal.

89

4.2. The Rationale for an Alternative API

4.2.2 The Goals of the Datom API

Whether the trade-off between efficiency and programmability is balanced or not

has been brought to attention in recent projects [GSAW98, GBHC00, MMN+04,

Rec05]. Key data access capabilities seen in other storage paradigms in terms

of support for data types and structure [ABS00, ABD+89, SRL+90], querying

capabilities (i.e. SQL, OQL, XQuery), or effective concurrency and transactional

support [GR93] have not successfully permeated into mainstream file-based ap-

plications. As a consequence, the file API presents evident drawbacks when

compared with other technologies in terms of the ease with which programmers

can access and manage persistent data.

The main goal of the Datom API is to provide a data access layer that departs

from the flat-file paradigm to a more abstract and richer model in which applica-

tions’ persistent abstractions are deliberately exposed. Therefore, the Datom API

was created as an alternative way to represent, access, and manage file content.

The design of the Datom API has been influenced by two issues. First, it

attempts to fill the gap created by the persistent data manipulation drawbacks

pointed out in Section 4.2.1. Second, the design of the Datom API aims to main-

tain the balance between two attributes. The first is related to the functional

requirements of its target application domain. The second is related to the over-

heads and compromises that more advanced facilities provided by other storage

system APIs generate. Accordingly, its design pursues the following goals:

• Expose persistent data access semantics. The Datom API aims to

augment the abstraction level that programmers are able to manipulate

through the storage API. Thus, it will unveil and manipulate a judicious

degree of the structure and data types that constitute the persistent ab-

stractions employed by applications.

• Improve programmers’ interaction with persistent data. The Datom

API aims to improve the management of persistent code. Therefore, it

will simplify the management of persistent data elements and assist pro-

grammers to create application-specific data access strategies with minimal

effort.

• Reduce impedance mismatch. The Datom API aims to decrease the

acute difference between file data and programming abstractions in order

to simplify the development of persistent code. Therefore, from a program-

90

4.3. Characterising the Target Applications

mer’s perspective, it will present the persistent data space as a natural

extension of the volatile space.

• Observe file-type workload requirements. The Datom API aims to

service applications that exhibit the usage patterns observed in file-like

workloads (see Section 4.3). Therefore, it will incorporate advantageous

features seen in other storage paradigms while these are not contrary to the

functional requirements of Datom’s application domain.

Although these issues are pinpointed through Sections 4.3 and 4.4, respec-

tively, they are analysed in detail in Section 4.5.

4.3 Characterising the Target Applications

The Datom API has been conceived as an alternative programming device to

assist developers in the creation of persistent code for the application domain of

file systems. The characterisation of the persistence requirements of this group of

applications has one main goal: to provide hints to the type of functional features

that the design of the Datom API should include. In addition, this analysis

also exposes the type of data access facilities that may represent unnecessary

overheads for this application domain. The most salient attributes of applications

running on top of the file API are discussed in the next paragraphs.

Moderate complexity in persistent data sets

Many factors place file-based persistent data within data sets of moderate com-

plexity, specially when compared with data in other application domains (e.g.

data bases or PPLs). First, the size of the data set that has to be processed

in a typical file-based application is still normally small [Sat89, BHK+91], al-

though the observed average file size has experienced steady growth over recent

years [DB99].

Additionally, persistent data abstractions are organised on-disk in structured

data layouts that are, or can be, generally mapped into programming abstrac-

tions resembling collections that aggregate them in an explicit manner. These

collections of persistent objects have predetermined data access semantics and

91

4.3. Characterising the Target Applications

are used by applications at run time to manage file data. Finally, file formats are

not expected to change during the useful lifetime of an application.

All these properties contrast with the data sets manipulated by applications

in the database systems’ context. In these environments, applications’ data sets

tend to be large. Furthermore, the persistent data model required by applications

using object oriented database recreates fairly complex abstractions and relation-

ships of persistent data at run-time. The changing nature of the data types in

databases also contrasts with the more static nature of file formats; databases’

schemas and data types are constantly modified as new logic and requirements

are demanded from applications.

Remarkable data access patterns

Data access patterns in file systems applications show remarkable characteristics,

presumably, as a consequence of today’s file APIs and the data access require-

ments of applications using them. First, most files are opened to be read, and

they will be processed in their entirety and in a sequential way. Write opera-

tions occur in a sequential form either covering the whole file or only portions of

it [Vog99]. If a work session with a file involves both read and write operations,

random access is the dominant pattern [RLA00]; although this use case accounts

for a very small fraction of the file system operations.

An interesting observation is that larger files, which are becoming more com-

mon in recent file system workloads, tend to be read randomly. Therefore, current

prefetching strategies, which simply prefetch blocks of files that are being accessed

sequentially, seem to provide little benefit to both large and small files [RLA00].

If large files tend to be accessed randomly this kind of prefetching strategy may

be ineffective; in the case of small files there will not be many blocks to fetch. One

way to predict file access patterns more precisely would be to make explicit the

data access semantics of applications through proper abstractions in the storage

system API, similar to those employed by the Datom API.

The dominant whole-file and sequential data access pattern observed in file

system workloads also indicates that applications running of top of the file API

do not query data, instead they process it. This type of data access eliminates

the need of APIs based on query languages such as those employed in database

systems, letting aside the overheads that they introduce in applications.

92

4.4. Data Model

Separation of concerns

The file API represents a general and data-centric approach that is agnostic to

any run-time application abstractions and which is focused entirely on primitive

data manipulation. In general, an application program sequentially reads an

entire file into its address space and then performs non-sequential processing on

the in-memory data abstractions. There is an explicit and sharp separation of

concerns between the persistent and the volatile data spaces.

Persistent programming languages, specially those that support orthogonal

persistence, eliminate the explicit separation of persistent and volatile data and

tightly integrate data manipulation of these two spaces. From a programmer

perspective, they represent the most advanced approach in the manipulation of

persistent abstractions, but in exchange they force programmers to make crucial

compromises such as the adoption of a determined programming language and

consequently, the loss of generality. Therefore, a storage API for file-like data ac-

cess should take into account the separation of concerns in the current computing

model of mainstream platforms.

4.4 Data Model

The goal of this section is to present the data model supported by the Datom

API. It introduces the collection of data structure types and the set of operations

which can be applied to any valid instance of these types. Ultimately, the data

model shows how to retrieve and derive data from any of the Datom types in any

permissible way.

The Datom API follows two principles to improve the interaction with per-

sistent data: expose application-specific data organisations and bring to light

persistent data types through information-hiding modules. These principles

are embodied in the two main types of persistent items of its data model: Com-

posite Entities and Elements. The Datom API manages applications’ data as a

rooted graph made of these two types of persistent items.

Composite Entities are a set of managed abstract data types whose goal is to

aggregate persistent items. They present a well-known interfaces to programmers

with the semantics of stack, queue, list, map, and matrix elements; they are

discussed in detail in Section 4.4.1. Elements are terminal data containers that

93

4.4. Data Model

hold application-specific programming abstractions; as such, their definition is

provided by applications; they are discussed in detail in Section 4.4.2.

Formally, a persistent graph in the Datom data model is a rooted directed

cyclic graph denoted by:

G = (V,E, r) (4.1)

where V is the set of nodes in the graph, E is the set of edges in the graph, and r

is the root of the graph. The set of nodes V is partitioned into Composite Entity

and Element nodes:

V = VCE ⊎ VE (4.2)

where VCE are nodes of type Composite Entity, and VE are nodes of type Element.

Composite Entities’ types are members of the set:

TCE = {stack, queue, list,map,matrix} (4.3)

where stack, queue, list, map, and matrix represent the corresponding abstract

data type. Elements’ types are the set:

TE = A (4.4)

where A is the universe of application-defined data types. The edges E represent

the composition relationship between nodes in V . A Composite Entity node VCE1

is said to be composed of other nodes in V , if these nodes are referenced by the

VCE1 node. Element nodes VE are terminal and, as such, do not reference other

nodes in V . Finally,

r ∈ VCE (4.5)

By way of example, Figure 4.1 shows a graph that conforms to the data

model supported by the Datom API. It illustrates the use of each of the six

abstractions of the API and the composition relationship between them. The

graph is rooted in a Composite Entity of list type from which all the other

94

4.4. Data Model

persistent items in the graph can be reached. The rest of the graph is composed

of other Composite Entities and Elements. The composition relationship in the

graph can be identified by the arrows that connect Composite Entities and by the

immediate placement of Elements inside Composite Entities; in the latter case

arrows were omitted for aesthetic purposes of the illustration.

FIFO
FIFO

FIFO

index − (i)
index − (i) index − (i)

index − (i)

index − (x,y)
index − (x,y)

index − (i)

LIFO
index − (x,y)

Matrix List Stack Queue ElementMap

Root

key − (k)

key − (k)

key − (k)

key − (k)

index − (i)

Figure 4.1: Graphical representation of Datom data.

Figure 4.1 also exemplifies the data manipulation approach enabled by the

data model. Programmers manage persistent data using a set of well-defined

abstractions with explicit access semantics. To be able to access a persistent item

a program has to traverse the graph of persistence making use of the operations

available at each node. These operations are defined in the abstract data types of

the corresponding Composite Entity. For example, the list root in the illustration

provides access to three Composite Entities, two of map type and to one of matrix

type, through their corresponding indices in the list. To access these maps an

application program has to use the list operation that gives access to its elements

(e.g. List.get(int)); a similar strategy has to be employed to access persistent

items inside other types of Composite Entities.

To manipulate and update the morphology of the persistent graph, an appli-

cation program has to employ the operations supported by the Composite Entity

95

4.4. Data Model

type. For instance, to remove one of the maps contained in the list root in Fig-

ure 4.1, an application program would have to employ the List.delete(index)

operation.

4.4.1 Composite Entities

Composite Entities are persistence-capable data structures which exhibit access

semantics of a group of commonly used abstract data types. These data structures

correspond to the nodes in the graph of persistence of the Datom data model.

There are five types of Composite Entities, each of them supports different data

access semantics: stack, queue, list, map, and matrix.

The decision to employ this set of abstractions as the primary interface to

a storage layer follows one empirical observation: they are the most common

data structures used by application programs to manage persistent data objects

at runtime. Because these abstract data types are commonplace in programs,

implementations of them abound in modern programming languages as native

types or as additions into their standard libraries [AGH00, NET05, SGI05]. In

the context of databases, these types have also proven useful. They have been

used as an interface to the underlying database data model [BDB04], as a support

tool to manage databases’ query results [CBB+00], or as fundamental storage

elements [OBJ00].

A storage interface based on Composite Entities is a solution to some of

the persistent data manipulation shortcomings that were identified previously in

this chapter. Accordingly, this group of persistent data abstractions represents

a practical solution that not only meets the goals set for the Datom API but

also fulfils the persistence requirements of its target application domain (see Sec-

tion 4.2.2 and 4.3). As such, they ease the programmability of persistent code.

Furthermore, they can be of use to the underlying implementation of the API,

which could employ the behavioural properties of the Composite Entities’ types

to investigate alternative data management solutions (e.g. better prefetching

and caching strategies). Building the Datom API on top of these abstractions

represents a minimalist approach to the issue of getting access to the abstract

composition of file data.

Composite Entities help to reduce the impedance mismatch by providing a

set of high-level abstractions that are frequently used by developers to manage

persistent data once it is in the volatile data space. Therefore, they afford the

96

4.4. Data Model

possibility of modeling application data more accurately. They systematically

expose persistent data semantics and applications’ intent.

The combination of the different types of Composite Entities in a single graph

of persistence aggregates application data items under high-level abstractions in

which only a judicious degree of data relationships are exposed. Programmers

are able to write code to navigate a graph made of basic building blocks that

exhibit well-known interfaces. All these characteristics improve programmers

interactions with persistent code and enable the management of on-disk persistent

data layouts through high-level abstractions.

The data model enabled by the use of Composite Entities observes the func-

tional requirements of a broad number of file-based applications. The Datom API

favours navigation over advanced querying capabilities. This is specially practi-

cal in file-based applications since file data tends to be fully processed instead

of queried, which indicates that data access requirements for these applications

are mostly navigational. Furthermore, the group of high-level abstractions used

by the Datom API are constantly employed to manage persistent data at run-

time and, as such, they can be used to map applications’ data models and data

access semantics into persistent data layouts. Experience with abstract data

structures [OBS99, GBHC00, MMN+04] shows that data manipulation through

a combination of constructor and inspection operations in a basic set of types

can be used to design powerful data access strategies. Although not as general as

SQL, this approach is rich enough to successfully build sophisticated data access

services.

Providing high-level abstractions as an access layer to recover and restore

persistent data may gain in importance over the coming years. The tendency

in file-size growth observed in recent file system studies is accompanied with

a more recurrent use of random access in larger files [RLA00], meaning that

programmers will have to program more complex data access strategies on top

the file API. Finally, a data-centric approach built on top of a reduced set of

high-level abstractions maintains to a minimum the overheads of the augmented

functionality without losing generality; this issue is related to the implementation

of the Datom API. Thus, it will be discussed in detail in Chapter 5.

The rest of this section presents in detail the building blocks that make up

the Datom data model, i.e. the stack, queue, map, list, and matrix abstractions.

The interface of each of these elements is clearly defined using an algebraic spec-

ification of its operators. For example, Table 4.1 presents the specification of the

97

4.4. Data Model

Datom stack; the interfaces of the other persistent items’ types are analysed and

presented in the same way.

The specification has four parts. The first part contains the name of the

stack specification in capital letters. The next part introduces the types used

in the rest of the specification. The sort value represents the name for a set of

objects; it takes the name of the specification in lowercase as a convention. The

enrich statement indicates that the stack type is also of PersistentItem type. The

imports statement lists the names of the specifications that define sorts that are

used in the stack definition.

The INTEGER and BOOLEAN specifications are not included in this docu-

ment as their definitions are out of the scope of this dissertation. In a similar way,

the algebraic specification of the PersistentItem sort has been omitted since it

does not add any functionality to the public interface of a Datom stack; it is used

only with the purpose of indicating that the Stack sort is a persistence-capable

item.

The third part in the specification defines the signature of the interface to

persistent items of the Stack type. It describes the name of the operations, the

number and type of their parameters, and the type of their results. Finally, the

last part presents the semantics of the operations that make up the Stack inter-

face. They are defined using a set of axioms which characterise the behaviour of

the data type. The axioms relate the operations used to construct and modify

the Stack with operations used to inspect its values. They represent the seman-

tics of the data type and the inferencing rules that can be applied to any valid

instance of the data model to retrieve and derive persistent items from the graph

of persistence.

Stack

A Datom stack is a persistence-capable collection of items in which only the most

recently added item can be accessed; also known as “last-in, first-out” or LIFO.

This abstract data type is interesting not only because it enforces LIFO semantics

but also because it is explicit about the point of interest of the application among

all the items within the collection.

The need for stack structures arises naturally in many processes in which

traffic control is generated. Whenever a sequence of data items is to be processed,

98

4.4. Data Model

STACK

sort Stack enrich PersistentItem

imports INTEGER, BOOLEAN

New → Stack

PopOff(Stack) → Stack

Pop(Stack) → PersistentItem

Push(PersistentItem, Stack) → Stack

Clear(Stack) → Stack

SeeTop(Stack) → PersistentItem

IsEmpty(Stack) → Boolean

Size(Stack) → Integer

New = an empty Stack

SeeTop(New) = Fail exception (empty stack)

SeeTop(Push(pi, S)) = pi

IsEmpty(New) = True

IsEmpty(Push(pi, S)) = False

Size(New) = 0

Size(Push(pi, S)) = 1 + Size(S)

PopOff(New) = Fail exception (empty stack)

PopOff(Push(pi, S)) = S

Pop(S) = pi (Obtained by a combination of SeeTop(S) and PopOff(S))

Clear(S) = New

exceptions

pi = Null ⇒ Fail Push exception (null object)

Table 4.1: Algebraic specification of a Datom Stack.

and some item is encountered for which the processing is to be deferred, stacks

can be used for holding the item until processing can be done. Some common

examples in the use of stacks are related to solving recursion problems, syntactical

analysis, or control of program execution. They may be used to support a wide

variety of tasks in applications such as a persistent page-visited history in a Web

browser, a persistent undo sequence in a word processor, as well as an auxiliary

data structure for algorithms that process persistent data using LIFO semantics.

Table 4.1 contains a formal specification of the operations of the persistence-

capable Stack data type. The stack type, as well as the other types of Composite

Entities, has two main types of operations in its interface: operations that create

99

4.4. Data Model

or modify the sort (i.e. constructor operations) and operations that evaluate or

query its attributes (i.e. inspection operations). Thus, the Stack interface is

defined informally as follows.

• Constructor Operations. The constructor operations of the Stack type

are New, which creates an empty stack; Pop, which evaluates and removes

the top item in the stack; Push, which piles an item into the stack; and

Clear, which removes all the items from the stack. The PopOff operation

is a hidden constructor operation which is introduced to simplify the spec-

ification; it removes the top item from the stack.

• Inspection Operations. The inspection operations of the Stack type are

SeeTop, which evaluates the top item of the stack; IsEmpty, which tests

if the stack contains any items; and Size, which evaluates the number of

items in the stack.

Queue

A Datom queue is a persistence-capable collection of items in which only the

earliest added item can be accessed; also known as “first-in, first-out” or FIFO.

Similar to the stack data type, the queue type presents an interface with a single

point of interest to applications. They are also used in programming tasks in

which processing control is required. Queues are used in situations in which

persistent data has to be processed in the order in which it was introduced to the

persistent collection.

A persistent queue may have practical applications in many programming sce-

narios. For example, virtually every resource manager (e.g. printer, disk, CPU)

employs a queue or a waiting list. Simulators also use event queues to store

events to be processed in the order they occurred. When Web-based business ap-

plications communicate with each other, producer applications enqueue messages

and consumer applications dequeue messages to queues on different machines. In

addition, queues can be used as a supporting data structure for algorithms that

access persistent data using FIFO semantics.

Table 4.2 contains a formal specification of the operations of the persistence-

capable Queue data type. Each of these operations is defined as follows.

100

4.4. Data Model

• Constructor Operations. The constructor operations of the Queue type

are New, which creates an empty queue; Add, which adds an item into

the queue; Dequeue, which evaluates and removes the first item in the

queue; and Clear, which removes all the items in the queue. The Remove

operation is a hidden constructor operation which is introduced to simplify

the specification; it removes the first item from the queue.

• Inspection Operations. The inspection operations of the Queue type are

SeeFront, which evaluates the first item of the queue; IsEmpty, which tests

if the queue contains any items; and Size, which evaluates the number of

items in the queue.

Map

A Datom map is a persistence-capable collection of items which associates keys

to persistent values. Accordingly, a key value has to be provided to store and

retrieve an item from a Map. The semantics of this data structure imitate those of

a dictionary, which are useful in situations where persistent data can be associated

with a key value. A map data type is one of the most important structures in

computer science and it is frequently used in application programs. They are

commonly employed to organise record-oriented data and to provide a simple

mechanism for single-keyed databases. In the context of the Datom API, maps

can also be used as building blocks of more complex data structures.

Table 4.3 presents the algebraic specification of the operations supported by

the Map type. The “.=.” notation indicates an infix operator with operands of

type Key, which can be objects of any type that supports the equality operation.

The precise notion of equality depends on the sort of objects to which the operator

is applied. Since the equality operator is necessary for the correct manipulation

of a Map item, the specification is explicit about its use. The constructor and

inspection operators for the Datom Map are informally defined as follows.

• Constructor Operations. The constructor operations of the Map type

are New, which brings an empty map into existence; Put, which inserts an

item in the map; Delete, which eliminates the specified item from the map;

and Clear, which removes all the items from the map.

• Inspection Operations. The inspection operations of the Map type are

Get, which evaluates the specified item; IsEmpty, which tests whether the

101

4.4. Data Model

QUEUE

sort Queue enrich PersistentItem

imports INTEGER, BOOLEAN

New → Queue

Remove(Queue) → Queue

Add(PersistentItem, Queue) → Queue

Dequeue(Queue) → PersistentItem

Clear(Queue) → Queue

SeeFront(Queue) → PersistentItem

IsEmpty(Queue) → Boolean

Size(Queue) → Integer

New = an empty Queue

SeeFront(New) = Fail exception (empty queue)

SeeFront(Add(pi, New)) = pi

SeeFront(Add(pi1, Add(pi2, Q))) = SeeFront(Add(pi2, Q))

IsEmpty(New) = True

IsEmpty(Add(pi, Q)) = False

Size(New) = 0

Size(Add(pi, Q)) = 1 + Size(Q)

Remove(New) = Fail exception (empty queue)

Remove(Add(pi, New)) = New

Remove(Add(pi1, Add(pi2, Q))) = Add(pi1, Remove(Add(pi2, Q)))

Dequeue(Q) = pi (Obtained by a combination of SeeFront(Q) and Remove(Q))

Clear(Q) = New

exceptions

pi = Null ⇒ Fail Add exception (null object)

Table 4.2: Algebraic specification of a Datom Queue.

map is empty; HasKey, which tests if the specified key refers to an item in

the map; and Size, which evaluates the number of items stored in the map.

List

A Datom list is a persistence-capable collection of items referred by their position

within the list. This abstract data type is interesting not only because it enforces

an order among the items in the list but also because it defines a movable point

102

4.4. Data Model

MAP (Key: [.=. → Boolean])

sort Map enrich PersistentItem

imports INTEGER, BOOLEAN

New → Map

Put(Key, PersistentItem, Map) → Map

Delete(Key, Map) → Map

Clear(Map) → Map

Get(Key, Map) → PersistentItem

IsEmpty(Map) → Boolean

HasKey(Key, Map) → Boolean

Size(Map) → Integer

New = an empty Map

Get(k, New) = Null

Get(k, Put(j, pi, M)) = if k = j then pi else Get(k, M)

IsEmpty(New) = True

IsEmpty(Put(pi, M)) = False

HasKey(k, New) = False

HasKey(k, Put(j, pi, New)) = if k = j then True else False

Size(New) = 0

Size(Put(k, pi, M)) = if HasKey(k, M) = True then Size(M) else 1 + Size(M)

Delete(k, New) = New

Delete(k, Put(j, pi, M)) = if k = j then Delete(k, M) else Put(j, pi, Delete(k, M))

Clear(M) = New

exceptions

k = Null ⇒ Fail Put, Delete, Get, HasKey exception (null object)

pi = Null ⇒ Fail Put exception (null object)

Table 4.3: Algebraic specification of a Datom Map.

of interest in the sequence of items. As a consequence, it is possible to inspect

all the elements in the list without changing its contents.

List structures are required in applications that require to manage collections

of items in which the relative ordering between list items may need to be observed.

Programming scenarios for the use of lists abound; they find their application

either as primary programming objects or as building blocks of more complex

data structures. Table 4.4 shows the algebraic specification of the persistence-

capable List data type. Similar to the other Composite Entities, it has two types

103

4.4. Data Model

LIST

sort List enrich PersistentItem

imports INTEGER, BOOLEAN

New → List

Append(PersistentItem, List) → List

Add(Integer, PersistentItem, List) → List

Delete(Integer, List) → List

Clear(List) → List

Get(Integer, List) → PersistentItem

IsEmpty(List) → Boolean

Size(List) → Integer

New = an empty List

Get(i, New) = Fail exception (out of bounds)

Get(i, Append(pi, L)) = if i = Size(L) then pi else Get(i, L)

Get(i, Add(j, pi, L)) =

if i = j then pi

elseif i < j then Get(i, L)

elseif i > j then Get(i-1, L)

Get(i, Delete(j, L)) = if i < j then Get(i, L) else Get(i+1, L)

IsEmpty(New) = True

IsEmpty(Append(pi, L)) = False

IsEmpty(Add(i, pi, L)) = False

Size(New) = 0

Size(Add(i, pi, L)) = 1 + Size(L)

Clear(L) = New

Add(i, pi, L) = if i = Size(L) then Append(pi, L)

Delete(i, Add(j, pi, L)) =

if i = j then L

elseif i < j then Add(j-1, pi, Delete(i, L))

elseif i > j then Add(j, pi, Delete(i-1, L))

exceptions

i < 0 or i > Size(L) ⇒ Fail Add, Delete, Get exception (out of bounds)

pi = Null ⇒ Fail Add, Append exception (null object)

Table 4.4: Algebraic specification of a Datom List.

104

4.4. Data Model

of operations: constructor and inspection operations. They are informally defined

as follows.

• Constructor Operations. The constructor operations of the List type

are New, which creates an empty list; Add, which incorporates an item to

the list at a specified position; Append, which adds an item at the end of

the list; Delete, which removes from the list an item at a specified position;

and Clear, which removes all the items from the list.

• Inspection Operations. The inspection operations of the List type are

Get, which evaluates the value of the specified element; IsEmpty, which

tests if the list contains any items; and Size, which evaluates the number

of items in the list.

Matrix

A Datom matrix is a persistence-capable data structure that describes a two-

dimensional arrangement of items. Thus, every position in the matrix is associ-

ated with a tuple of the form (i, j) where i and j denote the row and column indices

of a given cell within the matrix, respectively. The Matrix data type has many

applications. For example, they may be used in applications that associate coor-

dinates to persistent data, or that manipulate information using tabular access

semantics such as worksheets, embedded tables in word processing documents,

or board games. Table 4.5 contains a formal specification of the operations of

the persistence-capable Matrix data type. Each of these operations is informally

defined in the following way.

• Constructor Operations. The constructor operations of the Matrix type

are New, which creates an empty matrix and initialises the items of the

matrix to Null; Set, which creates a matrix where a specified element has

been assigned an item; DeleteRow, which removes the specified row from

the matrix; DeleteColumn, which removes the specified column from the

matrix; Resize, which modifies the dimension of the matrix to the specified

values setting new cells to Null, if any were created as the result of the

resizing; and Clear, which sets to Null all the elements of the matrix.

105

4.4. Data Model

• Inspection Operations. The inspection operations of the Matrix type

are Get, which evaluates the item at a specified position; IsEmpty, which

tests if the matrix is empty; SizeRows, which returns the number of rows

in the matrix; SizeColumns, which returns the number of columns of the

matrix; and Size, which returns the number of cells in the matrix.

MATRIX

sort Matrix enrich PersistentItem

imports INTEGER, BOOLEAN

New(Integer, Integer) → Matrix

Set(Integer, Integer, PersistentItem, Matrix) → Matrix

DeleteRow(Integer, Matrix) → Matrix

DeleteColumn(Integer, Matrix) → Matrix

Clear(Matrix) → Matrix

Resize(Integer, Integer, Matrix) → Matrix

IsEmpty(Matrix) → Boolean

SizeRows(Matrix) → Integer

SizeColumns(Matrix) → Integer

Size(Matrix) → Integer

Get(Integer, Integer, Matrix) → PersistentItem

New(i, j) = an empty Matrix

IsEmpty(New(i, j)) = True

IsEmpty(Set(i, j, pi, M)) = if pi 6= Null then False else True

SizeRows(New(i, j)) = i

SizeRows(Set(i, j, pi, M)) = SizeRows(M)

SizeRows(DeleteRow(i, M)) = SizeRows(M) - 1

SizeRows(DeleteColumn(j, M)) = SizeRows(M)

SizeRows(Clear(M)) = SizeRows(M)

SizeRows(Resize(i, j, M)) = SizeRows(New(i, j))

SizeColumns(New(i, j)) = j

SizeColumns(Set(i, j, pi, M)) = SizeColumns(M)

SizeColumns(DeleteColumn(j, M)) = SizeColumns(M) - 1

SizeColumns(DeleteRow(i, M)) = SizeColumns(M)

SizeColumns(Clear(M)) = SizeColumns(M)

SizeColumns(Resize(i, j, M)) = SizeColumns(New(i, j))

continued on next page...

106

4.4. Data Model

...continued from previous page

Size(New(i, j)) = i*j

Size(Set(i, j, pi, M)) = Size(M)

Size(DeleteRow(i, M)) = Size(M) - SizeColumns(M)

Size(DeleteColumn(j, M)) = Size(M) - SizeRows(M)

Size(Clear(M)) = Size(M)

Size(Resize(i, j, M)) = Size(New(i, j))

Get(i, j, New(k, l)) = Null

Get(i, j, Set(k, l, pi, M)) = if i = k and j = l then pi else Get(k, l, M)

Get(i, j, DeleteRow(k, M)) = if i < k then Get(i, j, M) else Get(i+1, j, M)

Get(i, j, DeleteColumn(l, M)) = if j < l then Get(i, j, M) else Get(i, j+1, M)

Get(i, j, Resize(k, l, M)) = if i ≤ k and j ≤ l then Get(i, j, M) else Null

Clear(M) = New(SizeRows(M), ColumnRows(M))

exceptions

i < 0 or i ≥ SizeRows(M) or j < 0 or j ≥ ColumnRows(M)

⇒ Fail Set, Get exception (out of bounds)

i < 0 or j < 0 ⇒ Fail New, Resize exception (out of bounds)

i < 0 or i ≥ SizeRows(M) ⇒ Fail DeleteRow exception (out of bounds)

j < 0 or j ≥ SizeColumns(M) ⇒ Fail DeleteColumn exception (out of bounds)

Table 4.5: Algebraic specification of a Datom Matrix.

4.4.2 Elements

Elements are the fundamental unit of storage for application data in the Datom

API. Datom Elements can be regarded as docking points at which application

programs load or store typed data. They represent application-specific program-

ming abstractions with rich semantics and defined access routines. Accordingly,

the definition and specification of Elements is done by developers based on appli-

cations’ programming abstractions. This creates an API perceived by developers

as extensible since they are able to model the interface to persistent data and to

extend it, if necessary.

The main objective of Datom Elements is to use application-specific data

semantics to manipulate persistent data. The fundamental motivation behind

Datom Elements relies on the observations made by Keedy and Richards which

highlight that file data should not be manipulated as a free-standing data struc-

ture [KR82]. Instead, files should be modeled as information-hiding modules

107

4.4. Data Model

that encapsulate the low level details of the manipulation of file data; such as

the design and implementation of the major data structures and algorithms that

process file content.

However, in the Datom API this principle is applied at sub-file granularities

to provide programmers with a tool to discern the composition of file contents,

breaking the vision of file data as a monolithic data structure. In parallel, this

approach is closely related to the object model that associates operations to data

abstractions, which is of common use in modern object oriented programming

languages; Elements can be thought of as a compound of these fine-grained pro-

gramming objects into one single item.

getLocOnMap(): Coord

setLocOnMap(Coord)
setStreet(String)

getZipCode(): ZipCode

getStreet(): StringsetZipCode(ZipCode)

Figure 4.2: An abstract view of a hypothetical Datom Element.

Elements are type managers which aim to provide a light-weight mechanism to

store application data. As far as the API is concerned, the data items stored inside

a given Element lack identity and are managed through the holding Element.

Elements’ data is thought to be clustered together on disk since they clearly

reflect the data access semantics of the application, and as a result, a powerful

hint to spatial locality of reference. For example, Figure 4.2 shows a hypothetical

Element in charge of managing persistent data corresponding to an address. The

internal data abstractions of the Element such as the data structures or the code

to operate on them are hidden and are only accessible through the Element’s

interface, which guarantees type safety in the manipulation of persistent data.

108

4.4. Data Model

key

key

Element Element Element

Element

Element

Composite Entity: List

Datom List {

}

 append(PersistentItem)

 isEmpty()

 add(Integer, PersistentItem)
 delete(Integer)
 clear()

 size()
 get(Integer)}

Datom Map {

 put(Key, PersistentItem)
 delete(Key)

 hasKey(Key)

 get(Key)

 size()

 isEmpty()
 clear()

Composite Entity: Map

key

key

key

.

.

.

.

.

}

Datom Element: UserAddress {
 setStreet(String)
 setCity(String)
 getStreet()
 getCity()

 setZipCode(ZipCode)
 ...

key1

2

3

4

5

6

 setLocOnMap(Coordinate)

Figure 4.3: Example of the relationships and interfaces of persistent items in the

Datom data model.

In this way, instead of accessing persistent data using the generic read and

write operations on plain arrays of bytes as supported by the file API, developers

create data access routines that directly employ application data access seman-

tics. Figure 4.3 exemplifies the interactions between the main types of persistent

items of the Datom API. As shown, Elements are final data containers that do not

reference other persistent items in the graph of persistence. In contrast, Compos-

ite Entities are in charge of keeping the relationships between the different items

of the graph and of providing access routines to these elements.

Figure 4.3 also shows that at each persistent item in the graph of persistence

there is a well-defined set of operations to manipulate persistent data abstrac-

tions; the actual definition of Elements is discussed in the next Chapter. An

application manipulating the graph of persistence shown in the figure using the

Datom API would be able to include statements of the form:

Map.get(key6).get(1).getStreet();

to obtain the desired information from within an Element, or to create sophisti-

cated statements to access data in the graph of persistence such as:

Map.get(key6).append(UserAddress);

109

4.5. The Datom API in the World of Persistence

4.5 The Datom API in the World of Persistence

The Datom API represents a data-centric and language neutral option to system-

atically and incrementally disclose files’ structure and typed contents. This model

assists programmers with more powerful persistent data abstractions enabling not

only the provision of new services to applications, but also the manipulations of

persistent data in a more intelligent way. Figure 4.4 shows the gap that the

Datom API attempts to fill in the world of the main storage paradigms. The

API’s tenet is to positively impact both the ability of programmers to manage

persistent data and the morphology of persistent code. The structure of data

exposed by the Datom API eliminates code used to parse and serialise data from

a flat file model; the programmer no longer manually manages internal data lay-

outs.

File Systems

Semistructured Data

Relational DBs

PPLs

OO DBs

OR DBs

Low

Abstraction Managed

[DN65]

Evolution of
Query Model

[ABC+83]

[ABD+89]

[SRL+90][PGMW95]

[Cod70]

High

High

Datom

Figure 4.4: Datom API in context with the main storage system paradigms.

The Datom API aims to enable the creation of tightly integrated navigational

querying capabilities based on data types and structure instead of relying on

whole file analysis and regular expressions to extract specific data elements. Im-

proved data access strategies to persistent data should be provided relying on

different mechanisms such as key-based access, navigation and positioning, data

types, or content. Additionally, according to the computing environment or user

requirements, applications can create different policies to load data from disk or

across networks such as whole-prefetching or incremental access [PCV03].

110

4.5. The Datom API in the World of Persistence

If the storage system API also includes meaningful information-hiding ele-

ments as its fundamental unit of access, code is made more understandable and

naturally assists in providing data integrity by eliminating a whole range of errors

due to wrongly accessing and updating data. Furthermore, it may also enable

data sharing through an open data interface that can be manipulated using dif-

ferent programming languages. By accessing application data according to its

semantics, programmers have explicit knowledge on what and how data persists.

Although other storage technologies offer solutions to each of the issues men-

tioned above, the Datom API has been specially crafted for data access require-

ments as typically seen in file-based applications. It stresses a balance between

the trade-offs faced by programmers aiming to migrate from the file paradigm to

a more evolved data model in the search of the benefits brought by higher levels

of abstraction in the manipulation of persistent data. Next, a detailed analysis of

the major persistence paradigms in comparison with the rationale of the Datom

API is presented.

Databases

Databases, whether relational or object oriented, are designed to cope with data-

intensive workloads, dynamic querying capabilities, and advanced transactional

frameworks with ACID properties. A considerable amount of persistent data of

applications running on top of file systems is amenable to structural decomposi-

tion; however, its access patterns do not map properly to database functionality.

Applications that use databases accept as necessary the overheads introduced by

a high-level query language (e.g. SQL, OQL, XQuery) such as parsing, query

optimisations, access path and plan selection, and query execution in exchange

of the ability to dynamically query the content of the database.

However, the majority of applications using the file API have well-defined

access patterns that can be predicted in advance. This offers the advantage

that programmers might be able to create ad-hoc, and consequently, more ef-

ficient data access strategies directly on top of applications’ abstractions, since

the overheads associated to query languages are removed. Furthermore, the kind

of access pattern enabled by query languages, in which very small portions of

data are selected dynamically, highly differs with the consistent access patterns

exhibited in file system workloads; data in this context is mainly accessed navi-

gationally and processed following a more coarse-grained access pattern.

111

4.5. The Datom API in the World of Persistence

Strict ACID properties incur in important overheads by coordinating the ac-

tions of a potentially large number of processes against the same information,

probably stored in a database table. High data contention and no tolerance to

inconsistencies in application data have shaped databases’ design. If applications

do not require transactional semantics for up-to-the-last operation, as is the case

of Datom’s application domain, the overhead added to support ACID properties

has little value and a negative impact on performance [WD92].

Object relational [SRL+90] and object oriented databases [ABD+89], aim

to provide all the advantages of the object oriented programming model to the

persistent world. They are aimed to support data-intensive applications with

complex data models that require the services of robust and advanced transac-

tional frameworks (e.g. long and nested transactions). Thus, they add persistence

to objects, including their associations and methods, and support major features

such as complex objects, object identity, type hierarchies, classes, extensibility,

and computational completeness. This approach introduces additional overheads

to the traditional database paradigm which, as has already been discussed, rep-

resents a mismatch with the requirements of applications using the file API.

Persistent Programming Languages

Persistent programming languages [ABC+83, ADJ+96, Car86, DCBM89] allow

programmers to manipulate persistent data directly from the host language with-

out using any form of an intermediate data-manipulation language (e.g. SQL).

The impedance mismatch problem, as typically seen in other storage paradigms,

is solved by providing orthogonal persistence [AM95] to programming language

abstractions. PPLs are aimed for applications that require an intimate composi-

tion of long-lived data and programs (i.e. Persistent Applications Systems).

This strong cohesion between data and logic opposes the sharp separation

of concerns observed in file-based applications and environments. Data-centric

environments dictate that only a set of abstractions should be taken into account

with persistence purposes and the rest disregarded. Consequently, PPLs present

problems of integration with mainstream computing environments. This situation

is evident in the sort of difficulties to properly handle external state reported in

recent implementations [JA98] of persistent programming languages (e.g. graphic

libraries, network parameters and utilities, system managed objects such as files).

112

4.5. The Datom API in the World of Persistence

Furthermore, confining type support to a specific language compiler and

tightly integrating the store format with a specific programming language re-

stricts developers into that programming language. A possible workaround to

this limitation would be to adopt a form of intermediate language supported by

a common language runtime as done in the .NET Framework [NET05]. However,

no implementation of such a multi-language persistent platform has yet been

reported. Additionally, saving data in a format which tightly binds persistent

data to a programming language might become a limitation since normally data

outlives the programming language used to create it [MT03].

In contrast with the orthogonal persistence feature supported by PPLs, in

which every single object is a potential candidate for persistence, the Datom

API constitutes a data-centric strategy that stress a judicious manipulation of

structure and data types with explicit control of persistent abstractions through

a richer and neutral API. The Datom API preserves the prevalent separation of

concerns seen in file-based applications while aiming to reduce its negative impact

on persistence related programming tasks.

Semistructured Data

Plenty of research has been done in the area of XML [BPS+04] to handle semistruc-

tured data. Among other important features, XML data has undoubtedly proved

its value in enforcing syntax-level interoperability [Bra03]. However, current ma-

nipulation of XML file formats has limitations mainly due to the programmatic

APIs used to process XML data; tools depend heavily on stream-based data ma-

nipulation to disclose file structure and data types. This reproduces many of the

limitations observed in traditional file processing such as substantial program-

ming effort or whole-file processing.

Pull based APIs such as SAX [SAX05] represent a light-weight solution to

XML processing but the programmer has to create his own object model and

write code to handle SAX events. Furthermore, since data is processed sequen-

tially, backward data navigation is not possible. This is a major disadvantage to

developed advanced data access strategies. The only feasible workaround involves

storing processed XML and writing extra code; that results in memory overheads

and defeats the purpose of using SAX.

Tree-based APIs such as DOM [HHW+04] create whole-file in-memory repre-

sentations and thus are able to provide tree-like navigation. However, this model

113

4.5. The Datom API in the World of Persistence

puts great strains on system resources, specially if the XML document is large.

Furthermore, applications will normally need to build their own more diverse data

structures with particular access semantics. It is extremely inefficient to build a

tree-like data structure from a file format only to map its elements into different

data structures, that will be processed with completely different semantics (e.g.

lists), and then discard the original data structure.

When compared with XML APIs, the Datom API aims to explicitly expose

data type and structure without relying on internal file formats by employing a

rich set of programming abstractions equipped with fully navigational and incre-

mental loading capabilities (discussed in Chapter 5). These differences enable the

Datom API to work better for diverse data sets and to create more sophisticated

strategies to manipulate persistent data.

Other Works

Attempts to move away from the traditional file API to higher levels of ab-

straction have been investigated in different works. Compound files in the OLE

Structured Storage Model [Bro94] represent a solution to the problem of internal

file structure. In a compound file, storage and stream objects have a strong par-

allel with directories and files in a conventional file system; they are organised

hierarchically and their respective APIs show strong similitudes.

By using compound files programmers avoid the burden of directly dealing

with internal data placement leaving this task to the file system infrastructure

itself; they also improve application performance due to features such as incre-

mental access in which only the required portions of the compound file are loaded

into memory. However, the compound files API reproduces most of the limita-

tions seen in the traditional file API. Data objects are stored as untyped byte

arrays in closed application data formats; programmers are still left with the

onerous task of developing persistent data access code using an untyped API.

Gribble et al. [GBHC00] explore the utility of distributed data structures

and higher-level abstractions (e.g. hash tables, b-trees) as a storage infrastruc-

ture replacing the traditional flat view of data as a persistent data management

layer. They highlight the advantages of these data structures such as a more

structured interface with higher-level abstractions; operations are applied to the

data structure itself instead of to a range of bytes. Under the same line, the

Boxwood project [MMN+04] explores the utility of data structures as storage

114

4.5. The Datom API in the World of Persistence

infrastructure. Higher-level abstractions and structural information inherent to

the data abstractions can enable the system to perform better load-balancing,

data prefetching, or informed caching.

To a certain extent the Datom API shares the ideology of these works [Bro94,

GBHC00, MMN+04]. However, one of the core goals of Datom is to show how ap-

plication data can be modelled and effectively manipulated through a richer API

that discloses file data organisations, relationships, and data types. Moreover,

it aims to expose particular data access semantics through the combination of

practical ADTs. Furthermore, the Datom API stresses programmability features

and the impact of improving the persistent substrate from a programmer point

of view.

Berkeley DB [OBS99, BDB04] supports efficient storage of record oriented

data using a simple (key, value) access mechanism. Different to the Berkeley DB

approach, which is completely unaware of applications data types, the Datom API

aims to fully exploit the notion of type and the judicious employment of pointers

present in specific system-managed ADTs. Thus, the data model supported by

the Datom API enables the creation of richer data relationships based on nesting

and aggregation of fundamental data storage abstractions. Additionally, Datom’s

persistent Elements allow access to data through a well-defined interface created

based on application-specific data types.

Microsoft is currently implementing WinFS [Rec05], a layer over an exist-

ing file system (NTFS [Nag97]). It provides a richer data storage model than

traditional file systems and attempts to unify access to file systems, relational

databases, and object oriented databases. With its incorporated schematised

data model, WinFS aims to systematically expose persistent data types, struc-

ture, and relations. WinFS programming model enables access to the persistent

store via three different APIs (i.e. managed WinFS, ADO.NET, and Win32),

which give programmers the ability to manipulate persistent data according to

their needs (i.e. relational, object-oriented, XML based, or Win32 files).

Another approach proposes type-system and language extensions to natively

support different data models (e.g. relational or semistructured) within a stat-

ically typed object oriented environment [MS03]. This approach allows objects,

tables, and semistructured data to be constructed, updated, and queried in a

unified and type-safe manner. A noteworthy implementation of this proposal is

the Language Integrated Query (LINQ) project [HB05], which adds query ca-

pabilities to the Common Language Runtime (CLR) and languages that target

115

4.6. Summary

it. The query facility builds on lambda expressions and expression trees to allow

predicates, projections, and key extraction expressions to be used as opaque exe-

cutable code or as transparent in-memory data suitable for downstream process-

ing or translation. The standard query operators defined by LINQ are integrated

with ADO.NET and System.Xml to allow relational and XML data to gain the

benefits of language integrated query.

The key difference between the Datom API and these proposals (i.e. WinFS

and LINQ) is that it does not aim to unite current persistent data models or

facilitate a whole programming platform. Instead it aims to offer an alternative

storage API based on a different set of ADTs whose main goal is to provide an

option to file-based storage; an area where other storage APIs seem to fall short.

4.6 Summary

In this chapter I proposed to deliberately uncover file data organisations in order

to ease programming effort and better model applications’ persistent abstractions.

Thus, I introduced the Datom API that deliberately departs from the view of file

content as a monolithic and flat object by unveiling data types and internal data

organisations. The Datom API represents a data-centric solution that aims to

bring to light application data types using information-hiding elements, which in

turn are organised under high-level programming abstractions.

The Datom API aims to exploit the benefits of a more abstract API in terms

of software productivity, code understandability, and maintenance costs. When

compared with the mechanisms used by other storage system APIs, its design

contrasts with the introduction of minimal overheads and compromises.

116

Chapter 5

From Analysis to Implementation

In this chapter I present the implementation of the Datom API. The prototype

combines techniques that ease the management of the data model supported

by the Datom API. Its novel persistence model aims to balance the trade-offs

between functionality, overheads, and generality. Distinctive features in the im-

plementation of the API are automatic data movement between the volatile and

persistent data spaces, mindful use of resources based on the application’s access

patterns, automatic memory management, full control of update granularity, and

atomic updates. The strength of the prototype relies on the improvement in per-

sistent data manipulation enabled by the combination of its data model and the

mechanisms that support its persistence model effectively.

In Section 5.1, I introduce the persistent model supported by the implementa-

tion of the Datom API. Then, in Section 5.2, I present the high-level architecture

of the prototype of the Datom API. The rest of this chapter presents the imple-

mentation of the prototype following a top-down approach. Thus, in Section 5.3

I discuss the Interface Subsystem, which presents the functionality of the Datom

API to developers. In Section 5.4, I introduce the Storage Management layer.

Then, in Section 5.5, I present the Persistent Data Composer, which provides

the translation services of the API. Finally, in Section 5.6, I discuss the Physical

Storage Subsystem.

117

5.1. Persistence Model

5.1 Persistence Model

The persistence model supported by the implementation of Datom is a feature

that affects the prototype’s design at different levels. It defines how to write code

in order to manipulate both transient and persistent items. Thus, it specifies

the way in which persistent data is created and deleted, as well as how the

internal mechanisms of the system are able to modify the lifetime of persistent

items. The persistence model of the Datom API represents a novel strategy

called selective reachability, a hybrid model derived from the combination of two

original persistence models: persistence by reachability [AM95] and persistence

by type [Sol92].

Selective reachability aims to integrate the strengths of both of these ap-

proaches. Persistence by reachability frees the programmer from the burden of

writing code to control the movement of data among the hierarchy of storage

devices and from coding translations between long-term and short-term data

representations, since all these tasks are performed automatically by the system.

However, one of the main criticisms of this approach is the potential risk of un-

intentionally pushing to disk unwanted data. To be able to precisely determine

which objects persist, programmers need not only to have a skillful command of

a whole programming language, but also to keep a mental representation of the

graph of persistence. This puts the strain of managing a large conceptual chunk

on programmers, i.e. they need to keep track of a large amount of information to

properly manipulate persistent data. This, ultimately, may restrain them from

using this type of persistence model.

In contrast, the persistence by type approach makes explicit the distinction

between the two groups of data, i.e. volatile and persistent. This differentiation

can be used as a programming tool that not only defines the boundaries of the

graph of persistence but also facilitates the manipulation of the conceptual chunk

for developers. In addition, it may be employed to optimise access to objects

which are known not to be persistent [RCS93] and to incur overheads only for

those objects that are managed as persistent.

In the implementation of the Datom API, the identification of persistent items

is done by the system in an automatic way by determining their reachability

from a root of persistence. However, membership of the graph is restricted by

type; only items that have been explicitly declared as persistence-capable can

be included as valid nodes. Membership is enforced by the type system of the

118

5.2. The Big Picture

host programming language. This approach does not suffer from the problem

of dangling pointers, or invalid references, in persistent data that points to non-

persistent objects, since all references take place among persistence-capable items.

Selective reachability represents a persistence model that is suitable for the

data manipulation approach enabled by the Datom API which defines as per-

sistent only a well-defined set of objects: Composite Entities and Elements. It

supports programmers by relieving them from writing code to control the move-

ment of data and from coding translations between the volatile and the persis-

tent space. Furthermore, by explicitly defining the boundaries of the persistent

graph, developers are provided with a programming device in which the concep-

tual chunk can be more easily processed and managed.

For the most part, the techniques used to implement Datom’s persistence

model are influenced by the adoption of Java as the programming language of

choice. The main limitation in this approach is the reduced ability to define

memory management strategies on top of operating system primitives. On the

other hand, the introduction of a level of isolation between the implementation of

the Datom API and particular hardware configurations augments the portability

and generality of the library.

The rest of this chapter presents the implementation of the Datom API and

shows how selective reachability is accomplished in the prototype. Unless other-

wise stated, the rest of this chapter uses the term Datom to denote the imple-

mentation of the Datom API.

5.2 The Big Picture

This section provides an architectural overview of Datom. The prototype devel-

oped is a fully-functional application library which enforces both the data model

specified in Chapter 4 and data persistence through selective reachability. The

prototype has been programmed in the Java programming language using the

Sun’s Java 2 Standard Edition v1.4.2 virtual machine implementation. Datom

is available as a JAR package that is included as a Java library in applications’

code1.

1Available at http://www.cl.cam.ac.uk/users/cbp25/datom/datom.jar

119

5.2. The Big Picture

Figure 5.1 breaks down the prototype by component. The implementation

has been organised using a layered architecture made of interchangeable soft-

ware modules with well-defined responsibilities and interfaces. The isolation of

functions enabled by a layered architecture facilitates fine-tuning or even the re-

placement of specific functionality within layers without impacting the rest of the

prototype; a characteristic that eases successive refinements in the implementa-

tions of the Datom API.

APPLICATION

INTERFACE SUBSYSTEM

PERSISTENCE SUBSYSTEM

PHYSICAL STORAGE SUBSYSTEM

Berkeley DB Store

DatomMatrix Elements...

DatomQueue DatomStackDatomMap Store

DatomList

Persistent Data Composer

Object Space Concurrency

Storage Manager

Manager
Cache

ManagerManagement

PDC Manager
Data

Translator
Data

Binders

Persistent Items

Bytes

DataType
Dictionary

Figure 5.1: High-level view of the layered architecture of the implementation of the

Datom API.

The responsibilities and modules of each of the subsystems that make up

Datom are defined as follows.

• Interface Subsystem. It exposes to programmers the abstractions of the

Datom API and the persistence model that defines the API implementation.

It also validates applications’ operations on persistent items.

120

5.2. The Big Picture

• Persistence Subsystem. It creates, destroys, and moves persistent data

between the volatile and the persistent data spaces. It is composed of

two sublayers: Storage Management and Persistent Data Composer. The

former validates items’ identity, performs memory management, and exe-

cutes concurrency control while the latter conducts the transformation of

persistent data between the physical storage format and the run-time rep-

resentation of persistent data.

• Physical Storage Subsystem. At the bottom layer, the Physical Storage

Subsystem is in charge of securely storing and fetching persistent items from

secondary storage as requested by the Persistence Subsystem. The current

implementation of the Datom API uses the Berkeley DB Java Edition,

an off-the-shelf technology that is a good match for the requirements of a

Physical Storage Subsystem for the prototype of the Datom API.

The typical interactions between each of the layers of the prototype are shown

in Figure 5.2, which illustrates two important issues in the architecture of the

Datom API. First, interactions between layers are performed through a well-

defined set of calls where each layer uses the capabilities of the layer below and

adds new capabilities while abstracting the underlying complexity. Second, it

shows the transformations of persistent data at the different layers in the proto-

type.

At the Interface Subsystem layer persistent items are full-blown and seman-

tically rich programming objects. Applications manipulate persistent data in

this form through object handlers that provide access to the operations offered

by the persistent item. Below the Interface Subsystem, the Storage Manager

manipulates persistent items in their primitive form. It uses a logical life-long

identification number (PID) that is associated with every persistent item.

At the Persistent Data Composer (PDC) layer items are in the process of

being recovered from disk or being serialised to be sent to physical storage, so

they take the form of flat arrays of bytes. For storage and retrieval purposes, the

PDC employs a simple interface to the Physical Storage layer which associates

the item’s PID with its flat representation; accordingly, they are fetched or stored

by their corresponding PIDs. Finally, the serialised version of a persistent item

represents its form on disk. The next sections discuss in-depth the main functions

and implementation of each of the layers that constitute the prototype of the

Datom API. It follows a top-down approach from application interactions to the

description of the Physical Storage Layer.

121

5.3. Interface Subsystem

save open

store(PID) fetch(PID)

Storage Manager

PDC

Physical Storage

get(PID)put(PID)

Interface

Figure 5.2: Persistent data manipulation in the layered architecture of the Datom

API prototype.

5.3 Interface Subsystem

The fundamental role of the Interface Subsystem layer is to expose the necessary

functionality to operate on persistent items. In addition, it aims to hide from

programmers the details of interactions with the physical storage medium.

The group of public classes of the Datom API validates the data model at

the Interface Subsystem layer in various ways. First, they enforce membership

of the graph of persistence by using the type checking mechanisms of the host

programming language; in this way only valid networks of persistent items can

be created. Furthermore, the typed interface offered by data Elements warrants

type safety since all the persistent items that are entered or retrieved through

this interface are type checked at execution time. Abnormal manipulation of

persistent items is managed by Datom through a set of exception classes that

report detailed information about the nature of the error.

Another important function in the public interface of Datom is related to

control over updates. The process to stabilise a graph of persistence (i.e. to

122

5.3. Interface Subsystem

push uncommitted updates to disk) can be triggered in two ways: implicitly

or explicitly. An implicit invocation occurs when a root item is inserted in a

Store object. If this operation is successful then the root of persistence has been

validated. An explicit invocation takes place when the save() method is executed

from a validated root item. The stabilisation of a graph of persistence involves

running the reachability algorithm that identifies the mutated members of the

graph together with the new items that should be promoted to disk. However,

the internal mechanisms of this process are fully hidden from the programmer’s

view.

5.3.1 Components

To be able to persist data, programs need to interact with the Store object,

which represents the initial point of access to the persistent infrastructure of

Datom. It provides methods to create an entry for a specified graph of persistence

in the store, recover it, or delete it. The Store maintains a directory of valid

entries which associates names to instances of items acting as roots of persistence.

Programmers fetch stored graphs of persistence by name from the Store.

Figure 5.3 shows the different data types provided by the implementation of

the Datom API and their relationship2. Selective reachability enforces member-

ship in the graph of persistence by type. Concretely, all data items in the graph

of persistence inherit their persistent capabilities from the PersistentItem base

class. This class includes the basic functionality to identify, manage, and persist

data items.

The full functionality of the API is exposed to programmers through the

programming abstractions that can be identified in the figure as the class defini-

tions in bold. Programmers manage the graph of persistence through this set of

classes that, ultimately, instantiate the abstract data types that constitute the

data model supported by the Datom API. They are defined as follows.

• DatomList. This class represents a persistence-capable abstraction that

holds a collection of persistence-capable items ordered by their position in

the list.

2A full reference of the public classes of the Datom API is available at

http://www.cl.cam.ac.uk/users/cbp25/datom/apidocs/index.html

123

5.3. Interface Subsystem

DatomMatrix DatomQueue

DatomMap

<<PersistentItem>>

<<Element>> <<CompositeEntity>>

DatomListDatomStackUserAddress
.

Figure 5.3: Overview of the classes that expose the functionality of the Datom API.

• DatomMap. This class provides a persistence-capable abstraction which

stores associations between keys and their corresponding persistence-capable

items.

• DatomMatrix. This class represents a persistence-capable abstraction

that holds a collection of persistence-capable items organised in a two-

dimensional arrangement.

• DatomStack. This class provides a persistence-capable abstraction that

stores persistence-capable items using LIFO semantics.

• DatomQueue. This class provides a persistence-capable abstraction that

stores persistence-capable items using FIFO semantics.

Applications never instantiate a PersistentItem class since this is only an ab-

stract class that enables persistence in concrete programming abstractions. Sim-

ilarly, CompositeEntity and Element types are abstract type definitions which

enrich the persistent item concept and provide specialised capabilities to the

programming abstractions that enforce the data model of the Datom API. The

implementation of these three classes is discussed in detail in Section 5.4.1.

Actual application data is defined by inheriting persistence capabilities from

the Element type. An example of a persistent data Element defined by the pro-

grammer is shown in the class diagram of Figure 5.3 with the name UserAddress;

this class realises the application type introduced previously in Figure 4.2.

124

5.3. Interface Subsystem

5.3.2 Simplifying the Creation of Datom Elements

In contrast with the fixed interface provided by Composite Entities, the public

interface of data Elements is fully defined by the programmer. Programmers can

perform this task from scratch or, to simplify the creation of persistent Elements,

can use the ad-hoc automatic code generator tool provided with the distribution

of Datom. This tool automatically creates a persistence-capable class that ex-

poses an interface to the data types specified in a definition file. The format of

the definition file is simple and is comprised of a header line and a list of the

fields for which calls in the class interface should be created. Thus, the format of

the definition can be described as:

fully-qualified-element-name [toString] | [equals] | [hashCode]

field-Type field-Name "validation-java-snippet"

Figure 5.4 shows the file definition for the interface of the UserAddress Ele-

ment. The fully qualified Element name provides its visibility in the context of

the application, i.e. its package name. The UserAddress name is followed by a

list of options that override the default implementation of the specified methods

in the Java object model. This is done to automate the definition of methods

whose default behaviours either do not match a data-centric approach or repre-

sent useful utilities. Accordingly, toString returns a string representation of the

Element based on the contents of its fields that is useful for debugging purposes;

equals evaluates the equality of state of UserAddress (opposed to equality of

identity); and hashCode defines the hash code for the Element based on the con-

tent of its fields. Each field definition includes a validation snippet which aims

to provide the necessary data-integrity conditions over the values passed through

the Element’s interface.

datom.data.examples.UserAddress toString equals hashCode

Street String "X!=null && X.trim().length()>0"
Number int "X>0"
ZipCode com.application.ZipCode "X!=null"
LocOnMap com.application.Coord "X!=null"

Figure 5.4: Example of a data Element definition file.

125

5.4. Storage Management Sublayer

The result of running the code generator on a specification file is the class def-

inition of a persistence-capable Element with a public interface to query and up-

date its fields. To create this class definition, the code generator uses a predefined

template file containing code formats for building Elements. The code formats

are managed using a property list in which property names correspond to specific

portions of the Element’s class. Properties’ values are generic strings formatted to

accommodate the parameters taken from the definition file. Properties’ values are

defined using the patterns supported by the java.text.MessageFormat, which

enables these parameters to be set dynamically at runtime. Programmers may

enrich the resulting class definition to fine tune Elements’ behaviour, if needed.

Aside from allowing to write code quickly, the automatic code generator used

in Datom offers various advantages [Her03]. It aims to augment the quality of

the code since Elements are derived from a high-quality and debugged template.

The naming of the output class is completely consistent, which makes Elements’

interface easy to use and understand. The method used to designate the names

of the interface members follows the getter and setter naming conventions; a

common pattern used in object oriented programming. Furthermore, it is possible

to rebuild the code base rapidly. Finally, a type definition file can be used by

multiple programming languages to derive Datom Elements from the same source.

5.4 Storage Management Sublayer

The Storage Management Sublayer involves creating, destroying, and moving per-

sistent data between the persistent and volatile spaces. Accordingly, the Storage

Management Sublayer makes use of the translation services provided by the Per-

sistent Data Composer (PDC). The life cycle of persistent data items in Datom is

controlled by the Storage Manager which automatically moves data from memory

to disk and vice versa.

The possible states of a given item in Datom are depicted in Figure 5.5. New

items are persistence-capable only and stay in the application-managed memory

space until they are promoted to persistence (i.e. a copy of these items is created

on disk for the first time). Once they have been promoted, they have a corre-

sponding copy on disk and may have an entry on Datom’s cache. Items reach

the disk because they have either been promoted to persistence or evicted from

Datom’s cache. They can be recovered from disk as requested by the Storage

Manager. For identity purposes items are assigned a PID for their lifetime.

126

5.4. Storage Management Sublayer

On disk

Application volatile
memory space

Cached, clean, and
with a copy on disk

Cached, dirty, and
with old copy on disk

New Persistent
Item

Updates

Promoted to
Persistence

Item
Request

Item Eviction

Updates

Save Invoked

Figure 5.5: Life cycle of persistent items.

The persistence model supported by Datom relies on selective reachability,

which controls the identification of persistent data and their automatic promotion

to disk. This method identifies persistent data by computing the transitive closure

of all items reachable from a given root of persistence. Two mechanisms are

fundamental to support this operation: incremental data loading and promotion

to persistence. These mechanisms are described in detail later in this Section.

5.4.1 Components

Figure 5.6 shows the main software components of Datom’s Persistence Subsys-

tem, which is divided in two sublayers: Storage Management and Persistent Data

Composer (PDC). This section elaborates on the former; a detailed discussion of

the latter is presented in Section 5.5. The major software components involved

in storage management are defined as follows.

• Storage Manager. This component is responsible for coordinating the

operation of the Datom prototype. It controls persistent items’ life cycle

by interacting and synchronising the operation of the rest of the software

elements in the prototype.

127

5.4. Storage Management Sublayer

Cache
Manager

Allocator
PID

Control
Concurrency

Worker
TranslationData Binder

Factory Manager
PDC

Translation Jobs

type information persistent data

Root Index

Cache of Persistent Items

Storage

Manager

Policies’ Pool

Interface Subsystem

Physical Storage Subsystem

Storage Management

Persistent Data Composer

Figure 5.6: Main software components of the Persistence Subsystem layer.

• Root Index. The Root Index is a persistent data structure that stores

the associations between root names and their corresponding PIDs. Datom

identifies persistent items using a unique identification number (PID) which

is assigned to objects at promotion time; PIDs are associated to objects for

their whole lifetime. Entries to the index are added or deleted according to

applications’ operations.

• PID Allocator. The PID Allocator is in charge of creating PID numbers

and dispatching them as requested by the Storage Manager. Since PID allo-

cation involves disk access to guarantee that numbers are assigned uniquely

and securely even in the event of system crashes, they are produced atom-

ically. To avoid performance penalisation, the PID number is incremented

128

5.4. Storage Management Sublayer

in steps of 300 each time. In this way, the Storage Manager has control of a

pool of PIDs without suffering expensive disk accesses every time it needs

to assign a new PID. The step size can be modified in the setup of Datom.

• Cache Manager. The Cache Manager handles a cache of persistent items

according to the eviction policy indicated in the configuration of Datom; al-

though at the moment Datom enforces only one eviction policy. The cache

is used to prevent items from being removed from memory by the garbage

collector of the Java Virtual Machine (JVM) and to avoid translation pe-

nalisation for items that are constantly requested by the application.

• Concurrency Control. The Concurrency Control module manages con-

current access to persistent items. Datom uses the Java synchronized

mechanism to enforce concurrent access to persistent items.

Persistent Items’ Internals

The provision of the fundamental persistence capabilities of the Datom’s ab-

stractions are provided by the PersistentItem abstract class (see Figure 5.3).

It preserves the identity of persistent items by ensuring that a given persistent

item is assigned a PID only once in its lifetime. This class also manages a channel

of communication with the Storage Manager. This conduit is used to notify it

about any relevant application activity on items, mainly those that affect their

state such as updates, and reference swizzling.

By default, a newly created item has its PID set to a null value. It is only when

it is promoted to persistence that it is assigned a meaningful PID. In a similar way,

the connection with the Storage Manager is initially set to null and updated on

promotion. Finally, the PersistentItem class defines the implementation-wide

mechanism for marshalling and unmarshalling persistent items by extending the

functionality of the serializable interface of the Java programming language

to their child classes.

The other classes that support the persistence functionality in Datom, i.e.

Element and CompositeEntity, enrich the capabilities of the PersistentItem

class. The CompositeEntity class is an abstract definition of the generic func-

tionality that has to be implemented by the classes that are part of the set of

Composite Entities, i.e. list, map, matrix, queue, and stack. This interface is

used by the Storage Manager to control items in a uniform way, independently

of their specialised type.

129

5.4. Storage Management Sublayer

Thus, the CompositeEntity class defines abstract methods for swizzling and

deswizzling a persistent item, clearing item’s references, freeing memory resources,

and querying an item about its references. The implementation of these abstract

methods is provided by the CompositeEntity’s derived classes (see Figure 5.3).

The provision of this functionality enables the Storage Manager to correctly ma-

nipulate persistent data. From a programmer’s point of view, this functionality

is hidden.

CompositeEntity’s specialisation classes are declared as final. This pre-

vents programmers from introducing spurious data to the graph of persistence

by extending these classes and allows the compiler to perform optimisations via

inlining expansion of the methods in these classes. Inlining presents the trade-off

between code size and performance gains. In the context of the Java program-

ming language, it is implied that the compiler is able to detect this trade-off and

choose wisely whether to inline a final method.

Furthermore, a Composite Entity aggregates all of the item’s core informa-

tion. Thus, with the exception of the inspection operations that involve traversing

nodes in the graph of persistence, Datom is able to answer all the inspection oper-

ations promptly without involving additional disk accesses. Internally, Composite

Entities employ standard objects of the Java Collections library as their back-end

data structures. The advantage of this approach is the facility to fine tune the in-

ternal behaviour of Composite Entities easily due to the different implementation

options offered by the Java Collections classes.

For example, the DatomList Composite Entity employs the Vector class as its

back-end data structure. The implementation of this class may perform either

aggressive or reserved memory allocation strategies according to configuration

parameters. This type of configuration parameters may be available for applica-

tions in future releases of Datom to provide applications with the opportunity to

manage resources in a clever way.

The Element abstract class is a type definition for a particular group of

persistent items in the API, those defined by applications. The definition of this

class ensures that their specialisation classes cannot redefine the functionality

employed by the Storage Manager to control Composite Entities in a generic

way.

Persistent items notify the Storage Manager about updates using the method

update defined in the PersistentItem class. Update notifications cause the

Storage Manager to include persistent items in the set of mutated objects. Up-

130

5.4. Storage Management Sublayer

date notification is supported implicitly for Composite Entities. By convention,

Datom defines that setter members in an Element’s interface update its contents.

Accordingly, the code generator tool automatically includes update notifications

in all the interface members that use this naming convention.

However, for cases in which programmers decide to build Elements from

scratch, or design interfaces with more elaborate patterns, it is a developer re-

sponsibility to include update notifications in the Element’s definition where ap-

propriate. The advantage in this approach is the flexibility to create efficient

update notification strategies by fine-tuning the placement of notifications in the

code. Thus, execution penalties due to update notification are incurred only

where programmers consider necessary.

There are other possible strategies for identifying dirty items [AM95]. One

option can be the use of a precompiler to generate code during compilation in

order to include data in the set of mutated items. Similar to the strategy used

by Datom, this mechanism has the disadvantage that incurs in execution penal-

ties on subsequent updates to the item. A different possibility would be to use

virtual memory support to detect updates dynamically, e.g. through the use of

the Address Translation Unit (ATU) protection system. This method has the

disadvantages of being approximate (i.e. multiple objects in the same protected

region) and of interacting with other uses of the ATU protection system. Fur-

thermore, it involves modifying the operation of the JVM. These issues increase

the complexity of implementation.

If compared with Datom’s ideology, which aims to provide programmers with

complete control on the manipulation of persistent data, both strategies present

the drawback of limiting the programmer’s ability to decide when items should be

pushed to disk. On the other hand, complete control over updates comes at the

cost of inserting update notifications in the code manually. The prototype aims

to simplify this task by making available the update method in all the classes

derived from the PersistentItem class.

5.4.2 Main Processes

Incremental Data Loading

The incremental data loading strategy used in Datom frees programmers from

manually moving data from disk to memory. Thus, the movement of persistent

131

5.4. Storage Management Sublayer

data between volatile memory and disk is performed in an automatic and incre-

mental manner according to the access pattern of the application. This process

is illustrated in Figure 5.7. All the references held by Composite Entities are

resolved lazily. This implies that, when an application first loads a Composite

Entity into memory, all the references to its members remain unresolved. It is

only when there is an explicit request from an application to access any of its

members that the Storage Manager evaluates if the requested item is already in

memory or if it has to be fetched from disk.

The incremental loading mechanism detects light-weight surrogates in place

of persistent items. A surrogate is a conventional object composed of an attribute

to store a PID and of two methods to set and to get the PID value. The Storage

Manager discovers whether an item is resident in memory by checking if the

item that the surrogate represents has an entry in the cache of persistent items.

If so, then the reference to the original surrogate is modified to point to the

cached persistent item. If not, the object is requested from disk and the cache

is updated to include the new persistent item. Datom makes use of inlined

method calls to check the residency of items to reduce performance penalisation.

The disadvantage of executing code even when the item is loaded in memory is

counterbalanced by the fact that references take place exclusively in a selected

group of persistent items (i.e. Composite Entities).

Data Store

Persistent
Items

DatomMap

DatomList

DatomStack

DatomQueue

DatomMatrix

Elements

Store

Cache

Persistence Subsystem

Surrogates

Datom Interface

Transient Objects

Persistence−Capable
Items

Application

Figure 5.7: Management of persistent items in Datom.

132

5.4. Storage Management Sublayer

Promotion to Persistence

Promotion to persistence and flushing of uncommitted updates is a process which

is also accomplished automatically by Datom. It relieves programmers from man-

ually moving data from memory to disk. When application programs request a

stabilisation of a graph of persistence, any updated items should be pushed to

disk. In addition, a copy on disk has to be created for all the new items that are

reachable from the already-persistent items. Thus, a non persistent item is said

to be promoted to persistence when, as part of the stabilisation of the graph of

persistence, a copy of the item is created on disk for the first time.

The promotion algorithm involves, as a first step, discovering all the new

items that are reachable from the set of mutated items. After that, the graph is

traversed to find additional items reachable from the original group of new items.

Finally, the group of items that is transferred to disk consists of all the mutated

items together with the items to be promoted. It is not necessary to consider

unmodified persistent items since they do not contain references to new items.

Furthermore, unmodified items in the graph of persistence have an up-to-date

copy on disk, and thus, they do not need to be stored again.

Two operations take place before transferring persistent items to disk. First,

the Storage Manager assigns a PID and a valid connection to the items in the

promotions set. Second, Composite Entities are deswizzled before being sent to

disk. Deswizzling requires replacing persistent items’ references to other per-

sistent items with surrogates. Deswizzled Composite Entities and Elements are

now sent to the Persistent Data Composer, which serialises and sends them to

disk. To preserve the integrity of the graph of persistence, the stabilisation of

the store takes place as an atomic operation supported by the facilities of the

Physical Storage Subsystem. Finally, Composite Entities’ references are swizzled

to continue with the normal operation of the application. The Storage Manager

requests active references from the cache of persistent items with this purpose.

Accordingly, a graph of persistence in an intermediate state may be composed

of three kind of objects, as illustrated in Figure 5.7. Full-fledged persistent items

are objects in memory that have a corresponding copy on disk. This implies

that they have been promoted to persistence at some point as part of a previous

stabilisation of the graph. Due to the incremental data loading strategy used by

the Storage Manager, it is possible that some of the items in the graph can have

the form of surrogates. The real identity of these objects will not be resolved until

133

5.4. Storage Management Sublayer

the application attempts to use them, at which point the surrogate is replaced

with a persistent item fetched from disk.

The third type of objects in a graph of persistence corresponds to the items

that are reachable from any of the full-fledged persistent items in the graph but

for which a copy on disk is not yet available. These objects are persistence-

capable items, which will be promoted to disk as part of the next stabilisation of

the graph.

Cache Management

The Cache Manager controls a cache of persistent items. The main goal of this

cache is to eliminate the negative impact on performance due to upward data

translations, i.e. the conversion between on-disk and in-memory data represen-

tations. In contrast, the reduction of expensive disk accesses is better addressed

by a cache of persistent items in its flat form at the Physical Storage Subsys-

tem. Every time an application attempts to access a persistent item through

a surrogate, the Persistent Manager requests this item to the Cache Manager.

The Cache Manager checks if it holds a reference to the persistent item associ-

ated with the corresponding surrogate. If a persistent item reference is found for

the requested surrogate, the Cache Manager passes this reference to the Storage

Manager, which removes the reference to the surrogate in the Composite Entity

for the newly acquired reference.

The eviction strategy enforced by the Policy Manager uses the facilities pro-

vided by the reference-object classes of the Java programming language, which

support a limited degree of interaction with the garbage collector of the Java

Virtual Machine (JVM). Persistent items stored in the cache are encapsulated in

soft reference objects. A soft reference object maintains a reference to a persis-

tent item in such a way that the persistent item may still be reclaimed by the

garbage collector. An object is softly reachable if it is not strongly reachable but

can be reached by traversing a soft reference. Accordingly, the cache of persistent

items uses a hash table that associates PIDs to soft reference objects which in

turn hold persistent items as referents.

A reference object is not cleared while its referent is strongly reachable from

any other object in the application program. This guarantees that persistent

items in the graph of persistence will be cached if they are referenced in an active

graph of persistence. If a persistent item is removed from the graph of persistence

134

5.4. Storage Management Sublayer

and it is not reachable other than through its soft reference in the items’ cache,

this object may be garbage collected by the JVM and its entry safely removed

from the cache.

Eviction occurs at the discretion of the garbage collector in a memory-sensitive

way. The garbage collector might or might not reclaim the memory of this persis-

tent item depending on how recently the persistent item was created or accessed.

However, all the memory space held by soft references will be reclaimed before

the JVM throws an OutOfMemoryError. Other eviction policies may be designed

on top of reference objects according to the levels of reachability of persistent

items.

Concurrency Control

It is possible that in many situations concurrently running threads in the appli-

cation share access to the graph of persistence. Accordingly, Datom protects the

integrity of the data in the graph by synchronising the simultaneous activities of

different threads. The implementation of the Datom API supports concurrency

control at the level of the operations offered in the public Datom interface.

Within a program, the code segments that access the same persistent item

from separate, concurrent threads are considered to be critical sections. In

Datom, a critical section corresponds to the members of the public interface

of persistent items. Accordingly, they are protected with the synchronized Java

primitive in their definition. The JVM associates a lock with every persistent

item. Locks are acquired upon entering an item’s critical section. The acquisi-

tion and release of a lock on a persistent item is done automatically and atomically

by the Java run-time system. This ensures that race conditions cannot occur in

the underlying implementation of the threads, thus ensuring data integrity.

All the methods in the Composite Entities’ public interfaces use the synchro-

nisation primitives available in the Java programming language to ensure that

the graph is accessed in a controlled manner. Concurrency control on access to

methods in Elements is normally related to the logic of the application. There-

fore, it is a programmer’s duty to define the synchronisation of Elements requiring

concurrency control. However, Datom supports concurrency control on all pub-

lic method access to avoid programming mistakes. Thus, all the operations in

the interface defined using the automatic Element generator are protected with

synchronised statements.

135

5.5. Persistent Data Composer Sublayer

5.5 Persistent Data Composer Sublayer

The Persistent Data Composer is the second sublayer of the Persistence Subsys-

tem. Its services are related with data translation of persistent items from its on

disk and in-memory data formats. Persistent items are moved from memory to

disk and vice versa upon request of the Storage Manager. The Storage Manager

passes individual Composite Entities (always in their swizzled form) and Ele-

ments to the PDC Manager, which flattens the items in order to transfer them

to disk. Translation is performed on one item at a time.

The costs associated to object storage techniques based on data translation

contrast with storage strategies in which the on-disk format of the data matches

exactly the in-memory format. However, data translation has the benefits of

increasing data longevity, since its disk format is independent of the hardware

architecture used to store the data. Figure 5.6 illustrates the main software

modules involved in the data translation process. They are as follows:

• PDC Manager. The Persistent Data Composer (PDC) Manager receives

requests from the Storage Manager to translate an object to its flat repre-

sentation. This type of request occurs only when objects need to be sent

to disk. In addition, the PDC Manager fetches persistent items from disk

and translates them into their in-memory representation.

• Data Binder Factory. The Data Binder Factory is in charge of managing

bindings for the different types of persistent items. A binding normally

includes functionality for item marshalling and unmarshalling.

• Translation Worker. The Translation Worker is in charge of executing

the transformation requests of the PDC Manager.

5.5.1 Persistent Items’ Translation

Although simple Java serialisation techniques could be used for item marshalling,

Datom uses the serialisation and binding services provided by the BIND API of

the Berkeley DB JE [Lam05]. The utilities in this library enable applications to

separate an object’s class information from its actual contents. The benefits of

this approach in comparison with the standard Java serialisation technique are

various. First, there is a reduction in the size of the serialised items; this enables

136

5.5. Persistent Data Composer Sublayer

the Physical Storage Subsystem to make more efficient use not only of disk space

but also of the memory employed to cache persistent items. Furthermore, the

items’ type information needs to be stored only once and can then be used for

all the persistent items of the same type.

The translation process takes place only after an explicit request from the

Storage Manager to recover or store persistent items. PIDs are used to identify the

requested persistent items between the Storage Manager and the PDC Manager.

In Datom, two different stores are part of the Physical Storage Subsystem. The

Type Dictionary stores the class information of persistent items; it constitutes

a mapping between class names and type information. The Data Store is used

to save items’ contents, which are retrieved by the PDC Manager through their

corresponding PIDs.

The process of serialising a persistent item is as follows. The PDC Manager

informs the Data Binder Factory when a new item needs to be serialised. The

Data Binder Factory checks if the type information of the new persistent item

already exists in the Type Dictionary. If it does, the Data Binder Factory fetches

the type information and builds the binding for the corresponding type. If it does

not exist, it creates an entry in the Type Dictionary for the new type information.

The binding is then used by the PDC Manager to fire a new translation job

through the Translation Worker.

The persistent items’ bindings include functionality to convert objects to bytes

and vice versa. When data needs to be recovered from disk the Data Binder

Factory fetches type information from the Type Dictionary to construct a binding

that is used to execute a new translation job.

To preserve items’ integrity, the stabilisation of the store takes place as an

atomic operation. This implies that all the persistent items that constitute the

mutated and promotion sets have to be successfully transferred to disk or the

stabilisation operation fails, leaving the data on disk in the state of the last suc-

cessful stabilisation. The boundaries of the stabilisation operation for a particular

graph of persistence are delimited by the Storage Manager and indicated to the

PDC Manager. The latter element requests a transactional cursor to the Physical

Storage Subsystem to safely transfer the group of updates to disk.

137

5.6. Physical Storage Subsystem

5.6 Physical Storage Subsystem

The main objective of the Datom’s physical storage substrate is the provision of

an efficient and secure mechanism for retrieval and storage of persistent items.

The implementation of this functionality was considered to be out of the scope of

the implementation of a Datom prototype. Thus, instead of building the physical

storage layer from scratch, Datom employs Berkley DB Java Edition v2.0.54; a

high-performance data management tool written in Java. An introduction to the

implementation of Berkeley DB JE is presented in the following lines. A detailed

analysis of this tool can be obtained from different sources [OBS99, Lam05].

The aims behind Berkeley DB JE are well aligned with the physical storage

requirements of Datom. First, it fully eliminates the overheads introduced by

a query language. Furthermore, it offers a programmatic record-oriented stor-

age interface that stores data in an application’s native format. And finally, it

supports atomic updates on groups of disk transfers.

As mentioned before, Datom uses a strategy that separates the type informa-

tion of items from their actual contents for persistence purposes. Accordingly,

the Physical Storage Subsystem provides two different types of stores; they are

defined in the following manner.

• Type Dictionary. This data repository is used to securely store all the

type information of all the persistent items that are promoted to persistence.

This store is managed by the Data Binder Factory.

• Data Store. The Data Store is in charge of storing the actual data of

persistent items and is managed directly by the PDC Manager.

5.6.1 On-Disk Storage of Persistent Items

The Type Dictionary as well as the Data Store are built on top of the services

provided by Berkeley DB JE. Figure 5.8 illustrates the relationships between the

three main software modules that constitute the implementation of the Berkeley

DB JE data management tool. They are defined as follows.

• Log-based storage. On-disk data management is performed using a log-

based storage approach in order to maximise write performance.

138

5.6. Physical Storage Subsystem

• Map. Berkeley DB JE uses an in-memory concurrent B+tree structure

acting as a map to the data on disk.

• Cache Manager. Finally, to deal with memory limitations the Berkeley

DB JE enforces a least-recently eviction policy on the items in the map.

The communication between the PDC and the Physical Storage Subsystem is

built around two calls of the programmatic interface of the Berkeley DB JE. The

get(PID) call is used to obtain a persistent item from disk using its corresponding

identification number. The put(PID, byteArray) call is used to store an item

in its serialised form on disk that can later be retrieved using its PID.

PID
315

PID
315

Manager

LRU Cache

Log file 1

PID
315

Log file 2

Map

Berkeley DB JE

Type Data Persistent Data

Data Store

Type
Dictionary

Figure 5.8: Main software modules of the Physical Storage Subsystem.

The Type Dictionary is built on top of the fundamental byte-based API of the

Berkeley DB JE. Thus, the Type Dictionary is just a regular store whose records,

containing class information, are managed and stored using the same structures

employed for persistent items’ data. For this reason, the figure simplifies the

representation of the Data Dictionary. The software processes of the store for

persistent items’ data, shown on the right hand side of Figure 5.8, are explained

in the following lines; they also apply to the operation of the Data Dictionary.

139

5.6. Physical Storage Subsystem

The Berkeley DB JE implementation uses a log-based storage approach for on-

disk data management in order to maximise write performance. Write operations

append serialised persistent items to a log file until it reaches the maximum

allowed size (10 MB by default); new empty log files will be subsequently created

as write operations fill the log file in use. Updates of old persistent items are a

two-step procedure in which the updated data is appended to the current log and

the mapping to the old record is changed to point to the new one.

Deleting an old persistent item only involves updating the map to indicate

that there is no data for that PID. A copying garbage collector running as a

background daemon is activated periodically by the system, looking for log files

that predominantly contain stale data. This cleaning process copies all non stale

records to the current log file, and then deletes the old log file from the file

system. The employment of a log-structured storage approach is based on the

hypothesis that the ever-increasing memory sizes on modern computers lead to

disk IO becoming write-heavy because disk reads can be almost always satisfied

from memory cache. This view matches the persistent data access pattern that

the Datom API favours, i.e. to keep persistent items in memory until they need

to be saved.

To manage the in-memory cache of records, the Berkeley DB JE implemen-

tation adds concurrency mechanisms to a B+tree based structure. It holds only

PIDs at internal nodes and data at leaf nodes. Figure 5.8 also illustrates the pro-

cess of loading persistent items from the log files. When searching for a persistent

item that exists in the store but that has not yet an entry in the tree, the traversal

procedure will eventually reach a dead end node which contains a pointer to the

data on disk. The persistent item record is loaded from disk and included in the

active map. If the record does not exist for a given PID, no mapping through

the tree will be found for that PID.

The tree structure acts as a cache of serialised persistent items that saves

expensive disk accesses for frequently used data. The cache manager in Berkeley

DB JE approximates the usage information of each node in the tree by keeping

track of how recently each node was used and enforces a least-recently used (LRU)

eviction policy. It makes use of a LRU list of the nodes in the map whose LRU

time stamp is updated every time a node is traversed. This list is traversed with

the support of a sliding window and a priority queue that discriminates items

based on the LRU time stamp of the node [Lam05].

140

5.7. Summary

5.7 Summary

This chapter presented the implementation of the Datom API. It began by defin-

ing the concept of selective reachability, the persistence model supported by the

prototype. Then, it discussed the high-level architecture of Datom. Its layered

design favours a separation of concerns that, ultimately, simplify the modifica-

tion of the internal mechanisms of each layer. Finally, this chapter elaborated on

the infrastructure that supports not only the data model of the API but also its

persistence model.

141

Chapter 6

Evaluation

In this chapter I present a comprehensive evaluation of the Datom API. In Sec-

tion 6.1, I report on the experience of migrating two file-based applications to

the persistent abstractions offered by the Datom API. Then, in Section 6.2, I as-

sess operational aspects of the implementation of the API including performance,

scalability, and latency. In Section 6.3, I evaluate usability aspects of the Datom

API from a programmer point of view; the results of this study clearly indicate to

which type of developer the API may be suitable and why. Finally, in Section 6.4,

I present a summary of the key contributions of this chapter.

6.1 Practical Experiences with the Datom API

This section reports on the impact of migrating applications to the Datom ab-

stractions. The goal of this study is twofold. First, to establish a baseline for the

typical transformations and form of application code that employs the Datom

API. Second, to evaluate the feasibility and advantages of using the Datom API

instead of other common storage facilities to manage structure and type in file

data. With this purpose, two applications were ported: the first application uses

the basic services of the file API, while the second employs the XML DOM API

to manage structured data. The results obtained from this study suggest that

the changes in the application agree with good software engineering practices and

lead to the construction of software of improved quality.

142

6.1. Practical Experiences with the Datom API

6.1.1 Source Code Measurements in Context

Measuring the change incurred in applications’ source code caused by the migra-

tion process is important for various reasons. First, they are correlated with the

amount of effort needed to convert applications to Datom abstractions. Second,

they are a clear indication of the consequences of adopting a more abstract API

as an underlying storage infrastructure. Finally, by analysing the final form of

the source code and by comparing it with its original version, it is possible to

evaluate whether the storage system API may represent a better software tool for

programmers in the given context. However, it is necessary to keep in mind that

applications created from the start using the Datom API may exhibit a neater

integration with its facilities.

The source code metrics collected in this study aim to reveal if the adoption

of the Datom API improves the way in which programmers deal with persistence-

related tasks. Additionally, they are also useful to indicate to what extent the new

API abstractions modify the interaction of programmers with persistent data.

The relationship between internal software attributes collected by source code

metrics and external attributes such as understandability, usability, or maintain-

ability have been suggested by a number of studies. In general, it is recognised

that reducing the number of lines of code has a positive impact on the under-

standability and maintainability of the software [GSAW98]. Maintaining large

applications requires a lot of effort, and big code bases are vulnerable to error.

The Datom API would likely augment the quality of the application if it is able

to reduce the size of applications, as long as the same functionality is provided.

However, reducing the lines of code is not fully indicative of an improved

software product. It is also necessary to analyse how the code is transformed

and what is the impact on the morphology of the application caused by the

introduction of a different technology. This involves analysing how pervasive the

Datom API is and what the compromises in its employment are.

The use of the Datom API is expected to reduce the size of the source code

and to hide low-level interactions with the file system. It should augment the

degree of abstraction that developers are able to manipulate through the storage

system API in order to improve code understandability and maintainability. Ad-

ditionally, it should greatly simplify data retrieving tasks by making code clear

and simple. With the Datom API, manual parsing and serialisation of application

abstractions should be fully eliminated.

143

6.1. Practical Experiences with the Datom API

Source Code Measurements Explained

Instead of building a tool from scratch or counting source code modifications

manually, the Persistent Code Measurement Tool (PCMT) [Gri97] has been used

to gather code metrics. PCMT is a general purpose measurement tool that can

be easily adapted to fulfil the requirements of a counting strategy suitable for the

Datom API. As mentioned before, one of the main goals of collecting source code

metrics is to attempt to establish the relationship between internal and external

software attributes.

In this respect, the metrics produced by PCMT provide a rich and fine-grained

description of the effect of adopting the Datom API at the source code level from

which the relationship between internal and external software attributes can be

investigated. PCMT not only quantifies the proportion of lines and classes that

explicitly manipulate the persistent abstractions provided by the Datom API but

also collects measurements on the distribution and clustering of persistent lines of

code in the application. Accordingly, it measures the persistence impact ratio and

produces statistics at class level for the whole application. Moreover, the PCMT

metrics enable one to track and quantify the presence of the graph of persistence

in the application, an issue that is directly related to the mental effort needed by

the programmer to manipulate persistent data through the abstractions offered

by the Datom API.

This detailed analysis is accomplished by using a keyword file that can be

easily replaced to characterise the usage of the Datom API in different applica-

tions. Persistent lines of code are determined by a set of keywords which act as

identifiers of persistent code. PCMT parses Java source code and tracks the use

of persistent keywords to identify instances of objects referring to persistent code.

Given that the persistence model of the Datom API is based on selective reach-

ability, i.e. all the persistent elements in an application can be distinguished

by their type, this method of identifying persistent code produces a complete

characterisation of the use of the Datom API.

Furthermore, the PCMT metrics provide a detailed characterisation that indi-

cates where and how an application is transformed by the adoption of the Datom

API. The PCMT’s counting strategy is based on production rules rather than

textual lines of code; it is a strategy that produces an accurate measure since it

eliminates the effect of different programming styles. This counting strategy is

needed to properly compare the original versions of the applications with their

corresponding portings since they have been developed by different programmers.

144

6.1. Practical Experiences with the Datom API

The source code metrics reported by the PCMT tool are shown in Table 6.1.

Metric Description

LOC Lines of code

PLOC Lines of code referring to persistent elements

PIROL Persistence impact ratio on lines of code (PIROL=PLOC/LOC)

NOC Number of classes

NOPC Number of persistence affected classes

PIROC Persistence impact ratio on classes (PIROC=NOPC/NOC)

ADPLOC Average distance between persistence affected lines of code

PIBPLOC Length of the interval between the first and last PLOC

Table 6.1: Summary of source code metrics reported.

• LOC. PCMT counts lines of code (LOC) as productions rather than simply

textual lines; this helps to minimise the impact of personal programming

styles. Accordingly, a line of code is defined as a compiler directive, a

declaration, or an executable ending with “;”. Class and methods headers

are counted as lines as well. Comments in the source code are ignored.

• PLOC. Lines of code referring to persistent objects are considered those in

which at least one class or interface from the keyword file is used. Nested

classes’ LOCs or PLOCs are counted as being part of the outer class and

not as part of the inner classes. As a way of example, the following line of

code is counted as a PLOC considering that the DatomMap class has been

included in the keyword file:

DatomMap dm = new DatomMap();

Additionally, objects introduced by persistent declarations are also tracked

and counted as a PLOC every time they appear in a line of code. Following

the example above, the next statement will also be counted as a PLOC

since the dm variable is of type DatomMap, which happened to be a persistent

keyword:

int dmSize = dm.size();

• NOC. The number of classes or interfaces in the application are reported

by the NOC metric. Internal classes are considered to belong to the outer

class and are not counted individually.

145

6.1. Practical Experiences with the Datom API

• NOPC. Persistence affected classes are considered those that contain at

least one PLOC. Accordingly, the number of persistence affected classes

(NOPC) is the sum of all the classes that contain persistent lines of code.

• PIROL. The persistence impact ratio on lines of code per class (or inter-

face) is calculated by dividing the PLOC metric by the corresponding LOC

metric.

• PIROC. Similar to the PIROL metric but it quantifies impact ratio at a

class level. It is calculated by dividing the number of classes (NOC) by the

number of persistence affected classes (NOPC).

• ADPLOC. PCMT captures the average distance between the persistence

affected lines of code in a given class in the ADPLOC metric.

• PIBPLOC. The interval between the first and last persistence affected

line of code is accounted in the PIBPLOC metric which is reported as

the proportion of the total number of lines. Both the PIBPLOC and the

ADPLOC metrics estimate the distribution of persistent code within a class.

6.1.2 The Applications Ported

Two applications were chosen to be ported to the Datom API: Bibkeeper and

Gradebook. The results of both portings are discussed in turn in Sections 6.1.3

and 6.1.4. Next, the features of both applications are presented.

Bibkeeper

The first application that was migrated to run on top of Datom abstractions is

called Bibkeeper [BIB05]; it is written in Java and its main function is to manage

bibliographical references written in BibTeX format1. Bibkeeper presents a user-

friendly graphical interface as shown in Figure 6.1. This application was chosen as

a reasonable candidate for migration after considering important features intrinsic

to the group of applications for which the Datom API was designed.

Bibkeeper’s persistent data is fairly rich in structure and type. Its source

code is a representative example of the type of functionality needed in applica-

tions running on top of the flat file paradigm. In this kind of application, all the

1http://en.wikipedia.org/wiki/BibTeX

146

6.1. Practical Experiences with the Datom API

high-level abstractions manipulated at run time are lost inside file formats. Con-

sequently, its data layout on disk follows a predetermined organisation, although

not directly accessible through the storage system API. It makes extensive use of

parsing libraries to build the data layout on disk into programming abstractions

and vice versa. Finally, it represents a potential enabler of data sharing and

collaborative work in which concurrent units of work can be directly associated

to individual entries of the database.

Figure 6.1: Screen shot of Bibkeeper managing a group of bibliographical references.

Gradebook

The second application ported to the Datom API is called Gradebook [GRA05].

Its core functionality is the management of multiple courses, students, and assign-

ments. It supports the creation of arbitrarily nested and weighted assignments,

different types of summaries, statistics, and scatterplots, as well as different data

views. Gradebook presents a graphical interface to users as that shown in Fig-

ure 6.2. However, the main interest on porting this application is that it uses a

persistent layer based on an XML file format that is recovered and updated with

the XML DOM API [HHW+04].

The programming patterns that are observed in the majority of applications

using the XML DOM API can be also identified in Gradebook. The XML DOM

API recovers structure in XML files and creates a tree-like representation of

this structure in memory. Programs operate on this in-memory tree to recover

147

6.1. Practical Experiences with the Datom API

Figure 6.2: Screen shot of Gradebook managing a group of courses.

application data and to place it in application-specific data abstractions. In

the same way, when data has to be saved, the application program needs to

provide a set of routines to recreate XML data out of the application’s run-time

abstractions.

One of the problems with this approach is that applications do not operate

directly on persistent abstractions. Instead, an intermediate data representation

has to be employed which exhibits completely different data access semantics

to those used by the application. As a consequence, the persistence mismatch

problem remains and programmers are forced to maintain an explicit mapping

between persistent and run-time data abstractions.

6.1.3 Removing the File API

Addition of Datom Types in Bibkeeper

The work to migrate Bibkeeper to the Datom API consisted of different tasks.

As a first step, it was necessary to understand the logic and structure of the

application in order to identify the points where persistent code was being used.

After that, Java IO calls and volatile versions of objects in charge of managing

persistent data were replaced with the persistent abstractions provided by the

Datom API where appropriate. And finally, the ported code was debugged.

148

6.1. Practical Experiences with the Datom API

Porting Bibkeeper to the Datom API affected the morphology of the appli-

cation in a number of ways. In the file-based Bibkeeper, once persistent data

has been parsed, it is grouped into different objects representing mainly lists and

maps ; these objects are spread in various classes of the application but principally

managed in the BibtexDatabase class.

The final layout of the whole graph of persistence for a Bibkeeper database

is illustrated in Figure 6.3. In order to port the application to the Datom

API, transient versions of the original map and list objects were replaced with

DatomMap and DatomList abstractions which provided a natural and straight-

forward mapping for these objects. Then, they were grouped together in a

DatomMapRoot object managed by the corresponding BibtexDatabase object.

Thus, the graph of persistence for a specific database became rooted in its cor-

responding DatomMapRoot. The procedural behaviour of the application was left

unchanged.

signature

strings

preamble

comment

entries

meta

BibtexEntry

BibtexEntry

BibtexEntry

BibtexString

BibtexString

BibtexString

BibtexString BibtexString BibtexString

EntryId

EntryId

EntryId

DatomMapRoot

DatomMap

DatomList

.

TypeId

TypeId

TypeId

DatomMap DatomList

UnitUnit

.

Figure 6.3: Layout of the graph of persistence in the ported version of Bibkeeper.

Metrics Obtained

Bibkeeper is a medium-sized application comprising 6002 lines of code of which

208 make explicit use of the persistence facilities provided by the Java IO libraries

as shown in Table 6.2. The values in this table were obtained using the keyword

149

6.1. Practical Experiences with the Datom API

files shown in Appendices A.1 and A.2 for the Datom-based and file-based versions

of the application, respectively. The keyword file for the Datom-based version

corresponds to all the classes and interfaces that are part of the Datom API

plus the persistent data types of the application. The keyword file used for the

file-based version includes the classes and interfaces that are part of the Java IO

API, which is the persistent technology used by the original Bibkeeper.

Application Name LOC PLOC NOC NOPC

File-based Bibkeeper 6002 208 81 15

Datom-based Bibkeeper 5570 469 76 40

Table 6.2: High-level comparison of the file-based Bibkeeper against its Datom-based

version.

Table 6.2 reports the high-level differences between both version of the appli-

cations. It shows a reduction in both the lines of code (LOC) and the number of

classes (NOC) for the Datom-based Bibkeeper; it was possible to eliminate 432

LOCs contained in the 5 classes that were totally removed together with other

lines of code scattered in the rest of the application. This reduction in LOCs

represents a shrinkage of approximately 7.2% of the total size of the original

Bibkeeper.

However, if compared with the values reported by the original version of the

application the number of persistent lines of code (PLOC) and the total of per-

sistent classes (NOPC) increased by approximately 125% and 166%, respectively.

This is explained by the fact that the PLOCs reported for the ported version of

Bibkeeper truly represent the places in which persistent abstractions are manipu-

lated. Every PLOC counted in the Datom-based Bibkeeper corresponds to either

explicit calls to persistent functionality or to implicit invocation of functions in

the objects that are members of the graph of persistence. On the contrary, in

the file-based version of the application it is correct to identify as PLOCs only

those lines in which explicit persistent activity is invoked. Therefore, run-time

abstractions containing the processed file data are not considered as persistent

elements and calls to them are not accounted as PLOCs.

Detailed metrics for the original version of the application are shown in Ta-

ble 6.3, which is ordered by the number of persistent lines of code (PLOC).

Non-persistent classes have not been included in the table for brevity. Persistent

code of the file-based version of Bibkeeper groups persistent code in classes that

are in charge of managing file content, parsing it, and placing it in application

150

6.1. Practical Experiences with the Datom API

Class Name PLOC PIROL(%) LOC ADPLOC PIBPLOC(%)

BibtexBaseFrame 52 5.30 980 18 97

FileActions 31 46.90 66 2 83

BibtexParser 25 13.70 182 7 97

FileLoader 21 11.20 186 5 59

MetaData 14 22.50 62 2 54

OpenofficeTextExport 14 17.90 78 3 48

BibtexEntry 12 12.00 100 2 29

ExampleFileFilter 10 14.70 68 4 54

EntryTypeForm 8 1.60 474 50 75

Bibkeeper 7 28.00 25 1 36

TransferableBibtexEntry 5 19.20 26 2 26

BibtexParserTest 4 26.60 15 2 46

HelpContent 2 4.50 44 34 79

DragNDropManager 2 2.70 72 27 38

SaveSpecialDialog 1 1.30 76 0 1

Totals 208 — 2454 — —

Table 6.3: Persistent code measurements of the original version of Bibkeeper.

abstractions. As expected, the highest persistence impact ratio on lines of code

(PIROL) was obtained for the class FileActions which contains code to save

application data to a file.

Other files in the application that group fundamental code for persistence

purposes are BibtexParser and FileLoader. However, the persistent impact

ratios on lines of code (PIROL) for these two files do not reach the top values.

This may be explained by considering that after an invocation to the file API

there is usually work to do with the recovered data such as parsing or placing it

in the appropriate application variables. Thus, persistent lines of code are not

placed together in the application code as corroborated by values in the average

distance between persistent lines of code (ADPLOC) column.

Table 6.4 shows the breakdown of the persistence affected classes in the

Datom-based version of Bibkeeper; non-persistent classes have been omitted for

brevity. Two main observations can be drawn from the data included in the

table. First, classes with the highest number of persistent lines of code (PLOC)

manipulate persistent data early in the beginning of the file until positions close

to the end of it as indicated by the intervals between the first and last persistence

affected lines of code (PIBPLOC). Second, in classes with the highest persistence

impact ratio on lines of code (PIROL) values (i.e. ≥ 33%) the average distance

between persistence affected lines of code (ADPLOC) is always 1. This suggests

that there is a considerable amount of locality of PLOCs for those files that

heavily use the Datom API.

151

6.1. Practical Experiences with the Datom API

Class Name PLOC PIROL(%) LOC ADPLOC PIBPLOC(%)

BibtexBaseFrame 86 8.20 1047 12 97

BibtexDatabase 66 61.10 108 1 92

SimpleSearchRule 31 32.60 95 2 90

BibtexEntryType 28 13.70 204 6 82

EntryTypeForm 25 5.70 432 17 95

BibtexEntryTest 24 68.50 35 1 80

EntryTableModel 15 12.80 117 5 64

BibtexDatabaseTest 13 30.20 43 2 72

OpenofficeTextExport 13 16.60 78 2 44

RegExpRule 11 27.50 40 2 75

BookLabelRule 10 47.60 21 1 85

LabelMaker 10 47.60 21 1 61

ArticleLabelRule 9 27.20 33 3 90

InproceedingsLabelRule 9 27.20 33 3 90

EntryComparator 9 20.40 44 3 56

SaveException 8 66.60 12 1 91

UndoableInsertEntry 8 26.60 30 3 76

UndoableRemoveEntry 8 26.60 30 2 70

DragNDropManager 7 9.70 72 4 31

StringDialog 7 2.80 246 11 27

QuickSearchRule 6 21.40 28 4 82

UndoableStringChange 6 19.30 31 5 83

BibtexEntry 6 5.20 114 20 91

CrossRefEntryComparator 5 27.70 18 1 44

EntrySorter 5 23.80 21 3 71

UndoableFieldChange 5 19.20 26 5 88

MetaData 5 18.50 27 3 51

UndoableInsertString 4 14.80 27 6 70

UndoableRemoveString 4 14.80 27 4 55

DatabaseSearch 4 13.30 30 1 20

BibtexString 3 13.60 22 2 27

Unit 3 11.50 26 1 11

EntryTable 3 2.40 122 3 5

DefaultLabelRule 2 50.00 4 1 50

FieldChangeListener 2 16.60 12 2 25

AndOrSearchRuleSet 2 13.30 15 4 33

SearchRuleSet 2 12.50 16 5 75

UndoableMoveString 2 6.20 32 3 12

Util 2 2.70 73 4 6

SidePaneManager 1 1.80 53 0 1

Totals 469 — 3465 — —

Table 6.4: Persistent code measurements of the ported version of Bibkeeper.

There are some notable differences between the source code metrics of both

applications. First, for the file-based Bibkeeper the persistence impact ratios at

the class (PIROC) and line level (i.e. PIROL on the total size of the application)

are 18.5% and 3.4%, respectively. In contrast, the ported version of Bibkeeper

presented values of 52% and 8.4% for the same metrics. Accordingly, the per-

sistence impact ratio on lines of code per class in the Datom-based Bibkeeper

are consistently larger than those in the original version. To an important de-

gree, these increments take place because file data is not tracked once resident in

transient objects.

These values stress that although a small portion of code in an application

could be explicitly dedicated to persistent operations (i.e. retrieve and store),

normally the run-time objects that contain and consequently modify persistent

data will be manipulated at many places in the source code. Therefore, having

larger impact ratios in the Datom-based Bibkeeper should not be considered a

152

6.1. Practical Experiences with the Datom API

disadvantage of the API in itself because these values are providing an accurate

characterisation of where in the application persistent data is manipulated.

6.1.4 Removing the XML DOM API

Addition of Datom Types in Gradebook

In order to migrate Gradebook, all the functions performed through calls to ob-

jects of the XML DOM API were replaced with appropriate Datom abstractions.

In general, the DOM-based version of Gradebook reads data from XML files to a

DOM tree and then processes the elements at each tree node through calls of the

type Element.getChildren(), which returns a list of other XML elements. The

returned DOM elements are processed sequentially following list semantics; if ap-

propriate, the content of these elements is mapped to application’s abstractions

or processed once more as lists of children.

The graph of persistence created for the Datom-based version of Gradebook

is shown in Figure 6.4. DatomList items were used to model in a more precise

way the list-based data access semantics of the application. In addition, these

lists were rooted to DatomMap items when the original data access was dictated

by a keyword such as the set of courses and the classification of information

corresponding to each course.

Furthermore, corresponding Datom Elements were used to hold the appli-

cation’s persistent data. However, instead of fully replacing the application’s

data objects with these Datom Elements, a successful method used previously

in the Bibkeeper porting, a more suitable strategy for the code organisation of

Gradebook was to include references to Datom Elements inside the original ap-

plication data objects. This decision was taken for various reasons. First, the

correct operation of Gradebook highly depends on the graphical elements used

by the application; these elements are tightly coupled with the objects in charge

of managing persistent data and with the inheritance model of the application.

Since the current prototype of the Datom API relies on inheritance to enable

persistence, and the Java programming language limits the inheritance model to

a single base class, it was infeasible to extend these objects to become persistence

capable.

Furthermore, separating persistent data elements from the graphical utili-

ties of the Java programming language seems to be the correct strategy even in

153

6.1. Practical Experiences with the Datom API

GradeableList

StudentList

Grades

DatomMap

AssignmentData

DatomList

AssignmentData

AssignmentData

DatomList

AssignmentData

Category

Category

..........

..........

DatomMapRoot

courseID

courseID

courseID

courseID

DatomList

StudentData StudentData StudentData

GradingScale

GradeableList

DatomMap

CategoryData

GradeableList

DatomMap

CategoryData

Figure 6.4: Layout of the graph of persistence in the ported version of Gradebook.

environments supporting orthogonal persistence due to the dependencies of the

graphical utilities with external state [JA98]. A different porting strategy would

have altered the structure of the application to the point in which any source

code comparison would be meaningless.

Metrics Obtained

Table 6.5 reports the overall impact on source code caused by migrating the

Gradebook application. The values reported in this table were collected using

the keyword files shown in Appendices A.3 and A.4 for the Datom and DOM

persistent keywords, respectively. In its original version, Gradebook has a total

of 6161 lines of code of which 111 are explicitly dedicated to manipulate persistent

data through the facilities provided by the DOM API. In contrast, the ported

version of the application reported a value of 6219 lines of code representing an

increase of approximately 1% of the total size of the application. The number of

lines of code referring to persistent elements also augmented 26% with respect to

the original value. Following the same tendency, the total number of classes in

the application also increased by 3.

154

6.1. Practical Experiences with the Datom API

The persistence impact ratio at the class (PIROC) and line level (PIROL) for

the original version of Gradebook are 1.9% and 1.8%, respectively. In contrast,

its ported version presented values of 14.81% and 2.25% for the same categories.

The wide difference in the persistence impact ratio at the class level is mainly

due to the line counting strategy used by the PCMT tool in which file data, once

resident in the application’s abstractions, is not counted as persistence related.

Application Name LOC PLOC NOC NOPC

DOM-based Gradebook 6161 111 105 2

Datom-based Gradebook 6219 140 108 16

Table 6.5: High-level comparison of the DOM-based Gradebook against its Datom-

based version.

The expected increase in the number of persistent lines of code and the num-

ber of persistent classes is explained by the fact that, in the ported version of

the application, persistent lines of code include both explicit calls to persistent

functionality or to invocations of the functions of those objects that are members

of the graph of persistence and accordingly, are accessed during the normal oper-

ation of the application. Furthermore, it was necessary to add three new classes

for the Datom Elements holding the application’s persistent data.

A detailed analysis of persistent code shows the reasons for the increase in

the size of the application. Table 6.6 reports code metrics for the original version

of Gradebook ordered by persistent lines of code (PLOC); non-persistent classes

have been omitted for brevity purposes. The DOM-based Gradebook aggregates

persistent code in two classes only, i.e. SchemaSaver and SchemaLoader. Both

classes exhibit a elevated persistence impact ratios on lines of code (PIROL) and

high densities of persistent lines of code (ADPLOC) since their only purpose in

the applications is to read and save data to the XML file.

Class Name PLOC PIROL(%) LOC ADPLOC PIBPLOC(%)

SchemaSaver 62 63.20 98 1 98

SchemaLoader 49 42.20 116 2 98

Totals 111 — 214 — —

Table 6.6: Persistent code measurements of the original version of Gradebook.

Table 6.7 shows detailed metrics for the Datom-based Gradebook. Following

a similar pattern to that observed in the Bibkeeper porting, the table indicates

an increment in the number of persistent classes and in the number of persistent

155

6.1. Practical Experiences with the Datom API

lines of code (PLOC). In general, these increments occur since the persistent

lines of code reported account not only for the code used to retrieve and save

persistent data but also they include the lines in the application in which Datom

abstractions are used to manipulate persistent data through the normal execution

of the application.

Although a reduction in the code needed to retrieve and restore data from

persistent storage was observed, this decrement was surpassed by the code needed

to adapt other aspects of the application. The comparison of the two persistent

classes in the original Gradebook against their corresponding new versions shows

a reduction from 116 to 93 lines of code for the SchemaLoader class and from 98

to 16 for the SchemaSaver class. However, the size of the application increased

mainly for two reasons. First, 100 lines of code were added by three new classes,

i.e. PerStudentData, PerCompositeData, and PerAssignmentData. Second, as

has already been mentioned, these persistent abstractions were incorporated in

the application as attributes of the original classes, a situation that created a

level of indirection in the code and ultimately, an increase in the total size of the

application.

Class Name PLOC PIROL(%) LOC ADPLOC PIBPLOC(%)

SchemaLoader 40 43.00 93 2 77

Student 22 32.30 68 2 88

GradeableElement 18 29.50 61 3 96

Course 16 14.10 113 7 92

GradebookSystem 12 27.90 43 3 79

GradeableComposite 9 23.00 39 2 46

GradingModelProperties 5 4.50 111 23 84

SchemaSaver 3 18.70 16 2 31

PerStudentData 3 5.30 56 4 17

PerCompositeData 2 12.50 16 3 25

GradingModel 2 8.00 25 3 16

PerAssignmentData 2 7.10 28 5 21

GradebookFileManager 2 4.50 44 3 9

GradebookScreen 2 0.80 232 2 1

StudentTableModel 1 1.60 61 0 1

GradebookTableModel 1 1.30 72 0 1

Totals 140 — 1078 — —

Table 6.7: Persistent code measurements of the ported version of Gradebook.

6.1.5 Discussion

The results and metrics presented through this section provided an insight on the

potential source code transformations experienced by applications ported to the

156

6.1. Practical Experiences with the Datom API

Datom API. Additionally, they show the feasibility of migrating file-based appli-

cations to the set of persistent abstractions provided by the new API. Although

porting a larger number of applications would provide a more comprehensive

understanding of the corner cases that may arise as a result of the migration pro-

cess, the applications that have been ported are representative of the type of code

used by a considerable number of applications running on top of the file API. The

conclusions drawn from the portings corroborate the positive impact of adopting

a more abstract API as an underlying storage infrastructure. The analysis and

comparison of the original programs against their corresponding portings suggest

an improvement in software quality.

The Datom API reduced the size of source code devoted to persistence

related tasks. The extent of these reductions was determined by the original API

used by the application and to the amount of code needed to adapt the original

source code to the Datom API and programming model. Datom abstractions

enabled the elimination of code in one of the most tedious and error-prone coding

tasks, those related to low-level interactions with the persistent layer. Code used

to parse, serialise, and manually build run-time abstractions disappeared from

the application. For the most part, this kind of code simply wastes programmers

effort and draws their attention away from application-specific functionality.

The use of the high-level abstractions provided by the Datom API repre-

sented a step ahead in the manipulation of persistent data for both portings. One

of the core assumptions in the design of the API is that applications running on

top of the file abstraction commonly use collections to manage persistent data at

run-time. Since this assumption was valid for Bibkeeper, the migration from the

original volatile objects that used to hold persistent data to those provided by the

Datom API was fairly natural causing a considerable impact to the morphology

of the application.

The Gradebook porting also experienced an improvement in its persistence

related code by the use of appropriate persistent abstractions. Thus, the tree-view

of the DOM API was replaced with the map and list abstractions available in the

Datom API, which represent more adequate abstractions for the data access of

the application. Thus, the Datom API positively affected the understandability

of persistent code in both applications through the use of more suitable persistent

abstractions.

Finally, code was simplified by making persistent data manipulation implicit

in the abstractions provided by the Datom API. Instead of recovering persistent

157

6.1. Practical Experiences with the Datom API

data to many unrelated objects, and then, restoring it by gathering important

data from different sources, the Datom API makes possible to group persistent

data in a graph of persistent abstractions. Persistent data manipulation through

a graph of persistence made persistent code simpler and self-describing in both

applications. As a consequence, understandability as well as maintainability fea-

tures of the applications were improved.

The explicitness of type in the manipulation of persistent abstractions pro-

vided by the Datom API made the graph of persistence self-evident in the source

code. This is an advantage in code understandability and assists developers to ac-

curately know where potentially-persistent data elements are accessed and mod-

ified, which ultimately reduces programming mistakes that may push incorrect

data to the persistent store. In contrast, in a file-based approach programmers do

not have the capacity to directly identify where code operations affect the graph

of persistence. The same argument can be extended to orthogonally persistent

database systems in which failing to accurately determine the membership of an

object in the graph of persistence might easily lead to pushing a potentially large

number of unwanted objects into the persistent store.

Applications written from scratch on top of the facilities provided by the

Datom API should exhibit a tighter integration with its programming model

than that achieved in both portings and, consequently, potentiate its advantages.

However, the portings, as such, showed that the adoption of the API improves

the quality of persistent code. It reduces work-effort and error proneness by

reducing the size of the application and augmenting the level of abstraction in

the manipulation of persistent data elements.

The PJama Case

The source code metrics analysed in this study have been previously used to

report usability aspects of the PJama technology on a diverse set of applica-

tions [GSAW98]. The primary goal of the PJama study is to show how PJama

introduces only minimal changes into applications’ source code. It argues that

the “almost subliminal” use of orthogonal persistence leads to good usability.

The experimental results of the Datom API and the PJama technology differ

on a fundamental issue: they aim to evaluate different models of persistence.

Therefore, there is a conceptual difference between what is considered a line of

persistent code in each result. Due to the data-centric approach enabled by selec-

158

6.2. Performance Evaluation

tive reachability, it is feasible to identify all the explicit references to persistent

code in the metrics of the Datom API by including the persistent data types

in the keyword file. Used in this way, the PCMT tool provides a precise char-

acterisation of how much of the code in an application is indeed related to the

manipulation of the graph of persistence. This is clearly reflected by the presence

of persistent code in many classes of the application.

In contrast, the PJama team reports only explicit references to the PJama

keyword set and not the ramifications of the graph of persistence via conventional

Java objects. Consequently, it is not possible to keep track of implicit objects

that are part of the graph of persistence since they have not been included in the

keyword set. This is evidenced by the small number of classes reported in the

PJama study as persistent.

Ultimately, to produce results with the same level of detail to those obtained

for the Datom API, the keyword set for the PJama case would have to be defined

as the programming language itself. For this reason, it seems infeasible to closely

trace a graph of persistence in application code that uses an orthogonally persis-

tent object system with the PCMT tool. A reachability-based strategy may be

more appropriate for this analysis.

6.2 Performance Evaluation

This section presents the performance evaluation of the prototype of the Datom

API. Its main purpose is to measure two fundamental issues of its operation:

the read and the write barriers. The results characterise the performance of the

prototype and indicate that its operation degrades steadily as a larger number of

persistent items needs to be handled.

6.2.1 Evaluation Description

One of the key motivating factors for the development of the Datom API is the

reduction of the conceptual barrier between persistent and transient data. The

programmer manipulates a model in which the data store can be seen as a persis-

tent extension of volatile memory; data is dynamically allocated according to data

usage patterns. Additionally, the data model enables fine-grained manipulation

of data elements which could lead to performance problems.

159

6.2. Performance Evaluation

To properly support this view of persistence there are two mechanisms that the

system must implement efficiently and that can be used as the basis for any study

of the performance of persistent systems [Hos95]: object faulting and detecting

updates, also known as the read and write barriers, respectively. In order to

evaluate these properties, the experiments presented next use a similar evaluation

strategy to that used by the OO1 benchmark [CS92] and their offsprings. The

main goal is to manipulate a synthetically-created graph of persistence to measure

the elapsed time taken to operate on the graph.

Instead of creating a complex graph of objects, as done in the OO1 benchmark

which aims to reproduce operations for engineering databases, the evaluation data

sets were designed to isolate the behaviour of individual Datom programming

objects. This decision was taken since the typical data complexity and data access

strategies supported by the Datom API differ from those seen in engineering

applications.

First, the Datom API has been designed to provide predetermined data ac-

cess facilities through a group of managed abstractions. Second, the amount of

persistent data manipulated through the API is expected to be much lower than

those manipulated in the engineering database domain. Finally, this study aims

to concentrate on high-level issues of the performance exhibited by the prototype,

considering that the most accurate measure of performance will always be related

to the execution patterns of the application.

Five different data sets were synthetically created. Each of the data sets

consists of 36,000 Datom Elements stored in a different Composite Entity. This

number is useful to provide an assessment of the scalability of the system and its

ability to manipulate a large amount of objects. The Element type employed in

the tests resembles a typical programming object that contains a mixture of data

types. It stores the following information:

Data {

int id;

double number;

String type;

int x;

int y;

Date build;

}

160

6.2. Performance Evaluation

The id field is assigned a unique integer value ranging from 1 to 36,000. The x

and y attributes have values randomly chosen in the range [0-10,000]. The number

field stores randomly distributed values in the range [0.0-1.0]. The type fields

have values randomly selected from the strings {“part-type0”, ..., “part-type9”}.

Finally, the build date is randomly distributed in a 20-year range.

The Read Barrier: Persistent Item Faulting

The first mechanism mediates retrieval of stable storage into memory for program

manipulation. Any operation that directly accesses a data value whose residency

is in doubt must first check that the value is available in memory. Such residency

checks constitute a read barrier to any operation that accesses persistent data:

before the system can read (or write) any data, it must first make sure the data

is resident. Furthermore, if the residency check fails the data should be loaded

from disk to memory incurring an additional penalisation time.

The experiments used to measure the impact of the read barrier in the pro-

totype emphasise selective retrieval for the map, list, and matrix abstractions

and one-way retrieval for the stack, and queue abstractions. These two types of

data retrieval strategies are aimed to reproduce the data access semantics of the

holding Composite Entity. They operate as follows:

• Selective retrieval. It fetches 9,000 items randomly chosen using the

access semantics of the holding Composite Entity, either a DatomMap, a

DatomList, or a DatomArrayMatrix. It emphasises data access strategies

based on items’ attributes. Once the item has been fetched a null procedure

is invoked for each of them taking as its arguments the number, x, y, and

type attributes of the Data Element.

Similar to the the OO1 benchmark experiments [CS92], the performance

tests assess the operation of the prototype in three different states: cold,

warm, and hot. A run consists of 25 iterations over the data sets. The first

24 iterations cause a gradual warming of the prototype’s caches. The 25th

iteration accesses the same items as the last warm iteration to visit only

resident Elements, freeing the system of the overheads caused by retrieving

a non-resident persistent item such as swizzling and data translation.

• One-way retrieval. It fetches a fixed number of items using the interface

of the holding Composite Entity, either a DatomStack, or a DatomQueue.

161

6.2. Performance Evaluation

Similar to the selective retrieval operation, once the item has been fetched

a null procedure is invoked taking as its arguments the number, x, y, and

type attributes of the Data Element.

A run in this case consists of 8 iterations over the data sets. On each

iteration a number of 1000n Data Elements are retrieved with n taking

the corresponding iteration number. Accordingly, an increasing number of

items are processed at each iteration reaching a total of 36,000 items at the

end of the run. The data access semantics of the Composite Entities evalu-

ated in this experiment obviates the need of any of the prototype’s caches.

Therefore, the effects of cache warming are not taken into consideration.

The Write Barrier: Detecting and Logging Updates

The second key persistence mechanism ensures that updates to persistent objects

are reflected in the store. Making these updates permanent means propagating

them to stable storage. Thus, every operation that modifies persistent data

requires some immediate or subsequent action to commit the modification to disk.

The strategy adopted in the implementation of the Datom API is to keep modified

data in memory and wait for the programmer to indicate the actual moment in

which changes should be propagated to the stable store. Therefore, any operation

that modifies persistent data in memory must indicate to the storage system to

remember those elements that have been updated. Recording updates in this way

constitutes a write barrier that must be imposed on every operation that modifies

persistent data; writes require additional overhead to record the updates.

The experiment used to measure the impact of the write barrier aims to

measure the cost of updating persistent items and making those modifications

permanent. It operates in the following way:

• Update. It uses similar data access strategies to those used to evaluate

the read barrier for each of the Composite Entities of the Datom API, i.e.

selective and one-way retrieval. However, it performs a simple update on

the fetched Data elements according to a fixed probability. This probability

varies from one run of the experiment to the next in order to modify the

density of updates. The update consists of a method call that increments

the x, y, and number attributes of the Data Element. Updates are pushed to

162

6.2. Performance Evaluation

the persistent store at the end of each iteration. Thus, it measures the cost

of modifying persistent items and preserving those changes in the persistent

store.

Experimental Setup

The machine in which the experiments were run is an AMD AthlonTM1400 MHz

processor with a 256 KB L2 cache and 1 GB DRAM running Fedora Core 3 and

using the ext3 file system. The data sets were placed in an internal IBM 60GXP

disk with 60 GB of capacity, 100 MB/s peak data rate, 20.9-40.8 MB/s sustained

data rate, and 8.5 ms average seek time.

The experiments were executed in single-user mode and disconnected from the

network, to minimise interference from network traffic and other system activity.

The programs were compiled for the JavaTM2 Runtime Environment, Standard

Edition, version 1.4.2. The maximum Java heap size was set to 300 MB using

the -Xmx runtime option and the Berkeley DB cache acting as the buffer pool

set to 300 MB to ensure that the synthetic data sets could be totally cached

in memory. The elapsed times for the experiments were obtained using the

System.currentTimeMillis() Java call with a precision of 1 ms.

Buffer management policies can be ignored when interpreting the experimen-

tal results. Since the amount of memory in the testing system is 1 GB, it is also

possible to ignore the effects of virtual memory paging. Before each run the sys-

tem is cooled by reading a 1 GB file to clean the operating system cache. All the

values reported correspond to averages computed from running the experiments

four times; they exclude the initialisation and setup of the system prior to the

beginning of the corresponding test.

6.2.2 Persistent Item Faulting

Figure 6.5 reports the performance and the impact of the read barrier in those

Composite Entities that offer selective retrieval of Elements. The subplots 6.5(a),

6.5(b), and 6.5(c) provide the results for DatomList, DatomMap, and DatomMatrix,

respectively. Finally, the subplot 6.5(d) illustrates the average result considering

the three abstractions.

163

6.2. Performance Evaluation

Figure 6.5 reports the total elapsed time for the execution of the experiments

from cold through warm to hot iterations. The volatile version represents a

non-persistent implementation of the data sets and it has been coded using only

in-memory objects. It characterises the best performance that would be possible

to obtain and it is presented only as a baseline measurement.

C 3 5 7 9 11 13 15 17 19 21 23 W H
0

1

2

3

4

5

6

7

8

9

10

11

Iteration

T
im

e
(s

)

AVG. STDEV
 σ

volatile
 = 0.0003

 σ
persistent

 = 0.0549

Volatile DatomList
Persistent DatomList

(a) Datom List.

C 3 5 7 9 11 13 15 17 19 21 23 W H
0

1

2

3

4

5

6

7

8

9

10

Iteration

T
im

e
(s

)

AVG. STDEV
 σ

volatile
 = 0.0016

 σ
persistent

 = 0.0471

Volatile DatomMap
Persistent DatomMap

(b) Datom Map.

C 3 5 7 9 11 13 15 17 19 21 23 W H
0

1

2

3

4

5

6

7

8

9

10

11

Iteration

T
im

e
(s

)

AVG. STDEV
 σ

volatile
 = 0.0060

 σ
persistent

 = 0.0710

Volatile DatomMatrix
Persistent DatomMatrix

(c) Datom Matrix.

C 3 5 7 9 11 13 15 17 19 21 23 W H
0

1

2

3

4

5

6

7

8

9

10

11

Iteration

T
im

e
(s

)

Volatile Average
Persistent Average

(d) Results averaged.

Figure 6.5: The read barrier performance in the Composite Entities supporting se-

lective retrieval.

All the Composite Entities exhibited similar performance patterns. The

graphs show a clear warming tendency due to the presence of an increased num-

ber of items in the prototype’s caches from one iteration to the next. However,

the performance of the cold iteration together with the first six cold to warm

iterations is heavily dominated by disk retrieval. The reduction in the elapsed

164

6.2. Performance Evaluation

time is mainly due to the decreasing number of disk accesses and the diminution

of overheads related to data translation.

The design decision of loading into memory one item at a time in the current

prototype may imply disk activity for every item requested. As a consequence,

the warming is gradual and the plots show a right-skewed distribution. The val-

ues for the persistent graph are close to those of the volatile version only after

the 17th iteration. After this point the overhead for the read barrier decreases

gradually and becomes trivial. However, the warming tendency could be manipu-

lated through the implementation of more aggressive prefetching strategies or by

augmenting the granularity of the transfers from disk, always having in mind the

trade-off caused by the corresponding higher overheads on initial data retrieval

due to swizzling and data transformations.

Figure 6.6 reports the performance of those Composite Entities that allow

one-way retrieval of Elements. It reports the total elapsed time for the execution

of the experiments in seconds. Once more, the figure is divided in subplots pro-

viding detailed results for the DatomQueue, and the DatomStack in graphs 6.6(a)

and 6.6(b), respectively. The subplot 6.6(c) illustrates the average of the two

abstractions.

The DatomQueue and the DatomStack showed similar performance numbers.

The plots in Figure 6.6 also include the time for the volatile version of the abstrac-

tions to provide a baseline. In general, the access semantics for the queue and

the stack abstractions indicate that every access retrieves a new object. There-

fore, the effect of cache warming is not considered in these experiments. These

results can be seen as a worst-case scenario since every access to the store fetches

a non-resident item.

As would be expected, the latencies clearly reflect the overhead of disk re-

trieval and data translation. The elapsed times for each iteration increase steadily

according to the number of objects fetched from the store and, most importantly,

the performance degrades steadily for successively larger numbers of items. The

one-item-at-a-time retrieval policy enforced by the implementation of the Datom

API could be easily adapted for these abstractions in a way in which applications

always access resident items.

Thus, the Datom abstractions can be used by applications to provide assertive

hints about their persistent data access requirements. However, the trade-off

between memory consumption, swizzling eagerness, and observed latencies should

be balanced according to the execution patterns of applications.

165

6.2. Performance Evaluation

1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7

8

Number of Items

T
im

e
(s

)

AVG. STDEV
 σ

volatile
 = 0.0006

 σ
persistent

 = 0.0655

Volatile DatomQueue
Persistent DatomQueue

(a) Datom Queue.

1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7

Number of Items

T
im

e
(s

)

AVG. STDEV

 σ
volatile

 = 0.0007
 σ

persistent
 = 0.0901

Volatile DatomStack
Persistent DatomStack

(b) Datom Stack.

1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7

8

Number of Items

T
im

e
(s

)

Volatile Average
Persistent Average

(c) Results averaged.

Figure 6.6: The read barrier performance in the Composite Entities supporting one-

way retrieval.

6.2.3 Detecting and Logging Updates

The evaluation of the write barrier is done through the measurement of the

elapsed time needed to perform a number of updates in each of the managed

abstractions of the Datom API. Figure 6.7 illustrates the latency of updating the

graph of persistence for Composite Entities that support selective data retrieval.

Updates were applied with a probability of p = {0, 0.05, 0.10, 0.2, 0.4, 0.7, 1.0} to

vary the density of modified items. The graphs report the measurements obtained

for the cold, warm, and hot iterations at each of the p values.

166

6.2. Performance Evaluation

The write barrier for the DatomList is illustrated in subplots 6.7(a), and

6.7(b). The former subplot shows the overall elapsed time while the latter con-

centrates only on the time taken to checkpoint the graph of persistence. The

checkpoint call is performed after each iteration of the test causing a single

atomic operation to transfer all the mutated items from memory to disk. Similar

pairs of subplots are presented for the DatomMap (6.7(c), and 6.7(d)), and the

DatomMatrix (6.7(e), and 6.7(f)) abstractions.

Similar trends were observed for total update latencies for the three kinds of

abstractions shown in Figures 6.7(a), 6.7(c), and 6.7(e). Cold iterations exhibit

the largest update latency. They are importantly affected by disk access times

needed to first load persistent items into memory and then to flush them to

disk whether they have been updated. In contrast, a considerable reduction in

the total update latency was observed for the warm and hot iterations. Warm

iterations will sporadically incur in the overhead of fetching a non-resident item

and consequently may obtain slightly larger total update latencies than those

obtained for hot iterations. As expected, hot updates consistently showed the

smallest update latencies since the working set is fully contained in memory and

thus, they only perform disk accesses for write operations. In the three types of

iterations the performance degraded steadily.

Checkpoint latencies illustrated in Figures 6.7(b), 6.7(d), and 6.7(f) corre-

spond to the time taken to traverse the set of mutated objects, translate these

objects to their on-disk representation, and finally write them to disk as a single

atomic operation. Checkpoints are invoked through the corresponding save()

method of the holding Composite Entity. The checkpoint latencies increased

constantly as the density of updates increased. The graphs show similar values

for the three types of iterations since they involve transferring roughly the same

amount of persistent items to disk; in this process, the impact of the cache state

in latency times is negligible.

Delaying a group of updates until checkpoint time trades durability of opera-

tions for efficiency. Higher latencies would be obtained if each update is protected

with a checkpoint as it involves disk activity and transaction management over-

head. However, the ability to hold a group of updates in memory until checkpoint

is a feature that can be sensibly used by applications to fine-tune their recover-

ability semantics.

The write barrier for the two abstractions supporting one-way retrieval, i.e.

DatomQueue and DatomStack, is illustrated in Figure 6.8. It includes subplots

167

6.2. Performance Evaluation

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

Write probability

T
im

e
(s

)

AVG. STDEV

 σ
c
 = 0.1302

 σ
w

 = 0.0951
 σ

h
 = 0.0957

Cold
Warm
Hot

(a) Total update latency for DatomList.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Write probability

T
im

e
(s

)

AVG. STDEV
 σ

c
 = 0.0434

 σ
w

 = 0.0891
 σ

h
 = 0.0696

Cold
Warm
Hot

(b) Checkpoint latency for DatomList.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

Write probability

T
im

e
(s

)

AVG. STDEV

 σ
c
 = 0.1137

 σ
w

 = 0.1056
 σ

h
 = 0.0747

Cold
Warm
Hot

(c) Total update latency for DatomMap.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Write probability

T
im

e
(s

)

AVG. STDEV
 σ

c
 = 0.0431

 σ
w

 = 0.0828
 σ

h
 = 0.0917

Cold
Warm
Hot

(d) Checkpoint latency for DatomMap.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

Write probability

T
im

e
(s

)

AVG. STDEV

 σ
c
 = 0.0581

 σ
w

 = 0.0535
 σ

h
 = 0.0212

Cold
Warm
Hot

(e) Total update latency for DatomMa-

trix.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Write probability

T
im

e
(s

)

AVG. STDEV
 σ

c
 = 0.0298

 σ
w

 = 0.0542
 σ

h
 = 0.0211

Cold
Warm
Hot

(f) Checkpoint latency for DatomMatrix.

Figure 6.7: The write barrier in Composite Entities supporting selective retrieval.

168

6.2. Performance Evaluation

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

Write probability

T
im

e
(s

)

AVG. STDEV

 σ
1000

 = 0.0252
 σ

5000
 = 0.1172

 σ
7000

 = 0.0702
 σ

8000
 = 0.1051

1000 objects
5000 objects
7000 objects
8000 objects

(a) Total update latency for DatomQueue.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Write probability

T
im

e
(s

)

AVG. STDEV
 σ

1000
 = 0.0245

 σ
5000

 = 0.0406
 σ

7000
 = 0.0340

 σ
8000

 = 0.0710

1000 objects
5000 objects
7000 objects
8000 objects

(b) Checkpoint latency for DatomQueue.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

Write probability

T
im

e
(s

)

AVG. STDEV

 σ
1000

 = 0.0493
 σ

5000
 = 0.0989

 σ
7000

 = 0.1075
 σ

8000
 = 0.0930

1000 objects
5000 objects
7000 objects
8000 objects

(c) Total update latency for DatomStack.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Write probability

T
im

e
(s

)

AVG. STDEV
 σ

1000
 = 0.0169

 σ
5000

 = 0.0521
 σ

7000
 = 0.0623

 σ
8000

 = 0.0490

1000 objects
5000 objects
7000 objects
8000 objects

(d) Checkpoint latency for DatomStack.

Figure 6.8: The write barrier in Composite Entities supporting one-way retrieval.

to report both total update latency and checkpoint latency. The checkpoint is

performed after each iteration as a single atomic update. Subplots 6.8(a) and

6.8(c) show the total update latency for four different iterations which update

an increasing number of items; they correspond to the first, fifth, seventh, and

eighth iteration of the one-way retrieval access strategy. Both plots show a similar

latency trends which are influenced by the number of objects manipulated and

the density of updates; total update latencies increase proportionally to these

factors.

A detailed analysis of checkpoint latencies is illustrated in graphs 6.8(b), and

6.8(d). They prove that performance times increase uniformly as more items are

169

6.2. Performance Evaluation

flushed to disk. As expected, smaller data sets produce comparable latencies

independently of the density of updates since less disk accesses are needed to

checkpoint the graph of persistence. Checkpoint times for larger data sets tend

to be largely dominated by disk access times.

6.2.4 Discussion

The performance evaluation of the prototype focused on two fundamental imple-

mentation features: the read and the write barriers. The tests focused on coarse-

grained issues to characterise the API’s performance and scalability. Benchmark-

ing or performing a face to face comparison of the prototype with other storage

technologies was considered inappropriate for two main reasons. First, the current

implementation of the Datom API stresses functionality instead of performance;

there is, consequently, opportunity for performance tuning. Second, the data

model enabled by Datom’s persistent abstractions differs from those employed in

other storage technologies.

However, the results obtained for the performance study provide a good in-

dicative of the latencies that the current implementation exhibits. Furthermore,

they highlight the areas in which the prototype’s performance could be improved.

Overall, the results show that the performance degrades gracefully as long as

the prototype’s caches are large enough to avoid unnecessary disk accesses. As

expected, experiments indicate that there is a considerable performance gap be-

tween having an item ready to be used in-memory and having to fetch it from

disk. The reduction of this gap would be possible if computing systems with

large amounts of memory are considered, something that seems practical since

memory is getting cheaper all the time.

However, eager prefetching strategies may not be a comprehensive solution

since eager prefetching benefits may be limited by initialisation costs. To load

an item into memory when the system is cold involves a number of disk accesses

and the translation of the item from its on-disk representation to its in-memory

version. The break-even point for data prefetching strategies depends on various

issues such as the execution characteristics of the application, data clustering

strategy used by the storage layer, and the swizzling scheme.

Eventually, the most accurate measure for performance will always be related

to the execution patterns of the application. In this respect, the Datom API

provides assertive hints about expected data access patterns through high-level

170

6.3. Usability Aspects of the Datom API

programming abstractions from which different prefetching, data clustering, and

fine-tuning strategies could be implemented and tested. However, a detailed

study on all these aspects forms part of the future work of this research since,

to have an important effect, they invariably involve the creation of an ad-hoc

storage layer, which is out of the scope of this dissertation.

6.3 Usability Aspects of the Datom API

This section comments on usability aspects of the Datom API. The contribution

of the usability evaluation presented here is twofold. First, it describes the API

and provides a common background and vocabulary to be of use in the discussion

of its usability features. Second, it exposes the strengths and weaknesses that

different types of developers may find while interacting with the functionality

provided by the Datom API.

6.3.1 Measuring Usability

This section introduces the methodology employed in evaluating usability fea-

tures of the Datom API. The usability study presented in this section is based on

the Cognitive Dimensions (CD) framework [GP96] which presents a number of di-

mensions upon which judgements are made regarding cognitive demands made by

a particular notation or programming language. Although initially employed as a

usability analysis tool for visual programming environments, the CDs framework

has been generalised by Blackwell and Green [BG00] to be applied to any sort

of information devices. Consequently, the CDs framework has been successfully

used in performing API usability studies [Cla04], in evaluating new programming

languages such as C# [Cla01], and in assessing tools such as spreadsheets [Tuk01].

The CDs framework was chosen as an evaluation tool for the usability of

the Datom API for various reasons. First, it represents a well-analysed and

proven methodology for performing usability tests which motivates the discussion

of software attributes from a broad range of perspectives. Furthermore, the

evaluation is performed from a programmer point of view rather than from the

perspective of the software designer; this provides a more impartial assessment of

the usability of the API and points out aspects that designers may have initially

overlooked [BG00].

171

6.3. Usability Aspects of the Datom API

To evaluate the usability of the Datom API, the CDs framework has been

employed as proposed by Clarke and his usability group at Microsoft [Cla03,

Cla04]. Accordingly, the usability study performed on the Datom API comprised

different stages. It started by identifying the typical programming scenarios

supported by the Datom API; they are shown in Table 6.8. They range from the

most basic use of the API to advanced functionality that has to be implemented

using different parts of the API simultaneously. These scenarios represent the

fundamental use cases for the API and embrace, to an important degree, most of

the functionality that it offers to developers.

Id number Description of scenario

1 Open a collection of persistent objects.

2 Prepare the persistent data layout for a collection of data items.

3 Add a data element to the collection of persistent items.

4 Update a data element in the collection of persistent items.

5 Read data from a persistent data element.

6 Delete a data element from the collection of persistent items.

7 Remove a collection of persistent items.

8 Apply updates atomically to a collection of persistent items.

9 Modify the organisation of the persistent data layout.

10 Query the collection of persistent items.

11 Navigate and update the collection of persistent items.

Table 6.8: Typical short scenarios of the Datom API.

In a second stage, code snippets were created for each of these scenarios. These

code samples represent the kind of code that developers have to write to imple-

ment the functionality exemplified by each scenario. To simplify the readability

of this document the code samples have been included in Appendix B. In a third

stage, a task analysis for each of the scenarios was done. The task analysis does

not describe how the API supports each scenario, instead it describes the differ-

ent actions that a programmer would expect to perform in order to accomplish

the goal represented by the given scenario. The breakdown of tasks for each of

the scenarios is presented in Appendix C. The final stage in the usability study

includes the analysis and evaluation of the API based on the code samples and

task analyses for each of the scenarios.

The evaluation of an API has to contemplate the target audience since differ-

ent programming styles require different types of APIs. In general, an API that

works well for a specific type of programmer may not be appropriate for another.

For this reason, the results presented in the following section are contrasted with

172

6.3. Usability Aspects of the Datom API

the typical cognitive demands made by the three main developer profiles that

have been identified by Clarke et al. [Cla03]. This categorisation is supported

by the empirical evidence obtained through the observation of large numbers of

programmers. Accordingly, conclusions were drawn according to the demands of

developers on each of the cognitive dimensions.

The ultimate contribution of this study indicates for which developer profile

the Datom API would be suitable and why. The three main types of developers

are:

• Opportunistic programming style. Developers in this category feel

comfortable using APIs that expose high-level abstractions. They will be

satisfied using an API that can be used without any major extensions and

that does not force them to acquire a large conceptual background to be

successful with the API; thus, they like to gain confidence in the use of APIs

by handling only the parts that are significant to their immediate goals.

• Pragmatic programming style. Pragmatic programmers favour APIs

in which components have been factored to exhibit a direct correspondence

with programming goals. They like to be able to extend the standard

behaviour of the API and fine-tune relevant aspects of its behaviour if

needed. Thus, they want to understand the effect of the API functionality

in the global context of the application. They like to learn APIs using a

top-down approach and incrementally.

• Systematic programming style. Developers matching this program-

ming style enjoy working with APIs that exhibit low-level abstractions in

the form of primitive components. Systematic programmers like APIs in

which components can be replaced and new types introduced. To feel com-

fortable with an API, they like to learn it using a top-down approach and

to understand its architecture even before writing any code. Programmers

of this type want to know the effect of code at both the application and the

system level. Accordingly, they like APIs that expose the intricate details

of the operation of the API.

6.3.2 Usability of the Datom API

Figure 6.9 shows the results of the usability study compared with the three de-

veloper profiles. The spokes in the radar graphs constitute each of the different

173

6.3. Usability Aspects of the Datom API

dimensions being evaluated; the end points on each spoke are the minimum (i.e.

centre of the radar) and maximum (i.e. outer edges) values on the scale for each

dimension. Accordingly, the points where the lines cross the spokes represent the

values on the scale for a specific dimension. By comparing the points where the

solid area and the black line cross each spoke, it is possible to evaluate how well

the Datom API matches the profile’s ideal API.

Each graph indicates what developers matching a given profile would expect

from an API in terms of the cognitive dimensions evaluated by the CDs frame-

work. Developers’ profiles are illustrated in the graphs with black lines; they

correspond to the characterisation produced by Clarke. The solid areas in the

graphs show the results obtained in the usability analysis of the Datom API.

These values are the averaged results of grading all the scenarios in a scale with

values low, medium, or high for every dimension. The next paragraphs analyse

each of the cognitive dimensions and explain the results shown in Figure 6.9.

Abstraction Level (ABST)

The abstraction level dimension measures the type and number of abstractions

that the developer has to contend with. APIs in which individual programming

tasks identified in the task analysis have to be accomplished by using two or

more components in conjunction are considered of primitive type; this kind of

API offers low levels of abstraction. Components correspond to the programming

classes that compose the API. An API is said to be made of factored components

when each class in the API has been designed with a particular programming goal

in mind; factored components show a direct correspondence between program-

ming tasks and classes used in the source code. Finally, aggregate components

offer the highest level of abstraction; in these APIs the set of programming goals

could all be accomplished with the same set of programming components.

The usability study for this dimension indicates that the number of classes

that users are exposed to with the Datom API is relatively small and that the

fragmentation of individual programming tasks into more than one line of code

is unusual. The programming scenarios show that the API has been factored to

the level of individual tasks; there is a correspondence between components in

the API and the set of tasks programmers might expect to perform. Even the

most complicated programming scenarios employed a combination of factored

components to accomplish the programming goal. Although the Datom API also

174

6.3. Usability Aspects of the Datom API

0

1

2

3

4

5

ABST

LEAR

WORK

STEP

PROG

PREM

PENE

ELAB

VISC

CONS

ROLE

DOM

Analysed Results

Systematic Developer

(a) Systematic programming style.

0

1

2

3

4

5

ABST

LEAR

WORK

STEP

PROG

PREM

PENE

ELAB

VISC

CONS

ROLE

DOM

Analysed Results

Pragmatic Developer

(b) Pragmatic programming style.

0

1

2

3

4

5

ABST

LEAR

WORK

STEP

PROG

PREM

PENE

ELAB

VISC

CONS

ROLE

DOM

Analysed Results

Opportunistic Developer

(c) Opportunistic programming style.

Figure 6.9: The results of the usability study of the Datom API according to the

cognitive demands of different programming profiles.

175

6.3. Usability Aspects of the Datom API

enables the creation of aggregate components through the use of rich Datom

Elements, this is a programmer concern and part of the flexibility of the API to

adapt to different abstraction levels rather than an intrinsic feature of the API.

The abstraction level shown by the Datom API seems to fulfil quite well the

expectations of pragmatic programmers. Moreover, opportunistic programmers

should also feel comfortable with the abstraction level exposed by the API since

the number of classes directly manipulated by them is small.

Learning Style (LEAR)

This dimension measures the learning requirements posed by the API. An incre-

mental and minimal learning style enables developers to gain confidence in the

API by using only the parts of an API relevant to their goals. Programming

goals written with APIs that support an incremental and minimal learning will

normally use a small number of classes with minimal dependencies. APIs that

demand a structured learning style require a large number of classes to perform

a determined programming goal and each of those classes have a large number of

dependencies.

The minimal knowledge needed by programmers in order to begin working

with the Datom API is that they need to create a Store object in which a graph

of objects can be rooted; this forces programmers to start learning the API in a

structured way as they need to know the different types of persistent elements

that the API supports and their relationships. However, the components of the

API are written and documented in a way that make these features evident from

the use of the API. After learning these fundamental properties, the Datom API

is close to a minimal and incremental learning style.

In the majority of the scenarios developers are able to accomplish the pro-

gramming goals using loosely coupled programming objects. The more complex

programming scenarios require the understanding of a greater number of relation-

ships between programming components demanding a more structured learning

style. However, these scenarios are made of simpler tasks that allow the pro-

grammer to write a couple of lines of code to corroborate that the API is working

as desired and to understand the totality of the functionality provided by the

Datom API in this way. Furthermore, most of the dependencies observed are due

to particular persistent data layouts required by the logic of the application and

not to intrinsic properties of the API.

176

6.3. Usability Aspects of the Datom API

The learning style enabled by the Datom API is suited to pragmatic pro-

grammers, who show a step-wise learning style. They like to gain confidence

with an API in a structured way but gradually, piece by piece. Opportunistic

programmers have no desire to understand a large number of classes and their de-

pendencies before being able to do something useful with the API; to some extent,

they would also feel comfortable with the API since the number of abstractions

that have to be understood to start using the API is small.

Working Framework (WORK)

The working framework dimension evaluates the size of the conceptual chunk

needed to work effectively with the API; this is different from the LEAR dimen-

sion that indicates how developers learn to use the different API components. If

the information that a developer needs to maintain in order to perform a specific

programming goal is directly represented in the API, then the working framework

is described as local. However, if the information developers need to maintain is

not directly represented in the API but can be inferred from the way the source

code is structured, the API supports a global working framework. Finally, the

most demanding APIs are those that force the programmer to manipulate plenty

of information at various levels (e.g. application and system) to be able to work

with the API effectively; these working frameworks are described as systems.

Although much of the information that the programmer needs to track is well

represented in the individual components of the Datom API, which makes the

code self-describing at the local level, there is still an amount of extra information

that developers have to maintain to be able to successfully manipulate persistent

data through the Datom API. First, the code that developers have to write in

order to manipulate persistent data through the API depends on the morphol-

ogy of the graph of persistence and the type of persistent items that compose it.

However, these two features are made explicit in the source code through com-

ponents’ relationships and objects’ castings which enable developers to obtain

this information through the way code is structured. Second, as persistence by

reachability is used by the Datom API, developers have to keep a mental repre-

sentation of the objects that are members of the graph of persistence in order to

properly update applications’ persistent data.

The Datom API consistently exhibits a global working framework in all but

the simplest of the scenarios. Developers that better identify with the global

working framework are pragmatic programmers, who are willing to know the

177

6.3. Usability Aspects of the Datom API

effect of code on the whole application. To a certain degree, the API may suit

opportunistic programmers as well, since the demands placed by the API can be

tolerated due to the small number and consistent behaviour of the abstractions

that have to be manipulated.

Work Step Unit (STEP)

This dimension indicates how much of a programming task can be completed in

a single step; it measures the amount of work that needs to be done for specific

programming tasks. A local-incremental work step unit enables developers to

fully contain programming tasks in single local code blocks. However, if a pro-

gramming task is contained within multiple code blocks, or if the code requires

the instantiation of multiple classes that interact, the work step unit is defined

as parallel. Between local-incremental and parallel there is the functional work

step unit.

After revising the work involved for each of the tasks highlighted in the sce-

narios’ task analysis, it is possible to corroborate that in general there is a linear

progression from the start to the end of the tasks since only one line of code is

consistently required to perform a task. In the most elaborate scenarios a given

programming task might involve writing a few lines of code with interacting com-

ponents; however, this code shows a clear incremental progression to accomplish

a specific programming task, which defines the work step unit for these scenarios

as functional.

Both opportunistic and pragmatic developers prefer to work incrementally,

with the latter profile being able to adapt better to functional work step units.

From the evaluation of the API in this dimension one can conclude that oppor-

tunistic and pragmatic programmers should be able to manipulate the Datom

API with comfort. In contrast, systematic programmers prefer powerful and

extremely flexible APIs built around primitive types in which individual pro-

gramming tasks can be decomposed and customised.

Progressive Evaluation (PROG)

This dimension indicates to what extent it is possible for a programmer to exe-

cute partially completed code to obtain feedback on its behaviour. Progressive

evaluation at the line of code level takes place when an API enables developers

178

6.3. Usability Aspects of the Datom API

to stop and check progress after each line of code they write. If developers can

only evaluate their progress for one task after writing enough code to perform two

or more tasks, the API supports progressive evaluation at the functional chunk

level. If multiple classes in parallel need to be in a consistent state with respect to

one another in order to check progress, the API supports progressive evaluation

at the parallel components level.

By examining each of the scenarios, using the task analysis and the code

samples, it is possible to observe that with the Datom API the programmer is

able to effortlessly check the progress of individual tasks and evaluate how much

they contribute towards accomplishing the goal of the given scenario. In general,

it is possible to check progress at the line of code level. However, similar to

the STEP dimension, there are a couple of scenarios for which it is necessary

to write code to accomplish two or more tasks before progression to the goal of

the scenario can be checked. In these cases (i.e. atomic updates or querying

the graph of persistence) the API shows progressive evaluation at the functional

chunk level.

As mentioned before, opportunistic as well as pragmatic programmers prefer

to work incrementally. The Datom API enables this type of programming style as

it consistently enables progressive evaluation at the line of code level. However,

this dimension may be affected by the extent to which programmers think in the

same terms that are represented in the Datom API. If they do not think in the

terms of the components of the API, it would be more difficult for them to judge

if the outcome is correct at each incremental step.

Premature Commitment (PREM)

Premature commitment indicates the amount of decisions that programmers have

to make when writing code and the consequences of those decisions, i.e. how easy

is to recover from initial decisions. If an API presents users with a minimal num-

ber of choices about how to accomplish some goal and if the differences between

the alternatives are minimal, the API exposes a minimal and reversible level of

premature commitment. When the number of choices is significant but the dif-

ferences among them are minimal, the API presents a significant and reversible

level of premature commitment. In the cases in which the alternatives are abun-

dant and the differences between them are significant, the level of premature

commitment is said to be significant and irreversible.

179

6.3. Usability Aspects of the Datom API

The Datom API shows a minimal and reversible level of premature commit-

ment for most of the programming scenarios. This is mainly due to the reduced

number of components that have to be directly managed by programmers and to

the fact that many of the components correspond to programming abstractions

with standard access semantics (i.e. maps, lists, matrices, etc.). These features

minimise the number of decisions that a programmer has to face when deciding

how to accomplish a given programming scenario.

However, there are two situations in which programmers are presented with

options. First, programmers have to decide which of the groups of Composite

Entities should be employed and their respective relationships when setting up

a graph of persistence. The final decision in this case will be generally guided

by application-specific data access semantics. In the worst case, inadequate or

inefficient data layouts can be modified with relatively small effort by properly

manipulating the components provided by the API. Second, programmers face

the decision of when a persistent item should be integrated into the graph of

persistence.

Independent of the initial decision of the programmer, it should be relatively

easy to modify the moment in which a given object is included or evicted from the

persistent space, since the API exhibits well-defined semantics at the Composite

Entity level and coarse-grained reachability at the Element level. In conclusion,

the Datom API exposes a close to minimal and reversible level of premature

commitment. All programmers prefer to work with minor and reversible APIs;

however, different profiles are able to better manage APIs that offer a significant

number of options, as shown in Figure 6.9.

Penetrability (PENE)

The penetrability dimension describes how much programmers must understand

about the underlying implementation details of an API and the extent to which

programmers are able to understand those details directly from the API usage.

An API is said to provide a snapshot view into its details if it exposes only

enough information to allow programmers to distinguish between methods and

classes provided by the API, and this is the only information that programmers

need to take note of. A context driven view of the details of a given API is

one in which the API exposes enough information to allow a programmer to

understand the context or scope of the particular part of the API the programmer

is working with. If the API exposes enough information to allow the programmer

180

6.3. Usability Aspects of the Datom API

to understand the intricate working details of the API and if the user must attend

to this information to work effectively with the API, it provides and requires an

expansive view of the details of the API.

The navigational approach to persistent data access, the presence of two stor-

age spaces (i.e. the volatile and the persistent), and the different types of per-

sistent items supported by the Datom API demand from developers a degree of

understanding of the API’s implementation details. The source code samples

indicate that the Datom API by itself enables programmers to understand the

context and scope of persistent code in these areas. Furthermore, the API is de-

signed in a way that implicitly forces developers to observe these implementation

details. A greater degree of penetrability into implementation aspects of the API

can be gained by the developer through the API documentation or source code.

However, the Datom API by itself does not expose low-level implementation de-

tails.

For these reasons, the penetrability of the Datom API is close to context

driven. This type of API suits pragmatic programmers. However, opportunistic

programmers should be able to work successfully with the API attending only

to information exposed by its methods and classes. Most of the implementation

details required to use the API can be worked out using the common sense or are

implicitly embedded in the abstractions exposed by the API.

API Elaboration (ELAB)

This dimension measures the extent to which developers must and can extend

the API in order to accomplish a given task. If an API allows a programmer to

perform all of their goals only by using the types exposed by the API without

requiring any further elaboration, the API can be used as-is. However, if the API

allows developers to accomplish their goals only by extending some of the types

exposed by the API and providing their own implementation of custom behaviour,

the API supports elaboration at the fine tune level. Finally, if the API allows

programmers to perform all their goals only by replacing or introducing whole

new types, the API demands elaboration at the replace level.

The study of the different programming scenarios show a remarkable pattern.

All the programming goals can be accomplished by using the components of the

API as they are provided except those in which Datom Elements are required.

Since the goal of the Element type is to provide a universal and customisable

181

6.3. Usability Aspects of the Datom API

recipient for application specific data, programmers are required to extend this

type in order to properly manipulate application-specific persistent types.

Once more, the Datom API seems to match opportunistic and pragmatic

developers since both like to manipulate components that can be reused as-is.

However, the latter also want to be able to fine-tune components of the API to

some extent. The use of Datom Elements may appeal to pragmatic programmers

since they enable fine tuning of data access strategies and customisation of per-

sistent data layouts. The fact that the defined group of Composite Entities in the

Datom API has to be used as-is may particularly annoy systematic programmers

who want to manipulate APIs in which components can be replaced, although

not necessarily being forced to do so if it is not needed.

API Viscosity (VISC)

The API viscosity dimension measures the barriers to change inherent in the

API. When the API allows users to make changes to code written with an API

easily, the API has low viscosity. If programmers spend moderate effort when

trying to change code written with an API, the API is said to exhibit medium

viscosity. If the API demands users to make a significant effort to change code

written against an API, the API has high viscosity.

The Datom API presents a small number of options in terms of the alter-

native ways in which the tasks comprising each of the programming scenarios

can be accomplished. Furthermore, in the scenarios in which programmers might

expect to be able to use alternative ways to complete a programming goal such

as changing the morphology of the graph of persistence or modifying the moment

in which application data is promoted to the persistent space, the high level ab-

stractions provided by the Datom API simplify code updates. The fact that all

the persistent elements of the API are derived from the type PersistentItem

helps to keep the effort of changing the form of the graph of persistence low and

reduces the viscosity of the code.

Moderate effort is required to modify application-specific Elements’ types as

updates to these components imply tracing their use through the application

program. However, as in the API implementation they are all derived from

the Datom Element class, not only most of the code should remain valid but

also this type of Element should be easily traceable. In the worst case, change

effort is directly related to the extent of the changes performed. In general, all

182

6.3. Usability Aspects of the Datom API

programmer profiles prefer APIs that exhibit low viscosity; however, they can

tolerate increased resistance to change at different levels.

Consistency (CONS)

The consistency dimension measures the extent to which programmers are able

to infer the use of new components of an API once a part of it has been learnt.

An API exhibits arbitrary consistency if it does not use the same design patterns

and idioms when it would be appropriate to do so. If an API employs the same

design patterns and idioms for two or more similar user goals but does not use

the same design patterns and idioms in all appropriate circumstances, the API

exposes core consistency. Finally, an API is fully consistent if it uses the same

design patterns and idioms when appropriate throughout the whole of the API.

The Datom API is fully consistent as developers are able to easily reuse the

knowledge obtained from coding a given programming scenario in similar cases.

The inspection of code samples for similar goals, such as deleting an Element and

removing a Composite Entity, modifying and setting up the graph of persistence,

or querying and navigating persistent data, indicates that source code written

against the Datom API consistently follows the same persistent data program-

ming principles. Source code snippets for similar programming tasks tend to be

highly comparable. In general, all types of programmers prefer APIs that are

fully consistent.

Role Expressiveness (ROLE)

Role expressiveness indicates to what extent the relationship between each com-

ponent exposed by an API and a program as a whole is visible. If the code created

with an API to accomplish a specific programming goal cannot be interpreted

correctly and does not fully match developers’ expectations, the API is said to be

opaque. When code written against an API can be interpreted correctly but does

not fully match users’ expectations, the role expressiveness of the API is plausi-

ble. Finally, the API is transparent if the code required to accomplish a user goal

can be interpreted correctly and if it matches programmers’ expectations.

Source code written with the Datom API successfully expresses its role. Visual

inspection of the code samples for the typical use scenarios of the API indicates

that programmers should be able to easily describe what the API components do

183

6.3. Usability Aspects of the Datom API

directly from the source code. A fundamental reason for this is that the Datom

API has been built on top of a group of ADTs whose semantics are familiar to

most developers. Therefore, the API is mostly transparent.

However, the API fails to meet users expectations mainly in tasks involving

shaping the graph of persistence. In this case, some developers may feel tempted

to have more flexibility to create arbitrary connections through managed com-

ponents, an expectation that the API fails to fulfil. In these cases the API is

only plausible. Yet, it was a deliberate design decision to reduce the complex-

ity of data layouts by limiting the types of object that can be used to create the

persistent object networks of applications. Complex application-specific data rep-

resentations remain hidden within Datom Elements. All developer profiles prefer

transparent APIs, although increased levels of opaqueness are better tolerated by

pragmatic and systematic programmers in that order.

Domain Correspondence (DOM)

This dimension indicates how clearly the API components map the conceptual

objects that users think about manipulating when using the API. A direct domain

correspondence occurs when the types exposed by the API map directly on to

the types and concepts expected by users. If the API exposes types that map

to those expected by developers only after describing the mapping, the API has

plausible domain correspondence. Finally, if the types exposed by the API do not

map directly on to the types and concepts expected by users even after describing

the mapping, the API is said to have an arbitrary domain correspondence.

The components of the Datom API make use of popular abstract data types.

This supports the provision of an extremely direct and clear correspondence be-

tween the conceptual objects that users picture and the classes and methods ex-

posed by these components. It is unlikely that the Datom API could give place to

different conceptual domain models since the API is built around components for

which a prescribed behaviour is well-known and accepted by developers. Further-

more, the mapping between these objects in memory and on disk is transparent

as far as programmers need to be concerned. Some programmers may find it

unusual to think in the terms of a graph of persistence made of related Compos-

ite Entities and Elements, which are managed as a transparent extension of disk

space. These developers would require some adjustment to properly manipulate

the Datom API. With respect to this dimension, all developers prefer APIs with

a direct domain correspondence.

184

6.3. Usability Aspects of the Datom API

6.3.3 Review of Findings

The Datom API may be a programming tool not favoured by systematic devel-

opers. Lacking the flexibility and power of building arbitrary networks of objects

represents an annoying characteristic of the API. The Abstraction Level dimen-

sion (ABST) analysis indicates that the Datom API works at the wrong level

of abstraction for systematic developers, it lacks the power and flexibility that

the preferred primitive types provide. Furthermore, the API deliberately hides

intricate system details about the construction and implementation of the API

as evidenced by the Penetrability dimension (PENE); this has a negative impact

for this type of developer as it impedes the building of trust on the API. Fi-

nally, the fact that some parts of the API cannot be easily extended or replaced

when needed may irritate systematic developers; an issue exhibited by the API

Elaboration dimension (ELAB).

A programming tool for persistent data access with the sort of functional

characteristics of the Datom API (such as navigational data access, high-level

abstraction support, and type safeness) that may represent a more appealing

alternative for systematic programmers could be a full-fledged persistent pro-

gramming language such as PJama. However, many intrinsic features of the PPL

approach do not match desirable cognitive features of the other two group of pro-

grammers specially in the Abstraction Level (ABST), Learning Style (LEAR),

Penetrability (PENE), and Work Step Unit (STEP) dimensions.

In summary, the Datom API seems to be factored for pragmatic programmers

in the first place, and for opportunistic programmers in the second. The analysis

of the cognitive dimensions consistently showed important similarities between

the characteristic behavioural patterns of these developers’ profiles and the type

of code produced with the Datom API. Developers in these categories should

be able to command the conceptual and implementation features of the API

naturally. Furthermore, their coding experience should be comfortable to a great

extent.

6.3.4 Future Versions of the Datom API

The application of the CDs framework is useful not only to evaluate the Datom

API as a programming tool but also to study the consequences of potential

changes in future versions of the API. The evaluation of the Datom API re-

185

6.3. Usability Aspects of the Datom API

vealed good software attributes. In this respect, it is possible to say that the

API is fully consistent (CONS) since it follows the same programming principles

and design patterns when appropriate. The role expressiveness (ROLE) of the

different components that comprise the API shows a high level of transparency.

Furthermore, the API components also exhibit a direct domain correspon-

dence (DOM), giving little room for conceptual misunderstandings since these

components are well-known ADTs with predefined semantics. These properties,

combined with the small number of core components that comprise the Datom

API, facilitate a minimal and reversible level of premature commitment (PREM)

as well as a low level of viscosity (VISC) on code written with the Datom API.

The aforementioned software attributes should be pursued, and maintained, in

the face of any future changes to the API because they are all desirable software

properties.

It has been argued before that the Datom API seems to be remarkably fac-

tored for pragmatic programmers. Thus, any future changes in the API should

ideally be focused on improving the usability of the Datom API for this type

of developer instead of targeting any of the other developer profiles. The use of

the CDs framework revealed some areas in which the services of the API do not

entirely fulfil the expectations of pragmatic developers. These issues are analysed

in the following paragraphs. The CDs framework is used to illustrate the impact

on the usability of the API due to potential changes to the design of the Datom

API; the discussion focuses only on the relevant dimensions of the framework.

Enriching the Components of the Datom API

Pragmatic programmers mind the impact of code in the global context of the ap-

plication. Accordingly, they want to be able to extend and fine-tune the standard

behaviour of an API. The current version of the Datom API supports fine-tuning

at the level of Datom Elements. However, there are important areas of the API

that lack this ability. For example, Composite Entities cannot be customised or

extended. They offer only one standard behaviour for properties such as caching,

swizzling eagerness, data clustering, and optimisation of storage management.

As a consequence, it is not possible to use the Datom API to adapt applications

to different data access requirements.

A desirable modification to the Datom API would be to enrich the abstractions

acting as Composite Entities. The main goal of this change is to give program-

186

6.3. Usability Aspects of the Datom API

mers the capacity to choose appropriate configuration parameters for different

data access patterns. For example, programmers could be able to manipulate

the amount of incremental reallocation and the trade-off between time and space

costs. The API could be modified in different ways. First, the constructor meth-

ods of Composite Entities could be overloaded to give developers the ability to

select the most suitable option among alternative back-end data structures (e.g.

arrays, hash tables, or trees). Second, the API could be extended with methods

to define the initial capacity, capacity increments, and load factors of these data

structures.

With respect to pragmatic developers, these changes may have a positive effect

on the usability of the API, since their main goal is to augment the penetrabil-

ity (PENE) of the Datom API. They should allow programmers to understand

and manipulate the effect of the API functionality in the global context of the

application. These changes would modify the previous value for the working

framework dimension (WORK) because they would increase the size of the con-

ceptual chunk that developers would need to manage in order to work effectively

with the modified API.

However, the new form of the API would still support the preferred learning

style (LEAR) of pragmatic programmers; they should be able to process the

additional concepts piece by piece and in a structured way because the changes

would preserve the original relationship between the different components of the

API. Furthermore, the changes would not force developers to adopt an expansive

view of the API. The increase in the number of decisions that programmers

face with the new API may affect the minimal level of premature commitment

(PREM) currently exhibited by the Datom API. However, the modified API

would retain its ability to produce reversible code to a great extent if the new API

is able to produce similar code for alternative versions of a given programming

task.

Adding Data Types to the Datom API

The usability study revealed that the Datom API may fail to meet the expec-

tations of pragmatic programmers in tasks involving shaping the graph of per-

sistence. Both data layouts and data access code are built using exclusively a

minimal set of ADTs. It is likely that programmers may find this feature limiting

if the data access requirements of the application cannot be fulfilled with the cur-

rent set of Composite Entities. In this respect, a convenient modification to the

187

6.4. Summary

Datom API would be the addition of new data types to facilitate a more diverse

group of data access semantics. For example, programmers may find it useful to

have richer abstractions at hand such as multidimensional matrix, priority queue,

different types of search trees, circular lists, etc.

The aim of this sort of modification is to augment the role expressiveness

(ROLE) of the API. Greater diversity regarding the number and type of Com-

posite Entities is likely to assist programmers in shaping the data models of

applications in a more accurate way. Thus, developers should be able to inter-

pret with more precision, and more easily, code written using the Datom API. In

addition, they should also find that the new abstractions enable them to write

code that matches their expectations concerning more complex data models.

The level of premature commitment (PREM) exhibited by the Datom API

is likely to augment if more data types are added to the library. This dimen-

sion would also be affected by the degree to which programmers conceive a set

of components as equivalent in order to solve a determined programming task;

for example, using a list instead of a circular list to store a collection of objects.

However, one may expect data layouts to be dictated by the data access seman-

tics of the application reducing with it the number of decisions programmers

need to make when choosing a particular component of the API. The learning re-

quirements (LEAR) posed by the modified version of the Datom API would still

demand a step-wise learning style. The amount of information that programmers

would need to learn should augment linearly as new data types are incorporated.

Yet, they should be able to learn them piece by piece as they are required.

Modifying and designing an API is a task in which several trade-offs have to

be faced. In combination with a usability study, it is also necessary to consider

implementation issues. Designers must keep in mind that one of the principal

goals in the design of the Datom API is simplicity; for this reason, the addition of

new abstractions and functionality should receive careful consideration, especially

the impact of these new features on the performance of the library.

6.4 Summary

In this chapter I evaluated the implementation of the Datom API using three dif-

ferent criteria. First, I ported a couple of applications that use file-based APIs to

the facilities provided by the Datom API. The portings show that the Datom API

188

6.4. Summary

not only reduces the size of applications but also makes persistent code simpler

and self-describing. Second, I measured the performance of the implementation of

the Datom API. The experimental results demonstrate that the prototype’s per-

formance degrades gracefully even for a large number of data elements. Third, I

assessed the usability of the API using the Cognitive Dimensions framework. This

study highlights that pragmatic programmers, as well as opportunistic program-

mers, should be able to use the API comfortably. All together, the experimental

results of this chapter demonstrate the feasibility of creating sophisticated data

access strategies with minimal effort on top of the Datom API.

189

Chapter 7

Conclusions

In this dissertation I have studied two different techniques for decomposing file

data into discernible items. The first strategy employs the functionality of the

file API in order to disclose identical portions of file data. The second technique

takes a more radical approach and proposes an alternative storage API for the

manipulation of file contents. Experimental results in each of the two separate

approaches showed that augmented levels of abstraction improve the manipula-

tion of persistent data. In this the last chapter, I summarise the contributions of

my dissertation and present opportunities for future research.

7.1 Summary

In Chapter 1 I presented the motivation of my research. I highlighted the necessity

of providing better programming tools for the manipulation of file contents. I

then stated my thesis, namely that programmatic APIs departing from the view

of file data as a monolithic and flat object to a more abstract data representation,

capable of managing a sensible amount of structure and data type, have important

advantages for programmers. A data manipulation tool of this type improves

software quality and supports the creation of sophisticated data access strategies

with less effort.

In Chapter 2 I described current data storage paradigms. I discussed the

impact that data models and programmatic APIs have on the implementation

of storage systems, as well as on the typical interactions of programmers with

persistent code. I highlighted that, from a programmer’s point of view, persistent

190

7.1. Summary

code in the area of file data manipulation fails to deliver appropriate levels of

programmability.

In Chapter 3 I presented the first major contribution of this dissertation: a

comprehensive data redundancy study of file systems contents. I introduced a

series of experiments that measured the degree to which sub-file data correlations

can be unveiled through duplication detection techniques that make use of the

services provided by the file API.

In Chapter 4 I introduced the second major contribution of this dissertation: a

novel API for the manipulation of file data called Datom. Once I had showed that

the view of file contents as a flat storage space represents an expensive solution

from a programmability standpoint, I proposed an API whose data model enables

fine-grained data manipulation relying on a minimal set of ADTs and a typed

interface to file contents. Finally, I discussed those features of Datom that make

my proposal a unique programmatic API for the manipulation of persistent data.

In Chapter 5 I presented the implementation of the Datom API. I began

by introducing the concept of selective reachability, i.e. the persistence model

supported by the prototype. I then explained how it enhances the data model of

the Datom API by enabling features that simplify the manipulation of persistent

abstractions. In the rest of the chapter I concentrated on showing how the data

and the persistence models are materialised in the implementation.

In Chapter 6 I presented the evaluation of the Datom API according to dif-

ferent criteria. First, I migrated two file-based applications on top of the imple-

mentation of the Datom API. I measured the impact on the morphology of the

portings at the source-code level and compared these results with the original

versions. Second, I assessed the performance of the prototype, including scala-

bility and run-time latencies. Finally, I measured the usability of the API by

analysing how well it fulfils the cognitive demands of different developer profiles

based on the Cognitive Dimensions framework. I used these results not only to

suggest potential changes to the Datom API but also to analyse their impact on

the overall usability of the API. The results presented in this chapter demonstrate

the practicality of the Datom API.

In conclusion, my thesis — that data manipulation techniques which depart

from the fundamental flat file paradigm to a more abstract data representation,

capable of managing a sensible amount of structure and data type, facilitate the

creation of sophisticated data access strategies — is justified as follows. I eval-

uated redundancy detection techniques that decompose file contents into unique

191

7.2. Future Research

and identifiable items and showed how they can be used to improve the implemen-

tation of storage systems. Then I proposed and implemented a storage system

API that not only decomposes file data into a minimal set of semantically rich

programming abstractions, but also enforces type safeness. The evaluation of this

API demonstrates that it improves software quality and enables the creation of

advanced persistent data access strategies with minimal effort.

7.2 Future Research

This dissertation can be extended in a number of ways.

The study on data redundancy techniques presented in Chapter 3 demon-

strates that real world data sets exhibit remarkable similarity patterns. For the

techniques to be employed successfully in real systems, designers have to find the

right balance between the desired redundancy detection accuracy and the over-

heads introduced by each technique. This dissertation thoroughly addresses the

former issue. However, a complete study of storage and computational overheads

on live data sets remains to be carried out. It is not yet clear at which point

the use of a particular technique outperforms the others if practical issues are

considered. Overheads are greatly affected by different file access patterns such

as temporal and spatial locality of updates that are exhibited by different data

sets, as well as by the underlying technology used to implement these techniques.

The prototype of the Datom API emphasises the provision of a fully opera-

tional implementation of a novel storage API, which provides the core features

to support the persistent data manipulation ideology of the Datom API. On the

other hand, there are opportunities to optimise and fine tune different aspects of

the prototype for future versions of the software. For example, the study based

on the Cognitive Dimensions framework suggested ways to improve the usability

of the Datom API. The cognitive requirements of pragmatic programmers can be

better fulfilled by augmenting the level of penetrability and role expressiveness

of the API. Therefore, in Section 6.3.4 I have proposed potential changes to the

design of the API that can be addressed in future versions of the library.

Aside from the engineering techniques that may be used to improve the perfor-

mance of the prototype, it is clear that the most accurate measure for performance

is directly related to the execution pattern of applications. In this respect, the

ADTs employed by the Datom API open a window into the data access semantics

192

7.2. Future Research

of applications. The bottom line in this research direction is the incorporation of

the data access semantics of applications into the internal algorithms that control

the operation of the Datom API. Currently, it is not fully explored how the data

model can be used as a vehicle for research into the behavioural properties of

alternative data organisations. For instance, different prefetching, caching, and

data clustering strategies, as well as an ad-hoc storage substrate, could be imple-

mented and tested with the aim of exploiting the semantic knowledge provided

by the abstractions of the Datom API.

A different avenue of future research is the creation of novel services that ex-

ploit the advantages provided by the Datom API. In this direction, I have already

proposed two ways in which my work could be further developed. First, mobile

data management creates a computing environment where data adaptation plays

a fundamental role. The services provided by the Datom API can be exploited

to support data transmission adaptation according to the changing networking

environment [PCV03]. Second, information exposure threats can be mitigated by

limiting the amount of information accessible. The inherent capabilities of the

Datom API to perform information subsetting and information reduction can be

used to manage the leakage of sensitive data [DP05].

This dissertation represents a step towards the more ambitious goal of fully

replacing the file as the primary underlying storage abstraction. Initial research

in this direction might be encouraged by the design of a storage system shell that

exposes the abstractions and operations of the Datom API. A shell of this sort is

interesting because it shifts the attention from the programs used to manipulate

passive data objects (i.e. files) to the data itself. As a direct consequence, appli-

cation programs may be moved to a second level of significance, since the shell

itself opens the possibility of intelligently manipulating application data without

the necessity of relying extensively on external application code.

193

Appendix A

Keyword Files

A.1 PCMT Keyword File Content for the Datom-

Based Bibkeeper

KEYWORDS

BibtexEntry DatomQueueRoot

BibtexString DatomStack

CompositeEntity DatomStackRoot

DatomArrayMatrix DElement

DatomArrayMatrixRoot EmptyDatomQueueException

DatomList EmptyDatomStackException

DatomListOutOfBoundsException InvalidStoreException

DatomListRoot PersistentItem

DatomMap Root

DatomMapRoot Store

DatomMatrixOutOfBoundsException Unit

DatomQueue UpdateException

Table A.1: List of the persistent keywords of the Datom-based Bibkeeper used to

collect source code metrics with the PCMT tool.

194

A.2. PCMT Keyword File Content for the File-Based Bibkeeper

A.2 PCMT Keyword File Content for the File-

Based Bibkeeper

KEYWORDS

BufferedInputStream FilterInputStream OutputStreamWriter

BufferedOutputStream FilterOutputStream PipedInputStream

BufferedReader FilterReader PipedOutputStream

BufferedWriter FilterWriter PipedReader

ByteArrayInputStream InputStream PipedWriter

ByteArrayOutputStream InputStreamReader PrintStream

CharArrayReader InterruptedIOException PrintWriter

CharArrayWriter InvalidClassException PushbackInputStream

CharConversionException InvalidObjectException PushbackReader

DataInput IOException RandomAccessFile

DataInputStream LineNumberInputStream Reader

DataOutput LineNumberReader SequenceInputStream

DataOutputStream NotActiveException Serializable

EOFException NotSerializableException SerializablePermission

Externalizable ObjectInput StreamCorruptedException

File ObjectInputStream StreamTokenizer

FileDescriptor ObjectInputValidation StringBufferInputStream

FileFilter ObjectOutput StringReader

FileInputStream ObjectOutputStream StringWriter

FilenameFilter ObjectStreamClass SyncFailedException

FileNotFoundException ObjectStreamConstants UnsupportedEncodingException

FileOutputStream ObjectStreamException UTFDataFormatException

FilePermission ObjectStreamField WriteAbortedException

FileReader OptionalDataException Writer

FileWriter OutputStream

Table A.2: List of the persistent keywords of the file-based Bibkeeper used to collect

source code metrics with the PCMT tool.

195

A.3. PCMT Keyword File Content for the Datom-Based Gradebook

A.3 PCMT Keyword File Content for the Datom-

Based Gradebook

KEYWORDS

CompositeEntity DElement

DatomArrayMatrix EmptyDatomQueueException

DatomArrayMatrixRoot EmptyDatomStackException

DatomList GradingModel

DatomListOutOfBoundsException InvalidStoreException

DatomListRoot PerAssignmentData

DatomMap PerCompositeData

DatomMapRoot PersistentItem

DatomMatrixOutOfBoundsException PerStudentData

DatomQueue Root

DatomQueueRoot Store

DatomStack UpdateException

DatomStackRoot

Table A.3: List of the persistent keywords of the Datom-based Gradebook used to

collect source code metrics with the PCMT tool.

196

A.4. PCMT Keyword File Content for the DOM-Based Gradebook

A.4 PCMT Keyword File Content for the DOM-

Based Gradebook

KEYWORDS

AbstractDOMAdapter ElementFilter Namespace

AbstractFilter EntityRef OracleV1DOMAdapter

Attribute EscapeStrategy OracleV2DOMAdapter

BuilderErrorHandler Filter Parent

CDATA Format ProcessingInstruction

Comment Format.TextMode SAXBuilder

Content IllegalAddException SAXHandler

ContentFilter IllegalDataException SAXOutputter

CrimsonDOMAdapter IllegalNameException Text

DataConversionException IllegalTargetException UncheckedJDOMFactory

DefaultJDOMFactory JAXPDOMAdapter Verifier

DocType JDOMException XercesDOMAdapter

Document JDOMFactory XML4JDOMAdapter

DOMAdapter JDOMLocator XMLOutputter

DOMBuilder JDOMParseException XPath

DOMOutputter JDOMResult XSLTransformer

Element JDOMSource XSLTransformException

Table A.4: List of the persistent keywords of the DOM-based Gradebook used to

collect source code metrics with the PCMT tool.

197

Appendix B

Code Samples for Usability

Scenarios

1. Open a collection of persistent objects

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot rootMap = (DatomMapRoot) storeConn.openRoot("RootName");

4 rootMap.close();

5 storeConn.close();

6 }

7 catch(InvalidStoreException ise) {}

8 catch(UpdateException ue) {}

2. Prepare the persistent data layout for a collection of

data items

1 try {

2 String[] keys = {"Island", "Epic", "HMV", "Sony"};

3 StoreConn storeConn = new StoreConn();

4 DatomMapRoot rootMap = new DatomMapRoot();

5 storeConn.createRoot("MusicLabels", rootMap);

6 for(int i=0; i<keys.length; i++) {

7 rootMap.put(keys[i], new DatomList());

8 }

9 rootMap.close();

10 storeConn.close();

198

11 }

12 catch(UpdateException ue) {}

13 catch(InvalidStoreException ise) {}

14 catch(NotSerializableException nse) {}

3. Add a data element to the collection of persistent items

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot rootMap = (DatomMapRoot) storeConn.openRoot("MusicLabels");

4 DatomList labelList = (DatomList) rootMap.get("Sony");

5 // ...

6 String name = "Aerosmith";

7 int numHits = 14;

8 Vector members = new Vector();

9 members.add("Steven Tyler (born March 26, 1948), is the singer ...");

10 members.add("Joe Perry (born September 10, 1950), is the lead ...");

11 members.add("Tom Hamilton ...");

12 members.add("Joey Krammer ...");

13 Band band = new Band(name, numHits, members);

14 labelList.append(band);

15 rootMap.save();

16 rootMap.close();

17 storeConn.close();

18 }

19 catch(UpdateException ue) {}

4. Update a data element in the collection of persistent

items

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot rootMap = (DatomMapRoot) storeConn.openRoot("MusicLabels");

4 DatomList labelList = (DatomList) rootMap.get("Sony");

5 // ... getting value for bandIndex;

6 int newNumHits = 16;

7 Band band = (Band) labelList.get(bandIndex);

8 Vector members = band.getMembers();

9 band.setNumHits(newNumHits);

10 members.add("Brad Withford ...");

11 band.setMembers(members);

12 rootMap.save();

13 rootMap.close();

199

14 storeConn.close();

15 }

16 catch(UpdateException ue) {}

5. Read data from a persistent data element

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot rootMap = (DatomMapRoot) storeConn.openRoot("MusicLabels");

4 DatomList labelList = (DatomList) rootMap.get("Sony");

5 int numElements = labelList.size();

6 for(int i=0; i<numElements; i++) {

7 Band tempBand = (Band) labelList.get(i);

8 System.out.println("Band name: " + tempBand.getName());

9 System.out.println("Number of hits: " + tempBand.getNumHits());

10 Vector members = tempBand.getMembers();

11 int numMembers = members.size();

12 for(int j=0; j<numMembers; j++) {

13 System.out.println(members.get() + "\n");

14 }

15 }

16 rootMap.close();

17 storeConn.close();

18 }

19 catch(UpdateException ue) {}

6. Delete a data element from the collection of persistent

items

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomArrayMatrixRoot gameMap =

4 (DatomArrayMatrixRoot) storeConn.openRoot("MapOne");

5 // ... getting value for rowIndex and colIndex

6 DatomStack zoneActions = (DatomStack) gameMap.get(rowIndex, colIndex);

7 if(!zoneActions.isEmpty()) {

8 PlayerAction action = (PlayerAction) zoneActions.pop();

9 }

10 gameMap.save();

11 gameMap.close();

12 storeConn.close();

13 }

14 catch(UpdateException ue) {}

200

7. Remove a collection of persistent items

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot rootMap = (DatomMapRoot) storeConn.openRoot("MusicLabels");

4 DatomList labelList = (DatomList) rootMap.delete("Epic");

5 rootMap.save();

6 rootMap.close();

7 storeConn.close();

8 }

9 catch(UpdateException ue) {}

10 catch(InvalidStoreException ise) {}

8. Apply updates atomically to a collection of persistent

items

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot tasks = (DatomMapRoot) storeConn.openRoot("Tasks");

4 DatomQueue pendings = (DatomQueue) tasks.get("pending");

5 DatomQueue processed = (DatomQueue) tasks.get("processed");

6 while(!pendingTasks.isEmpty()) {

7 Task currentTask = (Task) pendings.dequeue();

8 // ... doing something with currentTask

9 processed.queue(currentTask);

10 tasks.save();

11 }

12 tasks.close();

13 storeConn.close();

14 }

15 catch(UpdateException ue) {}

9. Modify the organisation of the persistent data layout

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot mainStructure = (DatomMapRoot) storeConn.openRoot("main");

4 // .. getting idPart

5 DatomMap parts = (DatomMap) mainStructure.get(idPart);

6 // .. getting idSubpart

7 DatomList subparts = (DatomList) parts.delete(idSubpart);

8 // .. generating newIdPart

201

9 mainStructure.put(newIdPart, subparts);

10 mainStructure.save();

11 mainStructure.close();

12 storeConn.close();

13 }

14 catch(UpdateException ue) {}

10. Query the collection of persistent items

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot mainStructure = (DatomMapRoot) storeConn.openRoot("main");

4 // ... getting id

5 if(mainStructure.hasKey(id)) {

6 DatomMap subparts = (DatomMap) mainStructure.get(id);

7 Iterator subpartsIt = subparts.getKeys().iterator();

8 while(subpartsIt.hasNext()) {

9 String subPartCode = (String) subpartsIt.next();

10 System.out.println("Code: " + subPartCode);

11 }

12 }

13 else {

14 System.out.println("SORRY: No such an ID present in the structure.");

15 }

16 mainStructure.close();

17 storeConn.close();

18 }

19 catch(UpdateException ue) {}

11. Navigate and update the collection of persistent items

1 try {

2 StoreConn storeConn = new StoreConn();

3 DatomMapRoot dataFrame = (DatomMapRoot) storeConn.openRoot("localData");

4 Iterator dataFrameIt = dataFrame.getKeys().iterator();

5 while(dataFrameIt.hasNext()) {

6 String frameId = (String) dataFrameIt.next();

7 DatomStack blocks = (DatomStack) dataFrame.get(frameId);

8 while(!blocks.isEmpty()) {

9 Block dataBlock = (Block) blocks.pop();

10 // ... do something with dataBlock

11 dataFrame.save();

12 }

202

13 }

14 dataFrame.close();

15 storeConn.close();

16 }

17 catch(UpdateException ue) {}

203

Appendix C

Task Analysis for Usability

Scenarios

1. Open a collection of persistent objects

• Open the store.

• Recover a root of persistence.

• Close the root of persistence.

• Close the store.

2. Prepare the persistent data layout for a collection of

data items

• Open the store.

• Create a root of persistence in memory.

• Insert the root of persistence in the store.

• Create a set of persistent items.

• Include the set of persistent items in the graph of persistence.

• Save the graph of persistence.

• Close the root of persistence.

204

• Close the store.

3. Add a data element to the collection of persistent items

• Open the store.

• Recover a root of persistence.

• Create the Element.

• Reach the position to insert the Element.

• Insert the Element.

• Save the graph of persistence.

• Close the root of persistence.

• Close the store.

4. Update a data element in the collection of persistent

items

• Open the store.

• Recover a root of persistence.

• Reach the position where the Element is stored.

• Fetch the Element.

• Modify the Element

• Save the graph of persistence.

• Close the root of persistence.

• Close the store.

205

5. Read data from a persistent data element

• Open the store.

• Recover a root of persistence.

• Reach the position where the Element is stored.

• Fetch the Element.

• Read the Element

• Close the root of persistence.

• Close the store.

6. Delete a data element from the collection of persistent

items

• Open the store.

• Recover a root of persistence.

• Reach the position where the Element is stored.

• Remove the Element from the graph of persistence.

• Save the graph of persistence.

• Close the root of persistence.

• Close the store.

7. Remove a collection of persistent items

• Open the store.

• Recover a root of persistence.

• Reach the position where the Composite Entity is stored.

• Remove the Composite Entity from the graph of persistence.

• Save the graph of persistence.

206

• Close the root of persistence.

• Close the store.

8. Apply updates atomically to a collection of persistent

items

• Open the store.

• Recover a root of persistence.

• Repeat set of operations while needed.

– Reach the position where the persistent item is stored.

– Update the persistent item.

– Save the graph of persistence.

• Close the root of persistence.

• Close the store.

9. Modify the organisation of the persistent data layout

• Open the store.

• Recover a root of persistence.

• Open a persistent item located in the graph of persistence at second-level

depth.

• Temporarily remove the persistent item from the graph of persistence.

• Create a third-level depth Composite Entity.

• Insert the second-level persistent item in the newly created third-level Com-

posite Entity.

• Save the graph of persistence.

• Close the root of persistence.

• Close the store.

207

10. Query the collection of persistent items

• Open the store.

• Recover a root of persistence.

• Query the graph of persistence.

• Present results.

• Close the root of persistence.

• Close the store.

11. Navigate and update the collection of persistent items

• Open the store.

• Recover a root of persistence.

• Traverse and update the graph of persistence.

• Save the graph of persistence.

• Close the root of persistence.

• Close the store.

208

Bibliography

[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott,

and R. Morrison. An Approach to Persistent Programming. The

Computer Journal , 26(4):360–365, 1983.

[ABC+02] S. Agarwal, J. A. Blakeley, T. Casey, K. Delaney, C. Galindo-Legaria,

G. Graefe, M. Rys, and M. Zwilling. Chapter 27: Microsoft SQL

Server. In A. Silberschatz, H. F. Korth, and S. Sudarshan, eds.,

Database System Concepts , pp. 969–1006. McGraw-Hill, fourth edi-

tion, 2002.

[ABD+89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and

S. Zdonik. The Object-Oriented Database System Manifesto. In

Proceedings of the First International Conference on Deductive and

Object-Oriented Databases (DOOD ’89), pp. 223–240. Kyoto, Japan,

1989.

[Abi97] S. Abiteboul. Querying Semi-Structured Data. In Proceedings of 6th

International Conference on Database Theory (ICDT ’97), volume

1186 of Lecture Notes in Computer Science, pp. 1–18. Springer, 1997.

[ABS00] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from Re-

lations to Semistructured Data and XML. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2000.

[ADJ+96] M. P. Atkinson, L. Daynés, M. J. Jordan, T. Printezis, and S. Spence.

An Orthogonally Persistent Java. SIGMOD Record , 25(4):68–75,

1996.

[AGH00] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Lan-

guage. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, third edition, 2000.

209

[AJDS96] M. P. Atkinson, M. J. Jordan, L. Daynès, and S. Spence. Design

Issues for Persistent Java: A Type-Safe, Object-Oriented, Orthog-

onally Persistent System. In Proceedings of the 7th Workshop on

Persistent Object Systems (POS7), pp. 33–47. Cape May, New Jer-

sey, USA, 1996.

[AM95] M. P. Atkinson and R. Morrison. Orthogonally Persistent Object

Systems. Very Large Data Bases Journal , 4(3):319–401, 1995.

[ANS86] American National Standards Institute: The Database Language

SQL, Document ANSI X3.135, 1986.

[ANS92] American National Standards Institute: Database Language — SQL,

Document ANSI X3.135-1992, 1992.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener.

The Lorel Query Language for Semistructured Data. International

Journal on Digital Libraries , 1(1):68–88, 1997.

[BA03] K. Barr and K. Asanovic. Energy Aware Lossless Data Compres-

sion. In Proceedings of the First International Conference on Mobile

Systems, Applications, and Services (MobiSys ’03). San Francisco,

CA, USA, May 2003.

[Bac73] C. W. Bachman. The Programmer as Navigator. Communications of

the Association for Computing Machinery (ACM), 16(11):653–658,

1973.

[Ban88] F. Bancilhon. Object-Oriented Database Systems. In Proceedings of

the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database Systems (PODS ’88), pp. 152–162. ACM Press,

New York, NY, USA, 1988.

[BC85] A. L. Brown and W. P. Cockshott. The CPOMS Persistent Ob-

ject Management System. Technical Report PPRR-13-85 (Persis-

tent Programming Research Report 13), University of Glasgow and

University of St. Andrews, Scotland, 1985.

[BCD89] F. Bancilhon, S. Cluet, and C. Delobel. A Query Language for the O2

Object-Oriented Databases. In Proceedings of the Second Interna-

tional Workshop on Database Programming Languages , pp. 122–138.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989.

210

[BCF+05] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie,

and J. Siméon. XQuery 1.0: An XML Query Language. Technical

report, World Wide Web Consortium, April 2005.

[BCG+99] C. Baru, V. Chu, A. Gupta, B. Ludascher, R. Marciano, Y. Papakon-

stantinou, and P. Velikhov. XML-Based Information Mediation for

Digital Libraries. In Proceedings of the Fourth ACM Conference

on Digital Libraries (ACM DL ’99), pp. 214–215. ACM Press, New

York, NY, USA, August 1999.

[BCGD00] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single In-

stance Storage in Windows 2000. In Proceedings of the 4th USENIX

Windows System Symposium (WinsSys ’00). USENIX Association,

August 2000.

[BDB04] Sleepycat Software, Inc. Berkeley DB Collections Tutorial , Septem-

ber 2004.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query

Language and Optimization Techniques for Unstructured Data. In

Proceedings of the 1996 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’96), pp. 505–516. ACM Press, New

York, NY, USA, June 1996.

[BFH02] R. Bryant, R. Forester, and J. Hawkes. Filesystem Performance

and Scalability in Linux 2.4.17. In Proceedings of USENIX Annual

Technical Conference, FREENIX Track (USENIX ’02), pp. 259–274.

USENIX Association, Berkeley, CA, 2002.

[BG00] A. F. Blackwell and T. R. G. Green. A Cognitive Dimensions Ques-

tionnaire Optimised for Users. In Proceedings of Twelfth Annual

Meeting of the Psychology of Programming Interest Group (PPIG-

12), pp. 137–154. 2000.

[BHK+91] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and

J. K. Ousterhout. Measurements of a Distributed File System. In

Proceedings of the Thirteenth ACM Symposium on Operating Sys-

tems Principles (SOSP ’91), pp. 198–212. ACM Press, New York,

NY, USA, 1991.

[BIB05] Bibkeeper, 2005. Available at http://bibkeeper.sourceforge.net

[accessed May, 2005].

211

[BKKM00] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and R. Murthy.

Oracle8i - The XML Enabled Data Management System. In Proceed-

ings of the Sixteenth International Conference on Data Engineering

(ICDE ’00), pp. 561–568. San Diego, CA, USA, March 2000.

[BM93] E. Bertino and L. Martino. Object-Oriented Database Systems: Con-

cepts and Architectures. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1993.

[BMO+89] R. Bretl, D. Maier, A. Otis, D. J. Penney, B. Schuchardt, J. Stein,

E. H. Williams, and M. Williams. The GemStone Data Management

System. In Object-Oriented Concepts, Databases, and Applications ,

pp. 283–308. ACM Press and Addison-Wesley, 1989.

[BNTW95] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of Pro-

gramming with Complex Objects and Collection Types. In Selected

Papers of the Fourth International Conference on Database Theory

(ICDT ’92), pp. 3–48. Elsevier Science Publishers B. V., Amster-

dam, The Netherlands, 1995.

[BOS91] P. Butterworth, A. Otis, and J. Stein. The GemStone Object

Database Management System. Communications of the Association

for Computing Machinery (ACM), 34(10):64–77, 1991.

[BP98] S. Balasubramaniam and B. C. Pierce. What is a File Synchronizer?

In Proceedings of the Fourth Annual ACM/IEEE International Con-

ference on Mobile Computing and Networking (MOBICOM ’98), pp.

98–108. Dallas, Texas, USA, October 1998.

[BPS+04] T. Bray, J. Paoli, C. M. Sperberg, E. Maler, F. Yergeau, and

J. Cowan. Extensible Markup Language (XML) 1.1. Technical re-

port, World Wide Web Consortium, February 2004.

[Bra03] T. Bray. Why XML Doesn’t Suck, March 2003. Available at http://

tbray.org/ongoing/When/200x/2003/03/24/XMLisOK, [accessed July,

2005].

[Bro93] A. Z. Broder. Some Applications of Rabin’s Fingerprinting Method.

In R. Capocelli, A. D. Santis, and U. Vaccaro, eds., Sequences II:

Methods in Communications , Security, and Computer Science, pp.

143–152. Springer-Verlag, 1993.

[Bro94] K. Brockschmidt. Inside OLE 2 . Microsoft Press, 1994.

212

[Bro97] A. Z. Broder. On the Resemblance and Containment of Documents.

In Proceedings of Compression and Complexity of Sequences (SE-

QUENCES ’97). IEEE Computer Society, Washington, DC, USA,

1997.

[Bro00] A. Z. Broder. Identifying and Filtering Near-Duplicate Documents.

In Proceedings of the 11th Annual Symposium of Combinatorial Pat-

tern Matching (CPM ’00). Montreal, Canada, June 2000.

[Bun97] P. Buneman. Semistructured Data. In Proceedings of the Six-

teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems (PODS ’97), pp. 117–121. ACM Press, New

York, NY, USA, 1997.

[CAC+90] W. P. Cockshott, M. P. Atkinson, K. J. Chisholm, P. J. Bailey, and

R. Morrison. Persistent Object Management System. In S. B. Zdonik

and D. Maier, eds., Readings in Object-Oriented Database Systems ,

pp. 251–272. Kaufmann, San Mateo, CA, 1990.

[Car86] L. Cardelli. Amber. In Proceedings of the Thirteenth Spring School of

the LITP on Combinators and Functional Programming Languages ,

pp. 21–47. Springer-Verlag Inc., New York, NY, USA, 1986.

[CBB+00] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan,

C. Russell, O. Schadow, T. Stanienda, and F. Velez. The Object

Data Standard: ODMG 3.0 . Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2000.

[CD99] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0.

Technical report, World Wide Web Consortium, November 1999.

[CDF+86] M. J. Carey, D. J. DeWitt, D. Frank, M. Muralikrishna, G. Graefe,

J. E. Richardson, and E. J. Shekita. The Architecture of the EX-

ODUS Extensible DBMS. In Proceedings of the 1986 International

Workshop on Object-Oriented Database Systems , pp. 52–65. IEEE

Computer Society Press, Los Alamitos, CA, USA, 1986.

[CDG+90] M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E. Richard-

son, D. T. Schuh, E. J. Shekita, and S. Vandenberg. The EXODUS

Extensible DBMS Project: An Overview. In D. Maier and S. Zdonik,

ed., Readings on Object-Oriented Database Systems . Morgan Kauf-

mann, San Mateo, CA, 1990.

213

[CL01] C. Chan and H. Lu. Fingerprinting Using Polynomial (Rabin’s

Method). Faculty of Science, University of Alberta, CMPUT690

Term Project, 2001.

[Cla99] J. Clark. XSL Transformations (XSLT) Version 1.0. Technical re-

port, World Wide Web Consortium, November 1999.

[Cla01] S. Clarke. Evaluating a New Programming Language. In Proceed-

ings of the 13th Annual Workshop of the Psychology of Programming

Interest Group (PPIG-13), pp. 275–289. 2001.

[Cla03] S. Clarke. Using the Cognitive Dimensions Framework to Design

Usable APIs, 2003. Available at http://blogs.msdn.com/stevencl/

archive/2003/11/14/57065.aspx [accessed May, 2005].

[Cla04] S. Clarke. Measuring API Usability. Dr. Dobb’s Journal Special

Windows/.NET Supplement , pp. S6–S9, May 2004.

[CM82] A. J. Cole and R. Morrison. An Introduction to Programming with

S-ALGOL. Cambridge University Press, New York, NY, USA, 1982.

[CM84] G. Copeland and D. Maier. Making Smalltalk a Database System.

In Proceedings of the 1984 ACM SIGMOD International Conference

on Management of Data (SIGMOD ’84), pp. 316–325. ACM Press,

New York, NY, USA, 1984.

[CMN02] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making

Backup Cheap and Easy. ACM SIGOPS Operating Systems Review ,

36(SI):285–298, 2002.

[CNTR97] V. Cahill, P. Nixon, B. Tangney, and F. Rabhi. Object Models

for Distributed or Persistent Programming. The Computer Journal ,

40(8):513–527, 1997.

[CO96] A. B. Chaudhri and P. Osmon. A Comparative Evaluation of the

Major Commercial Object and Object-Relational DBMSs: Gem-

Stone, O2, Objectivity/DB, ObjectStore, VERSANT ODBMS, Il-

lustra, Odapter and UniSQL, 1996. Not published. Available at

http://citeseer.ist.psu.edu/280722.html [accessed May, 2005].

[Cod70] E. F. Codd. A Relational Model for Large Shared Databanks. Com-

munications of the Association for Computing Machinery (ACM),

13(6):377–387, June 1970.

214

[Cod82] E. F. Codd. Relational Database: A Practical Foundation for Pro-

ductivity. Communications of the Association for Computing Ma-

chinery (ACM), 25(2):109–117, 1982.

[CPS95] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Pro-

tocol Specification. RFC 1813.. Sun Microsystems, Inc., June 1995.

[CRF01] D. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query

Language for Heterogeneous Data Sources. In Selected Papers from

the Third International Workshop WebDB 2000 on The World Wide

Web and Databases , pp. 1–25. Springer-Verlag, London, UK, 2001.

[CS92] R. G. G. Cattell and J. Skeen. Object Operations Benchmark. ACM

Transactions on Database Systems (TODS), 17(1):1–31, 1992.

[CX00] J. M. Cheng and J. Xu. XML and DB2. In Proceedings of the Six-

teenth International Conference on Data Engineering (ICDE ’00),

pp. 569–573. San Diego, CA, USA, 2000.

[DA97] L. Daynès and M. Atkinson. Main-Memory Management to Support

Orthogonal Persistence for Java. In Proceedings of the Second In-

ternational Workshop on Persistence and Java (PJW2). Half Moon

Bay, CA, USA, 1997.

[DB99] J. R. Douceur and W. J. Bolosky. A Large-Scale Study of File-

System Contents. In Proceedings of the 1999 ACM SIGMETRICS

International Conference on Measurement and Modeling of Com-

puter Systems (SIGMETRICS ’99), pp. 59–70. ACM Press, New

York, NY, USA, 1999.

[DB205] IBM DB2 Information Management Software, 2005. Web site at http:

//www.ibm.com/software/data [accessed May, 2005].

[DCBM89] A. Dearle, R. Connor, F. Brown, and R. Morrison. Napier88 –

A Database Programming Language? In Proceedings of the Sec-

ond International Workshop on Database Programming Languages

(DBPL ’89), pp. 213–229. Salishan Lodge, Gleneden Beach, Ore-

gon, June 1989.

[DD95] H. Darwen and C. J. Date. The Third Manifesto. ACM SIGMOD

Record , 24(1):39–49, 1995.

215

[Deu91] O. Deux. The O2 System. Communications of the Association for

Computing Machinery (ACM), 34(10):34–48, 1991.

[DFF+99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A

Query Language for XML. In Proceeding of the Eighth International

Conference on World Wide Web (WWW ’99), pp. 1155–1169. Else-

vier North-Holland, Inc., Toronto, Canada, 1999.

[DFS99] A. Deutsch, M. Fernandez, and D. Suciu. Storing Semistructured

Data with STORED. In Proceedings of the 1999 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’99),

pp. 431–442. ACM Press, New York, NY, USA, 1999.

[DH03] T. E. Denehy and W. W. Hsu. Duplicate management for reference

data. Research Report RJ 10305 (A0310-017), IBM, October 2003.

[DI03] F. Douglis and A. Iyengar. Application-Specific Delta-Encoding via

Resemblance Detection. In Proceedings of 2003 USENIX Technical

Conference (USENIX ’03), pp. 113–126. USENIX Association, 2003.

[DJ96] A. D’Andrea and P. Janus. UniSQL’s Next-Generation Object-

Relational Database Management System. SIGMOD Record ,

25(3):70–76, 1996.

[DMOW05] S. DeRose, E. Maler, D. Orchard, and N. Walsh. XML Linking

Language (XLink) Version 1.1. Technical report, World Wide Web

Consortium, April 2005.

[DN65] R. C. Daley and P. G. Neuman. A General Purpose File System for

Secondary Storage. In Proceedings of AFIPS Fall Joint Computer

Conference, pp. 213–229. Spartan Books, New York, USA, 1965.

[DP05] B. Dragovic and C. Policroniades. Information SeeSaw: Availability

vs. Security Management in the UbiComp World. In Proceedings of

the 2nd VLDB Workshop on Secure Data Management (SDM ’05),

volume 3674 of Lecture Notes in Computer Science, pp. 200–216.

Springer-Verlag, Berlin Heidelberg, Germany, 2005.

[DSRS01] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. Pipelining

in Multi-Query Optimization. In Proceedings of the Twentieth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems (PODS ’01), pp. 59–70. ACM Press, New York, NY, USA,

2001.

216

[DYC95] A. Dan, P. S. Yu, and J. Y. Chung. Characterization of Database

Access Pattern for Analytic Prediction of Buffer Hit Probability.

The International Journal on Very Large Data Bases , 4(1):127–154,

1995.

[EM99] A. Eisenberg and J. Melton. SQLJ-Part 1: SQL Routines Using the

Java Programming Language. SIGMOD Record , 28(4):58–63, 1999.

[EN00a] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems ,

chapter Appendix D: An Overview of the Hierarchical Data Model,

pp. 941–955. Addison-Wesley, third edition, 2000.

[EN00b] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems ,

chapter Appendix C: An Overview of the Network Data Model, pp.

917–940. Addison-Wesley, third edition, 2000.

[EN00c] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems .

Addison-Wesley, third edition, 2000.

[ES90] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Man-

ual . Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1990.

[FEB03] M. Fisher, J. Ellis, and J. Bruce. JDBC API Tutorial and Reference.

Sun, third edition, 2003.

[FW04] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second

Edition. Technical report, World Wide Web Consortium, October

2004.

[FZT+92] M. J. Franklin, M. J. Zwilling, C. K. Tan, M. J. Carey, and D. J. De-

Witt. Crash Recovery in Client-Server EXODUS. In Proceedings of

the 1992 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’92), pp. 165–174. ACM Press, New York, NY,

USA, 1992.

[GBHC00] S. Gribble, E. Brewer, M. Hellerstein, and D. Culler. Scalable, Dis-

tributed Data Structures for Internet Service Construction. In Pro-

ceedings of the Symposium on Operating Systems Design and Imple-

mentation (OSDI ’00), pp. 319–332. USENIX Association, October

2000.

[Gei95] K. Geiger. Inside ODBC . Microsoft Press, 1995.

217

[GEM05] GemStone Systems, 2005. Web site at http://www.gemstone.com [ac-

cessed May, 2005].

[GMMW03] P. Grosso, E. Maler, J. Marsh, and N. Walsh. XPointer Framework.

Technical report, World Wide Web Consortium, March 2003.

[GP96] T. R. G. Green and M. Petre. Usability Analysis of Visual Program-

ming Environments: A ‘Cognitive Dimensions’ Framework. Journal

of Visual Languages and Computing , 7(2):131–174, 1996.

[GR83] A. Goldberg and D. Robson. SmallTalk-80: The Language and its

Implementation. Addison-Wesley, Boston, MA, USA, 1983.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-

niques . Morgan Kaufmann, 1993.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases. ACM

Computing Surveys , 25(2):73–170, 1993.

[GRA05] The Tab Completion Grade Book, 2005. Available at http://

tabgradebook.sourceforge.net/ [accessed July, 2005].

[Gri97] S. Grimstad. Persistent Code Measurement Tool (PCMT), 1997.

Available at http://www.ifi.uio.no/∼pjama/pcmt/ [accessed May,

2005].

[GRR+98] R. G. Guy, P. L. Reiher, D. Ratner, M. Gunter, W. Ma, and G. J.

Popek. Rumor: Mobile Data Access Through Optimistic Peer-to-

Peer Replication. In Proceedings of Advances in Database Technolo-

gies, ER ’98 Workshop on Mobile Data Access , volume 1552 of Lec-

ture Notes in Computer Science, pp. 254–265. Springer, 1998.

[GSAW98] S. Grimstad, D. I. K. Sjøberg, M. Atkinson, and R. Welland. Eval-

uating Usability Aspects of PJama Based on Source Code Measure-

ments. In Proceedings of the 8th International Workshop on Persis-

tent Object Systems (POS8) and of the 3rd International Workshop

on Persistence and Java (PJW3), pp. 307–321. Morgan Kaufmann,

San Francisco, CA, USA, 1998.

[Gut02] J. V. Guttag. Software Pioneers: Contributions to Software Engi-

neering , chapter Abstract Data Types, Then and Now, pp. 453–479.

Springer-Verlag, Inc., New York, NY, USA, 2002.

218

[HB05] A. Hejlsberg and D. Box. The LINQ Project .NET Language In-

tegrated Query, 2005. Available at http://msdn.microsoft.com/

netframework/future/linq/ [accessed November, 2005].

[Hen03] V. Henson. An Analysis of Compare-by-Hash. In Proceedings of

the 9th Workshop on Hot Topics in Operating Systems (HotOS-IX).

Lihue, Hawaii, USA, May 2003.

[Her03] J. D. Herrington. Code Generation: The One Page Guide. Code

Generation Network and DevX, 2003. Available at http://www.

codegeneration.net/files/JavaOne OnePageGuide v1.pdf [accessed

November, 2005].

[HHW+04] A. L. Hors, P. L. Hégaret, L. Wood, G. Nicol, J. Robie, M. Cham-

pion, and S. Byrne. Document Object Model (DOM) Level 3 Core

Specification Version 1.0. Technical report, World Wide Web Con-

sortium, April 2004.

[Hos95] A. L. Hosking. Benchmarking Persistent Programming Languages:

Quantifying the Language/Database Interface. In Proceedings of

ACM OOPSLA’95 Workshop on Database Behaviour, Benchmarks,

and Performance. Austin, Texas, USA, 1995.

[HP01] H. Hosoya and B. C. Pierce. XDuce: A Typed XML Processing

Language (Preliminary Report). In Selected Papers from the Third

International Workshop WebDB 2000 on The World Wide Web and

Databases , pp. 226–244. Springer-Verlag, London, UK, 2001.

[INF05] IBM Software - Informix product family, 2005. Web site at http:

//www-306.ibm.com/software/data/informix/ [accessed May, 2005].

[ISO99] International Organization for Standardization. Information Tech-

nology – Database Languages – SQL – Part 2: Foundation

(SQL/Foundation), 1999.

[JA98] M. J. Jordan and M. P. Atkinson. Orthogonal Persistence for

JavaTM- A Mid-Term Report. In Proceedings of the 8th Interna-

tional Workshop on Persistent Object Systems (POS8) and of the

3rd International Workshop on Persistence and Java (PJW3), pp.

335–352. Morgan Kaufmann, San Francisco, CA, USA, 1998.

219

[Jak02] H. Jakobsson. Chapter 25: Oracle. In A. Silberschatz, H. F. Korth,

and S. Sudarshan, eds., Database System Concepts , pp. 921–947.

McGraw-Hill, fourth edition, 2002.

[JAKC+02] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan,

A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwat-

wattana, Y. Wu, and C. Yu. TIMBER: A Native XML Database.

The International Journal on Very Large Data Bases , 11(4):274–291,

2002.

[JK84] M. Jarke and J. Koch. Query Optimization in Database Systems.

ACM Computing Surveys , 16(2):111–152, 1984.

[Jor96] M. Jordan. Early Experiences with Persistent Java. In Proceedings of

the First International Workshop on Persistence and Java (PJW1).

Drymen, Scotland, UK, September 1996.

[Kak98] S. V. Kakkad. Address Translation and Storage Management for

Persistent Object Stores. Technical Report CS-TR-98-07, Depart-

ment of Computer Sciences. University of Texas at Austin, March

1998.

[KC86] S. Khoshafian and G. P. Copeland. Object Identity. In Proceedings

of the Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA’86), pp. 406–416. 1986.

[KDLT04] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey. Redundancy

Elimination Within Large Collections of Files. In Proceedings of

2004 USENIX Technical Conference (USENIX ’04). USENIX Asso-

ciation, 2004.

[KH98] V. Kumar and M. Hsu. Recovery mechanisms in database systems .

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented

Databases. In Proceedings of the 1992 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’92), pp. 393–402.

ACM Press, New York, NY, USA, 1992.

[Kle86] S. R. Kleiman. Vnodes: An Architecture for Multiple File System

Types in SUN UNIX. In Proceedings of USENIX Summer Technical

Conference (USENIX ’86). USENIX Association, 1986.

220

[KLMW90] B. Kent, P. Lyngback, S. Mathur, and K. Wilkinson. The Iris

Database System. In Proceedings of the 1990 ACM SIGMOD In-

ternational Conference on Management of Data (SIGMOD ’90), p.

392. ACM Press, New York, NY, USA, 1990.

[KM00] C.-C. Kanne and G. Moerkotte. Efficient Storage of XML Data.

In Proceedings of the International Conference on Data Engineering

(ICDE ’00), p. 198. 2000.

[KR81] R. M. Karp and M. O. Rabin. Efficient Randomised Pattern Match-

ing Algorithms. Technical Report TR-31-81, Center for Research in

Computing Technology, Harvard University, 1981.

[KR82] J. L. Keedy and I. Richards. A Software Engineering View of Files.

Australian Computer Journal , 14(2):56–61, May 1982.

[KR01] L. Khan and Y. Rao. A Performance Evaluation of Storing XML

Data in Relational Database Management Systems. In Proceedings

of the 3rd International Workshop on Web Information and Data

Management (WIDM ’01), pp. 31–38. ACM Press, New York, NY,

USA, 2001.

[KS90] H. F. Korth and G. D. Speegle. Long-Duration Transactions in Soft-

ware Design Projects. In Proceedings of the Sixth International Con-

ference on Data Engineering (ICDE ’90), pp. 568–574. IEEE Com-

puter Society, Washington, DC, USA, 1990.

[Lam05] C. Lamb. High-Performance Data Management in Java. Dr. Dobb’s

Journal , pp. 45–49, July 2005.

[LGWJ01] T. Lahiri, A. Ganesh, R. Weiss, and A. Joshi. Fast-Start: Quick

Fault Recovery in Oracle. In Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’01),

pp. 593–598. ACM Press, New York, NY, USA, 2001.

[Lis93] B. Liskov. A History of CLU. In Proceedings of the Second ACM SIG-

PLAN Conference on History of Programming Languages (HOPL-

II), pp. 133–147. ACM Press, New York, NY, USA, 1993.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore

Database System. Communications of the Association for Comput-

ing Machinery (ACM), 34(10):50–63, 1991.

221

[LOS02] Y. Leontiev, M. T. Ozsu, and D. Szafron. On Type Systems for

Object-Oriented Database Programming Languages. ACM Comput-

ing Surveys , 34(4):409–449, 2002.

[Man94] U. Manber. Finding Similar Files in a Large File System. In

Proceedings of the USENIX Winter 1994 Technical Conference

(USENIX ’94), pp. 1–10. USENIX Association, 1994.

[McC97] S. McClure. Object Database vs. Object-Relational Databases. In-

ternational Data Corporation. Bulletin No. 14821E, August 1997.

[McG77] W. C. McGee. The Information Management System IMS/VS Part I:

General Structure and Operation. IBM Systems Journal , 16(2):84–

95, 1977.

[MCK04] J. C. Mogul, Y. M. Chan, and T. Kelly. Design, Implementation,

and Evaluation of Duplicate Transfer Detection in HTTP. In Pro-

ceedings of the First Symposium on Networked Systems Design and

Implementation (NSDI ’04), pp. 43–56. San Francisco, CA, USA,

March 2004.

[MCM01] A. Muthitacharoen, B. Chen, and D. Maziéres. A Low-Bandwidth

Network File System. In Proceedings of the Symposium on Operating

Systems Principles (SOSP ’01), pp. 174–187. ACM Press, New York,

NY, USA, 2001.

[Mil84] R. Milner. A Proposal for Standard ML. In Proceedings of the 1984

ACM Symposium on LISP and Functional Programming , pp. 184–

197. ACM Press, New York, NY, USA, 1984.

[Mil99] K. W. Miller. The Long Transaction and Work Management Inte-

gration. In Proceedings of the Twenthy-Second Annual Conference of

the Geospatial Information and Technology Association (GITA ’99).

1999. Online proceedings. Available at http://www.gisdevelopment.

net/proceedings/gita/1999/work/wm077.shtml [accessed May, 2005].

[MMN+04] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and

L. Zhou. Boxwood: Abstractions as the Foundation for Storage In-

frastructure. In Proceedings of the 6th Symposium on Operating Sys-

tems Design and Implementation (OSDI ’04), pp. 105–120. USENIX

Association, December 2004.

222

[Moo91] J. W. Moore. The ANSI Binding of SQL to ADA. ACM SIG Ada

Letters , XI(5):47–61, 1991.

[Mor02] T. Moreton. Pasta: A Distributed Scalable File System for the Pas-

try Routing Substrate. Part II Project. University of Cambridge,

Computer Laboratory, 2002.

[MPH02] T. D. Moreton, I. A. Pratt, and T. L. Harris. Storage, Mutability

and Naming in Pasta. In Proceedings ot the NETWORKING 2002

Workshops on Web Engineering and Peer-to-Peer Computing , pp.

215–219. Springer-Verlag, London, UK, May 2002.

[MS03] E. Meijer and W. Schulte. Unifying Tables, Objects and Documents.

In Proceedings of the Workshop on Declarative Programming in the

Context of Object Oriented Languages (DP-COOL 2003). Uppsala,

Sweden, August 2003.

[MSOP86] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of

an Object-Oriented DBMS. In Proceedings of the Conference on

Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA ’86), pp. 472–482. ACM Press, New York, NY, USA,

1986.

[MT03] R. J. T. Morris and J. Truskowski. The Evolution of Storage Systems.

IBM Systems Journal , 42(2):205–217, 2003.

[MYS05] MySQL: The World’s Most Popular Open Source Database, 2005.

Web site at http://www.mysql.com [accessed May, 2005].

[Nag97] R. Nagar. Windows NT File System Internals . O’Reilly and Asso-

ciates, September 1997.

[NET05] .NET Framework Developer Center, 2005. Available at http://msdn.

microsoft.com/netframework/ [accessed May, 2005].

[Nut00] G. Nutt. Operating Systems. A Modern Perspective, chapter 13 File

Management, p. 360. Addison Wesley Longman, Inc., second edition,

2000.

[OBJ00] Objectivity, Inc. Objectivity/C++ Standard Template Library, Re-

lease 6.0 , August 2000.

223

[OBJ05] ObjectStore Enterprise: Object Database Managament, 2005. Web

site at http://www.progress.com/realtime/products/objectstore/

index.ssp [accessed May, 2005].

[OBS99] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In Proceed-

ings of the USENIX Annual Technical Conference, FREENIX Track

(USENIX ’99), pp. 183–191. USENIX Association, 1999.

[ODM05] ODMG. Object Data Management Group. The Standard for Storing

Objects, 2005. Web site at http://www.odmg.org [accessed May, 2005].

[OMG05] OMG. Object Management Group, 2005. Web site at http://www.

omg.org [accessed May, 2005].

[ORA05] Oracle Corporation, 2005. Web site at http://www.oracle.com [ac-

cessed May, 2005].

[PAD+97] T. Printezis, M. P. Atkinson, L. Daynès, S. Spence, and P. Bailey.

The Design of a New Persistent Object Store for PJama. In Proceed-

ings of the Second International Workshop on Persistence and Java

(PJW2). Half Moon Bay, CA, USA, 1997.

[Pad02] S. Padmanabhan. Chapter 26: IBM DB2 Universal Database. In

A. Silberschatz, H. F. Korth, and S. Sudarshan, eds., Database Sys-

tem Concepts , pp. 949–967. McGraw-Hill, fourth edition, 2002.

[PAKC+03] S. Paparizos, S. Al-Khalifa, A. Chapman, H. V. Jagadish, L. V. S.

Lakshmanan, A. Nierman, J. M. Patel, D. Srivastava, N. Wiwatwat-

tana, Y. Wu, and C. Yu. TIMBER: a Native System for Querying

XML. In Proceedings of the 2003 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD ’03), pp. 672–672. ACM

Press, New York, NY, USA, 2003.

[PCV03] C. Policroniades, R. Chakravorty, and P. Vidales. A Data Reposi-

tory for Fine-Grained Adaptation in Heterogeneous Environments.

In Proceedings of the 3rd ACM International Workshop on Data En-

gineering for Wireless and Mobile Access (MobiDe ’03), pp. 51–55.

ACM Press, New York, NY, USA, 2003.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Ex-

change Across Heterogeneous Information Sources. In Proceedings of

the 11th International Conference on Data Engineering (ICDE ’95),

pp. 251–260. IEEE Computer Society, Washington, DC, USA, 1995.

224

[PP04] C. Policroniades and I. Pratt. Alternatives for Detecting Redun-

dancy in Storage Systems Data. In Proceedings of the USENIX

Annual Technical Conference (USENIX ’04), pp. 73–86. USENIX

Association, Boston, MA, USA, 2004.

[PP05] C. Policroniades and I. Pratt. Datom: An Abstract View of File

Content. In Proceedings of the Postgraduate Research Conference in

Electronics, Photonics, Communications and Networks, and Com-

puting Science (PREP 2005), pp. 150–151. Lancaster, UK, 2005.

[PRO02a] Pro*C/C++ Precompiler Programmer’s Guide. Release 9.2. Part

Number A97269-01, 2002.

[PRO02b] Pro*COBOL Precompiler Programmer’s Guide. Release 9.2. Part

Number A96109-01, 2002.

[PV04] B. C. Pierce and J. Vouillon. What’s in Unison? A Formal Specifica-

tion and Reference Implementation of a File Synchronizer. Technical

Report MS-CIS-03-36, Departament of Computer and Information

Science, University of Pennsylvania, 2004.

[QD02] S. Quinlan and S. Dorward. Venti: a New Approach to Archival

Storage. In Proceedings of the First USENIX Conference on File

and Storage Technologies (FAST ’02). USENIX Association, Jan-

uary 2002.

[Rab81] M. O. Rabin. Fingerprinting by Random Polynomials. Technical

Report TR-15-81, Center for Research in Computing Technology,

Harvard University, 1981.

[Rab85] M. O. Rabin. Discovering Repetitions in Strings. In A. Apostolico

and Z. Galil, eds., Combinatorial Algorithms on Words, pp. 279–288.

Springer-Verlag, Berlin, 1985.

[RC89] J. E. Richardson and M. J. Carey. Persistence in the E Lan-

guage: Issues and Implementation. Software Practice and Experi-

ence, 19(12):1115–1150, 1989.

[RCS93] J. E. Richardson, M. J. Carey, and D. T. Schuh. The Design of

the E Programming Language. ACM Transactions on Programming

Languages and Systems (TOPLAS), 15(3):494–534, 1993.

225

[Rec05] B. Rector. Introducing Longhorn for Developers, 2005.

Available at http://msdn.microsoft.com/Longhorn/understanding/

books/rector/default.aspx [accessed May, 2005].

[Ric90] J. E. Richardson. Compiled Item Faulting: A New Technique for

Managing I/O in a Persistent Language. In A. Dearle, G. M. Shaw,

and S. B. Zdonik, eds., Implementing Persistent Object Bases, Prin-

ciples and Practice. Proceedings of the Fourth International Work-

shop on Persistent Objects (POS4), pp. 3–16. Morgan Kaufmann,

1990.

[RLA00] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File

System Workloads. In Proceedings of 2000 USENIX Annual Techni-

cal Conference (USENIX ’00). USENIX Association, June 2000.

[RLB03] S. C. Rhea, K. Liang, and E. Brewer. Value-Based Web Caching.

In Proceedings of the 12th International Conference on World Wide

Web (WWW ’03), pp. 619–628. ACM Press, New York, NY, USA,

2003.

[RLS98] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL).

In Proceedings of the Query Languages Workshop (QL ’98). Boston,

MA, USA, December 1998.

[RP02] K. Runapongsa and J. M. Patel. Storing and Querying XML Data

in Object-Relational DBMSs. In Proceedings of the Workshops

XMLDM, MDDE, and YRWS on XML-Based Data Management

and Multimedia Engineering-Revised Papers (EDBT ’02), pp. 266–

285. Springer-Verlag, London, UK, 2002.

[RSSB00] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and Ex-

tensible Algorithms for Multi Query Optimization. In Proceedings of

the 2000 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’00), pp. 249–260. ACM Press, New York, NY,

USA, 2000.

[Rys01] M. Rys. Bringing the Internet to Your Database: Using SQLServer

2000 and XML to Build Loosely-Coupled Systems. In Proceedings of

the 17th International Conference on Data Engineering (ICDE ’01),

pp. 465–472. IEEE Computer Society, Washington, DC, USA, 2001.

226

[San86] R. Sandberg. The Sun Network Filesystem: Design, Implementa-

tion, and Experience. In Proceedings of the Summer 1986 USENIX

Technical Conference and Exhibition (USENIX ’86). USENIX Asso-

ciation, 1986.

[SAS+96] J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M. Stonebraker, and A. Yu.

Data Replication in Mariposa. In Proceedings of the 12th Interna-

tional Conference on Data Engineering (ICDE ’96), pp. 485–494.

IEEE Computer Society, Washington, DC, USA, 1996.

[Sat89] M. Satyanarayanan. A Survey of Distributed File Systems. Techni-

cal Report CMU-CS-89-116, Carnegie Mellon University, Pittsburgh,

Pennsylvania, 1989.

[SAX05] Simple API for XML (SAX), 2005. Web site at http://www.

saxproject.org/ [accessed May, 2005].

[SCD90] D. T. Schuh, M. J. Carey, and D. J. DeWitt. Persistence in E Revis-

ited - Implementation Experiences. In A. Dearle, G. M. Shaw, and

S. B. Zdonik, eds., Implementing Persistent Object Bases, Principles

and Practice. Proceedings of the Fourth International Workshop on

Persistent Objects (POS4), pp. 345–359. Morgan Kaufmann, 1990.

[Sch77] J. W. Schmidt. Some High Level Language Constructs for Data of

Type Relation. ACM Transactions on Database Systems (TODS),

2(3):247–261, 1977.

[Sch01] H. Schöning. Tamino - A DBMS Designed for XML. In Proceedings of

the 17th International Conference on Data Engineering (ICDE ’01),

pp. 149–154. IEEE Computer Society, Washington, DC, USA, 2001.

[SCP+02] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and

M. Rosenblum. Optimizing the Migration of Virtual Computers.

ACM SIGOPS Operating Systems Review , 36(SI):377–390, 2002.

[Ser90] Servio Logic Development Corporation. Gemstone V 2.0: Program-

ming in OPAL, 1990.

[SGI05] Silicon Graphics, Inc. Standard Template Library Programmer’s

Guide, May 2005. Available at http://www.sgi.com/tech/stl/index.

html [accessed May, 2005].

227

[SGT+99] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. DeWitt,

and J. Naughton. Relational Databases for Querying XML Docu-

ments: Limitations and Opportunities. In Proceedings of 25th In-

ternational Conference on Very Large Data Bases (VLDB ’99), pp.

302–314. Morgan Kaufmann, September 1999.

[SHA95] National Institute of Standards and Technology. FIPS Publication

180-1: Secure Hash Standard , 1995.

[SK91] M. Stonebraker and G. Kemnitz. The POSTGRES Next Generation

Database Management System. Communications of the Association

for Computing Machinery (ACM), 34(10):78–92, 1991.

[SKW92] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An Efficient,

Portable Persistent Store. In A. Albano and R. Morrison, eds., Pro-

ceedings of the Fifth International Workshop on Persistent Object

Systems (POS5), pp. 11–13. Springer-Verlag, 1992.

[SMK+93] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and

J. J. Kistler. Lightweight Recoverable Virtual Memory. In Proceed-

ings of the 14th ACM Symposium on Operating Systems Principles

(SOSP ’93), pp. 146–160. ACM Press, New York, NY, USA, 1993.

[Sol92] V. Soloviev. An Overview of Three Commercial Object-Oriented

Database Management Systems: ONTOS, ObjectStore, and O2.

ACM SIGMOD Record , 21(1):93–104, 1992.

[SQL05] SQL Server Home, 2005. Web site at http://www.microsoft.com/sql

[accessed May, 2005].

[SRL+90] M. Stonebraker, L. A. Rowe, B. Lindsay, J. Gray, M. Carey,

M. Brodie, P. Bernstain, and D. Beech. Third-Generation Data Base

System Manifesto. ACM SIGMOD Record , 19(3):31–44, September

1990.

[SSU91] A. Silberschatz, M. Stonebraker, and J. Ullman. Database Systems:

Achievements and Opportunities. Communications of the Associa-

tion for Computing Machinery (ACM), 34(10):110–120, 1991.

[Suc98] D. Suciu. An Overview of Semistructured Data. ACM SIGACT

News , 29(4):28–38, 1998.

228

[SW00] N. T. Spring and D. Wetherall. A Protocol-Independent Technique

for Eliminating Redundant Network Traffic. In Proceedings of the

Conference on Applications, Technologies, Architectures, and Pro-

tocols for Computer Communication (SIGCOMM ’00), pp. 87–95.

ACM Press, New York, NY, USA, 2000.

[SYB05] Sybase Inc - Sybase, 2005. Web site at http://www.sybase.com [ac-

cessed May, 2005].

[SYU99] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and Retrieval of

XML Documents Using Object-Relational Databases. In Proceedings

of the 10th International Conference on Database and Expert Sys-

tems Applications (DEXA ’99), pp. 206–217. Springer-Verlag, Lon-

don, UK, 1999.

[Tex96] Texas Persistent Store Source Code Distribution and Documen-

tation, 1996. Available at ftp://ftp.cs.utexas.edu/pub/garbage/

texas/tdesc-4.15.1.tar.Z [accessed May, 2005].

[Tri00] A. Tridgell. Efficient Algorithms for Sorting and Synchronization.

Ph.D. thesis, Australian National University, April 2000.

[Tuk01] M. Tukiainen. Evaluation of the Cognitive Dimensions Questionnaire

and Some Thoughts About the Cognitive Dimensions Spreadsheet

Calculation. In Proceedings of the 13th Annual Workshop of the

Psychology of Programming Interest Group (PPIG-13), pp. 291–301.

2001.

[VER05] VERSTANT. A Leader in Object-Relational Mapping and Object

Databases, 2005. Web site at http://www.versant.com [accessed May,

2005].

[Vog99] W. Vogels. File System Usage in Windows NT 4.0. In Proceedings

of the Symposium on Operating Systems Principles (SOSP ’99), pp.

93–109. ACM Press, New York, NY, USA, 1999.

[WD92] S. J. White and D. J. DeWitt. A Performance Study of Alterna-

tive Object Faulting and Pointer Swizzling Strategies. In Proceed-

ings of the 18th International Conference on Very Large Data Bases

(VLDB ’92), pp. 419–431. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1992.

229

[Wed91] G. Weddell. The Technology of Object-Oriented Databases. Tech-

nical Report CS-91-46, University of Waterloo, September 1991.

[WK92] P. R. Wilson and S. V. Kakkad. Pointer Swizzling at Page Fault

Time: Efficiently and Compatibly Supporting Huge Address Spaces

on Standard Hardware. In Proceedings of the 1992 International

Workshop on Object Orientation and Operating Systems, pp. 364–

377. IEEE Computer Society, Washington, DC, USA, 1992.

[WL89] S. P. Weiser and F. H. Lochovsky. OZ+: an Object-Oriented

Database System. In Object-Oriented Concepts, Databases, and Ap-

plications , pp. 309–337. ACM Press, New York, NY, USA, 1989.

[ZCC95] M. Zand, V. Collins, and D. Caviness. A Survey of Current Object-

Oriented Databases. ACM SIGMIS Database, 26(1):14–29, 1995.

[ZL77] J. Ziv and A. Lempel. A Universal Algorithm for Sequential

Data Compression. IEEE Transaction on Information Theory , IT-

23(3):337–343, May 1977.

230

