
Technical Report
Number 638

Computer Laboratory

UCAM-CL-TR-638
ISSN 1476-2986

Optimistic Generic Broadcast

Piotr Zieliński

July 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 Piotr Zieliński

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Optimistic Generic Broadcast

Piotr Zieliński

University of Cambridge
Computer Laboratory

piotr.zielinski@cl.cam.ac.uk

Abstract

We consider an asynchronous system with the Ω failure detector, and investi-
gate the number of communication steps required by various broadcast protocols in
runs in which the leader does not change. Atomic Broadcast, used for example in
state machine replication, requires three communication steps. Optimistic Atomic
Broadcast requires only two steps if all correct processes receive messages in the same
order. Generic Broadcast requires two steps if no messages conflict. We present an
algorithm that subsumes both of these approaches and guarantees two-step delivery
if all conflicting messages are received in the same order, and three-step delivery
otherwise. Internally, our protocol uses two new algorithms. First, a Consensus
algorithm which decides in one communication step if all proposals are the same,
and needs two steps otherwise. Second, a method that allows us to run infinitely
many instances of a distributed algorithm, provided that only finitely many of them
are different. We assume that fewer than a third of all processes are faulty (n > 3f).

1 Introduction

State machine replication [7] is a common way of increasing fault-tolerance of client-
server systems. As opposed to centralized systems, where clients send requests to a single
server, in this approach, each request is broadcast to a group of servers. In order for this
approach to work, client requests must be delivered to all the servers in the same order.
The broadcast primitive that ensures this property is called Uniform Atomic Broadcast1.

We consider an asynchronous system with the Ω leader oracle [3], and investigate the
number of communication steps required by various broadcast protocols in runs in which
the leader does not change. Atomic Broadcast is expensive in the sense that it requires
three communication steps: one for the client request to reach the servers and two for
the servers to agree on the order of the requests [4, 10, 12]. Two approaches have been
proposed in the literature to deal with this problem: Optimistic Atomic Broadcast and
Generic Broadcast.

1“Uniform” abstractions offer guarantees to all processes as opposed to only correct ones. All ab-
stractions considered in this paper are uniform, so from now on we will omit this word from abstraction
names.

3

Algorithm
no conflicting

messages
all messages
same order

conflicting
messages
same order

general
scenario

Chandra and Toueg [3] 3 3 3 3
Opt. Atomic Broadcast [14] 4 2 4 4
Generic Broadcast [16] 2 4 4 4
This paper 2 2 2 3

Figure 1: Latency degree comparison of several broadcast algorithms.

Optimistic Atomic Broadcast [14] takes advantage of the fact that in many networks
messages tend to arrive at different processes in the same order. Protocols implementing
this primitive are able to deliver messages in two communication steps as long as all
processes receive messages in the same order.

Generic Broadcast [1, 16] introduces a binary conflict relation on messages, and re-
quires only that conflicting messages are delivered in the same order by all processes. For
example, two “read” requests or any two requests operating on unrelated objects are non-
conflicting and can be delivered in different orders. In runs without conflicting messages,
Generic Broadcast implementations can deliver all messages in two steps.

In this paper, we present an algorithm that implements both of these approaches at
the same time. Optimistic Generic Broadcast, as we call it, guarantees message delivery
in two communication steps if all correct processes receive all conflicting messages in the
same order. When this condition does not hold, all messages are delivered within three
communication steps. Both of these latencies match the respective lower bounds [10, 16].
Our algorithm requires that fewer than a third of all processes are incorrect (n > 3f),
which is necessary to deliver messages in two steps [15].

Fig. 1 gives a short comparison of several algorithms. We consider four scenarios:
without conflicting messages, with correct processes receiving all messages in the same
order, with correct processes receiving conflicting messages in the same order, and with
no restrictions. For each of these scenarios, Fig. 1 shows the number of communication
steps required to deliver messages, formally known as latency degree [17]. The comparison
shows that our algorithm is, in terms of latency, strictly better than the other protocols.
This remains true even if we ignore the third column, which is specific to our algorithm.

Our Generic Broadcast protocol uses a new Consensus algorithm. If the leader is
correct and does not change, this algorithm decides in one communication step if all
proposals are the same, and in two steps otherwise. In the literature, algorithms have been
proposed that satisfy only the first condition [2], only the second condition [3, 9, 11, 17],
or both but the first only for the privileged value [6]. To the best of our knowledge, the
Consensus algorithm presented in this paper is the first to meet both conditions fully.

The paper is structured in the following way. Section 2 introduces our asynchronous
system model, and gives precise definitions of Consensus, Atomic Broadcast, and Generic
Broadcast. Sections 3 and 4 describe our Optimistic Generic Broadcast algorithm. Sec-
tion 5 presents the implementation of One-Two Consensus. Finally, Section 6 shows how
to implement infinitely many Consensus instances at the same time, which is used by
our Generic Broadcast algorithm. Correctness of the presented algorithms is only argued
informally; for rigorous proofs, see the appendix.

4

2 System Model

Our system model consists of n processes, out of which at most f can fail by crashing.
We assume that less than a third of all the processes are faulty (n > 3f). Processes
communicate through asynchronous reliable channels, that is, there is no time limit on
message transmission time, and messages between correct processes never get lost.

We assume that each process is equipped with an unreliable leader oracle Ω, which
eventually outputs the same correct leader at all correct processes. Theorem A.1 shows
that Ω is the weakest failure detector that allows us solve (Optimistic) Generic Broadcast
in an asynchronous system, provided at least one pair of messages conflict. In the special
case when no messages conflict, Generic Broadcast becomes identical to Uniform Reliable
Broadcast [8].

In the Consensus problem, processes submit proposals and are required to eventually
agree on one of them. Formally, we require the following properties:

Uniform Validity. If a process decides on x, then some process proposed x.

Uniform Agreement. No two processes decide differently.

Termination. If all correct processes propose, then they will eventually de-
cide.

In Atomic Broadcast, processes broadcast messages, which are delivered by all processes
in the same order. Formally [5],

Validity. If a correct process broadcasts a message m, then all correct pro-
cesses will eventually deliver m.

Uniform Agreement. If a process delivers a message m, then all correct
processes eventually deliver m.

Uniform Integrity. For any message m, every process delivers m at most
once, and only if m was previously broadcast.

Uniform Total Order. If some process delivers message m′ after message
m, then every process delivers m′ only after it has delivered m.

Generic Broadcast is identical to Atomic Broadcast, except that only conflicting messages
must be delivered in the same order:

Uniform Partial Order. If some process delivers message m′ after message
m conflicting with m′, then every process delivers m′ only after it has
delivered m.

The notion of conflict is captured by a binary conflict relation on the set of all possible
messages, which is a parameter of the problem [16]. For example, one might consider a
relation on read and write requests in which all pairs of messages conflict unless both of
them are reads. We assume that the conflict relation and therefore the (infinite) set of all
possible messages are both known to all processes in advance [1, 16].

5

3 Basic Generic Broadcast Algorithm

We say that a run is stable if the (correct) leader output by the Ω failure detector is
the same at all correct processes and never changes. In this section, we will present a
simplified version of our Generic Broadcast algorithm, which is correct in stable runs with
correct senders but might not make progress in other runs. In Section 4, we will show
how to extend this algorithm to obtain a fully correct Generic Broadcast implementation.

3.1 Partial Order on Messages

Our algorithm operates by making processes agree on the delivery order of each pair of
conflicting messages. More precisely, processes cooperate in building a partial order “→”
on conflicting messages and deliver messages in any order consistent with this partial
order. For any two messages m and m′, relation m → m′ requires m to be delivered
before m′. Since non-conflicting messages can be delivered in any order, the relation “→”
is defined only for pairs of messages {m,m′} that conflict. For these, we expect that
eventually either m→ m′ or m′ → m.

The following diagram shows an example with four messages. All pairs of messages
conflict, except for m2 and m3, which can be delivered in different orders by different
processes.

m1
- m2

m3

?
- m4

?
-

m1
- m2

m3

?
- m4

.................-

Processes deliver messages in any order consistent with the partial order “→”. In the
first example, “→” is defined for all pairs of conflicting messages. Processes can deliver
the four messages in one of two orders m1,m2,m3,m4 or m1,m3,m2,m4, both consistent
with “→”. Messages m2 and m3 can be delivered in different orders by different processes;
this does not violate the Partial Order property because these messages do not conflict.

In the second example, the relation between conflicting messages m2 and m4 is not
known (yet). As a result, none of them can be delivered. However, whatever the order of
m2 and m4 will be, one of the orders: m1,m3,m2,m4 and m1,m3,m4,m2 will be consistent
with “→”. These two orders share a common prefix m1,m3, so messages m1 and m3 can
be delivered straight away.

Another way of looking at the delivery process is realizing that m1 can be delivered
because m1 → m for all m 6= m1. After m1 has been delivered, we can deliver m3 because
m3 → m for all undelivered m’s conflicting with m3. Conflicting messages m2 and m4

will be delivered only when their order is known.

3.2 Basic Algorithm

In our algorithm, processes agree on the partial order “→” by using Consensus to agree on
the delivery order of every pair of conflicting messages. In other words, for each unordered
pair {m,m′} of conflicting messages, we use a separate instance of Consensus. In each

6

1 when receive(m) do
2 for all possible non-received messages m′ conflicting with m do
3 firstm,m′ .propose(m)

4 when firstm,m′ .decide(m) do
5 set m→ m′

6 when m is undelivered and
7 m→ m′ for all undelivered messages m′ conflicting with m do
8 deliver(m)

Figure 2: Basic Generic Broadcast algorithm.

such instance firstm,m′ , each process p proposes the message m or m′ that arrived at p
first.

The resulting partial order is built based on decisions of the Consensus instances
firstm,m′ . If the instance decides on m, then m is deemed to be the first message of the
two (m → m′). Hence, if the instance firstm,m′ = firstm′,m decides on m′, then m′ → m.
Messages are delivered in an order consistent with “→”. Section 4 will explain why cycles
do not appear in stable runs, and explain how to deal with them in other runs.

The basic algorithm is shown in Fig. 2. Senders broadcast their messages using ordi-
nary broadcast. When a process receives a message m, it proposes m to instances firstm,m′

for all messages m′ conflicting with m that have not been received (yet). In other words,
the process proposes m to precede all such messages m′ in the delivery order. An unde-
livered message m is delivered once m → m′ holds for all possible undelivered messages
m′ conflicting with m.

Since the set of all messages is usually infinite, the receive(m) action involves executing
infinitely many instances of Consensus. Section 6 will show how to accomplish this with
finite resources. Until then, we will stick with the “infinite” version of the algorithm
because it is easier to understand.

The algorithm satisfies Uniform Integrity and Uniform Partial Order. For the former,
we assume the existence of an artificial message ⊥, which is never sent and conflicts with
all other messages. Therefore, delivering any message m requires m → ⊥, which means
that some process must have proposed m to firstm,⊥, so some process must have broadcast
m.

To prove Uniform Partial Order, we will assume, to derive a contradiction, that con-
flicting messages m and m′ are delivered in different orders at different processes. This
would mean that m → m′ at one of the processes, and m′ → m at another, which is
impossible by the Uniform Agreement property of the underlying Consensus.

3.3 Delivery Latency

In this section, we will explain why, in stable runs, the basic algorithm delivers all messages
in three communication steps. We will also see that if, in addition, all conflicting messages
arrive at all correct processes in the same order, then all these messages are delivered in
two communication steps.

We assume that the underlying Consensus algorithm satisfies the following two prop-

7

erties:

C1: In stable runs in which all correct processes propose the same value, the decision
is made one communication step after all correct processes proposed.

C2: In stable runs, all correct processes decide on the value proposed by the leader
two communication steps after the leader proposed (even if other processes have
not proposed).

Section 5 presents a Consensus algorithm with these properties.
Any message broadcast by a correct process is received by the leader in one commu-

nication step. Property C2 ensures that the order is decided two communication steps
later, giving three communication steps in total for delivery latency. If all correct pro-
cesses receive conflicting messages in the same order, then they propose the same order to
Consensus instances. Therefore, Property C1 implies that decision will be made in one
communication step, giving two communication steps in total for delivery latency.

4 Full Generic Broadcast Algorithm

Before presenting the full version of the algorithm, we will highlight two main problems
with the basic version in unstable runs.

4.1 Cycles

Cycles in the relation “→” built by the basic algorithm lead to a deadlock. In stable runs,
cycles do not appear because Property C2 ensures that “→” reflects the linear order of
message reception at the leader. In unstable runs, however, different parts of the “→”
relation might have been proposed by different processes.

As an example, consider a system with three processes p1, p2, p3. Each of these
processes receives three messages m1, m2, m3 in a different order:

p1 : m1,m2,m3 executes firstm1,m2
.propose(m1),

p2 : m2,m3,m1 executes firstm2,m3
.propose(m2),

p3 : m3,m1,m2 executes firstm3,m1
.propose(m3).

If all of the above proposals become decisions, then the cycle

m1 → m2 → m3 → m1

will be formed, and as a result none of these messages will ever be delivered.
To cope with cycles, we introduce the notion of blocked messages. We say that a

message is blocked if it belongs to a cycle, or it is a successor of a blocked message. In
our example, all three messages are blocked, and any message m4 with, say, m2 → m4

would be blocked as well. Obviously, blocked messages will never be delivered by the
basic algorithm. In the full version of the algorithm, we will sometimes deliver blocked
messages to break cycles and avoid deadlocks.

8

4.2 Faulty Senders

Another problem with the basic algorithm are faulty senders. If a sender crashes, then its
messages might reach only a subset of the correct processes. For Consensus instances, this
means that not all the correct processes propose, and therefore it can happen that only
some of the correct processes decide. Since these decisions are directly related to message
deliveries, the Uniform Agreement property of Generic Broadcast might be violated.

A common solution to this problem is to make processes rebroadcast every received
message, thereby implementing Non-Uniform Reliable Broadcast [7]. Thus, if a correct
process receives a message, then all correct processes eventually will. As a result, all
correct processes will propose, decide, and deliver the message.

Therefore, to ensure Uniform Agreement, it is sufficient to guarantee that every de-
livered message has been received by at least one correct process. For this reason we
introduce the notion of a process “seeing” a message. We say that a process sees a mes-
sage m if it has received, in some instance of Consensus, a message containing m (either
directly from the sender or from other processes). Recall that a message is delivered only
if at least one Consensus instance decided on it. Since the decision of any Consensus in-
stance must have been seen by at least one correct process (Lemma A.2), every delivered
message has been seen by a correct process, which is exactly what we need.

The problem discussed here could also be solved by making the senders use Uniform
Reliable Broadcast [8]. This abstraction, however, requires two communication steps,
which would slow our algorithm down by one step.

4.3 Algorithm

Fig. 3 shows the full version of our algorithm. To resolve cycles and be able to deliver
blocked messages, we use an auxiliary Atomic Broadcast protocol. The latency of this
Atomic Broadcast protocol affects only unstable runs because cycles cannot appear in
stable ones.

A process reacts only to messages m received for the first time. It rebroadcasts m to
other processes using both ordinary broadcast and also Atomic Broadcast. The rationale
behind the former is to ensure that if one correct process receives a message, then eventu-
ally all correct processes will. As mentioned before, Atomic Broadcast is used to resolve
cycles. Finally, as in the basic version, the process executes firstm,m′ .propose(m) for all
possible messages m′ conflicting with m that were not received before m. The order “→”
is constructed in the same way as in the basic version.

In the full version, messages can be delivered either normally or during cycle resolution.
To distinguish these two kinds of deliveries, we call the former 1-delivery, and the latter
2-delivery. Messages are 1-delivered in exactly the same way as in the basic version.

If a process has seen a message, it behaves as if it had received it. The decision of
any Consensus instance must have been seen by at least one correct process. Therefore,
any 1-delivered message has been seen by a correct process, who broadcast it, so that all
correct processes would eventually receive that message and propose it to some Consensus
instances. This property is vital for Uniform Agreement.

The cycle resolution task loops over messages delivered by the underlying Atomic
Broadcast protocol. For each such message m, the task executes see(m) and waits until
one of the two conditions holds. If m has already been delivered, then the loop goes to

9

1 when receive(m) do
2 if m is received for the first time then
3 broadcast(m)
4 abcast(m)
5 for all possible non-received messages m′ conflicting with m do
6 firstm,m′ .propose(m)

7 when see(m) do
8 receive(m)

9 when firstm,m′ .decide(m) do
10 set m→ m′

11 when m is undelivered and
12 m→ m′ for all undelivered messages m′ conflicting with m do
13 deliver 1(m)

14 task cycle-resolution is
15 repeat forever
16 wait until abdeliver(m)
17 see(m)
18 wait until m has been delivered or
19 all undelivered messages conflicting with m are blocked
20 if m has not been delivered yet then
21 deliver 2(m)

Figure 3: Full Generic Broadcast algorithm.

10

the next iteration. Otherwise, if all undelivered messages conflicting with m are blocked,
then m is delivered. The rationale behind this strategy is that, since none of the blocked
messages can be 1-delivered, it is safe to deliver m, thereby, possibly, breaking the cycle.
The use of Atomic Broadcast ensures that the messages m chosen to break cycles are the
same at different processes.

To show that lines 18–19 always terminate, we must prove that all never-blocked
messages m′ conflicting with m will eventually be delivered. Since m′ is not blocked, the
graph of paths m′ ← m1 ← · · · ← mk of undelivered messages does not contain cycles,
and forms a tree rooted at m′. The leaves of this tree will be successively 1-delivered,
resulting eventually in 1-delivery of m′.

4.4 Example

m1
- m2

- m4
- m6

m3

-

m5

?....
....
....
....
....
....
....
....
..�

Both m1 and m3 can be 1-delivered because the only message conflicting with them (m2)
is their successor. Messages m1 and m3 can be delivered in any order; this does not
violate Partial Order because they do not conflict. Assume that, at the same time, the
cycle-resolution task abdelivers m1. Since the only message conflicting with it (m2) is
blocked by the cycle m2 → m4 → m5 → m2, message m1 is 2-delivered if it has not been
1-delivered yet.

After m1 and m3 have been delivered, no other messages can be 1-delivered, because
all of them are blocked. If now the cycle resolution task abdelivers m2, then since all
undelivered messages conflicting with it (m4,m5) are blocked, m2 is 2-delivered. This
delivery breaks the cycle, and now all undelivered messages conflicting with m4 (i.e., m5

and m6) are its successors, so m4 is 1-delivered. Conflicting messages m5 and m6 cannot
be delivered until the processes agree on their order. If, for example, m5 → m6, then
message m5 will be 1-delivered, followed by m6.

5 One-Two Consensus

Our Generic Broadcast algorithm uses One-Two Consensus shown in Fig. 4. This algo-
rithm uses three underlying Consensus instances: 1, 2, and L. When a process p proposes
x, it first broadcasts the pair (x, p), and then uses instance 1 to propose x, instance 2 to
propose the pair (x, p), and instance L to propose the current output of its leader oracle
Ω. Instances 1 and L make a decision in one communication step, provided that all correct
processes propose the same value. We achieve this by using the algorithm by Brasileiro
et al. [2], which requires n > 3f . Instance 2 decides in two communication steps, however,
it requires only the correct leader to have proposed. This can be implemented with the
Paxos algorithm [11].

When process p wants to decide, it first waits until instance L decides on some leader
l. In stable runs, in which the output of Ω is the same at all correct processes, this

11

1 when propose(x) by process p do
2 broadcast(x, p)
3 propose1(x)
4 propose2(x, p)
5 proposeL(l) where l is the leader output by Ω

6 task decide at process p is
7 wait until decideL(l)
8 wait until at least one of the conditions is true and decide on x
9 condition 1: decide1(x) and receive(x, l)
10 condition 2: decide2(x, l)
11 condition 3: decide1(x) and decide2(y, q) with q 6= l

Figure 4: One-Two Consensus.

should happen within one communication step. Then, process p waits until at least one
of the three conditions in Fig. 4 holds. The first two conditions correspond to instances
1 and 2 deciding on the value proposed by the leader. If all correct processes propose the
same value, then the first condition will hold in one communication step. If the leader
is correct, then the second condition will hold in two communication steps. The third
condition is a fall-back designed for unstable runs; processes adopt the decision from
instance 1, provided that instance 2 did not decide on the value proposed by the leader.

5.1 Thriftiness

Aguilera et al. [1] define a Generic Broadcast algorithm to be thrifty if it uses the under-
lying oracle (here Ω) only when some conflicting messages are received. Our algorithm is
not thrifty; the one-two step Consensus described above uses Ω in all cases. To make our
algorithm thrifty, we need a Consensus algorithm that, if all correct processes propose
the same value, decides in one step, without using Ω. This property is a stronger version
of C1, which we call C1*.

The algorithm by Brasileiro et al. [2] satisfies C1*; it decides in one step if all correct
processes propose the same value, without using Ω, otherwise it starts an underlying Con-
sensus algorithm. This means that it does not satisfy C2; if correct processes propose
different values, it may take three steps to decide, instead of two. For our Optimistic
Generic Broadcast algorithm this means four steps in general stable runs instead of three.
In terms of latency, such an algorithm is still strictly better than both Generic Broad-
cast [1, 13, 16] and Optimistic Atomic Broadcast [14], however might be slower than the
one proposed by Chandra and Toueg [3] (Fig. 1).

Guerraoui and Raynal [6] proved that no Consensus algorithm based on Ω can be
both configuration-efficient and oracle-efficient, which in our case implies that Properties
C1* and C2 cannot hold at the same time. This observation makes us conjecture that
no thrifty Generic Broadcast algorithm can achieve the latencies from the bottom row in
Fig. 1.

The underlying Atomic Broadcast protocol, employed by our algorithm to break cy-
cles, also uses Ω [3]. However, in the absence of conflicting messages, cycles cannot be

12

1 I is the family of disjoint sets of virtual instances, initially empty

2 when receive event e tagged with the set Ie do
3 for each I ∈ I do
4 split I into I ∩ Ie and I \ Ie

5 create a new physical instance AI for I = Ie \
⋃

I, and add I to I
6 eliminate empty sets from I
7 for each I ∈ I do
8 if I ∩ Ie 6= ∅ then
9 send the event e to instance AI

Figure 5: Emulating infinitely many virtual instances.

created. Therefore, instead of processes performing abcast(m) immediately after receiv-
ing m (as in Fig. 3), they can defer it until they have received some conflicting messages.
This modification prevents the algorithm from using Atomic Broadcast if no conflicting
messages are received.

6 Handling Infinitely Many Instances

Our Generic Broadcast algorithm uses infinitely many Consensus instances. This sec-
tion explains how to implement an infinite number of virtual instances of a distributed
algorithm using only finitely many physical instances at every process. As we will see,
this is possible provided that there are only finitely many different virtual instances. For
example, in our Generic Broadcast algorithm from Fig. 3, a process proposes the same
message m to an infinite number of instances of Consensus.

Let us start with finitely many virtual instances, and denote these by i1, i2, . . . , ik.
The usual approach is to tag any event (a message or a function call) with the identifier of
the instance. Each process runs k physical instances of the algorithm. Every event tagged
with ik is directed to the k-th instance, and every event produced by the k-th instance is
tagged with ik. In this case, virtual and physical instances are the same, so this method
can be used only with finitely many virtual instances.

To implement an infinite number of virtual instances, some of them must share a
single physical instance. Algorithm in Fig. 5 maintains a family I of disjoint sets of
virtual instances, initially empty. Each element I ∈ I is a set of virtual instances that
share a single physical instance denoted as AI . All events generated by AI are tagged
with the set I.

When an event tagged with a set of virtual instances Ie arrives, the process does the
following. First, if some virtual instances sharing the same physical instance start to
differ, the physical instance is cloned. This is done by splitting elements I ∈ I into I ∩ Ie

and I \ Ie, so that every element of I is either a subset of Ie or disjoint with it. When
such a split happens, the physical instance AI is replaced with two new instances AI∩Ie

and AI\Ie
, both identical to AI . Also, a new physical instance is created for Ie \

⋃

I to
ensure that every virtual instance corresponds to some physical instance; in other words,
we want to make sure that for each i ∈ Ie there is I ∈ I with i ∈ I. Finally, the event is
sent to all physical instances corresponding to any virtual instances in Ie.

13

6.1 Representing Sets

The above method can be used to execute an infinite number of Consensus instances at
the same time, provided that we can represent infinite sets of instances in a finite form.
For use in the algorithm from Fig. 5, the families of representable sets must be closed
under subtraction and intersection. Closeness under set union is not necessary; Ie \

⋃

I
can be computed by iteratively subtracting elements of I from Ie. In this section, we
will briefly present such representations for some families of sets useful in our Generic
Broadcast algorithm.

Border sets.

Finite sets can be trivially represented by listing their elements. The family of border
sets contains all sets that are either finite (F) or are complements of finite sets (F). For
example, the set {m1,m2} consists of all messages except for m1 and m2. The representa-
tion of a border set consists of the finite set F and a flag indicating whether the set is F
or F . The family of border sets is closed under negation and intersection (which implies
subtraction):

F1 ∩ F2 = F1 ∩ F2, F1 ∩ F2 = F1 \ F2,

F1 ∩ F2 = F2 \ F1, F1 ∩ F2 = F1 ∪ F2.

M-sets.

If only messages m1 and m2 have been received, then the border set {m1,m2} represents
the set of all non-received messages. Can we use border sets to represent more complex
sets such as “the set of all non-received messages conflicting with m”? The answer depends
on the conflict relation. It is often the case that messages can be divided into a small
number of categories (e.g., “read” and “write”), such that conflict properties of messages
are determined by the categories they belong to. Consider a system with k categories C1,
. . . , Ck, where Ci is the set of all messages in the i-th category. For any border sets B1,
. . . , Bk satisfying Bi ⊆ Ci, we define a m-set

〈B1, . . . , Bk〉 = B1 ∪ · · · ∪Bk

to be the set containing all messages from sets B1, B2, . . . , Bk.
As an example consider a system with two categories: “read” and “write”; any two

requests conflict unless they are both reads. Assume that requests w1, w2, r1, and r2 have
been received. The set of all non-received requests conflicting with r2 is 〈∅, {w1, w2}〉,
that is, no read requests and all possible write requests except for w1 and w2.

The family of m-sets is closed under subtraction and intersection:

〈B1, . . . , Bk〉 ∩ 〈B
′
1, . . . , B

′
k〉 = 〈B1 ∩B′

1, . . . , Bk ∩B′
k〉,

〈B1, . . . , Bk〉 \ 〈B
′
1, . . . , B

′
k〉 = 〈B1 \B′

1, . . . , Bk \B′
k〉.

Sets of message pairs.

In our Generic Broadcast algorithm, each Consensus instance is identified by an unordered
pair of messages. By {m,M} we denote the set of pairs containing m and one element of

14

the m-set M :
{m,M} = { {m,m′} : m′ ∈M }

For example, M can be the set of all possible non-received messages m′ conflicting with a
given message m. Consider the receive(m) routine from our Generic Broadcast algorithm
in Fig. 3. We can replace infinitely many invocations of firstm,m′ .propose(m) with a single
firstm,M .propose(m). The family of sets {m,M} can be used in the algorithm from Fig. 5
because it is closed under intersection and subtraction (we assume m 6= m′):

{m,M} ∩ {m,M ′} = {m,M ∩M ′},

{m,M} \ {m,M ′} = {m,M \M ′},

{m,M} ∩ {m′,M ′} =

{

{m, {m′}} if m ∈M ′ and m′ ∈M,

{m, ∅} otherwise,

{m,M} \ {m′,M ′} =

{

{m,M \ {m′}} if m ∈M ′ and m′ ∈M,

{m,M} otherwise.

7 Conclusion

We presented a new algorithm that solves the Generic Broadcast problem, in which con-
flicting messages must be delivered in the same order by all processes. In stable runs, our
algorithm delivers messages in three communication steps. If all conflicting messages are
received by all correct processes in the same order, then all messages are delivered within
two communication steps. In terms of latency degree [17], this algorithm is strictly better
than any proposed so far [1, 3, 13, 14, 16], and matches several lower bounds [10, 15, 16].
Although we implicitly assumed that only the main n processes are allowed to broadcast
messages, our model can easily be extended to allow external processes to broadcast as
well.

In our algorithm, for each pair of conflicting messages, processes use Consensus to
agree on their order. Messages are delivered in any order consistent with the agreed
partial order. In unstable runs, circular dependencies can occur, and these are broken
using Atomic Broadcast. The abstract formulation of the algorithm uses infinitely many
instances of Consensus at the same time. Since there are only finitely many different
instances, this can be emulated with finite resources, as we show in this paper. The new
underlying Consensus algorithm uses one-step [2] and two-step [11] algorithms to decide
in one communication step if all proposals are the same, and in two otherwise (in stable
runs).

Although our Generic Broadcast algorithm is optimal in terms of latency degree, its
message and computation complexities may still be prohibitive. Therefore, we see our
contribution in the lower-bound matching algorithm. Further research will be required to
optimize it for practical applications.

References

[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. Thrifty Generic Broadcast. Lecture Notes in Computer Science, 1914:268–

15

282, 2000.

[2] Francisco Brasileiro, Fab́ıola Greve, Achour Mostefaoui, and Michel Raynal. Con-
sensus in one communication step. Lecture Notes in Computer Science, 2127:42–50,
2001.

[3] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, 1996.

[4] Bernadette Charron-Bost and André Schiper. Uniform Consensus is harder than
Consensus. Technical Report DSC/2000/028, Swiss Federal Institute of Technology
(EPFL), Lausanne, Switzerland, May 2000.

[5] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421, 2004.

[6] Rachid Guerraoui and Michel Raynal. The information structure of indulgent Con-
sensus. Technical Report PI-1531, IRISA, April, 2003.

[7] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcast and related problems.
In Sape Mullender, editor, Distributed Systems, chapter 5, pages 97–146. ACM Press,
New York, 2nd edition, 1993.

[8] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR94-1425, 1994.

[9] Michel Hurfin and Michel Raynal. A simple and fast asynchronous consensus protocol
based on a weak failure detector. Distributed Computing, 12(4):209–223, 1999.

[10] Idit Keidar and Sergio Rajsbaum. On the cost of fault-tolerant Consensus when there
are no faults. ACM SIGACT News, 32, 2001.

[11] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, December
2001.

[12] Leslie Lamport. Lower bounds on Consensus. Unpublished note, March 2002.

[13] Fernando Pedone and André Schiper. Handling message semantics with Generic
Broadcast protocols. Distributed Computing, 15(2):97–107, 2002.

[14] Fernando Pedone and André Schiper. Optimistic Atomic Broadcast: a pragmatic
viewpoint. Theoretical Computer Science, 291(1):79–101, 2003.

[15] Fernando Pedone and André Schiper. On the inherent cost of Generic Broadcast.
Technical Report IC/2004/46, Swiss Federal Institute of Technology (EPFL), May
2004.

[16] Fernando Pedone and André Schiper. Generic Broadcast. In Proceedings of the 13th
International Symposium on Distributed Computing (DISC’99), 1999.

[17] André Schiper. Early Consensus in an asynchronous system with a weak failure
detector. Distributed Computing, 10(3):149–157, April 1997.

16

A Proofs

We will first make some definitions. Each process p builds its own relation “→”, which is
also denoted as “→p” if p is not obvious from the context. This relation changes over time,
which might lead to confusion in proofs. To avoid it, we assume that, unless explicitly
said otherwise, the symbol “→” represents the ultimate form of the relation, that is, the
union of the relations → taken at all moments in time. If m → m′, then we say that m
is a predecessor of m′, and m′ is a successor of m. A finite path m m′ is a sequence
of messages m = m1 → m2 → · · · → mk = m′. Recall that a message m has been seen
if at least one correct process has received a message containing m in some Consensus
instance.

Theorem A.1. Failure detector Ω is the weakest failure detector that allows us to solve
Generic Broadcast, provided that at least one pair of messages conflict.

Proof. Let us denote these two conflicting messages by 0 and 1. Then, one can solve binary
Consensus by having each participant broadcast its proposal using a Generic Broadcast
algorithm, and adopting the first delivered message as the decision. Since Ω is necessary
to solve (binary) Consensus in an asynchronous system [3], the same holds for Generic
Broadcast.

Lemma A.2. Consider any Uniform Consensus algorithm. If a process decides on x,
then at least one correct process has seen x.

Proof. To obtain a contradiction, assume that there is a run r1, in which a (possibly
incorrect) process decides on x at time t, and no correct process ever sees x. Consider a
run r2, which is identical to r1 except that all incorrect processes that have not failed by
time t in run r1 fail at time t. Also assume that, in run r2, all messages from incorrect
processes that have not reached their destination before time t are lost.

Runs r1 and r2 are identical until time t, so in r2 no correct process sees x by time t.
After time t, correct processes receive only messages from correct processes. Therefore,
no correct process ever sees x in run r2.

Assume that, in run r2, every correct process that did not propose by time t, proposes
at time t some x′ 6= x. Since all correct processes propose in run r2, the Termination
property implies that all correct processes will eventually decide. They cannot decide
on x, because they have never seen this value. On the other hand, Uniform Agreement
implies that they must decide on x because some process has already done so. This
contradiction proves the assertion.

Lemma A.3. If m→ m′, then m′ has been seen by a correct process.

Proof. Relation m → m′ requires that Consensus instance firstm,m′ decided on m, so
Lemma A.2 implies the assertion.

Lemma A.4. Any message m seen by a correct process has a finite number of predeces-
sors.

17

Proof. The Validity property of the underlying Consensus algorithm implies that for any
predecessor m′, at least one process must have executed firstm,m′ .propose(m′). Therefore,
at least one process received m′ before m. We have to prove that there are only finitely
many such messages m′.

Message m has been seen by a correct process, so all correct processes eventually
receive m. Therefore, any correct process receives only finitely many messages m′ before
m. Incorrect processes receive finitely many messages before they crash. Therefore, the
total number of messages m′ that precede m is finite.

Lemma A.5. Let m be a message seen by a correct process. Eventually, m → m′ or
m′ → m for any m′ conflicting with m.

Proof. The assumption implies that all correct processes will eventually receive m. There-
fore, all correct processes will eventually propose in all instances firstm,m′ (this will happen
when the process receives its first message in {m,m′}). Eventually, all such instances will
decide, which implies the assertion.

Lemma A.6. A never-delivered message m seen by a correct process has a never-delivered
predecessor.

Proof. To obtain a contradiction, assume that every predecessor of m will eventually be
delivered. Message m has a finite number of predecessors (Lemma A.4), so eventually all
predecessors of m will be delivered. Lemma A.5 implies that eventually every message m′

conflicting with m will be either its predecessor or successor. As a result, eventually all
undelivered messages conflicting with m will be its successors, so m will be 1-delivered.
This contradicts the assumption of m never being delivered.

Lemma A.7. All paths m1 ← m2 ← m3 ← · · · are finite.

Proof. Assume that the path m1 ← m2 ← m3 ← · · · is infinite. Properties of the leader
elector Ω ensure that eventually all processes will either crash or output a single process
p as the leader. Let M be the (finite) set of messages received by any process before this
happens. Consider an (infinite) tail mk ← mk+1 ← · · · of the original path that does not
contain any messages from M . Since all messages mk, mk+1, . . . were received after the
output of the leader elector stabilized, all relations mk ← mk+1 ← · · · are consistent with
the linear order of message reception at the eventual leader (Consensus Property C2)
However, this means that the eventual leader received infinitely many messages before
mk, which is impossible.

Lemma A.8. If a correct process executes abdeliver(m), then it will deliver m.

Proof. To obtain a contradiction, assume that a correct process has abdelivered m but
will never deliver it. Processes see each message they abdeliver, so Lemma A.6 implies
that m has a never-delivered predecessor.

We will prove that m has a never-delivered predecessor m′ that is never blocked. To
obtain a contradiction, assume that all never-delivered predecessors m′ will eventually be
blocked. This implies (previous paragraph) that at least one of the predecessors of m is
blocked, which implies that m itself is blocked. As a result, all successors of m are blocked

18

as well. Therefore, Lemma A.5 implies that eventually all undelivered messages conflicting
with m will be blocked, so m will be 2-delivered. This contradicts the assumption of m
never being delivered, and proves that m has a never-delivered, never-blocked predecessor
m′.

Consider a set of all paths m′′ m′ consisting only of never-delivered messages. There
is at least one such path (m′ m′). Lemma A.7 implies that all such paths are finite,
so there is a maximal path m′′ m′ (otherwise we could keep extending any path ad
infinitum).

Both messages m′ and m′′ have been seen by a correct process because they have a
successor in the path m′′ m′ → m (Lemma A.3). As a result, Lemma A.6 implies that
m′′ has a never-delivered predecessor m′′′.

If m′′′ ∈ m′′ m′, then m′′′ is blocked because m′′′ → m′′ m′′′, and as a result m′ is
blocked as well, which contradicts the assumption that m′ is never blocked. On the other
hand, if m′′′ /∈ m′′ m′, then the path m′′′ → m′′ m′ contains only never-delivered
messages and extends m′′ m′, which contradicts the maximality of m′′ m′. These
contradictions prove the assertion.

Theorem A.9 (Validity). If a correct sender gbcasts a message m, then all correct
processes will eventually deliver it.

Proof. The assumption implies that all correct processes will eventually receive m and
execute abcast(m). Therefore, all correct processes will eventually execute abdeliver(m),
so Lemma A.8 implies the assertion.

Theorem A.10 (Uniform Agreement). If a process delivers m, then all correct pro-
cesses will eventually deliver m.

Proof. If m has been 1-delivered, Lemma A.2 implies that message m is has been seen by
a correct process. This process will eventually execute abcast(m), so all correct processes
will eventually execute abdeliver(m).

If m has been 2-delivered, then it has been abdelivered, therefore all correct processes
will eventually execute abdeliver(m). In both cases, Lemma A.8 implies the assertion.

Theorem A.11 (Uniform Integrity). A process delivers m only once and only if m
was gbcast by some sender.

Proof. No message can be delivered twice because delivery of a message requires it to
have not been delivered before. If m is 1-delivered, then firstm,⊥ decides on m, which
implies that some process proposed m, which implies the assertion. If m is 2-delivered,
then it must have been abcast by some process, which also implies the assertion.

A.1 Partial Order

Definition A.12. A process “(1-,2-)delivers message m before m′” iff it (1-,2-)delivers
m and at the time of this delivery m′ has not been delivered. (Message m′ can be delivered
later in any way or not delivered at all.)

19

Lemma A.13. Assume that process p 2-delivers m before m′ and process q 2-delivers m′

before m. This is impossible.

Proof. At the time of 2-delivery of m at p, message m′ is not delivered. Therefore, process
p abdelivers m before m′. By a similar argument, process q abdelivers m′ before m. This
violates the Uniform Total Order property of the underlying Atomic Broadcast protocol.

Lemma A.14. Let m and m′ be conflicting messages. Assume that process p 1-delivers
m before m′ and process q 1-delivers m′ before m. This is impossible.

Proof. In order to 1-deliver m before m′ at process p, we must have m → m′. An
analogous argument for process q, gives m′ → m, which violates Uniform Agreement of
the underlying Consensus algorithm.

Lemma A.15. Let m and m′ be conflicting messages. Assume that some process p 2-
delivers m before m′, and process q delivers m′ before m. This is impossible.

Proof. Consider the moment when process p executes deliver 2(m). Let B be the set of
undelivered messages blocked at p. This set contains all undelivered messages conflicting
with m. We will prove that, at any process q, no message from B will be delivered before
m.

To obtain a contradiction, assume that B is not empty, and q delivers the first message
m′ 6= m from B before m. We shall now obtain a contradiction by proving that process
q can neither 2-deliver nor 1-deliver m′ before m. Note that m and m′ do not necessarily
conflict.

Process q 2-delivering m′ before m violates Lemma A.13 because process p 2-delivers
m before m′.

Message m′ ∈ B is blocked at p, therefore it has an undelivered, blocked predecessor
m′′ at p. In other words, there is m′′ ∈ B such that m′′ →p m′. Note that m′ is the first
message in B delivered by q; thus, at the moment of 1-delivery of m′, message m′′ ∈ B is
still undelivered at q. This leads to a contradiction: 1-delivery of m′ requires m′ →q m′′,
which is impossible because m′′ →p m′.

Theorem A.16 (Partial Order). If some process delivers message m′ after message m
conflicting with m′, then every process delivers m′ only after it has delivered m.

Proof. To obtain a contradiction, assume that process p delivers m before m′, and process
q delivers m′ before m. If process p 2-delivers m before m′, then Lemma A.15 prevents
process q from delivering m′ before m. Therefore, process p 1-delivers m before m′. By
the analogous argument, process q 1-delivers m′ before m. However, this is impossible by
Lemma A.14.

A.2 Latency

In this section, we will assume stable runs and that “time” is defined is a way in which
one communication step corresponds to d units of time (d is not known to the algorithm).

Lemma A.17. In stable runs, if the leader receives a message at time t, then all correct
processes will deliver it by time t + 2d.

20

Proof. To obtain a contradiction, assume this is not true and let m be the first message
received by the leader for which the assertion does not hold.

Let m′ be any message conflicting with m that was not received by the leader before
m (at time t). When the leader receives m, it executes firstm,m′ .propose(m) at time t.
Therefore, by Property C2 of underlying Consensus, by time t + 2d, all correct processes
execute firstm,m′ .decide(m) and set m→ m′.

By assumption, all messages m′ received by the leader before m were delivered before
time t + 2d, therefore, at time t + 2d, the 1-delivery condition for m is met.

Corollary A.18 (Three-step delivery). Every message gbcast at time t by a correct
process, will be delivered by time t + 3d.

Lemma A.19. Assume all correct processes receive all conflicting messages in the same
order. Any message received by all correct processes by time t will be delivered by t + d.

Proof. To obtain a contradiction, assume this is not true and let m be the first message
received by the leader for which the assertion does not hold.

Let m′ be any message conflicting with m that was not received by the leader before m.
By assumption, no correct process receives m′ before m. Therefore, all correct processes
execute firstm,m′ .propose(m) by time t. As a result, Property C1 of underlying Consensus
implies that, by time t + d, all correct processes execute firstm,m′ .decide(m) and set
m→ m′.

Let m′ be any message conflicting with m received by the leader before m. By as-
sumption, all correct processes receive m′ before m, therefore before time t. By another
assumption, m′ will be delivered by time t + d. Therefore, at time t + d, the 1-delivery
condition for m is met.

Corollary A.20 (Two-step delivery). If all correct processes receive all conflicting
messages in the same order, then every message gbcast at time t by a correct process,
will be delivered by time t + 2d.

A.3 One-Two Consensus

Theorem A.21 (Uniform Agreement). No two processes decide on different values.

Proof. In most cases, this follows from the same property of auxiliary instances of Con-
sensus. This property can be violated only if some process decides in condition 2, whereas
another in condition 1 or 3. Decisions in conditions 1 and 2 must be the same because
they are both values proposed by the leader l. Conditions 2 and 3 cannot be used in the
same execution. Condition 2 is used only if instance 2 decides on a value proposed by
the leader, whereas condition 3 is used only if instance 2 decides on a value proposed by
another process.

Theorem A.22 (Uniform Validity). If a process decides on x, then x was proposed
by some process.

Proof. Follows from analogous properties of Consensus instances 1 and 2.

21

Theorem A.23 (Termination). If all correct processes propose, then eventually all cor-
rect processes will decide.

Proof. Termination properties of the underlying instances of Consensus imply that even-
tually every correct process will execute decideL(l), decide1(x) and decide2(y, q). If q = l,
then condition 2 will decide on y. Otherwise, condition 3 will decide on x.

Theorem A.24 (Property C1). In stable runs in which all correct processes propose
the same value, the decision is made in one communication step after all correct processes
proposed.

Proof. The assumption ensures that all correct processes, including the leader, will pro-
pose the same value to instances 1 and L. As a result, the leader l is known and condition
1 holds in one communication step [2].

Theorem A.25 (Property C2). In stable runs, all correct processes decide on the value
proposed by the leader in two communication steps after the leader proposed.

Proof. The assumption ensures that all correct processes will propose the same leader to
instance L, so all correct processes will decide on the leader l in one communication step.
The leader l is correct, so its proposal (x, l) will become the decision in two communication
steps [11]. As a result, condition 2 will hold.

22

	1 Introduction
	2 System Model
	3 Basic Generic Broadcast Algorithm
	3.1 Partial Order on Messages
	3.2 Basic Algorithm
	3.3 Delivery Latency

	4 Full Generic Broadcast Algorithm
	4.1 Cycles
	4.2 Faulty Senders
	4.3 Algorithm
	4.4 Example

	5 One-Two Consensus
	5.1 Thriftiness

	6 Handling Infinitely Many Instances
	6.1 Representing Sets

	7 Conclusion
	A Proofs
	A.1 Partial Order
	A.2 Latency
	A.3 One-Two Consensus

