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Summary

Maintaining consistency of fault-tolerant distributed systems is notoriously difficult to

achieve. It often requires non-trivial agreement abstractions, such as Consensus, Atomic

Broadcast, or Atomic Commitment. This thesis investigates implementations of such

abstractions in the asynchronous model, extended with unreliable failure detectors or

eventual synchrony. The main objective is to develop protocols that minimize the number

of communication steps required in failure-free scenarios but remain correct if failures

occur. For several agreement problems and their numerous variants, this thesis presents

such low-latency algorithms and lower-bound theorems proving their optimality.

The observation that many agreement protocols share the same round-based struc-

ture helps to cope with a large number of agreement problems in a uniform way. One

of the main contributions of this thesis is Optimistically Terminating Consensus (OTC)

– a new lightweight agreement abstraction that formalizes the notion of a round. It is

used to provide simple modular solutions to a large variety of agreement problems, includ-

ing Consensus, Atomic Commitment, and Interactive Consistency. The OTC abstraction

tolerates malicious participants and has no latency overhead; agreement protocols con-

structed in the OTC framework require no more communication steps than their ad-hoc

counterparts.

The attractiveness of this approach lies in the fact that the correctness of OTC algo-

rithms can be tested automatically. A theory developed in this thesis allows us to quickly

evaluate OTC algorithm candidates without the time-consuming examination of their en-

tire state space. This technique is then used to scan the space of possible solutions in

order to automatically discover new low-latency OTC algorithms. From these, one can

now easily obtain new implementations of Consensus and similar agreement problems

such as Atomic Commitment or Interactive Consistency.

Because of its continuous nature, Atomic Broadcast is considered separately from other

agreement abstractions. I first show that no algorithm can guarantee a latency of less

than three communication steps in all failure-free scenarios. Then, I present new Atomic

Broadcast algorithms that achieve the two-step latency in some special cases, while still

guaranteeing three steps for other failure-free scenarios. The special cases considered here

are: Optimistic Atomic Broadcast, (Optimistic) Generic Broadcast, and closed-group

Atomic Broadcast. For each of these, I present an appropriate algorithm and prove its

latency to be optimal.
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Chapter 1

Introduction

A number of real-world processes can be modelled as interactions between two kinds of

participants: clients who issue requests and servers who fulfil them. Examples range

from human-human interaction, such as an investor ordering his trust fund to sell some

shares, to computer-computer interactions, for example an operating system automatically

requesting the latest security patches from the vendor’s Internet site. In this thesis, we

consider the latter case, in which one computer (the client), possibly at a human’s request,

uses a network to communicate with another computer (the server) in order to obtain some

service.

As an example, take a hotel room booking system, in which customers (the clients)

can access the hotel webpage (the server) to make reservations. In order to book a room,

a client sends a request to the server, who replies with a confirmation message:

client server

I want a room!

You have it.

The same message exchange can be represented graphically as

server

client
I want a

room
! Yo

u
ha

ve
it. time

sp
ac

e

In this diagram, the horizontal axis represents time and the vertical one space. Both the

client and the server, which we will collectively call processes , are represented by dotted

horizontal lines, because they exists in a single point in space but span over time. Events,

such as sending or receiving a message, happen at a particular process at a particular

time, so they are represented as dots. Each message is depicted as an arrow from the

event of sending the message to the event of receiving it.

In our example, the client-server model works well; the client sends a message to the

server, and after some time receives the reply. The problem with this approach is that it

introduces a single point of failure. If the server crashes, no client can access the system:
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server

client
I want a

room
!

server

client
I want a

room
!

In the first example, the server crashes just after receiving the client’s request, but before

sending the reply. In the other example, the crash occurs even before the client request

arrives at the server, so the client’s request simply gets lost. In both cases, the client does

not receive any reply.

The standard solution to this problem is replication, which avoids a single point of

failure by replacing a single server with many identical replicas:

server 1

server 2

server 3

client

I want a room!

I
w
ant

a
room

!

I
w
ant

a
room

!

You
ha

ve
it.

Y
ou

ha
ve

it
.

Y
ou

ha
ve

it
.

This way, a failure of an individual server will not block the system; as long as some

servers remain operational, the client will receive the reply:

server 1

server 2

server 3

client

server 1

server 2

server 3

client

With replication, however, maintaining consistency of the system becomes an issue.

Client requests may arrive at the servers in different orders:

server 1

server 2

server 3

client 1
client 2

If both clients try to book the same room, who will get it? If rooms are allocated on a

first-come first-served basis, server 1 will assign the room to client 2, whereas the other

servers will assign the room to client 1. The clients will become confused by inconsistent
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responses. Not only that, the supposedly identical states of the servers will start to differ,

thereby making the whole system enter an inconsistent state.

To maintain consistency, clients need a broadcasting algorithm that ensures that all

servers receive their requests in the same order. This problem is known in the literature

as Atomic Broadcast [25]. It is relatively easy to solve in systems in which failures do

not occur, but becomes significantly more difficult once the mere possibility of failure is

introduced to the model.

One of the general approaches to implementing Atomic Broadcast consists of two

phases: clients broadcasting their requests to the servers and the servers agreeing on the

order in which the requests will be delivered [26]. This agreement phase is an interesting

problem in itself, which is called Consensus. In this abstraction, each server issues a single

proposal, for example a number or a sequence of requests, and all of them eventually agree

on one of these proposals. Consensus is a fundamental problem in distributed computing

because it can be used to implement many other abstractions such as Atomic Broadcast or

Atomic Commitment [58]. In fact, Consensus is universal in the sense that any sequential

object, such as a single server, can be implemented in a distributed way using Consensus

[62].

As with Atomic Broadcast, the possibility of failures makes the Consensus problem far

from trivial. One possible method would be that the first server broadcasts its proposal

and imposes it on others. However, this simple solution fails when the first server crashes.

One can try to avoid this problem by having a second server take over if the first experi-

ences difficulties, but this creates many new problems. What if the main server managed

to send its proposal only to some servers, but not all? How long should a server wait until

it can assume that the main server has crashed? What if different servers have different

opinions about whether the main server crashed or not? These and similar questions

make Consensus and other agreement problems interesting.

Goal of this thesis

This thesis investigates efficient implementations of agreement problems in distributed

systems. Efficiency can be measured in a number of ways: as processor usage, memory

usage, network load, the number of messages transmitted, etc. In this work, we focus

on latency – the time that passes from the start to the end of the algorithm. For each

of the considered agreement abstractions, we provide a number of implementations and

examine their latencies in various scenarios. We also present lower bound theorems that

prove that the latencies achieved by our algorithms cannot be improved.

There is a trade-off between optimizing algorithms for the typical case (no failures)

and the worst case (many failures). Since failures are rare, we focus on minimizing the

latency in runs without failures. In other runs, the latency of our algorithms might not be
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optimal. Nevertheless, we guarantee the correctness of our algorithms in all runs allowed

by the model, including those with failures.

To cope with a large number of agreement problems in a uniform way, Chapter 2 intro-

duces a new lightweight agreement abstraction which we call Optimistically Terminating

Consensus (OTC). It tolerates malicious participants and has no latency overhead; the

latencies of agreement protocols constructed in the OTC framework do not exceed those of

their ad-hoc counterparts. Chapter 3 presents a technique for automatic verification and

discovery of new OTC algorithms. In Chapter 4, we show how to use both manually and

automatically generated OTC algorithms to provide simple modular solutions to a large

variety of agreement problems, including Consensus, Atomic Commitment, and Interac-

tive Consistency. Latency-optimal Atomic Broadcast protocols are discussed separately

in Chapter 5.

1.1 System model

This section gives more precise definitions of the discussed concepts. We consider a dis-

tributed system consisting of a certain number of interconnected processing units, called

processes. Processes communicate by sending and receiving messages using communica-

tion channels [58]. In the real world, processes correspond to computers and communica-

tion channels correspond to network connections. It is possible to have several processes

running on the same machine; in this case, some communication channels will be local

inter-process communication channels provided by the operating system.

1.1.1 Processes

Processes can be thought of as programs running on individual computers. They are

specified as a collection of parallel tasks. As an example, consider a simple algorithm

that equips all processes with two primitives: bcast(m) to broadcast a message m, and

deliver(m) to deliver it to the local user. Each process p runs two parallel tasks:

1 task broadcasting at process p is

2 loop forever

3 wait for bcast(m) for some m

4 for all processes q do

5 send m to process q

6 task delivery at process p is

7 loop forever

8 wait for receive(m)

9 deliver(m)

The broadcasting task contains an infinite loop, whose each iteration waits for a mes-

sage to be broadcast, and then sends it to all processes, including itself. Each iteration of

the infinite loop in the delivery task first waits for a message m, and then delivers it to

the local user by executing deliver(m).
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A process can execute many tasks at the same time. However, each task is executed

atomically, without interruption, until a wait instruction is encountered. At that point,

the control can be transferred to another task.

The wait instruction comes in two variants: “wait until condition” and “wait

for event”, which suspend the current task until the condition holds or the event has

occurred, respectively. Each occurrence of “wait for event” ignores the events that it

has already used. As a result, the above delivery code will deliver each message the same

number of times it received it.

To simplify the notation, we introduce a construct “when event do body” as an

abbreviation for

1 task handle event is

2 loop forever

3 wait for event

4 execute body as a newly created, independent task

Line 4 executes body as another task, so the original task does not wait until event has

been handled by body.

If a condition is specified in a place where an event is expected, we assume that the

event occurs whenever the condition becomes true. With this assumption we can rewrite

the broadcast algorithm as

1 when bcast(m) at process p do

2 for all processes q do

3 send m to process q

4 when process p received m do

5 deliver(m)

Note that, in this implementation, messages are delivered by separate and independent

tasks, so the orders of their reception and delivery might differ.

Failures

For various reasons, not all processes behave according to the specification. Some might

crash due to hardware errors and stop operating, others might have been subverted and

might execute a program completely different from the original one. In our model, we

divide processes into two groups: (i) correct processes, which behave according to the

specification, and (ii) faulty processes, which do not. The latter group is subsequently

divided into two subgroups: (i) non-maliciously faulty processes, which behave correctly

but stop operating (crash) at some point, and (ii) maliciously faulty processes, which can

execute arbitrary code. Processes that are correct or non-maliciously faulty are called

honest. Our classification is summarized in the table below:
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correctness honesty behaviour

correct honest according to the specification

faulty honest according to the specification until it stops

faulty malicious arbitrary

Honest processes do not know whether they are correct or not. In other words, they

cannot predict whether or when they will crash.

The model that assumes all processes are honest is called the crash-stop model , as

opposed to the Byzantine model, which allows malicious processes. These two models are

sometimes referred to as honest settings and malicious settings, respectively.

Proposers, acceptors, and learners

In our model, the set of processes is divided into three possibly overlapping groups: pro-

posers, acceptors, and learners. This division was originally proposed by Lamport [76] for

Consensus; we generalize it to be problem-independent and defined in terms of message

sending capabilities. We assume that proposers can send messages to acceptors, who can

send messages to both themselves and the learners.

proposers acceptors learners

Acceptors can both send and receive messages from other acceptors, so our definition

requires each acceptor to be a proposer and a learner, but not necessarily vice versa.

The proposer-acceptor-learner model can be thought of as a reformulation of the client-

server model, with proposers corresponding to clients sending requests, acceptors corre-

sponding to servers receiving requests and sending replies, and learners corresponding to

clients receiving replies:

server 1

server 2

server 3

client

=⇒

acceptor 1

acceptor 2

acceptor 3

proposer

learner

By forbidding direct communication between proposers and learners in general, our

model separates these two roles of a client. As in publish-subscribe systems [38], one

client (proposer, publisher) sends a message, so that other clients (learners, subscribers)
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can deliver it. Acceptors acting as proposers and learners corresponds to the servers being

clients in their own system.

In typical applications, clients can come and go, whereas servers are more permanent.

To reflect this, we do not impose any restrictions on the number of proposers or learners

in the system, nor on the type and number of faults they experience. On the other hand,

the number n of acceptors is fixed, we denote these by a1, a2, . . . , an. We assume that

at most f acceptors are faulty, out of which at most m are malicious. Note that these

numbers denote the maximum number of faults allowed by the model. In a particular

run, the number of faults can be smaller or even zero.

In our model, learners have no outgoing communication channels, so they cannot

affect the rest of the system. Therefore, without loss of generality, we can assume that

all learners are honest [76].

1.1.2 Channels

Processes communicate by sending messages through the underlying network. We model

this by having pairs of processes connected using dedicated uni-directional communication

channels. The process model from Section 1.1.1 implies that we need only channels that

connect proposers to acceptors, acceptors to acceptors, and acceptors to learners. Each

such channel connects two processes known as the sender and the receiver . The sender

can send a message m by invoking send(m). When the receiver receives message m, action

receive(m) is invoked.

We assume asynchronous reliable channels. This means that all messages from a

correct process to a correct process will eventually reach their destination (reliability),

but there is no upper bound on message transmission time (asynchrony). We assume

that channels do not create or modify messages. Formally, we require [57]:

No Creation. If a process q receives message m, then some process p sent

m.

Reliability. If a correct process p sends a message m to a correct process q,

then q will eventually receive m.

We allow channels to duplicate messages, that is, processes can receive the same message

twice or more times.

Asynchrony

Our system model is asynchronous, which means that there are no bounds on message

transmission times or process speeds. This weak assumption allows us to model a large

variety of systems, in which messages or processes can occasionally experience delays. As

a consequence, processes cannot use time to synchronize their actions, which means that
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the correctness of algorithms developed for the asynchronous model is not prone to timing

violations.

Reliability

Our channels are reliable, that is, all messages between correct processes are eventually

received. Several reliability conditions have been proposed in the literature [9, 57, 85]:

unreliable channels, best-effort channels, stubborn channels, and reliable channels. Among

these, the reliable channels provide the strongest guarantees, which makes algorithms

designed for this model simpler than those designed for others. Basu et al. [9] showed

that reliable channels can be emulated using the (weakest) unreliable channels by periodic

retransmission of lost messages. Since this emulation does not incur any additional latency

in runs without failures [9], latency-optimal algorithms for reliable channels remain so in

weaker communication models.

Reliability is not the strongest channel semantics. For example, uniformly reliable

channels [9, 57] guarantee correct processes to eventually receive all messages, even those

sent by faulty processes. These channels can also be emulated with unreliable ones, but

only with a significant latency overhead [9]. For this reason, they are not useful for

designing latency-optimal protocols.

Asynchronous reliable channels, which we use here, do not guarantee that messages

are received in the same order as they are sent. Stronger guarantees are possible: FIFO

channels preserve the order of messages sent between a given pair of processes, causal

channels deliver causally related messages in order. Both semantics can be implemented

on top of reliable channels without latency overhead [93].

1.1.3 Features not considered

Many aspects of distributed computing are not discussed in this thesis, but have received

a considerable amount of attention in the literature. Below we list three of them:

• Dynamic groups. Traditionally, agreement problems have been considered in a

model with a fixed number n of processes. Lamport [76] relaxed this condition

by dividing processes into proposers, acceptors, and learners, and fixing only the

number n of acceptors. Group communication systems [105] went even further by

waiving this restriction altogether. In such systems, any process can dynamically

join and leave the current group of processes.

• Recovery. In our model, when an honest process crashes, it stops all processing

forever. In the crash-recovery model [4, 64], crashed processes can eventually resume

operating. This is different from a process just being very slow for a while because

the recovered processes lose all of their state except for the part of it stored in stable
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storage such as disks. The main challenge in designing agreement protocols for this

model is minimizing the use of stable storage [4, 10, 58, 64, 110].

• Synchrony. A significant amount of work on agreement problems has been done

in the synchronous model [31], in which all messages take exactly one unit of time

to reach their destination. A similar semi-synchronous model [31] assumes a known

upper bound on message transmission times. Both models assume that the time

constraints always hold, which makes the safety of the algorithms designed for such

models susceptible to timing violations. For this reason, our model makes no such

timing assumptions. In this sense, the (semi-)synchronous model is stronger than

ours, which means that algorithms designed for our model remain correct in the

(semi-)synchronous one.

1.2 Consensus

In the Consensus problem, informally introduced in the beginning of this chapter, pro-

cesses issue proposals and are supposed to reach a common decision. This section will

give a formal definition of this abstraction.

Although our system model distinguishes between proposers, acceptors, and learners,

most Consensus algorithms presented in the literature do not make this distinction, calling

all participants simply “processes” [58]. Differentiating between these three groups of

processes, first suggested by Lamport [73], makes the model directly applicable to client-

server abstractions, such as Atomic Broadcast.

In this thesis, we define Consensus in terms of two groups of processes: acceptors

and learners (proposers do not participate). Each correct acceptor ai proposes a single

value xi, and all correct learners have to eventually decide on one common value x.

Formally, Consensus provides processes with two primitives: an action propose available

to acceptors, and a predicate decision available to learners. When an acceptor ai executes

propose(xi), we say that “ai proposes xi”. Similarly, when predicate decision(x) holds at

some learner, we say that learner has decided on x. Assuming that honest acceptors

propose at most one value, the Consensus problem is defined by the following three

properties:

Validity. If all acceptors are honest and decision(x) holds at some learner,

then some acceptor proposed x.

Agreement. There is at most one x for which decision(x) holds at some

learner.

Termination. If all correct acceptors executed propose, then all correct learn-

ers will eventually decide.
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The Validity property ensures that each decision value has been indeed proposed

by some acceptor. This precludes some useless algorithms, such as the one in which all

learners decide on 1701 regardless of what values have been proposed. Note that malicious

acceptors can propose one value and then behave as if they had proposed another one.

Since such behaviour is undetectable, the Validity property must assume that all acceptors

are honest. Section 4.1 will discuss this property in more detail.

The Agreement property is the one that gives the Consensus problem its name. It re-

quires that no two learners decide on different values. Some learners might not decide at

all; there is nothing to prevent faulty learners from crashing at the very beginning. How-

ever, if a learner decides, it has to decide on the same value as other learners, whether it

is correct or not. Recall that learners are honest by definition.

The Consensus abstraction considered here is uniform [46], which means that Agree-

ment holds for all learners, not only the correct ones. A non-uniform Consensus allows

faulty learners to decide on different values than the correct ones. All abstractions con-

sidered is this thesis are uniform, unless explicitly stated otherwise.

The Validity and Agreement properties of Consensus guarantee only safety; they

merely prevent learners from deciding on “bad” values (those not proposed or different

from other decisions). In particular, algorithms in which no learner ever decides satisfy

these properties. In order to preclude such algorithms, we need the Termination property,

which ensures that if all correct acceptors have proposed, then all correct learners will

eventually decide.

For a more detailed introduction to Consensus and other agreement problems, see the

tutorials by Guerraoui et al. [58] and Raynal [108].

1.2.1 Safety and liveness properties

Properties of distributed algorithms can be classified into two groups: safety properties

and liveness properties. Safety properties are those that prevent the algorithm from

reaching an erroneous state, such as deciding on two different values (Agreement) or on a

value that has not been proposed (Validity). Liveness properties ensure that the system

will eventually be in a good state, for example, all correct learners will eventually decide

(Termination). More precisely [20], if a safety property does not hold at some point in

time, then it will never hold, no matter what happens (once a wrong decision has been

made, it cannot be undone). On the other hand, at any point in time, no matter what

happened up to that point, it is still possible for a liveness property to hold (a correct

process can always decide).

Is every property either a safety or a liveness property? No, it is not. For example,

“Agreement and Termination” treated as a single property is neither. It can be shown,

however, that every property is an intersection of a safety and a liveness property [6]. In
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this case, “Agreement and Termination” can be decomposed into Agreement (safety) and

Termination (liveness). For this reason, distributed abstractions are best presented in a

canonical form, with each property being either a safety or a liveness property.

The main reason for separating safety and liveness properties of distributed abstrac-

tions is that the former are generally considered more important. This is because a

violation of a safety property is by definition final. For example, if two learners decide on

different values, nothing can be done to remedy the disagreement. Liveness properties,

on the other hand, are never violated in a finite execution; if a learner has not decided

yet, it might still decide in the future.

1.3 Consensus unsolvable in asynchronous systems

If one distinguished acceptor, say a1, is guaranteed to be correct, Consensus can easily be

implemented by a1 broadcasting its proposal and the learners adopting it as the decision.

This algorithm is correct because the decision value has been proposed by some acceptor,

namely a1 (Validity), it is the same at every learner (Agreement), and every correct learner

will eventually receive a1’s proposal and decide on it (Termination).

If acceptor a1 fails and does not broadcast its proposal, the above algorithm no longer

guarantees Termination. It is, of course, possible to design more sophisticated algorithms

which would decide in some runs with a1 being faulty. Is it, however, possible to guarantee

Termination in all such scenarios? No, it is not. Fischer, Lynch, and Paterson [40] proved

that there is no Consensus algorithm that would tolerate all runs with even one faulty

acceptor. Intuitively, this results from the fact that it is impossible to safely distinguish

a crashed process from a very slow process or a process with which the communication is

very slow [58]. Moreover, this impossibility is not specific to Consensus; it applies to all

non-trivial agreement problems such as Interactive Consistency [97], Atomic Commitment

[48], or Atomic Broadcast [26]. Atomic Broadcast is actually equivalent to Consensus; if

one problem is solvable in a given model, then so is the other. Therefore, all Consensus

solvability discussions that follow will apply to Atomic Broadcast as well.

It is important to understand the Consensus impossibility result correctly [54]. It states

that no algorithm can satisfy all three Consensus properties (Validity, Agreement, and

Termination) at the same time in all runs with at most one faulty acceptor. This theorem

does not prevent us from designing algorithms that sometimes fail to satisfy one of these

properties. In particular, we can design algorithms that are always safe (satisfy Validity

and Agreement), but fail to decide in some special runs with failures. These special runs,

although allowed by the asynchronous model, occur rarely in practice; they correspond,

for example, to the network permanently failing to meet its timeliness even for a short

period of time. Adding some small realistic extensions can eliminate such runs from the

asynchronous model, making Consensus solvable. Numerous such extensions have been
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proposed: failure detectors [16], eventual synchrony [37], partial synchrony [37], timed

asynchrony [24], weak ordering oracles [104], and randomization [7].

In this thesis, we limit our attention to safe extensions, which do not introduce any

new safety assumptions to the asynchronous system model. In other words, we consider

only those extensions that add only liveness properties to the asynchronous model. As

a result, even if those additional properties do not hold, the safety of algorithms relying

on them cannot be jeopardized [46]. The next two sections will briefly describe two such

approaches: eventual synchrony and unreliable failure detectors.

1.3.1 Eventual synchrony

One way of making Consensus solvable in asynchronous systems is by adding some as-

sumptions about message transmission times. Different assumptions result in different

levels of synchrony in the system [26]. For example, assuming a known upper bound

on the message transmission times that always holds makes the system virtually syn-

chronous. This extension is too strong, because it adds a safety property to the system.

On the other hand, assuming no bounds on message transmission times corresponds to

the asynchronous system, which is too weak because Consensus is not solvable.

The eventually synchronous model [37] lies between these two extremes. This model

assumes the existence of an unknown upper bound on message transmission times between

correct processes. This is a liveness assumption because it cannot be violated in a run

with finitely many messages, which means that the eventual synchrony extension is safe.

The only situation in which no upper bound exists is when some message transmission

times keep increasing without any limit.

1.3.2 Unreliable failure detectors

Dolev et al. [31] investigated a number of different timing assumptions that allow for

solvability of Consensus, and presented an algorithm for each of them. Since Consensus

algorithms use timing assumptions only to guarantee Termination in case of failures, the

Consensus algorithms for different timing models are rather similar. To avoid designing a

new Consensus algorithm for every new timing assumption, Chandra et al. [17] proposed

a way of encapsulating complicated timing assumptions into much simpler objects known

as failure detectors.

Failure detectors hide most details about timing assumptions, and present the appli-

cation with the only information it really needs: whether a particular process is suspected

to have crashed or not. This simplifies Consensus algorithms, because all failure-detecting

work is done inside the failure-detector abstraction. Moreover, failure detectors hide the

timing details from the application, which means that a single Consensus algorithm can

now work with different timing assumptions. Finally, the algorithm designer can forget
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about time; failure detectors are abstract objects whose properties are defined indepen-

dently of time.

The failure detectors considered in this thesis are unreliable [46], which means that

they can make mistakes. For an arbitrary long period of time, they can report crashed

processes as correct and vice versa, but eventually their output must reflect the reality.

Note that this is a liveness property; unreliable failure detectors are safe in the sense that

they do not introduce any new safety properties to the model.

Originally, failure detectors [16] were defined in a model with a fixed number n of

processes, which in this thesis correspond to acceptors. Therefore, in our model, failure

detectors are defined for acceptors only. They come in two variants:

• Crash detectors. These detectors [18] provide each acceptor with a set of accep-

tors whom they suspect to have crashed. Different types of detectors have different

properties. One of the most commonly used detector ♦S [17] guarantees:

Strong Completeness. Eventually every faulty acceptor will be perma-

nently suspected by every correct acceptor.

Eventual Weak Accuracy. Eventually some correct acceptor will never

be suspected by any correct acceptor.

In other words, ♦S guarantees that eventually all faulty acceptors will be suspected

and at least one correct acceptor will not.

• Leader oracles. These detectors [18, 82] output a single acceptor that they con-

sider correct, also known as the leader . The most commonly used detector Ω [18]

guarantees:

Eventual Agreement. Eventually, the failure detector will output the

same correct acceptor at all correct acceptors.

In other words, Ω guarantees that eventually all correct acceptors will agree on the

same correct leader.

Both ♦S and Ω are the weakest failure detectors in their classes that make Consensus

and Atomic Broadcast solvable [17, 18]. All three properties listed above are liveness

properties, so the failure detectors ♦S and Ω are safe.

Problems other than Consensus and Atomic Broadcast often require other failure

detectors: P is necessary for Interactive Consistency [16, 61, 97], ?P and Ψ for Atomic

Commitment [47, 50], Σ to implement a register [28], etc. For more information on failure

detectors see [29, 109].
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1.3.3 Comparison

We have presented two extensions of the asynchronous system model: eventual synchrony

and unreliable failure detectors. Both of them are safe yet strong enough to ensure im-

plementability of Consensus and Atomic Broadcast. As explained in the previous section,

failure detectors are more elegant because they provide the application with just enough

information to implement Consensus, while hiding all irrelevant timing details.

The main problem with failure detectors is their implementability. In the eventually

synchronous crash-stop model, unreliable failure detectors can be easily implemented us-

ing timeouts [16, 58]. This is possible because a crashed process stops all its activities

with respect to all processes [34]. In the Byzantine model, however, a malicious process

can send no messages relevant to the algorithm, yet avoid being flagged as crashed by

sending other, irrelevant messages. As a result, traditional failure detectors are not im-

plementable in any model that allows malicious processes [34], regardless of the timing

assumptions.

Several failure detectors have been proposed for the Byzantine model [34, 70, 86]. As

explained above, it is impossible to detect all kinds of malicious behaviour, so Byzantine

failure detectors aim at detecting special forms of malicious behaviour, called quietness

[86] or muteness [34]. Other kinds of failures, such as sending syntactically correct but

semantically invalid or conflicting messages, remain undetected.

To sum up, the elegance and generality of the failure detector approach makes them

attractive for systems in which they can be implemented, that is, those without malicious

processes. In this thesis, we will prefer using failure detectors in the crash-stop model,

and use eventual synchrony in malicious settings.

1.3.4 Well-behaved runs

Even with unreliable failure detectors or eventual synchrony, the asynchronous system

model allows many runs that would almost never occur in practice. Examples include

all acceptors crashing, messages taking years to reach their destinations, failure detectors

behaving randomly for months, etc. As a result, some algorithm properties, such as

low latency, cannot be guaranteed for all runs allowed by the model. In such cases, we

will have to limit our attention to a class of well-behaved runs that occur most often in

practice.

We formalize the idea of well-behaved runs by introducing the notion of timeliness.

Informally, a run is timely if it is similar to a synchronous one. In the failure detector

model, this means that correct acceptors are never suspected. In the eventual synchrony

model, a run is timely if the upper bound on message transmission time between correct

processes is sufficiently small . What “sufficiently small” means depends on the algorithm.
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In practice, this bound must be significantly smaller than any timeout values used by the

algorithm.

In any model, as part of the definition of a timely run, we assume that local compu-

tations are instantaneous and incur no delays. If this is not the case, these delays can be

modelled as part of the latency of messages that started these computations.

In any model, a run is good iff it is timely and all acceptors are correct.

1.4 Latency

There are many parameters that can be used for evaluating distributed algorithms, such as

speed, memory usage, or network usage. In this thesis, we concentrate on speed, or to be

more precise, on the latency of the algorithm caused by message delays. We ignore other

parameters such as local computation time, memory usage, or the number of messages

transmitted. In measuring latency, we limit ourselves to “well-behaved” runs. However,

our main concern is always the correctness in all runs; we do not even consider algorithms

that can be unsafe or not live.

We define the latency of an algorithm run as the time that passes from the beginning

of the run to its end. For example, for Consensus, we measure the time interval from the

point when all correct acceptors proposed to the point when all correct learners decided.

We will often measure latency in terms of communication steps; for this purpose we

define one communication step as the maximum (supremum) message transmission time

d between correct processes in a particular run. As the asynchronous model does not

impose any bounds on the message transmission time, some runs will have d =∞.

For example, the run

a1

a2

a3

1

1

1

5

9

9

9

starts at time 1 and finishes at 9, so its latency is 8. The longest transmission time is

4, so the run takes 8/4 = 2 communication steps, which is consistent with our intuition.

However, according to our definition, run

a1

a2

a3

1

1

1

5

7

9

9

9
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has the same parameters, so it also takes two communication steps. This is no longer

consistent with the intuitive number of steps, which is three in this case.

To solve this paradox, we will generalize the notion of time. A time metric is a function

t from events to real numbers, such that if an event e causally precedes e′, then t(e) ≤ t(e′).

Examples of time metrics include real time and the logical time introduced by Lamport

[78]. The notions of latency and communication steps clearly depend on the time metric

used. We define the number of communication steps required by the algorithm to be the

maximum (supremum) taken over all time metrics.

From now on, we assume that any statement referring to these notions must be true

in every time metric, unless stated otherwise.

Given this assumption, our last example can be given a new time metric

a1

a2

a3

0

0

0

1

2

3

3

3

which shows that this run takes exactly three steps in the new metric. It is not difficult

to show that this run takes at most three steps in any time metric.

Theorem A.1.1 shows that any asynchronous run r can be assigned a time-metric

function in which all messages between correct processes have bounded transmission times,

and all possible time values are actually achieved. This allows the statement “event e will

happen at time t” to imply “e will eventually happen”.

Other definitions of latency

The other approach to measure latency of distributed algorithms is based on Lamport’s

clocks [78]. It was introduced by Schiper [112] under the name of latency degree, and later

renamed to deliver latency by Pedone and Schiper [99].

In this approach, each process is equipped with a scalar clock [78], which is an integer

variable, initially zero. Any message sent at scalar time t carries the timestamp t + 1.

When a process with a scalar time smaller than t + 1 receives such a message, it updates

its time to t + 1. Otherwise, the scalar time remains the same. Deliver latency of a run

is defined as latency with the scalar time used as the time metric.

As an example, consider an algorithm with the following two-phase structure, which

is common to many agreement protocols. In each phase, every acceptor broadcasts and

waits for other acceptors’ messages to arrive. A typical execution of this algorithm is

shown below
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a1

a2

a3

0

0

0

1

1

1

2

2

2

Each event has been annotated with its scalar time. The run starts at time 0 and finishes

at time 2, therefore the deliver latency is 2− 0 = 2.

Consider a run of the same algorithm, in which all messages from and to acceptor a3

are twice as fast as the others.

a1

a2

a3

0

0

0

1

1

1

2

2

3

3

3

As the diagram shows, the deliver latency of this run is 3. This is counter-intuitive as the

algorithm clearly takes only two steps; speeding up some channels should not increase this

number. Pedone and Schiper [99] try to solve this problem by considering only runs “that

exhibit minimal synchronization”, however, the notion of “minimal synchrony” is unclear

and never defined. This shows that deliver latency might not be suitable for measuring

the number of communication steps.

How does our measure of communication steps handle this case? Consider the scalar

time metric first. The latency of the last example is 3, but since the longest message

latency is 2 (e.g., the first message from a1 to a2), this run takes only 3/2 = 1.5 commu-

nication steps in the scalar time metric.

Consider another time metric:

a1

a2

a3

0

0

0

1

1

1

2

2

4

4

4

Here, we get the latency of 4, which combined with the longest message transmission

time of 2, gives the latency of 4/2 = 2 communication steps in this time metric. It is not

difficult to show that this run takes at most 2 communication steps in any time metric,

which is consistent with our intuition.

Deciding versus halting

In most algorithms, processing stops (halts) as soon as the algorithm performed its func-

tion, for example, delivered a message. However, in some algorithms, processes can con-

tinue operating even afterwards [85]. Although early halting is desirable because it makes
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Figure 1.1: Example

better use of system resources, in this thesis, we are mainly concerned with deciding as

quickly as possible. For this reason, in our definition of time complexity, we stop measur-

ing time when all correct learners have decided, not when all of them have halted. For

more information about halting in distributed Consensus, see [32, 95].

1.5 Consensus algorithms

A great number of Consensus algorithms for the asynchronous model have been proposed

in the literature, both for crash-stop settings [16, 35, 63, 65, 73, 112], and Byzantine

settings [15, 36, 81, 87, 121]. All of them share similar structures and design principles.

Each of those algorithms progresses in a sequence of rounds. In each round, a special

proposer, called the round coordinator, sends its proposal to the acceptors, who cooperate

in making it a decision. Depending on the model extension, if the coordinator is suspected

or the timeout expires, the round stops and the next one begins. This continues until

a round with a correct coordinator manages to decide. By relying on failure detector

properties or increasing the timeout period with each round, the algorithm ensures that

such a round will eventually happen.

1.5.1 Crash-stop model

Figure 1.1 shows an example of this idea in crash-stop settings with less than half of the

acceptors faulty (n > 2f). In each round i, the coordinator ci broadcasts its proposal

to the acceptors, who in turn broadcast it to the learners. A learner decides when it

has received the proposal from a majority of acceptors. The coordinators c1, c2, . . . are

played by acceptors a1, a2, etc. In general, round i is coordinated by acceptor number
(

(i− 1) mod n
)

+ 1, a scheme known as rotating coordinator .
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In our example, acceptors a1, a2, a3 are faulty and crash at some point. In the first

round, c1 = a1 broadcasts its proposal to all acceptors, but acceptors a2, a3, a7 do not

receive it due to the faultiness of c1. Moreover, all messages from the faulty a1 to the

learners are lost. Therefore, learners receive messages only from acceptors a4, a5, a6,

which is less than a majority. As a result, they cannot make a decision.

The first round is stopped when it has timed out (eventual synchrony) or c1 is suspected

(failure detectors), and the second round coordinator c2 = a2 broadcasts its proposal.

The same problem occurs as in round 1, and no learner decides. Similarly, round 3 does

not decide either. Finally, in round 4 with a correct coordinator c4 = a4, acceptor a7

receives the proposal from c4. As a result, the learners receive messages from a majority

of acceptors (a4, a5, a6, a7) and decide.

Note that the coordinators do not always propose their original proposals. In our

example, c2 = a2 cannot know that the round 1 message from a1 to the learners was lost.

As a result, it cannot preclude the possibility that round 1 has decided on c1’s proposal.

Instead of issuing its own proposal, it must reissue the one proposed by c1. But how

does c2 = a2 know what c1 proposed if c1’s message to a2 was lost? Coordinator c1’s

proposal can only become a decision if a majority of the acceptors have received it. Since

we assume less than half of all acceptors are faulty (n > 2f), at least one correct acceptor

must have received c1’s proposal. Coordinator c2 can learn about this proposal from that

correct acceptor. This shows that each coordinator ci, in addition to being a proposer in

round i, must also be a learner in all previous rounds.

The details of how c2 and other coordinators choose their proposal depend on the

algorithm. Algorithms by Chandra and Toueg [16], Schiper [112], Hurfin and Raynal [63],

make all acceptors keep a decision estimate, which is used as a proposal when the acceptor

becomes a coordinator. In an alternative approach, at the beginning of each round, all

correct acceptors send their states to the coordinator, which uses them to compute a

suitable proposal. This technique is used in Paxos [73, 79] and its variants such as Fast

Paxos [11], Disk Paxos [42], and Cheap Paxos [80]. The advantage of this approach is

that it can be used in Byzantine settings as well, leading to algorithms such as Byzantine

Paxos [15, 81] and its improvements: Byzantine Disk Paxos [1], Paxos at War [121], and

DGV [36].

Solvability

As explained in Section 1.3, solvability of Consensus requires an asynchronous system

with extensions such as failure detectors or eventual synchrony. The crash detector ♦S

and leader elector Ω have been both shown to be the weakest failure detectors in their

classes to make Consensus solvable [16, 18]. Recall that these extensions are safe, which

means that any Consensus algorithm remains safe even if the properties they offer are not
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met. A simple partitioning argument shows that solving Consensus requires a majority

of correct acceptors (n > 2f) in the asynchronous model with any safe extension [46].

Latency

As Figure 1.1 suggests, all Consensus algorithms based on the scheme presented in Sec-

tion 1.5 require two communication steps to decide, even in good runs. The first step is

necessary for the coordinator’s proposal to reach the acceptors, and the second for the ac-

ceptors’ messages to reach the learners. This latency is optimal; no Consensus algorithm

can guarantee a latency of below two communication steps in all good runs [19, 66, 67, 74].

Recall that a run is good if it is timely and all acceptors are correct.

This result does not preclude the possibility of one-step decision in some good runs.

In fact, there are Consensus algorithms [13, 51] that decide in one step if all acceptors

propose the same value. This speed comes at a cost, however; any Consensus algorithm

capable of deciding in one step requires that less than a third of the acceptors are faulty

(n > 3f).

1.5.2 Byzantine model

With the introduction of (possibly) malicious processes, the Consensus problem becomes

more difficult. In addition to requiring more sophisticated algorithms, the number n of

necessary acceptors grows from n > 2f to n > 2f + m [76, 97], where m is the maximum

number of malicious acceptors (m ≤ f). Failure detectors as defined by Chandra et al.

[18] cannot be implemented even in the synchronous model [34]. For this reason, we

assume the eventual synchrony model [31] in malicious settings.

Castro and Liskov [15] proposed the first asynchronous Consensus algorithm for the

Byzantine model. Their algorithm uses a similar structure to the one shown in Figure 1.1,

with one more communication step in each round to protect against malicious coordina-

tors. The same algorithm has been presented in the “Paxos framework” by Lampson

[81].

Both of the above algorithms require three communication steps, even in good runs.

Lamport [76] observed that this latency can be reduced to two steps, provided that the

number q of actually faulty acceptors is sufficiently small: n > f + 2m + 2q. My Paxos

at War algorithm [121] was the first to achieve this bound with the assumption that all

faulty processes are malicious (m = f). Dutta et al. [36] proposed an algorithm that

achieves this bound for any m ≤ f . Note that, in timely runs with more than q faulty

acceptors, both of these algorithms decide in three communication steps. On the other

hand, the algorithm proposed earlier by Kursawe [71] decides in two steps only in good

runs (q = 0); otherwise it waits until the timeout period expires and starts one of the

Consensus algorithms above.
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1.6 Structure of the thesis and main results

In Section 1.5, we observed that asynchronous Consensus algorithms consist of rounds

that share the same general structure: the coordinator proposes a value, and the acceptors

collaborate to make this value a decision for the learners. In Chapter 2, we will formalize

the notion of a round by introducing a new agreement abstraction called Optimistically

Terminating Consensus (OTC). A full Consensus algorithm can be obtained by running a

sequence of rounds implemented as OTC instances. By changing the parameters of OTC

implementations we can “reconstruct” all known latency-optimal Consensus algorithms,

both for benign and malicious settings. Some combinations of OTC parameters lead to

new, interesting Consensus algorithms. We prove that all our OTC implementations have

optimal latency.

The attractiveness of OTC lies in its simplicity and the fact that, unlike Consensus, it

can be implemented in purely asynchronous settings. These two properties considerably

reduce the space of possible implementations, which makes automatic discovery of new

OTC implementations possible. Chapter 3 develops a theory that enables us to check the

correctness of OTC algorithms automatically. If the test fails, the method presents us with

a scenario in which the given algorithm behaves incorrectly, which can usually be easily

generalized to lower bound proofs. However, the main application of such correctness-

testing is to search the space of possible OTC implementations to automatically discover

new ones.

Chapter 4 gives the detailed algorithm using a sequence of OTC instances to implement

Consensus, both in benign and malicious settings. We also show how this method can

be easily used to implement a variety of other agreement abstractions, such as Atomic

Commitment [48] and Interactive Consistency [97]. All of these implementations have a

latency at most equal to that of other known algorithms.

Chapter 5 investigates low-latency implementations of Atomic Broadcast, the abstrac-

tion informally introduced in the beginning of this chapter. In general good runs, Atomic

Broadcast requires three steps. However, if correct acceptors receive all conflicting mes-

sages in the same order, Atomic Broadcast can be implemented in two steps. We present

such implementations and compare them with existing solutions. We also show an Atomic

Broadcast algorithm that exhibits two-step delivery latency in all good runs, provided

that only acceptors can broadcast messages. We prove latency-optimality of all our solu-

tions.





Chapter 2

Optimistically Terminating

Consensus

In Section 1.5, we observed that asynchronous Consensus algorithms share the same

round-based structure. In each round, a coordinator proposes some value to the acceptors,

who cooperate in making this value a decision. If the first round does not succeed, then

a second round is started, and so on, until eventually some round decides.

In this chapter, we consider a single round as an independent abstraction, which

we call Optimistically Terminating Consensus (OTC). The reason for investigating this

abstraction is that OTC is much simpler to implement than Consensus; in particular,

it is solvable in the purely asynchronous model, without failure detectors or eventual

synchrony. The correctness proofs are also simpler; Chapter 3 will show that they can

even be performed automatically. Not only that, automatic testing for correctness can be

used to automatically search the protocol space for new OTC algorithms satisfying given

requirements.

Chapter 4 will explain how to combine individual rounds (OTC instances) into a

complete Consensus algorithm. This method will allow us to reconstruct modularly almost

all known asynchronous Consensus algorithms, without increasing latency. It also makes

it possible to design a number of new Consensus algorithms, especially for Byzantine

settings.

This chapter is structured in the following way. Section 2.1 presents a new simple

broadcast abstraction called onecast, which will be used to implement OTC. Section 2.2

gives the precise definition of OTC and briefly explains how to use it to implement Consen-

sus. Sections 2.3 and 2.4 present OTC implementations that decide in one and two commu-

nication steps, respectively. These two algorithms are used in Section 2.5 to (re)construct

a number of known and new Consensus algorithms. More Consensus algorithms are re-

constructed in Section 2.6 by running the OTC implementations from Sections 2.3 and 2.4

in parallel. Section 2.7 focuses on minimizing the number of acceptors required by OTC

in good runs. Section 2.8 gives several lower bounds that prove that the requirements of
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1 initially variables sent and received are both empty (⊥)

2 when the owner executes onecast(x) do { assume x 6= ⊥ }
3 if sent = ⊥ then
4 sent← x
5 broadcast “onecast sent” to all learners

6 initially previous = ⊥ (at learners)

7 when a learner receives “onecast x” with x 6= ⊥ from the owner do
8 if received = ⊥ then
9 received← x

10 onedeliver(received)

Figure 2.1: Implementation of onecast.

OTC implementations presented in this chapter are optimal. Section 2.9 summarizes and

concludes this chapter.

2.1 Onecast

Before formally introducing OTC, we will define a new agreement abstraction called

onecast. It will be used in the next sections to implement OTC.

In onecast, a single process, called the owner, broadcasts a single message to other

processes (learners). Subsequent messages broadcast by the owner are ignored. Formally,

the onecast abstraction is defined in terms of two actions: onecast(x) available to the

owner, and onedeliver(x) available to the learners. The following properties hold:

Integrity. No learner onedelivers two different messages.

Validity. If the owner is honest and a learner onedelivers x, then the owner

must have onecast x.

Agreement. If the owner is honest, then no two learners onedeliver different

messages.

Termination. If the owner is correct and executes onecast , then all correct

learners will execute onedeliver in one communication step.

Implementation

Figure 2.1 implements onecast as an ordinary broadcast with two enhancements: the

owner does not broadcast any values different from that already broadcast, and learners

do not deliver any values different from those already delivered. To this end, the owner

uses a variable sent to remember the previously broadcast value (if any). Similarly, each
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learner uses a variable received to remember the previously received value, if any. Both

variables are initially empty, that is, they contain a special symbol “⊥”. When the owner

onecasts x, it first checks whether sent is empty, and if so it writes x to sent . Then, it

broadcasts the contents of sent . When a learner receives this value, say x, it writes x

to received , provided that received is empty, and then onedelivers received . Since honest

owners never onecast “⊥”, learners can ignore all “onecast” messages with this value.

All four properties of onecast are easy to prove. Integrity holds because each learner

writes to received only once, and onedelivers only the contents of received . For Validity,

note that a learner onedelivers x only if it has received “onecast x”. If the owner is

honest, then this implies that it must have onecast x (Validity). Moreover, an honest

owner writes to sent only once, so it cannot broadcast “onecast x” for two different values

(Agreement). Finally, any invocation of onecast results in broadcasting “onecast”, and

any reception of “onecast” results in onedelivery (Termination).

Example

Figure 2.2 shows three scenarios, in which acceptor a1 (the owner) onecasts 1 to other

acceptors. In the first run, all acceptors are correct. As a result, all acceptors onedeliver 1

in one communication step (Termination, Validity).

In the second scenario the owner is non-maliciously faulty. It onecasts two values

1 and 4, and then crashes. The invocation onecast(4) knows that 1 has already been

onecast, so it broadcasts 1 instead of 4. As a result, both a2 and a3 onedeliver the same

value 1 (Agreement). Acceptor a4 does not onedeliver anything; this does not violate

Termination because a1 is faulty (it crashes).

In the third scenario, the owner is malicious. It executes onecast(1) but sends values

2 and 3 to a2 and a3, which are onedelivered. This does not violate Validity or Agreement

because the owner is malicious. Note that Integrity holds despite a malicious owner;

although a1 sends 4 to a2, acceptor a2 remembers the previously onedelivered value 2,

and onedelivers it again.

2.2 Optimistically Terminating Consensus

In Section 1.5, we observed that all Consensus algorithms for the asynchronous model

share the same structure, presented once again in Figure 2.3. They consist of a sequence

of rounds, each starting with a coordinator process broadcasting its proposal to the ac-

ceptors. Each of these coordinators must ensure that the value it proposes does not differ

from any decision made by previous rounds. This can be achieved by examining states of

acceptors in previous rounds (Figure 2.3).
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Figure 2.2: Three onecast executions.
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Figure 2.3: Using multiple instances of OTC to solve Consensus.

The main differences between Consensus algorithms are located inside the grey boxes,

which are actually instances of the abstraction we call Optimistically Terminating Con-

sensus (OTC). The phrase “optimistically terminating” refers to the fact that we require

it to decide only in “optimistic runs”, in which all correct acceptors propose the same

value. In contrast, Consensus requires a decision in all runs.

In order to prevent different instances of OTC from making different decisions, we

forbid proposing to an OTC instance a value that can differ from a possible decision of

some previous OTC. To this end, OTC provides stronger versions of the Agreement and

Validity properties, which allow us to reason about such possible decisions.

OTC Interface

The interface of the OTC abstraction is summarized in Figure 2.4. It provides every

acceptor with two actions: propose(x) and stop, and every learner with three predicates:

decision(x), possible(x), and valid(x).
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Name Process Type Meaning

propose(x) acceptor action propose x
stop acceptor action stop processing

decision(x) learner predicate if true, then x is the decision
possible(x) learner predicate if any learner ever decides on x, then true
valid(x) learner predicate if true, then an honest acceptor proposed x

Figure 2.4: Summary of the primitives provided by OTC.

Acceptors use the action propose(x) to propose their proposal x. We assume that

each honest acceptor proposes at most one value. Executing stop stops all processing and

results in the acceptor entering a final unchangeable state.

Learners are equipped with three predicates: decision(x), possible(x), and valid(x).

These predicates are functions that operate on the learner’s state and return immediately

without affecting the state. Predicate decision(x) specifies whether the learner can decide

on x. We assume that a learner decides on a value x as soon as its predicate decision(x)

becomes true. This predicate is stable, that is, once it is true, it will remain true forever.

Predicates valid(x) and possible(x) are used by coordinators to learn about proposed

values and possible decisions in previous rounds. The stable predicate valid(x) is true

only if an honest acceptor proposed x. The predicate possible(x) describes which values x

are still possible decisions. Formally, if any learner ever decides on x, then possible(x)

must hold at all times. Predicate possible(x) is anti-stable, that is, once it becomes false,

it remains false forever. In other words, a once impossible decision x cannot become

possible again. Before any processing starts, predicates decision(x) and valid(x) are false

for any x, because no acceptor has proposed anything yet and no decision has been made.

Predicate possible(x) starts as true, because at this stage any x can become a decision.

Formally, the following properties hold:

Integrity. If valid(x), then an honest acceptor proposed x.

Possibility. If decision(x), then possible(x) holds at all learners, at all times.

Optimistic Termination

As opposed to Consensus, the OTC abstraction is required to decide only in “favourable

runs”. These are runs in which there are few faulty acceptors, all correct acceptors propose

the same value, and none of them executes stop. Formally,

Optimistic Termination (q, k). If at most q out of n acceptors are faulty,

all correct acceptors propose x, and none of them executes stop, then

decision(x) will hold at all correct learners in k communication steps.
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Here, the maximum number q of faulty acceptors and the number k of communication

steps are parameters of the Optimistic Termination property. In this case, we say that

the algorithm satisfies Optimistic Termination (q, k). An OTC algorithm can satisfy more

than one Optimistic Termination property; for example, satisfying Termination (0, 1) and

(f, 2) means that the algorithm decides in one step if there are no failures and in two

steps otherwise. A special symbol “•” means “any”, for example, Optimistic Termination

(0, •) requires all correct learners to eventually decide if all acceptors are correct. (Both

examples assume that all correct acceptors propose the same value and none of them

executes stop.)

Permanent properties

We introduce two classes of validity and agreement properties: standard and permanent.

Let us start with the standard case:

Standard Validity. If decision(x) holds at some learner, then an honest ac-

ceptor proposed x.

Standard Agreement. There is at most one x for which decision(x) holds

at some learner.

These properties are identical to those of Consensus, except that here Standard Validity

does not assume all acceptors to be honest. The requirement to decide in all runs, even if

every acceptor proposes a different value, makes it impossible for Consensus algorithms to

satisfy Standard Validity without this assumption. On the other hand, OTC must decide

only if all correct acceptors propose the same x, which allows us to discard the honesty

assumption.

We say that (the state of) a learner is complete if all correct acceptors have executed

stop and the learner has received all messages sent by these acceptors before or by their

(first) stop action. Therefore, if all correct acceptors execute stop, then all correct learners

will eventually be complete. Note that a learner does not know which acceptors are

correct, so it does not know whether its state is complete or not.

OTC satisfies Permanent Validity and Permanent Agreement, which are defined as:

Permanent Validity. For any complete learner, possible(x) =⇒ valid(x)

for all x.

Permanent Agreement. For any complete learner, possible(x) holds for at

most one x.

A state is semi-complete if it satisfies both of these properties, that is, if possible(x) =⇒

valid(x) for all x and possible(x) holds for at most one x. A learner can easily check
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whether its state is semi-complete or not. In a nutshell, Permanent Validity and Perma-

nent Agreement imply that every complete state is also semi-complete.

Standard Agreement and Validity state that there should be at most one decision,

which has been proposed by an honest acceptor. If no decision has been made, these

properties are always satisfied. The permanent properties are stronger; they require

that, from the point of view of any correct learner, there will eventually be at most one

possible decision, which has been provably proposed by an honest acceptor (assuming all

correct acceptors stop). Theorems A.3.1 and A.3.2 show that any algorithm that satisfies

the permanent variant of a property also satisfies the standard variant, provided that

properties Integrity and Possibility hold. This is graphically shown in Figure 2.5.

OTC specification summary

As shown in Figure 2.4, the OTC abstraction is defined in terms of actions propose(x) and

stop available to acceptors, and predicates valid(x), possible(x), and decision(x) available

to learners. These primitives must satisfy the following properties:

Integrity. If valid(x), then an honest acceptor proposed x.

Possibility. If decision(x), then possible(x) holds at all learners, at all times.

Permanent Validity. For any complete learner, possible(x) =⇒ valid(x)

for all x.

Permanent Agreement. For any complete learner, possible(x) holds for at

most one x.
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Optimistic Termination (q, k). If at most q out of n acceptors are faulty,

all correct acceptors propose x, and none of them executes stop, then

decision(x) will hold at all correct learners after k communication steps.

The pair (q, k) is a parameter of the OTC abstraction.

Action stop

Earlier in this section, we said that acceptors stop all processing (halt) after executing stop.

This semantics is not part of the specification; OTC algorithms can continue operating

after executing stop. However, most OTC implementations adhere to this semantics

because, as we will show now, halting after executing stop cannot violate the correctness

of an OTC algorithm.

We will restrict our attention to correct acceptors; by definition, faulty acceptors can

halt at any moment without violating the specification. Any correct acceptor executing

stop satisfies all Optimistic Termination properties. Other OTC properties are time-

independent safety properties, so they cannot be violated by not performing actions. The

definition of a “complete state”, used in Permanent Validity and Permanent Agreement,

does not change because it depends only on actions performed by the acceptor until it

executed stop for the first time.

2.2.1 Implementing Consensus

Our OTC-based Consensus algorithm progresses in a sequence of rounds. Initially, the

first round tries to decide on some value. If the first round does not seem to make progress,

it is stopped, and the second round takes over. If the decision has not been made by the

second round, it is stopped as well, and the third rounds starts, etc. Each round i has

a special proposer ci called the round coordinator, and the corresponding OTC instance

OTCi. Coordinator ci broadcasts its proposal to the acceptors, who propose it to the

instance OTCi. Decisions made by OTC instances become final decisions. In this section,

we will only briefly explain how OTC properties are useful to implement this idea; the

full details will be provided in Chapter 4.

As shown in Figure 2.6, the first coordinator c1 sends its proposal to all acceptors,

who propose it to the first OTC instance OTC1. If all correct learners decide in the first

round, the algorithm can terminate. Otherwise, correct acceptors stop the first round,

and coordinator c2 starts the next one. Coordinator c2 behaves analogously to c1: it sends

a proposal to all acceptors, who propose it to the second round OTC instance OTC2. If

OTC2 does not seem to make progress, it is stopped, and c3 starts the third round, and

so on.

Coordinator c1 always sends its own proposal to the acceptors. This might not be

true with other coordinators; they have to make sure that the proposals they send to the
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Figure 2.6: Using multiple OTC instances to implement Consensus.

acceptors do not differ from any decision made by the previous rounds. For example,

coordinator c2 can propose its own value only if it is sure that no decision was made in

the first round. Otherwise, it must re-propose the value of that possible decision.

To choose its proposal, coordinator c2 uses the possible and valid predicates of OTC1.

When all correct acceptors have stopped the first round, Permanent Agreement guarantees

that eventually either:

1. Predicate possible(x) does not hold for any x. This means that no decision was

made in OTC1, so coordinator c2 can issue its own proposal.

2. Predicate possible(x) holds for exactly one x. In this case, Permanent Validity

implies valid(x) so an honest acceptor proposed x to OTC1. Therefore, if c1 is

honest, it must have proposed x, so coordinator c2 can reissue this proposal without

violating Validity.

Coordinators c3, c4, . . . choose their proposals using a slightly more complicated, but

similar, reasoning. See Chapter 4 for details.

In each round i, acceptors propose to OTCi the value received from the coordinator ci.

A malicious coordinator can make acceptors propose different values, however, this is not

a problem because the OTC abstraction tolerates different proposals. Agreement can

be violated only if ci deliberately proposes a value different from some previous round

decision. Chapter 4 will explain how digital signatures can be used to prevent this.

For the moment, notice that digital signatures are only necessary for the second and

later rounds; coordinator c1 cannot issue a proposal different from a decision made by
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Figure 2.7: OTC-based Consensus with coordinators played by the acceptors using the
rotating coordinator strategy. In the lower diagram, the first round coordinator is virtual.

previous rounds because so such rounds exist. Therefore, if the first round decides, digital

signatures are not used.

Acceptors stop rounds if they suspect the coordinator (the failure detector model) or

the timeout has expired (eventual synchrony). Assume that all OTC instances satisfy Op-

timistic Termination (f, •), that is, they decide if all correct acceptors proposed the same

value and none of them executed stop. Therefore, any round i with a correct coordinator

will decide, provided that none of the correct acceptors stops it before. Chapter 4 will

explain how unreliable failure detectors or eventual synchrony can be used to eventually

prevent acceptors from stopping such rounds, thereby ensuring Termination.

In a typical Consensus implementation, the coordinators are played by acceptors,

using the rotating coordinator paradigm (Figure 2.7). To improve the latency, acceptors

can issue their proposals to the first round OTC directly, instead of waiting for the

coordinator’s proposal. This corresponds to the first round having a virtual coordinator,

a possibly malicious coordinator that sends to each acceptor this acceptor’s proposal. In

runs where all acceptors propose the same value, using a virtual coordinator reduces the

latency by one step. If the proposals are different, the decision will be made in the second

round, with a real (non-virtual) coordinator.

The construction of the Consensus algorithm shows that, in “favourable” runs, the

decision is made by the first OTC. Therefore, the latency of a Consensus algorithm in such



50 CHAPTER 2. OPTIMISTICALLY TERMINATING CONSENSUS

1 when acceptor ai executes propose(x) do
2 onecast x using onecasti

3 when acceptor ai executes stop do
4 onecast ⊤ using onecasti

5 predicate decision(x) at a learner is
6 at least n− q instances onecasti delivered x

7 predicate possible(x) at a learner is
8 at most q + m instances of onecasti delivered a non-x

9 predicate valid(x) at a learner is
10 more than m instances of onecasti delivered x

Figure 2.8: Generic Agreement.

runs is entirely determined by the latency of the first round OTC. For this reason, in this

chapter, we can concentrate on OTC implementations and the latency of the Consensus

algorithms using them, while deferring a detailed discussion of Consensus implementations

to Chapter 4. To compute the latency of a Consensus algorithm, one communication step

must be added to the latency of the first round OTC, to allow the coordinator’s proposal

to reach the acceptors (unless a virtual coordinator is used).

2.3 Implementing OTC in one communication step

Consider a system composed of n acceptors, out of which at most f are faulty, out of

which at most m are malicious. In this section, we will be interested in OTC algorithms

that satisfy

Optimistic Termination (q, 1). If at most q acceptors are faulty, all correct

acceptors propose x, and none of them executes stop, then decision(x)

will hold at all correct learners after one step.

The implementation shown in Figure 2.8 uses n instances of onecast (Section 2.1).

Each acceptor ai owns one instance onecasti, and uses it to onecast its proposal (lines 1–2).

Similarly, ai executes stop by onecasting a special symbol ⊤ using the same instance

onecasti. Note that symbols ⊥ (used internally by onecast), ⊤, and possible proposals x

are all different.

As shown in Figure 2.8, predicates valid(x), decision(x), and possible(x) are deter-

mined by the values delivered by onecast instances onecasti. Predicate valid(x) is true

if more than m instances onecasti delivered x. At least one of them must belong to

an honest acceptor ai, which must have proposed x (Integrity). Predicate decision(x)

holds if at least n − q onecast instances delivered x. This means that if all n − q cor-

rect acceptors propose x and do not execute stop, all correct learners will decide in one
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communication step (Optimistic Termination). Finally, predicate possible(x) is true if at

most q + m onecast instances delivered a value different from x. If decision(x) holds at

some learner, then at least n − q − m instances onecasti owned by honest acceptors ai

must have onedelivered x. The onecast Agreement property forbids these instances to

deliver values different from x. As a consequence, non-x values can be delivered only by

the other q + m onecast instances, which makes predicate possible(x) true at all learners,

at all times (Possibility).

2.3.1 Validity and Agreement

In order to satisfy Permanent Validity and Permanent Agreement, the Generic Agreement

algorithm in Figure 2.8 requires additional assumptions on n. First, we will prove that

n > f + 2m + q is sufficient to guarantee Permanent Validity. This property states that

if all correct acceptors have executed stop, and a learner has received all messages sent

by these acceptors before the stop actions finished, then possible(x) =⇒ valid(x) for

every x. Every execution of stop involves onecasting, so the assumption implies all n− f

onecast instances owned by correct acceptors have executed onedeliver . If possible(x)

holds, then at most q + m onecast instances onedelivered a non-x. This means that at

least n − f − q − m > m instances owned by correct acceptors onedelivered x, which

implies valid(x).

Permanent Agreement requires n > f + 2m + 2q. Assume that possible(x) and

possible(y) hold some values x and y. This means that at most 2q + 2m instances

have onedelivered either a non-x or a non-y. The previous paragraph explained why

all n− f > 2q + 2m instances onecasti corresponding to correct ai onedeliver something.

Therefore, at least one instance onedelivered a value which is neither non-x nor non-y, that

is, which equals x and y at the same time. This is only possible if x = y, so Permanent

Agreement holds.

Note that the only way the stop action was used in the proofs above was as a trigger

performing a onecast. Since onecast is also performed by propose(x), these two actions are

indistinguishable from the point of view of Permanent Validity and Permanent Agreement.

In other words, once an acceptor has proposed, it can behave as if it has already executed

stop, and cease operating. This equivalence of stop and propose(x) is specific to this

particular OTC algorithm and does not hold for others presented in this chapter.

2.3.2 Single-value OTC

Although the OTC abstraction allows different acceptors to propose different values, in

most cases all proposals are the same. For example, in the Consensus implementation

sketched in Section 2.2.1, honest acceptors always propose the value received from the

coordinator. If the model does not allow the coordinator to be malicious and send different
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1 when acceptor executes propose(x) do
2 if x = x0 then
3 proposeS(x)
4 else
5 stopS

Figure 2.9: Implementing privileged-value OTC using an instance S of single-value OTC.

proposals to different acceptors, the first round OTC implementation can assume all

proposals from honest acceptors to be the same. Some honest acceptors might not propose

anything at all; this can happen if the coordinator crashes and fails to send its proposal

to some or all of the acceptors.

Explicitly assuming that all honest acceptors propose the same value might enable us

to design OTC implementations that require fewer acceptors than OTC implementations

tolerating different proposals. For this reason, we distinguish between these two kinds of

OTC, calling the former single-value OTC , and the latter multi-value OTC .

Single-value OTC differs from multi-value OTC in that it does not have to explicitly

satisfy Permanent Agreement, which in that case follows automatically from Permanent

Validity. Indeed, assume that possible(x) =⇒ valid(x) for all x. If possible(x) holds for

two different x, then valid(x) holds for two different x, which implies that two different

values have been proposed by honest acceptors. This contradicts the assumption all

honest acceptors propose the same value.

As mentioned above, single-value OTC can be used in systems with honest coordi-

nators, thereby reducing the required number n of acceptors. However, this does not

apply to rounds with virtual coordinators, in which acceptors propose their proposals to

the OTC directly. Since these proposals may be different even with honest acceptors, a

multi-value OTC must be used.

2.3.3 Privileged-value OTC

Privileged-value OTC is a form of OTC that differs from the original one in that the

Optimistic Termination properties hold only if all correct processes propose the privileged

value x0. It can be used to construct Consensus algorithms that are particularly fast in

deciding on x0, at the expense of being slow for other values. This can be useful in systems

when one particular value has a significantly higher probability of being proposed than the

others. Such Consensus algorithms should have the first round with a virtual coordinator,

in which all acceptors propose their proposals directly to the privileged value OTC. If all

correct acceptors propose x0, then the algorithm will decide in the first round. If not, the

decision will be taken by one of the other rounds, which use normal OTCs.
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Similarly to single-value OTCs, privileged-value OTCs require fewer acceptors than

multi-value OTCs. In fact, a privileged value OTC can be easily implemented using single-

value OTC, as shown in Figure 2.9. To propose x0, an acceptor passes it to the underlying

instance S of single-value OTC. For other values, the acceptor stops the instance. All other

primitives (stop, decision, possible, valid) are identical to those of the OTC instance S.

2.4 Implementing OTC in two communication steps

The Generic Agreement algorithm from Figure 2.8 implements multi-value OTC provided

that n > f+2m+2q. In particular, when all faulty acceptors can be malicious (m = f) and

the decision should be reached regardless of their actual number (q = f), this requirement

becomes n > 5f . On the other hand, only n > 3f is required to solve Consensus in

Byzantine settings [15, 97]. Can we design a multi-value OTC algorithm that would

require only n > 3f? The answer is “yes”. However, as opposed to Generic Agreement,

such an implementation requires more than one communication step to decide.

In this section, we will consider OTC algorithms implemented as chains of Generic

Agreement instances

A1 → A2 → · · · → Ak.

Acceptors propose their value to the first instance A1. Then, decisions are propagated

along the chain: if an acceptor reaches a decision x in instance Ai, it immediately proposes

it to the next instance Ai+1. The decision of the last instance Ak becomes the final decision.

Stopping the algorithm involves stopping all instances A1, . . . , Ak.

The predicate valid is taken from the first instance, whereas predicates possible and

decision come from the last instance:

valid(x)
def

= validA1
(x), possible(x)

def

= possibleAk
(x), decision(x)

def

= decisionAk
(x).

Properties Integrity and Possibility of A1 → · · · → Ak follow immediately from analo-

gous properties of instances A1 and Ak, respectively. For Optimistic Termination, assume

that at most q acceptors are faulty and none of them executes stop. Each instance Ai

satisfies Optimistic Termination (q, 1): if all correct acceptors propose x to Ai, then all

correct learners will decide on x in one step. Since all acceptors are learners, they will all

propose x to Ai+1. By simple induction, we see that A1 → · · · → Ak satisfies Optimistic

Termination (q, k).

Theorems A.5.2 and A.5.3 prove that for k ≥ 2, the chain A1 → · · · → Ak satisfies

Permanent Validity and Permanent Agreement provided that n > f + m + q. Since the

required number n of acceptors is the same for all k ≥ 2, we will focus our attention on

the two-step OTC algorithm A1 → A2, which satisfies
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Variant General All honest All malicious q = 0 q = f

one-step OTC
single-value n > f + 2m + q n > f + q n > 3f + q n > f + 2m n > 2f + 2m
multi-value n > f + 2m + 2q n > f + 2q n > 3f + 2q n > f + 2m n > 3f + 2m

two-step OTC
multi-value n > f + m + q n > f + q n > 2f + q n > f + m n > 2f + m

Figure 2.10: Requirements of one-step and two-step OTC implementations.

Optimistic Termination (q, 2). If at most q acceptors are faulty, all correct

acceptors propose x, and none of them executes stop, then decision(x)

will hold at all correct learners after two communication steps.

2.5 Consolidation

The previous sections discussed one-step OTC implemented by a single instance of Generic

Agreement (Section 2.3) and two-step OTC implemented by two Generic Agreement in-

stances (Section 2.4). We were considering two kinds of one-step OTC: the single-value

variant, in which all acceptors must propose the same value, and the multi-value variant,

without this restriction. As explained in Section 2.3.3, privileged-value OTC requires the

same number of acceptors as single-value OTC. For two-step OTC, we consider only the

multi-value variant because the single-value variant requires the same number of accep-

tors.

For each of these variants, Figure 2.10 presents the required number n of acceptors

in general, as well as in four common situations: when all acceptors are honest (m = 0),

when all faulty acceptors are malicious (m = f), when Optimistic Termination requires

all acceptors to be correct (q = 0), and when Optimistic Termination holds regardless of

the number of faulty acceptors (q = f).

The conditions on n presented in Figure 2.10 are optimal and cannot be improved.

Theorem 2.8.1 states that any one-step single-value OTC algorithm requires n > f +

2m + q. Similarly (Theorem 2.8.2), any one-step multi-value OTC algorithm requires

n > f + 2m + 2q . Theorem 2.8.3 proves that n > f + m + q is necessary for any, even

single-value, OTC algorithm, regardless of the number of communication steps.

Consequences for implementing Consensus

As explained in Section 2.2.1, the latency of a Consensus algorithm in “favourable” runs

depends solely on the OTC implementation used in the first round. Since the later

rounds are used only in “non-favourable” runs, their OTCs are optimized for resilience

rather than latency. For this reason, non-first round OTCs should guarantee Optimistic
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Termination (q, •) regardless of the number of faulty acceptors (q = f). Theorem 2.8.3

proves that any such OTC algorithm requires n > f +m+ q = 2f +m. This lower bound

is tight; Figure 2.10 shows that this condition is sufficient for a two-step multi-value

OTC implementation. Moreover, in systems with honest coordinators and acceptors,

this condition becomes n > f + q = 2f , so we can use the one-step single-value OTC

implementation.

To compute the number n of acceptors required by an OTC-based Consensus algo-

rithm, one should take the maximum over the requirements of all individual rounds. The

previous paragraph explained that any such Consensus algorithm requires n > 2f + m.

Lamport [76] shows that this is true for any Consensus algorithm, so the OTC framework

causes no overhead in this respect.

The requirement n > 2f + m implies that optimizing the first round OTC to allow

n ≤ 2f +m makes little sense. For example, in the crash-stop model (m = 0), we can use

one-step single-value OTC for the first round, which requires n > f + q. Setting q = f

gives n > 2f ; using q < f makes no sense, because non-first round OTCs require n > 2f

anyway. Similarly, if we use the two-step OTC, which requires n > f + m + q, for the

first round, we can assume q = f , because n > 2f + m is necessary for other rounds.

Single-value OTCs have the same requirement n > f +q, regardless of how many steps

they require. For this reason, there is no point in using two-step OTCs in the crash-stop

model, unless with a virtual coordinator.

Consensus algorithms

Section 2.2.1 explained how to use the OTC algorithms from Sections 2.3 and 2.4 to

implement Consensus. In this way, we can construct a variety of Consensus protocols by

changing a number of parameters: the number n of acceptors, the number f of faulty

acceptors, the number m of malicious acceptors, the number k of communication steps

in which a decision will be made, the maximum number q of faulty acceptors with which

that decision is guaranteed, honest vs. malicious coordinators, the first round deciding on

any value vs. only on the privileged one, real vs. virtual coordinator of the first round.

By choosing appropriate parameters, we can match the latency of most known Consensus

algorithms (see the list below). All statements about the latency of Consensus algorithms

assume timely runs, that is, no correct acceptors suspected if failure detectors are used,

or sufficiently fast messages in the eventual synchrony model.

• Two-step Consensus. The algorithms proposed by Chandra et al. [18], Hurfin

and Raynal [63], Lamport [73], Schiper [112] all assume honest processes. They

require n > 2f and guarantee decision in two steps provided that the first round

coordinator is correct.
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To achieve the same properties in the OTC framework, note that the assumed

honesty of the coordinators means that we can use one-step single-value OTCs for

all rounds. Setting q = f and m = 0 (no malicious acceptors), gives a Consensus

algorithm that requires n > 2f and decides in two steps if the first round coordinator

is correct. Algorithms [18, 63, 73, 112] have the same properties.

• One-step Consensus. The algorithm by Brasileiro et al. [13] assumes honest pro-

cesses. It requires n > 3f and guarantees decision in one step provided that all

correct acceptors propose the same value.

In the OTC framework, we use a virtual coordinator for the first round, implemented

as one-step multi-value OTC, which requires n > f + 2q. Other rounds have real,

honest coordinators with one-step single-value OTCs having q = f , which requires

n > 2f . In total, our approach requires n > f + max {f, 2q}. This is better than

the n > 3f required by [13] for all q < f , and the same for q = f .

• Byzantine Paxos. The Byzantine Paxos algorithm by Castro and Liskov [15] tol-

erates malicious processes and assumes all faulty acceptors to be malicious (f = m).

It requires n > 3f and guarantees a decision in three communication steps, provided

that the coordinator of the first round is correct.

In the OTC framework, we use real coordinators and two-step multi-value OTC

instances for all rounds. This requires n > 2f + m = 3f , the same as in [15].

• Optimistic Byzantine Agreement. Optimistic Asynchronous Byzantine Agree-

ment by Kursawe [71] tolerates malicious processes and assumes all faulty acceptors

to be malicious (f = m). It requires n > 3f and, in the absence of failures, it

guarantees decision in two communication steps.

In the OTC framework, we use real coordinators for all rounds. The first round uses

one-step multi-value OTC (n > 3f + 2q), all the others use two-step multi-value

OTC (n > 3f). The requirement n > 3f + 2q of the first round is dominant. This,

given the assumption q = 0, is equivalent to the n > 3f required in [71].

• Fast Byzantine Paxos. The Fast Byzantine Paxos algorithm by Martin and Alvisi

[87] tolerates malicious processes and assumes all faulty acceptors to be malicious

(f = m). It requires n > 5f , and guarantees a decision in two communication steps,

provided that the coordinator of the first round is correct.

In the OTC framework, we use the same parameters as in the previous point, which

requires n > 3f +2q. This, given the assumption q = f , is equivalent to the n > 5f

required in [87].
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In addition to reconstructing existing algorithms, the OTC abstraction can be used

to design new ones. Below, we list three new one-step Consensus algorithms. All of them

use a virtual coordinator for the first round and real coordinators for other rounds.

• One-step privileged-value Consensus. This algorithm assumes all acceptors to

be honest, and decides in one step if all correct acceptors proposed the privileged

value x0. For the first round, it uses virtually coordinated one-step privileged-

value OTC with q = f , which requires n > f + q = 2f . For other rounds, we

use single-value one-step OTC with q = f , which also requires n > f + q = 2f .

In comparison to the one-step Consensus algorithm by Brasileiro et al. [13], this

algorithm guarantees one-step decision only for the privileged value x0. On the

other hand, it requires n > 2f , as opposed to the n > 3f required by Brasileiro

et al. [13].

• One-step Byzantine Consensus. This algorithm tolerates malicious processes.

It decides in one step if at most q acceptors are faulty and all correct acceptors

propose the same value. For the first round, it uses virtually coordinated one-step

multi-value OTC, which requires n > f + 2m + 2q. For other rounds, we use two-

step multi-value OTCs with q = f , which require n > 2f + m. This gives the final

requirement of n > f + m + max {f,m + 2q}.

• One-step privileged-value Byzantine Consensus. This algorithm tolerates ma-

licious processes. It decides in one step if at most q acceptors are faulty and all

correct acceptors proposed the privileged value x0. For the first round, it uses vir-

tually coordinated one-step privileged-value OTC, which requires n > f + 2m + q.

For other rounds, we use two-step multi-value OTCs with q = f , which require

n > 2f + m. This gives the final requirement of n > f + m + max {f,m + q}.

2.6 Combining one-step OTC with two-step OTC

The previous section showed a trade-off between OTC implementations: one-step OTCs

are fast but require many acceptors, whereas two-step OTCs are slower but can work

with fewer acceptors. The choice between these two implementations is far from trivial,

because the number of currently faulty acceptors is not known. Ideally, we would like to

use both implementations simultaneously.

In this section, we will present the multi-step OTC algorithm that satisfies the three

Optimistic Termination conditions (q1, 1), (q2, 2), and (q3, 3) at the same time. We as-

sume q1 ≤ q2 ≤ q3 because Optimistic Termination (q1, 1) implies (q1, 2), and Optimistic

Termination (q2, 2) implies (q2, 3).
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The multi-step OTC algorithm consists of three OTC chains from Section 2.4 executed

in parallel:

A1 with q = q1,

B1 → B2 with q = q2,

C1 → C2 → C3 with q = q3.

Instances A1, B1, and C1 share onecast instances; each proposed value is proposed to

all three chains at the same time. In other words, propose(x) consists of proposeA1
(x),

proposeB1
(x), and proposeC1

(x). Stopping the algorithm involves stopping all six Generic

Agreement instances.

Predicates decision(x), possible(x), and valid(x), are defined as

valid(x)
def

= validA1
(x) ∨ validB1

(x) ∨ validC1
(x)

decision(x)
def

= decisionA1
(x) ∨ decisionB2

(x) ∨ decisionC3
(x)

possible(x)
def

=
(

possibleA1
(x) ∧ ¬∃x′ 6= x : validC2

(x′)
)

∨ possibleB2
(x) ∨ possibleC3

(x)

In other words, the global predicate valid(x) is true if it holds for at least one of the

instances A1, B1, C1. Similarly, decision(x) holds if it holds for at least one of A1, B2,

C3. Predicate possible(x) is an improved version of the more natural definition

possible(x)
def

= possibleA1
(x) ∨ possibleB2

(x) ∨ possibleC3
(x).

It states that x is a possible decision of A1 only if validC2
(x′) holds for no x′ 6= x. Indeed, if

some honest acceptor proposed x′ to C2, then some learner decided on x′ in C1. Instances

A1 and C1 share the same proposals and onecast instances, so they cannot reach different

decisions x and x′ (Lemma A.4.3). Using this observation in the definition of possible(x)

reduces the minimum number of acceptors required in some cases.

The system of three chains A1, B1 → B2, C1 → C2 → C3 implements OTC. Properties

Integrity, Possibility, and Optimistic Termination (qi, i) for i = 1, 2, 3 follow easily from

the analogous properties of the individual chains. The same applies to Permanent Validity,

which therefore requires

n > f + 2m + q1, n > f + m + q2, n > f + m + q3.

Since we assume q3 ≥ q2, the third requirement implies the second.

Theorem A.6.1 shows that Permanent Agreement additionally requires

n > f + 2m + 2q1 and n > f + m + q2 + min {m, q1}.
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Proposals General All benign All malicious

single-value n > f + 2m + q1 n > 3f + q1

n > f + m + q3 n > f + q3

multi-value n > f + 2m + 2q1 n > f + 2q1 n > 3f + 2q1

n > f + m + q2 + min {m, q1}
n > f + m + q3 n > f + q3

Figure 2.11: Requirements of the multi-step OTC implementation.

The former requirement ensures Permanent Agreement of instance A1. The other is

necessary to ensure Permanent Agreement between decisions made by A1 and the two

other chains.

Discussion

The requirements of multi-step OTC are summarized in Figure 2.11. The single-value ver-

sion can be obtained by ignoring all Permanent Agreement requirements. Both conditions

n > f + 2m + q1 and n > m + q3 match their respective lower bounds set by Theorems

2.8.1 and 2.8.3. As a result, the single-value multi-step OTC algorithm is strictly better

than its one-step and two-step counterparts from Sections 2.3 and 2.4, respectively.

Implementing multi-value multi-step OTC requires two additional conditions: n >

f + 2m + 2q1 and n > f + m + q2 + min {m, q1}, both of which match their respective

lower bounds set by Theorems 2.8.2 and 2.8.4. The second condition is stronger than

the analogous condition for the two-step OTC (n > f + m + q2), at least for non-zero

m and q1. This discrepancy was first noticed by Dutta et al. [36], who proved that any

Consensus implementation requires n > f + m + q2 + min {m, q1} assuming q2 = f .

The special case q3 = f is important for Consensus implementations. It requires

n > 2f + m, which is required by any such implementation anyway [76]. In exchange, it

guarantees

Optimistic Termination (f, 3). If all correct acceptors proposed the same

value x, and none of them executes stop, then decision(x) will hold at

all correct learners after three communication steps.

Algorithms

The multi-step OTC described in this section allows us to reconstruct two Byzantine

Consensus algorithms. In both of them we use multi-value multi-step OTC for the first

round, and two-step multi-value OTC with q = f for the other rounds.

• Paxos at war. My “Paxos at war” algorithm [121] assumes that all faulty acceptors

are malicious and requires n > 3f + 2q1. In timely runs with a correct first round
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coordinator, it decides in two steps if at most q1 acceptors are faulty, and three steps

otherwise. The OTC framework version with m = f and q2 = q3 = f has the same

properties.

• DGV. The restriction m = f assumed in [121] was removed in the DGV algorithm

by Dutta et al. [36]. Their algorithm requires n > f + 2m + 2q1 and n > 2f +

m+ min {m, q1}, which corresponds to the requirements of the OTC approach with

q2 = q3 = f .

A new algorithm can be obtained:

• Ultimate Paxos. The algorithm tolerates malicious processes. In timely runs with

a correct first round coordinator, it decides in one step if at most q1 acceptors

are faulty, in two steps if at most q2 are faulty, and in three otherwise. For the

first round, the algorithm uses multi-step OTC with q3 = f , which requires n >

f + 2m + 2q1, n > f + m + q2 + min {m, q1}, and n > 2f + m. In the special case

q2 = f , it has the same properties as DGV [36].

2.7 Cheap OTC

In Section 2.5, we argued that since implementing Consensus requires n > 2f +m, it does

not make sense to optimize OTC implementations to behave correctly for n ≤ 2f + m.

Consider crash-stop settings as an example. Although one-step single-value OTC used

for the first round requires only n > f + q1, it does not make sense to consider q1 < f

because the other rounds require n > 2f anyway.

Lamport and Massa [80] realized that this reasoning can lead to a waste of resources.

In their Cheap Paxos algorithm, they suggested dividing the set of acceptors into primary

ones and auxiliary ones. Primary acceptors are used continuously during the algorithm,

whereas the auxiliary ones participate only when failures happen. In the OTC framework,

this corresponds to the first round having access only to the primary acceptors. The other

rounds, which are executed only when the first round does not decide, have access to both

primary and auxiliary acceptors.

Consider the crash-stop example again. We can use the single-value one-step OTC

with q1 < f for the first round. This will require n > f + q1, where n is the number

of primary acceptors. As before, the other rounds require n′ > 2f , where n′ is the

total number of acceptors. In this section, we will construct cheap OTC algorithms that

minimize the number n of primary acceptors.
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Decision in one communication step

How many acceptors do we need to implement one-step OTC? Theorem 2.8.2 states that

any such algorithm requires n > f + 2m + q1. To minimize the number n of acceptors,

we assume q1 = 0, getting n > f + 2m. Theorem 2.8.3 states that any OTC algorithm

satisfying Optimistic Termination (q•, •) requires n > f + m + q•. Therefore, to maintain

the n > f + 2m requirement, we must assume q• ≤ m.

It follows that the strongest Optimistic Termination condition we can achieve under

the assumption n > f + 2m is

Optimistic Termination (0, 1) and (m, 2). If all correct acceptors propose x

and none of them executes stop, then

1. If all acceptors are correct, then all correct learners decide on x in

one step.

2. If at most m acceptors are faulty, then all correct learners decide

on x in two steps.

This property is satisfied by the multi-step multi-value OTC implementation from Sec-

tion 2.6 with q1 = 0 and q2 = q3 = m, which requires n > f + 2m.

Decision in two communication steps

Theorem 2.8.3 states that any OTC algorithm requires n > f + m + q•. To minimize the

number n of acceptors, we assume q• = 0, getting n > f +m. It follows that the strongest

Optimistic Termination condition we can achieve under the assumption n > f + m is

Optimistic Termination (0, 2). If all acceptors are correct, propose x, and

none of them executes stop, then decision(x) will hold at all correct

learners after two communication steps.

This property is satisfied by the two-step multi-value OTC implementation from Sec-

tion 2.4 with q2 = 0, which requires n > f + m.

Summary

In this section, we have presented two multi-value cheap OTC algorithms with the fol-

lowing parameters

Algorithm Condition q1 q2

one-step n > f + 2m 0 m

two-step n > f + m — 0
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In both cases, we justified their optimality, even as single-value OTC algorithms. They

can be used to reconstruct the following algorithm:

• Cheap Paxos. The Cheap Paxos algorithm by Lamport and Massa [80] assumes

no malicious processes. It requires only n > f primary acceptors, and n′ > 2f

acceptors in total. It decides in two steps if all acceptors are correct.

In the OTC framework, we use one-step cheap OTC with m = 0 for the first round,

and one-step single-value OTC with q = f for the others. These two OTC imple-

mentations require n > f and n′ > 2f , respectively, the same as Cheap Paxos [80].

The following new Consensus algorithms can be constructed:

• Cheap Byzantine Paxos. This algorithm can be thought of as a Byzantine gener-

alization of Cheap Paxos. It requires n > f+2m primary acceptors, and n′ > 2f+m

acceptors in total. It decides in two steps if all acceptors are correct, and in three

steps if at most m of them are faulty. We use one-step cheap OTC for the first

round, and multi-value two-step OTC for the others.

• Supercheap Byzantine Paxos. This algorithm requires n > f + m primary ac-

ceptors and n′ > 2f + m acceptors in total. If all acceptors are correct, it decides

in three communication steps. We use two-step cheap OTC for the first round and

two-step multi-value OTC for the others.

2.8 Lower bounds

In this section, we will prove four theorems, which show that the number of acceptors

required by the OTC implementations from this chapter cannot be improved. The table

below presents a brief summary of the results:

Theorem Opt. Termination Proposals Necessary condition

Theorem 2.8.1 (q1, 1) single-value n > f + q1 + 2m

Theorem 2.8.2 (q1, 1) multi-value n > f + 2q1 + 2m

Theorem 2.8.3 (q•, •) single-value n > f + q• + m

Theorem 2.8.4 (q1, 1) and (q2, 2) multi-value n > f + q2 + m + min {q1,m}

All the proofs share a similar structure. We assume there is an OTC algorithm that

does not require the given condition. Then, we construct a sequence of runs, such that

in at least one of them the algorithm behaves incorrectly. All runs are illustrated with

standard diagrams, using the following symbols:
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Symbol Meaning

process crashes

process freezes for a period of time

process is malicious

S
T

O
P

process executes stop

When a process freezes for a period of time, all outgoing messages, except those explicitly

mentioned, are blocked at that process until this period finishes. For clarity, the diagrams

show only those messages that are important to understand the proofs.

As required by the definition of the number of communication steps from Section 1.4,

the Optimistic Termination properties do not assume any particular time metric. There-

fore, to show that a given number of communication steps cannot be achieved under given

conditions, it is sufficient to show the impossibility for a single time metric. We consider

real time with all messages having the same latency d, unless stated otherwise. We assume

that the system contains at least three learners (l1, l2, l3).

To provide stronger results, the proofs in this section assume a weaker version of the

Optimistic Termination conditions which additionally assumes that no honest process

proposes anything other than x.

Theorem 2.8.1. Any single-value OTC algorithm satisfying Opt. Termination (q1, 1) re-

quires n > f + q1 + 2m.

Proof. To obtain contradiction, consider a one-step single-value OTC algorithm with n ≤

f + q1 + 2m. Figure 2.12 shows four runs of this algorithm. Acceptors have been divided

into four groups: Q, F , M1, M2, with sizes of at most q1, f , m, m, respectively. In all

runs, all acceptors from the same group behave identically.

In run r1, acceptors in Q crash at time 0, and all the other acceptors are correct

and propose 1. Since at most q1 acceptors failed, Optimistic Termination (q1, 1) requires

learner l1 to decide in one communication step (by time d).

In run r2, all acceptors are correct, except for those in F , which crash at the beginning.

Only acceptors in group M1 propose 1, the others do not propose anything. At some

time t > d, all correct acceptors execute stop. At time t + d, learner l2 has received all

messages sent by correct acceptors at time t or before. Permanent Validity and Permanent

Agreement imply that l2 is semi-complete (Section 2.2).

Run r3 is identical to r2, except for two changes. Firstly, acceptors in F are correct,

propose 1, send a message to l1, and immediately freeze until time t + d. Acceptors in

M2 are malicious and send a message to l1 claiming that they proposed 1, whereas in fact

they did not propose anything. Apart from that, acceptors M2 behave correctly.

At time d, learner l1 cannot distinguish r3 from r1, so it decides on 1. Consider the

state of learner l2 at time t + d. Predicate possible(1) holds because learner l1 decided
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Figure 2.12: Runs examined in the proof of Theorem 2.8.1
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Figure 2.13: Runs examined in the proof of Theorem 2.8.2

on 1 (Possibility). Learner l2 cannot distinguish r3 from r2, so its state is semi-complete.

This implies that possible(1) =⇒ valid(1), so valid(1) holds as well.

Finally, in run r4, all acceptors are correct except for those in group M1. No acceptor

proposes anything, but acceptors in M1 are malicious and they behave as if they had

proposed 1. Acceptors in F freeze from time 0 to t + d, and all other acceptors execute

stop at time t. At time t + d, learner l2 cannot distinguish runs r4 and r3, so valid(1)

holds. This violates Integrity, because no (honest) acceptor proposed 1 in this run.
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Theorem 2.8.2. Any multi-value OTC algorithm satisfying Opt. Termination (q1, 1) re-

quires n > f + 2q1 + 2m.

Proof. To obtain contradiction, consider a one-step multi-value OTC algorithm with n ≤

f + 2q1 + 2m. Figure 2.12 shows five runs of the algorithm. Acceptors have been divided

into five groups: Q1, Q2, F , M1 and M2 with sizes of at most q1, q1, f , m, and m,

respectively. In all runs, all acceptors from the same group behave identically.

In run r1, all acceptors are correct, except for those in group F , which crash at time 0.

Acceptors Q1 and M1 propose 0, whereas acceptors in Q2 and M2 propose 1. At some

time t > d, all correct acceptors execute stop. At time t + d, learner l2 has received all

messages sent by correct acceptors at time t or before. Permanent Validity and Permanent

Agreement imply that its state is semi-complete (Section 2.2).

In run r2, all acceptors are correct and propose 1, except for those in group Q1, which

crash at time 0 without proposing anything. Optimistic Termination (q1, 1) requires

learner l1 to decide on 1 in one communication step, that is, by time d.

In run r3, all acceptors are correct, except for those in M1, which are malicious.

Acceptors in Q1 and M1 propose 0, whereas the other acceptors propose 1. The message

from Q1 to l1 is delayed and arrives at l1 just after time d. Immediately after proposing,

acceptors in F send a message to l1 and freeze until time t + d. Malicious acceptors M1

send a message to l1 claiming they had proposed 1, otherwise they behave correctly. At

time t, all acceptors execute stop, except for those in group F . At time d, learner l1

cannot distinguish run r3 from r2, so it decides on 1. At time t + d, learner l2 cannot

distinguish run r3 from r1, so it enters a semi-complete state. Predicate possible(1) holds

because learner l1 decided on 1 (Possibility).

In run r4, all acceptors are correct and propose 0, except for those in group Q2, which

crash at time 0 without proposing anything. Optimistic Termination (q1, 1) requires

learner l1 to decide on 0 by time d.

In run r5, all acceptors are correct, except for those in M2, which are malicious.

Acceptors in Q2 and M2 propose 1, whereas the other acceptors propose 0. Message

from Q2 to l1 is delayed and arrives at l1 just after time d. Immediately after proposing,

acceptors in F send a message to l1 and freeze until time t + d. Malicious acceptors M2

send a message to l1 claiming they had proposed 0, otherwise they behave correctly. At

time t, all acceptors execute stop, except for those in group F . At time d, learner l1

cannot distinguish run r5 from r4, so it decides on 0. At time t + d, learner l2 cannot

distinguish run r5 from r1, so it enters a semi-complete state. Predicate possible(0) holds

because learner l1 decided on 0.

At time t + d learner l2 cannot distinguish runs r4 from r5, so in both cases it is in

a semi-complete state with both possible(0) and possible(1) holding. This violates the

definition of semi-completeness.
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Figure 2.14: Runs examined in the proof of Theorem 2.8.3

Theorem 2.8.3. Any single-value OTC algorithm satisfying Opt. Termination (q•, •)

requires n > f + q• + m.

Proof. To obtain contradiction, consider a single-value OTC algorithm with n ≤ f+m+q•.

Figure 2.14 shows three runs of this algorithm. Acceptors have been divided into three
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groups: F , M , Q with sizes of at most f , m, q•, respectively. In all runs, all acceptors

from the same group behave identically.

In run r1, all acceptors are correct and propose 1, except for those in group Q,

which crash at time 0 and propose nothing. Optimistic Termination (q•, •) requires that

learner l1 eventually decides on 1, say at time t1.

In run r2, acceptors F and M propose 1. Acceptors in group Q freeze from time 0

to t1 without proposing anything. Acceptors in F crash at time t1; all their messages

to processes Q and l2 are lost. At time t1, learner l1 cannot distinguish r2 from r1, so

it decides on 1. At some time t > t1, acceptors in M and Q execute stop. At time

t + d, learner l2 has received all messages sent by correct acceptors at time t or before.

Permanent Validity and Permanent Agreement imply that its state is semi-complete.

Predicate possible(1) holds at l2 because l1 decided on 1, and semi-completeness implies

that valid(1) holds as well.

In run r3, acceptors in M are malicious and all the others are correct. No acceptors

propose anything. Acceptors in F freeze from time 0 to t + d, and those in Q from time

0 to t1. Malicious acceptors M behave as if they had proposed 1 and received exactly

the same messages from acceptors F as in run r2; otherwise they are correct. At time t,

acceptors M and Q execute stop.

At time t + d, learner l2 cannot distinguish runs r3 from r2, so valid(1) holds. This

violates Integrity, as no acceptor proposed anything in this run.

Theorem 2.8.4. Any OTC algorithm satisfying Opt. Termination (q1, 1) and (q2, 2) re-

quires n > f + m + q2 + min {q1,m}.

Proof. To obtain contradiction, consider an OTC algorithm satisfying Optimistic Termi-

nation (q1, 1) and (q2, 2) with n ≤ f +m+q2 +min {q1,m}. Figure 2.15 shows five runs of

this algorithm. Acceptors have been divided into four groups: F , M , Q2 and MQ1 with

sizes of at most f , m, q1, and min {m, q1}, respectively. In all runs, all acceptors from the

same group behave identically.

In run r5, all acceptors are correct, except those in F who crash immediately after

sending a message to acceptors M . All acceptors propose 0 except those in group Q2,

who propose 1 and immediately freeze until time 2d. At some time t > 2d, all correct

acceptors execute stop. As a result, Permanent Validity and Permanent Agreement imply

that the state of learner l3 at time t + d is semi-complete.

In run r1, all acceptors are correct and propose 1, except for those in MQ1, who crash

at time 0 without proposing anything. Acceptors Q2 send a message to learner l1 then

freeze from time 0 to 2d. Optimistic Termination (q1, 1) makes l1 decide on 1 by time d.

In run r2, acceptors F and Q2 propose 1, send a message to l1 and freeze until times

t + d and 2d, respectively. Other acceptors propose 0. Acceptors M are malicious; to
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Figure 2.15: Runs examined in the proof of Theorem 2.8.4
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l1 they pretend to have proposed 1, and they behave as if they had received 0 from

acceptors in F . Otherwise they behave correctly. At time t, all acceptors except for F

execute stop. By time d, learner l1 cannot distinguish runs r1 and r2, so it decides on

1 in both of them. By time t + d, learner l3 cannot distinguish r2 and r5, so it enters a

semi-complete state. Predicate possible(1) holds because l1 decided on 1 (Possibility).

In run r3, acceptors in Q crash at time 0. All other acceptors are correct and propose 0.

Optimistic Termination (q2, 2) makes learner l2 decide on 0 by time 2d.

Run r4 is similar to r2, except that acceptors in Q are correct, propose 1, and freeze

until time 2d. Acceptors in F freeze from time 0 to t + d, however, they send a message

to M at time 0, and a message to l2 at time 1. Acceptors in MQ1 are malicious and

pretend to l2 that at time 1 they had received a message from F , as in run r3. At time t,

all acceptors except for F execute stop. At time 2d, learner l2 cannot distinguish r3 from

r4, and decides on 0 in both of them. At time t + d, learner l3 cannot distinguish runs

r4 and r5, so it is in a semi-complete state. Predicate possible(0) holds because learner l2

decided on 0.

Learner l3 cannot distinguish runs r2, r4, and r5. Therefore, in all of them, it is in

a semi-complete state with both possible(0) and possible(1) holding, which violates the

definition of semi-completeness.

2.9 Conclusion

This chapter introduced Optimistically Terminating Consensus (OTC), an abstraction

that represents an individual round of a Consensus protocol. A sequence of OTC instances

can be executed one after another to implement Consensus (see Chapter 4 for details).

Choosing different implementations of OTC leads to Consensus algorithms with different

properties. Since in “favourable” runs Consensus decides in the first round, the latency

of a Consensus protocol in such runs is fully determined by that of the first round OTC.

The OTC abstraction can be thought of as a variant of Consensus that is required to

decide only if all correct acceptors proposed the same value, which resembles condition-

based Consensus [91]. Unlike that abstraction, OTC instances are designed to be com-

bined into full Consensus protocols. For this reason, they guarantee Permanent Validity

and Permanent Agreement, which are stronger than their standard counterparts, because

they operate on “possible decisions” and “provable proposals” rather than just on real

decisions and real proposals.

OTC is easy to implement, even with malicious acceptors; the learners decide on a

given value if a sufficient number of acceptors report to have proposed it (Section 2.3).

This simple one-step Generic Agreement implementation is sufficient to match the latency

and the required number of acceptors of a large number of Consensus algorithms for the
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Algorithm q1 q2 q3 Condition All benign All malicious

one-step
single-value q — — n > f + 2m + q n > f + q n > 3f
multi-value q — — n > f + 2m + 2q n > f + 2q n > 3f + 2q

two-step
multi-value — f — n > 2f + m n > 2f n > 3f

multi-step
single-value q1 q2 f n > 2f + m n > 2f n > 3f + q1

n > f + 2m + q1

multi-value q1 q2 f n > f + m + q2 + min {m, q1} n > 2f n > 3f + 2q
n > f + 2m + 2q1 n > f + 2q1

n > 2f + m

cheap
multi-value 0 m — n > f + 2m n > f n > 3f
multi-value — 0 — n > f + m n > f n > 2f

Figure 2.16: Summary of OTC algorithms presented in this chapter.

crash-stop model [13, 16, 63, 73, 80, 112] as well as the Byzantine model [41, 71, 87].

Combining several instances of one-step Generic Agreement leads to new OTC imple-

mentations, which match the latency and acceptor requirements of other Consensus algo-

rithms [15, 36, 121]. New algorithms can be obtained, such as Ultimate Paxos, one-step

Byzantine Consensus and two variants of Cheap Byzantine Paxos. Figure 2.16 summa-

rizes the requirements of various OTC implementations presented in this chapter. The

theorems presented in Section 2.8 prove that all these requirements are optimal.

Consensus algorithms, especially those for the Byzantine model, are notoriously diffi-

cult to design, understand, and prove correct. I believe that the OTC abstraction makes

this task much easier. The full comparison between OTC and other agreement frame-

works will be given in Chapter 4. For the moment, note the three characteristics that

distinguish OTC from similar abstractions [10, 11, 12, 51, 65, 92]: (i) tolerating malicious

processes, (ii) full self-containment, and (iii) implementability in purely asynchronous

settings. These three properties make the OTC abstraction more modular and allow

us to implement a much wider range of agreement protocols than any of the previous

approaches.





Chapter 3

Automatic discovery of OTC

protocols

Chapter 2 introduced the concept of Optimistically Terminating Consensus and briefly

explained how to use it to implement Consensus. This modular way of implementing Con-

sensus and agreement abstractions (Chapter 4) has several advantages over constructing

such algorithms from scratch. Firstly, the same OTC algorithm can be used in various

agreement protocols (reusability). Secondly, OTC algorithms are conceptually simpler

than those implementing Consensus, and as a result, proving their correctness is also

easier. In this chapter, we will show how to mechanically verify the correctness of OTC

algorithms. By searching the space of OTC algorithms and filtering incorrect ones out,

we will be able to discover new algorithms automatically.

Automatic correctness testing of individual OTC algorithms is also helpful in designing

OTC algorithms manually. Our tool not only quickly verifies the correctness of candidate

algorithms, but also shows the scenarios in which incorrect algorithms fail. This allows

us to actually understand why a given algorithm is incorrect. Such understanding can

lead to new impossibility results, such as those from Chapter 2, which have been obtained

with the aid of our OTC verification tool.

The verification method presented in this chapter assumes a particular structure of

OTC algorithms. As a result, some correct OTC algorithms might not be expressible in

our model. We believe, however, that the simplifications we make do not exclude any

“sensible” OTC algorithms. In particular, all OTC algorithms presented in Chapter 2 are

expressible in our model.

Our method requires the number of acceptors to be known in advance. In other words,

it can verify an algorithm for, say, four acceptors, but is unable to verify a general solution

for n acceptors. Nevertheless, the method presented in this chapter is still useful for

discovering general OTC algorithms. It can first be applied to generate OTC algorithms

for consecutive numbers of acceptors, such as 3, 4, and 5. Then, we found out, it is usually

not difficult for a human to spot a pattern and generalize this sequence of algorithms for
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fixed n’s into a general OTC algorithm that takes n as a parameter. The same technique

can be used to obtain lower bounds. First, we use the tool to understand why given

requirements cannot be met for a specific n, and then generalize our observations into a

lower bound theorem.

This chapter is structured in the following way. Section 3.1 introduces our execution

model and provides precise definitions of two fundamental concepts: events and states.

To reason about them, Section 3.2 develops a set-theoretic formalism, which is then

used in Section 3.3 to define predicates valid(x), possible(x), and decision(x) that satisfy

OTC properties Integrity, Possibility, and Optimistic Termination. Section 3.4 describes

a method of checking whether these predicates satisfy the other two OTC properties:

Permanent Validity and Permanent Agreement, thereby verifying correctness of a given

OTC algorithm. Section 3.5 uses this method to search for new OTC algorithms.

Related work

Although automatic reasoning about protocols is common in security [14, 22, 84, 88, 96],

not much related work has been done in the area of agreement algorithms. Paxos [73]

seems to be the only asynchronous agreement protocol to have undergone a significant

amount of formal analysis. The algorithm itself has been specified in TLA+ [75] and in

the General Timed Automaton model [106]. TLA+ has also been used to give formal

specifications of Disk Paxos [42] and Paxos Commit [45]. Win and Ernst [118] and later

Win et al. [119] used the Larch theorem prover [43] to formally show the correctness of

the Paxos algorithm. Kellomaki [68] obtained the same result with PVS [94].

Bar-David and Taubenfeld [8] used a combination of model checking and program

generation to automatically discover new mutual exclusion algorithms [85]. Apart from

this, we are not aware of any previous attempt at automatic discovery of distributed

algorithms.

3.1 Execution model

We assume the same system model as in the previous chapters: a network of processes

communicating using asynchronous reliable channels. This means that channels do not

create or modify messages. All messages between correct processes are eventually deliv-

ered, but there are no bounds on message transmission times.

We assume that the system consists of an unlimited number of honest learners and

a fixed number n of possibly faulty acceptors a1, . . . , an. In the OTC abstraction (Sec-

tion 2.2), acceptors issue proposals and collaborate in order for the learners to decide on

one of these proposals. Acceptors can perform two kinds of actions: issue a proposal by
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executing propose(x), and stop the algorithm by executing stop. Learners have access to

three predicates: decision(x), possible(x), and valid(x).

The number of possible OTC algorithms is large, and in order to be able to represent

them efficiently, we need to put some restrictions on the algorithms we will be considering.

At the same time, we have to make sure that during this process we will not omit any

“sensible” algorithms.

3.1.1 Messages

We consider only full-information protocols, in which each message contains the entire

state of the sender. This assumption involves no loss of generality because the information

present in such messages allows the recipient to reconstruct any other messages that

could have been sent by the sender. Sending entire states might increase the size of

the messages, but does not affect latency. If message sizes are of importance, then the

algorithm automatically found by our method can be later manually modified so that

only relevant information is sent.

For example, assume that an acceptor’s state consists of two variables x and y. The

list of possible messages that can be sent by the acceptor includes:

〈x〉, 〈y〉, 〈x + y〉, 〈x ∗ y, x + y, x− y〉, 〈x, y〉.

Note that the information present in any of these messages can be deduced from the last

message 〈x, y〉 that carries the entire state of the acceptor. However, if the recipients are

interested only in x + y, sending 〈x + y〉 instead will reduce the size of the message.

In our model, we assume no bounds on process speeds or message transmission times,

so sending the same state twice does not provide any new information. Therefore, we

assume that acceptors broadcast their states only if they change. This can happen because

of events such as receiving a message or executing an action such as propose(x) or stop.

In fact, these kinds of events are the only ones possible in our model; we explicitly

rule out non-determinism and real time clocks. In other words, we employ the diffusing

computation model [30]; acceptors broadcast their states only immediately after receiving

a message, stopping, or proposing a value, and remain idle otherwise.

3.1.2 States

We have already explained when a state of a process changes, but have not yet defined

what a state is. Since a state changes only on events, it is natural to define it as a sequence

of events that occurred at a given process, that is, received messages, and executions of

propose(x) and stop.
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For the reasons described in the next paragraph, we assume that the order of events

does not matter. The only exception is the stop action; the notion of a “complete state”

depends on messages sent by a correct acceptor before or during its first execution of

stop. For the moment, we will ignore this problem by considering only runs in which no

acceptor executes stop. We will return to this problem in Section 3.1.5.

Each Optimistic Termination property assumes that all correct acceptors propose the

same value, and requires correct learners to decide on it. In other words, in the cases

covered by Optimistic Termination properties, the value of the decision is uniquely de-

termined by the proposals, and must be reached regardless of the order in which various

events, such as message deliveries, occur. For this reason, we assume that the state of a

process does not depend on the order of events it experienced. In other words, we assume

that the state of a process is a set of events that occurred at that process, rather than a

sequence.

Note that the above argument does not apply to the Consensus problem, where the

Termination condition does not specify what decision should be made. In some cases,

the decision cannot be determined from the proposals alone, and depends on the order of

events. In fact, the existence of such cases is the very reason for Consensus impossibility

in purely asynchronous systems [40].

3.1.3 Events

The observation that the order of events does not matter allows us to further restrict the

space of OTC algorithms to consider. Instead of broadcasting the whole state whenever it

changes, we will assume that acceptors broadcast the event that caused the change. Since

state changes are deterministic and the order of events does not matter, broadcasting only

events results in no loss of information in comparision to broadcasting entire states. On

the other hand, it has the advantage of being simpler to model and the messages being

more compact.

Since we ignore stop in this section, an event is either a propose action or a message

reception. The previous paragraph established that messages are actually events that

caused the state change. Therefore, message reception consists of the received event and

the acceptor at which this event occurred. In other words,

event = message reception or propose(x)

message reception = event : acceptor

Unfolding this recursive definition yields:

event = 〈x : e1e2 . . . ek〉,
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1 state← ∅

2 when an acceptor executes propose(x) do
3 incorporate 〈x : ε〉 into the state

4 when a process receives 〈x : e1e2 . . . ek−1〉 from acceptor ek do
5 incorporate 〈x : e1e2 . . . ek〉 into the state

6 action incorporate 〈x : e1e2 . . . ek〉 into the state do
7 if 〈y : e1e2 . . . ek〉 /∈ state for any y then
8 insert 〈x : e1e2 . . . ek〉 into state
9 if the current process p is an acceptor do

10 broadcast 〈x : e1e2 . . . ek〉

11 when an acceptor executes stop do
12 for all sequences e1e2 . . . ek do { including the empty sequence ε }
13 incorporate 〈⊤ : e1e2 . . . ek〉 into the state

Figure 3.1: Algorithm describing the evolution of states.

where x is a proposed value and e1e2 . . . ek is a list of acceptors. The event 〈x : ε〉, where

ε is the empty list of acceptors, corresponds to the action propose(x). The event 〈x : e1〉

corresponds to receiving a message from acceptor e1 claiming that e1 proposed x. Event

〈x : e1e2〉 corresponds to receiving a message from e2 that claims that it has received a

message from e1 claiming that e1 proposed x. In general, event 〈x : e1e2 . . . ek〉 corresponds

to receiving a message from ek claiming that event 〈x : e1e2 . . . ek−1〉 occurred at ek.

3.1.4 Evolution of states

We have already established that the state of a process is a set of events of the form

〈x : e1e2 . . . ek〉. Figure 3.1 gives a detailed description of the evolution of states of honest

processes. Each process starts with the empty set state. In lines 2–3, an acceptor propos-

ing some value x incorporates the event 〈x : ε〉 into its state. Similarly, when a message

containing the event 〈x : e1e2 . . . ek−1〉 arrives from acceptor ek, the process incorporates

the event 〈x : e1e2 . . . ek〉 into its state. We say that a particular event 〈x : e1e2 . . . ek〉

occurred at a process if it belongs to its state.

A process incorporates an event into its state by adding it to state. In addition,

acceptors broadcast the event to all processes, including themselves. This produces a

never-ending exchange of events 〈x : e1e2 . . . ek〉, with an arbitrarily large k. In practice, all

events 〈x : e1e2 . . . ek〉 with k larger than those in the Optimistic Termination requirements

are ignored. For example, when verifying an OTC algorithm for Optimistic Termination

(q1, 1) and (q2, 2), we ignore all events 〈x : e1e2 . . . ek〉 with k > 2.

The if statement in line 7 ignores 〈x : e1e2 . . . ek〉 if another event 〈y : e1e2 . . . ek〉 is

already in the state. We argue that ignoring such events does not limit the generality
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of our algorithm. A process might try to incorporate two events 〈x : e1e2 . . . ek〉 and

〈y : e1e2 . . . ek〉 with x 6= y in two cases. In the first case, the list of the acceptors in

both events is empty, that is, the events are 〈x : ε〉 and 〈y : ε〉. This means that the

process is an acceptor that executed both propose(x) and propose(y), which contradicts

the assumption that honest acceptors issue at most one proposal.

If the events 〈x : e1e2 . . . ek〉 and 〈y : e1e2 . . . ek〉 have a non-empty sequence of ac-

ceptors e1e2 . . . ek, then the process must have received messages 〈x : e1e2 . . . ek−1〉 and

〈y : e1e2 . . . ek−1〉 from acceptor ek. This means that ek has incorporated both events into

its state, which is precisely what the if instruction in line 7 prevents. Therefore, ek must

be a malicious acceptor; its messages convey no useful information and can safely be

ignored.

3.1.5 Action stop

Until now, we have assumed that no acceptor executes stop. As explained in Section 2.2,

we can assume that executing stop leaves an acceptor in a final state, a state in which no

further event can occur. In our model, this means that the value of state after executing

stop must contain an event of the form 〈x : e1e2 . . . ek〉 for every sequence e1e2 . . . ek;

otherwise, the event 〈x : e1e2 . . . ek〉 could still occur in the future.

Modelling the action stop as a special kind of event would complicate our set-theoretic

model of states. Instead, lines 6–10 emulate stop in our current model by trying to incor-

porate events 〈⊤ : e1e2 . . . ek〉 for all possible sequences e1e2 . . . ek, where ⊤ is a symbol

outside the set of possible proposals. This adds to state all events 〈⊤ : e1e2 . . . ek〉 for

which no event of the form 〈x : e1e2 . . . ek〉 belongs to state. After this operation, state is

final because it contains an event of the form 〈x : e1e2 . . . ek〉 for every sequence e1e2 . . . ek.

3.1.6 Summary

In this section, we have shown how general assumptions about the OTC protocols we are

interested in lead to a specific algorithm describing the evolution of process states. We

concluded that the behaviour of any OTC implementation can be described by the algo-

rithm in Figure 3.1. In brief, acceptors broadcast their proposals and relay messages from

other acceptors, adding their own identifiers and suppressing clearly malicious messages.

Our model supports acceptors’ actions propose(x) and stop. In Section 3.3, we will show

how to define learners’ predicates decision, possible, and valid .

3.2 State formalism

In this section, we will consolidate our knowledge of events and process states, and intro-

duce a set-theoretic formalism for dealing with these.
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3.2.1 Events

Recall that an event is a pair 〈x : α〉, where x is a value and α is a sequence of acceptors.

The meaning of 〈x : α〉 is defined recursively. The event 〈x : ε〉 occurring at some process

means that process proposed x. The event 〈x : e1e2 . . . ek〉 means that the process received

a message from acceptor ek, which claims that the event 〈x : e1e2 . . . ek−1〉 occurred at ek.

Two events conflict if they have different proposal values and the same sequence of

acceptors. In other words, events 〈x : α〉 and 〈y : β〉 conflict iff x 6= y and α = β. For

example, events 〈1 : a1a3〉 and 〈2 : a1a3〉 conflict, whereas 〈1 : a1a3〉 and 〈2 : a1a2〉 do not.

3.2.2 States

We define a state to be any set of events of the form 〈x : α〉. It does not have to correspond

to the state of any particular process and can contain conflicting events. States that do

not contain any conflicting events are called pure. In Section 3.1, we explained why states

of individual honest processes are always pure.

For example,

S1 = {〈1 : a1a2〉, 〈2 : a2〉}, S2 = {〈2 : a1a2〉, 〈2 : a2〉}.

are both pure states because none of them contains conflicting events. However, the state

S1 ∪ S2 = {〈1 : a1a2〉, 〈2 : a1a2〉, 〈2 : a2〉}

is not pure because events 〈1 : a1a2〉 and 〈2 : a1a2〉 conflict.

The conflict operator

For any state S, we define conflict(S) to be the set of sequences α, for which some events

〈z : α〉 ∈ S conflict:

conflict(S)
def

= {α | ∃x 6=y : 〈x : α〉 ∈ S ∧ 〈y : α〉 ∈ S }.

In our example,

conflict(S1) = conflict(S2) = ∅ and conflict(S1 ∪ S2) = {a1a2}.

Using the conflict(S) operator, we can give an alternative definition of a pure state:

state S is pure ⇐⇒ conflict(S) = ∅.
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From sequences to states

To make specifying states easier, we will extend the event notation 〈x : α〉 to allow the

parameter α to be a set of sequences. For any set of sequences X, the symbol 〈x : X〉

denotes a state consisting of all events 〈x : α〉 with α ∈ X. Formally,

〈x : X〉 = { 〈x : α〉 | α ∈ X }.

For example, state S2 can be expressed as

S2 = {〈2 : a1a2〉, 〈2 : a2〉} = 〈2 : {a1a2, a2}〉.

Note that states of the form 〈x : X〉 are always pure because events with the same x

cannot conflict. In other words,

conflict(〈x : X〉) = ∅.

From states to sequences

In many cases, we will be interested in dealing not with entire states, but with their

subsets consisting only of events with a particular proposal value. For this reason, for any

state S, we define S(x) to be the set of sequences α such that the event 〈x : α〉 belongs

to S:

S(x) = {α | 〈x : α〉 ∈ S }.

For example, if

S = {〈1 : a1a3〉, 〈1 : a1a2〉, 〈2 : a2〉, 〈2 : a2a2〉, 〈2 : a2a3〉},

then

S(1) = {a1a3, a1a2} and S(2) = {a2, a2a2, a2a3}

The notation S(x) can be seen as the opposite of the 〈x : X〉 notation used to define

states. In particular, we can write

S =
⋃

x

〈x : S(x)〉.

Similarly, we can redefine conflict(S) as

conflict(S) =
⋃

x 6=y

S(x) ∩ S(y).
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3.2.3 Inferring events

For several reasons, such as slow messages or malicious acceptors, a given process might

not directly witness all the events that happened in the system. However, many such

events can be inferred by the process. As an example, consider a learner with the following

state

S = {〈1 : a1〉, 〈1 : a3a2〉, 〈2 : a2〉, 〈2 : a2a2〉, 〈2 : a2a3〉},

The event 〈1 : a3a2〉 ∈ S means that acceptor a2 sent a message claiming that the event

〈1 : a3〉 occurred at a2. Therefore, assuming that a2 is not malicious, we can conclude

that the event 〈1 : a3〉 indeed occurred at a2. From this, we can conclude that the 〈1 : ε〉

occurred at a3 (acceptor a3 proposed 1), provided that neither a2 nor a3 are malicious.

Similarly, 〈1 : a1〉 ∈ S implies that acceptor a1 proposed 1, provided that a1 is not mali-

cious.

The goal of this section is to define an operator infer(S,M) that takes a state S and a

set M of malicious acceptors, and returns the set of events whose occurrence in the system

can be inferred from S. The resulting set of events (a state) can contain conflicting events,

so infer(S,M) is not necessarily pure.

For example, assuming no malicious acceptors (M = ∅), we have

infer(S, ∅) = {〈1 : ε〉, 〈1 : a1〉, 〈1 : a3〉, 〈1 : a3a2〉, 〈2 : ε〉, 〈2 : a2〉, 〈2 : a2a2〉, 〈2 : a2a3〉}.

On the other hand, if a2 is malicious (M = {a2}), then event 〈2 : ε〉 might not have

occurred:

infer(S, {a2}) = {〈1 : ε〉, 〈1 : a1〉, 〈1 : a3〉, 〈1 : a3a2〉, 〈2 : a2〉, 〈2 : a2a2〉, 〈2 : a2a3〉}.

Operator prefixes

In order to define infer(S,M), we will first define the operator prefixes(α,M), which takes

a sequence of acceptors α = e1e2 . . . ek and the set M of malicious acceptors, and returns

a set of sequences:

prefixes(e1e2 . . . ek,M)
def

= { e1e2 . . . ei | ei+1, ei+2, . . . , ek /∈M }

In other words, prefixes(e1e2 . . . ek,M) produces a set of sequences that can be obtained

by removing a sequence of honest acceptors from the end of e1e2 . . . ek.

The purpose of the operator prefixes(α,M) is the following. Assume that an event

〈x : α〉 with x 6= ⊤ occurred at some process. Then, we can infer that for every sequence

β ∈ prefixes(α,M), the event 〈x : β〉 occurred in the system. For example, if event
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〈1 : a1a2〉 occurred at some process, and M = ∅, then

prefixes(a1a2, ∅) = {a1a2, a1, ε}

implies that events 〈1 : a1〉 and 〈1 : ε〉 occurred somewhere in the system.

To prove this, assume the event 〈x : e1e2 . . . ek〉 occurred at some process, and that

e1e2 . . . ei is a prefix of e1e2 . . . ek such that ei+1, ei+2, . . . , ek are honest. Then, event

〈x : e1e2 . . . ei〉 occurred at some process because the event 〈x : e1e2 . . . ek〉 is nothing else

than that acceptor ek claims that acceptor ek−1 claims that . . . that acceptor ei+1 claims

that the event 〈x : e1e2 . . . ei〉 occurred at ei+1. Since all acceptors ei+1, ei+2, . . . , ek are

honest, all these claims are true.

Operator infer

We can extend the definition of prefixes(α,M) to sets of sequences X in the obvious way:

prefixes(X,M)
def

=
⋃

α∈X

prefixes(α,M).

Now, we can define infer(S,M) using the S(x) notation:

infer(S,M)
def

= Ŝ such that Ŝ(x) = prefixes(S(x),M) for any x 6= ⊤.

The case x = ⊤ requires special treatment. The state-propagation algorithm in Fig-

ure 3.1 shows that the event 〈⊤ : e1e2 . . . ek〉 can occur for two reasons: either because of

acceptor ek claiming that the event 〈⊤ : e1e2 . . . ek−1〉 occurred at ek or because of the stop

action. Since the latter reason is always a possibility, the occurrence of 〈⊤ : e1e2 . . . ek〉

does not imply the occurrence of 〈⊤ : e1e2 . . . ek−1〉 anywhere in the system, even if ek is

honest. For this reason, we define the operator infer(S,M) as

infer(S,M) = Ŝ such that Ŝ(x) =







S(x) for x = ⊤,

prefixes(S(x),M) otherwise.

3.2.4 Special sets of sequences

In preparation for introducing the concepts of correctness and consistency of states, we

will first introduce two important sets of sequences: αM and αF . Set αM consists of

all sequences ending with a malicious acceptor, whereas set αF consists of all sequences

ending with a faulty acceptor. For reasons discussed below, both of these sets contain the



3.2. STATE FORMALISM 83

empty sequence ε:

αM = { e1e2 . . . ek | ek ∈M } ∪ {ε},

αF = { e1e2 . . . ek | ek ∈ F } ∪ {ε}.

We also define complementary sets αM and αF , consisting of sequences that end with

a non-malicious and a non-faulty acceptor, respectively:

αM = { e1e2 . . . ek | ek /∈M },

αF = { e1e2 . . . ek | ek /∈ F }.

Intuitively, set αM contains all sequences α such that conflicting events of the form

〈x : α〉 can occur in the system. For obvious reasons, this set contains all sequences

ending with a malicious acceptor. Since 〈x : ε〉 corresponds to an acceptor proposing x,

and different acceptors can propose different values, the empty sequence ε must belong

to αM as well.

Assuming ε ∈ αF is convenient for the definition of state completeness in Section 3.4.1.

3.2.5 Correctness of states

Let M be the set of malicious acceptors. Recall that two events conflict if they have

different proposal values and the same sequence of acceptors. We say that a state S is

M-correct if there are no conflicts among events reported by honest acceptors. In other

words,

S is M -correct
def

⇐⇒ conflict(S) ⊆ αM.

For example, for M = {a1}, out of the following three states S:

{〈1 : a3a1〉, 〈2 : a3a1〉},

{〈1 : a3a2〉, 〈2 : a3a2〉},

{〈1 : a3a2〉, 〈2 : a2a2〉},

only the second one is not M -correct.

3.2.6 Consistency of states

A state S is M-consistent if the set of events inferred from S is M -correct. In other words,

S is M -consistent
def

⇐⇒ infer(S,M) is M -correct ⇐⇒ conflict(infer(S,M)) ⊆ αM.
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For example, for M = {a1}, the M -correct state

S = {〈1 : a2a1〉, 〈2 : a2a2〉, 〈3 : a2a3〉}

is not M -consistent, because in the inferred state

infer(S,M) = {〈1 : a2a1〉, 〈2 : a2a2〉, 〈2 : a2〉, 〈2 : ε〉, 〈3 : a2a3〉, 〈3 : a2〉, 〈3 : ε〉},

events 〈2 : a2〉 and 〈3 : a2〉 conflict and a2 /∈ αM . Conflicting events 〈2 : ε〉 and 〈3 : ε〉 are

not a reason for this state not being M -consistent, because ε ∈ αM .

The notion of M -consistency of states is important because the set of all events that

occurred in a single run must be M -consistent. For example, assume M = {a1} and

consider the following states

S1 = {〈1 : a2a1〉}, infer(S1,M) = {〈1 : a2a1〉},

S2 = {〈2 : a2a2〉}, infer(S2,M) = {〈2 : ε〉, 〈2 : a2〉, 〈2 : a2a2〉},

S3 = {〈3 : a2a3〉}, infer(S3,M) = {〈3 : ε〉, 〈3 : a2〉, 〈3 : a2a3〉}.

State S1 ∪ S2 is M -consistent because the inferred state

infer(S1 ∪ S2,M) = infer(S1,M) ∪ infer(S2,M) = {〈2 : ε〉, 〈2 : a2〉, 〈2 : a2a2〉, 〈1 : a2a1〉}

is M -correct. State S1∪S3 is M -consistent for the same reason. On the other hand, state

S2 ∪ S3 is not M -consistent, because the state

infer(S2,M) ∪ infer(S3,M) = {〈2 : ε〉, 〈3 : ε〉, 〈2 : a2〉, 〈3 : a2〉, 〈2 : a2a2〉, 〈3 : a2a3〉}

contains conflicting events 〈2 : a2〉 and 〈3 : a2〉, and a2 /∈ αM . As a result, states S2 and

S3 cannot occur in the same run.

3.3 Predicates

Section 2.2 specified OTC in terms of actions propose(x) and stop available to accep-

tors, and predicates decision(x), possible(x), and valid(x) available to learners. These

primitives satisfy:

Integrity. If valid(x), then an honest acceptor proposed x.

Possibility. If decision(x), then possible(x) holds at all learners, at all times.

Permanent Validity. For any complete learner, possible(x) =⇒ valid(x)

for all x.
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Permanent Agreement. For any complete learner, possible(x) holds for at

most one x.

Optimistic Termination (q, k). If at most q out of n acceptors are faulty,

all correct acceptors propose x, and none of them executes stop, then

decision(x) will hold at all correct learners after k communication steps.

Predicates decision(x) and valid(x) are stable, that is, once they are true, they remain

true forever. Predicate possible(x) is anti-stable: once false, it remains false forever.

Treating predicates as Boolean functions with true > false enables us to reformulate

some definitions in terms of arithmetic instead of logic. For example, a predicate is (anti-)

stable if it is an increasing (decreasing) function of time. Here, a function f(t) is increasing

if t < t′ =⇒ f(t) ≤ f(t′), and decreasing if t < t′ =⇒ f(t) ≥ f(t′). We say that a

predicate A is stronger (weaker) than B if A ≥ B (A ≤ B). Note that for Boolean values

p ≤ q is equivalent to p =⇒ q. In this case, p and q can be entire logic expressions; for

example, Integrity is a decreasing function of valid(x).

3.3.1 Overview of correctness testing

Section 3.1 gave a description of the execution of an OTC algorithm (Figure 3.1), including

actions propose(x) and stop made by acceptors. In Section 3.2, we formalized the notion

of a state and introduced some state-related operations, such as infer(S,M). We are now

ready to give precise definitions of the predicates provided by any OTC algorithm: valid ,

decision, and possible. In Section 3.4, we will use them to present an automatic method

of checking the correctness of OTC algorithms.

In brief, our method of testing the correctness of OTC algorithms works as follows.

We specify an OTC algorithm by listing the Optimistic Termination properties that we

require. Section 3.3.4, determines the weakest possible predicate decision(x) that satisfies

these properties. Section 3.3.5 uses this decision(x) and the Possibility property of OTC

to determine the weakest predicate possible(x). Section 3.3.6 uses the Integrity property

to determine the strongest possible predicate valid(x).

Section 3.4, we will test Permanent Validity and Permanent Agreement using the

strongest valid(x) and weakest possible(x) determined in the previous paragraph. Both

properties are increasing functions of valid(x) and decreasing functions of possible(x), so if

they do not hold for the strongest valid(x) and the weakest possible(x), they cannot hold

for any predicates valid(x) and possible(x) satisfying the other properties. On the other

hand, if Permanent Validity and Permanent Agreement do hold, then we have found an

algorithm satisfying all properties required by OTC, including our Optimistic Termination

conditions.
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3.3.2 Extended failure model

Let A = {a1, . . . , an} be the set of all acceptors. In the previous chapters, we assumed

that at most f of them can be faulty, out of which at most m malicious. In other words,

we assumed that the set F ⊆ A of faulty acceptors contains at most f elements, and that

the set M ⊆ A of malicious acceptors contains at most m elements.

The drawback of this method of restricting the possible sets of faulty acceptors is that

it implicitly assumes that all acceptors are the same and they fail independently. Consider

an example with three acceptors a1, a2, and a3. We can require that at most two acceptors

are faulty by setting f = 2. However, it is impossible to express the assumption that a1

and a2 cannot fail at the same time. To be able to express such requirements, we will

generalize our method of specifying sets F and M . In this chapter only, we will use two

families of sets of acceptors: F and M. Family F contains all possible sets F of faulty

acceptors, whereasM contains all possible sets M of malicious ones. In other words, we

require

F ∈ F , M ∈M, M ⊆ F.

In our three-acceptor example, these sets can be defined as follows

F = {∅, {a1}, {a2}, {a3}, {a1, a3}, {a2, a3}},

M = {∅, {a1}, {a2}, {a3}}.

This allows at most two acceptors to be faulty, out of which at most one malicious, and

forbids a1 and a2 to be both faulty. For example, we can have

F = {a1, a3}, M = {a3}

but not

F = {a1, a3}, M = {a2}.

because although F ∈ F and M ∈M, the requirement M ⊆ F does not hold.

This method of specifying allowed sets F and M is more general than the one that

just limits their sizes by f and m, respectively. In fact, any restrictions given by the latter

model can be transformed into the one used in this chapter by setting

F = {F ⊆ A | |F | ≤ f },

M = {M ⊆ A | |M | ≤ m }.
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3.3.3 Termination rules

The extended failure model from Section 3.3.2 prompts for introducing a more general

variant of the Optimistic Termination condition. Each such condition is parameterized

by 〈V,C, k〉, where V ⊆ C ⊆ A are sets of acceptors and k is a positive integer.

Optimistic Termination 〈V,C, k〉. If all acceptors in V propose the same

value x, all acceptors in C are correct, and no correct acceptor executes

stop, then decision(x) will hold at all correct learners in k communication

steps.

We call tuples 〈V,C, k〉 termination rules.

Take a system with three honest acceptors a1, a2, a3 as an example. Consider an OTC

algorithm with the following Termination condition. First, if all acceptors are correct and

propose the same value, then all correct learners decide in one step. Second, if a1 and one

other acceptor are correct, then the algorithm decides in two steps on the value proposed

by a1. This condition can be expressed by the following set of three termination rules:

T =















〈 V = {a1, a2, a3}, C = {a1, a2, a3}, k = 1 〉

〈 V = {a1}, C = {a1, a2}, k = 2 〉

〈 V = {a1}, C = {a1, a3}, k = 2 〉















.

Observe that the standard Optimistic Termination (q, k) corresponds to

T = { 〈X,X, k〉 | X ⊆ A, |X| = q }.

3.3.4 Predicate decisionS(x)

From now on, we will use a subscript S in all state predicates to indicate which state S they

operate on. This section will show how to determine the weakest predicate decisionS(x)

that satisfies Optimistic Termination T , where T = 〈V,C, k〉. Assume that all acceptors

in V proposed the same value x, all acceptors in C are correct, and none of them executed

stop. After k communication steps, the set of events that must have occurred at every

correct learner is 〈x : rule(T )〉, where

rule(T ) = { e1e2 . . . ej | e1 ∈ V and ei ∈ C for all i ≤ j ≤ k }.

For example,

rule(〈{a1, a2}, {a1, a2, a3}, 2〉) = {a1, a2, a1a1, a1a2, a1a3, a2a1, a2a2, a2a3}.
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For any termination rule T = 〈V,C, k〉, the set D = rule(T ) is the corresponding deci-

sion rule. If all acceptors in V proposed the same value x, all acceptors in C are correct,

and none of them executed stop, then all events in 〈x : D〉 must occur at every correct

learner within k communication steps. For that reason, a learner cannot violate Opti-

mistic Termination T by delaying the decision until all events from 〈x : D〉 have occurred.

On the other hand, if acceptors outside V do not propose anything, and acceptors outside

C crash at the beginning, the 〈x : D〉 are the only events that will occur at the learners

within k communication steps. As a consequence, a learner must decide on x as soon as

all events from 〈x : D〉 occurred. In other words, the weakest predicate decisionS(x) can

be defined as

decisionS(x)
def

⇐⇒ S(x) ⊇ D.

The above definition assumes a single decision rule D = rule(T ). For sets T consisting

of many termination rules T , we must consider a family D of decision rules, defined as

D = rule(T ) = { rule(T ) | T ∈ T }.

For example, T from Section 3.3.3 leads to:

rule(T ) =















{a1, a2, a3}

{a1, a1a1, a1a2}

{a1, a1a1, a1a3}















.

For multiple decision rules, the definition of decisionS(x) generalizes to:

decisionS(x)
def

⇐⇒ S(x) ⊇ D for some D ∈ D.

This section showed that predicate decisionS(x) is uniquely determined by the set

T of termination rules. Section 3.3.5 will show that predicate possibleS(x) is uniquely

determined by decisionS(x). Actions propose(x) and stop (Section 3.1) and predicate

validS(x) (Section 3.3.6) are defined in an algorithm-independent way. As a result, an

OTC algorithm is uniquely determined by T . For this reason, we will sometimes refer to

it as “algorithm T ”.

3.3.5 Predicate possibleS(x)

This section will show how to determine the weakest possibleS(x) allowed by the OTC

property Possibility. This property requires that if decision(x) holds at some learner,

then possible(x) holds at all learners at all times. In other words, if decisionŜ(x) holds

for some state Ŝ, then possibleS(x) must hold for all states S that can occur in the same

run as Ŝ. By inverting this implication, we conclude that possibleS(x) must be true if
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there is a state Ŝ with the following properties:

1. State Ŝ decides on x, that is, decisionŜ(x) holds:

Ŝ(x) ⊇ D for some D ∈ D.

2. States S and Ŝ can occur in the same execution, that is, S ∪ Ŝ is M -consistent for

some M ∈M:

conflict(infer(S ∪ Ŝ,M)) ⊆ αM for some M ∈M,

The weakest predicate possibleS(x) that satisfies the above conditions holds exactly when

both of the above conditions hold. To simplify the definition, note that the second con-

dition is a decreasing function of Ŝ. Therefore, we can restrict ourselves to checking only

minimal states Ŝ allowed by the first property, that is, sets Ŝ = 〈x : D〉 with D ∈ D. We

can now define possibleS(x) as

possibleS(x)
def

⇐⇒ conflict(infer(S∪〈x : D〉,M)) ⊆ αM for some D ∈ D and M ∈M.

Example 1

Consider an OTC algorithm in which a learner decides in one step if all three acceptors

are correct and propose the same value:

D = {{a1, a2, a3}}.

Assume that at most one acceptor is maliciously faulty and consider the state

S = {〈1 : a1〉, 〈⊤ : a1a2〉, 〈⊤ : a3〉}.

Predicate possibleS(1) holds in this state because it is possible that all three acceptors

proposed 1, and sent their states to some learner, which decided on 1. The messages from

a2 may be very slow, a2 might have executed stop before receiving a1’s proposal, and

a3 could be maliciously reporting ⊤ despite proposing 1.

Formally, possibleS(1) holds because state S and

Ŝ = {〈1 : a1〉, 〈1 : a2〉, 〈1 : a3〉},

for which decisionŜ(1) holds, can occur in the same execution. This is because for M =

{a3} we have

infer(S ∪ Ŝ,M) = {〈1 : ε〉, 〈1 : a1〉, 〈1 : a2〉, 〈1 : a3〉, 〈⊤ : a1a2〉, 〈⊤ : a3〉}.
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Hence,

conflict(infer(S ∪ Ŝ,M)) = {a3} ⊆ αM.

Example 2

Consider

S = {〈1 : a1〉, 〈2 : a1a2〉, 〈⊤ : a3〉}.

Here, a1 or a2 must be malicious, so acceptor a3 is honest. As before, a3 reports executing

stop before proposing anything, but this time we can trust its reports and conclude that

a3 has not proposed anything. Therefore, possibleS(1) does not hold.

For example, for M = {a3} we have

infer(S ∪ Ŝ,M) = {〈1 : ε〉, 〈1 : a1〉, 〈1 : a2〉, 〈1 : a3〉, 〈2 : ε〉, 〈2 : a1〉, 〈2 : a1a2〉, 〈⊤ : a3〉}.

Here, conflicting events 〈x : α〉 have α ∈ {ε, a1, a3}. Since a1 /∈ αM , state S ∪ Ŝ is not

M -consistent for M = {a3}. Similarly we can show that S ∪ Ŝ is not M -consistent for

any other set M containing at most one acceptor. As a result, possibleS(1) does not hold.

3.3.6 Predicate validS(x)

In this section, we will determine the strongest predicate validS(x) allowed by Integrity.

It requires that if validS(x) holds at a learner in state S, then an honest acceptor proposed

x. In other words, if validS(x) holds, then it can be inferred from S that the event 〈x : ε〉

occurred at some honest acceptor. This statement must be true for every possible set

M ∈ M of malicious acceptors for which state S can be attained. Since learners do not

propose values themselves and events that happened at malicious acceptors cannot be

inferred, we can define validS(x) as

validS(x)
def

⇐⇒ S is M -consistent =⇒ 〈x : ε〉 ∈ infer(S,M) for all M ∈M.

We can assume that x 6= ⊤ because ⊤ is disjoint from the set of possible proposals x

(Section 3.1.5). Thus, we can use the definition of infer(S,M) to give an equivalent

definition of validS(x):

validS(x)
def

⇐⇒ S is M -consistent =⇒ ε ∈ prefixes(S(x),M) for all M ∈M.

Note that this definition of validS(x) is common to all OTC algorithms.
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Example

Consider a system of three acceptors a1, a2, a3 with at most two of them malicious.

Consider the state

S = {〈1 : a1〉, 〈2 : a1a1〉, 〈3 : a2〉, 〈3 : a3〉}.

It is obvious that a1 is malicious because it reports (indirectly) to have proposed to

different values. Therefore, at most one of a2 and a3 is malicious. Since they both report

to have proposed 3, at least one of them is honest and proposed 3, which implies validS(3).

Formally,

a1 /∈M =⇒ {〈1 : a1〉, 〈2 : a1〉} ⊆ infer(S,M) =⇒ S in not M -consistent,

a1 ∈M =⇒ S(3) = {a2, a3} * M =⇒ ε ∈ prefixes(S(3),M).

Therefore, “S is M -consistent =⇒ ε ∈ prefixes(S(3),M)” holds for all M ∈ M, which

implies validS(3).

The situation is different if 〈2 : a1a1〉 /∈ S. For M = {a2, a3} ∈ M we have

infer(S,M) = S = {〈1 : ε〉, 〈1 : a1〉, 〈3 : a2〉, 〈3 : a3〉}.

State S is M -consistent and ε /∈ prefixes(S(3),M) = {a2, a3}, so validS(3) does not hold.

3.4 Testing correctness of OTC algorithms

In the previous sections, we showed that an OTC algorithm can be uniquely determined

by the following parameters: the set A of acceptors, the family F of possible sets of

faulty acceptors, the family M of possible sets of malicious acceptors, and the set T of

termination rules. We proved this by constructing the strongest validS(x) and the weak-

est decisionS(x) and possibleS(x) allowed by the OTC properties Integrity, Optimistic

Termination, and Possibility, respectively:

validS(x)
def

⇐⇒ S is M -consistent =⇒ ε ∈ prefixes(S(x),M), for all M ∈M,

decisionS(x)
def

⇐⇒ S ⊇ D for some D ∈ D = rule(T ),

possibleS(x)
def

⇐⇒ conflict(infer(S ∪ 〈x : D〉,M)) ⊆ αM, for some D ∈ D, M ∈M.

In this section, we will use these definitions to test the other two OTC properties: Per-

manent Validity and Permanent Agreement.
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3.4.1 Completeness of states

The Permanent Validity and Permanent Agreement properties both assume that the

learner’s state is complete. This means (Section 2.2) that all correct acceptors have

executed stop and the learner has received all messages sent by these acceptors before or

during their (first) stop action.

Recall from Section 3.1.5 that executing stop leaves a correct acceptor ek in a state

S with some 〈x : e1e2 . . . ek−1〉 ∈ S for every e1e2 . . . ek−1. As a result, before finish-

ing executing stop, this acceptor has broadcast some event 〈x : e1e2 . . . ek−1〉 for every

e1e2 . . . ek−1. Therefore, at any complete learner, at least one event 〈x : e1e2 . . . ek〉 for

each e1e2 . . . ek with ek /∈ F must have occurred. For this reason, we define

S is F -complete
def

⇐⇒ αF ⊆
⋃

x

S(x).

Example

Consider a system consisting of two acceptors a1 and a2, with a1 being faulty (F = {a1}).

For simplicity, let us restrict our attention to sequences e1e2 . . . ek with k ≤ 2, in which

case αF = {a2, a1a2, a2a2}. The state

S = {〈2 : a1〉, 〈1 : a2〉, 〈1 : a2a2〉}

is not F -complete, because a1a2 ∈ αF and S does not contain any event of the form

〈x : a1a2〉. On the other hand, state

S = {〈2 : a1〉, 〈⊤ : a1a2〉, 〈1 : a2〉, 〈1 : a2a2〉}

is F -complete.

3.4.2 Permanent Validity

Permanent Validity requires that possibleS(x) =⇒ validS(x) for any complete state S.

This section presents an algorithm that checks whether a given OTC algorithm satisfies

this property, by trying to find a complete state S that violates it. In other words, we will

be looking for a run in which some learners arrive at a complete state S for which there

exists an x such that possibleS(x) holds but validS(x) does not. If such a state can be

found, its existence proves that the OTC algorithm does not satisfy Permanent Validity.

If such a state does not exist, then the Permanent Validity property holds.

Formally, we are looking for sets F ∈ F and M ∈ M, with M ⊆ F , and a state S

such that
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V1: State S can occur (is M -consistent):

conflict(infer(S,M)) ⊆ αM.

V2: State S is F -complete:

αF ⊆
⋃

x

S(x).

V3: Predicate possibleS(x) holds:

conflict(infer(S ∪ 〈x : Dx〉,Mx)) ⊆ αMx for some Mx ∈M and Dx ∈ D.

V4: Predicate validS(x) does not hold:

conflict(infer(S,Mv)) ⊆ αMv and ε /∈ prefixes(S(x),Mv) for some Mv ∈M.

We will be iterating over all possible values of (F,M,Mx, Dx,Mv). For each possible

(F,M,Mx, Dx,Mv), we will try to find a state S that satisfies Properties V. If we succeed

for at least one (F,M,Mx, Dx,Mv), then Permanent Validity is not met. Otherwise,

Permanent Validity holds.

For the rest of the section, assume that the values of F,M,Mx, Dx,Mv are fixed. How

do we find a state S that satisfies the above properties? Trying all possible states S is

prohibitive; even assuming that all events in S are of the form 〈x : e1e2 . . . ei〉 with the

same x and i ≤ k for some k, the number of such states is 21+n+···+nk

. We will need a

better method of finding S.

Without loss of generality we can assume that the state S consists only of events of

the form 〈x : α〉 or 〈⊤ : α〉. This is because all events 〈y : α〉 ∈ S with y /∈ {x,⊤} can be

replaced by 〈⊤ : α〉 without invalidating any of the above four properties. Therefore, we

can assume that S = 〈x : Sx〉 ∪ 〈⊤ : S⊤〉, for some disjoint sets of sequences Sx and S⊤.

Given this assumption, Properties V can be rewritten as

V1: State S is M -consistent:

prefixes(Sx,M) ∩ S⊤ ⊆ αM.

V2: State S is F -complete:

αF ⊆ Sx ∪ S⊤.
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1 function PermanentValidity(A,F ,M, T )
2 for all Dx ∈ rule(T ) do
3 for all F ∈ F do
4 for all M,Mx,Mv ∈M do
5 if M ⊆ F then
6 iteratively compute the least fixed point Sx of (3.1)
7 if computed Sx satisfies (3.2) then
8 return false

9 return true

Figure 3.2: The algorithm for testing Permanent Validity.

V3: Predicate possibleS(x) holds:

prefixes(Sx,Mx) ∩ S⊤ ⊆ αMx

prefixes(Dx,Mx) ∩ S⊤ ⊆ αMx

V4: Predicate validS(x) does not hold:

prefixes(Sx,Mv) ∩ S⊤ ⊆ αMv, (a)

ε /∈ prefixes(Sx,Mv). (b)

Property V2 is increasing with respect to S⊤; all the other properties are decreasing.

For this reason, we can assume that S⊤ = αF \ Sx. This is the smallest S⊤ allowed by

Property V2, making it automatically satisfied.

To eliminate S⊤ from the other properties notice that for any set X

X ∩ S⊤ ⊆ αM ⇐⇒ X ∩ αF ∩ Sx ∩ αM = ∅ ⇐⇒ X ∩ αF ∩ αM ⊆ Sx.

Properties V1, V3, and V4(a) can thus be rewritten as

Sx ⊇ prefixes(Sx,M∗) ∩ αF ∩ αM∗ for all M∗ ∈ {M,Mx,Mv},

Sx ⊇ prefixes(Dx,Mx) ∩ αF ∩ αMx.
(3.1)

Function prefixes is increasing with respect to its first argument, so the right-hand side

of each of these inequalities is an increasing function of Sx. As shown below, this allows

us to iteratively compute the smallest set Sx that satisfies (3.1). Having computed Sx, it

is then sufficient to check Property V4(b):

ε /∈ prefixes(Sx,Mv). (3.2)
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If it holds, then we have found a state S = 〈x : Sx〉 ∪ 〈⊤ : S⊤〉 for which Permanent Va-

lidity does not hold. If not, then the above statement will be false for all supersets of Sx

because prefixes is increasing with respect to its first argument. As a result, for a given

(F,M,Mx, Dx,Mv), there is no state S violating Permanent Validity. The complete Per-

manent Validity testing algorithm is shown in Figure 3.2.

Computing Sx as the least fixed point

Inequalities (3.1) can be rewritten as Sx ⊇ φ(Sx), where

φ(X) = prefixes(Dx,Mx) ∩ αF ∩ αMx ∪
⋃

M∗∈{M,Mx,Mv}

prefixes(X,M∗) ∩ αF ∩ αM∗

is an increasing function of X. This allows us to use the iterative fixpoint algorithm by

Tarski [115] to find the smallest X satisfying X ⊇ φ(X), that is, the smallest Sx satisfying

inequalities (3.1).

Tarski’s method constructs an increasing sequence X0 ⊆ X1 ⊆ · · · defined as X0 = ∅

and Xi+1 = φ(Xi). The first Xi = Xi+1 = φ(Xi) encountered is the least fixed point

of φ. In the sequence X0 ⊂ · · · ⊂ Xi, each set has at least one element more than its

predecessor, so the number i of iterations does not exceed the maximum size of Xi. In

our case, the number of iterations does not exceed the number of sequences e1e2 . . . ei.

Assuming i ≤ k, this number is 1+· · ·+nk, not 21+···+nk

as in the direct search for state S.

Example 1

Consider a four-acceptor system, with at most two faulty acceptors, one of which is

malicious. Consider an OTC algorithm that decides in one communication step if all

correct acceptors propose the same value:

D =

{

{a1, a2}, {a1, a3}, {a1, a4}

{a2, a3}, {a2, a4}, {a3, a4}

}

.

We will use the algorithm in Figure 3.2 to find a state S that violates Permanent

Validity. Consider the following parameters:

M = ∅, F = {a1, a2}, Mx = {a4}, Mv = {a3}, Dx = {a3, a4} ∈ D.

Since we are only interested in one-step decision, we can limit our attention to events

〈x : α〉 with the sequence α containing at most one acceptor, which results in αF =

{a3, a4}.



96 CHAPTER 3. AUTOMATIC DISCOVERY OF OTC PROTOCOLS

To find the state S = 〈x : Sx〉∪〈⊤ : S⊤〉 that violates Permanent Validity, we will first

find Sx using inequalities (3.1):

Sx ⊇ prefixes(Dx,Mx) ∩ αF ∩ αMx = {ε, a3, a4} ∩ αF ∩ αMx = {a3},

Sx ⊇ prefixes(Sx,M) ∩ αF ∩ αM = {ε, a3} ∩ αF ∩ αM = {a3},

Sx ⊇ prefixes(Sx,Mx) ∩ αF ∩ αMx = {ε, a3} ∩ αF ∩ αMx = {a3},

Sx ⊇ prefixes(Sx,Mv) ∩ αF ∩ αMv = {a3} ∩ αF ∩ αMv = ∅.

This means that {a3} is the smallest Sx set satisfying the above inequalities. This

leads to S⊤ = αF \ Sx = {a4}, which results in S = {〈x : a3〉, 〈⊤ : a4〉}. Formula (3.2)

ε /∈ prefixes(Sx,Mv) = {a3},

proves that S does not satisfy Permanent Validity.

Let us now present the above example in natural language. Consider a run with

faulty acceptors a1 and a2, in which only a3 proposes anything, say x. Assume that all

correct acceptors have executed stop, and consider a learner in a complete state S =

{〈x : a3〉, 〈⊤ : a4〉}. The learner does not know which acceptors are faulty. It is possible

that acceptors a1 and a2 are correct but slow and their messages have not reached the

learner yet. In this case, if a3 lies about proposing x, then no honest acceptor proposed x,

so validS(x) must be false. On the other hand, if a4 lies about not proposing x, another

learner might be in state Ŝ = {〈x : a3〉, 〈x : a4〉}. Since Ŝ(x) = {a3, a4} ∈ D, predicate

decisionŜ(x) holds, so predicate possibleS(x) must hold at the original learner. To sum

up, state S is complete, possiblex(S) holds but validx(S) does not, which contradicts

Permanent Validity.

Example 2

Consider a four-acceptor system, with at most one faulty acceptor, possibly malicious.

Consider an OTC algorithm that decides in one communication step if all correct acceptors

propose the same value:

D = {{a1, a2, a3}, {a1, a2, a4}, {a1, a3, a4}, {a2, a3, a4}}.

Consider

M = {a1}, F = {a1}, Mx = {a4}, Mv = {a3}, Dx = {a2, a3, a4} ∈ D.

Other cases of (M , F , Mx, Mv, Dx) can be checked in a similar way, but this case is

probably most interesting. As in Example 1, we do not consider sequences containing
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more than one acceptor.

First, we use inequalities (3.1) to compute Sx:

Sx ⊇ prefixes(Dx,Mx) ∩ αF ∩ αMx = {ε, a2, a3, a4} ∩ αF ∩ αMx = {a2, a3},

Sx ⊇ prefixes(Sx,M) ∩ αF ∩ αM = {ε, a2, a3} ∩ αF ∩ αM = {a2, a3},

Sx ⊇ prefixes(Sx,Mx) ∩ αF ∩ αMx = {ε, a2, a3} ∩ αF ∩ αMx = {a2, a3},

Sx ⊇ prefixes(Sx,Mv) ∩ αF ∩ αMv = {ε, a2, a3} ∩ αF ∩ αMv = {a2, a3},

which gives us Sx = {a2, a3} and S = {〈x : a2〉, 〈x : a3〉, 〈⊤ : a4〉}. Now, we use formula

(3.2) to see that state S does not violate Permanent Validity:

ε ∈ prefixes(Sx,M) = {ε, a2, a3}.

3.4.3 Permanent Agreement

Permanent Agreement requires that for any complete state S, predicate possibleS(x) holds

for at most one x. This section presents an algorithm, similar to that from Section 3.4.2,

that checks whether a given OTC algorithm satisfies this property. We will be looking

for a run in which some learners can arrive at a complete state S for which possibleS(z)

holds for two different z ∈ {x, y}. If such a state can be found, its existence will prove

that the algorithm does not satisfy Permanent Agreement. If such a state does not exist,

then the Permanent Agreement property is met.

Formally, we are looking for sets F ∈ F and M ∈ M, with M ⊆ F , and a state S

such that

A1: State S can occur (is M -consistent):

conflict(infer(S,M)) ⊆ αM.

A2: State S is F -complete:

αF ⊆
⋃

x

S(x).

A3: Predicate possibleS(z) holds for z ∈ {x, y}, where x 6= y:

conflict(infer(S ∪ 〈z : Dz〉,Mz)) ⊆ αMz for some Mz ∈M and Dz ∈ D.

Similarly to Permanent Validity, we will be iterating over all possible values of F , M ,

Mx, Dx, My, Dy. For each (F,M,Mx, Dx,My, Dy), we will try to find a state S that
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satisfies all the above properties. If we succeed for at least one (F,M,Mx, Dx,My, Dy),

then Permanent Agreement is not met. Otherwise, Permanent Agreement holds.

Without loss of generality, we can assume that the state S consists only of events of the

form 〈x : α〉, 〈y : α〉, and 〈⊤ : α〉. This is because all events 〈z : α〉 ∈ S with z /∈ {x, y,⊤}

can be replaced by 〈⊤ : α〉 without invalidating any of the above three properties. For this

reason, we can assume that S = 〈x : Sx〉 ∪ 〈y : Sy〉 ∪ 〈⊤ : S⊤〉, for some pairwise disjoint

sets of sequences Sx, Sy, and S⊤.

Given this assumption the Properties A can be rewritten as

A1: State S is M -consistent:

prefixes(Sx,M) ∩ prefixes(Sy,M) ⊆ αM (a)

prefixes(Sx,M) ∩ S⊤ ⊆ αM

prefixes(Sy,M) ∩ S⊤ ⊆ αM

Since X ⊆ prefixes(X,M) for any set of sequences X, the first inequality implies

prefixes(Sx,M) ∩ Sy ⊆ αM and prefixes(Sy,M) ∩ Sx ⊆ αM . Therefore, we can

rewrite the last two inequalities as:

prefixes(Sx,M) ∩ (Sy ∪ S⊤) ⊆ αM, (b)

prefixes(Sy,M) ∩ (Sx ∪ S⊤) ⊆ αM. (c)

The reason for this transformation will become clear later.

A2: State S is F -complete:

αF ⊆ Sx ∪ Sy ∪ S⊤.

A3: Predicate possibleS(z) holds for z ∈ {x, y}. Defining x̄
def

= y and ȳ
def

= x, and using

the same transformations as in Property A1, we get:

prefixes(Sx,Mz) ∩ prefixes(Sy,Mz) ⊆ αMz (a)

prefixes(Sx,Mz) ∩ (Sy ∪ S⊤) ⊆ αMz (b)

prefixes(Sy,Mz) ∩ (Sx ∪ S⊤) ⊆ αMz (c)

prefixes(Dz,Mz) ∩ prefixes(Sz̄,Mz) ⊆ αMz (d)

prefixes(Dz,Mz) ∩ (Sz̄ ∪ S⊤) ⊆ αMz. (e)

Property A2 is increasing with respect to S⊤; all the other properties are decreasing.

For this reason, we can assume that S⊤ = αF \ (Sx∪Sy). This is the smallest S⊤ allowed

by Property A2, making it automatically satisfied.
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1 function PermanentAgreement(A,F ,M, T )
2 for all Dx ∈ rule(T ) do
3 for all Dy ∈ rule(T ) do
4 for all F ∈ F do
5 for all M,Mx,My ∈M do
6 if M ⊆ F then
7 iteratively compute the least fixed point 〈Sx, Sy〉 of (3.3)
8 if computed Sx and Sy satisfy (3.4) then
9 return false

10 return true

Figure 3.3: The algorithm for testing Permanent Agreement.

To eliminate S⊤ from the other properties, notice that for any set X

X ∩ (Sz ∪ S⊤) ⊆ αM ⇐⇒ X ∩ αF ∩ Sz̄ ∩ αM = ∅ ⇐⇒ X ∩ αF ∩ αM ⊆ Sz̄.

Thus, Properties A1(bc) and A3(bce) can be rewritten as

Sz ⊇ prefixes(Sz,M∗) ∩ αF ∩ αM∗ for all M∗ ∈ {M,Mx,My},

Sz ⊇ prefixes(Dz,Mz) ∩ αF ∩ αMz.
(3.3)

The right-hand side of each of these inequalities is an increasing function of Sz. As a

result, we can compute the smallest sets Sz that satisfy these inequalities using Tarski’s

least fixed point algorithm [115]. Then, it is sufficient to check Properties A1(a) and

A3(ad) for the computed Sx and Sy, that is, whether

prefixes(Sx,M∗) ∩ prefixes(Sy,M∗) ⊆ αM∗ for all M∗ ∈ {M,Mx,My},

prefixes(Dz,Mz) ∩ prefixes(Sz̄,Mz) ⊆ αMz.
(3.4)

If this is the case, then we have found a state S for which Permanent Agreement does

not hold. If not, then the above statement will be false for all supersets of Sx and Sy

because function prefixes is increasing. As a result, for a given (F,M,Mx, Dx,My, Dy),

there is no state S violating Permanent Agreement, so this property holds. The complete

Permanent Agreement testing algorithm is shown in Figure 3.3.

Example 1

Consider a system consisting of five acceptors, out of which at most one is (maliciously)

faulty. Consider an OTC protocol that decides in one communication step if all correct
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acceptors proposed the same value.

D =

{

{a1, a2, a3, a4}, {a1, a2, a3, a5}, {a1, a2, a4, a5}

{a1, a3, a4, a5}, {a2, a3, a4, a5}

}

.

We will use the algorithm in Figure 3.3 to find a state S that violates Permanent

Agreement. Consider

M = F = {a3}, Mx = {a4}, My = {a2}, Dx = {a1, a2, a3, a4}, Dy = {a2, a3, a4, a5}.

Since we are only interested in one-step decision, we can limit our attention to events

〈x : α〉 with the sequence α containing at most one acceptor, which results in αF =

{a1, a2, a4, a5}.

To find the state S = 〈x : Sx〉∪〈y : Sy〉∪〈⊤ : S⊤〉, we will first use (3.3) to compute Sx:

Sx ⊇ prefixes(Dx,Mx) ∩ αF ∩ αMx = {ε, a1, a2, a3, a4} ∩ αF ∩ αMx = {a1, a2},

Sx ⊇ prefixes(Sx,M) ∩ αF ∩ αM = {ε, a1, a2} ∩ αF ∩ αM = {a1, a2},

Sx ⊇ prefixes(Sx,Mx) ∩ αF ∩ αMx = {ε, a1, a2} ∩ αF ∩ αMx = {a1, a2},

Sx ⊇ prefixes(Sx,My) ∩ αF ∩ αMy = {ε, a1, a2} ∩ αF ∩ αMy = {a1},

which means that Sx = {a1, a2}. Similarly, we can show that Sy = {a4, a5} and S⊤ =

αF \
(

Sx ∪ Sy

)

= ∅, which leads to S = {〈x : a1〉, 〈x : a2〉, 〈y : a4〉, 〈y : a5〉}. To test

whether S violates Permanent Agreement, we test inequalities (3.4):

prefixes(Sx,M) ∩ prefixes(Sy,M) = {ε, a1, a2} ∩ {ε, a4, a5} = {ε} ⊆ αM,

prefixes(Sx,Mx) ∩ prefixes(Sy,Mx) = {ε, a1, a2} ∩ {ε, a4, a5} = {ε} ⊆ αMx,

prefixes(Sx,My) ∩ prefixes(Sy,My) = {ε, a1, a2} ∩ {ε, a4, a5} = {ε} ⊆ αMy,

prefixes(Dx,Mx) ∩ prefixes(Sy,Mx) = {ε, a1, a2, a3, a4} ∩ {ε, a4, a5} = {ε, a4} ⊆ αMx,

prefixes(Dy,My) ∩ prefixes(Sx,My) = {ε, a2, a3, a4, a5} ∩ {ε, a1, a2} = {ε, a2} ⊆ αMy.

All these inequalities hold, therefore, S violates Permanent Agreement.

Let us now present the above example in natural language. Consider a run in which

acceptors a1, a2 proposed x, acceptors a4, a5 proposed y, and the faulty acceptor a3 does

not propose anything. Assume all correct acceptors executed stop, and consider a learner

in a complete state S = {〈x : a1〉, 〈x : a2〉, 〈y : a4〉, 〈y : a5〉}. The learner does not know

which acceptor is faulty. If acceptor a3 is correct but slow and proposed x, and a4 is

malicious, then some other learner might see all four acceptors a1, a2, a3, a4 report x, and

decide on x. Therefore, possibleS(x) must hold at the original learner. Similarly, if accep-

tor a3 was correct but slow and proposed y, and a2 malicious, then some learner might
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see all four acceptors a2, a3, a4, a5, report y, and decide on y. Therefore, possibleS(y)

must hold as well. This violates Permanent agreement because both possibleS(x) and

possibleS(y) hold in a complete state S.

Example 2

As in the previous example, consider a system consisting of five acceptors, out of which at

most one is (maliciously) faulty. This time, we will investigate Permanent Agreement of

an OTC algorithm that decides in two steps on the value proposed by a3, provided that

a3 is correct. We have,

D =

{

{a3, a3a1, a3a2, a3a3, a3a4}, {a3, a3a1, a3a2, a3a3, a3a5}

{a3, a3a1, a3a3, a3a4, a3a5}, {a3, a3a2, a3a3, a3a4, a3a5}

}

.

This algorithm obviously violates any form of Validity because a3 can lie about its

proposal. However, we will see that this algorithm does not violate Permanent Agreement.

We will show this only for

M = F = {a3}, Mx = {a4}, My = {a2},

Dx = {a3, a3a1, a3a2, a3a3, a3a4}, Dy = {a3, a3a2, a3a3, a3a4, a3a5}.

The other cases of (M , F , Mx, My, Dx, Dy) can be checked in a similar way. Since we are

only interested in two-step decision, we do not consider sequences containing more than

two acceptors.

First, we use inequalities (3.3) to compute Sx:

Sx ⊇ prefixes(Dx,Mx) ∩ αF ∩ αMx = {ε, a3, a3a1, . . . , a3a4} ∩ αF ∩ αMx = {a3a1, a3a2},

Sx ⊇ prefixes(Sx,M) ∩ αF ∩ αM = {a3, a3a1, a3a2} ∩ αF ∩ αM = {a3a1, a3a2},

Sx ⊇ prefixes(Sx,Mx) ∩ αF ∩ αMx = {ε, a3, a3a1, a3a2} ∩ αF ∩ αMx = {a3a1, a3a2},

Sx ⊇ prefixes(Sx,My) ∩ αF ∩ αMy = {ε, a3, a3a1, a3a2} ∩ αF ∩ αMy = {a3a1},

which means that Sx = {a3a1, a3a2}. Similarly, Sy = {a3a4, a3a5}. Now, we use inequali-

ties (3.4) to test whether Sx and Sy violate Permanent Agreement.

prefixes(Sx,M) ∩ prefixes(Sy,M) = {ε, a3, a3a1, a3a2} ∩ {ε, a3, a3a4, a3a5} = {ε, a3} ⊆ αM,

prefixes(Sx,Mx) ∩ prefixes(Sy,Mx) = {ε, a3, a3a1, a3a2} ∩ {ε, a3, a3a4, a3a5} = {ε, a3} * αMx.

The second inequality does not hold, so we do not have to check the others; Permanent

Agreement is not violated in this state.
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Example 3

Consider a system of three acceptors, out of which at most one is (non-maliciously) faulty.

Consider an OTC algorithm that decides (i) in one step if all acceptors are correct and

propose the same value, and (ii) in two steps if a1 is correct. We have

D = {{a1, a2, a3}, {a1, a1a1, a1a2}, {a1, a1a1, a1a3}}.

Consider

F = {a1}, M = Mx = My = ∅, Dx = {a1, a2, a3}, Dy = {a1, a1a1, a1a2}.

The other cases of (M , F , Mx, My, Dx, Dy) can be checked in a similar way. Since we are

only interested in deciding in at most two steps, we do not consider sequences containing

more than two acceptors.

First, we use inequalities (3.3) to compute Sx:

Sx ⊇ prefixes(Dx,Mx) ∩ αF ∩ αMx = {ε, a1, a2, a3} ∩ αF ∩ αMx = {a2, a3},

Sy ⊇ prefixes(Dy,My) ∩ αF ∩ αMy = {ε, a1, a1a1, a1a2} ∩ αF ∩ αMx = {a1a2}.

Since no acceptors are malicious, it can be easily checked that Sx = {a2, a3} and Sy =

{a1a2} satisfy all inequalities (3.3). Now, we use inequalities (3.4) to test whether Sx and

Sy violate Permanent Agreement.

prefixes(Sx,M∗) ∩ prefixes(Sy,M∗) = {ε, a2, a3} ∩ {ε, a1, a1a2} = {ε} ⊆ αM∗,

prefixes(Dx,Mx) ∩ prefixes(Sy,Mx) = {ε, a1, a2, a3} ∩ {ε, a1, a1a2} = {ε, a1} * αMx,

prefixes(Dy,My) ∩ prefixes(Sx,My) = {ε, a1, a1a1, a1a2} ∩ {ε, a2, a3} = {ε} ⊆ αMy.

The second inequality does not hold, so Sx and Sy do not violate Permanent Agreement.

3.5 Discovering new OTC algorithms

Section 3.4 presented algorithms that test whether an OTC algorithm satisfies Permanent

Validity and Permanent Agreement. An OTC algorithm is specified by the set T of

termination rules, whereas the system is specified by the set A of acceptors, the family

F of possible sets of faulty acceptors, and the family M of possible sets of malicious

acceptors.
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1 function OTCSearch(A,F ,M, T ) is
2 if PermanentValidity(A,F ,M, T ) and PermanentAgreement(A,F ,M, T ) then
3 print T
4 for all possible termination rules t do
5 if t /∈ T do
6 OTCSearch(A,F ,M, T ∪ {t})

Figure 3.4: The basic version of the algorithm for searching the space of OTC protocols.

3.5.1 Basic search

In this section, we will show how to automatically discover new OTC algorithms. We

start with an empty set T of termination rules and keep recursively adding new rules as

long as Permanent Validity and Permanent Agreement hold.

This method is implemented by the function OTCSearch in Figure 3.4. First, we

test whether the OTC algorithm T is correct in a system specified by A, F , M. If not,

then the function OTCSearch returns immediately; adding new rules to an incorrect OTC

algorithm T cannot produce a correct one. If the algorithm T is correct, then the set T

is printed out. Then, we iterate over all possible termination rules t. For each such rule,

we invoke OTCSearch recursively with the rule t added to T .

The algorithm shown in Figure 3.4 searches for multi-value OTC algorithms, in which

different acceptors can propose different values. To look for single-value OTC algorithms,

the check for Permanent Agreement should be omitted.

3.5.2 Search optimization

A number of techniques can be applied to improve the speed of the search algorithm in

Figure 3.4. In this section, we will briefly discuss some of them.

Rule order

The order of the termination rules in T does not matter. However, the algorithm in

Figure 3.4 adds new rules to T in a specific order, and as a result the same set of rules

is analyzed many times. For example, set {t1, t2} can be obtained in two ways: either by

first adding t1, and then t2, or vice versa. Similarly, set {t1, t2, t3} can be obtained in six

different ways. In general, {t1, . . . , tn} will be analyzed n! times, slowing the algorithm

down exponentially.

To ensure that each set T is generated and analysed only once, consider any total

order “<” on termination rules. We will modify the algorithm in Figure 3.4 and require

new elements to be added to T in an order consistent with “<”. If we assume, in our

example, that t1 < t2 < t3, then {t1, t2, t3} can be obtained only by adding t1, t2, t3 in this
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1 function OTCSearch(A,F ,M, T ) is
2 if PermanentValidity(A,F ,M, T ) and PermanentAgreement(A,F ,M, T ) then
3 print T
4 for all possible termination rules t do
5 if t is bigger (“>”) than all elements of T and
6 t does not dominate any element of T and
7 t is not dominated by any element of T then
8 OTCSearch(A,F ,M, T ∪ {t})

Figure 3.5: The optimized version of the algorithm for searching the space of OTC pro-
tocols.

order. The sequence t1, t3, t2 will not work; after T = {t1, t3} has been created, adding t2

is impossible because t2 < t3 ∈ T .

Rule domination

Some termination rules are stronger than others. For example, consider a three-acceptor

system with the following two termination rules:

t1 = 〈{a1, a2}, {a1, a2}, 1〉 and t2 = 〈{a1, a2, a3}, {a1, a2, a3}, 2〉.

Rule t1 demands a decision in one communication step if acceptors a1 and a2 are correct

and proposed the same value. Rule t2 requires a decision in two communication steps

if all acceptors are correct and proposed the same value. It is obvious that every OTC

algorithm satisfying rule t1 also satisfies t2; we say that rule t1 dominates t2. Formally,

t1 dominates t2
def

⇐⇒ rule(t1) ⊆ rule(t2),

that is, the domination relation on termination rules reflects the subset relation on corre-

sponding decision rules (Section 3.3.4). Equivalently,

〈V1, C1, k1〉 dominates 〈V2, C2, k2〉 ⇐⇒ V1 ⊆ V2 ∧ C1 ⊆ C2 ∧ k1 ≤ k2.

Since, in our example, rule t1 dominates t2, OTC algorithms corresponding to the sets

T1 = {t1} and T12 = {t1, t2} are the same, so analyzing both of them is a waste of time.

To avoid this, we will refrain from analyzing sets T that contain a pair of rules such that

one dominates the other.

Implementation

Figure 3.5 shows the version of OTCSearch that employs the optimizations described

above. It differs from the basic version in the if statement in lines 5–7. In Figure 3.4, this
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if statement tests merely whether the new rule t already belongs to T . The if statement

in Figure 3.5 is stricter; it requires t to be bigger than all elements of T , and not to

dominate or be dominated by any of them.

3.5.3 Results

This section presents the results from applying the above algorithms to four-acceptor

systems in which one acceptor can fail. We consider two common settings: the crash-

stop model and the Byzantine model. For both cases, we present the list of correct

OTC implementations computed by OTCSearch implemented in C and verified by an

independent implementation in Python [107]. We do not list all correct OTC algorithms;

we omit those that can be obtained from others by permuting the set of acceptors. Also,

we eliminate algorithms that are clearly inferior to others. In other words, we list only

those algorithms that are not dominated by other correct OTC algorithms. (A set of

rules T is dominated by another set of rules T ′ iff every rule in T is dominated by some

rule in T ′.)

Crash-stop model

Consider a system consisting of four honest acceptors, out of which at most one is faulty:

A = {a1, a2, a3, a4}, F = {∅, {a1}, {a2}, {a3}, {a4}}, M = {∅}.

The one-step multi-value OTC implementation from Section 2.3 guarantees one-step de-

cision if all correct acceptors propose the same value, that is,

T =



























〈{a1, a2, a3}, {a1, a2, a3}, 1〉

〈{a1, a2, a4}, {a1, a2, a4}, 1〉

〈{a1, a3, a4}, {a1, a3, a4}, 1〉

〈{a2, a3, a4}, {a2, a3, a4}, 1〉



























.

OTCSearch(A,F ,M, ∅) produced six correct OTC implementations for these settings.

T1 =




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
























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

























〈{a1, a2, a3}, {a1, a2, a3}, 1〉

〈{a1, a2, a4}, {a1, a2, a4}, 1〉

〈{a1, a3, a4}, {a1, a3, a4}, 1〉

〈{a2, a3, a4}, {a2, a3, a4}, 1〉

〈{a1, a2}, {a1, a2}, 2〉

〈{a1, a4}, {a1, a4}, 2〉

〈{a1, a3}, {a1, a3}, 2〉































































and T2 =


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
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












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
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

























〈{a1, a2, a3}, {a1, a2, a3}, 1〉

〈{a1, a2, a4}, {a1, a2, a4}, 1〉

〈{a1, a3, a4}, {a1, a3, a4}, 1〉

〈{a2, a3, a4}, {a2, a3, a4}, 1〉

〈{a1, a2}, {a1, a2}, 2〉

〈{a1, a3}, {a1, a3}, 2〉

〈{a2, a3}, {a2, a3}, 2〉































































.
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Algorithms T1 and T2 both extend T , and guarantee one-step decision if all correct

acceptors proposed the same value. In addition, T2 decides in two steps if any two of

the first three acceptors are correct and propose the same value. On the other hand, T1

decides in two steps if a1 and one other acceptor are correct and propose the same value.

T3 =



























〈{a1}, {a1, a2}, 2〉

〈{a1}, {a1, a3}, 2〉

〈{a1}, {a1, a4}, 2〉

〈{a1, a2}, {a1, a2}, 1〉



























and T4 =



















































〈{a1}, {a1, a2}, 2〉

〈{a1}, {a1, a3}, 2〉

〈{a1}, {a1, a4}, 2〉

〈{a1, a2, a3}, {a1, a2, a3}, 1〉

〈{a1, a2, a4}, {a1, a2, a4}, 1〉

〈{a1, a3, a4}, {a1, a3, a4}, 1〉



















































,

The first three rules ensure that both algorithms T3 and T4 decide in two communi-

cation steps if a1 is correct, regardless of the proposals. Besides, T3 decides in one step if

a1 and a2 are correct and propose the same value. Algorithm T4 decides in one step if a1

and two other acceptors are correct and propose the same value.

The other two OTC algorithms are:

T5 =















〈{a1, a2}, {a1, a2}, 1〉

〈{a1, a3}, {a1, a3}, 2〉

〈{a2, a3}, {a2, a3}, 2〉















and T6 =



























〈{a1, a2}, {a1, a2}, 1〉

〈{a1, a3}, {a1, a3}, 2〉

〈{a1, a4}, {a1, a4}, 2〉

〈{a2, a3, a4}, {a2, a3, a4}, 2〉



























.

Byzantine model

Consider a system consisting of four acceptors, out of which at most one is maliciously

faulty:

A = {a1, a2, a3, a4}, F =M = {∅, {a1}, {a2}, {a3}, {a4}}.

The multi-step multi-value OTC implementation from Section 2.6 guarantees two-step

decision if all correct acceptors propose the same value. If all acceptors are correct and

propose the same value, the decision is made in one step:

T =







































〈{a1, a2, a3, a4}, {a1, a2, a3, a4}, 1〉

〈{a1, a2, a3}, {a1, a2, a3}, 2〉

〈{a1, a2, a4}, {a1, a2, a4}, 2〉

〈{a1, a3, a4}, {a1, a3, a4}, 2〉

〈{a2, a3, a4}, {a2, a3, a4}, 2〉







































.

Calling OTCSearch(A,F ,M, ∅) produced five correct OTC implementations for these
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settings.

T1 =











































































〈{a1, a2, a3, a4}, {a1, a2, a3, a4}, 1〉

〈{a1, a2, a3}, {a1, a2, a3}, 2〉

〈{a1, a2, a4}, {a1, a2, a4}, 2〉

〈{a1, a3, a4}, {a1, a3, a4}, 2〉

〈{a2, a3, a4}, {a2, a3, a4}, 2〉

〈{a1, a2}, {a1, a2, a3, a4}, 2〉

〈{a1, a3}, {a1, a2, a3, a4}, 2〉

〈{a2, a3}, {a1, a2, a3, a4}, 2〉











































































, T2 =











































































〈{a1, a2, a3, a4}, {a1, a2, a3, a4}, 1〉

〈{a1, a2, a4}, {a1, a2, a4}, 2〉

〈{a1, a3, a4}, {a1, a3, a4}, 2〉

〈{a2, a3, a4}, {a2, a3, a4}, 2〉

〈{a1, a2, a3}, {a1, a2, a3}, 2〉

〈{a1, a2}, {a1, a2, a3, a4}, 2〉

〈{a1, a3}, {a1, a2, a3, a4}, 2〉

〈{a1, a4}, {a1, a2, a3, a4}, 2〉











































































.

Both T1 and T2 extend T ; the first five rules in these algorithm are the same. The last

three rules in T1 and T2 assume that all acceptors are correct. Algorithm T1 guarantees

that if two acceptors from {a1, a2, a3} propose the same value, then the decision is made

in two steps. Algorithm T2 makes a two-step decision provided that a1 and one other

acceptor propose the same value.

The other three OTC algorithms are:































































〈{a1, a2}, {a1, a2, a3}, 2〉

〈{a1, a3}, {a1, a3, a4}, 2〉

〈{a1, a4}, {a1, a2, a4}, 2〉

〈{a1, a2}, {a1, a2, a4}, 3〉

〈{a1, a3}, {a1, a2, a3}, 3〉

〈{a1, a4}, {a1, a3, a4}, 3〉

〈{a2, a3, a4}, {a2, a3, a4}, 2〉































































,











































































〈{a1, a2}, {a1, a2, a3}, 2〉

〈{a1, a2}, {a1, a2, a4}, 2〉

〈{a1, a3}, {a1, a2, a3}, 3〉

〈{a1, a3}, {a1, a3, a4}, 2〉

〈{a1, a4}, {a1, a2, a4}, 3〉

〈{a1, a4}, {a1, a3, a4}, 3〉

〈{a1, a4}, {a1, a2, a3, a4}, 2〉

〈{a2, a3, a4}, {a2, a3, a4}, 2〉











































































,



















































〈{a1, a2}, {a1, a2, a3}, 2〉

〈{a1, a2}, {a1, a2, a4}, 2〉

〈{a1, a3}, {a1, a2, a3}, 3〉

〈{a1, a3}, {a1, a3, a4}, 2〉

〈{a2, a3}, {a1, a2, a3}, 3〉

〈{a2, a3}, {a2, a3, a4}, 2〉



















































.
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3.6 Conclusion and future work

In this chapter, we introduced a method for automatic testing and discovery of OTC

algorithms. Automatic testing means that we can check the correctness of any OTC

algorithm candidate expressible in our framework. A positive result proves that the given

algorithm satisfies all OTC properties from Section 2.2. A negative result shows a state

in which one of the OTC properties is violated. Negative results are useful in two cases.

Firstly, in the algorithm design process, to understand why a given OTC algorithm is

incorrect. Secondly, negative results can often be generalized to impossibility theorems.

Automatic discovery of OTC algorithms allows us to skip the manual algorithm de-

sign process altogether. Instead of using automatic correctness testing to verify individual

OTC algorithms, a user just specifies a set of requirements. The discovery method pre-

sented in this chapter searches the solution space for OTC algorithms that meet the given

criteria. Chapter 4 will show how to use both manually and automatically generated

OTC algorithms to construct efficient solutions for distributed agreement problems such

as Consensus or Atomic Commitment.

Our correctness testing method is built around an execution model based on events

of the form 〈x : e1e2 . . . ek〉, where x is a proposal and e1e2 . . . ek is a list of acceptors. We

have developed a formalism for reasoning about events and sets of events, which we call

states. We used this formalism to define predicates valid(x), possible(x), and decision(x)

that satisfy OTC properties Integrity, Possibility, and Optimistic Termination. These

predicates can then be used to test the other two OTC properties: Permanent Validity and

Permanent Agreement, thereby verifying correctness of a given OTC algorithm candidate.

Finally, generating OTC algorithm candidates and using the above correctness-testing

method allows us to discover new OTC algorithms.

Our method assumes that termination rules apply to all proposed values equally.

From a mathematical standpoint, it is not difficult to waive this assumption and consider

a separate set of termination rules for every value x. This approach is not practical,

however; it results in a huge, and potentially infinite, number of rules. As a compromise,

our C implementation is capable of distinguishing two families of rules: those applying to

all proposals and those applying only to the privileged value x0. The only modification

needed is that the algorithm in Figure 3.3 does not check for Permanent Agreement

violations caused by decision rules Dx and Dy which both belong to the second category.

Another possible extension of our model is to allow acceptors to digitally sign some of

their messages. Again, the modification of our method required in this case is small and

requires only a change in the prefixes function. Without digital signatures, e1e2 . . . ei ∈

prefixes(e1e2 . . . ek,M) iff acceptors ei+1, . . . , ek are all honest. With digital signatures,

e1e2 . . . ei ∈ prefixes(e1e2 . . . ek,M) also if e1e2 . . . ei is signed by ei+1 /∈M .



Chapter 4

Implementing agreement

abstractions

In Chapter 1, we observed that asynchronous Consensus algorithms share the same struc-

ture; they consist of a sequence of rounds, each starting with a coordinator process broad-

casting its proposal to the acceptors. The acceptors then somehow try to make the learners

decide on it; the exact method depends on the Consensus algorithm.

In Chapter 2, we encapsulated the heart of each round into a new abstraction called

Optimistically Terminating Consensus (OTC). We also presented several OTC algorithms,

which can be used to match the latency and acceptor requirements of most known Con-

sensus protocols. Chapter 3 extended this work by developing a method for discovering

new OTC algorithms automatically. This chapter deals with using sequences of OTC

instances to implement agreement abstractions. We will formalize the idea described in

Section 2.2.1 and give latency-optimal implementations of several variants of Consensus

as well as other agreement abstractions.

This chapter is structured in the following way. Section 4.1 will introduce the Coor-

dinated Consensus abstraction. Sections 4.2 and 4.3 will show how to use OTC instances

to implement Coordinated Consensus in the crash-stop model and the Byzantine model,

respectively. In Section 4.4, we will show how to use this abstraction to implement sev-

eral agreement abstractions such as Consensus, Atomic Commitment [48], and Interactive

Consistency [97]. Finally, Section 4.5 compares OTC with other frameworks.

4.1 Coordinated Consensus

Before giving a precise description of an OTC-based Consensus algorithm, we must give

a precise definition of the problem being solved. In this section, we will introduce a

new agreement abstraction called Coordinated Consensus , similar to the definition of

Consensus given by Lamport [76]. The next sections will show how to use Coordinated
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Consensus to implement simple solutions to many common agreement problems such as

Consensus, Interactive Consistency, and Atomic Commitment.

Coordinated Consensus consists of a sequence of rounds. Each round i has its coordi-

nator ci, which issues a proposal and broadcasts it to the acceptors. Acceptors cooperate

in reaching a decision and making it known to the learners.

Formally, Coordinated Consensus is defined in terms of two primitives: propose(x)

and decision(x), available to coordinators and learners, respectively. Each coordinator

ci proposes a value x by invoking propose(x). We say that a learner decided on x if the

predicate decision(x) holds at that learner.

Coordinated Consensus is defined by the following properties:

Validity. If all coordinators are honest and decision(x) holds at some learner,

then some coordinator proposed x.

Agreement. There is at most one x for which decision(x) holds at some

learner.

Termination. If infinitely many ci are correct and eventually all of them

propose, then all correct learners will eventually decide.

While the Coordinated Consensus is similar to the Consensus problem as defined in

[36, 76], there are minor differences. Our Validity condition assumes that all coordinators

are honest. Lamport [76] does not make this assumption and requires that any decision

must have always been proposed by some coordinator. Dutta et al. [36] observe that

such a condition is impossible to enforce, because a malicious coordinator can propose

one value and then behave as if it had proposed another. To avoid this problem, they

suggest the following condition: “if a learner l learns a value v in run r, then there is a run

r′ (possibly different from r) such that some coordinator proposes v in r′, and l cannot

distinguish r from r′”. This definition is not satisfactory either because it is satisfied

by a trivial algorithm in which processes send no messages and all learners decide on a

pre-agreed value, regardless of the actual proposals.

Both of the above problems are avoided by assuming honest coordinators in the Va-

lidity condition. Note that this condition limits possible decisions not only in runs with

honest coordinators, but also in runs which are indistinguishable from these. For example,

consider a good run r with all coordinators correct and c1 proposing 1. In this run, all

learners will decide on 1 in the first round, without starting any of the later rounds. Now

consider a similar run r′, with a correct c1 proposing 1 and c2 being malicious. Formally,

the maliciousness of c2 allows all learners to decide on 2 instead of 1. However, by the

time learners decide in run r, they cannot distinguish r from r′. As a result, they will

decide on 1 in run r′ as well.
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The Agreement condition is common to all agreement problems, and requires that no

two learners decide on different values, even if all coordinators are malicious. Termination

requires all correct learners to decide if there are infinitely many correct coordinators.

The Termination condition implicitly requires all acceptors to actually start partici-

pating in the algorithm. This can happen either explicitly, or implicitly when the acceptor

executes an action such as propose(x) or receives a message related to the algorithm. We

say that the algorithm has started if at least one correct acceptor has started to participate

in it.

The eventual synchrony model uses timeouts to determine when to stop rounds. The

explicit notion of the “start” of the algorithm is especially important in this model because

it allows us to start the first round timer at the right moment. In both models, it “shields”

the algorithm from wrong suspicions and delayed messages that happened before the

algorithm started.

Recall that a run is timely if no correct process is ever suspected (failure detectors)

or the maximum message transmission time d is sufficiently small (eventual synchrony).

In the eventual synchrony model, we additionally demand that all processes required to

propose by the Termination condition do so within one communication step from the start

of the algorithm.

4.2 Coordinated Consensus in the crash-stop model

In this section, we will show how to solve the Coordinated Consensus, assuming that

all the processes are honest. This method will be generalized in Section 4.3, where we

will present a Coordinated Consensus algorithm that tolerates malicious coordinators and

acceptors.

4.2.1 Overview

Our Coordinated Consensus algorithm progresses in a sequence of rounds, numbered 1,

2, etc. Initially, the first round tries to decide on some value. If the first round does not

seem to make progress, it is stopped, and the second round takes over. If the decision has

not been made by the second round, it is stopped as well, and the third rounds starts,

etc.

As shown in Figure 4.1, each round i has a coordinator ci and the corresponding OTC

instance OTCi. Coordinator ci broadcasts its proposal to the acceptors, who propose

it to the instance OTCi. Since coordinators are honest, all acceptors propose the same

value to a given OTCi, which enables us to use single-value OTC implementations. A

decision made by any of these OTC instances becomes the final decision of the Consensus

algorithm.
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a1

a2

a3

a4

c1

c2

c3

c4

c5

l1

OTC1

c1

OTC2

c2

OTC3

c3

OTC4

c4

decide

OTC5

c5

Figure 4.1: Coordinated Consensus.

This method satisfies Validity. If a learner decides on x in some OTCi, then an honest

acceptor proposed x to OTCi. The acceptor received x from the coordinator ci, so if ci is

honest, it must have proposed x.

The Agreement property poses a problem, however. Although individual OTC in-

stances satisfy Agreement, the decisions made by different instances might not be the

same. For this reason, in each round i, the acceptors always check for possible decisions

made in previous rounds. If no decision was made in any of the previous rounds, they

take the proposal xi issued by the round coordinator ci, and propose it to OTCi (this is

always the case for the first round). Otherwise, if one of the previous rounds could have

decided on some value, the acceptors propose this value to OTCi instead. This method

guarantees that decisions made by different rounds will be the same, however, it must be

implemented carefully to ensure that Validity still holds.

For Termination, we assume the failure detector model. Acceptors stop a round when

they suspect the coordinator. Assuming infinitely many correct coordinators, there will

eventually be a round with a correct coordinator not suspected by any of the correct

acceptors. In that round, all correct learners will decide.

Traditional failure detectors can only monitor acceptors, not other processes, which

forces us to assume that all coordinators are acceptors. If this assumption is not appro-

priate, one can extend failure detectors to cover processes other than acceptors, or use

the eventual synchrony model instead (Section 4.3).
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1 when coordinator ci executed propose(xi) do
2 for all j < i do
3 wait until the state Sj of ci as a learner in OTCj is semi-complete
4 broadcast xi and 〈Sj〉j<i

to all acceptors

5 when an acceptor receives xi and 〈Sj〉j<i
from ci do

6 x← choose(〈Sj〉j<i
, xi) { select the proposal }

7 OTCi.propose(x)

8 when a learner has OTCi.decision(x) do { alternative 1 }
9 decide(x)

10 when an acceptor stopped all rounds j < i and suspects ci, or
11 received message “stop round j” from some acceptor do
12 OTCi.stop
13 broadcast “stop round i”

14 when a learner has OTCi.decision(x) or received “decide on x” do { alternative 2 }
15 decide(x)
16 if the learner is also an acceptor then
17 broadcast “decide on x”
18 wait until received “decide on x” from more than f acceptors
19 halt

Figure 4.2: Coordinated Consensus algorithm for the crash-stop model.

4.2.2 Details

Figure 4.2 shows the details of this algorithm. Each coordinator ci is a learner in all

OTC instances OTCj with j < i, and a proposer in OTCi. Let us denote by Sj the

state of ci as a learner in OTCj. When the coordinator ci issues its proposal xi, it waits

until all states Sj are semi-complete, that is, validSj
(x) =⇒ possibleSj

(x) for all x, and

possibleSj
(x) holds for at most one x. Permanent Validity and Permanent Agreement

properties of OTC instances ensure that this will eventually happen, provided that all

rounds j < i have been stopped. Then, coordinator ci broadcasts its proposal xi and the

collection of states 〈Sj〉j<i
to the acceptors.

When an acceptor receives this information, it first tries to find out whether any of the

previous rounds might have decided. This reasoning is done by function choose, which

will be presented in Section 4.2.3. It takes 〈Sj〉j<i
and xi as arguments and returns either

the value of a possible decision made by some previous round, or xi if no such decision was

made. The acceptor proposes this returned value x to OTCi. All acceptors receive the

same 〈Sj〉j<i
and xi, and function choose is deterministic, therefore all acceptors propose

the same x to OTCi. If no correct acceptor ever stops round i, and OTCi satisfies Opti-

mistic Termination (f, •), then all correct learners will eventually decide. This decision

becomes the final decision of the Coordinated Consensus algorithm in lines 8–9. Here,



114 CHAPTER 4. IMPLEMENTING AGREEMENT ABSTRACTIONS

action decide(x) makes the predicate decision(x) true; formally, decision(x) is defined as

“decide(x) has been called”, where decide(x) is an empty action without other side-effects.

Agreement and Validity

As we will see in Section 4.2.3, the value x = choose(〈Sj〉j<i
, xi) has two properties. First,

if all coordinators are honest, then x has been proposed by one of them, which implies

Validity. Second, no decision other than x was made in rounds j < i, therefore different

rounds cannot make different decisions, which implies Agreement.

Termination

Rounds with faulty coordinators may not make progress, so they must eventually be

stopped so that other coordinators can take over and ensure Termination. To detect such

rounds, we use the ♦S failure detector. Recall, from Section 1.3.2, that ♦S is a crash

detector with the following properties:

Strong Completeness. Eventually every faulty acceptor is permanently sus-

pected by every correct acceptor.

Eventual Weak Accuracy. Eventually some correct acceptor will never be

suspected by any correct acceptor.

Chandra et al. [17] showed that ♦S is the weakest failure detector that makes Consensus

solvable in asynchronous systems.

To ensure Termination, we make two additional assumptions. Firstly, we assume that

every acceptor coordinates infinitely many rounds; for example, in the rotating coordinator

method, acceptor ai coordinates rounds i, i + n, i + 2n, etc. Secondly, we assume that all

the OTC instances satisfy Optimistic Termination (f, •). As shown above, this implies

that if ci is correct and no correct acceptor ever stops round i, then all correct learners

will eventually decide.

In the algorithm shown in Figure 4.2, an acceptor stops round i, stopped all previous

rounds and suspects the coordinator (lines 10–13). In addition, it informs other acceptors

by broadcasting a message “stop round i”. Every acceptor receiving this message stops

round i as well. Therefore, if one correct acceptor stops round i, then all correct acceptors

will eventually do so. In other words, a round is stopped by either no or all correct

acceptors.

The first step to show Termination is to prove that if it does not hold, then all correct

acceptors stop all rounds. To obtain a contradiction, assume this is not true, and let i be

the first round which is not stopped by all correct acceptors. The choice of i means that

rounds j < i have been stopped by all correct acceptors. Also, the all-or-none property
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discussed above, implies that no correct acceptor ever stops round i. If the coordinator ci

is correct, then – as we explained above – the Optimistic Termination (f, •) of OTCi

implies that all correct learners will eventually decide (Termination). On the other hand,

if ci is faulty, then it will eventually become suspected by all correct acceptors (Strong

Completeness of ♦S), who will all execute OTCi.stop. This in turn contradicts the choice

of i. Therefore, we have just proved that if Termination does not hold, then all rounds

are stopped.

On the other hand, Eventual Weak Accuracy of ♦S ensures that at least one correct

acceptor a will eventually never be suspected. As all other acceptors, a coordinates

infinitely many rounds, so it will eventually coordinate a round in which it will not

be suspected, and so that round will never be stopped. The result from the previous

paragraph implies Termination.

Halting

So far, we have been assuming that processes never stop executing their code. Halting

the algorithm immediately after deciding saves resources but is not always safe. As an

example, consider a scenario where the coordinator c1 and some acceptors are faulty

in such a way that only one acceptor decides. If this acceptor halts immediately after

deciding, the number of correct acceptors participating in later rounds might not be

sufficient to guarantee Termination.

To implement safe halting, we replace lines 8–9 with lines 14–19. Now, acceptors

inform other learners about their decisions by broadcasting “decide on x”. When a learner

receives such a message, it decides on x immediately but waits with halting until it has

received more than f of these messages. This ensures that at least one of them comes from

a correct acceptor, so it will eventually reach all correct learners. This wait instruction

can be omitted if the learner does not play any other role in the algorithm, that is, it is

neither an acceptor nor a coordinator.

Latency

The Coordinated Consensus algorithm shown in Figure 4.2 satisfies

Latency. If the run is timely, coordinator c1 is correct, at most q acceptors

are faulty, and OTC1 satisfies Optimistic Termination (q, k), then all

correct learners will decide in k + 1 communication steps.

Recall that, in the failure detector model, a run is timely if no correct acceptors are

ever suspected. Therefore, given the above assumptions, coordinator c1 is never suspected,

so no correct acceptor ever executes OTC1.stop. Coordinator c1 is correct, so all correct

acceptors receive its proposal x in one communication step, and propose it to OTC1. Now,
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since no correct acceptor ever executes OTC1.stop and at most q acceptors are faulty,

Optimistic Termination (q, k) implies the assertion. The number of communication steps

necessary to reach a decision is k + 1 because one step has been used for c1 to broadcast

its proposal to the acceptors.

For example, the one-step single-value OTC from Section 2.3 with q = f satisfies

Optimistic Termination (f, 1), which leads to

Latency. If the run is timely and coordinator c1 correct, then all correct

learners will decide in two steps.

This matches the latency of several known Consensus algorithms [63, 73, 112], and cannot

be improved [66]. The condition n > 2f , required by the OTC, is optimal as well [16].

4.2.3 Function choose

In the algorithm shown in Figure 4.2, acceptors choose a proposal for OTCi based on

two pieces of information: (i) the proposal xi issued by the coordinator ci and (ii) the

collection of states 〈Sj〉j<i
, where Sj is a semi-complete learner state in OTCj. This

decision is made using function choose, which takes two parameters: the collection of

semi-complete states 〈Sj〉j<i
, and the coordinator’s proposal xi. It returns a value x with

two properties: (i) an honest acceptor received x as a proposal from some coordinator,

and (ii) no decision other than x has been made in any round j < i. If some round j < i

might have decided, then choose returns the value of this decision; otherwise it returns xi.

Two rounds

For starters, consider the case i = 2. In this case, the collection 〈Sj〉j<i
consists of one

semi-complete state S1. In other words, (i) possibleS1
(x) holds for at most one x, and

(ii) possibleS1
(x) =⇒ validS1

(x) for all x. The first property gives us two cases:

1. Predicate possibleS1
(x) does not hold for any x. This means that no decision was

made in OTC1, and function choose can return x2.

2. Predicate possibleS1
(x) holds for exactly one x. Property (ii) implies validS1

(x),

therefore x has been proposed by an honest acceptor. This acceptor must have

received x from c1, so function choose can return x.

More rounds

A similar method can be applied by the acceptors in the later rounds, however, this

generalization is not trivial. Consider the sixth round as an example. Assume that

predicates possibleSj
(x) and validSj

(x) with semi-complete states Sj hold for the following

values of x:
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1 function choose(〈Sj〉j<i
, xi)

2 if ¬possibleSj
(x) for all x and all j < i then

3 return xi

4 else
5 let j < i be the largest round number for which possibleSj

(x) holds for some x
6 return the x for which possibleSj

(x) holds

Figure 4.3: Function choose.

OTC1 OTC2 OTC3 OTC4 OTC5

possibleSj
(x) ∅ {2} ∅ {4} ∅

validSj
(x) ∅ {2} {3} {3, 4} {4}

No decisions have been made in OTC1, OTC3, and OTC5. However, some learners in

OTC2 might have decided on 2, and some in OTC2 might have decided on 4. In order to

avoid conflicts with previous decisions, function choose should return a value equal to 2

and 4 at the same time. This is not possible.

Fortunately, we can prove that no learners decided on 2 in OTC2. If they had, then

all honest acceptors in round 4 would have been forced to propose 2. However, since

validS4
(4) holds, we know that some honest acceptor proposed 4. Therefore, 2 could not

have been a decision in OTC2 and the coordinator of round 6 can safely propose 4. Note

that the truth of validS4
(4) is forced by the truth of possibleS4

(4) and semi-completeness

of S4.

There are several reasons why one might doubt that values of predicates possible(x)

and valid(x) in the above table can occur in an actual run. First, possibleS2
(2) holds

although we have just established that round 2 could not have made any decision. Note,

however that we concluded this from the information from S2 and S4; the state of S2

alone does not provide enough information to exclude 2 as a possible decision. Second,

some acceptor in round 3, who did not have access to OTC4, proposed 3, which differs

from the possible decision 2 from OTC2. The answer is that predicates possible and valid

can change from learner to learner. Since OTC2 made no decision, it is possible that at

that particular learner, possibleS2
(x) and validS2

(x) held only for x = 3.

General solution

Figure 4.3 shows an implementation of choose, which uses a simple generalization of the

observation from the previous section. One of two cases holds:

1. Predicate possibleSj
(x) is false for all x and all j < i. This means that no decision

could have been made by any previous OTCj, so xi is returned.
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1 when coordinator ci executes propose(xi) do
2 for all j < i do
3 wait until the state Sj of ci as a secure learner in OTCj is semi-complete
4 broadcast xi and 〈Sj〉j<i

to all acceptors

5 when an acceptor receives xi and 〈Sj〉j<i
from ci for the first time do

6 if all signatures in 〈Sj〉j<i
are correct and all states Sj are semi-complete then

7 x← choose(〈Sj〉j<i
, xi) { select the proposal }

8 OTCi.propose(x)

9 when for each j < i, an acceptor received
10 “stop round j” from more than m + f acceptors do
11 start round j timer

12 when acceptor has not decided in OTCi and the round i timeout expired, or
13 received message “stop round i” from more than m acceptors do
14 OTCi.stop
15 broadcast “stop round i”

16 when a learner has OTCi.decision(x) or
17 received “decide on x” from more than m acceptors do
18 decide(x)
19 if the learner is also an acceptor then
20 broadcast “decide on x”
21 wait until received “decide on x” from more than m + f acceptors
22 halt

Figure 4.4: Coordinated Consensus algorithm for the Byzantine model.

2. There is the largest j < i for which possibleSj
(x) is true for some x. This unique x

is returned.

Lemma B.1.2 proves that this definition of choose satisfies the required properties.

4.3 Coordinated Consensus in malicious settings

In this section, we will modify the Consensus algorithm from Figure 4.2 to make it resistant

to malicious processes. In order to achieve this, we have to solve two groups of problems.

Firstly, malicious coordinators can jeopardize the safety of the algorithm. They can

broadcast false states 〈Sj〉j<i
to the acceptors. Not only that, they can send different

states 〈Sj〉j<i
and proposals xi to different acceptors. The second group of problems

deals with malicious acceptors. The safety of the algorithm is not threatened in this

case; the previous chapters showed how to construct OTC instances resistant to malicious

acceptors. However, the part of code from Figure 4.2 responsible for stopping rounds and
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halting must be slightly changed, otherwise the Termination property might not hold.

The following two sections deal with these issues.

4.3.1 Malicious coordinators

The most important problem with malicious coordinators is that they can broadcast false

collections of states 〈Sj〉j<i
to the acceptors. This might lead to acceptors proposing

values different from previous decisions, thereby leading to violation of Agreement.

For example, consider a scenario in which the first round coordinator proposes 1,

and only one learner reaches a decision. Assume that no acceptor decides in round one.

The first round is stopped and then the coordinator of the second round broadcasts its

proposal 2 along with a falsified state S1 that indicates that no decision was taken in

the first round. As a result, all acceptors will propose 2, which will eventually become a

decision. This violates Agreement because a learner in the first round decided on 1.

We will show how to prevent the coordinator ci from falsifying states 〈Sj〉j<i
using

digital signatures. For a moment, assume that acceptors digitally sign all messages.

Normal acceptors and learners do not check these signatures; they are checked only by

coordinators. In the algorithm shown in Figure 4.2, a coordinator ci is a learner in all

instances OTCj with j < i. In the algorithm shown in Figure 4.4, ci is a secure learner in

these instances. Secure learners differ from normal ones in that they discard all messages

that do not bear a valid signature.

The state of a learner consists of all messages received from acceptors. Therefore,

the state of a secure learner consists of digitally signed messages received from acceptors.

In particular, all messages in the collection 〈Sj〉j<i
supplied by the coordinator ci are

digitally signed. In the algorithm from Figure 4.4, these signatures are checked by the

acceptors, before choosing the value to propose to OTCi.

Acceptors check the signatures on messages in the collection of states 〈Sj〉j<i
, which

implies that the coordinator cannot lie about its state. More precisely, it cannot claim

that it has received a message which it has not. However, it can receive a message and

then claim that it has not received it, that is, deliberately lose some messages. This

behaviour, although malicious in intent, is indistinguishable from the coordinator being

non-maliciously faulty and the network losing the messages. Thus, this kind of malicious

behaviour will be handled properly by the algorithm from Figure 4.2. Therefore, we have

shown that any malicious behaviour of the coordinator will be either detected by the

signature check, or it will be handled properly by the crash-stop version of the algorithm.

Note that the technique described above does not prevent a malicious coordinator ci

from sending different proposals and collections 〈Sj〉j<i
to different acceptors. This might

make different acceptors choose different proposals for OTCi. Therefore, the possibility of

malicious coordinators requires multi-value OTC implementations, as opposed to single-
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value OTC implementations used with honest coordinators. See Section 2.3.2 for details.

Avoiding digital signatures

So far, we have assumed that acceptors sign all messages, which might require a consid-

erable amount of computation. In their Byzantine Paxos algorithm, Castro and Liskov

[15] observed that the signatures are required only by coordinators to start a new round.

Therefore, computing signatures can be safely delayed until the next round is about to be

started. Since no round is started without all the previous rounds being stopped, com-

puting signatures for messages sent in round i can be delayed until this round is stopped.

In particular, no digital signatures are used if all correct learners decide in the first round.

Little changes from the point of view of an acceptor; it keeps sending unsigned messages

to learners, as before. When the acceptor executes OTCi.stop, then it signs all messages

sent in OTCi. The number of these messages is usually quite small; OTC implementations

from Chapter 2 broadcast at most three such messages.

The digital signatures in Byzantine Paxos [15] can be avoided altogether [81, 121].

The same technique can be applied here, however, it makes a difference only in rare cases

when the first round does not decide. Moreover, it eliminates the computational cost of

digital signatures only at the expense of one additional communication step necessary to

start a new round. All in all, this is probably not worth the trouble.

4.3.2 Malicious acceptors

The malicious-resistant algorithm from Figure 4.4 handles round stopping and halting in

a similar way to its non-malicious counterpart from Figure 4.2. However, there are two

important differences: deciding when to stop a round and limited trust in messages from

other acceptors.

Stopping a round

The benign version of the algorithm stops a round i if the failure detector suspected

the coordinator ci. This approach cannot be used in malicious setting because the failure

detector abstractions from the crash-stop model are inherently not portable into Byzantine

settings [34]. Therefore, the algorithm shown in Figure 4.4 uses the eventual synchrony

model from Section 1.3.1 and employs timeouts to decide when to stop a round. An

acceptor starts a timer for round i when more than f + m acceptors report to have

stopped all previous rounds j < i. When the timer for round i expires and the acceptor

has not yet decided in OTCi, it executes OTCi.stop and broadcasts “stop round i” to all

acceptors.

As opposed to the benign versions, an acceptor cannot stop round i after receiving a

single “stop round i” message, because the message might have come from a malicious
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acceptor. Instead, the acceptor has to wait for more than m such messages. Similarly, a

learner can decide only after receiving more than m “decide on x” messages. As a result,

the wait instruction must wait for more than f + m “decide on x” messages, not more

than f as in the benign version. This ensures that more than m of them come from

correct acceptors, and will eventually reach all correct learners, making them decide.

Both the benign and malicious version of the algorithm satisfy the property that either

all correct learners decide or all correct acceptors stop all rounds. Eventual synchrony

implies that the latter possibility does not happen, which implies the first (Termination).

The details can be found in Appendix B.1; here we will only show that if the round i

timer starts at all correct acceptors, then either they will all stop round i or all correct

learners will decide.

If more than m correct acceptors decide in round i, then lines 16–22 ensure that all

correct learners will eventually decide in that round. Similarly, if more than m correct

acceptors stop round i, then lines 12–15 ensure that all correct acceptors will eventually

do so. Any correct acceptor that started its round i timer will eventually either stop round

i or decide. Therefore, the assertion can only be false if the number of correct acceptors

is not larger than m+m. In other words, progress of the algorithm in Figure 4.4 requires

n − f > 2m, that is, n > f + 2m. This requirement is not restrictive because any

Consensus algorithm requires n > 2f + m ≥ f + 2m anyway [76].

Timeout considerations

The Coordinated Consensus algorithm in Figure 4.4 satisfies the same Latency property

as that in Figure 4.2:

Latency. If the run is timely, coordinator c1 is correct, at most q acceptors

are faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k,

then all correct learners will decide in k + 1 communication steps.

In this case, however, we use the eventual synchrony model instead of failure detectors,

so the definition of a timely run changes. Here, a run is timely if the maximum message

transmission time d is “sufficiently small”. What this means depends on the timeout

period used for the first round. For any timeout period, we can compute dmax such that

all d ≤ dmax are “sufficiently small”. In practice, we would like to choose the timeout

large enough for all typical values of d to be smaller than the resulting dmax, so that most

runs are timely and the above Latency property ensures quick decisions. On the other

hand, choosing too large a timeout results in poor performance in runs with failures.

The choice of timeout periods also influences the Termination property. As with the

crash-stop version, we have to ensure that some round will eventually decide. In the

eventual synchrony model, this means that some round with a correct coordinator will

have enough time to decide. Since this “enough time” depends on the unknown maximum
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1 when an acceptor a executes propose(x) as coordinators ci1 , ci2 , . . . do
2 for i = 1, 2, . . . do
3 if ci ∈ {ci1 , ci2 , . . .} then
4 broadcast xi = x and 〈Sj〉j<i

to all acceptors as coordinator ci

5 wait until the state Si of a as a (secure) learner in OTCi is semi-complete

Figure 4.5: A single acceptor implementing infinitely many coordinators.

message transmission time d, we cannot have one fixed timeout period for all rounds;

instead, we increase it from round to round. For example, the timeout period ti for round

i could be a fixed multiple of the timeout ti−1 of the previous round, a technique similar

to exponential backoff [15, 72].

4.3.3 Related work

The first asynchronous Byzantine Consensus algorithm was proposed by Castro and Liskov

[15] and then expressed in the Paxos framework by Lampson [81]. Both algorithms assume

all faulty processes being malicious (m = f) and require n > 3f , which is optimal [97].

If the run is timely and the first round coordinator is correct, these algorithms decide in

three communication steps. The same can be achieved in our framework by using two-step

multi-value OTCs from Section 2.4, with q = m = f .

Lamport [76] showed that Byzantine Consensus requires n > 2f +m, and conjectured

that two-step decision requires n > f+2m+2q. Section 2.5 showed that such an algorithm

can be obtained using multi-value one-step OTC. Martin and Alvisi [87] presented an

algorithm which matches this bound for the specific case q = m = f , requiring n > 5f .

My Paxos at War algorithm [121] assumes m = f and requires n > 3f + 2q. If the

run is timely and the first round coordinator is correct, it decides in two steps if at most

q acceptors are faulty, and in three steps otherwise. The DGV algorithm by Dutta et al.

[36] achieves the same results for any m ≤ f . Section 2.6 showed that both of these

algorithms can be reconstructed using the multi-step multi-value OTC with q1 = q and

q2 = q3 = f . It also presented an OTC-based Ultimate Paxos, which generalizes DGV by

allowing a two-step decision in more cases at the expense of requiring four steps in runs

with many failures.

4.4 Implementing various agreement abstractions

In this section, we will show how to use the Coordinated Consensus algorithm from

Section 4.3 to obtain simple implementations of various agreement abstractions.

None of these abstractions have a notion of a coordinator, therefore the coordinators

will have to be played by other processes such as acceptors. Since there are only finitely
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a1

a2

a3

a4

l1

OTC1

c1

OTC2

c2

OTC3

c3

OTC4

c4

decide

OTC5

c5

1 let c1, c2, . . . = a1, a2, . . . , an, a1, a2, . . .

2 when acceptor ai executes propose(x) do
3 explicitly start instance Coord as acceptor ai

4 execute Coord.propose(x) as coordinators ci, ci+n, ci+2n, . . .

5 when Coord.decision(x) at a learner do
6 decide(x)

Figure 4.6: Implementing Consensus with Coordinated Consensus.

many coordinators, each acceptor will have to execute propose(x) as each of the infinitely

many coordinators it plays. Figure 4.5 shows how this can be accomplished with finite

resources. It is easy to check that this code is consistent with that in Figures 4.2 and 4.4.

4.4.1 Consensus

In the Consensus problem [16] (Section 1.2) acceptors propose values, and learners are

supposed to eventually agree on one of the values proposed by the acceptors. Formally,

Validity. If all acceptors are honest and decision(x) holds at some learner,

then some acceptor proposed x.

Agreement. There is at most one x for which decision(x) holds at some

learner.

Termination. If all correct acceptors executed propose, then all correct learn-

ers will eventually decide.

The case most commonly considered in the literature assumes that the sets of acceptors

and learners are the same, calling both of them simply “processes”.

Consensus is similar to Coordinated Consensus, except that coordinators do not ap-

pear in the specification explicitly. This observation leads to the idea that Consensus

can be implemented using Coordinated Consensus with the coordinators played by ac-

ceptors using the rotating coordinator paradigm: acceptor a1 coordinates the first round,
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acceptor a2 the second, and so on. When all acceptors have been used, we start again,

therefore round n is coordinated by an, round n + 1 by a1, etc. In general, round i has

ci = a((i−1) mod n)+1 as the coordinator. Of course, other choices of ci are possible, as long

as the sequence c1, c2, . . . contains every acceptor infinitely often.

The algorithm in Figure 4.6 solves Consensus using an instance Coord of Coordinated

Consensus. When an acceptor proposes a value x to Consensus, it first explicitly starts

the instance Coord, and then proposes x as each coordinator it plays. Any decision made

by Coord automatically becomes the final decision in Consensus.

Consensus implemented in such a way has the same Latency property as Coordinated

Consensus. For example, consider the crash-stop model with all rounds using one-step

single-value OTC from Section 2.3 with q = f and m = 0. This OTC implementation

satisfies Optimistic Termination (f, 1), which results in the following Latency property:

Latency. If the run is timely and acceptor a1 is correct, then all correct

learners will decide on the value proposed by a1 in two communication

steps.

This two-step latency is optimal [66], and matches that of several known Consensus algo-

rithms [63, 73, 112]. One-step single-value OTC implementation with q = f and m = 0,

requires n > f + 2m + q = 2f , which is also optimal [16].

4.4.2 One-step Consensus

In good runs in which all acceptors propose the same value, the Consensus implementation

given in Section 4.4.1 decides in two communication steps (Figure 4.7(a)). The coordinator

of the first round (acceptor a1) broadcasts its proposal (1) to all acceptors, who propose

it to the first instance of OTC, which decides on 1. Observe that regardless of the

implementation of the first round OTC, at least two communication steps are required:

one for a1 to broadcast its proposal and one for the acceptors to send theirs to the learners.

This two-step latency cannot be improved because Consensus requires two communi-

cation steps, even in good runs [67]. More precisely, there is no Consensus algorithm that

guarantees a decision in fewer than two steps in all good runs. However, this does not

prevent us from constructing Consensus algorithms that sometimes take only one step to

decide, for example, when all acceptors proposed the same value [13, 51].

In order to implement one-step Consensus in the OTC framework, we allow the possi-

bility of the first round not having a coordinator. Instead of waiting for the coordinator’s

proposal, acceptors propose directly to the OTC, as shown in Figure 4.7(b). By eliminat-

ing the first round coordinator and the corresponding proposal-broadcasting phase, we

reduce the number of communication steps by one. The total latency of the Consensus

algorithm in good runs is now equal to the latency of the first round OTC. For exam-
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Figure 4.7: Comparison of runs with real and virtual coordinators.

ple, one-step Consensus [13] can be achieved by using one-step multi-value OTC from

Section 2.3.

Integrating the concept of the first round not having a coordinator with the rest of our

framework is surprisingly easy. Instead of modifying the framework, we model a round

without the coordinator as a round with a virtual coordinator. Acceptors’ proposals are

formally treated as proposals received from this virtual coordinator. The case of acceptors

issuing identical proposals corresponds to the virtual coordinator being correct. Acceptors

issuing different proposals corresponds to the virtual coordinator being malicious. This

requires the first round to use a multi-value variant of OTC, even in the crash-stop model.

Figure 4.8 shows an implementation of one-step Consensus using an instance Coord of

Coordinated Consensus. The first round has a virtual coordinator, whereas further rounds

are coordinated, as in Consensus, by acceptors a1, a2, etc. The rest of the algorithm is

identical to Consensus from Figure 4.6, except that acceptors do not wait for the proposal

issued by coordinator c1. Instead, each acceptor a behaves as if it had received from c1

the value proposed by a itself.

Virtual first-round coordinators affect the Latency property. On the one hand, having

acceptors proposing their own values, as opposed to the one received from c1, decreases

the number of communication steps by one. On the other hand, the decision in the first

round is now guaranteed only if all correct acceptors propose the same value:

Latency. If the run is timely, all correct acceptors propose the same value

x, at most q acceptors are faulty, and OTC1 satisfies Optimistic Ter-
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2 coordinators c2, c3, . . . = a1, a2, . . . , an, a1, a2, . . .

3 when acceptor ai executed propose(x) do
4 explicitly start instance Coord as acceptor ai

5 execute coord.propose(x) as coordinators ci+1, ci+n+1, ci+2n+1, . . .
6 behave as if received x1 = x from c1

7 when Coord.decision(x) at a learner do
8 decide(x)

Figure 4.8: Implementing one-step Consensus with Coordinated Consensus.

mination (q, k) for some k, then all correct learners will decide in k

communication steps.

For reasons described below, virtually coordinated rounds must use one-step OTC

algorithms. For example, the one-step multi-value OTC from Section 2.3 with q = f and

m = 0 satisfies Optimistic Termination (f, 1), which leads to

Latency. If the run is timely and all correct acceptors propose the same value,

then all correct learners will decide in one communication step.

For q = f and m = 0, the one-step multi-value OTC requires n > f + 2m + 2q = 3f ,

which matches the requirements of the one-step Consensus algorithm by Brasileiro et al.

[13]. We can obtain a new Byzantine version of this algorithm by setting m > 0 in the

OTC implementations.

Further rounds

Consider a scenario in which acceptors propose different values. This corresponds to the

virtual coordinator c1 being malicious, and requires the acceptors to eventually stop the

first round, so that (real) coordinator c2 = a1 can take over. In Figure 4.7(c), each acceptor

ai proposes its number i, so no learner decides in the first round OTC. The second round

coordinator a1 proposes 1, which all four acceptors pass to the second round OTC. All

correct learners decide in the second round in three communication steps in total.
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Why did all acceptors stop the first round immediately after proposing? And, for that

matter, why did they stop it at all if they had no coordinator to suspect? Section 2.3.1

explained that in one-step OTC algorithms proposing a value implicitly stops the instance.

Since a virtual coordinator ensures that all correct acceptors propose, no explicit stop is

necessary in this case.

4.4.3 Individual Consensus

Consensus algorithms can decide on a value proposed by any acceptor. In some situa-

tions, however, we might need more control over whose proposal can become the decision.

In this section, we will consider Individual Consensus , a variant of Consensus which can

decide only on the value proposed by a particular proposer p, called the owner. Later

in this chapter, we shall see that this abstraction is useful for providing efficient imple-

mentations of common agreement abstractions, such as Interactive Consistency [97] and

Atomic Commitment [48]. Section 5.4 will present an optimal two-step Atomic Broadcast

algorithm for closed groups, which also relies on an efficient implementation of Individual

Consensus.

Strenghtening the Validity condition so that only the value proposed by the owner can

become the decision makes it impossible to ensure the termination of the algorithm in

cases when the owner is faulty. In fact, if the owner crashed before sending any messages,

other processes have no way of determining its proposal. To deal with this problem we

will relax the Validity condition and permit a special value abort to be the decision in

such cases:

Sensitive Validity. If the owner is honest and decision(x) holds at some

learner, then x has either been proposed by the owner or equals abort.

If the owner is correct and the run is timely, the former case must hold.

Agreement. There is at most one x for which decision(x) holds at some

learner.

Termination. All correct learners will eventually decide.

Sensitivity and quittability

We call the Validity property of Individual Consensus sensitive because it allows the

learners to abort if the owner is faulty or the run is not timely. We call abstractions that

require this form of Validity sensitive.

The notion of sensitivity is similar to the notion of quittability introduced by Delporte-

Gallet et al. [29]. The difference is that while Sensitive Validity allows the learners to

abort if the owner is faulty or the run is not timely, Quittable Validity allows aborting

only because of the owner’s failure:
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Quittable Validity. If the owner is honest and decision(x) holds at some

learner, then x has either been proposed by the owner or equals abort.

If the owner is correct, the former case must hold.

Examples of quittable abstractions include: Interactive Consistency [97], Atomic Com-

mitment [49, 50], and Quittable Consensus [29].

Recall that an asynchronous system extension is safe if it does not add any safety prop-

erties to the original model (Section 1.3). Examples of safe extensions include unreliable

failure detectors ♦S, Ω, and eventual synchrony. Quittable abstractions cannot be imple-

mented in such models because these models do not provide a way of distinguishing slow

processes from crashed ones [46]. For this reason, quittable abstractions require other,

unsafe failure detectors such as ?P [49] or P [16]. Since here we are interested only in

safe models, we consider sensitive versions of abstractions that are traditionally quittable.

That said, quittable solutions can easily be obtained from sensitive ones by replacing the

♦S failure detector in the Coordinated Consensus algorithm shown in Figure 4.2 with the

(unsafe) failure detector required by the quittable abstraction.

Implementation

Individual Consensus can be solved as a special case of Coordinated Consensus. In the

algorithm presented in Figure 4.9, the owner p coordinates the first round, issuing its

own proposal x. All other coordinators propose abort. This way, the eventually made

decision will be one of the values proposed by the coordinators: x or abort. To guard

against malicious non-first round coordinators, their actual proposals are ignored and the

acceptors behave as if they had received abort from these coordinators. In other words,

coordinators ci with i > 1 are used only to broadcast the collections of states 〈Sj〉j<i

(Figure 4.4).

To guarantee the second part of the Sensitive Validity condition, we have to ensure

that if the owner is correct and the run is timely, then the first round will decide. This can

be achieved by using an OTC1 implementation that decides whenever all correct acceptors

propose the same value, that is, one that satisfies Optimistic Termination (f, •).

This algorithm illustrates a general method of transforming various agreement algo-

rithms, with a normal Validity condition, into their sensitive counterparts. Instead of

letting coordinators ci with i > 1 propose their own values, the acceptors just ignore their

proposals and behave as if abort had been proposed. This technique can be used, for

example, to transform the Consensus algorithm from Section 4.4.1 into Sensitive Consen-

sus, which can abort if the run is untimely or a failure occurred. Sensitive Consensus is

the sensitive counterpart of the Quittable Consensus introduced by Delporte-Gallet et al.

[29].
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3 when the owner p executes propose(x) do
4 execute Coord.propose(x) as coordinator c1

5 task at acceptor ai is
6 explicitly start Coord as acceptor ai

7 execute Coord.propose(abort) as coordinators ci+1, ci+n+1, ci+2n+1, . . .

8 when an acceptor received proposal xi from ci with i > 1 do
9 ignore the actual xi and behave as if xi = abort was received

10 when Coord.decision(x) at a learner do
11 decide(x)

Figure 4.9: Implementing Individual Consensus with Coordinated Consensus.

Latency

Individual Consensus guarantees the same Latency property as Coordinated Consensus:

Latency. If the run is timely, the owner correct, at most q acceptors are

faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k,

then all correct learners will decide in k + 1 communication steps.

For example, assume the crash-stop model and all OTCs being implemented as single-

value one-step OTC from Section 2.3 with q = f . Then, OTC1 satisfies Optimistic

Termination (f, 1), which results in

Latency. If the run is timely and the owner is correct, then all correct learners

will decide in two communication steps.

4.4.4 Fast Individual Consensus in the crash-stop model

Even in timely runs with a correct owner, Individual Consensus takes at least two com-

munication steps to decide. The first step is necessary for the owner to broadcast its
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1 when the owner executes propose(x) do
2 Ind.propose(x)
3 broadcast “propose x” to all learners

4 when a learner receives “propose abort” from the owner do
5 decide(abort)

6 when Ind.decision(x) at a learner do
7 decide(x)

Figure 4.10: Fast Individual Consensus in the crash-stop model.

proposals to the acceptors, and the second step for the first round OTC to make a deci-

sion. Keidar and Rajsbaum [66] showed that this latency of two steps cannot generally

be improved, even in the crash-stop model.

In the crash-stop model, however, we can achieve one-step decision in the special

case when the owner proposes abort. Assume that the owner is an acceptor, so it can

broadcast its proposal not only to other acceptors but also to all learners. As a result,

if the owner proposes abort, then all the learners will know this in one communication

step. The Sensitive Validity property implies that abort is the only possible decision.

Therefore, a learner can decide on abort as soon as it has found out that this is the

owner’s proposal.

The Fast Individual Consensus algorithm is shown in Figure 4.10. It requires an

honest owner and uses an instance Ind of normal Individual Consensus. When the owner

proposes x, the algorithm passes it to instance Ind, and also broadcasts “propose x” to

all learners. When a learner receives “propose abort”, it immediately decides on abort.

If the underlying instance of Individual Consensus decides on some x, this value becomes

the decision as well.

Fast Individual Consensus satisfies the following property:

Latency. If the run is timely and the owner is correct, then all correct learners

decide in two communication steps. If, in addition, the owner proposed

abort, then the decision is made in one communication step.

4.4.5 Atomic Commitment

Atomic Commitment [48] is probably the most important agreement problem in dis-

tributed databases, where several replicas, here modelled as acceptors, must agree on

the outcome of a distributed transaction. There are two possible outcomes: commit or

abort. Each acceptor (replica) proposes one of these values, according to the result of

the part of the transaction it has executed. If all acceptors want to commit, the transac-

tion should be committed. On the other hand, if at least one acceptor wants to abort, the
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1 when acceptor ai executes propose(x) do
2 broadcast “propose x”
3 explicitly start Ind as acceptor ai

4 when Ind.decision(x) at a learner do
5 decide(x)

6 predicate the virtual owner executed propose(x) is
7 x = f(x1, . . . , xn), where xi is the proposal of ai

8 predicate received proposal x from the virtual owner is
9 x = f(x1, . . . , xn), where xi is the proposal received from ai

Figure 4.11: Computing global functions using Individual Consensus.

transaction should be aborted. The transaction can be aborted also if failures occurred,

even if all acceptors wanted to commit.

As Individual Consensus, the Atomic Commitment problem comes in two variants:

sensitive [45, 55] and quittable [48]. We focus on the sensitive variant, which satisfies the

following validity property:

Sensitive Validity. If all acceptors are honest, then

• If the run is timely, and all acceptors are correct and proposed

commit, then commit is the only possible decision.

• If at least one acceptor proposed abort, then abort is the only

possible decision.

The quittable variant differs from the sensitive one in that the first part of its Validity

property does not require a run to be timely.

Implementation

Atomic Commitment can be seen as Individual Consensus with a virtual owner simulated

by all acceptors. The virtual owner is deemed to have proposed commit if all acceptors

proposed commit, and abort if at least one acceptor proposed abort. The virtual

owner is faulty/suspected iff at least one acceptor is faulty/suspected.

The Atomic Commitment algorithm in Figure 4.11 uses a single instance Ind of In-

dividual Consensus. When an acceptor proposes a value, it broadcasts it to all acceptors

and explicitly starts the instance Ind. Consider a function

f(x1, . . . , xn) =







commit if xi = commit for all i,

abort if xi = abort for at least one i.
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If an acceptor has received commit proposals from all acceptors, it behaves as if it had

received commit from the virtual owner. Similarly, if it has received abort from at

least one acceptor, it behaves as it had received abort from the virtual owner. Atomic

Commitment decides on the value decided on by Individual Consensus.

The algorithm in Figure 4.11 solves a more general problem of Distributed Function

Computation. Here, each acceptor ai proposes a value xi, and all learners must agree on

the value of f(x1, . . . , xn) for a given function f . Formally, we require:

Sensitive Validity. If all acceptors are honest and decision(x) holds at some

learner, then x = f(x1, . . . , xn) or x = abort. If all acceptors are correct

and the run is timely, the former case must hold.

Latency

The latency of Atomic Commitment is the same as that of Individual Consensus.

Latency. If the run is timely, the virtual owner is correct, at most q acceptors

are faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k,

then all correct learners will decide in k + 1 communication steps.

The virtual owner is correct if all acceptors are correct (q = 0), which together with the

timeliness assumptions implies that we are interested only in good runs. In Byzantine

settings, we can use multi-value multi-step OTC from Section 2.6 with q1 = 0 and q2 =

q3 = f . It requires n > 2f + m, and satisfies Optimistic Termination (f, •) required by

Individual Consensus. The Latency property becomes:

Latency. In good runs, all correct learners decide in two communication

steps.

In the crash-stop model, we use single-value one-step OTC from Section 2.3 with q = f

instead, which requires n > f + q = 2f . We also use Fast Individual Consensus from

Section 4.4.4, which decides in one step if the owner proposed abort. Since the virtual

owner proposes abort if at least one acceptor does so, we get:

Latency. In good runs, all correct learners decide in two communication

steps. If in addition, some acceptor proposed abort, the decision is

made in one step.

Related work

Atomic Commitment is a well known problem in distributed databases. The most com-

monly used solution is Two Phase Commit (2PC) by Gray [44], in which all acceptors

send their proposals to the coordinator, which computes the decision and broadcasts it
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to learners. This algorithm requires two communication steps to decide in good runs,

however, it does not terminate if the coordinator is faulty. The Three Phase Commit

algorithm (3PC) by Skeen [114] corrects this problem, however, it requires three commu-

nication steps to decide, even in good runs.

Guerraoui and Schiper [53] proposed the first Atomic Broadcast algorithm that re-

quires only two communication steps to decide in good runs. Guerraoui et al. [56] improved

this result by observing that a learner can decide after receiving a message from only n−f

acceptors, not n as in [53]. In good runs, this algorithm behaves almost identically to

ours. To guarantee Termination, it uses a variant of Consensus that treats commit as

the privileged value. Since only one symbol can be privileged, database replicas cannot

propose versions of commit that include the actual outcome of the transaction to be

committed. A generalization to Distributed Function Computation is also problematic.

Gray and Lamport [45] proposed a two-step Paxos-based Atomic Commitment pro-

tocol that does not have this problem. However, their algorithm is more complicated

than ours; it uses n parallel instances of Individual Consensus, each owned by a different

acceptor, thereby (unnecessarily) solving a stronger problem of Interactive Consistency,

discussed in Section 4.4.6.

The two communication step latency achieved by [45, 53, 56] and our algorithm cannot

be improved because Atomic Commitment is a special case of Weak Consensus [66, 116].

All these algorithms require that less than half of acceptors are faulty (n > 2f), which

is also optimal [46]. Our algorithm is the only one that tolerates malicious acceptors; in

that case it requires n > 2f + m and still decides in two communication steps in good

runs.

Before the introduction of failure detectors by Chandra and Toueg [16], all Atomic

Broadcast algorithms were specified for various timed network models such as eventual

synchrony. Using the ♦S failure detector [16] to solve (sensitive) Atomic Commitment

has been shown first directly [55], and then by reduction to (Uniform) Consensus [48].

Solving the quittable variant of Atomic Commitment requires two new failure detectors:

unsafe ?P [47, 49] and Ψ [50].

4.4.6 Interactive Consistency

Interactive Consistency [97] is an agreement abstraction in which learners agree on a

vector of proposals [v1, . . . , vn], such that each vi corresponds to the proposal issued by

acceptor ai. Of course, such an abstraction is impossible to implement if at least one of

the acceptors fails, because in that case other processes would have no way of determining

its proposal. Therefore, similarly as with Individual Consensus, we allow vi to be abort

if ai is faulty or the run is not timely. Formally, we require the following Validity property:

Sensitive Validity. If a learner decides on [v1, . . . , vn] and acceptor ai is
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1 when acceptor ai executes propose(x) do
2 explicitly start parallel instances Ind1, Ind2, . . . , Indn

3 Indi.propose(x)

4 when Indi.decision(xi) for all i = 1, . . . , n at a learner do
5 decide([x1, . . . , xn])

Figure 4.12: Implementing Interactive Consistency with Individual Consensus.

honest, then vi has either been proposed by ai or equals abort. If ai is

correct and the run is timely, the former case must hold.

The first part of this property ensures that, for honest acceptors, the decision vector v

contains only the acceptor proposals or abort values. The second parts states that for

correct acceptors in timely runs, abort is not an option, unless the acceptor actually

proposed it.

Interactive Consistency is similar to Distributed Function Computation from Sec-

tion 4.4.5 with f(x1, . . . , xn) = [x1, . . . , xn], where xi is ai’s proposal. However, Interactive

Consistency provides stronger guarantees in the sense that a failure of a single acceptor ai

affects only a single entry vi, not the whole vector [v1, . . . , vn]. For example, if a1 crashes

at the beginning, Interactive Consistency decides on the vector [abort, x2, x3, . . . , xn],

whereas Distributed Function Computation decides on abort, not giving any informa-

tion about other acceptors’ proposals.

Implementation

The implementation of Interactive Consistency shown in Figure 4.12 uses n parallel in-

stances of Individual Consensus. Each instance Indi is owned by acceptor ai, which uses

it to propose its own proposal from Interactive Consistency. A learner decides on a vec-

tor [x1, . . . , xn] if each instance Indi decided on xi. The correctness of this algorithm is

implied directly by the correctness of each instance of Individual Consensus.

Latency

The latency of Interactive Consistency is same as that of Individual Consensus:

Latency. If the run is timely, the owner is correct, at most q acceptors are

faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k, then

all correct learners will decide in k + 1 communication steps.

For Byzantine settings, using the same reasoning and OTC implementations as in

Atomic Commitment, we obtain:
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Latency. In good runs, all correct learners decide in two communication

steps.

Similarly, in the crash-stop model, we can use instances of Fast Individual Consensus from

Section 4.4.4 to achieve an even stronger Latency property. Remembering from Section 1.4

that “one communication step” is defined as the maximum message transmission time d

between correct processes, we get:

Latency. In good runs, if all acceptors proposed by time t + d, and all ac-

ceptors with proposals other than abort proposed by time t, then the

decision will be made by time t + 2d.

This property will be essential in the two-step Atomic Broadcast algorithm for closed

groups, presented in Section 5.4.

Related work

In this thesis, we consider a sensitive variant of the Interactive Consistency abstraction,

which allows vi = abort when ai is faulty or the run is not timely. The quittable version

allows vi = abort only in the former case, but requires the (unsafe) failure detector P

[18, 29].

Interactive Consistency has first been proposed by Pease et al. [97] in the fully syn-

chronous model. In asynchronous systems, only crash-stop implementations of Interactive

Consistency have been presented in the literature so far. Delporte-Gallet et al. [27, 29]

present an Interactive Consistency algorithm for that model, which decides in two com-

munication steps, which they prove optimal.

To the best of our knowledge, our algorithm is the first to tolerate malicious processes.

It achieves the same optimal two-step latency, even in malicious settings. Under the crash-

stop model, it guarantees a stronger Latency property than [27]; for example, it decides

in one communication step if all acceptors propose abort.

Gray and Lamport [45] used a similar idea to implement Atomic Commitment in

crash-stop settings. In their solution, acceptors propose commit or abort, and use n

parallel instances of Paxos to agree on a common vector v of proposals. If all entries

in v are commit, then learners decide on commit, otherwise the decision is abort.

Section 4.4.5 discusses Atomic Commitment in more detail.

Doudou and Schiper [33] proposed Vector Consensus, an agreement abstraction similar

to Interactive Consistency in Byzantine Settings. Their solution, however, uses digital

signatures and requires at least four communication steps.
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4.5 Other agreement frameworks

In Chapter 2, we introduced the notion of Optimistically Terminating Consensus (OTC)

and presented several implementations tailored to different requirements on the number

of acceptors, type of faults, and decision latency. This chapter showed how to use OTC

instances to implement a variety of agreement abstractions. Such a collection of algorithms

and methods is commonly known as an agreement framework [51]. It allows us to construct

customized agreement protocols in by reusing small, well-defined modules, such as OTC

instances.

Mostéfaoui and Raynal [90] proposed a generic Consensus algorithm that could use

one of the two failure detectors ♦S and S [16]. Hurfin et al. [65] generalized this method

by allowing the message exchange pattern to be chosen for each round of the protocol. In

other words, the designer could specify their approach to the time vs. message complexity

problem: whether they preferred a low latency or a small number of messages. This trade-

off does not occur in our model, however, because latency is the only performance measure

we are interested in. The option of using the S failure detector does not exist in our case

either because it is unsafe. Mostéfaoui et al. [92] extended the choice of options here to

include the leader elector Ω and randomization, however, the protocols they presented

have higher latency than ad-hoc solutions.

Boichat et al. [10] presented a modular deconstruction of Paxos into an eventual leader

elector, similar to Ω, and a ranked register . By modifying the implementation of these

two modules, they obtained Fast Paxos [10], Disk Paxos [42], and two variants of Paxos

for the crash-recovery model. Later [11, 12], they replaced the ranked register with the

eventual register.

Guerraoui and Raynal [51] unified the approaches presented in the last two paragraphs.

A generic Consensus algorithm presented there uses a new Lambda abstraction, which can

be implemented with different failure detectors in a modular way. Most known Consensus

crash-stop protocols for asynchronous systems with failure detectors can be implemented

in this framework without increasing latency.

The OTC framework has several advantages over Lambda:

• It can tolerate malicious processes, whereas all the other frameworks are limited to

the crash-stop model.

• OTC algorithms are simple enough to make correctness testing and discovery fully

automatic (Chapter 3).

• Lambda can implement only Consensus, with no distinction between acceptors and

learners. Our framework can also implement Coordinated Consensus, leading to

efficient implementation of Individual Consensus, Atomic Commitment, and Inter-

active Consistency.
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• OTC instances are completely independent in their implementation and specifica-

tion, which makes them conceptually simpler than Lambda modules. They can be

replaced on a per-instance basis, so it is possible to use different implementations

of OTC instances in the same run of Consensus, possibly with different sets of ac-

ceptors. For example, one might use an implementation that is fast in good runs

for the first round, and a more fault-tolerant one for the others.

• The OTC abstraction is implementable in purely asynchronous settings. All exter-

nal factors, such as choosing the proposals and the time for stopping, are clearly

separated from the implementation of the OTC instances. As a result, they can also

be modified independently from the rest of the algorithm.

• OTC instances do not have to terminate. This makes them easier to implement

because, instead of worrying about Termination at every place in the algorithm,

one can just trust the Coordinated Consensus algorithm to stop the current round

if it does not make progress. For example, assume that an instance is supposed

to decide (in one step) if all correct acceptors have proposed the same value [51].

An OTC instance can just wait for any n − f identical proposals. On the other

hand, if the first n−f received proposals are not the same, a Lambda module must

explicitly abort because it could jeopardize progress by waiting for more.

Recently, Guerraoui and Raynal [52] proposed Alpha: an abstraction similar to Lambda

but with a slightly different goal. Alpha provides an agreement framework that allows one

to construct a Consensus algorithm for different communication models such as message

passing, shared memory, and independent disks.

Lampson [81] presented Abstract Paxos, which can be used to obtain Byzantine Paxos

[15], Classic Paxos [73], and Disk Paxos [42]. Recently, Li et al. [83] showed how to

deconstruct Classic Paxos and Byzantine Paxos using two new abstractions: a register

that encapsulates quorum operations and a token that encapsulates a proof that the leader

has read a particular value from the register.

4.6 Summary and future work

In this chapter, we have shown how to use the OTC abstraction introduced in Chapter 2

to solve a variety of agreement problems. We have formalized the Coordinated Consensus

problem, and presented OTC-based algorithms for solving it in both benign and mali-

cious settings. These algorithms served as a base for developing efficient solutions to

other agreement problems: Consensus, Individual Consensus, Atomic Commitment, and

Interactive Consistency, all for both failure models. By using OTC implementations from

Chapter 2, we were able to provide implementations of these agreement problems. They

match or improve the latency of known ad-hoc solutions.
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In comparison to other agreement frameworks [10, 11, 12, 51, 65, 92], our approach

makes it possible to reconstruct the highest number of known algorithms as well as to

construct new ones. Firstly, this is because no other agreement framework tolerates

malicious processes. Secondly, because OTC, the main unit in our solution, is relatively

small; it encompasses only a single round as opposed to the whole algorithm in other

frameworks. This, and the independence of OTC instances used in different rounds,

gives us high flexibility with designing Consensus algorithms. The parameters of every

round, such as the coordinator, the type of the OTC, or set of acceptors used, can be set

independently. Some of the methods involve parallel execution of instances of OTC or

Consensus. We will see more application of this technique in Atomic Broadcast protocols

in Chapter 5.

In contrast to some Consensus algorithms, notably most variants of Paxos [73], the

OTC framework assumes reliable channels. Reliable channels can be implemented over

unreliable ones by periodic retransmission, without any latency overhead [9]. This solu-

tion, however, requires keeping unconfirmed messages in memory, therefore direct support

for unreliable channels in the OTC framework would be preferable.



Chapter 5

Atomic Broadcast

In the previous chapters, we investigated agreement problems in distributed systems.

Chapter 2 introduced the notion and implementations of Optimistically Terminating

Consensus, the basic building block of all Consensus algorithms presented in this the-

sis. Chapter 3 extended this work by presenting an automatic way of generating OTC

algorithms that satisfy given criteria. Finally, Chapter 4 showed how to use OTC to solve

a variety of agreement problems, such as Consensus, Atomic Commitment, or Interactive

Consistency.

All agreement abstractions presented in the previous chapters were static in the sense

that processes issue one proposal and make one decision. Multiple instances of static

agreement abstractions can be used to make multiple independent decisions. In this

chapter, we will investigate dynamic agreement problems, in which proposers issue mul-

tiple proposals (message broadcasts) and make multiple mutually dependent decisions

(message deliveries).

As an example, consider state machine replication [77, 113], which was used in the

beginning of Chapter 1 to implement a fault-tolerant hotel booking system. It consists of

clients and servers; clients broadcast requests to the servers, who execute them. To ensure

consistency of the system, all the servers must receive client requests in the same order.

The broadcast protocol that ensures this property is called Atomic Broadcast [59]. The use

of Atomic Broadcast is not limited to replication, however. Other applications include [26]:

clock synchronization [111], cooperative document creation, distributed shared memory,

distributed locking [78], and distributed databases [2, 69, 103].

Atomic Broadcast is a truly dynamic agreement problem; clients can issue multiple

proposals (broadcast many messages) and the servers must make multiple decisions (de-

liver these messages). Most importantly, these decisions are mutually dependent; the

order in which messages are delivered must be the same at all servers.

In this chapter, we will investigate implementations of Atomic Broadcast in distributed

systems. We will present efficient implementations of several variants of the problem as

well as lower bounds proving optimality of our solutions. As in the previous chapters, our
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goal will be to minimize the latency in good runs. This time, however, we consider only

the crash-stop model, with no malicious processes. For this reason, we use the symbol “m”

to denote messages, not the number of malicious acceptors (which is zero).

This chapter is structured in the following way. Section 5.1 formalizes the notion

of Atomic Broadcast and presents a Consensus-based algorithm by Chandra and Toueg

[16]. Based on its design, we construct an algorithm especially designed for low latency in

typical runs. Section 5.2 provides a latency-optimal implementation of Generic Broadcast,

a generalization of Atomic Broadcast in which only conflicting messages must be delivered

in the same order. This algorithm uses infinitely many instances of Consensus running in

parallel; a method of implementing this with finite resources is presented in Section 5.3.

Section 5.4 considers a restricted, closed-group variant of Atomic Broadcast, in which

only acceptors (servers) are allowed to atomically broadcast messages. We present an

algorithm whose latency is better than what is possible without this restriction. All

the algorithms presented in this chapter are optimal in terms of latency and the required

number of acceptors. Some of the proofs come from the literature, the others are presented

in Section 5.5. Section 5.6 concludes this chapter.

5.1 Atomic Broadcast

Atomic Broadcast is specified in terms of three classes of processes: proposers, acceptors,

and learners. Proposers broadcast messages to acceptors, who cooperate in order to en-

able learners to deliver them in the same order. The abstraction is defined in terms of two

primitives: abcast(m) and adeliver(m), available at proposers and learners, respectively.

A proposer executes abcast(m) whenever it wants to atomically broadcast (“abcast”) mes-

sage m. A learner atomically delivers (“adelivers”) a message m by executing adeliver(m).

Formally, we require the following properties:

Validity. For any message m, every learner delivers m at most once, and only

if m was abcast by a proposer.

Agreement. For any two different messages m and m′, it is impossible that

one learner delivers m without having previously delivered m′, and an-

other learner delivers m′ without having previously delivered m.

Termination Validity. If a correct proposer abcasts a message, then all cor-

rect learners will eventually deliver it.

Termination Agreement. If a learner delivers a message, then all correct

learners will eventually deliver it.

The above properties have been classified according to two orthogonal characteristics:

safety-liveness and validity-agreement. All Termination properties are liveness properties,
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whereas all the others are safety properties. A property is a validity property if it relates

input to output (broadcast to delivery), and an agreement property if it relates output to

output (delivery to delivery). This convention makes the property names consistent with

those used for other agreement abstractions, notably Consensus. Property names tradi-

tionally used in the Atomic Broadcast literature conflict with those used for Consensus,

which might be confusing. The correspondence table is:

this thesis traditional

Validity Integrity

Agreement Total Order

Termination Validity Validity

Termination Agreement Agreement

Several versions of the Agreement (Total Order) property have been proposed in the

literature [26]. For example, the Prefix Order property considers the sequences of messages

delivered by any two learners and requires that one is a prefix of the other. The Agreement

property used here is equivalent to Prefix Order, but as opposed to the latter it can be

easily generalized for use in Generic Broadcast. Aguilera et al. [5] proposed Gap Free Total

Order, which requires that if some learner delivers message m′ after message m, then every

learner delivers m′ only after it has delivered m. The problem with this definition is that

it allows the algorithm to deliver disjoint sets of messages at different learners, in any

order, and still be considered safe.

The Atomic Broadcast properties, as defined above, specify the uniform variant of the

abstraction [26], which offers guarantees to all participating processes, not only to correct

ones. For example, a non-uniform Atomic Broadcast algorithm allows faulty learners to

deliver messages in a different order than the correct ones. As in the rest of this thesis, we

assume that the considered abstractions are uniform, unless explicitly stated otherwise.

System model summary

We assume the same system model as in the previous chapters: a network of processes

communicating via asynchronous reliable channels. This means that channels do not

create or modify messages, and all messages between correct processes eventually reach

their destination.

Our system consists of three, possibly overlapping, groups of processes: proposers,

acceptors, and learners (see Section 1.1). There are exactly n acceptors, out of which at

most f are non-maliciously faulty (i.e., we assume no malicious faults in this chapter).

There are no restrictions on the number of proposers or learners, or on the number of fail-

ures in these groups. For common replicated systems, servers are modelled as acceptors,

and clients as proposers and learners (every server is also a client).
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The Consensus and Atomic Broadcast problems are equivalent in the sense that the

solvability of either of these problems implies the solvability of the other [16]. In partic-

ular, Atomic Broadcast is not solvable in purely asynchronous systems. Various model

extensions can be used to remedy the situation, such as failure detectors or eventual syn-

chrony. In this chapter, however, we simply assume that the model is strong enough to

make Consensus solvable, and use it as a subroutine in our Atomic Broadcast algorithms.

Performance measures

OTC-based Consensus algorithms usually decide on the value proposed by the first round

coordinator c1. For this reason, we call process c1 the leader of the algorithm. More

generally, in any Consensus algorithm, the leader is a process with the following property:

if the run is timely and the leader is correct, then learners decide on the value proposed

by the leader.

To tolerate malicious processes, the previous chapters assumed that the leader c1

is fixed and known in advance to all acceptors. In the crash-stop model, considered

here, some Consensus algorithms [35, 73] allow the leader to be elected dynamically, for

example, using the Ω failure detector [18]. To accommodate this possibility, this chapter

introduces the notion of a stable run. We say that a run is stable if it is timely, all correct

acceptors perceive the same leader, which is correct and never change. We also strengthen

the definition of a good run by requiring it to be stable as well. Note that the assumption

of c1 being fixed and known in advance made by previous chapters automatically makes all

good runs stable, so this definition of a good run is consistent with that from Section 1.3.4.

We evaluate Atomic Broadcast algorithms by considering their latency in good and

stable runs. In other words, we measure the time that passes between a message being

abcast by its sender and it being adelivered by all correct learners. Note that some

papers [39, 89] ignore the first step, in which the proposer broadcasts the message to the

acceptors; in that case one communication step must be added to the latency reported in

those papers.

5.1.1 Related work

Atomic Broadcast can easily be used to solve Consensus by having every acceptor abcast

its proposal and the learners decide on the first value that is delivered. This reduction,

shown in Figure 5.1, requires no additional message delay. As a result, all lower bounds

for Consensus apply to Atomic Broadcast as well. In particular, Atomic Broadcast cannot

be solved in purely asynchronous settings [40], and requires at least two communication

steps, even in good runs [19, 66, 74].

The previous paragraph showed that Atomic Broadcast can implement Consensus.

The reduction in the other direction is also possible; Chandra and Toueg [16] showed an
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1 when an acceptor executes propose(x) do
2 abcast(x)

3 task deciding at learners is
4 wait for adeliver(y) for some y
5 decide(y)

Figure 5.1: Reducing Consensus to Atomic Broadcast by atomically broadcasting propos-
als and adopting the first delivered message as the decision.

Algorithm same order different orders

Chandra-Toueg [16] 3 3
Optimistic Atomic Broadcast [99] 2 4
Our algorithm 2 3

Figure 5.2: Comparison of the number of communication steps required by several Atomic
Broadcast algorithms in stable runs. The numbers are reported for two cases: when all
acceptors receive proposer messages in the same order and in different orders.

algorithm that solves Atomic Broadcast using a sequence of Consensus instances. The

details of this algorithm will be discussed in Section 5.1.2. As opposed to the reduction

shown in Figure 5.1, the Chandra-Toueg algorithm requires one additional communication

step. In other words, the algorithm has a latency of three communication steps, assuming

that the underlying Consensus algorithm has a two-step latency.

The three-step latency of the Chandra-Toueg algorithm cannot be improved (Theo-

rem 5.5.3). Informally, this is because one communication step is needed for the proposer

to broadcast its message to the acceptors, and two more for the acceptors to agree on

the order of messages [19, 66, 74]. This means that no Atomic Broadcast algorithm can

guarantee a latency lower than three communication steps in all good runs. It is possible,

however, to develop algorithms that deliver all messages in two communication steps in

some of them.

In many networks, especially LANs, it is common for messages sent by proposers to be

received by all correct acceptors in the same order. Pedone and Schiper [99, 101] presented

an Atomic Broadcast algorithm that delivers messages in two steps in stable runs with this

property. Later in this section, we will present an Atomic Broadcast protocol that achieves

the same latencies. The advantage of our algorithm becomes apparent in stable runs in

which acceptors receive proposer messages in different orders. In those runs, Optimistic

Atomic Broadcast [99] requires at least four communication steps. On the other hand,

our algorithm requires only three communication steps, which Theorem 5.5.3 shows to

be the lower bound. Figure 5.2 shows that, in terms of latency, our algorithm is strictly

better than both the Chandra-Toueg and Optimistic Atomic Broadcast algorithms.

The two-step latency Atomic Broadcast algorithms reported in [39, 89] results from
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using a different definition of latency, which ignores the first step, in which the pro-

poser broadcasts its message to acceptors. In these cases, one communication step must

be added to the reported delivery latency. Taking this into account, the algorithm by

Mostéfaoui and Raynal [89] requires at least three communication steps – the same as

Chandra-Toueg [16]. The algorithm by Ezhilchelvan et al. [39] can decide in two commu-

nication steps, however, it assumes that a new abstraction, called Notifying Broadcast,

can be implemented in one communication step. Although this may be true in some

networks such as Ethernet, implementing Notifying Broadcast in the standard message

passing model requires two communication steps. As a result, [39] requires at least three

communication steps in our model.

Other algorithms

The number of different implementations of Atomic Broadcast described in the literature

is tremendous. A survey by Défago et al. [26] divides them into five groups: with fixed se-

quencer, with moving sequencer, privilege-based, communication-history-based, and with

destination agreement. Our model corresponds to “destination agreement” protocols, in

which proposers send their messages to acceptors, who cooperate in choosing the delivery

order.

The algorithms listed by Défago et al. [26] use various extensions of the purely asyn-

chronous model: randomization [7], failure detectors [16], eventual synchrony [37], and

group membership services [21]. Some of these algorithms support features that we do not

consider here, such as multiple destination groups, acceptors that can join and leave the

system dynamically, recovery of crashed processes, or malicious processes. Finally, sev-

eral algorithms implement variants of Atomic Broadcast with weaker safety guarantees:

non-uniformity, unsafe optimistic delivery, or safety only in timely runs.

5.1.2 Chandra-Toueg algorithm

The original Atomic Broadcast algorithm proposed by Chandra and Toueg [16] assumes

that all learners are acceptors. In brief, proposers broadcasts their messages to acceptors,

who use instances of Consensus to deliver these messages in the same order.

When a proposer wants to abcast a message m, it broadcasts m to the acceptors

(Figure 5.3). Each acceptor maintains the set M of received but undelivered messages,

initially empty. Acceptors add each new received message toM. To broadcast messages,

proposers use Reliable Broadcast [59], in which acceptors rebroadcast received messages

to other acceptors. This ensures that if one correct acceptor receives a message, then all

correct acceptors eventually will.

The main task of the algorithm is an infinite loop (lines 6–12). In each iteration, the

acceptor waits until M is not empty, that is, until there are some undelivered messages.
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1 M is the set of received undelivered messages, initially ∅

2 when a proposer executes abcast(m) do
3 reliably broadcast m to the acceptors

4 when an acceptor reliably receives m do
5 insert m toM

6 task delivery at acceptors/learners is
7 for k = 1, 2, . . . do
8 wait untilM 6= ∅
9 batchk.propose(M)

10 wait until batchk.decision(Bk)
11 adeliver all undelivered messages in Bk in some deterministic order
12 remove fromM all messages in Bk

Figure 5.3: Atomic Broadcast algorithm proposed by Chandra and Toueg [16]

The acceptor tries to deliver these messages by proposing M to the Consensus instance

batchk. At the same time, other correct acceptors also propose their setsM. The Termi-

nation property of Consensus implies that all correct learners (acceptors) will eventually

decide. When an acceptor decides on some batch of messages Bk, it delivers them in some

deterministic order, and removes them fromM. Messages from Bk that have already been

delivered are not delivered again. The Agreement property of Consensus implies that all

acceptors end up with the same batches Bk, so they deliver the same messages in the

same order (Agreement). For Validity, observe that any delivered message m must have

been proposed to one of the instances batchk. As a result, m must have been abcast by

some proposer.

For Termination Validity, observe that any message m abcast by a correct proposer will

eventually either be delivered or belong toM at all correct acceptors. In the latter case, all

correct acceptors will proposeM∋ m to some instance batchk, which will deliver m. The

original Chandra-Toueg algorithm is not uniform; Termination Agreement is guaranteed

only for correct learners (acceptors).

Latency

Figure 5.4(a) shows a good run in which only one message, m1, is abcast. In one commu-

nication step, m1 reaches all acceptors, who add it to their respective setsM, and propose

M = {m1} to batch1. Assuming a two-step implementation of Consensus [73, 112], in-

stance batch1 will decide on {m1} and deliver m1 two communication steps later. This

gives the total latency of three steps.

Now, consider the run shown in Figure 5.4(b), in which message m2 is abcast just

after m1. It arrives at the acceptors just after they proposed M = {m1} to batch1.

When batch1 decides and m1 is delivered, all acceptors propose M = {m2} to batch2.
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a1

a2

a3

p1
p2

batch1

m1

deliver(m1)

(a) A run with one message m

a1

a2

a3

p1
p2

batch1

m1

deliver(m1)

m2

batch2

deliver(m2)

(b) A run with two messages m and m′

Figure 5.4: Two runs of Chandra-Toueg Atomic Broadcast. The left one exhibits a three-
step delivery latency, however, the right one shows that almost five steps are necessary in
some good runs.

Instance batch2 decides two communication steps later, leading to a total latency for

m2 of almost five communication steps. Section 5.1.3 will show how we can modify the

original Chandra-Toueg algorithm to achieve a latency of three communication steps in

all stable runs.

5.1.3 Modified Chandra-Toueg algorithm

In this section, we will present a modified version of the Chandra-Toueg algorithm, which

guarantees a three-step delivery latency in all stable runs. In brief, we avoid five-step

latency in runs like the one in Figure 5.4(b) by starting batch2 immediately after m2

arrives, without waiting for batch1 to finish. In the original algorithm, batch2 has to

wait until batch1 finishes, because it removes all messages delivered in batch1 from the

proposals to batch2. In the modified version, we cannot remove these messages from M

because batch2 might start before batch1 finishes. Instead, learners take special care not

to deliver messages twice. Not removing delivered messages from M allows us also to

separate the roles of acceptors and learners in the new algorithm.

The algorithm is shown in Figure 5.5. The sending mechanism is similar to that in the

original version: in order to abcast a message m, a proposer broadcasts m to all acceptors

(lines 2–3). Note that we use ordinary broadcast, not reliable broadcast. To cope with

faulty proposers, we will use a different mechanism (lines 4–5), which also ensures the

uniformity of our solution. Section 5.1.4 will explain the details.

Each acceptor maintains a setM of received messages, and runs an infinite loop with

k = 1, 2, etc. The k-th iteration of this loop corresponds to the k-th received message. In

that iteration, the acceptor first waits until the k-th message m has been received, and

adds it to the setM of received messages. At this point,M contains the first k messages

received by the acceptor. Then, the acceptor proposes the current set M to the k-th

instance of Consensus (batchk). Compared to the original algorithm, delivered messages

are not removed fromM. This is because, in our model, learners (not acceptors) deliver

messages, so acceptors have no notion of “delivered” messages.
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1 M is the set of received messages, initially ∅

2 when a proposer executes abcast(m) do
3 broadcast m to the acceptors

4 when an acceptor sees m eventually do
5 abcast(m)

6 task broadcasting at acceptors is
7 for k = 1, 2, . . . do
8 wait for some message m /∈M
9 insert m intoM

10 batchk.propose(M)

11 task delivery at learners is
12 for k = 1, 2, . . . do
13 wait until batchk.decision(Bk)
14 deliver all undelivered messages from Bk in some deterministic order

Figure 5.5: A modified version of the Chandra-Toueg Atomic Broadcast algorithm, which
guarantees three-step delivery in all stable runs.

a1

a2

a3

p1

batch1

m
deliver(m)

a1

a2

a3

p1
m

deliver(m)

Figure 5.6: Two diagrams of a run that violates Termination Agreement.

The delivery task run at learners is similar to the broadcasting task at acceptors. Each

learner runs an infinite loop with k = 1, 2, etc. In each iteration k, the leader waits for the

Consensus instance batchk to decide. Recall that, in this instance, each correct acceptor

proposed the set of the first k messages it received. Therefore, the decision Bk contains

exactly k messages. The learner delivers all messages in Bk that have not been delivered

yet, in some deterministic order.

This algorithm meets the Validity, Agreement, and Termination Validity properties

for the same reasons as the original Chandra-Toueg algorithm. In the next section, we

will show how to satisfy Termination Agreement.

5.1.4 Termination Agreement

As explained so far, the algorithm does not satisfy Termination Agreement. For example,

it is possible that only faulty learners will deliver a given message m. Consider the scenario

from Figure 5.6, in which all learners are acceptors. There is only one message m sent in

the system, by a faulty proposer. This message is received only by one, faulty acceptor a1,

who proposes {m} to the Consensus instance batch1. Other acceptors have not received
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m, so they do not propose anything. The specification of Consensus does not include

the Termination Agreement property, so acceptor a1 can be the only one to decide. As

a result, message m is delivered by a1, and not delivered by correct learners a2 and a3,

which violates Termination Agreement.

Observe that having acceptors rebroadcast all received messages (Reliable Broadcast)

does not improve the situation. In our scenario, the only acceptor to receive m is a1,

so even if it rebroadcasts m1, other acceptors might not receive it because a1 is faulty.

Reliable Broadcast guarantees that all correct acceptors will eventually receive a message if

a correct acceptor received it. This correctness restriction is removed in Uniform Reliable

Broadcast [60]. This abstraction, however, requires two communication steps, which

would slow our algorithm down by one step. We need another way of ensuring Termination

Agreement.

The essence of the problem is that some/all of the messages sent by a faulty pro-

poser to correct acceptors might get lost. Our approach is to ensure that every delivered

message was abcast by a correct proposer, in which case Termination Validity will imply

Termination Agreement. Of course, we cannot make a faulty proposer correct nor can

we magically distinguish a correct proposer from a faulty one. What we can do is to

make other proposers abcast the same message and guarantee that at least one of them is

correct. In particular, since all acceptors are proposers, we can make all of them re-abcast

all messages that they “see”.

We say that an acceptor sees a message m if, in any Consensus instance, it received

any proposal containing m (not necessarily directly). For example, in Figure 5.6, all

acceptors see message m: acceptor a1 received m directly from the proposer, a2 received

m from a1, and a3 received m from a2.

Lemma C.1.1 shows that, in any Consensus algorithm, if some learner decides on x,

then at least one correct acceptor has seen x. For our Atomic Broadcast algorithm, this

implies that if any learner delivers m, then a correct acceptor has seen m. Since correct

acceptors abcast all messages they see (lines 4–5), Termination Validity guarantees that m

will be delivered by all correct learners (Termination Agreement).

The action specifier eventually do in line 4 indicates that re-abcasting seen messages

does not have to be performed immediately. Indeed, this action is necessary only to deal

with faulty proposers, to which Latency requirements do not apply. Delayed re-abcasting

reduces network traffic, because if all acceptors report having received a message m, then

m does not have to be re-abcast.

To sum up, we have shown that if a learner delivers a message, then it will be abcast

by at least one correct acceptor, which – by Termination Validity – implies that all correct

learners will eventually deliver it (Termination Agreement). This technique allows us to

automatically guarantee Termination Agreement in any Consensus-based algorithm that

satisfies Termination Validity.
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5.1.5 Delivery in three steps

In this section, we will investigate the latency of the algorithm from Figure 5.5 in stable

runs. The algorithm consists of two phases: proposers sending messages to the acceptors,

and the acceptors executing Consensus to let the learners deliver messages. The broadcast

phase takes one communication step. Consensus requires at least two communication steps

[66], and this can be implemented using a variety of known algorithms [35, 63, 73, 112] or

using the OTC-based Consensus algorithms from Chapter 4. All these algorithms have

the following property:

C2: In stable runs, all correct learners decide on the value proposed by the leader two

communication steps after the leader proposed.

For our Atomic Broadcast algorithm, Property C2 implies that a message m is deliv-

ered two communication steps after the leader proposed M containing m, that is, three

communication steps after m was abcast.

Latency. In stable runs, a message abcast by a correct proposer is delivered

by all correct learners in three communication steps.

5.1.6 Delivery in two steps

The modified Chandra-Toueg algorithm presented in the previous section achieves the

latency of three communication steps in stable runs, provided that the underlying Con-

sensus algorithm satisfies Property C2. Theorem 5.5.3 shows that, even in good runs,

this latency cannot be improved. We can, however, attain a two-step latency in ordered

runs – runs in which all correct acceptors receive proposers’ messages in the same order.

Assume that the underlying Consensus algorithm has the following property:

C1: In stable runs, if all correct acceptors proposed the same value, then all correct

learners decide on that value in one communication step.

In ordered runs, all correct acceptors receive messages from the proposers in the same

order, so in each instance batchk all acceptors propose the same setM. Therefore, if the

leader is correct, Property C1 implies that batchk decides one communication step after

all acceptors proposed, that is, one communication step after all acceptors received the

k-th message. This implies

Latency. In ordered stable runs, a message abcast by a correct proposer is

delivered by all correct learners in two communication steps.
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Related work

A Consensus algorithm satisfying Property C1 has been proposed by Brasileiro et al. [13].

Alternatively, one can use an OTC-based Consensus with the first round consisting of a

virtual coordinator and the one-step multi-value OTC from Section 2.3. Both algorithms

satisfy Property C1 and require n > 3f .

The above algorithms do not satisfy property C2. In fact, if acceptors issue different

proposals, they can take up to three communication steps to decide. Thus, using these

Consensus algorithms in the Atomic Broadcast algorithm from Figure 5.5 results in a four-

step delivery latency in stable runs that are not ordered. Note that the Optimistic Atomic

Broadcast protocol [99] exhibits the same latencies in stable runs: two communication

steps in ordered ones, and four in others.

5.1.7 Delivery in two steps and three steps

The latency of the Chandra-Toueg algorithm in stable runs depends on the properties

of the underlying Consensus algorithm. Section 5.1.5 showed that if Property C2 holds,

then all messages are delivered within three communication steps. Section 5.1.6 showed

that if Property C1 holds and the run is ordered, then messages are delivered within two

communication steps. Section 5.1.8 will present a Consensus algorithm that satisfies both

of these properties at the same time. Therefore, applying this algorithm to the Atomic

Broadcast algorithm from Figure 5.5 will result in

Latency. In stable runs, a message abcast by a correct proposer is delivered

by all correct learners in two steps if the run is ordered, and three steps

otherwise.

Related work

Figure 5.2 showed that, in terms of latency, the above Atomic Broadcast algorithm takes

the best of both Chandra-Toueg [16] and Optimistic Atomic Broadcast [99]. It guarantees

that, in stable runs, messages will be delivered in two steps if the run is ordered [99], and

in three otherwise [16].

Our Atomic Broadcast algorithm satisfies several lower bounds. Section 5.5.1 shows

that a latency of less than two communication steps is impossible in any run. The three-

step latency in good runs is also optimal (Theorem 5.5.3). Finally, the requirement n > 3f

is necessary for any Atomic Broadcast algorithm to deliver messages in two steps in good

runs [100].

The Consensus algorithm from Section 5.1.8 satisfies Properties C1 and C2. A Con-

sensus algorithm satisfying these properties can also be obtained in the OTC framework

directly by using a simple generalization of the crash-stop OTC algorithm T4 that was
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1 when acceptor a executes propose(x) do
2 broadcast(x, a)
3 propose1(x)
4 propose2(x, a)
5 proposeL(l) where l is the output of Ω

6 task decide at learners is
7 wait until decisionL(l)
8 wait until one of the conditions is true and decide on x
9 condition 1: decision1(x) and receive(x, l)

10 condition 2: decision2(x, l)
11 condition 3: decision1(x) and decision2(y, q) with q 6= l

Figure 5.7: The One-Two Consensus algorithm.

automatically discovered in Section 3.5. No such algorithm satisfying both C1 and C2

has been previously proposed in the literature. Known algorithms satisfy only C1 [13] or

only C2 [16, 63, 73, 112]. Guerraoui and Raynal [51] described a Consensus algorithm

that satisfies both Properties C1 and C2, but the former only for a single privileged

value.

5.1.8 Consensus with C1 and C2

Figure 5.7 presents a Consensus algorithm that satisfies both Properties C1 and C2 at

the same time. This algorithm uses three underlying Consensus instances: 1, 2, and L,

for 1-step decision, 2-step decision, and leader election, respectively. When an acceptor a

proposes x, it first broadcasts the pair (x, a), and then uses instance 1 to propose x,

instance 2 to propose the pair (x, a), and instance L to propose the current output of

its leader oracle Ω (lines 1–5). Instances 1 and L satisfy Property C1; they decide in

one communication step in stable runs in which all correct acceptors propose the same

value. Instance 2 satisfies Property C2; in stable runs, it decides two communication

steps after the leader proposed. For example, we can use the algorithm by Brasileiro

et al. [13] for instances 1 and L, and Paxos [73] for instance 2. This way, instances 1 and

L require n > 3f , and instance 2 requires n > 2f , leading to the total requirement of

n > 3f . See Sections 5.1.5 and 5.1.6 for other algorithms satisfying Properties C1 and C2,

respectively.

Lines 6–11 show the actions performed by a learner. It first waits until instance L

decides on some leader l. In stable runs, in which the output of Ω is the same at all

correct acceptors, this should happen within one communication step. Then, the learner

waits until one of the three conditions in Figure 5.7 holds. The learner decides on x in

the following situations:

1. Instance 1 decided on x, and the learner received (x, l) from the leader l decided by
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instance L. In stable runs in which all correct acceptors propose the same value,

this condition will hold at all correct learners in one communication step, satisfying

Property C1.

2. Instance 2 decided on (x, l), where l is the leader decided by instance L. In stable

runs, this condition will hold at all correct learners in two communication steps,

satisfying Property C2.

3. Instance 1 decided on x and instance 2 decided on some (y, q) with q different from

the decision l of instance L. Property C2 of instance 2 ensures that this condition

will never occur in stable runs. Together with the previous condition, it is used to

ensure that the algorithm will terminate in any run.

Appendix C.3 proves that the algorithm in Figure 5.7 implements Consensus.

5.2 Generic Broadcast

Theorem 5.5.3 shows that no Atomic Broadcast protocol can guarantee a latency of less

than three communication steps in all good runs. However, a smaller latency can be

achieved in some runs that occur frequently in practice. Section 5.1 discussed Atomic

Broadcast algorithms that deliver messages in two communication steps, provided that

acceptors receive them in the same order. In this section, we will investigate another

technique that allows us to deliver messages in two communication steps.

Pedone and Schiper [102] observed that, in most practical applications, the Agreement

property, which requires all messages to be ordered, is too strong. As an example, they

consider state machine replication [113], in which Atomic Broadcast is used by the clients

to send requests to the servers. The Agreement property guarantees that all servers

receive the requests in the same order, and thus perform the same sequences of operations.

However, performing operations in different orders is only dangerous if these operations

conflict in some sense. For example, two “read” requests or any two requests operating

on unrelated objects are non-conflicting and the order of their execution does not matter.

To formalize this observation, Pedone and Schiper [102] introduced Generic Broadcast,

which differs from Atomic Broadcast in that only conflicting messages must be delivered

in the same order. Non-conflicting messages can be delivered by different learners in

different orders. Formally, the Agreement property of Atomic Broadcast can be replaced

with

Generic Agreement. For any two conflicting messages m and m′, it is im-

possible that one learner delivers m without having previously delivered

m′, and another delivers m′ without having previously delivered m.
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The notion of conflict is captured by a binary conflict relation on the set of all possible

messages, which is a parameter of the problem [102]. This relation and therefore the

(infinite) set of all possible messages are both fixed and known to all processes in the

system. For example, one might consider a relation on read and write requests in which

all pairs of messages conflict unless both of them are reads.

To distinguish Atomic Broadcast and Generic Broadcast, in the latter abstraction,

proposers broadcast a message m by executing gbcast(m), and learners deliver it by exe-

cuting gdeliver(m).

5.2.1 Genuine Generic Broadcast

The Agreement property of Atomic Broadcast is stronger than that of Generic Broadcast,

so any protocol that implements the former abstraction also implements the latter. How-

ever, such implementations are not very useful because they defeat the purpose of Generic

Broadcast: to deliver non-conflicting messages faster than is possible with Atomic Broad-

cast. To distinguish “genuine” Generic Broadcast protocols from those that order all

messages, Pedone and Schiper [102] proposed the following definition. A Generic Broad-

cast algorithm is strict if there are runs in which non-conflicting messages are delivered

in different orders by different learners. Since Atomic Broadcast orders all messages, it

might seem that only “genuine” Generic Broadcast protocols are strict. However, this is

not true, because the strictness condition is trivial to satisfy by a simple modification of

any Atomic Broadcast protocol, without any performance gain [102].

To solve this problem, Aguilera et al. [5] proposed two definitions. A Generic Broadcast

algorithm is non-trivial if it uses an oracle, such as a failure detector or an agreement

abstraction, only if some of the messages conflict. A thrifty algorithm additionally ensures

that if eventually messages do not conflict, the algorithm will eventually stop using the

oracle. In this context, the oracle can be a failure detector or an agreement abstraction

such as Consensus or Atomic Broadcast.

In this thesis, we take a more direct approach and distinguish genuine and non-genuine

Generic Broadcast protocols based on their latency. We are interested only in Generic

Broadcast algorithms that offer better latency than is possible with Atomic Broadcast.

5.2.2 Optimistic Generic Broadcast

Optimistic Atomic Broadcast [99] takes two communication steps to deliver messages in

ordered runs. On the other hand, Generic Broadcast [5, 98, 102] delivers messages in two

steps in stable conflict-free runs, with no conflicting messages. Our Optimistic Generic

Broadcast algorithm subsumes these two approaches and delivers messages in two steps

in all stable conflict-ordered runs, where all conflicting messages are received by correct

acceptors in the same order.
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Algorithm all conflict-free ordered conflict-ordered

Chandra and Toueg [16] 3 3 3 3

Generic Broadcast [102] 4 2 4 4

Opt. Atomic Broadcast [101] 4 4 2 4

Atomic Broadcast (Section 5.1.7) 3 3 2 3

Opt. Generic Broadcast 3 2 2 2

Figure 5.8: A comparison of the latencies of several Atomic/Generic Broadcast algorithms
in four kinds of stable runs.

Every ordered run is conflict-ordered because if acceptors receive all messages in the

same order, then they also receive the conflicting ones in the same order. Similarly,

every conflict-free run is conflict-ordered because in the absence of conflicting messages,

acceptors receive all conflicting messages (none) in the same order. On the other hand,

there are conflict-ordered runs which are neither ordered nor conflict-free. For example,

assume that two acceptors a1 and a2 received messages in orders

a1 : m1,m2,m3, a2 : m2,m3,m1,

and only messages m2 and m3 conflict.

Figure 5.8 compares the latencies of several Atomic/Generic Broadcast algorithms in

four categories of stable runs: all, conflict-free, ordered, and conflict-ordered. For each of

these, it shows the number of communication steps needed by the algorithms to deliver

messages. Each of the algorithms has one category of runs for which it has been optimized.

The number of communication steps for these categories have been boxed. However, the

comparison shows that, in terms of latency, our algorithm performs at least as well as

the other algorithms in all categories. Moreover, our algorithm is strictly better than the

other known protocols, even if we ignore conflict-ordered runs, for which our algorithm

has been optimized. In particular, the latency of our algorithm never exceeds that of

the modified version of Chandra-Toueg algorithm from Section 5.1.3. Neither Optimistic

Atomic Broadcast [101] nor Generic Broadcast [102] has this property.

5.2.3 Lower bounds

The latency of our algorithm is optimal in all four categories. First, Section 5.5.1 shows

that no Generic Broadcast algorithm can deliver messages faster than in two communi-

cation steps. Theorem 5.5.3 shows that three communication steps in general stable runs

are also necessary. Internally, our Generic Broadcast algorithm uses the one-two step

Consensus from Section 5.1.8, which requires that less than a third of the acceptors are

faulty (n > 3f). Pedone and Schiper [100] showed that this condition is necessary for any

Generic Broadcast algorithm capable of delivering messages in two communication steps.
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5.2.4 Basic Generic Broadcast algorithm

In this section, we present a simplified version of our Optimistic Generic Broadcast al-

gorithm. This version is always safe; it works correctly if no failures occur, but it might

not make progress in the presence of faults. Section 5.2.5 then shows how to extend this

algorithm to obtain a fully correct Generic Broadcast algorithm.

Partial order on messages

The algorithm operates by agreeing on the delivery order of each pair of conflicting mes-

sages. More precisely, acceptors cooperate in building a partial order “→” on conflicting

messages, and learners deliver messages in any order consistent with this partial order.

For any two messages m and m′, the relation m→ m′ requires m to be delivered before m′.

Since non-conflicting messages can be delivered in any order, the relation “→” is defined

only for pairs of messages {m,m′} that conflict. For these, we expect that eventually

either m→ m′ or m′ → m.

The following diagram shows an example with four messages. All pairs of messages

conflict, except for m2 and m3, which can be delivered in different orders by different

learners.

m1
- m2

m3

?
- m4

?
-

m1
- m2

m3

?
- m4

.................-

Learners deliver messages in any order consistent with the partial order “→”. In the

first example, “→” is defined for all pairs of conflicting messages. Learners can deliver the

four messages in one of two orders m1,m2,m3,m4 or m1,m3,m2,m4, as both are consistent

with “→”. Messages m2 and m3 can be delivered in different orders by different learners.

This does not violate the Generic Agreement property because these messages do not

conflict.

In the second example, the relation between conflicting messages m2 and m4 is not

known (yet). As a result, none of them can be delivered. However, whatever the order of

m2 and m4 will be, one of the orders: m1,m3,m2,m4 and m1,m3,m4,m2 will be consistent

with “→”. These two orders share a common prefix m1,m3, so messages m1 and m3 can

be delivered straight away.

Another way of looking at the delivery process is to realize that m1 can be delivered

because m1 → m for all m 6= m1. After m1 has been delivered, we can deliver m3 because

m3 → m for all undelivered m’s conflicting with m3. Conflicting messages m2 and m4

will be delivered only when their order is known.
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1 when a proposer executes gbcast(m) do
2 broadcast m to the acceptors

3 when an acceptor receives m for the first time do
4 for all possible non-received messages m′ conflicting with m do
5 firstm,m′ .propose(m)

6 when firstm,m′ .decision(m) at a learner do
7 set m→ m′

8 when a learner has not gdelivered m,
9 and has m→ m′ for all undelivered messages m′ conflicting with m do

10 gdeliver(m)

Figure 5.9: Basic Generic Broadcast algorithm.

Basic algorithm

In our algorithm, learners agree on the partial order “→” by using Consensus to agree on

the delivery order of every pair of conflicting messages. In other words, for each unordered

pair {m,m′} of conflicting messages, we use a separate instance of Consensus. In each

such instance firstm,m′ , each acceptor a proposes the message m or m′ that arrived at a

first.

The resulting partial order is built based on decisions of the Consensus instances

firstm,m′ . If the instance decides on m, then m is deemed to be the first message of the

two (m → m′). Hence, if the instance firstm,m′ = firstm′,m decides on m′, then m′ → m.

Messages are delivered in an order consistent with “→”.

Figure 5.9 shows the basic algorithm. Proposers gbcast their messages using ordinary

broadcast. When an acceptor receives a message m, it proposes m to the instances

firstm,m′ for all messages m′ conflicting with m that have not been received (yet). In

other words, the acceptor proposes m to precede all such messages m′ in the delivery

order. A learner delivers a message m once it has m → m′ for all possible undelivered

messages m′ conflicting with m.

Since the set of all messages is usually infinite, the receive(m) action involves executing

infinitely many parallel instances of Consensus. Section 5.3 will show how to achieve this

with finite resources. Until then, we stick with the “infinite” version of the algorithm

because it is easier to understand.

The algorithm satisfies the safety properties: Validity and Generic Agreement. For

the former, we assume the existence of an artificial message ⊥, which is never sent and

conflicts with all other messages. Therefore, delivering any message m requires m → ⊥,

which means that some acceptor must have proposed m to firstm,⊥, so some proposer

must have gbcast m.

To prove Generic Agreement, we will assume, to derive a contradiction, that conflicting
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messages m and m′ are delivered in different orders at different learners. This would mean

that m→ m′ at one of the learners, and m′ → m at another, which is impossible by the

Agreement property of the underlying Consensus.

Termination Validity and Termination Agreement are not always satisfied by this basic

version of the Generic Broadcast algorithm.

Latency

The basic algorithm satisfies

Latency. In stable runs, a message gbcast by a correct proposer is delivered

by all correct learners within two steps if the run is conflict-ordered, and

three steps otherwise.

To prove this, we assume that the underlying Consensus algorithm satisfies:

C1: In stable runs, if all correct acceptors proposed the same value, then all correct

learners decide on that value in one communication step.

C2: In stable runs, all correct learners decide on the value proposed by the leader in

two communication steps after the leader proposed.

Such a Consensus algorithm was presented in Section 5.1.8.

In stable runs, any gbcast message is received by the leader in one communication step.

Property C2 ensures that the order is decided two communication steps later, leading to

three communication steps in total for latency. If all acceptors receive conflicting messages

in the same order, then they propose the same order to Consensus instances. Therefore,

Property C1 implies that a decision will be made in one communication step, resulting

in a total latency of two steps in conflict-ordered runs.

5.2.5 Full Generic Broadcast algorithm

Before presenting the full version of the algorithm, we will highlight two main problems

with the basic version in runs with failures.

Cycles

In scenarios with failures, the relation “→” built by the basic algorithm may contain

cycles, thereby leading to a deadlock. In stable runs, this is impossible, because Prop-

erty C2 ensures that “→” reflects the linear order of message reception at the leader. In

non-stable runs, however, different parts of the “→” relation might have been proposed

by different acceptors.
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As an example, consider a system with three acceptors a1, a2, a3. Each of these

processes receives three messages m1, m2, m3, in different orders:

a1 : m1,m2,m3 executes firstm1,m2
.propose(m1)

a2 : m2,m3,m1 executes firstm2,m3
.propose(m2)

a3 : m3,m1,m2 executes firstm3,m1
.propose(m3)

If all of the above proposals become decisions, then the cycle

m1 → m2 → m3 → m1

will be formed, and as a result none of these messages will ever be delivered.

To cope with cycles, we introduce the notion of blocked messages. A message is blocked

if it belongs to a cycle, or it is a successor of a blocked message. In our example, all three

messages are blocked, and any message m4 with, say, m2 → m4 would be blocked as well.

Obviously, blocked messages will never be delivered by the basic algorithm. In the full

version of the algorithm, we will sometimes deliver blocked messages to break cycles and

avoid deadlocks.

Faulty proposers

Another problem with the basic algorithm are faulty proposers. If a proposer crashes,

then its message may reach only a subset of the acceptors, which might prevent progress.

This problem has already been discussed in Section 5.1.4. Recall that the solution requires

acceptors to re-gbcast every message they see.

Algorithm

Figure 5.10 shows the full version of our algorithm. To resolve cycles and be able to

deliver blocked messages, we use an auxiliary Atomic Broadcast protocol. Since cycles do

not appear in stable runs, the latency of that Atomic Broadcast protocol does not affect

the latency of our algorithm.

A proposer gbcasts a message m by broadcasting it to all acceptors. As in the basic

version, when an acceptor receives m for the first time, it executes firstm,m′ .propose(m) for

all possible messages m′ that it has not received yet. It also abcasts m using the underlying

Atomic Broadcast protocol. As we will see later, this will help resolving potential cycles.

Lines 9–10 construct the order “→” in the same way as in the basic version. In the

full version, messages can be delivered either normally or during cycle resolution. To

distinguish these two kinds of deliveries, we call the former 1-delivery, and the latter

2-delivery. Messages are 1-delivered in exactly the same way as in the basic version

(lines 11–13).
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1 when a proposer executes gbcast(m) do
2 broadcast m to the acceptors

3 when an acceptor sees m eventually do
4 gbcast(m)

5 when an acceptor receives m for the first time do
6 for all possible non-received messages m′ conflicting with m do
7 firstm,m′ .propose(m)
8 abcast(m)

9 when firstm,m′ .decision(m) at a learner do
10 set m→ m′

11 when a learner has not gdelivered m,
12 and has m→ m′ for all undelivered messages m′ conflicting with m do
13 gdeliver1(m)

14 task cycle resolution at a learner is
15 repeat forever
16 wait until adeliver(m)
17 wait until m has been gdelivered or
18 all undelivered messages conflicting with m are blocked
19 if m has not been gdelivered yet then
20 gdeliver2(m)

Figure 5.10: Full Generic Broadcast algorithm.

For 2-delivery, each learner executes the cycle resolution loop over messages adelivered

by the underlying Atomic Broadcast protocol. For each such message m, the learner waits

until one of the two conditions holds. If m has already been delivered, then the loop goes to

the next iteration. Otherwise, if all undelivered messages conflicting with m are blocked,

then the learner 2-delivers m. The rationale behind this strategy is that, since none of the

blocked messages can be 1-delivered, it is safe to deliver m, thereby, possibly, breaking

the cycle. The use of Atomic Broadcast ensures that the messages m chosen to break

cycles are the same at all learners.

To guarantee Termination Agreement, we apply the method from Section 5.1.4: when

an acceptor sees a message, it re-gbcasts it (lines 3–4). In this algorithm, we assume that

an acceptor sees a message m iff it sees it in the underlying Atomic Broadcast algorithm

or in one of the Consensus instances firstm,m′ .

To show that lines 17–18 always terminate, we must prove that all never-blocked

messages m′ conflicting with m will eventually be delivered. Since m′ is not blocked, the

graph of paths m′ ← m1 ← · · · ← mk of undelivered messages does not contain cycles,

and forms a tree rooted at m′. The leaves of this tree will be successively 1-delivered,

resulting eventually in 1-delivery of m′.
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Example

Consider a run with six messages, and assume that the underlying Atomic Broadcast

protocol delivers the messages in order m1, . . . , m6.

m1
- m2

- m4
- m6

m3

-

m5

?....
....
....
....
....
....
....
....
..�

Both m1 and m3 can be 1-delivered because the only message conflicting with them (m2)

is their successor. Messages m1 and m3 can be delivered in any order; this does not violate

Generic Agreement because they do not conflict. At the same time, the cycle resolution

task adelivers m1. Since the only message conflicting with it (m2) is blocked by the cycle

m2 → m4 → m5 → m2, message m1 is 2-delivered if it has not been 1-delivered yet.

After m1 and m3 have been delivered, no other message can be 1-delivered, because

all messages are blocked. The cycle resolution task adelivers m2, and since all undelivered

messages conflicting with it (m4,m5) are blocked, m2 is 2-delivered. This delivery breaks

the cycle, and now all undelivered messages conflicting with m4 (i.e., m5 and m6) are its

successors, so m4 is 1-delivered. Conflicting messages m5 and m6 cannot be delivered until

their order is known. If, for example, m5 → m6, then message m5 will be 1-delivered,

followed by m6.

5.3 Handling infinitely many instances of Consensus

Our Generic Broadcast algorithm uses infinitely many Consensus instances. This section

briefly explains how to implement an infinite number of virtual instances of a distributed

algorithm using only finitely many physical instances at every process. As we will see,

this is possible, provided that there are only finitely many different virtual instances. For

example, in our Generic Broadcast algorithm from Figure 5.10, a process proposes the

same message m to an infinite number of instances of Consensus.

Let us start with finitely many virtual instances, and denote these by i1, . . . , ik. The

usual approach is to tag any event (a message or a function call) with the identifier of the

instance. Each process runs k physical instances of the algorithm. Every event tagged

with ik is directed to the k-th instance, and every event produced by the k-th instance is

tagged with ik. In this case, virtual and physical instances are the same, so this method

can be used only with finitely many virtual instances.

To implement an infinite number of virtual instances, some of them must share a single

physical instance. The algorithm in Figure 5.11 maintains a family I of disjoint sets of

virtual instances, initially empty. Each element I ∈ I is a set of virtual instances that
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1 I is the family of disjoint sets of virtual instances, initially empty

2 when a process receives an event e tagged with the set E do

3 for each I ∈ I do { refine I }
4 split I into I ∩ E and I \ E

5 J ← E { compute J = E \
⋃

I }
6 for each I ∈ I do
7 J ← J \ I
8 add J to I

9 for each I ∈ I do { pass the event to the appropriate physical instances }
10 if I ∩ E 6= ∅ then
11 send the event e to instance AI

Figure 5.11: Emulating infinitely many virtual instances.

share a single physical instance denoted as AI . All events generated by AI are tagged

with the set I.

When an event e tagged with a set of virtual instances E arrives, the process does

the following. First, if some virtual instances sharing the same physical instance of the

algorithm start to differ, the physical instance is cloned. This is done by splitting all

elements I ∈ I into I ∩ E and I \ E, so that every element of I is either a subset of E

or disjoint with it. When such a split happens, the physical instance AI is replaced with

two new instances AI∩E and AI\E, both identical to AI . Also, a new physical instance is

created for J = E \
⋃

I to ensure that every virtual instance corresponds to some physical

instance; in other words, we want to make sure that E ⊆
⋃

I. Any instances AJ with

J = ∅ introduced by the above steps are ignored. Finally, the event is sent to all physical

instances corresponding to any virtual instances in E.

Example

Consider a two-acceptor system running four virtual instances of Atomic Commitment,

with the following proposals:

i1 i2 i3 i4

acceptor a1 commit commit commit abort

acceptor a2 commit abort abort abort

Acceptor a1 proposes commit to virtual instances i1, i2, i3, and abort to instance i4.

In other words, it makes two invocations of the algorithm from Figure 5.11. The first in-

vocation, with e = propose(commit) and E = {i1, i2, i3}, encounters I = ∅. It adds J =

E = {i1, i2, i3} to I and creates a new physical instance A123 corresponding to {i1, i2, i3}.

Finally, the event e = propose(commit) is passed to physical instance A123. The second
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invocation, with e = propose(abort) and E = {i4}, encounters I = {{i1, i2, i3}}. Sim-

ilarly, it adds {i4} to I, creates a new instance A4, and passes e to it. At this point,

acceptor a1 has I = {{i1, i2, i3}, {i4}}.

At the same time, acceptor a2 proposes abort to virtual instances i2, i3, i4, and com-

mit to instance i1. The first invocation, with e = propose(abort) and E = {i2, i3, i4},

encounters I = ∅, adds {i2, i3, i4} to I, creates a new instance A234, and passes e to it.

At this point I = {{i2, i3, i4}}.

Consider a message (event) e informing a2 that a1 proposed commit to instances i1,

i2, i3. To make this example more interesting, assume e arrives at a2 before a2 proposes

commit to instance i1. This results in the algorithm from Figure 5.11 being invoked

with E = {i1, i2, i3} and I = {{i2, i3, i4}}. First I = {{i2, i3, i4}} is refined by splitting

I = {i2, i3, i4} into I∩E = {i2, i3} and I \E = {i4}, resulting in I = {{i2, i3}, {i4}}. This

operation replaces A234 with two identical physical instances A23 and A4. Then, the set

E \
⋃

I = {i1} is added to I, and the corresponding physical instance A1 is created. The

message e is passed to instances A1 and A23. By proposing abort to virtual instance i4,

acceptor a2 does not change I nor does it create any new physical instances. The event

propose(abort) is passed to A4.

In a similar way, a1 will eventually end up with the same I = {{i1}, {i2, i3}, {i4}}.

No further refinement will happen, because both acceptors issued the same proposal to

virtual instances i2 and i3. As a result, these instances will be handled by the same

physical instance A23:

A1 A23 A4

acceptor a1 commit commit abort

acceptor a2 commit abort abort

5.3.1 Representing sets

The above method can be used to execute an infinite number of Consensus instances at

the same time, provided that we can represent infinite sets of instances in a finite form.

For use in the algorithm from Figure 5.11, the families of representable sets must be closed

under subtraction and intersection. Closedness under set union is not necessary; E \
⋃

I

can be computed by iteratively subtracting elements of I from E. In this section, we

briefly discuss such representations for some families of sets that are useful in our Generic

Broadcast algorithm.

Border sets

Finite sets can be trivially represented by listing their elements. The family of border

sets contains all sets that are either finite (F ) or are complements of finite sets (F ). For
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example, the set {m1,m2} consists of all messages except for m1 and m2. The representa-

tion of a border set consists of the finite set F and a flag indicating whether the set is F

or F . The family of border sets is closed under negation and intersection (which implies

subtraction):

F1 ∩ F2 = F1 ∩ F2, F1 ∩ F2 = F1 \ F2,

F1 ∩ F2 = F2 \ F1, F1 ∩ F2 = F1 ∪ F2.

M-sets

If only messages m1 and m2 have been received, then the border set {m1,m2} represents

the set of all non-received messages. Can we use border sets to represent more complex

sets such as “the set of all non-received messages conflicting with m”? The answer depends

on the conflict relation. It is often the case that messages can be divided into a small

number of categories (e.g., “read” and “write”), such that conflict properties of messages

are determined by the categories they belong to. Consider a system with k categories

C1, . . . , Ck, where Ci is the set of all messages in the i-th category. For any border sets

B1, . . . , Bk satisfying Bi ⊆ Ci, we define an m-set

〈B1, . . . , Bk〉 = B1 ∪ · · · ∪Bk

to be the set containing all messages from sets B1, B2, . . . , Bk.

As an example, consider a system with two categories: “read” and “write”, where any

two requests conflict unless they are both reads. Assume that requests w1, w2, r1, and r2

have been received. The set of all non-received requests conflicting with r2 is 〈∅, {w1, w2}〉,

that is, no read requests and all possible write requests except for w1 and w2.

The family of m-sets is closed under subtraction and intersection:

〈B1, . . . , Bk〉 ∩ 〈B
′
1, . . . , B

′
k〉 = 〈B1 ∩B′

1, . . . , Bk ∩B′
k〉,

〈B1, . . . , Bk〉 \ 〈B
′
1, . . . , B

′
k〉 = 〈B1 \B′

1, . . . , Bk \B′
k〉.

Sets of message pairs

In our Generic Broadcast algorithm, each Consensus instance is identified by an unordered

pair of messages. By {{m,M}} we denote the set of pairs containing m and one element

of the m-set M :

{{m,M}} = { {m,m′} | m′ ∈M }

For example, M can be the set of all possible non-received messages m′ that conflict

with a given message m. Consider the actions performed by acceptors in our Generic
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Broadcast algorithm in Figure 5.10 upon receiving a new message m. We can replace

infinitely many invocations of firstm,m′ .propose(m) with a single first{{m,M}}.propose(m).

The family of sets {{m,M}} can be used in the algorithm from Figure 5.11 because it is

closed under intersection and subtraction (we assume m 6= m′):

{{m,M}} ∩ {{m,M ′}} = {{m,M ∩M ′}},

{{m,M}} \ {{m,M ′}} = {{m,M \M ′}},

{{m,M}} ∩ {{m′,M ′}} =







{{m, {m′}}} if m ∈M ′ and m′ ∈M,

{{m, ∅}} otherwise,

{{m,M}} \ {{m′,M ′}} =







{{m,M \ {m′}}} if m ∈M ′ and m′ ∈M,

{{m,M}} otherwise.

5.3.2 Representing intervals

In Section 5.4, we will describe an Atomic Broadcast algorithm that uses sets of instances

identified by intervals of real numbers. This section shows how to represent these sets.

Let us start with the family of closed-open intervals [a, b) = {x | a ≤ x < b }. Intersection

is easy to define

[a, b) ∩ [a′, b′) =
[

max {a, a′}, min {b, b′}
)

However, subtraction is tricky because it might produce a union of two intervals, for

example

[1, 5) \ [2, 3) = [1, 2) + [3, 5).

In general, by X = X1 + · · · + Xk we mean that {X1, . . . , Xk} is a partition of X. In

other words, X =
⋃

i Xi and sets Xi are pairwise disjoint.

The algorithm from Figure 5.11 assumes that for any representable sets I and J ,

sets I ∩ J and I \ J are also representable. Figure 5.12 shows an extended version that

allows I \ J to be a disjoint union of representable sets. In other words, it assumes that

I \ J = I1 + · · · + Ik for some representable sets Ii, that is, {I1, . . . , Ik} is a partition of

I \ J . This modification allows us to represent all intervals [a, b) = {x | a ≤ x < b }; the

necessary operations are defined as

[a, b) ∩ [a′, b′) =
[

max {a, a′}, min {b, b′}
)

[a, b) \ [a′, b′) =
[

a, min {a′, b}
)

+
[

max {a, b′}, b
)

[a, b) = ∅ ⇔ a ≥ b

Other intervals, such as [a, b], (a, b] or (a, b), can be represented in a similar way.

Consider an extended set of real numbers, such that for each number x, the symbol x+
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1 I is the family of disjoint sets of virtual instances, initially empty

2 when a process receives an event e tagged with the set E do

3 for each I ∈ I do { refine I }
4 let {I1, . . . , Ik} be a partition of I \ E
5 split I into I ∩ E and I1, . . . , Ik

6 let J = {E} { compute J such that
⋃

J = E \
⋃

I }
7 for each I ∈ I do
8 for each J ∈ J do
9 let {J1, . . . , Jk} be a partition of J \ I

10 replace J in J with J1, . . . , Jk

11 for each J ∈ J do
12 add J to I and create a new physical instance AJ

13 for each I ∈ I do { pass the event to the appropriate physical instances }
14 if I ∩ E 6= ∅ then
15 send the event e to instance AI

Figure 5.12: Emulating infinitely many virtual instances (extended version).

represents a “number” that is infinitesimally larger than x. Formally, consider R+ =

{x, x+ | x ∈ R }, with the order “<R+” defined as follows

x <R+ x+ for all x ∈ R and x(+) <R+ y(+) ⇐⇒ x <R y for any x 6= y,

where “<R” is the standard order “<” on R.

Then, we can represent all intervals in R as closed-open intervals over R+

[a, b] = {x | a ≤ x ≤ b } = [a , b+) ∩ R, [a, b) = {x | a ≤ x < b } = [a , b) ∩ R,

(a, b] = {x | a < x ≤ b } = [a+, b+) ∩ R, (a, b) = {x | a < x < b } = [a+, b) ∩ R.

5.4 Atomic Broadcast in closed groups

Défago et al. [26] distinguish between Atomic Broadcast algorithms operating in open

groups and those operating in closed groups. In our model, open groups correspond to

the scenario in which proposers, who abcast messages, are not necessarily acceptors. In

closed groups, the sets of acceptors and proposers are the same. All broadcast protocols

presented so far in this chapter can be used in open groups because they do not assume

anything about the proposers.

The open-group model is more general, so algorithms designed for it remain correct

in the closed-group model. However, restricting the set of proposers to the acceptors may

enable us to achieve a latency that would be impossible in open groups. In this section,



166 CHAPTER 5. ATOMIC BROADCAST

we present an Atomic Broadcast protocol for closed groups that delivers messages in two

communication steps in all good runs. In comparison, the best algorithm for open groups

achieved a latency of two steps only when all conflicting messages were received by all

correct acceptors in the same order (Section 5.2). Theorem 5.5.3 shows that no open group

Atomic Broadcast protocol can guarantee latency of less than three communication steps

in all good runs. The closed-group Atomic Broadcast algorithm presented in this section

guarantees a two-step latency in all good runs, which is optimal (Section 5.5.1).

The algorithm presented in this section uses real-time clocks. It delivers messages in

two steps in all good runs in which the clocks are synchronized. However, the good-run

and clock-synchronization assumptions are required only to meet the Latency property;

the other properties are satisfied even if these assumptions do not hold.

Our algorithm satisfies several lower bounds. Firstly, it requires only a majority of

correct acceptors (n > 2f) and the ♦S failure detector [16]. Secondly, in good runs,

it delivers all messages in two communication steps (Section 5.5.1). Thirdly, Theorems

5.5.1 and 5.5.4 show that the good-run and clock-synchronization conditions, under which

it achieves the two-step latency, cannot be relaxed. Finally, our algorithm is quiet, that

is, no network messages are sent unless some messages are abcast.

5.4.1 Related work

Défago et al. [26] survey more than fifty Atomic Broadcast protocols. In this section,

however, we are only interested in algorithms which exhibit latency of less than three

communication steps in all good runs. Theorems 5.5.1 and 5.5.3 show that such algorithms

require synchronized real-time clocks and cannot handle open groups. The only two

algorithms satisfying these criteria are HAS [25] and the algorithm proposed by Vicente

and Rodrigues [117].

Vicente and Rodrigues [117] proposed an Atomic Broadcast algorithm for closed groups

that achieves a latency of 2d + δ, where δ > 0 is an arbitrarily small constant. The price

for having a very small δ is high network traffic; the number of messages used by the

algorithm is proportional to 1/δ. Moreover, these messages are sent even if no messages

are abcast in the system. In comparison, our algorithm achieves the latency of 2d and

sends network messages only if acceptors actually abcast messages.

To the best of our knowledge, no other Atomic Broadcast algorithm with latency of

less than 3d in all good runs has been proposed in the literature. The aforementioned HAS

[25] bases its safety on timing assumptions, which can lead to the violation of Agreement

if they do not hold [26]. The optimal latency of two communication steps reported in

[39, 89] results merely from not counting the first step, in which the proposers broadcast

their messages to the acceptors.
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1 when an acceptor executes abcast(m) do
2 insert m intoM

3 task broadcasting at acceptors is
4 for t = t0, t0 + δ, t0 + 2δ, . . . do
5 M← ∅
6 wait until current-time ≥ t + δ
7 messagest.propose(M)

8 task delivery at learners is
9 for t = t0, t0 + δ, t0 + 2δ, . . . do

10 wait until messagest.decision([M1, . . . ,Mn])
11 for i = 1, 2, . . . , n do
12 adeliver all messages inMi in some deterministic order

Figure 5.13: Basic version of the two-step Atomic Broadcast algorithm for closed groups.

5.4.2 Basic version

We will start by presenting a simplified version of the algorithm. This version is always

safe; it works correctly if no failures occur, but it might not progress in the presence of

faults. The delivery latency of our basic algorithm is 2d + δ, where δ > 0 is an arbitrarily

small parameter. The next section will show to reduce the latency to 2d and extend the

algorithm to obtain a fully correct Atomic Broadcast algorithm.

The algorithm uses a sequence of instances of Interactive Consistency, which was

discussed in detail in Section 4.4.6. Recall that in Interactive Consistency, each acceptor ai

issues a proposal xi, and all learners agree on some vector [y1, . . . , yn]. In good runs, this

vector is [x1, . . . , xn], that is, it contains acceptors’ proposals. If the run is not timely or

acceptor ai is faulty, the entry yi can be abort instead of xi. The Agreement property

holds in all runs; the decision vector [y1, . . . , yn] is the same at all learners.

Figure 5.13 shows the basic version of our Atomic Broadcast algorithm. We assume

that acceptors are equipped with perfectly synchronized real time clocks. Conceptually,

we divide the continuous real time into discrete timeframes of length δ each. We label

the timeframes by the times at which they begin, that is, timeframe t starts at time t and

ends at time t + δ. The first timeframe is t0, the next is t0 + δ, then t0 + 2δ, etc.

When an acceptor wants to abcast a message m, it just inserts it to its set M. This

set is emptied at the beginning of each timeframe. At the end of each timeframe, all

messages inM are broadcast together in a single batch.

To perform this batch broadcasting, the acceptor loops over all timeframes (lines 3–7).

In each timeframe t, the acceptor empties the set M, and waits until the timeframe

finishes, at time t + δ. At this time, M contains all messages abcast by the acceptor in

timeframe t. The acceptor proposesM to an Interactive Consistency instance messagest.

Each timeframe t uses its own, independent Interactive Consistency instance messagest.
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The delivery task at each learner also contains a loop that iterates over all timeframes.

For each timeframe t, the learner first waits until the Interactive Consistency instance

messaget decides on some vector [M1, . . . ,Mn]. In good runs, each Mi is the set of

messages abcast by acceptor ai in timeframe t. For all acceptors a1, . . . , an, the learner

delivers all messages in Mi in some deterministic order. The value abort is treated

synonymously with the empty set ∅, that is,Mi = abort ⇐⇒ Mi = ∅.

The above algorithm is always safe. The Agreement property of Interactive Consis-

tency implies that all timeframes decide on the same sets of messages. Therefore, the

sequences of delivered messages are the same at all learners (Agreement). For Validity,

consider the decision vector [M1, . . . ,Mn] of instance messagest. Each entry Mi can

either contain the messages ai abcast during timeframe t or be empty (abort). In both

cases,Mi contains only messages abcast by ai (Validity).

Liveness properties are guaranteed only in good runs. For Termination Validity, notice

that each message m abcast by a correct acceptor ai eventually becomes an element of

ai’s proposal to some instance messagest. Consider the decision vector [M1, . . . ,Mn]

of instance messagest. In good runs, the Validity property of Interactive Consistency

guarantees that m ∈ Mi. Since all instances messagest will eventually decide, message

m will eventually be delivered by all correct learners. In non-good runs, however,Mi can

be empty (abort) and message mi might not be delivered. In good runs, all proposers

(acceptors) are correct, so Termination Agreement follows from Validity and Termination

Validity.

Latency

In good runs, our algorithm delivers all messages within 2d + δ time. Consider any

message m abcast by acceptor ai in timeframe t, that is, between t and t + δ. At time

t+ δ, all acceptors propose to messagest the set of messages received in timeframe t. The

instance messagest, implemented as in Section 4.4.6, decides on vector [M1, . . . ,Mn] in

two communication steps from t+δ, that is, at time t+δ+2d. Since m ∈Mi, message m

is delivered at time t + 2d + δ, at most δ + 2d units of time after it was sent. The Atomic

Broadcast algorithm by Vicente and Rodrigues [117] achieves the same latency.

5.4.3 Full version

Section 5.4.2 presented an algorithm with a latency of 2d + δ, where δ is the size of each

timeframe. The smaller the timeframe, the smaller the delivery latency. However, each

timeframe requires a separate instance of Interactive Consistency. As a result, the amount

of resources required (messages and computation) is inversely proportional to the size of

the timeframes. As the size of the timeframes goes to zero, the latency approaches 2d

and the resource usage goes to infinity. The algorithm by Vicente and Rodrigues [117]
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suffers from the same problem. In this section, we will modify the basic algorithm from

Section 5.4.2 to guarantee the latency of 2d. Effectively, we will show how to set the

timeframe size δ to 0 without incurring infinite resource usage.

Zero-sized timeframes correspond to each real time t having a separate timeframe t.

In this case, the basic algorithm from Figure 5.13 suffers from two problems. First, it

uses an infinite number of instances messagest. Second, the broadcasting and delivery

tasks contain loops that iterate over now infinite number of timeframes. We will deal with

these problems in the next two sections.

Infinitely many instances

First, we present a method of dealing with an infinite number of messaget instances. As

shown in Section 5.3, executing an infinite number of instances with finite resources is

possible, provided that there are only finitely many different instances. We will show

that this is true in this case. Let us call a given timeframe active iff at least one acceptor

abcasts a message in that timeframe. At any time, the number of active timeframes t

is finite, because the acceptors have abcast only a finite number of messages. Observe

that all instances messaget that correspond to inactive timeframes t are identical: all

acceptors propose ∅ and the decision vector is [∅, . . . , ∅]. Therefore, at any given time,

the number of different instances messaget is finite, so the method from Section 5.3 can

be used to emulate them with finite resources.

As an example, consider a run with two acceptors, in which acceptor a1 abcasts mes-

sage m1 at time t1, and acceptor a2 abcasts message m2 at time t2 > t1. The following

table shows actions executed by processes in the timeframes from intervals (t0, t1), [t1, t1]

(denoted from now on as [t1]), (t1, t2) and [t2].

timeframes acceptor a1 acceptor a2 learners

(t0, t1) propose(∅) propose(∅) decision([∅, ∅])

[t1] propose({m1}) propose(∅) decision([{m1}, ∅])

(t1, t2) propose(∅) propose(∅) decision([∅, ∅])

[t2] propose(∅) propose({m2}) decision([∅, {m2}])

All timeframes in (t0, t1) and (t1, t2) are inactive, so both acceptors propose ∅ and the

decision vector is [∅, ∅]. In timeframe t1, acceptor a1 proposes {m1}, acceptor a2 proposes

∅, so the decision vector is [{m1}, ∅]. Similarly, in timeframe t2, acceptor a1 proposes

∅, acceptor a2 proposes {m2}, and the decision vector is [∅, {m2}]. As a result, all cor-

rect learners deliver m1 followed by m2. In this example, the infinite number of virtual

instances messagest with t0 ≤ t ≤ t2 can be emulated by four physical instances of Inter-

active Consistency corresponding to intervals (t0, t1), [t1], (t1, t2), and [t2]. Representing

intervals was discussed in Section 5.3.2.
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In the basic algorithm from Section 5.4.2 with δ = 0, acceptor a1 would execute

messagest.propose(∅) for each of the infinitely many timeframes t ∈ (t0, t1). Each of

these executions messagest.propose(∅) would take place at a different time t. On the other

hand, the method described in the previous paragraph processes all instances messagest

with t ∈ (t0, t1) in one step, so it requires all executions messagest.propose(∅) to take

place at the same time. Fortunately, all timeframes t ∈ (t0, t1) are inactive; no messages

are sent, so all executions messagest.propose(∅) can be delayed until the next active time,

t1.

Infinite loops

In the basic algorithm in Figure 5.13, both broadcasting and delivery tasks contain loops

that enumerate all timeframes. If δ > 0, the set of all timeframes is countable, and we

can easily enumerate them: t0, t0 + δ, t0 + 2δ, etc. With δ = 0, the set of all timeframes

is no longer countable, so it cannot be enumerated.

Fortunately, enumerating all timeframes, one by one, is not necessary. All messaget

instances corresponding to inactive timeframes are identical; all acceptors propose ∅ and

the decision vector is [∅, . . . , ∅]. Therefore blocks of contiguous inactive timeframes, such

as (t0, t1) or (t1, t2) in our example, can be processed in one step.

This observation leads to the advanced version of our Atomic Broadcast algorithm,

shown in Figure 5.14. Consider the delivery task first and compare it with the delivery

task in Figure 5.13. In lines 15–22, a simple loop enumerating all timeframes in the basic

algorithm has been replaced by a more complicated structure that iterates over active

timeframes. The learner maintains a variable told, initially t0. Every iteration of the loop

assumes that all timeframes in (t0, told] have already been dealt with.

The loop first waits until there is t > told such that all instances messagest′ with t′ ∈

(told, t) have decided on [∅, . . . , ∅]. All entries in this vector are ∅, therefore no messages are

delivered and no action needs to be taken for any messagest′ with t′ ∈ (told, t). Then, the

learner waits until instance messagest has itself decided on some vector [M1, . . . ,Mn].

All messages in this vector are delivered, exactly as in the basic algorithm in Figure 5.13.

Finally, the loop updates told to t, to indicate that all timeframes in (t0, t] have been dealt

with.

As in the basic algorithm, whenever an acceptor abcasts a message m, it inserts m

into the set M. In addition, the acceptor broadcasts a message informing all acceptors,

including itself, that the timeframe corresponding to the current real time current-time

should be considered active (lines 1–3).

The transformation the broadcasting loop from the basic algorithm is similar to that

of the delivery loop. Instead of enumerating all timeframes, we only enumerate (some)

active ones. The acceptor maintains variable told, which indicates that the acceptor has

proposed in all instances messagest with t ∈ (t0, told]. Each iteration of the loop starts
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1 when an acceptor executes abcast(m) do
2 insert m intoM
3 broadcast “active t” with t = current-time

4 task broadcasting at acceptors is
5 told ← t0
6 repeat forever
7 M← ∅
8 wait until received “active t” with some t > told
9 wait until current-time ≥ t

10 for all t′ ∈ (told, t) do
11 messagest′.propose(∅)
12 messagest.propose(M)
13 told ← t
14 increase current-time

15 task delivery at learners is
16 told ← t0
17 repeat forever
18 wait until messagest′.decision([∅, . . . , ∅]) for all t′ ∈ (told, t) for some t > told
19 wait until messagest.decision([M1, . . . ,Mn])
20 for i = 1, 2, . . . , n do
21 adeliver all undelivered messages inMi in some deterministic order
22 told ← t

23 task retransmission at an acceptor is
24 periodically do
25 for all seen messages m do
26 abcast(m)

Figure 5.14: Full version of the two-step Atomic Broadcast algorithm for closed groups.

with emptying the setM and waits for a message “active t” with some t > told, possibly

sent by the acceptor itself. Then, the acceptor waits until the current time is at least t.

This is done to eliminate anomalies caused by messages “active t” from the future, sent

by acceptors whose clock skew exceeds the maximum message transmission time d. If the

clocks are synchronized, the condition current-time ≥ t always holds.

After completing the two wait instructions, the acceptor proposes ∅ to all instances

messaget′ with t′ ∈ (told, t) and the current value of M to messagest. If the message

“active t” comes from the acceptor itself, then the set M will contain the message that

has just been abcast by this acceptor. If “active t” comes from another acceptor, then

M is usually empty. The loop ends with setting told to t, to indicate that the acceptor

proposed in all instances messagest with t ∈ (t0, t].

The statement “increase current-time” explicitly requires the real time clock to progress

at the end of each iteration. This ensures that no more messages will be abcast in the

current timeframe. Without such a progress condition, synchronized clocks could be triv-
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ially implemented by reporting the same time 0 at all acceptors all the time. Achieving

a delivery latency of two steps under such conditions would violate Theorem 5.5.1.

Latency

To simplify the reasoning, we will assume that t0 = −∞. Consider a good run in which

only one message m is abcast, by acceptor a1 at time t. Acceptor a1 adds m to its setM

and broadcasts “active t”. Since self-addressed messages incur no delay, the broadcasting

task at acceptor a1 receives “active t” at time t. No messages have been sent so far, so

told = −∞, and the current time is t, so the conditions of both wait instructions hold.

The acceptor proposes ∅ to all instances messagest′ with t′ ∈ (−∞, t). It also proposes

M = {m} to messagest.

All other acceptors receive “active t” at time t+d. They did not abcast any messages,

so their sets M are empty. As a result, after receiving “active t” at time t + d, they

propose ∅ to all instances messagest′ with t′ ∈ (−∞, t].

Consider any instance messaget′ with t′ ∈ (−∞, t]. All acceptors (except possibly a1)

proposed ∅ at time t+d. Acceptor a1 proposed at time t. Since ∅ = abort is the privileged

value, the Latency property of Interactive Consistency from Section 4.4.6 implies that any

instance messaget′ with t′ ∈ (−∞, t] will decide by time t + 2d.

Consider the delivery loop at a learner. It starts by waiting for all instances messagest′

with t′ ∈ (−∞, t) to decide on [∅, . . . , ∅] and the instance messagest to decide on some

vector [M1, . . . ,Mn]. In our case, these two conditions will be met by time t+2d, with the

vector [M1, . . . ,Mn] being [{m}, ∅, . . . , ∅]. As a result, the learner will deliver message m

by time t + 2d, achieving a latency of 2d. It turns out that this latency is achieved in all

good runs, regardless of the number of messages being abcast at the same time:

Latency. In good runs with synchronized clocks, every abcast message is

delivered by all correct learners within two communication steps.

Termination properties

None of the changes we have made so far to the basic algorithm from Section 5.4.2 affect

the liveness of the algorithm; messages sent by correct acceptors in untimely runs might

still not be delivered. This is because, in such runs, Interactive Consistency instances

messaget can decide on [∅, . . . , ∅], regardless of the proposals. Some modifications must

be made to the basic algorithm to avoid this problem.

The retransmission task in lines 23–26 periodically re-abcasts all seen messages. The

failure detector ♦S guarantees that there is a correct acceptor that is eventually never

suspected. This acceptor will see all messages abcast by correct acceptors, and will

keep abcasting them until they get delivered (Termination Validity). As explained in

Section 5.1.4, re-abcasting all seen messages also ensures Termination Agreement.
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We assume that Interactive Consistency instances messaget are implemented as in

Section 4.4.6: each messaget consists of Individual Consensus instances messaget.Indi

with i = 1, . . . , n. In this algorithm, we say that an acceptor sees a message m iff it sees

a setM∋ m in some of the Individual Consensus instances messaget.Indi.

5.5 Lower bounds

In this section, we prove several impossibility results for Atomic Broadcast protocols that

can tolerate one faulty acceptor (f > 0). Unless stated otherwise, the results apply to the

closed-group model, and therefore also to the more general open-group model.

5.5.1 Two steps are required in any run

Any Atomic/Generic Broadcast protocol requires at least two communication steps in any

run. To obtain a contradiction, assume that an acceptor a atomically delivers its own

message m faster than in two communication steps, that is, before getting any feedback

from other processes. If acceptor a crashes immediately after delivering m and all messages

from a to other processes are lost, then no other learner will ever receive or deliver m.

This would violate Termination Agreement. Pedone and Schiper [100] proved a similar

result.

5.5.2 Latency below three steps requires synchronized clocks

Section 5.4 shows a closed-group algorithm that guarantees the latency of 2d in all good

runs in which all acceptors are equipped with perfectly synchronized clocks. In this

section, we will show that the synchronized clocks assumption is necessary.

Theorem 5.5.1. Only Atomic Broadcast algorithms that use synchronized clocks can

guarantee a latency of less than 3d in all good runs.

Proof. To obtain a contradiction, assume the existence of an Atomic Broadcast algorithm

that does not use synchronized clocks but in good runs delivers all messages within K < 3

communication steps. We will show that such an assumption leads to a contradiction.

Consider a family of good runs r(k) for k = 0, 1, . . . , n, in which acceptors a1 and a2

abcast two messages m1 and m2, respectively, at time 0, and no other messages are

abcast. All processes are correct and almost all messages have the latency of d. The

only exceptions are some messages sent at time 0: those from acceptor a1 to acceptors

a1, . . . , ak, and those from a2 to ak+1, . . . , an. These messages have the latency of d − ε,

for some small ε > 0 which we will define later. All other messages have a latency of d.

We will first prove that, for any k = 1, . . . , n, runs r(k) and r(k − 1) deliver messages

m1 and m2 in the same order. For each i ∈ {k − 1, k}, consider a run rk(i), which is
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a1

a2

a3

0 d 2d

0 d− ε 2d− ε

(a) r(0)

a1

a2

a3

1− 2ε 2− 2ε 3− 2ε

0 d− ε 2d− ε

(b) r′

Figure 5.15: Runs r(0) and r′ used in the proof.

identical to r(i), except that all messages sent by acceptor ak to other processes at time

d−ε or later are lost. Runs r(i) and rk(i) are identical until time d−ε. Since all messages

sent after time 0 have latencies d, runs r(i) and rk(i) are indistinguishable to acceptors

other than ak until time 2d − ε, and to ak itself until 3d − ε. Since K < 3, we have

3d − ε > Kd for sufficiently small ε. This means that acceptor ak delivers the same

message first in both runs r(i) and rk(i). Agreement and Termination Agreement imply

that all correct acceptors deliver the same message first in r(i) and rk(i).

To show that the runs r(k) and r(k − 1) deliver the same message first, it is then

sufficient to show the same for runs rk(k) and rk(k − 1). Runs rk(k) and rk(k − 1)

differ only in the delays of messages sent by acceptors a1 and a2 to acceptor ak at time 0.

However, these messages arrive at ak at time d−ε or later, and from that time all messages

from ak to other processes are lost. Therefore, these two runs are indistinguishable to any

correct acceptor a 6= ak, who delivers the same message first in both of them.

We have shown that, for any k = 1, . . . , n, runs r(k) and r(k − 1) deliver messages

m1 and m2 in the same order. Simple induction on k shows that the same is true for

runs r(0) and r(n). Without loss of generality, assume m1 is delivered first in both runs

and focus on run r(0). (The other case, in which m2 is delivered first, is analogous and

requires considering run r(n).) In run r(0), shown in Figure 5.15, all message latencies

are d, except for those sent by acceptor a2 at time 0; these have the latency of d− ε.

Consider a good run r′ which is identical to r(0) except that acceptor a1 abcasts m1

at time d− 2ε instead of at time 0. Figure 5.15 shows that runs r′ and r(0) are causally

identical, so acceptors without synchronized clocks cannot distinguish them. As a result,

the same message (m1) is delivered first in both of them.

Section 5.5.1 proved that m1 cannot be delivered faster than in two communication

steps, that is, before 3d − 2ε in run r′. Since message m2, abcast at time 0, is delivered

after m1, it cannot be delivered before time 3d − 2ε either. Since K < 3, this is bigger

than Kd for sufficiently small ε, which contradicts the assumption that, in good runs, all

messages are delivered in K < 3 steps.
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5.5.3 Dealing with faulty proposers requires three steps

Theorem 5.5.2. Consider two proposers p1 and p2 (possibly acceptors). No Atomic

Broadcast algorithm can guarantee a latency of less than three communication steps in

all timely runs with all processes correct, except for possibly one of p1 and p2.

We deliberately allow the proposers p1 and p2 to be acceptors, to address the open-

group and closed-group models at the same time. In the former model, the modified

Chandra-Toueg algorithm in Section 5.1.3 guarantees a latency of 3d in all stable runs.

Figure 5.2 showed that none of the algorithms for open groups presented in this chapter

can guarantee a latency strictly smaller than this. Using Theorem 5.5.2 with proposers

p1 and p2 not being acceptors, we can show that this is inevitable:

Theorem 5.5.3. No open-group Atomic Broadcast algorithm can guarantee a latency of

less than three communication step in all good runs.

Note that this result is specific to open-group algorithms; Section 5.4 shows a solution

for closed groups that guarantees a latency of 2d in all good runs. This is one step better

than open-group solutions, however, with stronger correctness assumptions. Open-group

algorithms from this chapter guarantee three-step delivery in all stable runs. On the other

hand, the algorithm in Section 5.4 guarantees two-step delivery, but only in good runs.

Using Theorem 5.5.2 with p1 and p2 being any two acceptors other than the leader, we

can show that this requirement is inevitable:

Theorem 5.5.4. No closed-group Atomic Broadcast algorithm can guarantee a latency of

less than three communication step in all timely runs with at most one non-leader acceptor

being faulty.

We will prove Theorem 5.5.2 by considering runs in which proposer p1 abcasts mes-

sage m1, and proposer p2 message m2, both at time 0. First, consider a run r, in which

all processes are correct and all messages have latencies d. Without loss of generality,

we can assume that message m1 is delivered first in this run. Otherwise, we can simply

exchange the roles of proposers p1 and p2.

Consider a family of runs r(k) with k = 0, . . . , n. Run r(k) is identical to r, except

that proposer p1 is faulty and crashes at some time in the future, say 3d. All messages

sent by proposer p1 to acceptors a1, . . . , ak have the latency 3d instead of d; the latencies

of messages from p1 to other acceptors remain d. Proposer p2 is correct. All messages

between correct processes a latency of d, so all correct learners deliver message m2 before

time 3d.

The only difference between run r and r(0) is the correctness of proposer p1; these

runs are indistinguishable to any process before time 3d, so r(0) delivers message m1

first. We will later show that, for any k, runs r(k− 1) and r(k) deliver the same message
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first. By simple induction, run r(n) delivers message m1 before m2. We have previously

shown that, in run r(n), all correct learners deliver m2 before time 3d, so m1 must also

be delivered before that time. However, no process other than p1 knows about m1 before

time 3d, so it is impossible for all correct acceptors to deliver m1 before that time in run

r(n). This contradiction proves the assertion.

Runs r(k − 1) and r(k) deliver the same message first

For any i ∈ {k − 1, k} consider a run rk(i) which is identical to r(i), except that acceptor

ak is faulty and crashes at time 3d. All messages from ak to other processes sent at time

d or later are lost. Also, in run rk(i), each proposer pj with j ∈ {1, 2} is correct, unless

pj = ak. Runs r(i) and rk(i) are identical until time d, so they are indistinguishable to

acceptors other than ak until time 2d. For acceptor ak, these two runs seem the same

until time 3d.

We have already shown that, in run r(i), all correct learners, in particular acceptor ak,

deliver at least one message (m2) before time 3d. Since ak cannot distinguish runs r(i)

and rk(i) before that time, it delivers the same message first in both runs. Agreement and

Termination Agreement imply that all correct acceptors deliver the same message first in

runs r(i) and rk(i).

To show that runs r(k− 1) and r(k) deliver the same message first, it is now sufficient

to show the same for runs rk(k−1) and rk(k). Before time 3d, these runs differ only in the

latency of messages from proposer p1 to acceptor ak. These two runs are indistinguishable

to ak until time d, but from that time on, all messages from ak to other processes are lost.

As a result, other acceptors cannot distinguish runs rk(k − 1) and rk(k) before time 3d,

so they must deliver the same message first in both runs. This way, we have proved that

runs r(k − 1) and r(k) deliver the same message first.

5.6 Summary

In this chapter, we have investigated the Atomic Broadcast problem in distributed sys-

tems. Our analysis focused on minimizing the latency in good and stable runs. We started

with modifying the Atomic Broadcast protocol proposed by Chandra and Toueg [16] to

achieve the latency of three communication steps in such runs. In the rest of the chapter,

we presented several Atomic/Generic algorithms that, under some conditions, deliver mes-

sages in two communication steps. Finally, we proved several new lower bounds for the

Atomic Broadcast problem, including that a latency of less than two steps is impossible

in any run.

This chapter presented several broadcast algorithms. In Section 5.1.3, we showed a

modified Chandra-Toueg Atomic Broadcast algorithm [16]. It achieves a latency of 3d in
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all stable runs and requires n > 2f . Both figures are optimal. Theorem 5.5.3 showed that

no Atomic Broadcast algorithm for open groups can guarantee a latency lower than 3d in

all good runs. Chandra and Toueg [16] proved that n > 2f is necessary as well.

Section 5.1.7 presented an Atomic Broadcast protocol that achieves a stable-run la-

tency of 2d if all correct acceptors receive abcast messages in the same order. Section 5.2

presented a Generic Broadcast protocol that achieves this latency if only conflicting mes-

sages are received in the same order. In contrast to algorithms proposed previously in

the literature [5, 101, 102], which require four steps in some stable runs, our solutions

guarantee the optimum latency of three steps. All these algorithms require n > 3f , which

is necessary for two-step delivery [100].

Further improvements in latency can be achieved by restricting the set of proposers.

Section 5.4 presented an Atomic Broadcast protocol for closed groups, which guarantees

a latency of two steps in all good runs. As shown by Theorem 5.5.3, this is impossible in

open groups. To achieve this latency, the algorithm requires perfectly synchronized clocks

and all acceptors correct. Theorems 5.5.1 and 5.5.4 showed that both these assumptions

are necessary.

The algorithms presented in this chapter are optimal in terms of latency, but can

require large amounts of resources such as memory, threads, or processing. They all

use a number of instances of Consensus or similar abstractions. Chapter 4 shows that

these abstractions consist of sequences of rounds themselves. The complexity of broadcast

algorithms can probably be reduced by using these rounds, implemented – for example –

as OTC instances, directly.

Some of the algorithms generate a number of messages that are never used. For

example, the Consensus algorithm from Section 5.1.8 does not use instance 2 in ordered

runs. Further research is required to determine whether this problem can be avoided in

latency-optimal protocols.





Chapter 6

Conclusion

In 1985, Fischer, Lynch, and Paterson [40] proved that Consensus is unsolvable in asyn-

chronous distributed systems in which one process can crash. This classic result prompted

a number of researchers to investigate model extensions that would make Consensus and

other agreement problems solvable [7, 16, 23, 24, 37, 104]. This main focus on solvability

rather than efficiency contributed to the reputation of fault-tolerant agreement proto-

cols as being inherently inefficient and impractical. Despite the efforts by Guerraoui and

Schiper [54] to clarify this widespread misinterpretation of the FLP impossibility theorem,

the gap between practical and theoretical fault tolerance still exists.

The goal of the presented research was to understand and bridge this gap by investi-

gating efficient solutions to a number of agreement problems, with the efficiency criterion

being latency: the number of communication steps required by the algorithm. In com-

parison to the solvability aspect, our knowledge of the efficiency of agreement protocols

seems rather limited and uneven. For example, it is known that no Consensus algorithm

can guarantee latency of less than two steps in all good runs [19, 66, 74]. On the other

hand, Consensus is sometimes solvable in one step [13], but no one has so far examined

the exact circumstances in which this is possible. In Atomic Broadcast, the situation is

opposite: the circumstances under which the low, two-step latency is possible have been

investigated [5, 99, 100, 102], but the general lower bound of three steps has never been

shown. One of the aims of this investigation was to complete the picture by proving the

“missing” lower bounds.

Parallel to proving lower bounds is the effort to design more efficient agreement pro-

tocols. Many latency-efficient Consensus algorithms [35, 63, 65, 73, 112] and agreement

frameworks [10, 11, 12, 51, 65, 92] for the crash-stop model have been investigated in

the literature. Recently, several Byzantine Consensus algorithms have been proposed

[15, 36, 81, 87, 121], however, no agreement framework tolerating malicious participants

has appeared in the literature yet. One of my goals was to design such a framework, ca-

pable of implementing not only Consensus but also other agreement abstractions. To the

best of my knowledge, no such framework had been proposed yet, even for the crash-stop
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model.

In order to build this framework, it was necessary to identify a common pattern in

agreement protocols, and use it to design a new lightweight agreement abstraction. This

abstraction could then later be used to reconstruct existing protocols and design new

ones, without any latency overhead. As a side-effect, the simplicity requirement on the

abstraction reduced the solution space, thereby making it possible to perform automatic

correctness verification. From here, it would not be difficult to search the solution space

to automatically discover new agreement algorithms.

Naturally, the first step to accomplish all the tasks described above was to identify the

common pattern in various agreement protocols. Chapter 2 first showed that the round-

based structure can be viewed as such, and then introduced the notion of Optimistically

Terminating Consensus (OTC), a lightweight agreement abstraction that formalizes the

notion of a round. As opposed to Consensus, OTC guarantees Termination only if all

correct acceptors propose the same value. In exchange, it ensures stronger Validity and

Agreement properties, which make it possible for the next round to take over if the current

one does not terminate for some reason.

The OTC abstraction is easy to implement, even with malicious acceptors; the learners

decide on a given value if a sufficient number of acceptors report to have proposed it. This

simple one-step implementation, called Generic Agreement in Section 2.3, is sufficient to

match the latency of a large number of Consensus algorithms for the crash-stop model

[13, 16, 63, 73, 80, 112] as well as the Byzantine model [41, 71, 87]. Combining several

instances of one-step Generic Agreement leads to new OTC implementations, which match

the latency of other Consensus algorithms [15, 36, 121] and allow us to construct new ones.

Chapter 2 proves that the latencies of all these OTC implementations are optimal.

Chapter 3 showed how OTC algorithm candidates can be tested for correctness au-

tomatically. In this test, a positive result proves that the given algorithm satisfies all

properties required by the OTC abstraction. A negative result shows a state in which

one of the OTC properties is violated. Negative results are useful as well: they help

to understand why the tested OTC algorithm candidate is incorrect, and can often be

generalized to impossibility theorems.

To implement automatic correctness testing, I developed a theory for reasoning about

states that evolve according to an event-based execution model. For given Optimistic

Termination requirements, we construct the weakest possible algorithm satisfying OTC

properties Possibility and Integrity, and then test whether it satisfies the remaining two

properties as well. Generating OTC algorithm candidates and using the above correctness-

testing method allows us to automatically discover new OTC algorithms, thereby skipping

the manual algorithm design process altogether. In other words, instead of using auto-

matic correctness testing to verify individual OTC algorithms, one can just specify a set

of requirements and use a computer to search the solution space for OTC algorithms that
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satisfy them.

Both manually and automatically generated OTC algorithms can be used to solve

Consensus and other agreement problems in a modular way. To achieve this, Chapter 4

formalized the Coordinated Consensus problem, and presented OTC-based algorithms

for both benign and malicious settings. This algorithm served as a base for developing

efficient solutions to other agreement problems: Consensus, Individual Consensus, Atomic

Commitment, and Interactive Consistency, all for both failure models. By using OTC

implementations from Chapters 2 and 3, I was able to provide implementations that

match or improve the latency of known ad-hoc solutions.

In comparison to other agreement frameworks [10, 11, 12, 51, 65, 92], this approach

makes it possible to reconstruct the highest number of known algorithms as well as to

construct new ones. Firstly, this is because no other agreement framework tolerates

malicious processes. Secondly, this is because OTC, the main unit in our solution, is

relatively small; it encompasses only a single round, as opposed to the whole algorithm

in other frameworks. This and the independence of OTC instances used by different

rounds allow for high flexibility in designing Consensus algorithms; the parameters of

every round, such as the coordinator, the type of the OTC, or the set of acceptors used,

can be all set independently.

Because of the dynamic nature of Atomic Broadcast, we considered it independently

from other agreement abstractions. Chapter 5 started by modifying the algorithm pro-

posed by Chandra and Toueg [16] to achieve a latency of three communication steps in

stable runs. Then, we presented several broadcast algorithms that, under some condi-

tions, deliver messages in two communication steps, and showed that their latencies are

optimal.

Firstly, we presented a modified Chandra-Toueg Atomic Broadcast algorithm [16],

which achieves a three-step latency in stable runs. Then, we improved it to guarantee a

latency of two steps if all correct acceptors receive abcast messages in the same order.

Optimistic Generic Broadcast went even further by ensuring the two-step latency if only

conflicting messages are received in the same order. As opposed to algorithms proposed

previously in the literature [5, 101, 102], which require four steps in some stable runs,

my solutions guarantee the optimum latency of three steps in all stable runs. Finally, I

showed that, in closed groups, this latency can be reduced to two steps.

All in all, this thesis investigated implementations of various agreement abstractions

from the point of view of their latency, consolidating existing results as well as presenting

new algorithms and lower bounds. To achieve this, I identified a common pattern in

existing algorithms and formalized it into the OTC abstraction. The investigation of

this abstraction can be summarized in two main conclusions: (i) latency-optimal fault-

tolerant algorithms can be constructed in a modular way even in Byzantine settings, and

(ii) auto-generation of efficient agreement protocols is possible and practical.
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Future work

The OTC abstraction proposed in this thesis has been designed specifically to tolerate

malicious behaviour, so the agreement protocols implemented on top of it are capable

of that as well. The only exception is Atomic Broadcast; since we investigated this

abstraction in considerably more detail than others, the scope of this study was limited

to the crash-stop model. The investigation of efficient Atomic Broadcast protocols and

lower bounds for Byzantine settings is a promising direction of future research.

All results derived here measure the efficiency of distributed algorithms as the num-

ber of communication steps required. We ignore other factors such as processor usage,

memory usage, network load, the number of messages transmitted, etc. Future research is

required to evaluate the impact of these factors and to examine their compatibility with

the efficiency measure considered in this thesis.

Our communication model assumes reliable channels, which never lose messages be-

tween correct processes. In practice, however, communication channels are unreliable

and such messages can be lost. Reliable channels can be implemented over unreliable

ones without any latency overhead by periodic retransmission [9], however, this requires

the sender to remember all unconfirmed messages. Because of the high memory require-

ments of this solution, it would be preferable to embed support for unreliable channels

in agreement protocols directly. Inspiration for future research in this direction comes

from existing omission-resistant protocols such as Paxos [73] or Consensus with stubborn

channels [57].

The channel communication model is by no means the only possible one. It would be

interesting to extend this work to other communication models, such as shared memory,

as well as the passive and active disk models [3]. Recent steps in this direction include

Byzantine Disk Paxos [1], which implements Consensus with possibly malicious passive

disks, and Alpha [52], an agreement framework that can use all the communication models

described above, but only in the crash-stop model. The ultimate goal would be to unify

these two approaches, and create a communication-model-independent extension of the

OTC abstraction.

As explained before, the OTC abstraction has a number of advantages over other

frameworks [10, 11, 12, 51, 65, 92], with automatic testing and discovery being probably

the most interesting. Although well established for security protocols [14, 22, 84, 88, 96],

automatic reasoning has not yet been widely used in the field of distributed algorithms.

This work demonstrates that searching the entire state space is not necessary, which

makes this approach not only theoretically possible but also practical. I hope that similar

techniques could be developed for other distributed problems, such as Mutual Exclusion

[8], Atomic Broadcast [26], or various forms of Group Communication [21].
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[34] Assia Doudou, Benôıt Garbinato, and Rachid Guerraoui. Encapsulating failure

detection: From crash to Byzantine failures. In Proceedings of the 7th International

Conference on Reliable Software Technologies, pages 24–50, June 2002.

[35] Partha Dutta and Rachid Guerraoui. Fast indulgent Consensus with zero degra-

dation. In Fabrizio Grandoni and Pascale Thévenod-Fosse, editors, Proceedings of
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[100] Fernando Pedone and André Schiper. On the inherent cost of Generic Broadcast.

Technical Report IC/2004/46, Swiss Federal Institute of Technology (EPFL), May

2004.
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Appendix A

Optimistically Terminating

Consensus

A.1 A time metric for asynchronous systems

Let t be real time. We will show that any asynchronous run r can be assigned a continuous

time metric tr(t) such that (i) tr(t) → ∞ as t → ∞, and (ii) messages between correct

processes have transmission times of at most 2, which means that d ≤ 2. Here, tr(t) is

the time-metric time corresponding to all events that occur at real time t.

Consider a sequence of real-time values t1, t2, . . . defined in the following way. Time t1

is arbitrary but finite, for example, one second after the start of the algorithm. Let t′i+1

be the time when all messages sent by correct processes to correct processes at time ti

or before have been received. We define ti+1 = max {t′i+1, ti + ∆}, where ∆ > 0 is an

arbitrary but finite period of time, for example, one second. The purpose of ∆ is to

ensure that the sequence t1, t2, . . . is strictly increasing and tends to infinity.

We define the time metric tr(t) as any continuous, strictly increasing function of t that

satisfies tr(ti) = i for all i = 1, 2, . . . , and tr(t)→ ±∞ as t→ ±∞.

Theorem A.1.1. In any such time metric tr, all messages between correct processes have

transmission times shorter than 2.

Proof. Extend the sequence t1, t2, . . . with t0 = −∞, so that every real time t belongs to

some interval (ti, ti+1]. Consider a message m sent by a correct process to a correct process

at real time t ∈ (ti, ti+1]. By definition, m reaches its destination by time t′i+2 ≤ ti+2.

Therefore, in time metric tr, message m was sent after time i and received no later than

i + 2, which proves the assertion.

A.2 Onecast

Lemma A.2.1 (Integrity). No learner onedelivers two different messages.
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1 initially variables sent and received are both empty (⊥)

2 when the owner executes onecast(x) do { assume x 6= ⊥ }
3 if sent = ⊥ then
4 sent← x
5 broadcast “onecast sent” to all learners

6 initially previous = ⊥ (at learners)

7 when a learner receives “onecast x” with x 6= ⊥ from the owner do
8 if received = ⊥ then
9 received← x

10 onedeliver(received)

Figure A.1: Implementation of onecast.

Proof. Since learners accept only messages “onecast x” with x 6= ⊥, the variable received

at a particular learner can be set only once. Learners onedeliver only the contents of

received , which proves the assertion.

Lemma A.2.2 (Validity). If the owner is honest and a learner onedelivers x, then the

owner must have onecast x.

Proof. Since learners onedeliver only the contents of their variables received , the learner

must have executed received ← x. Therefore, the learner received “onecast x” from the

owner, so the owner broadcast “onecast x”. Honest learners broadcast only “onecast

sent”, which means that x = sent at the time of broadcasting this messages, which is

only possible if the owner had previously executed onecast(x).

Lemma A.2.3 (Agreement). If the owner is honest, then no two learners onedeliver

different messages.

Proof. Since honest owners do not onecast ⊥, the variable sent can be set only once. The

proof of the Validity property showed that every value x onedelivered by a learner was

at some point equal to the contents of the variable sent at the owner, which implies the

assertion.

Lemma A.2.4 (Termination). If the owner is correct and executes onecast, then all

correct learners will execute onedeliver in one communication step.

Proof. If the correct owner executes onecast, it also broadcasts “onecast sent” with

sent 6= ⊥. This message reaches all correct learners within one communication step and

triggers onedelivery of received .
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Figure A.2: Example of a run r′ examined in Theorem A.3.1

A.3 OTC

Theorem A.3.1. If an algorithm satisfies Permanent Validity, Possibility, and Integrity,

then it also satisfies Standard Validity.

Proof. Consider a run r in which some learner l1 decides on x. To show Standard Validity,

we have to prove that some honest acceptor executed propose(x).

Consider a run r′ which is identical to r except that, at some time t after learner l1

decided, all correct acceptors execute stop and freeze for one communication step (Fig-

ure A.2). Runs r and r′ are identical until time t, so learner l1 decides on x in run r′ as

well.

In run r, all correct acceptors execute stop at time t, so some correct learner l2 will enter

a complete state by time t+d. At that time, predicate possible(x) must hold at l2 because

learner l1 decided on x (Possibility). Permanent Validity implies that valid(x) must hold

as well. Then, the Integrity property implies that an honest acceptor executed propose(x)

in run r′ before time t. Since runs r and r′ differ only in the stop action executed at time

t, an honest acceptor executed propose(x) in run r as well, which implies the assertion.

Theorem A.3.2. If an algorithm satisfies Permanent Agreement and Possibility, then it

also satisfies Standard Agreement.

Proof. Consider a run r in which some learner l1 decides on x1 and another learner l2

decides on x2. To show Standard Agreement, we have to prove that x1 = x2.

Consider a run r′ which is identical to r except that, at some time t after both learners

decided, all correct acceptors execute stop (Figure A.3). Runs r and r′ are identical until

time t, so learners l1 and l2 decide on x1 and x2, respectively, in run r′ as well.

All correct acceptors executed stop at time t, so a correct learner l3 will eventually

enter a complete state. At that time, predicates possible(x1) and possible(x2) must hold

at l3 because learners l1 and l2 decided on x1 and x2, respectively (Possibility). Permanent
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Figure A.3: Example of a run r′ examined in Theorem A.3.2

1 when acceptor ai executes propose(x) do
2 onecast x using onecasti

3 when acceptor ai executes stop do
4 onecast ⊤ using onecasti

5 predicate decision(x) at a learner is
6 at least n− q instances onecasti delivered x

7 predicate possible(x) at a learner is
8 at most q + m instances of onecasti delivered a non-x

9 predicate valid(x) at a learner is
10 more than m instances of onecasti delivered x

Figure A.4: Generic Agreement algorithm.

Agreement requires that possible(x) can hold for at most one x, which implies the assertion

(x1 = x2).

A.4 Generic Agreement

Theorem A.4.1 (Strong Standard Validity). Assume that n > f+m+q. If decision(x)

holds at a learner, then valid(x) holds at all complete learners.

Proof. Every execution of stop involves onecasting, so all onecast instances owned by

correct acceptors have executed onedeliver at all complete learners. The assumption

implies that at least n− q− f > m of those instances have onedelivered x, which implies

the assertion.

Theorem A.4.2 (Weak Permanent Validity). Assume that n > f+m+q. If possible(x)

holds at a complete learner, then an honest acceptor executed propose(x).
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Proof. Every execution of stop involves onecasting, so the assumption implies all n − f

onecast instances owned by correct acceptors have executed onedeliver . If possible(x)

holds, then at most q + m onecast instances onedelivered a non-x. This means that at

least n−f−q−m > 0 instances owned by correct acceptors onedelivered x, which implies

the assertion.

Lemma A.4.3 (Standard Agreement). Assume n > m + 2q. There is at most one x

for which decision(x) holds at some learner; in other words, there is at most one decision.

Proof. Assume decision(x) holds at some learner. This means that at least n−q instances

onecasti delivered x, which implies that at least n− q −m honest acceptors proposed x.

If the assertion does not hold, then decision(x) holds, possibly at different learners, for at

least two different x. Since no honest acceptor proposes two different values, this means

that 2(n − q −m) > n −m honest acceptors proposed something. This contradicts the

fact that there are only n−m honest acceptors.

A.5 Two-step OTC

Lemma A.5.1. Assume n > f + m + q and consider a chain A1 → · · · → Ak. If

possibleAk
(x) holds at a complete learner, then an honest acceptor proposed x in A1.

Proof. By induction on k. The base case k = 1 follows directly from Theorem A.4.2. If

possibleAk
(x) holds at a complete learner, then the inductive assumption for the subchain

A2 → · · · → Ak implies that an honest acceptor proposed x to A2. Therefore, some

learner in A1 decided on x, which by Theorem A.4.1 implies valid(x) at our complete

learner. Integrity of A1 implies the assertion.

Theorem A.5.2 (Permanent Validity). Assume n > f + m + q and consider a chain

A1 → · · · → Ak with k ≥ 2. For any complete learner, possible(x) =⇒ valid(x) for all

x.

Proof. Predicate possible(x)
def

= possibleAk
(x), so Lemma A.5.1 applied to the subchain

A2 → · · · → Ak implies that an honest acceptor proposed x to A2. Therefore, some

learner in A1 decided on x, which by Theorem A.4.1 implies the assertion.

Theorem A.5.3 (Permanent Agreement). Assume n > f + m + q and consider a

chain A1 → · · · → Ak with k ≥ 2. For any complete learner, possible(x) holds for at most

one x.

Proof. Predicate possible(x)
def

= possibleAk
(x), so Theorem A.4.2 applied to Ak implies that

some honest acceptor proposed x in Ak. The construction of the chain A1 → · · · → Ak

implies that some learner decided on x in Ak−1. Since q ≤ f , we have n > m + 2q, and

Lemma A.4.3 applied to Ak−1 implies the assertion.
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A.6 Multi-step OTC

The multi-step OTC algorithm consists of three OTC chains from Section 2.4 executed

in parallel:

A1 with q = q1,

B1 → B2 with q = q2,

C1 → C2 → C3 with q = q3.

Instances A1, B1, and C1 share onecast instances; each proposed value is proposed to

all three chains at the same time. In other words, propose(x) consists of proposeA1
(x),

proposeB1
(x), and proposeC1

(x). Stopping the algorithm involves stopping all six Generic

Agreement instances.

Theorem A.6.1 (Permanent Agreement). Assume that

n > f + 2m + 2q1,

n > f + m + q2 + min {m, q1},

n > f + m + q3.

For any complete learner, possible(x) holds for at most one x.

Proof. Predicate possible(x) is defined as

possible(x)
def

=
(

possibleA1
(x) ∧ ¬∃x′ 6= x : validC2

(x′)
)

∨ possibleB2
(x) ∨ possibleC3

(x)

The assumption n > f + 2m + 2q1 implies Permanent Agreement of A1, whereas the

other two assumptions imply Permanent Agreement of chains B1 → B2 and C1 → C2 →

C3 (Theorem A.5.2). Therefore, predicates possibleA1
(x), possibleB2

(x), and possibleC3
(x)

can each hold for at most one x. To complete the proof, we consider three values x, y, z,

which – if they exist – satisfy

possibleA1
(x) ∧ ¬∃x′ 6= x : validC2

(x′), possibleB2
(y), possibleC3

(z).

We need to prove that all existing x, y, z must be the same. In other words, we have to

show that x = y, x = z, and y = z.

• Equality x = z. Since n > f + m + q3, Theorem A.5.2 states that the subchain

C2 → C3 satisfies Permanent Validity. Therefore, possibleC3
(z) =⇒ validC2

(z),

which implies x = z.

• Equality y = z. If possibleC3
(z), then Lemma A.5.1 used for the subchain C2 → C3

implies that an honest acceptor proposed z to C2, which implies that z was a decision
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in C1. Similarly, Theorem A.4.2 applied to B2 implies that y was a decision in B1.

The assumption q3 ≥ q2 implies that decisionB1
(y) =⇒ decisionC1

(y). Since

n > f + m + q3 ≥ m + 2q3, Lemma A.4.3 implies that y = z.

• Equality x = y. Showing x = y requires considering two cases of the assumption

n > f + m + q2 + min {m, q1}:

– Case n > f +m+q2+m. In this case, instance B2 satisfies Permanent Validity.

As a result, possibleB2
(y) =⇒ validB2

(y) ⇐⇒ validC2
(y), so x = y.

– Case n > f + m + q2 + q1. Theorem A.4.2 applied to B2 implies that y was

a decision in B1. Figure A.4 shows that this implies that at least n − q2 − f

correct acceptors proposed y to B1. On the other hand, for complete learners,

possibleA1
(x) implies that at most q1 + m correct acceptors proposed a non-x

to A1. Since honest acceptors propose the same to A1 and B1, this implies

n− q2 − f ≤ q1 + m, which contradicts the assumption n > f + m + q1 + q2.





Appendix B

Agreement abstractions

B.1 Coordinated Consensus with malicious

processes

B.1.1 Function choose

Lemma B.1.1. Any signed state Si is a learner state in OTCi.

Proof. In other words, we have to prove that a new learner with the state Si can be

introduced to our system without creating contradictions. Recall that the state of a

learner consists of all messages received from the acceptors. Malicious acceptors can send

arbitrary messages so we can make them send the messages from Si to our learner. All

messages in Si are signed by their senders, so honest acceptors did indeed broadcast all

messages attributed to them in Si. Therefore, we can make our learner receive them as

well. Finally, messages sent by acceptors but not received by our learner might have been

lost by the network; for that we just need to assume our learner to be non-maliciously

faulty.

Lemma B.1.2. Assume x = choose(〈Sj〉j<i
, xi), where each Sj is a semi-complete learner

state in OTCj and xi is a proposal, both received from ci by an honest acceptor. Then,

1. An honest acceptor received x as a proposal xj from some coordinator cj with j ≤ i.

2. No decision different than x was made in rounds j < i.

Proof. Induction on i. If possibleSj
(x) does not hold for any x and j < i, then x = xi and

both assertions hold (the first one for j = i). Otherwise, assume that j < i is the highest

round for which possibleSj
(x) holds for some x.

Semi-completeness of Sj means that possiblej(x) =⇒ validj(x), so some honest

acceptor a in round j executed OTCj.propose(x). Value x equals choose(〈S ′
k〉k<j, xj),
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1 function choose(〈Sj〉j<i
, xi)

2 if ¬possibleSj
(x) for all x and all j < i then

3 return xi

4 else
5 let j < i be the largest round number for which possibleSj

(x) holds for some x
6 return the x for which possibleSj

(x) holds

Figure B.1: Function choose.

where xj is the proposal a received from cj, and each S ′
k is a semi-complete learner state

in OTCk (Lemma B.1.1), possibly different from Sk. The inductive assumption for i = j

gives the first assertion.

The same assumption shows that no decision other than x was made in any OTCk

with k < j. Then, semi-completeness of Sj implies that possiblej holds only for x, so no

other decision was made in OTCj. Finally, by the definition of j, no decisions were made

in any OTCk with j < k < i. This paragraph showed that the second assertion holds as

well.

Lemma B.1.3. If OTCi.decision(x) holds at some learner, then x = choose(〈Sj〉j<i
, xi),

where each Sj is a semi-complete learner state in OTCj and xi is a proposal, both received

from ci by an honest acceptor.

Proof. Standard Validity of OTCi (Theorem A.3.1) implies that some honest acceptor a

executed OTCi.propose(x). As a result, x = choose(〈Sj〉j<i
, xi), where 〈Sj〉j<i

is a semi-

complete collection of states and xi is a proposal, both received from ci by a. All states

〈Sj〉j<i
are semi-complete and signed, so Lemma B.1.1 implies the first assertion. Honesty

of a implies the second assertion.

Corollary B.1.4. If OTCi.decision(x) holds at some learner, then (i) an honest acceptor

received x as a proposal xj from some coordinator cj with j ≤ i. (ii) no decision different

than x was made in rounds j < i.

Proof. Directly from Lemmas B.1.3 and B.1.2.

B.1.2 Validity and Agreement

Lemma B.1.5. If a learner decided on x, then OTCi.decision(x) holds for some i at

some (possibly different) learner.

Proof. Consider the first learner to decide on x. Lines 16–22 show that it decided either

because OTCi.decision(x) held or because it received “decide on x” from more than m
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1 when coordinator ci executes propose(xi) do
2 for all j < i do
3 wait until the state Sj of ci as a secure learner in OTCj is semi-complete
4 broadcast xi and 〈Sj〉j<i

to all acceptors

5 when an acceptor receives xi and 〈Sj〉j<i
from ci for the first time do

6 if all signatures in 〈Sj〉j<i
are correct and all states Sj are semi-complete then

7 x← choose(〈Sj〉j<i
, xi) { select the proposal }

8 OTCi.propose(x)

9 when for each j < i, an acceptor received
10 “stop round j” from more than m + f acceptors do
11 start round j timer

12 when acceptor has not decided in OTCi and the round i timeout expired, or
13 received message “stop round i” from more than m acceptors do
14 OTCi.stop
15 broadcast “stop round i”

16 when a learner has OTCi.decision(x) or
17 received “decide on x” from more than m acceptors do
18 decide(x)
19 if the learner is also an acceptor then
20 broadcast “decide on x”
21 wait until received “decide on x” from more than m + f acceptors
22 halt

Figure B.2: Coordinated Consensus with malicious participants.

acceptors. The former case is the assertion. The latter case is impossible because one

of these message must have been sent by an honest acceptor. This acceptor had decided

on x, which contradicts the choice of our learner to be the first to do so.

Theorem B.1.6 (Validity). If all coordinators are honest and decision(x) holds at some

learner, then some coordinator proposed x.

Proof. Lemma B.1.5 states that OTCi.decision(x) holds for some i at some learner. Then,

Corollary B.1.4 states that an honest acceptor received x as the proposal xj from some

coordinator cj. The assumption of cj’s honesty implies the assertion.

Theorem B.1.7 (Agreement). There is at most one x for which decision(x) holds at

some learner.

Proof. Assume decision(x) and decision(y) each holds at some learner. We will show that

x = y. Lemma B.1.5 implies that there are rounds i and j so that OTCi.decision(x) and

OTCj.decision(y) each holds at some learner. There are two cases to consider: i = j and

i 6= j.
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If i = j, then Standard Agreement of OTCi = OTCj (Theorem A.3.2) implies x = y.

If i 6= j, then without loss of generality, we can assume j < i. Corollary B.1.4 applied

to OTCi.decision(x) implies that decisions made in all rounds before i must equal x. In

particular, OTCj.decision(y) implies x = y.

B.1.3 Termination

To prove Termination, we assume n > 2f + m.

Lemma B.1.8. If an honest acceptor halts, then all correct learners will eventually de-

cide.

Proof. Lines 16–22 shown that an honest acceptor halts only after receiving “decide on x”

from at least m + f acceptors. Therefore, more than m correct acceptors have indeed

broadcast “decide on x”. As a result, all correct learners will eventually receive this

message from more than m acceptors, and decide x.

Lemma B.1.9. If all correct acceptors decide on x, then all correct learners will eventu-

ally decide on x and halt.

Proof. The assumption implies that all n−f > m+f correct acceptors have sent “decide

on x”. This means that all correct learners will eventually receive these messages, decide

on x, and halt (lines 16–22).

If an honest acceptor halts, then Lemma B.1.8 implies Termination. Since the purpose

of this section is to prove Termination, from now on we assume that no honest acceptor

has halted. At the same time, we assume that all correct acceptors have started the

algorithm, which is required by Termination.

Lemma B.1.10. If all correct acceptors stop all rounds j < i, then either they will all

stop round i or all correct learners will decide.

Proof. The assumption implies that every correct acceptor will eventually receive “stop

round j” from all n− f > f + m correct acceptors, for each j < i (lines 12–15). Since we

assume that all correct acceptors have started executing the algorithm, they will all start

their round i timers and eventually either decide or stop round i (lines 9–11).

If more than m correct acceptors decide in round i, then lines 16–22 ensure that all

correct learners will eventually decide in that round. Similarly, if more than m correct

acceptors stop round i, then lines 12–15 ensure that all correct acceptors will eventually

do so. Therefore, the assertion can only be false if the number of correct acceptors

n− f ≤ m + m, which contradicts the assumption n > 2f + m ≥ f + 2m.
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Lemma B.1.11. If there is a correct learner that never decides, then all correct acceptors

will stop all rounds.

Proof. To obtain a contradiction, let i be the first round which is never stopped by

all correct acceptors. The choice of i means that rounds j < i have been stopped by all

correct acceptors. Lemma B.1.10 implies that either all correct acceptors will stop round i

(a contradiction with the definition of i) or all correct learners will decide (a contradiction

with the lemma assumption).

Lemma B.1.12. If an honest acceptor starts its round i timer, then all correct acceptors

will stop all rounds j < i in one communication step.

Proof. Consider any round j < i. The assumption implies that some acceptor received

more than m + f messages “stop round j” (lines 9–11). More than m of them must have

been sent by correct acceptors, so all correct acceptors will receive them in one step. All

of them will stop round j, which implies the assertion (lines 12–15).

Lemma B.1.13. Assume that at most q acceptors are faulty. Consider a round i with a

correct coordinator and OTCi satisfying Optimistic Termination (q, k). Assume that, by

time t, coordinator ci proposed and all its states Sj with j < i are complete. If no correct

acceptor executes OTCi.stop before time t + (k + 1)d, then all correct learners in OTCi

will have decided by then.

Proof. To show that all correct learners will decide by time t + (k + 1)d, we assume that

no correct acceptor ever executes OTCi.stop. No learner can distinguish this and the

original run by time t + (k + 1)d, so the assertion still holds in the original run.

Consider the coordinator ci at time t. We assume that it has executed propose(xi),

and all Sj with j < i are complete, so by Permanent Validity and Permanent Agreement

of OTCj, also semi-complete. Therefore ci broadcasts its proposal xi and the collection

of states 〈Sj〉j<i
by time t.

These messages reach all correct acceptors by time t+ d. All correct acceptors receive

the same xi and 〈Sj〉j<i
, so they propose the same x = choose(〈Sj〉j<i

, xi) to OTCi. Since

at most q acceptors are faulty and no correct acceptor executes stop, Optimistic Termi-

nation (q, k) implies that all correct learners will have decision(x) by time t + (k + 1)d.

Theorem B.1.14 (Termination). If infinitely many coordinators are correct, all of

them proposed by some time t1, and all correct acceptors start the algorithm, then all

correct learners will eventually decide.

Proof. To obtain a contradiction, assume that there is a correct learner that never decides.

Lemma B.1.8 implies that no acceptor ever halts. Then, Lemma B.1.11 states that all

correct acceptors stop all rounds.
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We assume that all rounds i > i0 satisfy Optimistic Termination (f, k) for some k.

Assume the algorithm started at time t0. Since the sequence of timeout periods for succes-

sive rounds tends to infinity, there is a round i1 such that all rounds i ≥ i1 have timeouts

longer than max {(k + 3)d, t1 − t0}. There are infinitely many correct coordinators ci, so

there is one with i > max {i0, i1}.

Let t be the time at which all rounds j < i were stopped by all correct acceptors.

Since i1 < i and the timeout period for round i1 is longer than t1 − t0, we deduce that

t > t1. In other words, all correct coordinators, ci in particular, proposed by time t.

If all correct acceptors have all rounds j < i stopped at time t, then all states Sj

of ci will be complete at time t + d. Also, Lemma B.1.12 implies that no correct acceptor

started round i timer before time t − d. Since i > i1, its timeout period is longer than

(k + 3)d, so no correct acceptor will stop round i before (t + d) + (k + 1)d. Finally,

since i > i0, instance OTCi satisfies Optimistic Termination (f, k), the assumption of

Lemma B.1.13 holds, so all correct learners will eventually decide.

Theorem B.1.15 (Latency). If the run is timely, coordinator c1 is correct, at most q

acceptors are faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k, then

all correct learners will decide on the value x1 proposed by c1 in k + 1 communication

steps.

Proof. In the eventual synchrony model, a run is timely if the maximum message trans-

mission time d is “sufficiently small” and all correct coordinators propose within one step

of the start of the algorithm. We assume that, in the context of this algorithm, “suf-

ficiently small d” means that d · (k + 3) is smaller than the timeout period of the first

round. This implies that no correct acceptor will stop the first round earlier than k + 1

communication steps after c1 proposed.

Given these assumptions, Lemma B.1.13 proves that OTC1.decision(x) will hold at all

correct learners in k+1 steps. Corollary B.1.4 shows that an honest acceptor has received

x as the proposal from some ci with i ≤ 1. Since c1 is the only such coordinator and it is

correct (therefore also honest), the assertion holds.

B.2 Consensus

Theorem B.2.1 (Validity). If all acceptors are honest and decision(x) holds at some

learner, then some acceptor proposed x.

Proof. Predicate decision(x) holds in Consensus only if the analogous predicate holds

for the underlying Coordinated Consensus. Since all coordinators are honest acceptors,

Validity of Coord (Theorem B.1.6) implies that some acceptor executed Coord.propose(x).

This in turn implies the assertion.
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1 let c1, c2, . . . = a1, a2, . . . , an, a1, a2, . . .

2 when acceptor ai executes propose(x) do
3 explicitly start instance Coord as acceptor ai

4 execute Coord.propose(x) as coordinators ci, ci+n, ci+2n, . . .

5 when Coord.decision(x) at a learner do
6 decide(x)

Figure B.3: Implementing Consensus with Coordinated Consensus.

Theorem B.2.2 (Agreement). There is at most one x for which decision(x) holds at

some learner.

Proof. Predicate decision(x) holds in Consensus only if the analogous predicate holds for

the underlying Coordinated Consensus. The Agreement property of Coord implies the

assertion.

Theorem B.2.3 (Termination). If all correct acceptors have executed propose, then all

correct learners will eventually decide.

Proof. The Consensus algorithm decides immediately after the underlying Coordinated

Consensus does so. Therefore, it is sufficient to show that all conditions required to ensure

Termination of the latter algorithm hold (Theorem B.1.14).

The assumption implies that all correct acceptors started Coord. We assume that at

least one acceptor ai is correct. In the rotating coordinator scheme, acceptor ai plays

coordinators ci, ci+n, ci+2n, . . . , so infinitely many coordinators are correct. The number

of correct acceptors is finite, so all correct coordinators eventually propose. Therefore,

Theorem B.1.14 implies the assertion.

Theorem B.2.4 (Latency). If the run is timely, acceptor a1 is correct, at most q ac-

ceptors are faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k, then all

correct learners will decide in k + 1 communication steps.

Proof. Straightforward from the The Latency property of Coord.

B.3 Individual Consensus

Theorem B.3.1 (Sensitive Validity). If the owner is honest and decision(x) holds at

some learner, then x has either been proposed by the owner or equals abort. If the owner

is correct and the run is timely, the former case must hold.
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1 c1 = p
2 c2, c3, . . . = a1, a2, . . . , an, a1, a2, . . .

3 when the owner p executes propose(x) do
4 execute Coord.propose(x) as coordinator c1

5 task at acceptor ai is
6 explicitly start Coord as acceptor ai

7 execute Coord.propose(abort) as coordinators ci+1, ci+n+1, ci+2n+1, . . .

8 when an acceptor received proposal xi from ci with i > 1 do
9 ignore the actual xi and behave as if xi = abort was received

10 when Coord.decision(x) at a learner do
11 decide(x)

Figure B.4: Implementing Individual Consensus with Coordinated Consensus.

Proof. Predicate decision(x) holds in Individual Consensus only if the analogous predicate

holds for the underlying Coordinated Consensus. Lemma B.1.5 and Corollary B.1.4 imply

that some honest acceptor received x from some coordinator ci. If i > 1 then x = abort.

If i = 1, then x must have been proposed by the (honest) owner p = c1 = ci.

We assume that all OTC instances satisfy Optimistic Termination (q, f). If the run

is timely, then the Latency property of Coord implies that all correct learners have de-

cided on the value proposed by the owner c1. The Agreement property of Coordinated

Consensus implies the assertion.

Theorem B.3.2 (Agreement). There is at most one x for which decision(x) holds at

some learner.

Proof. Predicate decision(x) holds in Consensus only if the analogous predicate holds for

the underlying Coordinated Consensus. The Agreement property of Coord implies the

assertion.

Theorem B.3.3 (Termination). All correct learners will eventually decide.

Proof. The Consensus algorithm decides immediately after the underlying Coordinated

Consensus does so. Therefore, it is sufficient to show that all conditions required by

Termination of the latter algorithm hold (Theorem B.1.14).

The assumption implies that all correct acceptors started Coord. We assume that at

least one acceptor ai is correct. In the rotating coordinator scheme, acceptor ai plays

coordinators ci, ci+n, ci+2n, . . . , so infinitely many coordinators are correct. The number

of correct acceptors is finite, so all correct coordinators eventually propose. Therefore,

Theorem B.1.14 implies the assertion.
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1 when the owner executes propose(x) do
2 Ind.propose(x)
3 broadcast “propose x” to all learners

4 when a learner receives “propose abort” from the owner do
5 decide(abort)

6 when Ind.decision(x) at a learner do
7 decide(x)

Figure B.5: Implementing Fast Individual Consensus with Individual Consensus in the
crash-stop model.

Theorem B.3.4 (Latency). If the run is timely, the owner is correct, at most q ac-

ceptors are faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k, then all

correct learners will decide in k + 1 communication steps.

Proof. Straightforward from the The Latency property of Coord.

B.4 Fast Individual Consensus

In this section, we assume that the owner is honest.

Theorem B.4.1 (Sensitive Validity). If decision(x) holds at some learner, then x has

either been proposed by the owner or equals abort. If the owner is correct and the run

is timely, the former case must hold.

Proof. Predicate decision(x) implies either Ind.decision(x) or that x = abort and the

learner has received “propose x” from the owner. In the former case, Sensitive Validity

of Ind implies the assertion. In the latter case, the owner must have proposed abort,

which also implies the assertion.

Theorem B.4.2 (Agreement). There is at most one x for which decision(x) holds at

some learner.

Proof. If no learner received “propose abort”, then the assertion follows from the Agree-

ment property of Ind. Otherwise, the owner must have proposed abort, so Validity of

Ind implies that Ind.decision(x) can only hold for x = abort, which implies the asser-

tion.

Theorem B.4.3 (Termination). All correct learners will eventually decide.

Proof. Straightforward from the Termination property of Individual Consensus.



212 APPENDIX B. AGREEMENT ABSTRACTIONS

1 when acceptor ai executes propose(x) do
2 broadcast “propose x”
3 explicitly start Ind as acceptor ai

4 when Ind.decision(x) at a learner do
5 decide(x)

6 predicate the virtual owner executed propose(x) is
7 x = f(x1, . . . , xn), where xi is the proposal of ai

8 predicate received proposal x from the virtual owner is
9 x = f(x1, . . . , xn), where xi is the proposal received from ai

Figure B.6: Implementing Atomic Commitment using Individual Consensus with a virtual
owner.

Theorem B.4.4 (Latency). If the run is timely and the owner is correct, then all cor-

rect learners decide in two communication steps. If in addition, the owner proposed

abort, then the decision is made in one communication step.

Proof. We assume that OTC1 is implemented as single-value one-step OTC from Sec-

tion 2.3 with q = f . The first part of the assertion follows from the Latency property of

Ind. If the owner proposes abort, then all correct learners will receive “propose abort”

in one step, which implies the second part of the assertion.

B.5 Atomic Commitment

Theorem B.5.1 (Sensitive Validity of Distributed Function Computation). If all ac-

ceptors are honest and decision(x) holds at some learner, then x = f(x1, . . . , xn) or

x = abort. If all acceptors are correct and the run is timely, the former case must hold.

Proof. By definition, if the virtual owner proposes x = f(x1, . . . , xn) iff each (honest)

acceptor ai proposes xi. The assumption implies that the virtual owner is honest, which

by Validity of Individual Consensus (Theorem B.3.1) implies the assertion.

Theorem B.5.2 (Sensitive Validity of Atomic Commitment). If all acceptors are

honest, then

1. If the run is timely, and all acceptors are correct and proposed commit, then com-

mit is the only possible decision.

2. If at least one acceptor proposed abort, then abort is the only possible decision.

Proof. In the first case, the virtual owner is correct and proposes commit. Since the

run is timely, Theorem B.5.1 implies the assertion. In the second case, the virtual owner

proposed abort or nothing. The assertion follows again from Theorem B.5.1.
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1 when acceptor ai executes propose(x) do
2 explicitly start parallel instances Ind1, Ind2, . . . , Indn

3 Indi.propose(x)

4 when Indi.decision(xi) for all i = 1, . . . , n at a learner do
5 decide([x1, . . . , xn])

Figure B.7: Implementing Interactive Consistency with n instances of Individual Consen-
sus.

Theorem B.5.3 (Agreement). There is at most one x for which decision(x) holds at

some learner.

Proof. Straightforward from the Agreement property of Individual Consensus.

Theorem B.5.4 (Termination). If all correct acceptors proposed, then all correct learn-

ers will eventually decide.

Proof. The assumption implies that all correct acceptors started the instance Ind, so the

assertion follows from Termination of Individual Consensus (Theorem B.3.3).

Theorem B.5.5 (Latency). If the run is timely, the virtual owner is correct, at most q

acceptors are faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k, then

all correct learners will decide in k + 1 communication steps.

Proof. Follows from the Latency property of Individual Consensus (Theorem B.3.4).

B.6 Interactive Consistency

Theorem B.6.1 (Sensitive Validity). If a learner decides on [v1, . . . , vn] and accep-

tor ai is honest, then vi has either been proposed by ai or equals abort. If ai is correct

and the run is timely, the former case must hold.

Proof. The assumption implies that Indi decided on vi. The assertion follows from Sen-

sitive Validity of Indi (Theorem B.3.1).

Theorem B.6.2 (Agreement). There is at most one vector [v1, . . . , vn] for which the

predicate decision([v1, . . . , vn]) holds at some learner.

Proof. The Agreement property of Indi (Theorem B.3.2) states that there is at most

one vi for which Indi.decision(vi) holds at some learners, which implies the assertion.

Theorem B.6.3 (Termination). If all correct acceptors proposed, then all correct learn-

ers will eventually decide.
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Proof. The assumption implies that all correct acceptors started all instances Indi, where

i = 1, 2, . . . , n. Therefore, the Termination property of Individual Consensus (Theo-

rem B.3.3) implies that all Indi will eventually decide, which implies the assertion.

Theorem B.6.4 (Latency). If the run is timely, the owner is correct, at most q ac-

ceptors are faulty, and OTC1 satisfies Optimistic Termination (q, k) for some k, then all

correct learners will decide in k + 1 communication steps.

Proof. Follows from the Latency property of Individual Consensus (Theorem B.3.4).



Appendix C

Atomic Broadcast

C.1 Atomic Broadcast

Lemma C.1.1. Consider any (Uniform) Consensus algorithm. If a learner decides on x,

then at least one correct acceptor has seen x.

Proof. To obtain a contradiction, assume that there is a run r1, in which some learner l1

decides on x at time t, and no correct acceptor ever sees x. Consider a run r2, which is

identical to r1, except that all faulty acceptors that have not yet failed by time t in run r1

fail at time t. Also assume that, in run r2, all messages from faulty acceptors that have

not yet reached their destination before time t are lost. Finally, assume that, in run r2,

every correct acceptor that did not propose by time t, proposes at time t some x′ 6= x.

Runs r1 and r2 are identical until time t, so in r2 no correct acceptor sees x by time t.

After time t, correct acceptors receive only messages from correct acceptors. Therefore,

no correct acceptor ever sees x in run r2.

Consider a correct learner l2, and assume that all messages from faulty acceptors

to l2 are lost. Since all correct acceptors propose in run r2, the Termination property

implies that learner l2 will eventually decide. It cannot decide on x, because it has only

received messages from correct acceptors, who have never seen this value. On the other

hand, Agreement implies that l2 must decide on x because l1 has already done so. This

contradiction proves the assertion.

Theorem C.1.2 (Validity). For any message m, every learner delivers m at most once,

and only if m was abcast by a proposer.

Proof. The first part of the assertion follows from the fact that learners deliver only unde-

livered messages. For the second part, assume that m is delivered in the k-th iteration of

the loop. This implies that m ∈ Bk and, by Validity of batchk, at least one acceptor exe-

cuted batchk.propose(M) with m ∈M = Bk. Hence, this acceptor must have received m,

which implies the assertion.
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1 M is the set of received messages, initially ∅

2 when a proposer executes abcast(m) do
3 broadcast m to the acceptors

4 when an acceptor sees m eventually do
5 abcast(m)

6 task broadcasting at acceptors is
7 for k = 1, 2, . . . do
8 wait for some message m /∈M
9 insert m intoM

10 batchk.propose(M)

11 task delivery at learners is
12 for k = 1, 2, . . . do
13 wait until batchk.decision(Bk)
14 deliver all undelivered messages from Bk in some deterministic order

Figure C.1: Atomic Broadcast.

Theorem C.1.3 (Agreement). For any two different messages m and m′, it is impos-

sible that one learner l delivers m without having previously delivered m′, and another

learner l′ delivers m′ without having previously delivered m.

Proof. To obtain a contradiction, assume that the assertion does not hold. Let k be the

first instance batchk that decides on a set of messages containing m. Similarly, let k′ be

the first instance batchk′ that decides on a set of messages containing m′. These definitions

are unambiguous thanks to the Agreement property of instances batchi.

Learner l delivers m without having previously delivered m′, which implies k ≤ k′.

Learner l′ delivers m′ without having previously delivered m, which implies k′ ≤ k. As

a result, k = k′, so both learners deliver m and m′ while delivering the same batch of

messages Bk. All these messages are delivered in the same deterministic order, which

implies the assertion.

Theorem C.1.4 (Termination Validity). If a correct proposer abcasts m, then all cor-

rect learners will eventually adeliver m.

Proof. Consider the set M ∋ m of all messages ever received by a correct acceptor.

Correct acceptors see all messages they receive, and (eventually) re-abcast all of them,

therefore each correct acceptor receives all messages in M .

If M is infinite, then correct acceptors propose to infinitely many instances batchk.

Eventually, there will be an instance batchk in which no faulty acceptors participate and

to which all correct acceptors propose some M ∋ m. By Validity, this instance decides

on some Bk ∋ m, which implies the assertion.
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Now, consider the case in which M is finite and has k elements. All correct acceptors

propose to instances batch1, . . . , batchk, so all of these instances will eventually decide

(Termination). Consider the decision Bk of batchk. All proposals M in batchk have k

elements, so Bk has k elements as well. Every message in Bk has been seen by a correct

acceptor (Lemma C.1.1), which re-abcasts it so that all correct acceptors eventually re-

ceive it. As a consequence, Bk ⊆ M and since |Bk| = |M | = k, we have Bk = M ∋ m,

which implies the assertion.

Theorem C.1.5 (Termination Agreement). If a learner delivers a message m, then

eventually all correct learners will deliver that message.

Proof. Any delivered message m belongs to the decision Bk of some instance batchk.

Lemma C.1.1 implies that m is seen by a correct acceptor, who eventually abcasts it. The

assertion follows from Theorem C.1.4 (Termination Validity).

Theorem C.1.6 (Latency C2). Assume the underlying Consensus algorithm satisfies

Property C2. Then, in stable runs, a message abcast by a correct proposer is delivered by

all correct learners in three communication steps.

Proof. Assume that a correct proposer abcasts message m at time t. The leader will

receive m by time t + d and will propose M ∋ m to some instance batchk. The leader

proposed in all instances batch1, . . . , batchk by time t + d, therefore, by Property C2, all

these instances will decide on values proposed by the leader by time t+3d. In particular,

instance batchk will decide on Bk =M∋ m, so all correct learners will deliver m by time

t + 3d.

Theorem C.1.7 (Latency C1). Assume the underlying Consensus algorithm satisfies

Property C1. In ordered stable runs, a message abcast by a correct proposer is delivered

by all correct learners in two communication steps.

Proof. Assume that a correct proposer abcast message m at time t. Since correct acceptors

receive all proposer messages in the same order, they all receive m by time t + d, as, say,

the k-the message. Therefore they propose to all instances batch1, . . . , batchk by time

t + d. Since, in each of these instances batchi, all correct acceptors propose the same set

Mi, they will all decide by t + 2d.

In instance batchk, all correct acceptors proposed the same M ∋ m. Therefore, this

instance will decide onM∋ m. As a result, message m will be delivered by time t+2d.

C.2 Optimistic Generic Broadcast

We will first make some definitions. Each learner l builds its own relation “→”, which we

also denote as “→l” if l is not obvious from the context. This relation changes over time,
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1 when a proposer executes gbcast(m) do
2 broadcast m to the acceptors

3 when an acceptor sees m eventually do
4 gbcast(m)

5 when an acceptor receives m for the first time do
6 for all possible non-received messages m′ conflicting with m do
7 firstm,m′ .propose(m)
8 abcast(m)

9 when firstm,m′ .decision(m) at a learner do
10 set m→ m′

11 when a learner has not gdelivered m,
12 and has m→ m′ for all undelivered messages m′ conflicting with m do
13 gdeliver1(m)

14 task cycle resolution at a learner is
15 repeat forever
16 wait until adeliver(m)
17 wait until m has been gdelivered or
18 all undelivered messages conflicting with m are blocked
19 if m has not been gdelivered yet then
20 gdeliver2(m)

Figure C.2: Optimistic Generic Broadcast.

which might lead to confusion in proofs. To avoid this, we assume that, unless explicitly

said otherwise, the symbol “→” represents the ultimate form of the relation, that is, the

union of the relations → taken at all moments in time. If m → m′, then we say that m

is a predecessor of m′ and m′ is a successor of m. A finite path m m′ is a sequence of

messages m = m1 → m2 → · · · → mk = m′.

Lemma C.2.1. If m→ m′, then m′ has been seen by a correct acceptor.

Proof. Relation m → m′ requires that Consensus instance firstm,m′ decided on m, so

Lemma C.1.1 implies the assertion.

Lemma C.2.2. Any message m seen by a correct acceptor has a finite number of prede-

cessors.

Proof. The Validity property of the underlying Consensus algorithm implies that for any

predecessor m′, at least one acceptor must have executed firstm,m′ .propose(m′). Therefore,

at least one acceptor received m′ before m. We have to prove that there are only finitely

many such messages m′.

Message m has been seen by a correct acceptor, so all correct acceptors eventually

receive m. Therefore, any correct acceptor receives only finitely many messages m′ before
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m. Incorrect acceptors receive finitely many messages before they crash. Therefore, the

total number of messages m′ that precede m is finite.

Lemma C.2.3. Let m be a message seen by a correct acceptor. Eventually, m → m′ or

m′ → m for any m′ conflicting with m.

Proof. The assumption implies that all correct acceptors will eventually receive m. There-

fore, all correct acceptors will eventually propose in all instances firstm,m′ (this happens

when the acceptor receives its first message in {m,m′}). Eventually, all such instances

will decide, which implies the assertion.

Lemma C.2.4. A never-delivered message m seen by a correct acceptor has a never-

delivered predecessor.

Proof. To obtain a contradiction, assume that every predecessor of m will eventually be

delivered. Message m has a finite number of predecessors (Lemma C.2.2), so eventually all

predecessors of m will be delivered. Lemma C.2.3 implies that eventually every message m′

conflicting with m will either be its predecessor or successor. As a result, eventually all

undelivered messages conflicting with m will be its successors, so m will be 1-delivered.

This contradicts the assumption of m never being delivered.

Lemma C.2.5. All paths m1 ← m2 ← m3 ← · · · are finite.

Proof. Assume that the path m1 ← m2 ← m3 ← · · · is infinite. Properties of the leader

elector Ω ensure that eventually all acceptors will either crash or output a single acceptor a

as the leader. Let M be the (finite) set of messages received by any acceptor before this

happens. Consider an (infinite) tail mk ← mk+1 ← · · · of the original path that does

not contain any messages from M . Since all messages mk, mk+1, . . . were received after

the output of the leader elector stabilized, all relations mk ← mk+1 ← · · · are consistent

with the linear order of message reception at the eventual leader (Consensus Property C2)

However, this means that the eventual leader received infinitely many messages before mk,

which is impossible.

Lemma C.2.6. If a correct learner executes adeliver(m), then it will deliver m.

Proof. To obtain a contradiction, assume that a correct learner adelivered m but will

never deliver it. Message m has been adelivered so it must have been seen by a correct

acceptor. As a result, Lemma C.2.4 implies that m has a never-delivered predecessor.

We will prove that m has a never-delivered predecessor m′ that is never blocked. To

obtain a contradiction, assume that all never-delivered predecessors m′ will eventually be

blocked. This implies (previous paragraph) that at least one of the predecessors of m

is blocked, which implies that m itself is blocked. As a result, all successors of m are
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blocked as well. Therefore, Lemma C.2.3 implies that eventually all undelivered messages

conflicting with m will be blocked, so m will be 2-delivered. This contradicts the assump-

tion of m never being delivered, and proves that m has a never-delivered, never-blocked

predecessor m′.

Consider the set of all paths m′′  m′ consisting only of never-delivered messages.

There is at least one such path (m′  m′). Lemma C.2.5 implies that all such paths are

finite, so there is a maximal path m′′  m′ (otherwise we could keep extending any path

ad infinitum).

Both messages m′ and m′′ have been seen by a correct learner because they have a

successor in the path m′′  m′ → m (Lemma C.2.1). As a result, Lemma C.2.4 implies

that m′′ has a never-delivered predecessor m′′′.

If m′′′ ∈ m′′  m′, then m′′′ is blocked because m′′′ → m′′  m′′′ forms a cycle,

and as a result m′ is blocked as well, which contradicts the assumption that m′ is never

blocked. On the other hand, if m′′′ /∈ m′′  m′, then the path m′′′ → m′′  m′ contains

only never-delivered messages and extends m′′  m′, which contradicts the maximality

of m′′  m′. These contradictions prove the assertion.

Theorem C.2.7 (Termination Validity). If a correct proposer gbcasts a message m,

then all correct learners will eventually deliver it.

Proof. The assumption implies that all correct acceptors will eventually receive m and

execute abcast(m). Therefore, all correct learners will eventually execute adeliver(m), so

Lemma C.2.6 implies the assertion.

Theorem C.2.8 (Termination Agreement). If a learner delivers m, then all correct

learners will eventually deliver m.

Proof. Any delivered message must have been seen by a correct acceptor, which will

eventually gbcast it. Termination Validity implies the assertion.

Theorem C.2.9 (Validity). A learner delivers m only once and only if m was gbcast

by some proposer.

Proof. No message can be delivered twice because delivery of a message requires it not to

have been delivered before. If m is 1-delivered, then firstm,⊥ decides on m, which implies

that some acceptor proposed m, which implies the assertion. If m is 2-delivered, then it

must have been abcast by some acceptor, which also implies the assertion.

C.2.1 Partial Order

Definition C.2.10. A learner “(1-,2-)delivers message m before m′” iff it (1-,2-)delivers

m without having previously delivered m′. (Message m′ can be delivered later in any way

or not be delivered at all.)
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Lemma C.2.11. Assume that learner l 2-delivers m before m′ and learner l′ 2-delivers

m′ before m. This is impossible.

Proof. At the time of 2-delivery of m at l, message m′ is not delivered. Therefore, learner l

adelivers m before m′. By a similar argument, learner l′ adelivers m′ before m. This

violates the Agreement property of the underlying Atomic Broadcast protocol.

Lemma C.2.12. Let m and m′ be conflicting messages. Assume that learner l 1-delivers

m before m′ and learner l′ 1-delivers m′ before m. This is impossible.

Proof. In order to 1-deliver m before m′ at learner l, we must have m→ m′. An analogous

argument for learner l′, leads to m′ → m, which violates Agreement of the underlying

Consensus algorithm.

Lemma C.2.13. Let m and m′ be conflicting messages. Assume that some learner l

2-delivers m before m′, and learner l′ delivers m′ before m. This is impossible.

Proof. Consider the moment when learner l executes deliver2(m). Let B be the set of

undelivered messages blocked at l. This set contains all undelivered messages conflicting

with m. We will prove that, at any learner l′, no message from B will be delivered

before m.

To obtain a contradiction, assume that B is not empty and that l′ delivers the first

message m′ 6= m from B before m. We shall now obtain a contradiction by proving that

learner l′ can neither 2-deliver nor 1-deliver m′ before m. Note that m and m′ do not

necessarily conflict.

Learner l′ 2-delivering m′ before m violates Lemma C.2.11 because learner l 2-delivers

m before m′.

Message m′ ∈ B is blocked at l, therefore it has an undelivered, blocked predecessor m′′

at l. In other words, there is m′′ ∈ B such that m′′ →l m′. Note that m′ is the first message

in B delivered by l′; thus, at the moment of 1-delivery of m′, message m′′ ∈ B is still

undelivered at l′. This leads to a contradiction: 1-delivery of m′ requires m′ →l′ m′′,

which is impossible because m′′ →l m′.

Theorem C.2.14 (Generic Agreement). For any two conflicting messages m and m′,

it is impossible that one learner delivers m without having previously delivered m′, and

another learner delivers m′ without having previously delivered m.

Proof. To obtain a contradiction, assume that learner l delivers m before m′, and learner l′

delivers m′ before m. If learner l 2-delivers m before m′, then Lemma C.2.13 prevents

learner l′ from delivering m′ before m. Therefore, learner l 1-delivers m before m′. By

an analogous argument, learner l′ 1-delivers m′ before m. However, this is impossible by

Lemma C.2.12.
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C.2.2 Latency

Lemma C.2.15. In stable runs, if the leader receives a message at time t, then all correct

learners will deliver it by time t + 2d.

Proof. To obtain a contradiction, assume this is not true. Let m be the first message

received by the leader for which the assertion does not hold.

Let m′ be any message conflicting with m that was not received by the leader before m

(at time t). When the leader receives m, it executes firstm,m′ .propose(m) at time t.

Therefore, by Property C2 of the underlying Consensus, by time t+2d, all correct learners

have firstm,m′ .decision(m) and set m→ m′.

By assumption, all messages m′ received by the leader before m were delivered before

time t + 2d, therefore, at time t + 2d, the 1-delivery condition for m is met.

Lemma C.2.16. In conflict-ordered stable runs, any message received by all correct ac-

ceptors by time t will be delivered by time t + d.

Proof. To obtain a contradiction, assume this is not true. Let m be the first message

received by the leader for which the assertion does not hold.

Let m′ be any message conflicting with m that was not received by the leader before

m. By assumption, no correct acceptor receives m′ before m. Therefore, all correct accep-

tors execute firstm,m′ .propose(m) by time t. As a result, Property C1 of the underlying

Consensus implies that, by time t + d, all correct learners have firstm,m′ .decision(m) and

set m→ m′.

Let m′ be any message conflicting with m received by the leader before m. By assump-

tion, all correct acceptors receive m′ before m and therefore before time t. By another

assumption, m′ will be delivered by time t + d. Therefore, at time t + d, the 1-delivery

condition for m is met.

Theorem C.2.17. In stable runs, a message gbcast by a correct proposer is delivered by

all correct learners within two steps if the run is conflict-ordered, and three steps otherwise.

Proof. Straightforward from Lemmas C.2.15 and C.2.16.

C.3 One-Two Consensus

Theorem C.3.1 (Agreement). There is at most one x for which decision(x) holds at

some learner.

Proof. In most cases, this follows from the same property of auxiliary instances of Con-

sensus. This property can be violated only if some learner decides in condition 2, whereas
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1 when acceptor a executes propose(x) do
2 broadcast(x, a)
3 propose1(x)
4 propose2(x, a)
5 proposeL(l) where l is the output of Ω

6 task decide at learners is
7 wait until decisionL(l)
8 wait until one of the conditions is true and decide on x
9 condition 1: decision1(x) and receive(x, l)

10 condition 2: decision2(x, l)
11 condition 3: decision1(x) and decision2(y, q) with q 6= l

Figure C.3: The One-Two Consensus algorithm.

another does so in condition 1 or 3. Decisions in conditions 1 and 2 must be the same

because they are both values proposed by the leader l. Conditions 2 and 3 cannot be used

in the same execution. Condition 2 is used only if instance 2 decides on a value proposed

by the leader, whereas condition 3 is used only if instance 2 decides on a value proposed

by another acceptor.

Theorem C.3.2 (Validity). If decision(x) holds at some learner, then some acceptor

proposed x.

Proof. Follows from analogous properties of Consensus instances 1 and 2.

Theorem C.3.3 (Termination). If all correct acceptors propose, then eventually all

correct learners will decide.

Proof. Termination properties of the underlying instances of Consensus imply that eventu-

ally every correct learner will have decisionL(l), decision1(x) and decision2(y, q). If q = l,

then condition 2 will decide on y. Otherwise, condition 3 will decide on x.

Theorem C.3.4 (Property C1). In stable runs in which all correct acceptors proposed

the same value, all correct learners decide on that value in one communication step.

Proof. The assumption ensures that all correct acceptors, including the leader, will pro-

pose the same value to instances 1 and L. As a result, the leader l is known and condition 1

holds in one communication step [13].

Theorem C.3.5 (Property C2). In stable runs, all correct learners decide on the value

proposed by the leader in two communication steps after the leader proposed.

Proof. The assumption ensures that all correct acceptors will propose the same leader to

instance L, so all correct learners will decide on the leader l in one communication step.

The leader l is correct, so its proposal (x, l) will become the decision in two communication

steps [73]. As a result, condition 2 will hold.
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1 when an acceptor executes abcast(m) do
2 insert m intoM
3 broadcast “active t” with t = current-time

4 task broadcasting at acceptors is
5 told ← t0
6 repeat forever
7 M← ∅
8 wait until received “active t” with some t > told
9 wait until current-time ≥ t

10 for all t′ ∈ (told, t) do
11 messagest′.propose(∅)
12 messagest.propose(M)
13 told ← t
14 increase current-time

15 task delivery at learners is
16 told ← t0
17 repeat forever
18 wait until messagest′.decision([∅, . . . , ∅]) for all t′ ∈ (told, t) for some t > told
19 wait until messagest.decision([M1, . . . ,Mn])
20 for i = 1, 2, . . . , n do
21 adeliver all undelivered messages inMi in some deterministic order
22 told ← t

23 task retransmission at an acceptor is
24 periodically do
25 for all seen messages m do
26 abcast(m)

Figure C.4: Atomic Broadcast in closed groups.

C.4 Atomic Broadcast in closed groups

Theorem C.4.1 (Validity). For any message m, every learner delivers m at most once,

and only if m was abcast by a proposer.

Proof. Learners deliver only undelivered messages, so the first part of the assertion holds.

For the other part, note that the learner has messagest.decision([M1, . . . ,Mn]) for

some t and Mk ∋ m. This means that Mk 6= ∅ = abort, so acceptor ak executed

messagest.propose(Mk). This means that ak must have executed abcast(m).

Theorem C.4.2 (Agreement). For any two different messages m and m′, it is impos-

sible that one learner l delivers m without having previously delivered m′, and another

learner l′ delivers m′ without having previously delivered m.

Proof. To obtain a contradiction, assume that the assertion does not hold. Let t be the

first instance messagest which decides on a vector [M1, . . . ,Mn] with one of the setsMk
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containing m. Similarly, let t′ be the first instance messagest′ which decides on a vector

of sets [M′
1, . . . ,M

′
n] with one of the sets M′

k′ containing m′. The Agreement property

of Interactive Consistency implies that t and t′ are defined in an unambiguous way.

Learner l delivers m without having previously delivered m′, which implies t ≤ t′.

Learner l′ delivers m′ without having previously delivered m, which implies t′ ≤ t. As

a result, t = t′, so both learners deliver m and m′ while delivering the same batch of

messages in [M1, . . . ,Mn]. All these messages are delivered in the same deterministic

order, which implies the assertion.

Lemma C.4.3. If a correct acceptor broadcasts “active t”, then all correct acceptors will

eventually have told ≥ t.

Proof. To obtain a contradiction, assume that at some correct acceptor a, the statement

told < t holds forever. The value of told can be updated to t′ < t only after receiving

message “active t′” with t′ < t. The number of messages broadcast before time t is

finite, therefore, so is the number of messages “active t′” with t′ < t. As a result, told is

updated only finitely many times, and eventually it reaches some value told < t, which

never changes again. However, we assume that a correct acceptor broadcasts “active t”,

therefore acceptor a will eventually receive “active t”. Since, t > told, this will eventually

lead to updating the value of told, which contradicts the assumption that told is never

updated.

Theorem C.4.4 (Termination Validity). If a correct proposer abcasts message m,

then all correct learners will eventually deliver it.

Proof. Three events will eventually occur. Firstly, all faulty acceptors will crash. Sec-

ondly, the Eventual Weak Accuracy of ♦S implies that there is a correct acceptor ak

that eventually will never be suspected by any correct acceptor. Thirdly, the assumption

implies that ak will eventually receive m, and therefore see it. The retransmission task

ensures that acceptor ak will execute abcast(m) at least once after the three above events

occurred.

This execution of abcast(m), which happens, say, at time tm, results in “active tm”

being broadcast by ak. Lemma C.4.3 states that all correct acceptors, will eventually have

told ≥ tm, which implies two facts. Firstly, all correct acceptors propose in all instances

messagest with t ∈ (t0, tm]. Secondly, by executing abcast(m), acceptor ak inserts m into

M. At that time told < current-time = tm, so ak will indeed propose M ∋ m in some

instance messagest′ with t′ ∈ (told, tm].

We have just shown that all correct acceptors propose in all instances messagest with

t ∈ (t0, tm] and that acceptor ak proposed an M ∋ m in one of them (messagest′). As

a result, the “delivery” task will eventually decide in all these instances and deliver the

messages it decided on. Since no correct acceptor suspects ak, the Sensitive Validity
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condition of messagest′ guarantees that its decision vector [M1, . . . ,Mn] satisfies m ∈

Mk. Therefore m will be delivered by all correct learners.

Theorem C.4.5 (Termination Agreement). If a learner delivers m, then all correct

learners will eventually deliver m.

Proof. By assumption, some learner has executed messaget.decision([M1, . . . ,Mn]) with

m ∈ Mk for some t and k, so Lemma C.1.1 implies that a correct acceptor has seen m.

This acceptor will eventually execute abcast(m) in line 26, so Termination Validity (The-

orem C.4.4) implies the assertion.

Theorem C.4.6 (Latency). In good runs with synchronized clocks, every abcast mes-

sage is delivered by all correct learners within two communication steps.

Proof. Assume that acceptor ak abcasts message m at time tm. Let A be the set of

acceptors that abcast any messages at time tm. Note that A 6= ∅ because ak ∈ A. Each

acceptor in A broadcasts an “active tm” message at time tm. As a result, all acceptors

in A receive “active tm” at time tm, and all the others do so by time tm + d.

Consider any acceptor a ∈ A. Local messages incur no delay, so ak receives its

own message “active tm” still at time tm, and sets told ≥ tm. The assumption of clock

synchronization implies that no acceptor has sent any “active t” with t > tm yet, so in

fact told = tm. Before abcasting m, acceptor a had told < current-time = tm, which implies

that ak executes line messagest.propose(M) in line 12 at least once after abcasting m.

Consider the first such execution. Since M has not been emptied since ak abcast m, we

have m ∈ M. We have shown that ak executes messagest.propose(M ∋ m) with some

t ≤ tm at time tm.

Consider now any acceptor a, not necessarily in A. Since the set M is emptied after

being proposed, the previous paragraph also proves that if an acceptor a proposes a non-

emptyM to messagest, then it must have executed abcast(m) at time t. As a result, any

execution messagest.propose(M 6= ∅) happens at time t. In other words, all executions

of messagest(M 6= ∅) with t ≤ tm happen at time tm or before.

Since acceptors in A broadcast “active tm” at time tm, all acceptors receive this mes-

sage by time tm + d. As a result, by time tm + d, all acceptors propose in all instances

messaget with t ≤ tm.

Consider any instance messagest with t ≤ tm. The previous two paragraphs proved

that all proposals are issued by time tm + d, and non-empty ones are issued by time tm.

Since the run is good, the Latency property of Interactive Consistency implies that all

instances messagest with t ≤ tm will decide by time tm + 2d. As a consequence, all

messages in the decision vector in instances messagest will be delivered by time tm + 2d.

We already showed that every message m abcast at time tm was proposed to some

instance messagest with t ≤ tm. Since the run is good, the Validity property of Interactive
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Consistency implies that m will be in the decision vector of messagest. Therefore, as the

previous paragraph showed, m will be delivered by time tm + 2d.





Glossary

active timeframe

A timeframe in which at least one acceptor executes abcast .

anti-stable predicate

A time-dependent predicate is anti-stable if, once it is false, it will remain false

forever.

blocked message

A message is blocked if, in the “→” relation, it belongs to a cycle or it is a successor

of a blocked message

communication step

The unit of time equal the maximum (supremum) message transmission time d

between correct processes, in a given time metric.

complete state

The (state of a) learner is complete if all correct acceptors have executed stop and

the learner has received all messages sent by these acceptors before or by their (first)

stop action.

conflict-free run

A run is conflict-free iff no conflicting messages are gbcast.

conflict-ordered run

A run is conflict-ordered iff correct acceptors receive all conflicting proposer messages

in the same order.

decide

A learner decides on x if decision(x) holds at that learner. A learner decides if it

decides on some x. An algorithm decides or terminates when all correct learners

have decided.
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good run

A run is good iff it is timely and all acceptors are correct.

halt

A process that halts stops participating in the algorithm, usually after making a

decision.

latency

The time that passes from the beginning of an algorithm run to its end, usually

measured in communication steps d.

leader

A process with the following property: if the run is timely and the leader is correct,

then learners decide on the value proposed by the leader. In OTC-based algorithms,

this is the coordinator c1 of the first round.

liveness property

A property is a liveness property iff, at any point in time, no matter what happened

up to that point, it is still possible for that property property to hold.

ordered run

A run is ordered iff correct acceptors receive all proposer messages in the same order.

run

An execution of a particular algorithm.

safety property

A property is a safety property iff, at any point in time, if that property does not

hold, then it will never hold, no matter what happens.

seen message

An acceptor sees a message m if it receives any proposal containing m (not neces-

sarily directly). A message is seen iff a correct acceptor has seen it.

semi-complete state

The (state of a) learner is semi-complete if possible(x) =⇒ valid(x) for all x, and

possible(x) holds for at most one x.

stable predicate

A time-dependent predicate is stable if, once it is true, it will remain true forever.
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stable run

A run is stable iff it is timely, and all acceptor perceive the same leader, which is

correct and never change.

time metric

A function t from events to real numbers, such that if an event e causally precedes e′,

then t(e) ≤ t(e′). Examples of time metrics include real time and the logical time

introduced by Lamport [78].

timeframe

Section 5.4 divides the continuous real time into discrete timeframes of length δ each.

Timeframes are denoted by the times at which they begin, that is, timeframe t starts

at time t and ends at time t + δ. The first timeframe is t0, the next is t0 + δ, then

t0 + 2δ, etc.

timely run

In the eventual synchrony model, a run is timely iff all messages between correct

processes have “sufficiently small latencies”. In the failure detector model, a run is

timely iff no correct acceptors are ever suspected.
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♦S failure detector, 29, 114, 115

Ω failure detector, 29

Ω failure detector, 142

•, 45

⊥ (artificial message), 156

⊥ (empty variable), 40

→, 155

1-delivery, 158

2-delivery, 158

A, 86, 91, 102

abcast , 140

abort, 130

acceptor, 22–23, 25, 43, 74, 84, 86, 140, 141

accurate (failure detectors), see Weak Ac-

curacy

action

abcast , 140

adeliver , 140

decide, 114

gbcast , 156

gdeliver , 156

onecast , 40

onedeliver , 40

propose, 25, 43, 74, 84

stop, 43, 47, 49, 74, 78, 84

active timeframe, 169

adeliver , 140

αF , 82

αF , 83

agreement abstractions

algorithms, 122–135

dynamic, 139

quittable, 127–128

sensitive, 127–128

static, 139

agreement framework, 136

agreement frameworks, 136–137

Agreement property

Atomic Broadcast, 140

Consensus, 25, 123

Coordinated Consensus, 110

Individual Consensus, 127

Onecast, 40

algorithm T , 88

algorithms

Atomic Broadcast, 142–144, 150–151, 165–

173

Consensus, 54–57, 59–62, 123–124

discovery, 74

Generic Agreement, 50

Generic Broadcast, 155–160

Interactive Consistency, 135

quiet, 166

Alpha (agreement framework), 137

αM , 82

αM , 83

anti-stable predicate, 44, 85

artificial message (⊥), 156

asynchronous model, 24

asynchronous model, 23

Atomic Broadcast, 19, 140–152
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algorithms, 142–144, 150–151, 165–173

Chandra-Toueg algorithm, 144–146

modified, 146–147

closed groups, 165–173

lower bounds, 142–144, 150–151, 166,

173–176

open groups, 165

properties, 140, 149, 150

Latency, 168, 172

Termination Agreement, 147–148, 172–

173

Termination Validity, 172–173

real-time clocks, 166, 173–174

solvability, 27, 141

three-step, 149–151, 175–176

two-step, 149–151, 165–173

two-three-step, 150–151

uniformity, 141

Atomic Commitment, 130–133, 161–162

blocked message, 158

border set, 162–163

broadcast

Atomic Broadcast, 140–152

Generic Broadcast, 152–160

Reliable Broadcast, 148

Byzantine

failure detectors, 30

model, 22

Paxos, 56, 62

chain (Generic Agreement), 53, 57

Chandra-Toueg algorithm, 144–146

modified, 146–147

channels, 23–24

reliable, 24

cheap

Byzantine Paxos, 62

OTC, 60–62

Paxos, 62

choose, 116–118

client, 17, 22

client-server model, 17

clocks

real-time, 32, 166, 173–174

scalar, 32

closed groups, 165–173

commit, 130

communication channels, see channels

communication step, see step

complete, 47

failure detectors, see Strong Complete-

ness

learner, 45

state, 45, 92

conflict , 79

conflict-free run, 153

conflict-ordered run, 153

conflicting

events, 79

messages, 152

Consensus, 19, 25–31, 123–124

algorithms, 34–36, 47–50, 54–57, 59–62,

122–124

Byzantine model, 36, 56, 57, 62

Coordinated, 109–122

crash-stop model, 34–36, 55, 56, 62, 111–

118

Individual, 127–129

infinitely many instances, 160–165

latency, 49, 54–55

lower bounds, 36

one-step, 56, 124–127

one-two-step, 151–152

privileged-value, 57

properties, 25

solvability, 27, 35–36, 141

structure, 34, 39, 41

two-step, 55
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uniformity, 26

consistent state, 83–84

Coordinated Consensus, 109–122

Byzantine model, 118–122

crash-stop model, 111–118

halting, 115

stopping a round, 114

Termination property, 114–115

coordinator, 34, 39, 41, 47, 111, 122

malicious, 48, 119–120

real, 49

rotating, 34, 49

suspected, 49

virtual, 49, 125

correct

process, 21–22

state, 83

correctness testing (OTC), 91–102

Permanent Agreement, 97–102

Permanent Validity, 92–97

crash detectors, 29

crash-recovery model, 24

crash-stop model, 22

cycles (Generic Broadcast), 157–158

resolution, 158

D, 87

D, 87

δ, 167

dangling pointer, see squirrel

decide, 114

decision, 25, 43, 74, 84, 87–88

decision estimate, 35

decision rules, 87–88

decreasing, 85

deliver latency, 32

DGV, 60

digital signatures, 48, 108, 119

avoiding, 120

Distributed Function Computation, 132

domination (rules), 104

dynamic agreement abstractions, 139

dynamic groups, 24

ε, 77

empty variable (⊥), 40

event, 17, 76–79

conflicting, 79

inferring, 81

eventual

leader elector, 136

register, 136

synchrony, 28, 120–122

Eventual Agreement property, 29

Eventual Weak Accuracy property, 29, 114

eventually do, 148

execution model, 74–78

exponential backoff, 122

extended failure model, 86

extension, 27–31

safe, 28

f , 23, 50, 141

F , 86

F -complete state, 92

F , 86, 91, 102

failure detectors, 28, 112, 133

accurate, see Weak Accuracy

Byzantine, 30

complete, see Strong Completeness

implementability, 30

unreliable, 28–29

weakest, 29

failure model, 21–22

extended, 86

Fast Byzantine Paxos, 56

Fast Individual Consensus, 129–130

faulty process, 21–23, 86

favourable run, 45, 49, 54
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first , 156

fixed point, 95

freeze a process, 63

function, see operator

gbcast , 156

gdeliver , 156

Generic Agreement

algorithm, 50

chain, 53, 57

property (Generic Broadcast), 152

Generic Broadcast, 152–160

algorithms, 155–160

cycles, 157–158

lower bounds, 154

non-trivial, 153

partial order, 155

properties, 140, 157

strict, 153

thrifty, 153

good run, 31, 142

groups

closed, 165–173

dynamic, 24

open, 165

halting, 33, 115

honest

process, 21–22

settings, 22

incorporating events, 77

increasing, 85

Individual Consensus, 127–129

Fast, 129–130

infer , 82

inferring events, 81

infinitely many instances, 160–165, 169–170

Integrity property, 44, 46, 84

Atomic Broadcast, 141

Onecast, 40

Interactive Consistency, 133–135

intervals, 164–165, 169

k, 45

Lambda (agreement framework), 136

latency, 19, 31–34, 142

Consensus, 49, 54–55

latency degree, 32

Latency property

Atomic Broadcast, 149, 150

closed groups, 168, 172

Atomic Commitment, 132

Consensus, 124

one-step, 125, 126

Coordinated Consensus, 115, 116, 121

Fast Individual Consensus, 130

Generic Broadcast, 157

Individual Consensus, 129

Interactive Consistency, 134, 135

leader, 29, 142

leader oracles, 29

learner, 22–23, 25, 43, 74, 84, 140, 141

complete, 45

semi-complete, 45

least fixed point, 95

liveness

properties, 26–27

logical time, 32

lower bounds

Atomic Broadcast, 142–144, 150–151, 166,

173–176

Consensus, 36

Generic Broadcast, 154

OTC, 54, 62–70

m, 23, 50, 139

M-set, 163

M , 86
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M -consistent state, 83–84

M -correct state, 83

M, 86, 91, 102

malicious

coordinator, 48, 119–120

process, 21–23, 86

settings, 22

message, 17, 23–24

blocked, 158

seen, 148

model extension, see extension

multi-step OTC, 57–60, 68

multi-value OTC, 51–52, 54

n, 50, 141

No Creation property, 23

non-trivial (Generic Broadcast), 153

occurrence (event), 77

one-step

Consensus, 56, 124–127

Byzantine model, 57

privileged-value, 57

OTC, 50–54, 61, 63, 65

one-two-step

Consensus, 151–152

OTC, 57–60, 68

Onecast, 40–41, 50

onecast , 40

onedeliver , 40

open groups, 165

operator

choose, 116–118

conflict , 79

infer , 82

prefixes, 81–82

rule, 87

S(x), 80

Optimistic Byzantine Agreement, 56

Optimistic Termination property

extended, 87

standard, 44, 46, 85

Optimistically Terminating Consensus, see

OTC

order (rules), 103–104

ordered run, 149

OTC, 39, 41–50, 70–74

cheap, 60–62

correctness testing, 91–102

general, 85

Permanent Agreement, 97–102

Permanent Validity, 92–97

discovery, 102–107

framework, 71, 136–137

interface, 43–44

lower bounds, 54, 62–70

multi-step, 57–60, 68

multi-value, 51–52, 54

one-step, 50–54, 61, 63, 65

one-two-step, 57–60, 68

Permanent Agreement, 52

Permanent Validity, 52

privileged-value, 52–53

single-value, 51–52, 54

two-step, 53–54, 61, 67

owner

Individual Consensus, 127

virtual owner, 131

Onecast, 40

partial order (Generic Broadcast), 155, 217

path, 217

Paxos at war, 59

Permanent Agreement property, 45, 46, 48,

51, 85

correctness testing, 97–102

Permanent Validity property, 45, 46, 48, 51,

84

correctness testing, 92–97
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physical instances, 160

Possibility property, 44, 46, 84

possible, 43, 48, 74, 84, 88–90, 92–102

predecessor, 217

predicate, 84–91

anti-stable, 44, 85

decision, 25, 43, 74, 84, 87–88

possible, 43, 48, 74, 84, 88–90, 92–102

stable, 44, 85

stronger, 85

valid , 43, 48, 74, 84, 90–97

weaker, 85

prefixes, 81–82

privileged-value

Consensus, 57

OTC, 52–53

process, 17, 20–23

acceptor, 22–23, 25, 43, 74, 84, 86, 140,

141

client, 17, 22

correct, 21–22

faulty, 21–23, 86

frozen, 63

honest, 21–22

learner, 22–23, 25, 43, 74, 84, 140, 141

malicious, 21–23, 86

proposer, 22–23, 25, 140, 141

server, 17, 22

properties

A, 97, 98

Agreement, 25, 40, 110, 123, 127, 140

agreement, 140

C1, 149

C2, 149

Eventual Agreement, 29

Eventual Weak Accuracy, 29, 114

Generic Agreement, 152

Integrity, 40, 44, 46, 84, 141

Latency, 115, 116, 121, 124–126, 129,

130, 132, 134, 135, 149, 150, 157,

172

liveness, 26–27, 140

No Creation, 23

permanent, 45–46

Permanent Agreement, 45, 46, 85, 97–

102

Permanent Validity, 45, 46, 84, 92–97

Possibility, 44, 46, 84

Quittable Validity, 128

Reliability, 23

safety, 26–27, 140

Sensitive Validity, 127, 131–133

standard, 45–46

Strong Completeness, 29, 114

Termination, 25, 40, 110, 123, 127

Termination Agreement, 140

Termination Validity, 140

Total Order, 141

V, 92, 93

Validity, 25, 40, 110, 123, 140

validity, 140

propose, 25, 43, 74, 84

proposer, 22–23, 25, 140, 141

pure state, 79

q, 45, 50

quiet algorithm, 166

quittable abstractions, 127–128

Quittable Validity property, 128

ranked register, 136

real coordinator, 49

real-time clocks, 32

receiver, 23

recovery, 24

recursion, see recursion

Reliability property, 23

Reliable Broadcast, 148
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reliable channels, 24

replication, 18

state machine, 139, 152

representing

infinite sets, 162–164

intervals, 164–165

rotating coordinator, 34, 49

round, 39, 41, 47, 111

coordinator, see coordinator

stopping, 120–122

rule, 87

rules

decision, 87–88

domination, 104

order, 103–104

termination, 87

run

conflict-free, 153

conflict-ordered, 153

favourable, 45, 49, 54

good, 31, 142

ordered, 149

stable, 142

timely, 30, 115

well-behaved, 30

S, 79

S(x), 80

safe extension, 28

safety

properties, 26–27

scalar clocks, 32

secure learner, 119

see a message, 148

semi-complete

learner, 45

state, 45

semi-synchronous model, 25

sender, 23

sensitive abstractions, 127–128

Sensitive Validity property

Atomic Commitment, 131

Distributed Function Computation, 132

Individual Consensus, 127

Interactive Consistency, 133

server, 17, 22

single-value OTC, 51–52, 54

solvability

Atomic Broadcast, 141

Consensus, 35–36, 141

splitting instances, 161

stable

predicate, 44, 85

run, 142

state, 75–76, 79–80

complete, 45, 47, 92

consistent, 83–84

correct, 83

evolution, 77–78

F -complete, 92

formalism, 78–84

M -consistent, 83–84

M -correct, 83

machine replication, 139, 152

pure, 79

semi-complete, 45

static agreement abstractions, 139

step, 31, 63

stop, 43, 47, 49, 74, 78, 84

stopping a round, 114, 120–122

strict (Generic Broadcast), 153

Strong Completeness property, 29, 114

stronger (predicate), 85

successor, 217

sufficiently small, 30, 121

supercheap Byzantine Paxos, 62

suspected coordinator, 49

synchronous model, 25
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system model, 20–25, 141–142

T , 87, 91, 102

task, 20

Termination Agreement property

Atomic Broadcast, 140, 147–148, 172–

173

Termination property

Consensus, 25, 123

Coordinated Consensus, 110, 114–115

Individual Consensus, 127

Onecast, 40

termination rules, 87

Termination Validity property

Atomic Broadcast, 140, 172–173

Three Phase Commit, 133

three-step Atomic Broadcast, 149–151, 175–

176

thrifty (Generic Broadcast), 153

time metric, 32, 63

timeframe, 167, 168

active, 169

timely run, 30, 115

timeout, 49, 121–122

Total Order property, 141

Two Phase Commit, 132

two-step

Atomic Broadcast, 149–151, 165–173

Consensus, 55

OTC, 53–54, 61, 67

two-three-step Atomic Broadcast, 150–151

Ultimate Paxos, 60

uniformity

Atomic Broadcast, 141

Consensus, 26

Reliable Broadcast, 148

reliable channels, 24

unreliable failure detectors, 28–29

valid , 43, 48, 74, 84, 90–97

Validity property

Atomic Broadcast, 140

Consensus, 25, 123

Coordinated Consensus, 110

Onecast, 40

virtual

coordinator, 49, 125

instances, 160

owner, 131

wait for, 21

wait until, 21

Weak Accuracy property, 115

weaker (predicate), 85

weakest failure detector, 29

well-behaved run, 30

when . . . do, 21
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