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Abstract

The emergence of distributed applications operating on large-scale, heterogeneous and de-
centralised networks poses new and challenging problems of concern to society as a whole,
in particular for data security, privacy and confidentiality. Trust management and authori-
sation policy languages have been proposed to address access control and authorisation in
this context. Still, many key problems have remained unsolved. Existing systems are often
not expressive enough, or are so expressive that access control becomes undecidable; their
semantics is not formally specified; and they have not been shown to meet the requirements
set by actual real-world applications.

This dissertation addresses these problems. We present CASSANDRA, a role-based lan-
guage and system for expressing authorisation policy, and the results of a substantial case
study, a policy for a national electronic health record (EHR) system, based on the require-
ments of the UK National Health Service’s National Programme for Information Technol-
ogy (NPfIT).

CASSANDRA policies are expressed in a language derived from Datalog with constraints.
CASSANDRA supports credential-based authorisation (e.g. between administrative domains),
and rules can refer to remote policies (for credential retrieval and trust negotiation). The
expressiveness of the language (and its computational complexity) can be tuned by choosing
an appropriate constraint domain. The language is small and has a formal semantics for
both query evaluation and the access control engine.

There has been a lack of real-world examples of complex security policies: our NPfIT
case study fills this gap. The resulting CASSANDRA policy (with 375 rules) demonstrates that
the policy language is expressive enough for a real-world application.

We thus demonstrate that a general-purpose trust management system can be designed
to be highly flexible, expressive, formally founded and meet the complex requirements of
real-world applications.
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1
Introduction

1.1 Research Motivation

In July 2003, a “serious breach of patient confidentiality” was reported at the Belfast Royal
Victoria Hospital. The Real IRA had gained access to electronic patient records and gath-
ered information on police officers to target them for murder [BBC03]. This example of
the potential dangers of electronic medical databases may be extreme, but there have been
several cases in the recent past where lax attitudes towards patient confidentiality has led
to the ruin of people’s lives [And96a, And99, Bro00].

The NHS’s National Programme for Information Technology (NPfIT), conceived in 2002
and to be completed by 2010, is the largest and most ambitious IT project in the UK.
NPfIT’s central project is the Spine, a nation-wide online electronic health record (EHR)
service. There is serious concern amongst the public and health professionals alike that the
Spine will erode confidentiality even further1.

With traditional paper-based health records, abuse by outsiders requires physical access
to the paper files, and the likelihood of confidentiality breaches by health professionals is
minimised by social control — in any case, the potential damage is kept local. In contrast,
a national EHR system inherently contains higher risks for several reasons: the aggregation
and centralisation of data from millions of patients combined with the wide availability
of data to network users; the lack of social control mechanisms; and the possibility of
automated attacks. It is clear that any such system requires sophisticated access control
technology. With today’s technology, it is still a daunting task to design a clinical informa-
tion system of such a scale that is efficient, easy to use, and upholds the highest security
standards.

The example of online electronic health records illustrates a current research problem in
information security: that of access control in widely-distributed dynamic systems such as

1For a selection of articles reflecting the public scepticism regarding NPfIT, see e.g. [Haw03, Rog03, CS03,
Col03a, Pal03, Col03c, Cro03, Fou03, Arn03, Ley04, Col04b, Car05, Mul05, Kei05].
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12 Introduction

the Internet. In the past, access control models have been designed for relatively simple
environments: single computers with multiple accounts (e.g. discretionary/mandatory ac-
cess control) or centralised networks of a single enterprise (e.g. role-based access control).
We are interested in distributed systems that are heterogeneous, dynamic, decentralised and
large-scale, with possibly billions of autonomous entities (which may be human individuals
but could also be software agents, enterprises or other administrative domains) wishing to
access and share resources in a secure and controlled fashion.

What is it that makes access control in this context so very challenging? Firstly, the
authorisation policies (i.e., the rules governing who can access which resources) can be
extremely complex, may partially rely on and interact with policies of other users on the
network, and they can frequently change. Secondly, unlike before, access control cannot be
solely based on identification and authentication of individuals anymore. In the new envi-
ronments, subjects wish to collaborate and share their resources with previously unknown
users. We therefore need a way to establish trust between mutual strangers.

In the trust management approach [BFL96], entities explicitly define their authorisation
policy, using a high-level policy language to express rules governing access to protected and
shared resources. The policy can then be used by the trust management software to decide
whether or not to grant access requests. This approach separates policy from the actual
implementation, thus simplifying security administration and policy evolution.

Access authorisation in a trust management system is based on credentials, digitally
signed certificates asserting attributes about entities holding them. In the simplest case, the
credential may be an identity certificate, but in general the attributes need not be identity-
based. Peers establish trust between each other by exchanging sets of suitable credentials.
This idea is common in everyday life: for example, a passenger can check in and request a
boarding pass at the airport on production of a passport and a flight ticket.

Although a fair number of trust management systems and policy languages have been
proposed, the area is still immature and many key issues have remained unsolved. There
is controversy about what features are needed and how expressive and generic the pol-
icy language should be. The diversity of emerging applications with differing security re-
quirements has led to the development of policy languages supporting a wide variety of
policy-related constructs, e.g. role hierarchies, delegation, appointment, or separation of
duties. Often, existing languages are extended to accommodate more complex policies.
For example, the role-based policy language RT0 [LWM01] was extended to RT1 to handle
parameterised roles, and to RTT to express separation of duties [LMW02]. Another ex-
tension of RT, RTC

1 [LM03], provides constructs for limiting the range of role parameters
using constraints.

However, adding constructs to a language in an ad hoc fashion to increase its expres-
siveness has several disadvantages. Firstly, it is unlikely that the extension will cover all
policies of interest; secondly, the semantics and implementations of the language have to be
changed; thirdly, languages with many constructs are harder to understand and to reason
about; and lastly, query evaluation usually becomes computationally more expensive with
increasing expressiveness (in some cases, the language is even undecidable, so processing
access requests may never terminate).

We believe that a policy language should be flexible enough to be able to express con-
structs and policy idioms directly without having to add them as first-class features. Fur-
thermore, it should be possible to tailor its expressiveness and computational complexity
to meet the application’s requirements without having to change its semantics.

Most existing systems do not have a sound formal foundation. In many cases, only
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the semantics of the policy language is formally specified. However, what is generally
missing is a formal semantics for the operations of the system, specifying, for example, what
happens precisely to the state of the system when a role is deactivated or when a credential
is requested. Without a formal semantics we cannot be certain about the correctness of
evaluation algorithms and of policies written in that language. Furthermore, it also leads
to misunderstandings when communicating with other researchers in the area: Everyone
uses terms such as “policy” and “role” with a different intended meaning.

At the same time, the research area suffers from a surprising lack of practical examples
and case studies of real-world authorisation policies that are large and complex. Obviously,
without such examples it is hardly possible to determine the general requirements of policy
languages, so it is not surprising that up to now, policy languages have remained of mostly
academic interest.

The NHS Spine is a much-cited example of an application that would actually require
such a sophisticated policy language: The proposed system is distributed, complex, and
large. Moreover, the security requirements are likely to change frequently as changes in
the relevant legislation and national guidelines will need to be immediately reflected in the
EHR service’s policy. The confidentiality requirements are complex: For example, patients
will be, to some extent, allowed to configure fine-grain access control to their own records.
These requirements have so far only been specified in informal documents, incomplete and
written in plain English.

The main thesis of this dissertation is that a general-purpose trust management system
can be designed to be highly flexible, expressive, formally founded and meet all require-
ments of real-world applications.

To justify this thesis, we propose CASSANDRA, a trust management system whose expres-
siveness and computational complexity can be flexibly adjusted by a so-called constraint
domain parameter. In combination with a suitable constraint domain, CASSANDRA’s expres-
siveness surpasses that of existing systems, although its grammar is simple and elegant.
Both language and the access control engine have a formal semantics, and we prove the-
orems guaranteeing termination of query processing. Furthermore, CASSANDRA can auto-
matically retrieve missing credentials over the network and supports automated trust nego-
tiation, a model in which credentials themselves are treated as confidential resources. This
dissertation further presents the details of a substantial case study on a formal CASSANDRA

policy for the NHS Spine. The case study confirms that distributed applications will indeed
require policy-based trust management with a higher degree of flexibility and expressive
power than offered by previous solutions.

1.2 Research Contribution

We have carefully explored the design space of trust management and policy specification
and have developed CASSANDRA, a role-based trust management system with unique fea-
tures.

Firstly, the expressiveness (and hence also its computational complexity) of its policy lan-
guage is easily adjustable. The language is based on a clear mathematical foundation, that
of Datalog with constraints, or DatalogC . As such, it is parameterised by a so-called con-
straint domain. Depending on the application’s requirements, a suitable constraint domain
can be “plugged” into the system (i.e., into the formal semantics as well as into an actual
implementation) as an independent module without having to change its semantics. By
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factoring out the constraint domain, the language syntax and semantics are kept small and
simple. In particular, CASSANDRA has no explicit provisions for standard policy idioms such
as role hierarchy, separation of duties or delegation; instead, it is truly policy-neutral in
that it can encode such idioms (and many variants) as well as more advanced mechanisms
such as automated credential retrieval and trust negotiation.

Secondly, we present a complete formal specification for CASSANDRA. This includes not
only the policy language semantics but also an operational semantics of the access control
engine. The operational semantics specifies the global state changes upon a request such
as deactivating a role. The system’s formal foundation eliminates ambiguities and could be
used for the development of policy analysis techniques.

Thirdly, we have explored the tradeoff between expressiveness and decidability. Con-
straint compactness [Tom97] is a sufficient logical condition on constraint domains that
guarantees decidability of policy queries, irrespective of the policy and the query. We prove
constraint compactness theorems for a number of interesting and useful constraint do-
mains. However, constraint compactness is generally hard to prove and rather restrictive.
We prove a soundness theorem for a static groundness analysis procedure that can be used
to cut down overly expressive constraint domains to a constraint compact fragment at
runtime.

Finally, we present the results of our case study on a CASSANDRA policy for a national
EHR service in the UK. Our policy is based on official NHS and Department of Health
(DoH) specification documents that have also been given to potential suppliers. With 375
rules, the policy is the largest and most complex real-world example we are aware of. The
case study has provided valuable lessons on the requirements of a trust management system.
The EHR policy has been successfully tested on our preliminary prototype implementation
of CASSANDRA.

Parts of this work have been described in refereed conference papers [BS04a, BS04b],
and a technical report [Bec05].

1.3 Dissertation Outline

The remainder of the dissertation is structured as follows.

• Chapter 2 reviews research related to access control in general, and the trust manage-
ment and policy approach in particular.

• Chapter 3 provides an informal overview of CASSANDRA, including its architecture, its
policy language and its policy enforcement mechanisms.

• The policy language is formally specified in Chapter 4. This includes the specification
of its syntax and a fixed-point semantics, as well as formal definitions for the notion
of policy query and answer.

• Chapter 5 discusses computability and decidability issues with respect to policy query
evaluation. It is shown that constraint compactness is a sufficient condition for decid-
ability. The chapter also describes a number of interesting constraint domains along
with algorithms for solving constraints and proofs for constraint compactness.

• Authorisation decisions are made by querying the policy. Chapter 6 describes an ef-
ficient distributed query evaluation algorithm that is based on resolution with mem-
oing, to guarantee termination with constraint compact constraint domains. We also
prove that the algorithm can be modified to perform groundness analysis on policies,
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and how groundness can ensure termination even with an overly expressive constraint
domain.

• Chapter 7 defines the operational semantics of CASSANDRA’s access control engine.
We present formal transition rules that specify the conditions and the resulting global
state changes of performing an action on a resource, activating a role, deactivating a
role, and requesting a credential.

• Chapter 8 shows how standard policy idioms can be encoded in CASSANDRA, including
role hierarchies, separation of duties, delegation and appointment, and trust negotia-
tion strategies.

• Chapter 9 presents the results of our case study on a UK electronic health record
service. We first give some background information and an overview of the current
situation concerning the NHS’s plans to introduce an nation-wide EHR service. Then
we describe our CASSANDRA policy for the service in detail and illustrate the complex-
ity of the policy requirements involved with a scenario.

• Chapter 10 briefly describes our (so far incomplete) prototype implementation of the
system.

• Chapter 11 concludes this dissertation with a discussion of CASSANDRA’s design and
the lessons learnt from the case study, a summary of the main contributions, and an
outline of our future work.

Chapters 5 and 6 are mainly for the mathematically inclined reader and can be safely
skipped without significant loss of continuity.





2
Related Work

Trust management is essentially access control in a widely-distributed environment where
authorisation cannot be based on identity authentication. In this chapter, we first give some
background information on access control, explain why mandatory and discretionary ac-
cess control models are insufficient for large organisations and how this led to the develop-
ment of role-based access control. This is followed by a review of major work in the field
of trust management.

2.1 Access Control Models

2.1.1 Mandatory Access Control

Mandatory Access Control (MAC) refers to policies that are enforced independently of
users’ discretions or actions. The prime example of MAC is the Multi-Level Security policy
used in military environments, first formalised by Bell and LaPadula [BL75] and restated in
[San93]. In this model, access to objects is based firstly on their sensitivity or classification,
represented by a security label, and secondly on the clearance of the user, also represented
by a security label. These labels form a lattice; for example, an often used set of labels is
unclassified ≤ confidential ≤ secret ≤ top-secret. Policy enforcement is then based on two
principles that force information flow to be unidirectional:

• The no read-up principle states that a subject has read access to an object only if the
clearance of the subject is greater than or equal to the classification of the object.

• The no write-down principle allows a subject to write to an object only if the subject’s
clearance is less than or equal to the classification of the object.

The second principle prevents users or programs from accidentally or maliciously declas-
sifying sensitive information. MAC was designed for military systems but is not well suited
for most other purposes, including commercial organisations. Having only a fixed set of
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security labels and two simple access rules, MAC policies are usually too restrictive and
rigid.

2.1.2 Discretionary Access Control

Discretionary Access Control (DAC) is based on the idea that users are owners of objects
and are trusted to manage permissions to access the objects they own. The control is
discretionary in the sense that users are allowed to grant or deny access to objects they
control to other users at their own discretion. Users can also delegate control over objects
to other users.

A DAC policy is based on the identity of users and objects and can be represented by an
access control matrix [Lam71] where users are represented on the rows, and objects along
the columns. Each entry contains the permission mode (e.g. read or write) of the user with
respect to the corresponding object.

The notion of access control matrix is a useful abstraction for representing DAC policies.
It is, however, in general too large to be stored and managed conveniently. Real-world
implementations exploit the fact that the matrix is usually very sparse, and there are various
ways of representing it more efficiently. Access control lists (ACL) represent each column
of the matrix as a list, hence each object is associated with the set of authorised users. A
similar scheme is used in the UNIX file system, where each file is associated with access
modes for the file owner, group, and everyone else in the system. Capability-based access
control stores the matrix by rows. Here, users are associated with the objects they are
authorised to access.

DAC policies are hard to administer, especially when the system is large and dynamic.
Adding and removing users or objects can be expensive, depending on whether ACLs or
capabilities are used in the system. For example, removing an object from a capability-
based system involves traversing each user’s capability list.

2.1.3 Role-Based Access Control

Both MAC and DAC models are not sufficient for large commercial organisations [CW87]:
MAC is clearly too rigid, and DAC is hard to administer. In most organisations, users act
in the capacity of a role or a job function, and access control decisions are determined by
the responsibilities and privileges associated with a role. This observation has led to the
development of role-based access control (RBAC).

Many different RBAC models have been proposed over the last decade (e.g. [FK92,
NO93, SCFY96, NO99, SFK00, FSG+01]), but most researchers would agree on RBAC0

[SCFY96] as the core model. The key components in RBAC0 are sets of users, roles and
permissions. The policy is then specified by a user assignment relation, associating users to
roles they hold, and a permission assignment relation linking roles to the granted permis-
sions. To support the principle of least privilege [SS75, CW87], which states that only the
minimal required set of permissions should be available to a user in a given context, roles
are activated within sessions. A user acquires only the permissions of the activated roles. A
user can activate multiple roles in a single session, and act in multiple sessions at the same
time.

The RBAC96 [SCFY96] family of RBAC models also defines a number of extensions of
the basic model. RBAC1 extends RBAC0 with role hierarchies by introducing a seniority
order between roles. The permissions of a role are inherited by holders of more senior
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roles. However, there are also other variants and interpretations of role hierarchy [FK92,
FB97, San98, Mof98].

The RBAC2 model extends RBAC0 with constraints on the relations, and RBAC3 com-
bines constraints with role hierarchies. Several languages [CS95, AS00, RZFG01] have
been invented for expressing various kinds of RBAC constraints, and separation of duties
constraints in particular [Kuh97, GGF98, AS99]. Again, it has been observed that many
different variants of separation of duties exist [SZ97], the crudest classification being static
versus dynamic separation of duties.

Other RBAC-related policy idioms include role delegation and revocation (again with
many subtle variants) [NC00, BS00, ZAC03], and RBAC administration using RBAC itself
[SBC+97]. Parameterised roles and permissions [GI97, LS97] have been introduced to
provide a finer granularity of control and to decrease the number of roles.

RBAC is often said to be policy-neutral in the sense that many policies, including DAC
and MAC, can be expressed with roles. The notion of roles as an indirection between
users and permissions makes RBAC scalable and greatly simplifies policy administration
in large organisations with a high turnover of users. Another way to look at roles is to
view them as attributes of users [LMW02]. In contrast to DAC and MAC, authorisation
in RBAC is therefore based on user attributes rather than on identity. This point of view
is especially useful in the context of trust management, where users are initially unknown
and authorisation cannot be based on identity.

2.2 Trust Management

This section first outlines the main aspects of the design space of trust management. This is
followed by a review of major work in the field of trust management and distributed access
control systems.

The notion of trust1 has been increasingly viewed as an important concept in informa-
tion security since the last decade. Blaze, Feigenbaum and Laze were the first to intro-
duce the term “trust management” in [BFL96], arguing that authorisation mechanisms in a
distributed system should support decentralisation of administrative tasks, expressive and
extensible policies, and local policies. Authorisation is based on digital credentials, and
policies are written in a policy language. A query evaluation engine checks whether a set
of credentials proves that a request complies with the local policy.

Trust management is a relatively new area of research, but a number of systems with
differing design features have been proposed. In the following, we introduce some termi-
nology used in describing the design space of trust management systems.

Expressive Power Security policies of enterprises and organisations usually exist only in
the minds of security administrators, or, at best, in the form of informal natural-language
documents describing security goals.

1There is no consensus in the literature on the definition of trust in the context of authorisation, and how
it should be computed. For example, some authors have suggested that the amount of trust between two
subjects can change over time and is a function of initial trust, past interactions and other incomplete
information. They model trust not as a binary predicate but rather as a set of ordered values such as the
real numbers [JT99, NK03, CNS03]. For example, an unknown subject would initially be assigned the
lowest trust value. In reputation-based systems (e.g. [ARH97, ST03]) the trust value assigned to a subject
also depends on the subject’s reputation, i.e. the trustworthiness as perceived and reported by other users.
For a clarification of trust and related concepts, see [GS00, MMH02].
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In the trust management approach, such informal policies are translated into policy rules2

written in a formal policy language. A formal policy language that aspires to capture
informally stated security rules must obviously be sufficiently expressive.

The expressiveness of a language can be measured by its ability to express standard pol-
icy idioms that are thought to be frequently required in practice. Often-cited policy idioms
are role hierarchy, separation of duties, role delegation, role appointment, revocation, car-
dinality constraints and temporal constraints.

Negation is used to state negative conditions (e.g. in separation of duties), as well as to
express prohibition rules. If a system allows both prohibitions and permission statements,
it requires some form of conflict resolution procedure. Negation in the presence of recur-
sion is problematic as it can easily lead to semantic ambiguity, and higher computational
complexity (or even undecidability).

In order to express a policy idiom, a language can provide a special-purpose language
construct for the idiom. To support role hierarchies, for example, a language could pro-
vide the hierarchy relation as a special construct, and include it in its language semantics.
Alternatively, a language could encode the policy idiom directly in the language, just using
the more general and basic constructs. The advantage of the latter approach is that it can
express different variants of a single idiom. The former approach, on the other hand, facili-
tates more concise and perhaps more readable policies — however, in the second approach,
concise special constructs could also be introduced as “macros” standing for the actual
construct encoding.

Distributed Credential Management In trust management systems, authorisation is based
on credentials. Credentials are digital certificates signed and vouched for by an issuer,
and contain an assertion, usually about a particular subject. In the very simplest case, the
assertion could be a binding between a subject’s name and a public key; such credentials
are known as identity certificates. In the systems we are considering, the contents of a
credential are usually more complex, for example a predicate or even a policy rule.

Credentials are usually submitted by the requester along with a request. The system then
decides whether the request is granted, based on the submitted credentials and the local
policy. Systems that support automated credential retrieval can retrieve missing credentials
over the network on behalf of the requester. This requires the system to be able to find out
at which location the credential is stored. So far, it has been assumed in the literature that
credentials are stored either with the issuer or with the subject.

Credentials may contain statements that are confidential themselves, and must therefore
be protected. An entity may be willing to disclose a particular credential only when the
other party has revealed some of their own credentials, which in turn may again be pro-
tected. In general, there will be several stages of credential exchanges until a sufficiently
high level of mutual trust has been established. This kind of credential protection is called
automated trust negotiation and is a very new area of research. Automated trust negotia-
tion requires some form of meta-policy to specify credential protection.

Scalability and Complexity A trust management system should be scalable: it should be
easy to write concise and human-readable policies for very large environments, and to up-
date policies in highly dynamic environments. Roles known from RBAC, and in particular

2We use the term “policy” to refer to the set of policy rules pertaining to an entity. In the literature, “policy”
can sometimes also refer to a single policy rule.



2.2 Trust Management 21

parameterised roles, can be used to keep policies concise and easy to administer.
Furthermore, query evaluation and access-control decisions should always be fast, even

in large and complex applications. This condition depends mainly on the computational
complexity of the policy language. It is intuitively clear that high expressiveness generally
comes along with higher complexity; and conversely, a tractable language may come at the
cost of limited expressiveness. Whilst tractability is certainly a desirable property, even a
language with an intractable theoretical worst-case complexity may perform well in prac-
tice. In general, how expressive — and conversely, how efficient — a system must be will
depend on the actual application.

In any case, it is strongly desirable that a policy language be decidable. If a language is
made too expressive, it may become Turing-complete, in which case query evaluation may
never terminate.

2.2.1 PolicyMaker/KeyNote

PolicyMaker [BFL96, BFK99c] was the first example of a trust-management system. Its
credentials and policies are fully programmable in that the choice of the policy language is
left open. This makes policy compliance checking undecidable in general, but in the special
case of monotonic assertions the problem is polynomial-time solvable. PolicyMaker was
designed to be minimal and analysable, so a large amount of responsibility is placed on the
calling application, including policy enforcement, cryptographic verification and credential
gathering.

KeyNote [BFK99a, BFK99b], PolicyMaker’s successor, differs from PolicyMaker in that
cryptographic verification is performed by the trust management system and policies are
written in a specific assertion language, but the core concepts are the same. Applications re-
ceiving authorisation requests call the KeyNote policy engine to check whether the request
should be authorised. They provide the engine with the public key of the requester along
with local policies, credentials (policies signed by foreign parties) and an action attribute set
(a list of attribute/value pairs) containing relevant information. The policy engine replies
with a string; in the simplest case, this may be “grant” or “deny”. It is up to the application
to gather the credentials and to construct an appropriate action attribute set that reflects
the security requirements of the request. It is also the responsibility of the application to
interpret the string returned by KeyNote and to enforce the policy accordingly.

KeyNote credentials and policies essentially specify delegation of authority to a set of
public keys, conditioned on assertions, boolean tests on the action attributes written in the
KeyNote assertion language. The assertion language provides string comparisons, regular
expressions and arithmetic operations and comparisons.

2.2.2 SPKI/SDSI

The Simple Public Key Infrastructure/Simple Distributed Security Infrastructure
(SPKI/SDSI) is a project being developed by the IETF SPKI Working Group, whose goal
is to develop Internet standards for certificate formats, key acquisition protocols, and other
authorisation operations. Originally, SDSI [RL96, Aba98] and SPKI were two separate
projects motivated by the inadequacy of global name schemes as used in the X.509 pub-
lic key infrastructure [ITU00]. Later, both merged into a single framework referred to as
SPKI/SDSI 2.0 or just SPKI [Ell99, EFL+99].

Name certificates have the purpose of defining local names representing a set of public
keys. Formally, a name certificate contains a four-tuple (K,A,S,V) where K is the public
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key of the issuer, A is the local name defined by this certificate, S is another name or a
public key, and V is a validity specification. This tuple defines the local name A in the sense
that all keys represented by the subject S belong to K’s A. Names defined thus can be used
as subject names in other certificates. For example, if KA is Alice’s public key and KUCAM

is the public key of the University of Cambridge, the name certificate

(KA, Universities, KUCAM, 1 year)

certifies that the key KUCAM belongs to Alice’s local definition of “Universities”.
SPKI/SDSI introduces the notions of linked local names which can be interpreted as

groups of entities or public keys. A name in the local name space of the user Alice (with
public key KA) is either of the form KAA1 referring to all keys belonging to the name A1 as
defined locally by Alice, or can be a linked name of the form KAA1A2...An referring to all
keys belonging to the name An as recursively defined by any key belonging to KAA1...An−1.

For example, KA Universities may refer to all universities in Alice’s local name space,
and KA Universities Students would refer to all students in the local name space of those
universities that are defined in Alice’s local name space. The naming mechanism facilitates
the use of local aliases (e.g. Universities) and the linking of several local name spaces.
Thus it is possible to use a group of entities as a single subject where the actual members of
the group may be unknown to the local site; in other words, the naming authority may be
delegated to remote sites. This is something that simpler systems such as KeyNote cannot
express.

Policies are represented by the certificates in the network. There are two kinds of certifi-
cates, name certificates and authorisation certificates.

Authorisation certificates can be represented by a five-tuple (K,S,d,T,V) where K is
again the issuer’s public key, S is a local name under K’s authority representing the subject
of authorisation, d a boolean delegation flag indicating whether the authorisation can be
delegated, T specifies the specific permission to be granted, and V is a validity specification.
For example, the five-tuple

(KA, (KA Universities Students), false, use_discount, 1 year)

grants a discount to all students of universities recognised by KA. Note that the authority
to identify students has been delegated to the universities.

An entity is permitted to access a resource if there is a chain of name and authorisa-
tion certificates that delegates the requested privilege to the entity’s public key. [CEE+01]
presents an algorithm based on rewriting rules for deducing such a certificate chain, given
a collection of certificates. The algorithm does not deal with the problem of automatic
certificate retrieval.

2.2.3 RT

Li, Mitchell and Winsborough argue in [LMW02] that authorisation in collaborative envi-
ronments should be based on authenticated attributes of the entities rather than on public
keys. They propose a family of attribute-based access control (ABAC) languages called RT.
RT can be seen as a combination of RBAC, SDSI’s linked name scheme and Li’s Delega-
tion Logic [LGF03]. This combination enables RT to overcome the failure of key-based
trust management languages (e.g. KeyNote or the early SPKI) to express statements such as
“anyone who is a student is entitled to a discount”.
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The policy rules, or “credentials”, as they are called in RT, specify only the role mem-
bership relation. In their simplest language, RT0 [LWM01], policy rules can be of four
different forms:

• A.r← B means “A says that B is a member of role r”

• A.r0← B.r1 means “A says that X is a member of role r0 if B says that X is a member
of role r1”. This provides direct delegation of role membership defining authority.

• A.r0 ← A.r1.r2 means “A says that X is a member of role r0 if a member of role r1

says that X is a member of r2. This feature represents attribute-based (as opposed to
identity-based) delegation of authority.

• A.r0← B1.r1∩ ...∩Bn.rn means “A says that X is a member of r0 if, for 1≤ i≤ n, Bi

says that X is a member of ri. This type of credential introduces conjunction of role
membership conditions.

RT1 introduces parameterised roles; RT2 adds to RT1 constructs for grouping logically
related objects such as resources or permissions. RTT adds a construct called “manifold
roles” for expressing threshold and separation of duty policies. RTD supports delegation
of role activations.

The credentials in these languages can be translated into Datalog. In RT’s youngest
offspring, RTC

1 [LM03], credentials are translated into Datalog with constraints. However,
their use of constraints is rather limited: constraints are used only to define a range on each
role parameter; constraints between two parameters are not permitted in order to keep
policies more comprehensible and to guarantee tractability. The language also does not
allow constraints on the role names or the entities of a credential.

The problem of automatically constructing an RT credential chain is addressed in
[LWM01]. The problem of credential discovery is central to trust management systems
which are based on the notion of delegation. The paper presents an algorithm for solving
the problem without the often-made assumption that credentials are either stored centrally
or that they are exclusively stored with the issuer. It is suggested that many situations re-
quire more flexible credential storage policies where some credentials are stored with the
issuer and some with the subject. However, the situation where a credential is neither stored
with the issuer nor with the subject is not considered.

RT also introduces application domain specification documents (ADSD): an ADSD de-
fines a common vocabulary for role names, data types and role parameters and provides
natural language descriptions of the components. Credentials can refer to a specific ADSD
to declare the vocabulary it is using.

2.2.4 QCM/SD3

QCM [GJ00b] and its successor SD3 [Jim01] are trust management systems for building
secure name servers, public key directories and distributed repositories of security policies.

QCM’s policy language uses set comprehensions to define sets of expressions that can be
queried for membership. Credentials are signed documents asserting membership informa-
tion about sets. Similar to SPKI/SDSI and RT, set names can be prefixed with a public key
expression to indicate delegation of authority to that key. For example,

AliceKeys = {k | (“Alice”,k) ∈ Kbob$PKD}
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is a policy specifying Alice’s keys by delegating authority to Bob’s definition for the set PKD.
When QCM is given this policy along with a credential

Kbob says (“Alice”,Kalice) ∈ PKD,

it can evaluate AliceKeys to {Kalice}.
QCM was the first trust management system to consider automated credential retrieval.

In the example above, if QCM had not been given the credential, the system would attempt
to retrieve it from Bob’s server. This generally requires credentials to be signed online,
which can be prohibitively expensive. QCM also has an offline signing mode where only
pre-signed credentials are used to compute answers. To make denial-of-service attacks less
likely QCM can be switched into a verify-only mode which verifies policies on the basis of
locally available credentials only.

In [GJ00a], an extension to QCM is introduced to deal with credential revocation in a
uniform framework. The distribution of revocation information uses the same mechanisms
as the ones used for normal credentials. To avoid non-monotonicity and logical inconsisten-
cies, variables and names are tagged with polarities (+/-). A polarity type system (positive
names for set membership, negative names for non-membership) ensures monotonicity in
the sense that approximate query results are lower bounds for membership queries and up-
per bounds for non-membership queries. The polarity discipline also ensures that policies
use a set name either exclusively for testing membership or for testing non-membership.

SD3 [Jim01] extends QCM with recursion. The language is based on distributed Datalog,
where predicates can be prefixed with an entity’s public key and its IP address. The example
from above could be expressed in SD3 as

aliceKey(k) :−Kbob @IPbob $pkd(Alice,k)

SD3 also allows intensional answers. So if the evaluation engine is queried with the pred-
icate aliceKey(k) without any supporting credentials, it could either contact Bob’s server or
it could return the above rule as an intensional answer. [JS01] discusses the exact meaning
of a correct and complete answer in the presence of intensional answers, and describes an
algorithm for query evaluation.

The query evaluation engine produces a formal proof for the correctness of the answers.
The proof is then checked by a simple proof checker that is much smaller than the policy
evaluation engine, thus dramatically reducing the trusted computing base.

Both QCM and SD3 are similar to PolicyMaker and KeyNote in that they do not have
an access control engine: it is the application’s job to formulate appropriate queries and to
interpret and enforce the answers.

2.2.5 Binder

Binder [DeT02] is another example of a Datalog-based policy language. Authorisation
statements are expressed by defining arbitrary predicates. The declarations can be simple
facts such as

can(Alice,Read,File123).
employee(Alice,Heffers).
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or rules such as

can(x,Read, f ) :− employee(x,Heffers).

Binder supports delegation of authority and certificate-based authorisation in a similar way
as SD3. Predicates appearing in the body of a rule can be tagged by a so-called context, a
public-key that indicates who vouches for the predicate. The context can also be a variable
of sort “public-key”. For example, the following rule delegates authority over the employee
predicate to the HR department:

employee(x,y) :−
z says employee(x,y),
hr-key(z)

A tagged predicate K says P can be satisfied by an imported certificate asserting the fact P
and signed by K. However, Binder certificates can also assert rules, as opposed to only facts
as in SD3. In general, an imported certificate signed by K is interpreted by tagging the head
of the rule and all body predicates without context tags with the context “K says”. For
example, a certificate asserting the rule above, signed by Heffers and imported into a new
context would be interpreted as

Heffers says employee(x,y) :−
z says employee(x,y),
Heffers says hr-key(z)

Authorisation to access a resource is checked by deducing a predicate from the collection
of local policy and imported certificates. The exact form of the query depends on the
application. Binder does not specify any special predicates with a predefined authorisation
semantics, and cannot express policies with state.

By regarding predicate contexts as extra predicate arguments, Binder policies can easily
be fully translated into Datalog. Policy queries are therefore polynomial-time decidable.

2.2.6 Lithium

Halpern and Weissman have studied authorisation policy specification and analysis using
various fragments of first-order logic. The most expressive, still tractable, fragment in
[HW03] is referred to as Lithium in [WL04].

In [HW03], policy rules of the following form are considered:

∀x1, ..,xm. f ⇒ (¬)Permitted(e,a)

where f is any first-order formula and (¬)Permitted indicates that the predicate may or may
not be negated. Permitted(e,a) is interpreted as “entity e has permission to perform action
a”. Similarly, ¬Permitted(e,a) means “e is forbidden to do a”. Furthermore, the context in
which rules are used are specified by a so-called environment, a collection of formulas not
containing the Permitted predicate.

Deducing if an action is permitted (or explicitly forbidden) amounts to checking whether
the corresponding Permitted (or ¬Permitted) predicate is logically entailed by the conjunc-
tion of all rules and the environment. Similarly, policy consistency reduces to logical satis-
fiability of the conjunction of all rules and the environment.
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The main difference to the Datalog-based systems is that Lithium allows explicit prohi-
bition. In contrast to Datalog with negation, where a predicate is assumed to be false if
it cannot be proved (closed world assumption), a predicate in Lithium is false only if its
negation can be logically deduced. It is argued that prohibition is necessary for detecting
conflicts in merging two policies.

As the general validity problem for first-order logic is undecidable, a variety of syntactic
restrictions are considered that lead to decidability. In essence, rules are restricted such
that the formula f above is a quantifier-free conjunction of possibly negated predicates. To
achieve tractability in Lithium, further restrictions are placed on the use of the equality
relation and predicates appearing on both sides of an implication.

2.2.7 OASIS

The Open Architecture for Secure Interworking Services (OASIS) is a role-based trust man-
agement framework [HBM98, YMB02, BMY02]. It extends RBAC with parameterised
roles and privileges, environmental predicates that are dependent on external run-time in-
formation and the notion of role appointment. Many RBAC models support role dele-
gation. However, in real life there is more often the need to assign permissions not held
by the assigner herself. For example, a hospital receptionist may assign the permission to
read a patient’s record to the patient without being permitted to read the record herself.
Appointment can thus be seen as a generalisation of delegation. In OASIS, appointments
are granted by appointment certificates.

OASIS also supports immediate and cascading role revocation, even across the network.
This is achieved by revocation notifications sent through an asynchronous event infrastruc-
ture [BMB+00]. Revocation between distributed OASIS services as well as role and policy
component sharing are governed by bilateral service level agreements (SLA). Automatic
SLA generation for OASIS is studied in [Bel04].

There are two kinds of policy rules: authorisation rules assign privileges to roles, and
activation rules specify prerequisites for role activation. Authorisation rules are of the
following form:

r,e1, ...,en ` p

This rule assigns the privilege p to the role r if the environmental predicates e1,...,en hold.
Role activation rules are of the following form:

r1, ...,rk,ac1, ...,ac`,e1, ...,em ` r

The target role r can be activated if the prerequisite roles ri have been activated, the ap-
pointment certificates aci are present and not revoked, and the environmental predicates
ei hold. Prerequisite conditions can be tagged to indicate that they are membership con-
ditions. As soon as a membership condition ceases to hold, the target role is revoked.
Since the target role can itself be a membership condition for other roles, this can trigger
cascading revocation.

2.2.8 Automated Trust Negotiation

Some trust management systems address the problem of automated credential retrieval,
i.e., how and where to find credentials on behalf of users to satisfy a policy. A related
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problem is that of automated trust negotiation (ATN), the process of finding, retrieving
and exchanging credentials that may be protected resources themselves.

In [WSJ00], a model is presented for exchange strategies of potentially sensitive attribute-
based credentials. Both client and server credentials are protected by Credential Access
Policies (CAP). A CAP specifies which credentials the other party must present in order
for the protected credential to be disclosed. Typically, a client approaches a server with a
service request along with a set of supporting credentials. If the submitted credentials are
not sufficient, the service will reply with its service-governing policy, asking for necessary
client credentials. Since these credentials may be sensitive, the client may wish to see specific
server credentials before disclosing the requested credentials. In short, trust is established
between client and server through incremental exchange of sensitive credentials.

Two different negotiation strategies are discussed. Both strategies are sound, complete
and terminating even in the case of cyclic dependencies. The first one is the Eager Strategy
where at each step, each party discloses all credentials that are currently unlocked until the
original request can be satisfied or no new credentials are unlocked. This strategy is simple
and fairly efficient but has the drawback that more credentials are disclosed than necessary.
With the Parsimonious Strategy, on the other hand, each credential request is derived from
the preceding request and the local CAP. This ensures that the set of credentials exchanged
is kept locally minimal. The drawback is that the negotiation process may leak information
about possession of credentials without disclosing the credentials themselves.

This information leakage problem is addressed in [WL02]. The behaviour of an entity
during the negotiation process generally reveals information about credential possession.
The paper proposes to specify an acknowledgement policy on top of the authorisation
policy to protect possession information about credentials. The negotiating partner first
has to satisfy the acknowledgement policy if she asks for an acknowledgement-protected
credential. This should ensure that entities behave uniformly no matter whether a credential
is actually in possession of the entity or not. The problem is hard and only partially solved
in [WL02].

In [YWS01], it is argued that entities should be given the freedom to choose their own
credential disclosure strategy and be able to change their strategy even during negotiation,
as long as the strategies on both sides remain interoperable. Two negotiation strategies are
said to be interoperable if trust negotiation using these two strategies succeeds whenever it
is possible. A family of negotiation strategies, Disclosure Tree Strategies, is presented which
are all mutually interoperable.





3
Design Issues and Overview

As a trust management system with a high-level policy language, CASSANDRA’s purpose is
to enable potentially large networks of entities to share their resources under well-defined
restrictions, specified by local authorisation policies, even if they are mutual strangers.
CASSANDRA was designed to be a system to meet the complex requirements of real-world
applications. To satisfy these requirements, our main design goals were as follows:

• Simplicity: The policy language should contain just a small number of basic, orthogo-
nal first-class constructs, from which more complex features can be constructed. This
approach enhances expressiveness and keeps the semantic description of the language
concise. As is the case with other language design issues, this design goal involves a
tradeoff: the language must still be high-level enough so that policy writing is reason-
ably simple and policies are comprehensible.

• Flexibility: Applications have widely varying needs, and it is unlikely that a single
language could fulfil the entire range of application requirements. Moreover, as there
is always a tradeoff between expressiveness and computational complexity, a policy
language should not be more expressive than it needs to be. Ideally, it should be pos-
sible to flexibly tune the expressiveness of the language according to the application’s
specific needs.

• Support for delegation of authority: As collaborating entities may be mutual
strangers, authorisation must be based on attributes (cf. [LMW02]) rather than on
identity. Such attributes are certified by digitally signed credentials that can form
chains of trust. The trust management system should support credentials requests,
submissions, retrieval and negotiation. The policy language must be expressive
enough to specify these operations.

• Scalability: Roles are a useful concept for simplifying policy administration. Rather
than assigning permissions to individuals, rules can separately specify the role mem-
bership conditions and the role-permission relation.
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Figure 3.1: Cassandra components.

• State awareness: Access control decisions often depend on past events, or the system’s
state. For example, “a clinician may only access a patient’s data if the patient has
given express consent”, or “a person may authorise a payment if they were not its
initiator”. The system’s model should be explicit about the state and the state changes
that are relevant to access control.

This chapter describes how these objectives are met in CASSANDRA, and provides a brief
and informal overview accompanying the more detailed and technical subsequent chapters.

3.1 Architectural Overview

Imagine a network of entities1 who would like to collaborate with each other. Every entity
runs its own copy of a CASSANDRA service acting as a protective layer around the resources.
A service can conceptually be broken up into several components.

Figure 3.1 shows the internal components of a CASSANDRA service. Entities can interact
with each other only via the interface. The design goal of the interface was simplicity,
orthogonality and generality. Consequently, the interface defines only the most essential
and basic requests relevant to role-based trust management: performing an action (i.e.
accessing a resource), activating and deactivating a role, and requesting a credential that
perhaps is needed to gain authorisation somewhere else.

The conditions on which such requests are granted are specified by a local CASSANDRA

policy. Upon a request, the access control engine constructs and sends corresponding policy
queries to the evaluation engine. The evaluation engine is designed in such a way that a
constraint solving module can be plugged into it as an independent module, matching the
chosen constraint domain C utilised by the policy.

1Entities can be human users, organisations, or programs, often also called “principals” or “subjects” in the
literature.
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CASSANDRA supports distributed delegation of authority: a policy rule can have a condi-
tion asking for a credential signed by some other entity. Rules can also specify where such
credentials are located. Query evaluation may thus trigger a series of credential requests
over the network before returning with an answer. Finally, the answer is used by the access
control engine to decide whether the request is to be granted.

3.2 Interface and Access Control Engine

Entities interact with each other by sending requests through the interface depicted in Figure
3.1. The requester may submit a set of credentials to the service that may support the
request. For example, to receive a discount, the requester may need to submit a student’s
ID.

Upon a request, the access control engine invokes the evaluation engine to query the
policy, checking whether the request should be granted. An authorisation decision thus
amounts to a logical deduction. The exact query depends on the type of request: performing
an action, activating a role, deactivating a role, or requesting a credential. With just these
four basic operations we can encode more complex policy processes.

3.2.1 Performing an Action

Actions represent accesses to protected resources and are parameterised for greater scal-
ability, e.g. Read-file(file). So if a user Sarah wants to read the file Readme, say, the
corresponding query would be:

Can the predicate permits(Sarah, Read-file(Readme))2 be deduced from the
service’s policy and the set of submitted credentials?

Only if the evaluation engine returns a positive answer, the access control engine will au-
thorise the request.

3.2.2 Activating a Role

Role-based access control (RBAC) was introduced to simplify security administration of
large enterprises (see §2.1.3). CASSANDRA combines trust management with the notion of
role. Our roles, just like the actions, are parameterised (cf. [GI97, LS97]) to enhance
language expressiveness, e.g. Student(age, college, subject). Role parameters can also dra-
matically reduce the number of required roles in a policy.

In RBAC, members of a role can activate the role within a so-called session to obtain
the permissions associated with it. This helps to uphold the principle of least privilege, as
only those roles that are required for the current task need to be activated, thus reducing
the chance of error. Furthermore, constraints can be placed on the roles that are simulta-
neously activated to express separation-of-duties constraints. For example, a doctor may
be registered on an electronic health record system as both a clinician and as a patient, but
the system may force the doctor to activate only one of these login roles at any time.

2For the remainder of the dissertation, variables will be written in small letters and italics (e.g. file), generic
(meta) constants in italics but capitalised (e.g. some entity E), and concrete constants in typewriter font
(e.g. Read-file). Predicate and function names will be written in sans serif font (e.g. the special predicate
name permits).
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In CASSANDRA, role membership is described by the canActivate predicate, and current
role activations by the hasActivated predicate. A typical role activation request would be
processed by the access control engine as follows:

Can the special predicate hasActivated(Sarah, Student(22, Trinity, Maths)) be
deduced? If yes, then the user already has activated that role, otherwise check
if canActivate(Sarah, Student(22, Trinity, Maths)) can be deduced.

If the answer is positive, the request is granted. Moreover, the service “remembers” the
new role activation by adding the fact

hasActivated(Sarah, Student(22, Trinity, Maths))

to the policy.
This last point is crucial: CASSANDRA is aware of role activations (and deactivations), and

hence state-dependent policy rules can be expressed as conditions on role activations. The
two state-dependent examples from page 30 could then be expressed as

A clinician may only access a patient’s data if the patient has activated the
express-consent role

and

A person may authorise a payment if they have not activated the payment’s
initiator role.

As can be seen from these examples, the notion of role in CASSANDRA is much more general
than the organisational job roles typically used in RBAC. A role can more generally be
seen as an attribute that can be queried by the policy, and role activation facilitates the
setting of that attribute. Activating a role can thus model a state-changing action such as
giving consent or initiating a payment. The difference to simply performing an action is
that activating (or deactivating) a role changes the state in a way that is directly observable
within our operational model (see Chapter 7).

CASSANDRA policies can also access stateful information that is “outside” the policy and
not observable within the operational semantics, via constraints that depend on the envi-
ronment, e.g. the current time or data from an external database. The example above could
alternatively be implemented as

A clinician may only access a patient’s data if the external patient consent
database has an entry for the patient

and

A person may authorise a payment if they have not been registered as the pay-
ment’s initiator in the external database.

Policy authors are thus given the choice of which part of the system state should be kept
inside the policy and encoded as role activations. In the policy rules presented in Chapters 8
and 9, we chose to encode those actions that directly influence the authorisation dynamics
of the application, e.g. consent management, personal access restrictions, or delegation of
permissions.
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3.2.3 Deactivating a Role

Deactivating a role can be used in different contexts. If the role is a job role, deactivating
one’s own role may model logging off. If the role is someone else’s job role, it corresponds
to role revocation. If the role is used to signify the setting of an attribute (see §3.2.2),
deactivation can be used to unset the attribute, e.g. to withdraw previously given consent.

If for example some user Tim requests to deactivate Sarah’s student role, the access con-
trol engine would issue the following series of queries:

Can hasActivated(Sarah, Student(22, Trinity, Maths)) be deduced? If this is
not the case, then the role can obviously not be deactivated. Otherwise check
if canDeactivate(Tim, Sarah, Student(22, Trinity, Maths)) can be deduced.

If the request is granted, the obvious consequence is to remove the hasActivated fact from
the service’s policy. But CASSANDRA also supports cascading revocation, where one deactiva-
tion may trigger other deactivations. This form of cascading revocation is especially impor-
tant in the context of role delegation and appointment. The special predicate isDeactivated
indicates which further deactivations are triggered.

So the service would also issue the query

Given the policy, the submitted credentials and the fact isDeactivated(Sarah,
Student(22, Trinity, Maths)), for which values of “user” and “role” can the
predicate isDeactivated(user, role) be deduced?

Cascading revocation is then performed by additionally removing all facts

hasActivated(user, role)

from the policy, for all computed values of user and role.

3.2.4 Requesting a Credential

A policy may require the presence of credentials for granting a request. A rule can specify
that a credential should be automatically fetched over the network by the service. Alterna-
tively, it could require that a credential must be submitted locally to support the request,
perhaps to save bandwidth or simply because the service does not know where the creden-
tial can be retrieved.

Since requests can be supported by the submission of credentials, there must be a way for
entities to acquire credentials. Credentials generalise digital certificates, where a name is
bound to a public key and thereby an entity’s identity is asserted. In CASSANDRA, a credential
can assert any predicate and is always signed by some entity. For example, if isStudent is a
user-defined predicate name, then

UCam.isStudent(Sarah, Trinity, Maths)

would denote a credential signed by the University of Cambridge.
Requesting a credential thus amounts to asking a service for a signed assertion of a pred-

icate. The matter is slightly complicated by the fact that in general predicates may contain
sensitive information and therefore must themselves be protected. The special predicate
canReqCred specifies who and under which conditions a predicate may be disclosed as a
credential.

If Tim requests the above credential from UCam, UCam’s access control engine will first
issue the query
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Can canReqCred(Tim, UCam.isStudent(Sarah, Trinity, Maths)) be deduced from
UCam’s policy?

Alternatively, Tim could also send a credential request leaving some of the parameters
unspecified, for example leading to the query

Can canReqCred(Tim, UCam.isStudent(student, college, subject)) be deduced?

The answer to this query may be a constraint on the parameters such as “college=Trinity,
subject=Maths”, which could be interpreted as “Tim is only allowed to request student
credentials about Trinity Maths students”. This answer is then used by the access control
engine to issue a new query

Can isStudent(student, college, subject) be deduced, where college=Trinity and
subject=Maths?

Suppose the answer to this query is “student ∈ {Sarah,Jo,Jenny}”, in which case Tim is
sent a credential with all the predicate parameters correspondingly constrained or instanti-
ated. Tim can now use this credential to support his requests at other services.

We have seen above that the four kinds of requests are decided by the access control
engine issuing corresponding queries of the form “can P be deduced from the policy?”,
where P is a predicate involving one of the special predicates names permits, canActivate,
hasActivated, canDeactivate, isDeactivated and canReqCred. Next, we outline the policy
language used to define the conditions under which such predicates are true. The access
control engine is described in full detail in Chapter 7.

3.3 Policy Specification and Evaluation

When writing policies, it is natural to think in terms of the goals rather than sequences of
operations. That is why the declarative paradigm known from logic programming lends
itself so well to policy specification. In logic programming, rules are written to define
predicates, and the programmer need not specify explicitly the order in which the rules are
applied, so the logic is effectively separated from the control.

Consequently, many policy languages are based on (negation-free) Datalog [AHV95].
Datalog rules are essentially Horn clauses without function symbols3 of the form

p0( ~x0)← p1( ~x1), ...,pn( ~xn).

The translation of informal policies into policy rules is then relatively straightforward since
most rules are naturally expressed as conditional sentences. Datalog’s recursive nature
makes it also well-suited for transitive policy idioms such as delegation or appointment.

However, the lack of function symbols is often too restrictive in practice. Many policy
languages extend Datalog to increase its expressiveness (cf. Chapter 2). In contrast, one
of our design requirements was to allow the language’s expressiveness to be flexibly tuned:
CASSANDRA is based on Datalog with Constraints, or DatalogC , and is thus parameterised
by a so-called constraint domain with which the language can be flexibly tailored to the

3This restriction makes the language computable (in contrast to e.g. Prolog) and thus suitable for deductive
database queries.
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application’s specific needs. In DatalogC , rules can express constraints (taken from the
constraint domain) on predicate arguments, for example

isMatureStudent(name)←
isStudent(name,college,subject),
matriculated(name,matricDate),
dateOfBirth(name,birthDate),
matricDate−birthDate≥ 21 years

3.3.1 Special Predicates

Policy rules can refer to arbitrary, user-defined predicate names such as isMatureStudent or
dateOfBirth. Apart from these, there are also six special predicates that we have already
encountered in §3.2. These are special in the sense that they are used by the access control
engine to make authorisation decisions (and possibly to modify the policy state) for the four
types of requests: performing an action, activating and deactivating a role, and requesting
a credential.

1. permits(e,a) indicates that the entity e is permitted to perform action a.

2. canActivate(e,r) indicates that the entity e can activate role r.

3. hasActivated(e,r) indicates that the entity e has currently activated role r.

4. canDeactivate(e1,e2,r) indicates that e1 can deactivate e2’s role r (if e2 has really cur-
rently activated r).

5. isDeactivated(e,r) indicates that e’s role r shall be deactivated as a consequence of
another role deactivation (if e has really currently activated r).

6. canReqCred(e1,e2.p(~e)) indicates that e1 is allowed to request and receive credentials
asserting p(~e) and issued by e2.

Recall from §3.2.2 that if an entity activates a role, a new hasActivated statement is
added to the policy; and conversely, the statement is removed from the policy when the
role is deactivated. It may come as a surprise that role activation and deactivation requests
modify the policy. Indeed, in a real implementation, hasActivated predicates would likely
be stored separately from the policy for efficiency reasons. However, reflecting the current
role activations directly in the policy simplifies our model, as the entire state of the system
(i.e., which roles are activated) is then captured by the policy alone.

Moreover, the conditions in a rule are sometimes concerned with whether somebody has
activated a role, and sometimes whether somebody can activate a role (i.e., is a member
of the role). Similarly, as we shall see in §3.3.3, credentials are just signed predicates,
and are sometimes used for asserting that somebody has activated a role, and sometimes
that somebody can activate a role. Therefore, expressing both role activation and role
membership in form of predicates is a logical design decision that keeps the model uniform.

The following examples of policy rules illustrate the use of these special predicates4. This
rule specifies that human resource managers who have activated their role can register new

4These are deliberately simple examples. More “impressive” examples are found in Chapters 8 and 9.



36 Design Issues and Overview

employees in any department, apart from executive board members.

permits(e,Register-employee(name,dept))←
hasActivated(e,Manager(HR)),
dept 6= executive-board

The next policy fragment consists of three rules. The first rule allows Alice and Bob to
activate the administrator role if their user roles have been activated; the second one allows
everyone to deactivate their own user role; and the third rule specifies that an administrator
role is automatically deactivated if the corresponding user role is deactivated.

canActivate(e,Admin())←
hasActivated(e,User()),
e ∈ {Alice,Bob}

(3.1)

canDeactivate(e1,e2,User())← e1 = e2 (3.2)

isDeactivated(e,Admin())←
isDeactivated(e,User())

(3.3)

Note that the second rule could have been written more concisely as

canDeactivate(e,e,User()).

The first argument of every special predicate is an explicit subject parameter; for example,
in the case of canDeactivate, the first parameter specifies who can perform the deactivation.
In the simple rules shown above, the subject in the head is always the same as in the body
predicates. However, there are rules where this is not the case. These rules cannot be easily
expressed in languages where the subjects of head and body are implicitly the same.

3.3.2 Aggregation

The CASSANDRA policy language also allows a restricted form of aggregation, a powerful
higher-order construct for computing the set of all different values that satisfy a predicate.
An aggregation rule is a rule whose head predicate contains one of the two aggregation
operators, group or count. Intuitively, the group operator finds the set of all different ground
values that satisfy a predicate, whereas count computes the size of that set. For example,
consider the following rule:

fndMonkeys(group〈x〉,age)←
hasActivated(x,Monkey(age))

Querying the policy with the query fndMonkeys(monkeys,5) would find the set monkeys of
all entities M that satisfy the predicate

hasActivated(M,Monkey(5)),
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that is, the set of all active monkeys of age 5. Similarly, the query cntMonkeys(n,5) on the
rule below would find the number n of active monkeys of age 5.

cntMonkeys(count〈x〉,age)←
hasActivated(x,Monkey(age))

3.3.3 Credentials and Distributed Policies

The concept of delegation of authority is central in the trust management approach. A
digital credential asserting a specific statement can be used for authorisation if the issuer is
trusted to have authority over the assertion. CASSANDRA can not only specify credentials as
authorisation conditions but also the credential retrieval and exchange (trust negotiation)
process.

In CASSANDRA, the properties asserted by credentials are constrained predicates. Further-
more, a credential is signed and issued by an entity called issuer, and is held by an entity
called location. We write

Sarah♦UCam.canActivate(Sarah,Student(age,college,subject))←
age = 22,
college = Trinity,
subject ∈ {Maths,Spanish}

to represent a credential held by Sarah and issued by the University of Cambridge (ex-
pressed by the prefix “Sarah♦UCam.”), and asserting that Sarah is a 22-year old Maths and
Spanish student at Trinity College.

In CASSANDRA, every predicate in a rule can have a location prefix and an issuer prefix.
This enables rules to refer to predicates that are stored somewhere else on the network
and are signed by someone else. In other words, rules can refer to credentials. As in
the examples given in the previous sections, we usually omit those prefixes that refer to
the location of the rule itself. Example 3.3 written out with all prefixes would have read
(assuming that it is stored in E’s policy):

E♦E.isDeactivated(e,Admin())←
E♦E.isDeactivated(e,User())

The following example illustrates how CASSANDRA deals with predicates that refer to
remote locations. The first rule belongs to the (fictitious) policy of Heffers online bookshop,
which offers discounts to Philosophy, Maths and Computer Science students from UCam
and the Anglia Polytechnic University (APU). According to that rule, if a user sends a
request to Heffers to activate a DiscountUser role, the bookshop’s CASSANDRA service will
send a credential request back to the user, asking for an appropriate Student credential
issued by either UCam or APU:

Heffers♦canActivate(requester,DiscountUser())←
requester♦issuer.canActivate(requester,Student(age,college,subject)),
subject ∈ {Philosophy,Maths,CompSci},
(issuer = UCam∨ issuer = APU)

Suppose Sarah’s CASSANDRA service is willing to return a copy of the requested student
credential to Heffers because she does indeed possess a suitable student credential from
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UCam (Sarah reads Maths and Spanish, by her first rule below), and because her policy
also includes a rule stating that she is willing to disclose her student credential to any
requester (Sarah’s second rule below):

(1) Sarah♦UCam.canActivate(Sarah,Student(age,college,subject))←
age = 22,
college = Trinity,
subject ∈ {Maths,Spanish}

(2) Sarah♦Sarah.canReqCred(requester,
UCam.canActivate(Student(age,college,subject)))←

A detailed treatment of the policy language will be given in Chapter 4.

3.4 A Scenario

Recall that all granted requests (apart from performing an action) have side-effects on the
global state, i.e., the access control engine modifies the policy. Activating a role adds a
hasActivated fact (i.e., a rule without body predicates) to the service’s policy; deactivating
a role removes one or more hasActivated facts; and requesting a credential adds a fact
representing the credential to the requester’s policy.

Now that we have given an overview of both the access control engine and the language,
the following example will illustrate the interplay between the two; this scenario will be
revisited in more formal detail in §7.6.

Consider the three policy rules from examples 3.1, 3.2 and 3.3. Suppose the policy also
contains a fourth rule indicating that Alice has activated her User role:

hasActivated(Alice,User())← (3.4)

Now suppose Alice requests to have the Admin() role activated for her. The access control
engine will first query the policy with the predicate hasActivated(Alice,Admin()) to check
whether Alice has already activated that role. The answer is negative, as expected, so the
second query is canActivate(Alice,Admin()). This succeeds because of the first and the
fourth rule, and consequently a fifth rule is added to the policy:

hasActivated(Alice,Admin())← (3.5)

Now suppose Alice requests that her User() role be deactivated. The access control en-
gine first tries to deduce the predicate hasActivated(Alice,User()); and indeed, Alice is
currently active in the user role, according to the fourth rule. Then, the policy is queried
with canDeactivate(Alice,Alice,User()) which also succeeds because of the second rule.
Finally, the access control engine will attempt to find all values satisfying the predi-
cate isDeactivated(e,r) under the assumption isDeactivated(Alice,User()). By assumption,
this will of course be the pair (Alice,User()) itself, and by the third rule, also the pair
(Alice,Admin()). The found values match the hasActivated facts from the fourth and the
fifth rules. Consequently, these two rules are removed from the policy, and we are left with
the original rules 3.1, 3.2 and 3.3.
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In CASSANDRA, every entity can specify its own authorisation policy by writing a set of rules
in the policy language. This chapter formally specifies the syntax and semantics of the
language. We define the generic notion of constraint domain in §4.1. The syntax of roles
and actions is defined in §4.2 and predicates in §4.3. These components are used to write
policy rules, the syntax of which is defined in §4.4. A formal semantics of the language,
based on fixed points, is specified in §4.5.

4.1 DatalogC and Constraint Domain

Many existing policy languages are based on Datalog [AHV95], i.e., Horn clauses with-
out function symbols, because it is a rule-based, declarative language, widely understood,
and queries always terminate. However, standard Datalog is not very expressive, so many
systems extend the language with ad hoc features. We take a different approach and base
our language on an extension of recursive DatalogC in which the expressiveness – and
conversely, the computational complexity – is parameterised on the chosen constraint do-
main C [JM94, JMMS98, Rev02]. The language can thus be adapted to a wide range of
applications without having to change its base semantics.

A DatalogC rule is of the form

p0(~e0)← p1(~e1), ..,pn(~en),c

where the pi are predicate names and the ~ei are (possibly empty) expression tuples (that
may contain variables) matching the parameter types of the predicate. The constraint c
is a constraint from the chosen constraint domain C . Intuitively, to deduce p0, all body
predicates p1, ...,pn must be deducible in such a way that the constraint is also satisfied. A
set of DatalogC rules can then be interpreted as the deductive closure of the set.

39
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The expressiveness of DatalogC depends on the chosen constraint domain C . For exam-
ple, the least expressive constraint domain is the one where the only atomic constraints are
equalities between variables and constants. Choosing this trivial constraint domain reduces
the expressiveness of the language to standard Datalog or Horn clauses without function
symbols. More powerful constraint domains often include boolean, arithmetic and set con-
straints, and make use of more complex expressions such as tuples, set expressions and
function applications (e.g. to access the current time or other environmental information).

The computational complexity of evaluating DatalogC programs increases with increas-
ing expressiveness: with set constraints it is already possible to encode the Hamiltonian
cycle problem, and thus all NP-complete problems. Care must be taken not to choose a
constraint domain that is too expressive as this can result in programs in which queries
are undecidable. We will later introduce the notion of constraint compactness to restrict
constraint domains to those that guarantee termination of queries.

In order to be interoperable, the services on the network must agree on a common con-
straint domain C . Concrete examples of useful constraint domains for authorisation poli-
cies are given in Chapter 5. Here, we formally define our notion of constraint domain.

Definition 4.1.1. (constraint domain) A constraint domain C is a set of constraints, i.e. first
order formulas, on elements of a domain, the set of C -expressions. C is equipped with an
interpretation that defines validity of constraints. Constraint domains must satisfy a num-
ber of minimal requirements and support certain computable operations on constraints, as
set out below in §4.1.1 and §4.1.2.

Before we specify the minimal requirements and supported operations, we first have to
define the notion of satisfiability of constraints with respect to the constraint domain’s
interpretation.

Definition 4.1.2. (validity, satisfiability, free variables) Let c be a C -constraint. We write
|= c if c is valid under C ’s interpretation. We say a substitution θ satisfies c (θ |= c) if θ(c)
is valid. A constraint c is satisfiable if there is a substitution that satisfies c. The set of free
variables of a constraint c is denoted by Fv(c).

4.1.1 Minimal Requirements

In the context of our policy language, constraints are conditions on predicate parame-
ters. The set of C -expressions must therefore at least contain all elements in Variablesand
Entities, fixed infinite sets of variables and entities.

For the constraints in C we require the following:

1. The boolean constants true and false are in C .

2. C contains all equality constraints e1 = e2 for all C -expressions e1,e2.

3. Closure under variable renaming: if c ∈ C then c[x/y] ∈ C , for all variables x and y.

4. Closure under conjunction: if c1,c2 ∈ C then c1∧ c2 ∈ C .

5. Closure under existential quantifier elimination: if c ∈ C and x is a variable free in c,
then there are quantifier-free constraints c1, ...,cn ∈ C such that

∨n
i=1 ci is in disjunctive

normal form (DNF) and equivalent to ∃x(c), i.e.,

• ci is disjunction free, for all i ∈ {1, ..,n}.
• x /∈ Fv(ci), for all i ∈ {1, ..,n}.
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• θ |= ci for some i ∈ {1, ..,n} iff there exists a C -expression e such that θ |= c[e/x].

The boolean constants, equality constraints and conjunction must be interpreted as usual:

• true is valid and false is not valid.

• If both c1 and c2 are valid then so is c1∧ c2.

• If e1 and e2 are syntactically identical then e1 = e2 is valid.

We will often use a comma (,) instead of ∧ for conjunction of constraints.

4.1.2 Operations

We further require that C is equipped with three computable operations, namely satisfia-
bility checking, subsumption checking and existential quantifier elimination. The rationale
behind these requirements is that CASSANDRA’s query evaluation algorithm and the access
control engine can use these operations as an abstract interface to the constraint domain,
without needing to know any particulars about the concrete constraint domain. Constraint
domains can thus be “plugged” into the system as independent modules.

Definition 4.1.3. (subsumption) Let c1,c2 be C -constraints. Then c1 is subsumed by c2 if
for all substitutions θ,

θ |= c1 implies θ |= c2.

Intuitively, c1 is subsumed by c2 if c1 “implies” c2. For example,

• false is subsumed by every constraint.

• Every constraint is subsumed by true.

• c1∧ c2 is subsumed by both c1 and c2.

• x < 0 is subsumed by x < 1.

• x < y < z is subsumed by x+1 < z.

Definition 4.1.4. (⇒C ) Every constraint domain C must be equipped with a computable
subsumption checking relation⇒C (or simply⇒ if C is clear from the context). The relation
must satisfy the following property for all constraints c1,c2 ∈ C :

c1⇒C c2 implies that c1 is subsumed by c2.

Note that the definition of⇒C requires the operation to be only an approximation of the
“real” subsumption relation. The reason is that subsumption is used for the sole purpose
of keeping the model of a DatalogC program finite (see §4.1.3). A less exact subsumption
checking relation does not affect the soundness of an implementation, but it may cause a
worse termination behaviour. The subsumption checking algorithm described in 5.2.3, for
example, is only approximate but strong enough to guarantee termination.

Definition 4.1.5. (∃C ) Every constraint domain C must be equipped with a computable
existential quantifier elimination operation ∃C : Pfin(Variables)→ C → Pfin(C ) (again, the
superscript C is usually omitted). It takes a finite set of variables x1, ...,xm and a constraint
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c, and returns a finite set of disjunction-free and quantifier-free constraints {c1, ...,cn} such
that

n∨
i=1

ci is equivalent to ∃x1...xn(c),

as defined in §4.1.1.
If x is a variable, we write ∃C x(c) as shorthand for ∃C{x}(c). If V is a set of variables,

we write ∃C
−V(c) as shorthand for projecting c onto V, i.e., ∃C (Fv(c)−V) (c).

For example,

• ∃x(x = y) = {true}
• ∃x(x = 3∧y < x) = {y < 3}
• ∃x(x < y∧y < z) = {y < z}
• ∃y(x < y∧y < z) = {x+1 < z}
• ∃x(signum(x) = y) = {y =−1, y = 0, y = 1}

4.1.3 DatalogC Semantics

The semantics, or the model, of a DatalogC program P can be defined as the set of all facts
that can be deduced from it. This set is the least fixed point of a consequence operator
TD

P , a function that takes a set of facts (ground predicates) I and returns the set of facts
immediately deducible from those facts together with the rules of the program P .

In this section we assume w.l.o.g. that programs are rectified, i.e., in each rule, all pred-
icate parameters are distinct variables. Furthermore, we will identify rules up to (non-
clashing) variable renaming. Then TD

P can be defined as follows:

TD
P (I ) = { p(~e) | there is a rule p(~x)← p1(~x1), ...,pn(~xn),c ∈ P

and a substitution θ such that
• θ |= c,
• θ~x =~e,
• pi(θ~xi) ∈ I , for all i ∈ {1, ..,n} }

The set
⋃

i∈ω(TD
P )i( /0) represents the deductive closure of the rules in P . Consider, for

example, the following program:

Example 4.1.6.

p(x)← x = 3
p(x)← p(y),x > y

(4.1)

The ground model is computed by repeatedly applying TD
P until a fixed point is reached:

TD
P ( /0) = {p(3)}

(TD
P )2( /0) = {p(3),p(4),p(5),p(6), ...}

(TD
P )3( /0) = (TD

P )2( /0)

The fixed point is obtained after the second application. The problem with TD
P is that the

ground model is often infinite, as in this example. As we are interested in computability
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and practical applicability, a more useful consequence operator would be one that operates
on constrained facts rather than ground facts to keep the fixed point finite [GL91, GDL95,
Tom97, JMMS98]. Such an operator TC

P can be defined as follows:

TC
P (I ) = { p(~x)← c0 | there is a rule p(~x)← P1, ...,Pn,c ∈ P

and constraints c1, ...,cn such that
• c0 ∈ ∃−~x(c∧ c1∧ ...∧ cn),
• c0 is satisfiable,
• ci is a contribution from Pi, for all i ∈ {1, ..,n};
and if p(~x)← c′0 ∈ I such that c0⇒ c′0 then c0 = c′0 }

where ci is a contribution from Pi if Pi← ci ∈ I .

TC
P (I ) produces new constrained facts from a rule by finding already existing solutions

in I (contributions) for each body predicate, and projecting the conjunction of all these
constraints and the rule constraint onto the free variables of the rule’s head predicate. The
last line of the definition ensures that new constrained facts are only produced if they are
not already subsumed by some existing fact.

Applying TC
P to the program from Example 4.1.6 yields:

TC
P ( /0) = {p(x)← x = 3}

(TC
P )2( /0) = {p(x)← x = 3, p(x)←∃y(y = 3∧x > y)}

= {p(x)← x = 3, p(x)← x > 3}
(TC

P )3( /0) = (TC
P )2( /0)

The fixed point is now finite and is reached after the second application of the operator,
because p(x)← ∃y(y > 3∧ x > y) ≡ p(x)← x > 4, which would have been added in the
third step, is already subsumed by p(x)← x > 3, provided that the (possibly approximate)
operation⇒ is sufficiently exact. Without the last line in the definition of TC

P , the operator
would carry on adding redundant credentials indefinitely, and the fixed point would be
infinite. The resulting fixed point is a finite representation of the infinite ground model.

Of course, the fixed point may still be infinite in general; after all, DatalogC with a
sufficiently expressive constraint domain C is Turing-complete. But the fixed point of TC

P is
often finite even if the ground model is infinite.

As CASSANDRA is an extension of DatalogC , its semantics is also defined as the fixed point
of a consequence operator based on TC

P , discussed in §4.5.1.

4.2 Roles and Actions

The CASSANDRA policy language is role-based to make access control administration simpler
and more scalable. Our roles and actions (generalised privileges) are parameterised for
higher expressiveness [GI97, LS97]: e.g. the role Clinician(org, spcty) has parameters for
the health organisation and the specialty of the clinician; the action Read-record-item(pat,
id) has parameters specifying the item identifier of a patient pat’s health record. The syntax
for roles and actions is:
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Expressions e ::= x
| E
| ()
| role
| action
| ... other C -expressions

Roles role ::= R(e)
Actions action ::= A(e)
Role Names R ∈ RoleNames
Action Names A ∈ ActionNames
Entities E ∈ Entities
Variables x ∈ Variables

RoleNamesand ActionNamesare infinite sets of role names and action names, respectively.
The grammar of expressions specifies the parameters that roles and actions can take, and
will generally include all C -expressions. The empty tuple () is used for parameter-less roles,
actions and predicates, and has type unit (see below). We write R() instead of R(()) (and
similarly for actions and predicates).

A type system ensures that policies are well-formed. The type system for policy rules
and their subcomponents (such as roles and actions) rely on the type system of the global
constraint domain C . In Chapter 5, we will present a number of constraint domains along
with their type systems. In general, a type system will have type judgements for expressions
e of the form Γ ` e : τ where τ is some type and Γ is a finite function mapping variables
to types. Similarly, a type system will have type judgements for constraints c of the simple
form Γ ` c. The types we will be considering in this and the following chapters are of the
following form:

Types τ ::= entity| const| int | role(τ) | action(τ) | unit
| τ1× ...× τn

| set(τ)

Note that the types generally also depend on the expressions of the constraint domain.
The typing rules for the empty tuple, entities and variables are as follows:

Γ ` () : unit
E ∈ Entities
Γ ` E : entity

x ∈ Dom(Γ) Γ(x) = τ

Γ ` x : τ

Role names and action names are associated with the type of the parameters they take.
Type(R) denotes the parameter type of a role name R (and similarly for action names). The
typing rules for roles and actions are as follows:

Γ ` e : τ Type(R) = τ

Γ ` R(e) : role(τ)
Γ ` e : τ Type(A) = τ

Γ ` A(e) : action(τ)
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4.3 Predicates

In the RBAC model, relations are used to define role membership, session activations and
role permissions. In CASSANDRA, these and other access control relations are specified im-
plicitly by rules defining six special predicates (their precise operational semantics is for-
malised in Chapter 7): apart from these six predicates with a special access control mean-
ing, policy writers can introduce further auxiliary user-defined predicate names. The syntax
for predicates is as follows:

Predicates pred ::= permits(e1,e2)
| hasActivated(e1,e2)
| canActivate(e1,e2)
| canDeactivate(e1,e2,e3)
| isDeactivated(e1,e2)
| canReqCred(e1,e2.pred)
| p(e1, ...,en),where n≥ 0

p ∈ UserPredNames

Again, we impose a type regime on predicates to enforce well-formedness. The typing
rules for the six special predicates are as follows:

Γ ` e1 : entity Γ ` e2 : action(τ)
Γ ` permits(e1,e2)

Γ ` e1 : entity Γ ` e2 : role(τ)
Γ ` hasActivated(e1,e2)

Γ ` e1 : entity Γ ` e2 : role(τ)
Γ ` canActivate(e1,e2)

Γ ` e1 : entity Γ ` e2 : role(τ)
Γ ` isDeactivated(e1,e2)

Γ ` e1 : entity Γ ` e2 : entity Γ ` e3 : role(τ)
Γ ` canDeactivate(e1,e2,e3)

Γ ` e1 : entity Γ ` e2 : entity Γ ` pred
Γ ` canReqCred(e1,e2.pred)

User-defined predicate names are associated with the type of their parameters, denoted
by Type(p). The typing rule for user-defined predicates is:

p ∈ UserPredNames Type(p) = τ1× ...× τn
Γ ` e1 : τ1 · · · Γ ` en : τn

Γ ` p(e1, ...,en)
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4.4 Rules

The policy rule language in CASSANDRA extends DatalogC ’s predicates for the purpose
of credential-based trust management. A credential can be seen as a constrained pred-
icate, vouched for by an issuing entity and stored at a location entity. Correspond-
ingly, CASSANDRA predicates in a rule are tagged with a location and an issuer, e.g.
Alice♦Bob.p(x). The location (in this example Alice) is postfixed by the symbol “♦”,
and the issuer (here Bob) by “.”.

The notion of an issuer prefix is comparable to the linked names in the SDSI
[RL96, Aba98] part of SPKI/SDSI [Ell99, EFL+99], and to the role prefixes in RT
[LWM01, LMW02]. Our tagging syntax may be reminiscent of SD3 [Jim01], where pred-
icates can also be prefixed with an a location and an issuer. However, the location in SD3
is interpreted as the IP address of the issuer, whereas in CASSANDRA, the location is semanti-
cally independent of the issuer: here, it is interpreted as the location at which the predicate
can be deduced.

We further extend DatalogC with aggregation operators that can be used, for example,
for cardinality constraints and restricted forms of negation (see §4.4.1).

The syntax for policy rules is as follows:

Head head ::= E1♦E2.pred
| E1♦E2.p(group〈x〉)
| E1♦E2.p(count〈x〉)
| E1♦E2.p(group〈x〉,e1...,en)
| E1♦E2.p(count〈x〉,e1...,en)

Body Pred P ::= e♦e′.pred
Credential cred ::= head← c
Rule rule ::= cred

| head← P1, ...,Pn,c
Constraint c ∈ C

Definition 4.4.1. (head, body, location, issuer, credential, policy) A policy rule consists of
a prefixed head predicate, a list of prefixed body predicates, and a constraint from C . The
prefixes eloc and eiss of a predicate eloc♦eiss.p(~e) are called the location and the issuer of
the predicate, respectively. The location and the issuer of the head of a rule are called the
location and the issuer of the rule, respectively. A rule of the form head← c is called a
credential or credential rule. If a policy rule is not a credential rule, its location and issuer
must be identical. Only credentials may have an issuer that differs from the location: these
represent credentials issued by foreign parties. Finally, a policy of an entity E is a set of
rules with location E.

We will often omit the constraint of a rule if it is true. Location and issuer prefixes are
also usually omitted when they are equal to the location of the rule, and the location of the
rule can also be omitted if it is clear from the context. So for example, instead of writing

A♦A.p(x)← A♦A.p1(x), A♦B.p2(x),
B♦A.p3(x), B♦C.p4(x),
true
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we would write (if from the context it is clear that we are talking about A’s policy)

p(x)← p1(x), B.p2(x), B♦p3(x), B♦C.p4(x)

The intuitive meaning of this (rather unlikely) rule would be

p(x) can be deduced from A’s service if we can firstly deduce p1(x) from A’s
policy, secondly find the credential asserting p2(x) and issued by B in A’s policy,
thirdly request from B a credential asserting p3(x) and issued by A, and fourthly
request from B a credential asserting p4(x) and issued by C.

The following specifies the typing rules for policy rules:

Γ ` e : entity Γ ` e′ : entity Γ ` pred
Γ ` e♦e′.pred

Γ ` head Γ ` c
Γ ` head← c

Γ ` head Γ ` P1 · · · Γ ` Pn Γ ` c
Γ ` head← P1, ...,Pn,c

The head of a rule can contain an aggregation expression as its first parameter, either
group or count; these are further explained in the next section. The type system is extended
with the following two rules so that aggregation expressions can be typed as if they were
expressions:

Γ ` x : τ
Γ ` group〈x〉 : set(τ)

x ∈ Dom(Γ)
Γ ` count〈x〉 : int

4.4.1 Aggregation Rules

Policies often require negative conditions in the premise of a rule, e.g. that an entity has
not activated a particular role, or that no entity has activated the role. DatalogC extended
with negated body predicates could express the former example, but not the latter, which
implicitly involves universal quantification. Instead, we introduce aggregation operators
[MPR90, SR91, Van92, Rev02] with which both examples can be expressed. Aggregation
is also useful for grouping and cardinality constraints, e.g. constraints on the set of all role
activations of a particular entity, or on the number of all such activations.

An aggregation rule is a rule whose head contains an aggregation operator. Intuitively,
the group operator finds the set of all different ground values that satisfy a predicate,
whereas count computes the size of that set.

Aggregation is a very expressive mechanism, but it has to be used carefully. In our
language, predicates are generally recursive and often are satisfied by an infinite number of
ground values; both these properties are problematic with aggregation. To enforce a finitary
semantics and to improve efficiency, we restrict aggregation rules to be aggregation-safe (in
§6.3, we will lift some of these restrictions using groundness analysis):



48 Policy Specification

Definition 4.4.2. (aggregation safety) An aggregation rule is aggregation-safe if it is of the
form1

E♦E.p0(aggOp〈x〉,~y)← E♦e′.p1(~z),c,

where the so-called control parameters ~y may be missing. Therefore, an aggregation rule
must have exactly one body predicate, and this predicate’s location must be equal to the
location of the rule. Furthermore, p1 must be a predicate name that is only defined by
credential rules in E’s policy of the form E♦E′.p1(~z)← ~z = ~K, where ~K are variable-free
expressions. (In practice, we will restrict p1 to hasActivated, and write policies in such
a way that all hasActivated rules are completely grounding credential rules.) Finally, we
require that the aggregation variable x as well as all ~y are in ~z.

The restriction that the body predicate of an aggregation rule must be local (its location
must be equal to E) is necessary because aggregation requires complete knowledge of the
predicate. Answers from remote entities are always sound but may be incomplete as they
are subject to canReqCred restrictions. The restriction that the body predicate can only be
satisfied with finitely many different parameters, and that x and ~y occur in it, ensures that
aggregation is finite. In terms of negation, this corresponds to semi-positive policies, thus
avoiding negation-related issues such as undecidability and semantic ambiguity.

The separation-of-duties example in Chapter 8 shows how aggregation can be used to
express universally quantified negation. Note that the kind of negation we can express
via aggregation can only occur in the body of a rule and never in the head. In particular,
we cannot express explicit prohibitions (as in e.g. Halpern and Weissman’s logic [HW03],
Ponder [DDLS01, Dam02] or in FAF [JSSS01]). Rather, we make the closed world assump-
tion and assume that everything is prohibited unless it is explicitly permitted. Allowing
explicitly negative statements would add much complexity to the language; for example, it
necessitates mechanisms to resolve logical conflicts.

4.5 Language Semantics

In standard DatalogC , a predicate can be deduced if there is a rule with a matching head,
such that the rule’s body predicates can be deduced while satisfying the constraint of the
rule. In CASSANDRA, a body predicate B♦C.p(~e) can refer to a remote location, if B is not
equal to the local entity, say A. To deduce the predicate, A will contact B over the network
and delegate authority to B to deduce the predicate. Such a remote query amounts to a
credential request: B will first try to deduce B♦B.canReqCred(A,C.p(~e)) before attempting
to deduce the requested predicate.

To illustrate this, consider the following example where likes is some user-defined predi-
cate. Suppose A’s policy contains the rules

R1 ≡ A♦A.likes(A,x)← x♦y.likes(y,x),x 6= y
R2 ≡ A♦B.likes(B,A)← true

(so R2 is a foreign credential from B), and C’s policy contains

R3 ≡ C♦D.likes(D,C)← true

1We use the vector notation~e as a shorthand for a list or a set of expressions. Furthermore,~z = ~K is shorthand
for z1 = K1∧ ...∧ zn = Kn.
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(so R3 is a foreign credential from D). Intuitively, R1 means: A likes an entity x if x’s
policy proves that some other entity y says that y likes x. More formally, we can deduce
A♦A.likes(A,x) on A if we can deduce x♦y.likes(y,x) on the service x provided that x is not
equal to y. If, in the context of evaluation, x turns out to be A, then the body becomes

A♦y.likes(y,A)← A 6= y,

to be deduced locally on A, by finding a matching credential (foreign since A 6= y). R2

is such a credential, thus A has proved A♦A.likes(A,A). Otherwise, if x turns out to be
different from A, say x = C, A automatically requests a credential from C of the form

C♦y.likes(y,C)← C 6= y.

At this point, CASSANDRA’s trust negotiation mechanism comes into play: C first tries to
prove

C♦C.canReqCred(A,y.likes(y,C))← C 6= y

on its own policy to see whether A is allowed to request such a credential. The result of
this deduction is either false (A cannot request such a credential) or some constraint on the
variable y, say y 6= E (A is allowed to get such a credential provided y 6= E). In the latter
case, C will then try to prove

C♦y.likes(y,C)← C 6= y∧y 6= E.

This is satisfied by R3, so C will reply to A with the answer C♦D.likes(D,C), upon which
A can finally prove A♦A.likes(A,C).

4.5.1 Consequence Operator

We will now specify the language semantics formally, thereby capturing the intuition given
in the previous section. The semantics of a policy is defined by the set of all credentials
(since, in our language, credentials are facts) that can be deduced from it. Again, as in
§4.1.3, this set can be computed as the least fixed point of a consequence operator. Our
consequence operator TP is more complex than TC

P as we have to deal with predicates that
may be located elsewhere and may be protected by canReqCred rules, so the semantics does
not only depend on the local policy of a single entity. Therefore, the parameter P in TP
is not just a single policy but the finite union of the policies of all entities2. Given a set of
credentials I , TP (I ) returns the set of all credentials that can be deduced from I and the
policies in P in one step.

In the following we assume w.l.o.g. that all policies are rectified, i.e., in each policy rule,
all predicate parameters and location/issuer prefixes (apart from those in the head which
have to be constant) are distinct variables. Furthermore, we will identify rules up to (non-
clashing) variable renaming.

Definition 4.5.1. (global policy set, consequence operator) Let the global policy set P be
the union of the policies of all entities. (The union is disjoint as the policy rules of an entity
are uniquely identified by the location prefix of the rules’ heads.) The consequence operator
TP is a function between sets of credentials I . It is defined as follows:

2We are assuming that only a finite number of entities have policies.
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TP (I ) =
{ Eloc♦Eiss.p(~x)← c0 |

there is a rule Eloc♦Eiss.p(~x)← P1, ...,Pn,c ∈ P
and constraints c1, ...,cn such that

• c0 ∈ ∃−~x(c∧ c1∧ ...∧ cn),
• c0 is satisfiable,
• ci is a contribution from Pi, for all i ∈ {1, ..,n};

and if Eloc♦Eiss.p(~x)← c′0 ∈ I such that c0⇒ c′0 then c0 = c′0
}

where ci is a contribution from Pi ≡ yloc♦yiss.pi(~y) if

• either there is a credential Eloc♦E′iss.pi(~y)← c′i ∈ I
and ci ∈ ∃−~y(c′i∧yloc = Eloc∧yiss = E′iss);

• or there is an entity E′loc 6= Eloc such that

– there is a credential E′loc♦E′loc.canReqCred(xe,yiss.pi(~y))← c′i ∈ I ;
– there is a credential E′loc♦E′iss.pi(~y)← c′′i ∈ I ;
– and ci ∈ ∃−~y(c′i∧ c′′i ∧yloc = E′loc∧yiss = E′iss∧xe = Eloc)

The definition of TP is almost identical to TP from §4.1.3, apart from the meaning of “ci

is a contribution from Pi”. Here we have two cases.
In the first case yloc (the location of the Pi) is equal to Eloc (the location of the rule); this

corresponds to the standard case: Pi is simply deduced from the local policy.
In the second case yloc is equal to some E′loc 6= Eloc, so it has to be deduced from E′’s policy.

As this amounts to a credential request, and E′loc’s credentials are protected by canReqCred
rules, the corresponding canReqCred predicate must also be satisfied, as well as Pi itself. The
resulting contribution ci is a combination of the constraints from the canReqCred credential
(c′i) and of the Pi credential (c′′i ), the assignments for the various prefixes yloc and yiss, and
the assignment of the canReqCred predicate subject xe. The variable xe may occur in c′i but
it is not in ~y, hence it gets existential-quantifier eliminated.

As in §4.1.3, the last line in the definition of TP (I ) is very important: a credential is
added to the result only if it is not already subsumed (according to the possibly approximate
subsumption approximation⇒) by some other credential in I . This condition tries to avoid
the adding of redundant credentials.

If there were no aggregation rules, we could define the semantics of P to simply be the
least fixed point of TP , namely

⋃
i∈ω Ti

P ( /0). However, in the presence of aggregation rules,
we first have to specify the (finite) set AggP of all credentials deducible from those rules,
and apply TP to it instead. The next section deals with the definition of AggP .

4.5.2 Aggregation Semantics

We first consider the case where the head does not contain any parameters (so-called con-
trol parameters) apart from the aggregation parameter, i.e., it is a rule R of the form
E♦E.p0(aggOp〈x〉)← E♦e′.p1(~z),c. Let P be the global policy set. The aggregation op-
erator aggOp can be either group or count. If S is a finite set, then let group(S) denote
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simply S itself, and count(S) the cardinality of the set, |S|. We define

XR = {Kx | E♦E′.p1(~z)← ci ∈ P ,
ci implies x = Kx,
ci∧ c∧ e′ = E′ is satisfiable }

Intuitively, XR is the set of all constant values that x can assume to satisfy pi and the
constraint c. XR is finite because we assume the rule to be aggregation-safe (Definition
4.4.2). Then

Agg(R) = {E♦E.p0(w)←w = aggOp(XR)}

is the set of credentials deducible from the rule R.
In the presence of control parameters ~y, the definition of Agg is a bit more complicated.

Now the rule is of the form R≡ E♦E.p0(aggOp〈x〉,~y)← E♦e′.p1(~z),c. We define

YR = {~Ky | E♦E′.p1(~z)← ci ∈ P ,

ci implies ~y = ~Ky,
ci∧ c∧ e′ = E′ is satisfiable }

YR is the set of all constant values of ~y that can satisfy p1 and the constraint c. YR is finite
because the rule is aggregation-safe.

For each ~Ky ∈ YR, we define

X~Ky
= {Kx | E♦E′.p1(~z)← ci ∈ P ,

ci implies x = Kx,

ci implies ~y = ~Ky,
ci∧ c∧ e′ = E′ is satisfiable }

This is the set of all constant values that x can assume to satisfy p1 and the constraint c
when ~y is assigned the values ~Ky. In the following definition of Agg, we now also have to
consider the case where ~y is none of the values in YR, in which case there is no possible
value for x, so w must be assigned aggOp( /0), i.e., either /0 or 0.

Agg(R) = {E♦E.p0(w,~y) ← w = aggOp(X~Ky
)∧~y = ~Ky | ~Ky ∈ YR} ∪

{E♦E.p0(w,~y) ← w = aggOp( /0)∧
∧

~Ky∈YR
~y 6= ~Ky}

Recall the example of the aggregation rule for counting active monkeys of a given age
(§3.3.2). Here we have added some role activation credential rules:

cntMonkeys(count〈x〉,age)←
hasActivated(x,Monkey(age))

hasActivated(x,Monkey(age))← x = Cheeta∧age = 3
hasActivated(x,Monkey(age))← x = Louie∧age = 5
hasActivated(x,Monkey(age))← x = Katie∧age = 3

For this example, YR would be {3,5}, the set of possible ages. Then X3 is {Cheeta,Katie},
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and X5 is {Louie}. Finally, Agg(R) would evaluate to

{ cntMonkeys(w,age)←w = 2 ∧ age = 3,
cntMonkeys(w,age)←w = 1 ∧ age = 5,
cntMonkeys(w,age)←w = 0 ∧ age 6= 3∧age 6= 5 }

Finally, we define

AggP =
⋃

R∈P
Agg(R), where R is an aggregation rule.

Then AggP is the set of all credentials deducible from all aggregation rules in the global
policy set P .

4.5.3 Fixed-Point Semantics

Now we can put everything together and define CASSANDRA’s language semantics as the least
fixed point of the consequence operator, operating on the initial set of aggregation facts.

Definition 4.5.2. (semantics) Let T̂P (I) = TP (I)∪AggP . The (fixed-point) semantics of P
is defined as

Model(P ) ,
⋃
i∈ω

T̂i
P ( /0).

By Lemma 4.5.3, the function T̂P (I ) is continuous on the powerset of credentials, hence
Model(P ) is its least fixed point.

Lemma 4.5.3. T̂P is continuous on the powerset of credentials with respect to subset or-
dering.

Proof. We have to show that T̂P is monotonic and that for all increasing ω-chains I1 ⊆
I2 ⊂ ... of credential sets we have T̂P (

⋃
i∈ω Ii) =

⋃
i∈ω T̂P (Ii).

1. Let I ⊆ J and a credential Eloc♦Eiss.p(~x)← c0 ∈ T̂P (I ). Then either this credential is
in AggP in which case it would also be in T̂P (J ). Otherwise, there must be a policy
rule in P such that I contains certain credentials for each body predicate of the rule,
as specified in Definition 4.5.1. Since J is a superset of I , all these credentials are also
in J . Therefore Eloc♦Eiss.p(~x)← c0 ∈ T̂P (J ), so T̂P is monotonic.

2. The inclusion
⋃

i∈ω T̂P (Ii)⊆ T̂P (
⋃

i∈ω Ii) is straightforward by monotonicity. To prove
the other direction, suppose there is a credential Eloc♦Eiss.p(~x)← c0 ∈ T̂P (

⋃
i∈ω Ii).

Then either this credential is in AggP in which case it would also be in
⋃

i∈ω T̂P (Ii).
Otherwise, as in the proof for monotonicity,

⋃
i∈ω Ii must contain certain credentials,

as specified in Definition 4.5.1. But since the Ii form an increasing chain, there must
be a finite m such that all these credentials are in Im. Hence Eloc♦Eiss.p(~x)← c0 ∈
T̂P (Im)⊆

⋃
i∈ω T̂P (Ii), as required.
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4.5.4 Queries

Access control decisions (see Chapter 7) are based on queries which have the same form as
credentials: Eloc♦Eiss.p0(~e0)← c. Intuitively, the answer to a query is a set of constraints ci

such that Eiss.p0(~e0)← c∧ ci can be deduced from Eloc’s policy. For example, the query

UCam♦UCam.canActivate(x,Student(subj))←
subj = Maths

may return the constraints {x = Alice, x = Bob}, and the query

UCam♦UCam.canActivate(x,Student(subj))←
x = Alice∧ subj = Maths

would simply return {true}.
An answer to a query should be sound and complete. To specify this formally, we use the

definition of ground semantics.

Definition 4.5.4. (ground semantics) If I is a set of credentials, we write ‖I‖ for

{θ(P) | (P← c) ∈ I and θ |= c}.

The ground semantics of P is defined as ‖Model(P )‖.

Definition 4.5.5. (query, answer) A query has the same form as a credential. An answer
to the query P← c is a finite set of disjunction-free constraints {c1, ...,cn} such that for all
substitutions θ satisfying c,

θ(P) ∈ ‖Model(P )‖⇐⇒ θ |= c1∨ ...∨ cn





5
Constraint Domains and Decidability

As in a database system, the process of query evaluation should always terminate. Policy
languages must therefore not be Turing-complete, or else an undecidable policy could be
written. In CASSANDRA, the policy language is parameterised on the constraint domain C ,
and it turns out that decidability and query evaluation termination depend on C . Require-
ments on C to guarantee termination, in particular, constraint compactness, are discussed
in §5.1. Then, we describe a few concrete examples of constraint domains in §5.2, along
with algorithms for the operations they are required to support, and proofs of constraint
compactness. Less mathematically-inclined readers may safely skip to Chapter 7.

5.1 Decidability

The fixed-point semantics of the global policy set P was defined in §4.5.3. We are interested
in constraint domains for which the semantics is finite, irrespective of the policies and
queries: finding an answer to a query is clearly computable for a finite semantics.

Unfortunately, many interesting constraint domains do not enjoy this property. For ex-
ample, the constraint domain of finite trees are the syntactic equality constraints between
finite terms from a Herbrand universe (finite trees constructed from a collection of con-
stant and function symbols). Pure Prolog can be viewed as Datalog extended with such
constraints, and pure Prolog is Turing-complete, so the query problem is not decidable in
general.

Similarly, a constraint domain supporting untyped tuples can also lead to undecidable
policies. Suppose constraint domain consists of the syntactic equality constraints between
expressions generated from a constant 0 and n-ary tuples, for n ≤ 1. (For simplicity we
include unary tuples, so (X) 6= X, but actually pairs alone would already be sufficient.)

55
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Consider the policy

add(0,y,y)
add((x),y,(z)))← add(x,y,z)

mul(0,y,0)
mul((x),y,z))←mul(x,y,z′),add(y,z′,z)

exp(x,0,(0))
exp(x,(y),z)← exp(x,y,z′)),mul(x,z′,z)

fermat()←
exp((x),(((n′))),x′),
exp((y),(((n′))),y′),
exp((z),(((n′))),z′),
add(x′,y′,z′)

Encoding natural numbers as 0,(0),((0)), ..., the first three pairs of rules represent addition,
multiplication and exponentiation, respectively. The query fermat() returns true iff the
diophantine equation xn + yn = zn has positive integer solutions for x,y,z ≥ 1 and n ≥ 3.
We can thus encode arbitrary systems of diophantine equations. This provides a reduction
to Hilbert’s Tenth Problem [Hil02], which is known to be undecidable [Mat70]. In §5.2.2,
we show how a type system can restrict a constraint domain with tuples in order to preserve
decidability.

Toman [Tom97] gives a sufficient property of constraint domains, constraint compact-
ness, for guaranteeing finiteness of the fixed-point semantics.

Definition 5.1.1. (constraint compactness) A constraint domain C is constraint compact if

1. for every C -constraint c and variable x, ∃C x(c) does not contain any constants or
variables that are not in c;

2. for every set of C -constraints C with only finitely many distinct free variables and
constants occurring in it, there is a finite subset Cfin ⊆ C which covers C, i.e.

for all c ∈ C there exists a c′ ∈ Cfin such that c⇒C c′

Note that constraint compactness depends on the (possibly approximate) operation⇒C .
If this operation is made too imprecise, a constraint domain may cease to be constraint
compact.

Essentially, if a constraint domain is constraint compact, then every infinite set of con-
straints (that only mentions finitely many different variables and constant symbols) contains
redundancy in the sense that there is a finite subset within it that subsumes the entire set.
Or in other words, the infinite set can be cut down to a finite set that contains just as
much information. Since the consequence operator TP checks for redundancy (a credential
is added only if it is not subsumed by an already existing credential), the fixed point is
guaranteed to be finite. The following theorem formalises this intuition.

Theorem 5.1.2. (finite semantics) If P is a global policy set of C -policies and C is constraint
compact then Model(P ) is finite.

Proof. Suppose Model(P ) were infinite. As there are only finitely many predicate symbols,
there must exist an infinite set C = {P← ci | i > 0} among the generated credentials, for some
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prefixed predicate P. There can only be finitely many constants and variables occurring in
the constrained atoms since, if C is constraint compact, TP does not introduce any new
constants apart from those in P , by Definitions 4.5.1 and 5.1.1. Therefore, by constraint
compactness, there must be a finite subset Cfin⊂C such that for all c∈C there is a constraint
c′ ∈Cfin with c⇒C c′. But this is a contradiction because all constrained atoms in Cfin must
have been generated after a finite number of iterations, and by construction of TP , no
constraint of a credential in C generated after that can be subsumed (according to⇒C ) by
any constraint in Cfin.

5.2 Constraint-Compact Constraint Domains

This section describes several constraint domains, each one being an extension of the pre-
vious one. For each constraint domain we specify algorithms for satisfiability checking,
subsumption checking and existential quantifier elimination. We also give proofs for the
constraint compactness property.

5.2.1 Minimal Constraint Domain

Every constraint domain must have equality constraints between expressions and be closed
under conjunction. The expressions must at least include a countably infinite set of vari-
ables and constants for entities. The smallest constraint domain that satisfies these condi-
tions is Ceq. Its syntax is as follows:

Expressions e ::= E | x
Constraints c ::= true

| false
| e1 = e2

| c1∧ c2

Entities K ∈ Entities
Variables x ∈ Variables

We only have one type of expressions, namely entities. A type system is therefore not
required, as all constraints can be taken to be well-typed. The semantics of Ceq is straight-
forward and as expected:

• θ |= true

• θ |= e1 = e2 if θe1 and θe2 are equal

• θ |= c1∧ c2 if θ |= c1 and θ |= c2

Operations

A standard unification algorithm can be used to check satisfiability of Ceq constraints. A
constraint c is satisfiable iff there is a most general unifier (mgu) θ that satisfies c [PW76].
We call the mgu of a satisfiable Ceq constraint its solved form, and false is the solved form
of a unsatisfiable constraint. For example, the solved form of x = 2∧x = y is θ = [2/x,2/y].
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Lemma 5.2.1. A satisfiable constraint c1 is subsumed by a satisfiable constraint c2 if θ2,
the solved form of c2, is more general than θ1, the solved form of c1, i.e. there exists a
substitution ω such that θ2 ◦ω = θ1.

Proof. First assume that c1 is subsumed by c2. Then all unifiers of c1 (i.e., substitutions
that satisfy c1) are also unifiers of c2. In particular, θ1, the mgu of c1 is also a unifier of c2,
so θ2, the mgu of c2, is more general than θ1.

Now assume θ1 = θ2 ◦ω, and suppose θ |= c1, for some θ. Then there exists some ω′ such
that θ = θ1 ◦ω′ = θ2 ◦ω ◦ω′, since θ1 is the mgu of c1. But θ2 is the mgu of c2, so we also
have θ |= c2.

For example, x = 2 ∧ y = 2 is subsumed by x = y since [y/x] is more general than
[2/x,2/y] = [y/x]◦ [2/y] .

Lemma 5.2.2. If c is a Ceq constraint, then ∃Ceqx(c) = {c−x}, where c−x is constructed from
c as follows:

1. Remove all subconstraints of the form x = x; they are redundant, and removing them
does not change the semantics of the constraint.

2. If the remaining constraint contains a subconstraint of the form x = e, replace all
occurrences of x by e.

Proof. Without loss of generality, assume that c does not contain redundant subconstraints
of the form x = x.

Suppose θ |= c−x. By construction of c−x, c−x = c[e/x] for some expression e (this is
trivially true if x does not occur in c), hence there exists an expression e such that θ |= c[e/x].

For the other direction, suppose there is some expression e′ such that θ |= c[e′/x]. Either
c does not contain any subconstraint of the form x = e in which case c = c−x and x does not
occur in c, so θ |= c−x. Otherwise, c is equivalent to c−x∧x = e, hence θ |= (c−x∧x = e)[e/x].
It follows that θ |= c−x since x does not occur in c−x.

For example, eliminating x from the constraint x = y∧ x = z yields y = y∧ y = z, or
equivalently, y = z.

Constraint Compactness

Now we can show that Ceq is constraint compact.

Theorem 5.2.3. Ceq is constraint compact.

Proof. ∃Ceq clearly does not introduce any new constants or variables. For the second
condition, let C be a (possibly infinite) set of Ceq-constraints such that only finitely many
different variables and constants occur in the constraints. Let C′ be the set of solved forms
of the constraints of C. Converting these constraints to their solved forms does not intro-
duce any new constants or variables, so there are still only finitely many of them in C′.
But since solved forms are just finite substitutions, there can only be finitely many different
such solved forms, so C′ is finite. Every constraint in C is equivalent to a solved form in C′.
This implies constraint compactness.
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5.2.2 Tupling and Projection Functions

The constraint domain Ctup adds tuples and projection functions to Ceq; these constructs
are useful for dealing with structured role and action parameters. As was shown in §5.1, a
constraint domain with untyped tuples leads to undecidability of query evaluation. A type
system is introduced to circumvent this problem.

Expressions e ::= E
| K
| x
| ()
| (e1, ...,en), n≥ 2
| πn

k(e), n≥ 2,1≤ k≤ n
Constraints c ::= true

| false
| e1 = e2

| c1∧ c2

Entities E ∈ Entities
Constants K ∈ Constants
Variables x ∈ Variables

The expressions contain entities, constants (other than entities), variables, the empty
tuple (), n-ary tuples of expressions, and projection functions applied to expressions. The
notation πn

k stands for the kth projection function for expressions of arity n. The typing
rules for expressions are as follows:

E ∈ Entities
Γ ` E : entity

K ∈ Constants
Γ ` K : const

Γ ` () : unit
x ∈ Dom(Γ) Γ(x) = τ

Γ ` x : τ

Γ ` e1 : τ1 · · · Γ ` en : τn

Γ ` (e1, ...,en) : τ1× ...× τn

Γ ` e : τ1× ...× τn 1≤ i≤ n
Γ ` πn

i (e) : τi

The typing rules for constraints are also very simple:

Γ ` true Γ ` false

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 = e2

Γ ` c1 Γ ` c2

Γ ` c1∧ c2

The semantics for Ctup is identical to the semantics of Ceq except that equality between
expressions is slightly more complex:



60 Constraint Domains and Decidability

θ |= e1 = e2 if [[θe1]] and [[θe2]] are equal where

[[K]] = K, if K ∈ Entities]Constants
[[(e1, ...,en)]] = ([[e1]], .., [[en]])

[[πn
k(e)]] =

{
ek, if [[e]] = (e1, ...,en)
πn

k([[e]]), otherwise

Any well-typed Ctup constraint c can be flattened to a constraint in which no expression
has a product type: simplify all subconstraints e1 = e2 to [[e1]] = [[e2]]. Then, for some Γ ` c,
repeatedly replace all subconstraints e1 = e2 where Γ ` e1 : τ1× ...× τn with

[[πn
1(e1)]] = [[πn

1(e2)]]∧ ...∧ [[πn
n(e1)]] = [[πn

n(e2)]]

until no product-typed expressions are left. For example, the constraint

(x,2) = ((3,y),y) ∧ z = π2
1(z,y)

is rewritten as

π2
1(x) = 3 ∧ π2

2(x) = y ∧ 2 = y ∧ z = z.

Subsequently, such a rewritten constraint can be converted into an equivalent solved
form, again by standard unification. However, here the unifier substitutes expressions for
variables that may be prefixed by a number of tuple projection applications. For exam-
ple, the solved form of the constraint from above would be [3/π2

1(x),2/π2
2(x),2/y]. The

algorithms for satisfiability checking, subsumption checking and existential quantifier elim-
ination for Ceq trivially extend to Ctup.

Theorem 5.2.4. Ctup is constraint compact.

Proof. As in Ceq, existential quantifier elimination does not introduce any new variables
or constants. For the second condition, let C be a (possibly infinite) set of well-typed
Ctup-constraints such that only finitely many different variables and constants occur in the
constraints. Let C′ be the set of solved forms of the constraints of C. Converting these
constraints to their solved forms does not introduce any new constants or variables, so
there are still only finitely many of them in C′. Furthermore, as all variables can be given a
finite type, the length of the tuple projection prefixes is bounded for each variable. Hence
there can only be finitely many different solved forms, so C′ is finite. Every constraint in C
is equivalent to a solved form in C′. This implies constraint compactness.

5.2.3 Inequalities and Arithmetic Constraints

In this section we define C6=,< by extending Ctup with inequalities between arbitrary expres-
sions and gap-order constraints on integers. The syntax of C6=,< is given below.
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Expressions e ::= ...
| N

Constraints c ::= ...
| e1 6= e2

| e1 <g e2, g≥ 0
| c1∨ c2

Integers N ∈ Z

A gap-order constraint is of the form e1 <g e2 (where g is a positive integer) and is in-
terpreted as e1 + g < e2. The reason C6=,< contains gap-order constraints rather than sim-
ple <-inequalities is that only gap-order constraints are closed under existential quantifier
elimination. For example, consider ∃y(x < y < z), which is equivalent to x <1 z. We also
introduce disjunctions (∨) of constraints. The type system from Ctup is extended with new
rules for typing expressions and disjunctions:

N ∈ Z
Γ `N : int

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 6= e2

Γ ` e1 : int Γ ` e2 : int
Γ ` e1 <g e2

Γ ` c1 Γ ` c2

Γ ` c1∨ c2

The semantics of C6=,< is straightforward:

• θ |= e1 6= e2 if [[θe1]] and [[θe2]] are not unifiable.

• θ |= e1 <g e2 if θe1 and θe2 are ground and [[θe1]]+g < [[θe2]].

However, solving C6=,<-constraints is much harder than in the previous examples. For
Ceq and Ctup, the solved forms of constraints were simply substitutions. Here, a constraint
is mapped to an equivalent constraint graph.

Constraint Graphs

The notion of a constraint graph is introduced to show that satisfiability checking, sub-
sumption checking and existential quantifier elmination are computable and that C6=,< is
constraint compact. The theory of constraint graphs is based on the gap graphs introduced
by Revesz [Rev93]. Constraint graphs differ from gap graphs only in that the former may
also contain inequalities between non-integers.

Definition 5.2.5. (constraint graph) Let l and u be integer constants with l < u. An (l,u)-
constraint graph (or simply constraint graph, if l and u are irrelevant) is a graph whose
vertices are non-empty finite sets of C6=,<-expressions. The edges are either undirected and
labelled with 6=, or directed and labelled with <g, for some integer g ≥ 0. Moreover, a
constraint graph satisfies the following conditions:

1. All vertices are pairwise mutually disjoint.

2. There is at most one edge between any pair of vertices (self-loops are allowed).

3. The expressions in the vertices are flat, i.e. they do not contain products.
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Figure 5.1: (2,10)-constraint graph representing the constraint z = 2,z <4 y,z <1 x,x <3

y,y <0 10,p 6= q.

4. All expressions in a given vertex are of the same type.

5. The only integer constants occurring in the graph are l and u.

6. 6=-labelled (undirected) edges are only between vertices containing non-integer ex-
pressions.

7. <g-labelled (directed) edges are only between vertices containing expressions of type
int.

Intuitively, the expressions inside a single vertex are all mutually related by equality con-
straints; if two vertices are connected by an undirected edge, their expressions are related by
6=; and if a vertex is connected to another one via a directed <g-edge, the expressions of the
first vertex are related to those in the second by <g. Figure 5.1 shows a (2,10)-constraint
graph representing the constraint z = 2,z <4 y,z <1 x,x <3 y,y <0 10,p 6= q.

Just as with constraints, we can define satisfiability for constraint graphs. The following
definition also relates constraints graphs to constraints.

Definition 5.2.6. (satisfaction, equivalence) A substitution θ satisfies a constraint graph G
(we write θ |= G) if:

1. For all non-singleton vertices V = {e1, ...,en}, we have θ |= ei = ej, 1≤ i, j≤ n.

2. For all 6=-labelled edges between vertices V1 = {e1, ...,} and V2 = {e′1, ...,}, we have
θ |= e1 6= e′1.

3. For all <g-labelled edges from some vertex V1 = {e1, ...,} to a vertex V2 = {e′1, ...,},
we have θ |= e1 <g e′1.

A constraint graph G is satisfiable if there is a substitution θ such that θ |= G.
A constraint graph G and a C6=,<-constraint c are equivalent if θ |= c⇐⇒ θ |= G for all

substitutions θ.

Satisfiability Checking

Instead of giving an algorithm for satisfiability checking of constraints, we specify one for
constraint graphs. If we can then convert a constraint into an equivalent constraint graph
(actually a set of constraint graphs, see Algorithm 5.2.13), the algorithm can also be used to
check satisfiability of constraints. Lemma 5.2.9 proves the correctness of Algorithm 5.2.8.
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Definition 5.2.7. (path, cycle, path length, root) A path is a connected chain of directed
edges between pairs of vertices (V0,V1),(V1,V2), ...,(Vn−1,Vn). The path is a cycle if V0

and Vn are identical. The length of a path is n, the number of edges in the path, plus the
sum of all gap values in the labels of the edges belonging to the path. A vertex is a root if
there is no directed edge pointing to it.

Algorithm 5.2.8. (satisfiability) Let G be an (l,u)-constraint graph. Let Vl and Vu be the
vertices of G that contain l and u, respectively. Return true if all of the following conditions
hold, and false otherwise.

1. G contains no cycle.

2. G contains no (undirected) self-loop.

3. No vertex contains two distinct constants.

4. There is no path from Vu to Vl.

5. If a longest path from Vl to Vu exists, its length is less than or equal to u− l.

Lemma 5.2.9. Given a constraint graph G, Algorithm 5.2.8 returns true if G is satisfiable,
and false otherwise.

Proof. Suppose the algorithm returns true. Then those connected components of the graph
whose vertices are of non-integer types can be satisfied by assigning the same — but for
each vertex a freshly chosen — constant value to the vertex, if the vertex contains only
variables. Otherwise, if it does not contain only variables, it can be satisfied by assigning
the value of the only constant in the vertex to all variables in the vertex. This assignment
is possible and separates all non-integer vertices because we assume an infinite number of
entities and constants, and all vertices are pairwise mutually disjoint.

Now for the subgraph with vertices of integer type, we first assign l to Vl and u to Vu.
All other vertices contain only variables. Let lp(V,V′) denote the length of the longest path
from a vertex V to a vertex V′ in G. For each vertex V with a path leading to it from Vl or
Vu, assign max(l + lp(Vl,V),u+ lp(Vu,V)). This assignment satisfies all outgoing edges of
vertices reachable from Vl or Vu.

Let m be the length of the longest path in G. Assign the value l−m to each root vertex
(if it is not Vl or Vu). Now the only unassigned vertices are non-root vertices that are
not reachable from neither l nor u. Assign to these vertices V the maximum of the values
(l−m) + maxX(lp(X,V)) where X is any root vertex in G. This assignment satisfies all
outgoing edges of vertices reachable from a root vertex but not from either Vl nor Vu.

Suppose the algorithm returns false. Then G either contains a cycle or there is a path
from Vu to Vl or the length of the longest path from Vl to Vu is greater than u− l. In all
these cases G is clearly not satisfiable.

Conjunction

The algorithm for converting constraints into constraint graphs works by first converting
all atomic constraints of a conjunct into a constraint graph and then combining them. We
therefore first need an algorithm for combining two constraint graphs. Algorithm 5.2.11 is
proven correct by Lemma 5.2.12.

Definition 5.2.10. (constraint graph conjunction) Let G1 and G2 be two constraint graphs.
G is a conjunction of G1 and G2 if for all substitutions θ

θ |= G⇐⇒ (θ |= G1 and θ |= G2).
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Figure 5.2: The constraint graph on the right panel is the conjunction of the two constraint
graphs on the left.

Algorithm 5.2.11. (constraint graph conjunction) Let G1 = (V1,E1) and G2 = (V2,E2) be
two (l,u)-constraint graphs. Let V = V1 ∪V2 and E = E1 ∪E2. Repeatedly replace pairs
of vertices in V that are not disjoint by their union, until all vertices are pairwise mutually
disjoint. Call this new set of vertices V ′. Let

E ′ = {(V′1
6= V′2) | V′1,V

′
2 ∈ V ′,

V1,V2 ∈ V ,
V1 ⊆ V′1,V2 ⊆ V′2,
(V1

6= V2) ∈ E} ∪
{(V′1

<g−→ V′2) | V′1,V
′
2 ∈ V ′,

V1,V2 ∈ V ,
V1 ⊆ V′1,V2 ⊆ V′2,

(V1
<g−→ V2) ∈ E}

If there are self-loops (directed or undirected) or there are two opposite directed edges

V1
<g−→ V2 and V2

<g′−−→ V1 in E ′ then simply return any unsatisfiable (l,u)-constraint graph,
for example {u} <0−→{l}. Otherwise, if there are multiple edges between any pair of vertices
in E ′, remove all but the one labelled with the largest gap-value. Call this new set of edges
E ′′.

Return the (l,u)-constraint graph G′ = (V ′,E ′′).

Figure 5.2 shows the result of the conjunction of two constraints graphs. The following
lemma proves the correctness of the conjunction algorithm.

Lemma 5.2.12. Given two (l,u)-constraint graphs G1 and G2, Algorithm 5.2.11 returns a
new (l,u)-constraint graph G that is the conjunction of both graphs.

Proof. It is easy to see that G is indeed a (l,u)-constraint graph. We have to show that for
all substitutions θ, θ |= G iff θ |= G1 and θ |= G2.

First assume θ |= G. Consider any non-singleton vertex V = {e1, ...,en} in G1 or in G2.
Then, by construction of G, there is a vertex V′ in G such that V ⊆ V′. Since θ satisfies G,
it equalises all expressions within V′ and hence also within V, by definition of constraint
graph satisfaction. Now consider any edge in G1 or in G2 of the form V1

6= V2. Then
by construction of G, there exists an edge V′1

6= V′2 in G such that V1 ⊆ V′1 and V2 ⊆ V′2.
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Therefore, given any e1 ∈V1,e2 ∈V2 we have θ |= e1 6= e2, as required. Finally, consider any

edge in G1 or in G2 of the form V1
<g−→V2. Then by construction of G, there exists an edge

V′1
<g′−−→V′2 such that V1 ⊆V′1, V2 ⊆V′2 and g′ ≥ g. Therefore, given any e1 ∈V1,e2 ∈V2 we

have θ |= e1 <g′ e2 and hence also θ |= e1 <g e2, as required. Hence θ also satisfies both G1

and G2.
For the other direction, assume θ |= G1 and θ |= G2. Consider any two expressions ei and

ej within a non-singleton vertex V = {e1, ...,en} in G. Then either there is a vertex V′ in G1

or in G2 with ei,ej ∈V′, in which case clearly θ |= ei = ej; or, by construction of G, there is a
chain of vertices V1,V2, ...,Vn drawn alternately from G1 and G2 such that ei ∈V1, ej ∈Vn

and V1 ∩V2 6= /0, ..., Vn−1 ∩Vn 6= /0. In this case θ equalises all members of the chain of
vertices, in particular also ei and ej, as required. Now consider any edge in G of the form
V′1

6= V′2 and e1 ∈ V′1 and e2 ∈ V′2. Then there must be an edge V1
6= V2 in G1 or in G2

such that V1 and V2 are subsets of V′1 and V′2, respectively. Since θ makes all expressions in
V1 unequal to those in V2 and since θ also equalises all expressions within V′1 and within
V′2, respectively, θ also makes e1 and e2 unequal, as required. In a similar manner it can

be shown that any edge in G of the form V′1
<g−→ V′2 is also satisfied by θ. Therefore, θ also

satisfies G.

Constraint Conversion

We now have all the tools needed to convert a constraint into a set of constraint graphs. The
algorithm essentially converts the constraint into DNF and then, using Algorithm 5.2.11,
converts each conjunct into a constraint graph. Lemma 5.2.15 proves the correctness of
the Algorithm 5.2.13.

Algorithm 5.2.13. (constraint to graph conversion) Let c be a well-typed C6=,<-constraint,
and Γ ` c. Let l and u be two integers such that l is less than the least integer constant
in c and u is greater than or equal to the largest integer constant in c. If c does not have
any integer constant, let l and u be any integers satisfying l < u. The following algorithm
converts c into an equivalent (l,u)-constraint graph.

1. To flatten all expressions, simplify all subexpressions e to [[e]]. Then repeatedly replace
all subconstraints of the form e1 = e2 where Γ ` e1 : τ1× ...× τn with

[[πn
1(e1)]] = [[πn

1(e2)]]∧ ...∧ [[πn
n(e1)]] = [[πn

n(e2)]],

and subconstraints of the form e1 6= e2 where Γ ` e1 : τ1× ...× τn with

[[πn
1(e1)]] 6= [[πn

1(e2)]]∨ ...∨ [[πn
n(e1)]] 6= [[πn

n(e2)]]

until no product-typed expressions are left.

2. Replace subconstraints of the form e1 6= e2 where Γ ` e1 : int by

e1 <0 e2∨ e2 <0 e1.

3. Replace subconstraints of the form e = N where the integer constant N satisfies l <
N < u by e <0 (N+1) ∧ (N−1) <0 e. At this point, all subconstraints are equalities or
inequalities between flat non-integer expressions, gap-order constraints, or equality
constraints between integer expressions.
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Figure 5.3: Conversion of the constraint 1 < x,x < y,y = 3,p 6= Alice into a (1,10)-
constraint graph.

4. Convert to DNF, and perform trivial simplifications, thereby eliminating all occur-
rences of >, ⊥, constraints between constants (e.g. 3 = 2) and inequalities between
the same expressions (e.g. xint >0 xint).

5. Compute a constraint graph G for each disjunct by first converting the atomic con-
straints into (l,u)-constraint graphs and then combining them with the constraint
graph conjunction algorithm. Atomic constraints are converted as follows:

e = l is converted into {e, l}
<u−l−1−−−−→ {u}.

e = u is converted into {l}
<u−l−1−−−−→ {e,u}.

Otherwise, e = e′ is converted into {e,e′}.
e 6= e′ is converted into {e} 6= {e′}.

e <g e′, where e and e′ are not constants, is converted into {e}
<g−→ {e′}.

e <g N, where N is an integer constant, is converted into {e}
<g+u−N−−−−→ {u}.

Similarly, N <g e is converted into {l}
<g+N−l−−−−→ {e}.

6. Return the (disjunctive) set of constraint graphs of the disjuncts.

Figure 5.3 shows the result of converting the constraint 1 < x,x < y,y = 3,p 6= Alice
into a (1,10)-constraint graph. We will now prove the correctness of the constraint graph
conversion algorithm.

Definition 5.2.14. A C6=,<-constraint c is equivalent to a finite set of constraint graphs ~G if,
for all substitutions θ,

θ |= c⇐⇒ θ |= Gi for some Gi ∈ ~G.

Lemma 5.2.15. Let c be a C6=,<-constraint. Algorithm 5.2.13 converts c into an equivalent
set of (l,u)-constraint graphs {G1, ...,Gn}, for some integers l and u.

Proof. The first four steps are all simple transformations that do not change the meaning
of the constraint. Step 5 is correct because Algorithm 5.2.11 is correct, and the conversion
rules for atomic constraints are correct and exhaustive.
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For example, consider the atomic constraint c′ ≡ e <g N. Assume θ satisfies c′. Then
the edge between e and u is satisfied since e <g+u−N u is equivalent to e <g N. The other

direction is similar: assuming that θ satisfies the constraint graph {e}
<g+u−N−−−−→ {u}, we must

have θ |= e <g+u−N u and thus θ |= c′.

Subsumption Checking

As in the case of satisfiability checking, we provide an algorithm for checking subsumption
of constraint graphs rather than constraints directly. Algorithm 5.2.20 rests on the notions
of an underlying graph, gap tuples and independent sets (Definitions 5.2.16, 5.2.17, and
5.2.18). These concepts will also be needed for existential quantifier elimination and the
proof of constraint compactness. The correctness of Algorithm 5.2.20 is given by Lemma
5.2.21.

Definition 5.2.16. Let G be a constraint graph. Then the underlying graph of G is the
graph obtained by erasing the labels on the edges of G.

Definition 5.2.17. Let G be a constraint graph and σ an ordering of the directed edges of
G. The σ-gap tuple of G is the tuple of the gap values of the edges of G in σ-order.

Definition 5.2.18. Let P = (p1, ...,pk) and Q = (q1, ...,qk) be two k-tuples of natural num-
bers (k ≥ 0). We define a well-founded partial order ≤ on k-tuples such that P ≤ Q if
p1 ≤ q1 ∧ ...∧ pk ≤ qk. We say P and Q are independent if P � Q and Q � P. A set of
k-tuples of natural numbers is independent if all members of the set are mutually pairwise
independent.

Definition 5.2.19. Let G1 and G2 be two (l,u)-constraint graphs. G1 is subsumed by G2

if, for all substitutions θ,

θ |= G1 implies θ |= G2.

Algorithm 5.2.20. Given two (l,u)-constraint graphs G1 and G2, this algorithm returns
true only if G1 is subsumed by G2 (the converse does not hold in general).
Return true if

• G1 and G2 have the same underlying graph Ĝ and

• given an ordering σ on the directed edges of Ĝ, ~g2 ≤~g1 where ~g1 and ~g2 are the σ-gap
tuples of G1 and G2, respectively.

Return false, otherwise.

Figure 5.4 depicts a constraint graph of z = 2,z <0 y,z <1 x,x <1 y,y <0 10,p 6= q that
subsumes the one from Figure 5.1. Note that both graphs have the same underlying graph,
but the <-labels on this one are less than or equal to those from Figure 5.1. The following
lemma proves that Algorithm 5.2.20 computes a correct approximation of the subsumption
relation on constraint graphs.

Lemma 5.2.21. Let G1 and G2 be two (l,u)-constraint graphs. If Algorithm 5.2.20 returns
true then G1 is subsumed by G2.

Proof. Assume θ satisfies G1. Since G1 and G2 have the same underlying graph, θ satisfies

G2’s equality and inequality constraints. Any directed edge V
<g2−−→V′ in G2 is satisfied by θ

since θ also satisfies V
<g1−−→ V′ in G1 where g1 ≥ g2.

Therefore θ also satisfies G2.
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Figure 5.4: The constraint graph from Figure 5.1 is subsumed by this (2,10)-graph, accord-
ing to Algorithm 5.2.20.
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Figure 5.5: Existentially eliminating the variables x and p from the constraint graph from
Figure 5.1 yields z = 2,z <5 y,y <0 10.

Existential Quantifier Elimination

The algorithm for existential quantifier elimination on constraint graphs completes the set
of operations that are required for constraint domains. This is summarised in Theorem
5.2.24.

Algorithm 5.2.22. To perform existential quantifier elimination of a variable x from a
constraint graph G, remove from all vertices those expressions in which x occurs. If the

resulting vertex V is empty, replace all pairs of edges V1
<g1−−→V

<g2−−→V2 by V1
<g−→V2 where

g = g1 +g2 +1.
Remove V with all incident edges from the graph. If between any pair of vertices there is

more than one directed edge pointing in the same direction, delete all but the one with the
largest gap value from G. If between any pair of vertices there are directed edges pointing
in opposite directions, return the unsatisfiable constraint graph {u} <0−→ {l}.

Figure 5.5 shows the constraint graph obtained by eliminating the variables x and p from
the constraint graph from Figure 5.1. Note that q is also removed in the process, and that x
is bypassed by a <5-edge. The following lemma proves the correctness of Algorithm 5.2.22.

Lemma 5.2.23. Let G be a constraint graph. Then the constraint graph G′ obtained by
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eliminating the variable x from G using Algorithm 5.2.22 satisfies

θ |= G′⇐⇒ for some expression e, θ[e/x] |= G

Proof. For simplicity’s sake, we assume that x is not of a product type. The proof easily
generalises to the case where x is a product.

First assume θ |= G′. If in the elimination process x is removed from a vertex V in G
with at least two elements, x and some other expression e, say, then we have θ[e/x] |= G. If
the vertex V in G from which x is removed contains only x and has 6=-edges connecting it
to vertices V1, ...,Vn then K can be any constant different from θe1,...,θen, where ei is any
expression in Vi. In the other case, if V contains only x and has incident gap order edges,
let V1, ...,Vp and g1, ...,gp be the vertices with an outgoing directed edge to V, and the gap
values on these edges, respectively, and let W1, ...,Wq and h1, ...,hq be the vertices with an
incoming directed edge from V, and the gap values on these edges, respectively. Choose s
and t such that the value of an element in Vs under θ plus gs is maximal (and call it M) and
the value of an element in Wt under θ minus ht is minimal (call it m). If we can choose
K such that m < K < M, then θ[K/x] clearly satisfies all edges incident to V, and thus the

entire graph G. The algorithm adds the edge Vs
gs+ht+1−−−−−→Vt to produce G′, and θ satisfies it

by assumption. This implies that m+1 < M, so there is indeed a K between m and M.
For the other direction, assume θ[e/x] |= G, for some e. It is sufficient to show that θ

satisfies the new directed edges in G′. If G′ contains a new edge V1
<g−→ V2 then G must

contain V1
<g1−−→ {x}

<g2−−→ V2 where g = g1 +g2 +1. Let e1 and e2 be expressions in V1 and
V2, respectively. By assumption, θe1 + g1 < θe and θe+ g2 < θe2. This implies θe1 <g θe2,
as required.

Theorem 5.2.24. Satisfiability checking, subsumption checking and existential quantifier
elimination for C6=,<-constraints are computable.

Proof. This follows directly from the soundness of converting constraints into constraint
graphs (Lemma 5.2.15) and from the soundness of the constraint graph algorithms for
satisfiability checking (Lemma 5.2.9), for subsumption checking (Lemma 5.2.21) and for
existential quantifier elimination (Lemma 5.2.23).

Constraint Compactness

To prove constraint compactness of C6=,<, we first have to prove a few auxiliary lemmas.
Lemma 5.2.25 is due to Revesz [Rev93]. Lemma 5.2.28 proves compactness for single
constraint graphs, and Lemma 5.2.29 generalises that result to disjunctions of constraint
graphs. Finally, Theorem 5.2.30 proves constraint compactness of C6=,<.

Lemma 5.2.25. Every independent set of k-tuples of natural numbers is finite (k≥ 0).

Proof. We prove the statement by induction on k. For k = 0, the statement is trivial.
Let I be a non-empty independent set of (k+1)-tuples with A = (a1, ...,ak+1) ∈ I. Given

any other tuple P = (p1, ...,pk+1) ∈ I, there must be some i ∈ {1, ...,k+1} such that pi < ai,
since A and P are independent. Therefore, every tuple in I other than A belongs to at least
one of the sets Si,p = {(p1, ...,pk+1) ∈ I | pi = p}, where i ∈ {1, ...,k+1} and 0≤ p < ai.

There are only finitely many of these sets, so it is sufficient to prove that any Si,p is finite.
Si,p is also an independent set as it is a subset of I. Let S′i,p be the set of k-tuples constructed
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from the (k + 1)-tuples in Si,p without their ith component. Then S′i,p is an independent
set of k-tuples, for the ith components of the (k + 1)-tuples in Si,p are all equal. By the
induction hypothesis, S′i,p is finite, and hence Si,p is finite as well.

Definition 5.2.26. Let S be a set of k-tuples of natural numbers (k≥ 0). A set C is a cover
of S (C covers S) if for all tuples P in S there is a tuple Q in C such that Q≤ P.

Lemma 5.2.27. Let S be a set of k-tuples of natural numbers (k≥ 0). Then there is a finite
independent set C⊆ S that covers S.

Proof. Let C− = {P ∈ S | ∃Q ∈ S. P 6= Q and Q ≤ P} be the set of all tuples in S for which
there is a smaller tuple in S. Let C = S−C−, so S = C]C−. S is clearly a cover of itself,
therefore for all tuples P in S there is a tuple Q either in C or in C− such that Q ≤ P. In
the latter case, by well-foundedness of (S,≥) and by construction of C−, there must be a
Q0 ∈ S such that Q0 ≤Q and Q0 is a minimal element in S. Since Q0 is minimal, it cannot
be in C−, thus Q0 ∈ C. By transitivity of ≤, Q0 ≤ P. Hence C is also a cover of S.

Moreover, C is an independent set by construction, and by Lemma 5.2.25, C is finite.

Lemma 5.2.28. Let G be a set of (l,u)-constraint graphs such that only finitely many dif-
ferent variables and constants occur in the vertices of the graphs. Then there exists a finite
subset Gfin ⊆G such that for every graph G∈G there is a graph G′ ∈Gfin such that G⇒G′.

Proof. Since there are only finitely many different variables and constants, there can only
be finitely many distinct vertices. Moreover, since graphs can have at most one edge be-
tween any pair of vertices, there are only a finite number of distinct underlying graphs of
constraint graphs in G . Therefore, it is sufficient to show that for any of these finitely many
distinct underlying graphs Ĝ there exists a finite set Gfin ⊆ G that covers all those graphs in
G with underlying graph Ĝ.

Choose any ordering σ on Ĝ’s directed edges. Let S be the set of the σ-gap tuples of those
graphs in G whose underlying graph is Ĝ. By Lemma 5.2.27, there is a finite subset Sfin of
S that covers S. Choose Gfin ⊆ G to be the finite set of constraint graphs with σ-gap tuples
in Sfin.

Lemma 5.2.29. Let ~G be a set of finite disjunctions of (l,u)-constraint graphs such that
only finitely many different variables and constants occur in the vertices of the graphs.
Then there exists a finite subset ~Gfin ⊆ ~G such that for every disjunction of graphs G ∈ ~G
there is a disjunction of graphs G ′ ∈ ~Gfin such that G ⇒ G ′, i.e.

∀G ∈ G . ∃G′ ∈ G ′. G⇒G′.

Proof. By Lemma 5.2.28, there is a positive integer N such that, for all disjunctions in ~G
with size greater than N, the disjunction is equivalent to one with size at most N and can
thus be ignored. Again by Lemma 5.2.28, for all n with 2 ≤ n ≤N, there are only finitely
many constraint graph disjunctions of size n whose graphs are all pairwise mutually not
related by⇒, all others are therefore equivalent to a disjunction of size strictly less than n.
Therefore, all but a finite number of disjunctions in ~G are equivalent to a single constraint
graph (as opposed to a disjunction). By Lemma 5.2.28, there is a finite subset ~G ′fin of ~G that

covers the set of these constraint graphs. Then we can choose ~Gfin to be the union of the
finitely many remaining disjunctions and ~G ′fin.
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Interestingly, the proof for Lemma 5.2.29 does not rely on any properties of constraint
graphs other than the compactness property stated in Lemma 5.2.28. It can therefore
be generalised to other constraint domains: adding disjunction to a constraint-compact
constraint domain preserves constraint compactness.

Theorem 5.2.30. (constraint compactness) C6=,< is constraint compact.

Proof. First of all, existential quantifier elimination does not introduce any new variables
or constants, by construction of Algorithm 5.2.22. For the second condition, any set of con-
straints can be converted into an equivalent set of disjunctions of (l,u)-constraint graphs
where l and u are a lower bound and an upper bound, respectively, of the integer con-
stants occurring in the set. Since the conversion does not introduce any new variables and
constants, constraint compactness follows from the soundness of the conversion algorithm
(Lemma 5.2.15) and from the compactness of constraint graphs (Lemma 5.2.29).

5.2.4 Sets and Built-In Functions

The design of the constraint domain C0 was guided by the EHR case study. In C0, we add
to C6=,< set expressions and constraints, and built-in functions. The function symbols are
interpreted by a fixed set of side-effect-free1 functions with finite domain that may return
environment-dependent data. For example, for our case study we have functions to access
data fields of health record items such as Get-EHR-item-author(pat, id), and a function
Current-time() that returns the current time. The syntax is as follows:

Expressions e ::= ...
| F(e1, ...,en)
| /0
| Ωτ

| {e1, ...,en}
| e1− e2

| e1∩ e2

| e1∪ e2

Constraints c ::= ...
| e1 ⊆ e2

Functions F ∈ FunctionNames

The constant expression Ωτ represents the universal set for a specific type. In combination
with the other set constructs, we can express finite and cofinite sets. We usually omit the
subscript τ if it is clear from the context. From the given constraint constructs, various
other useful ones can be derived, for example

• e ∈ [e1,e2] stands for e≤ e1∧ e≤ e2;

• [e1,e2]⊆ [e′1,e
′
2] for e′1 ≤ e1∧ e2 ≤ e′2;

• e1 ∈ e2 for {e1} ⊆ e2;

• and e1 /∈ e2 for {e1} ⊆ Ω− e2.

1This is not a strict requirement but policy writers should not rely on how often or in which order functions
are called during evaluation.
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Every function symbol F is associated with types for its domain and its codomain, de-
noted by Dom(F) and Cod(F), respectively. The type system for C0 contains all rules from
the type system for C6=,<, as well as the following ones:

Γ ` e : τ1 F ∈ FunctionNames Dom(F) = τ1 Cod(F) = τ2

Γ ` F(e) : τ2

Γ ` /0 : set(τ) Γ ` Ωτ : set(τ)

Γ ` e1 : τ · · · Γ ` en : τ

Γ ` {e1, ...,en} : set(τ)
Γ ` e1 : set(τ) Γ ` e2 : set(τ)

Γ ` e1− e2 : set(τ)
and similarly for ∩ and ∪.

Γ ` e1 : set(τ) Γ ` e2 : set(τ)
Γ ` e1 ⊆ e2

Each function symbol F is interpreted by a function [[F]] with a finite domain Dom(F) and
codomain Cod(F), so

[[F(e)]] = [[F]]([[e]]).

The condition that the function be finite is essential for constraint compactness: it is easy
to see that compactness, and thus decidability, is broken by allowing a successor function.

Set expressions and subset constraints are interpreted as expected:

[[ /0]] = /0
[[Ωτ ]] = Ωτ

[[{e1, ...,en}]] = {[[e1]], ..., [[en]]}
[[e1− e2]] = [[e1]]− [[e2]]
[[e1∩ e2]] = [[e1]]∩ [[e2]]
[[e1∪ e2]] = [[e1]]∪ [[e2]]

θ |= e1 ⊆ e2 if [[θe1]]⊆ [[θe2]]

Finite functions can be represented as finite sets, so they can be ignored in the analysis
of the constraint compactness of C0. However, solving set constraints is much harder (see
[PP97, Koz94, Aik94] for an overview of various approaches). Instead of presenting al-
gorithms to solve the general form of set constraints, we use groundness analysis on the
policy rules to ensure that, whenever existential quantifier elimination is to be performed
on a C0-constraint, all set expressions are ground. All set sub-constraints occurring within a
constraint then trivially reduce to true or false, and in particular do not introduce any new
constants when existential quantifier elimination is performed. The resulting constraint
is always from C6=,< which we already know to be constraint compact. While this argu-
ment does not establish the constraint compactness of C0, it does prove termination of the
evaluation algorithm presented in §6.2 for C0 policies, under the groundness assumption.
Groundness analysis of CASSANDRA policies is discussed in detail in §6.3.



6
Query Evaluation

In policy-based trust management systems, access control decisions are made through
queries to the local policy. Query evaluation algorithms for deductive logic databases
can be categorised into bottom-up and top-down algorithms. Bottom-up algorithms are
closely based on the fixed point semantics: starting from basic facts, new derived facts are
iteratively added until a fixed point is reached; the model can thus be pre-computed and
reused. Top-down algorithms, on the other hand, are based on some form of resolution
and are goal-oriented, i.e., if the query is partially instantiated (which is normally the case
in CASSANDRA) this information can be used to prune the search space for efficiency. The
disadvantages are that answers are not pre-computed, and standard top-down query eval-
uation algorithms such as Prolog-style SLD resolution are often not termination-complete
[CW93, CW96].

For most deductive database applications, the bottom-up approach is the preferred
choice as the model has to be computed only once (as long as the database is not mod-
ified) and can then be efficiently used to compute answers. Moreover, the danger of non-
termination of query evaluation is usually highly undesirable.

However, bottom-up evaluation is not suitable for CASSANDRA for several reasons:

• The constraint domain (e.g. C0) may contain function calls that depend on the en-
vironment, for example for getting the current time, and therefore cannot be pre-
computed.

• The fact that rule bodies can refer to remote predicates would require a distributed
form of bottom-up evaluation which would be impractical.

• Requests made to the access control engine can modify policies. For example, a
successful role activation request adds a hasActivated credential rule to the policy.
The model would thus have to be re-computed after every such request.

SLG resolution (Linear resolution with Selection function for General logic programs) is
an algorithm due to Chen and Warren [CW93, CW96] that is sound and complete with re-
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spect to the well-founded semantics for logic programs with negation. Toman [Tom97] ex-
tended the algorithm for positive DatalogC and proved that query evaluation for constraint-
compact constraint domains C is guaranteed to terminate whenever the bottom-up ap-
proach terminates. Moreover, the complexity of the extended resolution algorithm, SLGC ,
is no worse than the complexity of bottom-up algorithms; in practice, it is significantly
faster [Tom95].

§6.1 reviews SLGC resolution in detail. §6.2 extends SLGC resolution to CASSANDRA’s
policy language. In §6.3, we discuss the uses of groundness analysis and show that the
SLGC algorithm can be used to perform groundness analysis on policies, when the con-
straints are mapped to an abstract domain. Less mathematically-inclined readers may wish
to skip §6.3.

6.1 SLGC Resolution

SLGC resolution is a top-down, goal-oriented evaluation algorithm for DatalogC programs.
It preserves the termination and complexity properties of bottom-up algorithms. With par-
tially or fully instantiated queries, evaluation is usually significantly more efficient. The
strong termination property is achieved by a memoing or tabling strategy. Answers to a
goal are stored in a table indexed by goals, so to solve a goal for which a suitable table
entry already exists, the algorithm uses the tabled answers as solutions. Whenever new an-
swers are added to the table, they are automatically propagated to other waiting evaluation
branches. Only if no relevant entry exists for the goal, a proof tree together with a new
table entry is created and populated.

The algorithm and results are due to Toman [Tom97].

Algorithm 6.1.1. (SLGC resolution) Let P0, ...,Pk be predicates, c,c′ constraints from a
constraint domain C , and P be a DatalogC program. An SLGC tree consists of nodes of the
form

• root(P0;c),

• body(P0; [P1, ...,Pk];c),

• goal(P0;(P1,c′); [P2, ...,Pk];c), and

• ans(P;c).

An SLGC proof forest for the query (P0← c0) is built by expanding an SLGC tree with an
initial node root(P0;c0) with the following rules as long as they can be applied. Let Ans(P,c)
be the set of all constraints c′ such that ans(P,c′) is in an SLGC tree with root(P,c), and c′

is not subsumed by any older answer in that tree.

• Clause Resolution: A node root(P;c) has child nodes of the form

body(P; [P1, ...,Pk];c∧d)

for all P1, ...,Pk,d such that P← P1, ...,Pk,d ∈ P and c∧d is satisfiable.

• Query Projection: A node body(P; [P1, ...,Pk];c) has child nodes of the form

goal(P;(P1,c
′); [P2, ...,Pk];c)

for all1 c′ ∈ ∃−P1(c).
1∃−P(c) is shorthand for ∃−Fv(P)(c).
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• Answer Propagation: A node goal(P;(P1,c′); [P2, ...,Pk];c) has child nodes of the
form

body(P; [P2, ...,Pk];c∧a)

for all a ∈ Ans(P1,c′′) where c′⇒ c′′ and c∧a is satisfiable.

• Answer Projection: A node body(P; [];c) has child nodes of the form

ans(P;a)

for all a ∈ ∃−P(c).

Then we have the following important results:

Theorem 6.1.2. Algorithm 6.1.1 is sound and complete with respect to the fixed point
semantics: for all queries P0← c0 and for all substitution θ satisfying c0

θP0 ∈ ‖Model(P )‖⇐⇒ θ ∈ ‖Ans(P0,c0)‖.

Theorem 6.1.3. Algorithm 6.1.1 terminates for all queries on a program P whenever the
fixed point semantics of P is finite.

In §6.3, we will need the following two lemmas from [Tom97]:

Lemma 6.1.4. Every substitution θ ∈ ‖Ans(P,c)‖ satisfies c, for all predicates P and con-
straints c.

Lemma 6.1.5. If c1 ⇒ c2 then ‖Ans(P,c1)‖ ⊆ ‖Ans(P,c2)‖, for all predicates P and con-
straints c1,c2.

6.1.1 A Deterministic Variant

Algorithm 6.1.1 as presented in [Tom97] is nondeterministic, as the order in which the
rules are applied is not specified. Moreover, the Answer Propagation step does not specify
which c′′ to choose. An actual implementation would first check whether any proof tree
rooted in root(P1,c′′) such that c′⇒ c′′ already exists, and take all of its already computed
as well as future answers to perform Answer Propagation. If no such proof tree exists yet,
a new one is spawned with root(P1,c′′). The choice of c′′ is free as long as c′⇒ c′′, so in
particular c′′ could be c′, or simply true. We choose the first alternative as it is generally
more efficient (the second is similar to bottom-up evaluation) and, more importantly, it
maximises groundness of variables.

The following procedures written in pseudo-code make the general evaluation order as
well as the Answer Propagation step from Algorithm 6.1.1 explicit. To compute the answer
of a query P← c, let Ans(Q,d) and Wait(Q,d) be initially undefined for all predicates Q
and constraints d, except Ans(P,c) = /0. Call RESOLVE-CLAUSE(root(P,c)). After the call,
Ans(P,c) will contain the answer of the query.

The procedure RESOLVE-CLAUSE starts a new proof tree from a given root node, creating
body nodes from matching rules in the program. If the rule is a fact, PROJECT-ANSWER is
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called on the corresponding body node, otherwise PROJECT-QUERY is called.

RESOLVE-CLAUSE(root(P0;c0))
1 foreach R≡ P0← ~P,c ∈ P such that c0∧ c is satisfiable do

2 if ~P = [] then PROJECT-ANSWER(body((P0,c0); [];c0∧ c))
3 else PROJECT-QUERY(body((P0,c0);~P;c0∧ c))

The procedure PROJECT-QUERY takes a body node with a non-empty list of sub-
goals and projects its constraint onto the free variables of the first subgoal predicate.
PROPAGATE-ANSWER is called on the resulting goal nodes.

PROJECT-QUERY(body((P0,c0); [P1, ...,Pn];c1))
1 foreach satisfiable c ∈ ∃−P1(c1) do
2 PROPAGATE-ANSWER(goal((P0,c0);(P1,c); [P2, ...,Pn];c1))

PROJECT-ANSWER deals with body nodes with an empty list of subgoals. In this case, the
constraint is projected onto the free variables of the original predicate, and PROCESS-ANSWER

is called on the resulting answer nodes.

PROJECT-ANSWER(body((P0,c0); [];c1))
1 foreach satisfiable c ∈ ∃−P0(c1) do
2 PROCESS-ANSWER(ans((P0,c0);c))

The PROCESS-ANSWER procedure takes an answer node and updates the Ansfunction if the
answer is not already subsumed by an older answer. The Wait function keeps track of the
goal nodes that wait for this answer. These goal nodes are combined with the answer to
form a new body node that is then further processed by PROJECT-ANSWER or PROJECT-QUERY,
depending on whether it contains any further subgoals.

PROCESS-ANSWER(ans((P0,c0);c))
1 if c is not subsumed by a constraint in Ans(P0,c0) then
2 Ans(P0,c0) := Ans(P0,c0)∪{c};
3 foreach goal((Q0,d0);(P0,d); ~Q;d1) ∈Wait(P0,c0)
4 such that c∧d1 is satisfiable do

5 if ~Q = [] then PROJECT-ANSWER(body((Q0,d0); [];c∧d1))
6 else PROJECT-QUERY(body((Q0,d0); ~Q;c∧d1))

PROPAGATE-ANSWER deals with newly created goal nodes. If a proof tree that could supply
the answers for the goal already exists then the goal is put onto the waiting list of that
proof tree. The goal will thus receive future answers from that proof tree. Furthermore,
all existing answers are propagated to the goal node to form new body nodes that are
then further processed by PROJECT-ANSWER or PROJECT-QUERY, depending on whether they
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contain any further subgoals.

PROPAGATE-ANSWER(goal((P0,c0);(P1,d0);~P;c1))
01 if there exists (P1,d1) ∈ Dom(Ans) such that d0⇒ d1 then
02 Wait(P1,d1) :=
03 Wait(P1,d1)∪{goal((P0,c0);(P1,d0);~P;c1)};
04 foreach a ∈ Ans(P1,d1) such that a∧ c1 is satisfiable do

05 if ~P = [] then PROJECT-ANSWER(body((P0,c0); [];a∧ c1))
06 else PROJECT-QUERY(body((P0,c0);~P;a∧ c1))
07 else
08 Ans(P1,d0) := /0;
09 Wait(P1,d0) := {goal((P0,c0);(P1,d0);~P;c1)};
10 RESOLVE-CLAUSE(root(P1;d0))

We will now discuss how this algorithm can be modified to evaluate CASSANDRA policy
queries.

6.2 Evaluation Algorithm

CASSANDRA differs from DatalogC in two aspects relevant to query evaluation: aggregation
and remote predicates. Due to the restriction of aggregation-safety, the evaluation of pred-
icates defined by aggregation rules can be performed by a separate procedure AGGREGATE

that does not interfere with the evaluation of other goals.
Algorithm 6.1.1 can be modified to handle CASSANDRA’s prefixed predicates. First of

all, the location and issuer prefixes can be treated as additional predicate parameters. If
the location of the current goal predicate is instantiated to the location of the rule, the
algorithm acts as before. However, if the location is instantiated to a different entity and
the goal is not subsumed by some older goal, a new proof tree for this remote goal is
spawned at the remote location. This proof tree will contain the additional corresponding
canReqCred goal.

Definition 6.2.1. If c grounds eloc to E, and eloc is the location of a predicate, then the
location of the predicate with respect to c is E:

Loc(eloc♦eiss.p(~x),c) = E if c⇒ eloc = E, and undefined, otherwise.

Procedure calls are tagged with a location to indicate where it is called. For example,
E♦RESOLVE-CLAUSE is a procedure invocation at location E. The Ans and Wait tables are
now also localised; for example, E♦Ansis the answer function at location E.

The procedures now also have an additional parameter to keep track of who is request-
ing the answers. If during evaluation at Eloc a remote goal (P0;c0) is encountered, say
Loc(P0,c0) = Erem, then Erem♦RESOLVE-CLAUSE(Eloc, root(P0;c0)) is called. The answers pro-
duced at Erem will be sent back to, stored and further processed at Eloc.

To compute the answer of a query P← c where P ≡ Eloc♦Eiss.p0(~e0), let E♦Ans(Q,d)
and E♦Wait(Q,d) be initially undefined for all entities E, predicates Q and constraints d
except Eloc♦Ans(P,c) = /0. Call Eloc♦RESOLVE-CLAUSE(Eloc, root(P,c)). After the call returns,
Eloc♦Ans(P,c) will contain the answer of the query.

The modified RESOLVE-CLAUSE procedure calls AGGREGATE to deal with aggregation rules.
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For non-aggregate rules there are two cases. If the requester is local, the resulting body
node is processed as before. Otherwise, i.e. if the requester is remote, the subgoals of the
body node are extended with a matching canReqCred goal that checks whether (and under
which restrictions) the policy allows the requester to perform this query.

Eloc♦RESOLVE-CLAUSE(Ereq, root(P0;c0))
1 foreach R≡ P0← ~P,c ∈ P such that c0∧ c is satisfiable do
2 if R is an aggregation rule then
3 Eloc♦AGGREGATE(Ereq,(P0,c0),R)
4 else if Ereq = Eloc then

5 Eloc♦PROJECT(Ereq,body((P0,c0);~P;c0∧ c))
6 else

7 Eloc♦PROJECT(Ereq,body((P0,c0); [canReqCred(Ereq,P0),~P];c0∧ c))

The AGGREGATE procedure assumes that the aggregation control parameters ~y are grounded
by c∧ c0. Then it computes the set XR of all different values that x can assume, applies
the aggregation operator (i.e. in the case of count, it computes the size of the set) and calls
PROCESS-ANSWER at the requester’s location on the resulting answer nodes.

Eloc♦AGGREGATE(Ereq,(P0,c0),R)
1 match R with Eloc♦Eloc.p0(aggOp〈x〉,~y)← Eloc♦e′.p1(~z),c in
2 match P0 with Eloc♦Eloc.p0(w,~y) in
3 foreach c′0 ∈ ∃−P0(c0) do

4 let XR = { Kx | Eloc♦E′.p1(~z)←~z = ~K ∈ P ,

5 ~z = ~K⇒ x = Kx,

6 c′0∧ c∧~z = ~K∧ e′ = E′ is satisfiable } in
7 Ereq♦PROCESS-ANSWER(ans(P0,c0);c′0∧w = aggOp(XR))

PROJECT works in the same way as PROJECT-ANSWER and PROJECT-QUERY from §6.1.1.

Eloc♦PROJECT(Ereq,body((P0,c0);~P,c1))
1 if ~P = [] then
2 foreach satisfiable c ∈ ∃−P0(c1) do
3 Ereq♦PROCESS-ANSWER(ans((P0,c0);c))
4 else
5 foreach satisfiable c ∈ ∃−P1(c1) do

6 Eloc♦PROPAGATE-ANSWER(Ereq,goal((P0,c0);(P1,c);~P;c1))

The PROCESS-ANSWER procedure is also unchanged apart from the additional location tags.

Eloc♦PROCESS-ANSWER(ans(P0,c0),c)
1 if c is not subsumed by a constraint in Eloc♦Ans(P0,c0) then
2 Eloc♦Ans(P0,c0) := Eloc♦Ans(P0,c0)∪{c};
3 foreach (Ereq,goal((Q0,d0);(P0,d); ~Q;d1)) ∈ Eloc♦Wait(P0,c0)
4 such that c∧d1 is satisfiable do

5 Eloc♦PROJECT(Ereq,body((Q0,d0); ~Q;c∧d1)

The values of the Wait function, updated by the PROPAGATE-ANSWER procedure, now also
contain the requesting entity. To process the goal node, a new proof tree may have to
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be spawned, as before, but now it may be spawned at a remote location. The location is
determined by Loc(P1,d0) in Line 9. Of course, this only works if the location is defined
at that point. We will later use static groundness analysis to enforce this condition. The
requester of the new proof tree is set to Eloc.

Eloc♦PROPAGATE-ANSWER(Ereq,goal((P0,c0);(P1,d0);~P;c1))
1 if there exists (P1,d1) ∈ Dom(Eloc♦Ans) such that d0⇒ d1 then
2 Eloc♦Wait(P1,d1) :=
3 Eloc♦Wait(P1,d1)∪ (Ereq,goal((P0,c0);(P1,d0);~P;c1));
4 foreach a ∈ Ans(P1,d1) such that a∧ c1 is satisfiable do

5 Eloc♦PROJECT(Ereq,body((P0,c0);~P;a∧ c1))
6 else
7 Eloc♦Ans(P1,d0) := /0;
8 Eloc♦Wait(P1,d0) := {(Ereq,goal((P0,c0);(P1,d0);~P;c1))};
9 Loc(P1,d0)♦RESOLVE-CLAUSE(Eloc, root(P1;d0))

For both aggregation and remote predicates, static groundness analysis is employed to
simplify evaluation. Groundness analysis can also be used in CASSANDRA to enforce other
useful conditions. This is discussed in the following section.

6.3 Groundness Analysis

Groundness analysis is a very useful static program analysis that can be used on CASSANDRA

policies for three different purposes:

• If, in the process of evaluating a query, a goal predicate has an unconstrained location,
the evaluation engine cannot figure out where to deduce it from. Therefore, the
location of a body predicate is required to be ground by the time all body predicates
preceding it in the rule have been solved.

• There are useful constraint domains such as C0 that are very difficult to prove to be
constraint compact or are not constraint compact at all. By requiring that certain
constraint constructs are ground during answer projection (which is the only point
where exact existential quantifier elimination is needed), we can restrict the constraint
domain to a constraint compact fragment during run-time, thus preserving the termi-
nation properties. It also simplifies the implementation of such constraint domains if
it is known in advance that certain constructs will always be ground. In the case of
C0, we require that built-in-function arguments and set constraints are ground dur-
ing answer projection, i.e. after all body predicates of the respective rule have been
solved. This reduces the constraints to the simpler constraint domain C6=,< for which
we have proven constraint compactness.

• The requirement of aggregation-safety on aggregation rules is rather strict (cf. Defi-
nition 4.4.2). It is often useful to have control parameters in the head of an aggre-
gation rule that do not occur in the parameters of the body predicate. Chapters 8
and 9 provide examples of such rules. Such rules reduce to aggregation-safe rules if
these “unsafe” control parameters are always ground during run-time. In fact, the
algorithm given in §6.2 requires that all control parameters of aggregation rules are
ground during run-time, i.e. whenever an aggregate body predicate is to be solved.
This requirement greatly simplifies implementation and enhances efficiency.
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In order to verify such requirements, the analysis can exploit the fact that in CASSANDRA,
queries are only ever issued by the access control engine, and only with particular
groundness patterns. For example, a query involving permits, canActivate, canDeactivate
or isDeactivated will always be fully instantiated. However, in queries involving
canReqCred(Er,Eiss.p(~x)), the arguments ~x may be uninstantiated, so the access control
engine may also issue queries involving Eiss.p(~x) with uninstantiated ~x, for all predicate
names p occurring in a head of some canReqCred rule (see Chapter 7).

For example, suppose TheZoo’s policy had the following rule:

canActivate(x,Monkey(age))←
x♦TheZoo.monkeyCert(age)

Here, the variable x is required to be ground before the first body predicate is processed,
since it is used as the location of a predicate. In other words, we have to check that when-
ever a query is issued by the access control engine, all answer nodes to the isGround001 pred-
icate acting as “groundness checkpoint” in the rule below will be ground. Such groundness
checkpoints can be inserted whenever the groundness of a variable needs to checked.

canActivate(x,Monkey(age))←
isGround001(x),
x♦TheZoo.monkeyCert(age)

isGround001(x)← true

(6.1)

Given that there are no other rules, the groundness of x can be deduced by groundness
analysis under the assumption that the arguments to the canActivate head of the rule will
be fully instantiated. However, if we added the following rule, the check would fail, since
Rule 6.1 would be called with an uninstantiated x whenever someone tried to activate the
role SomeRole:

canActivate(y,SomeRole())←
canActivate(x,Monkey(age))

Similarly, if there were a rule

canReqCred(y,TheZoo.canActivate(x,Monkey(age)))← age≥ 18

then x may also be uninstantiated at the groundness checkpoint in Rule 6.1, because the
access control engine may issue a canReqCred query with uninstantiated arguments.

The following section describes an algorithm that can statically check the groundness of
nodes in an SLGC forest for queries with a given groundness pattern.

6.3.1 Positive Boolean Functions for Groundness Analysis

Pos, the set of positive boolean functions, has previously been proposed as an abstract
interpretation domain [CC77, Cou96] for groundness analysis on logic programs and con-
straint logic programs [MS93, BS93]. A boolean function is positive if it is satisfied by the
assignment of true to all its variables. The positive boolean functions are closed under con-
junction, disjunction and existential quantifier elimination. Subsumption of boolean func-
tions is equivalent to logical implication. We will present a proof that the SLGC -resolution
algorithm can be used to perform Pos-based groundness analysis on DatalogC programs.
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This can simply be done by mapping every constraint c in the program into an “abstract
constraint” c] in the Posdomain that contains groundness information about c. Then, any
query P0← c0 can be mapped into an “abstract query” P0← c]

0. The SLGC proof forest
for the abstract query will then contain all information about run-time groundness of the
original query. The mapping we will be using is a fragment of the one mentioned in [BS93]:

Definition 6.3.1. A C0-constraint c is mapped to a Pos-constraint c] as follows:

• (x = k)] = x if k is a ground expression

• (x = y)] = x←→ y

• (c∧ c′)] = c]∧ c′]

• (c∨ c′)] = c]∨ c′]

• c] = true] if c does not match any of the above

The mapping is supposed to convey groundness information of the original constraint.
For example, the intuitive reading of x∧y is “x and y are both ground”, whereas x←→ y
means “x is ground iff y is ground”. The mapping is only approximate, though: for
example, 1 < x < 3 grounds x as it is equivalent to x = 2 but (1 < x < 3)] = true] which
conveys no groundness information about x whatsoever. The mapping can be made more
precise, if required, as long as it is sound in the sense that if fulfils the following requirement:
c]⇒ x implies that c grounds x.

The main result, Theorem 6.3.9, states that the answer nodes in the SLGC forest of an
abstract query contain correct groundness information about the SLGC forest of the orig-
inal query. The correctness of the analysis depends on a condition on constraint domains
which we call ∃/]-commutativity2:

Definition 6.3.2. (∃/]-commutative) A constraint domain C is ∃/]-commutative if for every
C -constraint c

(∃x(c))]⇒∃x(c]).

We will later prove that C0 is an example of a ∃/]-commutative constraint domain. First
we need to prove some auxiliary lemmas that lead to Theorem 6.3.9. Lemmas 6.3.3 and
6.3.4 prove general properties about ∃ and ] that hold for all constraint domains. Lemma
6.3.5 states a general property about SLGC resolution.

Lemma 6.3.3. If c⇒ c′ then ∃x(c)⇒∃x(c′).

Proof. Suppose c⇒ c′, and θ |= cx ∈ ∃x(c). Then there exists a constant k such that θ |=
c[k/x], and thus also θ |= c′[k/x]. Then there is also a constraint c′x ∈∃x(c′) such that θ |= c′x.
Hence cx⇒ c′x.

Lemma 6.3.4. Let c be a constraint from a ∃/]-commutative constraint domain. If c]⇒ γ
then (∃x(c))]⇒∃x(γ).

Proof. Suppose c] ⇒ γ. By ∃/]-commutativity, (∃x(c))] ⇒ ∃x(c]). By Lemma 6.3.3,
∃x(c])⇒∃x(γ).

2If C1 and C2 are sets of constraints, C1⇒ C2 is shorthand for “for all c1 ∈C1 there exists c2 ∈C2 such that
c1⇒ c2. If C is a set of constraints, then C] is shorthand for {c] | c ∈ C}.
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Lemma 6.3.5. Let c, c′ be constraints and G a predicate with Fv(c)∪Fv(c′) ⊆ Fv(G). If
c⇒ c′ then3 ‖Ans(G,c)‖= ‖c∧Ans(G,c′)‖.

Proof. First suppose θ ∈ ‖Ans(G,c)‖. Since c⇒ c′, ‖Ans(G,c)‖ ⊆ ‖Ans(G,c′)‖ by Lemma
6.1.5. Furthermore, by Lemma 6.1.4, θ |= c, hence θ ∈ ‖c∧Ans(G,c′)‖.

For the other direction, suppose θ ∈ ‖c ∧ Ans(G,c′)‖. By Theorem 6.1.2, θG ∈
||Model(P )||. Furthermore, θ |= c, so again by Theorem 6.1.2, θ ∈ ‖Ans(G,c)‖.

Next, we define a subsumption relation between C -proof trees T and Pos-proof trees Υ.
Intuitively, the former T is subsumed by Υ if the groundness information in the latter is at
most as “definite” as the groundness information in T, if all constraints in T are mapped
to Pos-constraints. This relation is central in the proof of Theorem 6.3.9.

Definition 6.3.6. A proof tree T is subsumed by a Pos-proof tree Υ if for all Pos-
substitutions θ and for all nodes

• root(P;c) ∈ T: if θ |= c] then there exists some root(P;γ) ∈Υ such that θ |= γ.

• body((P,c0); ~Q;c) ∈ T: if θ |= c] then there exists some body((P,γ0); ~Q;γ) ∈ Υ such
that θ |= γ.

• goal((P,c0);(Q,c);~R;c′) ∈ T: if θ |= c] then there exists some
goal((P,γ0);(Q,γ);~R;γ′) ∈ Υ such that θ |= γ, and if θ |= c′] then there exists
some goal((P,γ0);(Q,γ);~R;γ′) ∈Υ such that θ |= γ′.

• ans((P,c0);c) ∈ T: if θ |= c] then there exists some ans((P,γ0);γ) ∈Υ such that θ |= γ.

Now we can prove the two main Lemmas 6.3.7 and 6.3.8 about SLGC resolution on
Pos-translated programs. In essence, they state that the abstract proof forest is at most as
“definite” about groundness as its original counterpart. This fact is used in the proof of
Theorem 6.3.9: if the abstract proof forest implies that a variable x is ground at some point
(that is a very “definite” statement), it must actually be ground in the original proof forest.

Lemma 6.3.7. Let the constraint domain be ∃/]-commutative. Let F be a proof forest
containing a proof tree T with root node root(G; ĉ). If γ̂ is a Pos-constraint such that
ĉ]⇒ γ̂ then T is subsumed by the root tree Υ of the proof forest Φ of the query (G← γ̂).

Proof. By induction on the stages of the SLGC algorithm running on the query (G← ĉ).
The statement is vacuously true at step 0. Consider the node N of a tree T in F created at
step n+1. If N is a root node, the statement is trivially true. We need to consider the three
remaining cases.

(1) Suppose N is of the form body((G, ĉ);~B;c). There are two subcases. Either N’s parent
is root(G; ĉ) where c = ĉ∧d. Let θ |= c]. Then we also have θ |= ĉ] and θ |= d]. Let γ̂ be
any constraint such that ĉ]⇒ γ̂. Then by the definition of RESOLVE-CLAUSE, the root of Υ,
root(G; γ̂), has a child node body((G, γ̂);~B; γ̂∧d]), and θ |= γ̂∧d].

In the second case, N’s parent is goal((G, ĉ);(B;c′);~B;d). By PROPAGATE-ANSWER, N is
waiting for some tree T′ with root(B,c′′) such that c′⇒ c′′. Let θ |= c. But θ also satisfies
d] as c = d∧ a, for some a ∈ Ans(B,c′′). So by the induction hypothesis, Υ has a node
ν = goal((G, γ̂);(B;γ′);~B;δ) such that θ |= δ. By the answer propagation rule, ν waits for
some tree Υ′ with root(B,γ′′) where γ′⇒ γ′′.

3If C is a set of constraints, c∧C is shorthand for {c∧ c′ | c′ ∈ C}.
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Also by the induction hypothesis, all nodes of T′ with age ≤ n + 1 are subsumed by
nodes of the root tree of the proof forest for the query (B← true]). So, in particular, that
root tree has a node ans((B, true]),α) with θ |= α, since θ |= a]. By the answer propagation
rule, ν’s child nodes are all of the form body((G, γ̂);~B;δ ∧ ᾱ) where ᾱ ∈ Ans(B,γ′′). But
since δ⇒ γ′′, Lemma 6.3.5 implies that ‖δ ∧Ans(B,γ′′)‖ = ‖δ ∧Ans(B, true])‖. Therefore,
and since θ ∈ ‖δ∧Ans(B, true])‖, we also have θ ∈ ‖δ∧Ans(B,γ′′)‖. Hence, by the answer
propagation rule, ν has a child node body((G, γ̂);~B;δ∧ ᾱ) such that θ |= δ∧ ᾱ.

(2) Suppose N is of the form goal((G, ĉ);(B;c′);~B;c). By the query projection rule, it has a
parent node of the form body((G, ĉ);B :: ~B;c), and c′ ∈ ∃B(c). By the induction hypothesis,
the root tree Υ of the proof forest of the query (G← γ̂) contains, for all θ |= c, a node
body((G, γ̂);B :: ~B;γθ) such that θ |= γθ, hence

c]⇒
∨

θ|=c]

γθ.

From this and the query projection rule, it firstly follows that for all θ |= c], Υ also has a
node of the form goal((G, γ̂);(B;γ′);~B;γθ) such that θ |= γθ. Secondly, by Lemma 6.3.4, if
θ′ |= c′] then θ′ |= γ′ for some

γ′ ∈ ∃B(
∨

θ|=c]

γθ) =
⋃

θ|=c]

∃B(γθ).

So by the query projection rule, Υ also has a node goal((G, γ̂);(B;γ′);~B;γ) such that θ′ |= γ′,
for all θ′ |= c′]. Hence all nodes of T with age ≤ n+1 are subsumed by Υ.

(3) Suppose N is of the form ans((G, ĉ);c). Let θ |= c]. By the answer projection rule, it
has a parent node of the form body((G, ĉ); ;c′), and c∈ ∃G(c′). By the induction hypothesis,
Υ contains, for all θ′ |= c′], a node body((G, γ̂); ;γ′θ′) such that θ′ |= γ′θ′ , hence

c′]⇒
∨

θ′|=c′]
γ′θ′ .

By Lemma 6.3.4 and from θ |= c] it follows that θ |= γ for some

γ ∈ ∃G(
∨

θ′|=c′]
γ′θ′) =

⋃
θ′|=c′]

∃G(γ′θ′).

So by the answer projection rule, Υ contains a node body((G, γ̂); ;γ′) with a child node
ans((G, γ̂);γ) such that θ |= γ, as required.

Lemma 6.3.8. Let the constraint domain be ∃/]-commutative. Let F and Φ be proof forests
for the queries (Ĝ← ĉ) and (Ĝ← γ̂), respectively, with ĉ]⇒ γ̂. Then every tree T in F is
subsumed by a tree Υ in Φ.

Proof. By induction on the rewriting steps of the algorithm running on the query (Ĝ← ĉ).
The statement is vacuously true at step 0. Consider the node N of a tree T in F created at
step n+1. We need to consider four cases.

(1) Suppose N is of the form root(G;c), and θ |= c]. Then T must have been spawned
by some older goal((G′,c′);(G;c);~B;c′′) in F. By the induction hypothesis, there exists a
goal((G′,γ′);(G;γ);~B;γ′′) in Φ such that θ |= γ. By the answer propagation rule, this node
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waits for a tree Υ with root(G;δ) where γ⇒ δ. So θ |= δ, and since at step n+1, T contains
only N, all nodes of T with age ≤ n+1 are subsumed by Υ.

(2) Suppose N is of the form body((G,c0);~B;c), and θ |= c]. There are two subcases.
Either N’s parent is root(G;c0) and c = c0∧d, for some d. Note that θ satisfies c]

0. Therefore,
by the induction hypothesis, there is a tree Υ in Φ with root(G;γ0) such that θ |= γ0. Since
θ also satisfies d], it satisfies γ0∧d]. Therefore, by the clause resolution rule, Υ has a node
body((G,γ0);~B;γ0∧d]).

In the second case, N’s parent is goal((G,c0);(B;c′);~B;d). By the answer propagation
rule, N is waiting for some tree T′ with root(B,c′′) such that c′ ⇒ c′′. Since c = d∧ a for
some a∈Ans(B,c′′), θ also satisfies d]. So by the induction hypothesis, there is a tree Υ in Φ
with a node ν = goal((G,γ0);(B;γ′);~B;δ) such that θ |= δ. By the answer propagation rule,
ν waits for some tree Υ′ with root(B,γ′′) where γ′⇒ γ′′. Therefore, ν’s children are of the
form body((G,γ0);~B;δ∧ ᾱ) where ᾱ ∈ Ans(B,γ′′). It suffices to show θ |= δ∧ ᾱ for one of
these child nodes.

By Lemma 6.3.7, T′ is subsumed by the root tree Υ′′ of a proof forest for the query (B←
true]). So since θ satisfies a and ans((B, true]),a) ∈ T′, θ ∈ ‖Ans(B, true])‖. As θ also satisfies
δ, θ ∈ ‖δ∧Ans(B, true]))‖. But since γ′′⇒ true] and by Lemma 6.3.5, ‖Ans(B,γ′′)‖= ‖γ′′∧
Ans(B, true])‖, and furthermore since δ⇒ γ′⇒ γ′′, ‖δ∧Ans(B,γ′′)‖= ‖δ∧Ans(B, true])‖. So
θ ∈ ‖δ∧Ans(B,γ′′)‖. Therefore ν has a child node body((G,γ0);~B;δ∧ ᾱ) such that θ |= δ∧ ᾱ.

(3) Suppose N is of the form goal((G,c0);(B;c′);~B;c). By the query projection rule, it
has a parent node of the form body((G,c0);B :: ~B;c), and c′ ∈ ∃B(c). By the induction
hypothesis, there exists a tree Υ in Φ such that for all θ |= c], Υ has a node body((G,γ0);B ::
~B;γθ) such that θ |= γθ, hence

c]⇒
∨

θ|=c]

γθ.

From this and the query projection rule, it firstly follows that for all θ |= c], Υ also has a
node of the form goal((G,γ0);(B;γ′);~B;γθ) such that θ |= γθ. Secondly, by Lemma 6.3.4, if
θ′ |= c′] then θ′ |= γ′ for some

γ′ ∈ ∃B(
∨

θ|=c]

γθ) =
⋃

θ|=c]

∃B(γθ).

So by the query projection rule, for all θ′ |= c′, Υ contains a node body((G,γ0);B :: ~B;γ)
with a child node goal((G,γ0);(B;γ′);~B;γ) such that θ′ |= γ′. Hence all nodes of T with age
≤ n+1 are subsumed by Υ.

(4) Suppose N is of the form ans((G,c0);c). Let θ |= c]. By the answer projection rule, it
has a parent node of the form body((G,c0); ;c′), and c∈∃G(c′). By the induction hypothesis,
there exists a tree Υ in Φ such that for all θ′ |= c′] it contains a node body((G,γ0); ;γ′θ′) such
that θ′ |= γ′θ′ , hence

c′]⇒
∨

θ′|=c′]
γ′θ′ .
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By Lemma 6.3.4 and from θ |= c] it follows that θ |= γ for some

γ ∈ ∃G(
∨

θ′|=c′]
γ′θ′) =

⋃
θ′|=c′]

∃G(γ′θ′).

So by the answer projection rule, Υ contains a node body((G,γ0); ;γ′) with a child node
ans((G,γ0);γ) such that θ |= γ, as required.

Theorem 6.3.9. Let the constraint domain be ∃/]-commutative. Let F be the proof forest
of the query (G← c), Φ be the proof forest of the query (G← c]), and P be some predicate.
If for all α0, all answer nodes ans((P,α0);α) of Φ are such that α⇒ x then a grounds x for
all answer nodes ans((P,a0);a) of F, for all a0.

Proof. Let ans((P,a0);a) be a node in F. Suppose θ |= a]. Then by Lemma 6.3.8, there exists
a node ans((P,α0);α) in Φ such that θ |= α. Since α⇒ x, θ must also satisfy x. Therefore
a]⇒ x, or in other words, a grounds x.

Now we have proved that we can use the SLGC algorithm to perform groundness anal-
ysis. The correctness of the analysis is dependent on the constraint domain being ∃/]-
commutative. We next prove that C0 enjoys this property.

Lemma 6.3.10. Let c be a C0 constraint. Then c[k/x]] = c][true]/x]

Proof. By induction on the structure of c. It is easy to show that the statement holds
for atomic constraints. For instance, if c is an atomic constraint of the form x = y, then
c[k/x]] = y, and also c][true]/x] = (x←→ y)[true]/x] = y.

If c is of the form c1∧ c2 then c[k/x]] = c1[k/x]]∧ c2[k/x]]. By the induction hypothesis,
this is equal to c]

1[true]/x]∧c]
2[true]/x] = c][true]/x]. Similarly, the statement holds if c is of

the form c1∨ c2.

Theorem 6.3.11. C0 is ∃/]-commutative.

Proof. By structural induction on c. If x is not free in c, the statement trivially holds, so
suppose x is free in c. If c is atomic, ∃x(c]) = true], so the implication always holds. Suppose
c is of the form c1 ∨ c2. Then (∃x(c1 ∨ c2))] = (∃x(c1))] ∪ (∃x(c2))], and by the induction
hypothesis, this set is subsumed by ∃x(c]

1)∪∃x(c]
2) which is equal to ∃x(c1∨ c2)].

Now suppose c is of the form c1∧ c2. We can assume w.l.o.g. that c is in DNF, hence c1

and c2 are disjunction free. Therefore, and by associativity of conjunction, we can assume
w.l.o.g. that c2 is atomic. If x is not free in c2, (∃x(c1 ∧ c2))] = (∃x(c1))] ∧ c]

2, and the
statement holds by the induction hypothesis.

Suppose c2 is of the form x = k where k is a ground expression. By distributivity of ]
over ∧ and ∨, (∃x(c1 ∧ x = k))] = DNF(c1[k/x]]). By Lemma 6.3.10, this set is equal to
DNF(c]

1[true]/x]) = ∃x(c]
1∧x) = ∃x(c1∧x = k)].

Suppose c2 is of the form x = y. By definition of ∃ and by distributivity of ] over ∧ and
∨, (∃x(c1∧x = y))] = DNF(c1[y/x]]). This is equal to DNF(c]

1[y/x]), which is subsumed by
∃x(c]

1∧x←→ y).
Finally, if c is a conjunction of atomic constraints all of which contain free occurrences of

x and do not match any of the above cases, c] = true], which trivially subsumes (∃x(c))].

To summarise, we have shown that the SLGC algorithm can be used to perform static
groundness analysis on programs by mapping all constraints into the domain of positive
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boolean functions. The analysis is correct if the abstract mapping and existential quantifier
elimination commute. We have shown that C0 satisfies this property, hence C0 policies are
amenable to groundness analysis. The main uses of groundness analysis in our language
are, firstly, guaranteeing groundness of predicate locations; secondly, restricting constraint
domains to run-time constraint compact fragments; and thirdly, to remove some of the
syntactic restrictions on aggregation rules.

Groundness analysis is not yet implemented for the current prototype of CASSANDRA (see
Chapter 10), so we could not yet machine-check the large policy given in the EHR case
study (Chapter 9). The policy was, however, constructed with the groundness requirements
in mind, and was also manually checked afterwards. Besides, there are only relatively few
rules where the restrictions would apply. We are therefore reasonably confident that the
policy would pass the groundness check.



7
Policy Enforcement

CASSANDRA acts as a protective layer around a system’s resources. Entities wishing to ac-
cess the resources have to submit requests (such as activating or deativating a role) to the
access control engine through the interface. The specification of the interface and the state-
changing behaviour of the access control engine described in this chapter completes the
formal model of the entire system.

Most existing research on trust management has focussed on policy specification and
query evaluation and hardly on the problem of enforcing policy. Some trust manage-
ment systems such as PolicyMaker [BFL96, BFK99c], KeyNote [BFK99a, BFK99b], QCM
[GJ00b] or SD3 [Jim01] are explicitly designed to merely act as query evaluation engines.
They leave it to the applications to invoke the trust management system, to feed it with a
policy and credentials, and to formulate an appropriate query. It is also up to the applica-
tion to interpret and enforce the answer for the policy request.

Some policy languages have an intended access control meaning but do not specify it
completely and formally. For example, policy rules are statements governing role activa-
tion and deactivation. A formal model is described in [YMB02, BMY02], but many im-
portant details are only described informally, e.g. who can grant and revoke appointment
certificates and how.

A formal specification of the access control engine is useful as it involves subtle design
decisions that should be made precise to avoid ambiguities and confusion over the terms
used. But most importantly, the definition of the access control engine also specifies the
way in which the state is changed upon a request. Modelling the state is essential because
many policies are implicitly history-dependent, as in the following examples.

• A cheque must not be authorised by the person who initialised it.

• A clinician may access a patient’s data if consent has been given.

• A user may act in the manager role if they have been appointed.
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Of course, no model can possibly (or should) capture the entire global state. It is in fact
sufficient to keep track of credentials (since they can be requested and sent) and the current
role activations (recall that roles can be seen as attributes that can be set and unset).

7.1 Labelled Transition System

We define an operational semantics for the four operations that an entity Er (the requester)
can request from an entity Es (the service) acting as a CASSANDRA service: performing an
action, activating a role, deactivating a role, and requesting a credential. The state-changing
effect of these requests is modelled by a labelled transition system with transitions between
global policy sets P , since both credentials and current role activations are captured by
policies. The transitions are of the form

P λ−→ P ′,

where the label λ of the transition system consists of four parameters:

• The requester Er.

• The service Es to which the request is sent.

• The request, which can be of four different forms:

1. doAction(A), where A is an action with ground parameters.
2. activate(R), where R is a role with ground parameters.
3. deactivate(Ev,R), where the “victim” Ev is an entity and R a role with ground

parameters.
4. reqCred(C) where C is the requested credential.

• A set Cr of (copy of) credentials submitted to Es along with the request. We require
that Cr is a subset of P , and that all credentials in Cr have the location Er.

The last condition ensures that the submitted credentials really belong to the requester.
The only way to acquire new credentials issued by an entity Es is via reqCred requests at
Es’s service. To model the submission of credentials, we define a function for renaming the
location of a set of credentials:

Definition 7.1.1. The function SubmitEs takes a set of credentials and renames the location
of all credentials of that set to Es:

SubmitEs(Cr) =
{Es♦Eiss.p← c | E♦Eiss.p← c ∈ Cr}

The following sections define the transition rule for each of the four requests and discuss
various alternative designs.

7.2 Action Requests

This transition models a requester Er performing the action A on a service Es, and submit-
ting a set Cr of credentials to support the request.

P Er,Es,doAction(A),Cr−−−−−−−−−−−−→ P (7.1)
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The transition has the side condition that

• {true} is an answer to the query Es♦Es.permits(Er,A), given a global policy set P ∪
SubmitEs(Cr).

Even for this very simple rule, there are alternative definitions. For example, in our
version, the service forgets about the submitted credentials. Instead, the rule could specify
that the service caches the submitted credentials, so the resulting new policy credential set
would be P ∪SubmitEs(Cr). In effect, such a transition rule would increase the size of Es’s
policy by adding to it all credentials ever submitted, and services would be prone to the
obvious denial-of-service attack.

Such a caching transition rule would also change the dynamics of the policy in a subtle
way: in the original rule, the policy could require the requester Er to personally submit the
credentials; with the new rule, somebody else could also submit them before Er issues the
request. Policy writers must therefore be aware of how exactly the access control engine
uses the policy.

7.3 Role Activation

This transition models a requester Er activating the role R on a service Es, and submitting
a set Cr of credentials to support the request.

P Er,Es,activate(R),Cr−−−−−−−−−−−→ P ′ (7.2)

where P ′ = P ] {Es♦Es.hasActivated(Er,R)}, so this transition adds a new hasActivated
credential rule to Es’s policy. The transition has the following side conditions:

• The role has not already been activated: {false} is an answer for the query
Es♦Es.hasActivated(Er,R).

• {true} is an answer for the query Es♦Es.canActivate(Er,R), given a global policy set
P ∪SubmitEs(Cr).

According to this rule, role activation fails if the role in question is already activated. Alter-
natively, a rule could omit this condition and always succeed whenever the corresponding
canActivate predicate can be deduced.

7.4 Role Deactivation

This transition models a requester Er deactivating the “victim” Ev’s role R on a service Es,
and submitting a set Cr of credentials to support the request.

P Er,Es,deactivate(Ev,R(~e)),Cr−−−−−−−−−−−−−−−−→ P −Victimss (7.3)

The transition has the following side conditions:

• Ev has activated R(~e): {true} is an answer for the query Es♦Es.hasActivated(Ev,R(~e)).

• {true} is an answer for the query Es♦Es.canDeactivate(Er,Ev,R(~e)), given the global
policy set P ∪SubmitEs(Cr).
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• The set Victimss is the set of all hasActivated credential rules in Es’s policy for which a
corresponding isDeactivated credential can be derived under the assumption that the
predicate Es♦Es.isDeactivated(Ev,R(~e)) holds, or more formally:

Victimss = {Es♦E′s.hasActivated(E′v,R
′) ∈ P |

{true} is an answer to the query Es♦E′s.isDeactivated(E′v,R
′)

under a global policy set P ∪{Es♦Es.isDeactivated(Ev,R)} }

As a result of the transition, all role activations in Victimss are removed from Es’s policy.
This feature is used to implement cascading revocation. However, note that Victimss con-
tains only role activations with location Es; we decided not to support distributed cascading
revocation across the network, as is proposed in OASIS [HBM98, YMB02, BMY02]. Such
a mechanism would be very hard to model and to implement on a wide scale as it would re-
quire an asynchronous event infrastructure [BMB+00] and a much bigger state that records
which entities have to be notified about which deactivation events.

The design space of role deactivation allows for many other alternative specifications. In
OASIS, role deactivation is triggered when prerequisite predicates that were used to activate
the role cease to hold. This semantics can lead to unexpected non-deterministic behaviour
if there are several rules specifying different conditions for activating the role: depending
on which activation rule is chosen by the system (and the user will generally be unaware of
the choice), deactivation may be triggered or not. We avoid this form of non-determinism
by separating activation from deactivation rules. A consequence of our approach is the
flexibility to specify deactivation conditions that are independent from the conditions used
to activate a role. Yet another approach to overcome the non-determinism inherent in
OASIS would be to perform the deactivation only if the role cannot be activated by any
other means. However, this might be prohibitively expensive in practice.

OASIS also supports automatically triggered deactivation when predicates that depend
on the environment or external conditions cease to hold. Again, this feature relies on an
event infrastructure and on the particular implementations of such predicates. As specified
in the given rule, we only consider deactivations triggered by other deactivations.

There are also several different options concerning who is permitted to deactivate roles.
For OASIS, this question is discussed in [BMY02], in the context of role appointment.
Three different options are possible in OASIS: with appointer-only revocation policies, only
the appointer can revoke the appointment certificate. In contrast, appointer-role revocation
allows anyone who is active in the appointer role to revoke it. Finally, resignation revo-
cation refers to the appointee revoking her own appointment. In CASSANDRA, deactivation
permissions are specified via canDeactivate rules and are thus much more flexible. They
can implement any combination and variants of these “standard” options. Our case study
(Chapter 9) has examples where revocation rights are granted to persons who are not even
members of the appointer role. These and other examples demonstrate that CASSANDRA’s
flexibility is needed in real-world applications.

7.5 Credential Requests

This transition models an entity Er requesting the credential Es♦Eiss.p(~x)← c from a service
Es, and submitting a set Cr of credentials to support the request.

P Er,Es,reqCred(Es♦Eiss.p(~x)←c),Cr−−−−−−−−−−−−−−−−−−−−→ P ∪Creds (7.4)
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is a valid transition provided the following side conditions hold. Let ~c0 be an answer for
the query

Es♦Es.canReqCred(Er,Eiss.p(~x))← c

under the global policy set P ∪SubmitEs(Cr). Then we have two cases:

• if Es = Eiss, then Credsonly contains the single credential Er♦Es.p(~x)←
∨~d where

~d is a satisfiable answer for the query Es♦Es.p(~x)←
∨

~c0 under the global policy set
P ∪SubmitEs(Cr).

• Otherwise, Es 6= Eiss, in which case Credsis the set of all credentials Es♦Eiss.p(~x)←
d ∈ P such that d⇒

∨
~c0, but, of course, with locations renamed from Es to Er.

The initial canReqCred test checks whether the service is willing to disclose a (potentially
sensitive) credential of the requested type to the requester. The case split is due to the
fact that only if the requested credential is local can they be created and signed freshly.
On the other hand, if the requested credential is a foreign credential, the reply will be a
set of matching credentials that must be collected from the foreign credentials the service
already possesses. In both cases, the returned credential(s) can have constraints that are
more restrictive than the one originally requested. For example, a reply to a request of a
credential

UCam♦UCam.canActivate(x,Student(subj))← x = Alice

might be the more restrictive credential

UCam♦UCam.canActivate(x,Student(subj))← x = Alice∧ subj = Maths.

Again, the design space for credential management is large. A feature that makes
CASSANDRA unique in this aspect is its tight integration with automated trust negotiation
(ATN) [WSJ00]. Up to now, ATN has always only been considered separately from pol-
icy specification. In CASSANDRA, canReqCred rules protecting credentials are specified just
like other rules. Together with the reqCred rule and the query evaluation algorithm, they
provide ATN “for free”.

The paper [GJ00b] discusses the difference between offline and online signing. Online
signing refers to the creation of freshly signed certificates upon a request; this corresponds
with the first case in our transition rule, where the requested credential is local. However,
issuing credentials online may be considered too expensive, or too insecure as it makes use
of the private key. Offline signing attempts to construct a reply from pre-computed certifi-
cates only, similar to the second case in our transition rule, where the requested credential
is foreign.

Another, more subtle design issue is concerned with the form of the freshly created cre-
dential in the case where the requested credential is local. In our current transition rule,
only a single credential is created and sent to the requester. In general, the constraint of the
credential is a disjunction of smaller constraints. If the cost of online signing is not consid-
ered to be too severe, the service could also instead return a set of credentials, each with
a different disjunction-less constraint. Such an approach would, of course, place a heav-
ier computational burden on the service, but the set of separate credentials are potentially
more useful to the requester: at some point in the future, other entities may request such
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a (now foreign) credential from the original requester himself, and the separate credentials
can form more accurate answers.

7.6 Scenario Revisited

Consider the example from §3.4 where we had the following four rules:

canActivate(e,Admin())←
hasActivated(e,User()),
e ∈ {Alice,Bob}

(7.5)

canDeactivate(e1,e2,User())← e1 = e2 (7.6)

isDeactivated(e,Admin())←
isDeactivated(e,User())

(7.7)

hasActivated(Alice,User())← (7.8)

Let these four rules be denoted by R1, R2, R3 and R4, respectively, let Es = Service be
the default location and issuer and

P1 = {R1,R2,R3,R4}.

Using the same scenario as in §3.4, we will now illustrate the operational semantics
presented in this chapter.

Alice requests to have the Admin() role activated for her. This request is successful, by
Transition Rule 7.2, since

hasActivated(Alice,Admin()) /∈ P1

and furthermore, {true} is an answer to the query canActivate(Alice,Admin()) by R1 and
R4, so we have

P1
Alice,Service,activate(Admin()), /0−−−−−−−−−−−−−−−−−−−−→ P2

where P2 = P1]{hasActivated(Alice,Admin())}.
Now suppose Alice requests that her User() role be deactivated. This request succeeds by

Transition Rule 7.3, since true is an answer to the query hasActivated(Alice,User()) accord-
ing to R4. Furthermore, true is an answer to the query canDeactivate(Alice,Alice,User())
because of R2. The transition is then as follows:

P2
Alice,Service,deactivate(Alice,User()), /0−−−−−−−−−−−−−−−−−−−−−−−−→ P2−Victims

where, by Transition Rule 7.3 and R3,

Victims = {hasActivated(V,R(~e)) ∈ P2 |
{true} is an answer to the query isDeactivated(V,R(~e)),

given the global policy set P2∪{isDeactivated(Alice,User())} }
= {hasActivated(Alice,User()),hasActivated(Alice,Admin())}



8
Policy Idioms

Policy idioms are general procedures and patterns that appear over and over again in poli-
cies — not just electronic policies, as the following examples show.

• Role Hierarchy: e.g.“project leaders are permitted to access anything that product
engineers on the same project can access.”

• Separation of Duties: e.g.“the initiator of a bank payment must be different from the
authoriser.”

• Cardinality Constraints: e.g.“any person desirous of becoming a fellow must be rec-
ommended [...] by three or more fellows.”1

• Role Delegation: e.g.“project leaders can temporarily delegate their access privileges
to product engineers.”

• Role Appointment: e.g. in the UK, the Queen appoints the Prime Minister, without
holding the privileges and responsibilities of the appointed role herself.

Unlike other policy languages, CASSANDRA does not provide dedicated, special-purpose
language constructs for such policy idioms. CASSANDRA was designed to be general and
flexible, and can express a whole range of idioms directly, without the need of adding
ad hoc constructs. This difference in approach is significant: it implies that CASSANDRA,
equipped with a sufficiently powerful constraint domain, can also express variants and
combinations of standard policy idioms, as well as hitherto unknown ones. Indeed, our
work on policies for a nation-wide EHR service has shown that, in large-scale real-world
applications, these “standard” policy idioms occur in many variants and combinations with
subtle but significant semantic differences (Chapter 9).

This approach not only keeps the language and its semantics small and simple; it also
avoids the necessity of having to constantly extend the language. It should be noted that

1From the constitution of the Cambridge Philosophical Society.
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CASSANDRA was designed specifically for authorisation policies; in particular, we do not con-
sider obligation policies specifying the automatic triggering of actions, as in policy systems
like Ponder [DDLS01, Dam02].

In the following, we show how standard policies can be written in CASSANDRA.

8.1 Role Validity Periods

In the following rule, a certified doctor (with certification issued at time t) is also member
of the role Doc() if t is at most one year ago. This is an example where the freshness
requirement of a certification is set by the acceptor (as recommended in [Riv98]), not by
the certificate issuer. The chosen constraint domain must contain a built-in function that
returns the current time and must support integer order constraints.

canActivate(x,Doc())←
canActivate(x,CertDoc(t)),
CurTime()−Years(1)≤ t ≤ CurTime()

Note that CASSANDRA cannot express a policy that deactivates the role automatically once
the validity period has run out. This would require automated deactivation conditional on
environmental predicates, a feature only supported by OASIS, as discussed in §7.4.

8.2 Auxiliary Roles

Sometimes a role is used solely to express some property about its members and can be used
without prior activation; such a role is called auxiliary role. In this rule, a logged-in user
can read a file provided that the system can deduce she is the owner of that file. Ownership
is here expressed with the auxiliary Owner role that need not be activated.

permits(x,Read(file))←
hasActivated(x,Login()),
canActivate(x,Owner(file))

8.3 Role Hierarchy

In this variant of parameterised role hierarchy, a project leader is more senior than both a
production engineer and a quality engineer. Both production engineer and quality engineer
are more senior than the engineer role. This example is taken from [SBC+97]. The hierar-
chy graph can be directly represented by canActivate dependencies. We extend the example
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by using roles that have a “department” parameter:

canActivate(x,Prod-eng(dep))←
canActivate(x,Proj-leader(dep))

canActivate(x,Qual-eng(dep))←
canActivate(x,Proj-leader(dep))

canActivate(x,Eng(dep))←
canActivate(x,Prod-eng(dep))

canActivate(x,Eng(dep))←
canActivate(x,Qual-eng(dep))

8.4 Separation of Duties

To encode separation-of-duties constraints it is necessary to be able to express negated
conditions such as “x has not activated role R(y)”, where x and y will have been in-
stantiated by the time the condition is processed. We will write this condition in the
body as ¬hasActivated(x,R(y)) as shorthand for the user-defined aggregation condition
existsActivationR(0,x,y), defined by a rule

existsActivationR(count〈x′〉,x,y)←
hasActivated(x′,R(y)),x′ = x

Clearly, existsActivationR(0,x,y) holds if and only if x has not activated R(y).
In this common example for separation of duties, a payment transaction requires two

phases, initiation and authorisation, which have to be executed by two different people.
The rule implements a dynamic and parameterised variant of separation of duties: an
Authoriser of a payment must not have activated the Initiator role for the same pay-
ment.

canActivate(x,Authoriser(payment))←
¬hasActivated(x,Initiator(payment))

As an example for dynamic n-wise parameter-centric separation of duties, suppose that
nobody can work on two projects at the same time if they both belong to a set of n pairwise
mutually conflicting projects. With a function Conflict() that returns this set of conflicting
projects, this can be encoded as

canActivate(x,Projmem(p))←
numberOfActivatedConflictingProjects(conflicts,x),
conflicts= 0

numberOfActivatedConflictingProjects(count〈p〉,x)←
hasActivated(x,Projmem(p)),
p ∈ Conflict()

8.5 Cardinality Constraints

Cardinality constraints are conditions on the number of subjects active in a role. Such
conditions can easily be expressed using aggregation rules. Suppose a server only allows up
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to 20 users at any given time. The following two rules implement this policy:

canActivate(x,User())←
countUsers(n),
n < 20

countUsers(count〈x〉)←
hasActivated(x,User())

Often it is necessary to express a condition stating that nobody has activated a certain
role. Such a statement implicitly contains a universally quantified negated predicate and
cannot be expressed in logic languages with negated predicates, e.g. Halpern and Weiss-
man’s logic [HW03]. With aggregation, this kind of negation can easily be expressed. The
following two rules specify that there you can only activate the role TheOne if nobody else
has activated it.

canActivate(x,TheOne())←
countTheOnes(0)

countTheOnes(count〈x〉)←
hasActivated(x,TheOne())

The count aggregation operator can also be used to express manifold constraints where
n distinct entities together perform some action. Suppose a club requires that a person is
eligible to membership if nominated by one proposer and three seconders. We can express
this condition as follows:

canActivate(x,Member())←
hasActivated(y,Proposer(x))
countSeconders(n,x),
n≥ 3

countSeconders(count〈y〉,x)←
hasActivated(y,Seconder(x))

Now suppose the club also specifies that members can only be seconders for at most five
persons at any time. This is an example of a cardinality constraint where we apply the
aggregation operator to the role parameter:

canActivate(x,Seconder(y))←
canActivate(x,Member())
countSeconded(n,x),
n≤ 5

countSeconded(count〈x〉,y)←
hasActivated(y,Seconded(x))

8.6 Role Delegation

Here, an administrator can delegate her role to somebody else by activating the
DelegateAdm role for the delegatee. The delegatee can then subsequently activate the ad-
ministrator role. The first parameter of the administrator role specifies who the delegator
was. The second parameter n is an integer for restricting the length of the delegation chain
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(cf. [ZAC03]): the delegatee can activate the administrator role only with a “rank” n′ that
is strictly less than the delegator’s rank n but must be at least 0. Setting the parameter to
1 for non-delegated administrators (i.e., those at the top of a delegation chain) would im-
plement non-transitive delegation. Removing the constraint on n in the second rule would
enable unbounded delegation chains.

canActivate(x,DelegateAdm(y,n))←
hasActivated(x,Adm(z,n))

canActivate(y,Adm(x,n′))←
hasActivated(x,DelegateAdm(y,n)), 0≤ n′ < n

With the following rule, the delegated role is automatically revoked if the delegation role
of the delegator is deactivated.

isDeactivated(y,Adm(x,n′))←
isDeactivated(x,DelegateAdm(y,n))

However, we need to specify who is allowed to deactivate a delegation role. In grant-
dependent revocation (first rule below), only the delegator herself has this power. In grant-
independent revocation (second rule below), every administrator (who has at least as high
a rank as the delegator) can deactivate the delegation.

canDeactivate(x,z,DelegateAdm(y,n))← x = z
canDeactivate(x,z,DelegateAdm(y,n))←

hasActivated(x,Adm(w,n′)), n≤ n′

A rather paranoid policy may specify cascading revocation: if a delegated administrator is
revoked from her role, all her delegation must also be revoked recursively.

isDeactivated(x,DelegateAdm(y,n))←
isDeactivated(z,DelegateAdm(x,n′))

8.7 Role Appointment

Delegation can be viewed as a special case of the more general appointment mechanism
where the appointer is required to be a member of the appointed role [HBM98, YMB02,
BMY02]. Appointment can easily be encoded in CASSANDRA. Here we only show the en-
coding of a simple version of appointment.

A manager M can appoint A as an employee by activating an “appointer role”
AppointEmployee(A). This then enables A to activate the “employee appointed by M”
role Employee(M).

canActivate(mgr,AppointEmployee(emp))←
hasActivated(mgr,Manager())

canActivate(emp,Employee(appointer))←
hasActivated(appointer,AppointEmployee(emp))

Furthermore, A’s employee role is revoked automatically when AppointEmployee(A) is de-
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activated:

isDeactivated(emp,Employee(appointer))←
isDeactivated(appointer,AppointEmployee(emp))

We also have to specify who is allowed to revoke the appointment role. With grant-
dependent revocation, only the appointer herself can revoke it:

canDeactivate(x,appointer,AppointEmployee(emp))←
x = appointer

Grant-independent revocation, on the other hand, allows every manager to revoke em-
ployee roles:

canDeactivate(x,appointer,AppointEmployee(emp))←
hasActivated(x,Manager())

In some cases, all roles appointed by M should be revoked whenever M is revoked from her
role herself, in this case the manager role. We can encode a cascading chain of revocations
as follows:

isDeactivated(mgr,AppointEmployee(emp))←
isDeactivated(supermgr,AppointManager(mgr))

8.8 Trust Negotiation and Credential Fetching

Suppose the following rule is part of the policy of a server holding the electronic health
records (EHR) for some part of a country’s population2. To activate the doctor role, x must
be a certified doctor in some health organisation org, and furthermore the organisation
must be a certified health organisation. Both requirements must be satisfied in the form
of credentials signed by some entity auth belonging to a locally defined set of registration
authorities.

canActivate(x,Doc(org))←
auth.canActivate(x,CertDoc(org)),
org♦auth.canActivate(org,CertHealthOrg()),
auth ∈ RegAuthorities()

In the rule above, the location prefix in front of the first body predicate has been omitted,
so the doctor certification credential is required to already be in the local policy or be
submitted by x together with a role activation request. On the other hand, there is a
location prefix org in front of the second body predicate: the health organisation credential
is automatically requested from org over the network, or, more precisely, the entity the
variable org is instantiated to during actual query evaluation.

However, the health organisation (say, the Elizabeth Hospital) will allow credential dis-
closure only if its canReqCred policy allows it. With the following rule, the hospital specifies

2This example is not from our EHR case study (although it is inspired by it).
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that it is willing to reveal its CertHealthOrg credential to certified EHR servers.

canReqCred(x,y.canActivate(z,CertHealthOrg())←
x♦auth.canActivate(x,CertEHRServ()),
z = ElizabethHosp,
auth ∈ RegAuthorities()

The prefix “x♦auth.” specifies that the required credential must be signed by some regis-
tration authority and that it is to be retrieved automatically from x; in this case, x will have
been instantiated to be the EHR server. The EHR server will in turn have canReqCred pol-
icy rules specifying to whom its CertEHRServ credential may be disclosed. As this example
shows, a simple request can trigger multiple phases of credential exchanges between two or
more entities over the network until a sufficient level of mutual trust has been established.





9
Case Study: Electronic Health Records

We have described CASSANDRA, a carefully designed trust management system with a flexible
and expressive policy language with a formal foundation. But does it fulfil the requirements
of real-world applications? And what are actually the requirements of real-world applica-
tions? Given the amount of research in the area of trust management in the last few years,
there is surprisingly little in the literature on large-scale policy examples and case stud-
ies. Most are just academic toy examples for the purpose of illustrating a particular policy
system.

The lack of case studies is partly due to the fact that there have been only few applica-
tions in the past that really required sophisticated trust management and highly expressive
policy languages. It is only now that applications are starting to emerge that require the
full power of a system like CASSANDRA. The nation-wide Electronic Health Record service
being developed within the NHS National Programme for Information Technology is one
of the most challenging such applications. In this chapter, we present our case study on
constructing a CASSANDRA policy for such a service.

The history and motivation of the NHS programme are outlined in §9.1. §9.2 describes
what makes the programme so challenging and why it is currently in such a troubled state.
Our case study is concerned with specifying authorisation to access the Spine, the central
part of the programme. The CASSANDRA policy rules for the Spine and related services are
presented in detail in §9.4. Finally, we illustrate the policy in a scenario in §9.3. Appendix
A collects the policy rules.

9.1 The National Programme

Electronic Health Record (EHR) schemes are now being developed in Europe, the United
States, Canada and Australia to provide “cradle-to-grave” summaries of patients’ records,
linking clinical information across the entire health system [Cor02]. In the UK, the National
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Health Service (NHS) has been planning since 1998 to develop a EHR service [Nat98,
Dep01a] for England.

These plans culminated in the NHS National Programme for Information Technology
(NPfIT) in 2002, conceived in a seminar chaired by Prime Minister Tony Blair and attended
by the then Secretary of State for Health, Alan Milburn, as well as other senior members
of the Department of Health and industrial representatives. NPfIT is now regarded as the
largest, most expensive and one of the most complex IT projects in history [Bre05]. Its
procurement cost alone amounts to £6 billion, and it is supposed to manage computerised
medical data of the entire English population of 50 million people and connect up a huge
number of health care providers.

At the heart of the project lies the Care Record Service (CRS), or the Spine, containing the
EHRs of all patients in the country. The second service is Choose-and-Book, an electronic
service for booking appointments and clinical referrals. Thirdly, the Electronic Transfer
of Prescriptions Service (ETP) will allow prescriptions to be sent electronically to patients’
pharmacies. The contracts for suppliers were awarded in 2004, and the project will be
deployed in several phases until end of 2010.

9.1.1 Spine Architecture

In the plan, the Spine is be the central service that holds the EHRs of all NHS patients.
Including deceased users and users who have moved abroad, the total number of records is
expected to be in the order of 108. It provides online read and write access to the records
to authorised users; these will mainly be clinicians and personal users (patients and their
agents).

The Spine will be supported by the national Patient Demographic Service (PDS). It serves
as a single, comprehensive and consistent source of up-to-date demographic patient data
(e.g. NHS number, name, address, preferred language). This data is accessed by the Spine
and other applications for identifying and authenticating personal users.

The national services are large and have to be able to cope with high loads. By 2010,
when NPfIT is expected to be completed, there will be an estimated number of 50 million
patients and 300 million GP appointments per year, as well as annually 70 million inpatient
episodes and out-patient hospital attendances, and about 30 million other health episodes
and encounters (§740, [Nat03]).

An integral goal of the NHS National Programme for IT in the NHS (NPfIT) is the
deployment of an infrastructure for identification, registration and authentication of users
in a secure, standardised and seamless manner across all national and local applications,
based on digital credentials and public key technology. Professional users, i.e. clinical and
administrative staff, access EHR data in the Spine based on role credentials, issued by NHS-
approved Registration Authorities (RAs). RAs will also be responsible for managing clinical
workgroup membership. The size of an RA can vary considerably. Most RAs will be local
to a single health organisation, but some may be “more nationally based” (§730.24.0,
[Nat03]). It is conceivable that large RAs could be located on the NHS cluster level of
which there are five in England (covering London; North East, Yorkshire and Humberside;
South East and South West; East of England and East Midlands; West Midlands and North
West). A typical cluster comprises of up to 2000 General Practices and 100 Acute Trusts
and other health organisations. An RA policy should therefore be able to cope with up to
200,000 registered health professionals.

Local applications are expected to make use of and interoperate with the national ser-
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vices. In particular, local health organisations (e.g. hospitals, doctors’ practices) will grad-
ually move from the traditional paper-based records to electronic databases. The records
kept on this level are called Electronic Patient Records (EPR); summaries of these are used
to populate the Spine. This process may take a long time, and the local procedures differ
substantially, so the EHR service cannot be deployed on this level by connecting up all ex-
isting EPR systems. Health organisations can be as small as single GP practices but could
also be entire NHS trusts with up to 500,000 registered patients.

9.1.2 NPfIT Benefits

The potential benefits of NPfIT are huge — if the project proves to be successful. It has the
potential to increase the quality of care: because a patient’s EHR will contain information
about all health episodes across the NHS, clinicians will have access to more complete data.
Information such as allergies, blood type, or current medication is particularly important
in accident and emergency cases.

The project may also increase efficiency by reducing waiting times through Choose-and-
Book. It is also hoped that lab results, e.g. X-ray images, will be shared online to avoid
duplication.

Patients will potentially have more autonomy: they will be able to flexibly book ap-
pointments, have access to their own records, and, to some extent, also have the ability to
control access to their records.

It is sometimes claimed that EHRs are safer than traditional, paper-based records be-
cause they can be encrypted and secured using electronic access control mechanisms. This
is highly doubtful for reasons discussed in the following, and indeed, the NHS plans have
been subject to a fierce controversial public debate on patient confidentiality (see e.g.
[Haw03, Rog03, CS03, Col03a, Pal03, Col03c, Cro03, Fou03, Arn03, Ley04, Col04b,
Car05, Mul05, Kei05]).

9.2 NPfIT Challenges and Troubles

Large IT projects have often been over-ambitious and prone to disastrous delays and cost
overruns, and have often failed. NPfIT might become another such example. The series of
resignations of their senior managers is an indication of management troubles: in December
2003, John Pattison resigned from his post as Senior Responsible Owner [Col03b] and was
succeeded by Aidon Halligan, who resigned after just six months in the job, in November
2004 [Col04c]1. David Kwo, the Implementation Director for the London cluster, resigned
in April 2005 [Cla05a], and so did Alan Burns, the Implementation Lead, just one month
later [Cla05b].

But there are many more warning signs:

• In October 2004, BT, one of NPfIT’s main suppliers, was fined £300,000 for having
missed their first deadlines [Arn04].

• In November 2004, the Department of Health released new estimates for the total
cost of between £18.6 billion and £31 billion [Col04a].

• In January 2005, the National Audit Office (NAO) warned that the deadlines for the
Choose-and-Book service will be missed [Nat05].

1The Senior Responsible Owner is the most senior position in UK government IT projects and is someone
who is actually supposed to oversee the project over its entire lifetime.
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• In February 2005, a Medix survey found that the majority of GPs did not support
NPfIT and complained that they had not been consulted [Med05].

• In June 2005, IDX was the first key supplier to be dropped because of missed dead-
lines [Arn05], after warnings issued by IT director Richard Granger in March.

So, what is going wrong? First of all, mixing politics with IT is always problematic.
The first phase of NPfIT was supposed to be deployed by the beginning of 2005. This
unrealistically tight deadline was probably motivated by Tony Blair wanting to have pre-
sentable results before the general election 2005. Department of Health officials repeatedly
ignored warnings from governmental and independent bodies and played down the fact
GP support has still not been gained. The project has also been criticised for hiding behind
smokescreens. For example, the Output-based Specification (OBS), i.e. the document that
also specifies patient confidentiality issues, was kept secret until the Guardian got hold of a
copy and leaked it.

Communications about the Programme and with the Health Service have been a problem
from the start. Neither doctors nor the public have been been adequately informed and
consulted, and one of the main fears is that the system will not sufficiently protect patient
confidentiality. According to a survey conducted by the Consumers’ Association, 72 percent
of the respondents said security and confidentiality are a primary concern [Arn03]. At stake
is not just the privacy of sensitive personal information but the entire public health care
system, as patients will stop confiding in their GPs if they do not trust the electronic system
or do not have sufficient control over the use of their data. Already, public confidence is
eroded: with NPfIT, the NHS won a ‘Most Heinous Government Organisation’ Big Brother
Award in 2000 and ‘Most Appalling Project’ Big Brother Award in 2004 [Ley04].

It is equally important to gain clinician buy-in which will fail if the system is cumbersome
to use, if the access restrictions are too strict or the response times too high. Indeed, the
clinicians’ confidence in the project is already eroded as well. At the annual meeting of the
British Medical Association in June 2004, delegates voted for a motion which said, “given
the uncertainties and lack of consultation on the Care Records Service [and] until GPs’
legitimate concerns are answered, GPs should not engage with the Care Records Service”
[Col04b].

9.2.1 Technical Challenges

Of course, building a secure system of such an unprecedented scale is more than challeng-
ing. A nation-wide EHR system is intrinsically much riskier than the traditional paper-
based records. First of all, the electronic system lacks the social control mechanisms that
deter people, and especially insiders, from accessing data without authorisation; and out-
siders had to physically break in or bribe someone to get access to all the data. Furthermore,
the aggregation of so much data in one central place makes it politically and economically
highly valuable and thus more prone to abuse, especially in the light of millions of users
with potential access.

The technical challenges concerning information governance, i.e. the process of protect-
ing patient-identifiable data, are manifold:

• The proposed Spine is extremely large, holding life-long records of 50 million pa-
tients.
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• It is widely-distributed: central services such as the Spine or the Personal Demo-
graphic Service (PDS) interact with tens of thousands of local clinical information
systems, all of which must comply to some global policy.

• The rules governing access to patient-identifiable information are complex and re-
flect the trade-off between patient confidentiality, usability, and legislative constraints.
Neither traditional discretionary nor mandatory access control nor RBAC are suffi-
ciently expressive to capture complex “policy idioms" such as Legitimate Relation-
ships, Sealed Envelopes or consent management.

• The requirements are mandated by laws and regulations such as the Data Protection
Act, Mental Health Act, Human Fertilisation and Embryology Act, the Abortion Reg-
ulations and the Venereal Diseases Regulations, as well as by official guidelines and
ethical positions that are all prone to change. Such changes have to be implemented
quickly and consistently across all local and central systems and services.

• Many issues are complex, novel, not well understood, and/or controversial. As an
example, the Caldicott committee recommended that access to patient-identifiable in-
formation should be on a “strict need-to-know basis” [Nat97]. In contrast, common
medical code of ethics and professional practice goes further and requires the patient’s
consent for accessing personal information [SMW93]. Anderson [And96b] stresses
the same point in his security policy commissioned by the British Medical Associ-
ation, and further demands that patients should automatically receive notifications
when their data are accessed. It now seems to be current consensus that patient con-
sent should be the basis for access decisions although it is not yet clear when explicit
consent has to be sought and when implicit consent can be assumed. Communicating
such issues in plain English alone (be it within NHS consultation groups or between
the NHS and their IT suppliers) is problematic: any such description is inherently
incomplete and ambiguous.

9.2.2 A Case for Policy Specification

Many of these difficulties could be alleviated by specifying information governance rules in
a formal, high-level policy language. Policy specification can be used in the NPfIT project
for two purposes. Firstly, it should be used as a communication aid for issues on infor-
mation governance, within the NHS as well as between the NHS and their suppliers, and
for specification purposes. Informal descriptions should be supplemented by formal and
precise policy rules. NPfIT would benefit from this approach for the following reasons:

• A formal policy is unambiguous, precise and yet concise.

• It is much more concrete and specific than current, natural-language specifications
such as the OBS, but abstracts away irrelevant implementation details.

• Policy rules are ideal for presenting alternatives and making clear the (often subtle)
differences.

• As formal policies are machine-enforceable, it is easy to build a simulator application
for stakeholders (NHS experts, suppliers, clinicians and patient representatives) to
“play around with” and thus to explore the consequences of the policy or policy
alternatives empirically.
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• A formal policy precisely specifies the compliance criteria for suppliers. Furthermore,
a policy engine fed with the policy could produce randomised test cases for regression
testing of implementations.

• Policy rules are amenable to formal analysis, with which security properties of the
policy can be proven mathematically.

Secondly, policy specification and automated policy enforcement by a trust management
system should be used to govern access control in the actual implementation. The policy
and the policy engine would act as a protective layer between the user interface and the
restricted system functions and data. Central services such as the Spine or the PDS as well
as local systems would benefit from this approach for the following reasons:

• The approach is consistent with established software engineering and security engi-
neering principles: access control should be independent of system implementation.

• It is by far more maintainable and cost-effective: changes in information governance
requirements can be implemented quickly and easily simply by amending the high-
level policy. There is no need to change and recompile any source code, and to shut
down and restart the service.

• Checking and certifying compliance of systems would become simpler as only the
high-level policy has to be checked.

Policy specification would greatly simplify the task of implementing, deploying and main-
taining the Spine, but it is no panacea. It is in the nature of the application that not every-
thing can be controlled by automated security mechanisms. Especially clinicians need to be
trusted to a considerable degree to act responsibly, so as to not make the system too cum-
bersome to use in practice. For example, there are several procedures where a clinician can
act on behalf of a patient (e.g. give consent), but only after personal consultation with the
patient. There are also provisions for clinicians to access data against a patient’s wishes, but
only in emergency or other exceptional circumstances. Such conditions cannot be checked
by the policy, so we have to rely on auditing instead. Of course, auditing is only useful if
there is someone who checks the audit trails. For this purpose, each health organisation
has senior staff responsible for protecting patient information, called Caldicott Guardians.

9.3 Scenario

The following, rather complex, scenario illustrates some of the more challenging require-
ments of the Spine policy. We use the role and action names from the CASSANDRA policy
presented in §9.4.

Anson Arkwright goes to see Dr Zoe Zimmer, his family’s General Practitioner (GP),
for an HIV test. Dr Zimmer records the visit in a local EPR item2 by performing an
Add-record-item action (with suitable parameters) but does not submit a summary to
the Spine on Anson’s request. Some time later, Bob Arkwright, Anson’s father, visits Dr
Zimmer because of heart problems. During the visit he also tells her that he believes his
son Anson may be a hypochondriac. Dr Zimmer adds a record item to Bob’s EPR about his
heart condition and an item in Anson’s EPR about his father’s comments. The latter item

2Recall that EPRs are the detailed patient records held in health organisations and are meant to replace the
traditional paper-based records, whereas EHRs are the shared summary records held on the Spine.
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is marked as containing third party information about his father, so as long as his father
(or the Caldicott Guardian on his behalf) does not enter a Third-party-consent role for
that item, Anson will not be able to read it. (Note that we use roles not just to model job
positions within an organisation but also to indicate state changes, e.g. giving third-party
consent.)

Dr Zimmer also attempts to submit a summary of Bob’s new EPR item to his shared
EHR: she first activates her Spine-clinician role on the Spine by submitting an RA-
issued NHS-clinician-cert role credential along with the activation request. Subsequently,
her Add-spine-record-item action succeeds because the Spine can deduce she is Bob’s
Treating-clinician (Bob has explicitly consented to treatment years ago and has not
withdrawn his Consent-to-treatment role). Dr Zimmer also decides to refer Bob to a
local hospital’s cardiologist, Dr Hannah Hassan. As Bob’s treating clinician, Dr Zimmer
can enter a Referrer role on the Spine, thus enabling Dr Hassan to also become a treating
clinician with a legitimate relationship. Bob’s consent is not needed, but he has the power
to cancel the referral by deactivating Dr Zimmer’s Referrer role.

At the hospital, a Receptionist registers Bob as a patient by activating a Register-
patient role. After his out-patient visit with Dr Hassan, the receptionist registers him with
a surgical team in the same hospital for a heart bypass operation. For this purpose, the
receptionist activates appropriate Register-team-episode and Register-ward-episode
roles on the hospital’s service, thereby establishing a legitimate treating clinician relation-
ship between Bob and the surgical team and the ward nurses. During surgery, abnormal
liver values are found, so the team attempts to search for potentially important information
in Bob’s EHR on the Spine. However, years ago, Bob activated a Conceal-request role on
the Spine to conceal the contents of all items in his EHR concerning an alcohol-related liver
problem from everybody except clinicians treating him as GP, and this request had been
granted by Dr Zimmer, who activated a corresponding Concealed-by-spine-patient role
for this purpose. The head of the surgical team, Dr Lily Littlewood, decides to “break the
seal” to view Bob’s restricted EHR item by performing the action Force-read-spine-item.
This can be done by any clinician with a legitimate relationship but will be marked in the
audit trail to be investigated by the hospital’s Caldicott Guardian.

Unfortunately, the team encounters further complications during the operation and Bob
needs to be kept in an artificial coma. Dr Zimmer agrees to appoint Bob’s wife, Carol,
to be his agent by activating a Register-agent role on the Spine. Carol then requests
to activate the Agent role on the hospital’s service. This succeeds after a cycle of trust
negotiation between the hospital, the Spine, and the hospital’s RA: the hospital’s service
reacts to Carol’s request by requesting an agent registration credential from the Spine; the
Spine replies by requesting a health organisation credential; the hospital agrees by sending
an health organisation credential, issued by some RA, to the Spine; the Spine requests an
NHS-signed credential from the RA to check if it is an officially approved RA, and finally,
the Spine sends the originally requested Register-agent credential to the hospital certifying
that Carol is indeed Bob’s agent.

When Bob is woken and released, he attempts to revoke the agent registration for his
wife but fails because it was Dr Zimmer who registered Carol. However, on Bob’s request,
Dr Zimmer deactivates her Register-agent role for Carol. If Carol is active with an Agent
role on the Spine at that moment, cascading revocation causes that role to be deactivated
immediately as well.
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9.4 EHR Policy

9.4.1 Overview

We have drafted a complete CASSANDRA policy for the NHS Spine and related services,
based mainly on the Output Based Specification Version 2.0 (OBS) [Nat03], reports from
NHS pilot projects of the Electronic Records Development and Implementation Programme
(ERDIP) [Nat02, Gau03], and various Department of Health documents [Dep01b, Dep02].

The OBS is a 900-page document given to potential suppliers during the procurement
process in August 2003. According to the OBS, the modules are to be delivered by contrac-
tors in three phases. By December 2004 (Phase 1), a basic system for accessing EHRs on
the Spine should have been delivered, and the Spine populated with patient data3. At this
stage, the required confidentiality requirements are dangerously low and have prompted
harsh criticism from doctors, patient interest groups and the media: a one-off general con-
sent given by a patient would make his personal data available to all clinical users of the
Spine. Stricter confidentiality measures are introduced with the later phases. In Phase 2
(December 2006), patients will directly access their health data, they can request to conceal
parts of their records, and can identify people (agents) to act on their behalf concerning
access to records. Furthermore, access control based on clinical workgroups will be sup-
ported. In Phase 3 (December 2010), clinicians will also be able to conceal parts of their
patients’ records, access will be based on legitimate relationships between patients and
clinicians, and systems must separately deal with data containing confidential third-party
information. Our proposed policy covers all requirements regarding the access of patient-
identifiable data up to and including Phase 3.

The most relevant section for our case study is section §730 on information governance,
a list of security and confidentiality requirements for systems handling patient data. It was
specifically written to comply with relevant legislation and guidelines, in particular with
the Data Protection Act 1998 and the Caldicott guidelines [Nat97], and, as far as patient
registration is concerned, with the ‘Registration and Authentication e-Government Strategy
Framework Policy and Guidelines’. The document acknowledges that the requirements of
this section are likely to evolve due to changes in national guidelines and legal requirements,
but also to new positions emerging from still ongoing NHS consultation processes. Some of
the points will be affected by design work yet to be done, and some are “subject to further
guidance”.

Consequently, the requirements are sketchy in places. For example, section §730.9 states
the requirements of role-based access control without specifying which roles will be used
and their associated privileges. Similarly, it is a Phase 3 requirement that only clinicians
with a legitimate relationship have access to patient data (§730.17). However, the section
does not explain the rules for establishing legitimate relationships. In writing a formal
policy for the system, many such missing details had to be filled in. Many of our rules are
based simply on common sense, even though they are not explicitly required in the OBS:
for example, that a legitimate relationship is automatically revoked if the respective patient
is no longer registered in the system.

In some cases we had to choose from a number of conceivable options and, in general,
favoured the more demanding solutions. For example, patients may seal off groups of
related clinical data (e.g. all the data about a particular event) (§730.48.2), but the OBS

3The deadline was rather optimistic. Not too surprisingly, their main contractor, BT Synergy, failed to deliver
the Spine on time and was fined by the NHS.
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defers the specification of the granularity of such groupings until further guidance has been
produced. Our solution gives patients an extremely high flexibility in specifying sealing-off
criteria and may well be more flexible than what is actually needed, but it shows that less
demanding solutions could also be implemented in CASSANDRA.

In our case study, the entities are the individual users (patients, clinicians, staff) as well
as the national and local services. We have written policies for the Spine, the PDS, Adden-
brooke’s Hospital (as an example for a local health organisation), and Addenbrooke’s RA.
The policies use the constraint domain C0(§5.2.4) and comprise 375 rules, 71 roles and 12
actions. Of the 375 rules, there are 118 canActivate, 97 canDeactivate, 51 isDeactivated, 29
permits and 27 canReqCred rules. The remaining 53 are user-defined rules. The case study
suggests that common policy idioms such as appointment hardly occur in their pure forms
in practice. It is therefore not sufficient to equip a policy language with standard policy
constructs (e.g. appointment in OASIS [HBM98, YMB02, BMY02]); rather, it is necessary
to be able to express different variants of them. The rules can be roughly divided into the
following categories:

Permissions Assignment

Many of the permits rules are straightforward parameterised role-action assignments, e.g.
“patients can annotate their own record items”. Others require more than one role-related
prerequisite condition, e.g. “clinicians can force-read record items concealed by a patient
if they have activated their clinician role and if they are member of a workgroup (clinical
team or ward) currently treating the patient”. The last condition is also an example of an
auxiliary or derived role: the Group-treating-clinician role need not be activated when
using the rule; it is sufficient that it can be activated.

The permits rules concerning reading record items are typically also conditional on
patient and third-party consent and (absence of) access restrictions. All these condi-
tions correspond to role activations of users other than the requester. Such rules can-
not be easily expressed in languages in which the subject parameters of the head and the
body are implicitly the same, e.g. SPKI/SDSI [Ell99, EFL+99], RT [LMW02] or OASIS
[HBM98, YMB02, BMY02].

Consent

Access to health records is primarily based on explicit patient consent. Consent may be
required for initial treatment, for referrals and for disclosure of third-party information.
We implement consent as a form of appointment: by activating a consent role, a patient
“appoints” a clinician to be e.g. a Treating-clinician with a legitimate relationship. To
prevent frivolous users from unsolicitedly activating myriads of consent roles, the user
must first have been requested to activate the consent role. These consent requests are
again implemented as a form of appointment, but now the other way round: by activating
a consent request role, the clinician enables the patient to activate a consent role. Consent
is thus implemented as a two-stage appointment mechanism.

Registration

Registration is an administrative task that takes on many forms in our case study: for
example, PDS managers enter newly born patients into the PDS, receptionists register new
patients, human resource managers employ clinicians and other staff, head nurses assign
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nurses to wards, and heads of clinical teams assign clinicians to their respective teams.
Registration can again be implemented using variants of the appointment encoding given
in Chapter 8. Variants include combinations with cardinality restrictions (“patients can
register at most three distinct agents acting on their behalf”) and uniqueness constraints (“a
patient can only be registered if no one has already activated the registration role for that
patient”). The two mentioned variants make use of CASSANDRA’s aggregation operators.

Referral

Referral is implemented as a form of delegation. Our case study exhibits two kinds of
patient referral. On the Spine, no patient consent is required, and referral chains are of
unbounded length. On the level of the local health organisation, we decided to implement
a stricter alternative: a local treating clinician can refer the patient to an external clinician
(who will then have restricted rights to read the local EPR record items) only with explicit
patient consent, and the delegation chain can only be of length one.

Sealing Off Data

This is a policy idiom motivated by the requirement that patients may specify access restric-
tions on their data. Patients can fine-tune the access rights to their records by activating
an appropriate concealment request role, if the request is subsequently approved by a clin-
ician. The permits rules governing read access need to check that no such concealment role
has been activated and approved; this requires universally quantified negation, expressed
with the help of aggregation operators.

Deactivation

canDeactivate rules specify who can deactivate which roles. Although these rules are rather
straightforward, it is important that deactivation can be specified flexibly. For example,
revocation of agent registrations is asymmetric in the sense that patients can only revoke
the agents they have appointed themselves (grant-dependent revocation), whereas Caldicott
Guardians can revoke not only the agents they have appointed for a patient but also those
appointed by the patient (a variant of grant-independent revocation). Furthermore, agent
role activations are revoked only if all their registrations have been revoked. This is yet
another example of universally quantified negation requiring aggregation operators.

Cascading deactivation, specified by isDeactivated rules, is used to automatically deac-
tivate a role if some other role is deactivated. For example, the revocation of a patient’s
registration in the hospital triggers the deactivation of all roles that have something to do
with that patient, including agent registrations, inpatient episode registrations, legitimate
relationships with clinicians, access restriction roles, and consent roles.

Credential Management

Credential-based trust negotiation and credential protection are governed by the interaction
between canReqCred rules and rules with remote body predicates. The scenario in §9.3 gives
an example of multi-phase automatic trust negotiation. canReqCred rules are also used for
regulating direct credential requests from entities. For example, agent credentials from the
Spine can be requested by certified health organisations, and also by the agent himself. The
location parameter of CASSANDRA predicates facilitates very flexible forms of automated
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credential retrieval: unlike other policy systems, credential locations are not restricted to
the issuer or the credential subject. For example, a credential of the form

RA.hasActivated(RA-adm,NHS-health-org-cert(Org,Start,End))

may be found at the location Org which is neither the issuer (RA) nor the subject (RA-adm).
In the following we describe in detail the policies for the EHR architecture outlined in

§9.1.1 and illustrated in the scenario (§9.3). All rules are also listed in the Appendix A.
The rules have been parsed and automatically typeset by our prototype implementation.

9.4.2 The Spine

The Spine is the heart of NPfIT, containing EHRs for all patients and providing online
access to the records to both to both patients and professional users. Our policy for the
Spine defines the access roles and privileges, and manages consent, legitimate relationships,
and concealment of record items. The Spine policy comprises 137 rules.

EHR Structure

Each patient is associated with exactly one EHR, an append-only structure consisting of a
set of immutable record items, indexed by an ID. We thus assume that each record item is
uniquely identified by a pair (pat, id): the item with ID id in the EHR of patient pat. The
policy accesses relevant fields of a record item via the following system functions, each of
which take such a pair as argument:

• Get-spine-record-author returns the author of the item. This is always a clinician.

• Get-spine-record-org returns the health organisation of the author (at the time of
item creation)4.

• Get-spine-record-time returns the time and date of the item’s creation.

• Get-spine-record-subjects returns a set of subject matters (chosen from a prede-
fined list of valid subjects such as “allergy”, “abortion”, “cancer”) the item relates
to.

• Get-spine-record-third-parties returns a set of all third parties whose consent
must be sought prior to revealing the item to the patient.

As is the case throughout this case study, fields and parameters that are irrelevant to
the policy are omitted. For example, there is no “content” field for record items, as the
policy does not perform any computations on the actual content of the item. Similarly,
alert-raising actions such as Force-read-spine-record-item, i.e. the forced reading of an
item against the patient’s wishes, would in reality contain a “reason” parameter explaining
why this action is performed, but it is omitted since it is irrelevant for the policy.

4A clinician may be working for several health organisations, but the policy allows her to log on with only
one role specifying just one health organisation at any time.
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Main Roles

The Spine policy is role-based (§730.9)5, and designed in such a way that users need to have
activated a single main role, Spine-clinician, Spine-admin, Patient, Agent and Third-
party, before performing any action or activating a registration, consent or concealment
roles. The requirement that exactly one role must be active (§730.12.10) is an example of
dynamic n-wise separation of duties (cf. §8.4). Depending on which main role is activated,
a different set of permitted actions is presented to the user. The purpose is to restrict the
privileges to those needed for the current task (principle of least privilege) and also to
simplify auditing.

The activation rules for all these roles contain a user-defined predicate no-main-role-
active(user) (S1.5.3) that is satisfied only if the user has not already activated any of these
roles:

(S1.5.3)
no-main-role-active(user)←

count-agent-activations(n,user),
count-spine-clinician-activations(n,user),
count-spine-admin-activations(n,user),
count-patient-activations(n,user),
count-third-party-activations(n,user),
n = 0

As in §8.4, this is achieved by the use of aggregation predicates (S1.1.4, S1.2.4, S1.3.4,
S1.4.5, S2.2.13).

(S1.1.4)
count-spine-clinician-activations(count〈u〉,user)←

hasActivated(user,Spine-clinician(ra,org,spcty))

(S1.2.4)
count-spine-admin-activations(count〈u〉,user)←

hasActivated(user,Spine-admin())

(S1.3.4)
count-patient-activations(count〈u〉,user)←

hasActivated(user,Patient())

(S1.4.5)
count-agent-activations(count〈u〉,user)←

hasActivated(user,Agent(pat))

(S2.2.13)
count-third-party-activations(count〈u〉,user)←

hasActivated(user,Third-party())

The following describes the rules concerning the main access roles apart from Third-
party which is discussed in §9.4.2.

5Here and in the following, the section numbers starting with 730 relate to the OBS [Nat03].
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Clinicians A clinician certified by an NHS-approved RA ra working for health organisa-
tion org with specialty spcty can activate the role Spine-clinician(ra, org, spcty). The
credential can be either submitted locally (S1.1.1) or retrieved from the RA (S1.1.2):

(S1.1.1)
canActivate(cli,Spine-clinician(ra,org,spcty))←

ra.hasActivated(x,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority()),
no-main-role-active(cli),
Current-time() ∈ [start,end]

(S1.1.2)
canActivate(cli,Spine-clinician(ra,org,spcty))←

ra♦ra.hasActivated(x,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority()),
no-main-role-active(cli),
Current-time() ∈ [start,end]

In both cases, the credential must be still valid, and it is checked if ra is an NHS-approved
RA (S1.5.1), if necessary, by contacting the RA itself (S1.5.2):

(S1.5.1)
canActivate(ra,Registration-authority())←

NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

(S1.5.2)
canActivate(ra,Registration-authority())←

ra♦NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

A clinician can deactivate her own role (S1.1.3):

(S1.1.3)
canDeactivate(cli,cli,Spine-clinician(ra,org,spcty))←

Administrators Administrators are responsible for registering new patients and unregis-
tering deceased patients or those who have moved away. The administrator role Spine-
admin() can be activated if the person has been registered as such (S1.2.1):

(S1.2.1)
canActivate(adm,Spine-admin())←

hasActivated(x,Register-spine-admin(adm)),
no-main-role-active(adm)
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Administrators can be registered if they have not already been registered (S1.2.5, S1.2.7)
and unregistered (S1.2.6) by other administrators:

(S1.2.5)
canActivate(adm,Register-spine-admin(adm2))←

hasActivated(adm,Spine-admin()),
spine-admin-regs(0,adm2)

(S1.2.7)
spine-admin-regs(count〈x〉,adm)←

hasActivated(x,Register-spine-admin(adm))

(S1.2.6)
canDeactivate(adm,x,Register-spine-admin(adm2))←

hasActivated(adm,Spine-admin())

The role can be deactivated by the administrator herself (S1.2.2) and is automatically de-
activated when the registration is cancelled (S1.2.3):

(S1.2.2)
canDeactivate(adm,adm,Spine-admin())←

(S1.2.3)
isDeactivated(adm,Spine-admin())←

isDeactivated(x,Register-spine-admin(adm))

Patients A patient can activate (S1.3.1) the role Patient() if he has been registered on the
Spine and also at the PDS. The latter condition is checked by contacting the PDS directly,
as required by §730.24.0b:

(S1.3.1)
canActivate(pat,Patient())←

hasActivated(x,Register-patient(pat)),
no-main-role-active(pat),
PDS♦PDS.hasActivated(y,Register-patient(pat))

Patients can be registered if they have not already been registered (S1.3.5, S1.3.7) and
unregistered (S1.3.6) by administrators:

(S1.3.5)
canActivate(adm,Register-patient(pat))←

hasActivated(adm,Spine-admin()),
patient-regs(0,pat)

(S1.3.7)
patient-regs(count〈x〉,pat)←

hasActivated(x,Register-patient(pat))

In our policy, the removal of a patient’s registration should only be performed if his data is
permanently removed from the Spine, for example, in the case of the patient’s death, after
the legal minimal retention period.
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The patient role can be deactivated by the patient himself (S1.3.2) and is automatically
deactivated when the registration is cancelled (S1.3.3):

(S1.3.2)
canDeactivate(pat,pat,Patient())←

(S1.3.3)
isDeactivated(pat,Patient())←

isDeactivated(x,Register-patient(pat))

Note that the patient role need not be activated in order to get registered as a patient or
to receive treatment. Its main purpose is to allow patients access their own data via the
NHS Web portal.

Agents A patient can identify agents (for example carers, family members, guardians of
a child) who have a special kind of legitimate relationship that allow them to act on the
patient’s behalf and to access his record (§730.20.10, §730.52). A person can activate
(S1.4.1) the role Agent(pat) for a patient pat if he has been appointed as an agent and if
he is registered at the PDS. As in the case of patient role activation, the latter condition is
checked by contacting the PDS directly (P2.2.5):

(S1.4.1)
canActivate(ag,Agent(pat))←

hasActivated(x,Register-agent(ag,pat)),
PDS♦PDS.hasActivated(y,Register-patient(ag)),
no-main-role-active(ag)

(P2.2.5)
canReqCred(org,PDS.hasActivated(x,Register-patient(pat)))←

org♦ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority())

The role can be deactivated by the agent himself (S1.4.2) and is deactivated automatically
if all his agent registrations for the patient have been cancelled (S1.4.3, S1.4.4):

(S1.4.2)
canDeactivate(ag,ag,Agent(pat))←

(S1.4.3)
isDeactivated(ag,Agent(pat))←

isDeactivated(x,Register-agent(ag,pat)),
other-agent-regs(0,x,ag,pat)

(S1.4.4)
other-agent-regs(count〈y〉,x,ag,pat)←

hasActivated(y,Register-agent(ag,pat)),
x 6= y

Patients can appoint up to three personal agents (S1.4.9, S1.4.14). This is one of the rules
that we invented to prevent a simple kind of denial-of-service attack. To which extent such
mechanisms should be enforced by the policy is arguable. We decided to write the policy
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in such a way that it generally prevents personal users (patients), but not professional users
(clinicians), from frivolously or maliciously clogging up the policy by activating a large
number of rules. However, not all denial-of-service attacks can be prevented by the policy
itself, e.g. flooding the service with a large number of requests, or submitting a large number
of credentials.

(S1.4.9)
canActivate(pat,Register-agent(agent,pat))←

hasActivated(pat,Patient()),
agent-regs(n,pat),
n < 3

(S1.4.14)
agent-regs(count〈x〉,pat)←

hasActivated(pat,Register-agent(x,pat))

Agents can also be appointed by the patient’s GP (S1.4.10). This can be done without the
patient’s consent if he lacks competence (§730.55.6), for example if the patient is a child
and not Gillick-competent6 but objects to his parents acting on his behalf:

(S1.4.10)
canActivate(cli,Register-agent(agent,pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))

The patient can only cancel the agent appointments he has made himself but not those
made by his GP (S1.4.11) (grant-dependent revocation). A patient’s GP, on the other hand,
can cancel any agent appointments (S1.4.12) (grant-independent revocation):

(S1.4.11)
canDeactivate(pat,pat,Register-agent(agent,pat))←

hasActivated(pat,Patient())

(S1.4.12)
canDeactivate(cli,x,Register-agent(agent,pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))

All agent appointments are automatically cancelled if the patient’s registration is cancelled
(S1.4.13):

(S1.4.13)
isDeactivated(x,Register-agent(agent,pat))←

isDeactivated(y,Register-patient(pat))

6A child is Gillick-competent if it is deemed mature enough to give or refuse consent to a medical procedure
by him or herself. Parental consent is not legally required, only recommended. This was established in the
1985 ruling of the House of Lords in the case Gillick v West Norfolk and Wisbech Area Health Authority.
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An agent can request a credential certifying his role as agent (S1.4.6):

(S1.4.6)
canReqCred(ag,Spine.canActivate(ag,Agent(pat)))←

hasActivated(ag,Agent(pat))

Such a credential could for example be used for authorisation in the EPR systems of local
health organisations, as in the following two rules located at Addenbrooke’s Hospital’s
policy (A1.6.2, A1.6.3):

(A1.6.2)
canActivate(agent,Agent(pat))←

canActivate(pat,Patient()),
no-main-role-active(agent),
PDS♦PDS.hasActivated(x,Register-patient(agent)),
Spine♦Spine.canActivate(agent,Agent(pat))

(A1.6.3)
isDeactivated(ag,Agent(pat))←

isDeactivated(x,Register-agent(ag,pat)),
other-agent-regs(0,x,ag,pat)

Health organisations can also directly ask for such a credential. For this purpose they
first have to authenticate themselves with a currently valid RA-signed health organisation
credential (S1.4.7). If no such credential is submitted, the Spine tries to retrieve it from the
health organisation (S1.4.8). In both cases it is also checked whether the RA is approved
by the NHS:

(S1.4.7)
canReqCred(org,Spine.canActivate(ag,Agent(pat)))←

ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

(S1.4.8)
canReqCred(org,Spine.canActivate(ag,Agent(pat)))←

org♦ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

Express Consent

It is generally agreed that disclosure of patient data must be preceded by the patient’s
express consent. There is of course much controversy about the details: how specific should
the statement of consent be? How often should consent be sought? When can (implied)
consent be derived from express consent? Very strict consent requirement may be good in
terms of medical ethics but may be too impractical for users.

The following describes the rules concerning patient consent based on our interpretation
of the OBS. This part of the policy is very likely to change as the debate on consent evolves
and more guidelines are produced.
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One-Off Consent According to §730.4.2, patients will not be allowed to refuse having
their medical data stored on the Spine, but the patient’s “one-off consent” is required to
release the data for clinical care7. It should be noted that refusal to give one-off consent will
not result in the patient not receiving any clinical treatment. It will only result in clinicians
treating the patients not being able to share the data online and having to rely on local
patient records.

In the Spine policy, a patient pat can give a one-off consent to have his data made avail-
able on the Spine by activating the role One-off-consent(pat) (S2.1.1):

(S2.1.1)
canActivate(pat,One-off-consent(pat))←

hasActivated(pat,Patient())

Furthermore, his agent can also do this on his behalf (S2.1.2), and so can any treating
clinician (i.e. a clinician with a legitimate relationship) (S2.1.3).

(S2.1.2)
canActivate(ag,One-off-consent(pat))←

hasActivated(ag,Agent(pat))

(S2.1.3)
canActivate(cli,One-off-consent(pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

The patient (S2.1.4), or his agent (S2.1.5) or a treating clinician (S2.1.6) on his behalf, can
withdraw the consent by deactivating the role:

(S2.1.4)
canDeactivate(pat,x,One-off-consent(pat))←

hasActivated(pat,Patient())

(S2.1.5)
canDeactivate(ag,x,One-off-consent(pat))←

hasActivated(ag,Agent(pat))

(S2.1.6)
canDeactivate(cli,x,One-off-consent(pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

The consent role is automatically deactivated if the patient’s registration is cancelled
(S2.1.7):

(S2.1.7)
isDeactivated(x,One-off-consent(pat))←

isDeactivated(y,Register-patient(pat))

7This is one of the more controversial points as the specifications also allow clinicians to access a patient’s
records without his consent in “exceptional circumstances” (§730.4.11)



9.4 EHR Policy 119

Third-Party Consent Health record items may sometimes contain information about
someone other than the patient. A GP may for example include information about certain
diseases of the patient’s blood relatives [SMW93]. According to the UK Data Protection Act
1998, patients may not view record items that may reveal confidential information about
third parties without the third parties’ consent. The OBS only requires that any third-party
information be withheld from the patient. Our policy also allows patients to request a third
party to give their consent.

Third-party consent from a third party x for a particular record item id of a pa-
tient pat can be requested by the patient himself (S2.2.1), by his agent (S2.2.2) or by
any clinician currently treating him (S2.2.3) by the activation of Request-third-party-
consent(x,pat, id). A further condition for this request is that x is actually recorded as a
third party in the record item (pat, id):

(S2.2.1)
canActivate(pat,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Patient()),
x ∈ Get-spine-record-third-parties(pat, id)

(S2.2.2)
canActivate(ag,Request-third-party-consent(x,pat, id))←

hasActivated(ag,Agent(pat)),
x ∈ Get-spine-record-third-parties(pat, id)

(S2.2.3)
canActivate(cli,Request-third-party-consent(x,pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
x ∈ Get-spine-record-third-parties(pat, id)

The request can be cancelled by the same users who can activate it (S2.2.4-6). Additionally,
the respective third party may also deactivate the request role (S2.2.7), thereby withholding
(or later withdrawing) consent to disclosure:

(S2.2.4)
canDeactivate(pat,y,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Patient())

(S2.2.5)
canDeactivate(ag,y,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Agent(pat))

(S2.2.6)
canDeactivate(cli,y,Request-third-party-consent(x,pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty))

(S2.2.7)
canDeactivate(x,y,Request-third-party-consent(x,pat, id))←

hasActivated(x,Third-party())

All requests are automatically deactivated when the patient’s registration is cancelled
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(S2.2.8):

(S2.2.8)
isDeactivated(x,Request-third-party-consent(y,pat, id))←

isDeactivated(z,Register-patient(pat))

In order to give consent to third-party disclosure, the third party first has to activate the
Third-party() role (S2.2.10). This is allowed if his consent has been requested and he is a
registered user at the PDS:

(S2.2.10)
canActivate(x,Third-party())←

hasActivated(y,Request-third-party-consent(x,pat, id)),
no-main-role-active(x),
PDS♦PDS.hasActivated(z,Register-patient(x))

The role can be deactivated by the third party (S2.2.11) and is automatically deactivated
when all relevant requests have been withdrawn (S2.2.12, S2.2.9):

(S2.2.11)
canDeactivate(x,x,Third-party())←

(S2.2.12)
isDeactivated(x,Third-party())←

isDeactivated(y,Request-third-party-consent(x,pat, id)),
other-third-party-consent-requests(0,y,x)

(S2.2.9)
other-third-party-consent-requests(count〈x〉,y,z)←

hasActivated(x,Request-third-party-consent(z,pat, id)),
x 6= y

Once a user has activated the Third-party() role, he can grant existing third-party consent
requests by activating the corresponding Third-party-consent(x,pat, id) role (S2.2.14):

(S2.2.14)
canActivate(x,Third-party-consent(x,pat, id))←

hasActivated(x,Third-party()),
hasActivated(y,Request-third-party-consent(x,pat, id))

Alternatively, consent can also be given by a clinician currently treating the patient to whom
the record item belongs (S2.2.15), as in many cases the third party will not be able to give
consent in this way, or the treating clinician can deduce the third party’s implied consent:

(S2.2.15)
canActivate(cli,Third-party-consent(x,pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
hasActivated(y,Request-third-party-consent(x,pat, id))

Third-party consent is automatically cancelled if all relevant requests have been cancelled
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(S2.2.16) (hence the consent role never needs to be deactivated directly):

(S2.2.16)
isDeactivated(x,Third-party-consent(x,pat, id))←

isDeactivated(y,Request-third-party-consent(x,pat, id)),
other-third-party-consent-requests(0,y,x)

Consent to Treatment The OBS does not clearly say how legitimate relationships are for-
mally established. Our policy requires the patient to give express consent for a clinician to
have the role of a treating clinician that represents the legitimate relationship between the
clinician and the patient.

As is the case with third-party consent, the consent to treatment of patient pat by clinician
cli must first be requested by a clinician (this may be cli herself), in order to prevent non-
professional users from activating a large number of unrequested consent roles. The request
is represented by the activation of Request-consent-to-treatment(pat, org, cli, spcty),
where org is cli’s health organisation and spcty her specialty (S2.3.1):

(S2.3.1)
canActivate(cli1,Request-consent-to-treatment(pat,org2,cli2,spcty2))←

hasActivated(cli1,Spine-clinician(ra1,org1,spcty1)),
canActivate(cli2,Spine-clinician(ra2,org2,spcty2)),
canActivate(pat,Patient())

The request can be cancelled by the requester herself (S2.3.2), by the clinician cli (S2.3.3),
by the patient (S2.3.4), or his agent (S2.3.5) or his GP (S2.3.6) on the patient’s behalf:

(S2.3.2)
canDeactivate(cli1,cli1,

Request-consent-to-treatment(pat,org2,cli2,spcty2))←
hasActivated(cli1,Spine-clinician(ra1,org1,spcty1))

(S2.3.3)
canDeactivate(cli2,cli1,

Request-consent-to-treatment(pat,org2,cli2,spcty2))←
hasActivated(cli2,Spine-clinician(ra2,org2,spcty2))

(S2.3.4)
canDeactivate(pat,x,Request-consent-to-treatment(pat,org,cli,spcty))←

hasActivated(pat,Patient())

(S2.3.5)
canDeactivate(ag,x,Request-consent-to-treatment(pat,org,cli,spcty))←

hasActivated(ag,Agent(pat))

(S2.3.6)
canDeactivate(cli,x,Request-consent-to-treatment(pat,org,cli2,spcty))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))
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A request is automatically deactivated when the patient’s registration is cancelled (S2.3.7):

(S2.3.7)
isDeactivated(x,Request-consent-to-treatment(pat,org,cli,spcty))←

isDeactivated(y,Register-patient(pat))

An activated request can be granted by the patient directly (S2.3.9), or by his agent
(S2.3.10) or any treating clinician (S2.3.11) on his behalf, by activating Consent-to-
treatment(pat, org, cli, spcty):

(S2.3.9)
canActivate(pat,Consent-to-treatment(pat,org,cli,spcty))←

hasActivated(pat,Patient()),
hasActivated(x,Request-consent-to-treatment(pat,org,cli,spcty))

(S2.3.10)
canActivate(ag,Consent-to-treatment(pat,org,cli,spcty))←

hasActivated(ag,Agent(pat)),
hasActivated(x,Request-consent-to-treatment(pat,org,cli,spcty))

(S2.3.11)
canActivate(cli1,Consent-to-treatment(pat,org,cli2,spcty))←

hasActivated(cli1,Spine-clinician(ra,org,spcty)),
canActivate(cli1,Treating-clinician(pat,org,spcty)),
hasActivated(x,Request-consent-to-treatment(pat,org,cli2,spcty))

Consent is automatically cancelled if all relevant requests have been withdrawn (S2.3.12,
S2.3.8):

(S2.3.12)
isDeactivated(x,Consent-to-treatment(pat,org,cli,spcty))←

isDeactivated(y,Request-consent-to-treatment(pat,org,cli,spcty)),
other-consent-to-treatment-requests(0,y,pat,org,cli,spcty)

(S2.3.8)
other-consent-to-treatment-requests(count〈y〉,x,pat,org,cli,spcty)←

hasActivated(y,Request-consent-to-treatment(pat,org,cli,spcty)),
x 6= y

Often, it is a workgroup or team consisting of several clinicians providing care to the pa-
tient, each requiring access to the patient’s record (§730.20.2). To support workgroup-
based authorisation, patients can activate the Consent-to-group-treatment(pat, org,
group) role if the corresponding Request-consent-to-group-treatment role has been
activated. The relevant rules (S2.4.1–12) are much the same as those for standard con-
sent to treatment except that the request can also be deactivated by workgroup members
(S2.4.6). Workgroup membership is checked by requesting an RA-issued membership cre-
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dential from the RA:

(S2.4.6)
canDeactivate(cli,x,Request-consent-to-group-treatment(pat,org,group))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
ra♦ra.canActivate(cli,Workgroup-member(org,group,spcty))

Legitimate Relationship

In Phase 3, only clinicians with legitimate relationships will have access to a patient’s data
(§730.17). We have seen above how such a relationship is formed by the clinician request-
ing the patient’s consent and the patient giving consent to treatment. Here we discuss some
more ways for establishing legitimate relationships, and the rules concerning the auxiliary
roles Treating-clinician and Group-treating-clinician.

Referrals Clinicians can “delegate” their legitimate relationship to a patient to another
clinician by the act of referral (§730.20.8). No express patient consent is needed in this
case.

A clinician currently treating a patient pat can refer the patient to another clinician cli
from org in specialty spcty by activating Referrer(pat, org, cli, spcty) (S3.1.1):

(S3.1.1)
canActivate(cli1,Referrer(pat,org,cli2,spcty1))←

hasActivated(cli1,Spine-clinician(ra,org,spcty2)),
canActivate(cli1,Treating-clinician(pat,org,spcty2))

Both the referring clinician (S3.1.2) and the patient (S3.1.3) can cancel the referral:

(S3.1.2)
canDeactivate(cli1,cli1,Referrer(pat,org,cli2,spcty1))←

(S3.1.3)
canDeactivate(pat,cli1,Referrer(pat,org,cli2,spcty1))←

The referral role is also deactivated if the patient’s registration is cancelled (S3.1.4):

(S3.1.4)
isDeactivated(cli1,Referrer(pat,org,cli2,spcty1))←

isDeactivated(x,Register-patient(pat))

Accident and Emergency In the case of accident or emergency, it may be necessary to
get access to a patient’s records without his explicit consent. A clinician can activate the
Spine-emergency-clinician(org, pat) role for any registered patient pat (S3.2.1):

(S3.2.1)
canActivate(cli,Spine-emergency-clinician(org,pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(pat,Patient())

This should trigger an alert and be highlighted in the audit trail (notifications and audit are
not modelled by our policies). The Spine-emergency-clinician role can be deactivated
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by the clinician herself (S3.2.2):

(S3.2.2)
canDeactivate(cli,cli,Spine-emergency-clinician(org,pat))←

The role is automatically deactivated if the user’s clinician role is deactivated (S3.2.3) and
also if the patient’s registration is cancelled (S3.2.4):

(S3.2.3)
isDeactivated(x,Spine-emergency-clinician(org,pat))←

isDeactivated(x,Spine-clinician(ra,org,spcty))

(S3.2.4)
isDeactivated(x,Spine-emergency-clinician(org,pat))←

isDeactivated(y,Register-patient(pat))

Treating Clinicians A legitimate relationship between a clinician or a workgroup and
a patient is manifested in the roles Treating-clinician or Group-treating-clinician,
respectively. These are auxiliary roles that never need to be actually activated as it is only
ever checked whether a user can activate them, but not whether they have been activated.

A clinician cli is associated with the role Treating-clinician(pat,org,spcty) if express
consent to treatment has been given, i.e. the matching role Consent-to-treatment(pat,
org, cli, spcty) has been activated (S3.3.1):

(S3.3.1)
canActivate(cli,Treating-clinician(pat,org,spcty))←

hasActivated(x,Consent-to-treatment(pat,org,cli,spcty))

Alternatively, no consent is required if the clinician is active as Spine-emergency-
clinician(org, pat), but in this case, spcty must be set to “A-and-E” (S3.3.2):

(S3.3.2)
canActivate(cli,Treating-clinician(pat,org,spcty))←

hasActivated(cli,Spine-emergency-clinician(org,pat)),
spcty = A-and-E

Treating clinicians are also those with a matching referral (S3.3.3):

(S3.3.3)
canActivate(cli,Treating-clinician(pat,org,spcty))←

canActivate(cli,Spine-clinician(ra,org,spcty)),
hasActivated(x,Referrer(pat,org,cli,spcty))

The GP role General-practitioner(pat) is derived from the Treating-clinician role and
represents a clinician who treats that patient in the specialty “GP” (S3.3.5):

(S3.3.5)
canActivate(cli,General-practitioner(pat))←

canActivate(cli,Treating-clinician(pat,org,spcty)),
spcty = GP
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Similarly, the Group-treating-clinician role can be activated by members of the work-
group, if consent to group treatment has been given. An RA-issued credential is required for
proving workgroup membership, either to be submitted directly (S3.4.1) or automatically
fetched from the clinician’s RA (S3.4.2). The rules also check whether the RA is approved
by the NHS:

(S3.4.1)
canActivate(cli,Group-treating-clinician(pat,ra,org,group,spcty))←

hasActivated(x,Consent-to-group-treatment(pat,org,group)),
ra.canActivate(cli,Workgroup-member(org,group,spcty)),
canActivate(ra,Registration-authority())

(S3.4.2)
canActivate(cli,Group-treating-clinician(pat,ra,org,group,spcty))←

hasActivated(x,Consent-to-group-treatment(pat,org,group)),
ra♦ra.canActivate(cli,Workgroup-member(org,group,spcty)),
canActivate(ra,Registration-authority())

Any Group-treating-clinician can also be a Treating-clinician (S3.3.4); this is a sim-
ple example of role hierarchy:

(S3.3.4)
canActivate(cli,Treating-clinician(pat,org,spcty))←

canActivate(cli,Group-treating-clinician(pat,ra,org,group,spcty))

Sealing Off Data

In the past, patients were often refused access to their own records. The recent decades
have brought much more openness between doctors and patients [SMW93]. The change is
also reflected in law: the Medical Reports Act 1988 and the Access to Health Records Act
1990 give patients the right to access records created after November 1991. There still are,
however, exceptional situations in which doctors may withhold parts of the record. The
legislation states two legitimate reasons: firstly, if the information relates to third parties,
and secondly, when the information must be regarded as harmful to the patient.

Clinicians Restricting Access The Spine will have provisions for clinicians to seal off data
from the patient in exceptional circumstances (§730.49). We have already showed how
our policy deals with record items relating to third parties. Treating clinicians can seal off
a set of items ids from a patient pat’s EHR by activating the role Concealed-by-spine-
clinician(pat, ids, start, end) (S4.1.1):

(S4.1.1)
canActivate(cli,Concealed-by-spine-clinician(pat, ids,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

The access restriction is valid only within the time interval [start, end] (cf. §730.51.8). Any
such access restriction can be lifted by the clinician who imposed it (S4.1.2), by the patient’s
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GP (S4.1.3), or by any clinician working in the same team (S4.1.4) (cf. §730.51.10):

(S4.1.2)
canDeactivate(cli,cli,Concealed-by-spine-clinician(pat, ids,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty))

(S4.1.3)
canDeactivate(cli,cli2,Concealed-by-spine-clinician(pat, ids,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))

(S4.1.4)
canDeactivate(cli1,cli2,Concealed-by-spine-clinician(pat, ids,start,end))←

hasActivated(cli1,Spine-clinician(ra,org,spcty1)),
canActivate(cli1,Group-treating-clinician(pat,ra,org,group,spcty1)),
canActivate(cli2,Group-treating-clinician(pat,ra,org,group,spcty2)),
hasActivated(x,Consent-to-group-treatment(pat,org,group))

The role is automatically deactivated as soon as the patient’s registration is cancelled
(S4.1.5):

(S4.1.5)
isDeactivated(x,Concealed-by-spine-clinician(pat, ids,start,end))←

isDeactivated(y,Register-patient(pat))

Patients Restricting Access The OBS also allows patients to seal off selected clinical parts
of their record (§730.45). The specification suggests that the patient should file a sealing-off
request which is subsequently dealt with by a clinician (§730.48.2).

Our solution gives patients much flexibility for specifying record items to seal off. A
patient (S4.2.1) or his agent (S4.2.2) can file a sealing-off request by activating the role
Conceal-request(which, who, start, end):

(S4.2.1)
canActivate(pat,Conceal-request(what,who,start,end))←

hasActivated(pat,Patient()),
count-conceal-requests(n,pat),
what = (pat, ids,orgs,authors,subjects, from-time, to-time),
who = (orgs1,readers1,spctys1),
n < 100

(S4.2.2)
canActivate(ag,Conceal-request(what,who,start,end))←

hasActivated(ag,Agent(pat)),
count-conceal-requests(n,pat),
what = (pat, ids,orgs,authors,subjects, from-time, to-time),
who = (orgs1,readers1,spctys1),
n < 100
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For each patient, a maximum of 100 such requests can be activated (S4.2.7):

(S4.2.7)
count-conceal-requests(count〈y〉,pat)←

hasActivated(x,Conceal-request(y)),
what = (pat, ids,orgs,authors,subjects, from-time, to-time),
who = (orgs1,readers1,spctys1),
y = (what,who,start,end)

Again, we invented this common-sense rule to prevent non-professional users from clogging
up the policy.

Apart from a validity time interval [start, end] (cf. 730.48.12), the Conceal-request role
specifies which items to seal off and whom the restriction applies to. The specification for
which items to seal off is a 7-tuple

(pat, ids,orgs,authors,subjects, from-time, to-time).

A record item from a patient pat’s EHR is sealed off if its ID is in the set ids, its author is
in the set authors and working for a health organisation in orgs, if its subject matter is in
subjects, and its creation date is between from-time and to-time.

The specification for whom the restriction applies to is a triple

(orgs,readers,spctys).

A user is prevented from accessing the selected items (even if she has a legitimate relation-
ship) if she is in the set readers, working for a health organisation (if applicable) in orgs in
a specialty (if applicable) in the set spctys.

With C0’s universal set expression Ω and the set difference construct, patients can express
explicit access permissions (e.g. “only doctors from Addenbrooke’s may access items con-
cerning cancer”) as well as explicit access denials (e.g. “Dr Littlewood may not access items
created after 2005”). Access to items that have not yet been created can also be restricted
by setting ids to the universal set expression for IDs, and setting to-time to the future.

The Conceal-request role can also be used to request to withhold items from non-
clinicians, including agents and the patient himself8.

The patient (S4.2.3), his agents (S4.2.4) and his GP (S4.2.5) can all deactivate requests:

(S4.2.3)
canDeactivate(pat,x,Conceal-request(what,whom,start,end))←

hasActivated(pat,Patient()),
π7

1(what) = pat

(S4.2.4)
canDeactivate(ag,x,Conceal-request(what,whom,start,end))←

hasActivated(ag,Agent(pat)),
π7

1(what) = pat

8Some patients wish not to be informed about certain particularly distressing subject matters. For example,
a patient may specify to make all record items regarding cancer, including those created in the future,
inaccessible to himself.
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(S4.2.5)
canDeactivate(cli,x,Conceal-request(what,whom,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat)),
π7

1(what) = pat

A request is automatically deactivated if the patient’s registration is cancelled (S4.2.6):

(S4.2.6)
isDeactivated(x,Conceal-request(what,whom,start,end))←

isDeactivated(y,Register-patient(pat)),
π7

1(what) = pat

A treating clinician can apply the request by activating a matching Concealed-by-spine-
patient role (S4.2.8):

(S4.2.8)
canActivate(cli,Concealed-by-spine-patient(what,who,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
hasActivated(x,Conceal-request(what,who,start,end))

This role can be revoked by the activator herself (S4.2.9) or any other clinician working in
the same workgroup (S4.2.10):

(S4.2.9)
canDeactivate(cli,cli,Concealed-by-spine-patient(what,who,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty))

(S4.2.10)
canDeactivate(cli1,cli2,Concealed-by-spine-patient(what,who,start1,end1))←

hasActivated(cli1,Spine-clinician(ra,org,spcty1)),
ra♦ra.canActivate(cli1,
Group-treating-clinician(pat,ra,org,group,spcty1)),

ra♦ra.canActivate(cli2,
Group-treating-clinician(pat,ra,org,group,spcty2))

The role is automatically revoked if the request is cancelled (S4.2.11):

(S4.2.11)
isDeactivated(cli,Concealed-by-spine-patient(what,who,start,end))←

isDeactivated(x,Conceal-request(what,who,start,end))

This last rule in combination with S4.2.5 means that the patient’s GPs can always remove
an access restriction.

A clinician who is granted authenticated express consent by a patient may access any
sealed-off data without raising an alert if she would also be entitled to access that data, had
it not bean sealed off (§730.48.4, §730.48.17). A patient pat (S4.3.1), his agent (S4.3.2),
or his GP (S4.3.3) can activate the role Authenticated-express-consent(pat, cli) for a
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clinician cli:

(S4.3.1)
canActivate(pat,Authenticated-express-consent(pat,cli))←

hasActivated(pat,Patient()),
count-authenticated-express-consent(n,pat),
n < 100

(S4.3.2)
canActivate(ag,Authenticated-express-consent(pat,cli))←

hasActivated(ag,Agent(pat)),
count-authenticated-express-consent(n,pat),
n < 100

(S4.3.3)
canActivate(cli1,Authenticated-express-consent(pat,cli2))←

hasActivated(cli1,Spine-clinician(ra,org,spcty)),
canActivate(cli1,General-practitioner(pat))

The following aggregation rule restricts the number of such consent grants to 100 for the
former two cases of activations (S4.3.8):

(S4.3.8)
count-authenticated-express-consent(count〈cli〉,pat)←

hasActivated(x,Authenticated-express-consent(pat,cli))

Similarly, consent can be withdrawn by the patient (S4.3.4), his agent(S4.3.5), or his GP
(S4.3.6):

(S4.3.4)
canDeactivate(pat,x,Authenticated-express-consent(pat,cli))←

hasActivated(pat,Patient())

(S4.3.5)
canDeactivate(ag,x,Authenticated-express-consent(pat,cli))←

hasActivated(ag,Agent(pat))

(S4.3.6)
canDeactivate(cli1,x,Authenticated-express-consent(pat,cli2))←

hasActivated(cli1,Spine-clinician(ra,org,spcty)),
canActivate(cli1,General-practitioner(pat))

It is automatically withdrawn when the patient’s registration is cancelled (S4.3.7):

(S4.3.7)
isDeactivated(x,Authenticated-express-consent(pat,cli))←

isDeactivated(y,Register-patient(pat))
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Access Permissions

A new record item for a patient can be created by treating clinicians performing the action
Add-spine-record-item(pat) (S5.1.1):

(S5.1.1)
permits(cli,Add-spine-record-item(pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

Patients may not add items to their records themselves, but they can add comments to
existing items by performing Annotate-spine-record-item(pat, id) (S5.1.2):

(S5.1.2)
permits(pat,Annotate-spine-record-item(pat, id))←

hasActivated(pat,Patient())

Comments can also be added by a patient’s agent (S5.1.3) or a treating clinician (S5.1.4)
on his behalf (§730.59.6):

(S5.1.3)
permits(ag,Annotate-spine-record-item(pat, id))←

hasActivated(ag,Agent(pat))

(S5.1.4)
permits(pat,Annotate-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

Patients (S5.2.1), their agents (S5.2.2) and treating clinicians (S5.2.3) can get a list of all
record item IDs of the patient by performing the action Get-spine-record-item-ids(pat):

(S5.2.1)
permits(pat,Get-spine-record-item-ids(pat))←

hasActivated(pat,Patient())

(S5.2.2)
permits(ag,Get-spine-record-item-ids(pat))←

hasActivated(ag,Agent(pat))

(S5.2.3)
permits(cli,Get-spine-record-item-ids(pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

Depending on system implementation, each ID may be annotated with additional, non-
confidential information about that item, such as date etc.

A patient (S5.3.1) or his agent (S5.3.2) can read a record item from the patient’s record
by performing the action Read-spine-record-item(pat, id) if the patient has given one-off
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consent to make his data available:

(S5.3.1)
permits(pat,Read-spine-record-item(pat, id))←

hasActivated(pat,Patient()),
hasActivated(x,One-off-consent(pat)),
count-concealed-by-spine-patient(n,a,b),
count-concealed-by-spine-clinician(m,pat, id),
third-party-consent(consenters,pat, id),
n = 0,
m = 0,
a = (pat, id),
b = (No-org,pat,No-spcty),
Get-spine-record-third-parties(pat, id)⊆ consenters

(S5.3.2)
permits(ag,Read-spine-record-item(pat, id))←

hasActivated(ag,Agent(pat)),
hasActivated(x,One-off-consent(pat)),
count-concealed-by-spine-patient(n,a,b),
count-concealed-by-spine-clinician(m,pat, id),
third-party-consent(consenters,pat, id),
n = 0,
m = 0,
a = (pat, id),
b = (No-org,ag,No-spcty),
Get-spine-record-third-parties(pat, id)⊆ consenters

The former rules authorise read access only if the items have not been sealed off. The check
is implemented by the use of aggregation rules (S4.1.6, S4.2.12):

(S4.1.6)
count-concealed-by-spine-clinician(count〈x〉,pat, id)←

hasActivated(x,Concealed-by-spine-clinician(pat, ids,start,end)),
id ∈ ids,
Current-time() ∈ [start,end]
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(S4.2.12)
count-concealed-by-spine-patient(count〈x〉,a,b)←

hasActivated(x,Concealed-by-spine-patient(what,who,start,end)),
a = (pat, id),
b = (org,reader,spcty),
what = (pat, ids,orgs,authors,subjects, from-time, to-time),
whom = (orgs1,readers1,spctys1),
Get-spine-record-org(pat, id) ∈ orgs,
Get-spine-record-author(pat, id) ∈ authors,
sub ∈ Get-spine-record-subjects(pat, id),
sub ∈ subjects,
Get-spine-record-time(pat, id) ∈ [from-time, to-time],
id ∈ ids,
org ∈ orgs1,
reader ∈ readers1,
spcty ∈ spctys1,
Current-time() ∈ [start,end],
Get-spine-record-third-parties(pat, id) = {},
non-clinical ∈ Ω−Get-spine-record-subjects(pat, id)

It is also checked that all relevant third parties have given consent to disclosure (S2.2.17)9

(§730.20.9, §730.56):

(S2.2.17)
third-party-consent(group〈consenter〉,pat, id)←

hasActivated(x,Third-party-consent(consenter,pat, id))

The author of a record item can always read it herself as long the patient has given his
one-off consent, even if it has been sealed off by the patient (S5.3.3):

(S5.3.3)
permits(cli,Read-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
hasActivated(x,One-off-consent(pat)),
Get-spine-record-org(pat, id) = org,
Get-spine-record-author(pat, id) = cli

A treating clinician may view the item if the patient has given his one-off consent, if it has
not been sealed off by the patient and if her specialty allows her10 to read items regarding

9Note that third-party-consent is a predicate name, whereas Third-party-consent is a role name.
10We associate a set of permitted subjects for each specialty with the built-in function

Permitted-subjects(spcty). For example, the specialty “dentistry” may allow the subjects “general” and
“dental”, but not “venereal disease”.
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the subject-matters of the item (S5.3.4):

(S5.3.4)
permits(cli,Read-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
hasActivated(x,One-off-consent(pat)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
count-concealed-by-spine-patient(n,a,b),
n = 0,
a = (pat, id),
b = (org,cli,spcty),
Get-spine-record-subjects(pat, id)⊆ Permitted-subjects(spcty)

If the item is sealed off by the patient, she is only permitted to read it with authenticated
express consent (S5.3.5) (§730.48.21).

(S5.3.5)
permits(cli,Read-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
hasActivated(x,One-off-consent(pat)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
hasActivated(y,Authenticated-express-consent(pat,cli)),
Get-spine-record-subjects(pat, id)⊆ Permitted-subjects(spcty)

The OBS (§730.48.17, §730.4.11) allows clinicians with a legitimate relationship to access
a patient’s item even if it has been sealed off by the patient, and even if the patient has not
given any one-off consent (S5.3.6):

(S5.3.6)
permits(cli,Force-read-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

Of course, clinicians are meant to “break the seal” and access the item only in exceptional
circumstances. The action Force-read-spine-record-item(pat, id) should trigger an alert
in a real implementation and be marked in the audit trail. There is no override facility for
patients to access data that has been sealed off by a clinician (§730.51.14).

9.4.3 Patient Demographic Service

The PDS will provide users with various search functions on patient demographic data.
Our PDS policy only implements the minimal functionality required to interoperate with
the Spine.

Main Roles and Patient Registration

The main roles on the PDS are PDS-manager, Patient, Agent, and Professional-user. As
before, a user may be active in only one such role at a time. This separation-of-duties con-
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straint is enforced by the use of aggregation rules (P1.5.1, P1.1.4, P1.2.4, P1.3.5, P1.4.6):

(P1.5.1)
no-main-role-active(user)←

count-agent-activations(n,user),
count-patient-activations(n,user),
count-PDS-manager-activations(n,user),
count-preofessional-user-activations(n,user),
n = 0

(P1.1.4)
count-PDS-manager-activations(count〈u〉,user)←

hasActivated(user,PDS-manager())

(P1.2.4)
count-patient-activations(count〈u〉,user)←

hasActivated(user,Patient())

(P1.3.5)
count-agent-activations(count〈u〉,user)←

hasActivated(user,Agent(pat))

(P1.4.6)
count-professional-user-activations(count〈u〉,user)←

hasActivated(user,Professional-user(ra,org))

Any user active in a role can deactivate their own role (P1.1.2, P1.2.2, P1.3.2, P1.4.5):

(P1.1.2)
canDeactivate(adm,adm,PDS-manager())←

(P1.2.2)
canDeactivate(pat,pat,Patient())←

(P1.3.2)
canDeactivate(ag,ag,Agent(pat))←

(P1.4.5)
canDeactivate(x,x,Professional-user(ra,org))←

A user can activate the PDS-manager() role if she is registered as a manager (P1.1.1):

(P1.1.1)
canActivate(adm,PDS-manager())←

hasActivated(x,Register-PDS-manager(adm)),
no-main-role-active(adm)

A manager can delegate the PDS-manager role to another user usr by activating Register-
PDS-manager(usr) if usr has not already been registered by another manager (P1.1.5,
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P1.1.7):

(P1.1.5)
canActivate(adm1,Register-PDS-manager(adm2))←

hasActivated(adm1,PDS-manager()),
pds-admin-regs(0,adm2)

(P1.1.7)
pds-admin-regs(count〈x〉,adm)←

hasActivated(x,Register-PDS-manager(adm))

Managers can also cancel manager registrations (P1.1.6), thereby potentially triggering the
deactivation of any matching active manager role (P1.1.3):

(P1.1.6)
canDeactivate(adm1,x,Register-PDS-manager(adm2))←

hasActivated(adm1,PDS-manager())

(P1.1.3)
isDeactivated(adm,PDS-manager())←

isDeactivated(x,Register-PDS-manager(adm))

In our policy, the manager role is designated for registering patients and storing their de-
mographic data. A manager can register a patient pat who has not yet been registered so
far by activating Register-patient(pat) (P2.1.1, P2.1.3):

(P2.1.1)
canActivate(adm,Register-patient(pat))←

hasActivated(adm,PDS-manager()),
patient-regs(0,pat)

(P2.1.3)
patient-regs(count〈x〉,pat)←

hasActivated(x,Register-patient(pat))

Every patient in the country will be associated with such a registration role activation.
Managers can also deactivate patient registrations (P2.1.2):

(P2.1.2)
canDeactivate(adm,x,Register-patient(pat))←

hasActivated(adm,PDS-manager())

Patients can activate the Patient() role on the PDS if they are registered. An agent can
activate the Agent(pat) role if he himself is a registered patient, and the Spine confirms that
he is an agent (P1.3.1):

(P1.3.1)
canActivate(ag,Agent(pat))←

hasActivated(x,Register-patient(ag)),
no-main-role-active(ag),
Spine♦Spine.canActivate(ag,Agent(pat))
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Patient and their agent roles are deactivated if their registrations are cancelled (P1.2.3,
P1.3.3, P1.3.4):

(P1.2.3)
isDeactivated(pat,Patient())←

isDeactivated(x,Register-patient(pat))

(P1.3.3)
isDeactivated(ag,Agent(pat))←

isDeactivated(x,Register-patient(ag))

(P1.3.4)
isDeactivated(ag,Agent(pat))←

isDeactivated(x,Register-patient(pat))

Our policy only exemplifies two kinds of professional users, clinicians and Caldicott
Guardians, but other professional roles could easily be implemented in a similar fashion. A
user submitting a currently valid RA-issued clinician or Caldicott Guardian credential can
activate the Professional-user(ra, org) role (P1.4.1, P1.4.3):

(P1.4.1)
canActivate(x,Professional-user(ra,org))←

no-main-role-active(cli),
ra.hasActivated(x,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

(P1.4.3)
canActivate(x,Professional-user(ra,org))←

no-main-role-active(cg),
ra.hasActivated(x,NHS-Caldicott-guardian-cert(org,cg,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

If no valid credential is submitted, it is requested directly from the RA (P1.4.2, P1.4.4).

(P1.4.2)
canActivate(x,Professional-user(ra,org))←

no-main-role-active(cli),
ra♦ra.hasActivated(x,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

(P1.4.4)
canActivate(x,Professional-user(ra,org))←

no-main-role-active(cg),
ra♦ra.hasActivated(x,NHS-Caldicott-guardian-cert(org,cg,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]
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In all cases, it is checked whether the RA is approved by the NHS (P1.5.2, P1.5.3):

(P1.5.2)
canActivate(ra,Registration-authority())←

NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

(P1.5.3)
canActivate(ra,Registration-authority())←

ra♦NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

Patient-Registration Credentials

Patients are authenticated on the Spine and other applications after the PDS is contacted for
confirmation of the patient’s registration status. A request sent to the PDS for this purpose
asks for the credential of the form PDS.hasActivated(x, Register-patient(pat)).

The PDS policy allows patient-registration-credential requests from patients (P2.2.1),
agents (P2.2.2) and professional users (P2.2.3) who have activated their respective roles:

(P2.2.1)
canReqCred(pat,PDS.hasActivated(x,Register-patient(pat)))←

hasActivated(pat,Patient())

(P2.2.2)
canReqCred(ag,PDS.hasActivated(x,Register-patient(pat)))←

hasActivated(ag,Agent(pat))

(P2.2.3)
canReqCred(usr,PDS.hasActivated(x,Register-patient(pat)))←

hasActivated(usr,Professional-user(ra,org))

Credential requests are further granted to health organisations certified by an RA (P2.2.4).
If no RA-issued health organisation credential is submitted, the PDS will try to retrieve it
from the health organisation directly (P2.5.5):

(P2.2.4)
canReqCred(org,PDS.hasActivated(x,Register-patient(pat)))←

ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority())

(P2.2.5)
canReqCred(org,PDS.hasActivated(x,Register-patient(pat)))←

org♦ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority())

Lastly, patient-registration credentials can also be revealed to RAs (P2.2.6) and the Spine
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(P2.2.7):

(P2.2.6)
canReqCred(ra,PDS.hasActivated(x,Register-patient(pat)))←

canActivate(ra,Registration-authority())

(P2.2.7)
canReqCred(Spine,PDS.hasActivated(x,Register-patient(pat)))←

9.4.4 Local Health Organisations

The policy of our exemplary health organisation, Addenbrooke’s Hospital (ADB), illus-
trates the authorisation principles of an EPR system. It also shows how a local application
can collaborate with the Spine and other national services. For example, clinical work-
groups can be managed locally, and local workgroup membership can be used to gain
access to EHR items on the Spine. Or conversely, to be authenticated as a patient’s agent
on the hospital’s system, the local policy can make use of the Spine’s agent registration
facilities.

As large parts of the ABD’s policy are very similar to the Spine’s, the following description
will go into less detail and focus on the main differences. The full set of rules can be found
in Appendix A.3.

Main Roles

ADB’s policy defines seven main roles, Clinician, Caldicott-guardian, HR-manager,
Receptionist, Patient, Agent, Ext-treating-clinician and Third-party. As in the
policies for the other services, aggregation rules ensure that only one main role can be acti-
vated at a time (A1.7.1, A1.1.7, A1.2.7, A1.3.7, A1.4.7, A1.5.7, A1.6.4, A2.2.5, A2.3.11).

The staff roles

• Clinician(spcty) (A1.1.4–7),

• Caldicott-guardian() (A1.2.4–7),

• HR-manager() (A1.3.4–7), and

• Receptionist() (A1.4.4–7)

can be activated by a user if they have been registered (or appointed) by a human-resource
manager. The corresponding registration roles are

• Register-clinician(usr, spcty) (A1.1.1–3),

• Register-Caldicott-guardian(usr) (A1.2.1–3),

• Register-HR-manager(usr) (A1.3.1–3), and

• Register-receptionist(usr) (A1.4.1–3).

Users in these staff roles can deactivate their own roles. Their roles are automatically
deactivated when their corresponding registration role is deactivated, which can only be
done by a human-resource manager.

Similarly, patients are registered by receptionists via the Register-patient(pat) role
(A1.5.1–3) upon which they can activate their Patient() role (A1.5.4–7). The activation
rule also checks if the patient is registered on the PDS.
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Agents can be registered via the Register-agent(usr, pat) by both patients and Caldicott
Guardians (A1.6.5–10), upon which the Agent(pat) role can be activated (A1.6.1–4). A user
can also become an agent at ADB without registration if he is registered as an agent on the
Spine (A1.6.2).

Caldicott Guardians

Caldicott Guardians are responsible for safeguarding the confidentiality of patient infor-
mation in a health organisation. They are expected to check the audit trails for possible
misconduct and to investigate events that trigger an alarm, e.g. a clinician reading a re-
stricted item or assuming the role of an emergency clinician. They can also give consent on
behalf of a patient, or, in exceptional circumstances, make decisions against the wishes of
the patient.

In ADB’s policy, a Caldicott Guardian has the power to lift access restrictions imposed
by patients or clinicians (A4.1.4, A4.2.5):

(A4.1.4)
canDeactivate(cg,cli,Concealed-by-clinician(pat, id,start,end))←

hasActivated(cg,Caldicott-guardian())

(A4.2.5)
canDeactivate(cg,x,Concealed-by-patient(what,whom,start,end))←

hasActivated(cg,Caldicott-guardian())

Caldicott Guardians can give consent to referral of patients (A2.1.10):

(A2.1.10)
canActivate(cg,Consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(cg,Caldicott-guardian()),
hasActivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))

They can further give consent to access third-party information (A2.3.4, A2.3.17):

(A2.3.4)
canActivate(cg,Request-third-party-consent(x,pat, id))←

hasActivated(cg,Caldicott-guardian()),
x ∈ Get-record-third-parties(pat, id)

(A2.3.17)
canActivate(cg,Third-party-consent(x,pat, id))←

hasActivated(cg,Caldicott-guardian()),
hasActivated(y,Request-third-party-consent(x,pat, id))

They have the right to appoint and revoke agents for patients (A1.6.6, A1.6.8):

(A1.6.6)
canActivate(cg,Register-agent(agent,pat))←

hasActivated(cg,Caldicott-guardian()),
canActivate(pat,Patient())
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(A1.6.8)
canDeactivate(cg,x,Register-agent(agent,pat))←

hasActivated(cg,Caldicott-guardian())

Finally, Caldicott Guardians can revoke an emergency clinician’s role (A3.7.3):

(A3.7.3)
canDeactivate(cg,cli,Emergency-clinician(pat))←

hasActivated(cg,Caldicott-guardian())

Referrals and External Clinicians

When a patient is referred to an external clinician by a treating clinician in the health or-
ganisation (e.g. a GP referring a patient to see a specialist), that clinician may need access to
the local EPR. In our policy for ADB, such a referral automatically establishes a legitimate
relationship that enables the external clinician to access relevant and unrestricted items of
the referred patient’s EPR by activating the Ext-treating-clinician role (A5.3.5):

(A5.3.5)
permits(cli,Read-record-item(pat, id))←

hasActivated(cli,Ext-treating-clinician(pat,ra,org,spcty)),
count-concealed-by-patient2(n,a,b),
n = 0,
a = (pat, id),
b = (org,cli,Ext-group,spcty),
Get-record-subjects(pat, id)⊆ Permitted-subjects(spcty)

In contrast to the referral mechanism on the Spine, ADB’s policy requires explicit patient
consent. The rationale behind this decision is that the EPR stored in the local health organ-
isation is generally more detailed and possibly more sensitive than the shared EHR on the
Spine. Any local clinician currently treating the patient can file a request Request-consent-
to-referral(pat, ra, org, cli, spcty) to have the patient referred to an external clinician cli
working for org in specialty spcty (A2.1.1):

(A2.1.1)
canActivate(cli1,Request-consent-to-referral(pat,ra,org,cli2,spcty2))←

hasActivated(cli1,Clinician(spcty1)),
canActivate(cli1,ADB-treating-clinician(pat, team,spcty1))

The request can be withdrawn by the clinician herself (A2.1.2), or denied by the patient
(2.1.3), his agent (A2.1.4), or a Caldicott Guardian (A2.1.5):

(A2.1.2)
canDeactivate(cli,cli,Request-consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(cli,Clinician(spcty))

(A2.1.3)
canDeactivate(pat,x,Request-consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(pat,Patient())
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(A2.1.4)
canDeactivate(ag,x,Request-consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(ag,Agent(pat))

(A2.1.5)
canDeactivate(cg,x,Request-consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(cg,Caldicott-guardian())

All referral requests are automatically cancelled if the patient is unregistered (A2.1.6):

(A2.1.6)
isDeactivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))←

isDeactivated(y,Register-patient(pat))

A referral request can be granted by the patient or his agent activating a matching Consent-
to-referral role (A2.1.8–9):

(A2.1.8)
canActivate(pat,Consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(pat,Patient()),
hasActivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))

(A2.1.9)
canActivate(pat,Consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(pat,Agent(pat)),
hasActivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))

Caldicott Guardians have the power to give consent on behalf of a patient, even against his
wishes (A2.1.10):

(A2.1.10)
canActivate(cg,Consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(cg,Caldicott-guardian()),
hasActivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))

The consent role is automatically deactivated when all matching requests have been denied
(A2.1.7, A2.1.11):

(A2.1.11)
isDeactivated(x,Consent-to-referral(pat,ra,org,cli,spcty))←

isDeactivated(y,Request-consent-to-referral(pat,ra,org,cli,spcty)),
other-consent-to-referral-requests(0,y,pat,ra,org,cli,spcty)

(A2.1.7)
other-consent-to-referral-requests(count〈y〉,x,pat,ra,org,cli,spcty)←

hasActivated(y,Request-consent-to-referral(pat,ra,org,cli,spcty)),
x 6= y



142 Case Study: Electronic Health Records

Once consent has been given, the external clinician can activate and deactivate her role
(A2.2.2, A2.2.3):

(A2.2.2)
canActivate(cli,Ext-treating-clinician(pat,ra,org,spcty))←

hasActivated(ref ,Consent-to-referral(pat,ra,org,cli,spcty)),
no-main-role-active(cli),
ra♦ra.hasActivated(y,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority())

(A2.2.3)
canDeactivate(cli,cli,Ext-treating-clinician(pat,ra,org,spcty))←

The external clinician is automatically revoked from her role if consent to referral is with-
drawn (A2.2.4, A2.1.12):

(A2.2.4)
isDeactivated(cli,Ext-treating-clinician(pat,ra,org,spcty))←

isDeactivated(x,Consent-to-referral(pat,ra,org,cli2,spcty)),
other-referral-consents(0,x,pat,ra,org,cli,spcty)

(A2.1.12)
other-referral-consents(count〈y〉,x,pat,ra,org,cli,spcty)←

hasActivated(y,Consent-to-referral(pat,ra,org,cli,spcty)),
x 6= y

Workgroup Management

As is usual in hospitals, we assume that receptionists register new patients and sign them
up for treatment. In contrast to the Spine’s policy, Addenbrooke’s does not require patients
to give explicit consent to treatment. Rather, patient treatment is based on workgroups
(§730.13).

We distinguish between two different kinds of workgroups, medical teams and wards.
A medical team is a group of clinicians collaboratively treating a patient. A typical team
may be headed by a consultant, and supported by specialist registrars, senior house officers,
and specialist nurses. Additionally, patients in an in-patient episode are usually treated in a
ward. A ward is typically run by a head nurse and a group of other nurses.

Every team is headed by at most one current team member (A3.1.1–7), appointed by a
human-resource manager to the role Head-of-team(team). A similar set of rules governs
the appointment, activation and deactivation of Head-of-ward(ward) roles (A3.4.1–7).

Workgroup membership is managed by human resource managers and workgroup lead-
ers via the registration roles Register-team-member(cli, team, spcty) and Register-ward-
member(cli, ward, spcty) (A3.2.1-7, A3.5.1-7).

A legitimate relationship exists between a clinician and a patient if the clinician is a
member of a workgroup and the patient is currently being treated by that workgroup.
Workgroup-based treatment of patients is managed by receptionists (A3.3.1, A3.3.4,
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A3.6.1, A3.6.4):

(A3.3.1)
canActivate(rec,Register-team-episode(pat, team))←

hasActivated(rec,Receptionist()),
canActivate(pat,Patient()),
team-episode-regs(0,pat, team)

(A3.3.4)
canDeactivate(rec,x,Register-team-episode(pat, team))←

hasActivated(rec,Receptionist())

(A3.6.1)
canActivate(rec,Register-ward-episode(pat,ward))←

hasActivated(rec,Receptionist()),
canActivate(pat,Patient()),
ward-episode-regs(0,pat,ward)

(A3.6.4)
canDeactivate(rec,x,Register-ward-episode(pat,ward))←

hasActivated(rec,Receptionist())

Team members and heads of wards can also assign patients to teams or wards, respectively:

(A3.3.2)
canActivate(cli,Register-team-episode(pat, team))←

hasActivated(cli,Clinician(spcty)),
hasActivated(x,Register-team-member(cli, team,spcty)),
canActivate(pat,Patient()),
team-episode-regs(0,pat, team)

(A3.3.5)
canDeactivate(cli,x,Register-team-episode(pat, team))←

hasActivated(cli,Clinician(spcty)),
hasActivated(x,Register-team-member(cli, team,spcty))

(A3.6.2)
canActivate(hd,Register-ward-episode(pat,ward))←

hasActivated(hd,Clinician(spcty)),
canActivate(hd,Head-of-ward(ward)),
canActivate(pat,Patient()),
ward-episode-regs(0,pat,ward)

(A3.6.5)
canDeactivate(hd,x,Register-ward-episode(pat,ward))←

hasActivated(hd,Clinician(spcty)),
canActivate(hd,Head-of-ward(ward))

Additionally, Caldicott Guardians can cancel workgroup treatment registrations (A3.6.3,
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A3.3.3), but cannot sign up patients for treatment:

(A3.6.3)
canDeactivate(cg,x,Register-ward-episode(pat,ward))←

hasActivated(cg,Caldicott-guardian())

(A3.3.3)
canDeactivate(cg,x,Register-team-episode(pat, team))←

hasActivated(cg,Caldicott-guardian())

The auxiliary role ADB-treating-clinician(pat, group, spcty) expresses workgroup-based
legitimate relationships, based on the clinician being a group member and the patient reg-
istered for a team- or ward-episode (A3.8.1–3).

(A3.8.1)
canActivate(cli,ADB-treating-clinician(pat,group,spcty))←

canActivate(cli,Clinician(spcty)),
hasActivated(x,Register-team-member(cli, team,spcty)),
hasActivated(y,Register-team-episode(pat, team)),
group = team

(A3.8.2)
canActivate(cli,ADB-treating-clinician(pat,group,spcty))←

canActivate(cli,Clinician(spcty)),
hasActivated(x,Register-ward-member(cli,ward,spcty)),
hasActivated(x,Register-ward-episode(pat,ward)),
group = ward

(A3.8.3)
canActivate(cli,ADB-treating-clinician(pat,group,spcty))←

hasActivated(cli,Emergency-clinician(pat)),
group = A-and-E,
spcty = A-and-E

This role is used as a prerequisite for adding (A5.1.1) and annotating (A5.1.5) EPR items:

(A5.1.1)
permits(cli,Add-record-item(pat))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))

(A5.1.5)
permits(pat,Annotate-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))
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Furthermore, it is a prerequisite for reading EPR items (A5.2.3, A5.3.4, A5.3.8):

(A5.2.3)
permits(cli,Get-record-item-ids(pat))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))

(A5.3.4)
permits(cli,Read-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty)),
count-concealed-by-patient2(n,a,b),
n = 0,
a = (pat, id),
b = (ADB,cli,group,spcty),
Get-record-subjects(pat, id)⊆ Permitted-subjects(spcty)

(A5.3.8)
permits(cli,Force-read-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))

All current members of a medical team have permission to read EPR items that have been
authored by that team, even if the patient is currently not treated by the team anymore
(A5.3.3):

(A5.3.3)
permits(cli,Read-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
hasActivated(x,Register-team-member(cli, team,spcty)),
Get-record-group(pat, id) = team

Workgroup membership on ADB’s system can be used to establish legitimate relationships
on the Spine. But as the Spine will contact ADB’s RA (RA-ADB) for workgroup creden-
tials (S3.4.1, S3.4.2) (cf. §730.12.0), RA-ADB will in turn request credentials from ADB
(R3.1.1, R3.1.2). Therefore, ADB’s policy has a canReqCred rule allowing RA-ADB to
query the Register-team-member and Register-ward-member predicates (A1.7.4):

(A1.7.4)
canReqCred(x,RA-ADB.hasActivated(y,NHS-health-org-cert(org,start,end)))←

org = ADB

9.4.5 Registration Authorities

RAs are typically local to a particular health organisation but some may also be on a
more national level (§730.24.0). We have written a policy for a fictitious RA, RA-ADB,
serving Addenbrooke’s Foundation Trust and associated hospitals and clinics. As an NHS-
approved RA, RA-ADB possesses an RA credential issued by NHS. This credential may be
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requested by anyone (R1.2.1):

(R1.2.1)
canReqCred(x,NHS.hasActivated(x,NHS-registration-authority(ra,start,end)))←

ra = RA-ADB

RAs issue credentials to professional users for the purpose of managing local workgroups
(§730.12.0) and the identification, registration and authentication of role membership
(§730.9, §730.21). These access roles are subject to national standards yet to be devel-
oped by the NHS (§730.12.2). Our RA policy exemplarily defines user access roles only
for clinicians and Caldicott Guardians.

RA credentials are required to be time-limited (§730.24.7). CASSANDRA is flexible enough
to encode credentials with validity periods: all RA roles have a start and an end date among
their parameters, and the accepting side can specify its own conditions on these dates. For
example, it could ignore them, believe them, or impose even stricter freshness conditions
(cf. [Riv98]). To authenticate a user’s role, the user is issued a credential asserting that
someone has activated the corresponding registration role.

Role Credential Management

The only main role defined in RA-ADB’s policy is RA-manager(). RA managers sign up
professional users for access roles. The RA-manager role itself is a standard delegated regis-
tration role: a manager can register a person who has not been so far registered as manager
(R1.1.1, R1.1.3)

(R1.1.1)
canActivate(mgr,Register-RA-manager(mgr2))←

hasActivated(mgr,RA-manager()),
ra-manager-regs(0,mgr2)

(R1.1.3)
ra-manager-regs(count〈x〉,mgr)←

hasActivated(x,Register-RA-manager(mgr))

This enables that person to activate (R1.1.4) and deactivate (R1.1.5) a manager role:

(R1.1.4)
canActivate(mgr,RA-manager())←

hasActivated(x,Register-RA-manager(mgr))

(R1.1.5)
canDeactivate(mgr,mgr,RA-manager())←

The role is automatically revoked (R1.1.6) if the registration is cancelled by an RA manager
(R1.1.2):

(R1.1.6)
isDeactivated(mgr,RA-manager())←

isDeactivated(x,Register-RA-manager(mgr))
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(R1.1.2)
canDeactivate(mgr,x,Register-RA-manager(mgr2))←

hasActivated(mgr,RA-manager())

To register a person as a certified clinician, an RA manager enters the NHS clinician certifi-
cation role with parameters identifying the clinician, her health organisation, her specialty
and a validity period (R2.1.1):

(R2.1.1)
canActivate(mgr,NHS-clinician-cert(org,cli,spcty,start,end))←

hasActivated(mgr,RA-manager()),
hasActivated(y,NHS-health-org-cert(org,start2,end2)),
start ∈ [start2,end2],
end ∈ [start2,end2],
start < end

The health organisation must be registered on the same RA, and furthermore, the validity
period of its registration must contain that of the clinician. Administrators can grant-
independently revoke certifications (R2.1.2):

(R2.1.2)
canDeactivate(mgr,x,NHS-clinician-cert(org,cli,spcty,start,end))←

hasActivated(mgr,RA-manager())

A clinician certification is automatically cancelled if the clinician’s health organisation loses
all certifications that are valid within the clinician’s validity period (R2.1.3, R2.3.3):

(R2.1.3)
isDeactivated(mgr,NHS-clinician-cert(org,cli,spcty,start,end))←

isDeactivated(x,NHS-health-org-cert(org,start2,end2)),
other-NHS-health-org-regs(0,x,org,start2,end2),
start ∈ [start2,end2],
end ∈ [start2,end2],
start < end

(R2.3.3)
other-NHS-health-org-regs(count〈y〉,x,org,start,end)←

hasActivated(y,NHS-health-org-cert(org,start2,end2)),
start ∈ [start2,end2],
end ∈ [start2,end2],
start < end,
x 6= y∨ start 6= start2∨ end 6= end2

The clinician herself, her health organisation, other RAs and the Spine are allowed to
request the clinician’s credential (R2.1.4–6, R1.2.2–3):

(R2.1.4)
canReqCred(org,RA-ADB.hasActivated(x,

NHS-clinician-cert(org,cli,spcty,start,end)))←
hasActivated(y,NHS-health-org-cert(org,start2,end2)),
Current-time() ∈ [start2,end2]
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(R2.1.5)
canReqCred(e,RA-ADB.hasActivated(x,

NHS-clinician-cert(org,cli,spcty,start,end)))←
canActivate(e,NHS-service())

(R2.1.6)
canReqCred(cli,RA-ADB.hasActivated(x,

NHS-clinician-cert(org,cli,spcty,start,end)))←

(R1.2.2)
canActivate(srv,NHS-service())←

canActivate(srv,Registration-authority())

(R1.2.3)
canActivate(srv,NHS-service())←

srv = Spine

A similar set of policy rules exist for the certification of Caldicott Guardians (R2.2.1–6)
and NHS health organisations (R2.3.1–9).

Workgroup Credential Management

RA-ADB manages workgroup credentials for its registered health organisations, for exam-
ple for ADB. The Spine can request a Workgroup-member credential certifying a clinician’s
membership in an organisation’s team or a ward (R3.1.3):

(R3.1.3)
canReqCred(Spine,RA-ADB.canActivate(cli,

Workgroup-member(org,group,spcty)))←

Membership is deduced by first checking whether the organisation is registered at RA-ADB
and then requesting a Register-team-member or a Register-ward-member credential from
the organisation (R3.1.1, R3.1.2):

(R3.1.1)
canActivate(cli,Workgroup-member(org,group,spcty))←

hasActivated(x,NHS-health-org-cert(org,start,end)),
org♦org.hasActivated(x,Register-team-member(cli,group,spcty)),
Current-time() ∈ [start,end]

(R3.1.2)
canActivate(cli,Workgroup-member(org,group,spcty))←

hasActivated(x,NHS-health-org-cert(org,start,end)),
org♦org.hasActivated(x,Register-ward-member(cli,group,spcty)),
Current-time() ∈ [start,end]
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Implementation

We have implemented a (so far incomplete) prototype of CASSANDRA, written in Objective
Caml (OCaml), a dialect of the ML programming language. We chose OCaml because it is
strongly typed, portable, has a module system and automatic memory management. More-
over, its algebraic data types and pattern matching constructs make it especially well suited
for implementing formal languages. We did not use OCaml’s object-oriented features, and
most of the code is functional except for the policy evaluator and the access control engine,
both of which also contain imperative code.

At the time of writing, role deactivation, credential requests and the static groundness
analyser are still in the process of being implemented. Furthermore, the current prototype
only simulates the distributed system, and issued credentials are implemented without en-
cryption and public key signatures. Of the constraint domains presented in Chapter 5, we
have implemented the minimal constraint domain Ceq and the one used for our case study,
C0.

The code currently comprises about 6000 lines in total, excluding the code generated by
ocamllex and ocamlyacc for lexing and parsing. More than half of the code is taken up
by the module for C0. The minimal constraint domain Ceq only occupies 250 lines of code,
the policy evaluator 1000 lines and the access control engine with the interface about 500
lines.

10.1 Modules

OCaml’s module system allows organising modules hierarchically and parameterising a
module over other modules. The implementation consists of separate OCaml modules cor-
responding to the components depicted in Figure 3.1. In particular, the policy evaluator
and the policy data structure are both parameterised on the constraint domain. Further-
more, constraint domain modules are written as implementations of an abstract constraint
domain definition, so they can be conveniently plugged into the policy evaluator.
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10.1.1 Constraint Domains

An OCaml signature (an abstract interface) is defined for constraint domains to which
concrete implementations must adhere. The signature specifies which functions must be
supported and be accessible from the outside:

• rename x y c returns the constraint c with the variable x renamed to y. The substi-
tution is capture avoiding.

• conj c1 c2 returns the conjunction of the constraints c1 and c2.

• sat c returns true iff the constraint c is satisfiable.

• impl c1 c2 returns true iff c1⇒C c2. This provides the computable, approximate
subsumption operation.

• elim [x1;...;xn] c returns a list of quantifier-free and disjunctive-free constraints
with the variables x1, ..., xn existentially eliminated from the constraint c.

• print c pretty-prints a constraint c.

• parse env s parses the string s with the typing environment env and returns a con-
straint c.

We have produced implementations for the constraint domains Ceq and C0. The imple-
mentation of Ceq is straightforward as the associated algorithms are very simple, but the
module for C0 is considerably more involved. It provides automatic type inference that
allows us to omit explicit variable typing in constraints, and involves simplification of set
expressions, evaluation of functions, and all the constraint graph algorithms for solving
inequality and arithmetic constraints described in §5.2.3.

10.1.2 Policy Evaluator

The policy evaluator is implemented as an OCaml functor which allows a module to be
parameterised on other modules. The module Evaluator is parameterised on the constraint
domain interface described above:

module Evaluator =
functor (C: ConstraintType.CONSTRAINT) ->

struct
...

It can then be instantiated by a constraint domain module, e.g.

module Ev = Eval.Evaluator(C0)

The policy evaluator module is an implementation of the SLGC evaluation algorithm from
Chapter 6.

The function call eval(p,c,policy) returns the answer to the query p← c with respect
to the local policy policy. In the current version, remote predicates are treated as local; the
most important step in completing the prototype would be to make the policy evaluator
truly distributed.
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10.1.3 Access Control Engine and Interface

The prototype is operated via a simple text-based interface with which policies can be read
in from text files. It also lets users issue service requests and view debugging information
(e.g. the current state or the SLGC proof forest).

The access control engine currently only supports requests to perform an action and to
activate a role. It constructs the appropriate policy queries, interprets the answers, and
make the necessary changes to the policy, as described in Chapter 7.

10.1.4 Preliminary Results

The prototype was tested with our EHR policy rules by going through various scenarios.
The initial test results were promising: all requests were handled within fractions of a
second. We believe it would be feasible to use CASSANDRA to enforce our EHR policy on
a nation-wide system, despite its relative complexity. Of course, authoritative results can
only be produced after completion of a complete and less naive implementation, and under
more realistic settings. We have, for example, so far only tested the system with up to
10,000 patients.

Even though queries in C0 may theoretically be intractable, the test results with the EHR
policy suggest that the worst-case does not occur in practice: the policy seems complex but
a closer analysis reveals that recursion is very shallow and that nearly all variables become
ground at an early stage. This means that neither the evaluation engine nor the constraint
solving procedures need to work very hard.

The current implementation is rather inefficient in that credential rules for role activa-
tions are stored in a linear list. The lookup of credentials is expensive on a system such as
the Spine, with 50 million patients. If an indexed relational database were used instead, the
cost of credential lookup would be nearly constant.

Our experiments have highlighted another requirement for policy-based trust manage-
ment systems that neither our nor existing systems currently fulfil. Human users expect
textual justifications of access control decisions, especially if their request is denied; they
feel rather frustrated and helpless if the answer is simply “request denied”, especially if
the policy is complex or unknown to the user. Such explanations could be collected from
annotations of policy rules used during deduction. The problem is non-trivial as deduction
proofs can be long and access denials can have many and far-reaching reasons. More wor-
ryingly, the textual justification may reveal more (and perhaps, sensitive) information than
could have been deduced from the fact of request denial alone: consider, for example, a
response such as “access denied because your daughter has prohibited you from accessing
all her records with the subject ‘abortion’”.





11
Discussion and Conclusions

In the last decade, the Internet has come to play an increasingly important role in everyday
life in our society. This trend will continue with the emergence of new widely-distributed
applications. In the commercial sector, interoperable Web Services offer business facilities
over the World Wide Web. Pervasive environments enable people, or devices on their be-
half, to communicate and collaborate wirelessly with peers in a highly dynamic network
with changing contexts. In the public sector, distributed services are being developed for on-
line health care, police records, voting and taxes. As we become more and more dependent
on such applications simplifying and automating day-to-day tasks, it is of utmost impor-
tance to develop means to guarantee security of their operations, especially with regards to
privacy and confidentiality of data. The security requirements for widely-distributed and
dynamic architectures are highly challenging, and it is essential to specify their security re-
quirements in a high-level policy language that is flexible, expressive, widely applicable and
efficient.

In this thesis we proposed a flexible trust management system, CASSANDRA, with a
general-purpose policy language that is expressive enough to capture the authorisation re-
quirements of the proposed NHS data spine, the largest IT project in the UK. This chap-
ter discusses CASSANDRA’s features in comparison to other trust management systems, and
summarises the lessons learnt from the case study (§11.1). We recapitulate our main con-
tributions in §11.2, and outline our intended future work in §11.3.

11.1 Discussion

11.1.1 Expressive Power

A general-purpose policy language has to be flexible enough to be able to express the range
of policy idioms needed in real-world applications. Many existing languages have special
constructs for each policy idiom: for example, most RBAC models directly support some
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variant of role hierarchy, some support separation of duties constraints, SPKI/SDSI [Ell99,
EFL+99] has a flag for permission delegation, and OASIS [HBM98, YMB02, BMY02]
defines certificates for role appointment. If a language is not expressive enough it is often
extended when the requirements change. Language extensions also entail a change in the
definition of the language semantics.

For example, in the RT framework [LMW02], there are separate language extensions for
the support of parameterised roles, for grouping resources, for expressing threshold and
separation of duties, for delegation of role activations, and for constraining role parame-
ters [LM03]. Each of these extensions comes with a new semantics. However, defining a
completely new language semantics for each new extension is tedious and makes it hard to
compare it to the various sublanguages.

CASSANDRA’s policy language is unique in that its expressiveness is parameterised. The
base language is designed to be simple, small and very general. The actual expressiveness is
induced by the constraint domain that can be chosen according to need. Since the definition
of the language semantics is independent of the chosen constraint domain, it can be seen
as a plug-in module, on the level of the formal semantics as well as on the implementation
level.

It is essentially the generality of the base language combined with the freedom to choose
an appropriate constraint domain that makes CASSANDRA so expressive and flexible. How-
ever, there are a number of other language features that enable CASSANDRA to express poli-
cies as complex as in our EHR case study.

One of the most prominent features in CASSANDRA is the tagging of predicates with loca-
tion and issuer. Recall that the location indicates where a predicate should be deduced, and
the issuer states who vouches for the truth of the predicate, or who has authority to define
that predicate. The issuer prefix was inspired by the notion of localised name space in
SPKI/SDSI, and by the similar prefix constructions in RT, QCM [GJ00b] and SD3 [Jim01].
SD3 also has a location prefix, but there it has the simpler meaning of being the IP address
of the issuer. In contrast, the location and the issuer in CASSANDRA are separate and inde-
pendent. The full flexibility of this feature is required, for example, to retrieve credentials
of the form “x vouches for the fact that y has activated a role with parameters containing
z”, where the credential is located neither at x nor at y but rather in z’s policy. An example
of such a credential is the NHS-health-org-cert credential from our case study. Consider
for example the Spine rule that allows certified NHS health organisations to request an
agent credential (S1.4.8):

canReqCred(org,Spine.canActivate(ag,Agent(pat)))←
org♦ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

As can be seen from the first body predicate, the credential is signed and vouched for by
an RA and states that some x (this will be an RA manager) has activated a role indicating
that org is an accredited NHS health organisation. The rule expects this credential to be
stored neither at the RA (the issuer) nor with the RA manager (the subject), but in the
health organisation’s (org) policy. Most trust management systems assume that credentials
are always stored with the issuer. RT is a bit more flexible in that it allows credentials also
to be stored with the subject of the credential. In CASSANDRA, credentials can be stored and
retrieved from everywhere.
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Another important, but rather subtle feature is the explicit subject parameter in the six
special predicates. For example, in the predicate hasActivated, the first parameter indicates
who has activated the role. The explicit parameter allows us to specify a different subject
for the head and for each body predicate. We can thus express rules of the form “x has
property X if y has property Y and z has property Z and ...”. This is also possible in Binder
[DeT02], but in some other languages with designated authorisation predicates, e.g. RT or
Oasis, the subject is implicitly the same for the head and the entire body. In such languages
one can only express “x has property X if x has properties Y and Z”. This feature is crucial
for encoding many policy idioms directly in the language. For example, role appointment
rules are inherently of a form where the subjects of the goal and the conditions are different:
privileges are granted to a person if another person has appointed them to do so.

Aggregation rules have been included in CASSANDRA’s design as a generalisation of pred-
icate negation and have proven highly valuable in our case study. Most policy languages
do not allow negation as it easily leads to intractability, semantic ambiguity, and undecid-
ability. Lithium [HW03] is an example of a policy language allowing negated predicates.
However, with negated predicates, the kind of negation we are most interested in cannot
be expressed: universally quantified negated statements such as “nobody has activated role
R”. In contrast, a negated predicate ¬hasActivated(x,R()) only says that there exists an x
that has not activated the role.

In Lithium, negated permission predicates can even be in the head of a rule. This feature
is used to express explicit prohibition, much like the “negative authorisations” in Ponder
[DDLS01, Dam02]. The design of CASSANDRA does not include prohibitions, as we believe
that it is sufficient to prohibit everything that is not explicitly allowed. With this assump-
tion, we avoid having to deal with the problem of conflict resolution between prohibitions
and permissions. Moreover, the formal framework allows us to prove meta-theorems about
a policy, for example that an entity cannot perform some action. Meta-proofs could per-
haps even be machine-checked; this is part of our intended future work.

Aggregation is also used for many other purposes. It can generally be used for universally
quantified statements, for example for the condition that all affected third parties have
given explicit consent to disclosure of a record item (Rules S2.2.17 and S5.3.1):

third-party-consent(group〈consenter〉,pat, id)←
hasActivated(x,Third-party-consent(consenter,pat, id))

permits(pat,Read-spine-record-item(pat, id))←
hasActivated(pat,Patient()),
hasActivated(pat,One-off-consent(pat)),
count-concealed-by-spine-patient(0,(pat, id),spec),
count-concealed-by-spine-clinician(0,pat, id),
third-party-consent(consenters,pat, id),
spec = (No-org,pat,No-group,No-spcty),
Get-spine-record-third-parties(pat, id)⊆ consenters

Aggregation is also useful in rules with cardinality constraints. For example, agent regis-
tration is an example of role appointment combined with a cardinality constraint (Rules
S1.4.14, S1.4.9):

agent-regs(count〈x〉,pat)←
hasActivated(pat,Register-agent(x,pat))
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canActivate(pat,Register-agent(agent,pat))←
hasActivated(pat,Patient()),
agent-regs(n,pat),
n < 3

Another use of aggregation is in uniqueness constraints. These have so far not been consid-
ered in the literature: roles that can be activated if nobody else has activated them. Closely
related to uniqueness constraints is a variant of appointment revocation in a context where
an appointee can have more than one appointer and revocation should only be performed
if all appointments are cancelled. For example, agents can be registered by both patients
and their GPs, and only if all registrations are cancelled, an active agent role is deactivated
(Rules S1.4.4 and S1.4.3):

other-agent-regs(count〈y〉,x,ag,pat)←
hasActivated(y,Register-agent(ag,pat)),
x 6= y

isDeactivated(ag,Agent(pat))←
isDeactivated(x,Register-agent(ag,pat)),
other-agent-regs(0,x,ag,pat)

11.1.2 Distributed Credential Management

All trust management systems provide authorisations based on credentials. However, they
vary greatly in the versatility of their credential management mechanisms. Some trust man-
agement systems such as PolicyMaker [BFL96, BFK99c], KeyNote [BFK99a, BFK99b] and
SPKI/SDSI do not support automated credential retrieval. In these systems it is the respon-
sibility of the user to submit the right credentials.

RT, QCM and SD3 all have mechanisms for automated credential retrieval. Roles in RT
(or set expressions in QCM, and predicates in SD3) can be prefixed by a name to indicate
that they correspond to a foreign credential to be retrieved over the network. As discussed
before, these systems do not specify an independent credential location and hence cannot
retrieve credentials that are not stored in the issuer’s (or, in the case of RT, in the role sub-
ject’s) policy. Another consequence of this limitation is that foreign credentials are always
requested over the network (unless the retrieval mechanism has been turned off altogether,
in the case of QCM and SD3) whenever they have not been submitted. In CASSANDRA, set-
ting the location prefix of a predicate to the location of the rule forces the query evaluation
engine to find the corresponding credential locally, i.e. amongst the credential rules in the
policy or the credential submitted along with the request. The location prefix provides a
very fine granularity of control over automated credential retrieval.

Credentials may be confidential and should, just like other resources, be protected by
policy-based access control. CASSANDRA’s integrated trust negotiation mechanism is another
important unique feature. Just as actions are protected by permits policy rules, credentials,
themselves being part of a policy, are protected by canReqCred policy rules.

In CASSANDRA, the credential’s parameters in the request are allowed to be not fully in-
stantiated. The credential that is actually sent back to the requester is, in general, fully
instantiated and can thus convey new information to the requester. A credential request
can thus simulate database queries. The combination of location and issuer prefixes,
canReqCred rules, and the definition of the reqCred transition in the operational semantics
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forms a flexible mechanism that unifies trust management, credential retrieval and trust
negotiation.

11.1.3 Scalability and Complexity

A trust management system should be scalable: it should be easy to write and administer
policies, and requests should be decided efficiently, even in the presence of a complex policy
and a large number of entities.

Roles are a means of grouping entities, thereby reducing the complexity of policy admin-
istration and facilitating more concise policies, especially with parameterised roles, than in
systems that are not role based, e.g. PolicyMaker or KeyNote. SD3 does not have roles
either, as it is designed to be a very general language without any inherent access control
meaning, but it would probably be not too hard to extend it to support parameterised
roles. OASIS and RT also support parameterised roles, and the name space specifications
in SPKI/SDSI could be interpreted as non-parameterised roles. However, it turned out that
the most important benefit of roles in CASSANDRA was not the scalability issue. Rather, roles
in combination with the access control engine enable us to express state-dependent policies,
by viewing a role as an attribute that can be set by activating it and unset by deactivating
it. In our case study, we use such roles to express relevant state changes. For example, a
patient is registered by somebody activating the Register-patient role; or, a patient denies
access to a record item by activating an appropriate access denial role.

The efficiency of query evaluation in CASSANDRA depends mainly on the chosen constraint
domain. With a very simple constraint domain such as Ceq or Ctup, evaluation is tractable
(PTIME) for all policies. With a highly expressive constraint domain such as C6=,< and C0

(restricted with groundness analysis), the worst-case complexity is DEXPTIME-complete
[Rev95]. However, the worst-case seems to occur only in pathological cases (such as using
set constraints to encode the Hamiltonian Cycle problem); we could not come up with a
realistic policy that exhibits exponential behaviour. In particular, query evaluation of our
EHR policy is simple as the recursion depth is low (so the proof forest will be small) and,
most importantly, variables get instantiated at a very early stage, also due to the groundness
restrictions.

KeyNote, RT, Lithium, QCM and SD3 are all tractable languages, at the expense of
limited expressiveness as they are based on simple Datalog without constraints, or on a
heavily restricted form of first order logic, in the case of Lithium. RTC

1 [LM03] is based on
DatalogC , but the use of constraints is heavily restricted to keep the language tractable; in
essence, constraints are only used to restrict the range of a single variable. PolicyMaker,
OASIS and Ponder are amongst those languages that allow policies to be undecidable.

11.1.4 Case Study: Lessons Learnt

The complexity and constantly evolving nature of the Spine’s security and confidential-
ity requirements necessitate the use of a policy language in order to separate policy from
implementation. The policy language must be efficiently machine-enforceable; it must be
high-level and sufficiently simple so the policy can be easily modified and read; and it must
be expressive and flexible in order to accommodate for current and unforeseeable future
requirements.

We have presented a complete CASSANDRA policy governing access to health records,
based on official NHS and DoH documents. The case study shows that CASSANDRA is
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sufficiently expressive for NPfIT and other large-scale real-world applications with highly
challenging security requirements. Our preliminary experiments with the policy running
on our prototype implementation of CASSANDRA strongly suggest that the system will also
be efficient in practice.

The detailed description of the policy rules could be seen as a translation of the formal
CASSANDRA rules back into plain English. It is conceivable that the translation process into
a subset of English could be automated. We are currently communicating with the NHS to
see whether our description really matches their requirements and intentions. If approved
by the NHS, such a detailed and semi-formal description would be useful for the NHS’s IT
suppliers, who have only been given the rather sketchy OBS. Also, the description could
be given to the public to put the NHS’s authorisation policy under public and legal expert
scrutiny and could help answering the question whether the proposed Spine will fulfil all
legal and ethical confidentiality requirements. In the best case, it could calm the public’s
unease and relieve the current uncertainty about the project.

One of the lessons learnt from the case study is that the hardest part about writing pol-
icy is not the translation into a formal language, but rather understanding the intended
requirements. As expected, the available specification documents are unclear, ambiguous,
and – above all – incomplete, rather than contradictory. Certainly, many of the gaps could
be filled in with common sense. Still, as mentioned above, it will be important to get some
official feedback. However, once the requirements are understood and complete, the trans-
lation process is relatively straightforward: most of the informal, “intuitive” requirements
statements are already approximately of the form “if 〈condition〉 then 〈goal〉”.

An obvious question to ask is: is the formal policy correct and does it do what it is
supposed to do? Since translating the informal rules into CASSANDRA was rather straight-
forward, we believe that the primary source of “incorrectness” would be the requirements
in the first place. In such a large and intricate system, it is difficult to fully understand the
implications of the requirements. However, having translated the requirements into formal
CASSANDRA policy rules is the first step towards proving meta-level correctness properties;
for example, that users can really only log on with exactly one main role at any time.

The case study also provided many valuable lessons on more technical aspects. Our case
study exhibits interesting variants and combinations of policy idioms; the idiom of role
appointment was needed especially frequently, as well as separation of duties, uniqueness
and cardinality constraints, and automated trust negotiation. Certainly, CASSANDRA’s flexi-
bility and expressiveness paid off well, as we could express all these variants directly in the
language without having to extend it with special constructs. The design of the constraint
domain C0 was mainly guided by the EHR policy’s requirements. The case study also high-
lighted important features of CASSANDRA that make it unique, e.g. predicates with an issuer
and a location (for credentials that are neither stored with the issuer nor with the subject of
the predicate); aggregation operators (for universally quantified negation, and cardinality
and uniqueness constraints), and an explicit subject in all special predicates.

Our case study has significant implications for the research area of trust management as
a whole. Most other systems have only been applied to relatively simple applications or
academic toy examples. There has been a major lack of real-world policy examples that
are both large and complex — our EHR policy example fills this gap. It is a strong counter-
example to the claim that real-world applications do not need expressive policy languages.
Indeed, it is hard to imagine how the ambitious NHS project could be realised successfully
without a flexible, distributed access control system that allows the authorisation policy to
be modified easily.
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Our policy can be used as a benchmark for existing and future policy languages, as a
guideline for language design and as a tool for the difficult task of comparing different
policy languages. It would be rewarding to translate the policy into another language, and
to analyse which constructs cannot be translated, and which features can perhaps be more
easily expressed in a different language.

11.2 Summary of Contributions

The main contribution of this dissertation is the proposal of a policy-based trust manage-
ment system with a high grade of flexibility, CASSANDRA, and the large-scale case study on an
authorisation policy for a national EHR system. In more detail, the following contributions
have been made:

• Proposing DatalogC as the basis of a policy language to parameterise expressiveness.

• Extending DatalogC with parameterised roles and actions, access control predicates,
signed credentials with network locations, and aggregation operators.

• Providing a formal semantics of the policy language based on fixed points.

• Designing a useful hierarchy of constraint domains for policy specification, along with
type systems and constraint solving algorithms for constraint satisfaction checking,
subsumption checking and existential quantifier elimination.

• Proving constraint compactness of constraint domains, a formal condition to ensure
finiteness of the fixed point semantics, regardless of the policy and the query.

• Developing a distributed top-down query evaluation algorithm based on SLGC reso-
lution that terminates whenever the fixed point semantics is finite, and in particular,
whenever the constraint domain is constraint compact.

• Proposing groundness analysis as a means to sanity-check policies, lift syntactic re-
strictions on aggregation rules, and to restrict overly expressive constraint domains
to a constraint compact fragment during run-time.

• Developing a procedure to analyse groundness of variables in policies based on SLGC

resolution, and formally proving its correctness.

• Specifying an operational semantics of the access control engine by a labelled tran-
sition system, with rules for performing an action, activating a role, deactivating a
role, and requesting a credential.

• Illustrating the system’s versatility by showing encodings of various policy idioms,
including separation of duties, role hierarchy, role delegation and role appointment.

• Providing the research area of trust management with the as yet largest and most
complex real-world case study on authorisation policy: a complete, distributed policy
for the national EHR system proposed by the NHS. The case study confirms that
current and future applications will indeed require policy-based trust management
with a high degree of flexibility and expressive power.

• Implementing a (still incomplete) prototype of the system, and testing it with the EHR
policy.



160 Discussion and Conclusions

11.3 Future Work

We conclude this dissertation with an outline of potential future work. We concentrate on
four main areas in which we envisage to do further work: proving meta-properties, formal
models, implementation, and the case study.

11.3.1 Proofs

One of the big advantages of having an explicit and formal policy is that it can be formally
analysed. Policy analysis so far has focussed mainly on the detection of rule conflicts and
inconsistencies [BLR03, JSS97]. To unleash the full potential of policy specification, we
also need methodologies and tools for analysing more complex security properties and
implications of policies. Some research has already been done on this topic, based on the
RT language [LT04], but a lot more needs to be done on more expressive languages such
as CASSANDRA.

In applications secured by “low-level” access control mechanisms such as DAC, MAC
or RBAC, the security goals are only implicit and often hard-coded. Proving conformance
to high-level policies in such systems is non-trivial. Policy specification makes the security
goals explicit.

CASSANDRA was designed to satisfy complex policy requirements and at the same time
be simple enough that its language and access control semantics can be formally specified.
Although policy specification makes high-level security goals explicit, there will always re-
main higher-level “meta-properties” that cannot be stated directly. For example, it is not
possible to express prohibition in CASSANDRA directly, so it would be useful to be able to
prove that some entity will never be able to perform some action. We plan to use our
formal framework to prove interesting meta-properties about specific policies or policy
idioms. Proving that the encoding of a particular policy idiom is correct will be straightfor-
ward in many cases, as the encoding is often a very direct translation of the policy idiom’s
intended meaning. We expect that such simple proofs will share many common features.
By studying their structure and logic, we wish to find a way to express the proofs in a form
that makes them amenable to machine-checking. It is also conceivable that a simple family
of properties can be proved mechanically by theorem provers such as HOL [GM93], Coq
[BBC+97] or Isabelle [Pau94]. Type systems have also been proposed for statically verifying
implementations of Datalog-based policies [FGM05].

A local policy can refer to remote policies; in this context, it would be useful to be able
to prove assertions such as “X will never gain permission to read record item Y under this
local policy, no matter in which way the remote policy of Z changes”, or “the local policy
relies on the remote policy of Z, but even if Z is malicious and does not act according to
the semantics, the worst thing that could happen is E”. These kinds of propositions are
interesting because entities have complete knowledge only of their own policy, and yet, to
some extent, rely on other policies they partially trust but cannot control. They cannot
completely exclude the possibility that the trusted party behaves unexpectedly. This, of
course, brings with it some risk, and it is important to be able to formally examine the
extent of this risk.

A third class of useful properties to prove are meta-theoretic results about the limitations
of expressiveness. By proving statements such as “policy idiom X cannot be expressed with
constraint domain Y” or “policy idiom X cannot be expressed without aggregation”, we
could gain a better understanding of the basic building blocks of policy idioms.
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11.3.2 Formal Models

We have formally specified CASSANDRA’s language semantics as well as the operational se-
mantics of the policy evaluation engine; together, they form a complete formal model of the
system. However, real implementations would have to deal with many issues that are miss-
ing in the high-level model. It would therefore be desirable to have a low-level model of the
system that specifies the underlying communication protocols, the public-key infrastructure
and the design of credentials. The low-level model would also specify the behaviour of the
system in the presence of network failure or transmission delays. The model could be for-
malised using techniques from standard transition-based operational semantics and the Spi
calculus [AG99], an extension of the π-calculus with cryptographic primitives.

This future task would also involve proving theorems about the correspondence between
the high-level and the low-level models to show that the latter is a correct implementation of
the former. This will also increase confidence in the correctness of actual implementations.

The model also needs to be extended to be able to deal with policy changes. At the mo-
ment, the model assumes that policies stay the same, apart from the automatic changes to
reflect the state of the system, i.e., those due to role activations/deactivations and credential
requests. In reality, of course, policies will frequently also be updated manually by policy
writers. As we are considering distributed policies, such updates will have propagating
and, perhaps, unexpected and inconsistent effects. There has already been some work done
on OASIS policy evolution that is consistent and compliant with some meta-policy [Bel04]
that might be used as a starting point.

11.3.3 Implementation

Our current implementation of CASSANDRA is still incomplete. We need to add the function-
alities of role deactivation and credential requests, and implement the static groundness
analyser. Also, at the moment, all distributed features are merely simulated. To gather
more reliable test results, we plan to build a more realistic, truly distributed prototype. In
particular, network communication will be encrypted, the policy language will be encoded
in XML, and the system will be embedded in a PKI with credentials encoded as X.509
certificates. User interfaces need to be devised that facilitate user-friendly policy authoring
and management.

We also plan to investigate optimisation strategies for making the implementation effi-
cient. For a policy with millions of users as is the case in our NHS example, the bottleneck
lies in the lookup of parameterised role activations. A promising optimisation approach
that we will explore is to devise a suitable indexing scheme for such activations and to
store them in a relational database.

It would be interesting to see whether it is feasible to implement a simple proof checker to
verify every answer from query evaluation, as proposed in [Jim01]. This could significantly
reduce the size of the trusted computing base and increase our confidence in the correctness
of the implementation.

11.3.4 Case Studies

More policy case studies are needed. A promising application area is the emerging field
of Semantic Web Services [FHLW02] — an area with the potential to revolutionise e-
Commerce. Semantic Web Services are a combination of web services and the Semantic
Web: autonomous heterogeneous, pervasive web-based software components that support
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automated and unanticipated service discovery, invocation, composition and interoperabil-
ity through machine-understandable semantic descriptions. As such, distributed trust man-
agement is ideally suited for securing future Semantic Web Services [FJ02, ASW04]. It
would be necessary to study how to interface the policy language with Semantic Web tech-
nologies, in particular the Resource Description Framework (RDF), the Ontology Web
Language (OWL) and the emerging DAML-S/OWL-S ontologies. Then, for a sample of in-
teroperating Semantic Web Services, authorisation policies could be constructed in a similar
manner as for our NHS example.

With the NHS case study, we have produced a large and complex authorisation policy
example. However, it is based on informal documents that are out-of-date, incomplete,
and, in many places, subject to ongoing debate. In order for the policy to become an even
more convincing benchmark example for future language design and comparisons, we need
to refine it and verify its correctness by further discussing these issues with the NHS. This is
a difficult and time-consuming task, one reason being that the application domain experts
and stakeholders are not trust management experts, in general, and cannot be expected to
read and understand the full formal policy.

We hope to continue our collaboration with the NHS. NPfIT representatives have agreed
that their current informal specification process is somewhat inadequate, and have ex-
pressed interest in developing a formal CASSANDRA policy for still contended areas of infor-
mation governance. In particular, we will continue updating the policy fragment on Sealed
Envelopes, based on results from ongoing NPfIT consultations (e.g. [Osw05]), and point
out ambiguities and and other weaknesses to NPfIT.

From our discussions with the NHS so far we have learnt that the best way to dissem-
inate trust management technology is to provide user-friendly demonstrator applications
with which stakeholders — representatives from the NHS and their IT suppliers, health
professionals and patients — can empirically verify the consequences of the policy.

The NPfIT project currently has a huge image problem, especially due to the perceived
dangers to patient confidentiality. Perhaps we could help the NHS towards designing a
system that would be more trusted by those who are supposed to use it — a system that
is flexible, feasible, and meets even the highest confidentiality requirements. At stake are
human lives and huge financial resources.
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Policy rules for NHS electronic health

record system

The following is a complete list of all CASSANDRA rules for our EHR case study. Appendix
A.1 contains the policy rules for the Spine, A.2 for the PDS, A.3 for Addenbrooke’s Hospital
(ADB), and A.4 contains the rules for Addenbrooke’s RA (RA-ADB).

A.1 Policy for the Spine

A.1.1 Main access roles

Clinician

(S1.1.1)
canActivate(cli,Spine-clinician(ra,org,spcty))←

ra.hasActivated(x,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority()),
no-main-role-active(cli),
Current-time() ∈ [start,end]

(S1.1.2)
canActivate(cli,Spine-clinician(ra,org,spcty))←

ra♦ra.hasActivated(x,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority()),
no-main-role-active(cli),
Current-time() ∈ [start,end]

(S1.1.3)
canDeactivate(cli,cli,Spine-clinician(ra,org,spcty))←
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(S1.1.4)
count-spine-clinician-activations(count〈u〉,user)←

hasActivated(user,Spine-clinician(ra,org,spcty))

Administrator

(S1.2.1)
canActivate(adm,Spine-admin())←

hasActivated(x,Register-spine-admin(adm)),
no-main-role-active(adm)

(S1.2.2)
canDeactivate(adm,adm,Spine-admin())←

(S1.2.3)
isDeactivated(adm,Spine-admin())←

isDeactivated(x,Register-spine-admin(adm))

(S1.2.4)
count-spine-admin-activations(count〈u〉,user)←

hasActivated(user,Spine-admin())

(S1.2.5)
canActivate(adm,Register-spine-admin(adm2))←

hasActivated(adm,Spine-admin()),
spine-admin-regs(0,adm2)

(S1.2.6)
canDeactivate(adm,x,Register-spine-admin(adm2))←

hasActivated(adm,Spine-admin())

(S1.2.7)
spine-admin-regs(count〈x〉,adm)←

hasActivated(x,Register-spine-admin(adm))

Patient

(S1.3.1)
canActivate(pat,Patient())←

hasActivated(x,Register-patient(pat)),
no-main-role-active(pat),
PDS♦PDS.hasActivated(y,Register-patient(pat))

(S1.3.2)
canDeactivate(pat,pat,Patient())←

(S1.3.3)
isDeactivated(pat,Patient())←

isDeactivated(x,Register-patient(pat))
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(S1.3.4)
count-patient-activations(count〈u〉,user)←

hasActivated(user,Patient())

(S1.3.5)
canActivate(adm,Register-patient(pat))←

hasActivated(adm,Spine-admin()),
patient-regs(0,pat)

(S1.3.6)
canDeactivate(adm,x,Register-patient(pat))←

hasActivated(adm,Spine-admin())

(S1.3.7)
patient-regs(count〈x〉,pat)←

hasActivated(x,Register-patient(pat))

Agent

(S1.4.1)
canActivate(ag,Agent(pat))←

hasActivated(x,Register-agent(ag,pat)),
PDS♦PDS.hasActivated(y,Register-patient(ag)),
no-main-role-active(ag)

(S1.4.2)
canDeactivate(ag,ag,Agent(pat))←

(S1.4.3)
isDeactivated(ag,Agent(pat))←

isDeactivated(x,Register-agent(ag,pat)),
other-agent-regs(0,x,ag,pat)

(S1.4.4)
other-agent-regs(count〈y〉,x,ag,pat)←

hasActivated(y,Register-agent(ag,pat)),
x 6= y

(S1.4.5)
count-agent-activations(count〈u〉,user)←

hasActivated(user,Agent(pat))

(S1.4.6)
canReqCred(ag,Spine.canActivate(ag,Agent(pat)))←

hasActivated(ag,Agent(pat))

(S1.4.7)
canReqCred(org,Spine.canActivate(ag,Agent(pat)))←

ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]
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(S1.4.8)
canReqCred(org,Spine.canActivate(ag,Agent(pat)))←

org♦ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

(S1.4.9)
canActivate(pat,Register-agent(agent,pat))←

hasActivated(pat,Patient()),
agent-regs(n,pat),
n < 3

(S1.4.10)
canActivate(cli,Register-agent(agent,pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))

(S1.4.11)
canDeactivate(pat,pat,Register-agent(agent,pat))←

hasActivated(pat,Patient())

(S1.4.12)
canDeactivate(cli,x,Register-agent(agent,pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))

(S1.4.13)
isDeactivated(x,Register-agent(agent,pat))←

isDeactivated(y,Register-patient(pat))

(S1.4.14)
agent-regs(count〈x〉,pat)←

hasActivated(pat,Register-agent(x,pat))

Other

(S1.5.1)
canActivate(ra,Registration-authority())←

NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

(S1.5.2)
canActivate(ra,Registration-authority())←

ra♦NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]
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(S1.5.3)
no-main-role-active(user)←

count-agent-activations(n,user),
count-spine-clinician-activations(n,user),
count-spine-admin-activations(n,user),
count-patient-activations(n,user),
count-third-party-activations(n,user),
n = 0

A.1.2 Express consent

One-off consent

(S2.1.1)
canActivate(pat,One-off-consent(pat))←

hasActivated(pat,Patient())

(S2.1.2)
canActivate(ag,One-off-consent(pat))←

hasActivated(ag,Agent(pat))

(S2.1.3)
canActivate(cli,One-off-consent(pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

(S2.1.4)
canDeactivate(pat,x,One-off-consent(pat))←

hasActivated(pat,Patient())

(S2.1.5)
canDeactivate(ag,x,One-off-consent(pat))←

hasActivated(ag,Agent(pat))

(S2.1.6)
canDeactivate(cli,x,One-off-consent(pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

(S2.1.7)
isDeactivated(x,One-off-consent(pat))←

isDeactivated(y,Register-patient(pat))

Third-party consent

(S2.2.1)
canActivate(pat,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Patient()),
x ∈ Get-spine-record-third-parties(pat, id)
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(S2.2.2)
canActivate(ag,Request-third-party-consent(x,pat, id))←

hasActivated(ag,Agent(pat)),
x ∈ Get-spine-record-third-parties(pat, id)

(S2.2.3)
canActivate(cli,Request-third-party-consent(x,pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
x ∈ Get-spine-record-third-parties(pat, id)

(S2.2.4)
canDeactivate(pat,y,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Patient())

(S2.2.5)
canDeactivate(ag,y,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Agent(pat))

(S2.2.6)
canDeactivate(cli,y,Request-third-party-consent(x,pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty))

(S2.2.7)
canDeactivate(x,y,Request-third-party-consent(x,pat, id))←

hasActivated(x,Third-party())

(S2.2.8)
isDeactivated(x,Request-third-party-consent(y,pat, id))←

isDeactivated(z,Register-patient(pat))

(S2.2.9)
other-third-party-consent-requests(count〈x〉,y,z)←

hasActivated(x,Request-third-party-consent(z,pat, id)),
x 6= y

(S2.2.10)
canActivate(x,Third-party())←

hasActivated(y,Request-third-party-consent(x,pat, id)),
no-main-role-active(x),
PDS♦PDS.hasActivated(z,Register-patient(x))

(S2.2.11)
canDeactivate(x,x,Third-party())←

(S2.2.12)
isDeactivated(x,Third-party())←

isDeactivated(y,Request-third-party-consent(x,pat, id)),
other-third-party-consent-requests(0,y,x)

(S2.2.13)
count-third-party-activations(count〈u〉,user)←

hasActivated(user,Third-party())
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(S2.2.14)
canActivate(x,Third-party-consent(x,pat, id))←

hasActivated(x,Third-party()),
hasActivated(y,Request-third-party-consent(x,pat, id))

(S2.2.15)
canActivate(cli,Third-party-consent(x,pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
hasActivated(y,Request-third-party-consent(x,pat, id))

(S2.2.16)
isDeactivated(x,Third-party-consent(x,pat, id))←

isDeactivated(y,Request-third-party-consent(x,pat, id)),
other-third-party-consent-requests(0,y,x)

(S2.2.17)
third-party-consent(group〈consenter〉,pat, id)←

hasActivated(x,Third-party-consent(consenter,pat, id))

Consent to treatment

(S2.3.1)
canActivate(cli1,Request-consent-to-treatment(pat,org2,cli2,spcty2))←

hasActivated(cli1,Spine-clinician(ra1,org1,spcty1)),
canActivate(cli2,Spine-clinician(ra2,org2,spcty2)),
canActivate(pat,Patient())

(S2.3.2)
canDeactivate(cli1,cli1,

Request-consent-to-treatment(pat,org2,cli2,spcty2))←
hasActivated(cli1,Spine-clinician(ra1,org1,spcty1))

(S2.3.3)
canDeactivate(cli2,cli1,

Request-consent-to-treatment(pat,org2,cli2,spcty2))←
hasActivated(cli2,Spine-clinician(ra2,org2,spcty2))

(S2.3.4)
canDeactivate(pat,x,Request-consent-to-treatment(pat,org,cli,spcty))←

hasActivated(pat,Patient())

(S2.3.5)
canDeactivate(ag,x,Request-consent-to-treatment(pat,org,cli,spcty))←

hasActivated(ag,Agent(pat))

(S2.3.6)
canDeactivate(cli,x,Request-consent-to-treatment(pat,org,cli2,spcty))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))
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(S2.3.7)
isDeactivated(x,Request-consent-to-treatment(pat,org,cli,spcty))←

isDeactivated(y,Register-patient(pat))

(S2.3.8)
other-consent-to-treatment-requests(count〈y〉,x,pat,org,cli,spcty)←

hasActivated(y,Request-consent-to-treatment(pat,org,cli,spcty)),
x 6= y

(S2.3.9)
canActivate(pat,Consent-to-treatment(pat,org,cli,spcty))←

hasActivated(pat,Patient()),
hasActivated(x,Request-consent-to-treatment(pat,org,cli,spcty))

(S2.3.10)
canActivate(ag,Consent-to-treatment(pat,org,cli,spcty))←

hasActivated(ag,Agent(pat)),
hasActivated(x,Request-consent-to-treatment(pat,org,cli,spcty))

(S2.3.11)
canActivate(cli1,Consent-to-treatment(pat,org,cli2,spcty))←

hasActivated(cli1,Spine-clinician(ra,org,spcty)),
canActivate(cli1,Treating-clinician(pat,org,spcty)),
hasActivated(x,Request-consent-to-treatment(pat,org,cli2,spcty))

(S2.3.12)
isDeactivated(x,Consent-to-treatment(pat,org,cli,spcty))←

isDeactivated(y,Request-consent-to-treatment(pat,org,cli,spcty)),
other-consent-to-treatment-requests(0,y,pat,org,cli,spcty)

Consent to group treatment

(S2.4.1)
canActivate(cli,Request-consent-to-group-treatment(pat,org,group))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(pat,Patient())

(S2.4.2)
canDeactivate(cli,cli,Request-consent-to-group-treatment(pat,org,group))←

hasActivated(cli,Spine-clinician(ra,org,spcty))

(S2.4.3)
canDeactivate(pat,x,Request-consent-to-group-treatment(pat,org,group))←

hasActivated(pat,Patient())

(S2.4.4)
canDeactivate(ag,x,Request-consent-to-group-treatment(pat,org,group))←

hasActivated(ag,Agent(pat))
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(S2.4.5)
canDeactivate(cli,x,Request-consent-to-group-treatment(pat,org,group))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))

(S2.4.6)
canDeactivate(cli,x,Request-consent-to-group-treatment(pat,org,group))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
ra♦ra.canActivate(cli,Workgroup-member(org,group,spcty))

(S2.4.7)
isDeactivated(x,Request-consent-to-group-treatment(pat,org,group))←

isDeactivated(y,Register-patient(pat))

(S2.4.8)
other-consent-to-group-treatment-requests(count〈y〉,x,pat,org,cli,spcty)←

hasActivated(y,Request-consent-to-group-treatment(pat,org,group)),
x 6= y

(S2.4.9)
canActivate(pat,Consent-to-group-treatment(pat,org,group))←

hasActivated(pat,Patient()),
hasActivated(x,Request-consent-to-group-treatment(pat,org,group))

(S2.4.10)
canActivate(ag,Consent-to-group-treatment(pat,org,group))←

hasActivated(ag,Agent(pat)),
hasActivated(x,Request-consent-to-group-treatment(pat,org,group))

(S2.4.11)
canActivate(cli1,Consent-to-group-treatment(pat,org,group))←

hasActivated(cli1,Spine-clinician(ra,org,spcty)),
canActivate(cli1,Treating-clinician(pat,org,spcty)),
hasActivated(x,Request-consent-to-group-treatment(pat,org,group))

(S2.4.12)
isDeactivated(x,Consent-to-group-treatment(pat,org,group))←

isDeactivated(y,Request-consent-to-group-treatment(pat,org,group)),
other-consent-to-group-treatment-requests(0,y,pat,org,group)

A.1.3 Legitimate Relationship

Referral

(S3.1.1)
canActivate(cli1,Referrer(pat,org,cli2,spcty1))←

hasActivated(cli1,Spine-clinician(ra,org,spcty2)),
canActivate(cli1,Treating-clinician(pat,org,spcty2))

(S3.1.2)
canDeactivate(cli1,cli1,Referrer(pat,org,cli2,spcty1))←
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(S3.1.3)
canDeactivate(pat,cli1,Referrer(pat,org,cli2,spcty1))←

(S3.1.4)
isDeactivated(cli1,Referrer(pat,org,cli2,spcty1))←

isDeactivated(x,Register-patient(pat))

Emergency clinician

(S3.2.1)
canActivate(cli,Spine-emergency-clinician(org,pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(pat,Patient())

(S3.2.2)
canDeactivate(cli,cli,Spine-emergency-clinician(org,pat))←

(S3.2.3)
isDeactivated(x,Spine-emergency-clinician(org,pat))←

isDeactivated(x,Spine-clinician(ra,org,spcty))

(S3.2.4)
isDeactivated(x,Spine-emergency-clinician(org,pat))←

isDeactivated(y,Register-patient(pat))

Treating Clinician & GP

(S3.3.1)
canActivate(cli,Treating-clinician(pat,org,spcty))←

hasActivated(x,Consent-to-treatment(pat,org,cli,spcty))

(S3.3.2)
canActivate(cli,Treating-clinician(pat,org,spcty))←

hasActivated(cli,Spine-emergency-clinician(org,pat)),
spcty = A-and-E

(S3.3.3)
canActivate(cli,Treating-clinician(pat,org,spcty))←

canActivate(cli,Spine-clinician(ra,org,spcty)),
hasActivated(x,Referrer(pat,org,cli,spcty))

(S3.3.4)
canActivate(cli,Treating-clinician(pat,org,spcty))←

canActivate(cli,Group-treating-clinician(pat,ra,org,group,spcty))

(S3.3.5)
canActivate(cli,General-practitioner(pat))←

canActivate(cli,Treating-clinician(pat,org,spcty)),
spcty = GP
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Workgroup-based LR

(S3.4.1)
canActivate(cli,Group-treating-clinician(pat,ra,org,group,spcty))←

hasActivated(x,Consent-to-group-treatment(pat,org,group)),
ra.canActivate(cli,Workgroup-member(org,group,spcty)),
canActivate(ra,Registration-authority())

(S3.4.2)
canActivate(cli,Group-treating-clinician(pat,ra,org,group,spcty))←

hasActivated(x,Consent-to-group-treatment(pat,org,group)),
ra♦ra.canActivate(cli,Workgroup-member(org,group,spcty)),
canActivate(ra,Registration-authority())

A.1.4 Sealing-off data

Access restriction by clinician

(S4.1.1)
canActivate(cli,Concealed-by-spine-clinician(pat, ids,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

(S4.1.2)
canDeactivate(cli,cli,Concealed-by-spine-clinician(pat, ids,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty))

(S4.1.3)
canDeactivate(cli,cli2,Concealed-by-spine-clinician(pat, ids,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat))

(S4.1.4)
canDeactivate(cli1,cli2,Concealed-by-spine-clinician(pat, ids,start,end))←

hasActivated(cli1,Spine-clinician(ra,org,spcty1)),
canActivate(cli1,Group-treating-clinician(pat,ra,org,group,spcty1)),
canActivate(cli2,Group-treating-clinician(pat,ra,org,group,spcty2)),
hasActivated(x,Consent-to-group-treatment(pat,org,group))

(S4.1.5)
isDeactivated(x,Concealed-by-spine-clinician(pat, ids,start,end))←

isDeactivated(y,Register-patient(pat))

(S4.1.6)
count-concealed-by-spine-clinician(count〈x〉,pat, id)←

hasActivated(x,Concealed-by-spine-clinician(pat, ids,start,end)),
id ∈ ids,
Current-time() ∈ [start,end]
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Access restriction by patient

(S4.2.1)
canActivate(pat,Conceal-request(what,who,start,end))←

hasActivated(pat,Patient()),
count-conceal-requests(n,pat),
what = (pat, ids,orgs,authors,subjects, from-time, to-time),
who = (orgs1,readers1,spctys1),
n < 100

(S4.2.2)
canActivate(ag,Conceal-request(what,who,start,end))←

hasActivated(ag,Agent(pat)),
count-conceal-requests(n,pat),
what = (pat, ids,orgs,authors,subjects, from-time, to-time),
who = (orgs1,readers1,spctys1),
n < 100

(S4.2.3)
canDeactivate(pat,x,Conceal-request(what,whom,start,end))←

hasActivated(pat,Patient()),
π7

1(what) = pat

(S4.2.4)
canDeactivate(ag,x,Conceal-request(what,whom,start,end))←

hasActivated(ag,Agent(pat)),
π7

1(what) = pat

(S4.2.5)
canDeactivate(cli,x,Conceal-request(what,whom,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,General-practitioner(pat)),
π7

1(what) = pat

(S4.2.6)
isDeactivated(x,Conceal-request(what,whom,start,end))←

isDeactivated(y,Register-patient(pat)),
π7

1(what) = pat

(S4.2.7)
count-conceal-requests(count〈y〉,pat)←

hasActivated(x,Conceal-request(y)),
what = (pat, ids,orgs,authors,subjects, from-time, to-time),
who = (orgs1,readers1,spctys1),
y = (what,who,start,end)

(S4.2.8)
canActivate(cli,Concealed-by-spine-patient(what,who,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
hasActivated(x,Conceal-request(what,who,start,end))
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(S4.2.9)
canDeactivate(cli,cli,Concealed-by-spine-patient(what,who,start,end))←

hasActivated(cli,Spine-clinician(ra,org,spcty))

(S4.2.10)
canDeactivate(cli1,cli2,Concealed-by-spine-patient(what,who,start1,end1))←

hasActivated(cli1,Spine-clinician(ra,org,spcty1)),
ra♦ra.canActivate(cli1,
Group-treating-clinician(pat,ra,org,group,spcty1)),

ra♦ra.canActivate(cli2,
Group-treating-clinician(pat,ra,org,group,spcty2))

(S4.2.11)
isDeactivated(cli,Concealed-by-spine-patient(what,who,start,end))←

isDeactivated(x,Conceal-request(what,who,start,end))

(S4.2.12)
count-concealed-by-spine-patient(count〈x〉,a,b)←

hasActivated(x,Concealed-by-spine-patient(what,who,start,end)),
a = (pat, id),
b = (org,reader,spcty),
what = (pat, ids,orgs,authors,subjects, from-time, to-time),
whom = (orgs1,readers1,spctys1),
Get-spine-record-org(pat, id) ∈ orgs,
Get-spine-record-author(pat, id) ∈ authors,
sub ∈ Get-spine-record-subjects(pat, id),
sub ∈ subjects,
Get-spine-record-time(pat, id) ∈ [from-time, to-time],
id ∈ ids,
org ∈ orgs1,
reader ∈ readers1,
spcty ∈ spctys1,
Current-time() ∈ [start,end],
Get-spine-record-third-parties(pat, id) = {},
non-clinical ∈ Ω−Get-spine-record-subjects(pat, id)

Authenticated express consent

(S4.3.1)
canActivate(pat,Authenticated-express-consent(pat,cli))←

hasActivated(pat,Patient()),
count-authenticated-express-consent(n,pat),
n < 100

(S4.3.2)
canActivate(ag,Authenticated-express-consent(pat,cli))←

hasActivated(ag,Agent(pat)),
count-authenticated-express-consent(n,pat),
n < 100
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(S4.3.3)
canActivate(cli1,Authenticated-express-consent(pat,cli2))←

hasActivated(cli1,Spine-clinician(ra,org,spcty)),
canActivate(cli1,General-practitioner(pat))

(S4.3.4)
canDeactivate(pat,x,Authenticated-express-consent(pat,cli))←

hasActivated(pat,Patient())

(S4.3.5)
canDeactivate(ag,x,Authenticated-express-consent(pat,cli))←

hasActivated(ag,Agent(pat))

(S4.3.6)
canDeactivate(cli1,x,Authenticated-express-consent(pat,cli2))←

hasActivated(cli1,Spine-clinician(ra,org,spcty)),
canActivate(cli1,General-practitioner(pat))

(S4.3.7)
isDeactivated(x,Authenticated-express-consent(pat,cli))←

isDeactivated(y,Register-patient(pat))

(S4.3.8)
count-authenticated-express-consent(count〈cli〉,pat)←

hasActivated(x,Authenticated-express-consent(pat,cli))

A.1.5 Access permissions

Adding item

(S5.1.1)
permits(cli,Add-spine-record-item(pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

(S5.1.2)
permits(pat,Annotate-spine-record-item(pat, id))←

hasActivated(pat,Patient())

(S5.1.3)
permits(ag,Annotate-spine-record-item(pat, id))←

hasActivated(ag,Agent(pat))

(S5.1.4)
permits(pat,Annotate-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))
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Reading item IDs

(S5.2.1)
permits(pat,Get-spine-record-item-ids(pat))←

hasActivated(pat,Patient())

(S5.2.2)
permits(ag,Get-spine-record-item-ids(pat))←

hasActivated(ag,Agent(pat))

(S5.2.3)
permits(cli,Get-spine-record-item-ids(pat))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

Reading items

(S5.3.1)
permits(pat,Read-spine-record-item(pat, id))←

hasActivated(pat,Patient()),
hasActivated(x,One-off-consent(pat)),
count-concealed-by-spine-patient(n,a,b),
count-concealed-by-spine-clinician(m,pat, id),
third-party-consent(consenters,pat, id),
n = 0,
m = 0,
a = (pat, id),
b = (No-org,pat,No-spcty),
Get-spine-record-third-parties(pat, id)⊆ consenters

(S5.3.2)
permits(ag,Read-spine-record-item(pat, id))←

hasActivated(ag,Agent(pat)),
hasActivated(x,One-off-consent(pat)),
count-concealed-by-spine-patient(n,a,b),
count-concealed-by-spine-clinician(m,pat, id),
third-party-consent(consenters,pat, id),
n = 0,
m = 0,
a = (pat, id),
b = (No-org,ag,No-spcty),
Get-spine-record-third-parties(pat, id)⊆ consenters

(S5.3.3)
permits(cli,Read-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
hasActivated(x,One-off-consent(pat)),
Get-spine-record-org(pat, id) = org,
Get-spine-record-author(pat, id) = cli



178 Policy rules for NHS electronic health record system

(S5.3.4)
permits(cli,Read-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
hasActivated(x,One-off-consent(pat)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
count-concealed-by-spine-patient(n,a,b),
n = 0,
a = (pat, id),
b = (org,cli,spcty),
Get-spine-record-subjects(pat, id)⊆ Permitted-subjects(spcty)

(S5.3.5)
permits(cli,Read-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
hasActivated(x,One-off-consent(pat)),
canActivate(cli,Treating-clinician(pat,org,spcty)),
hasActivated(y,Authenticated-express-consent(pat,cli)),
Get-spine-record-subjects(pat, id)⊆ Permitted-subjects(spcty)

(S5.3.6)
permits(cli,Force-read-spine-record-item(pat, id))←

hasActivated(cli,Spine-clinician(ra,org,spcty)),
canActivate(cli,Treating-clinician(pat,org,spcty))

A.2 Policy for Patient Demographic Service

A.2.1 Main roles

Administrator

(P1.1.1)
canActivate(adm,PDS-manager())←

hasActivated(x,Register-PDS-manager(adm)),
no-main-role-active(adm)

(P1.1.2)
canDeactivate(adm,adm,PDS-manager())←

(P1.1.3)
isDeactivated(adm,PDS-manager())←

isDeactivated(x,Register-PDS-manager(adm))

(P1.1.4)
count-PDS-manager-activations(count〈u〉,user)←

hasActivated(user,PDS-manager())

(P1.1.5)
canActivate(adm1,Register-PDS-manager(adm2))←

hasActivated(adm1,PDS-manager()),
pds-admin-regs(0,adm2)
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(P1.1.6)
canDeactivate(adm1,x,Register-PDS-manager(adm2))←

hasActivated(adm1,PDS-manager())

(P1.1.7)
pds-admin-regs(count〈x〉,adm)←

hasActivated(x,Register-PDS-manager(adm))

Patient

(P1.2.1)
canActivate(pat,Patient())←

hasActivated(x,Register-patient(pat)),
no-main-role-active(pat)

(P1.2.2)
canDeactivate(pat,pat,Patient())←

(P1.2.3)
isDeactivated(pat,Patient())←

isDeactivated(x,Register-patient(pat))

(P1.2.4)
count-patient-activations(count〈u〉,user)←

hasActivated(user,Patient())

Agent

(P1.3.1)
canActivate(ag,Agent(pat))←

hasActivated(x,Register-patient(ag)),
no-main-role-active(ag),
Spine♦Spine.canActivate(ag,Agent(pat))

(P1.3.2)
canDeactivate(ag,ag,Agent(pat))←

(P1.3.3)
isDeactivated(ag,Agent(pat))←

isDeactivated(x,Register-patient(ag))

(P1.3.4)
isDeactivated(ag,Agent(pat))←

isDeactivated(x,Register-patient(pat))

(P1.3.5)
count-agent-activations(count〈u〉,user)←

hasActivated(user,Agent(pat))
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NHS staff

(P1.4.1)
canActivate(x,Professional-user(ra,org))←

no-main-role-active(cli),
ra.hasActivated(x,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

(P1.4.2)
canActivate(x,Professional-user(ra,org))←

no-main-role-active(cli),
ra♦ra.hasActivated(x,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

(P1.4.3)
canActivate(x,Professional-user(ra,org))←

no-main-role-active(cg),
ra.hasActivated(x,NHS-Caldicott-guardian-cert(org,cg,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

(P1.4.4)
canActivate(x,Professional-user(ra,org))←

no-main-role-active(cg),
ra♦ra.hasActivated(x,NHS-Caldicott-guardian-cert(org,cg,start,end)),
canActivate(ra,Registration-authority()),
Current-time() ∈ [start,end]

(P1.4.5)
canDeactivate(x,x,Professional-user(ra,org))←

(P1.4.6)
count-professional-user-activations(count〈u〉,user)←

hasActivated(user,Professional-user(ra,org))

Other

(P1.5.1)
no-main-role-active(user)←

count-agent-activations(n,user),
count-patient-activations(n,user),
count-PDS-manager-activations(n,user),
count-preofessional-user-activations(n,user),
n = 0

(P1.5.2)
canActivate(ra,Registration-authority())←

NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]
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(P1.5.3)
canActivate(ra,Registration-authority())←

ra♦NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

A.2.2 Patient registration

Registration

(P2.1.1)
canActivate(adm,Register-patient(pat))←

hasActivated(adm,PDS-manager()),
patient-regs(0,pat)

(P2.1.2)
canDeactivate(adm,x,Register-patient(pat))←

hasActivated(adm,PDS-manager())

(P2.1.3)
patient-regs(count〈x〉,pat)←

hasActivated(x,Register-patient(pat))

Credentials

(P2.2.1)
canReqCred(pat,PDS.hasActivated(x,Register-patient(pat)))←

hasActivated(pat,Patient())

(P2.2.2)
canReqCred(ag,PDS.hasActivated(x,Register-patient(pat)))←

hasActivated(ag,Agent(pat))

(P2.2.3)
canReqCred(usr,PDS.hasActivated(x,Register-patient(pat)))←

hasActivated(usr,Professional-user(ra,org))

(P2.2.4)
canReqCred(org,PDS.hasActivated(x,Register-patient(pat)))←

ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority())

(P2.2.5)
canReqCred(org,PDS.hasActivated(x,Register-patient(pat)))←

org♦ra.hasActivated(x,NHS-health-org-cert(org,start,end)),
canActivate(ra,Registration-authority())

(P2.2.6)
canReqCred(ra,PDS.hasActivated(x,Register-patient(pat)))←

canActivate(ra,Registration-authority())

(P2.2.7)
canReqCred(Spine,PDS.hasActivated(x,Register-patient(pat)))←
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A.3 Policy for Addenbrooke’s Hospital

A.3.1 Main access roles

Clinician

(A1.1.1)
canActivate(mgr,Register-clinician(cli,spcty))←

hasActivated(mgr,HR-mgr()),
clinician-regs(0,cli,spcty)

(A1.1.2)
canDeactivate(mgr,x,Register-clinician(cli,spcty))←

hasActivated(mgr,HR-mgr())

(A1.1.3)
clinician-regs(count〈x〉,cli,spcty)←

hasActivated(x,Register-clinician(cli,spcty))

(A1.1.4)
canActivate(cli,Clinician(spcty))←

hasActivated(x,Register-clinician(cli,spcty)),
no-main-role-active(cli)

(A1.1.5)
canDeactivate(cli,cli,Clinician(spcty))←

(A1.1.6)
isDeactivated(cli,Clinician(spcty))←

isDeactivated(x,Register-clinician(cli,spcty))

(A1.1.7)
count-clinician-activations(count〈u〉,user)←

hasActivated(user,Clinician(spcty))

Caldicott Guardian

(A1.2.1)
canActivate(mgr,Register-Caldicott-guardian(cg))←

hasActivated(mgr,HR-mgr()),
cg-regs(0,cg)

(A1.2.2)
canDeactivate(mgr,x,Register-Caldicott-guardian(cg))←

hasActivated(mgr,HR-mgr())

(A1.2.3)
cg-regs(count〈x〉,cg)←

hasActivated(x,Register-Caldicott-guardian(cg))
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(A1.2.4)
canActivate(cg,Caldicott-guardian())←

hasActivated(x,Register-Caldicott-guardian(cg)),
no-main-role-active(cg)

(A1.2.5)
canDeactivate(cg,cg,Caldicott-guardian())←

(A1.2.6)
isDeactivated(cg,Caldicott-guardian())←

isDeactivated(x,Register-Caldicott-guardian(cg))

(A1.2.7)
count-caldicott-guardian-activations(count〈u〉,user)←

hasActivated(user,Caldicott-guardian())

HR manager

(A1.3.1)
canActivate(mgr,Register-HR-mgr(mgr2))←

hasActivated(mgr,HR-mgr()),
hr-manager-regs(0,mgr)

(A1.3.2)
canDeactivate(mgr,x,Register-HR-mgr(mgr2))←

hasActivated(mgr,HR-mgr())

(A1.3.3)
hr-manager-regs(count〈x〉,mgr)←

hasActivated(x,Register-HR-mgr(mgr))

(A1.3.4)
canActivate(mgr,HR-mgr())←

hasActivated(x,Register-HR-mgr(mgr)),
no-main-role-active(mgr)

(A1.3.5)
canDeactivate(mgr,mgr,HR-mgr())←

(A1.3.6)
isDeactivated(mgr,HR-mgr())←

isDeactivated(x,Register-HR-mgr(mgr))

(A1.3.7)
count-hr-mgr-activations(count〈u〉,user)←

hasActivated(user,HR-mgr())
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Receptionist

(A1.4.1)
canActivate(mgr,Register-receptionist(rec))←

hasActivated(mgr,HR-mgr()),
receptionist-regs(0,rec)

(A1.4.2)
canDeactivate(mgr,x,Register-receptionist(rec))←

hasActivated(mgr,HR-mgr())

(A1.4.3)
receptionist-regs(count〈x〉,rec)←

hasActivated(x,Register-receptionist(rec))

(A1.4.4)
canActivate(rec,Receptionist())←

hasActivated(x,Register-receptionist(rec))

(A1.4.5)
canDeactivate(rec,rec,Receptionist())←

(A1.4.6)
isDeactivated(rec,Receptionist())←

isDeactivated(x,Register-receptionist(rec)),
no-main-role-active(rec)

(A1.4.7)
count-receptionist-activations(count〈u〉,user)←

hasActivated(user,Receptionist())

Patient

(A1.5.1)
canActivate(rec,Register-patient(pat))←

hasActivated(rec,Receptionist()),
patient-regs(0,pat)

(A1.5.2)
canDeactivate(rec,x,Register-patient(pat))←

hasActivated(rec,Receptionist())

(A1.5.3)
patient-regs(count〈x〉,pat)←

hasActivated(x,Register-patient(pat))

(A1.5.4)
canActivate(pat,Patient())←

hasActivated(x,Register-patient(pat)),
no-main-role-active(pat),
PDS♦PDS.hasActivated(y,Register-patient(pat))
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(A1.5.5)
canDeactivate(pat,pat,Patient())←

(A1.5.6)
isDeactivated(pat,Patient())←

isDeactivated(x,Register-patient(pat))

(A1.5.7)
count-patient-activations(count〈u〉,user)←

hasActivated(user,Patient())

Agent

(A1.6.1)
canActivate(agent,Agent(pat))←

hasActivated(x,Register-agent(agent,pat)),
PDS♦PDS.hasActivated(x,Register-patient(agent)),
no-main-role-active(agent)

(A1.6.2)
canActivate(agent,Agent(pat))←

canActivate(pat,Patient()),
no-main-role-active(agent),
PDS♦PDS.hasActivated(x,Register-patient(agent)),
Spine♦Spine.canActivate(agent,Agent(pat))

(A1.6.3)
isDeactivated(ag,Agent(pat))←

isDeactivated(x,Register-agent(ag,pat)),
other-agent-regs(0,x,ag,pat)

(A1.6.4)
count-agent-activations(count〈u〉,user)←

hasActivated(user,Agent(pat))

(A1.6.5)
canActivate(pat,Register-agent(agent,pat))←

hasActivated(pat,Patient())

(A1.6.6)
canActivate(cg,Register-agent(agent,pat))←

hasActivated(cg,Caldicott-guardian()),
canActivate(pat,Patient())

(A1.6.7)
canDeactivate(pat,pat,Register-agent(agent,pat))←

hasActivated(pat,Patient())

(A1.6.8)
canDeactivate(cg,x,Register-agent(agent,pat))←

hasActivated(cg,Caldicott-guardian())
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(A1.6.9)
isDeactivated(x,Register-agent(agent,pat))←

isDeactivated(y,Register-patient(pat))

(A1.6.10)
other-agent-regs(count〈y〉,x,ag,pat)←

hasActivated(y,Register-agent(ag,pat)),
x 6= y

Other

(A1.7.1)
no-main-role-active(user)←

count-agent-activations(n,user),
count-caldicott-guardian-activations(n,user),
count-clinician-activations(n,user),
count-ext-treating-clinician-activations(n,user),
count-hr-mgr-activations(n,user),
count-patient-activations(n,user),
count-receptionist-activations(n,user),
count-third-party-activations(n,user),
n = 0

(A1.7.2)
canActivate(ra,Registration-authority())←

NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

(A1.7.3)
canActivate(ra,Registration-authority())←

ra♦NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

(A1.7.4)
canReqCred(x,RA-ADB.hasActivated(y,NHS-health-org-cert(org,start,end)))←

org = ADB

A.3.2 Consent and referrals

Consent to referral

(A2.1.1)
canActivate(cli1,Request-consent-to-referral(pat,ra,org,cli2,spcty2))←

hasActivated(cli1,Clinician(spcty1)),
canActivate(cli1,ADB-treating-clinician(pat, team,spcty1))

(A2.1.2)
canDeactivate(cli,cli,Request-consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(cli,Clinician(spcty))
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(A2.1.3)
canDeactivate(pat,x,Request-consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(pat,Patient())

(A2.1.4)
canDeactivate(ag,x,Request-consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(ag,Agent(pat))

(A2.1.5)
canDeactivate(cg,x,Request-consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(cg,Caldicott-guardian())

(A2.1.6)
isDeactivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))←

isDeactivated(y,Register-patient(pat))

(A2.1.7)
other-consent-to-referral-requests(count〈y〉,x,pat,ra,org,cli,spcty)←

hasActivated(y,Request-consent-to-referral(pat,ra,org,cli,spcty)),
x 6= y

(A2.1.8)
canActivate(pat,Consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(pat,Patient()),
hasActivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))

(A2.1.9)
canActivate(pat,Consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(pat,Agent(pat)),
hasActivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))

(A2.1.10)
canActivate(cg,Consent-to-referral(pat,ra,org,cli,spcty))←

hasActivated(cg,Caldicott-guardian()),
hasActivated(x,Request-consent-to-referral(pat,ra,org,cli,spcty))

(A2.1.11)
isDeactivated(x,Consent-to-referral(pat,ra,org,cli,spcty))←

isDeactivated(y,Request-consent-to-referral(pat,ra,org,cli,spcty)),
other-consent-to-referral-requests(0,y,pat,ra,org,cli,spcty)

(A2.1.12)
other-referral-consents(count〈y〉,x,pat,ra,org,cli,spcty)←

hasActivated(y,Consent-to-referral(pat,ra,org,cli,spcty)),
x 6= y
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External clinician

(A2.2.1)
canActivate(cli,Ext-treating-clinician(pat,ra,org,spcty))←

hasActivated(x,Consent-to-referral(pat,ra,org,cli,spcty)),
no-main-role-active(cli),
ra.hasActivated(y,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority())

(A2.2.2)
canActivate(cli,Ext-treating-clinician(pat,ra,org,spcty))←

hasActivated(ref ,Consent-to-referral(pat,ra,org,cli,spcty)),
no-main-role-active(cli),
ra♦ra.hasActivated(y,NHS-clinician-cert(org,cli,spcty,start,end)),
canActivate(ra,Registration-authority())

(A2.2.3)
canDeactivate(cli,cli,Ext-treating-clinician(pat,ra,org,spcty))←

(A2.2.4)
isDeactivated(cli,Ext-treating-clinician(pat,ra,org,spcty))←

isDeactivated(x,Consent-to-referral(pat,ra,org,cli2,spcty)),
other-referral-consents(0,x,pat,ra,org,cli,spcty)

(A2.2.5)
count-ext-treating-clinician-activations(count〈u〉,user)←

hasActivated(user,Ext-treating-clinician(pat,ra,org,spcty))

Third-party consent

(A2.3.1)
canActivate(pat,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Patient()),
x ∈ Get-record-third-parties(pat, id)

(A2.3.2)
canActivate(ag,Request-third-party-consent(x,pat, id))←

hasActivated(ag,Agent(pat)),
x ∈ Get-record-third-parties(pat, id)

(A2.3.3)
canActivate(cli,Request-third-party-consent(x,pat, id))←

hasActivated(cli,Clinician(spcty)),
x ∈ Get-record-third-parties(pat, id)

(A2.3.4)
canActivate(cg,Request-third-party-consent(x,pat, id))←

hasActivated(cg,Caldicott-guardian()),
x ∈ Get-record-third-parties(pat, id)
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(A2.3.5)
canDeactivate(pat,pat,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Patient())

(A2.3.6)
canDeactivate(ag,ag,Request-third-party-consent(x,pat, id))←

hasActivated(pat,Agent(pat))

(A2.3.7)
canDeactivate(cli,cli,Request-third-party-consent(x,pat, id))←

hasActivated(cli,Clinician(spcty))

(A2.3.8)
canDeactivate(cg,x,Request-third-party-consent(y,pat, id))←

hasActivated(cg,Caldicott-guardian())

(A2.3.9)
canDeactivate(x,y,Request-third-party-consent(x,pat, id))←

hasActivated(x,Third-party())

(A2.3.10)
isDeactivated(x,Request-third-party-consent(x2,pat, id))←

isDeactivated(y,Register-patient(pat))

(A2.3.11)
count-third-party-activations(count〈u〉,user)←

hasActivated(user,Third-party())

(A2.3.12)
canActivate(x,Third-party())←

hasActivated(y,Request-third-party-consent(x,pat, id)),
no-main-role-active(x),
PDS♦PDS.hasActivated(z,Register-patient(x))

(A2.3.13)
canDeactivate(x,x,Third-party())←

(A2.3.14)
other-third-party-requests(count〈y〉,x, third-party)←

hasActivated(y,Request-third-party-consent(third-party,pat, id)),
x 6= y

(A2.3.15)
isDeactivated(x,Third-party())←

isDeactivated(y,Request-third-party-consent(x,pat, id)),
other-third-party-requests(0,y,x)

(A2.3.16)
canActivate(x,Third-party-consent(x,pat, id))←

hasActivated(x,Third-party()),
hasActivated(y,Request-third-party-consent(x,pat, id))
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(A2.3.17)
canActivate(cg,Third-party-consent(x,pat, id))←

hasActivated(cg,Caldicott-guardian()),
hasActivated(y,Request-third-party-consent(x,pat, id))

(A2.3.18)
canDeactivate(x,x,Third-party-consent(x,pat, id))←

hasActivated(x,Third-party())

(A2.3.19)
canDeactivate(cg,x,Third-party-consent(x,pat, id))←

hasActivated(cg,Caldicott-guardian())

(A2.3.20)
isDeactivated(x,Third-party-consent(x,pat, id))←

isDeactivated(y,Register-patient(pat))

(A2.3.21)
third-party-consent(group〈consenter〉,pat, id)←

hasActivated(x,Third-party-consent(consenter,pat, id))

A.3.3 LR and clinical teams

Head of team

(A3.1.1)
canActivate(hd,Head-of-team(team))←

hasActivated(x,Register-head-of-team(hd, team))

(A3.1.2)
canDeactivate(hd,hd,Head-of-team(team))←

(A3.1.3)
isDeactivated(hd,Head-of-team(team))←

isDeactivated(x,Register-head-of-team(hd, team))

(A3.1.4)
canActivate(mgr,Register-head-of-team(hd, team))←

hasActivated(mgr,HR-mgr()),
hasActivated(x,Register-team-member(hd, team,spcty)),
head-of-team-regs(0,hd, team)

(A3.1.5)
canDeactivate(mgr,x,Register-head-of-team(hd, team))←

hasActivated(mgr,HR-mgr())

(A3.1.6)
isDeactivated(x,Register-head-of-team(hd, team))←

isDeactivated(y,Register-team-member(hd, team,spcty))

(A3.1.7)
head-of-team-regs(count〈x〉,hd, team)←

hasActivated(x,Register-head-of-team(hd, team))
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Team membership

(A3.2.1)
canActivate(mgr,Register-team-member(mem, team,spcty))←

hasActivated(mgr,HR-mgr()),
canActivate(mem,Clinician(spcty)),
team-member-regs(0,mem, team,spcty)

(A3.2.2)
canActivate(hd,Register-team-member(mem, team,spcty))←

hasActivated(hd,Clinician(spcty2)),
canActivate(hd,Head-of-team(team)),
canActivate(mem,Clinician(spcty)),
team-member-regs(0,mem, team,spcty)

(A3.2.3)
canDeactivate(mgr,x,Register-team-member(mem, team,spcty))←

hasActivated(mgr,HR-mgr())

(A3.2.4)
canDeactivate(hd,x,Register-team-member(mem, team,spcty))←

hasActivated(hd,Clinician(spcty2)),
canActivate(hd,Head-of-team(team))

(A3.2.5)
isDeactivated(x,Register-team-member(mem, team,spcty))←

isDeactivated(y,Register-clinician(mem,spcty))

(A3.2.6)
canReqCred(ra,ADB.hasActivated(x,Register-team-member(cli, team,spcty)))←

ra = RA-ADB

(A3.2.7)
team-member-regs(count〈x〉,mem, team,spcty)←

hasActivated(x,Register-team-member(mem, team,spcty))

Team episode

(A3.3.1)
canActivate(rec,Register-team-episode(pat, team))←

hasActivated(rec,Receptionist()),
canActivate(pat,Patient()),
team-episode-regs(0,pat, team)

(A3.3.2)
canActivate(cli,Register-team-episode(pat, team))←

hasActivated(cli,Clinician(spcty)),
hasActivated(x,Register-team-member(cli, team,spcty)),
canActivate(pat,Patient()),
team-episode-regs(0,pat, team)
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(A3.3.3)
canDeactivate(cg,x,Register-team-episode(pat, team))←

hasActivated(cg,Caldicott-guardian())

(A3.3.4)
canDeactivate(rec,x,Register-team-episode(pat, team))←

hasActivated(rec,Receptionist())

(A3.3.5)
canDeactivate(cli,x,Register-team-episode(pat, team))←

hasActivated(cli,Clinician(spcty)),
hasActivated(x,Register-team-member(cli, team,spcty))

(A3.3.6)
isDeactivated(x,Register-team-episode(pat, team))←

isDeactivated(y,Register-patient(pat))

(A3.3.7)
team-episode-regs(count〈x〉,pat, team)←

hasActivated(x,Register-team-episode(pat, team))

Head of ward

(A3.4.1)
canActivate(cli,Head-of-ward(ward))←

hasActivated(x,Register-head-of-ward(cli,ward))

(A3.4.2)
canDeactivate(cli,cli,Head-of-ward(ward))←

(A3.4.3)
isDeactivated(cli,Head-of-ward(ward))←

isDeactivated(x,Register-head-of-ward(cli,ward))

(A3.4.4)
canActivate(mgr,Register-head-of-ward(cli,ward))←

hasActivated(mgr,HR-mgr()),
hasActivated(x,Register-ward-member(cli,ward,spcty)),
head-of-ward-regs(0,cli,ward)

(A3.4.5)
canDeactivate(mgr,x,Register-head-of-ward(cli,ward))←

hasActivated(mgr,HR-mgr())

(A3.4.6)
isDeactivated(x,Register-head-of-ward(cli,ward))←

isDeactivated(y,Register-ward-member(cli,ward,spcty))

(A3.4.7)
head-of-ward-regs(count〈x〉,cli,ward)←

hasActivated(x,Register-head-of-ward(cli,ward))
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Ward membership

(A3.5.1)
canActivate(mgr,Register-ward-member(cli,ward,spcty))←

hasActivated(mgr,HR-mgr()),
canActivate(cli,Clinician(spcty)),
ward-member-regs(0,cli,ward,spcty)

(A3.5.2)
canActivate(hd,Register-ward-member(cli,ward,spcty))←

hasActivated(cli,Clinician(spcty2)),
canActivate(hd,Head-of-ward(ward)),
canActivate(cli,Clinician(spcty)),
ward-member-regs(0,cli,ward,spcty)

(A3.5.3)
canDeactivate(mgr,x,Register-ward-member(cli,ward,spcty))←

hasActivated(mgr,HR-mgr())

(A3.5.4)
canDeactivate(hd,x,Register-ward-member(cli,ward,spcty))←

hasActivated(hd,Clinician(spcty2)),
canActivate(hd,Head-of-ward(ward))

(A3.5.5)
canReqCred(ra,ADB.hasActivated(x,Register-ward-member(cli,ward,spcty)))←

ra = RA-ADB

(A3.5.6)
isDeactivated(x,Register-ward-member(cli,ward,spcty))←

isDeactivated(y,Register-clinician(cli,spcty))

(A3.5.7)
ward-member-regs(count〈x〉,cli,ward,spcty)←

hasActivated(x,Register-ward-member(cli,ward,spcty))

Ward episode

(A3.6.1)
canActivate(rec,Register-ward-episode(pat,ward))←

hasActivated(rec,Receptionist()),
canActivate(pat,Patient()),
ward-episode-regs(0,pat,ward)

(A3.6.2)
canActivate(hd,Register-ward-episode(pat,ward))←

hasActivated(hd,Clinician(spcty)),
canActivate(hd,Head-of-ward(ward)),
canActivate(pat,Patient()),
ward-episode-regs(0,pat,ward)
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(A3.6.3)
canDeactivate(cg,x,Register-ward-episode(pat,ward))←

hasActivated(cg,Caldicott-guardian())

(A3.6.4)
canDeactivate(rec,x,Register-ward-episode(pat,ward))←

hasActivated(rec,Receptionist())

(A3.6.5)
canDeactivate(hd,x,Register-ward-episode(pat,ward))←

hasActivated(hd,Clinician(spcty)),
canActivate(hd,Head-of-ward(ward))

(A3.6.6)
isDeactivated(x,Register-ward-episode(pat,ward))←

isDeactivated(y,Register-patient(pat))

(A3.6.7)
ward-episode-regs(count〈x〉,pat,ward)←

hasActivated(x,Register-ward-episode(pat,ward))

Emergency clinician

(A3.7.1)
canActivate(cli,Emergency-clinician(pat))←

hasActivated(cli,Clinician(spcty)),
canActivate(pat,Patient())

(A3.7.2)
canDeactivate(cli,cli,Emergency-clinician(pat))←

(A3.7.3)
canDeactivate(cg,cli,Emergency-clinician(pat))←

hasActivated(cg,Caldicott-guardian())

(A3.7.4)
isDeactivated(x,Emergency-clinician(pat))←

isDeactivated(y,Register-patient(pat))

(A3.7.5)
isDeactivated(x,Emergency-clinician(pat))←

isDeactivated(x,Clinician(spcty))

(A3.7.6)
is-emergency-clinician(group〈x〉,pat)←

hasActivated(x,Emergency-clinician(pat))
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Treating clinician

(A3.8.1)
canActivate(cli,ADB-treating-clinician(pat,group,spcty))←

canActivate(cli,Clinician(spcty)),
hasActivated(x,Register-team-member(cli, team,spcty)),
hasActivated(y,Register-team-episode(pat, team)),
group = team

(A3.8.2)
canActivate(cli,ADB-treating-clinician(pat,group,spcty))←

canActivate(cli,Clinician(spcty)),
hasActivated(x,Register-ward-member(cli,ward,spcty)),
hasActivated(x,Register-ward-episode(pat,ward)),
group = ward

(A3.8.3)
canActivate(cli,ADB-treating-clinician(pat,group,spcty))←

hasActivated(cli,Emergency-clinician(pat)),
group = A-and-E,
spcty = A-and-E

A.3.4 Sealing-off data

Access restriction by clinician

(A4.1.1)
canActivate(cli,Concealed-by-clinician(pat, id,start,end))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))

(A4.1.2)
canDeactivate(cli,cli,Concealed-by-clinician(pat, id,start,end))←

hasActivated(cli,Clinician(spcty))

(A4.1.3)
canDeactivate(cli1,cli2,Concealed-by-clinician(pat, id,start,end))←

hasActivated(cli1,Clinician(spcty1)),
canActivate(cli1,ADB-treating-clinician(pat,group,spcty1)),
canActivate(cli2,ADB-treating-clinician(pat,group,spcty2))

(A4.1.4)
canDeactivate(cg,cli,Concealed-by-clinician(pat, id,start,end))←

hasActivated(cg,Caldicott-guardian())

(A4.1.5)
isDeactivated(x,Concealed-by-clinician(pat, id,start,end))←

isDeactivated(y,Register-patient(pat))
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(A4.1.6)
count-concealed-by-clinician(count〈x〉,pat, id)←

hasActivated(x,Concealed-by-clinician(pat, id,start,end)),
Current-time() ∈ [start,end]

Access restriction by patient

(A4.2.1)
canActivate(pat,Concealed-by-patient(what,who,start,end))←

hasActivated(pat,Patient()),
count-concealed-by-patient(n,pat),
what = (pat, ids,authors,groups,subjects, from-time, to-time),
who = (orgs1,readers1,groups1,spctys1),
n < 100

(A4.2.2)
canActivate(ag,Concealed-by-patient(what,who,start,end))←

hasActivated(ag,Agent(pat)),
count-concealed-by-patient(n,pat),
what = (pat, ids,authors,groups,subjects, from-time, to-time),
who = (orgs1,readers1,groups1,spctys1),
n < 100

(A4.2.3)
canDeactivate(pat,x,Concealed-by-patient(what,whom,start,end))←

hasActivated(pat,Patient()),
π7

1(what) = pat

(A4.2.4)
canDeactivate(ag,x,Concealed-by-patient(what,whom,start,end))←

hasActivated(ag,Agent(pat)),
π7

1(what) = pat

(A4.2.5)
canDeactivate(cg,x,Concealed-by-patient(what,whom,start,end))←

hasActivated(cg,Caldicott-guardian())

(A4.2.6)
isDeactivated(x,Concealed-by-patient(what,whom,start,end))←

isDeactivated(y,Register-patient(pat)),
π7

1(what) = pat

(A4.2.7)
count-concealed-by-patient(count〈y〉,pat)←

hasActivated(x,Concealed-by-patient(y)),
what = (pat, ids,authors,groups,subjects, from-time, to-time),
who = (orgs1,readers1,groups1,spctys1),
y = (what,who,start,end)
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(A4.2.8)
count-concealed-by-patient2(count〈x〉,a,b)←

hasActivated(x,Concealed-by-patient(what,whom,start,end)),
a = (pat, id),
b = (org,reader,group,spcty),
what = (pat, ids,authors,groups,subjects, from-time, to-time),
whom = (orgs1,readers1,groups1,spctys1),
Get-record-author(pat, id) ∈ authors,
Get-record-group(pat, id) ∈ groups,
sub ∈ Get-record-subjects(pat, id),
sub ∈ subjects,
Get-record-time(pat, id) ∈ [from-time, to-time],
id ∈ ids,
org ∈ orgs1,
reader ∈ readers1,
group ∈ groups1,
spcty ∈ spctys1,
Current-time() ∈ [start,end]

A.3.5 Access permissions

Adding item

(A5.1.1)
permits(cli,Add-record-item(pat))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))

(A5.1.2)
permits(cli,Add-record-item(pat))←

hasActivated(cli,Ext-treating-clinician(pat,ra,org,spcty))

(A5.1.3)
permits(ag,Annotate-record-item(pat, id))←

hasActivated(ag,Agent(pat))

(A5.1.4)
permits(pat,Annotate-record-item(pat, id))←

hasActivated(pat,Patient())

(A5.1.5)
permits(pat,Annotate-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))

Reading item IDs

(A5.2.1)
permits(pat,Get-record-item-ids(pat))←

hasActivated(pat,Patient())
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(A5.2.2)
permits(ag,Get-record-item-ids(pat))←

hasActivated(ag,Agent(pat))

(A5.2.3)
permits(cli,Get-record-item-ids(pat))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))

Reading items

(A5.3.1)
permits(ag,Read-record-item(pat, id))←

hasActivated(ag,Agent(pat)),
count-concealed-by-patient2(n,a,b),
count-concealed-by-clinician(m,pat, id),
third-party-consent(consenters,pat, id),
a = (pat, id),
b = (No-org,ag,No-group,No-spcty),
n = 0,
m = 0,
Get-record-third-parties(pat, id)⊆ consenters

(A5.3.2)
permits(cli,Read-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
Get-record-author(pat, id) = cli

(A5.3.3)
permits(cli,Read-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
hasActivated(x,Register-team-member(cli, team,spcty)),
Get-record-group(pat, id) = team

(A5.3.4)
permits(cli,Read-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty)),
count-concealed-by-patient2(n,a,b),
n = 0,
a = (pat, id),
b = (ADB,cli,group,spcty),
Get-record-subjects(pat, id)⊆ Permitted-subjects(spcty)
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(A5.3.5)
permits(cli,Read-record-item(pat, id))←

hasActivated(cli,Ext-treating-clinician(pat,ra,org,spcty)),
count-concealed-by-patient2(n,a,b),
n = 0,
a = (pat, id),
b = (org,cli,Ext-group,spcty),
Get-record-subjects(pat, id)⊆ Permitted-subjects(spcty)

(A5.3.6)
permits(pat,Read-record-item(pat, id))←

hasActivated(pat,Patient()),
count-concealed-by-patient2(n,a,b),
count-concealed-by-clinician(m,pat, id),
third-party-consent(consenters,pat, id),
n = 0,
m = 0,
a = (pat, id),
b = (No-org,pat,No-group,No-spcty),
Get-record-third-parties(pat, id)⊆ consenters

(A5.3.7)
permits(cg,Force-read-record-item(pat, id))←

hasActivated(cg,Caldicott-guardian())

(A5.3.8)
permits(cli,Force-read-record-item(pat, id))←

hasActivated(cli,Clinician(spcty)),
canActivate(cli,ADB-treating-clinician(pat,group,spcty))

A.4 Policy for Addenbrooke’s Registration Authority

A.4.1 Main roles

Administrator

(R1.1.1)
canActivate(mgr,Register-RA-manager(mgr2))←

hasActivated(mgr,RA-manager()),
ra-manager-regs(0,mgr2)

(R1.1.2)
canDeactivate(mgr,x,Register-RA-manager(mgr2))←

hasActivated(mgr,RA-manager())

(R1.1.3)
ra-manager-regs(count〈x〉,mgr)←

hasActivated(x,Register-RA-manager(mgr))
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(R1.1.4)
canActivate(mgr,RA-manager())←

hasActivated(x,Register-RA-manager(mgr))

(R1.1.5)
canDeactivate(mgr,mgr,RA-manager())←

(R1.1.6)
isDeactivated(mgr,RA-manager())←

isDeactivated(x,Register-RA-manager(mgr))

Other

(R1.2.1)
canReqCred(x,NHS.hasActivated(x,NHS-registration-authority(ra,start,end)))←

ra = RA-ADB

(R1.2.2)
canActivate(srv,NHS-service())←

canActivate(srv,Registration-authority())

(R1.2.3)
canActivate(srv,NHS-service())←

srv = Spine

(R1.2.4)
canActivate(ra,Registration-authority())←

NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

(R1.2.5)
canActivate(ra,Registration-authority())←

ra♦NHS.hasActivated(x,NHS-registration-authority(ra,start,end)),
Current-time() ∈ [start,end]

A.4.2 NHS staff authentication

Clinician

(R2.1.1)
canActivate(mgr,NHS-clinician-cert(org,cli,spcty,start,end))←

hasActivated(mgr,RA-manager()),
hasActivated(y,NHS-health-org-cert(org,start2,end2)),
start ∈ [start2,end2],
end ∈ [start2,end2],
start < end

(R2.1.2)
canDeactivate(mgr,x,NHS-clinician-cert(org,cli,spcty,start,end))←

hasActivated(mgr,RA-manager())
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(R2.1.3)
isDeactivated(mgr,NHS-clinician-cert(org,cli,spcty,start,end))←

isDeactivated(x,NHS-health-org-cert(org,start2,end2)),
other-NHS-health-org-regs(0,x,org,start2,end2),
start ∈ [start2,end2],
end ∈ [start2,end2],
start < end

(R2.1.4)
canReqCred(org,RA-ADB.hasActivated(x,

NHS-clinician-cert(org,cli,spcty,start,end)))←
hasActivated(y,NHS-health-org-cert(org,start2,end2)),
Current-time() ∈ [start2,end2]

(R2.1.5)
canReqCred(e,RA-ADB.hasActivated(x,

NHS-clinician-cert(org,cli,spcty,start,end)))←
canActivate(e,NHS-service())

(R2.1.6)
canReqCred(cli,RA-ADB.hasActivated(x,

NHS-clinician-cert(org,cli,spcty,start,end)))←

Caldicott Guardian

(R2.2.1)
canActivate(mgr,NHS-Caldicott-guardian-cert(org,cg,start,end))←

hasActivated(mgr,RA-manager()),
hasActivated(x,NHS-health-org-cert(org,start2,end2)),
start ∈ [start2,end2],
end ∈ [start2,end2],
start < end

(R2.2.2)
canDeactivate(mgr,x,NHS-Caldicott-guardian-cert(org,cg,start,end))←

hasActivated(mgr,RA-manager())

(R2.2.3)
isDeactivated(mgr,NHS-Caldicott-guardian-cert(org,cg,start,end))←

isDeactivated(x,NHS-health-org-cert(org,start2,end2)),
other-NHS-health-org-regs(0,x,org,start2,end2),
start ∈ [start2,end2],
end ∈ [start2,end2],
start < end

(R2.2.4)
canReqCred(e,RA-ADB.hasActivated(x,

NHS-Caldicott-guardian-cert(org,cg,start,end)))←
e = cg
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(R2.2.5)
canReqCred(e,RA-ADB.hasActivated(x,

NHS-Caldicott-guardian-cert(org,cg,start,end)))←
hasActivated(y,NHS-health-org-cert(org,start2,end2)),
e = org,
Current-time() ∈ [start2,end2]

(R2.2.6)
canReqCred(e,RA-ADB.hasActivated(x,

NHS-Caldicott-guardian-cert(org,cg,start,end)))←
canActivate(e,NHS-service())

Health organisation

(R2.3.1)
canActivate(mgr,NHS-health-org-cert(org,start,end))←

hasActivated(mgr,RA-manager())

(R2.3.2)
canDeactivate(mgr,x,NHS-health-org-cert(org,start,end))←

hasActivated(mgr,RA-manager())

(R2.3.3)
other-NHS-health-org-regs(count〈y〉,x,org,start,end)←

hasActivated(y,NHS-health-org-cert(org,start2,end2)),
start ∈ [start2,end2],
end ∈ [start2,end2],
start < end,
x 6= y∨ start 6= start2∨ end 6= end2

(R2.3.4)
canReqCred(e,RA-ADB.hasActivated(x,NHS-health-org-cert(org,start,end)))←

hasActivated(y,NHS-Caldicott-guardian-cert(org,cg,start2,end2)),
Current-time() ∈ [start2,end2],
e = cg

(R2.3.5)
canReqCred(e,RA-ADB.hasActivated(x,NHS-health-org-cert(org,start,end)))←

hasActivated(y,NHS-clinician-cert(org,cli,spcty,start2,end2)),
Current-time() ∈ [start2,end2],
e = cli

(R2.3.6)
canReqCred(e,RA-ADB.hasActivated(x,NHS-health-org-cert(org,start,end)))←

e = org

(R2.3.7)
canReqCred(e,RA-ADB.hasActivated(x,NHS-health-org-cert(org2,start,end)))←

ra.hasActivated(y,NHS-health-org-cert(org,start2,end2)),
canActivate(ra,Registration-authority()),
e = org
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(R2.3.8)
canReqCred(e,RA-ADB.hasActivated(x,NHS-health-org-cert(org2,start,end)))←

org♦ra.hasActivated(y,NHS-health-org-cert(org,start2,end2)),
canActivate(ra,Registration-authority()),
e = org

(R2.3.9)
canReqCred(e,RA-ADB.hasActivated(x,NHS-health-org-cert(org,start,end)))←

canActivate(e,NHS-service())

A.4.3 Workgroup management

(R3.1.1)
canActivate(cli,Workgroup-member(org,group,spcty))←

hasActivated(x,NHS-health-org-cert(org,start,end)),
org♦org.hasActivated(x,Register-team-member(cli,group,spcty)),
Current-time() ∈ [start,end]

(R3.1.2)
canActivate(cli,Workgroup-member(org,group,spcty))←

hasActivated(x,NHS-health-org-cert(org,start,end)),
org♦org.hasActivated(x,Register-ward-member(cli,group,spcty)),
Current-time() ∈ [start,end]

(R3.1.3)
canReqCred(Spine,RA-ADB.canActivate(cli,

Workgroup-member(org,group,spcty)))←
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