
Technical Report
Number 658

Computer Laboratory

UCAM-CL-TR-658
ISSN 1476-2986

Intrinsic point-based surface processing

Carsten Moenning

January 2006

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2006 Carsten Moenning

This technical report is based on a dissertation submitted
January 2005 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queens’ College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Summary

The need for the processing of surface geometry represents an ubiquitous problem in

computer graphics and related disciplines. It arises in numerous important applications

such as computer-aided design, reverse engineering, rapid prototyping, medical imag-

ing, cultural heritage acquisition and preservation, video gaming and the movie industry.

Existing surface processing techniques predominantly follow an extrinsic approach using

combinatorial mesh data structures in the embedding Euclidean space to represent, ma-

nipulate and visualise the surfaces. This thesis advocates, firstly, the intrinsic processing

of surfaces, i.e. processing directly across the surface rather than in its embedding space.

Secondly, it continues the trend towards the use of point primitives for the processing and

representation of surfaces.

The discussion starts with the design of an intrinsic point sampling algorithm template

for surfaces. This is followed by the presentation of a module library of template instanti-

ations for surfaces in triangular mesh or point cloud form. The latter is at the heart of the

intrinsic meshless surface simplification algorithm also put forward. This is followed by

the introduction of intrinsic meshless surface subdivision, the first intrinsic meshless sur-

face subdivision scheme and a new method for the computation of geodesic centroids on

manifolds. The meshless subdivision scheme uses an intrinsic neighbourhood concept for

point-sampled geometry also presented in this thesis. Its main contributions can therefore

be summarised as follows:

• An intrinsic neighbourhood concept for point-sampled geometry.

• An intrinsic surface sampling algorithm template with sampling density guarantee.

• A modular library of template instantiations for the sampling of planar domains and

surfaces in triangular mesh or point cloud form.

• A new method for the computation of geodesic centroids on manifolds.

• An intrinsic meshless surface simplification algorithm.

• The introduction of the notion of intrinsic meshless surface subdivision.

• The first intrinsic meshless surface subdivision scheme.

The overall result is a set of algorithms for the processing of point-sampled geometry

centering around a generic sampling template for surfaces in the most widely-used forms

of representation. The intrinsic nature of these point-based algorithms helps to over-

come limitations associated with the more traditional extrinsic, mesh-based processing

of surfaces when dealing with highly complex point-sampled geometry as is typically en-

countered today.

3

4

Contents

List of Figures 9

List of Tables 12

List of Symbols and Abbreviations 14

1 Introduction 17

1.1 Background . 19

1.2 Research motivation and objectives . 21

1.3 Contributions . 24

1.4 Thesis structure . 25

2 Preliminaries 27

2.1 Extrinsic vs. intrinsic distance mapping and geodesics 27

2.2 Geodesic Voronoi diagrams . 29

2.3 Fast Marching level set methods . 30

2.3.1 Fast Marching on Cartesian grids 30

2.3.2 Fast Marching for triangulated surfaces 35

2.3.3 Fast Marching for surfaces in point cloud and implicit form 39

2.4 Neighbourhood concepts for point-sampled geometry 42

2.4.1 Pitfalls for point-based neighbourhood concepts 43

5

2.4.2 Conventional extrinsic neighbourhood concepts 44

2.4.3 An intrinsic neighbourhood concept 47

2.5 Implementation details . 48

2.5.1 Fast Marching on Cartesian grids 48

2.5.2 Fast Marching for surfaces in point cloud form 52

2.5.3 Geodesic Voronoi diagrams . 53

2.6 Summary and discussion . 54

3 Intrinsic point sampling of surfaces 57

3.1 Related Work . 58

3.2 Farthest point sampling . 60

3.3 The generic intrinsic point sampling algorithm 62

3.4 Modular algorithm structure . 65

3.5 Sampling density guarantee . 65

3.6 FastFPS of planar domains . 67

3.6.1 Implementation of the generic algorithm for planar domains 67

3.6.2 Computational complexity . 69

3.6.3 Analysis of the generated sampling distribution 70

3.6.4 Experimental results . 73

3.7 FastFPS of triangulated surfaces . 78

3.7.1 Implementation of the generic algorithm for triangulated surfaces . 79

3.7.2 Computational complexity . 82

3.7.3 Experimental results . 82

3.8 Summary and discussion . 85

4 Intrinsic meshless surface simplification 89

4.1 Related Work . 90

6

4.2 Intrinsic point cloud subsampling . 92

4.3 Intrinsic point cloud resampling . 94

4.3.1 Moving Least Squares . 95

4.3.2 Determination of offset ball radii and hole-filling 99

4.4 Experimental results . 100

4.5 Implementation details . 103

4.5.1 Moving Least Squares . 104

4.5.2 Enhanced k nearest neighbourhood 106

4.6 Summary and discussion . 108

5 Intrinsic meshless surface subdivision 115

5.1 Related work . 116

5.2 Intrinsic meshless surface subdivision . 119

5.2.1 An intrinsic meshless surface subdivision scheme 119

5.2.2 Computation of geodesic centroids on manifolds 122

5.3 Experimental results . 123

5.4 Implementation details . 128

5.4.1 Intrinsic natural neighbourhoods 128

5.4.2 Geodesic centroid computation . 129

5.4.3 Orthogonal projection . 130

5.5 Summary and discussion . 133

6 Conclusion and future work 139

6.1 Principal contributions . 139

6.2 Other results . 141

6.3 Future work . 141

7

A Glossary of terms 143

B Concepts from computational geometry 147

C Data sources 151

Bibliography 151

8

List of Figures

1.1 Point cloud examples . 18

1.2 Surface processing pipeline . 19

1.3 Topological artefacts . 22

1.4 St. Matthew - An example for a massively complex geometric model 23

1.5 Geodesic vs. Euclidean distance on non-linear manifolds 24

2.1 Development of swallowtails in front propagation 31

2.2 Fast Marching categorisation of grid vertices 32

2.3 A Cartesian Fast Marching example: Equal distance contours in 2D 34

2.4 Metrication error of non-geometric, graph-based distance mapping algorithms 35

2.5 Fast Marching for triangulated surfaces . 36

2.6 Characteristic curve of the Eikonal equation across an acute triangle 37

2.7 Derivation of a quadratic upwind scheme for Fast Marching for triangulated

surfaces . 38

2.8 Offset band visualisation . 40

2.9 Pitfalls for point-based neighbourhood concepts 44

2.10 Extrinsic neighbourhood concepts for point clouds 45

2.11 Conventional vs. enhanced k nearest neighbourhoods 46

2.12 Intrinsic natural neighbourhoods . 47

2.13 Overlapping neighbour relations . 48

9

2.14 Class design of my implementation of Fast Marching on Cartesian grids . . 49

2.15 Stencils supporting Fast Marching on Cartesian grids 50

2.16 Computation of discrete geodesic Voronoi diagrams 53

3.1 Computation of intrinsic farthest point samples 64

3.2 Refinement condition . 64

3.3 Modular algorithm design . 66

3.4 Voronoi vertex detection during front propagation 68

3.5 Partial intrinsic distance mapping . 69

3.6 Point set distributions . 70

3.7 Power spectral analysis . 72

3.8 Adaptive FastFPS principle . 72

3.9 Adaptive FastFPS for planar domains - Sample distributions 74

3.10 Adaptive FastFPS for planar domains - Image reconstructions 75

3.11 Uniform FastFPS for planar domains - Execution times 78

3.12 Terms used in update scheme of Fast Marching for triangulated surfaces . . 80

3.13 Uniform FastFPS of triangulated surfaces - Sample distribution 83

3.14 Uniform FastFPS of triangulated surfaces - Application example 83

3.15 Adaptive FastFPS of triangulated surfaces - Application example 83

3.16 Uniform FastFPS of triangulated surfaces - Level-of-details 84

4.1 Eigenanalysis for local normal estimation in Moving Least Squares 96

4.2 Moving Least Squares projection . 97

4.3 Adaptive Moving Least Squares . 98

4.4 Adaptive offset radii and hole-filling . 100

4.5 Laser range scanning of a Buddha sculpture 102

4.6 Execution times of uniform intrinsic meshless surface simplification 104

10

4.7 Shape of covariance ellipsoids . 105

4.8 Computation of enhanced k nearest neighbourhoods 107

4.9 Uniformly subsampled Michelangelo Day and Michelangelo Dawn point sets 111

4.10 Level-of-details of the Michelangelo Youthful point set 112

4.11 Adaptive subsampling of the Venus point set using local surface variation

estimates . 112

4.12 Adaptive subsampling of the Venus point set using a Moving Least Squares-

based redundancy measure . 113

4.13 Analysis of the a posteriori approximation error 113

4.14 Hole-filling of a Buddha point set . 114

5.1 Loop subdivision scheme for triangular control meshes 117

5.2 Application example of Loop subdivision 118

5.3 Geodesic vs. Euclidean and extrinsic centroids 121

5.4 Spherical distance histograms . 125

5.5 Intrinsic natural neighbour detection during front propagation 129

5.6 Approximately orthogonal projection . 132

5.7 Base point set and base mesh for subdivision of the unit sphere 134

5.8 First iterations of intrinsic meshless and Loop subdivision of a sphere . . . 134

5.9 Second iterations of intrinsic meshless and Loop subdivision of a sphere . . 134

5.10 Meshless subdivision of the Michelangelo Youthful point set 135

5.11 Meshless subdivision of the Michelangelo Youthful point set vs. the original

data set . 136

5.12 Meshless subdivision of CAD model point sets 136

5.13 Meshless subdivision of the Isis point set 137

B.1 Medial axis of a surface . 148

B.2 Poles of a surface . 149

11

12

List of Tables

3.1 Peak signal-to-noise ratios . 76

3.2 Uniform FastFPS for planar domains - Execution times 77

4.1 Execution times of uniform intrinsic meshless surface subsampling 103

4.2 Comparative evaluation of point cloud simplification algorithms 108

5.1 Uniform density of meshlessly subdivided point sets 126

5.2 Parameter settings for application examples 127

13

List of Symbols and Abbreviations

Roman Symbols

B(pi, r) Constant radius Euclidean offset ball around point pi ∈ P .

BS (pi, pj) Bisector of points pi, pj ∈ P , pi �= pj.

cNp Weighted geodesic centroid of Np.

d(·, ·) Euclidean distance function.

dM(·, ·) Intrinsic, or geodesic, distance function.

D(pi, pj) Dominance region of pi with respect to pj, i.e. the region of

M holding point pi and bounded by BS (pi, pj), pi, pj ∈ P ,

pi �= pj.

eNNp Enhanced k nearest neighbourhood of point p ∈ P .

F (·) Propagation speed, or weight, function on M .

F̃ (·) Propagation speed, or weight, function F smoothly extended

into Ωr
P or Ωri

P .

H Local tangent plane approximation supporting MLS regres-

sions.

l Level of subdivision, l ∈ Z0.

m Dimension of embedding (Euclidean) space of M . It is m ≥ 3.

M Differentiable, compact and connected Riemannian manifold

in R
m.

Np Intrinsic natural, or Voronoi, neighbourhood of point p ∈ P .

Npipj
Union of intrinsic natural neighbourhoods of points pi, pj ∈ P .

NNp Conventional k nearest neighbourhood of point p ∈ P .

P Input point cloud acquired from M .

r Constant radius of Euclidean balls centred at points pi ∈ P .

ri Radius of Euclidean ball centred at point pi ∈ P .

14

R(pi, P) Voronoi region of point pi ∈ P on M given P .

S Set of point samples.

T (·) Weighted extrinsic arrival time function, also called weighted

extrinsic distance map (function).

TM(·) Weighted intrinsic arrival time function, also called intrinsic,

or geodesic, distance map (function) on M .

TΩr
P
(·) Weighted extrinsic arrival time function computed in Ωr

P .

TxM Tangent space to M at x ∈ M .

VD(P) Intrinsic, or geodesic, Voronoi diagram of P .

Greek Symbols

δ Global parameter scaling the Gaussian weight function used

in the context of MLS surface approximation.

∆ Finite difference operator.

θj Weight function determining the influence of point pj in MLS

surface approximation and in the orthogonal projection of a

point pi; pi, pj ∈ P , pi �= pj; θj is assumed to be smooth,

positive and monotonically decreasing with distance.

ΠM(·) Orthogonal projection operator from R
m onto M .

ρ Refinement condition (ρ > 0).

τc Radius of sphere enclosing the neighbourhood of point pi, cen-

tred at the weighted Euclidean centroid of the neighbourhood.

τi Radius of sphere enclosing the neighbourhood of point pi, cen-

tred at pi.

ΥP (·) MLS projection operator given P .

Ωr
P Constant radius Euclidean offset band centred a points pi ∈

P .

Ωri
P Variable radius Euclidean offset band centred a points pi ∈ P .

15

LIST OF TABLES

Other Symbols

〈·, ·〉 Inner product.

‖ · ‖ Norm of the object under consideration.

∂R(·, ·) Boundary of Voronoi region R(·, ·).
∇ Euclidean vector differential operator.

∇M Intrinsic vector differential operator on M .

Abbreviations

FastFPS Fast Marching farthest point sampling.

MLS Moving Least Squares.

MSE Mean-square (reconstruction) error.

PDE Partial Differential Equation.

PSNR Peak signal-to-noise ratio.

UML Unified Modeling Language.

16

Chapter 1

Introduction

This thesis is concerned with the intrinsic processing of surfaces in Computer Graphics

and related disciplines with particular focus on the intrinsic processing of meshless, point-

based surface representations. Point-based surface representations consist of point samples

which provide information on the geometry of the surface in three or higher dimensions

and, possibly, its appearance. This set of point samples, also called point cloud, does not

carry any connectivity (neighbouring) information and can be non-uniformly distributed

in space. See Figure 1.1 for some examples. “Intrinsicness” is understood as the geometry

of the surface from the point of view of the surface “inhabitants” who have no knowledge

of the embedding space.

Since we are living in a 3D world, any object we consider features a surface, its boundary

in the embedding space. It seems intuitively appealing to analyse and process surface

data acquired from terrain, cars, artefacts, internal organs, etc. from the point of view of

a being living in the embedding space, i.e. extrinsically. This approach has been adopted

extensively and successfully for the solution of important problems such as continuous

surface reconstruction and (mesh-based) surface simplification. See, e.g. Kobbelt et al.

[86].

With the advent of increasingly detailed point-based surface representations, it is more

natural, however, to operate with the raw data directly and intrinsically rather than

attempting to extract a single continuous surface representation in the embedding space,

a (surface reconstruction) process which tends to be complex and error-prone. Also, as

recent advances in point-based surface processing have shown, topological information

in the form of, for example, extrinsic mesh connectivity, is no longer needed to support

a complete surface processing pipeline from data acquisition to surface rendering and

point-based surface representations can be used throughout instead. See, e.g. Kobbelt

17

CHAPTER 1. INTRODUCTION

Figure 1.1: Examples for surfaces represented by point clouds. The dinosaur (a), sphere (b) and
Santa (c) models are represented and rendered using point primitives in Pointshop3D
[178]; (d) shows a zoomed-in view of the Santa model.

and Botsch [87].

This thesis advocates the intrinsic processing of surfaces in general and that of surfaces in

point cloud form in particular. It is shown that important surface processing operations

such as surface sampling, surface simplification and surface subdivision [44, 177] can be

performed meshlessly, working efficiently with the point-sampled geometry directly and

intrinsically.

The motivation for and the objectives of this research are best seen in the context of

a surface processing pipeline, as typically encountered today. Section 1.1 describes the

main aspects of such a processing pipeline and comments on its data acquisition, surface

reconstruction, surface manipulation and rendering steps. This is followed by a discussion

of the recent progress towards an exclusively point-based surface processing pipeline.

Against this background, I set out the motivation for and the objectives of this thesis

in Section 1.2. Its contributions are summarised in Section 1.3. The thesis structure

presented in Section 1.4 concludes this chapter.

18

1.1. BACKGROUND

Figure 1.2: Example of a surface processing pipeline from data acquisition to rendering as typ-
ically encountered today. This example deals with the processing of surface data
acquired from a physical object and is adapted from [122].

1.1 Background

To put the topic of this research into context, this section summarises surface processing

as typically performed today. The various steps of this process can be seen in the form

of a processing pipeline as illustrated in Figure 1.2 and are discussed in detail in the

following.

Surface processing is initiated by the production of surface data, i.e. data acquisition. Sur-

face data may be the result of an interactive model design process, experiments (natural

sciences, engineering), computations (numerical simulations, evaluation of mathemati-

cal functions) or the measuring of relevant properties of a physical object. Due to the

increasing availability of highly accurate and affordable acquisition devices, this latter

source for surface data has gained substantial importance in fields such as CAD, reverse

engineering, cultural heritage preservation, archaeology, eCommerce, animation, special

effect generation, etc. The most widely-used acquisition devices use active optical sensing

techniques such as laser range or structured light scanning and time-of-flight systems.

Passive optical acquisition methods include shape-from-stereo, shape-from-shading, or

shape-from-silhouettes. For details on the various acquisition techniques, see Scopigno et

al. [141]. Irrespective of the acquisition technique used, the result of the data acquisition

step is typically a discrete description of the object surface, i.e. a point cloud. Apart

from its geometry, this set of point samples may also carry appearance attributes such as

colour or texture.

Most existing algorithms for surface processing tasks such as surface subdivision [44,177],

19

CHAPTER 1. INTRODUCTION

free-form modelling [86] or surface rendering [168] assume (piecewise) continuous surface

descriptions. During surface reconstruction, a continuous approximation of the unknown

surface is therefore computed from the point samples returned by the data acquisition step.

Numerous reconstruction techniques have been suggested in the recent past predominantly

producing polygonal mesh [8–10, 15, 18, 19, 38, 45, 72] or implicit representations [25, 140,

175] of the underlying surface. For the mesh reconstruction case, recent advances in

computational geometry allow the reconstruction to be performed with geometric and

topological guarantees. That is, the reconstructed surface is guaranteed to be topologically

equivalent to the original surface and to approximate it with a small geometric error [8–

10,45]. These results typically assume that the original surface represents a two-manifold

in R
3 which has been sufficiently densely sampled during the data acquisition step. The

corresponding algorithms make use of higher-dimensional extrinsic combinatorial data

structures such as the 3D Delaunay triangulation [120] of the point set, from which a

subcomplex is extracted heuristically which is shown to intersect the underlying surface.

The resulting mesh represents the final triangular surface representation used for further

processing.

In the case of optically acquired surface data in particular, the frequently highly dense

point cloud representations produced by the acquisition step are converted into highly

complex meshes by these algorithms. As a consequence, mesh simplification may be re-

quired before further mesh processing tasks can be attempted. See, for example, Gotsman

et al. [58] for a recent survey of mesh simplification techniques. Further surface process-

ing may not only be hampered by the complexity of the mesh but also its poor quality

following surface reconstruction. Poor quality expresses itself in the form of, for exam-

ple, irregular triangle shapes, angles, sizes or connectivity. As a result, the mesh may

be unsuitable for tasks such as finite element or numerical analysis (due to numerical

instabilities) and surface subdivision. In the case of surface subdivision, mesh subdivision

schemes assume semi-regular connectivity. For example, for a surface in R
3, this requires

a majority of mesh patches featuring vertices with exactly six outgoing edges and a small

number of irregular vertices (with a number of outgoing edges different from six) con-

necting these patches [177]. Remeshing tries to address these problems by resampling the

mesh subject to certain quality criteria. See Alliez et al. [7] for a review of remeshing tech-

niques. Following these, frequently combined, simplification and remeshing procedures,

the mesh representation is ready for meaningful further processing.

A surface processing pipeline is typically concluded with the rendering of the geometric

model. Most modern graphics hardware is still optimised for the rendering of triangular

meshes. Thus, even if the underlying surface was previously represented implicitly or

20

1.2. RESEARCH MOTIVATION AND OBJECTIVES

in the form of point samples, at the rendering stage, it will need to be converted into

a triangular mesh using surface reconstruction. Depending on the quality required, the

model rendering is then produced off-line using ray-tracing or, in the case of interactive

applications, using the z-buffer. Watt and Watt [168] provide details on the various

rendering techniques.

Thus, surface processing, as typically encountered today, follows a mesh-based, extrinsic

processing approach. The following section discusses some of the problems associated

with this approach and the benefits of performing surface processing intrinsically and

point-based.

1.2 Research motivation and objectives

Surface processing today predominantly follows an extrinsic approach using combinato-

rial mesh data structures in the embedding Euclidean space to represent, manipulate and

visualise the surface. This thesis advocates, firstly, processing directly across the surface,

i.e. intrinsic processing. Secondly, it continues the trend towards the use of point primi-

tives for the representation and processing of surfaces. It is hypothesised that as a result

of the combination of these two notions, some of the limitations, discussed below, of the

traditional mesh-based, extrinsic approach towards the processing of the kind of point

set typically to be dealt with today can be avoided. The overall objective of this thesis

may be stated as the development of algorithms for the intrinsic processing of surfaces in

general and those represented in point cloud form in particular.

Such an objective is worthwhile to be pursued for a number of reasons. First of all,

as indicated in the preceding section, extrinsic mesh-based surface processing, typically

involves steps such as surface reconstruction, mesh simplification and remeshing. In the

case of point-sampled geometry, the quality of the acquired point cloud is often affected

by shortcomings of the acquisition process. When using optical sensing techniques, for

example, data acquisition can be affected by measurement errors, the occlusion of parts

of the object from the sensor, inadequate lighting conditions, etc. [141]. The surface

reconstruction step is then likely to produce topological artefacts in the form of meshes

of arbitrary connectivity and arbitrary genus, i.e. incorrectly introduced object handles

(Figure 1.3). See also Wood et al. [173]. These artefacts cause numerical instabilities for

applications such as finite element analysis. They also have the knock-on effect of inferior

results from, for example, mesh simplification, remeshing and surface subdivision [173].

Also note that, irrespective of the quality of the acquired data, these mesh operations are

21

CHAPTER 1. INTRODUCTION

Figure 1.3: This sequence of close-ups reveals an object handle incorrectly introduced by surface
reconstruction from point-sampled geometry featuring, for example, measurement
errors and the occlusion of concave regions of the object. This example is adapted
from Wood et al. [173].

generally costly both in terms of computational and memory demands. For example, those

surface reconstruction algorithms which give geometric and topological guarantees (see,

e.g. the work by Amenta et al. [8–10]), tend to be ill-equipped to deal with the millions

of point samples routinely produced by modern data acquisition devices (see, e.g. Levoy

et al. [94]) (Figure 1.4). The complexity of these methods when dealing with samples

acquired from high-dimensional surfaces or surfaces of high co-dimension is prohibitive.

This is due to the overhead and performance hits associated with mesh data structure

maintenance and traversal in this setting. In the case of extremely high-dimensional

manifolds by samples (see, e.g. Belkin and Niyogi [14] and Tenenbaum et al. [156]), mesh-

based processing breaks down at the surface reconstruction step and any processing needs

to deal with the raw point data instead. The advent of highly complex geometric models

further implies that even if surface reconstruction was performed successfully, during

mesh-based rendering, the screen space projection of the mesh elements will frequently

occupy less space than a pixel. Thus, mesh-based rendering of complex geometric models

becomes inefficient and the display of point primitives represents the more attractive

alternative.

Point-based rendering allows to visualise complex geometric models output-sensitively

and with relatively simple level-of-detail control [77, 101, 153]. Points, however, may not

only be used as a display primitive [22, 59, 76, 78, 95, 129, 139, 179, 180] but also for edit-

ing and modeling purposes [5,97,125,126,178] and meshless surface approximation [1,5].

Overall, the recent progress in the area of point-based geometry processing has been suffi-

ciently substantial to support an exclusively point-based surface processing pipeline. The

often complex, arbitrary and error-prone reconstruction of polygonal or implicit repre-

sentations of the underlying surface is thereby avoided and all processing is performed

22

1.2. RESEARCH MOTIVATION AND OBJECTIVES

Figure 1.4: An example for a massively complex geometric model as typically produced today:
Renderings of the Michelangelo St. Matthew surface reconstructed from a set of
approximately 600 million points.

geometrically and with the raw data instead. Since point-based processing generally al-

lows to represent objects without the need for the explicit description of their topology,

it is particularly attractive for the processing of high-dimensional surfaces or surfaces of

high co-dimension. The lack of connectivity information is similarly beneficial when it

comes to the deformation of the surface representation. Since no topological information

needs to be maintained, point-based surface deformation improves upon meshes in terms

of editing flexibility [87].

It is attractive to combine these advantages of point-based surface processing with those

inherent to the intrinsic processing of surfaces. Mesh processing algorithms, for example,

generally compute distances between two points on a surface in the Euclidean metric.

This only represents a good approximation to their true distance along the surface, i.e.

their geodesic distance, in low curvature regions or for short distances. The Euclidean

distance is linear in nature and thus simply cannot capture the geometric structure of non-

linear manifolds. For the example shown in Figure 1.5, the Euclidean distance between

the points is a straight line in the embedding space. The non-linear geometric structure

of the manifold is ignored. By contrast, the geodesic distance is the shortest curve along

the surface thereby capturing the non-linear structure of the object. The issues of, for

example, arbitrary mesh connectivity and mesh distortions following surface reconstruc-

tion represent typical results of this inaccurate distance approximation when dealing with

non-linear manifolds. The arbitrary nature of mesh connectivity in particular stems from

the fact that it is not inherent to the geometry but artificially imposed by using a linear

metric.

Intrinsic processing is performed on the surface and thus features the surface’s dimen-

sionality. When using extrinsic combinatorial data structures, the dimensionality of the

problem coincides with the dimensionality of the embedding space. The higher the co-

23

CHAPTER 1. INTRODUCTION

Figure 1.5: The Euclidean distance between two (black) points on this non-linear manifold ig-
nores its geometric structure and is computed in the form of a straight line in the
embedding space. By contrast, the geodesic distance is computed along the surface
thereby taking its non-linearity into account. This example is adapted from [69].

dimension of the surface, the more preferable intrinsic processing therefore becomes.

Nevertheless, techniques using Euclidean distances remain popular since it used to be

relatively more difficult to compute geodesic distances instead. With the advent of Fast

Marching level set methods for surfaces in triangular [84,146], implicit [103] or point cloud

form [104], however, this is no longer the case. These methods permit the very efficient

computation of geodesic distances for surfaces in the most widely-used forms of represen-

tation. It is the objective of this thesis to use these techniques for the design of algorithms

operating truly intrinsically across surfaces. This theme is largely unexplored for surfaces

in point cloud form in particular. My research aims at filling this gap by devising algo-

rithms for intrinsic point-based surface processing. The particular contributions made in

this context are listed in the following section.

1.3 Contributions

This thesis presents algorithms for the intrinsic processing of surfaces in general and that

of point-based surface representations in particular. Its contributions can be summarised

as follows:

• A new intrinsic neighbourhood concept for point-sampled geometry is introduced.

• An intrinsic surface sampling algorithm template with user-controlled, guaranteed

24

1.4. THESIS STRUCTURE

sampling density is proposed.

• A modular library of template instantiations for the point sampling of planar do-

mains and surfaces in triangular mesh or point cloud form is presented.

• A new method for the computation of geodesic centroids on manifolds is put forward.

• The first intrinsic meshless surface simplification algorithm is presented.

• The notion of intrinsic meshless surface subdivision is proposed.

• The first intrinsic meshless surface subdivision scheme is introduced.

1.4 Thesis structure

The presentation is organised as follows:

• Chapter 2 introduces notation and concepts used throughout this thesis. These

include in particular the notion of intrinsic vs. extrinsic distance mapping, (minimal)

geodesics, geodesic vs. extrinsic centroids, geodesic Voronoi diagrams and recent

advances in Fast Marching level set methods. A new neighbourhood concept for

point-sampled geometry is presented in the form of intrinsic natural neighbourhoods.

Implementation details for those concepts used repeatedly in subsequent chapters

are given.

• Chapter 3 puts forward a generic intrinsic point sampling algorithm for planar

domains and surfaces in triangular mesh, implicit and point cloud form. The the-

oretical concepts underpinning this algorithm are discussed in detail for the planar

domain case. This is followed by an analysis and a number of application examples

for the uniform and flexibly non-uniform sampling of images. The chapter is con-

cluded with the instantiation of the algorithm template for surfaces in triangular

mesh form and examples for its applications.

• Chapter 4 presents my intrinsic surface simplification algorithm. The algorithm is

experimentally and comparatively evaluated in the context of the uniform and non-

uniform subsampling and resampling of surfaces represented in the form of massive

point sets.

• Chapter 5 introduces the notion of intrinsic meshless surface subdivision. The

first intrinsic meshless surface subdivision scheme is presented and used for the

25

CHAPTER 1. INTRODUCTION

subdivision of a number of different surfaces in point cloud form. The results are

analysed qualitatively and quantitatively.

• Chapter 6 summarises the results of this research and concludes with directions

for future work.

26

Chapter 2

Preliminaries

This thesis is concerned with the intrinsic processing of surfaces. In the following, a

number of concepts from Riemannian geometry used throughout this thesis are therefore

presented. These include fundamental ideas such as manifold surfaces, intrinsic (geodesic)

vs. extrinsic distance and (minimal) geodesics (Section 2.1). Given an understanding

of the notion of geodesic distance, it is then possible to define neighbourhood centroids

(Section 2.1) and Voronoi diagrams (Section 2.2) in terms of intrinsic rather than extrinsic

proximity. These concepts are used repeatedly in this thesis to take over the roles of their

counterparts in extrinsic surface processing. The question of how to compute geodesic

distances is addressed in Section 2.3 with a detailed discussion of Fast Marching level set

methods for Cartesian grids [145], triangular meshes [84], implicit surfaces [103] and point

clouds [104]. Since this research is predominantly concerned with surfaces in point cloud

form, i.e. a surface representation which features no point neighbourhood information,

Section 2.4 discusses neighbourhood concepts for point-sampled geometry and proposes

a geodesic Voronoi diagram-based neighbourhood concept. The chapter concludes with

details on my implementations of Fast Marching for Cartesian grids, triangular meshes

and point clouds and geodesic Voronoi diagrams (Section 2.5).

2.1 Extrinsic vs. intrinsic distance mapping and geodesics

Let (surface) M be a differentiable (smooth), compact and connected Riemannian man-

ifold in R
m, m ≥ 3. The term intrinsic processing refers to processing directly on M

rather than in its embedding space. The Riemannian metric on M at point x ∈ M is a

smoothly varying inner product 〈·, ·〉 on the tangent space TxM . The norm of a vector v

in TxM is given by ‖v‖ = 〈v, v〉 1
2 . M is endowed with the metric inherited from R

m, hence

27

CHAPTER 2. PRELIMINARIES

〈v, z〉 will be the usual inner product for vectors v and z in R
m. Consider a (sectionally)

smooth curve γ : [a, b] ⊆ R → M parameterised by t. The length L(γ) of γ(t) weighted

by positive weight w(γ(t)) follows from integrating the norm of its tangent vectors, γ̇(t),

along the curve, i.e.

L(γ) =

∫ b

a

w(γ(t))‖γ̇(t)‖dt

The curve γ is called the (minimising) (w-)weighted geodesic from a point x to a point

y on M , if it represents the minimum length-curve among all the curves on M joining

x and y, where γ(a) = x and γ(b) = y. Since we are assuming M to be compact, it is

geodesically complete and there exists at least one such curve on M but it may not be

unique. The length of the weighted geodesic between x and y gives the weighted intrinsic,

or weighted geodesic, distance, dM(x, y), between the points, i.e.

dM(x, y) = inf
γ
{L(γ)}

The function giving the weighted intrinsic distance from a point x ∈ M to every point

in M , dM(x, ·), is called the weighted intrinsic distance function, or weighted intrinsic

distance map, of x. Unique weighted geodesics between two points x and y on M may

thus be computed from dM(x, ·) by backtracking from y towards x in the direction of the

negative gradient of dM(x, ·), i.e. in the direction of steepest descent.

Partial weighted intrinsic distance mapping refers to the restriction of the extent of the

distance map of a point x to points on M such that dM(x, ·) ≤ dM(y, ·), x, y ∈ M , x �= y.

That is, given a weighted intrinsic distance map dM(y, ·), the extent of dM(x, ·) will be

limited to those points on M which are intrinsically at most as far away from x as they

are from y.

The weighted extrinsic distance between points x and y on M , d(x, y), is computed in

the metric of the embedding space. Since this thesis is concerned with manifolds in R
m,

the weighted extrinsic distance is Euclidean and given by the length of the Euclidean

line segment between x and y in the embedding space. Note that apart from its end

points, this line segment generally does not lie on the manifold. In the simple case of M

being a plane, however, the weighted intrinsic and weighted extrinsic (Euclidean) distance

coincide and geodesics are straight lines. More detail on the above notions may be found

in, for example, Chavel [28].

The term weighted geodesic, or weighted intrinisic, centroid refers to the mean of a local

neighbourhood of points on M given by the minimiser of the weighted sum of squared

28

2.2. GEODESIC VORONOI DIAGRAMS

intrinsic distances between the points. This is to be distinguished from the weighted

extrinsic centroid of the subset, computed using Euclidean distances in the embedding

space and subsequently projected onto the manifold.1

2.2 Geodesic Voronoi diagrams

A Voronoi diagram partitions a domain into regions of closest neighbourhoods for a set

of source points [120]. For the case of manifolds, consider a set of point samples P =

{p1, p2, . . . , pn} acquired without noise from M , i.e. P ⊂ M . Define the bisector BS (pi, pj)

of pi, pj ∈ P , pi �= pj, as geodesically equidistant loci with respect to pi, pj, i.e.

BS (pi, pj) = {q ∈ M : dM(pi, q) = dM(pj, q)}

Let the dominance region of pi with respect to pj, D(pi, pj), denote the region of M

containing pi bounded by BS (pi, pj). The Voronoi region of pi given P is given by

R(pi, P) =
⋂

pj∈P,pj �=pi

D(pi, pj)

and consists of all points in M for which the geodesic distance to pi is smaller than or

equal to the geodesic distance to any other point pj ∈ P . The boundary shared by a pair

of Voronoi regions is called a Voronoi edge. Voronoi edges meet at Voronoi vertices. The

geodesic Voronoi diagram of P is defined as

VD(P) =
⋃

pi∈P

∂R(pi, P),

where ∂R(pi, P) denotes the boundary of R(pi, P).

The term bounded geodesic Voronoi diagram refers to the conjunction of VD(P) with the

domain. A bounded geodesic Voronoi diagram consists of bounded Voronoi regions. The

set of vertices of a bounded VD(P) includes points of intersection of Voronoi edges with

the manifold boundary when dealing with an open manifold.

For further details on the notion of geodesic Voronoi diagrams, see Kunze et al. [88] and

Leibon and Letscher [90].

1For notational convenience, if w = 1 across the domain or the distinction between weighted and
unweighted distance mapping and weighted and unweighted centroids is immaterial in the given context,
the “weighted”-qualifier will henceforth be dropped from the terms introduced.

29

CHAPTER 2. PRELIMINARIES

Throughout this thesis, the continuous geodesic Voronoi diagram VD(P) is approximated

by its discrete counterpart using intrinsic distance mapping computed across a structured

or unstructured grid. Intrinsic distance mapping may be performed very efficiently by

using recent advances in Fast Marching level set methods reviewed next.

2.3 Fast Marching level set methods

Fast Marching level set methods represent very efficient techniques for the solution of

front propagation problems which can be formulated as boundary value partial differen-

tial equations (PDEs). As discussed in the following, the problem of computing a point’s

intrinsic distance map across a surface may be posed in the form of such a partial differ-

ential equation. The conventional Fast Marching technique towards the approximation

of its solution on Cartesian grids is presented in Section 2.3.1. Section 2.3.2 gives its

extension to surfaces in triangulated form. Section 2.3.3 deals with the extension of the

conventional Fast Marching technique to surfaces in point cloud or implicit form.

2.3.1 Fast Marching on Cartesian grids

For simplicity, take the case of an interface propagating isotropically across a 2D rect-

angular orthogonal grid with position-dependent speed, or weight, function F (x, y) away

from a source (boundary) point (u, v). We are interested in the time of arrival, or offset

distance, T (x, y), of the front at grid point (x, y), i.e. the F -weighted Euclidean distance

map of (u, v) is modelled by the arrival time function T (x, y) given source (u, v). The

relationship between the magnitude of the distance map’s gradient, ∇T (x, y), and the

given weight F (x, y) can be expressed as the following boundary value formulation

‖∇T (x, y)‖ = F (x, y), (2.1)

with boundary condition T (u, v) = 0. That is, the norm of the distance map gradient

is proportional to the weight function. The problem of determining a weighted intrinsic

distance map2 has therefore been transformed into the problem of solving a particular type

of partial differential equation, the non-linear, so-called Eikonal equation. For F (x, y)

being strictly positive throughout, this type of equation can be solved for T (x, y) in a

very efficient manner using the original Fast Marching level set method as independently

2Note that for the planar domain case considered here, the weighted Euclidean and weighted intrinsic
distance map coincide.

30

2.3. FAST MARCHING LEVEL SET METHODS

Figure 2.1: When propagating this cosine curve with unit speed, a corner develops which leads
to the development of “swallowtails” when continuing the propagation (left). The
arrival time of the front thus becomes multi-valued and no clear interface exists
anymore. When observing the entropy condition that the arrival time computed at
each underlying grid vertex is determined only once, this effect is avoided and the
swallowtails disappear (right). The figure is adapted from [145].

introduced by Tsitsiklis [158], Helmsen et al. [70] and Sethian [144].

Since the Eikonal equation is well-known to become non-differentiable through the devel-

opment of corners and cusps during propagation (Figure 2.1), the idea of the original Fast

Marching method is to consider only entropy-satisfying finite difference approximations

to the gradient for computing arrival time estimates. Entropy-satisfying here means that

the particular finite difference approximation used prevents the arrival time for a grid

vertex from being modified once it has been computed. That is, no new information is

generated following the computation of a vertex’ T -value. This way the envelope of the

wave fronts is guaranteed to consist of first arrival times only. Although meeting this

entropy condition still allows for the development of corners and cusps and thus local

non-differentiability of the solution, the tails of the “swallowtails” generated during prop-

agation are removed and the correct distance map values are obtained (Figure 2.1). As an

example for a corresponding first-order (upwind)3 approximation to the gradient operator

in equation (2.1), consider [136]

‖∇Tij‖ ≈ [max(D−x
ij T,−D+x

ij T, 0)2 + max(D−y
ij T,−D+y

ij T, 0)2]
1
2 = Fij, (2.2)

where Fij ≡ F (i∆x, j∆y); D−x
ij T ≡ Tij−Ti−1j

∆x
and D+x

ij T ≡ Ti+1j−Tij

∆x
are the standard

backward and forward derivative approximations with ∆x, ∆y representing the (not nec-

3“Upwind” refers to the direction opposite to the direction of propagation, i.e. in direction of known
arrival times.

31

CHAPTER 2. PRELIMINARIES

Figure 2.2: Fast Marching exploits the causality relationship of a particular upwind finite dif-
ference scheme in the form of a single-pass, narrow band algorithm operating in the
downwind direction. As shown here for the 2D case, at any one step, the front is
given by the narrow band of CLOSE grid vertices. Fast Marching updates their trial
arrival times using previously computed, known T -values of neighbouring upwind
(ALIVE) vertices. This way the front is sequentially moved outwards until all grid
vertices have been visited.

essarily equal) grid spacing in the x- and y-directions respectively; equivalently for D−y
ij T

and D+y
ij T . Tij is the discrete approximation to T (i∆x, j∆y) on a Cartesian grid. The

first-order nature of (2.2) stems from the use of a one-sided differencing scheme and

means that the size of the approximation error is roughly proportional to ∆x and ∆y

respectively [91].

The fact that this quadratic upwind difference approximation implies that information

propagates from smaller to larger values of T only, i.e. a grid point’s arrival time gets

updated by neighbouring (upwind) points with smaller T -values only, represents the key

observation for the efficiency of Fast Marching. This causality, or monotonicity property,

allows for the solution of (2.2) sequentially, one-by-one in the order of increasing T -values,

i.e. in a “marching” fashion, rather than as a simultaneous system as would otherwise be

the case [147]. This “decoupling” of the simultaneous system can be exploited in the form

of a narrow band of candidate points around the front representing its outward (downwind)

motion and establishing the ascending order of grid vertices. More specifically, the T -

values of already visited (ALIVE) grid points are frozen. The neighbouring (CLOSE)

vertices of ALIVE points are then inserted into the narrow band thereby marching the

band forward and constructing the solution sequentially [145] (Figure 2.2). This basic

Fast Marching algorithm can thus be summarised as shown in Algorithm 1. For ease of

exposition, ALIVE, CLOSE and FAR are treated as sets in Algorithm 1. ALIVE and FAR

32

2.3. FAST MARCHING LEVEL SET METHODS

Input: Boundary (propagation source) point q ∈ M . Speed function F > 0. Grid
spacing in each grid direction.
Output: Weighted geodesic distance map of q.

0 *** Initialisation ***
1 Insert q in ALIVE with arrival time 0;
2 Insert in CLOSE, all grid points neighbouring q;
3 Initialise the points in CLOSE using a gradient approximation such as (2.2);
4 Insert all other grid points in FAR with initial arrival times of “∞”;
5
6 *** Front propagation ***
7 REPEAT
8 Let TRIAL denote the point in CLOSE featuring the smallest arrival time;

Remove TRIAL from CLOSE and insert it in ALIVE;
9 Move all neighbours of TRIAL which are FAR to CLOSE;
10 Using a gradient approximation such as (2.2), update the T -values of

all CLOSE neighbours of TRIAL using only ALIVE points in the computation;
11 UNTIL all grid points are ALIVE;

Alg. 1: Cartesian Fast Marching algorithm in pseudocode.

should be considered as states of a grid vertex represented in the form of simple labels

rather than points held in separate data structures. Only the members of the narrow

band CLOSE are both labelled as such and held in a separate data structure, typically a

min-heap [142]. Implementation aspects are discussed in detail in Section 2.5.1.

By sorting the vertices in CLOSE by their estimated arrival time in a min-heap, detection

of the vertex featuring the smallest arrival time is limited to the constant-time extraction

of the min-heap root. Thus, the complexity of the algorithm follows from the worst-case

complexity of min-heap re-heapification after root extraction (line 8), vertex insertion

(line 9) or T -value updating (line 10). This is O(log W), with W representing the number

of heap elements. Since N steps are required to visit each of the N grid points, the

complexity of the conventional Fast Marching technique is O(N log N). A single min-heap

structure may be used in this context to simultaneously track multiple propagation fronts

originating from different points in the domain, i.e. the algorithm can handle multiple

source points simultaneously. Figure 2.3 presents examples of multiple unit-speed fronts

propagated across a planar Cartesian grid using conventional Fast Marching.

Although the algorithm was presented in the context of a planar Cartesian grid, it extends

in the natural way to higher-dimensional Cartesian grids by allowing for the extra dimen-

sions in the gradient approximation (2.2). In the case of processing in three dimensions,

for example, 6- instead of 4-connectivity neighbourhoods are to be considered and (2.2)

33

CHAPTER 2. PRELIMINARIES

Figure 2.3: Equal distance contours of 12 (left) and 13 (right) propagation fronts computed
across a (512 × 512) planar Cartesian grid using conventional Fast Marching.

may simply be extended to

‖∇Tijk‖ ≈ [max(D−x
ijkT,−D+x

ijkT, 0)2 +

max(D−y
ijkT,−D+y

ijkT, 0)2 +

max(D−z
ijkT,−D+z

ijkT, 0)2]
1
2 = Fijk, (2.3)

with operators defined analogous to (2.2) above. By exploiting monotonicity, this scheme

again allows for a very efficient solution analogous to Algorithm 1.

The Fast Marching technique is used in this thesis for distance mapping purposes due

to a number of strengths. Firstly, unlike other front propagation algorithms (see, e.g.

Cuisenaire [37] for a survey), Fast Marching is a single-pass technique, i.e. each grid point

is touched only once, namely when it is assigned its final arrival time value. Furthermore,

distance maps are computed with “sub-pixel” accuracy, the degree of which varies with

the order of the approximation scheme and the grid resolution. Also, the geometry of the

problem is taken into account by the gradient approximation of the arrival time function.

This is in contrast to graph-based shortest path-type algorithms such as Dijkstra [42]

whose consistency is undermined by metrication error caused by the restriction of paths

to follow graph edges thereby addressing the distance mapping problem without attention

to its geometry. As illustrated in Figure 2.4, the solution therefore generally does not

converge to the exact solution as the mesh is refined. For a more detailed discussion of this

issue, see Mitchell [108]. Finally, since the arrival time information is only propagated in

the direction of increasing distance, the size of the narrow band remains small. In practice,

the algorithm’s complexity therefore tends to be closer to the theoretical optimum of O(N)

rather than O(N log N) [145].

34

2.3. FAST MARCHING LEVEL SET METHODS

Figure 2.4: Due to the artificial metric introduced by the graph structure, graph-based distance
mapping algorithms such as Dijkstra [42] suffer from metrication error. For the
example illustrated here, the two paths are restricted to follow horizontal and vertical
directions and, as a result, are of equal length. The true shortest distance between
Start and End cannot be determined this way. This figure is adapted from [176].

As discussed in the following section, the Fast Marching principle can be extended to

triangulated domains by devising a suitable upwind scheme for the approximation of the

gradient operator across unstructured grids.

2.3.2 Fast Marching for triangulated surfaces

The conventional Fast Marching algorithm is extended to manifolds represented in tri-

angular mesh form in Kimmel and Sethian [84]. In this context, a triangular mesh is a

collection of vertices in R
m and a collection of triangles consisting of those vertices.

The underlying principle of Fast Marching for triangulated surfaces of devising an up-

wind finite difference scheme and exploiting its causality property in the form of a very

efficient narrow band algorithm is identical to that of conventional Fast Marching dis-

cussed in detail in the previous section. The presentation is therefore restricted to those

aspects which are substantially different from Fast Marching on structured grids. For

more detailed treatments, see Novotni and Klein [118], Reimers [133] and Sethian and

Vladimirsky [146].

Fast Marching for triangulated surfaces no longer considers points in a Cartesian grid but

vertices of a triangular mesh. Front propagation occurs directly on this surface represen-

tation with given propagation speed F (qi) at triangle vertex qi (Figure 2.5). Since we are

dealing with unstructured grids now, the key point is that gradient approximations such

as (2.2) are generally no longer applicable and a suitable upwind finite difference approx-

imation for the extension of the marching principle to general triangulations needs to be

35

CHAPTER 2. PRELIMINARIES

Figure 2.5: Fast Marching for triangulated surfaces propagates a narrow band of candidate ver-
tices (white strip) from a source vertex outwards across a triangular mesh. The
arrows indicate the downwind direction of the propagation (left). During the pro-
cessing step depicted here, narrow band element qi is found to have the smallest
arrival time estimate and is thus included in the upwind set of ALIVE vertices. As
a consequence, the vertex qj is moved from the downwind set of FAR vertices to
the set of CLOSE vertices, i.e. the narrow band, which is thereby moved outwards
(right). Subsequent processing steps will include the other edge-adjacent neighbours
of pi into the narrow band. This figure is adapted from [118].

used instead. Once such a scheme is available, its causality property can be exploited

again and the algorithmic approach of conventional Fast Marching carries over.

Kimmel and Sethian [84] develop a quadratic upwind gradient approximation for unstruc-

tured grids and based on this scheme, devise an update procedure for acute triangulations.

Alternative upwind approximation schemes for triangulated surfaces have been developed

by Barth and Sethian [13]. Kimmel and Sethian’s [84] restriction to acute triangulations

follows from the fact that in the case of acute triangles, the characteristic curve of a

first-order PDE passing through a vertex qi lies inside the triangle. More specifically, in

the case of the first-order PDE (2.1), i.e. the Eikonal equation, its characteristic curve for

qi coincides with the gradient of the entropy-satisfying solution for T (qi) [147]. Thus, in

the case of acute triangles, the gradient at qi always points into the triangle from which

it was updated (Figure 2.6). As a consequence, T (qi), firstly, only depends on the two

other vertices of that triangle rather than the entire neighbourhood of qi. Secondly, T (qi)

is guaranteed to be at least as large as the maximum arrival time of the two other ver-

tices, i.e. the arrival time function grows monotonically [147]. This causality property

thus allows for proper upwinding as in the case of Cartesian Fast Marching and is shown

by Tsitsiklis [158] to hold irrespective of the size of the (acute) triangle. As in the case

of conventional Fast Marching, this property can be exploited for the design of a very

efficient single-pass updating scheme which, for each triangle sharing the vertex under

36

2.3. FAST MARCHING LEVEL SET METHODS

Figure 2.6: In the case of an acute triangle, the characteristic curve of a first-order PDE such
as the Eikonal equation passing through a vertex qi coincides with the gradient
of the entropy-satisfying solution for T (qi), i.e. in the case of acute triangles the
gradient always points into the triangle from which it was updated and the mono-
tonicity/causality property required for Fast Marching is given. In the case depicted
here, the already ALIVE vertices qj and qk can be used to support the computation
of the arrival time at qi. This figure is adapted from [147].

consideration, only needs to take into account the known (ALIVE) T -values at the other

two triangle vertices rather than the T -values at all the neighbouring vertices. Thus, Kim-

mel and Sethian’s [84] algorithm computes arrival time estimates for a vertex qi from the

two ALIVE vertices previously passed by the front and belonging to any of the triangles

sharing qi (Figure 2.6).

Consider a triangle �ABC with two ALIVE vertices A,B and associated arrival times

T (A), T (B), T (B) > T (A). The problem then is to devise an update scheme for the T -

value at C. To solve this problem, the basic idea is to determine a value t = T (C)−T (A)

at C such that the plane over �ABC determined by T (A), T (B) and T (C) has a gradient

equal to the given weight F (C). This way the update scheme will take into account the

geometry of the problem. As illustrated in Figure 2.7, t, i.e. the distance by which the

plane is to be raised at C, follows as (t − u)/h = F (C), with u = T (B) − T (A) and h

denoting the altitude of �CDB. Using trigonometric arguments, Kimmel and Sethian [84]

derive from this expression the following first-order quadratic upwind scheme for t

(a2 + b2 − 2ab cos θ)t2 + 2bu(a cos θ − b)t + b2(u2 − F (C)2a2 sin2 θ) = 0 (2.4)

This scheme only applies if the monotonicity condition of T (C) being updated from within

�ABC holds true, i.e. if sufficient numerical support in the form of two ALIVE vertices

37

CHAPTER 2. PRELIMINARIES

Figure 2.7: Distance value t at vertex C in triangle ABC is found by constructing a plane
over ABC with gradient F (C). That is, t = T (C) − T (A) is sought such that
(t − u)/h = F (C) (left). This expression leads to a quadratic upwind scheme in t.
The trigonometric relationships used in the derivation of both the scheme and its
monotonicity condition are illustrated on the right. This figure is adopted from [84].

is given. For this to be the case, edge CD needs to meet the following condition

CD =
b(T (C) − u)

t
∈
[
a cos θ;

a

cos θ

]
, (2.5)

This follows from ∠BDC = π/2, if G = D, and ∠CBD = π/2, if G = B, so that

CD should be limited by CD = a cos θ in the former and CD = a
cos θ

in the latter case.

Thus, (2.5) ensures that point G will be located on the line between D and B, i.e. the

triangle altitude h is ensured to lie within �CDB, and the update step is guaranteed to

be performed from within �ABC. Thus, if (2.5) holds true, the update scheme (2.4) can

be used to determine a value for t and T (C) is estimated as T (C) = min{T (C), T (A)+ t};
otherwise T (C) follows as T (C) = min{T (C), T (A) + bF (C), T (B) + aF (C)}.

Condition (2.5) being true no longer ensures that causality holds when dealing with obtuse

triangles. For the case of general triangulations, Kimmel and Sethian [84] therefore suggest

to split any obtuse triangles into acute triangles during a pre-processing step to generate

sufficient numerical support for the updating step. Note that this may require the recursive

unfolding of triangles adjacent to the obtuse triangle under consideration until a new

vertex is found, the “virtual” edge to which splits the obtuse into two acute angles [84].

That is, the solution is effectively allowed to depend on vertices which are not connected

to the vertex under consideration in order to enforce the causality principle. I opt for a

simpler alternative approach towards dealing with obtuse triangles given alongside other

implementation details in Section 3.7.1.

38

2.3. FAST MARCHING LEVEL SET METHODS

Input: Acute triangulation of P . Boundary (propagation source) vertex q ∈ P . Speed
function F > 0.
Output: Weighted geodesic distance map of q.

0 *** Initialisation ***
1 Insert q in ALIVE with arrival time 0;
2 Insert in CLOSE, all triangle vertices edge-adjacent to q;
3 Initialise the points in CLOSE using a gradient approximation such as (2.4);
4 Insert all other triangle vertices in FAR with initial arrival times of “∞”;
5
6 *** Front propagation ***
7 REPEAT
8 Let TRIAL denote the vertex in CLOSE featuring the smallest arrival time;

Remove TRIAL from CLOSE and insert it in ALIVE;
9 Move all edge-adjacent neighbours of TRIAL which are FAR to CLOSE;
10 Using a gradient approximation such as (2.4), update the T -values of all

CLOSE neighbours of TRIAL using only ALIVE vertices in the computation;
11 UNTIL all vertices are ALIVE;

Alg. 2: Fast Marching algorithm for triangulated surfaces in pseudocode.

As in the case of conventional Fast Marching, Kimmel and Sethian’s [84] method then se-

lects the smallest estimate as the final approximation of T (C) from the possibly relatively

large number of estimates computed from the triangles sharing vertex C. The resulting

algorithm is summarised in Algorithm 2.

The following section deals with the extension of the Fast Marching principle to surfaces

in point cloud and implicit form.

2.3.3 Fast Marching for surfaces in point cloud and implicit form

Mémoli and Sapiro [103, 104] extend the applicability of the conventional Fast Marching

idea to the case of general co-dimension manifolds in point cloud and implicit form re-

spectively in three or higher dimensions. In the following, these important extensions are

discussed in detail.

Take the case of a surface given in point cloud form and consider the constant radius r-

offset Ωr
P , i.e. the union of Euclidean balls with radius r centred at points pi ∈ P (Figure

2.8)

Ωr
P :=

‖P‖⋃
i=1

B(pi, r) = {x ∈ R
m : d(pi, x) ≤ r}

39

CHAPTER 2. PRELIMINARIES

Figure 2.8: Fast Marching for surfaces in point cloud form [104] operates in an (not necessarily
constant radius) offset band consisting of the union of balls B(pi, r) centred at (black)
points pi of the surface M (left). Only those (blue) grid points falling inside the
offset band are considered during processing. A cross-sectional view (in the form of
a planar cut) of a constant radius offset band for the Michelangelo Youthful data
set is shown on the right.

To approximate the weighted intrinsic distance map, TM on M , originating from a source

point q ∈ M , Mémoli and Sapiro [104] suggest computing the Euclidean distance map in

Ωr
P , denoted TΩr

P
. That is

‖∇MTM(p)‖ = F (p), (2.6)

for p ∈ M and with boundary condition TM(q) = 0 is approximated by

‖∇TΩr
P
(p)‖ = F̃ (p), (2.7)

for p ∈ Ωr
P and boundary condition TΩr

P
(q) = 0. F̃ represents the (smooth) extension

of the propagation speed F on M into Ωr
P ;4 ∇M denotes the intrinsic vector differential

operator. The problem of computing a weighted intrinsic distance map is therefore trans-

formed into the problem of computing a weighted Euclidean, or extrinsic, distance map

in the offset band Ωr
P around the surface, i.e. in an Euclidean manifold with boundary.

Mémoli and Sapiro [104] prove uniform, probabilistic convergence between these two dis-

4For non-uniform speed functions, the question arises of how to compute F̃ . If the normals of M
are given or can be estimated, F may be smoothly extended into Ωr

P by orthogonal projection, i.e.
F̃ (p) = F (ΠM (p)) , p ∈ Ωr

P , where ΠM (·) denotes the orthogonal projection operator from R
m onto M .

For more detail, see Mémoli and Sapiro [103].

40

2.3. FAST MARCHING LEVEL SET METHODS

Input: Point cloud P . Offset band Ωr
P . Boundary (propagation source) point q ∈ Ωr

P .
Speed function F̃ > 0. Grid spacing in each grid direction.
Output: Weighted geodesic distance map of q.

0 *** Initialisation ***
1 Insert q in ALIVE with arrival time 0;
2 Insert in CLOSE, all grid points neighbouring q and which fall inside Ωr

P ;
3 Initialise the points in CLOSE using a gradient approximation such as (2.3);
4 Insert all other grid points in Ωr

P in FAR with initial arrival times of “∞”;
5
6 *** Front propagation ***
7 REPEAT
8 Let TRIAL denote the point in CLOSE featuring the smallest arrival time;

Remove TRIAL from CLOSE and insert it in ALIVE;
9 Move all FAR neighbours of TRIAL which belong to Ωr

P to CLOSE;
10 Using a gradient approximation such as (2.3), update the T -values of

all CLOSE neighbours of TRIAL using only ALIVE points in the computation;
11 UNTIL all grid points in Ωr

P are ALIVE;

Alg. 3: Fast Marching algorithm for point clouds in pseudocode.

tance maps, and geodesics computed from them, for both noise-free and noisy (provided

noise is bounded from above by r), randomly-sampled point clouds and thus show that

the approximation error between the intrinsic and extrinsic distance maps is of the same

theoretical order as that of the conventional Fast Marching algorithm [145]. With the

order of the numerical approximation remaining unchanged, Fast Marching can be used

to approximate the solution to (2.7) in a computationally optimal manner and without

the need for any prior surface reconstruction by only slightly modifying the conventional

Cartesian Fast Marching technique to deal with bounded spaces as summarised in Algo-

rithm 3. This is achieved by simply restricting the grid points visited by the conventional

Fast Marching algorithm to those located in Ωr
P . By performing the computations within

this offset band, this method is relatively robust in the presence of noisy point samples,

especially when compared to graph-based distance mapping algorithms such as Giesen

and Wagner [54] and Tenenbaum et al. [156] in which case the geodesics pass through the

noisy samples rather than an union of Euclidean balls centred at the input points.

When again using a min-heap for the optimal ordering of narrow band members, the

complexity of this algorithm is O(N log N), where N represents the number of grid points

located in Ωr
P [104]. Memory efficiency is achieved by storing these grid points only as

opposed to the entire discretised bounding volume. Note in this context that subject to

the bounds given in Mémoli and Sapiro [104], r will generally be small and does not have

to be constant but may vary with each pi so that the offset band will usually consist

of only a fraction of the grid vertices making up the bounding volume. Details of my

41

CHAPTER 2. PRELIMINARIES

implementation of this method are discussed in Section 2.5.2.

Although this Fast Marching technique has been introduced in the context of a surface

represented in point cloud form, the concept carries over analogously to implicit surfaces.

In the implicit surface case, M is represented by a closed hyper-surface in R
m given

as the zero level set of a distance function φ : R
m → R. The offset band of radius

r, Ωr, now follows as Ωr :=
⋃

x∈M B(x, r) = {x ∈ R
m : ‖φ(x)‖ ≤ r}. Mémoli and

Sapiro [103] subsequently show uniform (deterministic) convergence between the weighted

extrinsic distance map computed in Ωr and its intrinsic counterpart. Since this thesis is

predominantly concerned with the processing of surfaces in point cloud form, the reader

is referred to Mémoli and Sapiro [103] for more detail.

I use the Fast Marching techniques discussed above for the support of, amongst other

things, intrinsic meshless surface subdivision and the intrinsic point sampling of surfaces

in point cloud form without the need for any prior or intermediate surface reconstruction.

As part of these applications, mesh connectivity is replaced by proximity information for

the estimation of surface properties. In the following, existing neighbourhood concepts for

point-sampled geometry are therefore reviewed. I address limitations of these exclusively

extrinsic concepts by proposing an alternative intrinsic neighbourhood concept.

2.4 Neighbourhood concepts for point-sampled ge-

ometry

Many advantages of point-sampled geometry over mesh-based representations follow from

the absence of any connectivity information and the associated overhead. However, when

dealing with point-sampled geometry in its most abstract form of representation, i.e. posi-

tions in mD space without normal information, tasks such as local surface approximation

(Section 4.3.1) and point set re- or upsampling (Section 4.3 and 5.2.1 respectively) require

proximity information to compute differential properties such as surface normals or local

curvature. In Section 2.4.1, I review some of the pitfalls associated with the collection of

proximity information for point-sampled geometry. The most widely-used neighbourhood

concepts are then discussed in Section 2.4.2 with respect to these pitfalls. Section 2.4.3

presents my alternative, intrinsic neighbourhood concept.

42

2.4. NEIGHBOURHOOD CONCEPTS FOR POINT-SAMPLED GEOMETRY

2.4.1 Pitfalls for point-based neighbourhood concepts

Whilst in the case of mesh-based surface representations, neighbourhood information is

already given in the form of mesh connectivity, point-based processing needs to collect

this information. Depending on the topology of the underlying, unknown surface, this

can represent a difficult task. The most frequently encountered problems include (Figure

2.9)

a) Assignment of points from disjoint sheets of the surface to the same neighbourhood.

b) Skewed neighbour distributions near local point density non-uniformities.

c) Overlapping neighbour relations.

The occurrence of problem (a) implies that the proximity information cannot be used for

meaningful further processing since it connects disjoint parts of the underlying surface.

In the case of problem (b), neighbours are not distributed all around the point under

consideration. Gaps in the point distribution therefore tend not to be covered by such

neighbourhoods and their use for the support of point set re- or upsampling would ag-

gravate the existing irregularities in the form of local clustering. Even if dealing with

uniformly distributed data, local non-uniformities are introduced when using overlapping

neighbour relations to support point set upsampling. This is illustrated in Figure 2.9(c).

For the example shown, the neighbourhoods’ independent determination has led to pm

being associated with the neighbourhoods of both pl and pk. As a result, the neighbour

relation of pm with pk overlaps with the relation of pn with pl. When this neighbourhood

information is used for, for example, the support of upsampling by inserting new points

“midedge” between neighbours, this overlap would introduce non-uniformities in the form

of local clustering near the intersection of the two red “edges”.

To be useful for the re- and upsampling purposes of this thesis, a neighbourhood concept

should avoid any occurrence of problems (a)-(c). Note that these problems are closely

related to the fact that surface points which are close in Euclidean distance can be far away

from each other in intrinsic distance. Thus, to obtain good estimates of the differential

properties at a point, proximity should preferably be measured intrinsically rather than

extrinsically. Following the discussion of the most widely-used (Euclidean) neighbourhood

concepts, a corresponding intrinsic neighbourhood definition is presented in Section 2.4.3.

43

CHAPTER 2. PRELIMINARIES

Figure 2.9: Typical pitfalls for point-based neighbourhood concepts include the assignment of
points from disjoint sheets of the surface to the (blue) neighbourhood of an (red)
input point (a), the skewed distribution of neighbours at the presence of local point
density non-uniformities (b) and the overlap of (red-lined) neighbour relations due
to the independent determination of the point neighbourhoods (c). For the overlap-
ping relations example shown here, the neighbourhood for point pk (here: 8 nearest
neighbourhoods) is shown in dark grey, the corresponding neighbourhood of point pl

is shown in light grey. The patterned region covers those (blue) neighbours included
in both neighbourhoods. The red “edges” denote the resulting neighbour relations
amongst the points pk and pm on the one and pl and pn on the other hand.

2.4.2 Conventional extrinsic neighbourhood concepts

The most widely-used neighbourhood concepts for point-sampled geometry are defined

in the Euclidean distance or make use of extrinsic combinatorial data structures fitted to

the point set. These neighbourhood concepts consist of, in increasing order of usefulness,

Euclidean ball neighbourhoods, k nearest and restricted Delaunay neighbourhoods and

are reviewed in the following with respect to problems (a)-(c). Note that the various

concepts discussed in this section assume throughout that the given point set represents

an adequate sampling of the underlying surface.

The Euclidean ball neighbourhood EBN pi
of point pi ∈ P considers all points in P lo-

cated within a sphere of radius r centred at pi, i.e. EBN pi
= {pj ∈ P : d(pi, pj) ≤ r}

(Figure 2.10(a)). For a value of r greater than the local feature size [8] (Appendix B),

disjoint parts of the surface will be assigned to the same EBN pi
making subsequent pro-

cessing on the basis of this neighbourhood information invalid. Secondly, to avoid skewed

neighbour distributions at the presence of local point distribution non-uniformities, the

ball radii need to be made adaptive to account for the variation in point density. Any

method for the estimation of radii ri such as minimum spanning trees or other graph

structures [143] tend to undermine the most important advantage of (constant radius)

Euclidean ball neighbourhoods, their ease of computation. Finally, since Euclidean ball

neighbourhoods are computed for each point independently, they are prone to produce

overlapping neighbour relations. As a result, their applicability is generally limited to

44

2.4. NEIGHBOURHOOD CONCEPTS FOR POINT-SAMPLED GEOMETRY

Figure 2.10: Euclidean ball neighbourhood of radius r (a), k(= 8) nearest neighbourhood (b)
and restricted Euclidean Delaunay neighbourhood (c) of a (red) input point. Neigh-
bours are represented in blue.

very uniformly distributed points sets for which it is possible to set the constant radius

of the Euclidean balls to a value consistently less than the local feature size.

The Euclidean k nearest neighbourhood NN pi
of pi consists of the k points in P closest

in Euclidean distance to pi (Figure 2.10(b)). Since NN pi
is defined in terms of Euclidean

distances, problem (a) is not guaranteed to be avoided. In addition, the question needs to

be addressed what represents a useful value for k. Hoppe et al. [72] assume k to be given

as an input parameter. Pauly et al. [125] select k experimentally for the purpose of local

normal and surface variation estimation respectively. Mitra and Nguyen [109] suggest a

theoretical approach whose practical value, however, suffers from the need for estimates

of both the standard deviation of any noise affecting the point positions and the local

sampling density as well as the local curvature. These estimates, which partly themselves

require the use of local neighbourhoods, are to be re-computed at or around each point.

Irrespective of whether or not these values are easily obtainable, the analysis applies to

the case of locally regularly uniformly distributed point sets only. At the presence of

point distribution non-uniformities, k nearest neighbourhoods tend to be skewed [97].

The enhanced k nearest neighbourhood idea [97] tries to overcome this particular problem

by controlling for a maximum angle between pairs of neighbours sorted around the point

under consideration (Figure 2.11). This concept is used in the context of point set re-

sampling in Section 4.3. Note, however, that due to the fact that each point’s enhanced

k nearest neighbourhood is determined independently, this or the similar modification of

the k nearest neighbourhood concept put forward by Guennebaud et al. [63] does not help

to avoid the issue of overlapping neighbour relations [63].

The restricted Delaunay neighbourhood of pi consists of its neighbours in the global re-

stricted Euclidean Delaunay triangulation of the surface [20] (Figure 2.10(c)).5 Since

this neighbourhood concept is based on a subset of an extrinsic mesh data structure

5For a definition of the notion of restricted Euclidean Delaunay triangulations, see Appendix B.

45

CHAPTER 2. PRELIMINARIES

Figure 2.11: The conventional k(= 9) nearest neighbourhood of a (red) point pi (left) fails to
account for the local non-uniformity in the point distribution and is skewed. This
makes it unsuitable for the support of tasks such as point cloud re- or upsampling.
The enhanced 9 nearest neighbourhood (right) avoids this effect by controlling for
violations such as γ of an angular threshold between successive neighbours.

partitioning the underlying surface, point proximity follows from mesh connectivity and

point neighbourhoods are not determined independently. Problems (b)-(c) are therefore

avoided. The avoidance of problem (a) depends on how well the restricted Delaunay tri-

angulation captures the topology of the underlying surface. Topological guarantees have

been derived in this context by Amenta et al. [8,9] for point sets of sufficiently high density.

See also Leibon and Letscher [90]. In the case of point sets not meeting this condition,

the Delaunay triangulation may connect disjoint surface sheets so that problem (a) is no

longer guaranteed to be prevented.

The generally favourable properties of the restricted Delaunay neighbourhood come at

the expense of the frequently prohibitively costly computation of the Euclidean Delaunay

triangulation in mD and its (“restricted”) subset intersecting the underlying surface, as

discussed by, for example, Boissonnat and Cazals [20]. As shown by Andersson et al. [12],

in the case of uniformly distributed point sets, the restricted Delaunay neighbourhood

of pi may be approximated efficiently from a k nearest neighbourhood of pi. However,

apart from being inapplicable in the case of non-uniformly distributed point clouds, the

restricted Delaunay neighbourhood is then approximated locally and independently rather

than being derived from a global surface partitioning and the problem of overlapping

neighbour relations is no longer avoided.

In the following section, I propose to derive proximity information intrinsically instead

and put forward an intrinsic neighbourhood concept.

46

2.4. NEIGHBOURHOOD CONCEPTS FOR POINT-SAMPLED GEOMETRY

Figure 2.12: Examples for natural neighbourhoods (dashed lines) as defined by the Voronoi
diagrams (solid lines) of planar input point sets. For this planar example, the
Euclidean and intrinsic Voronoi diagrams and thus the Euclidean natural [151]
and intrinsic natural neighbourhoods coincide. This does not extend to the more
general, non-planar surface case.

2.4.3 An intrinsic neighbourhood concept

To determine point neighbourhoods intrinsically, I propose to use the set of neighbours

of pi in the geodesic Voronoi diagram of P , VD(P), i.e. an intrinsic “natural” [151], or

Voronoi, neighbourhood (Figure 2.12),

Npi
= {pj : pi and pj are neighbours in VD(P)},

for pi, pj ∈ P , pi �= pj; pi and pj are neighbours in VD(P), if R(pi, P) ∩ R(pj, P) is

neither empty nor a singleton, i.e. the relevant Voronoi regions share an edge. Thus, pi is

a Voronoi neighbour of pj if and only if pj is a Voronoi neighbour of pi.

As regards problems (a)-(c), this neighbourhood concept benefits from its definition in

terms of a global surface partitioning. The consideration of intrinsic rather than Euclidean

interpoint distances for this partitioning avoids points from disjoint surface sheets to be

assigned to the same neighbourhood. Its global nature means that intrinsic natural neigh-

bourhoods are well-defined across areas of local non-uniformities in the point distribution.

Finally, the use of a Voronoi partitioning in the definition of Npi
implies that intrinsic

natural neighbourhoods are not determined independently of each other but rather im-

plicitly take into account proximity to all other points via their intrinsic Voronoi diagram.

The problem of overlapping neighbour relations is thereby avoided (Figure 2.13).

The implementation of intrinsic natural neighbourhoods is discussed in the context of

intrinsic meshless surface subdivision in Section 5.4.

47

CHAPTER 2. PRELIMINARIES

Figure 2.13: The overlapping relations example of Figure 2.9 is reproduced on the left. Due
to the determination of the intrinsic natural neighbourhoods of pk and pl from
a global Voronoi partitioning, no such neighbour relation is established between
pm and pk and the problem is avoided when using intrinsic natural instead of k
nearest neighbourhoods (right). Note that for this planar case, the intrinsic natural
neighbourhoods represent a subset of the k nearest neighbourhoods. This does not
apply in the more general, non-planar surface case.

2.5 Implementation details

As in the case of their algorithmic details, the implementations of conventional Cartesian

Fast Marching and Fast Marching for surfaces in point cloud form overlap substantially.

Also, the latter Fast Marching technique is at the heart of both the intrinsic meshless

surface simplification algorithm of Chapter 4 and the intrinsic meshless surface subdivision

algorithm of Chapter 5. These implementations are therefore described in Sections 2.5.1

and 2.5.2 below rather than the relevant work chapters. Similarly, geodesic Voronoi

diagrams are used repeatedly in subsequent chapters. The corresponding implementation

details are therefore summarised in Section 2.5.3.

2.5.1 Fast Marching on Cartesian grids

The implementation of the original Cartesian Fast Marching algorithm [70, 144, 158] re-

quires two main data structures, a m-dimensional, not necessarily regular, structured grid

and a min-heap. As illustrated by equation (2.2), any irregularity of the grid, i.e. any

differences in grid spacing in the grid directions, is explicitly allowed for in the finite

difference approximation. I opt for the implementation of the grid as a mapping from a

unique key generated from the Cartesian coordinates of a grid vertex to a grid element

object holding the vertex’ arrival time, its state (FAR, CLOSE, ALIVE) and the indices of

its heap entries. Figure 2.14 illustrates this design. Apart from the grid spacing flexibility

48

2.5. IMPLEMENTATION DETAILS

+...()

-double arrivalTime
-Vector* vertex
-long voronoiRegion

HeapElement

-double arrivalTime
-short stateOfNature
-int minHeapIndex
-int maxHeapIndex
-long voronoiRegion

struct GridElement

+void reheapify(in int oldIndex, in (*func)(Vector* vertex, int newIndex))
+...()

-T* heapArray
-...

Heap

class T

Heap<HeapElem>

«bind»()

1

*

-long generateKey(in Vector* vertex)
-T&operator()(in Vector* vertex)
+friend updateMinHeap(in Vector*vertex, in int index)
+friend updateMaxHeap(in Vector*vertex, in int index)
+...()

-Map* gridElements
-...

Grid

class T

Grid<GridElem>

«bind»()

1

*

Figure 2.14: Extracts of my class design of the implementation of Cartesian Fast Marching in
Unified Modeling Language (UML) [52] syntax.

of such a mapping, this design is beneficial in a memory efficiency sense since it allows

to drop grid elements from consideration which are known not to be needed for further

processing.

The min-heap is implemented as a templated class with the heap elements stored in an

array. Thus, for each CLOSE vertex stored at array position i ≥ 1, its children can be

found in constant time at positions 2i and 2i+1 respectively. Similarly, the parent of each

element located at position i > 1 is found in constant time at position �i/2� [142]. Since

the heap elements are keyed by their arrival time estimates, the root, i.e. i = 1, holds the

minimal arrival time estimate at any time. Apart from this key, each heap element holds

a pointer to the grid vertex whose arrival time estimate is being stored and the index of

the input point whose Voronoi region it belongs to (Figure 2.14), as determined during

front propagation (Section 5.4.1).

Following root extraction, vertex insertion or T -estimate updating, the positions of heap

elements will generally change following the enforcement of the heap property, i.e. re-

heapification. In this case, the heap indices stored at those grid vertices whose heap

entries have changed need to be updated accordingly. This lack of separation between

information stored at grid vertices and information stored in the heap represents the only

implementational complication of Fast Marching. This complication is resolved here by

passing a function pointer to the heap’s re-heapification method. That is, a pointer to

a function is passed which takes a pointer to a grid vertex and its new heap index as

49

CHAPTER 2. PRELIMINARIES

Figure 2.15: Only (the coloured) ALIVE grid vertices are considered for the solution of (2.3) at
a (green) vertex. Given pairwise opposite ALIVE vertices, the vertex featuring the
smaller T -value is included in the computation. In the 2D case shown here (left)
no such pair of opposite ALIVE vertices exists. Of the two (blue) ALIVE vertices,
the one featuring the smaller T -value is labelled A1 so that TA1 ≤ TB1 holds. In
the 3D example shown on the right, vertices C1 and C2 are both ALIVE but C1

features a smaller arrival time, i.e. is located closer to the source point of the red
front than C2 to the source point of the blue front. Thus, the T -value at vertex C1

is to be considered for TC1 ≤ TC2 to hold. The other vertices are selected such that
the additional condition TA1 ≤ TB1 ≤ TC1 applies as well.

parameters and updates the heap index information stored at the grid vertex accordingly.

This is implemented by allowing the function “friendly” access to the grid class (Figure

2.14). Although this solution adds the overhead of function pointer maintenance, it has

the advantage of allowing me to use the same heap class not only for the instantiation

of a min- but also a max-heap object used alongside the same grid object. To maintain

the corresponding heap indices at a particular grid vertex, the function pointer-based

implementation of the heap class remains unchanged. During processing, the heap objects

get passed a pointer to one of the two friendly functions depending on whether the min-

or max-heap index at a grid vertex needs to be updated.

Although this class design is presented in the context of Cartesian Fast Marching, the

heap and heap element classes and the grid element structure are not specific to this

implementation and are re-used for the implementations of Fast Marching for surfaces in

point cloud and triangular mesh form. Similarly, for the implementation of Fast Marching

for surfaces in point cloud form, the (structured) grid class can also be re-used.

With the main data structures in place, how to set up and solve the quadratic finite

difference approximation represents the only remaining implementation question. Let us

assume, without loss of generality, that we are dealing with a Cartesian Fast Marching

problem in 3D, i.e. the quadratic finite difference approximation (2.3). At each updating

step, the 6-connectivity neighbourhood of the vertex whose Tijk-value is to be updated is

50

2.5. IMPLEMENTATION DETAILS

considered. Following Algorithm 1, only ALIVE vertices need to be taken into account

in the computation of the Tijk-estimate.

Using the notation of Deschamps and Cohen [40], let {A1, A2}, {B1, B2} and {C1, C2}
represent the opposite pairs of neighbours in the 6-connectivity neighbourhood around

vertex (i∆x, j∆y, k∆z) whose Tijk-value is to be updated. The couples are chosen such

that TA1 ≤ TA2 , TB1 ≤ TB2 , TC1 ≤ TC2 and TA1 ≤ TB1 ≤ TC1 holds (Figure 2.15). The

monotonicity property of Fast Marching requires that any solution meets the condition

Tijk ≥ TC1 . From the finite difference approximation (2.3), the quadratic equation to be

solved is

(Tijk − TC1)
2 + (Tijk − TB1)

2 + (Tijk − TA1)
2 − F 2

ijk = 0 (2.8)

Note that since TA1 , TB1 , TC1 and Fijk are known, this represents a second-order polynomial

in one variable, Tijk. For its roots to be real, its discriminant D ≡ b2 − 4ac needs to

be non-negative, where a, b, c represent the coefficients of the various orders of Tijk in

the standardised representation of a quadratic equation, i.e. aT 2
ijk + bTijk + c = 0. For

D ≥ 0, (2.8) can be solved for its largest root, the only valid solution if monotonicity is

to hold, using the standard solution formula for quadratic equations. If this root meets

the condition Tijk ≥ TC1 , a new valid estimate of Tijk has been found; otherwise, or if

D < 0, one of the 6-connectivity neighbours of vertex (i∆x, j∆y, k∆z) features too large

an arrival time to be considered in the solution and (2.8) is to be simplified to

(Tijk − TB1)
2 + (Tijk − TA1)

2 − F 2
ijk = 0 (2.9)

Again, if the discriminant of this quadratic equation is negative or its largest root violates

the condition Tijk ≥ TB1(≥ TA1), TB1 is to be dropped from consideration; otherwise the

new Tijk-estimate has been found. In the former case, it follows

Tijk = TA1 + Fijk (2.10)

as the new arrival time estimate at vertex (i∆x, j∆y, k∆z).

The above represents the sequential solution process for the case of ALIVE neighbours

in each grid direction. In case ALIVE neighbours are found in only two of the three

directions, the updating process starts with the consideration of equation (2.9) instead.

This also represents the starting point of the updating process when performing Cartesian

Fast Marching on a 2D grid. Finally, if only TA1 is known, the updating process narrows

down to the immediate solution of (2.10). With this updating process implemented, all

key elements of Algorithm 1 are in place.

51

CHAPTER 2. PRELIMINARIES

These elements can be re-used to a degree in the implementation of Fast Marching for

surfaces in point cloud form discussed next.

2.5.2 Fast Marching for surfaces in point cloud form

Apart from the need to compute Ωr
P and to subsequently restrict processing to those grid

vertices located inside Ωr
P , the implementation requirements of Cartesian Fast Marching

for point clouds and conventional Fast Marching are identical.

The computation of Ωr
P is implemented by using conventional Fast Marching in the em-

bedding space. That is, Ωr
P is constructed by propagating fronts simultaneously or se-

quentially at unit speed from each input point outwards until their extent corresponds to

the given constant radius r; r may, for example, be estimated from the sampling resolu-

tion of the device used to acquire the surface data. Grid vertices inside of Ωr
P are assigned

the state VALID, with subsequent processing being restricted to these valid vertices only.

The design of the Cartesian grid as a lookup table proves beneficial in this context. By

removing all invalid grid vertices from the lookup table, memory demand is reduced to a

fraction of the memory requirements of the object’s discretised bounding volume. See, for

example, Figure 2.8. Thus, the relatively more memory-demanding offset band compu-

tation for a particular object surface can be performed as a separate pre-processing step,

with the resulting lookup table of valid grid vertices made available alongside the surface

point cloud for subsequent processing.

To compute an adaptive offset band Ωri
P , the variable offset ball radii, ri, need to be deter-

mined first as part of the one-off pre-processing step. The required adjacency information

is obtained by computing the enhanced k nearest neighbourhood eNN pi
of the point pi

under consideration (Section 4.5.2). Once this local proximity information is available,

the algorithm determines the Euclidean distance between pi and its neighbour q ∈ eNN pi

farthest away from pi. If ri = d(pi, q) is larger than any radius currently associated with

pi and q, ri is set as the new radii of the offset balls centred at pi and q; otherwise, ri

is ignored. Once all variable radii ri have been determined this way, the corresponding

(valid) grid vertices are included in the band by propagating fronts with extent ri from

each pi outwards. This technique is discussed in more detail in Section 4.3.2 where it is

used in the context of the resampling and hole-filling of non-uniformly distributed point

clouds.

With the offset band computation in place, the rest of the implementation of Fast March-

ing for point clouds follows the presentation in Section 2.5.1. Since the offset band pre-

52

2.5. IMPLEMENTATION DETAILS

Figure 2.16: Wave propagation for the computation of discrete geodesic Voronoi diagrams. By
propagating waves for geodesic distance mapping purposes from the crossed (a)
and red (b) generator points outwards respectively, intrinsic Voronoi partitionings
of a planar domain (a) and a triangulated surface (c) are obtained.

processing step results in a lookup table consisting of grid vertices inside Ωr
P only, con-

ventional Cartesian Fast Marching across this grid is automatically restricted to vertices

in Ωr
P . That is, explicit testing for the membership of a grid vertex in Ωr

P is not required

(compare with Algorithm 3).

Amongst other things, I employ the Fast Marching implementations presented above for

the computation of geodesic Voronoi diagrams discussed next.

2.5.3 Geodesic Voronoi diagrams

The intrinsic Voronoi partitioning of a surface is implemented by approximating the con-

tinuous geodesic Voronoi diagram of point set P with geodesic distance maps, i.e. VD(P)

is generated following an expanding waves view. That is, by analogy to the dropping of

pebbles in still water, circular fronts move across the surface from the points of impact.

The locations where wave fronts meet define the geodesic Voronoi diagram of the points of

impact. Figure 2.16 gives both a planar and a triangular mesh-based example for geodesic

Voronoi diagrams computed with the help of wave propagation across the surface.6

The wave propagation is discretised and simulated accurately by solving (2.1) in the

Cartesian grid, (2.4) in the unstructured grid and (2.7) in the point set surface case

respectively. These wave propagations in the form of partial intrinsic distance maps are

computed for all points on the surface simultaneously using the Fast Marching techniques

for intrinsic distance mapping discussed in Section 2.3.

6The triangular mesh-based example was visualised with the help of public domain software [127].

53

CHAPTER 2. PRELIMINARIES

Alternatively, a geodesic Voronoi diagram may be computed incrementally by partial

intrinsic distance mapping from each point pi ∈ P outwards thereby obtaining the Voronoi

regions R(pi, P) sequentially rather than simultaneously.

Irrespective of whether a discrete geodesic Voronoi diagram is computed using simulta-

neous or incremental partial intrinsic distance mapping, the implementation of the front

propagation for Cartesian grids, triangulated or point set surfaces is readily available in

the form of my implementations of conventional Cartesian Fast Marching (Section 2.5.1)

and Fast Marching for surfaces in point cloud form (Section 2.5.2). My implementation of

Fast Marching for triangulated surfaces is discussed in Section 3.7.1. These implementa-

tions are used to propagate a front from a point pi ∈ P outwards until loci of equal arrival

times originating from points pj ∈ P , pi �= pj, are encountered. These loci represent the

Voronoi edges or vertices of Voronoi region R(pi, P) shared with its neighbouring Voronoi

regions in VD(P). To support the applications discussed in the subsequent chapters, only

the vertices of VD(P) are explicitly required and thus stored for further processing.

This completes the discussion of my implementations of those algorithms used repeatedly

in this thesis.

2.6 Summary and discussion

In this chapter, I presented various concepts, definitions and implementations used through-

out this thesis, in particular recent advances in Fast Marching level set methods for

weighted intrinsic distance mapping, geodesic Voronoi diagrams and neighbourhood con-

cepts for point-sampled geometry.

The main contributions of this chapter are my

• intrinsic natural neighbourhood concept for point-sampled geometry.

• implementation of Fast Marching on Cartesian grids.

• implementation of Fast Marching for surfaces in point cloud form.

• implementation of discrete geodesic Voronoi diagram computation.

Fast Marching on Cartesian grids has been implemented and widely-used for a number

of years [145]. By contrast, Fast Marching for surfaces in point cloud form has only been

put forward and implemented for the first time relatively recently [104]. With the help of

54

2.6. SUMMARY AND DISCUSSION

Fast Marching for surfaces in point cloud form, discrete geodesic Voronoi diagrams can

now be computed efficiently across point-sampled geometry.

The intrinsic natural neighbourhood concept inherently defines proximity in terms of

geodesic interpoint distances. It neither requires the computation of local ball radii as

in the case of Euclidean ball neighbourhoods nor the solution of least squares problems

and the associated complications as may be encountered in the case of k nearest neigh-

bourhoods, enhanced or otherwise [64]. It is experimentally found to avoid the pitfalls

of point-based neighbour determination more reliably than existing extrinsic neighbour-

hood concepts. For intrinsic natural neighbourhoods to be well-defined, the underlying

geodesic Voronoi partitioning of the surface needs to be well-defined. The Fast March-

ing techniques discussed in this chapter allow to compute weighted intrinsic distances

on surfaces in triangular, implicit or point cloud form. This permits the computation of

equal distance curves and thus bisectors between points on the surface. As a result, we

have a meaningful way of computing geodesic Voronoi diagrams on surfaces in the most

widely-used forms of representation. From these intrinsic surface partitionings, intrinsic

natural neighbourhood information is readily available.

For not particularly dense point sets, intrinsic natural neighbourhoods can be relatively

small. This can be problematic for the support of the computation of differential proper-

ties such as surface normals: A point’s 2- or 3-ring intrinsic natural neighbours may have

to be collected to obtain sufficiently many neighbours for the normal estimation to be ro-

bust. Unlike their 1-ring counterparts, these 2- or 3-ring neighbours are not immediately

available and would require the traversal of the diagram. In the context of this thesis,

intrinsic natural neighbourhoods are not used for this purpose.

Although the intrinsic natural neighbourhood concept has proven experimentally to be

useful for the purposes of this thesis, a theoretical study of its properties and those

of existing extrinsic neighbourhood concepts would be useful. Such a study, should, for

example, provide results on how well a point neighbourhood can capture the local topology

of the underlying surface even if the point set is not of global ε-density [9,90] (Appendix

B). The required advances in computational geometry for point-sampled geometry are

beyond the scope of this thesis.

55

CHAPTER 2. PRELIMINARIES

56

Chapter 3

Intrinsic point sampling of surfaces

Point sampling generally deals with the approximation of continuous functions by a limited

number of discrete sample points. The problem of placing point samples uniformly or

subject to, for example, feature-sensitivity or approximation error measures is ubiquitous

in both image and geometry processing. Typical image sampling tasks include image

synthesis/rendering [55, 56] and compression [155]. Geometry-related sampling problems

include mesh [58] and point cloud simplification (Chapter 4), remeshing [6, 163], implicit

surface polygonisation [162] and geometry rendering [139, 167, 179]. Note that geometry

sampling may involve surfaces in three or higher dimensions, typically represented in the

form of triangle meshes, implicit functions or point clouds.

In this chapter, I present a point sampling algorithm with sampling density guarantee that

operates truly intrinsically using weighted intrinsic distance mapping. A sample density

guarantee is desirable given the fact that the distribution of the samples determines their

anti-aliasing and noise properties [43]. It is also needed in the context of applications

such as point-based rendering to ensure the sufficient coverage of the surface [59]. The

algorithm’s intrinsic nature implies that it operates inherently sensitively to the geometry.

The algorithm is formulated as a template, or meta algorithm, which is generic enough to

be equally well instantiable for both images and high-dimensional geometry in the most

widely-used forms of representation for both uniform and adaptive sampling tasks. This

is shown in this and subsequent chapters using the Fast Marching framework.

The following section reviews relevant existing point sampling techniques. The farthest

point sampling principle is reviewed in detail in Section 3.2 and then generalised to my

algorithm template in Section 3.3. The modular structure of this template is discussed

in Section 3.4. Section 3.5 gives the algorithm’s sampling density guarantee. Since most

sampling concepts have originated in an image sampling context, I present and analyse

57

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

my algorithm instantiation for planar domains in Section 3.6. The section analyses the

algorithm’s computational complexity, the generated sampling pattern and its usefulness

with respect to the original farthest point sampling algorithm [47]. To demonstrate the

algorithm template’s generic nature, Section 3.7 presents its instantiation for triangulated

surfaces. Since this thesis is predominantly concerned with the intrinsic processing of

surfaces in point cloud form, this discussion is relatively brief. Point cloud farthest point

sampling is discussed in the context of intrinsic meshless surface simplification in Chapter

4.

This chapter is based on Moenning and Dodgson [110,111].

3.1 Related Work

I start with the review of point sampling principles which have proved useful for the

uniform and adaptive point sampling of both images and geometry in various forms of

representation.

Grid-based sampling techniques are based on the idea of partitioning the sampling domain

by a grid data structure. The domain is then sampled directly at or relative to the grid

vertices. Grid-based sampling methods have been devised for image processing purposes

in the form of regular grid, stratified, jittered and N-rooks, or Latin hypercube, sampling.

See Dippe [43], Cook [34], Glassner [56] or Shirley [150] for details. In the context of

geometry processing, grid-based point sampling methods include clustering or voxelisation

methods for triangular meshes and point clouds and uniform or adaptive space partitioning

techniques supporting implicit surface polygonisation. See, e.g. Lindstrom [96], Low and

Tan [100] and Rossignac and Borrel [135] (meshes), Kalaiah and Varshney [78] and Nehab

and Shilane [116] (point clouds) and Hall and Warren [67], Lorensen and Cline [99] and

Velho et al. [162] (implicits). Although grid-based point sampling techniques therefore

exist for images and different geometry representations, their details vary substantially

and no single, generally applicable technique exists. Overall, grid-based techniques tend

to be relatively simple at the expense of a lack of feature-sensitivity for the control of

sampling distributions and relatively high memory demands caused by the discretisation

of the domain’s bounding box.

Particle simulation-based sampling techniques are of a more generic nature. Particle sim-

ulation typically starts with a set of particles distributed across the object at random.

This set is exposed to repulsion and/or attraction forces which may vary with local cur-

vature estimates and other object attributes [73]. Relaxation of the system leads to the

58

3.1. RELATED WORK

drifting of the particles into their final position of lowest energy on or near the object

thereby yielding a uniform or feature-sensitive resampling. Similar particle-based point

sampling methods have been devised for surfaces in mesh, implicit and point cloud form.

See, e.g. Turk [159] (meshes), Figueiredo et al. [48] and Witkin and Heckbert [171] (im-

plicits) and Pauly et al. [124] (point clouds). Particle simulation allows for good control

of the sampling distribution at the expense of the computationally demanding processing

of energy equations and a potentially slowly converging process.

Eldar et al. [47] introduce the notion of farthest point sampling in an image sampling

context. Farthest point sampling is based on the idea of repeatedly placing the next

sample point in the middle of the least-known area of the sampling domain. That is, the

next sample point is placed farthest away from all existing sample sites. Ulichney [160]

suggests a similar idea for digital halftoning purposes. Shahidi et al. [148] slightly modify

the farthest point sampling idea of Eldar et al. [47] to improve the performance of their

sampling scheme also in a halftoning context. Since in the case of halftoning only distances

between points on an integer grid need to be considered, their idea is to use a lookup

table as opposed to a Voronoi diagram for the quick detection of the next farthest point

sample. Grundland et al. [60] develop a farthest point sampling-based algorithm for the

automated stylised rendering of a multiresolution image representation. They aim at

giving the user creative control over the stylisation/rendition of a compressed image. The

main application of their algorithm is in the context of progressive image compression. As

regards triangulated surfaces, farthest point sampling has been widely used for remeshing

purposes. See, e.g. Chew [29], Peyré and Cohen [127] and Ruppert [138]. Peyré and

Cohen [128] use the same technique for the segmentation of triangular meshes. Boissonnat

and Oudot [21] generalise the farthest point sampling concept to a degree by solving the

sample localisation problem extrinsically using incremental restricted Euclidean Delaunay

triangulation [20] (Appendix B) in the embedding space. As a result, they obtain a

sampling method with guarantees for smooth surfaces in both triangular mesh and implicit

form. The theoretical guarantees follow from the fact that their algorithm can generate

ε-samples in the sense of Amenta and Bern [8] (Appendix B). Although this sampling

condition is of great theoretical value, its practical usefulness is limited. Approximations

of a surface point’s distance to the medial axis may be computed in practice with the help

of the “poles” [8] (Appendix B) of the current sample set’s Euclidean Voronoi diagram at

the loss of Boissonnat and Oudot [21] algorithm’s theoretical guarantees and execution and

memory efficiency. Also note that Boissonnat and Oudot’s [21] extension of the farthest

point sampling method does not apply to the increasingly important case of surfaces in

point cloud form.

59

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

I generalise the farthest point sampling concept more generically by solving the sample

point localisation problem directly and intrinsically on the object under consideration

rather than using any global combinatorial data structures in its embedding space. The

approach is presented following the detailed review of the original farthest point sampling

algorithm introduced by Eldar et al. [47].

3.2 Farthest point sampling

In the following, I summarise the reasoning underlying the farthest point sampling ap-

proach introduced by Eldar et al. [47] in an image processing context for both the uniform

and non-uniform, adaptive sampling case.

Starting with the uniform sampling case, Eldar et al. [47] consider an image as represented

by a continuous stochastic process featuring constant first and second order central mo-

ments with the covariance decreasing exponentially with spatial distance. That is, given

a pair of sample points si = (xi, yi), sj = (xj, yj), the correlation of the points’ image

intensities, I(si), I(sj), is assumed to decrease exponentially with the Euclidean distance

between the points,

E(I(si), I(sj)) = σ2e−λd(si,sj)

Based on their linear estimator for the image interpolation, the authors subsequently put

forward the following representation for the expected mean square (reconstruction) error,

i.e. the deviation from the ideal image resulting from estimation error, after the Nth

sample

ε2(s0, . . . , sN−1) =

∫ ∫
σ2 − ZT W−1Z dx dy

with covariance matrix

Wij = σ2e−λd(si,sj)

and variance matrix

Zi = σ2e−λd(si,s),

for 0 ≤ i, j ≤ N and with s = (x, y). The assumption of stationary first and second

order central moments has therefore yielded the result that the expected mean square

error depends on the location of the Nth sample only rather than both its location and its

image intensity value. Since stationarity implies that the image’s statistical properties are

60

3.2. FARTHEST POINT SAMPLING

spatially invariant and given that intensity correlations decrease with distance, uniformly

choosing the Nth sample point to be that point which is farthest away from the current set

of sample points therefore represents the optimal sampling approach for the minimisation

of the expected reconstruction error [47]. That is, the next sample, sN , is to be placed

subject to the following criterion1

d(sN , S) = max
q∈D

(min
0≤i≤N−1

d(q, si)), (3.1)

with si ∈ S; S is the set of existing samples; D represents the domain of the image.

This sampling approach is intimately linked with the incremental construction of a (bounded)

Voronoi diagram over the image domain. To see this, note that the point farthest away

from S is represented by the centre of the largest circle empty of any site si ∈ S [30]. Eldar

et al. [47] show that in the case of farthest point sequences, the centre of such a circle is

repeatedly given by a vertex of the bounded Voronoi diagram of S, bounded VD(S). A

similar result can also been found in the context of facility location and group coordina-

tion problems. In these cases, (3.1) is interpreted as a disk covering problem, namely how

to cover a region with possibly overlapping disks of equal minimum radius. This problem

is shown to be solved by choosing the farthest vertex in the bounded Voronoi diagram of

existing sites as disk centre [35].

Thus, incremental bounded Voronoi diagram construction provides sample points progres-

sively, i.e. a representation of the entire domain is available from the start of the sampling

process which is subsequently uniformly refined in detail. The algorithm is found to sup-

port a high sample acquisition rate and to produce sample sets featuring a blue noise

power spectrum and thus excellent anti-aliasing properties [34,107,160].

From visual inspection of images it is clear that usually not only the sample covariances

but also the sample means and variances vary spatially across an image. When allowing

for this more general variability and thus turning to the design of a non-uniform, adaptive

sampling strategy, the assumption of image intensity covariances decreasing, exponentially

or otherwise, with point distance remains valid. However, since Voronoi diagrams in non-

uniform metrics may lose favourable properties such as Voronoi region connectedness [120],

Eldar et al. [47] consider the detection of the vertices of such a diagram impractical and opt

for augmenting their model by application-dependent weighting schemes for the vertices in

the Euclidean Voronoi diagram. More specifically, they compute the weight for a vertex of

the Euclidean Voronoi diagram with the help of local bandwidth estimation [23] across the

1This min-max criterion was considered earlier by Gonzalez [57] and also Mitchell [107]. However,
Eldar [46] was first to thoroughly analyse the idea and to exploit its close relationship with incremental
bounded Voronoi diagram computation in an image processing context.

61

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

neighbourhood of the three closest sample points of each vertex. This way the character

of the image in the vicinity of the existing samples is evaluated. The estimates are used

in the design of various weight functions of the Voronoi vertices presented in Eldar [46].

This approach is non-optimal due to, firstly, the need to incorporate a factor in the weight-

ing schemes reflecting a vertex’ minimum Euclidean distance from the current sample set.

Following experimentation, Eldar et al. [47] decide to include such a factor multiplicatively.

The impact of this choice on the nature of the sampling distribution is not analysed. Sec-

ondly, in general, arbitrary distance metrics may be used in the computation of Voronoi

diagrams provided the resulting dominance regions are well-behaved, i.e. overlapping on

their bisectors only and representing a tessellation of the domain [120]. The modelling

of non-uniform distance metrics with the help of weighted intrinsic distance mapping to

control the shape and size of intrinsic Voronoi regions represents one way of approaching

this problem with the edges/vertices of this diagram remaining tractable [83, 85]. In the

following section, I utilise this idea for the design of a generalised farthest point sam-

pling algorithm which may be used for both uniform and adaptive sampling of both planar

domains and manifold surfaces.

3.3 The generic intrinsic point sampling algorithm

I re-formulate Eldar et al. [47] farthest point sampling idea using weighted intrinsic dis-

tance mapping. As discussed in detail in Chapter 2, such distance maps may be computed

by propagating equal distance contours across the surface. When simultaneously prop-

agating such contours with unit velocity from a set of points on a surface outwards,

the geodesic Voronoi diagram of these points is obtained. By allowing for different

weights/speeds at each point during the propagation, a geodesic Voronoi diagram in a

non-uniform metric is computed. Partial weighted intrinsic distance mapping also allows

to generate such diagrams incrementally. The combination of these aspects represents

the basic idea underpinning the intrinsic farthest point algorithm template presented in

Algorithm 4.

Given an initial, random sample set S, n = ‖S‖ ≥ 3 and weight function F > 0, bounded

VD(S) is computed using simultaneous weighted intrinsic distance mapping. The vertices

of the bounded VD(S) represent the initial set of farthest point candidates which are

stored in a priority queue sorted in descending order of arrival time. The iterative sampling

then amounts to the extraction of the root from the queue yielding the location of sn+1.

The subsequent computation of bounded R(sn+1, S
′) by partial weighted intrinsic distance

62

3.3. THE GENERIC INTRINSIC POINT SAMPLING ALGORITHM

Input: Weight function F > 0. Sample budget N or refinement threshold ρ > 0
(termination condition).
Output: Sample set S′ following from the enforcement of the termination condition.

0 *** Initialisation ***
1 Randomly select an initial set S ≥ 3(= n) of sample points;
2 Compute bounded VD(S) using simultaneous weighted intrinsic distance mapping;
3 Insert the vertices of VD(S) in a priority queue;
4
5 *** Sampling ***
6 REPEAT
7 Extract the root from the queue to obtain sn+1;
8 S′ = S ∪ {sn+1};
9 Compute bounded R(sn+1, S

′) (and thus bounded VD(S′)) using partial
weighted intrinsic distance mapping;

10 Remove any obsolete vertices of the neighbouring regions of bounded
R(sn+1, S

′) from the queue;
11 Insert the Voronoi vertices of bounded R(sn+1, S

′) in the queue;
12 UNTIL ‖S′‖ = N or ρ has been met;

Alg. 4: Intrinsic farthest point sampling algorithm template in pseudocode.

mapping gives the bounded VD(S ′). The vertices of this region are added to the queue of

farthest point candidates. Those Voronoi vertices of the neighbours of bounded R(sn+1, S
′)

which have become obsolete due to the expansion of bounded R(sn+1, S
′) into their regions

are removed from the queue. This sampling process, illustrated in Figure 3.1, is repeated

until the user-controlled sampling budget is exhausted or a refinement condition has been

met.

The refinement condition is formulated in the form of a density condition ρ which I show in

the following section to imply deterministic bounds on sample distances. More specifically,

the user controls the maximum distance from the next farthest point candidate to the

current sample set S, i.e. the radius ρ > 0 of the largest empty geodesic circle on the

object. The sample set is refined until the next farthest point candidate’s arrival time is

no longer larger than or equal to this radius indicating that S ′ has become sufficiently

dense. That is, the user controls the radius of the disks covering the sampling domain.

As an alternative to the selection of a global value for ρ, the density condition can be

formulated as a function of local object properties provided ρ > 0 holds true throughout.

The effect of different values for ρ is illustrated in Figure 3.2.

From ρ > 0, it is clear that the algorithm terminates: As a result of the density condition’s

enforcement, sample points cannot be placed arbitrarily closely to each other and thus

cannot be infinitely many.

63

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Figure 3.1: Algorithm 4 uses the fact that the centre of the (red) largest empty circle coincides
with a vertex of bounded VD(S). That is, sample sn+1 ∈ S′ farthest away from the
existing set of (blue) sample points coincides with a (red) vertex of bounded VD(S)
((a) and (b)). During the computation of the (light grey) bounded R(sn+1, S

′),
(green) vertices of (dark grey) neighbouring Voronoi regions of R(sn+1, S

′) which
now belong to R(sn+1, S

′) are removed from the queue of farthest point candidates.
The (green) Voronoi vertices of bounded R(sn+1, S

′) are added to the queue ((b)
and (c)). This process continues until the user-controlled termination condition is
met.

Figure 3.2: Effect of different (global) values for ρ. The user controls the maximum distance
from the next (red) farthest point candidate to the (blue) sample set, i.e. the radius
ρ of the largest empty circle in the sampling domain. This in turn bounds interpoint
distances.

The algorithm allows for the computation of bounded geodesic Voronoi diagrams in non-

uniform metrics by simply varying the weight function F with arbitrary local properties.

This way distances between points in highly variable regions will be larger than those of

points equally-spaced in the Euclidean sense but located in areas of low variance. Thus,

the farthest point sampling principle is extended to non-uniform, adaptive sampling in the

more natural and general manner hinted at by Eldar et al. [47] as the preferable approach.

F may either be computed on-the-fly during intrinsic distance mapping or pre-computed

and passed on to the algorithm in the form of an importance map.

64

3.4. MODULAR ALGORITHM STRUCTURE

3.4 Modular algorithm structure

As illustrated in Figure 3.3, the algorithm is designed as a collection of self-contained

modules. This way, a library of module models can be built up, each representing an

implementation for a different surface representation. This toolbox can then be stored in

the form of a library of code modules.

The Fast Marching module implements weighted intrinsic distance mapping across a struc-

tured or unstructured grid represented by the grid module implementation. The Fast

Marching module is also linked with the weight function module which operates as an

oracle providing non-uniform propagation speeds, possibly upon provision of information

stored at the relevant grid element. The heap module provides the priority queue im-

plementation and is linked with the grid module which manages a grid element’s heap

indices and the Fast Marching module which processes its elements. The heap elements

hold their positions in the grid.

By providing implementations of the Fast Marching, grid and weight function modules

as required, a toolbox for the point sampling of surfaces in the most widely-used forms of

representation is obtained. This toolbox may be used for the flexible uniform or adaptive

intrinsic point sampling of surfaces with the sampling density guarantee discussed next.

3.5 Sampling density guarantee

A simple guarantee in the spirit of Eldar et al. [47] is given in terms of the user-controlled

refinement condition ρ on the intersample distances of samples placed by Algorithm 4.

Definition 1 As discussed in Section 3.2, the centre of the largest geodesic circle empty

of any sample points coincides at any one stage of the sampling process with a vertex v

of (bounded) VD(S ′). For ease of exposition, set rmax equal to the radius of this circle

at the end of the sampling process, i.e. rmax = maxs∈S dM(v, s) = ρ. Denote as rj
max, the

radius of the largest geodesic circle empty of the first j sample points. Sj represents the

set of j samples. Without loss of generality, it is assumed that 1(a) below is not violated

by the initial set of three sample points. This may be guaranteed by choosing the first

sample point at random and then repeatedly placing a sample at the point farthest away

in the existing samples’ distance maps.

Theorem 1

65

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Fast Marching Heap

Grid

Weight function

+getWeight()

Abstract class FMWeightFn

+extractMin()
+insert()
+remove()
+print()
+getN()
+clear()

Abstract class FMHeap «extends»

+setHeapElement()
+updateGridElement()

Abstract class GridHeap

«extends»

«extends»

+getGridElement()
+updateGridElement()
+resetGridElement()

Abstract class FMGrid

«extends»

«extends»

Figure 3.3: Modular design of Algorithm 4 in the form of a UML component diagram [52].

(a) For the intrinsic distance between samples si, sj ∈ S ′, i �= j, dM(si, sj) ≥ ρ.

(b) For any pair of neighbouring samples si, sj ∈ S ′, dM(si, sj) ≤ 2ρ.

Proof

(a) Note that with increasing sample size, rj
max will not increase,

rmax ≤ rj
max, (3.2)

for j < N(= ‖S ′‖). Let si, sj denote two samples on the geodesic circle of v with j

sampled after i. By the definition of the algorithm, sj is placed at a vertex with distance

rj−1
max = maxs∈Sj−1 dM(v, s) from Sj−1. Thus, for any si with i < j, dM(si, sj) ≥ rj−1

max.

From (3.2), rmax ≤ rj−1
max so that dM(si, sj) ≥ rmax = ρ. �

(b) Consider a Voronoi vertex v shared by two neighbouring sample points si, sj. By

definition, v is equally far away from both si and sj. The geodesic distance is a metric

on M . Thus, it satisfies the metric triangle inequality and dM(si, sj) ≤ 2dM(v, si). Since

dM(v, si) ≤ rmax = ρ, dM(si, sj) ≤ 2ρ. �

It follows that the samples cover the domain irregularly uniformly without clustering

66

3.6. FASTFPS OF PLANAR DOMAINS

or leaving large holes. Apart from being desirable from an anti-aliasing point of view, this

guarantee ensures the support of meaningful further processing [34,43].

The properties of the sampling distribution generated by this algorithm are analysed

in more detail in the following section. More specifically, I comparatively evaluate the

properties of the algorithm instantiation for planar domains with respect to those of the

original farthest point sampling algorithm by Eldar et al. [47].

Any instantiation of Algorithm 4 primarily needs to address the question of how to ef-

ficiently perform partial weighted intrinsic distance mapping for incremental (bounded)

geodesic Voronoi diagram computation. As described in the following, I utilise the com-

putationally optimal Fast Marching methods of Section 2.3 for this purpose. Henceforth,

I refer to the resulting algorithm instantiations as Fast Marching farthest point sampling

(FastFPS) algorithms.

3.6 FastFPS of planar domains

In the following, Section 3.6.1 discusses my implementation of Algorithm 4 for planar

domains. Section 3.6.2 analyses the implementation’s computational complexity. The

generated sampling pattern is analysed with an eye to the properties of the original far-

thest point sampling algorithm [47] in Section 3.6.3. Section 3.6.4 concludes this chapter

with experimental results for uniform and adaptive FastFPS image sampling.

3.6.1 Implementation of the generic algorithm for planar do-

mains

Any instantiation of the algorithm template needs to provide implementations for the

modules listed in Section 3.4. In the case of planar domains, these modules consist

of Fast Marching for 2D Cartesian grids, my implementation of which is discussed in

Section 2.5.1. The grid module is implemented in the form of a 2D vector. The priority

queue implementation is discussed alongside the other remaining algorithm details in the

following.

The FastFPS implementation proceeds with the selection of the first sample point, s1, at

random; s2 and s3 are chosen as the vertices farthest away in TM(s1) and TM(s2) respec-

tively. TM(s1) and TM(s2) follow from partial weighted intrinsic distance mapping from

s1 and s2 outwards. Initialisation is completed with the computation of the discretised

67

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Figure 3.4: Detection of intrinsic Voronoi vertices, and thus farthest point candidates, during
front propagation. Take the red grid vertex to be the (in this case, last) member of
a front to be assigned its final arrival time. It is surrounded by ALIVE grid vertices
belonging to three different Voronoi regions as indicated by their labels of origin,
here represented by different colours, grey, yellow, green and brown respectively.
Since each grid vertex maintains this information (Figure 2.14), the red vertex can
be identified as a Voronoi vertex as part of its arrival time computation which
necessarily accesses its ALIVE grid neighbours. Any additional grid traversal is not
required.

bounded VD(S) by simultaneous propagation of circular fronts originating from s1, s2

and s3. The vertices of VD(S) are detected (Figure 3.4), stored in a priority queue and

labelled as Voronoi vertices in the grid during front propagation using the Fast Marching

module of Section 2.5.1. As illustrated in Figure 3.5, Voronoi vertices on the boundary are

characterised by two entering waves, with internal Voronoi vertices being characterised

by three entering waves.

The priority queue is implemented in the form of a max-heap, i.e. an instantiation of

the templated heap class of Section 2.5.1 (Figure 2.14) with its elements keyed by their

negative arrival times. As a result, the Voronoi vertex farthest away is located at the

root. The re-heapification method’s friendly access to the grid data structure allows for

the updating of the max-heap index stored at the relevant grid vertex following root

extraction (line 7), vertex removal (line 10), or vertex insertion (line 11). Both this max-

heap and the min-heap used in the context of Fast Marching make up the heap module

of this instantiation.

Partial weighted intrinsic distance mapping for the computation of bounded Voronoi re-

gion R(sn+1, S
′) and thus VD(S ′) (line 9) is implemented by propagating a front locally

from sn+1 outwards until loci of equal arrival time values, i.e. grid vertices on the Voronoi

edges of bounded R(sn+1, S
′), are encountered (Figure 3.5). Existing Voronoi vertices

passed during the propagation are removed from the max-heap using their max-heap in-

68

3.6. FASTFPS OF PLANAR DOMAINS

Figure 3.5: Partial intrinsic distance mapping from the new (red) sample point sn+1 outwards
(a) yields R(sn+1, S

′) (b) (cp. with Figure 3.1). The (green) vertices of bounded
VD(S′) located on the boundary are characterised by two entering propagation
waves (c). Any (black) internal Voronoi vertices can be identified by the fact that
they are entered by three different waves. Existing sample points are marked by
crosses.

dices stored at the corresponding grid vertices (line 10). The Voronoi vertices of bounded

R(sn+1, S
′) are detected, stored in the max-heap and labelled as during initialisation (line

11).

The enforcement of refinement condition ρ (line 12) simply amounts to controlling for the

arrival time of the extracted max-heap root being greater than or equal to ρ.

This completes the implementation of Algorithm 4 for the planar domain case.

3.6.2 Computational complexity

As regards my implementation’s efficiency, extracting the root from (line 7), inserting into

(lines 3, 11), updating of (line 9) and removing from (lines 2, 9, 10) the max- and/or min-

heap with subsequent re-heapifying are O(log W1) and O(log W2) operations respectively,

where W1 represents the number of elements in the max-heap and W2 denotes the number

of elements in the min-heap. W1 and W2 are O(N), N representing the number of grid

vertices of the 2D Cartesian grid. The accessing of existing max- and min-heap entries

is O(1) due to the storage of the heap indices in the grid. The detection of the Voronoi

vertices is a by-product of the O(N log N) front propagation (lines 2, 9). This O(N log N)

process is performed up to N2 times, where N2 equals ‖S ′‖ after algorithm termination

(line 12). N2 is O(N) yielding a running time of O(N2 log N).

It is important to note in this context that the size of W2, i.e. the size of the narrow band

during partial intrinsic distance mapping, decreases with increasing sample size moving

69

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Figure 3.6: Sample sets produced by pseudo-random sampling are characterised by clustering
and holes undermining meaningful further processing (a). Incrementally computable
quasi-random sequences such as Halton avoid the latter problem but still produce
undesirable sample distributions (here: samples may be placed arbitrarily closely
to each other) (b). Uniform FastFPS places samples within deterministic minimum
and maximum distances of each other thereby preventing both undersampling and
clustering (c). The sparse squares shown in the middle of each sample set represent
blown-up views of the generated sample distributions.

min-heap re-heapifying closer to O(1) and making the O(N log N) front propagation close

to linear in complexity. Also, typically N2 � N . Thus, the run-time behaviour tends

to be considerably more favourable in practice. This observation is confirmed by the

experimental results given in Section 3.6.4 after the following analysis of uniform farthest

point sample distributions.

3.6.3 Analysis of the generated sampling distribution

A good uniform sample distribution is expected both to provide similar amounts of in-

formation about different parts of the image whilst avoiding holes or clustering and to be

irregular so as to minimise aliasing effects.

As regards the former aspect, the nature of the sample distribution generated by uni-

form FastFPS of planar domains is illustrated in Figure 3.6. The figure presents a

uniform FastFPS point set alongside realisations of two independently uniformly dis-

70

3.6. FASTFPS OF PLANAR DOMAINS

tributed (pseudo-)random variables,2 and a quasi-random Halton sequence [68]. A Hal-

ton sequence defines the ith point in an arbitrary-length, m-dimensional sequence as

ui = (φb1(i), . . . , φbm(i)), where the bases b1, . . . , bm are typically chosen as the first m

prime numbers to avoid component correlations and the Van Corput sequence φb(i) is

defined as φb(i) =
∑∞

j=0 ajb
−j−1, with aj being the coefficients in the b-ary expansion of

i, i =
∑∞

j=0 ajb
j. The resulting points lie inside the m-dimensional unit cube [0, 1)m.

Halton sequences are an example of low-discrepancy deterministic point sequences, i.e.

sequences whose discrepancy is significantly smaller than the discrepancy of a typical set

of randomly distributed points. Discrepancy is here understood as a measure of the de-

viation of the sample set from the uniform distribution in the unit cube [80, 150]. Thus,

by choosing a two-dimensional Halton point set with prime numbers b1, b2, b2 > b1, 2D

space is filled more uniformly than in the pseudo-random sampling case. Due to its low

discrepancy and the fact that, unlike, e.g. stratified or jittered sample sets, Halton point

sequences can easily be generated incrementally, the Halton sequences for primes b1 = 2

and b2 = 3 (Figure 3.6) are computed for comparative purposes.

It is clear from the illustration that whilst the quasi-random sequence is more uniformly

distributed than the pseudo-random sample set, its members may be placed rather closely

to each other. This effect is avoided by the uniform FastFPS point set reflecting its

guaranteed bounds on intersample distances. Note that although the distribution of

Halton point sets varies with the particular set of prime bases b1, b2 chosen, the problem

of closely placed samples remains [172].

As regards the irregularity of the uniform FastFPS sample pattern, it is induced by

the random initialisation of the farthest point sequence. This is reflected by the blue

noise property of its power spectrum (Figure 3.7): A low energy disc around the zero

frequency component with most of the power concentrated beyond a threshold frequency,

i.e. aliasing is replaced by high-frequency white noise, so-called blue noise, indicating

good anti-aliasing properties and the usefulness for a wide range of further processing

tasks [34,43,107,160,161].

Thus, FastFPS of planar domains generates irregularly uniform sample patterns. It there-

fore produces sample sets of similar quality as the uniform image sampling technique of

Eldar et al. [47].

FastFPS, however, extends the farthest point sampling principle more naturally to the

adaptive sampling case. This is of importance since by varying the sampling rate with

2The pseudo-random sequences were computed with the help of algorithm “ran1” in Press et al. [131]
which is reported to pass all established randomness tests for random number sequences of length less
than 108.

71

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Figure 3.7: Power spectra [43, 161] (watts over frequency in Hz) of 1028 pseudo-random (left)
and FastFPS samples (right). Whilst the energy distribution of the pseudo-random
sequence is characterised by noise across all frequencies, i.e. white noise, the energy
distribution of the FastFPS sequence displays typical blue noise properties: Most of
the energy is concentrated beyond a frequency threshold, i.e. low-frequency aliasing
is traded for high-frequency noise, which the human visual system is known to be
less sensitive to than white noise or the false patterns characteristic of aliasing [134]
(illustration is zoomed into a low frequency range to highlight this property).

Figure 3.8: Adaptive FastFPS extends the farthest point sampling principle naturally by mod-
elling discrete geodesic Voronoi diagrams in a metric reflecting the local image struc-
ture with the help of weighted intrinsic distance mapping. This is illustrated here by
the discrete geodesic Voronoi diagrams (bottom) corresponding to the Lena sample
sets of Figure 3.9 (top).

non-uniform image features, the number of samples required to meet the given sampling

72

3.6. FASTFPS OF PLANAR DOMAINS

criterion, e.g. the quality of the reconstructed image, can be reduced substantially [43].

In the FastFPS case, weighted intrinsic distance mapping across the domain models a

tractable (discrete) geodesic Voronoi diagram in a metric reflecting the variation in an

arbitrary local feature-sensitivity measure. This principle is illustrated in Figure 3.8. By

choosing the vertex farthest away in this diagram, farthest point sampling is extended

to the adaptive case without the need for experimentally determined weight functions

incorporating a distance factor for the vertices in the Euclidean Voronoi diagram [46,47].

Also, whilst Eldar et al. [47] adaptive image sampling by local bandwidth estimation

represents a reasonable approach, in general, other sampling criteria need to be supported

as well to optimise the sampling distribution for specific applications.

The flexibility of the proposed approach is shown in the following section.

3.6.4 Experimental results

To illustrate its flexibility, I use adaptive FastFPS for the generation of samples whose

distribution follows an importance measure either given in form of a pre-computed im-

portance map or computed on-the-fly during front propagation. The generation of such

sampling patterns is required for numerous computer graphics applications such as ren-

dering [55] or digital halftoning [160]. The section is concluded with experimental results

on the computational efficiency of FastFPS of planar domains.

I use both a Fast Fourier Transform-based (FFT)3 importance map of peak frequencies

and CIELAB 1976-based colour-space [102] similarity measures. Colour dissimilarity is

measured on-the-fly at each grid vertex either in the form of its Euclidean distance in

CIELAB colour space from its 4-connectivity neighbourhood or using the CIELAB-based

GLAB dissimilarity measure [61]. In either case, the largest distance is taken as the

propagation speed at the vertex during simultaneous (line 2 in Algorithm 4) and partial

weighted intrinsic distance mapping (line 9 in Algorithm 4). This way the distances

between Voronoi vertices and the existing sample set in a relatively variable region are

higher than they would be in a smoother area. The resulting sample distributions for

a number of test images and sample budgets are shown in Figure 3.9. The images were

chosen either for their colour dynamics (Monarch, Mandrill) or more subtle colour changes

(Mona Lisa). The Lena image does not exhibit such properties but has developed into

a standard test case over the years. Generally, the Mandrill image represents the most

challenging test case due to the noisy nature of its fur.

3I use Don Cross’ [36] FFT implementation. His code for the detection of the peak power frequency in
the output of his FFT algorithm is also employed. The importance map consists of these peak frequencies.

73

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Figure 3.9: Adaptive FastFPS extends the farthest point sampling principle flexibly by allowing
for (positive) weight functions reflecting local changes in arbitrary properties. This
is illustrated here with FastFPS sample distributions obtained from FFT importance
map (a), CIELAB colour space distance (b)(c) and GLAB similarity [61] (d) weight
functions. The point sets consist of, from left to right, 1024, 4096 and 8192 samples.
The (512 × 512) reference images are shown on the right.

Unsurprisingly, the peak frequency-based weight function leads to the strong concentra-

tion of samples near edges at the expense of the “adequate” sampling of smoother regions.

For example, see Figure 3.9(a), where the smoothly varying background is allocated no

samples at all. The sample distributions driven by the CIELAB colour space-based weight

functions also capture important features early on into the sequence but avoid excessive

over- or undersampling. In each case, the adaptivity of the sample distribution to the

measured feature is clearly visible with the GLAB-based sampling of the Mona Lisa im-

age perhaps yielding the most comprehensive representation for each sample budget. The

74

3.6. FASTFPS OF PLANAR DOMAINS

Figure 3.10: 4 nearest neighbour reconstructions corresponding to the sample sets of Figure 3.9.
The reference images are again shown on the right.

CIELAB-based sampling of the Mandrill image deals very well with the noisy fur but fails

to capture facial high-frequency detail adequately.

I follow Eldar et al. [47] and reconstruct the images using weighted 4 nearest neighbour

interpolation: The intensity at a pixel q is computed as the average intensity at its four

nearest sample points weighted by their reciprocal Euclidean distance from q,

I(q) =

∑4
i=1 I(si)/d(q, si)∑4
i=1 1.0/d(q, si)

, (3.3)

where si ∈ NNq, with ‖NNq‖ = 4. Figure 3.10 shows the resulting reconstructions

corresponding to the sample sets in Figure 3.9. I compute the peak signal-to-noise ra-

tios (PSNR) as a measure of image distortion relative to the reference images. More

75

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

1024 4096 8192

Monarch 13.63 14.32 15.41

Lena 16.64 20.15 22.67

Mandrill 15.41 17.85 19.20

Mona Lisa 20.25 23.91 26.10

Table 3.1: PSNR values for reconstructed images of Figure 3.10.

appropriate measures of visual distortion are reviewed in, for example, Taubman and

Marcellin [155]. The PSNR is defined as

PSNR = 10.0 × log10

2b × 2b

MSE
,

where b denotes the number of bits for the image intensity and MSE represents the mean-

square reconstruction error,

MSE = 1.0/(uv)
v∑

y=1

u∑
x=1

(I(x, y) − Î(x, y))2,

for a (u × v) image; Î(x, y) is the reconstructed pixel intensity in row x and column y.

Since we are dealing with RGB colour images, I compute the MSE and PSNR values for

each RGB colour channel separately, i.e. the intensity values range from 0 to 255 and

thus b = 8 in each case, and average the results. The corresponding PSNR values for

the reconstructed images are given in Table 3.1. Unsurprisingly, the reconstructions from

sample sets generated with the help of the CIELAB colour space-based weight functions

show higher PSNR values than the reconstruction of the Monarch image from the FFT-

driven sampling and the reconstructions of the less challenging images (Lena, Mona Lisa)

show the highest PSNR values throughout. For the most challenging test case (Mandrill),

the noisy nature of the fur is captured relatively well but high-frequency detail is not

recovered adequately. To achieve PSNR results typical of, for example, state-of-the-art

image compression algorithms (≥ 30dB), an (expected) reconstruction error-driven weight

function and a more sophisticated reconstruction method would need to be considered.

See, for example, Demaret et al. [39] (and references therein). Since the purpose of these

application examples is to illustrate the flexibility of adaptive FastFPS, the pros and cons

of the various feature-sensitivity measures, reconstruction methods and image or visual

distortion measures are not considered any further.

To give an indication of the speed of planar FastFPS sampling, Table 3.2 provides execu-

76

3.6. FASTFPS OF PLANAR DOMAINS

10k 20k 40k 80k 160k

(128 × 128) 0.31 0.60 - - -

(256 × 256) 0.42 0.77 1.44 - -

(384 × 384) 0.63 0.94 1.63 3.07 -

(512 × 512) 0.94 1.26 2.02 3.71 6.97

(512 × 512) 2.82 6.16 10.54 19.42 39.06

Table 3.2: Execution times (in secs.) for the uniform FastFPS sampling of differently-sized
versions of the Lena image for budgets of up to 160k samples. For comparative
purposes, execution times of my implementation of Eldar et al. [47] uniform farthest
point sampling algorithm are given in the bottom row.

tion times for the uniform sampling of differently-sized versions of the Lena image given

different sample budgets.4 Execution times for adaptive FastFPS vary with the nature of

the weight function and whether or not the weights are computed on-the-fly or given in

the form of an importance map. They are therefore not particularly useful as an indicator

for the algorithm’s execution efficiency and are not given here. Note, however, that in the

case of adaptive FastFPS sampling using importance maps, Table 3.2 is indicative of the

performance of adaptive FastFPS as well.

The graphical depiction of the results of Table 3.2 in Figure 3.11 shows that for a given

sample budget, the execution time of FastFPS grows at worst linearly in the input

size. This is considerably more efficient than the theoretical computational complexity

of O(N2 log N), where N represents the input size. Similarly, for a given input size, the

execution time of FastFPS is slightly worse than linear in the output size. As documented

in Table 3.2, the execution times of FastFPS of planar domains compares favourably with

the execution times of my implementation5 of Eldar et al. [47] uniform farthest point

sampling algorithm.

In the following section, I turn to the sampling of geometry and present the instantiation

of my generic sampling algorithm for triangulated surfaces.

4All computations were performed on a Pentium 4 2.8GHz, 512MB machine running under MS Win-
dows XP.

5Eldar et al. [47] uniform image sampling algorithm was implemented with the help of the planar
Voronoi diagram functionality of CGAL-2.4 [27].

77

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Figure 3.11: Two different graphical depictions of the FastFPS execution times of Table 3.2.
The top figure shows the execution times for different sample budgets as a function
of the number of input pixels. The bottom figure presents the results as a function
of the output size given images of different sizes. The execution time of uniform
FastFPS is at worst linear in the input size and slightly worse than linear in the
output size.

3.7 FastFPS of triangulated surfaces

This section considers the instantiation of my point sampling algorithm template for

triangulated surfaces.6 Since this thesis is predominantly concerned with the intrinsic

processing of point-sampled geometry and given the maturity of the most relevant appli-

cation areas such as mesh simplification and remeshing, I focus on the description of the

instantiation (Section 3.7.1) using my implementation of Fast Marching for triangulated

surfaces, the instantiation’s computational complexity (Section 3.7.2) and application ex-

amples (Section 3.7.3).

6A similar method was independently and simultaneously developed by Peyré and Cohen [127].

78

3.7. FASTFPS OF TRIANGULATED SURFACES

Input: Acute triangulation of P . Boundary (propagation source) vertex q ∈ P . Speed
function F > 0.
Output: Weighted geodesic distance map of q.

0 *** Initialisation ***
1 Insert q in ALIVE with arrival time 0;
2 Insert in CLOSE, all triangle vertices edge-adjacent to q;
3 Initialise the points in CLOSE using a gradient approximation such as (2.4);
4 Insert all other triangle vertices in FAR with initial arrival times of “∞”;
5
6 *** Front propagation ***
7 REPEAT
8 Let TRIAL denote the vertex in CLOSE featuring the smallest arrival time;

Remove TRIAL from CLOSE and insert it in ALIVE;
9 Move all edge-adjacent neighbours of TRIAL which are FAR to CLOSE;
10 Using a gradient approximation such as (2.4), update the T -values of all

CLOSE neighbours of TRIAL using only ALIVE vertices in the computation;
11 UNTIL all vertices are ALIVE;

Alg. 5: Fast Marching algorithm for triangulated surfaces in pseudocode.

3.7.1 Implementation of the generic algorithm for triangulated

surfaces

I start with the discussion of my implementation of Fast Marching for triangulated surfaces

(reproduced in Algorithm 5). This module replaces the Cartesian Fast Marching module

used in the case of FastFPS of planar domains. This is followed by the discussion of the

template instantiation for triangular meshes.

The key differences of Fast Marching for triangulated surfaces from Cartesian Fast March-

ing include the need for both a mesh as opposed to a structured grid data structure in

the grid module and a mesh-based arrival time update procedure as well as an approach

towards dealing with obtuse triangles. The other processing steps of Algorithm 5 are

analogous to the Cartesian case and are therefore not discussed any further.

I use the half-edge data structure of CGAL-2.4 [27], described in detail in Kettner [82], as

mesh data structure for the representation of the triangulated surfaces. For each vertex,

I store its incident half-edge and this half-edge only, i.e. to improve memory efficiency,

no face information is stored since it is of no further use in the context of triangulated

Fast Marching. Each vertex further holds its indices in a min- and a max-heap used for

Fast Marching support and farthest point sample candidate retrieval respectively. This

completes the unstructured grid module implementation.

The implementation of the gradient approximation underlying triangulated Fast Marching

79

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Figure 3.12: Terms used in update scheme of Fast Marching for triangulated surfaces.

needs to distinguish between the following cases during the initialisation (line 3) and

updating phases (line 10). If both T (A) and T (B) are FAR, it is clear that the arrival

time of vertex C will not be updated from �ABC and the next triangle sharing vertex C

can be considered. In case T (A) is ALIVE and T (B) is FAR, T (C) gets updated along edge

AC , with length b, only (Figure 3.12), i.e. T (C) = min{T (C), T (A) + bF (C)}. Similarly,

if T (A) is FAR and T (B) is ALIVE, T (C) follows as T (C) = min{T (C), T (B) + aF (C)}.
If both T (A) and T (B) are ALIVE, the quadratic equation (2.4) needs to be solved

for its largest root. If its discriminant is non-negative and the solution for t in (2.4)

satisfies the condition t > u, where u = T (B) − T (A),7 t represents a valid solution

and the new estimate of T (C) is found as T (C) = T (A) + t; otherwise, or in case the

condition of T (C) being updated from within �ABC, i.e. monotonicity condition (2.5),

is violated, the new T (C) estimate follows as the minimum update in the edge directions,

i.e. T (C) = min{T (C), T (A)+bF (C), T (B)+aF (C)}. This procedure is repeated for each

triangle sharing C. The smallest of these estimates is then chosen as the new estimate

for T (C).

The above procedure already indicates the approach towards dealing with non-acute tri-

angulations. In the case of triangulations featuring obtuse triangles, even if condition

(2.5) is met, monotonicity may not hold, i.e. the gradient of the solution may not point

into the triangle from which the solution was computed. This is not the case when dealing

with acute triangulations. However, rather than adding a non-trivial pre-processing step

in the form of recursive triangle unfolding to identify a second “virtual” vertex to modify

an obtuse into two acute triangles, I follow Adi and Kimmel [2] and compute the arrival

time estimate as the minimum of the one known and the one estimated arrival time in the

grid directions, i.e. T (C) = min{T (C), T (A) + bF (C), T (B) + aF (C)}. Computing T (C)

on the basis of this partial information affects the accuracy of the gradient approxima-

7Without loss of generality, it is assumed that T (B) > T (A).

80

3.7. FASTFPS OF TRIANGULATED SURFACES

tion [146]. However, the application examples of Section 3.7.3 indicate that this represents

a satisfactory solution for the test cases used, most of which feature largely well-behaved

triangulations. For triangulations with strongly obtuse triangles, an alternative method

needs to be used, see, e.g. Sethian and Vladimirksy [146].

Arrangement of the edge-adjacent neighbours of an ALIVE vertex in a narrow band and

the optimal sorting of their arrival time estimates in a min-heap yields again a Fast

Marching module of O(N log N) complexity, with N denoting the number of triangle

vertices [84]. This module is used to implement FastFPS of triangulated surfaces as

described in the following.

With the Fast Marching and grid modules in place, the remaining implementation is anal-

ogous to the planar domain case. That is, processing starts with the selection of the first

sample vertex, s1, at random; s2 and s3 follow as the vertices farthest away after compu-

tation of TM(s1) and TM(s2) respectively using the Fast Marching module. Simultaneous

propagation of circular fronts from s1, s2, s3 outwards then yields the discretised bounded

VD(S) and therefore the first set of farthest point candidates in the form of the vertices

of VD(S). These vertices are stored in a priority queue.

This priority queue is again implemented in the form of a max-heap with its elements

sorted in descending order by their arrival times. Thus, the next farthest point candidate

is located at the root. Re-heapification is implemented with the help of the method’s

friendly access to the grid module. This way the max-heap index stored at a triangle

vertex can be updated with its new value in constant time following root extraction,

vertex removal, or vertex insertion. Thus, the heap module remains unchanged.

Partial weighted intrinsic distance mapping is performed by propagating a front locally

from sn+1 outwards until loci of equal arrival time values are encountered. This yields

bounded R(sn+1, S
′) and thus VD(S ′). Voronoi vertices which have become obsolete due

to the expansion of R(sn+1, S
′) into their regions are deleted from the max-heap using

their max-heap indices stored at the relevant triangle vertices. The Voronoi vertices of

R(sn+1, S
′) are added to the max-heap.

The refinement condition ρ is enforced by controlling for the arrival time of the max-heap

root being greater than or equal to ρ.

Hence, apart from the use of an unstructured grid and a different Fast Marching module,

the implementations of FastFPS of planar domains and FastFPS of triangulated surfaces

coincide. The algorithm’s computational complexity is discussed next.

81

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

3.7.2 Computational complexity

Compared with the instantiation of template Algorithm 4 for the planar domain case

(Section 3.6.1), only the Fast Marching module and the underlying grid data structure

have to be replaced. The traversal of the half-edge data structure does not add signif-

icantly to the computational complexity. The new Fast Marching module retains the

running time of O(N log N), N representing the number of triangle vertices. The re-

maining implementation modules are either unchanged (heap module) or are of similar

computational complexity to the planar domain case (weight function module). Thus, the

overall computational complexity of FastFPS for triangulated surfaces is O(N2 log N).

I give a number of typical application examples for FastFPS of triangulated surfaces in

the following section.

3.7.3 Experimental results

In the following, I highlight a number of applications for FastFPS of triangulated surfaces

including, in particular, uniform and non-uniform mesh simplification and continuous

level-of-detail generation. The presentation starts with a brief qualitative look at the

sample distributions produced by this particular instantiation of Algorithm 4.8

To indicate the nature of the sample distributions generated by uniform FastFPS of

triangulated surfaces, the Venus model is sampled for different refinement thresholds. The

refinement thresholds are set as a percentage of the model’s bounding volume diagonal.

The resulting geometry is shown without any mesh connectivity in Figure 3.13. It can be

seen that the sample vertices are distributed irregularly uniformly without any clustering

or large holes. As in the planar domain case, this is the result of the algorithm’s guaranteed

deterministic min-max intersample distances and its random initialisation.

The corresponding sample sets are shown with their mesh connectivity in Figure 3.14.

These results represent examples for the use of FastFPS of triangulated surfaces for the

intrinsic (uniform) subsampling, i.e. the intrinsic simplification, of a triangular mesh sub-

ject to minimum density conditions.

To intrinsically subsample a triangular mesh feature-sensitively, adaptive FastFPS of tri-

angulated surfaces is used with a weight function computed on-the-fly. The function

captures the mean surface curvature. Alternatively, the sampling could be driven by

8All computations were performed on a Pentium 4 2.8 GHz, 512MB machine running under Windows
XP.

82

3.7. FASTFPS OF TRIANGULATED SURFACES

Figure 3.13: Uniform FastFPS of the Venus model (134345 vertices). The model is intrinsically
simplified subject to refinement conditions of 6.0% (a), 4.0% (b) and 1.0% (c) of
the model’s bounding volume diagonal. The sample sets are of size 2980 (a), 4842
(b) and 19866 (c) and are shown without mesh connectivity to indicate the cluster-
and hole-free quality of the sample sets.

Figure 3.14: Uniform FastFPS of the Venus model. The sample sets of Figure 3.13 are shown
with their mesh connectivity. These results represent examples for the use of the
algorithm for intrinsic mesh simplification.

Figure 3.15: Adaptive FastFPS of the Venus model driven by mean curvature estimation. The
sample distributions of the 20.0% (26870 vertices) (a) and 30.0% (40300) (c) in-
trinsically simplified models follow the surface’s mean curvature plot (b). As a
result, features are covered by samples much more strongly than in the uniform
case (Figure 3.14). In (b), regions of strong curvature are illustrated in red, blue
indicates low curvature.

83

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Figure 3.16: Uniform FastFPS of the Michelangelo David model (1 million vertices). The coarse-
to-fine, progressive nature of FastFPS is exploited for the continuous generation of
level-of-details. The individual level-of-details shown here consist of 700 (a), 2500
(b), 5000 (c), 10000 (d) and 20000 (e) vertices respectively.

changes in other surface features such as texture intensities or the combination of dif-

ferent feature or view-dependency measures. A surface’s mean curvature is measured

here by computing the divergence between normals estimated at both the vertex under

consideration and its edge-adjacent vertices. Since the faces of the triangular mesh are

planar, each face has a well-defined normal vector. The normal vector nqi
at a vertex qi is

estimated as the normalised weighted sum of the normals of the faces incident to qi. The

weights are chosen proportionally to the surface areas of the faces, i.e.

nqi
=

∑
fj∈Fqi

‖fj‖nfj

‖∑fj∈Fqi
‖fj‖nfj

‖ ,

where Fqi
represents the set of faces fj of the triangles sharing vertex qi; ‖fj‖ denotes the

area of face fj and nfj
represents its (unit) normal vector [154]. The mean curvature is

then approximated by estimating the change between the estimated normal at the vertex

under consideration and the estimated normals at its edge-adjacent neighbours. This

estimate is computed with the help of Wild Magic 2.4 [170]. The relevant library method

computes the derivative matrix of the estimated local normal vector field and takes the

trace of the matrix as the mean curvature estimate. The results produced by adaptive

FastFPS of the Venus model using this mean curvature-based weight function are given in

Figure 3.15. Figure 3.15 also shows the mean curvature plot of the non-simplified model

generated using RapidForm 2004 [132]. Relative to the uniform sampling shown in Figure

84

3.8. SUMMARY AND DISCUSSION

3.14 in particular, the FastFPS samples are more strongly concentrated in regions of strong

(mean) curvature. Adaptive sampling may again also be driven using an importance map,

for example, in the form of a texture image.

Finally, uniform FastFPS suggests itself for the continuous generation of level-of-details

of a model. The generation of level-of-detail representations is of interest in the context

of applications such as progressive model transmission across limited bandwidth chan-

nels or selectively-refined rendering [71]. Figure 3.16 presents various level-of-details of

the Michelangelo David model generated by uniform FastFPS of triangulated surfaces

for different sample budgets. Uniform FastFPS suggests itself for this purpose due to its

progressive, coarse-to-fine nature: Once a subsampled base model consisting of a given

minimum number of vertices has been computed, the level-of-detail sequence can be gen-

erated continuously by continuously and losslessly selecting new farthest point samples

until the full resolution model is obtained.

This completes the presentation of application examples for FastFPS of triangulated sur-

faces. The following section summarises and discusses the results of this chapter.

3.8 Summary and discussion

In this chapter, the (Euclidean) farthest point sampling algorithm introduced by Eldar et

al. [47] was generalised to an algorithm template for the intrinsic uniform and adaptive

sampling of all geometry representations for which the notion of geodesic Voronoi diagram

is well-defined. That is, unlike other farthest point sampling algorithms [21, 29, 47, 127,

128, 148], it is applicable to both planar domains and triangulated surfaces as well as

surfaces in point cloud and implicit form and thus supports the most widely-used forms

of geometry representation. The algorithm operates intrinsically and thus geometry-

sensitively throughout. The generated sample patterns observe deterministic min-max

bounds guaranteeing favourable domain coverage and the support of meaningful further

processing. Unlike the algorithm of Eldar et al. [47], my intrinsic farthest point sampling

principle extends naturally and flexibly to the adaptive sampling case. The user thus

can control both the density of the sampling and its uniformity. The algorithm design

is modular. Depending on the target surface representation, a different Fast Marching

module and grid representation needs to be plugged in but the algorithmic structure of

the template remains unchanged. By keeping the weight function module separate from

the other modules of the implementation, the algorithm can be adjusted to arbitrary

sensitivity criteria by simply replacing this module. Thus, we have a toolbox for the

85

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

custom-tailored intrinsic sampling of planar domains and manifold surface representations.

The main contributions of this approach may be summarised as follows

• Generality - The algorithm template applies to images and geometry in the most

widely-used forms of representation.

• Modular design - Template instantiation for different surface representations only

requires the replacement of the Fast Marching and the grid representation modules.

• Sampling density guarantee - The algorithm guarantees intersample geodesic dis-

tances bounded deterministically in a min-max sense.

• Flexibility - The algorithm extends the farthest point sampling principle naturally

to the adaptive case allowing for pre-computed or on-the-fly weight functions of

arbitrary properties.

It should be noted, however, that the sampling density guarantee assumes the compu-

tation of continuous geodesic Voronoi diagrams. Since my implementations discretise

the geodesic Voronoi diagram computation, the sampling density guarantee is affected

by discretisation error in practice. The experimental results do not suggest this to be

significantly detrimental to the quality of the sample distributions.

The algorithm template was instantiated for the case of planar domains with the help of

2D Cartesian Fast Marching. The main strengths of the resulting FastFPS technique for

planar domains follow the strengths of the algorithm template and consist of

• Flexibility - Subject to a positive propagation speed throughout, FastFPS of planar

domains may be driven by pre-computed or on-the-fly weight functions of arbitrary

properties.

• Efficiency - FastFPS of planar domains performs significantly better in practice than

suggested by its O(N2 log N) theoretical computational complexity.

• Blue noise - FastFPS of planar domains generates sample distributions featuring

blue noise power spectra.

Overall, the favourable properties of the original uniform farthest point image sampling

algorithm [47] have been retained. In addition, however, FastFPS of planar domains shows

favourable execution efficiency in practice and allows for more flexible adaptive sampling.

86

3.8. SUMMARY AND DISCUSSION

The use of weighted intrinsic distance mapping implies that FastFPS visits all pixels of

an image, possibly multiple times. This is in contrast to typical image sampling algo-

rithms such as Eldar et al. [47] which analyse the image at existing sample sites only to

support image acquisition/compression and/or to improve execution efficiency. By con-

trast, FastFPS of planar domains assumes that the image is accessible in its entirety. The

experimental results have shown that FastFPS performs competitively nevertheless, for

example, outperforming my implementation of the algorithm of Eldar et al. [47] (Table

3.2).

The algorithm template was instantiated for the triangulated surface case using my im-

plementation of Fast Marching for triangulated surfaces. Apart from this Fast Marching

module and the unstructured grid data structure, the modules of FastFPS of planar do-

mains can be re-used. The strengths of the resulting FastFPS algorithm are similar to

the planar domain case and consist of efficiency, favourable sample distributions of guar-

anteed density and flexible adaptive surface sampling. For example, apart from geometric

measures such as local curvature or triangle shape, similarity of colour associated with

vertices or triangles may be considered. In addition, due to its intrinsic nature, the al-

gorithm operates inherently sensitively to the geometry of the triangular mesh. I briefly

indicated typical applications of FastFPS of triangulated surfaces in the form of intrinsic

uniform and adaptive mesh simplification and continuous level-of-detail generation.

The lack of a guaranteed approximation error between the original and the simplified

model represents the main weakness of the use of the algorithm for a purpose such as

mesh simplification. However, compared with iterative fine-to-coarse simplification al-

gorithms [31, 58], FastFPS of triangulated surfaces does not require the re-evaluation of

the simplification criterion in the neighbourhood of the last simplification operation every

time a simplification step has been performed. The computationally most demanding pro-

cessing step of iterative fine-to-coarse simplification algorithms is thus avoided [58]. Note

in this context that most existing mesh simplification algorithms do not provide mean-

ingful guarantees on the quality of the generated approximation of the original mesh.

Those methods which do give such guarantees tend to be inefficient and do not necessar-

ily produce better results [31]. Nevertheless, guaranteed approximation error thresholds

are frequently required in application contexts such as medical imaging or finite element

methods.

Since this thesis is primarily concerned with the processing of surfaces in point cloud

form, a more detailed comparative analysis of the strengths and weaknesses of FastFPS

of triangulated surfaces for certain applications is beyond its scope.

87

CHAPTER 3. INTRINSIC POINT SAMPLING OF SURFACES

Peyré and Cohen [127] developed a sampling algorithm for triangular meshes conceptually

similar to FastFPS of triangulated surfaces. The authors, however, fail to take advantage

of the relationship between incremental geodesic Voronoi diagram construction and the

generation of an intrinsic farthest point sequence. As a result, rather than maintaining

a priority queue of Voronoi vertices, i.e. farthest point candidates, for fast sample point

retrieval, Peyré and Cohen [127] opt for the less efficient alternative of searching for the

mesh vertex with the largest distance map value each time a new farthest point sample

is required.

In the following chapter, I turn to the use of my intrinsic farthest point sampling concept

in the context of point-sampled geometry processing.

88

Chapter 4

Intrinsic meshless surface

simplification

Modern 3D data acquisition devices produce surface representations in the form of point

sets of substantial density due to submillimeter measurement precision. Surface re-

construction algorithms [8–10, 15, 18, 19, 38, 45, 72] either fail to cope with the inherent

redundancy of these point sets or produce highly dense surface meshes. To facilitate

meaningful further mesh-based processing, these meshes require mesh simplification algo-

rithms [58] (and references therein) which are frequently as time and memory demanding

as the preceding surface reconstruction step. By meshlessly simplifying the point set

surface representation first and, if required, generating the surface mesh from the sim-

plified point set, the surface reconstruction problem is accelerated significantly and the

mesh simplification step is avoided altogether. Alternatively, surface reconstruction and

thus mesh-based processing and its inherent maintenance overhead may be completely

replaced by more efficient point-based modelling [5, 97, 125, 126, 178] and visualisation

algorithms [22, 59, 76, 78, 95, 129, 139, 179, 180] at little or no loss in quality. In either

case, the meshless simplification of the input point set represents a vital first processing

step. Due to the prevalence of the approach, surface simplification is often understood

to be a fine-to-coarse surface sampling process. Note, however, that the problem can be

approached in either direction by sampling the surface representation from coarse to fine,

which is the approach adopted here.

The problem addressed in this chapter may be stated formally as follows: Given a surface

representation in the form of the set of points P , ‖P‖ = N1, simplify P to a point set

P ′ of target output size N2 < N1 subject to user-controlled refinement condition ρ > 0.

The input point set does not have to be uniformly distributed. In the following, I propose

89

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

to address this problem intrinsically with the help of FastFPS for surfaces in point cloud

form.

More specifically, the aim is to develop a dedicated point cloud simplification algorithm

allowing for simple density control whilst satisfying a set of important requirements. These

are a point set density guarantee to allow for meaningful further processing, memory and

execution efficiency, and support for both uniform and user-designated feature-sensitive

simplification. The algorithm should not be restricted to the generation of subsets of

the input point cloud but support its resampling as well. Meeting this requirement would

help to satisfy the final requirement of being able to deal meaningfully with non-uniformly

distributed input point sets and illegitimate holes in the form of undersampled regions.

Section 4.1 reviews relevant related work. My intrinsic point cloud subsampling and

resampling techniques are presented in Section 4.2 and Section 4.3 respectively. Section

4.4 provides application examples and experimental results for a number of massive data

sets. Details of my Moving Least Squares (MLS) and enhanced k nearest neighbourhood

implementations are given in Section 4.5. Section 4.6 summarises and discusses the results.

This chapter is based on Moenning and Dodgson [112,113].

4.1 Related Work

The following review focuses on dedicated point cloud simplification algorithms, with an

eye to how they perform against the set of requirements listed in the previous section.

Dey et al. [41] were among the first to present a dedicated point cloud simplification

algorithm which exploits the particular structure of 3D Euclidean Voronoi regions of a

densely distributed input point set both to detect oversampled regions and to determine

candidate points for removal. Subsequent point decimation observes a user-controlled

density condition. Due to the use of the medial axis-related local feature size concept [8]

(Appendix B), their method is inherently sensitive to changes in local curvature. The

algorithm does not support adaptive decimation driven by changes in any measure other

than or in addition to local curvature. It is restricted to the generation of a subset of the

input point set and cannot handle non-uniformly distributed point clouds or point sets

featuring illegitimate holes. It requires the computation and maintenance of 3D Euclidean

Voronoi diagrams and therefore tends to be computationally and memory demanding.

Linsen’s [97] simplification method for point sets associates each input point with an

information content measure and iteratively deletes points with lowest entropy. The in-

90

4.1. RELATED WORK

formation content measure represents a weighted sum of local curvature, non-uniformity

and colour variation computed in the candidate point’s k nearest neighbourhood enhanced

by a maximum angle criterion, i.e. an enhanced k nearest neighbourhood (Section 2.4.2).

The simplification algorithm is simple and effective but does not give any density guar-

antee and is limited to the generation of point cloud subsets. Input point clouds may

therefore be simplified to prohibitively unevenly distributed point sets and non-uniformly

distributed input point sets will typically result in non-uniformly distributed output point

sets. The resampling of the input point cloud, which may be necessary in either case to

support any effective further processing, is not addressed in the paper.

The point decimation scheme of Alexa et al. [4] judges each input point’s importance

by its distance from its projection onto the MLS surface (Section 4.3.1) computed from

all input points other than the point under consideration. Those points exhibiting the

smallest distance are considered redundant and are removed iteratively. Flexible feature-

sensitive simplification is not supported. Similar to the techniques discussed above, this

method produces a subset of the input point cloud and may require resampling to avoid

any excessive non-uniformity in the simplified point set. Such a resampling method is not

provided in the paper.

Pauly and Gross [123] present a resampling technique as part of their spectral processing

pipeline for point-sampled geometry. Their algorithm tessellates the point cloud into a

set of overlapping surface patches which are resampled on a regular grid. The discrete

Fourier transform of this regular sampling yields the spectral representation of the surface

patch. The patch can then be resampled with the availability of the Fourier representation

allowing for the determination of the optimal sampling rate for the signal previously

filtered according to a maximum approximation error. The simplification method itself

is efficient and inherently sensitive to local curvature. The sampling pattern, however,

varies with the chosen patch layout. Also, the (non-trivial) stitching back together of

the resampled patches requires a blending function for the sampling density across patch

boundaries. Although the algorithm features effective local error control, it is unclear how

the global error is affected by the blending of sample densities across patch boundaries.

It seems difficult to control the target output size through the spectral error bounds.

For truly massive data sets, i.e. point clouds substantially larger than the largest point

set of 4128614 points considered in the paper, the patch generation, regular resampling,

discrete Fourier transform and spectral analysis pre-processing steps are prohibitively

expensive and, consequently, out-of-core processing is left as future work. Also, non-

uniform resampling by criteria other than local curvature is not supported.

Pauly et al. [124] adapt various widely-used mesh simplification techniques to the mesh-

91

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

less surface simplification scenario. Their iterative simplification method is reported to

produce the best results in terms of average geometric accuracy but does not allow for

simple control of point set density and requires expensive pre-computations. Particle sim-

ulation is found to represent the next-best method in terms of approximation accuracy

and the best choice in terms of point set density control but is generally computationally

demanding. Uniform incremental clustering is computationally efficient but is reported to

produce the highest approximation error and is not naturally extensible to simplification

sensitive to measures other than changes in local curvature. Similarly, hierarchical clus-

tering is memory and execution efficient but even in its adaptive version yields point sets

of approximation error only slightly lower than that introduced by the method performing

poorest on this criterion, uniform incremental clustering. The methods support surface

resampling but do not come with any sampling density guarantee.

In summary, while all of the simplification algorithms discussed above meet a subset of the

requirements listed in the previous section, none satisfies them all. My approach towards

meeting these requirements is presented next.

4.2 Intrinsic point cloud subsampling

The instantiation of algorithm template Algorithm 4 for surfaces in point cloud form

yields an intrinsic meshless subsampling technique for surfaces represented by uniformly

dense point clouds. The details of this instantiation are discussed in the following.

My implementation of Fast Marching for surfaces in point cloud form is discussed in

Section 2.5.2. This implementation is used here as the model for the algorithm tem-

plate’s Fast Marching module. The model for the (structured) grid module is given by

the grid mapping described in Section 2.5.1. This lookup table is computed in a one-off

pre-processing step. The grid vertices which make up Ωr
P , and those grid points only, for

a fixed r and a given grid resolution are retained. All other vertices are discarded from

the table to improve memory efficiency. The heap module implementation coincides with

that used for Cartesian Fast Marching (Section 2.5.1). The actual subsampling process

resembles the sampling algorithm for planar domains and triangulated surfaces discussed

in the previous chapter and can be summarised as follows.

1. Initialisation: The algorithm starts by reading in the (pre-computed) offset grid and

the embedded point cloud P and from it selects an initial sample point, s1, at random.

The grid vertices enclosing s1 are initialised with their analytic distance from s1. A sec-

92

4.2. INTRINSIC POINT CLOUD SUBSAMPLING

ond, s2, and third, s3, starting sample are generated by repeatedly selecting the point

farthest away in the weighted intrinsic distance maps of s1 and s1, s2 respectively. Once

‖S‖ ≥ 3, the algorithm constructs the initial discrete bounded geodesic Voronoi diagram,

VD(S), by simultaneously propagating fronts from the initial sample points outwards.

The Voronoi vertices’ arrival times are inserted into the max-heap data structure.

2. Sampling: The algorithm proceeds by extracting the root from the max-heap. This

yields the next farthest point sample in the form of the input point closest to the root’s

grid location. This sample is inserted into VD(S) by resetting its arrival time to zero

and propagating a front away from it using partial weighted intrinsic distance mapping.

This way, the front will continue propagating until it hits (grid) vertices featuring equal

or lower arrival times and thus belonging to neighbouring Voronoi regions. The arrival

times of updated grid vertices are updated correspondingly in the min-heap using back

pointers. New and obsolete Voronoi vertices are inserted or removed from the max-heap

respectively. The algorithm continues extracting the root from the max-heap until the

sample point budget has been exhausted or the refinement condition has been met. This

intrinsic point cloud subsampling technique is made adaptive by allowing the propagation

speed F to vary with any (positive) point weights either computed on-the-fly or imported

into the weight function module in the form of pre-computed importance maps.

The refinement condition is formulated in the form of the user-controlled density condition

ρ > 0 of Section 3.3. That is, the simplified point set is refined until the next sampling

candidate is closer in geodesic distance to the set of existing samples than ρ. The condition

ρ > 0 ensures that the algorithm terminates. In particular, if ρ is positive but small, the

process terminates when all the input points have been sampled. Alternatively, instead

of setting a refinement threshold, the user may set the sample budget N2.

The Fast Marching and heap module implementations retain a computational complexity

of O(N log N) and O(log N) respectively, N denoting the number of grid vertices in Ωr
P .

Also note that the subsampling process coincides with that of FastFPS of planar domains.

As a result, the algorithm’s computational complexity is O(N2 log N). The run-time

observed in practice is again considerably more favourable as documented in Section 4.4

below. The algorithm’s memory requirements benefit from the consideration and storage

of grid vertices located in the offset band only. The actual requirements correspondingly

vary proportionally with the size of the offset band.

This completes the discussion of the intrinsic point cloud subsampling algorithm which

follows from the instantiation of Algorithm 4 for the point cloud case. As a result, we have

93

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

a coarse-to-fine, progressive algorithm for the intrinsic uniform and adaptive subsampling

of points clouds with sampling density guarantee.

Point-sampled geometry can feature non-uniform point distributions and illegitimate

holes. This is often the result of shortcomings of the data acquisition process such as

inadequate lighting conditions, specular reflectance properties or occlusions in concave

surface areas when using optical data acquisition techniques such as laser range scan-

ning [141]. In these cases, subsampling unduly restricts the possible positions of sample

points which can result in non-uniform sample distributions. It is therefore desirable to

have a resampling method available which can be used to generate a more uniform sample

distribution at the presence of local point distribution non-uniformities. Such a method

is presented in the following section.

4.3 Intrinsic point cloud resampling

When dropping the assumption of uniformly distributed input point sets, pure subsam-

pling is likely to produce output point sets unsuitable for meaningful further processing.

This is due to the fact that the subsampling of non-uniformly distributed input point sets

will typically result in non-uniformly distributed output point sets. The distribution non-

uniformities of these point sets undermine operations such as surface editing or rendering.

Thus, in the case of non-uniformly distributed input point sets, a resampling algorithm is

needed which requires that a number of issues are addressed. Firstly, the resampling of a

point cloud surface representation requires local surface approximation. Since this thesis

is predominantly concerned with meshless surface processing, this is performed meshlessly

using Alexa et al. [4] MLS method, summarised in Section 4.3.1. Apart from this addi-

tional MLS operation, steps (1) and (2) of the simplification algorithm remain unchanged.

Secondly, the radii of the offset balls, B(pi, ri), pi ∈ P , can no longer be constant but need

to be adjusted to account for local density variations and undersampled regions. This is

discussed in Section 4.3.2. Finally, as already noted in Section 2.4.2, conventional point

neighbourhoods are of limited usefulness in the presence of non-uniformities of the point

distribution. For the determination of localised regression weights and non-constant offset

ball radii, the enhanced k nearest neighbourhood concept (Section 2.4.2) is therefore used

as also discussed in Section 4.3.2.

94

4.3. INTRINSIC POINT CLOUD RESAMPLING

4.3.1 Moving Least Squares

For the resampling purposes considered here, a surface approximation technique for point-

sampled geometry is required that ideally operates locally, efficiently, meshlessly and

robustly in the presence of local non-uniformities of the point distribution. In the following

section, I summarise Alexa et al. [4, 5] use of Levin’s [92] extension of MLS function

approximation to the approximation of (m − 1)-manifold surfaces in R
m, m ≥ 3, for

the design of a meshless surface approximation method for point clouds. The weighted

least squares nature of this method accounts for its robustness when dealing with noisy

input data [5]. In its localised, adaptive form, presented further below, it yields smooth

surface approximations efficiently and robustly at the presence of local point distribution

non-uniformities [124].

Moving Least Squares surface approximation

MLS surface approximation is based on a projection procedure. For a point near the

surface, a support (tangent) plane to M near the point is computed first. The point is

then projected onto a local polynomial approximation of M defined across the support

plane. The original MLS procedure as introduced by Alexa et al. [4] for the approximation

of a two-manifold surface in R
3 represented by a point cloud P achieves this with the help

of two weighted least squares computations. The first of these fits a local support plane

H for pi ∈ P in the form of a weighted least squares best fitting plane by minimising the

weighted distances of the input points from pi, i.e.

min nT Un, (4.1)

with normal n ∈ R
3, ‖n‖ = 1, and U = {uvw} ∈ R

3x3 representing the weighted covariance

matrix

uvw =

‖P‖∑
j=1

θj(pjv − piv)(pjw − piw), (4.2)

with

θj = e−d(pi,pj)
2/δ2

, (4.3)

where δ represents a global scale parameter. The value of δ will usually reflect any prior

knowledge of the global sampling density such as the sampling resolution of the device used

to acquire the point geometry; θj does not have to be a Gaussian but can be any function

monotonically decreasing with distance. The normal n corresponding to H is determined

95

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

Figure 4.1: Eigenanalysis of the covariance matrix of the (blue) neighbours of a (red) point
yields eigenvectors e0, e1 and e2 defining an orthogonal frame centred at the (green)
neighbourhood centroid and spanning a covariance ellipsoid. Under certain condi-
tions, e0 may be taken as normal estimate n defining this local (least squares best
fitting) support plane. This view is in tangent direction.

using principal component analysis: Eigenanalysis of U yields its principal components in

the form of orthogonal eigenvectors e0, e1, e2 and corresponding real eigenvalues λ0, λ1, λ2

spanning a covariance ellipsoid [72,124]. Provided that λ0, λ1, λ2 are sufficiently dissimilar

and λ0 ≤ λ1 ≤ λ2, λ0 describes the points’ covariance along the local normal and e0 may

be chosen as local normal estimate [64] (Figure 4.1).1 Subsequently, this estimate can be

used to move H iteratively closer to the underlying surface. Alternatively, if the input

point set is known to be relatively close to the underlying surface, the modification of H’s

position is not required [5].

Since the local support plane is therefore often close but not tangent to the underlying sur-

face, the estimated normal generally does not coincide with the true surface normal. This

does not represent a problem for the resampling purpose considered here since the normal

estimate is used for the determination of the support plane and subsequent projection

of sample points onto the MLS surface approximation. It is, however, discussed in more

detail in the context of intrinsic meshless surface subdivision (Section 5.4.3) where the

normal estimate needs to be used for orthogonal projection onto the underlying surface.

As part of the second weighted least squares computation, a neighbourhood of pi is pro-

jected onto the support plane H. The neighbours’ local 2D coordinates (xi, yi) in an

orthonormal coordinate system on H and centred at the projection qi of pi are used to fit

1Section 4.5.1 discusses the case of ill-defined normal estimates due to the eigenvalue conditions being
violated.

96

4.3. INTRINSIC POINT CLOUD RESAMPLING

Figure 4.2: Moving Least Squares projection of a (red) point pi; pi is projected onto a bivariate
polynomial g(·, ·) locally fit across support plane H to (blue) input points pj weighted
by a Gaussian weight function scaled by global sampling density estimate δ. The
position of the projected point, i.e. ΥP (pi), is shown in green. This view is in tangent
direction.

a bivariate polynomial g(xi, yi) to the points in the neighbourhood. The weights used in

the regression reflect the distance of the neighbours to qi, i.e. θj = e−d(qi,pj)
2/δ2

. The MLS

projection of pi given P then follows as (Figure 4.2)

ΥP (pi) = qi + g(0, 0)n (4.4)

With the help of the projection operator ΥP (·), the MLS surface approximation is defined

implicitly as consisting of all points pi which project onto themselves. Given a smooth

weight function such as the Gaussian θj, Levin [93] conjectures the resulting MLS surface

approximation to be globally smooth.

Although the MLS projection operator was discussed for a (possibly noisy) point pi ∈ P ,

it applies equally well to any point x ∈ R
3 which can be assumed to be located near the

surface represented by P . In this case and given access to the neighbours of x in P , the

above computation of the MLS projection operator carries over analogously.

Section 4.5.1 provides details of my implementation of the MLS algorithm.

MLS surface approximation implicitly assumes the absence of any non-uniformities in the

distribution of P . This assumption expresses itself in the use of a global scale parameter δ.

In the case of distribution non-uniformities, however, the continuing use of a global feature

size δ will result in poorly fitting regressions. Note in this context that laser range scanning

artefacts in particular can result in point cloud surface representations featuring hundreds

of holes [65]. In these cases, a localised version of the MLS projection procedure which

allows for variations in point density and thus an adaptive scale parameter for resampling

and hole-filling purposes should therefore be used instead. Such a scale parameter is

presented in the following section.

97

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

Figure 4.3: Adaptive Moving Least Squares projection of a (red) point pi; pi is projected onto a
bivariate polynomial g(·, ·) locally fitted across support plane H to a (blue) neigh-
bourhood of (otherwise black) non-uniformly distributed input points pj ; the neigh-
bours are weighted by a quadratic B-spline centred at pi and having spherically
compact support of τi, the radius of the (red) sphere enclosing pi’s neighbourhood.
The position of the projected point, i.e. ΥP (pi), is shown in green. This view is in
tangent direction.

Localised weighting for adaptive MLS approximation

As typical for weighted least squares computations, in regions of locally small point den-

sity, a small value for the global scale parameter δ results in erroneous regressions due to

insufficient input data. Similarly, when selecting a large δ-value when performing MLS

computations in a region of high point density, geometric detail is smoothed out by the

Gaussian kernel θj. Thus, the MLS approximation should be localised by varying the

value of the scale parameter with a measure of local sampling density. This way high-

detail information is preserved in areas of high point density and numerical stability is

ensured in areas of low point density.

To allow for local changes in point density, following Ohtake et al. [119], the weight

function of a neighbour pj, θj, is determined by the following quadratic B-spline, B(t),

centred at the point pi to be projected,

θj = B

(
3d(pi, pj)

2τi

)
, (4.5)

98

4.3. INTRINSIC POINT CLOUD RESAMPLING

with τi = maxpj∈eNN pi
d(pi, pj) representing the radius of the sphere centred at pi and

enclosing its enhanced k nearest neighbourhood, eNN pi
(Figure 4.3); τi thus varies with

local point density and defines the spherically compact support of the B-spline. The

experimental results of Section 4.4 show this to be an useful choice of weight function in

the context of this application.

Non-uniformity of the point set distribution not only affects the weighted least squares

regressions of MLS but also requires an adaptively fitted offset band Ωri
P and raises the

question of the filling of illegitimate holes. My approach towards dealing with these issues

is discussed in the following section.

4.3.2 Determination of offset ball radii and hole-filling

Adaptive offset band computation has been discussed in the context of my implementa-

tion of Fast Marching for surfaces in point cloud form (Section 2.5.2). This process is

performed during the simplification algorithm’s one-off pre-processing step. It determines

local proximity information in the form of the enhanced k nearest neighbourhood of a

point p, eNN p, and then determines the Euclidean distance between p and its neighbour

q ∈ eNN p farthest away from p. Provided d(p, q) is larger than any radius currently

associated with p and q, d(p, q) is the new radius of both the offset balls centred at p and

q. The grid vertices enclosed by these balls are included in the offset band. This can be

considered as a (pessimistic) estimate of the local sampling density and is reminiscent of

methods for the determination of the extent of surface elements (“surfels”) for hole-free

surface splatting, see, e.g. Wu and Kobbelt [174].

This first approach does not pay any attention to the risk of connecting disjoint sheets of

the underlying surface. It may further bridge legitimate holes on manifolds with boundary.

To avoid these problems, a maximum permissible radius is requested from the user. If, due

to the size of a hole, the algorithm cannot determine an enhanced k nearest neighbourhood

for this global radius, p may represent a border point. Alternatively, an undersampled

region has been encountered which is too large to be bridged by eNN p subject to the

global radius maximum. The user is therefore asked to label p as a border point or to

indicate that an illegitimate hole has been encountered. In the latter case, the algorithm

increases the radius maximum locally until a valid enhanced k nearest neighbourhood has

been found.

Following this pre-processing step, the offset band stretches across undersampled regions.

When processing such regions, there do not exist any input points near samples located

99

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

Figure 4.4: The offset radii ri are adapted to changes in sample density. The ri-values follow
from the proximity information given by the point’s enhanced k nearest neighbour-
hood. Simple holes are filled by projecting sample sj from its (red) grid location in
the bridging offset band onto the approximated surface (blue curve) generated by
adaptive MLS (Figure 4.3). This view is in tangent direction.

in parts of the offset band which bridge illegitimate holes. These holes are filled by the

adaptive MLS-based point cloud resampling technique. During resampling, a bivariate

polynomial is fitted across the hole with the help of the surrounding input points in the

sample’s enhanced k nearest neighbourhood. The samples are then projected onto this

polynomial (Figures 4.3, 4.4).

The following section gives a number of application examples for the intrinsic meshless

sub- and resampling algorithms.

4.4 Experimental results

The intrinsic meshless simplification algorithms introduced in the previous sections are

applied to a number of massive data sets and results for both uniform and feature-sensitive

sub- and resampling are presented. The hole-filling capability of the resampling algorithm

is also illustrated and the algorithms’ inherent support of level-of-detail generation is

highlighted. The section concludes with an analysis of the a posteriori approximation

error introduced and a set of performance results.2

Figure 4.9 shows the distributions and surface reconstructions3 of the Michelangelo Day

and Michelangelo Dawn point sets both intrinsically uniformly subsampled to 1.0% of

their size. The simplified point sets are irregularly uniformly distributed. This results in

2All processing was performed on a 1.0GHz AMD machine with 1GB of memory running under MS
Windows 2000.

3This and all subsequent meshing of the sample points was performed with the help of PointsToPolys
[130].

100

4.4. EXPERIMENTAL RESULTS

a cluster- and hole-free covering so that high quality further processing such as surface

reconstruction and rendering is supported.

This favourable distribution property and the algorithm’s coarse-to-fine progressive nature

can be exploited for the generation of continuous level-of-details. This application is

illustrated in Figure 4.10 for the Michelangelo Youthful point set. Similar to the mesh-

based processing case (Section 3.7.3), this feature can be utilised for, amongst other things,

the progressive transmission of 3D content in point cloud form.

To give an application example for the intrinsic meshless non-uniform simplification of a

surface, I estimate local changes in mean curvature by the local surface variation measure

of Pauly et al. [124] to drive the curvature-sensitive subsampling of the Venus point set.

The surface variation measure is here based on the principal component analysis of the

covariance matrix (4.6) below of an enhanced k nearest neighbourhood of the point p under

consideration. As briefly discussed in Section 4.3.1, given that the eigenvalues λ0, λ1, λ2

of this matrix are sufficiently dissimilar and λ0 ≤ λ1 ≤ λ2, λ0 describes the deviation of

the neighbours from the eigenvector corresponding to λ0, i.e. from the estimated normal

vector at p. Pauly et al. [124] define surface variation as the ratio of this deviation to the

total deviation, i.e. as λ0/(λ0 + λ1 + λ2), where λ1 and λ2 describe the variation along

the other two eigenvectors of the covariance matrix, i.e. the variation in the local support

plane (Figure 4.1). Note in this context that since the eigenvalues vary with the size of the

point neighbourhood, this ratio does not represent a particularly robust approximation

of mean curvature. Nevertheless, as illustrated in Figure 4.11, by varying propagation

speeds with this curvature estimate, non-uniform subsampling more strongly concentrates

the samples in regions of strong curvature. Provided the speed remains strictly positive

throughout, non-uniform sampling may be driven by any other or the combination of

additional adaptivity measures. Excessive non-uniformity of the resulting point set can

be avoided in this context by enforcing a globally defined refinement condition ρ.

The non-uniform sampling may also be driven by a more direct geometric accuracy mea-

sure to improve the fidelity of the simplification. To illustrate this, Alexa et al. [5] MLS-

based redundancy measure is computed for each point of the Venus point cloud and then

imported as an importance map by the implementation of the weight function module.

More specifically, the importance of pi ∈ P is measured by computing ΥP\{pi}(pi), i.e.

the MLS projection of pi onto the MLS surface approximation computed from P \ {pi}.
The distance of pi from this projection determines the relevance of pi for the definition

of the shape represented by P . The larger this distance, the higher the relevance of pi.

Figure 4.12 presents the importance map computed this way for the Venus point set and

the resulting non-uniform subsamplings. Figure 4.13 gives the results of the analysis of

101

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

Figure 4.5: Optical acquisition of a Buddha sculpture using laser range scanning. The object
was rotated by 60 degrees after each range shot taken with a Minolta VIVID-900
laser scanner. The scanner’s precision of 0.02mm resulted in a representation of
the sculpture’s surface consisting of 152154 points. This representation was affected
by artefacts due to shortcomings inherent to optical acquisition and suboptimal
acquisition conditions.

the a posteriori approximation error introduced by the sampling using, for simplicity,

the Metro tool [32] for numerical and the MeshDev tool [137] for visual evaluation. To

be able to apply these mesh-based tools, the simplified point clouds were meshed using

PointsToPolys [130]. For comparative purposes, the results produced by Garland and

Heckbert’s [53] quadric error mesh simplification algorithm QSlim 2.0 are also shown.

The simplified meshes produced by QSlim contain slightly more vertices due to the diffi-

culty of controlling the vertex count in the simplified model. More importantly, since the

samplings produced by my subsampling algorithm are fitted to a smooth MLS approxi-

mation, they do not fit the piecewise linear nature of the original, non-simplified Venus

mesh referred to by the evaluation tools as well as the simplified mesh produced by QSlim.

The results produced by QSlim are, however, less superior than could be expected given

the different continuity classes of the underlying surface approximations.

To give an example for the hole-filling capability of the intrinsic resampling algorithm,

the surface of the Buddha sculpture of Figure 4.5 was optically acquired using a state-of-

the-art Minolta VIVID-900 laser range scanner. The various range scans of the sculpture

were obtained with the help of a simple rotary table turned by 60 degrees after each shot.

The top and bottom of the sculpture were scanned separately. As a result, a number

of surface concavities were missed by the laser. Together with the suboptimal lighting

102

4.5. IMPLEMENTATION DETAILS

Input size Output size Execution time (secs.)

Venus 134345 1343 3.37

Isis 187644 1876 7.04

Michelangelo Youthful 1728305 17283 22.50

Michelangelo Day 3158672 31587 40.64

Michelangelo David 6924951 69250 332.65

St. Matthew 11879867 118799 688.28

Lucy 14027872 140279 997.24

Table 4.1: Execution times for the 99% simplification of various input point clouds using uniform
intrinsic meshless surface subsampling.

conditions during the scanning process, a number of artefacts were thus generated in the

form of measurement outliers and undersampled regions. These artefacts are also typical

of more sophisticated acquisition procedures than the one employed here [141]. Whilst the

postprocessing software accompanying the VIVID-900 dealt successfully with a number

of the artefacts, the triangular mesh returned by the software nevertheless featured a

genus significantly larger than that of the original object. These illegitimate holes proved

simple enough to be filled using automatic adaptive offset band generation followed by

uniform resampling of the mesh vertices stripped of their connectivity. As a result and

as illustrated in Figure 4.14, following the uniform resampling of the acquired point set,

meaningful further processing such as surface reconstruction becomes possible.

Finally, as documented in Table 4.1 and Figure 4.6 respectively, the algorithm’s execution

time is only moderately affected by substantial increases in input or output point cloud

size. Apart from the case of the Lucy point set and due to the consideration of offset

band grid points only, only a fraction of the available memory was used by the algorithm

at any one point. This is in contrast to grid-based techniques such as that of Guy and

Medioni [66] which discretise a point set’s bounding volume at the expense of prohibitively

large memory demands for relatively small point sets by today’s standards.

4.5 Implementation details

Section 4.5.1 provides details on my implementation of MLS surface approximation. My

implementation of enhanced k nearest neighbourhood computation is discussed in Section

4.5.2.

103

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

Figure 4.6: Uniform simplification execution times as function of output (top) and input point
set size (bottom). For the former, the Isis point cloud was uniformly subsampled to
different output sizes ranging from 15k to 180k samples. The results are representa-
tive for the execution efficiency of uniform subsampling when dealing with any other
of the test point sets. For the latter, each input model was uniformly subsampled
to 1% of its size (Table 4.1).

4.5.1 Moving Least Squares

The MLS weighted least squares regressions of Section 4.3.1 have been implemented with

the help of the newmat11 matrix library [117]. My code first sets up the weighted co-

variance matrix U (4.2). Using the eigenanalysis function of newmat11, it then estimates

the (normalised) normal n of pi’s support plane H in the form of the eigenvector of U

corresponding to its smallest eigenvalue. The input point sets considered in the previous

104

4.5. IMPLEMENTATION DETAILS

Figure 4.7: In the case of a “normal” (red) surface point, the normal estimate for the (green)
surface obtained from principal component analysis is well-defined (left). When
trying to estimate the normal at a corner point, the covariance ellipsoid has no
preferred direction and no eigenvector can be selected as a normal estimate (right).
This figure is adapted from [64].

section were found to be close enough to the underlying surface that no further non-linear

optimisation of the position of H was required.

To set up the orthonormal coordinate system centred at the projection qi of pi, the vector

from the first neighbour’s projection onto H to qi is taken as the x-axis. The y-axis then

immediately follows as the cross product of the x-axis and the normal vector n. The

projected neighbours’ coordinates in this local coordinate system are used to fill up the

coefficient matrix of a bivariate cubic polynomial to be fitted by weighted least squares

to the neighbourhood across H. The corresponding normal equations are solved directly

with the help of newmat11’s matrix algebra operators. The MLS projection follows from

the value of this polynomial at the origin.

At corner points, the covariance ellipsoid defined by the eigenvectors and eigenvalues of

U (4.2) will feature no preferred direction which expresses itself in eigenvalues of similar

values [64]. In this case, none of the eigenvectors can be chosen as normal direction and

n is undefined (Figure 4.7). MLS surface approximation is, however, derived under a

smoothness assumption as regards the underlying surface [93]. If this assumption does

not hold, the MLS projection is ill-defined and a singularity in the surface approximation

results. If these singularities are deemed undesirable, the implementation offers an inter-

active mode which asks the user for the normal direction whenever principal component

analysis fails to yield a well-defined normal vector.

Along creases/edges, the covariance ellipsoid is stretched in the direction of the crease

and it is λ0 ≈ λ1 and λ0 + λ1 ≈ λ2 [64]. The average of the eigenvectors corresponding to

105

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

λ0 and λ1 may then be used as a rough normal estimate. This automatic choice can be

modified interactively.

4.5.2 Enhanced k nearest neighbourhood

The computation of an enhanced k nearest neighbourhood eNN pi
is performed by first

growing the conventional k nearest neighbourhood NN pi
until it is comprised of a preset

minimum number of neighbours k. My informal experimental results indicate a choice of

8 ≤ k ≤ 18 for the neighbourhood size to be well-suited for most cases. The local normal

vector is then estimated with the help of newmat11 [117] by first computing the positive

semi-definite weighted covariance matrix C = {cvw} ∈ R
3x3, of the points qj ∈ eNN pi

around their centroid ceNN pi
,

cvw =
k∑

j=1

θj(qjv − ceNN pi
)(qjw − ceNN pi

), (4.6)

with θj = B
(

3d(ceNNpi
,qj)

2τc

)
, where τc = maxqj∈eNN pi

d(ceNN pi
, qj) and ceNN pi

= 1/k
∑k

j=1 qj,

k = ‖eNN pi
‖. This definition of ceNN pi

needs to be modified when dealing with relatively

strongly non-uniformly distributed point sets. In this case, ceNN pi
may be defined as the

weighted centroid minimising a weighted sum of squares of Euclidean distances [24],

f(ceNN pi
) = 1/2

k∑
i=1

wid(ceNN pi
, qi)

2, (4.7)

where wi = θi/
∑k

j=1 θj. Differentiation of (4.7) then yields ceNN pi
=
∑k

i=1 wiqi (Section

5.2.2).

Similar to the MLS technique, provided the eigenvalues of C are both sufficiently dissimilar

and λ0 ≤ λ1 ≤ λ2 holds, the eigenvector e0 of smallest eigenvalue λ0 is taken as the

estimate of the local normal vector; otherwise, the estimate is unreliable and the growing

of eNN pi
resumes.

The normal vector estimate is subsequently used to project the qj into the local support

plane. The algorithm determines the coordinates of the qj in an orthonormal coordinate

system across the plane and centred at pi. These coordinates are transformed into polar

coordinates and it is then controlled for the difference in polar angle between successive

neighbours in counter-clockwise order around origin pi. If none of the angles between

successive neighbours is found to be larger than the threshold, a valid eNN pi
has been

106

4.5. IMPLEMENTATION DETAILS

Figure 4.8: The enhanced k nearest neighbourhood of a (red) point pi is computed by projecting
its conventional k nearest neighbours into a (grey) local support plane defined by
pi and its normal estimate. If the angle between successive neighbours exceeds a
maximum of γ (left), additional neighbours are considered until either a suitable
(green) neighbour has been found (right) or it has been established interactively
that pi represents a border point. This view is in normal direction.

found; otherwise, the algorithm continues growing the neighbourhood until neighbours

have been found which do not violate the angular threshold (Figure 4.8). If this does not

prove possible until the preset maximum of conventional k nearest neighbours has been

considered, pi may represent a border point. As in the case of adaptive offset band fitting,

this issue and the issue of ill-defined normal estimates are resolved interactively with the

help of the user.

This process is prone to the connection of disjoint surface sheets and the bridging of

legitimate holes. Note, however, that, apart from the computation of the offset band Ωri
P

itself, the enhanced k nearest neighbourhoods are computed inside Ωri
P , i.e. intrinsically

thereby yielding enhanced k nearest neighbourhoods in a geodesic sense. Thus, provided

Ωri
P has been fitted successfully, the above problems will generally be avoided during the

computation of enhanced k nearest neighbourhoods. This computation may, however,

still result in poorly defined neighbourhoods in cases of extreme geometry.

107

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

Density Guaranteed Flexible Sub- and Computat. Memory Progressive

guarantee approx. adaptive resampling efficient efficient

error simplif. support

Alexa et al. [4] No Yes No No No Yes No

Dey et al. [41] Yes Yes No No No No No

Linsen [97] No No Yes No Yes Yes No

Moenning and Dodgson [112] Yes No Yes No Yes Yes Yes

Pauly and Gross [123] Yes Yes No Yes No Yes No

Pauly et al. [124] -

Iterative simplification No Yes No Yes Moderately Yes No

Incremental clustering No No No No Yes Yes No

Hierarchical clustering No No No No Yes Yes No

Particle simulation No No Yes Yes No Moderately Yes

Intrinsic point cloud simplif. Yes No Yes Yes Yes Yes Yes

Table 4.2: Comparative evaluation of the intrinsic point cloud simplification algorithm presented
in this chapter (bottom row) and existing alternative methods.

4.6 Summary and discussion

In this chapter, I presented intrinsic meshless sub- and resampling algorithms for sur-

faces represented by point clouds. The algorithms support the uniform and adaptive

simplification of uniformly distributed point sets and point clouds featuring non-excessive

non-uniformity and/or illegitimate holes of simple complexity in the form of undersam-

pled regions. Adaptivity is supported in the form of any combination of (positive) point

weights either computed on-the-fly or imported in the form of pre-computed importance

maps. The algorithms’ coarse-to-fine progressive nature inherently supports the gen-

eration of continuous level-of-detail representations and progressive transmission of 3D

content. The sub- and resampling methods inherit the sampling distribution and guaran-

teed density properties of their parent template. They have been shown experimentally to

support the efficient simplification of large point clouds in-core. As summarised in Table

4.2, the technique put forward in this chapter represents the first simplification algorithm

combining simple control of guaranteed density with this set of features.

Although my hole-filling approach supports the processing of the type of moderately

non-uniformly distributed point cloud data frequently encountered in practice, it does

not allow for the processing of complex or sizeable holes since the adaptive offset band

may not enclose the whole of the surface in such cases. This is due to the fact that the

enhanced k nearest neighbourhood concept used in this context to obtain local proximity

information does not guarantee symmetric neighbour relations. That is, pi ∈ eNN pj
does

not imply pj ∈ eNN pi
, for pi �= pj. As a result, pi and pj are likely to be assigned different

108

4.6. SUMMARY AND DISCUSSION

offset ball radii which may leave holes in the enclosure of the underlying surface. The

corresponding grid vertices would be excluded from processing by the algorithms presented

in this chapter so that no hole-filling would be performed. In this case, the technique

presented here would benefit from a more sophisticated method for adaptive offset band

fitting such as the use of minimum spanning trees or local principal component analysis

as discussed in Mémoli and Sapiro [103,104]. However, for very complex or sizeable holes,

the dedicated hole-filling techniques presented by Sharf et al. [149] and Weyrich et al. [169]

are more suitable.

In the case of problems with respect to local normal estimation using principal component

analysis or the determination of enhanced k nearest neighbourhoods, the algorithms lack

automatism and rely on interactivity. For the majority of point sets processed here, this

approach did not prove to be a problem. It is, however, error-prone and may place a

relatively large burden on the user in the case of challenging geometry as experienced

here in the case of the Michelangelo Day and Dawn point sets.

A simplified point cloud should generally be as close to the original point cloud as possible.

In the case of scientific visualisation, for example, the preservation of appearance proper-

ties and a guaranteed a priori geometric approximation error are of foremost importance.

In the case of real-time applications, applications generating level-of-detail hierarchies,

point-based rendering and shape matching, performance, uniformity of the sampling dis-

tribution and a guaranteed, intuitively controllable sampling density respectively represent

the more relevant criteria. The intrinsic point cloud sampling algorithms presented in this

chapter are well-suited for these latter purposes. Mémoli and Sapiro [105,106], for exam-

ple, exploit its guaranteed sampling density property for the generation of representative

point cloud subsets in the context of point cloud-based manifold comparison.

Also note in this context that just as in the mesh simplification case, guaranteed approx-

imation error control tends to come at the expense of a significant performance hit. In

the case of Wu and Kobbelt’s [174] splat subsampling algorithm with a priori geometric

approximation error guarantee, for example, the most challenging application example,

the Charlemagne point set of 598386 points, is only a fraction of the size of the Lucy

point set (14027872 points) but the processing times of the two algorithms reported for

these different point sets are similar, 935 [174] and 997 seconds respectively.4

Although the algorithms presented here do not guarantee an a priori geometric approxi-

mation error, it has been shown that approximation quality measures can be incorporated

relatively easily in the form of an implementation model for the weight function module.

4The processing time of Wu and Kobbelt’s [174] splat subsampling algorithm is reported for a Pentium
4 2.8GHz machine with 2GB of memory compared with my AMD 1.0GHz machine with 1GB of memory.

109

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

This has specifically been illustrated using Alexa et al. [5] redundancy measure based on

MLS surface approximation. The resulting a posteriori approximation error has experi-

mentally been found to be favourable indicating that the methods presented can be used

for both efficient and accurate intrinsic meshless surface simplification.

110

4.6. SUMMARY AND DISCUSSION

Figure 4.9: Examples for the quality of the generated sample distributions: The Michelangelo
Day (top) and Dawn (bottom) data sets are uniformly subsampled to 1.0% of their
original size of 3158672 and 3432236 points respectively.

111

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

Figure 4.10: Level-of-details of the Michelangelo Youthful data set (1728305 points) produced
from point sets generated by progressive uniform resampling of the original point
cloud to 0.25%, 0.5%, 1.0% and 5.0% of its size (from left to right).

Figure 4.11: Adaptively subsampled Venus (134345 points) point sets driven by local surface
variation estimates [124]. The model’s mean curvature plot produced using Rapid-
Form 2004 [132] is shown in (a) (blue indicates low, green indicates low-medium,
yellow indicates high-medium and red indicates high curvature regions). The
point sets correspond to 90.0% (b), 95.0% (c) and 97.5% (d) simplification.

112

4.6. SUMMARY AND DISCUSSION

Figure 4.12: Adaptive subsampling of the Venus point cloud (134345 points) by a MLS-based
importance measure to 7.44% (top) and 22.33% (bottom) of its input size. Blue
indicates low and red indicates high importance in the two views of the importance
map shown at the top. The points in the importance map renderings are not
depth-buffered.

Figure 4.13: Visualisation using MeshDev [137] of the a posteriori approximation error intro-
duced by QSlim [53] mesh simplification (left) and intrinsic point cloud subsam-
pling followed by mesh reconstruction (right) respectively. Blue indicates low,
green indicates medium and red indicates high error regions. The mean approx-
imation error with regard to the mesh bounding box is given below each figure.
The error represents the mean distance between the original and the simplified
mesh as reported by Metro [32]. The simplified meshes consist of, from left to
right, 10596 (7.89%), 30226 (22.50%), 10000 (7.44%) and 30000 (22.33%) vertices
respectively.

113

CHAPTER 4. INTRINSIC MESHLESS SURFACE SIMPLIFICATION

Figure 4.14: Simple hole-filling example for a Buddha point set (152154 points) acquired using
a laser range scanner. Since subsampling of the data set would retain the holes
(top), the point cloud is uniformly resampled instead (bottom) by computing an
adaptive offset band and subsequent projection of sample points inside that band
onto a local MLS surface approximation. The bottom view is zoomed-in more
strongly to illustrate the effect.

114

Chapter 5

Intrinsic meshless surface subdivision

Mesh-based surface subdivision has developed into a powerful and widely-used tool for the

free-form design, editing and representation of smooth surfaces. Mesh-based subdivision

schemes recursively apply a local subdivision operator to a coarse base mesh thereby

producing a sequence of refined meshes which quickly converges to a smooth limit surface.

The advantages of mesh subdivision include guaranteed global surface smoothness whilst

supporting local feature control, the ability to handle surfaces of arbitrary topology and

being efficient and simple to apply once a base mesh is available. Typical application

examples include the generation and rendering of smooth surfaces for CAD and animation.

The link between mesh-based subdivision surface representations and wavelets is used for

multiresolution surface editing and progressive transmission and compression [44,177].

Unfortunately, when dealing with point-sampled geometry, mesh subdivision requires

costly and generally non-geometric surface reconstruction [8–10, 15, 19, 38, 45], often fol-

lowed by mesh simplification [58], parameterisation [51] and remeshing [6], all pre-processing

steps to obtain a base mesh. During the surface reconstruction step, any measurement

noise or data acquisition artefacts may translate into topological artefacts in the form

of erroneous connectivity and genus [173]. This hinders subsequent mesh simplification

and remeshing and thus mesh subdivision processing. In the case of extremely high-

dimensional manifolds by samples [156], mesh-based processing fails at the surface recon-

struction step and any surface processing needs to work directly with the point cloud. The

most widely-adopted mesh subdivision schemes such as Catmull-Clark [26] for quadrilat-

eral and Loop [98] subdivision for triangular meshes are restricted in applicability to one

type of mesh element only, quadrilaterals or triangles. The resulting subdivision surfaces

represent extensions of uniform box-spline surfaces and cannot easily be made geometry-

sensitive, i.e. non-linear.

115

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

This chapter advocates the use of intrinsic meshless, or point cloud, surface subdivision.

It is proposed to avoid the consideration of mesh connectivity graphs and instead to work

with the point-sampled geometry directly using intrinsic subdivision rules. We introduce

an intrinsic meshless surface subdivision scheme using weighted geodesic centroids of

intrinsic natural neighbourhoods (Section 2.4.3) and put forward a new method for the

computation of these geodesic means on manifolds, which by itself is of interest in other

areas such as intrinsic statistical shape analysis [50] and variational theory [75,81].

Some of the related geometric operations may be approximated in an Euclidean context

when working with large sampling densities, regular meshes and very local subdivision

rules. Working with the point-sampled geometry directly and intrinsically, however, avoids

the need for non-geometric pre-processing steps and special rules dealing with irregular

mesh connectivity. Intrinsic meshless surface subdivision tends to be more generally

applicable in that geodesic averaging rules can be non-local and do not vary with the

particular type of data (mesh) representation used. Finally, unlike the non-geometric

nature of Euclidean-based (pre-)processing, intrinsic meshless surface subdivision inher-

ently captures the non-linear intrinsic structure of the object geometry and the principle

applies equally well to three and higher-dimensional surfaces. Although it is possible to

obtain a geodesic mesh representation of a point-sampled surface [127, 152], to continue

performing subdivision truly intrinsically, this mesh would have to be modified repeatedly

during each iteration to re-enforce its intrinsic nature and more than one mesh would be

required to be able to compute correct geodesic distances.

The algorithm operates intrinsically throughout without the need for prior surface re-

construction with the help of the intrinsic distance mapping algorithm of Mémoli and

Sapiro [104] (Section 2.3.3). Following an overview of related work in Section 5.1, the

intrinsic meshless surface subdivision algorithm is presented in Section 5.2. Section 5.3

gives experimental results and Section 5.4 comments on implementation aspects. Section

5.5 concludes this chapter with a summary and a discussion of the results.

This chapter is based on Moenning et al. [114,115].

5.1 Related work

I start with a summary of the ideas underpinning mesh-based subdivision of surfaces in

R
3. The overview is motivational in nature, for a thorough formal treatment of mesh

subdivision, see Dyn and Levin [44]. The section is concluded with remarks on recent

progress in meshless, point-based surface processing related to this work.

116

5.1. RELATED WORK

Following the notation of Dyn and Levin [44], mesh-based surface subdivision schemes con-

sist of a subdivision operator S recursively applied to (control) meshes Nl = (V l, El, F l)

of arbitrary topology, with l ∈ Z0 denoting the subdivision level, V representing a set

of control vertices in R
3 and E and F describing the topological relations in the form of

edges and faces respectively. The iterative application of this scheme generates a sequence

Nl+1 = SNl. More specifically, starting with a coarse base mesh N0, at each iteration,

new control vertices are inserted and connected according to the scheme’s refinement rule

and re-positioned following the operator’s geometric averaging rule. Both the refinement

and the geometric averaging rule give the position of control vertices in Nl+1 in the form

of weighted averages of topologically neighbouring vertices in Nl. The careful choice of

these weights in relation to the control vertex valency, i.e. the number of edges emanating

from the vertex, guarantees the convergence of the scheme, in each component and in the

uniform norm, to a limit surface of provable continuity.

Not every existing mesh subdivision operator allows for this simple distinction between a

topological refinement and a geometric averaging rule. However, those that do allow for

this kind of distinction, include the most widely-used schemes. For example, the Loop [98]

subdivision scheme for triangular meshes may be cast in this form. In the case of this

scheme, the refinement rule adds points related to each edge in the triangulation using

face splitting. The averaging rule of points, which depends on the vertices and edges of

the non-refined triangulation, then yields the final positions of the vertices in the refined

triangulation (Figure 5.1). Figure 5.2 gives an example of Loop subdivision.

Figure 5.1: Loop subdivision scheme for triangular control meshes: The refinement rule adds
(black) points related to each edge in the control mesh (shown on the left) using face
splitting. The averaging rule of points, which depends on the vertices and edges of
the control mesh, then gives the final positions of both the original (grey) vertices
and the added points in the subdivided mesh shown on the right. This figure is
adapted from [177].

117

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

Figure 5.2: Application example of (two iterations of) Loop subdivision. This figure is adapted
from [177].

We propose to replace the role of mesh connectivity in subdivision with intrinsic point

neighbourhood information and formulate a set of intrinsic meshless refinement and ge-

ometric averaging rules in the form of weighted geodesic centroids of these local neigh-

bourhoods.

Fleishman et al. [49] and Guennebaud et al. [62,63] touch upon the notion of meshless sur-

face subdivision. In [49], the authors generate progressive level-of-details of point clouds

by transferring the mesh-based idea of subdivision displacement maps to the point cloud

case. They devise a purpose-built point cloud simplification method for the generation of

a base point set and present both a projection and a local, uniform upsampling operator

with the help of local surface approximation using MLS [5] (Section 4.3.1). The authors

successfully mimic the principle of mesh-based subdivision displacement mapping for sur-

faces in point cloud form but do not consider the idea of meshless surface subdivision.

Similarly, Guennebaud et al. [62, 63] are concerned with the upsampling of “surfel sets”,

i.e. input points equipped with normal, local sampling density (surfel radius) and texture

information, for magnified point rendering by splatting. Their interpolatory method re-

quires that the underlying point cloud is regularly uniformly distributed and noise-free

and that features such as crease lines have been detected and adequately sampled in a

pre-processing step. Their method is restricted in applicability to surfaces in R
3 and is

intended for the operation on top of a splatting algorithm such as Zwicker et al. [179,180]

providing the surfel information. As is typically the case for independently determined

neighbourhoods such as the authors’ enhanced k nearest neighbours-based polygonal fan

neighbourhoods, their (extrinsic) proximity and refinement operators are affected by over-

118

5.2. INTRINSIC MESHLESS SURFACE SUBDIVISION

lapping neighbour relations (Section 2.4.1) and the need for refinement rules varying with

the number of neighbours of the point under consideration. This interpolatory mesh

subdivision-inspired method is used for the locally smooth upsampling of surfel sets as

part of a dynamic splatting algorithm. The more general notion of meshless surface

subdivision is not considered.

By contrast, this chapter is concerned with the notion of intrinsic meshless surface subdi-

vision and makes no assumptions on the availability of normal or local density information

or the regularity of the input point cloud. The intrinsic natural neighbourhood concept

of Section 2.4.3 is used to avoid the problem of overlapping neighbour relations. The

concept is not restricted to surfaces in R
3 but extends to higher dimensions. Inspired

by recent work on geodesic curve subdivision by Wallner and Dyn [164–166], it offers a

theoretical basis for global convergence and smoothness analysis. The intrinsic meshless

surface subdivision framework is presented in the following section.

5.2 Intrinsic meshless surface subdivision

Subdivision schemes incorporate refinement and geometric averaging rules in the form of

weighted averages of local neighbourhoods. Mesh-based subdivision schemes are derived in

a parametric setting ignoring the geometric embedding of the points in space. As a result,

they are formulated in terms of local mesh connectivity rather than object geometry. In

the following, local neighbourhood relations are determined from intrinsic point proximity

information instead using intrinsic natural neighbourhoods.

I start this section with the presentation of our intrinsic meshless subdivision scheme.

This is followed by the discussion of our new method for the computation of geodesic

centroids on manifolds, which is at the heart of this scheme.

5.2.1 An intrinsic meshless surface subdivision scheme

Within our intrinsic meshless surface subdivision framework, weighted geodesic centroids

of intrinsic natural neighbourhoods are used to define meshless surface subdivision rules.

More specifically, we propose the following set of rules to be applied at each iteration:

Refinement rule: For each neighbour qj ∈ Np, consider the union of intrinsic neigh-

bours of p, qj ∈ Pl, Npqj
. Upsample Pl by inserting the weighted geodesic centroid,

c(Npqj
) ∈ Pl+1, of Npqj

.

119

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

Geometric averaging rule: Replace p ∈ Pl by the weighted geodesic centroid, c(Np) ∈
Pl+1, of its intrinsic Voronoi neighbourhood Np.

This use of weighted centroids in the refinement and geometric averaging rules is remi-

niscent of both classical subdivision schemes [177] and the repeated averaging approach

towards the generation of subdivision surfaces [89, 121]. These subdivision rules are in-

corporated into our meshless surface subdivision algorithm as summarised in Algorithm

6.

In its initialisation phase, the algorithm buckets the input point set Pl in a Cartesian grid,

subsequently used to support weighted intrinsic distance mapping and weighted geodesic

centroid computation. Initialisation is completed with the computation of the (discrete)

geodesic Voronoi diagram of Pl, VD(Pl). Main processing loops over all points in Pl and

proceeds with the upsampling of Pl to Pl+1 using joint neighbourhood information readily

available from VD(Pl) and our refinement rule. Following this refinement step, VD(Pl+1)

is computed. Intrinsic meshless surface subdivision is concluded with the application of

our geometric averaging rule to each point in the refined point set Pl+1 yielding the final,

subdivided point set.

The applicability of this subdivision algorithm does not depend on a preceding simplifica-

tion step. Potential algorithm applications, however, include the case in which it may be

desirable to simplify an excessively dense point cloud P to a suitable base point set P0 in

the expectation that recursive meshless subdivision of P0 results in a smoother, more reg-

ularly uniform and more compact approximation of the underlying surface than given by

P . Since our subdivision algorithm requires the computation of geodesic centroids across

the base point set P0, for these centroids to be well-defined, any simplification of P needs

to be performed subject to a minimum point density in P0. Due to the method’s simple

control of a guaranteed point density, its purely intrinsic operation, its close relationship

with the intrinsic natural neighbourhood concept and its efficient implementability, the

intrinsic meshless surface simplification algorithm of Chapter 4 is used for the simplifi-

cation of P to a base point set P0 still sufficiently dense to support the computation of

geodesic centroids. As another result of this pre-processing step, the geodesic Voronoi

diagram of P0 becomes available so that it does not need to be computed in the meshless

subdivision algorithm’s initialisation phase and the natural neighbours of a point pi ∈ P0

are readily known.

By performing the averaging intrinsically, our meshless subdivision rules raise the question

120

5.2. INTRINSIC MESHLESS SURFACE SUBDIVISION

Input: Point cloud Pl ∈ R
m.

Output: Subdivided point cloud Pl+1.

0 *** INITIALISATION ***
1 Bucket the base point cloud Pl in a m-dimensional Cartesian grid;
2 Compute the discrete geodesic Voronoi diagram, VD(Pl), of Pl.
3
4 *** MAIN PROCESSING ***
5 FOR each point pi ∈ Pl;
6 Determine the intrinsic Voronoi neighbourhood Npi from VD(Pl);
7 FOR each neighbour qj ∈ Npi ;
8 Determine the union of intrinsic Voronoi neighbours Npiqj from VD(Pl);
9 Compute the weighted geodesic centroid c(Npiqj);
10 (Refinement rule) Upsample Pl to Pl+1 by inserting c(Npiqj);
11 ENDFOR
12 ENDFOR
13 Compute VD(Pl+1);
14 FOR each point pi ∈ Pl+1;
15 Determine the intrinsic Voronoi neighbourhood Npi from VD(Pl+1);
16 Compute the weighted geodesic centroid c(Npi);
17 (Geometric averaging rule) Replace pi in Pl+1 with c(Npi);
18 ENDFOR

Alg. 6: One iteration of intrinsic meshless surface subdivision in pseudocode.

Figure 5.3: The unweighted centroid of a (blue) subset of this set of points is expected to be
located on or near the underlying surface. Due to the use of intrinsic distances,
this is the case when computing the geodesic centroid (red). By contrast, in the
case of the Euclidean averaging of the (blue) points, the resulting centroid (grey) is
located away from the underlying surface. This effect gets more pronounced when
increasing the size of the subset (from left to right). Note that for geodesically close
neighbourhoods and those kinds of neighbourhoods only, the orthogonally projected
(ΠM : Ωr

M → M) Euclidean average, i.e. the extrinsic mean, generally provides a
good (first) estimate of the geodesic centroid (left).

of how to compute geodesic centroids on manifolds. Buss and Fillmore [24] present an

algorithm for the computation of geodesic means on spheres. We generalise the underlying,

earlier idea, see. e.g. Karcher [79] and references therein, of minimising a least squares

121

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

expression in geodesic distances in the following section.

5.2.2 Computation of geodesic centroids on manifolds

The benefit of performing the averaging intrinsically is that it ensures that subdivision

generates smoother, denser representations which remain geometrically close to the sur-

face. This is not guaranteed to be the case when considering Euclidean instead of geodesic

centroids. For the simple example illustrated in Figure 5.3, Euclidean averaging ignores

the non-linear, intrinsic geometry of the object and moves the centroid away from the

surface. By contrast, since the computation of the geodesic centroid is based on intrin-

sic rather than Euclidean distances, it is inherently geometry-sensitive and falls onto the

surface in each case.

The weighted geodesic centroid of a set of n points is defined as the point g ∈ M which

minimises the weighted sum of squared intrinsic distances to each point

J(g) :=
1

2

n∑
k=1

wkdM(g, pk)
2,

where w1, . . . , wn represent the point weights, with 0 ≤ wk ≤ 1,
∑n

k=1 wk = 1. In general,

argmingJ(·) may not exist or may not be a single point. However, if p1, . . . , pn are all

contained in a sufficiently small open geodesic ball BM on M , a unique solution, gBM
of

J(·), which happens to lie in BM [79], is guaranteed. The property we are alluding to

here is (geodesic) convexity, i.e. for any pi, pj ∈ BM , the minimal geodesic from pi to pj

is unique in M and contained in BM .

In the Euclidean case, direct differentiation of J(·) yields the minimiser gE =
∑n

k=1 wkpk.

This simple result does not extend to the general case considered here but we can prove

that any minimiser must satisfy:

V (g) :=
n∑

k=1

wk∇M
1

2
dM(g, pk)

2 = 0 (5.1)

Then, starting from a good initial guess g0, we can track the minimiser g using back

propagation with velocity field V (·). This is due to the fact that if g0 ∈ BM and BM as

above, then −V (x) points towards gBM
, for x ∈ BM [79].

In practise, we set g0 = ΠM (
∑n

k=1 wkpk), where ΠM : Ωr
M → M is the orthogonal

projection operator.1 We now show that in the light of the considerations presented

1Alternatively, instead of g0, we may start from any of the points pk.

122

5.3. EXPERIMENTAL RESULTS

above, this extrinsic mean represents either a reasonable initial condition for the back

propagation or a first approximation to the geodesic centroid. By a simple application of

Lemma 17 of Wallner and Dyn [164], we have that∥∥∥∥∥
n∑

k=1

wkpk − ΠM

(
n∑

k=1

wkpk

)∥∥∥∥∥ ≤ C(diam(B))2,

where C is a global constant which depends on the curvatures of M . Then, let B =

BM(x, ε), for some x ∈ M and ε > 0. Since ‖pi − x‖ ≤ dM(pi, x) ≤ ε, we also have

‖∑n
k=1 wkpk −x‖ ≤ ε. Therefore, since ‖g0 −x‖ ≤ ‖g0 −

∑n
k=1 wkpk‖+‖∑n

k=1 wkpk −x‖,
we obtain

‖g0 − x‖ ≤ Cε2 + ε,

which implies dM(g0, x) ≤ ε(1+Hε)(1+Cε), for another constant H depending on global

metric properties of M [104]. We only care for a simplified bound

dM(g0, x) ≤ Eε.

Finally, let ξ > 0 be the maximal ξ > 0 such that BM(x, ξ) is (geodesically) convex. Note

that it is a fact that if ξ ≤ 1
2
min

(
inj(M), π√

K

)
, where inj(M) is the injectivity radius

of M and K bounds all sectional curvatures in M from above, then BM(x, ξ) is convex

for any x ∈ M . See §7.6 and §7.7 in Chavel [28]. For such a ξ > 0 and provided ε ≤ ξ/E,

and {p1, . . . , pn} ⊂ BM(x, ε) for some x ∈ M , g0 ∈ BM(x, ξ) and -V (g0) will be pointing

towards gBM
. Also, in case we want to use g0 as an approximation to gBM

, we have

the (weak) bound dM(gBM
, g0) ≤ (E + 1)ε. Therefore, g0, as defined above, represents a

sensible choice as the initial condition of an eventual back propagation step, or, in any

case, a rough approximation to gBM
with known error bound. See also Figure 5.3 (left).

Note in particular that it is also a useful choice from the point of view of computational

ease. The algorithm is summarised in Algorithm 7.

To demonstrate the applicability of this approach in the context of intrinsic meshless

surface subdivision, we first consider the case of M representing the unit sphere in the

following section.

5.3 Experimental results

We begin with the intrinsic meshless subdivision of a set of points sampled relatively

regularly uniformly from the surface of the unit sphere in R
3. This initial restriction

123

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

Input: Intrinsic Voronoi neighbourhood Np of point p ∈ Pl. Weights wi at points
qi ∈ Np.
Output: Weighted geodesic centroid g.

0 *** Computation of extrinsic centroid g0 ***
1 Compute the Euclidean weighted centroid gE of Np;
2 Compute g0 by orthogonally projecting gE ;
3
4 *** Computation of intrinsic centroid g ***
5 Compute local weighted intrinsic distance maps TΩr

P
(qi, ·) from each neighbour

qi ∈ Np outwards and accumulate their squared values at the grid vertices;
6 Approximate the gradient of the accumulated distance maps using finite

difference approximation;
7 Back propagate from g0 towards g by following the negative gradient;

Alg. 7: Procedure for the computation of a weighted geodesic centroid in pseudocode.

to spherical geometry allows for the computation of precise geodesic distances without

the need for numerical techniques. This way qualitative and quantitative aspects of our

operator can be presented without the influence of the particular projection and gradient

descent techniques utilised when processing more complex geometry. This presentation is

followed by applications of our subdivision operator to more complex geometry.

To implement the geodesic centroid computation method, techniques for the computation

of intrinsic distances between points on the surface, the projection of the starting point for

the back propagation onto the surface and the computation of the back propagation itself

are required. In the case of the unit sphere, these techniques are readily available and

no numerical techniques are required. Intrinsic distances between points follow trigono-

metrically and orthogonal projection is trivial. Similarly, the exponential map and its

inverse are directly available and may be used to implement the back propagation proce-

dure. As a result, for the case of spherical geometry, our approach for geodesic centroid

computation narrows down to the technique of Buss and Fillmore [24].

Our intrinsic meshless surface subdivision operator is applied to a base point set P0 of

2144 points sampled relatively regularly uniformly from the unit sphere (Figure 5.7). The

application of the subdivision operator to P0 using the initial intrinsic natural neighbour

information from VD(P0) yields the subdivided point set P1 of Figure 5.8.2 The result, P2,

obtained from the application of the operator to P1 using intrinsic natural neighbourhood

information from VD(P1) is shown in Figure 5.9. Given the relatively strongly regular

uniformity of the distribution of the input data, uniform weighting was used for both

the refinement and the geometric averaging rule in both iterations. The results produced

2The reconstruction of the surfaces from the point sets was performed with the help of PointsToPolys
[130] throughout.

124

5.3. EXPERIMENTAL RESULTS

0.025 0.03 0.035 0.04 0.045 0.05
0

200

400

600

800

1000

1200

1400

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024
0

1000

2000

3000

4000

5000

6000

7000

Figure 5.4: Histograms of the (spherical) distance from each point in P1 (left) and P2 (right)
to its closest neighbour in the respective set. Both distributions feature pronounced
modi and a relatively small range of distance values of approximately 0.025-0.045
and 0.0115-0.024 respectively. These values document the relatively regular unifor-
mity of the point distributions generated by the two iterations of intrinsic meshless
subdivision. The increase in point density observed for P2 illustrates the (uniform)
refinement effect of the subdivision iterations.

by the intrinsic meshless subdivision operator are presented alongside the vertex sets

produced by the application of Loop subdivision3 to a triangular mesh representation

of P0. As indicated by the detail views of Figure 5.9, the point distributions obtained

from the two operators after two iterations are qualitatively similar with the slight non-

uniformities in the distribution of P2 being slightly more pronounced in the case of intrinsic

meshless subdivision due to the use of uniform weights. There are, however, no noticeable

differences in the smoothing effect of these two operators.

In order to analyse the point sets generated by our subdivision operator more quantita-

tively, the mean and the standard deviation of the distance from each point in the set to

its closest neighbour(s) are computed for the subdivided point sets P1 and P2. For each

p in the point set Pl, let sdk(p) denote the (spherical) distance from p to its kth closest

neighbour. As an indicator for the uniformity of the density of point set Pl, consider

ρ(k) = minP sdk(p)
maxP sdk(p)

. Since ρ(k) represents an absolute measure, it may be too sensitive,

therefore we compute instead ρ̂(k) = mean(sdk)−std(sdk)

mean(sdk)+std(sdk)
, where mean and std stand for

the mean and standard deviation of the spherical distances over the point set respectively.

The histograms of sd1(x) corresponding to the two sets of points are given in Figure 5.4.

Note in particular in Table 5.1 that the values of ρ̂(k), for 1 ≤ k ≤ 10, are quite close to

1.0 therefore indicating small dispersion up to the 10th closest neighbour.

3I used the Loop subdivision implementation of Biermann and Zorin [16].

125

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

Model\k 1 2 3 4 5 6 7 8 9 10

P1 0.807 0.832 0.832 0.821 0.788 0.809 0.8132 0.786 0.818 0.828

P2 0.781 0.815 0.823 0.804 0.785 0.799 0.7980 0.784 0.810 0.822

Table 5.1: Values of the density uniformity measure ρ̂(k) for P1 and P2 and with k ∈
{1, 2, . . . , 10}. The values confirm the results of the histograms in Figure 5.4 and
underline the relatively regular uniform distribution of the subdivided point sets.
The increase in point density following the intrinsic meshless subdivision of P1 ex-
presses itself in the form of consistently reduced spherical distances of points in P2

from their kth nearest neighbour.

Figure 5.10 presents an application example dealing with more complex geometry. The

intrinsic meshless subdivision operator is applied to a base point set of 10088 points

generated from the Michelangelo Youthful data set with the help of my intrinsic meshless

surface simplification algorithm. Experimentation revealed the base point set distribution

to be regularly uniform enough to allow for simple reciprocal distance weighting in the

computations of the weighted geodesic centroids. The flatly shaded renderings of the

surfaces reconstructed from the subdivided point sets P1 and P2 illustrate the smoothing

effect of the intrinsic meshless subdivision. As indicated by the comparative illustrations

in Figure 5.11, this approach may be used to obtain a smoother, more uniform and more

compact representation of an highly dense point cloud. A similar effect is shown in Figure

5.12. The 50% decimated versions of the rocker arm and screwdriver CAD data sets

available from the Cyberware website were meshlessly subdivided twice. The smoothing

effect of these iterations is again apparent when comparing the surfaces reconstructed

from the subdivided point sets to those reconstructed from P0 and the non-simplified,

non-subdivided data sets respectively.

The detail view of Figure 5.10 highlights the local clustering effect caused by overlapping

neighbour relations as discussed in Section 2.4.1, an effect typically only encountered with

neighbourhood concepts which determine the neighbour relations independently of each

other. Our discrete approximation of the geodesic Voronoi diagram, however, implies

discretisation error. As a result of such errors, the approximation accuracy is reduced.

Since intrinsic natural neighbourhoods are determined from the geodesic Voronoi dia-

gram approximation, there can be instances of points being assigned incorrect neighbour

relations or none at all. The limited number of these instances encountered with the ap-

plication examples presented here is considered preferable to the complications associated

with addressing the problem of overlapping neighbour relations when using neighbour-

hood concepts which are not based on surface partitions such as the geodesic Voronoi

diagram. See, e.g. Guennebaud et al. [62,63].

126

5.3. EXPERIMENTAL RESULTS

Iteration 1

∆x(= ∆y = ∆z) r ‖P0‖ ‖P1‖
Sphere 0.25 0.8 2144 8570

Youthful 1.0 2.2 10080 39888

Screwdriver 0.5 1.0 13577 56220

Rocker arm 1.0 1.9 20088 81442

Isis 0.1 0.2 187644 760162

Iteration 2

∆x(= ∆y = ∆z) r ‖P1‖ ‖P2‖
Sphere 0.25 0.75 8570 36442

Youthful 0.25 0.75 39888 208010

Screwdriver 0.25 0.6 56220 295110

Rocker arm 0.25 0.45 81442 488212

Table 5.2: Parameter settings and point set sizes for the application examples; ∆x,∆y, ∆z refer
to the grid spacing in the three principal Cartesian grid directions; r represents the
constant offset band radius.

The limited impact of these assignment errors is further illustrated by the detail view of

Figure 5.13. The Isis point set was subdivided once with the regular uniformity of the

distribution of the subdivided point set being only mildly affected by erroneous neigh-

bourhood assignments. Unsurprisingly, given the density of the point set and in contrast

to the processing of the Michelangelo Youthful base point set, intrinsic meshless subdivi-

sion of the Isis point cloud using geodesic centroids was no longer found to yield results

significantly different from the use of subdivision by extrinsic centroids.

Table 5.2 summarises the parameter settings and point set sizes for the various application

examples. Using my implementation, the offset band computation pre-processing step and

an intrinsic meshless subdivision iteration took a maximum of a few hundred seconds each

on a Pentium 4 2.8GHz machine with 512MB of memory running under MS Windows XP.

Both offset band and geodesic Voronoi diagram computation efficiency generally depend

strongly on the offset band radius r and the grid spacing, our settings of which are

presented in the table. Details on various aspects of the implementation are provided in

the following section.

127

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

5.4 Implementation details

The algorithm was implemented in C++ (Microsoft Visual C++ 7.1) with the help of

the “Blitz++ 0.7 Numerical Library” [17]. The implementations of the offset band com-

putation and weighted intrinsic distance mapping have already been discussed in Section

2.5.2. The computation of geodesic Voronoi diagrams on point set surfaces was discussed

in Section 2.5.3. In the context of this application, the initial geodesic Voronoi diagram,

VD(P0), is either computed during the algorithm’s initialisation phase or follows directly

from prior intrinsic meshless surface simplification (Chapter 4). My implementations

of intrinsic natural neighbourhood computation (Section 5.4.1), geodesic centroid com-

putation (Section 5.4.2) and orthogonal projection (Section 5.4.3) are discussed in the

following.

5.4.1 Intrinsic natural neighbourhoods

As regards the computation of intrinsic natural neighbourhoods, the simultaneous com-

putation of intrinsic distance maps across the surface during geodesic Voronoi diagram

computation also allows for the Voronoi edges of VD(P) and thus each point’s intrinsic

Voronoi neighbours to be obtained during front propagation as loci of intersection between

the geodesic offset curves [33]. To see this, note that the set of (CLOSE) vertices on the

min-heap gives the current positions of the various fronts. The loci of intersection are

given by those vertices at which pairs of fronts originating from pi, pj ∈ P, pi �= pj meet,

i.e. where TM(pi) = TM(pj) at or near the vertices. Simple multilinear interpolation of

the distance maps can be used if precise positions of the points of intersection of TM(pi)

and TM(pj) are required.

To implement this idea, every time a grid vertex is set ALIVE, it is indexed with the

vertex it was computed from, i.e. it is indexed with the source point of the propagation

and thereby associated with its intrinsic Voronoi region. Then note that, for example,

for the 3D point cloud case, the solution of the finite difference gradient approximation

(2.3) during arrival time updating depends on at most three ALIVE neighbours of the

grid vertex (Section 2.5.1). For a grid vertex to be located on a Voronoi edge, two of

these neighbours have to belong to different intrinsic Voronoi regions as indicated by

their indices. If this is the case, the pair of indices represents a pair of intrinsic Voronoi

neighbours. Since all the fronts are computed simultaneously rather than sequentially,

the vertices on or near the edges of the geodesic Voronoi diagram are detected during

front propagation and thus without the need for any additional vertex visits which would

128

5.4. IMPLEMENTATION DETAILS

Figure 5.5: Detection of intrinsic natural neighbours during front propagation: The intrinsic
Voronoi region membership of a grid vertex is indicated by colours grey, yellow,
green and brown respectively. Since each vertex maintains this information, those
(red) grid vertices on or near the Voronoi edges can be identified as part of the
computation of their arrival times from their neighbouring (ALIVE) grid vertices
during Fast Marching. The source points whose intrinsic Voronoi regions are sharing
these edges represent intrinsic natural neighbours which are thus detected during
front propagation. Any additional grid traversal is not required.

affect the algorithm’s efficiency (Figure 5.5). A grid vertex located on an edge of the

geodesic Voronoi diagram is assigned to the intrinsic Voronoi region of the neighbouring

grid vertex used in the update step which features the smaller arrival time.

Since the same Voronoi edge will be detected multiple times, the corresponding neighbour-

hood relation is stored in a neighbourhood lookup table and any subsequent detection of

the relation is ignored.

The resulting neighbourhood information is used in the context of geodesic centroid com-

putation, my implementation of which is presented next.

5.4.2 Geodesic centroid computation

My implementation of Algorithm 7 (reproduced in Algorithm 8), proceeds from the com-

putation of the weighted Euclidean centroid, gE =
∑‖Np‖

k=1 wkpk, of Np, whose weighted

geodesic centroid is to be computed (line 1). With the wk being determined experi-

mentally, gE is readily computable. Since the normal estimated as part of MLS is not

guaranteed to be orthogonal to the underlying surface [3,11], I use an orthogonal projec-

tion operator introduced by Alexa and Adamson [3] and discussed in the following section,

to project gE onto M thereby obtaining g0 (line 2).

129

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

Input: Intrinsic Voronoi neighbourhood Np of point p ∈ Pl. Weights wi at points
qi ∈ Np.
Output: Weighted geodesic centroid g.

0 *** Computation of extrinsic centroid g0 ***
1 Compute the Euclidean weighted centroid gE of Np;
2 Compute g0 by orthogonally projecting gE ;
3
4 *** Computation of intrinsic centroid g ***
5 Compute local weighted intrinsic distance maps TΩr

P
(qi, ·) from each neighbour

qi ∈ Np outwards and accumulate their squared values at the grid vertices;
6 Approximate the gradient of the accumulated distance maps using finite

difference approximation;
7 Back propagate from g0 towards g by following the negative gradient;

Alg. 8: Procedure for the computation of a weighted geodesic centroid in pseudocode.

My implementation of Fast Marching for surfaces in point cloud form (Section 2.5.2)

is then used to compute weighted intrinsic distance maps from each neighbour in Np

outwards. The squared distance map values are accumulated at the grid vertices visited

during these front propagations. This approximates dM(g, pk)
2 in (5.1) for all pk ∈ Np.

To avoid unnecessary propagation, the extent of the distance mapping is limited to the

radius of the sphere enclosing Np (line 5).

To compute the intrinsic gradient of the distance map values accumulated at the grid

vertices, the normalised central difference operator of Blitz++ [17] is used (line 6). Fol-

lowing this gradient approximation, (5.1) can be evaluated: A standard Runge-Kutta

gradient descent process with multilinear interpolation is used to back propagate from g0

towards g by following the (negative) gradient of the accumulated distance maps (line 7).

Runge-Kutta represents a widely-used and well-understood procedure and I refer to Press

et al. [131] for details on its implementation.

This completes the computation of the weighted geodesic centroid of neighbourhood Np.

My implementation of the orthogonal projection operator used in this context is presented

in the following section.

5.4.3 Orthogonal projection

The normal estimated as part of the first step of MLS surface approximation is frequently

used for orthogonal projection purposes. See, e.g. Pauly et al. [125]. Since MLS has

already been implemented in the context of my intrinsic meshless surface simplification

algorithm, it may seem useful to employ this approach here as well. However, as pointed

130

5.4. IMPLEMENTATION DETAILS

Input: Point pi ∈ P . Approximation error threshold ε.
Output: Approximately orthogonal projection p′i of pi.

0 *** Initialisation ***
1 Set p′i = a(pi);
2
3 *** Projection ***
4 REPEAT
5 Compute n at p′i and a(p′i);
6 Set p′i = pi − (nT (a(p′i) − pi)n;
7 UNTIL ‖nT (a(p′i) − p′i)‖ < ε;

Alg. 9: Approximately orthogonal projection algorithm in pseudocode.

out by Alexa and Adamson [3] and Amenta and Kil [11], the first weighted least squares

regression of MLS fits a support plane to a point which will frequently be located close

to but not on the underlying surface. In these cases, the support plane is therefore

not tangent to but near the surface and its normal will generally not coincide with the

surface normal. Since an orthogonal projection procedure is required in the context of

geodesic centroid computation, an orthogonal projection operator put forward by Alexa

and Adamson [3] is therefore adopted here instead.

Although in the case of Alexa and Adamson’s [3] projection procedure, the normal is again

estimated using weighted least squares, the normal estimate and projection are iteratively

improved subject to a user-defined approximation error threshold. More specifically, their

projection method repeatedly projects a point pi onto local support planes defined by the

normal estimate n at pi and the weighted average

a(pi) =

∑‖P‖
j=1 θj(‖pi − pj‖)pj∑‖P‖
j=1 θj(‖pi − pj‖)

.

The weight function θj determines the influence of point pj and is assumed to be smooth,

positive and monotonically decreasing in distance. Thus, similar to MLS, Alexa and

Adamson’s [3] method is based on an implicit surface definition and operates meshlessly.

The implicit surface approximation is given by those points pi for which f(pi) = nT (a(pi)−
pi) equals zero, i.e. f(pi) describes the distance of the weighted point average a(pi) in

normal direction from the implicit surface described by f(pi) = 0.

The orthogonal projection procedure then consists of the steps summarised in Algorithm

9. Thus, at each iteration, the current projection p′i is used to update n and a(p′i), i.e.

the position of the support plane (line 5); pi is then projected onto this support plane

to obtain an updated projection approximation p′i (line 6) (Figure 5.6). Provided this

131

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

Figure 5.6: Approximately orthogonal projection of point pi onto a surface: The current pro-
jection p′i of pi (top) is iteratively improved by fitting a local support plane using
a(p′i) and n(p′i); pi is then projected onto this plane to obtain the new approximation
(bottom). The figure shows the first two steps of the process and is adapted from [3].
The view is in tangent direction.

process converges, it continues until p′i is within a given ε of the implicit surface, i.e.

‖nT (a(p′i) − p′i)‖ ≈ 0 (line 7). Thus, in contrast to MLS, this technique guarantees

(almost) orthogonal projection onto the surface since p′i − pi is enforced to be in the

direction of normal vector n at p′i.

As regards the implementation of this technique, the normal estimation process coincides

with the method used in the context of MLS surface approximation (Section 4.3.1). During

this processing step, my code also computes the weighted average a(pi), again using a

Gaussian as weight function θj. The projection of pi onto the corresponding support

plane is performed using a simple dot product computation in newmat11 [117]. These

steps are repeated until the termination condition (line 7) is met for a user-controlled ε.

If the algorithm fails to converge, the closest approximation is returned instead.

This completes the discussion of the implementation aspects of the intrinsic meshless

surface subdivision scheme. The following section summarises and discusses the results

presented in this chapter.

132

5.5. SUMMARY AND DISCUSSION

5.5 Summary and discussion

This chapter introduced the concept of intrinsic meshless surface subdivision based on

the computation of weighted geodesic centroids on manifolds represented by point clouds.

This technique was implemented and its applicability shown using a new method for

the computation of such centroids. The main contributions of this chapter may thus be

summarised as

• the introduction of the notion of intrinsic meshless surface subdivision.

• the introduction of a new method for the computation of geodesic centroids on

manifolds.

• the introduction of the first intrinsic meshless surface subdivision scheme and

• the implementation and application of this scheme.

The consideration of local intrinsic point proximity instead of mesh connectivity helps

to overcome some of the limitations of existing mesh-based surface subdivision schemes.

For example, by working with the raw data and operating directly across the point cloud,

problems associated with the complexity of the topological subdivision of high-dimensional

meshes can be avoided.

With regard to the application examples given, the choice of weights was guided by ex-

perimentation rather than by theoretical evidence for our scheme’s convergence towards a

smooth limit surface. Depending on the extent of any non-uniformities in the distribution

of the input points, this experimental selection of point weights tends to be elaborate.

The issue of selecting the point weights more systematically is closely related to the the-

oretical analysis of our intrinsic meshless surface subdivision scheme. This is commented

on in the following, concluding chapter.

133

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

Figure 5.7: Relatively regularly uniformly distributed base point set, P0, of 2144 points ac-
quired from the unit sphere (right). The triangular base mesh generated from P0

for the support of Loop subdivision is shown on the left. A flatly shaded rendering
of the reconstructed surface is shown in the centre.

Figure 5.8: Results after one iteration of Loop (left) and intrinsic meshless subdivision (right);
‖P1‖ = 8570 points in both cases. Flatly shaded renderings of the reconstructed
surfaces are shown next to each point set.

Figure 5.9: Results after the second iteration of Loop (left ; 34275 points) and intrinsic mesh-
less subdivision (right ; 36442 points). The corresponding reconstructed surfaces
are given next to each point set. The detail views indicate how the slight non-
uniformities in the distribution of P0 lead to slightly more pronounced local non-
uniformities in the case of intrinsic meshless subdivision due to the use of uniform
weighting. These slightly more pronounced non-uniformities do not have any
noticeable effect on the smoothness of the surface.

134

5.5. SUMMARY AND DISCUSSION

Figure 5.10: Flatly shaded renderings of the surfaces reconstructed from point sets ‖P0‖ =
10088 (top and bottom left), ‖P1‖ = 39888 (centre and bottom right) and
‖P2‖ = 208010 generated from the Michelangelo Youthful data set. The smooth-
ing effect of intrinsic meshless surface subdivision is clearly visible. As illustrated
by the detail front and side views, the subdivided point sets are distributed rela-
tively regularly uniformly. Instances of local non-uniformities (encircled in black)
are caused by discretisation errors during discrete geodesic Voronoi diagram com-
putation.

135

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

Figure 5.11: Flatly shaded renderings of the surfaces reconstructed from the Michelangelo
Youthful point set (left) and P2 of Figure 5.10 (right) illustrating how intrinsic
meshless subdivision of a base point set resulting from intrinsic meshless surface
simplification may be used to obtain a smoother, more regularly uniform and more
compact representation of the original data set of 1728305 points.

Figure 5.12: On the left, the flatly shaded renderings of surfaces reconstructed from the 50%
decimated screwdriver (top) and rocker arm (bottom) CAD data sets (P0) are
shown. The reconstructed surfaces obtained from two iterations of intrinsic mesh-
less subdivision of these point sets are presented in the centre (P2). The surfaces
reconstructed from the non-simplified, non-subdivided CAD point sets are given
on the right. The smoothing effect of intrinsic meshless subdivision is again clearly
visible.

136

5.5. SUMMARY AND DISCUSSION

Figure 5.13: Point set detail views and smoothly shaded renderings of the Isis data set (left), P0,
‖P0‖ = 187644, and the subdivided point set P1 (right), ‖P1‖ = 760162, resulting
from one iteration of intrinsic meshless subdivision. Due to the high density of
P0, the difference in location between the (uniformly weighted) extrinsic and the
corresponding geodesic centroid was found to be negligible.

137

CHAPTER 5. INTRINSIC MESHLESS SURFACE SUBDIVISION

138

Chapter 6

Conclusion and future work

This thesis has been concerned with the development of algorithms for the intrinsic pro-

cessing of surfaces in general and those represented in point cloud form in particular.

It has been argued that the combination of intrinsic and point-based surface process-

ing helps to overcome limitations of the traditional mesh-based approach when dealing

with the highly complex point-sampled geometry typically produced today. This chapter

summarises the principal contributions made in this context (Section 6.1), other results

obtained (Section 6.2), and presents directions for future work (Section 6.3).

6.1 Principal contributions

As regards the intrinsic processing of surfaces in general, an algorithm template for the

intrinsic point sampling of surfaces in the most widely-used forms of representation has

been presented. It has been shown to enforce an user-controlled, guaranteed sampling

density and to be equally well instantiable for planar domains and surfaces in triangular

mesh and point cloud form. The design of the algorithm template is modular with the

various instantiations constituting a library of modules for the very efficient uniform

and flexibly non-uniform sampling of surfaces, operations of fundamental importance in a

surface processing context. The modules’ usefulness has been shown for images, triangular

meshes and point clouds.

With respect to the processing of point-based surface representations, a first intrinsic

meshless surface simplification algorithm has been proposed. It is based on the template

instantiation for point clouds and allows for very efficient intrinsic uniform and non-

uniform point cloud sub- and resampling. The absence of any combinatorial mesh data

139

CHAPTER 6. CONCLUSION AND FUTURE WORK

structure permits the meshless simplification of massive point clouds in-core. The algo-

rithm inherits the properties of the template, in particular the user-controlled, guaranteed

sampling density and the inherently progressive operation. Local non-uniformities in the

point cloud distribution or illegitimate holes of simple complexity can be addressed using

the resampling method. Non-uniform simplification may be driven by measures such as

local curvature or texture information or a combination thereof. Since the processing

occurs intrinsically and meshlessly, the need for generally error-prone and prohibitively

costly mesh pre-processing steps is avoided. Also, the dimensionality of the problem

coincides with that of the surface rather than that of the embedding space.

An intrinsic neighbourhood concept for point-sampled geometry in the form of intrinsic

natural neighbourhoods has been suggested. It is based on the geodesic Voronoi diagram of

the point cloud under consideration. Unlike existing extrinsic neighbourhood concepts, in-

trinsic natural neighbourhoods therefore take the geometric embedding of the point cloud

into account. As a result, the concept has been found to avoid a number of shortcomings

associated with alternative extrinsic neighbourhood concepts.

The notion of intrinsic meshless surface subdivision has been introduced. This concept

has been implemented in the form of the first intrinsic meshless surface subdivision scheme

which makes extensive use of intrinsic natural neighbourhood information. Unlike mesh-

based surface subdivision, intrinsic meshless surface subdivision operates directly across

the surface and is therefore inherently geometric in nature. As in the case of intrinsic

meshless surface simplification, the dimensionality of the problem coincides with that of

the surface making the concept particularly attractive when dealing with high-dimensional

surfaces or surfaces of high co-dimension. The restriction in applicability of mesh subdivi-

sion schemes to one particular type of mesh element and the need for costly pre-processing

steps for the generation of a base mesh are also avoided this way. Our intrinsic meshless

surface subdivision scheme has been shown experimentally to generate results qualita-

tively similar to mesh-based surface subdivision.

In summary, algorithms for the point sampling of surfaces, the collection of intrinsic point

proximity information and the meshless simplification and subdivision of surfaces in point

cloud form have been proposed. These algorithms operate truly intrinsically throughout.

As a result, prohibitively costly and generally error-prone mesh pre-processing steps are

avoided, the dimensionality of the problem coincides with that of the manifold and the

geometry of the point set is no longer ignored. The algorithms are particularly suitable

for the processing of complex point-sampled geometry as is typically produced today and

which tends to push mesh-based processing beyond its limits.

140

6.2. OTHER RESULTS

6.2 Other results

As part of our intrinsic meshless surface subdivision scheme, we have introduced a new

method for the computation of geodesic centroids on manifolds. Unlike neighbourhood

centroids based on Euclidean distances, geodesic centroids are geometry-sensitive and

take into account any non-linearities of the underlying manifold. Our algorithm for the

computation of such centroids is based on the minimisation of a least squares expression

in the geodesic distances between the point neighbours thereby generalising an earlier idea

(see Karcher [79] and references therein) to the manifold case. This result is of interest in a

number of fields other than computer graphics including, for example, intrinsic statistical

shape analysis [50] and variational theory [75].

6.3 Future work

The research presented in this thesis has opened up a number of avenues for future work.

The intrinsic natural neighbourhood concept introduced in Chapter 2 has proved experi-

mentally to be superior to existing extrinsic neighbourhood concepts for the purposes of

this thesis. A theoretical study evaluating the properties of the various neighbourhood

concepts is required to obtain more rigorous comparative results. These would facilitate

the systematic selection of the best neighbourhood concept to use for the application at

hand.

The intrinsic surface sampling algorithm of Chapter 3 places a single farthest point sample

at a time. It would be interesting to consider the case of adding multiple samples per

iteration to speed up the sampling process further. For example, rather than placing a

single sample at the farthest Voronoi vertex, n > 1 samples could be placed at the n

farthest Voronoi vertices at each iteration. Although the resulting sample sequence would

no longer represent a farthest point sequence in the sense of Chapter 3 and the sampling

density guarantee would no longer apply, the efficiency gain may prove a useful trade-off

for particularly time demanding applications without strict sample density requirements.

The intrinsic meshless surface simplification algorithm of Chapter 4 and the intrinsic

meshless surface subdivision algorithm of Chapter 5 require the computation of an adap-

tive offset band when dealing with non-uniformly distributed point clouds. The approach

used in this thesis fits a set of offset balls. A more sophisticated method would fit an

ellipsoidal rather than spherical offset band. This approach could allow for superior

adaptation of the offset band to the local geometry and point density and thus result in a

141

CHAPTER 6. CONCLUSION AND FUTURE WORK

smaller size of the band. An ellipsoidal offset band could be computed using, for example,

iterative principal component analysis [104]. Also, studies of the performance of these

algorithms when dealing with relatively noisy point sets or high-dimensional surfaces or

surfaces of high co-dimension are left to be performed. For extremely high-dimensional

data, intrinsic meshless surface subdivision operators should be devised which upsample

the point-sampled geometry more conservatively than the operator suggested in Chapter

5.

The convergence and smoothness properties of the intrinsic meshless surface subdivision

scheme are to be analysed theoretically. In this context, we intend to build upon ideas

of Wallner and Dyn [164–166], in particular their convergence and smoothness analysis

of non-linear geodesic curve subdivision by proximity to a corresponding linear extrinsic

subdivision scheme.

As first proposed in the context of univariate spline subdivision schemes by Lane and

Riesenfeld [89], the practical and theoretical aspects of repeating the geometric averaging

step several times after each refinement step are also to be investigated. Using a higher

number of averaging steps in each iteration of the intrinsic meshless surface subdivision

process is expected to result in higher smoothness of the subdivided surface.

142

Appendix A

Glossary of terms

Characteristic curve Curve along which a PDE is reduced to an ordinary differen-
tial equation. The characteristic line of a PDE is determined
by the solution of its characteristic equations. These equa-
tions are solved as part of the method of characteristics for
the solution of PDEs [74].

Co-dimension Difference in the dimension of an object and the dimension
of the embedding space containing it. For example, the co-
dimension of a two-dimensional manifold in R

4 is two.

Compact manifold A manifold without boundary.

Complete manifold A manifold with at least one complete metric which in-
duces the manifold’s topology. For example, a geodesically
complete (Riemannian) manifold is a manifold for which
geodesics can continue indefinitely, i.e. there exists no bound-
ary nor any singularity which can be reached in finite time.
In this case, there always exists at least one minimising
geodesic between any two points on the manifold.

Connected manifold A manifold M is connected if any two points in M can be
connected by a curve lying completely within M .

Differentiable manifold A smooth, i.e. infinitely differentiable (C∞), manifold.

Eikonal equation Equation of the type ∇T (x1, . . . , xn)2 = F (x1, . . . , xn)2 de-
scribing the travel time propagation in an isotropic medium.
The Eikonal equation was originally derived in the context
of the modelling of wave-light propagation [145].

143

APPENDIX A. GLOSSARY OF TERMS

Extrinsic Properties of a manifold depending on the chosen embed-
ding. Extrinsic surface processing studies geometry from the
point of view of a being living in the embedding space. For
example, the extrinsic centroid of points on a manifold em-
bedded in higher-dimensional Euclidean space is given by the
centroid of the points in Euclidean space projected onto the
manifold.

Geodesically convex A manifold is geodesically convex if any two points in a
neighbourhood on the manifold are connected by a unique
geodesic contained within the neighbourhood.

Intrinsic Properties of a manifold which do not depend on its partic-
ular embedding. Intrinsic surface processing studies geome-
try not from the point of view of the geometry’s embedding
space but rather from the view of an individual living on
the manifold. For example, the intrinsic centroid of points
on a manifold is given by the centroid of the points in their
geodesic distances.

Irregular sampling Stochastic sampling, i.e. sampling at non-deterministic dis-
tances.

Isotropic Invariant with respect to direction.

Level-of-detail representation Representation of a geometric object at multiple resolutions.

Manifold Topological space characterised by the fact that each neigh-
bourhood around a point on the manifold is topologically
equivalent to a disk.

Manifold with boundary A manifold with boundary is a manifold everywhere except
in some places where it is topologically equivalent to a half-
disk.

Non-uniform sampling Sample set featuring a sample distribution varying non-
uniformly across the manifold, i.e. the probability of a point
being sampled depends on the value of an adaptivity mea-
sure.

Point sampling Sample values obtained from the selection of individual
points on the manifold.

Power spectrum Fourier transform of a signal’s autocorrelation function.

Progressive sampling Sampling which at each stage of the sampling process pro-
vides a complete description of the manifold.

Regular sampling Sampling with deterministic inter-sample distances. For ex-
ample, sampling at the vertices of a regular grid.

144

Riemannian manifold A manifold with a metric tensor, i.e. a tensor allowing to
compute the distance between any two points in the given
space. For a (geodesically) complete Riemannian manifold,
the metric for a pair of points x, y on the manifold is given
by the length of the minimal geodesic between x and y.

Sampling A set of samples or the process of selecting sample points on
the manifold.

Sectional curvature Sectional curvature describes the curvature of a Riemannian
manifold by the rate of geodesic deviation. More specifi-
cally, consider the space spanned by the geodesics of the
manifold emanating from a point p. This space represents a
sub-manifold with the induced metric [28]. It is thus a sur-
face and the Gaussian curvature of this surface represents
the sectional, or Riemannian, curvature of the manifold at
p.

Surfel “Surface element”, i.e. a point equipped with normal, tex-
ture, depth, etc. information and used as a display primitive.

Uniform sampling Sample set of approximately constant density, i.e. the prob-
ability of a point being sampled is equal for all points on the
manifold.

145

APPENDIX A. GLOSSARY OF TERMS

146

Appendix B

Concepts from computational

geometry

This appendix defines a number of concepts from computational geometry referred to

repeatedly in this thesis. The presentation follows Amenta et al. [8] and Boissonnat and

Cazals [20] and starts with the definition of the notion of the medial axis of a manifold.

Definition 1 The medial axis of a manifold M embedded in R
m is the closure of the

set of points in R
m with more than one nearest neighbour on M [8].

Note that this definition includes elements exterior to a closed surface. An example

for a medial axis in R
3 is shown in Figure B.1. The shape of the medial axis necessarily

reflects the proximity to parts of the surface. More specifically, the medial axis will be

close to the surface where its curvature is high and farther from the surface in flat regions.

This property is exploited in the context of the notions of local feature size and ε-sampling

density defined next.

Definition 2 The local feature size at a point p, LFS (p), on M is the Euclidean dis-

tance from p to (the nearest point of) the medial axis [8].

Definition 3 The set P ⊂ M represents an ε-sampling of M if no point p on M is

farther than ε · LFS (p) from a point of P [8].

Thus, the sampling P represents an ε-sampling of M if the Euclidean distance from

any point p ∈ M to the nearest sample point is at most ε times the distance from p to the

nearest point of the medial axis of M . Note that this definition implies that ε-samples are

147

APPENDIX B. CONCEPTS FROM COMPUTATIONAL GEOMETRY

Figure B.1: Example for the (red) medial axis of a (rounded transparent) surface. Note that in
the case of a non-convex surface, the medial axis would have parts located on the
outside of the surface. This figure is adapted from [8].

placed more densely in regions of high curvature and less densely in flat surface regions.

It also implies that at sharp corners, the sampling density would have to be infinite due to

the medial axis touching the surface. Thus, either M should be smooth or sharp corners

need to be dealt with heuristically.

For the ε-sampling condition to be controlled for in an application context, the medial

axis needs to be computed. This can be challenging in practice [8]. As an alternative

in the 3D case, Amenta et al. [8] propose to consider the distance to the nearest pole as

a more easily computable estimate of a sample’s distance to the medial axis. This idea

exploits the fact that in the 3D case, many vertices of the Euclidean Voronoi diagram [120]

are located near the medial axis. To filter out those vertices which do not lie near the

medial axis, only those two vertices of the Voronoi region of a sample on M are selected as

estimates of the location of the medial axis which are farthest from the sample on either

side of M . These two vertices are called the poles of the sample. Figure B.2 illustrates

this concept.

Further concepts related to the (3D) Euclidean Voronoi diagram and referred to in this

thesis include the restricted (Euclidean) Voronoi diagram and its dual, the restricted (Eu-

clidean) Delaunay triangulation, defined next.

Definition 4 The Voronoi diagram of P restricted to M is the cell complex obtained

by intersecting each face of the diagram with M [20].

That is, the restricted Voronoi diagram of P on M is given by the intersections of M

with the Voronoi regions of the Euclidean Voronoi diagram of P . The restricted Delau-

nay triangulation then follows as the set of Delaunay facets dual to the Voronoi edges

148

Figure B.2: In the 3D case, only a subset of the (red) vertices of a (blue) sample’s (red) Voronoi
region is located close to the medial axis. In this example, one Voronoi vertex lies
close to the surface, equidistant from the four samples near the centre. The other
vertices are located near the medial axis, specifically near the centre of curvature
on one side and halfway to an opposite patch of the surface on the other side. The
two vertices p+, p− (poles) farthest from the sample on either side of the surface are
chosen as estimates of the medial axis of the sample. This figure is adapted from [8].

intersecting M :

Definition 5 The Delaunay triangulation of P restricted to M is the subcomplex of

the triangulation consisting of those facets whose dual Voronoi edges intersect M [20].

This completes the presentation of various concepts from computational geometry referred

to repeatedly in this thesis. For more details, see the references provided.

149

APPENDIX B. CONCEPTS FROM COMPUTATIONAL GEOMETRY

150

Appendix C

Data sources

The dinosaur, Santa and sphere surfel sets were obtained from the Pointshop3D [178]

website hosted by the point-based graphics group at the ETH Zürich, Switzerland.

The Isis, Venus, screwdriver and rocker arm data sets were taken from the Cyberware

Inc. website.

The Bunny and Lucy data sets are available from the Stanford 3D Scanning Repository

at Stanford University, USA.

The Michelangelo David, Day, Dawn, Youthful and St. Matthew point sets were obtained

from the Digital Michelangelo Project website. The permission to access these data sets

granted by Marc Levoy is gratefully acknowledged.

The Lena and Monarch test images were taken from the Waterloo BragZone “Color Set”

repertoire. The Mandrill image was obtained from the University of Southern California,

USA, image database. The Mona Lisa image is available from The Art Platform [157].

151

APPENDIX C. DATA SOURCES

152

Bibliography

[1] A. Adamson and M. Alexa, Approximating and intersecting surfaces from

points, in Proc. SIGGRAPH ’03, 2003, pp. 230–239.

[2] L. Adi and R. Kimmel, Interactive edge integration on painted surfaces,

tech. report, Technion, Israel Institute of Technology, Tel-Aviv, Israel, 2001.

http://www.cs.technion.ac.il/˜liav/.

[3] M. Alexa and A. Adamson, On normals and projection operators for surfaces

defined by point sets, in Proc. Eurographics Symp. on Point-Based Graph., 2004,

pp. 149–156.

[4] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.

Silva, Point set surfaces, in Proc. 12th IEEE Visual. Conf., 2001, pp. 21–28.

[5] , Computing and rendering point set surfaces, IEEE Trans. on Visual. and

Comp. Graph., 9 (2003), pp. 3–15.

[6] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,

Anisotropic polygonal remeshing, in Proc. SIGGRAPH ’03, 2003, pp. 485–493.

[7] P. Alliez, M. Meyer, and M. Desbrun, Interactive geometry remeshing, in

Proc. SIGGRAPH ’02, 2002, pp. 347–354.

[8] N. Amenta, M. Bern, and M. Kamvysselis, A new voronoi-based surface

reconstruction algorithm, in Proc. SIGGRAPH ’98, 1998, pp. 415–422.

[9] N. Amenta, S. Choi, T. K. Dey, and N. Leekha, A simple algorithm for

homeomorphic surface reconstruction, in Proc. 16th ACM Symp. on Computat.

Geom., 2000, pp. 213–222.

[10] N. Amenta, S. Choi, and R. Kolluri, The power crust, in Proc. 6th ACM

Symp. on Solid Modeling, 2001, pp. 249–260.

153

BIBLIOGRAPHY

[11] N. Amenta and Y. J. Kil, Defining point set surfaces, in Proc. SIGGRAPH ’04,

2004, pp. 264–270.

[12] M. Andersson, J. Giesen, M. Pauly, and B. Speckmann, Bounds on the

k-neighborhood for locally uniformly sampled surfaces, in Proc. Eurographics Symp.

on Point-Based Graph., 2004, pp. 167–171.

[13] T. J. Barth and J. A. Sethian, Numerical schemes for the hamilton-jacobi

and level set equations on triangulated domains, Journal of Computat. Phys., 145

(1998), pp. 1–40.

[14] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction

and data representation, Tech. Report CS TR-2002-01, University of Chicago, USA,

2002.

[15] F. Bernadini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,

The ball-pivoting algorithm for surface reconstruction, IEEE Trans. on Visual. and

Comp. Graph., 5 (1999), pp. 349–359.

[16] H. Biermann and D. Zorin, Subdivide 2.0. http://mrl.nyu.edu/ bier-

mann/subdivision/.

[17] Blitz++ Numerical Library, Vers. 0.7. http://www.oonumerics.org/blitz/.

[18] J.-D. Boissonnat, Geometric structures for three-dimensional shape representa-

tion, ACM Trans. on Graph., 3 (1984), pp. 266–286.

[19] J.-D. Boissonnat and F. Cazals, Smooth surface reconstruction via natural

neighbour interpolation of distance functions, in Proc. 16th ACM Symp. on Com-

putat. Geom., 2000, pp. 223–232.

[20] , Natural neighbor coordinates of points on a surface, Computat. Geom.: Theory

and Appl., 19 (2001), pp. 155–173.

[21] J.-D. Boissonnat and S. Oudot, Provably good surface sampling and approxi-

mation, in Proc. 1st Eurographics Symp. on Geom. Proc., 2003, pp. 246–265.

[22] M. Botsch, A. Wiratanaya, and L. Kobbelt, Efficient high quality rendering

of point sampled geometry, in Proc. 13th Eurographics Workshop on Rendering,

2002, pp. 53–64.

[23] J. L. Bougrenet and J. F. Cavassilas, Image coding using an adaptive sam-

pling technique, Signal Processing: Image Communication, 1 (1989), pp. 75–80.

154

BIBLIOGRAPHY

[24] S. R. Buss and J. P. Fillmore, Spherical averages and applications to spherical

splines and interpolation, ACM Trans. on Graph., 20 (2001), pp. 95–126.

[25] J. C. Carr, K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,

B. C. McCallum, and T. R. Evans, Reconstruction and representation of 3d

objects with radial basis functions, in Proc. SIGGRAPH ’01, 2001, pp. 67–76.

[26] E. Catmull and J. Clark, Recursively generated b-spline surfaces on arbitrary

topological meshes, Computer Aided Design, 10 (1978), pp. 350–355.

[27] CGAL-2.4 - Computational Geometry Algorithms Library. http://www.cgal.org.

[28] I. Chavel, Riemannian geometry: a modern introduction, Cambridge University

Press, Cambridge, UK, 1997.

[29] L. P. Chew, Guaranteed-quality mesh generation for curved surfaces, in Proc. 9th

Symp. on Computat. Geom., 1993, pp. 274–280.

[30] L. P. Chew and R. L. Drysdale, Voronoi diagrams based on convex distance

functions, in Proc. 1st ACM Symp. on Comput. Geom., 1985, pp. 235–244.

[31] P. Cignoni, P. Montani, and R. Scopigno, A comparison of mesh simplifica-

tion algorithms, Computers & Graphics, 22 (1998), pp. 37–54.

[32] P. Cignoni, C. Rocchini, and R. Scopigno, Metro: measuring error on sim-

plified surfaces, Computer Graphics Forum, 17 (1998), pp. 167–174.

[33] L. D. Cohen, Multiple contour finding and perceptual grouping using minimal

paths, Journal of Math. Imaging and Vision, 14 (2001), pp. 225–236.

[34] R. Cook, Stochastic sampling in computer graphics, ACM Trans. on Graph., 5

(1986), pp. 51–72.

[35] J. Cortés and F. Bullo, Coordination and geometric optimization via distributed

dynamical systems, SIAM Journal on Control and Optimization, submitted, (2003).

[36] D. Cross, Fast Fourier Transforms. http://groovit.disjunkt.com/analog/time-

domain/fft.html.

[37] O. Cuisenaire, Distance Transformations: Fast Algorithms and Applications to

Medical Image Processing, PhD thesis, Université catholique de Louvain, Labora-

toire de Telecommunications et Teledetection, Belgium, 1999.

155

BIBLIOGRAPHY

[38] B. Curless and M. Levoy, A volumetric method for building complex models

from range images, in Proc. SIGGRAPH ’96, 1996, pp. 303–312.

[39] L. Demaret, N. Dyn, M. S. Floater, and A. Iske, Adaptive thinning for

terrain modeling and image compression, in N. A. Dodgson, M. S. Floater and M.

A. Sabin (eds.), Advances in Multiresolution for Geometric Modelling, Springer-

Verlag, 2004, pp. 319–338.

[40] T. Deschamps and L. D. Cohen, Fast extraction of minimal paths in 3d images

and applications to virtual endoscopy, Medical Image Analysis, 5 (2001), pp. 281–

299.

[41] T. K. Dey, J. Giesen, and J. Hudson, Decimating samples for mesh simplifi-

cation, in Proc. 13th Canadian Conf. on Comput. Geom., 2001, pp. 85–88.

[42] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische

Mathematik, 1 (1959), pp. 269–271.

[43] M. A. Z. Dippé and E. H. Wold, Antialiasing through stochastic sampling, in

Proc. SIGGRAPH ’85, 1985, pp. 69–78.

[44] N. Dyn and D. Levin, Subdivision schemes in geometric modelling, Acta Numer-

ica, 12 (2002), pp. 73–144.

[45] H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes, ACM

Trans. on Graph., 13 (1994), pp. 43–72.

[46] Y. Eldar, Irregular image sampling using the voronoi diagram, master’s thesis,

Technion, Israel Institute of Technology, Tel-Aviv, Israel, 1992.

[47] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, The farthest point

strategy for progressive image sampling, IEEE Trans. on Image Proc., 6 (1997),

pp. 1305–1315.

[48] L. H. Figueiredo, J. de Miranda Gomes, D. Terzopoulos, and L. Velho,

Physically-based methods for polygonization of implicit surfaces, Proc. Graphics In-

terface, (1992), pp. 250–257.

[49] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva, Progressive point

set surfaces, ACM Trans. on Graph., 22 (2003), pp. 997–1011.

[50] P. T. Fletcher, C. Lu, and S. Joshi, Statistics of shape via principal geodesic

analysis on lie groups, in Proc. IEEE Conf. on Comp. Vision and Pattern Rec.,

2003, pp. 95–101.

156

BIBLIOGRAPHY

[51] M. S. Floater and K. Hormann, Surface parameterization: a tutorial and

survey, in N. A. Dodgson, M. S. Floater and M. A. Sabin (eds.), Advances in

Multiresolution for Geometric Modelling, Springer-Verlag, 2005, pp. 157–186.

[52] M. Fowler and K. Scott, UML Distilled, 2nd ed., Addison-Wesley, Reading,

USA, 2000.

[53] M. Garland and P. S. Heckbert, Surface simplification using quadric error

metrics, in Proc. SIGGRAPH ’97, 1997, pp. 209–216.

[54] J. Giesen and U. Wagner, Shape dimension and intrinsic metric from samples of

manifolds with high co-dimension, in Proc. 19th ACM Symp. on Computat. Geom.,

2003, pp. 329–337.

[55] A. S. Glassner, An introduction to ray tracing, Morgan Kaufmann, 1989.

[56] , Principles of digital image synthesis, Morgan Kaufmann, 1995.

[57] T. F. Gonzalez, Clustering to minimize the maximum intercluster distance,

Theor. Comp. Sc., 38 (1985), pp. 293–306.

[58] C. Gotsman, S. Gumhold, and L. Kobbelt, Simplification and compression of

3d meshes, in A. Iske, E. Quak and M. S. Floater (eds.), Tutorials on Multiresolution

in Geometric Modelling, Springer-Verlag, 2002, pp. 319–362.

[59] J. P. Grossman and W. J. Dally, Point sample rendering, in Proc. 9th Euro-

graphics Workshop on Rendering, 1998, pp. 181–192.

[60] M. Grundland, C. Gibbs, and N. A. Dodgson, Stylized rendering for mul-

tiresolution image representation, in Proc. Human Vision and Electronic Imaging

X Conf., to appear, 2005.

[61] S.-S. Guan and M. R. Luo, A colour-difference formula for assessing large colour

differences, Color Res. and Appl., 24 (1999), pp. 344–355.

[62] G. Guennebaud, L. Barthe, and M. Paulin, Dynamic surfel set refinement

for high quality rendering, Computers & Graphics, 28 (2004), pp. 827–838.

[63] , Real-time point cloud refinement, in Proc. Eurographics Symp. on Point-Based

Graph., 2004, pp. 41–49.

[64] S. Gumhold, X. Wang, and R. McLeod, Feature extraction from point clouds,

in Proc. 10th Int. Meshing Roundtable, 2001, pp. 293–305.

157

BIBLIOGRAPHY

[65] I. Guskov and Z. Wood, Topological noise removal, in Proc. Graphics Interface,

2001, pp. 19–26.

[66] G. Guy and G. Medioni, Inference of surfaces, 3d curves and junctions from

sparse, noisy 3d data, IEEE Trans. Pattern Anal. and Mach. Intell., 19 (1997),

pp. 1265–1277.

[67] M. Hall and J. Warren, Adaptive polygonization of implicitly defined surfaces,

IEEE Comp. Graph. and Appl., 10 (1990), pp. 33–42.

[68] J. H. Halton, On the efficiency of certain quasi-random sequences of points in

evaluating multi-dimensional integrals, Num. Math., 2 (1960), pp. 84–90.

[69] A. B. Hamza and H. Krim, Geodesic object representation and recognition, Lec-

ture Notes in Computer Science, 2886 (2003), pp. 378–387.

[70] J. Helmsen, E. G. Puckett, P. Collela, and M. Dorr, Two new methods

for simulating photolithography development in 3d, in Proc. SPIE Microlithography

IX, 1996, pp. 253–261.

[71] H. Hoppe, Progressive meshes, Proc. SIGGRAPH ’96, (1996), pp. 99–108.

[72] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,

Surface reconstruction from unorganized points, in Proc. SIGGRAPH ’92, 1992,

pp. 19–26.

[73] , Mesh optimization, in Proc. SIGGRAPH ’93, 1993, pp. 19–26.

[74] F. John, Partial Differential Equations, 4th ed., Springer-Verlag, 1982.

[75] J. Jost, Equilibrium maps between metric spaces, Calculus of Variations and Partial

Differential Equations, 2 (1994), pp. 173–204.

[76] A. Kalaiah and A. Varshney, Differential point rendering, in Proc. 12th Euro-

graphics Workshop on Rendering, 2001, pp. 139–150.

[77] , Modeling and rendering of points with local geometry, IEEE Trans. on Visual.

and Comp. Graph., 9 (2003), pp. 30–42.

[78] , Statistical point geometry, in Proc. 1st Eurographics Symp. on Geom. Proc.,

2003, pp. 107–115.

[79] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. on Pure

and Appl. Math., 30 (1977), pp. 509–541.

158

BIBLIOGRAPHY

[80] A. Keller, Strictly deterministic sampling methods in computer graphics, SIG-

GRAPH ’03 course #44, Monte Carlo Ray Tracing, (2003).

[81] W. S. Kendall, Probability, convexity and harmonic maps with small image i:

Uniqueness and fine existence, Proc. London Math. Soc., 61 (1990), pp. 371–406.

[82] L. Kettner, Using generic programming for designing a data structure for poly-

hedral surfaces, Computat. Geom.: Theory and Appl., 13 (1999), pp. 65–90.

[83] R. Kimmel, N. Kiryati, and A. M. Bruckstein, Sub-pixel distance maps

and weighted distance transforms, Journal of Math. Imaging and Vision, 6 (1996),

pp. 223–233.

[84] R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, Proc.

Nat. Acad. of Sciences, 95 (1998), pp. 8431–8435.

[85] , Fast voronoi diagrams and offsets on triangulated surfaces, in A. Cohen, J. L.

Merrien and L. L. Schumaker (eds.), Proc. Curves and Surfaces, St. Malo, France,

Nashboro Press, 1999.

[86] L. P. Kobbelt, S. Bischoff, M. Botsch, K. Kaehler, C. Rössl,

R. Schneider, and J. Vorsatz, Geometric modelling based on polygonal meshes,

Eurographics ’00 tutorial, (2000).

[87] L. P. Kobbelt and M. Botsch, A survey of point-based techniques in computer

graphics, Computers & Graphics, to appear, (2004).

[88] R. Kunze, F.-E. Wolter, and T. Rausch, Geodesic voronoi diagrams on para-

metric surfaces, in Proc. Graphics Interface, 1997, pp. 230–238.

[89] J. M. Lane and R. F. Riesenfeld, A theoretical development for the computer

generation of piecewise polynomial surfaces, IEEE Trans. Pattern Anal. and Mach.

Intell., 2 (1980), pp. 35–46.

[90] G. Leibon and D. Letscher, Delaunay triangulations and voronoi diagrams

for riemannian manifolds, in Proc. 16th ACM Symp. on Computat. Geom., 2000,

pp. 341–349.

[91] R. J. LeVeque, Finite difference methods for differential equations, tech. report,

University of Washington, Dept. of Appl. Math., Washington, USA, 1998. Draft

lecture notes.

159

BIBLIOGRAPHY

[92] D. Levin, The approximation power of moving least-squares, Math. of Comp., 67

(1998), pp. 1517–1531.

[93] , Mesh-independent surface interpolation, in G. Brunett (ed.), Geometric Mod-

eling for Scientific Visualization, Springer-Verlag, 2003, pp. 37–49.

[94] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,

M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk,

The digital michelangelo project: 3d scanning of large statues, in Proc. SIGGRAPH

’00, 2000, pp. 131–144.

[95] M. Levoy and T. Whitted, The use of points as display primitive,

Tech. Report 85022, UNC-Chapel Hill Computer Science Dept., USA, 1985.

http://graphics.stanford.edu/papers/points/point-with-scanned-figs.pdf.

[96] P. Lindstrom, Out-of-core simplification of large polygonal models, in Proc. SIG-

GRAPH ’00, 2000, pp. 259–262.

[97] L. Linsen, Point cloud representation, Tech. Report 2001-3, Computer Sci-

ence Dept., Universität Karlsruhe, Germany, 2001. http://www.ubka.uni-

karlsruhe.de/vvv/ira/2001/3/3.pdf.

[98] C. Loop, Smooth surface subdivision based on triangles, master’s thesis, Dept. of

Math., University of Utah, USA, 1987.

[99] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface

construction algorithm, in Proc. SIGGRAPH ’87, 1987, pp. 163–169.

[100] K.-L. Low and T.-S. Tan, Model simplification using vertex-clustering, in Proc.

Symp. Interactive 3D Graph., 1997, pp. 75–81.

[101] D. K. McAllister, L. F. Nyland, V. Popescu, A. Lastra, and C. Mc-

Cue, Real-time rendering of real-world environments, in Proc. 10th Eurographics

Workshop on Rendering, 1999, pp. 145–160.

[102] K. McLaren, The development of the cie 1976 (l*a*b*) uniform colour-space and

colour-difference formula, Journal of the Soc. of Dyers and Colourists, 92 (1976),

pp. 338–341.

[103] F. Mémoli and G. Sapiro, Fast computation of weighted distance functions and

geodesics on implicit hyper-surfaces, Journal of Comput. Phys., 173 (2001), pp. 764–

795.

160

BIBLIOGRAPHY

[104] , Distance functions and geodesics on point clouds, Tech. Report 1902, Insti-

tute for Mathematics and its Applications, University of Minnesota, USA, 2003.

http://www.ima.umn.edu/preprints/dec2002/1902.pdf, to appear in SIAM Journal

of Appl. Math.

[105] , Comparing point clouds, in Proc. 2nd Eurographics Symp. on Geom. Proc.,

2004.

[106] , A theoretical and computational framework for isometry invari-

ant recognition of point cloud data, Tech. Report 1800, Institute for

Mathematics and its Applications, University of Minnesota, USA, 2004.

http://www.ima.umn.edu/preprints/jun2004/1980.pdf.

[107] D. P. Mitchell, Spectrally optimal sampling for distribution ray tracing, in Proc.

SIGGRAPH ’91, 1991, pp. 157–164.

[108] J. S. B. Mitchell, Geometric shortest paths and network optimization, in J.-R.

Sack and J. Urrutia (eds.), Handbook of Computat. Geom., Elsevier, 2000, pp. 633–

701.

[109] N. J. Mitra and A. Nguyen, Estimating surface normals in noisy point cloud

data, in Proc. 19th ACM Symp. on Comput. Geom., 2003, pp. 322–328.

[110] C. Moenning and N. A. Dodgson, Fast marching farthest point sampling,

Tech. Report 562, Computer Laboratory, University of Cambridge, UK, 2003.

http://www.cl.cam.ac.uk/˜cm230/FastFPS.pdf.

[111] , Fast marching farthest point sampling, in Proc. Eurographics ’03, 2003. Poster

paper.

[112] , A new point cloud simplification algorithm, in Proc. 3rd Int. Conf. on Visual.,

Imaging and Image Proc., 2003, pp. 1027–1033.

[113] , Intrinsic point cloud simplification, in Proc. 14th GraphiCon ’04, 2004.

[114] C. Moenning, F. Mémoli, G. Sapiro, N. Dyn, and N. A.

Dodgson, Meshless geometric subdivision, Tech. Report 1977, Institute for

Mathematics and its Applications, University of Minnesota, USA, 2004.

http://www.ima.umn.edu/preprints/apr2004/1977.pdf.

[115] , Meshless geometric subdivision, Graphical Models, submitted, (2005).

161

BIBLIOGRAPHY

[116] D. Nehab and P. Shilane, Stratified point sampling of 3d models, in Proc. Eu-

rographics Symp. on Point-Based Graph., 2004, pp. 49–56.

[117] Newmat C++ matrix library, Vers. 11. http://www.robertnz.net/.

[118] M. Novotni and R. Klein, Computing geodesic distances on triangular meshes,

in Proc. 10th Int. Conf. in Central Europe on Comp. Graph., Visual. and Comp.

Vision (WSCG), 2002, pp. 341–347.

[119] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel, Multi-level

partition of unity implicits, in Proc. SIGGRAPH ’03, 2001, pp. 463–470.

[120] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations - Concepts and

Applications of Voronoi Diagrams, 2nd ed., John Wiley & Sons, Chicester, UK,

2000.

[121] P. Oswald and P. Schröder, Composite primal/dual sqrt(3)-subdivision

schemes, Comp. Aided Geom. Design, 20 (2003), pp. 135–164.

[122] M. Pauly, Point Primitives for Interactive Modeling and Processing of 3D Geom-

etry, PhD thesis, Computer Science Department, ETH Zürich, Switzerland, 2004.

[123] M. Pauly and M. Gross, Spectral processing of point-sampled geometry, in Proc.

SIGGRAPH ’01, 2001, pp. 379–386.

[124] M. Pauly, M. Gross, and L. P. Kobbelt, Efficient simplification of point-

sampled surfaces, in Proc. 13th IEEE Visual. Conf., 2002, pp. 163–170.

[125] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross, Shape modeling with

point-sampled geometry, in Proc. SIGGRAPH ’03, 2003, pp. 641–650.

[126] M. Pauly, L. Kobbelt, and M. Gross, Multiresolution

modeling of point-sampled geometry, Tech. Report 378, Com-

puter Science Department, ETH Zürich, Switzerland, 2002.

http://graphics.stanford.edu/˜mapauly/Pdfs/MultiresModeling.pdf.

[127] G. Peyré and L. Cohen, Geodesic re-meshing using front propagation, in Proc.

2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Comp.

Vis. (VLSM), 2003.

[128] , Surface segmentation using geodesic centroidal tesselation, in Proc. 2nd Symp.

3D Data Proc., Visual. and Trans. (3DPVT), 2004, pp. 995–1002.

162

BIBLIOGRAPHY

[129] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, Surfels: Surface

elements as rendering primitives, in Proc. SIGGRAPH ’00, 2000, pp. 335–342.

[130] PointsToPolys software. http://www.paraform.com/ppdl.

[131] W. H. Press, S. A. Teukolksy, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C, 2nd ed., Cambridge University Press, Cambridge, UK,

1992.

[132] RapidForm 2004. http://www.rapidform.com.

[133] M. Reimers, Computing distances on 3d triangular meshes, submitted, (2004).

[134] H. L. Resnikoff, The duality between noise and aliasing and human image un-

derstanding, SPIE Image Understanding and Man-Machine Interface, 758 (1987),

pp. 31–38.

[135] J. Rossignac and P. Borrel, Multi-resolution 3d approximations for rendering

complex scenes, in Proc. Conf. on Geom. Model. in Comp. Graph., 1993, pp. 455–

465.

[136] E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading,

SIAM Journal of Num. Anal., 29 (1992), pp. 867–884.

[137] M. Roy, F. Nicolier, S. Foufou, F. Truchetet, A. Koschan, and

M. Abidi, Assessment of mesh simplification algorithm quality, in Proc. SPIE Elec-

tronic Imaging, 2002, pp. 128–137.

[138] J. Ruppert, A delaunay refinement algorithm for quality 2-dimensional mesh gen-

eration, Journal of Algorithms, 18 (1995), pp. 548–585.

[139] S. Rusinkiewicz and M. Levoy, Qsplat: a multiresolution point rendering sys-

tem for large meshes, in Proc. SIGGRAPH ’00, 2000, pp. 343–352.

[140] R. Schaback, Creating surfaces from scattered data using radial basis functions, in

M. Daehlen, T. Lyche and L. Schumaker (eds.), Mathematical Models in Computer

Aided Geometric Design III, USA, 1995, Vanderbilt University Press, pp. 477–496.

[141] R. Scopigno, C. Andujar, M. Gösele, and H. Lensch, 3d data acquisition,

Eurographics ’02 tutorial, (2002).

[142] R. Sedgewick, Algorithms in C, 3rd ed., Addison-Wesley, Reading, USA, 1998.

163

BIBLIOGRAPHY

[143] , Algorithms in C++ - Part 5: Graph Algorithms, 3rd ed., Addison-Wesley,

Reading, USA, 2001.

[144] J. A. Sethian, Theory, algorithms, and applications of level set methods for prop-

agating interfaces, Acta Numerica, 5 (1996), pp. 309–395.

[145] , Level Set Methods and Fast Marching Methods, 2nd ed., Cambridge University

Press, Cambridge, UK, 1999.

[146] J. A. Sethian and A. Vladimirsky, Fast methods for the eikonal and related

hamilton-jacobi equations on unstructured meshes, Proc. Nat. Acad. of Sciences, 97

(2000), pp. 5699–5703.

[147] , Ordered upwind methods for static hamilton-jacobi equations, Proc. Nat. Acad.

of Sciences, 98 (2001), pp. 11069–11074.

[148] R. Shahidi, C. Moloney, and G. Ramponi, Design of farthest-point masks for

image halftoning, EURASIP Journal on Appl. Signal Proc., 12 (2004), pp. 1886–

1898.

[149] A. Sharf, M. Alexa, and D. Cohen-Or, Context-based surface completion,

ACM Trans. on Graph., 23 (2004), pp. 878–887.

[150] P. Shirley, Discrepancy as a quality measure for sample distributions, in Proc.

Eurographics ’91, 1991, pp. 183–193.

[151] R. Sibson, A vector identity for the dirichlet tessellation, in Math. Proc. of the

Cambridge Philosoph. Soc., 1980, pp. 151–155.

[152] O. Sifri, A. Sheffer, and C. Gotsman, Geodesic-based surface remeshing, in

Proc. 12th Int. Meshing Roundtable, 2003, pp. 189–199.

[153] M. Stamminger and G. Drettakis, Interactive sampling and rendering for com-

plex and procedural geometry, in Proc. 12th Eurographics Workshop on Rendering,

2001, pp. 151–162.

[154] G. Taubin, Estimating the tensor of curvature of a surface from a polyhedral ap-

proximation, in Proc. 5th Int. Conf. on Comp. Vis. (ICCV), 1995, pp. 902–909.

[155] D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression Fun-

damentals, Standards, and Practice, Kluwer, Boston, USA, 2002.

164

BIBLIOGRAPHY

[156] J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric

framework for nonlinear dimensionality reduction, Science, 290 (2000), pp. 2319–

2323.

[157] The Art Platform. http://www.art-platform.com.

[158] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans.

on Automatic Control, 40 (1995), pp. 1528–1538.

[159] G. Turk, Re-tiling polygonal surfaces, in Proc. SIGGRAPH ’92, 1992, pp. 55–64.

[160] R. Ulichney, Digital Halftoning, MIT Press, 1987.

[161] , Dithering with blue noise, Proc. of the IEEE, 76 (1988), pp. 56–79.

[162] L. Velho, J. Gomes, and L. H. de Figueiredo, Implicit Objects in Computer

Graphics, Springer-Verlag, New York, USA, 2002.

[163] J. Vorsatz, C. Rössl, L. P. Kobbelt, and H.-P. Seidel, Feature sensitive

remeshing, in Proc. Eurographics ’01, 2001, pp. 393–401.

[164] J. Wallner and N. Dyn, Smoothness of subdivision schemes by proximity, Tech.

Report 112, Tech. Univ. Wien, Austria, 2003.

[165] , Smoothness of subdivision schemes in manifolds, Tech. Report 125, Tech.

Univ. Wien, Austria, 2004. http://www.geometrie.tuwien.ac.at/wallner/sbd2.pdf.

[166] , Convergence and c1 analysis of subdivision schemes on mani-

folds by proximity, Comp. Aided Geom. Design, to appear, 22 (2005).

http://www.geometrie.tuwien.ac.at/wallner/sbd1.pdf.

[167] M. Wand, M. Fischer, and F. M. auf der Heide, The randomized z-buffer

algorithm: Interactive rendering of highly complex scenes, in Proc. SIGGRAPH ’01,

2001, pp. 361–370.

[168] A. Watt and M. Watt, Advanced Animation and Rendering Techniques,

Addison-Wesley, 1992.

[169] T. Weyrich, M. Pauly, R. Keiser, S. Heinzle, S. Scandella, and

M. Gross, Post-processing of scanned 3d surface data, in Proc. Eurographics Symp.

on Point-Based Graph., 2004, pp. 85–94.

[170] Wild Magic 2.4. http://www.magic-software.com/SourceCode.html.

165

BIBLIOGRAPHY

[171] A. P. Witkin and P. S. Heckbert, Using particles to sample and control implicit

surfaces, in Proc. SIGGRAPH ’94, 1994, pp. 269–277.

[172] T.-T. Wong, W.-S. Luk, and P.-A. Heng, Sampling with hammersley and

halton points, Journal of Graph. Tools, 2 (1997), pp. 9–24.

[173] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder, Removing excess topol-

ogy from isosurfaces, ACM Trans. on Graph., 23 (2004), pp. 190–208.

[174] J. Wu and L. Kobbelt, Optimized sub-sampling of point sets for surface splatting,

in Proc. Eurographics ’04, 2004, pp. 643–652.

[175] H.-K. Zhao, S. Osher, and R. Fedkiw, Fast surface reconstruction using the

level set method, in Proc. 1st IEEE Workshop on Variational, Geometric and Level

Set Methods in Comp. Vis. (VLSM), 2001.

[176] G. Zigelman, R. Kimmel, and N. Kiryati, Texture mapping using surface

flattening via multidimensional scaling, IEEE Trans. on Visual. and Comp. Graph.,

8 (2002), pp. 198–207.

[177] D. Zorin and P. Schröder, Subdivision for modeling and animation, SIG-

GRAPH ’00 course notes, (2000).

[178] M. Zwicker, M. Pauly, M. Knoll, and M. Gross, Pointshop3d: An in-

teractive system for point-based surface editing, in Proc. SIGGRAPH ’02, 2002,

pp. 322–329.

[179] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, Surface splatting, in

Proc. SIGGRAPH ’01, 2001, pp. 371–378.

[180] , Ewa splatting, IEEE Trans. on Visual. and Comp. Graph., 8 (2002), pp. 223–

238.

166

