
Technical Report
Number 628

Computer Laboratory

UCAM-CL-TR-628
ISSN 1476-2986

A formal security policy for an
NHS electronic health record service

Moritz Y. Becker

March 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2005 Moritz Y. Becker

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



A formal security policy for an
NHS electronic health record service

Moritz Y. Becker

Computer Laboratory, University of Cambridge

JJ Thomson Avenue, Cambridge, United Kingdom

moritz.becker@cl.cam.ac.uk

Abstract

The ongoing NHS project for the development of a UK-wide electronic health records
service, also known as the ‘Spine’, raises many controversial issues and technical challenges
concerning the security and confidentiality of patient-identifiable clinical data. As the system
will need to be constantly adapted to comply with evolving legal requirements and guidelines,
the Spine’s authorisation policy should not be hard-coded into the system but rather be
specified in a high-level, general-purpose, machine-enforceable policy language.

We describe a complete authorisation policy for the Spine and related services, written
for the trust management system Cassandra, and comprising 375 formal rules. The pol-
icy is based on the NHS’s Output-based Specification (OBS) document and deals with all
requirements concerning access control of patient-identifiable data, including legitimate re-
lationships, patients restricting access, authenticated express consent, third-party consent,
and workgroup management.

1 Background

Electronic health record (EHR) schemes are now being developed in Europe, the United
States, Canada and Australia to provide “cradle-to-grave” summaries of patients’ records,
linking clinical information across the entire health system [Cor02]. In the UK, the National
Programme for IT (NPfIT) will bring IT technology into the NHS to modernise patient care
and services. The NHS has been planning since 1998 to develop a nationwide Integrated Care
Records Service (ICRS) providing health care providers and patients with 24 hour on-line
access to EHRs on a central data-spine [Nat98, Dep01a]. The deployment of what is now the
world’s largest and one of the most complex IT projects in the public sector is scheduled for
between 2005 and 2010. While the potential benefits of such a system are obviously huge,
the government’s plans have also been subject of a fiercely controversial public debate (see
e.g. [Haw03, Rog03, CS03, Col03a, Pal03, Col03b, Cro03, Fou03, Arn03, Ley04, Col04]).

A main issue of concern is the confidentiality of patient health information: according to
a recent survey conducted by the Consumers’ Association, 72 percent of the respondents said
security and confidentiality are a primary concern [Arn03]. At stake is not just the privacy
of sensitive personal information but the success of the entire project. Patients will refuse to
share their data if they do not trust the system or do not have sufficient control over the use
of their data. Already, public confidence is eroded: with the ICRS project, the NHS won a
“Most Heinous Government Organisation” Big Brother Award in 2000 and “Most Appalling
Project” Big Brother Award in 2004 [Ley04]. It is equally important to gain clinician buy-in
which will fail if the system is cumbersome to use, if the access restrictions are too strict
or the response times too high. Indeed, the clinicians’ confidence in the project is already
eroded as well. At the annual meeting of the British Medical Association in June 2004,
delegates voted for a motion which said, “given the uncertainties and lack of consultation
on the Care Records Service [and] until GPs’ legitimate concerns are answered, GPs should
not engage with the Care Records Service” [Col04].

Any EHR access control policy will be a compromise between conflicting interests. The
general framework for any such policy has to comply with relevant legislation and regulations

3



such as the Data Protection Act, Mental Health Act, Human Fertilisation and Embryology
Act, the Abortion Regulations and the Venereal Diseases Regulations. Every health organ-
isation is now required to have a privacy and data protection officer, also called “Caldicott
Guardian” (named after the recommendation of the committee chaired by Dame Caldicott
in 1997 [Nat97]), who is responsible for overseeing the organisation’s security policy and
investigating breaches of confidentiality. Anything beyond these requirements is still highly
contentious. As an example, the Caldicott committee recommended that access to patient-
identifiable information should be on a “strict need-to-know basis”. In contrast, common
medical code of ethics and professional practice goes further and requires the patient’s con-
sent for accessing personal information [SMW93]. Anderson [And96] stresses the same point
in his security policy commissioned by the British Medical Association, and further demands
that patients should automatically receive notifications when their data are accessed. It now
seems to be current consensus that patient consent should be the basis for access decisions
although it is not yet clear when explicit consent has to be sought and when implicit consent
can be assumed.

It should be sufficiently clear from this that the Spine’s access control policy will undergo
frequent changes as the public debate evolves. Furthermore, health organisations are likely to
have customised policies, compatible with but different from the national one. It is therefore
necessary to be able to specify the policy independently of the implementation instead of
having it hard-coded into the access control engine.

In the trust management approach [BFL96], an organisation’s policy is specified explicitly
in a high-level policy language. Access requests are submitted along with supporting digital
credentials to prove that the request complies with the local policy. Strangers thus establish
mutual trust by exchanging sets of suitable credentials. This idea is common in everyday
life: for example, a passenger can check in and request a boarding pass on production of a
passport and a flight ticket.

We have produced a complete EHR policy with 375 formal rules, based mainly on the
Output Based ICRS Specification [Nat03]. It is written in Cassandra [BS04a, BS04b], a
formally specified distributed trust management system with a policy language that is unique
in that its expressiveness can be flexibly tuned according to need. §2 introduces the Cassandra

trust management system and its policy language. A brief overview of the EHR architecture
is given in §3. §4 describes a complex scenario illustrating some of the challenging security
requirements and how patients and clinicians may use such a system in practice. §5 describes
our NHS policy in detail. The formal policy rules can be found in Appendix A.

2 Cassandra overview

Cassandra is a trust management system enabling a potentially large network of entities to
share their resources under well-defined restrictions, specified by local access control policies,
even if they are mutual strangers. This section gives a brief and informal overview of the
system and illustrates it with examples; see [BS04b, BS04a] for a more formal treatment.
§2.1 describes the main components of Cassandra from a high-level point of view; §2.2 outlines
the policy language and §2.3 the access control engine.

2.1 Architectural overview

Imagine a network of entities (human users, organisations, autonomous programs) who would
like to collaborate with each other. Every entity runs its own copy of a Cassandra service,
which acts as a protective layer around the resources. Figure 1 shows the internal components
of a Cassandra service. Entities can interact with each other only via the interface. The design
goal of the interface was simplicity, orthogonality and generality. Consequently, the interface
defines only the most essential and basic requests relevant to role-based trust management:
performing an action (i.e. accessing a resource), activating and deactivating a role, and
requesting a credential that perhaps is needed to gain authorisation somewhere else.

The access control engine handles such a request by invoking the evaluation engine, which

4



perform action

deactivate role

activate role

request credential

In
te

rf
ac

e
Policy

(rules & credentials)

A
cc

es
s 

C
o

n
tr

o
l E

n
g

in
e Policy

Evaluator
invoke

modify

grant access

query

Cassandra Entity remote query

Resources
(Actions)

C

Figure 1: Cassandra components.

in turn queries the local Cassandra policy. The expressiveness of the policy specification
language depends on the globally chosen constraint domain C, an independent module that
is plugged into the query evaluation engine. Cassandra is designed to support automated
credential retrieval: a policy of one entity can refer to policies of other entities — query
evaluation may thus trigger credential requests from some other entity’s policy (possibly the
requester’s) over the network. The answer of the evaluation engine is used by the access
control engine to decide whether the request is to be granted.

2.2 Policy specification overview

Entities protect their resources by specifying a policy. In Cassandra, a policy is a set of rules
written in the Cassandra policy language. Rules govern the access control behaviour of the
system; in particular, they specify role membership, permissions to perform actions, and the
conditions for role activation, role deactivation and for disclosing credentials. This section
outlines the policy language: it first introduces DatalogC and then sketches how DatalogC is
extended with special predicates and trust management constructs.

2.2.1 DatalogC

Cassandra’s policy specification language is based on DatalogC , a language known from Con-
straint Logic Programming (CLP). DatalogC is a generic extension of negation-free Datalog
[AHV95] (Prolog without function symbols) where the language expressiveness can be tuned
by varying the constraint domain parameter C. A DatalogC rule is of the form

p0(~e0)← p1(~e1), .., pn(~en), c

where the pi are predicate names and the ~ei are (possibly empty) expression tuples (that
may contain variables) matching the parameter types of the predicate. p0(~e0) is the head of
the rule, and the sequence of predicates on the right hand side of the arrow is the body of
the rule; c is a constraint on the parameters occurring in the rest of the rule. Intuitively,
to deduce the head of a rule, all body predicates must be deducible in such a way that the
constraint is also satisfied. A set of DatalogC rules can then be interpreted as the deductive
closure of the set.

The constraint of a rule, c, is a formula from some fixed constraint domain C, a language
of first order formulae containing at least true, false and the identity predicate “=” between

5



C-expressions (variables, entities and possibly other constructs). It must be closed under
variable renaming, conjunction (∧) and disjunction (∨). Furthermore, it must be equipped
with an interpretation that defines when formulae are satisfied.

The expressiveness of DatalogC depends on the chosen constraint domain C. For exam-
ple, the least expressive constraint domain is the one where the only atomic constraints are
equalities between variables and constants. Choosing this trivial constraint domain reduces
the expressiveness of the language to standard Datalog or Horn clauses without function
symbols. More powerful constraint domains often include boolean, arithmetic and set con-
straints, and make use of more complex expressions such as tuples, set expressions and
(side-effect free) function applications (e.g. to access the current time). The computational
complexity of evaluating DatalogC programs increases with increasing expressiveness: with
set constraints it is already possible to encode the Hamiltonian cycle problem, and thus all
NP-complete problems. Care must be taken not to choose a constraint domain that is too
expressive as this can result in programs in which queries are undecidable. We will later
introduce the notion of constraint compactness to restrict constraint domains to those that
guarantee termination of queries. A more formal treatment of DatalogC and CLP can be
found in [JM94, JMMS98, Rev02]

2.2.2 Roles and actions

In Cassandra, access control is role-based, and our roles, as well as actions, are parameterised.
Role-based access control (RBAC) was initially introduced to simplify security administra-
tion of large enterprises. The use of role parameters enhances language expressiveness, and
furthermore can dramatically reduce the number of required roles in a policy. In the context
of distributed trust management, roles can more generally be used as a representation of
authenticated subject attributes in decentralised access control [LMW02].

Formally, a role is a typed role name applied to an expression (that may contain variables)
of a matching type, e.g. Manager(Sales-dept). Similarly, an action is an action name applied
to an expression, e.g. Read-file(file). For the remainder of the dissertation, variables will
be written in small letters and italics (e.g. file), generic constants in italics but capitalised
(e.g. some entity E), and concrete constants in typewriter font (e.g. Sales-dept).

2.2.3 Predicates and rules

Policies are specified by rules defining predicates that govern access control decisions. Recall
that the interface defines requests for the four most basic tasks of performing an action,
activating and deactivating a role, and requesting a credential. Cassandra’s predicates were
designed to express conditions for precisely these four requests. Consequently, we have a
predicate permits that defines who can perform which action; canActivate specifies who can
activate which roles (and thus implicitly defines the role membership relation); canDeactivate

specifies who can revoke which role; isDeactivated is used to define automatically triggered
role revocation; and canReqCred rules specify the conditions to be satisfied before the service
is willing to issue and disclose a credential. We also have the predicate hasActivated that
specifies who has activated which role. The reason why we need this predicate is that role
activations are reflected in the policy; in other words, if an entity activates a role, a new
hasActivated statement is added to the policy; and conversely, the statement is removed from
the policy when the role is deactivated.

It may come as a surprise that requests modify the policy. Indeed, in a real implementa-
tion, hasActivated predicates would likely be stored separately from the policy for efficiency
reasons. However, viewing the current role activations as a part of what the policy asserts
simplifies our model, as the entire state of the system (i.e., which roles are activated) is then
captured by the policies alone. Moreover, the conditions in a rule are often concerned with
whether somebody has activated a role, and sometimes whether somebody can activate a role
(i.e., is a member of the role). Similarly, as we shall see in the next section, credentials are
just signed predicates, and are often used for asserting that somebody has activated a role,

6



or that somebody can activate a role. Therefore, expressing both role activation and role
membership in form of predicates is a logical design decision that keeps the model uniform.

Finally, user-defined predicates are also allowed. These predicates are auxiliary and do
not have any inherent access control meaning.

The following simple examples of policy rules illustrate the meanings of some of these
special predicates. This rule specifies that human resource managers who have activated their
role can register new employees in any department, apart from executive board members.

permits(e, Register-employee(name, dept))←
hasActivated(e, Manager(HR)),
dept 6= executive-board

The next policy fragment consists of three rules. The first rule allows Alice and Bob to
activate the administrator role if their user roles have been activated; the second one allows
everyone to deactivate their own user role; and the third rule specifies that an administrator
role is automatically deactivated if the corresponding user role is deactivated.

canActivate(e, Admin())←
hasActivated(e, User()),
e ∈ {Alice, Bob}

(1)

canDeactivate(e1, e2, User())← e1 = e2

isDeactivated(e, Admin())←
isDeactivated(e, User())

Note that the second rule could have been written more concisely as

canDeactivate(e, e, User())

The first argument of every special predicate is an explicit subject parameter; for example,
in the case of canDeactivate, the first parameter specifies who can perform the deactivation.
In the simple rules shown above, the subject in the head is always the same as in the body
predicates. However, there are rules where this is not the case. These rules cannot be easily
expressed in languages where the subjects of head and body are implicitly the same.

The Cassandra policy language also allows restricted aggregation operators for computing
the set of all different values that satisfy a predicate. An aggregation rule is a rule whose
head contains one of the two operators group and count. Intuitively, the group operator finds
the set of all different ground values that satisfy a predicate, whereas count computes the
size of that set. For example, consider the following rule:

countMonkeys(count〈x〉, age)←
hasActivated(x, Monkey(age))

Querying the policy with the query countMonkeys(n, 5) would find the number n of active
monkeys of age 5.

2.2.4 Credentials and distributed policies

In the trust management approach, access control decisions are based on credentials assert-
ing properties about the holders. In Cassandra, the properties asserted by credentials are
constrained predicates. Furthermore, a credential is signed and issued by an entity called
issuer, and is held by an entity called location. We write

Alice@UCam.canActivate(Alice, Student(subj))←
subj ∈ {Maths, Psychology}

to represent a credential held by Alice, issued by the University of Cambridge (UCam), and
asserting that Alice is a Maths and Psychology student.

7



In Cassandra, every predicate in a rule has a location prefix and an issuer prefix. This
enables rules to refer to predicates that are stored somewhere else on the network and are
signed by someone else. In other words, rules can refer to credentials. As in the rule examples
from the previous section, we usually omit those prefixes that refer to the location of the
rule itself. The last example written out with all prefixes would have read (assuming that it
is stored in E’s policy):

E@E.isDeactivated(e, Admin())←
E@E.isDeactivated(e, User())

The following example illustrates how Cassandra deals with predicates that refer to remote
locations. The first rule belongs to the policy of a bookshop called Heffers which offers
discounts to Physics, Maths and Computer Science students from UCam and the Anglia
Polytechnic University (APU). If Alice sends a request to Heffers to activate a discount
role, the bookshop’s Cassandra service will send a credential request back to Alice (since
e1 = Alice) to ask her for an appropriate student credential issued by either UCam or APU.

Heffers@canActivate(e1, Discount())←
e1@e2.canActivate(e1, Student(subj)),
subj ∈ {Physics, Maths, CompSci},
(e2 = UCam ∨ e2 = APU)

Alice’s Cassandra service will return a copy of the requested credential to Heffers because
Alice does indeed possess a suitable credential (first rule) and she has a rule stating that she
is willing to reveal her student credential to any requester (second rule, with empty body
and no constraint):

Alice@UCam.canActivate(Alice, Student(subj))←
subj ∈ {Maths, Psychology}

Alice@canReqCred(e, UCam.canActivate(Student(subj)))

2.3 Policy enforcement overview

Entities interact with each other by sending requests through the interface depicted in Figure
1. To describe the Cassandra system, it is not sufficient to describe the policy language; it is
also necessary to define the access control engine and how it interacts with the policy.

Recall that the interface defines four types of requests: performing an action, activating
a role, deactivating a role and requesting a credential. Upon a request, the access control
engine queries the policy to check whether it should be granted.

The exact query depends on the type of request. If the request is to

• perform an action, the query will be a corresponding permits predicate;

• activate a role, the query will first be a hasActivated predicate to see whether the role
has already been activated for the requester, and if this is not the case, there will be a
second query, a corresponding canActivate predicate;

• deactivating somebody’s role, the query will first be a hasActivated predicate
to see whether the “victim” has activated that role at all, and then a correspond-
ing canDeactivate predicate. If this succeeds the access control engine will send a
isDeactivated query to find the set of all role deactivations triggered by the initial one;

• request a credential, the query will first be a corresponding canReqCred predicate,
and then secondly, since a credential is nothing but a predicate, the credential itself.

All granted requests (apart from performing an action) have side-effects on the global
state: activating a role adds a hasActivated fact (i.e., a rule without body predicates) to the
service’s policy; deactivating a role removes one or more hasActivated facts; and requesting
a credential adds a fact representing the credential to the requester’s policy.

8



For example, reconsider the three policy rules from example 1. Suppose the policy also
contains a fourth rule

hasActivated(Alice, User())←

Now suppose Alice wants to activate the Admin() role. The access control engine will
first query the policy with the predicate hasActivated(Alice, Admin()) to check whether
Alice has already activated that role. This fails, as expected, so the second query is
canActivate(Alice, Admin()). This succeeds because of the first and the fourth rule, and
a fifth rule is added to the policy:

hasActivated(Alice, Admin())←

Now suppose Alice requests that her User() role be activated. The access control en-
gine tries to deduce the predicate hasActivated(Alice, User()); and indeed, Alice is cur-
rently active in the user role because of the fifth rule. Then, the policy is queried with
canDeactivate(Alice, Alice, User()) which also succeeds because of the second rule. Fi-
nally, the access control engine will attempt to find all values satisfying the predicate
isDeactivated(e, r) under the assumption isDeactivated(Alice, User()). By assumption, this
will of course be the pair (Alice,User()) itself, and by the third rule, also the pair
(Alice,Admin()). The found values match the hasActivated facts from the fourth and the
fifth rules. Consequently, these two rules are removed from the policy.

3 EHR architecture

The Spine is the central service that holds the EHRs of all NHS patients. Including deceased
users and users who have moved abroad, the total number of records is expected to be in
the order of 108. It provides online read and write access to the records to authorised users;
these will mainly be clinicians and personal users (patients and their agents).

The Spine is supported by the national Patient Demographic Service (PDS). It serves as
a single, comprehensive and consistent source of up-to-date demographic patient data (e.g.
NHS number, name, address, preferred language). This data is accessed by the Spine and
other applications for identifying and authenticating personal users.

The national services are large and have to be able to cope with high loads. By 2010,
when the ICRS project is expected to be completed, there will be an estimated number of 50
million patients, 300 million GP appointments, 70 million inpatient episodes and out-patient
hospital attendances, and about 30 million other health episodes and encounters each year
(§740, [Nat03]).

An integral goal of the NHS National Programme for IT in the NHS (NPfIT) is the
deployment of an infrastructure for identification, registration and authentication of users
in a secure, standardised and seamless manner across all national and local applications,
based on digital credentials and public key technology. Professional users, i.e. clinical and
administrative staff, access EHR data in the Spine based on role credentials, issued by NHS-
approved Registration Authorities (RAs). RAs are also responsible for managing clinical
workgroup membership. The size of an RA can vary considerably. Most RAs will be local to
a single health organisation, but some may be “more nationally based” (§730.24.0, [Nat03]).
It is conceivable that large RAs could be located on the NHS cluster level of which there
are five in England (covering London; North East, Yorkshire and Humberside; South East
and South West; East of England and East Midlands; West Midlands and North West). A
typical cluster comprises of up to 2000 General Practices and 100 Acute Trusts and other
health organisations. An RA policy should therefore be able to cope with up to 200,000
registered health professionals.

Local applications are expected to make use of and interoperate with the national services.
In particular, local health organisations (e.g. hospitals, doctors’ practices) will gradually
move from the traditional paper-based records to electronic databases. The records kept
on this level are called Electronic Patient Records (EPR); summaries of these are used to

9



populate the Spine. This process may take a long time, and the local procedures differ
substantially, so the EHR service cannot be deployed on this level by connecting up all
existing EPR systems. Health organisations can be as small as single GP practices but could
also be entire NHS trusts with up to 500,000 registered patients.

4 Scenario

The following scenario illustrates some of the more challenging requirements of security
policies for our EHR architecture. §5 discusses how these requirements are met by our
Cassandra policy (we use the role and action names from the policy in the text below).

Anson Arkwright goes to see Dr Zoe Zimmer, his family’s General Practitioner (GP),
for an HIV test. Dr Zimmer records the visit in a local EPR item1 by performing an
Add-record-item action (with suitable parameters) but does not submit a summary to
the Spine on Anson’s request. Some time later, Bob Arkwright, Anson’s father, visits Dr
Zimmer because of heart problems. During the visit he also tells her that he believes his son
Anson may be a hypochondriac. Dr Zimmer adds a record item to Bob’s EPR about his
heart condition and an item in Anson’s EPR about his father’s comments. The latter item
is marked as containing third party information about his father, so as long as his father
(or the Caldicott Guardian on his behalf) does not enter a Third-party-consent role for
that item, Anson will not be able to read it. (Note that we use roles not just to model job
positions within an organisation but also to indicate state changes, e.g. giving third-party
consent.)

Dr Zimmer also attempts to submit a summary of Bob’s new EPR item to his shared
EHR: She first activates her Spine-clinician role on the Spine by submitting an RA-
issued NHS-clinician-cert role credential along with the activation request. Subsequently,
her Add-spine-record-item action succeeds because the Spine can deduce she is Bob’s
Treating-clinician (Bob has explicitly consented to treatment years ago and has not
withdrawn his Consent-to-treatment role). Dr Zimmer also decides to refer Bob to a local
hospital’s cardiologist, Dr Hannah Hassan. As Bob’s treating clinician, Dr Zimmer can enter
a Referrer role on the Spine, thus enabling Dr Hassan to also become a treating clinician
with a legitimate relationship. Bob’s consent is not needed, but he has the power to cancel
the referral by deactivating Dr Zimmer’s Referrer role.

At the hospital, a Receptionist registers Bob as a patient by activating a Register-

patient role. After his out-patient visit with Dr Hassan, the receptionist registers him with
a surgical team in the same hospital for a heart bypass operation. For this purpose, the
receptionist activates appropriate Register-team-episode and Register-ward-episode

roles on the hospital’s service, thereby establishing a legitimate treating clinician relationship
between Bob and the surgical team and the ward nurses. During surgery, abnormal liver
values are found, so the team attempts to search for potentially important information in
Bob’s EHR on the Spine. However, years ago, Bob activated a Conceal-request role on
the Spine to conceal the contents of all items in his EHR concerning an alcohol-related liver
problem from everybody except clinicians treating him as GP, and this request had been
granted by Dr Zimmer, who activated a corresponding Concealed-by-spine-patient role
for this purpose. The head of the surgical team, Dr Lily Littlewood, decides to “break the
seal” to view Bob’s restricted EHR item by performing the action Force-read-spine-item.
This can be done by any clinician with a legitimate relationship but will be marked in the
audit trail to be investigated by the hospital’s Caldicott Guardian.

Unfortunately, the team encounters further complications during the operation and Bob
needs to be kept in an artificial coma. Dr Zimmer agrees to appoint Bob’s wife, Carol,
to be his agent by activating a Register-agent role on the Spine. Carol then requests
to activate the Agent role on the hospital’s service. This succeeds after a cycle of trust
negotiation between the hospital, the Spine, and the hospital’s RA: the hospital’s service
reacts to Carol’s request by requesting an agent registration credential from the Spine; the

1Recall that EPRs are the detailed patient records held in health organisations and are meant to replace the
traditional paper-based records, whereas EHRs are the shared summary records held on the Spine.

10



Spine replies by requesting a health organisation credential; the hospital agrees by sending
an health organisation credential, issued by some RA, to the Spine; the Spine requests an
NHS-signed credential from the RA to check if it is an officially approved RA, and finally,
the Spine sends the originally requested Register-agent credential to the hospital certifying
that Carol is indeed Bob’s agent.

When Bob is woken and released, he attempts to revoke the agent registration for his
wife but fails because it was Dr Zimmer who registered Carol. However, on Bob’s request,
Dr Zimmer deactivates her Register-agent role for Carol. If Carol is active with an Agent

role on the Spine at that moment, cascading revocation causes that role to be deactivated
immediately as well.

5 EHR policy

5.1 Overview

We have drafted a complete Cassandra policy for the NHS Spine and related services, based
mainly on the Output Based ICRS Specification Version 2.0 (OBS) [Nat03], reports from
NHS pilot projects of the Electronic Records Development and Implementation Programme
(ERDIP) [Nat02, Gau03], and various Department of Health documents [Dep01b, Dep02].

The OBS is a 900-page document given to potential suppliers during the procurement
process in August 2003. According to the OBS, the ICRS modules are to be delivered by
contractors in three phases. By December 2004 (Phase 1), a basic system for accessing EHRs
on the Spine should have been delivered, and the Spine populated with patient data. At
this stage, the required confidentiality requirements are dangerously low and have prompted
harsh criticism from doctors, patient interest groups and the media: A one-off general consent
given by a patient would make his personal data available to all clinical users of the Spine.
Stricter confidentiality measures are introduced with the later phases. In Phase 2 (December
2006), patients will directly access their health data, they can request to conceal parts of
their records, and can identify people (agents) to act on their behalf concerning access to
records. Furthermore, access control based on clinical workgroups will be supported. In
Phase 3 (December 2010), clinicians will also be able to conceal parts of their patients’
records, access will be based on legitimate relationships between patients and clinicians, and
systems must separately deal with data containing confidential third-party information. Our
proposed policy covers all requirements regarding the access of patient-identifiable data up
to and including Phase 3.

The most relevant section for our case study is section §730 on information governance, a
list of security and confidentiality requirements for ICRS systems handling patient data. It
was specifically written to comply with relevant legislation and guidelines, in particular with
the Data Protection Act 1998 and the Caldicott guidelines, and, as far as patient registration
is concerned, with the “Registration and Authentication e-Government Strategy Framework
Policy and Guidelines”. The document acknowledges that the requirements of this section
are likely to evolve due to changes in national guidelines and legal requirements, but also to
new positions emerging from still ongoing NHS consultation processes. Some of the points
will be affected by design work yet to be done, and some are “subject to further guidance”.

Consequently, the requirements are sketchy in places. For example, section §730.9 states
the requirements of role-based access control without specifying which roles will be used and
their associated privileges. Similarly, it is a Phase 3 requirement that only clinicians with a
legitimate relationship have access to patient data (§730.17). However, the section does not
explain the rules for establishing legitimate relationships. In writing a formal policy for the
system, many such missing details had to be filled in. Many of our rules are based simply
on common sense, even though they are not explicitly required in the OBS: for example,
that a legitimate relationship is automatically revoked if the respective patient is no longer
registered in the system.

In some cases we had to choose from a number of conceivable options and, in general,
favoured the more demanding solutions. For example, patients may seal off groups of related
clinical data (e.g. all the data about a particular event) (§730.48.2), but the OBS defers the

11



specification of the granularity of such groupings until further guidance has been produced.
Our solution gives patients an extremely high flexibility in specifying sealing-off criteria and
may well be more flexible than what is actually needed, but it shows that less demanding
solutions could also be implemented in Cassandra.

In our case study, the entities are the individual users (patients, clinicians, staff) as
well as the national and local services. We have written policies for the Spine, the PDS,
Addenbrooke’s Hospital (an exemplary hospital), and Addenbrooke’s RA. The policies use
the constraint domain C0 [BS04b] and comprise 375 rules, 71 roles and 12 actions. Of the
375 rules, there are 118 canActivate, 97 canDeactivate, 51 isDeactivated, 29 permits and 27
canReqCred rules. The remaining 53 are user-defined rules. The case study suggests that
common policy idioms such as appointment hardly occur in their pure forms in practice. It
is therefore not sufficient to equip a policy language with standard policy constructs (e.g.
appointment in OASIS [HBM98, YMB02, BMY02]); rather, it is necessary to be able to
express different variants of them. The rules can be roughly divided into the following
categories:

5.1.1 Permissions assignment

Many of the permits rules are straightforward parameterised role-action assignments, e.g.
“patients can annotate their own record items”. Others require more than one role-related
prerequisite condition, e.g. “clinicians can force-read record items concealed by a patient
if they have activated their clinician role and if they are member of a workgroup (clinical
team or ward) currently treating the patient”. The last condition is also an example of an
auxiliary or derived role: the Group-treating-clinician role need not be activated when
using the rule; it is sufficient that it can be activated.

The permits rules concerning reading record items are typically also conditioned on patient
and third-party consent and (absence of) access restrictions. All these conditions correspond
to role activations of users other than the requester. Such rules cannot be easily expressed
in languages in which the subject parameters of the head and the body are implicitly the
same, e.g. SPKI/SDSI [Ell99, EFL+99], RT [LMW02] or OASIS [HBM98, YMB02, BMY02].

5.1.2 Consent

Access to health records is primarily based on explicit patient consent. Consent may be
required for initial treatment, for referrals and for disclosure of third-party information.
We implement consent as a form of appointment: by activating a consent role, a patient
“appoints” a clinician to be e.g. a Treating-clinician with a legitimate relationship. To
prevent frivolous users from unsolicitedly activating myriads of consent roles, the user must
first have been requested to activate the consent role. These consent requests are again
implemented as a form of appointment, but now the other way round: by activating a
consent request role, the clinician enables the patient to activate a consent role. Consent is
thus implemented as a two-stage appointment mechanism.

5.1.3 Registration

Registration is an administrative task that takes on many forms in our case study: for
example, PDS managers enter newly born patients into the PDS, receptionists register new
patients, human resource managers employ clinicians and other staff, head nurses assign
nurses to wards, and heads of clinical teams assign clinicians to their respective teams.
Registration can again be implemented using variants of the appointment encoding given in
[BS04b]. Variants include combinations with cardinality restrictions (“patients can register
at most three distinct agents acting on their behalf”) and uniqueness constraints (“a patient
can only be registered if no one has already activated the registration role for that patient”).
The two mentioned variants make use of Cassandra’s aggregation operators.

12



5.1.4 Referral

Referral is implemented as a form of delegation. Our case study exhibits two kinds of patient
referral. On the Spine, no patient consent is required, and referral chains are of unbounded
length. On the level of the local health organisation, we decided to implement a stricter
alternative: a local treating clinician can refer the patient to an external clinician (who will
then have restricted rights to read the local EPR record items) only with explicit patient
consent, and the delegation chain can only be of length one.

5.1.5 Sealing off data

This is a policy idiom motivated by the requirement that patients may specify access restric-
tions on their data. Patients can fine-tune the access rights to their records by activating an
appropriate concealment request role, if the request is subsequently approved by a clinician.
The permits rules governing read access need to check that no such concealment role has
been activated and approved; this requires universally quantified negation, expressed with
the help of aggregation operators.

5.1.6 Deactivation

canDeactivate rules specify who can deactivate which roles. Although these rules are rather
straightforward, it is important that deactivation can be specified flexibly. For example,
revocation of agent registrations is asymmetric in the sense that patients can only revoke
the agents they have appointed themselves (grant-dependent revocation), whereas Caldicott
Guardians can revoke not only the agents they have appointed for a patient but also those
appointed by the patient (variant of grant-independent revocation). Furthermore, agent role
activations are revoked only if all their registrations have been revoked. This is yet another
example of universally quantified negation requiring aggregation operators.

Cascading deactivation, specified by isDeactivated rules, is used to automatically deac-
tivate a role if some other role is deactivated. For example, the revocation of a patient’s
registration in the hospital triggers the deactivation of all roles that have something to do
with that patient, including agent registrations, inpatient episode registrations, legitimate
relationships with clinicians, access restriction roles, and consent roles.

5.1.7 Credential management

Credential-based trust negotiation and credential protection are governed by the interaction
between canReqCred rules and rules with remote body predicates. The scenario in §4 gives
an example of multi-phase automatic trust negotiation. canReqCred rules are also used for
regulating direct credential requests from entities. For example, agent credentials from the
Spine can be requested by certified health organisations, and also by the agent himself.
The location parameter of Cassandra predicates facilitates very flexible forms of automated
credential retrieval: unlike other policy systems, credential locations are not restricted to the
issuer or the credential subject. For example, a credential of the form

RA.hasActivated(RA-adm, NHS-health-org-cert(Org, Start, End))

may be found at the location Org which is neither the issuer (RA) nor the subject (RA-adm).
In the following we describe in detail the policies for the EHR architecture outlined in §3

and illustrated in the scenario (§4). All rules are also listed in the Appendix A. The section
numbers starting with 730 relate to the OBS [Nat03].

5.2 The Spine

The Spine is the heart of the ICRS, containing EHRs for all patients and providing online
access to the records to both to both patients and professional users. Our policy for the

13



Spine defines the access roles and privileges, and manages consent, legitimate relationships,
and concealment of record items. The Spine policy comprises 137 rules.

5.2.1 EHR structure

Each patient is associated with exactly one EHR consisting of a set of record items, indexed
by an ID. We thus assume that each record item is uniquely identified by a pair (pat, id):
the item with ID id in the EHR of patient pat. The policy accesses relevant fields of a record
item via the following system functions, each of which take such a pair as argument:

• Get-spine-record-author returns the author of the item. This is always a clinician.

• Get-spine-record-org returns the health organisation of the author.

• Get-spine-record-time returns the time and date of the item’s creation.

• Get-spine-record-subjects returns a set of subject matters (chosen from a prede-
fined list of valid subjects such as ‘allergy’, ‘abortion’, ‘cancer’) the item relates to.

• Get-spine-record-third-parties returns a set of all third parties whose consent
must be sought prior to revealing the item to the patient.

As is the case throughout this case study, fields and parameters that are irrelevant to the
policy are omitted. For example, there is no ‘content’ field for record items, as the policy
does not perform any computations on the actual content of the item. Similarly, alert-raising
actions such as Force-read-spine-record-item, i.e. the forced reading of an item against
the patient’s wishes, would in reality contain a ‘reason’ parameter explaining why this action
is performed, but it is omitted since it is irrelevant for the policy.

5.2.2 Main roles

The Spine policy is role-based (§730.9), and designed in such a way that users need to have
activated a single main role, Spine-clinician, Spine-admin, Patient, Agent and Third-

party, before performing any action or activating a registration, consent or concealment
roles. The requirement that exactly one role must be active (§730.12.10) is an example of
dynamic n-wise separation of duties [BS04b]. The activation rules for all these roles contain
a user-defined predicate no-main-role-active(user) (S1.5.3) that is satisfied only if the user
has not already activated any of these roles:

(S1.5.3)
no-main-role-active(user)←

count-agent-activations(n, user),
count-spine-clinician-activations(n, user),
count-spine-admin-activations(n, user),
count-patient-activations(n, user),
count-third-party-activations(n, user),
n = 0

As in [BS04b], this is achieved by the use of aggregation predicates (S1.1.4, S1.2.4, S1.3.4,
S1.4.5, S2.2.13).

(S1.1.4)
count-spine-clinician-activations(count〈u〉, user)←

hasActivated(user , Spine-clinician(ra, org , spcty))

(S1.2.4)
count-spine-admin-activations(count〈u〉, user)←

hasActivated(user , Spine-admin())

(S1.3.4)
count-patient-activations(count〈u〉, user)←

hasActivated(user , Patient())

14



(S1.4.5)
count-agent-activations(count〈u〉, user)←

hasActivated(user , Agent(pat))

(S2.2.13)
count-third-party-activations(count〈u〉, user)←

hasActivated(user , Third-party())

The following describes the rules concerning the main access roles apart from Third-

party which is discussed in §5.2.3.

Clinicians A clinician certified by an NHS-approved RA ra working for health organisa-
tion org with specialty spcty can activate the role Spine-clinician(ra, org, spcty). The
credential can be either submitted locally (S1.1.1) or retrieved from the RA (S1.1.2):

(S1.1.1)
canActivate(cli , Spine-clinician(ra, org , spcty))←

ra.hasActivated(x , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority()),
no-main-role-active(cli),
Current-time() ∈ [start , end ]

(S1.1.2)
canActivate(cli , Spine-clinician(ra, org , spcty))←

ra@ra.hasActivated(x , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority()),
no-main-role-active(cli),
Current-time() ∈ [start , end ]

In both cases, the credential must be still valid, and it is checked if ra is an NHS-approved
RA (S1.5.1), if necessary, by contacting the RA itself (S1.5.2):

(S1.5.1)
canActivate(ra, Registration-authority())←

NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

(S1.5.2)
canActivate(ra, Registration-authority())←

ra@NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

A clinician can deactivate her own role (S1.1.3):

(S1.1.3)
canDeactivate(cli , cli , Spine-clinician(ra, org , spcty))←

Administrators Administrators are responsible for registering new patients and unreg-
istering deceased patients or those who have moved away. The administrator role Spine-

admin() can be activated if the person has been registered as such (S1.2.1):

(S1.2.1)
canActivate(adm, Spine-admin())←

hasActivated(x , Register-spine-admin(adm)),
no-main-role-active(adm)

Administrators can be registered if they have not already been registered (S1.2.5, S1.2.7)
and unregistered (S1.2.6) by other administrators:

(S1.2.5)
canActivate(adm, Register-spine-admin(adm2 ))←

hasActivated(adm, Spine-admin()),
spine-admin-regs(0, adm2 )

15



(S1.2.7)
spine-admin-regs(count〈x〉, adm)←

hasActivated(x , Register-spine-admin(adm))

(S1.2.6)
canDeactivate(adm, x , Register-spine-admin(adm2 ))←

hasActivated(adm, Spine-admin())

The role can be deactivated by the administrator herself (S1.2.2) and is automatically deac-
tivated when the registration is cancelled (S1.2.3):

(S1.2.2)
canDeactivate(adm, adm, Spine-admin())←

(S1.2.3)
isDeactivated(adm, Spine-admin())←

isDeactivated(x , Register-spine-admin(adm))

Patients A patient can activate (S1.3.1) the role Patient() if he has been registered
on the Spine and also at the PDS. The latter condition is checked by contacting the PDS
directly, as required by §730.24.0b:

(S1.3.1)
canActivate(pat , Patient())←

hasActivated(x , Register-patient(pat)),
no-main-role-active(pat),
PDS@PDS.hasActivated(y , Register-patient(pat))

Patients can be registered if they have not already been registered (S1.3.5, S1.3.7) and
unregistered (S1.3.6) by administrators:

(S1.3.5)
canActivate(adm, Register-patient(pat))←

hasActivated(adm, Spine-admin()),
patient-regs(0, pat)

(S1.3.7)
patient-regs(count〈x〉, pat)←

hasActivated(x , Register-patient(pat))

In our policy, the removal of a patient’s registration should only be performed if his data is
permanently removed from the Spine, for example, in the case of the patient’s death, after
the legal minimal retention period.

The patient role can be deactivated by the patient himself (S1.3.2) and is automatically
deactivated when the registration is cancelled (S1.3.3):

(S1.3.2)
canDeactivate(pat , pat , Patient())←

(S1.3.3)
isDeactivated(pat , Patient())←

isDeactivated(x , Register-patient(pat))

Agents A patient can identify agents (for example carers, family members, guardians
of a child) who have a special kind of legitimate relationship that allow them to act on
the patient’s behalf and to access his record (§730.20.10, §730.52). A person can activate
(S1.4.1) the role Agent(pat) for a patient pat if he has been appointed as an agent and if

16



he is registered at the PDS. As in the case of patient role activation, the latter condition is
checked by contacting the PDS directly (P2.2.5):

(S1.4.1)
canActivate(ag , Agent(pat))←

hasActivated(x , Register-agent(ag , pat)),
PDS@PDS.hasActivated(y , Register-patient(ag)),
no-main-role-active(ag)

(S2.2.5)
canDeactivate(ag , y , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Agent(pat))

The role can be deactivated by the agent himself (S1.4.2) and is deactivated automatically
if all his agent registrations for the patient have been cancelled (S1.4.3, S1.4.4):

(S1.4.2)
canDeactivate(ag , ag , Agent(pat))←

(S1.4.3)
isDeactivated(ag , Agent(pat))←

isDeactivated(x , Register-agent(ag , pat)),
other-agent-regs(0, x , ag , pat)

(S1.4.4)
other-agent-regs(count〈y〉, x , ag , pat)←

hasActivated(y , Register-agent(ag , pat)),
x 6= y

Patients can appoint up to three personal agents (S1.4.9, S1.4.14). The rationale behind
this cardinality restriction is to prevent users from frivolously or maliciously clogging up the
policy.

(S1.4.9)
canActivate(pat , Register-agent(agent , pat))←

hasActivated(pat , Patient()),
agent-regs(n, pat),
n < 3

(S1.4.14)
agent-regs(count〈x〉, pat)←

hasActivated(pat , Register-agent(x , pat))

Agents can also be appointed by the patient’s GP (S1.4.10). This can be done without the
patient’s consent if he lacks competence (§730.55.6), for example if the patient is a child and
not Gillick-competent2 but objects to his parents acting on his behalf:

(S1.4.10)
canActivate(cli , Register-agent(agent , pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

The patient can only cancel the agent appointments he has made himself but not those made
by his GP (S1.4.11) (grant-dependent revocation). A patient’s GP, on the other hand, can
cancel any agent appointments (S1.4.12) (grant-independent revocation):

(S1.4.11)
canDeactivate(pat , pat , Register-agent(agent , pat))←

hasActivated(pat , Patient())

2A child is Gillick-competent if it is deemed mature enough to give or refuse consent to a medical procedure
by him or herself. Parental consent is not legally required, only recommended.

17



(S1.4.12)
canDeactivate(cli , x , Register-agent(agent , pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

All agent appointments are automatically cancelled if the patient’s registration is cancelled
(S1.4.13):

(S1.4.13)
isDeactivated(x , Register-agent(agent , pat))←

isDeactivated(y , Register-patient(pat))

An agent can request a credential certifying his role as agent (S1.4.6):

(S1.4.6)
canReqCred(ag , Spine.canActivate(ag , Agent(pat)))←

hasActivated(ag , Agent(pat))

Such a credential could for example be used for authorisation in the EPR systems of local
health organisations, as in the following rules located at Addenbrooke’s Hospital’s policy
(A1.6.2, A1.6.3):

(A1.6.2)
canActivate(agent , Agent(pat))←

canActivate(pat , Patient()),
no-main-role-active(agent),
PDS@PDS.hasActivated(x , Register-patient(agent)),
Spine@Spine.canActivate(agent , Agent(pat))

(A1.6.3)
isDeactivated(ag , Agent(pat))←

isDeactivated(x , Register-agent(ag , pat)),
other-agent-regs(0, x , ag , pat)

Health organisations can also directly ask for such a credential. For this purpose they
first have to authenticate themselves with a currently valid RA-signed health organisation
credential (S1.4.7). If no such credential is submitted, the Spine tries to retrieve it from the
health organisation (S1.4.8). In both cases it is also checked whether the RA is approved by
the NHS:

(S1.4.7)
canReqCred(org , Spine.canActivate(ag , Agent(pat)))←

ra.hasActivated(x , NHS-health-org-cert(org , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(S1.4.8)
canReqCred(org , Spine.canActivate(ag , Agent(pat)))←

org@ra.hasActivated(x , NHS-health-org-cert(org , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

5.2.3 Express consent

It is generally agreed that disclosure of patient data must be preceded by the patient’s
express consent. There is of course much controversy about the details: How specific should
the statement of consent be? How often should consent be sought? When can (implied)
consent be derived from express consent? Very strict consent requirement may be good in
terms of medical ethics but may be too impractical for users.

The following describes the rules concerning patient consent based on our interpretation
of the OBS. This part of the policy is very likely change as the debate on consent evolves
and more guidelines are produced.

18



One-off consent According to §730.4.2, patients will not be allowed to refuse having
their medical data stored on the Spine, but the patient’s “one-off consent” is required to
release the data for clinical care3.

In the Spine policy, a patient pat can give a one-off consent to have his data made available
on the Spine by activating the role One-off-consent(pat) (S2.1.1):

(S2.1.1)
canActivate(pat , One-off-consent(pat))←

hasActivated(pat , Patient())

Furthermore, his agent can also do this on his behalf (S2.1.2), and so can any treating
clinician (i.e. a clinician with a legitimate relationship) (S2.1.3).

(S2.1.2)
canActivate(ag , One-off-consent(pat))←

hasActivated(ag , Agent(pat))

(S2.1.3)
canActivate(cli , One-off-consent(pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

The patient (S2.1.4), or his agent (S2.1.5) or a treating clinician (S2.1.6) on his behalf, can
withdraw the consent by deactivating the role:

(S2.1.4)
canDeactivate(pat , x , One-off-consent(pat))←

hasActivated(pat , Patient())

(S2.1.5)
canDeactivate(ag , x , One-off-consent(pat))←

hasActivated(ag , Agent(pat))

(S2.1.6)
canDeactivate(cli , x , One-off-consent(pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

The consent role is automatically deactivated if the patient’s registration is cancelled (S2.1.7):

(S2.1.7)
isDeactivated(x , One-off-consent(pat))←

isDeactivated(y , Register-patient(pat))

Third-party consent Health record items may sometimes contain information about
someone other than the patient. A GP may for example include information about certain
diseases of the patient’s blood relatives [SMW93]. According to the UK Data Protection Act
1998, patients may not view record items that may reveal confidential information about
third parties without the third parties’ consent. The OBS only requires that any third-party
information be withheld from the patient. Our policy also allows patients to request a third
party to give their consent.

Third-party consent from a third party x for a particular record item id of a patient pat

can be requested by the patient himself (S2.2.1), by his agent (S2.2.2) or by any clinician cur-
rently treating him (S2.2.3) by the activation of Request-third-party-consent(x, pat, id).

3This is one of the more controversial points as the specifications also allow clinicians to access a patient’s
records without his consent in “exceptional circumstances” (§730.4.11)

19



A further condition for this request is that x is actually recorded as a third party in the
record item (pat, id):

(S2.2.1)
canActivate(pat , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Patient()),
x ∈ Get-spine-record-third-parties(pat , id)

(S2.2.2)
canActivate(ag , Request-third-party-consent(x , pat , id))←

hasActivated(ag , Agent(pat)),
x ∈ Get-spine-record-third-parties(pat , id)

(S2.2.3)
canActivate(cli , Request-third-party-consent(x , pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
x ∈ Get-spine-record-third-parties(pat , id)

The request can be cancelled by the same users who can activate it (S2.2.4-6). Additionally,
the respective third party may also deactivate the request role (S2.2.7), thereby withholding
(or later withdrawing) consent to disclosure:

(S2.2.4)
canDeactivate(pat , y , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Patient())

(S2.2.5)
canDeactivate(ag , y , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Agent(pat))

(S2.2.6)
canDeactivate(cli , y , Request-third-party-consent(x , pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty))

(S2.2.7)
canDeactivate(x , y , Request-third-party-consent(x , pat , id))←

hasActivated(x , Third-party())

All requests are automatically deactivated when the patient’s registration is cancelled
(S2.2.8):

(S2.2.8)
isDeactivated(x , Request-third-party-consent(y , pat , id))←

isDeactivated(z , Register-patient(pat))

In order to give consent to third-party disclosure, the third party first has to activate the
Third-party() role (S2.2.10). This is allowed if his consent has been requested and he is a
registered user at the PDS:

(S2.2.10)
canActivate(x , Third-party())←

hasActivated(y , Request-third-party-consent(x , pat , id)),
no-main-role-active(x ),
PDS@PDS.hasActivated(z , Register-patient(x ))

The role can be deactivated by the third party (S2.2.11) and is automatically deactivated
when all relevant requests have been withdrawn (S2.2.12, S2.2.9):

(S2.2.11)
canDeactivate(x , x , Third-party())←

20



(S2.2.12)
isDeactivated(x , Third-party())←

isDeactivated(y , Request-third-party-consent(x , pat , id)),
other-third-party-consent-requests(0, y , x )

(S2.2.9)
other-third-party-consent-requests(count〈x〉, y , z )←

hasActivated(x , Request-third-party-consent(z , pat , id)),
x 6= y

Once a user has activated the Third-party() role, he can grant existing third-party consent
requests by activating the corresponding Third-party-consent(x, pat, id) role (S2.2.14):

(S2.2.14)
canActivate(x , Third-party-consent(x , pat , id))←

hasActivated(x , Third-party()),
hasActivated(y , Request-third-party-consent(x , pat , id))

Alternatively, consent can also be given by a clinician currently treating the patient to whom
the record item belongs (S2.2.15), as in many cases the third party will not be able to give
consent in this way, or the treating clinician can deduce the third party’s implied consent:

(S2.2.15)
canActivate(cli , Third-party-consent(x , pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
hasActivated(y , Request-third-party-consent(x , pat , id))

Third-party consent is automatically cancelled if all relevant requests have been cancelled
(S2.2.16) (hence the consent role never needs to be deactivated directly):

(S2.2.16)
isDeactivated(x , Third-party-consent(x , pat , id))←

isDeactivated(y , Request-third-party-consent(x , pat , id)),
other-third-party-consent-requests(0, y , x )

Consent to treatment The OBS does not clearly say how legitimate relationships are
formally established. Our policy requires the patient to give express consent for a clinician
to have the role of a treating clinician that represents the legitimate relationship between
the clinician and the patient.

As is the case with third-party consent, the consent to treatment of patient pat by clinician
cli must first be requested by a clinician (this may be cli herself), in order to prevent non-
professional users from activating a large number of unrequested consent roles. The request
is represented by the activation of Request-consent-to-treatment(pat, org, cli, spcty),
where org is cli’s health organisation and spcty her specialty (S2.3.1):

(S2.3.1)
canActivate(cli1 , Request-consent-to-treatment(pat , org2 , cli2 , spcty2 ))←

hasActivated(cli1 , Spine-clinician(ra1 , org1 , spcty1 )),
canActivate(cli2 , Spine-clinician(ra2 , org2 , spcty2 )),
canActivate(pat , Patient())

The request can be cancelled by the requester herself (S2.3.2), by the clinician cli (S2.3.3),
by the patient (S2.3.4), or his agent (S2.3.5) or his GP (S2.3.6) on the patient’s behalf:

(S2.3.2)
canDeactivate(cli1 , cli1 ,

Request-consent-to-treatment(pat , org2 , cli2 , spcty2 ))←
hasActivated(cli1 , Spine-clinician(ra1 , org1 , spcty1 ))

21



(S2.3.3)
canDeactivate(cli2 , cli1 ,

Request-consent-to-treatment(pat , org2 , cli2 , spcty2 ))←
hasActivated(cli2 , Spine-clinician(ra2 , org2 , spcty2 ))

(S2.3.4)
canDeactivate(pat , x , Request-consent-to-treatment(pat , org , cli , spcty))←

hasActivated(pat , Patient())

(S2.3.5)
canDeactivate(ag , x , Request-consent-to-treatment(pat , org , cli , spcty))←

hasActivated(ag , Agent(pat))

(S2.3.6)
canDeactivate(cli , x , Request-consent-to-treatment(pat , org , cli2 , spcty))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

A request is automatically deactivated when the patient’s registration is cancelled (S2.3.7):

(S2.3.7)
isDeactivated(x , Request-consent-to-treatment(pat , org , cli , spcty))←

isDeactivated(y , Register-patient(pat))

An activated request can be granted by the patient directly (S2.3.9), or by his agent (S2.3.10)
or any treating clinician (S2.3.11) on his behalf, by activating Consent-to-treatment(pat,
org, cli, spcty):

(S2.3.9)
canActivate(pat , Consent-to-treatment(pat , org , cli , spcty))←

hasActivated(pat , Patient()),
hasActivated(x , Request-consent-to-treatment(pat , org , cli , spcty))

(S2.3.10)
canActivate(ag , Consent-to-treatment(pat , org , cli , spcty))←

hasActivated(ag , Agent(pat)),
hasActivated(x , Request-consent-to-treatment(pat , org , cli , spcty))

(S2.3.11)
canActivate(cli1 , Consent-to-treatment(pat , org , cli2 , spcty))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty)),
canActivate(cli1 , Treating-clinician(pat , org , spcty)),
hasActivated(x , Request-consent-to-treatment(pat , org , cli2 , spcty))

Consent is automatically cancelled if all relevant requests have been withdrawn (S2.3.12,
S2.3.8):

(S2.3.12)
isDeactivated(x , Consent-to-treatment(pat , org , cli , spcty))←

isDeactivated(y , Request-consent-to-treatment(pat , org , cli , spcty)),
other-consent-to-treatment-requests(0, y , pat , org , cli , spcty)

(S2.3.8)
other-consent-to-treatment-requests(count〈y〉, x , pat , org , cli , spcty)←

hasActivated(y , Request-consent-to-treatment(pat , org , cli , spcty)),
x 6= y

Often, it is a workgroup or team consisting of several clinicians providing care to the patient,
each requiring access to the patient’s record (§730.20.2). To support workgroup-based access
control, patients can activate the Consent-to-group-treatment(pat, org, group) role if
the corresponding Request-consent-to-group-treatment role has been activated. The

22



relevant rules (S2.4.1–12) are much the same as those for standard consent to treatment
except that the request can also be deactivated by workgroup members (S2.4.6). Workgroup
membership is checked by requesting an RA-issued membership credential from the RA:

(S2.4.6)
canDeactivate(cli , x , Request-consent-to-group-treatment(pat , org , group))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
ra@ra.canActivate(cli , Workgroup-member(org , group, spcty))

5.2.4 Legitimate Relationship

A clinician has a legitimate relationship with a patient if she is currently involved in providing
care to the patient. In Phase 3, only clinicians with legitimate relationships have access to
a patient’s data (§730.17). We have seen above how such a relationship is formed by the
clinician requesting the patient’s consent and the patient giving consent to treatment. Here
we discuss some more ways for establishing legitimate relationships, and the rules concerning
the auxiliary roles Treating-clinician and Group-treating-clinician.

Referrals Clinicians can “delegate” their legitimate relationship to a patient to another
clinician by the act of referral (§730.20.8). No express patient consent is needed in this case.

A clinician currently treating a patient pat can refer the patient to another clinician cli

from org in specialty spcty by activating Referrer(pat, org, cli, spcty) (S3.1.1):

(S3.1.1)
canActivate(cli1 , Referrer(pat , org , cli2 , spcty1 ))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty2 )),
canActivate(cli1 , Treating-clinician(pat , org , spcty2 ))

Both the referring clinician (S3.1.2) and the patient (S3.1.3) can cancel the referral:

(S3.1.2)
canDeactivate(cli1 , cli1 , Referrer(pat , org , cli2 , spcty1 ))←

(S3.1.3)
canDeactivate(pat , cli1 , Referrer(pat , org , cli2 , spcty1 ))←

The referral role is also deactivated if the patient’s registration is cancelled (S3.1.4):

(S3.1.4)
isDeactivated(cli1 , Referrer(pat , org , cli2 , spcty1 ))←

isDeactivated(x , Register-patient(pat))

Accident and emergency In the case of accident or emergency, it may be necessary
to get access to a patient’s records without his explicit consent. A clinician can activate the
Spine-emergency-clinician(org, pat) role for any registered patient pat (S3.2.1):

(S3.2.1)
canActivate(cli , Spine-emergency-clinician(org , pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(pat , Patient())

This should trigger an alert and be highlighted in the audit trail (notifications and audit are
not modelled by our policies). The Spine-emergency-clinician role can be deactivated by
the clinician herself (S3.2.2):

(S3.2.2)
canDeactivate(cli , cli , Spine-emergency-clinician(org , pat))←

23



The role is automatically deactivated if the user’s clinician role is deactivated (S3.2.3) and
also if the patient’s registration is cancelled (S3.2.4):

(S3.2.3)
isDeactivated(x , Spine-emergency-clinician(org , pat))←

isDeactivated(x , Spine-clinician(ra, org , spcty))

(S3.2.4)
isDeactivated(x , Spine-emergency-clinician(org , pat))←

isDeactivated(y , Register-patient(pat))

Treating clinicians A legitimate relationship between a clinician or a workgroup and
a patient is manifested in the roles Treating-clinician or Group-treating-clinician,
respectively. These are auxiliary roles that never need to be actually activated as it is only
ever checked whether a user can activate them, but not whether they have been activated.

A clinician cli is associated with the role Treating-clinician(pat,org,spcty) if express
consent to treatment has been given, i.e. the matching role Consent-to-treatment(pat, org,
cli, spcty) has been activated (S3.3.1):

(S3.3.1)
canActivate(cli , Treating-clinician(pat , org , spcty))←

hasActivated(x , Consent-to-treatment(pat , org , cli , spcty))

Alternatively, no consent is required if the clinician is active as Spine-emergency-

clinician(org, pat), but in this case, spcty must be set to ‘A-and-E’ (S3.3.2):

(S3.3.2)
canActivate(cli , Treating-clinician(pat , org , spcty))←

hasActivated(cli , Spine-emergency-clinician(org , pat)),
spcty = A-and-E

Treating clinicians are also those with a matching referral (S3.3.3):

(S3.3.3)
canActivate(cli , Treating-clinician(pat , org , spcty))←

canActivate(cli , Spine-clinician(ra, org , spcty)),
hasActivated(x , Referrer(pat , org , cli , spcty))

The GP role General-practitioner(pat) is derived from the Treating-clinician role and
represents a clinician who treats that patient in the specialty ‘GP’ (S3.3.5):

(S3.3.5)
canActivate(cli , General-practitioner(pat))←

canActivate(cli , Treating-clinician(pat , org , spcty)),
spcty = GP

Similarly, the Group-treating-clinician role can be activated by members of the work-
group, if consent to group treatment has been given. An RA-issued credential is required for
proving workgroup membership, either to be submitted directly (S3.4.1) or automatically
fetched from the clinician’s RA (S3.4.2). The rules also check whether the RA is approved
by the NHS:

(S3.4.1)
canActivate(cli , Group-treating-clinician(pat , ra, org , group, spcty))←

hasActivated(x , Consent-to-group-treatment(pat , org , group)),
ra.canActivate(cli , Workgroup-member(org , group, spcty)),
canActivate(ra, Registration-authority())

24



(S3.4.2)
canActivate(cli , Group-treating-clinician(pat , ra, org , group, spcty))←

hasActivated(x , Consent-to-group-treatment(pat , org , group)),
ra@ra.canActivate(cli , Workgroup-member(org , group, spcty)),
canActivate(ra, Registration-authority())

Any Group-treating-clinician can also be a Treating-clinician (S3.3.4); this is a
simple example of role hierarchy:

(S3.3.4)
canActivate(cli , Treating-clinician(pat , org , spcty))←

canActivate(cli , Group-treating-clinician(pat , ra, org , group, spcty))

5.2.5 Sealing off data

In the past, patients were often refused access to their own records. The recent decades
have brought much more openness between doctors and patients [SMW93]. The change is
also reflected in law: The Medical Reports Act 1988 and the Access to Health Records Act
1990 give patients the right to access records created after November 1991. There still are,
however, exceptional situations in which doctors may withhold parts of the record. The
legislation states two legitimate reasons: firstly, if the information relates to third parties,
and secondly, when the information must be regarded as harmful to the patient.

Clinicians restricting access The Spine will have provisions for clinicians to seal off
data from the patient in exceptional circumstances (§730.49). We have already showed how
our policy deals with record items relating to third parties. Treating clinicians can seal off
a set of items ids from a patient pat’s EHR by activating the role Concealed-by-spine-

clinician(pat, ids, start, end) (S4.1.1):

(S4.1.1)
canActivate(cli , Concealed-by-spine-clinician(pat , ids , start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

The access restriction is valid only within the time interval [start, end] (cf. §730.51.8). Any
such access restriction can be lifted by the clinician who imposed it (S4.1.2) by the patient’s
GP (S4.1.3), and by any clinician working in the same team (S4.1.4) (cf. §730.51.10):

(S4.1.2)
canDeactivate(cli , cli , Concealed-by-spine-clinician(pat , ids , start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty))

(S4.1.3)
canDeactivate(cli , cli2 , Concealed-by-spine-clinician(pat , ids , start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

(S4.1.4)
canDeactivate(cli1 , cli2 , Concealed-by-spine-clinician(pat , ids , start , end))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty1 )),
canActivate(cli1 , Group-treating-clinician(pat , ra, org , group, spcty1 )),
canActivate(cli2 , Group-treating-clinician(pat , ra, org , group, spcty2 )),
hasActivated(x , Consent-to-group-treatment(pat , org , group))

The role is automatically deactivated as soon as the patient’s registration is cancelled (S4.1.5):

(S4.1.5)
isDeactivated(x , Concealed-by-spine-clinician(pat , ids , start , end))←

isDeactivated(y , Register-patient(pat))

25



Patients restricting access The OBS also allows patients to seal off selected clinical
parts of their record (§730.45). The specification suggests that the patient should file a
sealing-off request which is subsequently dealt with by a clinician (§730.48.2).

Our solution gives patients much flexibility for specifying record items to seal off. A
patient (S4.2.1) or his agent (S4.2.2) can file a sealing-off request by activating the role
Conceal-request(which, who, start, end):

(S4.2.1)
canActivate(pat , Conceal-request(what ,who, start , end))←

hasActivated(pat , Patient()),
count-conceal-requests(n, pat),
what = (pat , ids , orgs, authors, subjects , from-time, to-time),
who = (orgs1 , readers1 , spctys1 ),
n < 100

(S4.2.2)
canActivate(ag , Conceal-request(what ,who, start , end))←

hasActivated(ag , Agent(pat)),
count-conceal-requests(n, pat),
what = (pat , ids , orgs, authors, subjects , from-time, to-time),
who = (orgs1 , readers1 , spctys1 ),
n < 100

For each patient, a maximum of 100 such requests can be activated (S4.2.7):

(S4.2.7)
count-conceal-requests(count〈y〉, pat)←

hasActivated(x , Conceal-request(y)),
what = (pat , ids , orgs, authors, subjects , from-time, to-time),
who = (orgs1 , readers1 , spctys1 ),
y = (what ,who, start , end)

Again, we invented this common-sense rule to prevent non-professional users from clogging
up the policy.

Apart from a validity time interval [start, end] (cf. 730.48.12), the Conceal-request role
specifies which items to seal off and whom the restriction applies to. The specification for
which items to seal off is a 7-tuple

(pat, ids, orgs, authors, subjects, from-time, to-time).

A record item from a patient pat’s EHR is sealed off if its ID is in the set ids, its author is
in the set authors and working for a health organisation in orgs, if its subject matter is in
subjects, and its creation date is between from-time and to-time.

The specification for whom the restriction applies to is a triple

(orgs, readers, spctys).

A user is prevented from accessing the selected items (even if she has a legitimate relationship)
if she is in the set readers, working for a health organisation (if applicable) in orgs in a
specialty (if applicable) in the set spctys.

With C0’s universal set expression Ω and the set difference construct, patients can ex-
press explicit access permissions (e.g. “only doctors from Addenbrooke’s may access items
concerning cancer”) as well as explicit access denials (e.g. “Dr Littlewood may not access
items created after 2005”). Access to items that have not yet been created can also be
restricted by setting ids to the universal set expression for IDs, and setting to-time to the
future.

The Conceal-request role can also be used to request to withhold items from non-
clinicians, including agents and the patient himself4.

4Some patients wish not to be informed about certain particularly distressing subject matters. For example, a
patient may specify to make all record items regarding cancer, including those created in the future, inaccessible
to himself.

26



The patient (S4.2.3), his agents (S4.2.4) and his GP (S4.2.5) can all deactivate requests:

(S4.2.3)
canDeactivate(pat , x , Conceal-request(what ,whom, start , end))←

hasActivated(pat , Patient()),
π7

1(what) = pat

(S4.2.4)
canDeactivate(ag , x , Conceal-request(what ,whom, start , end))←

hasActivated(ag , Agent(pat)),
π7

1(what) = pat

(S4.2.5)
canDeactivate(cli , x , Conceal-request(what ,whom, start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat)),
π7

1(what) = pat

A request is automatically deactivated if the patient’s registration is cancelled (S4.2.6):

(S4.2.6)
isDeactivated(x , Conceal-request(what ,whom, start , end))←

isDeactivated(y , Register-patient(pat)),
π7

1(what) = pat

A treating clinician can apply the request by activating a matching Concealed-by-

spine-patient role (S4.2.8):

(S4.2.8)
canActivate(cli , Concealed-by-spine-patient(what ,who, start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
hasActivated(x , Conceal-request(what ,who, start , end))

This role can be revoked by the activator herself (S4.2.9) or any other clinician working in
the same workgroup (S4.2.10):

(S4.2.9)
canDeactivate(cli , cli , Concealed-by-spine-patient(what ,who, start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty))

(S4.2.10)
canDeactivate(cli1 , cli2 , Concealed-by-spine-patient(what ,who, start1 , end1 ))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty1 )),
ra@ra.canActivate(cli1 ,

Group-treating-clinician(pat , ra, org , group, spcty1 )),
ra@ra.canActivate(cli2 ,

Group-treating-clinician(pat , ra, org , group, spcty2 ))

The role is automatically revoked if the request is cancelled (S4.2.11):

(S4.2.11)
isDeactivated(cli , Concealed-by-spine-patient(what ,who, start , end))←

isDeactivated(x , Conceal-request(what ,who, start , end))

This last rule in combination with S4.2.5 means that the patient’s GPs can always remove
an access restriction.

A clinician who is granted authenticated express consent by a patient may access any
sealed-off data without raising an alert if she would also be entitled to access that data, had
it not bean sealed off (§730.48.4, §730.48.17). A patient pat (S4.3.1), his agent (S4.3.2), or his

27



GP (S4.3.3) can activate the role Authenticated-express-consent(pat, cli) for a clinician
cli:

(S4.3.1)
canActivate(pat , Authenticated-express-consent(pat , cli))←

hasActivated(pat , Patient()),
count-authenticated-express-consent(n, pat),
n < 100

(S4.3.2)
canActivate(ag , Authenticated-express-consent(pat , cli))←

hasActivated(ag , Agent(pat)),
count-authenticated-express-consent(n, pat),
n < 100

(S4.3.3)
canActivate(cli1 , Authenticated-express-consent(pat , cli2 ))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty)),
canActivate(cli1 , General-practitioner(pat))

The following aggregation rule restricts the number of such consent grants to 100 for the
former two cases of activations (S4.3.8):

(S4.3.8)
count-authenticated-express-consent(count〈cli〉, pat)←

hasActivated(x , Authenticated-express-consent(pat , cli))

Similarly, consent can be withdrawn by the patient (S4.3.4), his agent(S4.3.5), or his GP
(S4.3.6):

(S4.3.4)
canDeactivate(pat , x , Authenticated-express-consent(pat , cli))←

hasActivated(pat , Patient())

(S4.3.5)
canDeactivate(ag , x , Authenticated-express-consent(pat , cli))←

hasActivated(ag , Agent(pat))

(S4.3.6)
canDeactivate(cli1 , x , Authenticated-express-consent(pat , cli2 ))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty)),
canActivate(cli1 , General-practitioner(pat))

It is automatically withdrawn when the patient’s registration is cancelled (S4.3.7):

(S4.3.7)
isDeactivated(x , Authenticated-express-consent(pat , cli))←

isDeactivated(y , Register-patient(pat))

5.2.6 Access permissions

A new record item for a patient can be created by treating clinicians performing the action
Add-spine-record-item(pat) (S5.1.1):

(S5.1.1)
permits(cli , Add-spine-record-item(pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

28



Patients may not add items to their records themselves, but they can add comments to
existing items by performing Annotate-spine-record-item(pat, id) (S5.1.2):

(S5.1.2)
permits(pat , Annotate-spine-record-item(pat , id))←

hasActivated(pat , Patient())

Comments can also be added by a patient’s agent (S5.1.3) or a treating clinician (S5.1.4) on
his behalf (§730.59.6):

(S5.1.3)
permits(ag , Annotate-spine-record-item(pat , id))←

hasActivated(ag , Agent(pat))

(S5.1.4)
permits(pat , Annotate-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

Patients (S5.2.1), their agents (S5.2.2) and treating clinicians (S5.2.3) can get a list of all
record item IDs of the patient by performing the action Get-spine-record-item-ids(pat):

(S5.2.1)
permits(pat , Get-spine-record-item-ids(pat))←

hasActivated(pat , Patient())

(S5.2.2)
permits(ag , Get-spine-record-item-ids(pat))←

hasActivated(ag , Agent(pat))

(S5.2.3)
permits(cli , Get-spine-record-item-ids(pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

Depending on system implementation, each ID may be annotated with additional, non-
confidential information about that item, such as date etc.

A patient (S5.3.1) or his agent (S5.3.2) can read a record item from the patient’s record
by performing the action Read-spine-record-item(pat, id) if the patient has given one-off
consent to make his data available:

(S5.3.1)
permits(pat , Read-spine-record-item(pat , id))←

hasActivated(pat , Patient()),
hasActivated(x , One-off-consent(pat)),
count-concealed-by-spine-patient(n, a, b),
count-concealed-by-spine-clinician(m, pat , id),
third-party-consent(consenters , pat , id),
n = 0,
m = 0,
a = (pat , id),
b = (No-org, pat , No-spcty),
Get-spine-record-third-parties(pat , id) ⊆ consenters

29



(S5.3.2)
permits(ag , Read-spine-record-item(pat , id))←

hasActivated(ag , Agent(pat)),
hasActivated(x , One-off-consent(pat)),
count-concealed-by-spine-patient(n, a, b),
count-concealed-by-spine-clinician(m, pat , id),
third-party-consent(consenters , pat , id),
n = 0,
m = 0,
a = (pat , id),
b = (No-org, ag , No-spcty),
Get-spine-record-third-parties(pat , id) ⊆ consenters

The former rules authorise read access only if the items have not been sealed off. The check
is implemented by the use of aggregation rules (S4.1.6, S4.2.12):

(S4.1.6)
count-concealed-by-spine-clinician(count〈x〉, pat , id)←

hasActivated(x , Concealed-by-spine-clinician(pat , ids , start , end)),
id ∈ ids,

Current-time() ∈ [start , end ]

(S4.2.12)
count-concealed-by-spine-patient(count〈x〉, a, b)←

hasActivated(x , Concealed-by-spine-patient(what ,who, start , end)),
a = (pat , id),
b = (org , reader , spcty),
what = (pat , ids , orgs, authors, subjects , from-time, to-time),
whom = (orgs1 , readers1 , spctys1 ),
Get-spine-record-org(pat , id) ∈ orgs,

Get-spine-record-author(pat , id) ∈ authors,

sub ∈ Get-spine-record-subjects(pat , id),
sub ∈ subjects,

Get-spine-record-time(pat , id) ∈ [from-time, to-time],
id ∈ ids,

org ∈ orgs1 ,

reader ∈ readers1 ,

spcty ∈ spctys1 ,

Current-time() ∈ [start , end ],
Get-spine-record-third-parties(pat , id) = {},
non-clinical ∈ Ω− Get-spine-record-subjects(pat , id)

It is also checked that all relevant third parties have given consent to disclosure (S2.2.17)
(§730.20.9, §730.56):

(S2.2.17)
third-party-consent(group〈consenter〉, pat , id)←

hasActivated(x , Third-party-consent(consenter , pat , id))

The author of a record item can always read it herself as long the patient has given his
one-off consent, even if it has been sealed off by the patient (S5.3.3):

(S5.3.3)
permits(cli , Read-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
hasActivated(x , One-off-consent(pat)),
Get-spine-record-org(pat , id) = org ,

Get-spine-record-author(pat , id) = cli

30



A treating clinician may view the item if the patient has given his one-off consent, if it has
not been sealed off by the patient and if her specialty allows her5 to read items regarding
the subject-matters of the item (S5.3.4):

(S5.3.4)
permits(cli , Read-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
hasActivated(x , One-off-consent(pat)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
count-concealed-by-spine-patient(n, a, b),
n = 0,
a = (pat , id),
b = (org , cli , spcty),
Get-spine-record-subjects(pat , id) ⊆ Permitted-subjects(spcty)

If the item is sealed off by the patient, she is only permitted to read it with authenticated
express consent (S5.3.5) (§730.48.21).

(S5.3.5)
permits(cli , Read-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
hasActivated(x , One-off-consent(pat)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
hasActivated(y , Authenticated-express-consent(pat , cli)),
Get-spine-record-subjects(pat , id) ⊆ Permitted-subjects(spcty)

The OBS (§730.48.17, §730.4.11) allows clinicians with a legitimate relationship to access a
patient’s item even if it has been sealed off by the patient, and even if the patient has not
given any one-off consent (S5.3.6):

(S5.3.6)
permits(cli , Force-read-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

Of course, clinicians are meant to ‘break the seal’ and access the item only in exceptional
circumstances. The action Force-read-spine-record-item(pat, id) should trigger an alert
in a real implementation and be marked in the audit trail. There is no override facility for
patients to access data that has been sealed off by a clinician (§730.51.14).

5.3 Patient Demographic Service

The PDS will provide users with various search functions on patient demographic data. Our
PDS policy only implements the minimal functionality required to interoperate with the
Spine.

5.3.1 Main roles and patient registration

The main roles on the PDS are PDS-manager, Patient, Agent, and Professional-user.
As before, a user may be active in only one such role at a time. This separation-of-duties

5We associate a set of permitted subjects for each specialty with the built-in function
Permitted-subjects(spcty). For example, the specialty “dentistry” may allow the subjects “general” and
“dental”, but not “venereal disease”.

31



constraint is enforced by the use of aggregation rules (P1.5.1, P1.1.4, P1.2.4, P1.3.5, P1.4.6):

(P1.5.1)
no-main-role-active(user)←

count-agent-activations(n, user),
count-patient-activations(n, user),
count-PDS-manager-activations(n, user),
count-preofessional-user-activations(n, user),
n = 0

(P1.1.4)
count-PDS-manager-activations(count〈u〉, user)←

hasActivated(user , PDS-manager())

(P1.2.4)
count-patient-activations(count〈u〉, user)←

hasActivated(user , Patient())

(P1.3.5)
count-agent-activations(count〈u〉, user)←

hasActivated(user , Agent(pat))

(P1.4.6)
count-professional-user-activations(count〈u〉, user)←

hasActivated(user , Professional-user(ra, org))

Any user active in a role can deactivate their own role (P1.1.2, P1.2.2, P1.3.2, P1.4.5):

(P1.1.2)
canDeactivate(adm, adm, PDS-manager())←

(P1.2.2)
canDeactivate(pat , pat , Patient())←

(P1.3.2)
canDeactivate(ag , ag , Agent(pat))←

(P1.4.5)
canDeactivate(x , x , Professional-user(ra, org))←

A user can activate the PDS-manager() role if she is registered as a manager (P1.1.1):

(P1.1.1)
canActivate(adm, PDS-manager())←

hasActivated(x , Register-PDS-manager(adm)),
no-main-role-active(adm)

A manager can delegate the PDS-manager role to another user usr by activating Register-

PDS-manager(usr) if usr has not already been registered by another manager (P1.1.5,
P1.1.7):

(P1.1.5)
canActivate(adm1 , Register-PDS-manager(adm2 ))←

hasActivated(adm1 , PDS-manager()),
pds-admin-regs(0, adm2 )

(P1.1.7)
pds-admin-regs(count〈x〉, adm)←

hasActivated(x , Register-PDS-manager(adm))

32



Managers can also cancel manager registrations (P1.1.6), thereby potentially triggering the
deactivation of any matching active manager role (P1.1.3):

(P1.1.6)
canDeactivate(adm1 , x , Register-PDS-manager(adm2 ))←

hasActivated(adm1 , PDS-manager())

(P1.1.3)
isDeactivated(adm, PDS-manager())←

isDeactivated(x , Register-PDS-manager(adm))

In our policy, the manager role is designated for registering patients and storing their demo-
graphic data. A manager can register a patient pat who has not yet been registered so far
by activating Register-patient(pat) (P2.1.1, P2.1.3):

(P2.1.1)
canActivate(adm, Register-patient(pat))←

hasActivated(adm, PDS-manager()),
patient-regs(0, pat)

(P2.1.3)
patient-regs(count〈x〉, pat)←

hasActivated(x , Register-patient(pat))

Every patient in the country will be associated with such a registration role activation.
Managers can also deactivate patient registrations (P2.1.2):

(P2.1.2)
canDeactivate(adm, x , Register-patient(pat))←

hasActivated(adm, PDS-manager())

Patients can activate the Patient() role on the PDS if they are registered. An agent can
activate the Agent(pat) role if he himself is a registered patient, and the Spine confirms that
he is an agent (P1.3.1):

(P1.3.1)
canActivate(ag , Agent(pat))←

hasActivated(x , Register-patient(ag)),
no-main-role-active(ag),
Spine@Spine.canActivate(ag , Agent(pat))

Patient and their agent roles are deactivated if their registrations are cancelled (P1.2.3,
P1.3.3, P1.3.4):

(P1.2.3)
isDeactivated(pat , Patient())←

isDeactivated(x , Register-patient(pat))

(P1.3.3)
isDeactivated(ag , Agent(pat))←

isDeactivated(x , Register-patient(ag))

(P1.3.4)
isDeactivated(ag , Agent(pat))←

isDeactivated(x , Register-patient(pat))

Our policy only exemplifies two kinds of professional users, clinicians and Caldicott
Guardians, but other professional roles could easily be implemented in a similar fashion.

33



A user submitting a currently valid RA-issued clinician or Caldicott Guardian credential can
activate the Professional-user(ra, org) role (P1.4.1, P1.4.3):

(P1.4.1)
canActivate(x , Professional-user(ra, org))←

no-main-role-active(cli),
ra.hasActivated(x , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(P1.4.3)
canActivate(x , Professional-user(ra, org))←

no-main-role-active(cg),
ra.hasActivated(x , NHS-Caldicott-guardian-cert(org , cg , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

If no valid credential is submitted, it is requested directly from the RA (P1.4.2, P1.4.4).

(P1.4.2)
canActivate(x , Professional-user(ra, org))←

no-main-role-active(cli),
ra@ra.hasActivated(x , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(P1.4.4)
canActivate(x , Professional-user(ra, org))←

no-main-role-active(cg),
ra@ra.hasActivated(x , NHS-Caldicott-guardian-cert(org , cg , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

In all cases, it is checked whether the RA is approved by the NHS (P1.5.2, P1.5.3):

(P1.5.2)
canActivate(ra, Registration-authority())←

NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

(P1.5.3)
canActivate(ra, Registration-authority())←

ra@NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

5.3.2 Patient-registration credentials

Patients are authenticated on the Spine and other applications after the PDS is contacted for
confirmation of the patient’s registration status. A request sent to the PDS for this purpose
asks for the credential of the form PDS.hasActivated(x, Register-patient(pat)).

The PDS policy allows patient-registration-credential requests from patients (P2.2.1),
agents (P2.2.2) and professional users (P2.2.3) who have activated their respective roles:

(P2.2.1)
canReqCred(pat , PDS.hasActivated(x , Register-patient(pat)))←

hasActivated(pat , Patient())

(P2.2.2)
canReqCred(ag , PDS.hasActivated(x , Register-patient(pat)))←

hasActivated(ag , Agent(pat))

34



(P2.2.3)
canReqCred(usr , PDS.hasActivated(x , Register-patient(pat)))←

hasActivated(usr , Professional-user(ra, org))

Credential requests are further granted to health organisations certified by an RA (P2.2.4).
If no RA-issued health organisation credential is submitted, the PDS will try to retrieve it
from the health organisation directly (P2.5.5):

(P2.2.4)
canReqCred(org , PDS.hasActivated(x , Register-patient(pat)))←

ra.hasActivated(x , NHS-health-org-cert(org , start , end)),
canActivate(ra, Registration-authority())

(P2.2.5)
canReqCred(org , PDS.hasActivated(x , Register-patient(pat)))←

org@ra.hasActivated(x , NHS-health-org-cert(org , start , end)),
canActivate(ra, Registration-authority())

Lastly, patient-registration credentials can also be revealed to RAs (P2.2.6) and the Spine
(P2.2.7):

(P2.2.6)
canReqCred(ra, PDS.hasActivated(x , Register-patient(pat)))←

canActivate(ra, Registration-authority())

(P2.2.7)
canReqCred(Spine, PDS.hasActivated(x , Register-patient(pat)))←

5.4 Local health organisations

The policy of our exemplary health organisation, Addenbrooke’s Hospital (ADB), illustrates
the access control principles of an EPR system. It also shows how a local application can
collaborate with the Spine and other national services. For example, clinical workgroups can
be managed locally, and local workgroup membership can be used to gain access to EHR
items on the Spine. Or conversely, to be authenticated as a patient’s agent on the hospital’s
system, the local policy can make use of the Spine’s agent registration facilities.

As large parts of the ABD’s policy are very similar to the Spine’s, the following description
will go into less detail and focus on the main differences. The full set of rules can be found
in Appendix A.3.

5.4.1 Main roles

ADB’s policy defines seven main roles, Clinician, Caldicott-guardian, HR-manager,
Receptionist, Patient, Agent, Ext-treating-clinician and Third-party. As in the
policies for the other services, aggregation rules ensure that only one main role can be acti-
vated at a time (A1.7.1, A1.1.7, A1.2.7, A1.3.7, A1.4.7, A1.5.7, A1.6.4, A2.2.5, A2.3.11).

The staff roles

• Clinician(spcty) (A1.1.4–7),

• Caldicott-guardian() (A1.2.4–7),

• HR-manager() (A1.3.4–7), and

• Receptionist() (A1.4.4–7)

can be activated by a user if they have been registered (or appointed) by a human-resource
manager. The corresponding registration roles are

• Register-clinician(usr, spcty) (A1.1.1–3),

• Register-Caldicott-guardian(usr) (A1.2.1–3),

• Register-HR-manager(usr) (A1.3.1–3), and

35



• Register-receptionist(usr) (A1.4.1–3).

Users in these staff roles can deactivate their own roles. Their roles are automatically deac-
tivated when their corresponding registration role is deactivated, which can only be done by
a human-resource manager.

Similarly, patients are registered by receptionists via the Register-patient(pat) role
(A1.5.1–3) upon which they can activate their Patient() role (A1.5.4–7). The activation
rule also checks if the patient is registered on the PDS.

Agents can be registered via the Register-agent(usr, pat) by both patients and
Caldicott Guardians (A1.6.5–10), upon which the Agent(pat) role can be activated (A1.6.1–
4). A user can also become an agent at ADB without registration if he is registered as an
agent on the Spine (A1.6.2).

5.4.2 Caldicott Guardians

Caldicott Guardians are responsible for safeguarding the confidentiality of patient infor-
mation in a health organisation. They are expected to check the audit trails for possible
misconduct and to investigate events that trigger an alarm, e.g. a clinician reading a re-
stricted item or assuming the role of an emergency clinician. They can also give consent on
behalf of a patient, or, in exceptional circumstances, make decisions against the wishes of
the patient.

In ADB’s policy, a Caldicott Guardian has the power to lift access restrictions imposed
by patients or clinicians (A4.1.4, A4.2.5):

(A4.1.4)
canDeactivate(cg , cli , Concealed-by-clinician(pat , id , start , end))←

hasActivated(cg , Caldicott-guardian())

(A4.2.5)
canDeactivate(cg , x , Concealed-by-patient(what ,whom, start , end))←

hasActivated(cg , Caldicott-guardian())

Caldicott Guardians can give consent to referral of patients (A2.1.10):

(A2.1.10)
canActivate(cg , Consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(cg , Caldicott-guardian()),
hasActivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))

They can further give consent to access third-party information (A2.3.4, A2.3.17):

(A2.3.4)
canActivate(cg , Request-third-party-consent(x , pat , id))←

hasActivated(cg , Caldicott-guardian()),
x ∈ Get-record-third-parties(pat , id)

(A2.3.17)
canActivate(cg , Third-party-consent(x , pat , id))←

hasActivated(cg , Caldicott-guardian()),
hasActivated(y , Request-third-party-consent(x , pat , id))

They have the right to appoint and revoke agents for patients (A1.6.6, A1.6.8):

(A1.6.6)
canActivate(cg , Register-agent(agent , pat))←

hasActivated(cg , Caldicott-guardian()),
canActivate(pat , Patient())

(A1.6.8)
canDeactivate(cg , x , Register-agent(agent , pat))←

hasActivated(cg , Caldicott-guardian())

36



Finally, Caldicott Guardians can revoke an emergency clinician’s role (A3.7.3):

(A3.7.3)
canDeactivate(cg , cli , Emergency-clinician(pat))←

hasActivated(cg , Caldicott-guardian())

5.4.3 Referrals and external clinicians

When a patient is referred to an external clinician by a treating clinician in the health
organisation (e.g. a GP referring a patient to see a specialist), that clinician may need access
to the local EPR. In our policy for ADB, such a referral automatically establishes a legitimate
relationship that enables the external clinician to access relevant and unrestricted items of
the referred patient’s EPR by activating the Ext-treating-clinician role (A5.3.5):

(A5.3.5)
permits(cli , Read-record-item(pat , id))←

hasActivated(cli , Ext-treating-clinician(pat , ra, org , spcty)),
count-concealed-by-patient2(n, a, b),
n = 0,
a = (pat , id),
b = (org , cli , Ext-group, spcty),
Get-record-subjects(pat , id) ⊆ Permitted-subjects(spcty)

In contrast to the referral mechanism on the Spine, ADB’s policy requires explicit patient
consent. The rationale behind this decision is that an EPR is generally more detailed and
possibly more confidential than the EHR. Any local clinician currently treating the patient
can file a request Request-consent-to-referral(pat, ra, org, cli, spcty) to have the patient
referred to an external clinician cli working for org in specialty spcty (A2.1.1):

(A2.1.1)
canActivate(cli1 , Request-consent-to-referral(pat , ra, org , cli2 , spcty2 ))←

hasActivated(cli1 , Clinician(spcty1 )),
canActivate(cli1 , ADB-treating-clinician(pat , team, spcty1 ))

The request can be withdrawn by the clinician herself (A2.1.2), or denied by the patient
(2.1.3), his agent (A2.1.4), or a Caldicott Guardian (A2.1.5):

(A2.1.2)
canDeactivate(cli , cli , Request-consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(cli , Clinician(spcty))

(A2.1.3)
canDeactivate(pat , x , Request-consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(pat , Patient())

(A2.1.4)
canDeactivate(ag , x , Request-consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(ag , Agent(pat))

(A2.1.5)
canDeactivate(cg , x , Request-consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(cg , Caldicott-guardian())

All referral requests are automatically cancelled if the patient is unregistered (A2.1.6):

(A2.1.6)
isDeactivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))←

isDeactivated(y , Register-patient(pat))

37



A referral request can be granted by the patient or his agent activating a matching Consent-

to-referral role (A2.1.8–9):

(A2.1.8)
canActivate(pat , Consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(pat , Patient()),
hasActivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))

(A2.1.9)
canActivate(pat , Consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(pat , Agent(pat)),
hasActivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))

Caldicott Guardians have the power to give consent on behalf of a patient, even against his
wishes (A2.1.10):

(A2.1.10)
canActivate(cg , Consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(cg , Caldicott-guardian()),
hasActivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))

The consent role is automatically deactivated when all matching requests have been denied
(A2.1.7, A2.1.11):

(A2.1.11)
isDeactivated(x , Consent-to-referral(pat , ra, org , cli , spcty))←

isDeactivated(y , Request-consent-to-referral(pat , ra, org , cli , spcty)),
other-consent-to-referral-requests(0, y , pat , ra, org , cli , spcty)

(A2.1.7)
other-consent-to-referral-requests(count〈y〉, x , pat , ra, org , cli , spcty)←

hasActivated(y , Request-consent-to-referral(pat , ra, org , cli , spcty)),
x 6= y

Once consent has been given, the external clinician can activate and deactivate her role
(A2.2.2, A2.2.3):

(A2.2.2)
canActivate(cli , Ext-treating-clinician(pat , ra, org , spcty))←

hasActivated(ref , Consent-to-referral(pat , ra, org , cli , spcty)),
no-main-role-active(cli),
ra@ra.hasActivated(y , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority())

(A2.2.3)
canDeactivate(cli , cli , Ext-treating-clinician(pat , ra, org , spcty))←

The external clinician is automatically revoked from her role if consent to referral is with-
drawn (A2.2.4, A2.1.12):

(A2.2.4)
isDeactivated(cli , Ext-treating-clinician(pat , ra, org , spcty))←

isDeactivated(x , Consent-to-referral(pat , ra, org , cli2 , spcty)),
other-referral-consents(0, x , pat , ra, org , cli , spcty)

(A2.1.12)
other-referral-consents(count〈y〉, x , pat , ra, org , cli , spcty)←

hasActivated(y , Consent-to-referral(pat , ra, org , cli , spcty)),
x 6= y

38



5.4.4 Workgroup management

As is usual in hospitals, we assume that receptionists register new patients and sign them
up for treatment. In contrast to the Spine’s policy, Addenbrooke’s does not require patients
to give explicit consent to treatment. Rather, patient treatment is based on workgroups
(§730.13).

We distinguish between two different kinds of workgroups, medical teams and wards. A
medical team is a group of clinicians collaboratively treating a patient. A typical team may
be headed by a consultant, and supported by specialist registrars, senior house officers, and
specialist nurses. Additionally, patients in an in-patient episode are usually treated in a
ward. A ward is typically run by a head nurse and a group of other nurses.

Every team is headed by at most one current team member (A3.1.1–7), appointed by a
human-resource manager to the role Head-of-team(team). A similar set of rules governs the
appointment, activation and deactivation of Head-of-ward(ward) roles (A3.4.1–7).

Workgroup membership is managed by human resource managers and workgroup lead-
ers via the registration roles Register-team-member(cli, team, spcty) and Register-ward-

member(cli, ward, spcty) (A3.2.1-7, A3.5.1-7).
A legitimate relationship exists between a clinician and a patient if the clinician is a mem-

ber of a workgroup and the patient is currently being treated by that workgroup. Workgroup-
based treatment of patients is managed by receptionists (A3.3.1, A3.3.4, A3.6.1, A3.6.4):

(A3.3.1)
canActivate(rec, Register-team-episode(pat , team))←

hasActivated(rec, Receptionist()),
canActivate(pat , Patient()),
team-episode-regs(0, pat , team)

(A3.3.4)
canDeactivate(rec, x , Register-team-episode(pat , team))←

hasActivated(rec, Receptionist())

(A3.6.1)
canActivate(rec, Register-ward-episode(pat ,ward))←

hasActivated(rec, Receptionist()),
canActivate(pat , Patient()),
ward-episode-regs(0, pat ,ward)

(A3.6.4)
canDeactivate(rec, x , Register-ward-episode(pat ,ward))←

hasActivated(rec, Receptionist())

Team members and heads of wards can also assign patients to teams or wards, respectively:

(A3.3.2)
canActivate(cli , Register-team-episode(pat , team))←

hasActivated(cli , Clinician(spcty)),
hasActivated(x , Register-team-member(cli , team, spcty)),
canActivate(pat , Patient()),
team-episode-regs(0, pat , team)

(A3.3.5)
canDeactivate(cli , x , Register-team-episode(pat , team))←

hasActivated(cli , Clinician(spcty)),
hasActivated(x , Register-team-member(cli , team, spcty))

(A3.6.2)
canActivate(hd , Register-ward-episode(pat ,ward))←

hasActivated(hd , Clinician(spcty)),
canActivate(hd , Head-of-ward(ward)),
canActivate(pat , Patient()),
ward-episode-regs(0, pat ,ward)

39



(A3.6.5)
canDeactivate(hd , x , Register-ward-episode(pat ,ward))←

hasActivated(hd , Clinician(spcty)),
canActivate(hd , Head-of-ward(ward))

Additionally, Caldicott Guardians can cancel workgroup treatment registrations (A3.6.3,
A3.3.3), but cannot sign up patients for treatment:

(A3.6.3)
canDeactivate(cg , x , Register-ward-episode(pat ,ward))←

hasActivated(cg , Caldicott-guardian())

(A3.3.3)
canDeactivate(cg , x , Register-team-episode(pat , team))←

hasActivated(cg , Caldicott-guardian())

The auxiliary role ADB-treating-clinician(pat, group, spcty) expresses workgroup-based
legitimate relationships, based on the clinician being a group member and the patient regis-
tered for a team- or ward-episode (A3.8.1–3).

(A3.8.1)
canActivate(cli , ADB-treating-clinician(pat , group, spcty))←

canActivate(cli , Clinician(spcty)),
hasActivated(x , Register-team-member(cli , team, spcty)),
hasActivated(y , Register-team-episode(pat , team)),
group = team

(A3.8.2)
canActivate(cli , ADB-treating-clinician(pat , group, spcty))←

canActivate(cli , Clinician(spcty)),
hasActivated(x , Register-ward-member(cli ,ward , spcty)),
hasActivated(x , Register-ward-episode(pat ,ward)),
group = ward

(A3.8.3)
canActivate(cli , ADB-treating-clinician(pat , group, spcty))←

hasActivated(cli , Emergency-clinician(pat)),
group = A-and-E,

spcty = A-and-E

This role is used as a prerequisite for adding (A5.1.1) and annotating (A5.1.5) EPR items:

(A5.1.1)
permits(cli , Add-record-item(pat))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

(A5.1.5)
permits(pat , Annotate-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

Furthermore, it is a prerequisite for reading EPR items (A5.2.3, A5.3.4, A5.3.8):

(A5.2.3)
permits(cli , Get-record-item-ids(pat))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

40



(A5.3.4)
permits(cli , Read-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty)),
count-concealed-by-patient2(n, a, b),
n = 0,
a = (pat , id),
b = (ADB, cli , group, spcty),
Get-record-subjects(pat , id) ⊆ Permitted-subjects(spcty)

(A5.3.8)
permits(cli , Force-read-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

All current members of a medical team have permission to read EPR items that have been
authored by that team, even if the patient is currently not treated by the team anymore
(A5.3.3):

(A5.3.3)
permits(cli , Read-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
hasActivated(x , Register-team-member(cli , team, spcty)),
Get-record-group(pat , id) = team

Workgroup membership on ADB’s system can be used to establish legitimate relationships
on the Spine. But as the Spine will contact ADB’s RA (RA-ADB) for workgroup credentials
(S3.4.1, S3.4.2) (cf. §730.12.0), RA-ADB will in turn request credentials from ADB (R3.1.1,
R3.1.2). Therefore, ADB’s policy has a canReqCred rule allowing RA-ADB to query the
Register-team-member and Register-ward-member predicates (A1.7.4):

(A1.7.4)
canReqCred(x , RA-ADB.hasActivated(y , NHS-health-org-cert(org , start , end)))←

org = ADB

5.5 Registration Authorities

RAs are typically local to a particular health organisation but some may also be on a more
national level (§730.24.0). We have written a policy for a fictitious RA, RA-ADB, serving
Addenbrooke’s Foundation Trust and associated hospitals and clinics. As an NHS-approved
RA, RA-ADB possesses an RA credential issued by NHS. This credential may be requested
by anyone (R1.2.1):

(R1.2.1)
canReqCred(x , NHS.hasActivated(x , NHS-registration-authority(ra, start , end)))←

ra = RA-ADB

RAs issue credentials to professional users for the purpose of managing local workgroups
(§730.12.0) and the identification, registration and authentication of role membership (§730.9,
§730.21). These access roles are subject to national standards yet to be developed by the
NHS (§730.12.2). Our RA policy exemplarily defines user access roles only for clinicians and
Caldicott Guardians.

RA credentials are required to be time-limited (§730.24.7). Cassandra is flexible enough
to encode credentials with validity periods: all RA roles have a start and an end date among
their parameters, and the accepting side can specify its own conditions on these dates. For
example, it could ignore them, believe them, or impose even stricter freshness conditions (cf.
[Riv98]). To authenticate a user’s role, the user is issued a credential asserting that someone
has activated the corresponding registration role.

41



5.5.1 Role credential management

The only main role defined in RA-ADB’s policy is RA-manager(). RA managers sign up
professional users for access roles. The RA-manager role itself is a standard delegated regis-
tration role: a manager can register a person who has not been so far registered as manager
(R1.1.1, R1.1.3)

(R1.1.1)
canActivate(mgr , Register-RA-manager(mgr2 ))←

hasActivated(mgr , RA-manager()),
ra-manager-regs(0,mgr2 )

(R1.1.3)
ra-manager-regs(count〈x〉,mgr)←

hasActivated(x , Register-RA-manager(mgr))

This enables that person to activate (R1.1.4) and deactivate (R1.1.5) a manager role:

(R1.1.4)
canActivate(mgr , RA-manager())←

hasActivated(x , Register-RA-manager(mgr))

(R1.1.5)
canDeactivate(mgr ,mgr , RA-manager())←

The role is automatically revoked (R1.1.6) if the registration is cancelled by an RA manager
(R1.1.2):

(R1.1.6)
isDeactivated(mgr , RA-manager())←

isDeactivated(x , Register-RA-manager(mgr))

(R1.1.2)
canDeactivate(mgr , x , Register-RA-manager(mgr2 ))←

hasActivated(mgr , RA-manager())

To register a person as a certified clinician, an RA manager enters the NHS clinician certi-
fication role with parameters identifying the clinician, her health organisation, her specialty
and a validity period (R2.1.1):

(R2.1.1)
canActivate(mgr , NHS-clinician-cert(org , cli , spcty , start , end))←

hasActivated(mgr , RA-manager()),
hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
start ∈ [start2 , end2 ],
end ∈ [start2 , end2 ],
start < end

The health organisation must be registered on the same RA, and furthermore, the validity
period of its registration must contain that of the clinician. Administrators can grant-
independently revoke certifications (R2.1.2):

(R2.1.2)
canDeactivate(mgr , x , NHS-clinician-cert(org , cli , spcty , start , end))←

hasActivated(mgr , RA-manager())

42



A clinician certification is automatically cancelled if the clinician’s health organisation loses
all certifications that are valid within the clinician’s validity period (R2.1.3, R2.3.3):

(R2.1.3)
isDeactivated(mgr , NHS-clinician-cert(org , cli , spcty , start , end))←

isDeactivated(x , NHS-health-org-cert(org , start2 , end2 )),
other-NHS-health-org-regs(0, x , org , start2 , end2 ),
start ∈ [start2 , end2 ],
end ∈ [start2 , end2 ],
start < end

(R2.3.3)
other-NHS-health-org-regs(count〈y〉, x , org , start , end)←

hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
start ∈ [start2 , end2 ],
end ∈ [start2 , end2 ],
start < end ,

x 6= y ∨ start 6= start2 ∨ end 6= end2

The clinician herself, her health organisation, other RAs and the Spine are allowed to request
the clinician’s credential (R2.1.4–6, R1.2.2–3):

(R2.1.4)
canReqCred(org , RA-ADB.hasActivated(x ,

NHS-clinician-cert(org , cli , spcty , start , end)))←
hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
Current-time() ∈ [start2 , end2 ]

(R2.1.5)
canReqCred(e, RA-ADB.hasActivated(x ,

NHS-clinician-cert(org , cli , spcty , start , end)))←
canActivate(e, NHS-service())

(R2.1.6)
canReqCred(cli , RA-ADB.hasActivated(x ,

NHS-clinician-cert(org , cli , spcty , start , end)))←

(R1.2.2)
canActivate(srv , NHS-service())←

canActivate(srv , Registration-authority())

(R1.2.3)
canActivate(srv , NHS-service())←

srv = Spine

A similar set of policy rules exist for the certification of Caldicott Guardians (R2.2.1–6) and
NHS health organisations (R2.3.1–9).

5.5.2 Workgroup credential management

RA-ADB manages workgroup credentials for its registered health organisations, for exam-
ple for ADB. The Spine can request a Workgroup-member credential certifying a clinician’s
membership in an organisation’s team or a ward (R3.1.3):

(R3.1.3)
canReqCred(Spine, RA-ADB.canActivate(cli ,

Workgroup-member(org , group, spcty)))←

43



Membership is deduced by first checking whether the organisation is registered at RA-ADB
and then requesting a Register-team-member or a Register-ward-member credential from
the organisation (R3.1.1, R3.1.2):

(R3.1.1)
canActivate(cli , Workgroup-member(org , group, spcty))←

hasActivated(x , NHS-health-org-cert(org , start , end)),
org@org .hasActivated(x , Register-team-member(cli , group, spcty)),
Current-time() ∈ [start , end ]

(R3.1.2)
canActivate(cli , Workgroup-member(org , group, spcty))←

hasActivated(x , NHS-health-org-cert(org , start , end)),
org@org .hasActivated(x , Register-ward-member(cli , group, spcty)),
Current-time() ∈ [start , end ]

6 Discussion

The complexity and constantly evolving nature of the Spine’s security and confidentiality
requirements necessitate the use of a policy language in order to separate policy from imple-
mentation. The policy language must be efficiently machine-enforceable; it must be high-level
and sufficiently simple so the policy can be easily modified and read; and it must be expressive
and flexible in order to accommodate for current and unforeseeable future requirements.

We have presented a complete Cassandra policy governing access to health records, based
on official NHS and DoH documents. The case study shows that Cassandra is sufficiently
expressive for the ICRS project and other large-scale real-world applications with highly
challenging security requirements. Our preliminary experiments with the policy running on
our prototype implementation of Cassandra strongly suggest that the system will also be
efficient in practice.

The detailed description of the policy rules could be seen as a translation of the formal
Cassandra rules back into plain English. We plan to consult the NHS to see whether the
description really matches their requirements and intentions. If approved by the NHS, such
a detailed and semi-formal description would be useful for the NHS’s IT suppliers, who have
only been given the rather sketchy OBS. Also, the description could be given to the public to
put the NHS’s security policy under public and legal expert scrutiny and could help answer-
ing the question whether the proposed Spine will fulfil all legal and ethical confidentiality
requirements. In the best case, it could calm the public’s unease and relieve the current
uncertainty about the project.

One of the lessons learnt from the case study is that the hardest part about writing
policy is not the translation into a formal language, but rather understanding the intended
requirements. As expected, the available specification documents are unclear, ambiguous,
and – above all – incomplete, rather than contradictory. Certainly, many of the gaps could
be filled in with common sense. Still, as mentioned above, it will be important to get some
official feedback. However, once the requirements are understood and complete, the trans-
lation process is relatively straightforward: most of the informal, “intuitive” requirements
statements are already approximately of the form “if 〈condition〉 then 〈goal〉”.

An obvious question to ask is: is the formal policy correct and does it do what it is
supposed to do? Since translating the informal rules into Cassandra was rather straightfor-
ward, we believe that the primary source of “incorrectness” would be the requirements in
the first place. In such a large and intricate system, it is difficult to fully understand the
implications of the requirements. However, having translated the requirements into formal
Cassandra policy rules enables us to prove meta-level correctness properties.

Our case study has significant implications for the research area of trust management
as a whole. Most other systems have only been applied to relatively simple applications or
academic toy examples. There has been a major lack of real-world policy examples that are

44



both large and complex — our EHR policy example fills this gap. It is a strong counter-
example to the claim that real-world applications do not need expressive policy languages.
Indeed, it is hard to imagine how the ambitious NHS project could be realised successfully
without a flexible, distributed access control system that allows the security policy to be
modified easily.

Our policy can be used as a benchmark for existing and future policy languages, as
a guideline for language design and as a tool for the difficult task of comparing different
policy languages. It would be rewarding to translate the policy into another language, and
to analyse which constructs cannot be translated, and which features can perhaps be more
easily expressed in a different language.

Future work There is still a lot of work to be done on the case study. Ultimately, we wish
to prove the feasibility of our proposed EHR architecture and policy. Once a more complete
Cassandra prototype has been implemented, we should conduct further tests of the policy. It
can be deemed fully viable only if it exhibits good performance in a realistic setting. We thus
need to test its behaviour in a real distributed environment, and with millions of registered
users.

We also plan to implement a simple user-friendly Web interface for the Spine. At the
moment, the implementation requires the user to type in the raw Cassandra requests on the
command line. Even with a somewhat nicer graphical but still generic user interface for
Cassandra, the system would be far too complicated for users in practice. Our envisaged
interface would have to be specifically designed for the Spine policy and would hide the
details of role activations and credentials requests etc. from the user.

Our experiments have highlighted another requirement for policy-based trust manage-
ment systems that neither our nor existing systems currently fulfil: human users expect
textual justifications of access control decisions, especially if their request is denied; they feel
rather frustrated and helpless if the answer is simply “request denied”, especially if the policy
is complex or unknown to the user. Such explanations could be collected from annotations
of policy rules used during deduction. The problem is non-trivial as deduction proofs can
be long and access denials can have many and far-reaching reasons. More worryingly, the
textual justification may reveal more (and perhaps, sensitive) information than could have
been deduced from the fact of request denial alone: consider, for example, a response such as
“access denied because your daughter has prohibited you from accessing all her records with
the subject ‘abortion’”. Annotating rules with natural-language reasons and then traversing
the proof forest to construct the message might be a first step towards a solution.

Acknowledgements I thank Peter Sewell for helpful comments and discussions. This
work was funded by a Gates Cambridge Scholarship and a Trinity College Research Schol-
arship.

45



A Policy rules for NHS electronic health record system

The following is a complete list of all Cassandra rules for our EHR case study. Appendix
A.1 contains the policy rules for the Spine, A.2 for the PDS, A.3 for Addenbrooke’s Hospital
(ADB), and A.4 contains the rules for Addenbrooke’s RA (RA-ADB).

A.1 Policy for the Spine

A.1.1 Main access roles

Clinician

(S1.1.1)
canActivate(cli , Spine-clinician(ra, org , spcty))←

ra.hasActivated(x , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority()),
no-main-role-active(cli),
Current-time() ∈ [start , end ]

(S1.1.2)
canActivate(cli , Spine-clinician(ra, org , spcty))←

ra@ra.hasActivated(x , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority()),
no-main-role-active(cli),
Current-time() ∈ [start , end ]

(S1.1.3)
canDeactivate(cli , cli , Spine-clinician(ra, org , spcty))←

(S1.1.4)
count-spine-clinician-activations(count〈u〉, user)←

hasActivated(user , Spine-clinician(ra, org , spcty))

Administrator

(S1.2.1)
canActivate(adm, Spine-admin())←

hasActivated(x , Register-spine-admin(adm)),
no-main-role-active(adm)

(S1.2.2)
canDeactivate(adm, adm, Spine-admin())←

(S1.2.3)
isDeactivated(adm, Spine-admin())←

isDeactivated(x , Register-spine-admin(adm))

(S1.2.4)
count-spine-admin-activations(count〈u〉, user)←

hasActivated(user , Spine-admin())

(S1.2.5)
canActivate(adm, Register-spine-admin(adm2 ))←

hasActivated(adm, Spine-admin()),
spine-admin-regs(0, adm2 )

(S1.2.6)
canDeactivate(adm, x , Register-spine-admin(adm2 ))←

hasActivated(adm, Spine-admin())

(S1.2.7)
spine-admin-regs(count〈x〉, adm)←

hasActivated(x , Register-spine-admin(adm))

46



Patient

(S1.3.1)
canActivate(pat , Patient())←

hasActivated(x , Register-patient(pat)),
no-main-role-active(pat),
PDS@PDS.hasActivated(y , Register-patient(pat))

(S1.3.2)
canDeactivate(pat , pat , Patient())←

(S1.3.3)
isDeactivated(pat , Patient())←

isDeactivated(x , Register-patient(pat))

(S1.3.4)
count-patient-activations(count〈u〉, user)←

hasActivated(user , Patient())

(S1.3.5)
canActivate(adm, Register-patient(pat))←

hasActivated(adm, Spine-admin()),
patient-regs(0, pat)

(S1.3.6)
canDeactivate(adm, x , Register-patient(pat))←

hasActivated(adm, Spine-admin())

(S1.3.7)
patient-regs(count〈x〉, pat)←

hasActivated(x , Register-patient(pat))

Agent

(S1.4.1)
canActivate(ag , Agent(pat))←

hasActivated(x , Register-agent(ag , pat)),
PDS@PDS.hasActivated(y , Register-patient(ag)),
no-main-role-active(ag)

(S1.4.2)
canDeactivate(ag , ag , Agent(pat))←

(S1.4.3)
isDeactivated(ag , Agent(pat))←

isDeactivated(x , Register-agent(ag , pat)),
other-agent-regs(0, x , ag , pat)

(S1.4.4)
other-agent-regs(count〈y〉, x , ag , pat)←

hasActivated(y , Register-agent(ag , pat)),
x 6= y

(S1.4.5)
count-agent-activations(count〈u〉, user)←

hasActivated(user , Agent(pat))

(S1.4.6)
canReqCred(ag , Spine.canActivate(ag , Agent(pat)))←

hasActivated(ag , Agent(pat))

47



(S1.4.7)
canReqCred(org , Spine.canActivate(ag , Agent(pat)))←

ra.hasActivated(x , NHS-health-org-cert(org , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(S1.4.8)
canReqCred(org , Spine.canActivate(ag , Agent(pat)))←

org@ra.hasActivated(x , NHS-health-org-cert(org , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(S1.4.9)
canActivate(pat , Register-agent(agent , pat))←

hasActivated(pat , Patient()),
agent-regs(n, pat),
n < 3

(S1.4.10)
canActivate(cli , Register-agent(agent , pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

(S1.4.11)
canDeactivate(pat , pat , Register-agent(agent , pat))←

hasActivated(pat , Patient())

(S1.4.12)
canDeactivate(cli , x , Register-agent(agent , pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

(S1.4.13)
isDeactivated(x , Register-agent(agent , pat))←

isDeactivated(y , Register-patient(pat))

(S1.4.14)
agent-regs(count〈x〉, pat)←

hasActivated(pat , Register-agent(x , pat))

Other

(S1.5.1)
canActivate(ra, Registration-authority())←

NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

(S1.5.2)
canActivate(ra, Registration-authority())←

ra@NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

(S1.5.3)
no-main-role-active(user)←

count-agent-activations(n, user),
count-spine-clinician-activations(n, user),
count-spine-admin-activations(n, user),
count-patient-activations(n, user),
count-third-party-activations(n, user),
n = 0

48



A.1.2 Express consent

One-off consent

(S2.1.1)
canActivate(pat , One-off-consent(pat))←

hasActivated(pat , Patient())

(S2.1.2)
canActivate(ag , One-off-consent(pat))←

hasActivated(ag , Agent(pat))

(S2.1.3)
canActivate(cli , One-off-consent(pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

(S2.1.4)
canDeactivate(pat , x , One-off-consent(pat))←

hasActivated(pat , Patient())

(S2.1.5)
canDeactivate(ag , x , One-off-consent(pat))←

hasActivated(ag , Agent(pat))

(S2.1.6)
canDeactivate(cli , x , One-off-consent(pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

(S2.1.7)
isDeactivated(x , One-off-consent(pat))←

isDeactivated(y , Register-patient(pat))

Third-party consent

(S2.2.1)
canActivate(pat , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Patient()),
x ∈ Get-spine-record-third-parties(pat , id)

(S2.2.2)
canActivate(ag , Request-third-party-consent(x , pat , id))←

hasActivated(ag , Agent(pat)),
x ∈ Get-spine-record-third-parties(pat , id)

(S2.2.3)
canActivate(cli , Request-third-party-consent(x , pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
x ∈ Get-spine-record-third-parties(pat , id)

(S2.2.4)
canDeactivate(pat , y , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Patient())

(S2.2.5)
canDeactivate(ag , y , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Agent(pat))

49



(S2.2.6)
canDeactivate(cli , y , Request-third-party-consent(x , pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty))

(S2.2.7)
canDeactivate(x , y , Request-third-party-consent(x , pat , id))←

hasActivated(x , Third-party())

(S2.2.8)
isDeactivated(x , Request-third-party-consent(y , pat , id))←

isDeactivated(z , Register-patient(pat))

(S2.2.9)
other-third-party-consent-requests(count〈x〉, y , z )←

hasActivated(x , Request-third-party-consent(z , pat , id)),
x 6= y

(S2.2.10)
canActivate(x , Third-party())←

hasActivated(y , Request-third-party-consent(x , pat , id)),
no-main-role-active(x ),
PDS@PDS.hasActivated(z , Register-patient(x ))

(S2.2.11)
canDeactivate(x , x , Third-party())←

(S2.2.12)
isDeactivated(x , Third-party())←

isDeactivated(y , Request-third-party-consent(x , pat , id)),
other-third-party-consent-requests(0, y , x )

(S2.2.13)
count-third-party-activations(count〈u〉, user)←

hasActivated(user , Third-party())

(S2.2.14)
canActivate(x , Third-party-consent(x , pat , id))←

hasActivated(x , Third-party()),
hasActivated(y , Request-third-party-consent(x , pat , id))

(S2.2.15)
canActivate(cli , Third-party-consent(x , pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
hasActivated(y , Request-third-party-consent(x , pat , id))

(S2.2.16)
isDeactivated(x , Third-party-consent(x , pat , id))←

isDeactivated(y , Request-third-party-consent(x , pat , id)),
other-third-party-consent-requests(0, y , x )

(S2.2.17)
third-party-consent(group〈consenter〉, pat , id)←

hasActivated(x , Third-party-consent(consenter , pat , id))

50



Consent to treatment

(S2.3.1)
canActivate(cli1 , Request-consent-to-treatment(pat , org2 , cli2 , spcty2 ))←

hasActivated(cli1 , Spine-clinician(ra1 , org1 , spcty1 )),
canActivate(cli2 , Spine-clinician(ra2 , org2 , spcty2 )),
canActivate(pat , Patient())

(S2.3.2)
canDeactivate(cli1 , cli1 ,

Request-consent-to-treatment(pat , org2 , cli2 , spcty2 ))←
hasActivated(cli1 , Spine-clinician(ra1 , org1 , spcty1 ))

(S2.3.3)
canDeactivate(cli2 , cli1 ,

Request-consent-to-treatment(pat , org2 , cli2 , spcty2 ))←
hasActivated(cli2 , Spine-clinician(ra2 , org2 , spcty2 ))

(S2.3.4)
canDeactivate(pat , x , Request-consent-to-treatment(pat , org , cli , spcty))←

hasActivated(pat , Patient())

(S2.3.5)
canDeactivate(ag , x , Request-consent-to-treatment(pat , org , cli , spcty))←

hasActivated(ag , Agent(pat))

(S2.3.6)
canDeactivate(cli , x , Request-consent-to-treatment(pat , org , cli2 , spcty))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

(S2.3.7)
isDeactivated(x , Request-consent-to-treatment(pat , org , cli , spcty))←

isDeactivated(y , Register-patient(pat))

(S2.3.8)
other-consent-to-treatment-requests(count〈y〉, x , pat , org , cli , spcty)←

hasActivated(y , Request-consent-to-treatment(pat , org , cli , spcty)),
x 6= y

(S2.3.9)
canActivate(pat , Consent-to-treatment(pat , org , cli , spcty))←

hasActivated(pat , Patient()),
hasActivated(x , Request-consent-to-treatment(pat , org , cli , spcty))

(S2.3.10)
canActivate(ag , Consent-to-treatment(pat , org , cli , spcty))←

hasActivated(ag , Agent(pat)),
hasActivated(x , Request-consent-to-treatment(pat , org , cli , spcty))

(S2.3.11)
canActivate(cli1 , Consent-to-treatment(pat , org , cli2 , spcty))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty)),
canActivate(cli1 , Treating-clinician(pat , org , spcty)),
hasActivated(x , Request-consent-to-treatment(pat , org , cli2 , spcty))

(S2.3.12)
isDeactivated(x , Consent-to-treatment(pat , org , cli , spcty))←

isDeactivated(y , Request-consent-to-treatment(pat , org , cli , spcty)),
other-consent-to-treatment-requests(0, y , pat , org , cli , spcty)

51



Consent to group treatment

(S2.4.1)
canActivate(cli , Request-consent-to-group-treatment(pat , org , group))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(pat , Patient())

(S2.4.2)
canDeactivate(cli , cli , Request-consent-to-group-treatment(pat , org , group))←

hasActivated(cli , Spine-clinician(ra, org , spcty))

(S2.4.3)
canDeactivate(pat , x , Request-consent-to-group-treatment(pat , org , group))←

hasActivated(pat , Patient())

(S2.4.4)
canDeactivate(ag , x , Request-consent-to-group-treatment(pat , org , group))←

hasActivated(ag , Agent(pat))

(S2.4.5)
canDeactivate(cli , x , Request-consent-to-group-treatment(pat , org , group))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

(S2.4.6)
canDeactivate(cli , x , Request-consent-to-group-treatment(pat , org , group))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
ra@ra.canActivate(cli , Workgroup-member(org , group, spcty))

(S2.4.7)
isDeactivated(x , Request-consent-to-group-treatment(pat , org , group))←

isDeactivated(y , Register-patient(pat))

(S2.4.8)
other-consent-to-group-treatment-requests(count〈y〉, x , pat , org , cli , spcty)←

hasActivated(y , Request-consent-to-group-treatment(pat , org , group)),
x 6= y

(S2.4.9)
canActivate(pat , Consent-to-group-treatment(pat , org , group))←

hasActivated(pat , Patient()),
hasActivated(x , Request-consent-to-group-treatment(pat , org , group))

(S2.4.10)
canActivate(ag , Consent-to-group-treatment(pat , org , group))←

hasActivated(ag , Agent(pat)),
hasActivated(x , Request-consent-to-group-treatment(pat , org , group))

(S2.4.11)
canActivate(cli1 , Consent-to-group-treatment(pat , org , group))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty)),
canActivate(cli1 , Treating-clinician(pat , org , spcty)),
hasActivated(x , Request-consent-to-group-treatment(pat , org , group))

(S2.4.12)
isDeactivated(x , Consent-to-group-treatment(pat , org , group))←

isDeactivated(y , Request-consent-to-group-treatment(pat , org , group)),
other-consent-to-group-treatment-requests(0, y , pat , org , group)

52



A.1.3 Legitimate Relationship

Referral

(S3.1.1)
canActivate(cli1 , Referrer(pat , org , cli2 , spcty1 ))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty2 )),
canActivate(cli1 , Treating-clinician(pat , org , spcty2 ))

(S3.1.2)
canDeactivate(cli1 , cli1 , Referrer(pat , org , cli2 , spcty1 ))←

(S3.1.3)
canDeactivate(pat , cli1 , Referrer(pat , org , cli2 , spcty1 ))←

(S3.1.4)
isDeactivated(cli1 , Referrer(pat , org , cli2 , spcty1 ))←

isDeactivated(x , Register-patient(pat))

Emergency clinician

(S3.2.1)
canActivate(cli , Spine-emergency-clinician(org , pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(pat , Patient())

(S3.2.2)
canDeactivate(cli , cli , Spine-emergency-clinician(org , pat))←

(S3.2.3)
isDeactivated(x , Spine-emergency-clinician(org , pat))←

isDeactivated(x , Spine-clinician(ra, org , spcty))

(S3.2.4)
isDeactivated(x , Spine-emergency-clinician(org , pat))←

isDeactivated(y , Register-patient(pat))

Treating Clinician & GP

(S3.3.1)
canActivate(cli , Treating-clinician(pat , org , spcty))←

hasActivated(x , Consent-to-treatment(pat , org , cli , spcty))

(S3.3.2)
canActivate(cli , Treating-clinician(pat , org , spcty))←

hasActivated(cli , Spine-emergency-clinician(org , pat)),
spcty = A-and-E

(S3.3.3)
canActivate(cli , Treating-clinician(pat , org , spcty))←

canActivate(cli , Spine-clinician(ra, org , spcty)),
hasActivated(x , Referrer(pat , org , cli , spcty))

(S3.3.4)
canActivate(cli , Treating-clinician(pat , org , spcty))←

canActivate(cli , Group-treating-clinician(pat , ra, org , group, spcty))

(S3.3.5)
canActivate(cli , General-practitioner(pat))←

canActivate(cli , Treating-clinician(pat , org , spcty)),
spcty = GP

53



Workgroup-based LR

(S3.4.1)
canActivate(cli , Group-treating-clinician(pat , ra, org , group, spcty))←

hasActivated(x , Consent-to-group-treatment(pat , org , group)),
ra.canActivate(cli , Workgroup-member(org , group, spcty)),
canActivate(ra, Registration-authority())

(S3.4.2)
canActivate(cli , Group-treating-clinician(pat , ra, org , group, spcty))←

hasActivated(x , Consent-to-group-treatment(pat , org , group)),
ra@ra.canActivate(cli , Workgroup-member(org , group, spcty)),
canActivate(ra, Registration-authority())

A.1.4 Sealing-off data

Access restriction by clinician

(S4.1.1)
canActivate(cli , Concealed-by-spine-clinician(pat , ids , start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

(S4.1.2)
canDeactivate(cli , cli , Concealed-by-spine-clinician(pat , ids , start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty))

(S4.1.3)
canDeactivate(cli , cli2 , Concealed-by-spine-clinician(pat , ids , start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat))

(S4.1.4)
canDeactivate(cli1 , cli2 , Concealed-by-spine-clinician(pat , ids , start , end))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty1 )),
canActivate(cli1 , Group-treating-clinician(pat , ra, org , group, spcty1 )),
canActivate(cli2 , Group-treating-clinician(pat , ra, org , group, spcty2 )),
hasActivated(x , Consent-to-group-treatment(pat , org , group))

(S4.1.5)
isDeactivated(x , Concealed-by-spine-clinician(pat , ids , start , end))←

isDeactivated(y , Register-patient(pat))

(S4.1.6)
count-concealed-by-spine-clinician(count〈x〉, pat , id)←

hasActivated(x , Concealed-by-spine-clinician(pat , ids , start , end)),
id ∈ ids,

Current-time() ∈ [start , end ]

Access restriction by patient

(S4.2.1)
canActivate(pat , Conceal-request(what ,who, start , end))←

hasActivated(pat , Patient()),
count-conceal-requests(n, pat),
what = (pat , ids , orgs, authors, subjects , from-time, to-time),
who = (orgs1 , readers1 , spctys1 ),
n < 100

54



(S4.2.2)
canActivate(ag , Conceal-request(what ,who, start , end))←

hasActivated(ag , Agent(pat)),
count-conceal-requests(n, pat),
what = (pat , ids , orgs, authors, subjects , from-time, to-time),
who = (orgs1 , readers1 , spctys1 ),
n < 100

(S4.2.3)
canDeactivate(pat , x , Conceal-request(what ,whom, start , end))←

hasActivated(pat , Patient()),
π7

1(what) = pat

(S4.2.4)
canDeactivate(ag , x , Conceal-request(what ,whom, start , end))←

hasActivated(ag , Agent(pat)),
π7

1(what) = pat

(S4.2.5)
canDeactivate(cli , x , Conceal-request(what ,whom, start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , General-practitioner(pat)),
π7

1(what) = pat

(S4.2.6)
isDeactivated(x , Conceal-request(what ,whom, start , end))←

isDeactivated(y , Register-patient(pat)),
π7

1(what) = pat

(S4.2.7)
count-conceal-requests(count〈y〉, pat)←

hasActivated(x , Conceal-request(y)),
what = (pat , ids , orgs, authors, subjects , from-time, to-time),
who = (orgs1 , readers1 , spctys1 ),
y = (what ,who, start , end)

(S4.2.8)
canActivate(cli , Concealed-by-spine-patient(what ,who, start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
hasActivated(x , Conceal-request(what ,who, start , end))

(S4.2.9)
canDeactivate(cli , cli , Concealed-by-spine-patient(what ,who, start , end))←

hasActivated(cli , Spine-clinician(ra, org , spcty))

(S4.2.10)
canDeactivate(cli1 , cli2 , Concealed-by-spine-patient(what ,who, start1 , end1 ))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty1 )),
ra@ra.canActivate(cli1 ,

Group-treating-clinician(pat , ra, org , group, spcty1 )),
ra@ra.canActivate(cli2 ,

Group-treating-clinician(pat , ra, org , group, spcty2 ))

(S4.2.11)
isDeactivated(cli , Concealed-by-spine-patient(what ,who, start , end))←

isDeactivated(x , Conceal-request(what ,who, start , end))

55



(S4.2.12)
count-concealed-by-spine-patient(count〈x〉, a, b)←

hasActivated(x , Concealed-by-spine-patient(what ,who, start , end)),
a = (pat , id),
b = (org , reader , spcty),
what = (pat , ids , orgs, authors, subjects , from-time, to-time),
whom = (orgs1 , readers1 , spctys1 ),
Get-spine-record-org(pat , id) ∈ orgs,

Get-spine-record-author(pat , id) ∈ authors,

sub ∈ Get-spine-record-subjects(pat , id),
sub ∈ subjects,

Get-spine-record-time(pat , id) ∈ [from-time, to-time],
id ∈ ids,

org ∈ orgs1 ,

reader ∈ readers1 ,

spcty ∈ spctys1 ,

Current-time() ∈ [start , end ],
Get-spine-record-third-parties(pat , id) = {},
non-clinical ∈ Ω− Get-spine-record-subjects(pat , id)

Authenticated express consent

(S4.3.1)
canActivate(pat , Authenticated-express-consent(pat , cli))←

hasActivated(pat , Patient()),
count-authenticated-express-consent(n, pat),
n < 100

(S4.3.2)
canActivate(ag , Authenticated-express-consent(pat , cli))←

hasActivated(ag , Agent(pat)),
count-authenticated-express-consent(n, pat),
n < 100

(S4.3.3)
canActivate(cli1 , Authenticated-express-consent(pat , cli2 ))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty)),
canActivate(cli1 , General-practitioner(pat))

(S4.3.4)
canDeactivate(pat , x , Authenticated-express-consent(pat , cli))←

hasActivated(pat , Patient())

(S4.3.5)
canDeactivate(ag , x , Authenticated-express-consent(pat , cli))←

hasActivated(ag , Agent(pat))

(S4.3.6)
canDeactivate(cli1 , x , Authenticated-express-consent(pat , cli2 ))←

hasActivated(cli1 , Spine-clinician(ra, org , spcty)),
canActivate(cli1 , General-practitioner(pat))

(S4.3.7)
isDeactivated(x , Authenticated-express-consent(pat , cli))←

isDeactivated(y , Register-patient(pat))

(S4.3.8)
count-authenticated-express-consent(count〈cli〉, pat)←

hasActivated(x , Authenticated-express-consent(pat , cli))

56



A.1.5 Access permissions

Adding item

(S5.1.1)
permits(cli , Add-spine-record-item(pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

(S5.1.2)
permits(pat , Annotate-spine-record-item(pat , id))←

hasActivated(pat , Patient())

(S5.1.3)
permits(ag , Annotate-spine-record-item(pat , id))←

hasActivated(ag , Agent(pat))

(S5.1.4)
permits(pat , Annotate-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

Reading item IDs

(S5.2.1)
permits(pat , Get-spine-record-item-ids(pat))←

hasActivated(pat , Patient())

(S5.2.2)
permits(ag , Get-spine-record-item-ids(pat))←

hasActivated(ag , Agent(pat))

(S5.2.3)
permits(cli , Get-spine-record-item-ids(pat))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

Reading items

(S5.3.1)
permits(pat , Read-spine-record-item(pat , id))←

hasActivated(pat , Patient()),
hasActivated(x , One-off-consent(pat)),
count-concealed-by-spine-patient(n, a, b),
count-concealed-by-spine-clinician(m, pat , id),
third-party-consent(consenters , pat , id),
n = 0,
m = 0,
a = (pat , id),
b = (No-org, pat , No-spcty),
Get-spine-record-third-parties(pat , id) ⊆ consenters

57



(S5.3.2)
permits(ag , Read-spine-record-item(pat , id))←

hasActivated(ag , Agent(pat)),
hasActivated(x , One-off-consent(pat)),
count-concealed-by-spine-patient(n, a, b),
count-concealed-by-spine-clinician(m, pat , id),
third-party-consent(consenters , pat , id),
n = 0,
m = 0,
a = (pat , id),
b = (No-org, ag , No-spcty),
Get-spine-record-third-parties(pat , id) ⊆ consenters

(S5.3.3)
permits(cli , Read-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
hasActivated(x , One-off-consent(pat)),
Get-spine-record-org(pat , id) = org ,

Get-spine-record-author(pat , id) = cli

(S5.3.4)
permits(cli , Read-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
hasActivated(x , One-off-consent(pat)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
count-concealed-by-spine-patient(n, a, b),
n = 0,
a = (pat , id),
b = (org , cli , spcty),
Get-spine-record-subjects(pat , id) ⊆ Permitted-subjects(spcty)

(S5.3.5)
permits(cli , Read-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
hasActivated(x , One-off-consent(pat)),
canActivate(cli , Treating-clinician(pat , org , spcty)),
hasActivated(y , Authenticated-express-consent(pat , cli)),
Get-spine-record-subjects(pat , id) ⊆ Permitted-subjects(spcty)

(S5.3.6)
permits(cli , Force-read-spine-record-item(pat , id))←

hasActivated(cli , Spine-clinician(ra, org , spcty)),
canActivate(cli , Treating-clinician(pat , org , spcty))

A.2 Policy for Patient Demographic Service

A.2.1 Main roles

Administrator

(P1.1.1)
canActivate(adm, PDS-manager())←

hasActivated(x , Register-PDS-manager(adm)),
no-main-role-active(adm)

(P1.1.2)
canDeactivate(adm, adm, PDS-manager())←

(P1.1.3)
isDeactivated(adm, PDS-manager())←

isDeactivated(x , Register-PDS-manager(adm))

58



(P1.1.4)
count-PDS-manager-activations(count〈u〉, user)←

hasActivated(user , PDS-manager())

(P1.1.5)
canActivate(adm1 , Register-PDS-manager(adm2 ))←

hasActivated(adm1 , PDS-manager()),
pds-admin-regs(0, adm2 )

(P1.1.6)
canDeactivate(adm1 , x , Register-PDS-manager(adm2 ))←

hasActivated(adm1 , PDS-manager())

(P1.1.7)
pds-admin-regs(count〈x〉, adm)←

hasActivated(x , Register-PDS-manager(adm))

Patient

(P1.2.1)
canActivate(pat , Patient())←

hasActivated(x , Register-patient(pat)),
no-main-role-active(pat)

(P1.2.2)
canDeactivate(pat , pat , Patient())←

(P1.2.3)
isDeactivated(pat , Patient())←

isDeactivated(x , Register-patient(pat))

(P1.2.4)
count-patient-activations(count〈u〉, user)←

hasActivated(user , Patient())

Agent

(P1.3.1)
canActivate(ag , Agent(pat))←

hasActivated(x , Register-patient(ag)),
no-main-role-active(ag),
Spine@Spine.canActivate(ag , Agent(pat))

(P1.3.2)
canDeactivate(ag , ag , Agent(pat))←

(P1.3.3)
isDeactivated(ag , Agent(pat))←

isDeactivated(x , Register-patient(ag))

(P1.3.4)
isDeactivated(ag , Agent(pat))←

isDeactivated(x , Register-patient(pat))

(P1.3.5)
count-agent-activations(count〈u〉, user)←

hasActivated(user , Agent(pat))

59



NHS staff

(P1.4.1)
canActivate(x , Professional-user(ra, org))←

no-main-role-active(cli),
ra.hasActivated(x , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(P1.4.2)
canActivate(x , Professional-user(ra, org))←

no-main-role-active(cli),
ra@ra.hasActivated(x , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(P1.4.3)
canActivate(x , Professional-user(ra, org))←

no-main-role-active(cg),
ra.hasActivated(x , NHS-Caldicott-guardian-cert(org , cg , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(P1.4.4)
canActivate(x , Professional-user(ra, org))←

no-main-role-active(cg),
ra@ra.hasActivated(x , NHS-Caldicott-guardian-cert(org , cg , start , end)),
canActivate(ra, Registration-authority()),
Current-time() ∈ [start , end ]

(P1.4.5)
canDeactivate(x , x , Professional-user(ra, org))←

(P1.4.6)
count-professional-user-activations(count〈u〉, user)←

hasActivated(user , Professional-user(ra, org))

Other

(P1.5.1)
no-main-role-active(user)←

count-agent-activations(n, user),
count-patient-activations(n, user),
count-PDS-manager-activations(n, user),
count-preofessional-user-activations(n, user),
n = 0

(P1.5.2)
canActivate(ra, Registration-authority())←

NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

(P1.5.3)
canActivate(ra, Registration-authority())←

ra@NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

60



A.2.2 Patient registration

Registration

(P2.1.1)
canActivate(adm, Register-patient(pat))←

hasActivated(adm, PDS-manager()),
patient-regs(0, pat)

(P2.1.2)
canDeactivate(adm, x , Register-patient(pat))←

hasActivated(adm, PDS-manager())

(P2.1.3)
patient-regs(count〈x〉, pat)←

hasActivated(x , Register-patient(pat))

Credentials

(P2.2.1)
canReqCred(pat , PDS.hasActivated(x , Register-patient(pat)))←

hasActivated(pat , Patient())

(P2.2.2)
canReqCred(ag , PDS.hasActivated(x , Register-patient(pat)))←

hasActivated(ag , Agent(pat))

(P2.2.3)
canReqCred(usr , PDS.hasActivated(x , Register-patient(pat)))←

hasActivated(usr , Professional-user(ra, org))

(P2.2.4)
canReqCred(org , PDS.hasActivated(x , Register-patient(pat)))←

ra.hasActivated(x , NHS-health-org-cert(org , start , end)),
canActivate(ra, Registration-authority())

(P2.2.5)
canReqCred(org , PDS.hasActivated(x , Register-patient(pat)))←

org@ra.hasActivated(x , NHS-health-org-cert(org , start , end)),
canActivate(ra, Registration-authority())

(P2.2.6)
canReqCred(ra, PDS.hasActivated(x , Register-patient(pat)))←

canActivate(ra, Registration-authority())

(P2.2.7)
canReqCred(Spine, PDS.hasActivated(x , Register-patient(pat)))←

A.3 Policy for Addenbrooke’s Hospital

A.3.1 Main access roles

Clinician

(A1.1.1)
canActivate(mgr , Register-clinician(cli , spcty))←

hasActivated(mgr , HR-mgr()),
clinician-regs(0, cli , spcty)

(A1.1.2)
canDeactivate(mgr , x , Register-clinician(cli , spcty))←

hasActivated(mgr , HR-mgr())

61



(A1.1.3)
clinician-regs(count〈x〉, cli , spcty)←

hasActivated(x , Register-clinician(cli , spcty))

(A1.1.4)
canActivate(cli , Clinician(spcty))←

hasActivated(x , Register-clinician(cli , spcty)),
no-main-role-active(cli)

(A1.1.5)
canDeactivate(cli , cli , Clinician(spcty))←

(A1.1.6)
isDeactivated(cli , Clinician(spcty))←

isDeactivated(x , Register-clinician(cli , spcty))

(A1.1.7)
count-clinician-activations(count〈u〉, user)←

hasActivated(user , Clinician(spcty))

Caldicott Guardian

(A1.2.1)
canActivate(mgr , Register-Caldicott-guardian(cg))←

hasActivated(mgr , HR-mgr()),
cg-regs(0, cg)

(A1.2.2)
canDeactivate(mgr , x , Register-Caldicott-guardian(cg))←

hasActivated(mgr , HR-mgr())

(A1.2.3)
cg-regs(count〈x〉, cg)←

hasActivated(x , Register-Caldicott-guardian(cg))

(A1.2.4)
canActivate(cg , Caldicott-guardian())←

hasActivated(x , Register-Caldicott-guardian(cg)),
no-main-role-active(cg)

(A1.2.5)
canDeactivate(cg , cg , Caldicott-guardian())←

(A1.2.6)
isDeactivated(cg , Caldicott-guardian())←

isDeactivated(x , Register-Caldicott-guardian(cg))

(A1.2.7)
count-caldicott-guardian-activations(count〈u〉, user)←

hasActivated(user , Caldicott-guardian())

HR manager

(A1.3.1)
canActivate(mgr , Register-HR-mgr(mgr2 ))←

hasActivated(mgr , HR-mgr()),
hr-manager-regs(0,mgr)

(A1.3.2)
canDeactivate(mgr , x , Register-HR-mgr(mgr2 ))←

hasActivated(mgr , HR-mgr())

62



(A1.3.3)
hr-manager-regs(count〈x〉,mgr)←

hasActivated(x , Register-HR-mgr(mgr))

(A1.3.4)
canActivate(mgr , HR-mgr())←

hasActivated(x , Register-HR-mgr(mgr)),
no-main-role-active(mgr)

(A1.3.5)
canDeactivate(mgr ,mgr , HR-mgr())←

(A1.3.6)
isDeactivated(mgr , HR-mgr())←

isDeactivated(x , Register-HR-mgr(mgr))

(A1.3.7)
count-hr-mgr-activations(count〈u〉, user)←

hasActivated(user , HR-mgr())

Receptionist

(A1.4.1)
canActivate(mgr , Register-receptionist(rec))←

hasActivated(mgr , HR-mgr()),
receptionist-regs(0, rec)

(A1.4.2)
canDeactivate(mgr , x , Register-receptionist(rec))←

hasActivated(mgr , HR-mgr())

(A1.4.3)
receptionist-regs(count〈x〉, rec)←

hasActivated(x , Register-receptionist(rec))

(A1.4.4)
canActivate(rec, Receptionist())←

hasActivated(x , Register-receptionist(rec))

(A1.4.5)
canDeactivate(rec, rec, Receptionist())←

(A1.4.6)
isDeactivated(rec, Receptionist())←

isDeactivated(x , Register-receptionist(rec)),
no-main-role-active(rec)

(A1.4.7)
count-receptionist-activations(count〈u〉, user)←

hasActivated(user , Receptionist())

Patient

(A1.5.1)
canActivate(rec, Register-patient(pat))←

hasActivated(rec, Receptionist()),
patient-regs(0, pat)

(A1.5.2)
canDeactivate(rec, x , Register-patient(pat))←

hasActivated(rec, Receptionist())

63



(A1.5.3)
patient-regs(count〈x〉, pat)←

hasActivated(x , Register-patient(pat))

(A1.5.4)
canActivate(pat , Patient())←

hasActivated(x , Register-patient(pat)),
no-main-role-active(pat),
PDS@PDS.hasActivated(y , Register-patient(pat))

(A1.5.5)
canDeactivate(pat , pat , Patient())←

(A1.5.6)
isDeactivated(pat , Patient())←

isDeactivated(x , Register-patient(pat))

(A1.5.7)
count-patient-activations(count〈u〉, user)←

hasActivated(user , Patient())

Agent

(A1.6.1)
canActivate(agent , Agent(pat))←

hasActivated(x , Register-agent(agent , pat)),
PDS@PDS.hasActivated(x , Register-patient(agent)),
no-main-role-active(agent)

(A1.6.2)
canActivate(agent , Agent(pat))←

canActivate(pat , Patient()),
no-main-role-active(agent),
PDS@PDS.hasActivated(x , Register-patient(agent)),
Spine@Spine.canActivate(agent , Agent(pat))

(A1.6.3)
isDeactivated(ag , Agent(pat))←

isDeactivated(x , Register-agent(ag , pat)),
other-agent-regs(0, x , ag , pat)

(A1.6.4)
count-agent-activations(count〈u〉, user)←

hasActivated(user , Agent(pat))

(A1.6.5)
canActivate(pat , Register-agent(agent , pat))←

hasActivated(pat , Patient())

(A1.6.6)
canActivate(cg , Register-agent(agent , pat))←

hasActivated(cg , Caldicott-guardian()),
canActivate(pat , Patient())

(A1.6.7)
canDeactivate(pat , pat , Register-agent(agent , pat))←

hasActivated(pat , Patient())

(A1.6.8)
canDeactivate(cg , x , Register-agent(agent , pat))←

hasActivated(cg , Caldicott-guardian())

64



(A1.6.9)
isDeactivated(x , Register-agent(agent , pat))←

isDeactivated(y , Register-patient(pat))

(A1.6.10)
other-agent-regs(count〈y〉, x , ag , pat)←

hasActivated(y , Register-agent(ag , pat)),
x 6= y

Other

(A1.7.1)
no-main-role-active(user)←

count-agent-activations(n, user),
count-caldicott-guardian-activations(n, user),
count-clinician-activations(n, user),
count-ext-treating-clinician-activations(n, user),
count-hr-mgr-activations(n, user),
count-patient-activations(n, user),
count-receptionist-activations(n, user),
count-third-party-activations(n, user),
n = 0

(A1.7.2)
canActivate(ra, Registration-authority())←

NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

(A1.7.3)
canActivate(ra, Registration-authority())←

ra@NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

(A1.7.4)
canReqCred(x , RA-ADB.hasActivated(y , NHS-health-org-cert(org , start , end)))←

org = ADB

A.3.2 Consent and referrals

Consent to referral

(A2.1.1)
canActivate(cli1 , Request-consent-to-referral(pat , ra, org , cli2 , spcty2 ))←

hasActivated(cli1 , Clinician(spcty1 )),
canActivate(cli1 , ADB-treating-clinician(pat , team, spcty1 ))

(A2.1.2)
canDeactivate(cli , cli , Request-consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(cli , Clinician(spcty))

(A2.1.3)
canDeactivate(pat , x , Request-consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(pat , Patient())

(A2.1.4)
canDeactivate(ag , x , Request-consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(ag , Agent(pat))

(A2.1.5)
canDeactivate(cg , x , Request-consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(cg , Caldicott-guardian())

65



(A2.1.6)
isDeactivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))←

isDeactivated(y , Register-patient(pat))

(A2.1.7)
other-consent-to-referral-requests(count〈y〉, x , pat , ra, org , cli , spcty)←

hasActivated(y , Request-consent-to-referral(pat , ra, org , cli , spcty)),
x 6= y

(A2.1.8)
canActivate(pat , Consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(pat , Patient()),
hasActivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))

(A2.1.9)
canActivate(pat , Consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(pat , Agent(pat)),
hasActivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))

(A2.1.10)
canActivate(cg , Consent-to-referral(pat , ra, org , cli , spcty))←

hasActivated(cg , Caldicott-guardian()),
hasActivated(x , Request-consent-to-referral(pat , ra, org , cli , spcty))

(A2.1.11)
isDeactivated(x , Consent-to-referral(pat , ra, org , cli , spcty))←

isDeactivated(y , Request-consent-to-referral(pat , ra, org , cli , spcty)),
other-consent-to-referral-requests(0, y , pat , ra, org , cli , spcty)

(A2.1.12)
other-referral-consents(count〈y〉, x , pat , ra, org , cli , spcty)←

hasActivated(y , Consent-to-referral(pat , ra, org , cli , spcty)),
x 6= y

External clinician

(A2.2.1)
canActivate(cli , Ext-treating-clinician(pat , ra, org , spcty))←

hasActivated(x , Consent-to-referral(pat , ra, org , cli , spcty)),
no-main-role-active(cli),
ra.hasActivated(y , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority())

(A2.2.2)
canActivate(cli , Ext-treating-clinician(pat , ra, org , spcty))←

hasActivated(ref , Consent-to-referral(pat , ra, org , cli , spcty)),
no-main-role-active(cli),
ra@ra.hasActivated(y , NHS-clinician-cert(org , cli , spcty , start , end)),
canActivate(ra, Registration-authority())

(A2.2.3)
canDeactivate(cli , cli , Ext-treating-clinician(pat , ra, org , spcty))←

(A2.2.4)
isDeactivated(cli , Ext-treating-clinician(pat , ra, org , spcty))←

isDeactivated(x , Consent-to-referral(pat , ra, org , cli2 , spcty)),
other-referral-consents(0, x , pat , ra, org , cli , spcty)

(A2.2.5)
count-ext-treating-clinician-activations(count〈u〉, user)←

hasActivated(user , Ext-treating-clinician(pat , ra, org , spcty))

66



Third-party consent

(A2.3.1)
canActivate(pat , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Patient()),
x ∈ Get-record-third-parties(pat , id)

(A2.3.2)
canActivate(ag , Request-third-party-consent(x , pat , id))←

hasActivated(ag , Agent(pat)),
x ∈ Get-record-third-parties(pat , id)

(A2.3.3)
canActivate(cli , Request-third-party-consent(x , pat , id))←

hasActivated(cli , Clinician(spcty)),
x ∈ Get-record-third-parties(pat , id)

(A2.3.4)
canActivate(cg , Request-third-party-consent(x , pat , id))←

hasActivated(cg , Caldicott-guardian()),
x ∈ Get-record-third-parties(pat , id)

(A2.3.5)
canDeactivate(pat , pat , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Patient())

(A2.3.6)
canDeactivate(ag , ag , Request-third-party-consent(x , pat , id))←

hasActivated(pat , Agent(pat))

(A2.3.7)
canDeactivate(cli , cli , Request-third-party-consent(x , pat , id))←

hasActivated(cli , Clinician(spcty))

(A2.3.8)
canDeactivate(cg , x , Request-third-party-consent(y , pat , id))←

hasActivated(cg , Caldicott-guardian())

(A2.3.9)
canDeactivate(x , y , Request-third-party-consent(x , pat , id))←

hasActivated(x , Third-party())

(A2.3.10)
isDeactivated(x , Request-third-party-consent(x2 , pat , id))←

isDeactivated(y , Register-patient(pat))

(A2.3.11)
count-third-party-activations(count〈u〉, user)←

hasActivated(user , Third-party())

(A2.3.12)
canActivate(x , Third-party())←

hasActivated(y , Request-third-party-consent(x , pat , id)),
no-main-role-active(x ),
PDS@PDS.hasActivated(z , Register-patient(x ))

(A2.3.13)
canDeactivate(x , x , Third-party())←

(A2.3.14)
other-third-party-requests(count〈y〉, x , third-party)←

hasActivated(y , Request-third-party-consent(third-party , pat , id)),
x 6= y

67



(A2.3.15)
isDeactivated(x , Third-party())←

isDeactivated(y , Request-third-party-consent(x , pat , id)),
other-third-party-requests(0, y , x )

(A2.3.16)
canActivate(x , Third-party-consent(x , pat , id))←

hasActivated(x , Third-party()),
hasActivated(y , Request-third-party-consent(x , pat , id))

(A2.3.17)
canActivate(cg , Third-party-consent(x , pat , id))←

hasActivated(cg , Caldicott-guardian()),
hasActivated(y , Request-third-party-consent(x , pat , id))

(A2.3.18)
canDeactivate(x , x , Third-party-consent(x , pat , id))←

hasActivated(x , Third-party())

(A2.3.19)
canDeactivate(cg , x , Third-party-consent(x , pat , id))←

hasActivated(cg , Caldicott-guardian())

(A2.3.20)
isDeactivated(x , Third-party-consent(x , pat , id))←

isDeactivated(y , Register-patient(pat))

(A2.3.21)
third-party-consent(group〈consenter〉, pat , id)←

hasActivated(x , Third-party-consent(consenter , pat , id))

A.3.3 LR and clinical teams

Head of team

(A3.1.1)
canActivate(hd , Head-of-team(team))←

hasActivated(x , Register-head-of-team(hd , team))

(A3.1.2)
canDeactivate(hd , hd , Head-of-team(team))←

(A3.1.3)
isDeactivated(hd , Head-of-team(team))←

isDeactivated(x , Register-head-of-team(hd , team))

(A3.1.4)
canActivate(mgr , Register-head-of-team(hd , team))←

hasActivated(mgr , HR-mgr()),
hasActivated(x , Register-team-member(hd , team, spcty)),
head-of-team-regs(0, hd , team)

(A3.1.5)
canDeactivate(mgr , x , Register-head-of-team(hd , team))←

hasActivated(mgr , HR-mgr())

(A3.1.6)
isDeactivated(x , Register-head-of-team(hd , team))←

isDeactivated(y , Register-team-member(hd , team, spcty))

(A3.1.7)
head-of-team-regs(count〈x〉, hd , team)←

hasActivated(x , Register-head-of-team(hd , team))

68



Team membership

(A3.2.1)
canActivate(mgr , Register-team-member(mem, team, spcty))←

hasActivated(mgr , HR-mgr()),
canActivate(mem, Clinician(spcty)),
team-member-regs(0,mem, team, spcty)

(A3.2.2)
canActivate(hd , Register-team-member(mem, team, spcty))←

hasActivated(hd , Clinician(spcty2 )),
canActivate(hd , Head-of-team(team)),
canActivate(mem, Clinician(spcty)),
team-member-regs(0,mem, team, spcty)

(A3.2.3)
canDeactivate(mgr , x , Register-team-member(mem, team, spcty))←

hasActivated(mgr , HR-mgr())

(A3.2.4)
canDeactivate(hd , x , Register-team-member(mem, team, spcty))←

hasActivated(hd , Clinician(spcty2 )),
canActivate(hd , Head-of-team(team))

(A3.2.5)
isDeactivated(x , Register-team-member(mem, team, spcty))←

isDeactivated(y , Register-clinician(mem, spcty))

(A3.2.6)
canReqCred(ra, ADB.hasActivated(x , Register-team-member(cli , team, spcty)))←

ra = RA-ADB

(A3.2.7)
team-member-regs(count〈x〉,mem, team, spcty)←

hasActivated(x , Register-team-member(mem, team, spcty))

Team episode

(A3.3.1)
canActivate(rec, Register-team-episode(pat , team))←

hasActivated(rec, Receptionist()),
canActivate(pat , Patient()),
team-episode-regs(0, pat , team)

(A3.3.2)
canActivate(cli , Register-team-episode(pat , team))←

hasActivated(cli , Clinician(spcty)),
hasActivated(x , Register-team-member(cli , team, spcty)),
canActivate(pat , Patient()),
team-episode-regs(0, pat , team)

(A3.3.3)
canDeactivate(cg , x , Register-team-episode(pat , team))←

hasActivated(cg , Caldicott-guardian())

(A3.3.4)
canDeactivate(rec, x , Register-team-episode(pat , team))←

hasActivated(rec, Receptionist())

69



(A3.3.5)
canDeactivate(cli , x , Register-team-episode(pat , team))←

hasActivated(cli , Clinician(spcty)),
hasActivated(x , Register-team-member(cli , team, spcty))

(A3.3.6)
isDeactivated(x , Register-team-episode(pat , team))←

isDeactivated(y , Register-patient(pat))

(A3.3.7)
team-episode-regs(count〈x〉, pat , team)←

hasActivated(x , Register-team-episode(pat , team))

Head of ward

(A3.4.1)
canActivate(cli , Head-of-ward(ward))←

hasActivated(x , Register-head-of-ward(cli ,ward))

(A3.4.2)
canDeactivate(cli , cli , Head-of-ward(ward))←

(A3.4.3)
isDeactivated(cli , Head-of-ward(ward))←

isDeactivated(x , Register-head-of-ward(cli ,ward))

(A3.4.4)
canActivate(mgr , Register-head-of-ward(cli ,ward))←

hasActivated(mgr , HR-mgr()),
hasActivated(x , Register-ward-member(cli ,ward , spcty)),
head-of-ward-regs(0, cli ,ward)

(A3.4.5)
canDeactivate(mgr , x , Register-head-of-ward(cli ,ward))←

hasActivated(mgr , HR-mgr())

(A3.4.6)
isDeactivated(x , Register-head-of-ward(cli ,ward))←

isDeactivated(y , Register-ward-member(cli ,ward , spcty))

(A3.4.7)
head-of-ward-regs(count〈x〉, cli ,ward)←

hasActivated(x , Register-head-of-ward(cli ,ward))

Ward membership

(A3.5.1)
canActivate(mgr , Register-ward-member(cli ,ward , spcty))←

hasActivated(mgr , HR-mgr()),
canActivate(cli , Clinician(spcty)),
ward-member-regs(0, cli ,ward , spcty)

(A3.5.2)
canActivate(hd , Register-ward-member(cli ,ward , spcty))←

hasActivated(cli , Clinician(spcty2 )),
canActivate(hd , Head-of-ward(ward)),
canActivate(cli , Clinician(spcty)),
ward-member-regs(0, cli ,ward , spcty)

70



(A3.5.3)
canDeactivate(mgr , x , Register-ward-member(cli ,ward , spcty))←

hasActivated(mgr , HR-mgr())

(A3.5.4)
canDeactivate(hd , x , Register-ward-member(cli ,ward , spcty))←

hasActivated(hd , Clinician(spcty2 )),
canActivate(hd , Head-of-ward(ward))

(A3.5.5)
canReqCred(ra, ADB.hasActivated(x , Register-ward-member(cli ,ward , spcty)))←

ra = RA-ADB

(A3.5.6)
isDeactivated(x , Register-ward-member(cli ,ward , spcty))←

isDeactivated(y , Register-clinician(cli , spcty))

(A3.5.7)
ward-member-regs(count〈x〉, cli ,ward , spcty)←

hasActivated(x , Register-ward-member(cli ,ward , spcty))

Ward episode

(A3.6.1)
canActivate(rec, Register-ward-episode(pat ,ward))←

hasActivated(rec, Receptionist()),
canActivate(pat , Patient()),
ward-episode-regs(0, pat ,ward)

(A3.6.2)
canActivate(hd , Register-ward-episode(pat ,ward))←

hasActivated(hd , Clinician(spcty)),
canActivate(hd , Head-of-ward(ward)),
canActivate(pat , Patient()),
ward-episode-regs(0, pat ,ward)

(A3.6.3)
canDeactivate(cg , x , Register-ward-episode(pat ,ward))←

hasActivated(cg , Caldicott-guardian())

(A3.6.4)
canDeactivate(rec, x , Register-ward-episode(pat ,ward))←

hasActivated(rec, Receptionist())

(A3.6.5)
canDeactivate(hd , x , Register-ward-episode(pat ,ward))←

hasActivated(hd , Clinician(spcty)),
canActivate(hd , Head-of-ward(ward))

(A3.6.6)
isDeactivated(x , Register-ward-episode(pat ,ward))←

isDeactivated(y , Register-patient(pat))

(A3.6.7)
ward-episode-regs(count〈x〉, pat ,ward)←

hasActivated(x , Register-ward-episode(pat ,ward))

71



Emergency clinician

(A3.7.1)
canActivate(cli , Emergency-clinician(pat))←

hasActivated(cli , Clinician(spcty)),
canActivate(pat , Patient())

(A3.7.2)
canDeactivate(cli , cli , Emergency-clinician(pat))←

(A3.7.3)
canDeactivate(cg , cli , Emergency-clinician(pat))←

hasActivated(cg , Caldicott-guardian())

(A3.7.4)
isDeactivated(x , Emergency-clinician(pat))←

isDeactivated(y , Register-patient(pat))

(A3.7.5)
isDeactivated(x , Emergency-clinician(pat))←

isDeactivated(x , Clinician(spcty))

(A3.7.6)
is-emergency-clinician(group〈x〉, pat)←

hasActivated(x , Emergency-clinician(pat))

Treating clinician

(A3.8.1)
canActivate(cli , ADB-treating-clinician(pat , group, spcty))←

canActivate(cli , Clinician(spcty)),
hasActivated(x , Register-team-member(cli , team, spcty)),
hasActivated(y , Register-team-episode(pat , team)),
group = team

(A3.8.2)
canActivate(cli , ADB-treating-clinician(pat , group, spcty))←

canActivate(cli , Clinician(spcty)),
hasActivated(x , Register-ward-member(cli ,ward , spcty)),
hasActivated(x , Register-ward-episode(pat ,ward)),
group = ward

(A3.8.3)
canActivate(cli , ADB-treating-clinician(pat , group, spcty))←

hasActivated(cli , Emergency-clinician(pat)),
group = A-and-E,

spcty = A-and-E

A.3.4 Sealing-off data

Access restriction by clinician

(A4.1.1)
canActivate(cli , Concealed-by-clinician(pat , id , start , end))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

(A4.1.2)
canDeactivate(cli , cli , Concealed-by-clinician(pat , id , start , end))←

hasActivated(cli , Clinician(spcty))

72



(A4.1.3)
canDeactivate(cli1 , cli2 , Concealed-by-clinician(pat , id , start , end))←

hasActivated(cli1 , Clinician(spcty1 )),
canActivate(cli1 , ADB-treating-clinician(pat , group, spcty1 )),
canActivate(cli2 , ADB-treating-clinician(pat , group, spcty2 ))

(A4.1.4)
canDeactivate(cg , cli , Concealed-by-clinician(pat , id , start , end))←

hasActivated(cg , Caldicott-guardian())

(A4.1.5)
isDeactivated(x , Concealed-by-clinician(pat , id , start , end))←

isDeactivated(y , Register-patient(pat))

(A4.1.6)
count-concealed-by-clinician(count〈x〉, pat , id)←

hasActivated(x , Concealed-by-clinician(pat , id , start , end)),
Current-time() ∈ [start , end ]

Access restriction by patient

(A4.2.1)
canActivate(pat , Concealed-by-patient(what ,who, start , end))←

hasActivated(pat , Patient()),
count-concealed-by-patient(n, pat),
what = (pat , ids , authors, groups , subjects , from-time, to-time),
who = (orgs1 , readers1 , groups1 , spctys1 ),
n < 100

(A4.2.2)
canActivate(ag , Concealed-by-patient(what ,who, start , end))←

hasActivated(ag , Agent(pat)),
count-concealed-by-patient(n, pat),
what = (pat , ids , authors, groups , subjects , from-time, to-time),
who = (orgs1 , readers1 , groups1 , spctys1 ),
n < 100

(A4.2.3)
canDeactivate(pat , x , Concealed-by-patient(what ,whom, start , end))←

hasActivated(pat , Patient()),
π7

1(what) = pat

(A4.2.4)
canDeactivate(ag , x , Concealed-by-patient(what ,whom, start , end))←

hasActivated(ag , Agent(pat)),
π7

1(what) = pat

(A4.2.5)
canDeactivate(cg , x , Concealed-by-patient(what ,whom, start , end))←

hasActivated(cg , Caldicott-guardian())

(A4.2.6)
isDeactivated(x , Concealed-by-patient(what ,whom, start , end))←

isDeactivated(y , Register-patient(pat)),
π7

1(what) = pat

(A4.2.7)
count-concealed-by-patient(count〈y〉, pat)←

hasActivated(x , Concealed-by-patient(y)),
what = (pat , ids , authors, groups , subjects , from-time, to-time),
who = (orgs1 , readers1 , groups1 , spctys1 ),
y = (what ,who, start , end)

73



(A4.2.8)
count-concealed-by-patient2(count〈x〉, a, b)←

hasActivated(x , Concealed-by-patient(what ,whom, start , end)),
a = (pat , id),
b = (org , reader , group, spcty),
what = (pat , ids , authors, groups , subjects , from-time, to-time),
whom = (orgs1 , readers1 , groups1 , spctys1 ),
Get-record-author(pat , id) ∈ authors,

Get-record-group(pat , id) ∈ groups,

sub ∈ Get-record-subjects(pat , id),
sub ∈ subjects,

Get-record-time(pat , id) ∈ [from-time, to-time],
id ∈ ids,

org ∈ orgs1 ,

reader ∈ readers1 ,

group ∈ groups1 ,

spcty ∈ spctys1 ,

Current-time() ∈ [start , end ]

A.3.5 Access permissions

Adding item

(A5.1.1)
permits(cli , Add-record-item(pat))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

(A5.1.2)
permits(cli , Add-record-item(pat))←

hasActivated(cli , Ext-treating-clinician(pat , ra, org , spcty))

(A5.1.3)
permits(ag , Annotate-record-item(pat , id))←

hasActivated(ag , Agent(pat))

(A5.1.4)
permits(pat , Annotate-record-item(pat , id))←

hasActivated(pat , Patient())

(A5.1.5)
permits(pat , Annotate-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

Reading item IDs

(A5.2.1)
permits(pat , Get-record-item-ids(pat))←

hasActivated(pat , Patient())

(A5.2.2)
permits(ag , Get-record-item-ids(pat))←

hasActivated(ag , Agent(pat))

(A5.2.3)
permits(cli , Get-record-item-ids(pat))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

74



Reading items

(A5.3.1)
permits(ag , Read-record-item(pat , id))←

hasActivated(ag , Agent(pat)),
count-concealed-by-patient2(n, a, b),
count-concealed-by-clinician(m, pat , id),
third-party-consent(consenters , pat , id),
a = (pat , id),
b = (No-org, ag , No-group, No-spcty),
n = 0,
m = 0,
Get-record-third-parties(pat , id) ⊆ consenters

(A5.3.2)
permits(cli , Read-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
Get-record-author(pat , id) = cli

(A5.3.3)
permits(cli , Read-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
hasActivated(x , Register-team-member(cli , team, spcty)),
Get-record-group(pat , id) = team

(A5.3.4)
permits(cli , Read-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty)),
count-concealed-by-patient2(n, a, b),
n = 0,
a = (pat , id),
b = (ADB, cli , group, spcty),
Get-record-subjects(pat , id) ⊆ Permitted-subjects(spcty)

(A5.3.5)
permits(cli , Read-record-item(pat , id))←

hasActivated(cli , Ext-treating-clinician(pat , ra, org , spcty)),
count-concealed-by-patient2(n, a, b),
n = 0,
a = (pat , id),
b = (org , cli , Ext-group, spcty),
Get-record-subjects(pat , id) ⊆ Permitted-subjects(spcty)

(A5.3.6)
permits(pat , Read-record-item(pat , id))←

hasActivated(pat , Patient()),
count-concealed-by-patient2(n, a, b),
count-concealed-by-clinician(m, pat , id),
third-party-consent(consenters , pat , id),
n = 0,
m = 0,
a = (pat , id),
b = (No-org, pat , No-group, No-spcty),
Get-record-third-parties(pat , id) ⊆ consenters

(A5.3.7)
permits(cg , Force-read-record-item(pat , id))←

hasActivated(cg , Caldicott-guardian())

75



(A5.3.8)
permits(cli , Force-read-record-item(pat , id))←

hasActivated(cli , Clinician(spcty)),
canActivate(cli , ADB-treating-clinician(pat , group, spcty))

A.4 Policy for Addenbrooke’s Registration Authority

A.4.1 Main roles

Administrator

(R1.1.1)
canActivate(mgr , Register-RA-manager(mgr2 ))←

hasActivated(mgr , RA-manager()),
ra-manager-regs(0,mgr2 )

(R1.1.2)
canDeactivate(mgr , x , Register-RA-manager(mgr2 ))←

hasActivated(mgr , RA-manager())

(R1.1.3)
ra-manager-regs(count〈x〉,mgr)←

hasActivated(x , Register-RA-manager(mgr))

(R1.1.4)
canActivate(mgr , RA-manager())←

hasActivated(x , Register-RA-manager(mgr))

(R1.1.5)
canDeactivate(mgr ,mgr , RA-manager())←

(R1.1.6)
isDeactivated(mgr , RA-manager())←

isDeactivated(x , Register-RA-manager(mgr))

Other

(R1.2.1)
canReqCred(x , NHS.hasActivated(x , NHS-registration-authority(ra, start , end)))←

ra = RA-ADB

(R1.2.2)
canActivate(srv , NHS-service())←

canActivate(srv , Registration-authority())

(R1.2.3)
canActivate(srv , NHS-service())←

srv = Spine

(R1.2.4)
canActivate(ra, Registration-authority())←

NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

(R1.2.5)
canActivate(ra, Registration-authority())←

ra@NHS.hasActivated(x , NHS-registration-authority(ra, start , end)),
Current-time() ∈ [start , end ]

76



A.4.2 NHS staff authentication

Clinician

(R2.1.1)
canActivate(mgr , NHS-clinician-cert(org , cli , spcty , start , end))←

hasActivated(mgr , RA-manager()),
hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
start ∈ [start2 , end2 ],
end ∈ [start2 , end2 ],
start < end

(R2.1.2)
canDeactivate(mgr , x , NHS-clinician-cert(org , cli , spcty , start , end))←

hasActivated(mgr , RA-manager())

(R2.1.3)
isDeactivated(mgr , NHS-clinician-cert(org , cli , spcty , start , end))←

isDeactivated(x , NHS-health-org-cert(org , start2 , end2 )),
other-NHS-health-org-regs(0, x , org , start2 , end2 ),
start ∈ [start2 , end2 ],
end ∈ [start2 , end2 ],
start < end

(R2.1.4)
canReqCred(org , RA-ADB.hasActivated(x ,

NHS-clinician-cert(org , cli , spcty , start , end)))←
hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
Current-time() ∈ [start2 , end2 ]

(R2.1.5)
canReqCred(e, RA-ADB.hasActivated(x ,

NHS-clinician-cert(org , cli , spcty , start , end)))←
canActivate(e, NHS-service())

(R2.1.6)
canReqCred(cli , RA-ADB.hasActivated(x ,

NHS-clinician-cert(org , cli , spcty , start , end)))←

Caldicott Guardian

(R2.2.1)
canActivate(mgr , NHS-Caldicott-guardian-cert(org , cg , start , end))←

hasActivated(mgr , RA-manager()),
hasActivated(x , NHS-health-org-cert(org , start2 , end2 )),
start ∈ [start2 , end2 ],
end ∈ [start2 , end2 ],
start < end

(R2.2.2)
canDeactivate(mgr , x , NHS-Caldicott-guardian-cert(org , cg , start , end))←

hasActivated(mgr , RA-manager())

(R2.2.3)
isDeactivated(mgr , NHS-Caldicott-guardian-cert(org , cg , start , end))←

isDeactivated(x , NHS-health-org-cert(org , start2 , end2 )),
other-NHS-health-org-regs(0, x , org , start2 , end2 ),
start ∈ [start2 , end2 ],
end ∈ [start2 , end2 ],
start < end

77



(R2.2.4)
canReqCred(e, RA-ADB.hasActivated(x ,

NHS-Caldicott-guardian-cert(org , cg , start , end)))←
e = cg

(R2.2.5)
canReqCred(e, RA-ADB.hasActivated(x ,

NHS-Caldicott-guardian-cert(org , cg , start , end)))←
hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
e = org ,

Current-time() ∈ [start2 , end2 ]

(R2.2.6)
canReqCred(e, RA-ADB.hasActivated(x ,

NHS-Caldicott-guardian-cert(org , cg , start , end)))←
canActivate(e, NHS-service())

Health organisation

(R2.3.1)
canActivate(mgr , NHS-health-org-cert(org , start , end))←

hasActivated(mgr , RA-manager())

(R2.3.2)
canDeactivate(mgr , x , NHS-health-org-cert(org , start , end))←

hasActivated(mgr , RA-manager())

(R2.3.3)
other-NHS-health-org-regs(count〈y〉, x , org , start , end)←

hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
start ∈ [start2 , end2 ],
end ∈ [start2 , end2 ],
start < end ,

x 6= y ∨ start 6= start2 ∨ end 6= end2

(R2.3.4)
canReqCred(e, RA-ADB.hasActivated(x , NHS-health-org-cert(org , start , end)))←

hasActivated(y , NHS-Caldicott-guardian-cert(org , cg , start2 , end2 )),
Current-time() ∈ [start2 , end2 ],
e = cg

(R2.3.5)
canReqCred(e, RA-ADB.hasActivated(x , NHS-health-org-cert(org , start , end)))←

hasActivated(y , NHS-clinician-cert(org , cli , spcty , start2 , end2 )),
Current-time() ∈ [start2 , end2 ],
e = cli

(R2.3.6)
canReqCred(e, RA-ADB.hasActivated(x , NHS-health-org-cert(org , start , end)))←

e = org

(R2.3.7)
canReqCred(e, RA-ADB.hasActivated(x , NHS-health-org-cert(org2 , start , end)))←

ra.hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
canActivate(ra, Registration-authority()),
e = org

(R2.3.8)
canReqCred(e, RA-ADB.hasActivated(x , NHS-health-org-cert(org2 , start , end)))←

org@ra.hasActivated(y , NHS-health-org-cert(org , start2 , end2 )),
canActivate(ra, Registration-authority()),
e = org

78



(R2.3.9)
canReqCred(e, RA-ADB.hasActivated(x , NHS-health-org-cert(org , start , end)))←

canActivate(e, NHS-service())

A.4.3 Workgroup management

(R3.1.1)
canActivate(cli , Workgroup-member(org , group, spcty))←

hasActivated(x , NHS-health-org-cert(org , start , end)),
org@org .hasActivated(x , Register-team-member(cli , group, spcty)),
Current-time() ∈ [start , end ]

(R3.1.2)
canActivate(cli , Workgroup-member(org , group, spcty))←

hasActivated(x , NHS-health-org-cert(org , start , end)),
org@org .hasActivated(x , Register-ward-member(cli , group, spcty)),
Current-time() ∈ [start , end ]

(R3.1.3)
canReqCred(Spine, RA-ADB.canActivate(cli ,

Workgroup-member(org , group, spcty)))←

79



References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases.
Addison-Wesley, 1995.

[And96] Ross Anderson. A security policy model for clinical information systems. In
Proceedings of the IEEE Symposium on Research in Security and Privacy, pages
30–42, 1996.

[Arn03] Sarah Arnott. Confidentiality is top priority for patients (08/10/03). Computing,
2003. See http://www.computing.co.uk/news/1144171.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In IEEE Symposium on Security and Privacy, pages 164–173, 1996.

[BMY02] Jean Bacon, Ken Moody, and Walt Yao. A model of OASIS role-based access
control and its support for active security. ACM Transactions on Information and

System Security, 5(4):492–540, 2002.

[BS04a] Moritz Y. Becker and Peter Sewell. Cassandra: distributed access control policies
with tunable expressiveness. In Policy Workshop, June 2004.

[BS04b] Moritz Y. Becker and Peter Sewell. Cassandra: distributed access control policies
with tunable expressiveness. In Computer Security Foundations Workshop, June
2004.

[Col03a] Tony Collins. Doctors express alarm at plans to store patient data without con-
sent (15/07/03). Computer Weekly, 2003. See http://www.computerweekly.com/
Article123355.htm.

[Col03b] Tony Collins. How the national programme came to be the health service’s
riskiest IT project (16/09/03). Computer Weekly, 2003. See http://www.

computerweekly.com/Article124870.htm.

[Col04] Tony Collins. Gps vote to boycott patient record database (29/06/04). Computer

Weekly, 2004. See http://www.computerweekly.com/Article131577.htm.

[Cor02] Amanda Cornwall. Electronic health records: an international perspective. Health

Issues, 73, 2002.

[Cro03] Michael Cross. NHS spree revealed (12/06/03). The Guardian, 2003. See http:

//www.guardian.co.uk/online/story/0,3605,975139,00.html.

[CS03] Tony Collins and Mike Simons. NHS plan branded a ’farce’ (03/06/03). Computer

Weekly, 2003. See http://www.computerweekly.com/Article122277.htm.

[Dep01a] Department of Health, UK. Building the information core: Implementing the NHS
plan. 2001.

[Dep01b] Department of Health, UK. Building the information core: Protecting and using
confidential patient information. 2001.

[Dep02] Department of Health, UK. Legal and policy constraints on electronic records.
2002.

[EFL+99] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI certificate theory, RFC 2693, September 1999. See http:

//www.ietf.org/rfc/rfc2693.txt.

[Ell99] Carl M. Ellison. SPKI requirements, RFC 2692, September 1999. See http:

//www.ietf.org/rfc/rfc2692.txt.

[Fou03] Foundation for Information Policy Research. NHS confidentiality consultation –
FIPR response. February 2003. See http://www.cl.cam.ac.uk/users/rja14/

fiprmedconf.html.

[Gau03] Nick Gaunt. Confidentiality and consent: Use cases applicable to shared electronic
health record. S&W Devon ERDIP Project, 2003.

80



[Haw03] Nigel Hawkes. Patient records go online (21/07/03). The Times Online, 2003. See
http://www.timesonline.co.uk/newspaper/0,,2710-751992,00.html.

[HBM98] R. Hayton, J. Bacon, and K. Moody. OASIS: Access control in an open dis-
tributed environment. In Proceedings of the 1998 IEEE Symposium on Security

and Privacy, pages 3–14, 1998.

[JM94] Joxan Jaffar and Michael J. Maher. Constraint logic programming: a survey.
Journal of Logic Programming, 19/20:503–581, 1994.

[JMMS98] Joxan Jaffar, Michael J. Maher, Kim Marriott, and Peter J. Stuckey. The se-
mantics of constraint logic programs. Journal of Logic Programming, 37(1-3):1–46,
1998.

[Ley04] John Leyden. Us wins david blunkett lifetime menace award (29/07/04). The

Register, 2004. See http://www.theregister.co.uk/2004/07/29/big brother

awards/.

[LMW02] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-
based trust management framework. In Proceedings of the 2002 IEEE Symposium

on Security and Privacy, pages 114–130, 2002.

[Nat97] National Health Service, UK. The Caldicott committee: report on the review of
patient-identifiable information. 1997.

[Nat98] National Health Service, UK. Information for health: an information strategy for
the modern NHS 1998-2005. 1998.

[Nat02] National Health Service, UK. ERDIP evaluation: Technical options for the imple-
mentation of electronic health record nationally. 2002.

[Nat03] National Health Service, UK. Integrated Care Records Service: Output based
specification version 2. 2003.

[Pal03] Maldwyn Palmer. A complex operation for the NHS spine (14/08/03). Computer

Weekly, 2003. See http://www.computerweekly.com/Article124110.htm.

[Rev02] Peter Revesz. Introduction to constraint databases. Springer Verlag, 2002.

[Riv98] Ronald L. Rivest. Can we eliminate certificate revocations lists? In Financial

Cryptography, pages 178–183, 1998.

[Rog03] James Rogers. GPs voice patient confidentiality concerns (20/05/03). Computer

Weekly, 2003. See http://www.computerweekly.com/Article121897.htm.

[SMW93] Ann Sommerville, Natalie-Jane Macdonald, and R. Weston. Medical Ethics Today:

Its Practice and Philosophy. British Medical Association, BMJ Publishing Group,
1993.

[YMB02] Walt Yao, Ken Moody, and Jean Bacon. A model of OASIS role-based access
control and its support of active security. ACM Transactions on Information and

System Security, 5(4), 2002.

81


