
Technical Report
Number 615

Computer Laboratory

UCAM-CL-TR-615
ISSN 1476-2986

Global public computing

Evangelos Kotsovinos

January 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 Evangelos Kotsovinos

This technical report is based on a dissertation submitted
November 2004 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Summary

High-bandwidth networking and cheap computing hardware are leading to a

world in which the resources of one machine are available to groups of users

beyond their immediate owner. This trend is visible in many different settings.

Distributed computing, where applications are divided into parts that run on

different machines for load distribution, geographical dispersion, or robustness,

has recently found new fertile ground. Grid computing promises to provide a

common framework for scheduling scientific computation and managing the as-

sociated large data sets. Proposals for utility computing envision a world in

which businesses rent computing bandwidth in server farms on-demand instead

of purchasing and maintaining servers themselves.

All such architectures target particular user and application groups or de-

ployment scenarios, where simplifying assumptions can be made. They expect

centralised ownership of resources, cooperative users, and applications that are

well-behaved and compliant to a specific API or middleware. Members of the

public who are not involved in Grid communities or wish to deploy out-of-the-box

distributed services, such as game servers, have no means to acquire resources on

large numbers of machines around the world to launch their tasks.

This dissertation proposes a new distributed computing paradigm, termed

global public computing, which allows any user to run any code anywhere. Such

platforms price computing resources, and ultimately charge users for resources

consumed. This dissertation presents the design and implementation of the Xeno-

Server Open Platform, putting this vision into practice. The efficiency and scala-

bility of the developed mechanisms are demonstrated by experimental evaluation;

the prototype platform allows the global-scale deployment of complex services in

less than 45 seconds, and could scale to millions of concurrent sessions without

presenting performance bottlenecks.

To facilitate global public computing, this work addresses several research

challenges. It introduces reusable mechanisms for representing, advertising, and

supporting the discovery of resources. To allow flexible and federated control

of resource allocation by all stakeholders involved, it proposes a novel role-based

resource management framework for expressing and combining distributed man-

agement policies. Furthermore, it implements effective service deployment models

for launching distributed services on large numbers of machines around the world

easily, quickly, and efficiently. To keep track of resource consumption and pass

charges on to consumers, it devises an accounting and charging infrastructure.

3

4

Acknowledgements

Although a doctoral dissertation is always the result of largely solitary work, I

have been truly fortunate to have cooperated with many outstanding people, to

whom I express my gratitude here.

My supervisor, Tim Harris, fully deserves the first spot in this list; I am in-

debted to him for being a reliable source of ideas, advice, and direction throughout

my work towards this dissertation. I am also grateful to Steven Hand and Ian

Pratt, who both encouraged my good ideas and questioned my not so good ones.

Their support has been invaluable, and their deep technical knowledge, creativity,

and enthusiasm about systems research has been a constant source of inspiration.

I would like to thank Jean Bacon, Jon Crowcroft, Steven Hand, Maja Vukovic,

and Ian Wakeman for providing plenty of very useful feedback that helped me

plan and shape this dissertation. For supporting me, surviving long conversa-

tions on my ideas, and proofreading parts of this dissertation, thanks are due to

my friends and colleagues Alberto Fernandes, Alex Ho, Boris Dragovic, Chris-

tian Kreibich, Christina Tsouparopoulou, Dimitrios Selemetas, Eva Kalyvianaki,

Giorgos Portokalidis, Katerina Biliouri, Maja Vukovic, Rajiv Chakravorty, and

Tim Moreton.

I am grateful to Keir Fraser and the Xen project team, Russ Ross, and David

Spence for making the Xen Virtual Machine Monitor, the CoW NFS server, and

XenoSearch available respectively. I would like to thank Andy Chung for staying

late — in fact, very, very late — in the Lab when required, and Priyanka Sinha

and Tom Wilkie for their practical contributions. I also take this opportunity to

thank Evangelos Markatos and Katerina Gialama, who stimulated my interest

in distributed systems research during my time at ICS-FORTH, setting me on

course to start a PhD.

I wish to thank the Marconi Corporation, the Cambridge European Trust,

and the Neil Wiseman Memorial Fund of the Computer Laboratory, University

of Cambridge, for providing financial support for my studies.

Last but not least, my gratitude for the motivation and support I have received

from my parents, Nikos and Catherine, and my sister, Panagiota, is beyond

words.

5

6

Contents

List of figures 11

List of tables 13

Glossary 15

Terminology 19

1 Introduction 21

1.1 Motivating examples . 22

1.2 A new computing paradigm . 23

1.3 The XenoServer vision . 27

1.4 Dissertation outline . 30

1.5 Publication record . 31

2 Research context 34

2.1 Distribution middleware . 34

2.2 Large-scale distributed applications 36

2.2.1 Peer-to-peer systems . 36

2.2.2 Scientific computing . 38

2.3 Active networks . 39

2.4 Distributed deployment platforms 41

2.4.1 Globus . 42

2.4.2 Condor . 47

2.4.3 Global Grid Forum . 50

2.4.4 PlanetLab . 51

2.4.5 Utility computing . 55

2.4.6 Putting the pieces together 56

2.5 Global public computing . 69

7

3 The XenoServer Open Platform 72

3.1 Overview . 72

3.2 Operation . 76

3.2.1 Registration . 76

3.2.2 Server selection . 79

3.2.3 Service deployment . 82

3.2.4 Management . 86

3.3 Interfaces . 89

3.3.1 XenoCorp . 90

3.3.2 XenoServer . 91

3.3.3 XenoServer Information Service (XIS) 93

3.3.4 XenoSearch . 94

3.4 Openness . 94

3.4.1 Multiple XenoCorps . 95

3.4.2 Multiple XenoServers . 98

3.4.3 Multiple clients . 100

3.4.4 Multiple XIS and XenoSearch services 100

3.5 Summary . 101

4 Resource management 103

4.1 Running example . 104

4.2 Resource description . 105

4.2.1 Naming individual resources 105

4.2.2 Describing resources . 106

4.2.3 Coordinating descriptions 109

4.3 Role-based resource management 113

4.3.1 Overview . 114

4.3.2 Declaration of policies . 115

4.3.3 Policy description . 117

4.3.4 Policy evaluation . 125

4.3.5 Policy deployment . 131

4.3.6 Expressing realistic policies 139

4.4 Related work . 141

4.5 Summary . 142

5 Implementation 144

5.1 Component implementation . 145

5.1.1 XenoServer . 145

5.1.2 XenoClient . 151

8

5.1.3 XenoCorp . 157

5.1.4 XenoServer Information Service 161

5.1.5 Storage . 162

5.1.6 XenoSearch . 164

5.2 Service deployment . 165

5.2.1 Other deployment models 165

5.2.2 Deployment requirements 166

5.2.3 Deployment in global public computing 167

5.2.4 Deployment configurations 168

5.2.5 Prototype implementation 170

5.3 Summary . 172

6 Evaluation 174

6.1 Experimental setup . 174

6.2 Performance . 175

6.2.1 Overlay size . 176

6.2.2 Deployment timeline . 177

6.2.3 Network traffic . 178

6.3 Scalability . 179

6.3.1 Domain scalability . 180

6.3.2 Experiments . 183

6.3.3 Performance and network traffic effects 185

6.3.4 Bottleneck analysis . 188

6.4 Effectiveness . 192

7 Conclusion 201

7.1 Contributions . 202

7.2 Future work . 202

References 207

9

10

List of Figures

1.1 Comparison of computing models 24

2.1 Resource discovery and service deployment in Globus 44

2.2 Resource discovery and service deployment in Condor 48

2.3 Resource discovery and service deployment in PlanetLab 52

2.4 Solving the jigsaw puzzle of global resource acquisition 69

2.5 XenoServers as a common global public computing substrate . . . 70

3.1 Entities and interactions in the XenoServer Open Platform 73

3.2 Abstract view of a XenoServer’s design 74

3.3 Registration of XenoServers and clients 77

3.4 Advertisement and discovery of resources 80

3.5 Service deployment operations . 83

3.6 Environment management operations 87

4.1 Hierarchical resource naming . 106

4.2 Coordinated resource descriptions 110

4.3 Server advertisement . 111

4.4 Resource and pricing description coordination maps 112

4.5 High-level view of the RBRM architecture 114

4.6 Authentication and filtering of deployed policies 116

4.7 Policy evaluation process . 126

4.8 Policy deployment in the XenoServer Platform 132

4.9 Policy deployment in Condor . 138

5.1 Architecture of a Xen-based XenoServer 146

5.2 Control-plane architecture of a XenoServer 148

5.3 Architecture of XenoClient . 152

5.4 Interface for user registration . 153

5.5 Interface for purchase order creation and management 154

5.6 Interface for XenoServer discovery and selection 155

11

5.7 Interface for purchasing resources on a XenoServer 156

5.8 Interface for building deployment specifications 157

5.9 Interface for service and session management 158

5.10 Architecture of XenoCorp . 159

5.11 Authentication in the prototype XenoServer platform 160

5.12 Architecture of a XenoServer Information Service node 161

5.13 Service deployment from XenoStore 169

5.14 Service deployment from private remote storage 170

6.1 The experimental evaluation setup 175

6.2 Service deployment timeline . 177

6.3 A XenoCorp domain . 180

6.4 CPU utilisation on XenoCorp as its domain expands 185

6.5 Memory utilisation on XenoCorp as its domain expands 186

6.6 Network traffic to/from XenoCorp as its domain expands 187

6.7 XenoCorp/XenoDaemon utilisation ratio 191

12

List of Tables

2.1 Research challenges for global public computing 57

6.1 Size of copy-on-write overlays . 176

6.2 Messages exchanged during service deployment 178

6.3 System parameters used for domain growth reconstruction 184

6.4 Cost per client for XenoCorp . 188

6.5 Estimated bottleneck threshold 191

13

14

Glossary

AFS Andrew File System

ALAN Application-Level Active Networking

ALC Advertisement Locations Catalogue

ANTS Active Node Transfer System

API Application Programming Interface

ARPANET Advanced Research Projects Agency Network

CDN Content Distribution Network

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CoW Copy-on-Write

DDoS Distributed Denial of Service

DHT Distributed Hash Table

DNS Domain Name System

DRMAA Distributed Resource Management Application API

DRMS Distributed Resource Management System

F/S File System

FTP File Transfer Protocol

GARA General-purpose Architecture for Reservations and Allocation

GESA Grid Economic Services Architecture

GGF Global Grid Forum

GRAAP Grid Resource Allocation Agreement Protocol

GRAM Globus Resource Allocation Manager

GRIP Grid Resource Information Protocol

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

I/O Input/Output

ID Identifier

IP Internet Protocol

IPSEC Internet Protocol Security

15

ISP Internet Service Provider

IT Information Technology

JDBC Java Database Connectivity

JVM Java Virtual Machine

JXTA Project Juxtapose

LDAP Lightweight Directory Access Protocol

MD5 Message Digest 5

MDS Metacomputing Directory Service

MMOG Massively Multiplayer Online Game

MVM Management Virtual Machine

NFS Network File System

NIC Network Interface Controller

NIST National Institute of Standards and Technology

OGSA Open Grid Services Architecture

OGSI Open Grid Services Infrastructure

ORB Object Request Broker

OS Operating System

P4 Pentium 4

PC Personal Computer

PCC Proof-Carrying Code

PDA Personal Digital Assistant

PDP Programmed Data Processor

PLAN Programming Language for Active Networks

PLC PlanetLab Central

PVM Parallel Virtual Machine

QoS Quality of Service

R/O Read-Only

RAM Random Access Memory

RBAC Role-Based Access Control

RBRM Role-Based Resource Management

RMI Remote Method Invocation

RPC Remote Procedure Call

RPM Revolutions Per Minute

RSL Resource Specification Language

RUS Resource Usage Service

SCSI Small Computer System Interface

SETI Search for ExtraTerrestrial Intelligence

SFS Self-Certifying File System

SOAP Simple Object Access Protocol

16

SQL Structured Query Language

SSH Secure Shell

SSL Secure Socket Layer

SWORD Scalable Wide-Area Overlay-based Resource Discovery

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UR Usage Record

URL Uniform Resource Locator

VCI VM Control Interface

VM Virtual Machine

VMM Virtual Machine Monitor

VPN Virtual Private Network

WS Web Service

WSDL Web Services Description Language

XIS XenoServer Information Service

XML Extensible Markup Language

17

18

Terminology

Control plane: the part of the system that deals with operations required to

deploy and manage services.

Coordination: the process leading to achieving harmonious functioning of

parts of a distributed system for effective results.

Execution environment: an environment that encompasses a set of resources

and can accommodate the execution of tasks – for example, a Unix process, a

Virtual Machine, or a JVM environment. Multiple execution environments may

coexist on a server.

Federated systems: systems that comprise parts owned and administered by

different organisations.

Global public computing: the model of distributed computing where glob-

ally dispersed, mutually untrusted, competing members of the public purchase

computing resources on servers around the world for the execution of untrusted

services.

GuestOS: an instance of an operating system ported to run over a Virtual

Machine Monitor.

Purchase order: an item that represents the commitment of a sponsor to

funding sessions he or she deploys on servers.

Resource advertisement: the process of publicising information about avail-

able resources on a server.

Resource description: the process of representing computing resources in a

well-defined, structured manner.

19

Resource description coordination: the process of making sure representa-

tion of common resources is consistent between different servers.

Resource discovery: the process of locating resources suitable for running a

distributed service.

Resource management: the process of controlling how resources are allocated

to different users or user groups.

(Distributed) Service: a software system that runs on one or more servers to

carry out an operation on behalf of users, and consists of a number of distributed

components, called tasks.

Server: a machine that undertakes the execution of tasks.

Service deployment: obtaining adequate computing resources on one or more

servers to run a service, and launching the tasks it comprises on the servers.

Session: an agreement between the resource provider and the user; the provider

agrees to provide the requested resources and the user promises to pay for resource

consumption.

Sponsor: an entity that funds the execution of a distributed service or task.

Stakeholder: anyone with an interest in what an entity does.

Task: a software component, which may be independent or part of a distributed

service.

Virtual Machine: a type of execution environment. In the prototype imple-

mentation, a currently running guestOS – the difference between a guestOS and

a Virtual Machine being analogous to that between a program and a process.

XenoServer: a server that undertakes the safe execution of untrusted tasks in

exchange for monetary rewards.

20

Chapter 1

Introduction

Over the last few years, distributed computing has evolved from a promising area

of research to a valuable solution addressing real and challenging problems. The

user community has widely embraced large-scale distributed systems such as peer-

to-peer file sharing networks, which have become extremely popular by allowing

millions of globally dispersed users to exchange files simply and easily. Scientific

applications split large computational problems into smaller sub-problems, and

distribute these over numerous machines. On-line multi-player games rely on

networks of servers around the world, which serve their nearby clients.

However, the development of distributed services has been disproportional

to that of infrastructural support for their deployment. How can researchers, or

even other members of the public acquire resources on large numbers of globally

dispersed machines over short timescales to deploy their large-scale distributed

services?

This dissertation proposes a new distributed computing paradigm, termed

global public computing, where members of the public can acquire resources and

deploy distributed services on networks of machines scattered around the world

in exchange for money. It describes the design, prototype implementation, and

evaluation of a global public computing infrastructure that addresses the needs

of this user community, and investigates reusable resource management mecha-

nisms for coordinating and managing global public computing infrastructures.

Furthermore, it presents a global-scale service deployment facility, provided to

allow the launching of complex distributed services easily and efficiently.

21

1.1 Motivating examples

Several applications that make use of computing resources on large numbers

of machines have been developed for commercial, scientific, and entertainment

purposes, usually solving embarrassingly parallel 1 problems.

In 1995 Disney and Pixar used a server farm of 117 uniprocessor and multi-

processor SPARCstation workstations, comprising a total of 294 processors, to

render Toy Story [Rob95], the world’s first ever full-length, entirely computer-

generated animated movie. Rendering the 114,000 frames of the 77-minute movie

required unprecedented amounts of raw computing power; one single-processor

computer of that type alone would have needed 43 years of non-stop operation

to render the movie.

SETI@home [WCL+01] analyses data from the world’s largest radio telescope,

located in the Arebico Observatory in Puerto Rico, in the hope of detecting signals

generated by alien civilisations. Folding@home [LSP03] studies protein folding in

an effort to understand the cause of many serious diseases, such as Alzheimer’s,

Bovine Spongiform Encephalopathy (BSE), and Parkinson’s. Both initiatives

require enormous amounts of computing resources that cannot be provided by

any mainframe or server farm alone. @home systems pioneered the transition

to global-scale distributed computing by exploiting idle CPU cycles on hundreds

of thousands of mainly ordinary desktop machines. SETI@home is harnessing a

total of up to 60 Tflops/sec; it would have taken a single computer more than

two million years to analyse the data that SETI@home has analysed since 1999

to the time of writing2. Even the $350-million Earth Simulator Center [Sat04],

home to the world’s most powerful supercomputer at the time this dissertation

was written, achieves less than two thirds of SETI@home’s computing power.

Ultima Online [Ele97] is one of the most popular massively multi-player com-

puter games3. Played by thousands of paying users simultaneously, it runs a

1An embarrassingly parallel problem is a computing problem that can easily, or very obvi-

ously, be split up into parts that can be computed in parallel. In these problems each step can

often be computed independently from every other step, thus each step could be made to run on

a separate processor to achieve quicker results (definition from http://www.wikipedia.org).
2SETI@home current total statistics, from http://setiathome.ssl.berkeley.edu/.
3A massively multiplayer online game (MMOG) is a type of computer game that enables

hundreds or thousands of players to simultaneously interact in a game world they are connected

to via the Internet. Typically this kind of game is played in an online, multiplayer-only per-

sistent world. Non-MMOGs usually have less than 50 players online and are usually played on

private servers (definition from http://www.wikipedia.org).

22

network of game servers placed at key network locations around the world to

distribute load and maintain low latencies between those and the players. Unlike

@home, Ultima cannot rely on spare CPU cycles; guaranteed resource availabil-

ity is necessary, and users are much less likely to provide such guarantees for

free, especially towards a goal that is not closely related to the “common good”.

Therefore, Ultima controls and maintains a network of proprietary, dedicated

game servers.

Existing technology falls short of facilitating general mechanisms for setting

up and maintaining such networks of servers easily, flexibly, and at an affordable

cost, for on-line gaming or any other type of global-scale distributed services.

Leasing dedicated servers is tedious and expensive, requires manual configuration,

and is based on monthly contracts. Offering a new massively multi-player on-line

game is estimated to cost the developer eight to eleven million US$4, a significant

part of which is for funding the server infrastructure [Cox00]. Moreover, game

servers cannot be dynamically relocated to reflect fluctuation in player numbers

in the different geographical regions, for instance as a result of the different time

zones.

How can a new gaming company dynamically obtain computing resources on

a number of machines at particular network locations around the world? How can

resource acquisition be flexible enough to allow services to be moved around the

world to adapt to changes in demand? How can new, untrusted, and experimen-

tal distributed services — such as novel network protocols or a next-generation

Internet — be tried out in a realistic setting?

This dissertation gives answers to the aforementioned questions, by introduc-

ing a new model of distributed computing and demonstrating how this can be

put into practice.

1.2 A new computing paradigm

Looking back at the history of computing, a number of different computing trends

can be identified, with respect to which user classes had access to computing

resources, where those resources were located, and what applications could be

deployed on the machines — as shown in Figure 1.1. In the early days, only a

4Estimate by John Smedley, operations director at Sony Online Entertainment, according

to [Bla01].

23

Locations

Applications

40s
mainframes

60s
minicomputers

70s
distributed
computing

90s
Grids global

public
computing

Figure 1.1: Comparison of computing models with respect to the number of locations

at which a service can be running and the range of applications that can be deployed

restricted group of privileged users could access mainframes, which could only run

machine-specific applications. Later, smaller machines, able to run a wider range

of applications, became a commodity. Distributed computing allowed specific

programs to run at more than one location, and subsequently Grid computing

extended that to provide support for distributed execution of any trusted Grid-

enabled application.

A few users, machine-specific code, on the mainframe. The first main-

frame computing systems, built from the 1940s to the 1960s, were enormous

room-sized machines. Mainframes were owned by large institutions, such as uni-

versities or companies, and were running proprietary operating systems. Specially

written programs were developed offline, examined carefully — as errors would

lead to waste of expensive resources — and given to trained staff that would run

these on the machines on behalf of the users and return the results.

Time-sharing [CDD62, CV65, Bul80] allowed several users to run jobs con-

currently on one processor, or in parallel on many processors, usually providing

each user with his or her own terminal for input and output. Grosch’s law5 en-

couraged the purchase of large supercomputers to be time-shared among a group

of users [Den64], since that was believed to provide more performance per dollar

than buying smaller computers for each one of them [Fan65, DS68].

5Observation made by Herb Grosch in 1965, stating that computing performance increases

as the square of its cost.

24

Any user, any code, in the lab. The drastic drop in the cost of electronics,

as a result of the invention of integrated circuits, made Grosch’s law seem irrel-

evant at the time, and led to the development of minicomputers6 in the 1960s

and microcomputers7 in the 1970s. For moderately demanding applications, the

dominant paradigm shifted from paying subscription fees for central time-shared

computing services to buying a smaller time-sharing computer that provided in-

house computing. Machines and users were usually located within the same group

in an organisation.

The development of operating systems, compilers, and high-level program-

ming languages, such as Unix and C, which run on several different kinds of

machines, allowed the execution of code that was not specifically written for a

particular machine. Furthermore, the development of Virtual Machine [ABCC66,

PPTH72] technology allowed the safe partitioning of a single physical machine to

several virtual parts, and the secure concurrent execution of potentially insecure

code.

Any user, specific applications, anywhere. The introduction of computer

networks at around the same time as the minicomputers led to the foundation of

distributed computing [Fly66, Ens78, NH82, Lam86]. As minicomputers were far

cheaper than mainframes while less computationally powerful, scientists observed

that they did not necessarily need mainframes even for large computational jobs.

Ironically, the consensus at the time became the opposite of what Grosch’s law

had previously suggested; linking several minicomputers together could provide

the same computational power as that of a large mainframe and yet cost sig-

nificantly less. Distributed computing projects split large problems into smaller

parts and solved each part on a different computer, then combined the results.

6Minicomputers were multi-user computers which made up the middle range of the com-

puting spectrum, in between the largest multi-user systems (mainframe computers) and the

smallest single-user systems (microcomputers or personal computers). They usually took up

one or a few cabinets, compared with mainframes that would usually fill a room. One of the

most successful minicomputers was Digital Equipment Corporation’s 12-bit PDP-8, launched

in 1964 (from http://www.wikipedia.org).
7Microcomputers are — usually single-user — computers with a microprocessor as their

CPU. They occupy physically small amounts of space, not more than can be put onto most

tables or desks. The first generation of microcomputers was launched in the mid-1970s, the

MITS Altair being one of its most well-known examples, and was followed by “home computers”,

such as the BBC Micro, the Commodore 64, and the IBM Personal Computer (IBM PC) (from

http://www.wikipedia.org).

25

Two of the first wide-area distributed computing applications were Creeper

and Reaper. Creeper made its way through the nodes of the ARPANET [MW77]

in the 1970s, using their idle CPU cycles to copy itself onto the next node. Reaper

came next and travelled through the same network, deleting all remaining copies

of Creeper. Creeper and Reaper were essentially worms, as they replicated them-

selves to networked machines without their owners’ permission; at the same time

though, these were applications that considered the possibility of using distri-

buted computational power. Similar worms were created in the next few years,

moving from machine to machine and using idle cycles for utile purposes, such

as rendering graphics [SH82].

The concept of distributed computing evolved over the years from sharing

resources between a group of machines owned by a single institution — as in the

Toy Story case — to a more federated collaborative model, where resources may

be owned by different organisations and reside in different physical locations —

as in the @home projects and peer-to-peer file sharing applications.

The emergence of object-based distribution middleware, such as CORBA

and Java RMI, made the development of distributed applications faster and

easier. Abstractions offered by XML [BPS98], SOAP [Rym01], and Web Ser-

vices [GGKS02] enhanced the interoperability of distributed components, allow-

ing autonomous services to be loosely coupled in order to achieve the performance

of complex operations.

Cooperative users, specific applications, anywhere. All aforementioned

systems support the development and execution of single, specific, ad hoc dis-

tributed applications. The evolution of distributed deployment platforms and

Grid computing took this model one step further by providing infrastructures for

deploying user-defined applications on globally dispersed machines, and allowing

for more generic resource sharing. Resource providers and users are cooperative,

as the former give out their resources for free and the latter generally behave well

and do not misuse resources.

Programs to be deployed on Grids need to be Grid-aware; their source code

needs to be modified to comply with the API required by the Grid on which

they are to be deployed. As a result, they often need to be written in a specific

programming language supported by that API. Moreover, servers participating

in Grid infrastructures only support applications that are executable in specific

versions of particular operating systems; thus, programs to be deployed on Grids

26

often need to be compiled to be executable on one of those specific operating

system versions. Additionally, applications to be deployed on Grids generally

need to be trusted ; malicious, potentially harmful, or experimental code can

harm other applications, or even the infrastructure itself.

Any user, any code, anywhere. The next generation of distributed com-

puting paradigms is global public computing. In one phrase, “anyone can run

any code anywhere”; servers scattered across the globe make resources available

to all members of the public, not just cooperative scientists, and to all applica-

tions, not only well-behaved scientific experiments. They do so in exchange for

money; users are ultimately charged for the resources their applications use on

the servers.

At the same time, global public computing allows users to choose not only

the resources that their services need, but also the location of those resources.

Allowing users to deploy software at key points in the network can help reduce

delays, remove network bottlenecks, and minimise long-haul traffic charges.

Apart from offering a flexible solution for deploying currently existing distri-

buted services, enabling global public computing will give birth to next-generation

distributed services. When the infrastructure is in place to allow global-scale code

deployment at a low cost of entry, new services and business opportunities will

emerge, similar to the way the evolution of computer networks and the Internet

generated an extensive range of on-line opportunities.

1.3 The XenoServer vision

This dissertation proposes the XenoServer Open Platform for global public com-

puting, to address the needs of general-purpose distributed service deployment.

The name derives from the Greek word “ξενoς” (xenos), which means foreign or

unknown, much like the tasks that XenoServers accept and safely execute. The

aim of the platform is to provide a substrate for the deployment of global-scale

services, by allowing the dynamic and flexible acquisition of globally dispersed

computing resources.

To build a general-purpose public computing infrastructure that allows any

user to run any code anywhere, a number of important research challenges need

to be addressed at the same time:

27

Any user. The users that provide and use resources of the platform cannot be

assumed to be well-behaved, cooperative scientists. As resource owners can no

longer be expected to provide resources for free for the sake of science, explicit

monetary payments are necessary; resource consumers must be billed for the

resources their tasks consume.

It is anticipated that in most cases resource owners and consumers will not

know or trust each other before a transaction takes place. There is a need for

coordination mechanisms that will enable authentication and secure charging and

billing in such an inherently untrusted environment.

As participation is open to everyone, resource owners may wish to control the

amount of resources to be allocated to different user groups or users with partic-

ular properties. At the same time, other stakeholders — such as infrastructural

authorities or network administrators — need ways to influence how resources

are apportioned on servers under their jurisdiction, either in their own interest,

or on behalf of users under their control. Mechanisms for resource management

based on federated policies are required.

In an open platform, users may use resources to perform illegal activities. It

is crucial that logging and auditing information about user activities be kept.

Determining the point of balance between anonymity and security is a compli-

cated matter, not to be statically fixed at the design stage. To the greatest extent

possible, it should be left open and adjustable, ideally on a per user or per server

rather than platform-wide basis.

Finally, global-scale service deployment using previously available techniques

involves a significant cost in terms of effort; configuring the machines, replicating

the necessary code elements, installing, starting up, and managing the service

throughout its lifetime needs to be done individually and highly manually. An

infrastructure to provide service deployment at a low cost of entry, in terms of

money and effort, is needed.

Any code. No assumptions can be made on the set of applications that may

be executed on a global public computing platform. Any application, written

in any language and running out-of-the-box, without requiring compliance to a

platform-specific API or middleware, has to be supported.

As servers are charging for resource provision, they need to make sure that

resources reserved for an application are always available to it, no matter what

28

else is running on the machine. The code to be executed on the servers can be

potentially untrusted, unsafe, buggy, experimental, or even malicious. Provid-

ing strong resource isolation and protection between mutually untrusted services

running on the same machine is crucial.

Anywhere. One of the visions which initially led scientists to the idea of distri-

buted computing was that of constructing “distributed supercomputers” [SB78,

Fre89, FC90, SC92]. Building or buying extremely powerful central supercom-

puters was — and still is — often prohibitively expensive, while organising large

numbers of machines to unite their processing capabilities to form distributed

machines provides tremendous processing power at a more reasonable cost.

However, as the price of raw computing resources has been constantly falling,

the need for such “processing monsters” has been on the decline [RTBS01]. At the

same time, the increasing availability of ubiquitous network connectivity allows

for the decentralisation of intelligence — services migrate close to where they are

needed [PS01].

This is not to dispute the usefulness of distributed supercomputers; there

are still cases where extreme computational resources are needed, such as the

@home projects described earlier. It becomes increasingly apparent though that

a significant part of the potential and appeal of general-purpose, global public

computing lies in satisfying different, more complicated user needs than just that

for raw CPU cycles.

The location of computing resources is becoming increasingly significant. Users

can experience communication latencies of more than two seconds when connect-

ing to servers on other continents, while having to pay substantial amounts for

long-haul network traffic [Rog98]. Service providers, such as popular web sites

or game servers, spend significant amounts to maintain dedicated mirror sites

in several parts of the world, in order to balance load, minimise latencies, and

restrict international or transcontinental traffic [Lin03]. Services provided by

transient mobile devices need access to a flexible infrastructure of reliably con-

nected servers, in order to be replicated there for maintaining permanent network

presence [RRPK01].

Enabling users to discover servers that have adequate available resources and

are at convenient network locations is important. Mechanisms are needed to

allow servers to describe and publicise their resource availability, and users to

locate servers using both location-based and resource-based criteria.

29

It is necessary that the proposed platform supports the convenient and effi-

cient deployment of large-scale or global-scale services ; research groups around

the world have been developing experimental systems such as new network pro-

tocols [Dun99], high-performance peer-to-peer applications [TXKN03], distribu-

ted file systems [KS91], distributed operating systems [PPD+95], and mobile

agent systems [HCK95], which need to be tried out in a realistic large-scale set-

ting. Commercial global-scale services, such as massively distributed multi-player

games, are already thriving [Son99, Ele97].

As services can be deployed on large numbers of servers, efficient global-scale

deployment mechanisms are required that do not incur prohibitive volumes of

network traffic, or waiting times.

1.4 Dissertation outline

The respective contributions of the chapters included in this dissertation are the

following. This chapter identifies motivating examples and introduces a new

paradigm for distributed computing, termed global public computing, where any

member of the public is allowed to run any code anywhere on the platform, and

gets charged for the resources consumed. It introduces the vision for implement-

ing a distributed platform that provides this functionality to users, and presents

a framework of general research challenges to be tackled.

Chapter 2 sets the scene of distributed computing and deployment platforms.

The aim is twofold; first, to analyse the research context in which global public

computing is introduced, and point out the necessity and importance of the new

computing model proposed by identifying shortcomings of conventional deploy-

ment platforms. Second, to set specific requirements for global public computing,

and base the rest of the dissertation on devising a system that meets them.

Chapter 3 describes the design and implementation of the XenoServer Open

Platform, which substantiates a practical global public computing infrastructure;

it focuses on the high-level design of the platform, describing the components it

consists of, their functionality, and the interactions between them.

Chapter 4 introduces a new approach to resource management for public com-

puting systems. In contrast to most distributed deployment platforms, which

assume or enforce centralised control of resources, the presented framework ex-

plicitly supports federated control. It proposes a role-based resource management

30

scheme to provide convenient mechanisms for defining federated policies; this

allows resource owners and other stakeholders to define how resources are to be

apportioned between different users and user groups, and supports combining po-

tentially overlapping policies flexibly and easily. Moreover, it demonstrates that

the proposed resource management solution is reusable in other global public

computing settings and distributed deployment environments.

Chapter 5 analyses the implementation of the XenoServer Open Platform,

providing details of the internal architecture of each of the platform compo-

nents and showing how they implement the desired functionality. It discusses

service deployment configurations, and proposes mechanisms for launching com-

plex services on large numbers of XenoServers around the world conveniently

and efficiently. Furthermore, it describes the prototype tools developed for the

interaction of users with the system.

Chapter 6 evaluates the mechanisms employed in the XenoServer Open Plat-

form. It demonstrates that the implemented solutions perform and scale more

than adequately well, and analyses in detail how each of the research challenges

identified in Chapter 2 is addressed.

The final chapter presents the conclusions reached and suggests areas with

potential for future work. It outlines research challenges that may be generated

by a large-scale deployment of the XenoServer platform, discusses new types of

distributed services whose emergence the platform may enable, outlines trust

management and security issues, and proposes investigating dynamic pricing as

a means of maximising profit and regulating resource congestion.

1.5 Publication record

Subsets of my work towards this dissertation or related to it have been published

in refereed international conferences and workshops as follows:

• Global-Scale Service Deployment in the XenoServer Platform (with Tim

Moreton, Ian Pratt, Russ Ross, Keir Fraser, Steven Hand, and Tim Harris).

In Proceedings of the First Workshop on Real, Large Distributed Systems

(WORLDS ’04), December 2004, San Francisco, CA.

• Pinocchio: Incentives for Honest Participation in Distributed Trust Man-

agement (with Alberto Fernandes, Sven Östring and Boris Dragovic). In

31

Proceedings of the 2nd International Conference on Trust Management

(iTrust 2004), March 2004, Oxford, UK. Also published in Springer-Verlag

Lecture Notes in Computer Science (LNCS), Volume 2995, pp. 63-77, ISBN:

3-540-21312-0.

• Role-Based Resource Management (with Tim Harris). In Proceedings of

the 8th CaberNet Radicals Workshop, Ajaccio, Corsica, France, October

2003.

• The XenoServer Open Platform: Deploying Global-Scale Services for Fun

and Profit (with David Spence). Poster, in Proceedings of ACM SIGCOMM

2003, August 2003, Karlsruhe, Germany.

• XenoTrust: Event-Based Distributed Trust Management (with Boris Dra-

govic, Steven Hand and Peter Pietzuch). In Proceedings of the 2nd IEEE

International Workshop on Trust and Privacy in Digital Business (DEXA-

TrustBus 2003), September 2003, Prague, Czech Republic.

• Managing Trust and Reputation in the XenoServer Open Platform (with

Boris Dragovic, Steven Hand, Tim Harris, and Andrew Twigg). In Pro-

ceedings of the 1st International Conference on Trust Management (iTrust

2003), May 2003, Heraklion, Crete, Greece. Also published in Springer-

Verlag Lecture Notes in Computer Science (LNCS), Volume 2692, pp. 59-

74, ISSN: 0302-9743.

• Controlling the XenoServer Open Platform (with Steven Hand, Tim Harris,

and Ian Pratt). In Proceedings of the 6th International Conference on Open

Architectures and Network Programming (IEEE OPENARCH 2003), April

2003, San Francisco, California, US.

• Distributed Resource Discovery and Management in the XenoServers Plat-

form (with Tim Harris). In Proceedings of the 7th CaberNet Radicals

Workshop, Bertinoro, Italy, October 2002.

I have also contributed to the following Computer Laboratory Technical Report:

• Xen 2002 (with Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,

Tim Harris, Alex Ho, Anil Madhavapeddy, Rolf Neugebauer, Ian Pratt, An-

drew Warfield). University of Cambridge Computer Laboratory Technical

Report 553, January 2003.

32

The following documents are under review at the time of writing:

• Resource Management in Global Public Computing (with Tim Harris). Sub-

mitted to an international journal.

• Replic8: Location-Aware Data Replication for Ubiquitous Environments

(with Douglas McIlwraith). Submitted to a refereed international confer-

ence.

The Xen Virtual Machine Monitor, XenoSearch, XenoTrust, and Pinocchio, are

results of collaborative work and are not parts of research carried out in the scope

of this dissertation.

33

Chapter 2

Research context

The concept of distributed computing, where a program is divided into smaller

parts that run on different machines, is not new, and has been attracting increas-

ing research focus in the last few years. This chapter describes related work under

four main categories. Distribution middleware approaches provide convenience

substrates for object-based distributed computing. Large-scale distributed appli-

cations, such as peer-to-peer systems, are examples of successful computing at

the global scale. Active networks propose an infrastructure that allows the incre-

mental deployment of new protocols on network elements. Deployment platforms

allow users to run code on remote machines owned by users that can potentially

belong to different administrative domains.

As the number of existing systems in each category is prohibitively large,

producing an exhaustive list of those and describing the operation of each one

would be out of the scope of this dissertation. I choose to focus on a selection

of systems that are representative of the different kinds of systems commonly

used, and offer useful indicative examples of typical functionality provided by

such systems.

2.1 Distribution middleware

Several middleware architectures, aiming to simplify the development of interop-

erable object-based distributed applications, have been developed. Here I discuss

the relevance to global public computing of three of the most popular of them;

CORBA, Java RMI, and Web Services.

34

CORBA [Obj91] provides middleware to allow architecture-independent de-

velopment of object-based distributed applications transparent to the program-

mer. It allows communication between nodes in heterogeneous environments at

the object level with the help of Object Request Brokers (ORBs). ORBs dis-

cover and instantiate objects on remote machines, marshal and unmarshal object

parameters, and handle security, object retrieval, and method invocations.

CORBA also provides a significant number of support services. The collection

service allows the manipulation of several objects as a group. The concurrency

service mediates simultaneous accesses to an object such that consistency is not

compromised. The event and notification services provide a substrate for easier

asynchronous interaction between objects. The naming service handles associa-

tions between names and objects, including name binding and resolution. The

object trading service facilitates the offering and discovery of instances of services

of particular types.

RMI [WRW96, Sun99] enables the creation of distributed object-based appli-

cations in Java. Similarly to CORBA, it uses serialisation techniques to marshal

and unmarshal object parameters. Unlike CORBA, which provides APIs for

most programming languages, RMI requires that code be written in the Java

programming language.

Using RMI, entire objects can be passed and returned as parameters in remote

method invocations — unlike CORBA, where parameters need to be primitive

data types, references, or structures composed of the two. This is an important

property; any new Java code can be sent across the network and dynamically

executed at run-time by foreign JVMs. This provides significant flexibility bene-

fits for designing distributed services, as developers do not need to define a fixed

codebase at development time — although they need to ensure that the neces-

sary class definitions are available. This feature makes RMI more relevant to

general-purpose distributed computing than CORBA.

Web Service technology [GGKS02] is a subsequent development in method-

ologies for constructing distributed, component-based applications. The Web

Service Description Language (WSDL) [CCMW01] supports the syntactical de-

scription of interfaces in terms of messages, operations, and protocols supported.

Just like CORBA and RMI, it is built on the idea of separation of a compo-

nent’s interface from its internal mechanism, thus allowing for transparency in

interoperation.

35

Middleware-based approaches provide interoperability benefits in cases where

the distribution of computation takes place locally. It is reasonable to expect that

software components used inside a single enterprise may be written in the same

programming language or comply with a particular API. The same assumption

does not hold in the context of global public computing; using a middleware-

based approach as a general-purpose public computing platform would mandate

that applications be rewritten before being deployed on the platform. This would

raise the cost of entry to prohibitive heights; it is necessary that the platform

is able to accommodate any existing code without requiring modifications or

recompilation.

Distribution middleware targets a different problem from the one that global

public computing addresses. It provides mechanisms for building distributed

applications transparently by allowing communication between different machines

to take place at the object level. Global public computing provides support for

the dynamic acquisition of computing resources on globally dispersed machines,

on which CORBA, RMI, or Web Service-based applications may themselves be

deployed — as discussed in Section 2.4.6.

2.2 Large-scale distributed applications

Ad-hoc distributed applications that run on large numbers of machines around

the world, either to divide the computational load of demanding applications or

to allow sharing files and other resources, have become increasingly popular in

the last few years.

Section 2.2.1 discusses peer-to-peer applications, and Section 2.2.2 focuses on

scientific computing systems. While the goals and environment of these systems

are significantly different from the ones of global public computing, similarities

or shared goals and challenges are examined wherever possible.

2.2.1 Peer-to-peer systems

The area of peer-to-peer systems has received significant research focus in the last

few years; at the same time, several such applications have become popular within

the user community [ITI04], as they are free, can be anonymous and present a

low cost of entry to the users.

36

Peer-to-peer systems consist of a number of nodes that share resources, most

commonly files. Their main characteristic is that peers obtain resources from

other peers by direct communication, without the involvement of a central server,

allowing them to scale to large numbers of users.

The application that has linked its name with the skyrocketing of peer-to-

peer file sharing applications’ popularity was Napster 1, which was launched in

1999. Technically, Napster was not a pure peer-to-peer system, as a central server

was used for file discovery. Peers sent information about their file availability to

the server, which exported search interfaces to peers. File download operations

were then performed directly between peers. This centralised architecture, while

simplifying design, generated both technical and legal problems; the Napster file

discovery server became a bottleneck and single point of failure, and at the same

time a point of vulnerability for legal action, as it stored global information about

available files [Cau00].

Gnutella2 was designed for full decentralisation. All peers in the Gnutella

network perform exactly the same operations. Searching for files is completely

decentralised and carried out by limited flooding — broadcasting search queries

inside a section of the network. While Gnutella does not suffer from single points

of failure and is less prone to litigation, discovering files is relatively inefficient

and scalability is compromised [Sri01, Rit01].

A hybrid between the centralised discovery mechanism used by Napster and

Gnutella’s flooding is the solution employed by KaZaA3. Its model is similar to

Gnutella’s in that there is no fixed file discovery server, but search functionality

is not carried out by all peers; a subset of peers, called the super-nodes, are re-

sponsible for that. Ordinary peers submit information about their file availability

to the closest super-node and contact super-nodes to search for files.

JXTA [JXT01, Gon02] comprises a set of open source, peer-to-peer protocols

that allow heterogeneous devices on the network to communicate and collaborate

in a peer-to-peer manner. It provides the building blocks required for the rapid

development of peer-to-peer applications, such as functionality for peer addressing

and resource discovery and sharing. Its ultimate aim is to substantiate a common

platform for the development of peer-to-peer applications or the transformation

of conventional applications into peer-aware ones.

1http://www.napster.com
2http://www.gnutella.com
3http://www.kazaa.com

37

While there may be some common problems found in both peer-to-peer and

public computing systems, their goals differ significantly. All peer-to-peer sys-

tems are data-oriented, while in global public computing the location of comput-

ing resources is important. In typical peer-to-peer systems, users are transient

and anonymous. These two features make the peer-to-peer model powerful for

sharing files, but inappropriate for global public computing; long-term presence

and relative stability of hosting machines are desirable properties for service de-

ployment, as guaranteed resource availability is required — especially when users

are paying for the resources they wish to reserve and use. At the same time,

anonymity allows peers to provide a low quality of service to others at no cost;

even if a ratings scheme or reputation system is used, they can escape their

negative score by registering a new identity [Dou02].

2.2.2 Scientific computing

Several scientific projects are harnessing idle computational resources on users’

desktop computers to perform large-scale distributed computations and reduce

the time required to obtain results. Usually one or more central servers distribute

the computation and submit different sub-problems to different machines. The

results are then sent back to the servers, where they are assembled.

One of the most successful projects of this type is SETI@home [WCL+01],

which searches for extra-terrestrial intelligence in signals received by SETI’s

radio-telescopes. Launched in May 1999 to search through signals collected by

the Arecibo Radio Telescope in Puerto Rico — the world’s largest radio tele-

scope — the project originally received far more terabytes of data every day

than its assigned computers could process. Volunteers were invited to download

the SETI@home software to donate their computers’ idle processing time to the

project. Currently, about 40 GB of data is received daily from the telescope and

sent to computers all over the world to be analysed. Over two million people,

the largest number of volunteers for any Internet distributed computing project

to date, have installed the SETI@home software.

Folding@home [LSP03] performs processing dedicated to finding cures for

diseases by studying protein folding, while PatriotGrid [Gri03] focuses on diseases

that are known to be potential weapons of bioterrorism. The Parabon project4

uses distributed computational resources for accelerating cancer research.

4http://www.parabon.com

38

Climate change is the subject of climateprediction.net5, which uses idle CPU

power of machines around the world in an effort to produce a forecast of the

climate in the twenty-first century. It does so by quantifying the uncertainties of

complex climate models, projections, and scenarios.

MD5CRK6 was a distributed computing project that hoped to cast doubt on

the security of the MD5 message digest algorithm by finding two inputs which pro-

duce the same digest [OW99]. MD5CRK was suspended after other researchers

devised a technique that allows detecting such collisions without requiring vast

amounts of raw computational resources [WFLY04].

The Parallel Virtual Machine (PVM) [Sun90, GS92] is a software package

that permits a collection of networked Unix and Windows computers to be used

as a single large parallel computer. PVM aggregates the processing power and

memory of the networked machines, and is often used for solving large scientific,

industrial, and medical computational problems.

Such systems are often wrongly classified as peer-to-peer. While all partici-

pating nodes in scientific computing systems do perform the same functionality —

similarly to peers in peer-to-peer systems — there is an important difference; in

scientific computing, very little interaction takes place between the nodes them-

selves. Most information flows between the nodes and a number of central servers,

which divide the problem, deliver it to the nodes, coordinate node activity, and

combine the solutions.

Scientific computing systems underline the potential of distributed computing

and its applicability in the real world. However, the technical challenges they face

are limited compared to the ones in global public computing; only specific and

trusted ad hoc applications are deployed, users are cooperative, and resource

management is often trivial — if the CPU is idle, then the application runs.

2.3 Active networks

Upgrading or replacing existing network protocols, or even deploying new ones

in the wide area, is a very difficult and costly venture. There lies the motivation

behind active networking [TW96], which aims to address the issue of protocol

5http://www.climateprediction.net/
6http://www.md5crk.com

39

deployment by devising an infrastructure that enables users to inject programs

into the network for execution.

Active networking proposes that packets are augmented with code segments

to be executed on network elements, such as switches or routers. In the extreme

case, each packet transmitted carries a code segment, which is run when it arrives

on every node it traverses on the way to its destination.

ANTS [WGT98, WGT99] substantiates an initial implementation of an ac-

tive network, but exhibits important technical limitations; it allows any user to

run code on network elements without any authentication, which is deemed too

heavyweight for the per packet processing required at each node. Issues related to

the incentive compatibility and sustainability of active networks — namely who

would pay for resources consumed by arbitrary users on network elements and

why — are not addressed. Furthermore, ANTS permits code deployment without

effective resource isolation between processes contained in different packets; Java

bytecode verification is mentioned as a possible protection technique, regardless

of the fact that a significant proportion of network elements may not be able to

run the user-space Java Virtual Machine.

Related to active networks is the research area of active services [AMK98],

which focuses on application-level deployment of protocols on proxies connected

to the network rather than on the network elements themselves. Application-

Level Active Networking (ALAN) [Gho02] provides an infrastructure for the cir-

culation of Java code to proxies near the end clients, to allow for customised

application-specific protocols to be deployed. Again, the issues of funding for

resource consumption and resource protection are not clearly addressed.

Some active networking or services approaches focus on ensuring that code

supplied in packets for execution on nodes in the network is not harmful. This

is done by mandating that it is accompanied by a digital signature from a

trusted compiler — as in SPIN [BSP+95], a safety proof — as with PCC [Nec97],

or written in a particular, safe language — as in SafetyNet [WJOP01] and

PLAN [HKM+98]. A survey of semantic techniques for active networks is pro-

vided in [RT04].

Global public computing does share some motivation with active network-

ing and active services in that they both envisage the deployment of code on

machines under different ownership and administration. However, they exhibit

distinctive ultimate goals; global public computing aims to allow anyone to run

any code anywhere, while active networks limit the scope to trusted administra-

40

tors upgrading protocols on network elements. This brings a number of important

differences to the surface, which are discussed in detail in Section 2.4.6.

2.4 Distributed deployment platforms

This section examines infrastructures that have been developed to allow the de-

ployment of distributed services. While none of these support the deployment of

generic computation by members of the public, they do exhibit higher technical

relevance to global public computing. Here, the operation of several such systems

is outlined, and their shortcomings with respect to their use for general-purpose

global public computing are highlighted.

Grid computing allows cooperative scientists to run well-behaved and trusted

distributed applications on large numbers of machines around the world, generally

without direct control of their location. Section 2.4.1 examines Globus, one of

the most popular Grid computing initiatives.

The Condor deployment platform, analysed in Section 2.4.2, provides an in-

frastructure for allowing computationally intensive applications to be deployed

on clusters of machines. It facilitates sharing distributed resources by grouping

them in resource pools.

Descriptions of Globus and Condor are followed by a discussion about work

done in the Global Grid Forum in Section 2.4.3, whose purpose is to devise

proposals for interoperable standards for the way Grid platforms are designed

and built.

Section 2.4.4 describes PlanetLab, an overlay testbed for distributed com-

puting experiments. Similar to Grids, cooperative user communities and well-

intentioned services are assumed, no explicit rewards are provided for resource

suppliers, and no charging or payments infrastructure is supported. In contrast

to Grids, PlanetLab targets applications for which the location of resources is

usually more important than the resources themselves.

This is followed by a discussion on commercial utility computing, envisaging

computing resources as a generic service and making an analogy to other services

such as electrical power, in Section 2.4.5. These systems aim to maximise effi-

ciency of resource utilisation by providing businesses with on-demand computing

power, and charging them for specific usage rather than at a flat rate.

41

Section 2.4.6 sets the requirements for supporting global public computing,

and analyses which of these are met by each of the deployment platforms analysed.

Subsequently, Section 2.5 proposes a generic global public computing platform

as a common resource acquisition substrate.

Distributed deployment platforms — particularly PlanetLab and Globus —

are active research projects, and as such they are constantly evolving. My descrip-

tion of their architecture is based on the existing literature explaining the overall

operation plans. The intention is to avoid discussing implementation details that

may change frequently or the temporary solutions that may be employed; how-

ever, it is possible that part of what is presented here may already have been

changed or that it may not have been introduced yet in the implementation of

those systems at the time of writing.

2.4.1 Globus

The Globus project [FK97] aims to provide an infrastructure to form networked

virtual supercomputers for deploying distributed services — an approach earlier

referred to as metacomputing7. A low-level toolkit provides the enabling technol-

ogy for the Grid, allowing participants to share distributed computing resources.

The toolkit supports basic mechanisms such as authentication, resource discovery,

monitoring, management, and data access.

The functionality of this toolkit is exposed to applications as a metacom-

puting abstract machine, on which a range of services and applications can be

built. The Globus resource management infrastructure [CFK+98] allows the rep-

resentation, discovery, and management of resources in Grids. Simple policies

for resource management may also be defined. Entities that participate in the

resource discovery and management process in Globus include the information

service, resource brokers, coallocation agents, and local resource managers, as

shown in Figure 2.1.

Layered implementation. The coordination protocol proposed by Globus is

structured in layers, each one implementing different parts of the Grid’s function-

ality [FKT01]. The bottom layer, called the fabric layer, consists of the resources

7A metacomputing system, or metasystem, is defined as a collection of computer systems,

accessible via a networked environment, which users perceive as a single computer [SC92].

42

to which access is mediated by the higher-level protocols. These resources are

typically computational, storage, network, and code repositories.

Above the fabric layer is the connectivity layer, which includes the communi-

cation and authentication protocols needed for Grid interactions. In an Internet-

based deployment of such Grids, communication is handled by the TCP/IP suite,

while authentication is typically based on a public-key infrastructure combined

with an extended version of Transport Layer Security (TLS) [DA99].

The resource layer sits above the connectivity layer. It uses facilities found

in the connectivity layer to provide negotiation, initiation, monitoring, control

and accounting of sharing operations on individual resources. Since this layer’s

protocol is only concerned about individual resources, global issues — such as

resource naming — are not addressed here.

The resource layer includes two sub-protocols; the information protocol is

used to obtain information about the structure and state of a physical resource,

as well as its current load and usage policy. The management protocol is used

to negotiate and manage access to the resource. Example protocols of this layer

are the Grid Resource Information Protocol (GRIP) and the HTTP-based Grid

Resource Access and Management [Fit01], which are both used by Globus.

The collective layer builds on top of the resource layer and contains protocols

that are associated with collections of distributed resources. Such protocols may

include directory services, and services for scheduling, brokering, monitoring,

diagnostics, data replication, and accounting. A typical example of a service

running in the collective layer of Globus is the Metacomputing Directory Service

(MDS), which provides resource discovery mechanisms.

Resource description and discovery. Resources can be represented as in-

stances of resource object classes [FFK+97]. A resource object defines the at-

tributes associated with an entity as well as the types of values these attributes

may contain. The two typical resource objects used are termed GlobusHost and

GlobusResource, which may be extended for adding custom attributes. The

core attributes of GlobusHost include the host name, type of operating system,

and the total main and cache memory of the host. Resources in Globus can be

represented in a language similar to the one proposed in [MJK94].

The Globus Resource Allocation Manager (GRAM) [CFK+98] is a set of ser-

vice components being used for providing a common standard interface to appli-

43

Broker User
2) submit job

Grid Information
Service

3) find resources

5) allocate resources
and launch job

1) advertise

Coallocator

4) resource specifications

R
es

ou
rc

e
m

an
ag

er
Server

Figure 2.1: Resource discovery and service deployment in Globus

cations for requesting and using resources on Globus nodes. Uniform descriptions,

formatted in Globus’ Resource Specification Language (RSL) [Glo00], are then

translated to a form that local operating systems can comprehend at each Globus

node. The types of resources that can be requested using RSL are the number

and type of the machines to be selected, the memory needed, and the type of net-

work connectivity required. Other execution parameters may be included, such

as the working directory and command-line arguments for the job execution, as

well as the maximum CPU time to be allocated and the maximum wall-clock

execution time for the job.

The information service is used for publication and discovery of available

resources in Globus Grids. The information service uses the Metacomputing

Directory Service, which builds on the Lightweight Directory Access Protocol

(LDAP) [HM02, vLF98] to provide facilities for advertising and retrieving re-

source information. Hosts advertise their resource availability to the information

service — operation 1 in Figure 2.1.

Job submission in Globus can be done either by contacting the individual

nodes directly, or by submitting a job description to a resource broker — oper-

ation 2 in Figure 2.1. Resource brokers contact the information service to find

resources — operation 3 in Figure 2.1. Then, they translate resource requirements

to resource specifications.

Service deployment. The resource broker then passes the resource specifica-

tions produced to a coallocator — operation 4 in Figure 2.1. This breaks the

44

specifications down to components, and passes each component to each of the

nodes on which jobs are to be deployed for the subsequent resource allocations to

be made — operation 5 in Figure 2.1. It also provides a means for monitoring the

jobs’ status as well as limited management facilities, such as interfaces for termi-

nating jobs. Resources are allocated optimistically based on current availability,

as no support for QoS guarantees is provided in the core Globus architecture.

Globus uses coallocation [CFK99] to allow simultaneous allocation of re-

sources on more than one Globus node. To enable this, the coallocator oper-

ates in two distinct stages: reservation and allocation of resources. In the first

stage, a reservation is created on the node to provide assurances that a sub-

sequent allocation request succeeds. In the second stage, when reservations on

all nodes involved have succeeded, an allocation request allows services to obtain

the resources. This technique bears similarity to the two-phase commit technique

devised several years earlier in the context of distributed databases [Gra78, LS79].

The local resource managers on each Globus node, which all run the Globus

Resource Allocation Manager (GRAM) protocol, process the component specifi-

cations passed to them by the coallocators and decide whether to admit or deny

the allocation requests. If a request is accepted, the resource manager proceeds

to launch the job required by invoking a job manager process. This ensures that

everything the new job needs to run is made available to it at execution time —

such as arguments and files. Feedback from the job’s execution can be passed

back to a user-specified URL. Resource managers also periodically update the

information service with their current resource availability and capabilities.

For convenience, the launching of complex distributed services is facilitated by

service factories, which launch new instances of predefined distributed services.

Factories are themselves normal services that run on Globus nodes. Each factory

is specific to the type of service to be created; in other words, if a factory is

used, a service creation request does not need to specify the type of service to be

created or how it is to be launched — this is part of the factory itself.

Factories then create instances of the desired services by using the resource

discovery, reservation, and coallocation mechanisms provided. Factories also pro-

vide the services with delegated proxy credentials that allow them to perform

operations on behalf of the users who created them.

Each service is associated with a limited lifetime. To keep it alive, either the

user who created it or some other service acting on behalf of the user needs to

keep sending keepalive messages to the server on which the service runs. Once

45

the service has finished its operation, its creator stops refreshing its lifetime and

the service terminates subsequently.

Third-party services can also provide a facility for discovering existing services

and composing new services by plugging together existing service components.

Registry services allow other services to submit descriptions including their iden-

tifier, name, type, interfaces provided, and time-to-live information. They also

export interfaces for discovering suitable service components.

As discussed in [FKNT02], jobs running on individual Grid nodes are exe-

cuted in hosting environments. The interaction models specified by Globus are

independent of the nature of the underlying technology used to support hosting

environments, as long as the common interfaces used by the higher-level Globus

services are exported. Simple Unix processes are used at the time of writing, and

JVM environments are suggested as a possible hosting technology.

Resource management. A scheme for defining simple policies on resource us-

age, stating which categories of users are entitled to access a resource, is suggested

in [KWL+03], although this feature is not yet present in the Globus implemen-

tation at the time of writing. When a resource reservation request is made, it

is evaluated against both local and global resource allocation policies to decide

whether access to resources should be granted.

The language used for describing resource allocation policies consists of ac-

tions associated with job descriptions. Actions define what should happen when

a resource allocation request is made for a job that matches the job description.

Job descriptions are in this context collections of attribute-value pairs, forming

subsets of the resource objects used to represent Globus resources — of the type

of “create and populate a local directory, and start the job, if the job’s owner is

a specific user”.

Each local resource manager runs a gatekeeper module, which has ultimate

control over which jobs are admitted for execution. It also has the responsibility

to authenticate users and carry out operations required to launch jobs.

46

2.4.2 Condor

The Condor project [LLM88, LBRT97, TL03, TTL04] is one of the first plat-

forms developed for the deployment of distributed services. It mainly aims to

support high-throughput computing for scientific applications by integrating dis-

tributively owned computing resources in resource pools and providing mecha-

nisms to applications for shared use.

In overview, “users submit their serial or parallel jobs to Condor, Condor

places them into a queue, chooses when and where to run the jobs based upon

a policy, carefully monitors their progress and ultimately informs the user upon

completion”8.

Condor-G [FTF+02] represents the marriage of technologies from the Con-

dor and Globus projects. It is effectively a Condor-compliant client — or job

submission portal, which can interface with Globus Grids.

Resource description and discovery. Central to the description of resources

in Condor is the scheme of classified advertisements (classads) [CRLS03]. These

are data models used for representing machines and jobs, including declarative

descriptions of their characteristics, constraints, and preferences. They have no

fixed schema and consist of a set of attribute-value pairs. Classad expressions are

strongly but dynamically typed, with the supported types being integer, floating

point, boolean, string, timestamp, and time interval.

Applications to be executed in Condor environments are termed jobs. To

execute a Condor job, resources required for its execution need to be located first.

Initially, a user contacts the customer agent — also referred to as schedd, which

provides interfaces for submitting, querying and removing jobs — operation 1

in Figure 2.2. The customer agent manages a persistent queue of application

descriptions for the jobs to be run and is responsible for making sure that user

requirements for the jobs are met by the resource allocations to be made.

Each Condor server is managed by a resource owner agent — also referred to

as startd; this is an application responsible for discovering jobs to be executed

on the machine, within the constraints placed on its resources by its owner. The

resource owner agent is responsible for making sure these constraints are met, as

well as for monitoring the machine and for cleaning up after jobs are finished.

8According to the Condor project web site (http://www.cs.wisc.edu/condor/).

47

Server
(startd) Matchmaker

5) run job

Customer agent
(schedd)

3) advertise
resources

2) advertise
requirements

4) notify

User

1) submit job

4) notify

Figure 2.2: Resource discovery and service deployment in Condor

The matchmaker [RLS98, RLS00, RLS03] is a central component used in Con-

dor infrastructures to provide functionality for matching resource requests with

availability as well as for enforcing system-wide resource allocation policies. Cus-

tomer and resource owner agents represent their jobs and machines as classads,

and advertise these descriptions to the matchmaker — operations 2 and 3 in Fig-

ure 2.2. The matchmaker maintains a soft state, as resource owner agents submit

classads, advertising their machines, periodically.

Then, the matchmaker scans through all advertised classads and creates

pairs that satisfy each other’s constraints and preferences. For two classads

to match, both their corresponding constraints must evaluate to true. The rank

attribute of classads must evaluate to a floating point number, which is used to

select one of all compatible matches.

Once a match is found the matchmaker notifies both parties about the details

of their potential cooperation — operation 4 in Figure 2.2. As stale information

may lead to bad matches, no resource allocation is made at this stage.

Service deployment. The final step is that of claiming ; the matched consumer

and resource owner agents contact each other, negotiate the terms of the deal,

and agree to cooperate to execute a job — operation 5 in Figure 2.2.

While the matchmaker does notify the parties about successful matches, it

is up to the customer and resource owner agents to decide whether to proceed

48

with their cooperation for the execution of a job. If both parties agree, the job is

deployed on the server. Even after the match is agreed by both parties and the

job is under execution, either side may abort the operation at any time.

Once a successful match is found and agreed between the customer (schedd)

and resource owner (startd) agents, the latter launches a starter process for

creating an execution environment to host the job. It creates a working directory,

sets up standard I/O streams, and monitors the job’s progress and exit status.

On the customer side (schedd), after agreeing on a match the agent spawns

a shadow process, which is responsible for making sure that everything the new

job needs to run is made available to it at execution time — such as arguments

and files — similar to the job manager in Globus. When the job terminates, the

shadow process examines the exit code and output data to determine whether

the job has been executed successfully and terminated normally.

Resource management. The rank attribute of classads can be used to al-

low users to represent preferences in terms of which servers they wish to get

resources on. Similarly, it can be used by server owners to define which users

get priority in accessing a resource. The expression used to calculate the value

of the rank attribute is included in the classad to denote how preference should

be determined. For example, if the classad is representing a job, preference

could be given to machines that have more memory than others; if the classad

is representing a machine, preference may be given to jobs that are shorter than

others.

The owner of a machine or a job can further annotate the classified adver-

tisement with constraints, which define the conditions that the other side must

satisfy for a match to occur. For instance, a machine owner may specify the set of

users allowed to claim the machine’s resources, as well as other conditions under

which this may happen, such as low current load or absence of local activity —

i.e. the keyboard having been idle for several minutes. The owner of a job may

require that the machine to be used is of a particular architecture, runs a specific

operating system, or has a minimum amount of memory available.

It is important to note that policies on resource management are enforced

at several distinct points. Consumer agents enforce policies by making sure the

constraints of their jobs are met before jobs are deployed. Resource owner agents

implement the policies associated with the machines’ classads. The matchmaker

itself may implicitly implement global policies by favouring particular matches.

49

2.4.3 Global Grid Forum

The Global Grid Forum (GGF) encompasses a number of research and working

groups, whose collective aim is to provide the specifications of an open global

Grid infrastructure. The GGF is not building any particular Grid; its ultimate

goal is to standardise the functionality that different Grid components are to

provide and the APIs exported by Grids and used by Grid-enabled programs, to

allow for interoperability.

At the same time, Globus is becoming the de facto standard in Grids, through

its popularity and relative maturity. The OGSA [FGK04] and OGSI [TCF+03]

working groups represent efforts within the GGF to embrace Globus’ approaches,

in order to accelerate standardisation.

Work within the GGF in the areas of discovering and administering Grid

resources is carried out in several research and working groups in parallel. The

Distributed Resource Management Application API (DRMAA) working group is

developing an API specification for the submission and control of jobs [RBC+04].

In the model proposed by DRMAA, each job is submitted to a Distributed Re-

source Management System (DRMS), which exports interfaces for individual and

bulk job deployment. DRMS also supports management and control operations

for suspending, resuming, killing, and releasing jobs, as well as for checking their

status or exit code. It should be noted that the job management API proposed

by DRMAA is different from the one proposed by OGSI and OGSA.

Advance resource reservations are the subject of the Grid Resource Allocation

Agreement Protocol (GRAAP) working group. GRAAP aims to devise a pro-

tocol for resource reservation and negotiation between nodes and users or other

entities, like super-schedulers9, initially only for computational resources (CPU

time). In [Glo03a], GRAAP is considering a number of scheduling algorithms

that support advance reservations, and proposing a set of interfaces to be ex-

ported to users or super-schedulers for supporting such functionality. However,

as identified in [Glo03b], the group has not yet addressed issues related to the

representation of Grid resources at the time of writing.

The Grid Economic Services Architecture (GESA) working group considers

providing the enabling infrastructure for Grid platforms where resources will be

priced and users charged according to usage of such resources [New03]. GESA

9A super-scheduler — or Grid scheduler — manages the distribution of workload among

nodes in Grids for optimising resource utilisation efficiency.

50

has identified the need to be able to sell the same physical resource in several

different fashions, under different QoS parameters and pricing schemes, as well

as the necessity of a scheme to define how users are given access to resources.

To facilitate charging in Grids, it is necessary to provide accounting mecha-

nisms. The Usage Record (UR) working group proposes a common format for

representing resource consumption information in natural language [Mac04] and

XML [LJ03]. The Resource Usage Service (RUS) working group devises the in-

terfaces of a service for storing and retrieving such accounting records [New04].

The Policy research group aims to standardise the expression of policies to

control the distributed resources available in Grid environments [WS03]. Policies

are expressed as policy rules using the policy management tool and stored in a

central policy repository. Policy consumers — software components on the ma-

chines that will enforce the policies — retrieve rules from the repository, perform

translations if necessary and instruct the policy targets accordingly. These are

the entities that carry out the policy definitions, such as the scheduler for CPU

resources. The security system is an access control component performing iden-

tification and authentication, and there is a system administrator in charge of

provisioning configuration and has ultimate control of the Grid system.

Most of the proposals of the various GGF working and research groups are still

at a draft stage at the time of writing. Furthermore, the GGF’s effort to abstract

from the diverse Grid implementations and suggest common and interoperable

standards, the overlapping interests and responsibilities of the various research

groups, and the considerable lack of communication between them, make the

proposals often vague [WS03, Pul03] and inconsistent [FGK04, RBC+04].

2.4.4 PlanetLab

The PlanetLab project [PCAR02, BBC+04] substantiates an overlay network

testbed for deploying large-scale services. It consists of a number of machines,

termed nodes ; these run a common software package, which includes a modified

Linux kernel, mechanisms for bootstrapping nodes and distributing software up-

dates, as well as a collection of management tools performing functions such as

monitoring node state and managing user accounts and authentication keys.

The PlanetLab software allows authenticated users to obtain computing re-

sources on a number of nodes and deploy services by executing tasks on each of

51

Agent
Broker

(SWORD)

6) redeem tickets

5) advertise

Service
Manager

(PLC)

Service

Node

Node

3) get availability
4) get tickets

2) look for tickets

1) get slice

Node Manager

Node Manager

5) advertise

Figure 2.3: Resource discovery and service deployment in PlanetLab

these nodes. Some degree of resource isolation between the different services de-

ployed on a node is achieved by running each one of these in a sandboxed “Virtual

Server on Linux” environment [Gel03] and using a modified version of the Linux

kernel to enforce some protection between these environments.

The key components of the PlanetLab resource management and service de-

ployment infrastructure are slices, service managers, resource brokers, tickets,

agents, and node managers, as shown in Figure 2.3.

PlanetLab introduces the abstraction of a slice to denote an allocation of

resources spread across a number of machines [PCAR02]. A slice is essentially a

horizontal cut of the global PlanetLab resources, allocated to a particular service.

It typically binds together several types of computing resources such as processing

time, memory, storage and network resources across several machines.

Resource description and discovery. To obtain a slice, the following process

needs to be followed, described in detail in [CCR+03, PV02]. Each service needs

to contact a service manager — operation 1 in Figure 2.3. The manager is

typically running outside PlanetLab to allow the deployment of new services

without requiring prior acquisition of a slice. Its main responsibility is to locate

the tickets needed to obtain the required distributed resources.

52

PlanetLab’s implementation is tied to a single service manager, called Plan-

etLab Central (PLC). This comprises a database containing information about

all nodes, users, their keys, and active slices. It exports interfaces for creating

and managing slices, for instance to allow associating users and additional nodes

with slices. PLC takes care of user authentication, by pushing user keys to nodes

at slice creation.

Service managers obtain tickets by contacting one of the existing resource

brokers, which may themselves run as PlanetLab services or exist outside Plan-

etLab — operation 2. Service managers specify the resource requirements and

environmental expectations for the slice to be created. A proposed resource bro-

ker is SWORD [OAPV04], a distributed resource discovery system. SWORD is

based on an implementation of the Bamboo DHT [KRRS04]. As the implemen-

tation of SWORD is distributed, PlanetLab is hoping that the resource discovery

mechanisms scale respectively.

Then, resource brokers contact one or more agents to discover if appropriate

tickets can be collected and returned to the service managers — operations 3

and 4. Agents are software components that collect resource availability infor-

mation from a set of nodes and are authorised to issue tickets that can be used

to obtain resources on these nodes. Agents receive information about resource

availability directly from the nodes in the form of advertisements — operation 5

in Figure 2.3.

Resource brokers can perform two kinds of queries on an agent. First, they

can ask for current resource availability on one or more nodes. Agents in this case

return descriptions of tickets held — sets of advertisements. Brokers can then

combine those advertisements — representing currently available resources on the

nodes — with the services’ requirements, as described by the service manager, to

build slice specifications ; these are submitted to the agents, which in turn return

the corresponding tickets.

The process through which agents acquire tickets is as follows. Each individual

PlanetLab node manager — control and management software that runs on each

PlanetLab node — holds information about the resources available on the node, as

well as mappings between sets of these resources and what is termed rcap data

structures [CS03]. These are long (128-bit) opaque values referencing specific

sets of resources on a node. Knowledge of an rcap value implies access to the

associated resources, as the space of rcap values is large enough for guessing to

be considered improbable.

53

Planetlab agents can acquire rcap values from a node by presenting the node

manager with a specification of a set of resources to be reserved and the reserva-

tions to be made, called rspec. These include a start time, an end time, and a

list of privileges or limits to be imposed. The privileges or limits that can be used

— such as upper bounds on inbound and outbound IP traffic, the number of TCP

or UDP ports to be used, and limits on CPU percentage, memory, and disk space

— can be selected from a static list available on the node manager. Provided

that rspec is a subset of the currently available resources on the node, the node

manager creates, stores and returns an rcap value to be used for referencing and

obtaining the resources.

Service deployment. Once a service manager has received the tickets needed

to instantiate a slice, it can try redeeming these for real resources by directly

contacting the node managers of individual nodes — operation 6 in Figure 2.3. A

node manager takes a set of tickets as input and, according to its local admission

control policy, decides whether to honour the tickets. If the admission control

decision is positive, the node manager creates a new Virtual Server execution

environment for the service and allocates the requested resources to it. Node

managers are individually responsible for deciding how many tickets to issue and

for honouring tickets or not.

Transferring files and data required for service deployment to the nodes is

a responsibility of users. They transfer data to each individual server involved

either manually or using automated tools. Similarly, services need to be individ-

ually configured and launched on each server. For easing the task of distributing

experimental software to a set of PlanetLab nodes, the CoDeploy service has been

developed — see Section 5.2.1.

Resource management. In terms of defining and applying resource manage-

ment policies, a node manager exports functionality to the infrastructure services

to limit and unlimit the usage of a particular resource on the node by a specific

user in the context of a given slice. At the time of writing, PlanetLab does not

offer resource management functionality as part of its core platform, other than

launching best-effort sandboxed execution environments.

54

2.4.5 Utility computing

Most of the leading IT services companies have announced initiatives in the area

of utility computing services under different business names. As a few examples,

HP is providing “Infrastructure and Management Solutions for the Adaptive

Enterprise” [HP03], Sun is proposing the “N1 Grid: Managing N Computers as

1” [Sun02], while IBM is offering “On demand business” [IBM02] and developing

the Océano project [Gol00]. Furthermore, Ensim Virtual Private Servers [Ens03]

and Akamai EdgeComputing [Aka03] provide worldwide service hosting facilities.

Detailed technical descriptions of these initiatives are not available, partly

because these are commercial projects, therefore protected by the companies

that launch them, and partly because some are in an early development stage.

The rest of this section focuses on the high-level design requirements and goals

that utility computing architectures are hoping to meet.

Utility computing infrastructures build on Grids to provide a “plug and pay”

model for executing tasks. Instead of maintaining expensive infrastructures them-

selves, companies will be able to submit their tasks to the utility computing in-

frastructure. The infrastructure will then make sure that tasks get the resources

they need from a pool of available distributed resources, execute, and finish.

Charges will be passed on to the tasks’ sponsors accordingly.

Utility computing presents attractive potential benefits for businesses. Es-

timating the computing resources needed to meet potential demand surges —

caused by, for instance, the launch of a new product or a popular article —

is complicated. At the same time, business continuity is crucial; an hour of

downtime costs half of U.S. corporations more than $1,000, while in major or-

ganisations it ranges from nearly $100,000 per hour in retail, to millions per hour

in banking and brokerage [Jac04, Ide04, Pat02].

In traditional service hosting, such as co-location facilities, companies need

to provision for the worst-case scenario; sufficient resources to meet the highest

possible demand need to be constantly available. To meet such potential demand

peaks, most companies overprovision the capabilities of the machines they use

to host the services they provide, and pay significantly more than is technically

necessary.

At the same time, overprovisioning of resources incurs indirect costs ; main-

taining more machines usually requires more management, thus higher expenses

55

in IT administration staff. Also, even if overprovisioning is standard practice one

can never be sure that a demand surge will not still exceed availability. In case

the provisioning has not been accurate, or demand grows unpredictably, acquir-

ing additional resources is highly manual, slow, and can cost a lot in terms of

money, time, and effort.

Utility computing promises to provide businesses with greater flexibility and

resilience, and at the same time more efficient utilisation of resources at lower

operating and maintenance costs.

While this model of distributed computing encompasses significant similari-

ties with the XenoServer vision, it also exhibits important differences; the ad-

ministrative model in utility computing is very simple, as all resources are owned

by a single organisation — the company that owns the servers. Thus, control of

servers is centralised, and resource management decisions are trivial. At the same

time, utility computing server farms do not envisage scaling to great numbers,

as computing resources provided are usually physically colocated.

2.4.6 Putting the pieces together

Distributed deployment infrastructures have offered important, but piecemeal,

solutions. Different systems are solving different parts of the problem, and only

in the context of the needs of the user community of each system.

In this section the main technical challenges on the way towards global pub-

lic computing are identified, within the framework outlined in Section 1.3. The

specific challenges met by each one of the deployment platforms presented earlier

are also discussed. Wherever possible, comparisons to related problems and solu-

tions found in peer-to-peer systems, scientific computing applications, and active

networks are included. My findings are summarised in Table 2.1.

Ease of deployment. The deployment model followed by all of the afore-

mentioned distributed deployment platforms is largely inconvenient for realistic

global-scale service deployment; users have to transfer the data required to launch

services, configure, and launch the services individually on every server involved.

Even if automated tools can be developed to assist bulk transfers of data to all

servers, scalability is compromised; transferring large amounts of data to each

individual server incurs prohibitive network traffic figures. A more detailed dis-

cussion of deployment models is provided in Section 5.2.1.

56

Challenges PlanetLab Condor Globus Utility

Ease of deployment × × × ×
Non-cooperative users × × × √

Untrusted code × × × √

Out-of-the-box applications × × × depends

Self-financing × × × √

Short timescales
√ √ √ ×

Incremental scalability × × √ ×
Flexible server selection

√ × √ ×
Resource-oriented × √ √ √

Location-oriented
√ × × ×

Resource description coordination
√ × × ×

Resource management some × some ×
Policy-based management some some some ×
Convenient management × × × ×
Local control

√ × depends ×
Federated policies × × × ×
Overlap resolution × × × ×

Table 2.1: Main research challenges for global public computing and which of those

are met by previous distributed deployment platforms.

This might be adequate for Grid computing, where applications are largely

immobile and maintain a long presence in the system. Global public computing

must support services that migrate often, run only for short periods of time, and

need to be deployed on large numbers of machines around the world in parallel.

More efficient mechanisms for deployment of global-scale services are needed to

allow customers to quickly obtain resources and run services without requiring

the transfer of excessive amounts of — largely replicated — data.

Non-cooperative users. Aside from utility computing schemes, existing dis-

tributed deployment platforms, as well as active networks, rely on one main

assumption: that resource owners make their resources available to remote users

without receiving any direct reward. This may be a reasonable hypothesis in co-

operative scientific communities; in the Condor pools or PlanetLab, where users

of resources are usually owners of PlanetLab nodes too. It may also be an afford-

able assumption in cases where executing the code brings benefits to the hosts

that run it, as in active networking, where nodes have the incentive of obtaining

up-to-date version of the protocols they are running. However, it is not clear how

this hypothesis can be extended to general-purpose global public computing.

57

The cooperative scheme will not be incentive-compatible if applied to the

global community of non-cooperative users, as self-interested resource owners

rarely consent to provide resources for free. For the platform to be open to

any user, it is necessary that users get charged for the amount of resources they

consume, and paid for the amount of resources they provide. Also, if users are to

pay for the resources they acquire on the servers, stronger protection and resource

isolation is needed between the services running on each server.

Untrusted code. If servers are to execute tasks belonging to competing, un-

trusted services, then it is necessary to ensure that services are not able to ad-

versely influence each other’s execution or performance in any way.

In most distributed deployment platforms, attempts to provide resource iso-

lation are concentrated either on restricting the kinds of applications that can

be accommodated, or on modifying the CPU scheduler to provide some kind of

per service, rather than per process, fairness. Utility computing platforms often

lease dedicated servers to users at a much higher cost, to avoid dealing with pro-

tection and isolation issues. Active networks address the issue by requiring that

code be signed by a trusted compiler, accompanied by a safety proof, or writ-

ten in a restrictive, safe language; this, however, does little to prevent potential

performance interference between competing tasks.

Condor does not support jobs that spawn multiple processes or threads, per-

form interprocess communication, require long-term network connectivity, use

timers and alarms, or memory-mapped files. PlanetLab attempts to provide ba-

sic resource isolation by hosting services in sandboxed Virtual Servers [Gel03].

However, as argued in [BDF+03a], such protection is inadequate in an uncoop-

erative environment aiming to accommodate experimental or harmful tasks. A

malicious service cannot be prevented, for instance, from taking up all avail-

able file descriptors. In order to accommodate any service, including potentially

untrusted or experimental ones, stronger protection mechanisms are required.

Out-of-the-box applications. The service deployment infrastructure of Plan-

etLab only accommodates services running on a specific version of Linux, as the

required protection functionality is provided by Virtual Servers which require

modifications in the operating system kernel. It also does not allow running

custom operating system kernels, including components such as device drivers

or modules that users may need and that may not be part of the PlanetLab

58

Linux kernel. In a general-purpose public computing environment, it is necessary

that services running on any of the popular operating systems, including custom

kernels, are accommodated.

Globus mandates that applications to be deployed are “gridified”; to be exe-

cutable in Globus Grids, applications need to be rewritten or modified to comply

with its API. Globus’ API is available only for some programming languages —

namely C, Java, Perl, and Python. Applications run on Globus nodes need to be

executable in Linux.

Condor supports both Windows and Linux — but not other operating sys-

tems, and does not need compliance to an API. It does require, though, that jobs

are recompiled to be executable on one of a number of “universes” — types of

execution environments, such as PVM or JVM. Active networks often mandate

that programs are written in safe, restricted languages, or run on specific safe

interpreted environments.

While mandating that applications be written in a specific language, be exe-

cutable on a particular version of an operating system, or comply with a common

middleware may be acceptable for the applications that Grids envisage hosting,

it generally raises the cost of entry for users significantly. It requires that users

have access to the source code of the services they wish to deploy, programming

knowledge, and time to modify it.

To maintain a low cost of entry, it is necessary that global public comput-

ing is able to run out-of-the-box applications, without requiring modifications or

recompilation.

Self-financing. In the world of PlanetLab and Grids, machines are provided

and maintained by universities and research institutes to promote research and

scientific collaboration. Funds for server acquisition, upgrades, and maintenance,

as well as transatlantic network traffic come from government funding, donations,

and research grants.

To ensure the sustainability of global public computing, it is necessary for

the deployment platforms to be self-financing. The cost of running a platform,

including development and maintenance of the various software and hardware

components, should be distributed, and covered by applying charges on the re-

source consumers.

59

Short timescales. In most distributed computing systems, participation over

short timescales is possible; users can obtain resources for a short time and then

release them. In the Grid computing case this is a relatively easy task partly due

to the assumption of trusted, cooperative, and well-behaved user communities,

and partly because of the absence of any form of resource pricing and payments.

On the other hand, utility computing and traditional server rental, which do

not anticipate collaborative users and rely on charging for resources, unsurpris-

ingly do not support resource acquisition over short timescales; users manually

contact utility computing providers and engage iN long-term agreements.

For global public computing, it is necessary that the cost of entry for the user

is low. Requiring that resources are leased by the week or month would discour-

age exploratory users and harm the efficiency of resource utilisation. Resource

acquisition over short timescales must be supported, and charging needs to be

done in a fine-grained fashion for resource consumption.

Incremental scalability. The resource discovery process in Condor pools is

carried out by a single, central matchmaker. All classads, representing machines

willing to host services or expressing the requirements of services to be hosted, are

submitted to the matchmaker. There, availability is matched against requests.

This affects the incremental scalability of Condor pools. As the numbers of

machines, users, and services rise, so does the load that the matchmaker needs to

handle, thus making it a potential bottleneck in the resource discovery process.

While this may not be a problem in cases where the maximum expected growth

can be handled by the matchmaker, it is not a solution that can apply to general-

purpose global public computing.

Also, the central matchmaker is a single point of failure; even if the machine

hosting the matchmaker is relatively reliable and well-configured, an unantici-

pated hardware fault could render the entire Condor resource discovery system

unusable for some time. A multiple-matchmaker model, even by simple replica-

tion of the matchmaker, can provide better resilience against unexpected faults.

PlanetLab relies on the PlanetLab Central (PLC) database, which contains

information about all users, slices, resource allocations, and policies. This single,

central database presents a single point of failure and potential scalability bot-

tleneck. Scientific computing applications normally distribute and recombine the

scientific problem in one — or a few — central servers, therefore their scalability

60

is questionable. Utility computing, due to its physically centralised nature — i.e.

server farms, does not envisage scaling to great numbers, thus its matchmaking

and resource reservation operations are often highly manual. Globus follows a

more scalable approach, using distributed directories for resource discovery.

General-purpose global public computing requires the service deployment in-

frastructure to be incrementally scalable on demand; performance of the service

deployment mechanisms should not deteriorate significantly as the number of

participating users and servers increases.

Flexible server selection. Global public computing does not aim to optimise

resource utilisation or balance load distribution. Users need to be allowed to

select the servers they wish to use to deploy their services, according to their

requirements and the servers’ capabilities.

Condor relies on a single, central matchmaker for discovering distributed re-

sources. Whilst this approach simplifies design, maintenance, and debugging, it

has a number of implications on the extensibility and openness of Condor plat-

forms. First, the single matchmaker model impairs competition, and prevents

the evolution of more complex economic relationships and institutions.

Condor’s approach also fails to allow specialisation; most users need only fairly

simple functionality from the matchmaker of their choice, namely to find servers

that can provide the required resources. However, particular groups may wish to

impose specialised criteria in the server discovery procedure; for instance, “find

a set of servers, such that the total round-trip time between those servers and a

fixed network point is minimised” or “find the server that will provide the best

value for money”. It is not practical for a single matchmaker to support this level

of specialisation in its functionality in all potential dimensions. Furthermore, it

is not possible to anticipate all server selection criteria that different user groups

may require in the future.

The strategy that Globus uses for discovering and selecting servers is more

flexible. In Globus, advertising resources is separated from searching through

the advertisements, and is carried out by different entities. Advertisements are

stored in the information service, which can be implemented in a distributed or

replicated way as this functionality is provided by LDAP, on which the informa-

tion service is built. Then, multiple independent resource brokers can discover

resources in the information service and, using a matchmaking algorithm of their

choice, they can then match those with the resource requests they receive.

61

PlanetLab aims to use SWORD, a resource discovery tool for wide-area distri-

buted systems. This provides a distributed mechanism for storing and searching

through resource availability advertisements from the different PlanetLab nodes.

Its distributed implementation can provide scalability advantages.

Searching for files in peer-to-peer file sharing applications shares some goals

with resource discovery in global public computing. However, resources are only

of one type, files, so no complex resource descriptions are needed. Resources are

not “consumed” in the same sense as in global public computing; using up a

millisecond of CPU makes it unavailable to other users, while downloading a file

does not. Instead, an additional replica of it becomes available in the system.

Also, the number of participants in peer-to-peer networks can grow extremely

large — in the order of tens of millions, influencing system design accordingly.

Global public computing requires flexible server selection; users have to be

given full control over which servers their services are to be deployed on. If server

discovery and selection components are provided to assist users, these need not

be part of the core deployment infrastructure, but rather third-party services

themselves. This allows for multiple, specialised, and competing matchmakers to

coexist, compete, and complement each other.

Resource-oriented vs. location-oriented. Condor, Globus, the Grid in-

frastructures envisaged by the GGF, utility computing initiatives, as well as sci-

entific computing projects and peer-to-peer systems are all resource-oriented —

resources being computational, such as CPU and memory, or files. Their main

goal is to provide users with access to raw resources; whether the servers that

provide those resources are next door or at the other side of the world generally

makes little difference to the applications deployed on these platforms. Function-

ality for location-based resource acquisition is either non-existent or limited.

PlanetLab differs in that it is built for location-oriented applications, where it

is the location of resources that matters much more than the resources themselves.

This is because PlanetLab was built as a testbed for distributed systems that

usually need to be widely distributed.

Distributed services often need to obtain resources at key network locations

to minimise network latencies between the services and their clients, or to reduce

long-haul network traffic and the associated charges. Global public computing

needs to provide facility to allow users to decide where to deploy their services

using any type of criteria they consider appropriate.

62

Resource description coordination. The resource representation scheme

has to comprise mechanisms to avoid having an overabundance of different names

and pricing schemes — e.g. “P4 CPU 2 GHz”, “Pentium4 processor at 2GHz”,

and “2GHz P4”, or “10MB of RAM” and “10MB of main memory space”. At

the same time, it has to be sufficiently flexible to accommodate a wide range of

different resources while avoiding the use of a central taxonomy.

In peer-to-peer systems, where no coordination of resource descriptions takes

place, multiple instances of the same file under different names do exist and

significantly complicate the resource discovery and selection process.

Most distributed deployment platforms either do not tackle the naming coor-

dination problem, or address it by allowing only specific resources to be declared,

usually defined in a static list. Globus’ GRAM protocol only allows describing

two types of resources: CPU time and memory. The General-purpose Architec-

ture for Reservations (GARA) [FKL+99] extension for Globus allows describing

network bandwidth, but more advanced types of resources cannot be represented.

This limits its applicability to general-purpose global public computing, as

it does not allow for representing and advertising other important resources,

such as IP addresses and ports, nor does it facilitate extensibility by allowing

new types of resources to be defined. This also prevents describing and sharing

exotic resources that some servers may comprise. Global public computing needs

to provide mechanisms for resource description coordination, which will achieve

consistency of naming common resources and still allow for uncommon resources

to be represented.

While distributed ontologies [MMS03] can be used, it is necessary that no

global agreement is required — to allow servers to independently define exotic

resource types or pricing schemes. At the same time, a simpler, more lightweight

scheme than ontologies may be adequate, as resource categorisation does not

create the deep, complex hierarchies present in the Semantic Web [BHL01].

Resource management. Although PlanetLab provides some degree of iso-

lation of CPU time and network bandwidth between the different services by

running them in sandboxed Virtual Server environments, it does not facilitate re-

source reservations — both in higher-level tools for describing resources, requests,

and reservations, and in underlying isolation mechanisms to enforce them.

63

GRAM, Globus’ resource allocation module, does not provide advance reser-

vation functionality either; even if a Globus node has the mechanisms to provide

QoS guarantees — for instance, a QoS-enabled CPU scheduler — no higher-level

support is provided by GRAM. Globus can be extended using GARA to support

limited reservation functionality for processing time and network bandwidth, but

not more advanced types of resource reservations.

Condor does not provide a facility for reserving resources in advance of ser-

vice deployment. However, Condor-G, the job submission portal that allows the

deployment of Condor jobs on Globus Grids, supports this kind of functionality

to the same extent as Globus’ GARA.

All distributed deployment platforms either do not provide a facility to sup-

port advance reservations at all, or provide very limited support. This has often

not been the result of an absence of mechanisms to enforce reservations and limi-

tations — e.g. operating system schedulers, Virtual Machine Monitors, resource-

managed JVMs — but rather of an absence of higher-level facilities for expressing

how allocations are to be made. Furthermore, a fine-grained resource usage ac-

counting facility for charging for resource usage is not provided.

Global public computing needs comprehensive resource management solutions

to allow resource reservation, isolation and protection. Accounting facility is

required to allow fine-grained control and charging. While these mechanisms

need to be provided by the platform, their use must not be compulsory; in some

cases, a best-effort service may be adequate.

Policy-based management. Allowing users to manage resources on servers

by defining high-level policies10 provides convenient abstractions; users and oper-

ators can administer resources by describing simple, general goals and restrictions

— for instance, “limit use of CPU by remote users to X%” — instead of directly

communicating with low-level mechanisms — such as CPU schedulers — to mod-

ify resource limitations for individual tasks.

Policy languages have been devised in other fields, such as role-based access

control [LPL+03] — explored in more detail in Chapter 4. A language for speci-

fying authorisation and quality of service policies for Web Services is under con-

sideration at the time of writing [And04]. In the past, policy languages have been

10“A high-level overall plan embracing the general goals and acceptable procedures”, from

Merriam-Webster On-line Dictionary.

64

used for flexible control of programmable networks [MZE02] and differentiated

services networks [LLS02].

PlanetLab aims to allow infrastructure services to deploy simple restrictions

on access of resources by particular users; interfaces are provided to limit and

unlimit access on a specific resource. These restrictions are defined using rspecs

data structures, as described in Section 2.4.4. Individual node managers’ ability

to influence how resources are apportioned on their machines is very limited.

For this mechanism to be applicable in global-scale federated settings, im-

provements need to be made. The rspecs structures allow exclusively infras-

tructure services to declare limitations selected from a static, predefined list.

While the exhaustive list of supported resource restrictions may be adequate for

the PlanetLab setting, where machines are relatively homogeneous, it would not

work as well in a global-scale heterogeneous environment with diverse resources

and policy requirements.

Condor allows resource owners to define simple resource allocation policies,

but these are implicitly interleaved with “unwritten” policies in the matchmaker;

the algorithm that the matchmaker is running can essentially override policies

included in the classads.

In peer-to-peer systems, a peer’s owner often has some limited means to re-

strict the number of simultaneous downloads, or the total bandwidth that they

consume. No mechanisms for more fine-grained control of resources, such as

making different parts of a peer’s bandwidth available to different peers or peer

groups, are usually provided. Supporting such mechanisms, however, is harder

than in public computing, because of the anonymity requirements of users.

Existing distributed deployment systems offer limited or zero support for

policy-based management. Policy languages allow only a few types of restric-

tions to be expressed, and decisions on resource allocation are sometimes based

in static, hard-coded policies, or out-of-band agreements. In global public com-

puting, a flexible and open policy-based management facility is needed.

Convenient management. In the Condor, Globus, and PlanetLab resource

management schemes, there is no mechanism for grouping users; the users on

which policy-based restrictions apply need to be enumerated, which is rather im-

practical — especially if it is not the identities of users that resource management

policies are based on but rather their attributes.

65

Additionally, there is no way of quantifying access to resources; while access

to a resource can be controlled, it is not possible to specify how much of a resource

a user or user group should be given. Furthermore, in Condor, as the granularity

of the current classads and matchmaking scheme is per entity — machine —

rather than per resource, a single policy needs to be applied to all resources of a

machine; there is no clear way to apportion different resources in different ways.

Global public computing needs to make resource management convenient,

flexible, and comprehensible for server operators and other stakeholders, to sup-

port the goal of maintaining a low cost of entry in terms of money and effort.

Local control. Another important limitation of the Condor scheme is that

resource allocation policies have to be placed in classads, along with resource

representations. Policy evaluation is merged with resource discovery, as it is in

the matchmaker that the ranking and constraints in resource representations are

checked and evaluated against resource requests. This design decision ultimately

allows the central matchmaker to decide to what extent policies are taken into

account, and requires that policies are known before resources are advertised to

the matchmaker. It also makes updating submitted resource descriptions’ policies

expensive, as classads advertised in the remote matchmaker need to be changed.

Other systems use super-schedulers or other central components that claim

control of the deployment infrastructure and attempt to enforce decisions on

resource allocation and management to individual servers [BM02, MBHJ98].

Globus Grids can employ super-schedulers such as Nimrod/G [BAG00], in the

form of resource brokers. In the GGF proposals, when individual server owners

attempt to obtain control over their resources by failing to comply with the Grid

infrastructural authority’s global policies they are checked and possibly penalised

or ultimately removed from the Grid.

Ensuring that servers delegate full control over their resources to a central

super-scheduler is technically complicated; as server owners have exclusive phys-

ical console access to their servers, it ultimately requires signed operating sys-

tems [Mic03] or tamper-proof hardware [Ken81]. It is also intuitively unrealistic

to expect that all individual server owners will be willing to fully resign control

over their resources to a third party in a non-cooperative environment.

Global public computing needs to allow nodes to retain direct local control of

their resources. Allowing evaluation to take place on the servers themselves also

has potential scalability and performance benefits, due to better load distribution.

66

Federated and overlapping policies. Creating a PlanetLab slice involves

both global and local admission control decisions; service managers and resource

brokers agree to satisfy users’ requests by creating slices, while at the same time

individual node managers are able to decide whether to honour tickets. For

global infrastructure services, it is necessary to ensure that slices running valued

or other infrastructure services receive sufficient resources, and that misbehaving

or greedy services are restricted — particularly since users are not charged for

resource consumption on servers. Local components define how resources on

each node are apportioned between the different services, for instance, how many

resources are reserved for non-PlanetLab use.

In PlanetLab, only infrastructure services are explicitly allowed to influence

resource allocation; other stakeholders, such as network administrators, ISPs, or

even node managers themselves, are ignored. While node managers can indeed

affect those policies, as they have ultimate control over the nodes, for instance by

refusing to honour a ticket, this process is implicit and not a result of a specific

policy defined by the managers. As explicit policies are effectively an exclusive

privilege of the infrastructure services, no mechanism for resolving overlapping

policies is provided. The need for allowing node owners, administrators, and all

other stakeholders to define their resource allocation policies independently has

been identified in several PlanetLab documents [PCAR02, PV02, CCR+03].

In PlanetLab, parties that donate nodes may wish to impose specialised usage

restrictions on the equipment, including limits on slice behaviour or blacklists.

Node managers may enforce temporary resource restrictions, such as disciplinary

actions, to restrict the activity of misbehaving users. Because of the fact that

PlanetLab resources are provided for free, and therefore are prone to abuse, other

parties in the same organisational domain as a PlanetLab node may wish to

enforce usage limitations; for instance, ISPs or local network administrators may

need to enforce tighter control on international network traffic and the associated

charges. This gives rise to the need for a flexible system to allow expressing

and applying federated resource allocation policies defined by multiple entities.

Similar requirements are found in Grid computing infrastructures.

Another factor making PlanetLab a particularly interesting resource manage-

ment problem is that the administrative control over the nodes is separate from

the institutions at which the nodes are hosted; while each node’s owner is the

institution providing the node, the administration of nodes is a responsibility of

the PlanetLab infrastructural authority. In federated systems, overlaps between

goals and policies that node owners and administrators express are common.

67

The classads scheme of Condor provides basic functionality in terms of

representing resources and simple resource management policies, and matching

resources with requests. No support for federated and potentially overlapping

policies is provided. As all policies are evaluated at the central matchmaker, in-

troducing a module for resolving overlaps would be reasonably straightforward;

essentially it would only require modifying the matchmaking algorithm. However,

federated policies cannot be supported, as there is only a single, globally-valid,

applicable policy for each resource: the one defined in its classad.

In Globus, policy statements are separate entities, and are not carried in the

resource descriptions, which simplifies supporting dynamic and federated policies.

A request is evaluated against global and local policies after it is placed, instead of

at the matchmaking stage. Policy evaluation is clearly separated from resource

discovery. Limited support for federation of policies has been proposed in the

form of local and global policies [KWL+03]. However, this does not accommodate

cases where entities other than the machine’s direct owner or the infrastructural

or organisational authority need to influence the way resources are apportioned.

The scheme for supporting resource allocation policies proposed by the Global

Grid Forum’s Policy research group exhibits significant limitations [WS03, Pul03].

As the current design only supports globally valid policies, federation of policies

is not supported. Furthermore, it is unrealistic to expect that allowing only in-

frastructure services to define policies will be adequate for general-purpose global

public computing infrastructures.

The possibility of overlapping rules is recognised by the Policy research group.

Overlaps are to be detected in a two-stage process; first, static overlaps are de-

tected off-line — for instance if there are two rules restricting access to the same

resource by the same user. Other rule overlaps that happen dynamically — for

example the ones that depend on dynamic properties of the user requesting re-

sources — can be detected by the policy consumer before instructing the policy

target to apply the policies. No mechanisms are suggested, however, for resolving

these overlaps.

As discussed in Chapter 4, a flexible and expressive scheme is needed in global

public computing. Ultimate control is bound to be given to individual nodes, and

mechanisms to allow the representation of potentially overlapping interests and

federated control are necessary. A generic resource management framework could

also be applicable to Grids, PlanetLab, and other deployment infrastructures.

68

Servers
around the

world

CORBA,
RMI,
JXTA

Distributed
and p2p
services

Condor,
Globus,

PlanetLab

Distributed
scientific

applications

Massively
multiplayer

games

XenoServer
Open Platform

Figure 2.4: The XenoServer platform as a generic mechanism for acquiring resources

on machines scattered around the world

2.5 Global public computing

Grids and other distributed deployment platforms that have been developed have

been successful in addressing the needs of the individual and closed user com-

munities they have aimed to serve. For global-scale public computing, however,

most of the problems discussed previously remain open and challenging. An in-

frastructure is required to put the pieces together and provide resources on servers

around the world to distributed services and deployment platforms, as shown in

Figure 2.4. In the rest of this document, I propose a general-purpose global pub-

lic computing platform, comprising generic reusable mechanisms for addressing

common problems, including the ones described in the previous section.

The XenoServer Open Platform, an implementation of the global public com-

puting vision, is a self-contained service deployment infrastructure. It provides a

69

Globus GridPlanetLab

Condor Condor Planet
Lab

Planet
Lab

Condor pool

Globus

Xeno
Server

XenoServer Open Platform

a)

b)

Globus Globus

Xeno
Server

Xeno
Server

Xeno
Server

Xeno
Server

Xeno
Server

Xeno
Server

Xeno
Server

Xeno
Server

Xeno
Server

XenoServer Open Platform

XenoServer software
Service

Figure 2.5: The XenoServer platform (a) as an autonomous global-scale service de-

ployment infrastructure and (b) as a common substrate for deploying Grids and existing

distributed computing systems

comprehensive range of services required to roll out global-scale services, such as

server discovery and selection, convenient policy-based management, federation

of control, service deployment at a low cost, fine-grained accounting, billing, and

charging. Users’ services can be deployed directly on XenoServers — as shown

in Figure 2.5a.

At the same time, the platform is providing a common substrate for existing

distributed deployment infrastructures. CORBA and Java RMI middleware, as

well as Grids and other distributed computing infrastructures, can themselves be

deployed as services on XenoServers. By doing so, they can take advantage of the

resource discovery, global-scale resource acquisition, policy-based management,

70

protection, and the accounting and charging mechanisms provided11. Existing

Grid services can then run on Grids, as they normally would — as shown in

Figure 2.5b.

Essentially, the XenoServer platform allows users — or higher-level services,

such as Grids — to obtain protected and isolated computing resources on a

number of participating machines. Any code, out-of-the-box, trusted or not, can

be executed; charges are made according to the amount of resources consumed.

11PlanetLab is, at the time of writing, working towards using the XenoServer platform as its

resource acquisition and protection substrate.

71

Chapter 3

The XenoServer Open Platform

The aim of the global public computing vision is to allow non-cooperative and

competing members of the public to dynamically locate, select, and obtain com-

puting resources on servers around the world, run any applications, and pay for

the resources that their applications consume. As we have seen in the previous

chapter, none of the conventional distributed computing systems and deployment

platforms are sufficient.

The XenoServer Open Platform [HHKP03, KS03] is the product of the Xeno-

Servers project [RPM+99, FHH+03], building a global public infrastructure for

service deployment. This chapter describes the design of the platform, focusing

on the operations supported and the control plane that facilitates the coordi-

nation of these operations. In particular, I describe the entities that exist, the

functionality that each entity is expected to carry out, and the interfaces and

interactions between these entities. Details about the internal architecture of the

entities — in other words, how they deliver the expected functionality — are

provided in Chapter 5.

3.1 Overview

This section describes the main components of the distributed XenoServer Open

Platform for global public computing, the functionality that each one delivers,

and the interactions between them to facilitate service deployment. Figure 3.1

provides an overview of the system; Section 3.2 analyses the system’s operation

in detail.

72

XenoServer

XenoCorp

XIS

Client

register client
 create purchase order
 top-up purchase order

lookup
XenoServers

query XenoServer
create session
destroy session

get feedback
restart environment
migrate environment

 register server
 validate purchase order
 charge purchase order

push advert.
push audits

push server list
push configuration info

XenoSearch
lookup

XenoServers
find
XenoServers

Storage
(XenoStore/web/...)

Figure 3.1: Overview of entities and interactions in the XenoServer Open Platform

The entity on the left in Figure 3.1, called a XenoServer, is a server that

undertakes the safe execution of client tasks in exchange for monetary rewards.

A XenoServer’s high-level structure is shown in Figure 3.2. Tasks are hosted in

execution environments ; an environment encompasses a set of reserved resources,

and hosts one or more tasks belonging to the same service. Resource isolation and

protection are enforced between the execution environments, such that several

can coexist without being able to adversely affect one another. A privileged

execution environment contains the software required for participation in the

XenoServer platform, allowing the creation and management of other (client)

execution environments on the XenoServer.

A client is an entity that deploys services on XenoServers and pays for the

resources its services consume. Clients need to be able to locate suitable servers —

after describing what “suitable” means in each case, negotiate with XenoServers

to reserve the desired resources, and deploy their tasks. Clients expect to receive

feedback from the servers regarding the progress of service deployment, as well

as information about resource usage by their services and the associated costs.

They may also perform management operations on the deployed services, such

as stopping and restarting a service, or migrating it to a different XenoServer.

73

Hardware

Control
Plane

Software

Tasks of
service A

Privileged
execution

environment

Execution
environment

Execution
environment

Execution
environment

Tasks of
service B

Tasks of
service C

Isolation and protection

Figure 3.2: Abstract view of a XenoServer’s design

The entity at the top in Figure 3.1 is XenoCorp, the trusted third party

between clients and XenoServers. Its existence is necessary in an inherently

untrusted and uncooperative environment, like the one anticipated for the Xeno-

Server platform; as clients and XenoServers do not initially know or trust each

other, a trusted broker is required to “guarantee” that XenoServers provide the

expected service and clients pay for the charges incurred.

XenoCorp issues authentication credentials for clients and XenoServers when

they join the platform, stores details about servers’ ownership and administra-

tion, provides configuration information and handles charging and payments.

Although logically central, XenoCorp may be implemented in a replicated and

distributed fashion for fault tolerance and scalability.

The shaded box in the middle of Figure 3.1 represents extensions to this core

architecture, comprising additional services provided by third parties. Clients are

responsible for choosing which of these services, if any, they use.

The XenoServer Information Service (XIS) is a service that helps the process

of server selection. Servers periodically advertise their resource availability and

the XIS provides the basic functionality required for clients to perform simple

searches through those advertisements, in order to locate a number of servers

that are suitable for hosting a particular service. Its operation is analogous to

that of Globus’ Metacomputing Directory Service, described in Section 2.4.1.

74

XenoSearch builds on the XIS to provide advanced, specialised search func-

tionality, such as searching for a set of servers that minimises the total cost of

deploying a particular service or the total round-trip time between the servers

and a given set of clients. The use of the XIS is not mandatory, but simplifies the

development of XenoSearch services, as it avoids the need for each XenoSearch to

communicate with each XenoServer directly. It also allows for easier updates or

additions of basic, common search algorithms used by many XenoSearch services.

For service deployment convenience and efficiency, universally-accessible stor-

age can be used to allow clients and XenoServers to store and retrieve files. This

simplifies parallel service deployment, as it removes the need for clients to man-

ually transfer all the data required for deployment to all XenoServers involved in

the process. A detailed discussion about the benefits of using external storage

services is provided in 5.2.

Storage services are not part of the core infrastructure of the platform, and

may be provided by trusted — by XenoServers and clients — third-party or-

ganisations or individuals. These services are termed XenoStore services. As

described in 5.2.4, XenoServers and clients may decide not to use one of the

trusted XenoStore services, but instead run and administer their own, untrusted,

independent storage services, such as private NFS [NFS89] or web servers. The

platform allows this; the only requirement is that storage locations are made

globally-accessible to authorised clients and servers for reading and/or writing.

Analogies can be drawn between the XenoServer platform and aspects of

every-day life. XenoCorp’s operation is similar to that of VISA, removing the

need for direct trust between merchants and customers. XenoServers are mer-

chants; they provide resources in exchange for money. The XIS is analogous

to the yellow pages or on-line shop directories, as it contains a structured list

of merchants and their capabilities, and provides basic indexing functionality.

XenoSearch is similar to high-level searching services, such as on-line search en-

gines, supporting sophisticated and multidimensional merchant discovery.

Note that designing the XenoServer platform and defining the interfaces and

interactions between its components effectively determines the rules of the game.

Previous research on mechanism design [HL73] has pointed out the relationship

between design decisions made and expectations about the form of the market in

which the system operates. In one example, the use of pricing as a mechanism for

achieving quality of service [RBTD99, BDH+03] has been investigated, shifting

responsibility for accounting and billing to customer systems.

75

3.2 Operation

The general operation of the XenoServer Open Platform consists of four successive

stages, which will be analysed in detail in the following sections. First, clients and

XenoServers need to register with the platform, in order to be able to participate

and trade resources for money.

Then, servers advertise themselves and clients select the servers on which

their services are to be deployed. To do so, they may use the server discovery

and selection functionality provided, or they may directly select servers that are

known or trusted by them.

Once the servers are selected, clients can proceed with service deployment.

Clients submit the deployment specifications of their tasks to each one of the

selected servers. Tasks may or may not be accepted for hosting according to

the local admission control decisions, based on resource requirement, availability,

and resource management policies. If accepted, tasks are launched in execution

environments on the servers.

After a service is started up in an execution environment, further manage-

ment actions may be taken to, for example, stop, restart, or migrate execution

environments to other XenoServers. Servers account for resources consumed and

claim payment from XenoCorp.

3.2.1 Registration

Registration is the process of establishing an identity and obtaining credentials

allowing participation in the platform. Both XenoServers and clients must be

registered with a XenoCorp before they can host or deploy tasks. Figure 3.3

shows the entities that participate in registration operations and the interactions

between them.

XenoCorp is the trusted third party that handles registration, authentication,

charging and payments. It is discovered using external mechanisms — such as

advertising or word-of-mouth — or by accessing a list of available XenoCorp

services found at a globally accessible location, such as a well-known web site —

operation 1 in Figure 3.3. The coexistence of multiple XenoCorps is discussed in

Section 3.4.

76

XIS

XenoSearch

Storage
(XenoStore/web/...)

XenoServer

XenoCorp

XenoClient

2) register server

web
location

1) find XenoCorp 1) find XenoCorp

4) push
coordination
info

3) register client
 5) create purchase order
 6) top-up purchase order

Figure 3.3: Registration of XenoServers and clients

XenoServers must be registered with a XenoCorp, in order to be eligible to

claim payment for hosting jobs. Registration of XenoServers works as follows.

After selecting a XenoCorp, a XenoServer proceeds to provide information about

itself. It submits information about its ownership and administration, details

about how payments for resource consumption are to be carried out — for in-

stance, credit card or bank account information. It also submits a URL where

its server advertisement describing current status and resource availability is to

be found, and a URL where configuration and coordination information for the

server is to be stored — operation 2 in Figure 3.3.

XenoCorp decides whether to admit the servers to the platform and endorse

their credentials. XenoCorp may at this point also explain its policy to the server

and require that the XenoServers’ operators enter into a contractual relationship

with it; this may, for instance, require that servers accept XenoCorp’s payments

policy — paying each XenoServer according to resource consumption, at a flat

rate, or by proportion of XenoCorp’s profit — or mandate that servers agree

to correctly host the jobs placed on them. They may also need to agree to

accept other aspects of XenoCorp’s charging policy; for instance, the policies

that different XenoCorps may have for dealing with resources reserved but not

consumed, as discussed in Section 3.4.

77

Clients register with a XenoCorp in order to be able to deploy their tasks on

XenoServers and to set up an account for the charges incurred — operation 3

in Figure 3.3. Apart from contact information and address, a client must also

present some means of settling these charges. For example, in a public wide-area

deployment, by providing a credit card number to bill, or a valid bank account

for direct debit payments1.

For ease of server start-up and configuration, and service deployment, as well

as for achieving uniform service, XenoCorp provides configuration and coordina-

tion information to the XenoServers at registration time and at infrequent inter-

vals after that. The coordination information includes common resource kinds

and pricing units, as described in the next chapter. This information is pushed to

locations specified by each server, such as web or XenoStore locations for which

authenticated XenoCorps have write permissions and authenticated XenoServers

have read permissions — operation 4 in Figure 3.3.

The set of servers and clients cooperating with a particular XenoCorp, in-

cluding XenoCorp itself, forms this XenoCorp’s domain. As servers and clients

can cooperate with more than one XenoCorp, there is no architectural barrier

preventing different domains from overlapping.

Registration is an infrequent operation; it is undertaken when a company

launches a new XenoServer or when a client wishes to use the platform for the

first time — or cooperate with a particular XenoCorp for the first time; thus,

the involvement of a potentially central component, such as XenoCorp, does

not prevent the incremental scalability of the XenoServer platform, as shown in

Chapter 6.

Purchase orders. A purchase order represents a client’s commitment to re-

serving a particular monetary amount for funding resource consumption on Xeno-

Servers. This identifies the amount to be reserved, and may contain limits im-

posed by the XenoCorp or constraints made by the client such as on the type

of execution environments that may be requested, the XenoServers on which the

purchase order may be spent, and the frequency at which the purchase order is

to be charged for resource consumption.

1Note that associating users of the XenoServer platform with credit card numbers or bank

accounts binds them to a semi-permanent identity ; while a person may have several credit

cards, she cannot easily create fresh ones indefinitely. This is important for avoiding Sybil

attacks [Dou02].

78

The creation of a purchase order — operation 5 in Figure 3.3 — involves

XenoCorp checking the credit-worthiness of the client, ring-fencing the portion

issued as a purchase order from the client’s credit card, and endorsing the order

with restrictions that must be met in order for it to honour payment — for in-

stance that the purchase order must be properly validated before the XenoServer

selected to run the tasks starts work.

Each purchase order is associated with a balance, representing the funds that

the order contains, and an available balance, denoting the funds that are not

currently reserved for funding resource consumption on another server. Validation

of a purchase order checks if the order exists, if its balance is higher than a certain

available amount, and subsequently reserves that amount by deducting that from

the available balance.

Clients may add funds in existing purchase orders at any point, by requesting

a top-up — operation 6 in Figure 3.3. This deducts a particular amount from

the client’s credit card or bank account.

As purchase orders are signed by XenoCorp, they are unforgeable; given that

all components in the platform have a copy of the public keys of all XenoCorps

with which they cooperate, it is straightforward to determine whether a purchase

order is genuine.

3.2.2 Server selection

The process of choosing the XenoServers to be used for the deployment of a

distributed service is termed server selection. This can be carried out directly, if

clients happen to know which XenoServers are suitable for their requirements.

However, in most cases server discovery needs to be carried out. This al-

lows competing XenoServers to publicise their capabilities, available resources

and pricing schemes, and clients to find servers that match their requirements.

Figure 3.4 shows the entities and interactions involved in the server discovery

process.

Prior to discovery, resources need to be named and described by individ-

ual XenoServers. The next chapter analyses the proposed resource description

framework and presents mechanisms for representing resources and pricing units.

Then, XenoServers advertise resource availability and clients search through the

advertisements.

79

XIS

XenoSearch

Storage
(XenoStore/web/...)

7) pull 8) push

XenoCorp

5) push ALC

XenoServer XenoClient
2) push
advertisement

1) find XenoStore

3) find XIS

web
location

web
location 6) get ALC

location

4) lookup
XenoServers

lookup
XenoServers

9) find
XenoServers

Figure 3.4: Advertisement and discovery of resources

The platform follows the end-to-end principle; rather than attempting to have

“the system” infer and optimise for the user’s goals, clients are directly responsible

for selecting servers to use based on their experiences, requirements, preferences,

and their willingness to pay for resources.

3.2.2.1 Advertisement

Once a server has represented its available resources, it makes this information

available to users who may be interested in purchasing some of its resources. To

achieve that, each server periodically produces a server advertisement, which is

a digest of its current status and resource availability. It includes information

about the server’s location, ownership, administration, status and average load,

as well as a list of the currently available resources and how these are priced.

Advertisements are signed and timestamped for non-repudiation [DH76].

The advertisements that XenoServers periodically produce are stored in glob-

ally readable locations. Such locations may be, for example, on web servers

running on the advertising XenoServers themselves or elsewhere, or in storage

XenoServers obtain in one of the available XenoStore services. Such services can

be discovered at server start-up by accessing a list of available services found at

a globally accessible location, such as a web site — operation 1 in Figure 3.4.

80

Then XenoServers independently advertise their resource availability by peri-

odically pushing their advertisements to locations of their choice — operation 2

in Figure 3.4.

3.2.2.2 Discovery

The XenoServer Information Service (XIS) indexes advertisements and provides

simple lookup functionality. The operation of the XIS is similar to the one of yel-

low pages; it periodically collects and stores a number of independently produced

advertisements in a structured manner, in order to make searching convenient

for clients. For more advanced search operations, including multi-dimensional

searching, XenoSearch can be used.

XenoServer Information Service. Clients can discover the XIS by reading

a list of available services advertised on the web — operation 3 in Figure 3.4.

The XIS exports interfaces for lookup to the clients, providing basic search func-

tionality that allows searching for advertisements that present values inside a

predefined range for a specific token — operation 4 in Figure 3.4. For example,

the following query returns all servers connected to the network 128.232.0.0/16.

{

Token = IPAddress;

MinValue = 128.232.0.0;

MaxValue = 128.232.255.255;

}

In more detail, the operation of the XIS is as follows. First, at registration

time, each XenoServer provides to XenoCorp a URL pointing to the storage

location — XenoStore, web, or any other type — where its server advertisements

are to be stored. Using this information, XenoCorp periodically produces the

Advertisement Locations Catalogue (ALC); this is a list containing URLs to the

locations where all registered servers’ advertisements are to be found. The ALC is

then itself pushed to one or more globally-readable storage locations, such as web

or XenoStore locations — operation 5 in Figure 3.4. The XIS obtains the URLs

of these locations from a well-known web server — operation 6 in Figure 3.4.

The XIS reads the ALC, periodically pulls fresh — recently written — adver-

tisements from the locations listed in the ALC — operation 7 in Figure 3.4, and

81

stores them in a structured, searchable manner — operation 8 in Figure 3.4. Older

advertisements are ignored, as they represent servers likely to be down, thus not

pushing fresh advertisements to their storage locations. To prevent repudiation,

advertisements not properly signed by the advertisers are also ignored.

XenoSearch. Although there is nothing to stop users from using the XIS to

select appropriate servers, or from contacting prospective servers directly without

introduction, it is anticipated that many will make use of one of a number of

available XenoSearch resource discovery systems — operation 9 in Figure 3.4.

These support server discovery, receiving sophisticated specifications of user and

task requirements and using search algorithms to identify a number of suitable

servers.

XenoSearch queries are at a much higher level than those supported by the

XIS, for instance corresponding to “find a server for a networked game of Quake

that is suitable for users A, B and C”, “find a server that will minimise the

total maximum round-trip time between the server and a given set of clients”,

or “find a group of servers to minimise the total cost of execution of a particular

distributed service”.

The way such search requirements are described depends on the implementa-

tion of individual XenoSearch services. Languages for description of distributed

services and workflows can be employed [CAD+03, AAF+02] to express more

complex resource and server requirements. At the same time, the way server ad-

vertisements are obtained is also left open, and depends on the implementation

of each XenoSearch service — discussed in more detail in Section 3.4.

It is important to note that, since server discovery is not part of the core

XenoServer Open Platform’s infrastructure, any alternative discovery services —

even following different interaction models — may be developed and provided as

third-party services alongside XIS and XenoSearch.

3.2.3 Service deployment

Once suitable XenoServers have been selected using the mechanisms described

in the previous section, a client can proceed with the deployment of a service on

those servers, as shown in Figure 3.5. Service deployment is carried out through

a direct interaction between the client and the selected XenoServers.

82

XIS

XenoSearch

Storage
(XenoStore/web/...)

XenoServer

XenoCorp

XenoClient

1) query XenoServer
2) create session

 3) validate purchase order

4) read data

Figure 3.5: Service deployment operations

Before proceeding with service deployment, clients typically query the Xeno-

Servers on which they wish to deploy services, in order to obtain up-to-date

information about resource availability and pricing schemes — operation 1 in

Figure 3.5. This is a sensible strategy because a server’s resource availability

may have changed since its last advertisement was produced.

The client then requests a session creation on each of the XenoServers chosen

to host the service — operation 2 in Figure 3.5. A session substantiates an

agreement between the XenoServer and the client, with the server agreeing to

reserve and provide the requested resources and the client promising to pay for

the resources his or her service reserves and consumes. Parameters of resource

provision, such as an optional expiration time, or charges to be made for resources

that are reserved but in the end not consumed are to be agreed upon at this stage.

At the time of session creation, resource prices may need to be altered and agreed

upon, as the quantity of requested resources may affect the price a server charges

per unit, for instance if a very large quantity of a resource is requested.

Clients are authenticated before requesting a session creation or any other

operation on a XenoServer or XenoCorp. Authentication uses the credentials

issued by XenoCorp, is implementation-specific, and takes place ahead of session

creation, as described in Section 5.1.3. In the rest of this chapter, all entities are

assumed to be authenticated to other entities before interactions take place.

83

A session creation request has to be accompanied by a valid purchase or-

der containing funds adequate to sponsor the envisaged resource consumption,

created with a XenoCorp that cooperates with the server. A session creation

request also needs to present to the server the list of resources required for the

service’s execution. What kinds of resources, and how much of each resource is

required for a service’s execution can be manually defined by the user who is

launching the service, or automatically estimated [DI89, GMC+01, MC04]. The

way resources and resource reservation requests are represented in the prototype

implementation is analysed in Chapter 4.

Along with the purchase order and required resources, clients need to pass

the deployment specification of the service to be launched to the XenoServer at

session creation. This includes the type of execution environment needed, which

has to be one of the types supported by the server on which the service is to be

deployed. Supported environment types may be guest operating systems running

on a Virtual Machine Monitor — as in the prototype XenoServer, described in

more detail in Section 5.1.1 — or simple UNIX processes, Virtual Servers on

Linux environments, or sandboxed JVM environments [BTS+98, BLT98, vD00].

If the guestOS model is used for multiplexing, the deployment specification also

needs to describe the execution environment’s boot parameters, such as kernel

image and root file system to be used.

At this point, the server decides whether or not to allow creation of the

requested session and provide the resources required for the service’s execution.

Session creation and allocation of resources is done in two stages; reservation and

claiming. The main function of the former stage is admission control, which may

involve checking the validity of the purchase order — operation 3 in Figure 3.5

— if necessary, and investigating whether the resource reservation that the client

has requested can be met2.

Whether the validity of the purchase order to be used to fund the session

is checked at session creation depends on the arrangement between XenoCorp

and the affiliated XenoServers, and on the type of the purchase order. If a

purchase order is annotated with the restriction that it may be cashed only on a

particular XenoServer, validation is not required at the admission control stage;

as XenoCorp reserves the funds required to pay for resource consumption up to

the value indicated in the purchase order at order creation, if the order can only

2More details about how admission control concludes how to handle a resource reservation,

according to current resource availability and resource usage policies defined by the various

stakeholders, are given in Chapter 4.

84

be redeemed on one specific XenoServer then it is guaranteed that the funds are

available when charging is to be performed. Multiple usage of the same order on

the same server can be locally detected by the server software.

If, however, the order is not associated with a specific server, validation may

be required, as other XenoServers may be charging for resource consumption on

the same order simultaneously. Validation can be done at session creation, or

at other times, according to the type of the purchase order and the agreement

between XenoCorp and its affiliated servers — see Section 3.4.

If the admission control decision suggests that the request can be satisfied by

the server, or if an alternative reservation suggestion can be made, the outcome

of the first stage is a tentative reservation of resources that expires after a specific

amount of time. A reservation indicates that a particular amount of resources

has been ring-fenced and is not considered available on the XenoServer until the

reservation expires.

To obtain the set of tentatively reserved resources, a client needs to claim the

reservation. The result of a successful claim is the launch of a new execution envi-

ronment on the XenoServer — or the resumption of a previously suspended one,

which hosts the service to be deployed and encompasses the reserved resources.

Resource isolation and protection may be enforced between the environments at a

lower layer — as in Figure 3.2. If the reservation is not claimed before it expires,

a new reservation needs to be pursued.

Once the reservation is claimed and the execution environment is launched,

the client can use any means available in the environment — e.g. SSH [Ylo96],

RPC [BN84], or other application-specific service management tools supported

by the environment [BBR+97, CKR+01, Tch04] — to connect and launch the

service. For convenience and efficiency, the client can use XenoStore to store and

access files and data required for launching and running the service — operation 4

in Figure 3.5.

Resource coallocation and negotiation. The two-stage approach employed

for resource acquisition allows for the coallocation of resources. This ensures

that, when necessary, a service can request that a set of required resources is

allocated on all or none of the selected XenoServers. Resource coallocation is

optional; clients can proceed and claim some or all of their tentative reservations

regardless of the failure of allocating resources on some of the selected servers if

they so wish.

85

Supporting resource coallocation mechanisms is important where there are

dependencies between resources needed on different machines. Let us consider an

example where a task has reserved resources on server A and is waiting for input

from another task (belonging to the same service), which is trying to obtain

resources on a fully utilised server B. Deadlock situations may be reached, as

resources on A are allocated to an inactive task.

Apart from coallocation, the two-stage session creation approach allows for

simple negotiation to take place between the server and the client. If the server

cannot satisfy the original resource reservation request, it can counterpropose a

different reservation that may be adequate for the client — see Section 4.3.4.4.

Also, it allows the server to modify the pricing schemes to be used if required —

for instance, if the client is purchasing a very large quantity of a resource.

3.2.4 Management

Operations that may need to be carried out on a session that is already running

are termed management operations. A running session comprises an execution

environment, hosting the tasks of the service being deployed. Management of a

running session can involve control-plane operations on the execution environ-

ment itself, or on the service’s tasks running in it.

Both the client who is deploying a service and has requested the creation of

the session, and the XenoServer that is hosting the service’s tasks, may need to

perform some form of ongoing management. Clients may need functionality for

administering the environment on which their tasks are running, as well as for

management of the tasks themselves. XenoServers need functionality to allow

them to monitor the running environments and the resources they consume, and

at some point claim the corresponding payments. This is shown in Figure 3.6.

Clients. Clients need to perform service management, which is application-

level administration of the tasks they have launched in the execution environment

provided to them at session creation. Such management may include starting or

stopping tasks, changing their execution parameters, changing or replacing data

or files used by a service, or passing messages to running tasks that cause them

to alter their behaviour in some way. It may also include any other types of

operations specific to the functions that tasks are carrying out in the context of

the distributed service they belong to.

86

XIS

XenoSearch

Storage
(XenoStore/web/...)

XenoServer XenoClient

1) get feedback
2) destroy session

3) restart environment
4) migrate environment

5) push audit trails

6) charge purchase order

XenoCorp

Figure 3.6: Environment management operations

This type of management is service-specific; it is expected that clients will

perform administration of their tasks in the way that is most convenient for

them in each service’s case. Clients may use SSH, RPC, or any other protocols

supported by the execution environment, to start, stop, and modify the tasks

executed. More sophisticated applications that allow advanced management or

orchestration of management operations across several servers [CCMN04] may

also be deployed as services or tasks, alongside the tasks they are meant to help

manage. No support from the XenoServer platform is necessary for application-

level service management to be undertaken successfully.

However, clients may also need to undertake management operations on the

execution environment itself, therefore requiring that the underlying XenoServer

platform provides mechanisms to facilitate such operations. The management

requests that a client may need to place, as shown in Figure 3.6, are:

• Get feedback. It is useful to a client to receive feedback from the Xeno-

Server, regarding the initialisation and operation of an environment — op-

eration 1 in Figure 3.6. This includes the initialisation messages produced

as the environment starts, as well as usage statistics and information about

resource consumption incurred by the environment and the associated costs.

87

• Destroy session. A client can stop a session at any time — operation 2

in Figure 3.6, typically when the service is finished. This shuts down the

corresponding execution environment permanently or temporarily, and ter-

minates the associated resource provision and payment agreement between

the client and the XenoServer. If supported by the XenoServer, clients may

request that the memory image of the environment to be stopped is saved

at a storage location, to allow resumption at a later stage.

• Restart environment. In some circumstances a client may need to restart

an environment — operation 3 in Figure 3.6. For instance, to boot it using

a different operating system kernel — if such environments are supported

by the XenoServer — or in cases of environment failure. Restarting an

environment does not affect the corresponding session; existing resource

allocations remain in place and the new environment provides the same

resource availability guarantees as the one that was terminated.

• Migrate environment. Where possible — depending on whether the

type of the execution environment permits it — the client may request the

migration of an environment, along with the tasks running over it, to a dif-

ferent session on another XenoServer — operation 4 in Figure 3.6. Before

requesting a migration, the client needs to have successfully created a new

“container” session on the server to which the environment is to be mi-

grated. This session does not contain an execution environment, but com-

prises adequate resources to accommodate the environment to be migrated.

Then, the XenoServer on which the environment is running is requested to

perform migration of the environment. The environment migrates to the

container session and starts running on the target server.

• Change resource reservations. A session represents a fixed agreement

for resource provisioning by the XenoServer and according payment by the

client. While allowing changing the session’s parameters — such as reserved

resources and pricing schemes — after it has been created would be techni-

cally feasible, it would violate the nature of a session as a permanent agree-

ment and complicate its semantics. To alter the reservations made within

a session, a client launches a new session comprising the desired resources,

uses the environment suspend/resume or live migration mechanisms — if

provided by the underlying XenoServer technology — for uninterrupted ex-

ecution of services, and destroys the old session. This may not involve the

user; high-level resource brokers, responsible for long-term management of

services, can be employed.

88

XenoServers. It is necessary for charging and billing, as well as fault tolerance,

that the XenoServer control software monitors the state of existing environments

and the resource consumption associated with each one. Additional management

operations that a XenoServer needs to carry out are:

• Account. With help from the underlying accounting mechanisms pro-

vided — as in Figure 3.2 — XenoServers keep track of the environments

that are running and the resources that each one has used. Information

available by the underlying layer may be in the form of total resources used

by each environment, such as total CPU time and memory.

• Log and audit. For security and legal reasons, it is necessary that

XenoServers record information about service activity, to be used if a service

is engaged in malicious or unlawful actions. Logging and auditing allow

the service responsible for such actions to be traced, and the sponsor of

the service to be identified. It is also important for resolving incidents

of payment contention; clients may dispute resource consumption claims

put forward by XenoServers. Audit trails are signed for non-repudiation,

and stored in XenoStore or any other storage locations specified by the

XenoServers’ administrators — operation 5 in Figure 3.6.

• Charge and bill. Using the accounting statistics that have been col-

lected, XenoServers request payments from XenoCorp for the resources

consumed by the execution environments running — operation 6 in Fig-

ure 3.6. Charging may happen in advance, in which case charging is based

on reservations not consumption, periodically, or at session destruction.

Charging may be made for resource reservations, consumption, or both,

depending on the parameters agreed between the servers and XenoCorp at

registration.

3.3 Interfaces

In this section I present the interfaces exported by each component and the black-

box functionality that each entity delivers when the corresponding interfaces are

invoked. As discussed earlier, authentication of entities takes place ahead of the

interactions described here; the way it is performed in the prototype platform

implementation is described in Section 5.1.3.

89

3.3.1 XenoCorp

XenoCorp exports the following interfaces for registration of clients and servers,

charging, billing, and payments:

1. register client(personal info,address,charging info,temp creds)

personal info: name, contact details of client

address: address, city, postcode, country where client is located

charging info: credit card or bank account to be used

temp creds : credentials that XenoCorp will endorse upon registration

XenoCorp endorses the client’s temp creds and returns unique credentials

for the client. These are used for authentication of the client to XenoServers

and XenoCorp.

2. register_XenoServer(owner_info,admin_info,payment_info,

adv_loc,config_loc,temp_creds)

owner info: details of XenoServer’s owner

admin info: details of XenoServer’s administrator

payment info: credit card or bank account to be used

adv loc: URL where the server’s advertisement is stored

config loc: URL where the server’s configuration is stored

temp creds: credentials that XenoCorp will endorse upon registration

XenoCorp endorses the server’s temp creds and returns unique credentials

for it. These are used for authentication of the server to clients and Xeno-

Corp. XenoCorp also pushes configuration and coordination settings to

config loc, and adds adv loc to the ALC.

3. create purchase order(amount,<constraints>)

amount: amount to be reserved

constraints: optional additional restrictions

Constraints may specify for instance that the order may only be cashed on

members of a particular set of XenoServers. Upon successful completion

of this operation, XenoCorp returns a new, signed order containing the

requested amount.

90

4. validate purchase order(order,amount)

order: purchase order to be validated

amount: amount the order must contain

This checks if the specified amount is available in the order and reserves —

but does not charge — the amount. It returns true or false.

5. topup order(order,amount)

order: purchase order in question

amount: amount that to be added to the order

This reserves the specified amount on the client’s credit card or bank ac-

count, and adds it to the order. It returns true or false, depending on

whether the operation succeeds. If not, an additional message is returned

explaining the reason.

6. charge purchase order(order,accounting)

order: purchase order to be charged

accounting: resource usage information

This calculates the amount to be charged on the specified purchase order

(order) from the resource usage information provided (accounting). Sub-

sequently, it returns true or false, depending on whether charging the

amount on the purchase order succeeds. If not, an additional message is

returned explaining the reason.

XenoCorp resolves payment disputes and complaints using out-of-band

mechanisms, such as examining purchase orders, audit trails, resource con-

sumption logs, and session creation agreements. Charging involves commu-

nication with a credit card system or direct-debit payment infrastructure.

3.3.2 XenoServer

XenoServers export the following interfaces for creating and managing sessions

and execution environments:

91

1. query XenoServer()

This returns server info, containing information about the server’s cur-

rent status, resource availability, and pricing — effectively, an up-to-date

copy of its advertisement.

2. create session(order,depl spec,resources,<res img>,<parameters>)

order: purchase order to fund the session

depl specs: deployment specification

resources: list of resources to be reserved

res img: optional, file from which to resume memory image

parameters: optional, e.g. expiration time

This operation ring-fences but does not allocate the requested resources.

Upon success, it returns a rsv handle (reservation handle) to be used for

referencing the tentative reservation, and a set of resources tentatively

reserved and the associated prices. This is required as the server may

propose an alternative reservation or pricing scheme, if the requested one

is not possible — see Section 4.3.4.4.

For the resources to be allocated, create session has to be followed by

a reservation claim claim rsv(rsv handle). If the reservation has not

expired, this operation launches a new execution environment or resumes

one from its saved memory image (res img). it returns a session handle,

which is only valid on the server on which the session is deployed and is

used for management operations on the session.

The client also receives a globally-unique, hierarchical session id. This

can be used for off-line platform-wide identification of sessions, such as in

cases of payment disputes.

3. get feedback(session handle)

session handle: session in question

This operation returns session info, a description of the session’s status,

total resource usage, and the associated costs to that point.

4. destroy session(session handle,<sus img>)

session handle: session to be terminated

sus img: optional, file where memory image is to be saved

92

This causes the execution environment to shut down, and any existing re-

source reservations to be cancelled. Final charges for resource consumption

may be made. If supported by the underlying mechanisms, clients may

ask for memory image of the execution environment to be saved at a stor-

age location of their choice (sus img). It returns confirmation of session

destruction, and a final set of resource usage information (accounting),

describing the resources consumed and charges incurred.

5. restart env(session handle,depl spec)

session handle: session containing the environment in question

depl specs: deployment specification

This operation invokes lower-level mechanisms to terminate the existing

environment associated with the session, launch a new one, and associate it

with the same session. It returns true or false to denote success or failure.

On failure, an additional message is returned explaining the reason.

6. migrate env(session handle,tgt server,cont handle)

session handle: session whose environment is to be migrated

tgt server: target server

cont handle: container session on the target server

The environment in question is moved to the target XenoServer and associ-

ated with the specified container session there. This operation returns true

or false to denote success or failure. On failure, an additional message is

returned explaining the reason.

3.3.3 XenoServer Information Service (XIS)

The XenoServer Information Service (XIS) provides basic resource discovery func-

tionality. It collects individual XenoServers’ advertisements and allows clients to

search through these advertisements, in order to locate a number of servers that

are suitable for hosting a particular service.

The interface that XenoServer Information Services export is the following:

1. lookup XenoServers(token,min value,max value)

93

token: dimension of search, e.g. network address

min value: minimum value for the token

max value: maximum value for the token

This operation returns a server list, containing the names and addresses

of XenoServers that satisfy the above criterion.

3.3.4 XenoSearch

Building on the functionality provided by the XIS is XenoSearch, which supports

more complex, multi-dimensional search requests for server discovery. The generic

interface that XenoSearch-type entities need to conform to is given here.

1. find XenoServers(expression)

expression: XenoSearch-specific search criteria

This operation returns server list, containing the names and addresses

of XenoServers that satisfy the above criteria.

3.4 Openness

The XenoServer platform can be classed as open, based on the low cost of entry it

presents to users and servers when compared with previously available facilities.

This involves a low cost in terms of effort, as existing programming environments

and out-of-the-box applications are supported, and mechanisms for easy large-

scale service deployment and management are provided. The incurred monetary

cost also remains low, due to support that is provided for fine-grained, on-demand

resource acquisition over flexible timescales.

The openness of the XenoServer platform is also expressed through its flexible

and extensible design, encouraging the customisation, specialisation, competition,

and ultimately evolution of platform components. The system is structured in a

way that while the “rules of the game” are defined — which functions each type

of entity should undertake and how entities are to interact — it allows for variety

and diversity in the mechanisms used to carry out these functions, as well as in

94

the parameters of the interactions. Also, the coexistence of multiple entities of

each kind is envisaged.

The following sections discuss aspects of the open design of the XenoServer

platform and present trade-offs that cannot be resolved at design time, simply

because no single global optimal solution can be assumed. Like modern market

economies, the platform relies on the principle of disciplined pluralism [Kay03].

In this book, John Kay observes that “it is often true that coordination is more

effectively achieved through mechanisms of spontaneous order than central direc-

tion.....Market economies did not succeed because business people were cleverer

than politicians. They succeeded because disciplined pluralism is more innova-

tive and more responsive to customer needs than centralised decision-making”.

Instead of devising an “optimal grand plan” the XenoServer Open Platform is

based on many little individual self-interested decisions that weave a net of spon-

taneous order.

3.4.1 Multiple XenoCorps

The design of the XenoServer Open Platform allows and encourages the coexis-

tence of multiple XenoCorps. While it is possible that even with one XenoCorp

the system will be able to cope with high numbers of servers, the fact that multi-

ple XenoCorps may exist if necessary is reassuring for scalability ; as the number

of servers increases, so can the number of XenoCorps. Growth of the platform

does not necessarily result in increase in each XenoCorp’s workload. At the same

time, different XenoCorps compete and provide diversity of services, by following

different strategies in the level of anonymity and privacy provided, purchase order

validation, and charging and payment arrangements.

Here I present some of the alternative approaches that XenoCorps may follow

in different settings, and discuss the associated trade-offs that exist. Each Xeno-

Corp informs clients and XenoServers about its policy in all matters in detail

before registration, and only proceeds with providing them with authentication

credentials if they explicitly agree on the terms and conditions for participation

in this XenoCorp’s domain.

Anonymity. XenoCorps may differ in the degree of privacy guarantees they

provide to their clients. A reputable XenoCorp, cooperating only with highly

respected servers, may require its clients to prove their ability to pay for resource

95

consumption in advance. An anonymous XenoCorp, cooperating with cheaper

low-quality servers, may be willing to take the risk of letting clients deploy services

and pay for resource consumption at a later time. XenoCorps whose policy is to

require association of clients and XenoServers with real-world identities may be

able to provide better guarantees of security and service reliability, as action may

be taken against individuals who engage in malicious activities or consistently

do not meet the agreed standards of service. On the other hand, XenoCorps

that allow clients and XenoServers to register without providing their owners’

real-world identity may be popular where anonymity is required; in oppressive

regimes, users may trade high standards of service for privacy.

Purchase order validation. Another parameter that can be tuned differently

by different XenoCorps is the strategy towards purchase order validation. Service

deployment on XenoServers is accompanied by purchase orders, which represent

client funds reserved to pay for resource consumption on XenoServers. The point

in time when XenoServers request XenoCorp’s help to check the validity of pur-

chase orders is to be decided by individual XenoCorps on a per purchase order

basis, and relates to the estimated degree of risk and expected level of scalability.

Some orders may be validated at the admission control stage, before a session

is created on the XenoServer; this eliminates the risk of having a purchase order,

which is invalid, non-existent, or does not contain sufficient funds, being used for

service deployment on a server. However, this places XenoCorp in the service

deployment path. In this scenario, XenoCorp could become a bottleneck; the

time required to complete a service deployment operation depends on the time

required for purchase order validation, as all deployment requests on all servers

incur a validation operation on XenoCorp. As XenoCorp’s load is increasing,

validation may take ever longer.

One way to deal with the problem is to move validation services out of the

XenoCorp server, and replicate them at several network locations. While logically

part of XenoCorp, validation components can themselves run on XenoServers,

allowing the incremental scalability of the system on demand. Another solution

is to implement a fully-distributed XenoCorp; this, however, introduces additional

complexity in terms of security and trustworthiness of servers running XenoCorp

nodes.

A different approach is to disassociate purchase order validation from ser-

vice deployment. When a service deployment request arrives on a XenoServer

96

along with a purchase order, it is initially assumed that the order is valid and

the server proceeds with the deployment operations. Purchase orders are then

validated periodically, either individually — where the period of validation can

be agreed between XenoCorp and the client at purchase order creation — or in

batches — where the period is fixed, as a result of agreement between XenoCorp

and the affiliated servers. While this does not ease the load of XenoCorp — if

the numbers of clients and XenoServers increase, it still needs to handle an ever

increasing load, it does speed up service deployment, as requests do not have

to wait for validations. This provides better responsiveness and faster deploy-

ment, but incurs a risk of invalid purchase orders being used. Other XenoCorps

may mandate that all purchase orders are tied to specific XenoServers, to ensure

purchase order validity and avoid the validation step altogether.

The choice of approach to be followed is to be made by individual XenoCorps,

and depends largely on the parameters of the environment in which different

XenoCorps are to operate. In trusted or controlled environments, or to further

limit XenoCorp’s involvement in service deployment, XenoCorps may agree with

their associated servers on a loose purchase order validation model, or on a prob-

abilistic model where only a sample of orders are validated and where perhaps

additional charges or penalties are brought to the clients whose orders are found

to be invalid — similar to the approach followed for ticket checks in public trans-

port. The proportion of validated orders can adapt to the frequency of offences.

The implications of the different validation strategies are examined in Chapter 6.

Charging. Related to this is the point in time when charging is to be per-

formed. XenoCorps and their associated servers may agree that charging be car-

ried out at session creation, at session destruction, periodically while the session

is running, or after it is finished. Charging at session creation implies charging

for resource reservations rather than usage, as no consumption has been made by

the service yet. While this assures that no resources are reserved and not paid

for, it does not allow charging for “ms of best-effort CPU time”; users who prefer

to pay for usage even if no guarantees are to be made may find it impractical.

Also, it places charging in the session destruction path and may turn XenoCorp

into a bottleneck.

If charging happens at session destruction, complete information of resource

usage is available, thus fine-grained charging for consumption is possible. How-

ever, this strategy, too, places charging in the session destruction path and may

turn XenoCorp into a bottleneck. Periodic charging, individually or in batches,

97

can help mitigate this effect, as for purchase order validation above. Separat-

ing charging components from XenoCorp and dynamically replicating them on

XenoServers can provide an implementation-specific way around the problem,

but complicates the trust relationships, as discussed earlier.

The extent to which XenoServers affiliated with different XenoCorps charge

for resources reserved by a client but not subsequently consumed is again left to

XenoCorps to determine. Some XenoCorps may charge for reservation, where

resources that are reserved but not consumed are fully paid for by the users,

while others may charge for consumption, allowing resources reserved but not

consumed to be wasted. Compromise models, where users pay a proportion of

the originally agreed price for resources reserved but not consumed — similarly

to cancellation of hotel bookings — are also envisaged.

Payments. XenoCorps may also differ in the mechanisms employed for trans-

ferring payments to XenoServer operators. Bank accounts, credit cards, and

untraceable digital cash [CFN90] are only a few of the payment methods that

can potentially be used.

At the same time, the way payments are determined may vary among Xeno-

Corps too. In one scenario, clients pay XenoCorp for resource consumption, and

XenoCorp transfers payments to XenoServers accordingly, after deducting a pro-

portion of each payment. In another scenario, XenoServers receive payments

from XenoCorp not based on resource usage but according to a fixed, pre-agreed

scheme — for instance, a flat monthly payment, or a proportion of XenoCorp’s

operating profit. This approach reduces XenoCorp’s initial risk — as its expenses,

in terms of payments to XenoServer operators, are guaranteed to be lower than its

profit — and provides incentives for new XenoCorps to join the platform. Also,

it can provide benefits for XenoServer owners in risky, untrusted environments,

as flat monthly payments mask the exposure to fraud by clients not paying for

resource consumption, and remove the need for XenoServer operators to ensure

clients they choose to sell resources to are trustworthy.

3.4.2 Multiple XenoServers

The presence of large numbers of XenoServers is central to the design of the

platform. Apart from multiple XenoServer machines, the platform also supports

a wide range of alternative XenoServer designs.

98

The structure of the developed XenoServer prototype is discussed in detail in

Chapter 5. It is based on a low-level Virtual Machine Monitor, which virtualises

the physical resources of the machine, apportioning them between the various

environments that it hosts, by creating a Virtual Machine for each one.

However, there is no architectural restriction prohibiting the implementation

of different types of XenoServers, as long as the interfaces exported, described

earlier, are preserved. In some cases, clients may wish to use execution environ-

ments other than complete operating system instances over a Virtual Machine

Monitor. For instance, an alternative XenoServer could be running a resource-

managed JVM, deploying services in protected JVM environments; another could

be a XenoServer accepting .NET [Par00] components using existing application-

server packages. Other implementations may use Virtual Servers [Gel03], User-

Mode Linux [Dik01], Virtual PC [Con00], or VMWare [VMW99] for resource

isolation.

Openness is also expressed in the way individual XenoServers describe their

resources and pricing schemes. While a list of supported resources is advertised

by XenoCorp to coordinate descriptions and control arbitrary naming of types of

resources and pricing units, individual XenoServers are allowed to produce and

advertise resource descriptions that are not included in that list. This allows

XenoServers to sell resources on potentially less common hardware, and to use

exotic or custom pricing units.

This, together with the resource management module described in Chapter 4,

provides significant flexibility to servers to manage and sell their physical re-

sources. Servers can sell different parts of the same physical resource in different

packages; for instance, a XenoServer may split its CPU in three parts, then sell

the first part in a “ms of CPU time per wall-clock second” fashion as an expensive

guaranteed-QoS option, the second as “best-effort CPU access” at a lower price,

and reserve the third for its owner’s use.

The openness of the XenoServer platform allows individual servers to inde-

pendently set their pricing schemes, but also to use different approaches to set

prices on the resources. Some XenoServer owners may decide to manually de-

fine the prices themselves, while others may employ a high-level dynamic pric-

ing component, perhaps negotiating with adaptation-aware applications and ser-

vices [NSN+97, KHG00, BKR98], either for automatically adapting to the balance

of supply and demand of different resources and increasing profit, or for regulating

resource congestion [SM99].

99

3.4.3 Multiple clients

The client-side software may provide a graphical interface to support conve-

nient service deployment and management by human users. Alternative clients

may comprise different user interfaces or may not even be human-operated; au-

tonomous agents may request on-demand resources when the load on a server

they monitor increases above a certain threshold. Transient mobile devices may

automatically obtain resources on XenoServers around them to maintain uninter-

rupted network presence. A wide variety of internal designs and user interfaces of

client applications can be admitted, given that the standard interfaces for com-

municating with other entities are used and the general interaction models are

maintained.

3.4.4 Multiple XIS and XenoSearch services

There are no architectural restrictions barring the coexistence of multiple XISs,

perhaps providing different lookup mechanisms. However, competition in this

area may not necessarily be beneficial; as with DNS, while technically possible to

have more than one systems, the market is pushing towards a single infrastructure

to maximise exposure of advertisements and ensure clients draw on the largest

possible information base when performing lookups.

There may be multiple XenoSearch systems, either for simple competition —

as exists between on-line search engines — or for specialisation to particular kinds

of user, server or task. The algorithm with which the mapping is performed is

entirely dependent on the particular implementation of the XenoSearch mecha-

nisms; different XenoSearch systems may offer different algorithms, tailor-made

to meet needs of distinct user communities. The XenoServer team has developed

two prototype XenoSearch systems, described in [SH03, SHH04].

The exact format of the parameters to be passed to XenoSearch through

the search interface, such as the language to be used for expressing service re-

quirements, can differ between different XenoSearch systems. Different types of

XenoSearch services may also provide additional interfaces; for instance, pay-per-

search services may require that clients provide a purchase order that is used for

paying for searches that clients carry out using XenoSearch. Different XenoSearch

systems may also follow different interaction models; some implementations may

employ publish/subscribe middleware, such as Hermes [PB02], to provide explicit

100

event notification functionality, to let clients know when the results of a search

query they have placed change.

The way XenoSearch services obtain the data on which they perform searches

on behalf of the clients is implementation-specific; XenoSearch services can di-

vide complex search expressions to simpler ones and use XIS to perform these.

Alternatively, they can obtain the advertisements directly; this can be done ei-

ther by simply fetching the list of all advertisements from XIS, or by collecting

advertisements directly from the storage locations where individual XenoServers

place them. It is envisaged that most XenoSearch systems will find it conve-

nient to use XIS. This simplifies the design and operation of XenoSearch, as the

XIS implements functionality for collecting advertisements from individual Xeno-

Servers’ storage locations and storing these in a structured manner. At the same

time, it enables the use of common underlying mechanisms, such as explicit event

notification; the XIS implementations utilising a publish/subscribe module can

notify XenoSearch services of changes in the status or resource availability of sets

of selected XenoServers, which in turn may notify the subscribed users, removing

the need for users to subscribe to each XenoSearch individually.

The control-plane of the XenoServer Open Platform coordinates the operation

of the various entities involved, but allows for a significant degree of freedom of

choice and flexibility, encouraging competition and promoting the evolution of

components and services of the platform.

3.5 Summary

This chapter has proposed the XenoServer Open Platform to substantiate a pub-

lic infrastructure allowing any user to deploy any code anywhere, building on

the requirements from a global public computing system and the functionality

provided by existing distributed deployment platforms outlined in Chapter 2.

It has introduced the concept of a XenoServer, a server that undertakes the

execution of potentially untrusted code on behalf of members of the public. Users

who run code on XenoServers ultimately get charged for resources consumed by

their tasks through XenoCorp, a trusted third party. Extensions to the core

architecture, such as the XenoServer Information Service that assists users in

finding suitable XenoServers, have been presented.

101

This chapter has analysed the operations that the platform supports and the

envisaged usage scenarios. Clients and XenoServers register with XenoCorp to

obtain authentication credentials. Clients select the servers on which they wish

to deploy services; to do so, they may use the XIS or any other high-level discov-

ery service that collects server advertisements and implements search algorithms.

Services can be deployed by direct communication of clients and XenoServers,

following positive admission control decisions. Users can carry out ongoing man-

agement of services and execution environments on the XenoServers. Servers

audit service activity for security purposes, account for resources consumed by

services they execute, and submit payment claims to XenoCorp which charges

the corresponding sponsors.

The system does not attempt to optimise resource utilisation using a platform-

wide super-scheduler, enforce a single, compulsory matchmaking strategy, or rely

on a particular server discovery mechanism. Instead, it has been designed for

openness, as discussed at the end of this chapter. Allowing the coexistence of a

variety of implementations of entities such as XenoCorps, XenoServers, the XIS,

and XenoSearch services, allows for low cost of entry, customisation, competi-

tion, and the evolution of the platform to suit the diverse needs of different user

communities.

The XenoServer platform allows for local control. Each user selects servers

independently, perhaps using a server discovery service of his or her choice. Also,

each XenoServer agrees to comply with the general guidelines its affiliated Xeno-

Corp sets at registration, but ultimately manages itself and carries out operations

such as admission control, scheduling, and resource allocation, on its own, with-

out any direct XenoCorp involvement. This is similar to the way franchising

works; franchisees agree to comply with the franchise agreement, setting out the

franshisor’s general requirements and policy, but then make and apply “little”

decisions locally, such as the seating allocation or serving order in a restaurant.

A challenging problem that emerges is how the interleaved interests of Xeno-

Corp, server owners, and other stakeholders may be expressed as resource man-

agement policies and applied on independent XenoServers in a way that does not

assume or require central control. The following chapter analyses the problem in

more detail, and presents a flexible policy-based resource management framework

to address it.

102

Chapter 4

Resource management

Resource management for global public computing is a challenging area which

encompasses problems of how to describe resources, how to advertise their avail-

ability, and how to control the allocation or consumption of resources.

There are a number of specific problems which emerge. Firstly, the hetero-

geneity of nodes which make up the systems; nodes have different hardware with

different performance characteristics. Devising a methodology for describing re-

sources easily, coordinating descriptions to make sure common resources are de-

scribed uniformly, and at the same time allowing for unusual and exotic resources

to be declared, poses interesting research challenges. Secondly, since XenoServers

are charging for resource consumption, a facility for describing pricing schemes

is also required, allowing the fine-grained association of different schemes with

different portions of the same resource.

Thirdly, the potential global scale of such systems means that the control

software which manages them must be designed with scalability in mind; solutions

based on centralised administration are unlikely to be acceptable from a technical

view point. Furthermore, decentralisation and federation of control are necessary

in terms of who can define resource allocation policies. A single, central point of

control cannot be assumed, as machine owners and other stakeholders must be

allowed to influence how resources are to be apportioned between different users

or user groups. At the same time, mechanisms for coordinating the operation of

servers, for instance to achieve naming consistency for resources and to resolve

potential conflicts between different entities’ interests, are necessary.

103

Most of the shortcomings of existing deployment platforms do not arise, in

this context, from a lack of underlying management mechanisms, such as low-level

protection for allowing untrusted code, Virtual Machine Monitors to allow un-

modified applications, or QoS-aware schedulers to facilitate resource reservations.

They result from a lack of facilities for describing resources and pricing schemes

in a fine-grained, coordinated and extensible way, and expressing and combining

resource allocation policies when individual organisations become federated. In

this chapter, I present techniques developed for addressing these problems as part

of a comprehensive resource management framework for global public computing,

reusable in other service deployment platforms.

Section 4.1 provides an example that is used for exposition in the rest of this

chapter. Subsequently, Section 4.2 sets out the facilities provided for describing

resources and for advertising their pricing and availability. Finally, Section 4.3

introduces role-base resource management as a framework for defining resource

allocation policies. Examples are provided to show how individual entities de-

scribe their constraints on resource usage, and how policies can be defined to

specify the reaction of the system to overlapping constraints.

4.1 Running example

The following setting will be used in the rest of this chapter as a consistent source

of examples for several aspects of policy-based resource management that will be

presented.

Server Sergei is a participant in a public computing platform and provides

access to some of its resources to platform users. Sergei’s owner wishes to supply

its resources in different forms: for instance, he or she wishes to charge a modest

amount for best-effort storage in main memory, and to charge a higher amount

for reserved access. Also, Sergei’s owner wishes to be able to reserve some portion

of the machine’s resources for his own use and may also want to influence how

its resources are apportioned between different platform users or user groups to

favour friends or colleagues.

The local administrator of the network where Sergei is connected, called Lou,

needs to be able to impose restrictions. In particular, Lou is concerned about ex-

cessive non-local network traffic generated by Sergei’s participation in the global

computing platform because this incurs charges from the network provider. To

104

limit this, Lou wishes to impose a restriction on the total network bandwidth

made available to Sergei’s non-local users.

Indy, an infrastructural authority of the public computing platform — a Xeno-

Corp in the XenoServer Open Platform setting, or PLC in PlanetLab — is another

entity that wishes to control resource allocation. Indy is interested in providing

incentives to users to behave well and to differentiate its services in favour of

users who pay higher-fee subscriptions. Users that pay higher fees to Indy, pay

on time, and never abuse the platform’s resources should be given better services

than others, and users who misbehave or are not paying their bills promptly

should be penalised.

4.2 Resource description

In this section I introduce the mechanisms used for naming and describing re-

sources, availability, and pricing schemes. While it is necessary to allow resource

description to be carried out in an independent and decentralised fashion by the

individual XenoServers that provide resources, it is also crucial to coordinate the

way resources are represented.

I break down the resource description process into three parts; firstly, in Sec-

tion 4.2.1 I examine the naming of individual resources, such as a particular

storage device or CPU pool. Then, in Section 4.2.2 I show how different classes

of resources are identified — such as a particular kind of CPU — and how their

availability and pricing is described. Finally, in Section 4.2.3 I show how decen-

tralised resource descriptions can be coordinated to enhance naming uniformity

in the system.

4.2.1 Naming individual resources

In inherently large, federated, and not centrally controlled systems, such as dis-

tributed deployment platforms and global public computing infrastructures, the

decision about how resources are to be named needs to be completely decen-

tralised. Each of the machine owners needs to be able to name and represent its

resources independently from others, without involving any authority that has

central control over that process. Thus, a flat and static naming scheme would

prove inefficient. A hierarchical naming scheme is necessary.

105

Indy

{Indy%1%15}
Sergei

{Indy%1%1}
OtherServer1

{Indy%1%2}
OtherServer2

.......

{{Indy%1%15}%5%1}
MEM1

{{Indy%1%15}%5%2}
MEM2

{{Indy%1%15}%5%35}
NET7.......

Indy’s name space

Sergei’s name space

Figure 4.1: Hierarchical resource naming scheme

An example of how the proposed scheme works is shown in Figure 4.1. All enti-

ties and items are named using hierarchical tuples of the form {namer%type%ID}.
Unique naming of top-level entities — infrastructural authorities, such as Indy

— is achieved by using their credentials (e.g. public keys) as their names. In-

frastructural authorities assign names to servers and other entities or items, by

placing themselves in the namer part. In the running example, Indy names Sergei

as {Indy%1%15}, where 1 indicates that the entity named is of type “server”, and

15 is a unique ID for Sergei in Indy’s domain, and Sergei’s owner as {Indy%2%38},
where 2 signifies a human user.

Sergei can decide on the identifiers that he assigns to his resources and ses-

sions independently, by placing {Indy%1%15} in the namer part. For instance,

he names his MEM1 resource — a portion of memory sold in a particular pricing

unit — as {{Indy%1%15}%5%1}, where 5 denotes a resource instance. This hierar-

chical structure achieves decentralisation of resource descriptions, as each server

can manage its own name-space without requiring communication with a central

coordinator.

4.2.2 Describing resources

As shown above, each server can name its resources individually and indepen-

dently. A more challenging issue is the one of describing resources. Servers need

to be able to express, for each resource they can provide, its type, any QoS guar-

antees associated with it, the unit in which it is sold, pricing information, and

current availability.

106

It is necessary that resource description mechanisms are flexible, yet compre-

hensible. The size and complexity of descriptions has to be controlled, avoiding

an unnecessarily complicated description language. Descriptions need to be de-

centralised, as servers must be allowed to describe their resources independently.

Each resource in a public computing environment carries QoS specifications

regarding the fashion in which it is provided by the server. For instance, Sergei

could provide access to its memory as best-effort, or with QoS guarantees such

as N MB guaranteed throughout the session, or N MB × sec guaranteed.

Instead of associating a separate set of QoS guarantees with each resource de-

scription, these are incorporated in the description itself. A resource is described

by its kind as well as pricing unit. The following parameters are necessary to

describe a resource and the fashion in which it is made available by the server:

• Name identifies the particular resource.

• Owner is the entity that owns the resource.

• Administrator is the entity that is technically responsible for administering

the machine where the resource is located.

• Provider is the entity that provides — i.e. declares and advertises — the

resource.

• Kind refers to the type of the resource, like “Pentium4 CPU at 2GHz”.

• Pricing Unit is the unit in which the resource is made available. For in-

stance, such units can be “1 ms of CPU time per wall-clock sec” or “10 MB

of memory”.

• Cost per unit indicates how much each unit of that resource is priced by

the server.

• Availability represents the number of units of that resource that are avail-

able on the server.

The tuple {name, owner, administrator, provider, kind, pricing unit,

cost per unit, availability} is termed a resource description. The resource

descriptions used are simple and generic enough to not be bound to a particular

language; it is easy to envisage descriptions being expressed in XML or any other

107

suitably generic description language. The rest of this dissertation uses a semi-

structured notation, borrowed from the Condor classads scheme, as introduced

in Section 2.4.2.

For example, suppose that Sergei wishes to sell his 512MB memory in three

different ways. Firstly, he wishes to provide 200MB on a purely best-effort basis.

Clients who purchase this resource get access to a 200MB memory pool, but no

guarantees of how much of that memory will be available at any time. Sergei

wishes to sell this resource at a fixed charge of $2 and with a cap of 10 tasks

allowed to access this pool at any time. This is represented as:

{

Type = Resource;

Name = MEM1;

Owner = Sergei’s owner;

Administrator = Sergei’s owner;

Provider = Sergei;

Kind = memory;

PricingUnit = 200MB best-effort access;

CostPerUnit = 2;

Availability = 10;

}

Also, Sergei wishes to sell a further 150MB in a per 10MB fashion at a price of

$6 per 10MB unit, guaranteeing that this amount of memory will be available to

the task throughout the session. To express this resource, Sergei can use:

{

Type = Resource;

Name = MEM2;

Owner = Sergei’s owner;

Administrator = Sergei’s owner;

Provider = Sergei;

Kind = memory;

PricingUnit = 10MB guaranteed;

CostPerUnit = 6;

Availability = 15;

}

Finally, Sergei is to represent the sale of the last 160MB in a “per 10MB ×
minute” fashion at a cost of $1 for an allocation of 10MB of main memory for

108

one minute — or any combination, resulting in the same total allocation, e.g.

1MB for ten minutes or 2MB for five minutes. Supposing he is advertising his

resource availability every five minutes, then he can provide 5 × 160/10 = 80

units of 10MB × minute in that time period. Thus, Sergei describes the resource

as:

{

Type = Resource;

Name = MEM3;

Owner = Sergei’s owner;

Administrator = Sergei’s owner;

Provider = Sergei;

Kind = memory;

PricingUnit = 10MB x min guaranteed;

CostPerUnit = 1;

Availability = 80;

}

4.2.3 Coordinating descriptions

While it is necessary that no central authority is involved in the resource dis-

covery path, allowing each server operator to independently define the kinds and

pricing units of his or her servers’ resources using arbitrary names would lead

to inconsistencies. It is necessary to avoid having an overabundance of differ-

ent names and pricing schemes — e.g. “P4 CPU 2 GHz”, “Pentium4 processor

at 2GHz”, and “2GHz P4”, or “10MB of RAM” and “10MB of main memory

space”, as that would significantly increase the complexity of searching. At the

same time, it is equally desirable that the system accommodates a wide range of

different resources, while avoiding requiring a central taxonomy.

The approach that I take is to define a set of common resource kinds and pric-

ing units, whose naming can be coordinated, and assign identifiers and human-

readable names to each one. Then, each resource declared in server advertise-

ments includes not the human-readable descriptions of its resource kind and pric-

ing unit, but the identifiers that correspond to these. The three memory resources

introduced earlier can now be expressed as shown in Figure 4.2. Figure 4.3 shows

the resulting style of server advertisement containing a list of resource descrip-

tions.

109

{ Type = Resource;

Name = Indy%1%15%5%1; # MEM1

Owner = Indy%2%38; # Sergei’s owner

Administrator = Indy%2%38; # Sergei’s owner

Provider = Indy%1%15; # Sergei

Kind = Indy%6%9900; # memory

PricingUnit = Indy%7%100; # best-effort

CostPerUnit = 2;

Availability = 10; }

{ Type = Resource;

Name = Indy%1%15%5%2; # MEM2

Owner = Indy%2%38; # Sergei’s owner

Administrator = Indy%2%38; # Sergei’s owner

Provider = Indy%1%15; # Sergei

Kind = Indy%6%9900; # memory

PricingUnit = Indy%7%101; # 10MB guaranteed

CostPerUnit = 6;

Availability = 15; }

{ Type = Resource;

Name = Indy%1%15%5%3; # MEM3

Owner = Indy%2%38; # Sergei’s owner

Administrator = Indy%2%38; # Sergei’s owner

Provider = Indy%1%15; # Sergei

Kind = Indy%6%9900; # memory

PricingUnit = Indy%7%102; # 10MB x min guaranteed

CostPerUnit = 1;

Availability = 80; }

Figure 4.2: Resource descriptions using the proposed naming coordination scheme

To identify resource kinds and pricing schemes I use the same form of hi-

erarchical names used to identify servers and individual resources. Indy uses

{Indy%6%X} and {Indy%7%Y} to identify a resource kind and pricing unit re-

spectively, where 6 and 7 represent that the items represented are of type “re-

source kind” and “pricing unit” respectively. Identifiers allocated by infrastruc-

ture providers are anticipated to be common ones used by all of their associated

servers, while the servers themselves are still able to represent fresh kinds of

resources if they have unique facilities.

This way, advertisements become shorter, simpler, and easier to process. Ref-

erences to resources and pricing schemes are readable by machines — as they

follow the common hierarchical tuple format — and can be easily translated to

110

{

Type = Server;

Name = Indy%1%15;

Owner = Indy%2%38;

Administrator = Indy%2%38;

IPAddress = 128.232.35.170;

City = Cambridge;

Area = Cambridgeshire;

Country = UK;

Resources

{

{ Type = Resource;

Name = Indy%1%15%5%6; # CPU2

Owner = Indy%2%38;

Administrator = Indy%2%38;

Provider = Indy%1%15;

Kind = Indy%6%401; # Pentium4 - 1400

PricingUnit = Indy%7%2; # CPU ms per wall-clock sec

CostPerUnit = 10;

Availability = 110; }

{ Type = Resource;

Name = Indy%1%15%5%3; # MEM3

Owner = Indy%2%38;

Administrator = Indy%2%38;

Provider = Indy%1%15;

Kind = Indy%6%9900; # memory

PricingUnit = Indy%7%102; # 10MB x minute guaranteed

CostPerUnit = 1;

Availability = 80; }

...

}

}

Figure 4.3: An example server advertisement.

be human-readable. Consistency is improved, as clients can be sure that the same

kind is used to characterise instances of the same resource, and the same unit

to indicate resources that are priced in the same way. Moreover, it allows in-

frastructural authorities to easily rename, remove, and coordinate platform-wide

support for specific resources and pricing units.

The infrastructural authority — XenoCorp, in the XenoServers’ case — or

some other entity or service needs to provide the predefined sets of resource

111

0 = Pentium2

1 = Pentium2-233

...

100 = Pentium3

...

200 = Celeron

...

300 = Itanium

301 = Itanium-733

...

400 = Pentium4

401 = Pentium4-1400

...

9900 = Memory

9901 = Local Storage

9902 = Network interface

9903 = IPv4 Address

9904 = IPv6 Address

...

(a) Resource kinds map

0 = best-effort CPU access

1 = ms of CPU time

2 = ms of CPU time per wall clock sec

3 = proportion of CPU

...

100 = best-effort memory access

101 = memory 10MB

102 = memory 10MB x minute

103 = proportion of memory

...

200 = best-effort network access

201 = network MB

202 = network MB/sec

203 = proportion of network bandwidth

204 = network GB per month

205 = network GB per month on port 80

...

300 = IPv4 address and full port range

...

(b) Pricing units map

Figure 4.4: Example maps advertised by the infrastructural authority. Although small

integer numbers are used for illustration here, secure hash values based on textual

descriptions are used in the implemented prototype to avoid confusion if one of the

descriptions is updated

kinds and pricing units required, and the mappings between hierarchical names

and descriptions. Such mappings, associating the ID part — X and Y — of the hi-

erarchical tuples with resource kinds and pricing units are shown in Figure 4.4. To

disseminate these mappings, XenoCorp pushes them in clients’ and XenoServers’

storage locations — as was shown in Figure 3.3, operation 4. This happens at

registration, and at infrequent intervals after that.

A trade-off between the level of detail in resource descriptions and ease of

searching can be identified here. Defining a few fixed resource descriptions is

beneficial for consistency and ease of searching, but imprecise and inflexible, as

descriptions have to be coarse-grained and generic. On the other hand, defining

a large number of detailed resource descriptions makes searching much harder, as

there are many different identifiers for the same — or very similar — resources.

The coordination scheme proposed provides a flexible and adjustable mechanism

that allows consistent naming of common resources and pricing schemes while

permitting the representation of exotic ones.

112

4.3 Role-based resource management

In the previous section I described how individual resources can be named and

described. I now turn to mechanisms for defining policies over resource usage

and for combining policies expressed by different administrators, central author-

ities or other entities. In outline, I propose a role-based resource management

(RBRM) scheme, in which the owner of the resources and other stakeholders can

express which users or groups of users can be allowed access to which parts of

the resources. Early work on this subject has been presented in [KH03].

The approach followed can be seen as a development of role-based access

control (RBAC). As with RBAC, I use the concept of a role as a method for

organising users into groups to which common policies should be applied. RBAC

allows entities to specify which users should be allowed to enter which role, as

well as which roles should be granted access to which resources. The nature of

RBAC decisions is binary; one can either be granted access or not. Thus, when

role entry conditions are overlapping, the most common approach is that if there

is one that denies access then it simply overrides the others, in application of the

“least privilege” principle [SS75].

When considering applying the same concepts on distributed resource man-

agement, a key technical difference that emerges is that, in contrast to access

control, which is binary, resource management is quantitative; the question then

becomes how much access to grant a user to a resource, rather than simply

whether to grant access or not.

Moreover, in global-scale systems there is usually no notion of a central au-

thority controlling the distributed resources. Therefore, one can expect that

federated policies and roles may need to be defined by a number of heterogeneous

entities that coexist under separate administrations. Without a notion of a cen-

tral authority controlling the resources one can anticipate overlapping policies,

where entities have imposed different constraints that relate to the same user and

resource, as described in Section 4.3.4.3.

A problem that emerges as a result of these challenges is overlapping resolu-

tion. In the running example, Sergei restricts access to the network bandwidth

to X% for users other than its owner, while Lou restricts access to Y% for remote

users and Indy guarantees access to Z% for good customers. In the event of a

user being a non-local good customer, would he be given X%, Y% or Z%? Or

maybe the minimum, maximum or average of the three?

113

Role declarations

Role entry
conditions

Constraint
definitions

Constraint
relationships

resource
allocation

RBRM

User requests

Resource availability

Policies

Figure 4.5: High-level view of the RBRM architecture

This style of problem can be resolved more easily in classical RBAC systems,

usually by denying an access request if any one constraint rules against it. In the

resource management case, where policies are quantitative, an explicit resolution

step is introduced to provide more flexible alternatives.

A flexible, expressive and comprehensible system, able to combine role entry

and resource allocation constraints, is required to allow effective resource man-

agement in global-scale public computing infrastructures.

4.3.1 Overview

The aim is to allow the server owner and other entities to define policies that

dictate how resources of the server are to be apportioned between different users

or user groups.

114

The main components of the proposed role-based resource management ar-

chitecture, shown in Figure 4.5, are the following. There are users, who request

resources from a server. Entities declare roles on servers, which identify classes of

users for which they wish to define policies, and role entry conditions which de-

termine which users are members of which roles. To define how resources can be

allocated to users based on their properties and role memberships, entities spec-

ify constraints. Finally, constraint relationships can be used to indicate how to

resolve some kinds of overlaps in policies. Each server decides on whether to ac-

cept or deny resource reservation requests based on policies and current resource

availability. Roles, entry conditions, constraints, and constraint relationships are

collectively referred to as policy elements.

Server owners and other entities can describe policies for resource allocation

on servers. Policy elements are declared on servers on which they apply. For the

policies to reach the servers, deployment of policy elements is performed. Finally,

each server independently evaluates the policies declared on it to determine how

to handle resource allocation requests.

The following section examines how policies are declared on a server, and the

authentication and authorisation decisions involved. Section 4.3.3 introduces the

types and format of policy elements that can be used. Section 4.3.4 discusses

how a server reaches admission control decisions based on the policies declared

on it. Section 4.3.5 describes example deployment settings. Finally, Section 4.3.6

presents example applications of the proposed policy description scheme.

4.3.2 Declaration of policies

All policy enforcement takes place in a decentralised manner on individual servers.

The scope of policy elements is local; an element is only applicable on the server

on which it is declared. This section explains how federated entities declare policy

elements on a server. The process of transferring the policies to be declared on

the servers that are to apply them is termed policy deployment and discussed in

Section 4.3.5.

Each server comprises an authentication layer, a tentative declarations set,

a policy filter, and a confirmed declarations set, as shown in Figure 4.6. The

tentative declarations set is accessible by all authenticated entities, and contains

all policy element declarations attempted on a server. The confirmed declarations

set is not accessible to any entities other than the server itself and contains the

115

Authentication

Lou

Sergei’s
owner

"Lou: restrict remote
users to 20% of
network b/width"

"Indy: guarantee 70%
of network b/width

to good users"

Tentative
declarations

Policy
filter

"Sergei: guarantee 70%
of network b/width
to users deemed

good by Indy"
Roles

"Sergei: restrict remote
users to 20% of
network b/width"

Bob

"Bob: reserve 90%
for members of

my family"

Indy: declaration
of good users

role

Confirmed
declarations Indy: good

users the
ones that
pay more

Role entry Constraint processing

......

Role declarations
Role entry conditions Constraints

Indy

Constraints Constraints

Indy: declaration
of good users

role

Indy: good
users the
ones that
pay more

Constraints

1
1 1

1 1

22 2 2 2

3 3 5 5

66

4 Authorisation
rules

2

"let through constraints
defined by myself,

Indy, and Lou"

Figure 4.6: Authentication and filtering of deployed policies

policy elements that are taken into account when considering resource allocations

on the server. The policy filter controls which of the tentative declarations are

to be copied to the confirmed set.

A policy element is declared on a server when it is placed in its tentative

declarations container — operation 1 in Figure 4.6. All entities registered with the

public computing platform are allowed to independently declare policy elements

on servers, subject to a constraint: policy elements need to be properly signed

by the entities to be non-repudiable and unforgeable. The authentication layer

checks the signatures on policy elements to ensure that the Declarer part of role

declarations, the Elector part of role entry conditions, and the Constrainer part of

constraint definitions and relationships (explained in the next section) correspond

to the identities of the entities who attempt the declarations — operation 2 in

Figure 4.6.

Role declarations and role entry conditions declared by arbitrary entities offer

a federated view of the role memberships but cannot directly affect the resource

116

allocations taking place on a server. Thus, it is safe to subsequently copy all prop-

erly authenticated role declarations and role entry conditions to the confirmed

declarations set — operation 3 in Figure 4.6.

The association of role declarations and entry conditions with constraints does

affect resource reservations. Hence, entities are allowed to deploy constraints and

constraint relationships on servers only subject to a further authorisation check,

carried out by the policy filter. The server owner can define simple authorisation

rules — operation 4 in Figure 4.6. Authorisation rules are accepted by the filter

only if they are properly signed by the server itself. These allow policies from a

few entities that the server trusts or has long-term relationships with — such as

XenoCorps — through the filter — operation 5 in Figure 4.6.

Role declarations and role entry conditions contained in the confirmed set

may be declared by entities other than the server itself, to offer a federated view

of the role memberships. This allows constraints and constraint relationships to

take the views of different entities into account to devise the applicable policy.

On the other hand, constraint definitions and constraint relationships have to be

signed — i.e. declared — by the server itself when in the confirmed set, as they

affect resource allocations. When the filter lets through a constraint or constraint

relationship declared by an entity other than the server itself, the constraint is

endorsed : the server places itself as the Constrainer , and signs the constraint.

The set of confirmed declarations is then passed on to the RBRM policy

evaluation procedure — operation 6 in Figure 4.6, as described in Section 4.3.4.

4.3.3 Policy description

This section describes the syntax and usage of the policy elements that can be

declared. I first describe the inference notation used in the rest of this chapter.

Then, I explain how roles, constraints, and constraint relationships can be defined

and combined to express complex resource allocation policies in a flexible manner.

For simplicity, this section uses human-readable names (e.g. Indy, Sergei,

NET3, CPU2) instead of hierarchical tuples — as introduced in Section 4.2.1 —

to identify entities and resources.

Notation. I use this font to denote defined entities, roles, constants, and

methods. I use this font to refer to variables and to describe the generic format

117

of role declarations and entry conditions, constraint definitions and constraint

relationships. The notation of inference used denotes that if the condition that is

defined above the inference line holds, then the action defined below the inference

line is taken. Variables are always bound to the value they get above the inference

line. For instance, let us consider the following example.

A(X) X> 10 B()

C(X)

Suppose A(15) and B(2) are true. Then the variable X is bound to the value 15,

and the result of the inference is C(15). If X≤ 10 or B() does not hold, then no

inference can be made about C(X) using the above rule.

The wildcard ∗ is used to denote “any entity” or “any value”. Conditions

referring to parameterised objects without including a value for the parameter

denote that any value leads to a match — i.e. A() ≡ A(∗).

Also, note that the ∗ does not signify in practice “any arbitrary entity” as the

policy filtering process only allows authenticated and authorised policy elements

to be declared on a server.

The User and Server objects represent properties and methods exported by

the user in question and the server on which the resource reservation request is

placed. Such properties may include the network address, location, or ownership.

4.3.3.1 Role declarations.

In an open, large-scale system, it would be impractical and restrictive to enforce

a single, flat, system-wide name space for roles. Instead, the chosen approach is

to name roles hierarchically, so that each entity that defines roles can have its

own role name space.

To define a role, a role declaration has to be used, identifying a role called

Name created by the entity called Declarer . The format of RoleDeclaration

statements is:

Declarer : Name(Parameter1 ,Parameter2 , ...)

118

It is required that the Declarer signs the statement to prove its identity — in

other words, entities are not able to declare roles in the name of other entities.

Parameter1 ,Parameter2 , ... are bound when users enter the role.

In the running example, Sergei, Lou and Indy declare the roles on which they

impose resource restrictions or reservations:

Sergei : Authenticated()

Sergei : NotOwner()

Lou : Local()

Lou : Remote(RTT)

Indy : Bad()

Indy : Good()

The Remote role is parameterised; the RTT parameter is bound to the round-trip

time between the server and the user when the user enters the role.

4.3.3.2 Role entry conditions

Entry conditions specify what conditions a user has to meet to be deemed a

member of a given role. These conditions can be in terms of membership of other

roles, user properties, or in reference to external sources such as the time of day

or a user-reputation service. A generic form of a RoleEntryCondition is:

RoleMemberships Expressions

RoleMembership

To express RoleMembership statements, the notation Elector → RoleDeclaration

is used to indicate that the specified elector entity asserts that the user in question

is a member of the specified role. It is required that electors of the resulting role

memberships sign election statements to prevent forging.

For flexibility, role membership is designed to be subjective. A user’s mem-

bership of a role is not global truth, but truth according to the Elector . This

119

notion is borrowed from earlier work in role-based access control [Hay96]. In

other words, different electors may indeed have different views of role member-

ships, and present these views to other entities by declaring the corresponding

entry conditions on them. How much these other entities value each elector’s view

is entirely up to them, in accordance with the local control principle introduced

in Chapter 2.

For example, Sergei defines that users connected to any network apart from

his own should enter the Remote role, as defined by Lou.

User.Network 6= 128.232.0.0/16

Sergei→ Lou : Remote(Server.ping(User.IPAddress))

Sergei allows entry to the Local role to any user connected to the local network

that is not its owner:

User.Network = 128.232.0.0/16 Sergei→ Sergei : NotOwner()

Sergei→ Lou : Local()

Using the above statement, Sergei elects users to roles defined by Lou. Any entity

is allowed to elect users to any role, as this allows for a federated view of role

memberships to be formed — different entities may have different views of role

memberships — and does not directly affect resource allocations on the servers;

to attach policies on how resources are to be allocated to roles, constraints need

to be declared.

4.3.3.3 Constraint definitions

To express a reservation or usage limitation on a resource, constraint definitions

are used. A constraint definition is associated with a role, applies to all members

of the role, and limits or guarantees the amount of a resource that members of a

role can get. A ConstraintDefinition is of the form:

RoleMembership
Constrainer → Constraint

where Constrainer is the entity that is imposing the constraint. As before, the

120

Constrainer has to sign the constraint definition, to ensure unforgeability. The

format of the Constraint itself is

ConstraintKind(Resource,Parameters)

ConstraintKind is an identifier that describes what kind of limitation or reserva-

tion the constraint is meant to indicate, such as limEach (limit each member),

limGrp (limit all members collectively), or rsvGrp (reserve for all members col-

lectively). Resource identifies the resource that the constraint applies to, either a

specific one or a resource kind. Parameters indicate the extent of the limitation

or reservation. Note that reservations are applied on a per group basis rather

than allowing “reserve for each member” as a kind of constraint — that latter

kind of reservation is not possible without being able to enumerate the group’s

membership, which is difficult in a decentralised, federated model.

Constraints can only influence resource allocations on the Constrainer entity;

to declare constraints on servers, an authorisation step is required, as explained

in Section 4.3.2. In the example, Sergei has long-term agreements with Lou and

Indy and explicitly authorises constraints declared by them.

Let us consider the running example again. Lou wishes to restrict access to

Sergei’s network bandwidth by the group of Remote users to 20%, and he intends

to impose a more strict limitation of 10% on users connected to the particularly

greedy network 139.91.0.0/16. Also, if the round-trip latency between the user

and the server is more than one second, Lou wishes to impose a limitation such

that the bandwidth restriction is inversely proportional to that latency. Assuming

NET3 denotes a network bandwidth resource:

Sergei→ Lou : Remote()

Lou→ limGrp(NET3, 20%)

Sergei→ Lou : Remote() User.Network = 139.91.0.0/16

Lou→ limGrp(NET3, 10%)

Sergei→ Lou : Remote(R) R≥ 1

Lou→ limGrp(NET3, 10
R

%)

121

Sergei’s owner wishes to reserve some of the network bandwidth for himself, so

he limits access by members of the NotOwner to 90%:

Sergei→ Sergei : NotOwner()

Sergei→ limGrp(NET3, 90%)

Indy, the infrastructural authority, imposes a network bandwidth reservation of

70% for the Good customers group, while restricting access by each of the Bad

users to 2%:

Indy→ Indy : Good()

Indy→ rsvGrp(NET3, 70%)

Indy→ Indy : Bad()

Indy→ limEach(NET3, 2%)

Sergei subsequently endorses constraints — i.e. places itself as the Constrainer

and signs the constraints — declared by the authorised (by him) entities Lou and

Indy for them to be applicable, as described in Section 4.3.2.

Note that the above constraints can be overlapping ; which restriction should

apply to a user who happens not to be the owner of Sergei, to be Remote, and

Good? The next section describes a scheme to explicitly define policies on how

such overlaps are to be handled.

4.3.3.4 Constraint relationships

In order to allow defining policies on how overlapping constraints are resolved,

I introduce constraint relationships. Each relationship gives a series of pattern-

matches for existing constraints, and then a replacement constraint to be gener-

ated in their place. The format of a ConstraintRelationship is:

ConstraintDefinition(s) Expression(s)

ConstraintDefinition

A constraint relationship has to be signed by the Constrainer of the replacement

constraint.

122

For instance, suppose that in the example we need to define what should be

done when a user is a member of both the Good and Remote roles. Sergei wishes

to express that if the round-trip time between the server and the user is greater

than 2 seconds then the overlapping constraint definitions should be replaced by a

new constraint, limiting access to the extent dictated by the constraint associated

with the Remote role. Otherwise, the (endorsed) constraints are to be replaced by

one making a reservation in accordance with the constraint associated with the

Good role. Then, the following constraint relationship statements can be used:

Sergei→ Lou : Remote(R)

Sergei→ limGrp(NET3,Y %)

Indy→ Indy : Good()

Sergei→ rsvGrp(NET3,Z %) R >2

Sergei→ {Lou : Remote(R), Indy : Good()}
Sergei→ limGrp(NET3,Y %)

Sergei→ Lou : Remote(R)

Sergei→ limGrp(NET3,Y %)

Indy→ Indy : Good()

Sergei→ rsvGrp(NET3,Z %) R ≤2
Sergei→ {Lou : Remote(R), Indy : Good()}

Sergei→ rsvGrp(NET3,Z %)

Note that the replacement constraint may be associated with any or both of the

Remote and Good roles; the new constraint applies to the user anyway, as he or

she is a member of both roles — otherwise the overlap would not exist.

To specify that when a user is a member of the Remote and Bad roles —

according to any authorised entity — the minimum ought be taken, the following

two relationships can be used:

∗ → Lou : Remote(R)

∗ → limGrp(NET3,Y %)

∗ → Indy : Bad()

∗ → limGrp(NET3,L%)

Sergei→ {Lou : Remote(R), Indy : Bad()}
Sergei→ limGrp(NET3, min(Y ,L)%)

Constraint relationships can also express more general resolution strategies such

as taking the minimum of a set of limEach constraints given on a particular

resource:

123

∗ → ∗ :R1
∗ → limEach(K ,X %)

∗ → ∗ :R2
∗ → limEach(K ,Y %)

∗ → {∗ :R1 , ∗ :R2}
Sergei→ limEach(K , min(X ,Y)%

4.3.3.5 Timed policies

Some entities may need to define policies that incorporate a time element. To

do so, an optional |Starttime|Stoptime expression can be used, where times are

expressed in the form |w , yyyymmdd , hhmm| and refer to absolute times. The w

parameter refers to the day of the week, and can take values from 1 to 7 — 1

representing Sunday and 7 denoting Saturday. Time expressions can be attached

to policy elements, such as role entry conditions and constraints, to denote when

elements are to start being considered in deriving resource management decisions,

and when they are to be withdrawn from the system.

The ∗ wildcard may be used to denote that a policy should start and stop at

particular times every day of the week, day, month, or year1. Note that there

has to be at least one ∗ in each time expression, as a w parameter and a full

yyyymmdd expression are mutually exclusive.

For instance, Indy, the infrastructural authority, wishes to declare that the

reservation he imposes on network bandwidth for the Good customers group

should only be active for 9 September 2009:

Indy→ Indy : Good()

Indy→ Indy : rsvGrp(NET3, 70%)| ∗, 20090909, 0000 | ∗, 20090909, 2359

In another example, if Indy wishes to declare that the reservation he imposes

on network bandwidth for the Good customers group should only be active from

10am to 10pm every Monday of year 2009:

Indy→ Indy : Good()

Indy→ Indy : rsvGrp(NET3, 70%)| 2, 2009 ∗ ∗, 1000 | 2, 2009 ∗ ∗, 2159
1One may note the similarity of this syntax with the one used in Unix crontab (cron table)

files.

124

Similarly, Lou may wish to limit the restriction on network bandwidth usage by

remote users further to 10% between 3-5pm on Mondays and Wednesdays —

peak periods, as network traffic charges are higher at those times. Such a policy

can be defined using two timed policy elements:

Sergei→ Lou : Remote()

Lou→ limGrp(NET3, 10%) | 2, ∗ ∗ ∗, 1500 | 2, ∗ ∗ ∗, 1659
Sergei→ Lou : Remote()

Lou→ limGrp(NET3, 10%) | 4, ∗ ∗ ∗, 1500 | 4, ∗ ∗ ∗, 1659

4.3.4 Policy evaluation

In the previous sections I introduced the policy description language used in the

system, and explained how policies consisting of roles and constraints can be

defined, managed and combined. This section examines how the system uses

the set of roles and constraints declared, in order to determine how to handle a

resource allocation request. I term this process policy evaluation.

The evaluation process, as shown in Figure 4.7, takes place every time a user

places a resource allocation request. If the decision is positive, then the user

is allocated the requested resources for the duration of his or her session, or

until one of the conditions based on which the decision was made expires. In

cases where a resource allocation has to be urgently recalled, an asynchronous

revocation mechanism can be used — see Section 4.3.4.5.

For exposition, let us consider a remote user Uma, who is well-behaved and

pays a high monthly fee to Indy, and a remote user Randy, who constantly delays

payments. Uma and Randy both wish to reserve 5% of the network bandwidth

on Sergei — resource NET3.

The policy elements — roles, role entry conditions, constraints, and constraint

relationships — to be taken into account when considering Uma’s request are

taken from Sergei’s confirmed declarations set, as described in Section 4.3.2.

4.3.4.1 Role entry

The first step to reach an admission control decision is to decide which roles a

user is a member of — operation 1 in Figure 4.7. This process requires as input

125

Credentials
and properties

Role declarationsRole entry
conditions

Constraint
definitions

Role
memberships

Role entry

Constraint processing

Overlapping resolution

Constraint
relationships

Active
constraints

Resource
request

Availability
information

Policy
rules

Admission control

allocate/propose/deny decision

4

1

2

3

Uma enters Good,
Randy enters Bad,

both enter Remote, Authenticated, NotOwner

Restrictions and reservations
on Uma by Good, Remote, NotOwner,

and on Randy by Bad, Remote, NotOwner

Restrictions by Remote
replace all others in Uma’s case,

and restrictions by Bad
replace all others in Randy’s case

Resources allocated to Uma,
counterproposal to Randy

Figure 4.7: Policy evaluation process

the credentials and properties of the user as well as the role declarations and

entry conditions.

Entry conditions have to be examined and checked against the user’s proper-

ties and credentials for the role memberships to be determined. In the running

example, Uma enters the Good and Randy enters the Bad role according to Indy,

as he consults the information he keeps about user behaviour and subscription.

Both Uma and Randy enter the Authenticated role according to Indy. Sergei

asserts that Uma and Randy enter the Remote role after realising that their

Network properties do not match his. By checking their credentials, Sergei also

asserts that both users enter the NotOwner role.

The output of this process is the set of role memberships that the user shares.

Developing an algorithm to determine role memberships is straightforward, as

there are no role entry conditions that allow membership in a role on the condition

that there is no membership of another one. The algorithm that derives which

of the defined roles a user shall enter works as follows.

126

I term the roles whose entry conditions are exclusively based on the credentials

and properties of the user — not membership of other roles — as the first-level

roles — for instance, the Remote role in the running example. The algorithm

initially checks the properties of the user in question against each first-level role’s

entry conditions and determines whether to allow entry to each of these roles.

Then, once all first-level role memberships have been determined, the algo-

rithm can proceed to second-level roles, which are the roles whose entry condi-

tions may be based on user properties and membership of first-level roles. After

second-level role memberships are finalised the algorithm proceeds to third-level

roles, which comprise entry conditions based on user properties, first-level role

membership and second-level role membership. The algorithm continues operat-

ing in this manner until membership decisions have been made for all existing

roles.

4.3.4.2 Constraint processing

Once the role memberships for the user that requests resources have been deter-

mined, they are associated with the constraints that apply to them. Constraints

that are not associated with any of these roles are ignored further on, since they

are unable to affect the admission control decision. This allows the reduction

of the initial set of constraints to a set of — potentially overlapping — active

constraints — operation 2 in Figure 4.7.

In the example, Uma’s membership of the Good role imposes a reservation

of 70% on the total bandwidth used by members of the same group, while her

memberships of Remote and NotOwner impose restrictions of 20% and 90% on

the same resource respectively.

4.3.4.3 Overlap resolution

Allowing multiple authorised entities to define policies may result in overlaps,

when policies defined by different entities refer to the same resource and apply to

the same user. Lou applies a restriction on network bandwidth usage on Sergei

by remote users to 20%, while Indy guarantees 70% of the same resource to good

customers and restricts access by each bad customer to 2%.

127

In Randy’s case, where a bad customer happens to be remote as well, then a

default, hard-coded policy, defining that the minimum of the restrictions imposed

by Indy and Lou should be taken, is sufficient. However, if a good customer, like

Uma, happens to be connected to a remote network, which of the two constraints

should apply to her — or both? Or maybe a new constraint, granting access to

the average of 20% and 70%, should be applied? The decision is related to the

real-world relationships of the entities involved, it is not trivial and here, unlike

RBAC, a simple default policy such as “choose minimum” is inadequate.

The proposed role-based resource management framework allows entities to

define explicitly how overlaps should be resolved, by declaring constraint rela-

tionships, as described in Section 4.3.3.4. The set of active constraints is checked

against the constraint relationships, and sets of overlapping constraints are re-

placed by single constraints and resolved — operation 3 in Figure 4.7.

In the example, a constraint relationship has been defined — in Section 4.3.3.4,

which states that in overlaps between the restriction imposed by Remote and the

reservation attempted by Good, the two constraints should be replaced by a new

one restricting access as dictated by Remote, if the round-trip time between the

user and the server is greater than two seconds. Assuming that this applies to

Uma, and that a similar constraint relationship is defined to resolve overlaps with

the NotOwner role, in the end Uma will only be subject to the restriction imposed

by Remote.

The algorithm that resolves overlaps, given a set of overlapping constraints

and a set of constraint relationships, works as follows. The algorithm first derives

the sets of overlapping constraints by looking for active constraints attempting

to impose different reservations or limitations on access to the same resource, for

each resource. Then, for each of these sets, the algorithm uses any constraint

relationships that are applicable to resolve overlaps, until there are no more sets

of overlapping constraints. Situations where none or more than one constraint

relationships are applicable are discussed later.

When this stage is finished, a set of unambiguous policy rules — a set of non-

overlapping constraints applicable to the user in question, in accordance with the

terminology introduced in [WSS+01] — is produced.

Conflicting constraint relationships or unresolvable overlaps. If more

than one constraint relationships are applicable to a set of overlapping constraints,

and the replacement constraints proposed by the applicable constraint relation-

128

ships differ, then there is a conflict between constraint relationships; there is no

single replacement constraint to substitute a set of overlapping constraints.

It is possible to devise several techniques that would automatically select one

of the constraint relationships that conflict, such as choosing one at random or

ordering entities that define constraint relationships in a hierarchy and selecting

the one defined by the more important entity. For the benefit of simplicity, the

approach taken is to either select the one that imposes the minimum reservation

or restriction or — if that cannot be clearly determined — request manual in-

tervention. Similar actions are taken if an overlap is not resolvable because no

constraint relationship is applicable on the set of overlapping constraints.

The policy on how to apportion resources of a machine — expressed using roles

and constraints — may change often, as it may depend on a number of frequently-

changing parameters, such as current load, current arrangements between the

entities involved, or the time of day. As changes in constraints and roles may be

frequent, overlaps may be frequent too, and having an automatic mechanism to

resolve such overlaps provides important benefits.

On the other hand, it is anticipated that defining constraint relationships

will be a significantly less frequent operation than defining constraints. The

“meta-policy” on how constraint overlaps are to be resolved — as expressed by

constraint relationships — is inherently more permanent. The decision on what

to do when Lou’s limitations overlap with Indy’s reservations depends on long-

term relationships between the entities involved. Constraint relationships denote

the “order of authority” of the entities in each particular overlapping case; it is

not anticipated that these relationships will be changing often enough to require

an automated way of dealing with potential conflicts.

4.3.4.4 Admission control

The admission control module checks the current resource availability and usage,

and the set of unambiguous policy rules, to determine the maximum allowed allo-

cation that can be made on each resource for the user in question — operation 4

in Figure 4.7. If the attempted allocation does not request more than the maxi-

mum allowed allocation, the request is granted. Otherwise, the system proposes

an alternative allocation, up to the maximum amount allowed.

129

A user request may be denied if no policy rules exist for the resource in

question, and the system’s default behaviour is to deny access to resources if

not explicitly allowed by a policy rule. In order to specify the general default

behaviour of the system, a simple parameter can be set — on a per server basis —

to specify either that access to resources can be allowed if not explicitly prohibited

by a rule, or prohibited if not explicitly permitted by a rule.

In the example, if there is enough network bandwidth available, and if the

current total usage by members of the Remote group is lower than 20% — the

limit set by the constraint that was the outcome of the overlapping resolution

stage — then Uma is allocated the resource she requested. Otherwise, the system

proposes an alternative allocation that results to the group using up to as much

as the maximum allocation allows. In Randy’s case, the system does not accept

the attempted allocation and counterproposes an allocation of up to 2% of the

network bandwidth, in accordance with the policy rule associated with the Bad

role.

Admission control decisions take timing of policies into account. If a policy

rule (based on which a positive admission control decision has been made, and

a session created) has an expiration time, the session that has been created is

assigned an expiration time identical to that of the rule. At that point, a new

session creation request needs to be issued, leading to a new evaluation.

This “admission control – session creation – session expiration” cycle does not

necessarily need to involve the user. High-level services, such as resource agents or

brokers, can be developed that will receive long-term resource allocation requests

from users and automatically apply for re-evaluations on their behalf.

4.3.4.5 Asynchronous revocation

In most cases, resources allocated at the admission control stage are available

to the client throughout the duration of a session or until they run out — if a

fixed amount is purchased, e.g. “10 minutes of CPU time”. However, there can

be situations where it is necessary to restrict access to resources immediately,

for instance if a credit card is reported to be stolen or a user is abusing server

resources to perform illegal activities, such as denial of service attacks.

To allow entities to deal with unexpected situations, RBRM provides an asyn-

chronous revocation mechanism. This is accessible by authorised entities, sus-

130

pends access to a specific resource by a particular client or role, and adds a role

entry condition that places the client in question in a Blacklisted role. To avoid

future allocation of resources of that kind to that client, a constraint is associated

with the Blacklisted role, restricting the allocation of resources to members of

that role to 0%.

4.3.5 Policy deployment

In a policy-based resource management system, policies need to reach the policy

decision points and policy enforcement points. A policy decision point is where

the policies are evaluated and the results of this evaluation are used for enforcing

the policies. A policy enforcement point is the entity that makes sure the policy

decision made by the policy decision point is enforced — for example, a QoS-

aware scheduler.

As policies are only applied locally on the servers on which they are declared,

the policy domain of each policy is defined as the set of servers on which the policy

is declared. In the settings introduced in Chapters 2 and 3, policy domains may

be established through out-of-band mechanisms. For instance, in the XenoServers

case, the registration of a XenoServer with a given XenoCorp may involve the

server agreeing to accept policy definitions from that XenoCorp.

In the following sections I demonstrate how the proposed role-based resource

management framework can be used and deployed in the XenoServer Open plat-

form and Condor. I chose to integrate RBRM with Condor because it is a popular

distributed deployment platform that facilitates some degree of basic policy-based

resource management, as described in Section 2.4.2.

4.3.5.1 The XenoServer Open Platform

Resource management policies in the XenoServer platform can be deployed as

follows. Each XenoServer runs an RBRM module, which allows entities to declare

resource allocation policies using roles, constraints, and constraint relationships,

as discussed in Section 4.3.2. While entities are authenticated and authorised,

no other control is enforced on the policies they define, which users they elect in

which roles, or what constraints they associate with these roles. A XenoServer’s

owner may choose which entities’ policy elements to take into account and how

much, by defining appropriate constraints and constraint relationships.

131

XenoServer

XenoCorp

XenoSearch

1) find xenoservers
2) deploy

policy

RBRM

RBRM

XenoServerRBRM

XenoServerRBRM
Network

administrator

Law enforcement
agency

XenoServer
owner

3) deploy
 policy

Figure 4.8: Example policy deployment case in the XenoServer Platform. XenoCorp’s

RBRM module uses XenoSearch to locate the servers on which the policy is to be

applied and then deploys it directly

Agreeing to endorse policy elements declared by XenoCorp may be part of

the contractual agreement that a XenoServer enters when it registers. For in-

stance, Sergei may have to accept Indy’s authority to authenticate users —

barring the ones that are blacklisted by Sergei. Assuming the existence of a

NotBlacklisted() role, this can be expressed as:

Indy→ Sergei : Authenticated() Sergei→ Sergei : NotBlacklisted()

Sergei→ Sergei : Authenticated()

The RBRM modules running on the entities that wish to deploy policies contact

XenoSearch services to discover servers on which the policies are to be deployed

— operation 1 in Figure 4.8 — and then proceed to deploy policies directly — op-

eration 2 in Figure 4.8. XenoServer owners may also define resource management

policies as well as authorisation rules — endorsing constraints and constraint re-

lationships declared by other entities — by contacting their XenoServers’ RBRM

modules directly — operation 3 in Figure 4.8.

The constraint relationships defined on each server specify how these feder-

ated policies are to be combined. Policies are evaluated locally on each server by

132

the RBRM module, and enforced by the lower-level resource management infras-

tructure provided for resource reservation and isolation between environments,

as described in Chapter 5.

Local control. Individual servers are given significant freedom, as they sub-

stantiate both the policy decision and policy enforcement points. Sergei evaluates

locally the set of policies deployed by himself, Indy and Lou, and it is the result

of Sergei’s evaluation of these policies that is used by Sergei to enforce a resource

allocation scheme. There is no way to control that Sergei’s policy decision will be

in accordance with the policies deployed by Indy and Lou, nor is there a mecha-

nism to make sure that an accurate decision will be enforced properly by Sergei’s

underlying enforcement mechanisms, such as the scheduler.

Giving control on which policies to accept and how to enforce them to the

individual servers may seem to compromise the consistency and uniformity of

the platform’s behaviour; some servers may wish to ignore policies defined by the

infrastructural authority or a local administrator. Sergei may define a constraint

relationship that effectively neutralises restrictions imposed by Indy.

However, this is not really a compromise but rather a realisation of how

federated systems are organised. Systems that encompass entities owned by a

variety of organisations, and administered by a number of unrelated individuals

are inherently not centrally controllable. Even if a central policy management

system is used that attempts to prevent server owners from influencing policies

defined on their machines, they can, for instance, subvert the CPU scheduler and

achieve any apportioning of resources they wish, if the cost of doing so is relatively

small compared to the potential gain [SPM04]. Node owners ultimately have total

control of their machines, as they have exclusive physical console access, and there

is little that can be done about it — in the extreme case, signed operating systems

or tamper-proof hardware may need to be used.

Even if controlling servers centrally is technically possible, I believe that it

limits the openness, scalability and manageability of the platform, and effectively

impairs any chance of long-term sustainability. The operation of federated sys-

tems is based on mutual trust relationships formed between the participants.

Sergei trusts Indy for defining policies on which users should be considered as au-

thenticated and on which users should get privileged service, and enforces these

policies. Indy trusts Sergei for enforcing his policies and providing reasonable

service, and allows him to participate in the platform.

133

The approach I take is based on a combination of logging and auditing, and

reputation management. Servers are granted full control over their resources, but

client and server activity is recorded. XenoCorp can resolve disputes by exam-

ining the corresponding audit trails, and may take action when a node is found

to be seriously non-conformant, such as ejecting it from the platform or even

initiating legal proceedings. At the same time, external reputation management

services [DKHP03] can be used to allow servers and clients to express their opin-

ions about other clients and servers, based on their past interactions. Selfish or

non-conformant behaviour will result in the server getting a bad reputation and

therefore fewer users willing to deploy their code there and fewer infrastructural

authorities willing to cooperate with it.

4.3.5.2 Condor

Condor, described in Section 2.4.2, uses classads as a mechanism for represent-

ing resources and resource requests, employing a matchmaking system for finding

suitable machines to run jobs. Simple policies indicating which users are most

eligible to claim the resources of a machine can be included in the classad in

the form of ranking — for example, rank requests by length of job and select the

shortest — and constraints — for instance, the current load average is less than

30%.

However, there are several problems that arise with respect to applying it on

large-scale federated systems. For instance, there is no mechanism for support-

ing federated and potentially overlapping policies; no one, other than the ma-

chine’s immediate owner, can influence the policies used to manage a resource.

As argued previously, allowing federated policies is necessary for global scale,

general-purpose public computing systems.

Moreover, there is no convenient mechanism for grouping users; to allow or

restrict access to a resource by users belonging to a group these users need to

be enumerated. Additionally, there is no way of quantifying access to resources;

while access to a resource can be controlled, it is not possible to specify how

much of a resource a user or user group should be given. Finally, as the granular-

ity of the current classads and matchmaking scheme appears to be per entity

(machine) rather than per resource, a single policy needs to be applied to all

resources of a machine; there is no clear way to specify that different resources

may be apportioned in different ways.

134

Most of these shortcomings can be easily mitigated by combining Condor

classads with the role-based resource management system I propose. Classads

provide a way for describing and matching resources and requests. The RBRM

policy description and management framework supports federation of policies,

overlapping resolution, and convenient and flexible grouping of users.

Let us consider the running example once more. As in Section 4.3.4, a remote

user Uma, who is well-behaved and pays a high monthly fee to Indy, wishes to

reserve 5% of the network bandwidth — resource NET3. As a classad2, this

request can be represented as:

{ Type = "resource request";

Provider = "Uma";

Quantity = "5%";

Constraint =

other.Type = "resource" &&

other.Name = "NET3" &&

other.Availability = "5%" }

The server declares, using the following two classads, that remote users can only

get up to 20% of the network bandwidth, while no restriction is placed for local

users. Since there is no explicit distinction between limitations and reservations

in Condor, a limitation needs to be expressed as a pair of classads:

{ Type = "resource";

Name = "NET3";

Availability = "20%";

Constraint =

other.Type = "resource request" &&

other.Network != "128.232.0.0/16" }

{ Type = "resource";

Name = "NET3";

Availability = "80%";

Constraint =

other.Type = "resource request" &&

other.Network = "128.232.0.0/16" }

2Only the parts of the classified advertisements that contain properties that are useful for

exposition are shown in this section.

135

Whereas reserving 70% for good users and limiting bad users to 2% can be rep-

resented as:

{ Type = "resource";

Name = "NET3";

Availability = "70%";

Constraint =

other.Type = "resource request" &&

xenocorp.isGood(other.name); }

{ Type = "resource";

Name = "NET3";

Availability = "2%";

Constraint =

other.Type = "resource request" &&

!xenocorp.isGood(other.name); }

To preserve the model of interaction of Condor, where resource management

policies are advertised along with the resource descriptions before a request is

directed to a server, overlaps would need to be resolved in advance of submitting

the classads to the matchmaker. This is possible in this case — the overlapping

resolution scheme would, according to the constraint relationships defined, replace

the above overlapping constraints with:

{ Type = "resource";

Name = "NET3";

Availability = "20%";

Constraint =

other.Type = "resource request" &&

other.Network != "128.232.0.0/16" &&

xenocorp.isGood(other.name); }

{ Type = "resource";

Name = "NET3";

Availability = "70%";

Constraint =

other.Type = "resource request" &&

other.Network = "128.232.0.0/16" &&

xenocorp.isGood(other.name); }

136

{ Type = "resource";

Name = "NET3";

Availability = "5%";

Constraint =

other.Type = "resource request" &&

other.Network = "128.232.0.0/16" &&

!xenocorp.isGood(other.name); }

{ Type = "resource";

Name = "NET3";

Availability = "2%";

Constraint =

other.Type = "resource request" &&

other.Network != "128.232.0.0/16" &&

!xenocorp.isGood(other.name); }

However, such off-line resolution of overlaps, required if the constraints are to

be finalised and placed in classads in advance of resource advertisement, may

not always work well. It complicates matchmaking, imposes potential scalabil-

ity problems, and makes run-time policy changes expensive. If new roles or

constraints that may overlap with some of the existing ones are declared dynam-

ically, then existing classads’ constraints may need to be revisited. Also, this

model requires that server owners resign full control over their resources to the

central matchmaker, which can favour particular matches according to its own

implicit policies.

A better approach in terms of combining Condor classads with RBRM is to

use classads for advertising resources — perhaps annotated with a few simple

and fairly static constraints — and then delegate more complex policy man-

agement to the RBRM system. As some policy decisions need not be made at

resource advertisement time, this approach allows for better scalability, flexibility

and dynamicity.

The Condor matchmaking component can then request the higher-level RBRM

system’s recommendation to decide which resource to allocate to a request, as

shown below.

137

Server

Condor authority

Matchmaker

1) find servers

2) deploy
policy

RBRM

RBRM

ServerRBRM

ServerRBRM

4) advertise
classads

5) consult
RBRM

Server
owner

3) deploy
policy

Condor software

Figure 4.9: Example policy deployment case in Condor. The classads mechanism

is combined with RBRM to support federated policies, dynamic policy decisions, and

overlapping resolution

{ Type = "resource";

Name = "NET3";

Availability = other.Quantity;

Constraint =

other.Type = "resource request" &&

isAuthenticated = "true" &&

RBRM.admit(other); }

In Condor’s setting, a suitable deployment scenario of an RBRM system would

be similar to the one shown in Figure 4.9. Similar to the XenoServers deployment,

RBRM modules are running on each server involved, along with the modules

supporting the classads mechanisms.

First, the entity wishing to deploy a policy — in this case, an infrastruc-

tural authority of Condor — uses RBRM to define its policy, and contacts the

matchmaker to locate servers on which the policy is applicable — operation 1

in Figure 4.9. Then the high-level RBRM policies are pushed to the individual

servers involved — operation 2 in Figure 4.9. Server owners can use their local

138

RBRM modules to define policies on their servers conveniently — operation 3 in

Figure 4.9.

Resource availability is advertised to the matchmaker using classads, as

before, annotated with simple constraints — operation 4 in Figure 4.9. When

a resource request arrives, the matchmaker evaluates the constraints defined in

classads and then delegates more complex resource allocation decisions and

overlap resolutions to the local RBRM module of the servers involved — opera-

tion 5 in Figure 4.9.

This is a suitable deployment strategy because in Condor, as in the Xeno-

Server platform, there is a need to support decentralised resource usage poli-

cies. Constraints are independently defined by server owners and carried in the

classads that servers submit to the matchmaker. At the same time, the pro-

posed scheme exhibits scalability and incentive compatibility benefits, as com-

plicated policy-based decisions need not consume computing resources on the

central matchmaker, but rather on the individual servers involved. The proposed

approach combines the functionality of Condor classads for resource description

and discovery with the mechanisms for federating policies and resolving overlaps

provided by RBRM.

4.3.6 Expressing realistic policies

In this section, I return to the running example and examine various realistic

resource allocation policies, of the kind suggested on public computing mailing

lists and fora, such as the PlanetLab architecture mailing list3 and the GGF’s

Policy Research Group4.

Limit bandwidth to X Gigabytes per month to remote users.

First, resource NET4 representing “GB per month on a network interface” needs

to be described. In accordance with the mappings introduced in Section 4.2.3,

this pricing unit can be identified as Indy%7%204. Thus, the resource description

to be defined is as follows.

3arch@lists.planet-lab.org
4https://forge.gridforum.org/projects/policy-rg/

139

{ Type = Resource;

Name = NET4;

Owner = Indy%2%38; # Sergei’s owner

Administrator = Indy%2%38; # Sergei’s owner

Provider = Indy%1%15; # Sergei

Kind = Indy%6%9902; # network interface

PricingUnit = Indy%7%204; # network GB per month

CostPerUnit = 2;

Availability = 2000; }

Then, Lou, the local network administrator, can define the following constraint

— if authorised by Sergei, limiting access to that resource by remote users:

Sergei→ Lou : Remote()

Lou→ limGrp(NET4, X)

Limit bandwidth of traffic on TCP port 80 to X Gigabytes per month

to all users.

Assuming that the resource NET5 represents “GB per month on TCP port 80”

(can be declared, as above), Lou can define the policy:

∗ → ∗
Lou→ limGrp(NET5, X)

Allow dedicated use of only Y IP addresses by each local user.

Using the Local role as defined earlier, and assuming IPv4− FULL refers to a

resource denoting an IP address with its full port range, Sergei can use the

constraint:

Sergei→ Lou : Local()

Sergei→ limEach(IPv4− FULL, Y)

Guarantee bandwidth to X% of total bandwidth to users of a particular

XenoCorp named FooCorp.

First, a new role needs to be defined that groups together users of FooCorp. The

role is declared by Indy, but FooCorp is the one that elects users to the role —

as FooCorp knows who its subscribers are:

140

User.XenoCorp = FooCorp

FooCorp→ Indy : FooCorpUsers()

Secondly, Sergei associates the role with a constraint definition, guaranteeing

access to X% of the bandwidth:

FooCorp→ Indy : FooCorpUsers()

Sergei→ rsvGrp(NET3, X%)

Reserve X% of CPU for users connected to the local network.

Assuming that CPU1 is a resource referring to the CPU, Sergei can use the Local

role as defined earlier and the following constraint definition to reserve the CPU

proportion required:

Sergei→ Lou : Local()

Sergei→ rsvGrp(CPU1, X%)

4.4 Related work

In this section I discuss previous research in the area of role-based access control.

Ferraiolo and Kuhn [FK92] outlined the ideas of RBAC and provided a formal

description of role definition and membership. Several role-based systems were

devised over the subsequent ten years. [NO95] provides a framework for the

administration of roles and access rights, and focuses on the organisation of roles

by allowing the explicit declaration of relationships between them. [LMSY96]

defines roles as sets of rights and duties, which is similar to RBRM’s distinction

of roles from constraints. Relationships between roles are considered, as well as

meta-policies for resolving conflicts.

[JD96] combines roles and policies applied by different sources to assemble a

global layer for the interoperability of heterogeneous databases. [HBM98] takes it

even further by escaping from the “central authority” model and understanding

the challenges imposed by applying RBAC to open, large-scale systems, while

also providing a flexible and comprehensible role description language.

141

A generalised version of RBAC is proposed in [CMA00]. This approach goes

beyond the common subject-centric approach to role management, by allowing

object-centric or environment-centric policies to be defined. Object-centric roles

are similar to RBRM’s concept of constraint definitions, as presented earlier in

this chapter.

The Ponder language [DDLS01] provides a means of specifying security poli-

cies associated with roles, allowing the declaration of positive and negative au-

thorisation policies, as well as meta-policies for conflict resolution and role in-

heritance. The problem of conflict resolution in the context of role-based access

control has been explored [LS99, RT04]. The RT framework [LMW02] combines

role-based access control with hard security trust management, for efficient access

control in large-scale systems.

The proposed role-based resource management framework draws on some of

the techniques developed in role-based access control, but differs fundamentally

in its use of quantitative policies, its emphasis on federated control, and the in-

troduction of constraint relationships to control the way in which overlapping

policies are combined.

4.5 Summary

Open public computing platforms are anticipated to comprise highly diverse sets

of servers, in terms of specifications, hardware, and performance. Moreover, the

ways in which different servers may wish to sell their resources, and the pric-

ing schemes they may wish to apply accordingly, are practically unlimited. This

chapter has presented mechanisms to allow servers to independently name and

describe their resources and the pricing schemes associated with each. A coordi-

nation scheme has been proposed for achieving naming consistency of common

resource descriptions.

This chapter has presented a role-based resource management framework to

allow expressing policies on how resources on servers are to be apportioned be-

tween different users or user groups. Using an example, it has been demonstrated

that the assumption of central control is untenable; XenoCorp, server owners, net-

work administrators, and other authorised stakeholders need to influence resource

allocation decisions. To support that, policy federation has been proposed, allow-

ing entities to maintain subjective views of role memberships and declare policy

142

elements on servers. As interests of stakeholders may not always be compatible,

mechanisms for automatic overlapping resolution have been developed.

Resource allocation requests, submitted by users to XenoServers, are evaluated

against the declared resource management policies. The operations carried out

and the algorithms employed in each of the stages of policy evaluation have been

described. The operation of deploying policies, involving transferring a policy

to all servers that it applies on, has been discussed in two practical example

environments: the XenoServer Open Platform and Condor.

To investigate the effectiveness of the proposed resource management frame-

work, policy requirements have been collected from mailing lists and discussion

fora of distributed deployment platforms. RBRM has been examined with re-

spect to its applicability to provide solutions for expressing realistic policies, and

shown to be successful. Finally, facilities provided by role-based access control

have been discussed, and RBRM positioned in the context of related research.

The following chapter departs from the platform design, and analyses the

prototype implementation of the XenoServer platform. It focuses on the inter-

nal structure of components, discusses issues presented while building the in-

frastructure, and presents mechanisms developed for efficient global-scale service

deployment.

143

Chapter 5

Implementation

Previous chapters have offered solutions to design challenges for global public

computing, proposing a distributed infrastructure that allows non-cooperative

users to deploy untrusted distributed services on servers around the world in ex-

change for money. Accounting and charging mechanisms supported by a trusted

third party have been proposed for supporting non-cooperative users and server

owners. An open and extensible server selection infrastructure has been designed

to assist resource-oriented and location-oriented server selection. Finally, a role-

based resource management framework has been devised to allow independent

servers to flexibly and extensibly describe their resource availability, support co-

ordination of common resources’ descriptions, allow federated stakeholders to

define policies on resource allocation, and provide the facility for dynamically

combining those policies for flexible admission control.

However, important implementation challenges remain; the platform needs

to provide support for easy, efficient, and quick global-scale service deployment.

Launching services on large numbers of servers around the world would incur the

transfer of potentially prohibitive amounts of data, which needs to be avoided.

The platform components need to be implemented in an incrementally scalable

way, to allow high client and XenoServer participation. Low-level mechanisms

are needed for supporting resource reservations, protection, and isolation between

the different untrusted and non-cooperative distributed services. Execution en-

vironments that allow the deployment of unmodified, out-of-the-box distributed

applications are required.

This chapter describes the prototype implementation and deployment of the

XenoServer Open Platform and proposes solutions to the corresponding chal-

144

lenges. Wherever possible, existing software components, such as Virtual Machine

Monitors, distributed file systems, or infrastructures for authentication and secure

communication, have been used. This has a number of advantages, such as higher

software reliability and maturity, faster development, and easier upgradeability.

5.1 Component implementation

In this section, I describe the internal prototype implementation of the various

entities that compose the XenoServer Open Platform for global public computing.

As explained in Chapter 3, the development of alternative implementations of the

platform’s components is not only allowed but encouraged.

Prototype components have been developed in Java 1.4.2 and use RMI for

execution of remote methods. Java has been chosen because it supports porta-

bility of code, allowing components to run in a variety of computing platforms

without requiring recompilation. RMI has been selected because it allows faster

development and helps maintaining code simplicity.

5.1.1 XenoServer

The architecture of prototype XenoServers is based on the Xen Virtual Machine

Monitor [BDF+03a, BDF+03b]. Xen has been a collaborative project in the

Systems Research Group, Computer Laboratory, University of Cambridge, and

does not constitute part of this dissertation.

It securely divides the resources of a machine among a set of resource-isolated

Virtual Machines (VMs) running software on behalf of users. A special Manage-

ment Virtual Machine (MVM) is used for the administration and control of the

XenoServer. The architecture of the prototype XenoServer is shown in Figure 5.1.

The owner of a Virtual Machine has complete freedom to select the guestOSs

of his or her choice, and run any applications on it. For performance benefits Xen

does not fully virtualise commodity x86 hardware. Operating systems ported to

a modified x86-Xen architecture are used. Porting an operating system to run

on Xen typically involves replacing privileged processor instructions with explicit

calls to Xen, and using new network and block-device drivers to perform I/O via

a virtualised interface. In most cases, it is not required to modify anything other

145

Xen

Xeno
Daemon

XenoLinux

VM control interface Virtualized Hardware

H/W (SMP x86, mem, net, block)

User
S/W

User
S/W

User
S/W

Remote
Invocations

Management VM Client Virtual Machines

xend

User
guest
OS

User
guest
OS

User
guest
OS

Figure 5.1: Architecture of a Xen-based XenoServer

than architecture-dependent portions of the operating system. Applications run

out-of-the-box without recompilation on the modified guestOSs.

5.1.1.1 VM Control Interface

The internal architecture of Xen is described in detail in [BDF+03a], along with

the protection and isolation it facilitates. The purpose of this section is to de-

scribe the interfaces exported by Xen for VM management and the way these are

used by the higher-level tools that carry out communication with other platform

components. Aside of that, the approach that this chapter adopts towards Xen

is a black-box one.

The Management Virtual Machine (MVM) is booted at the start of the day

and allows the owner of a XenoServer to create and manage VMs via the VM

control interface (VCI). All configuration and control is performed via this inter-

face, and all policy decisions, such as admission control and yield management,

are made by software running within the MVM. Xen itself is responsible only for

the mechanisms of facilitating resource multiplexing between VMs.

146

The VCI is a rather low-level interface, comprising a set of privileged entry

points into Xen that may be invoked from a suitably privileged Virtual Machine.

The administrative interface takes the form of a set of user-space control tools

(called xend) that use a set of appropriate calls to the VCI to achieve some

higher-level goal. Broadly speaking, VCI calls fall into one of the following three

categories:

• Virtual Machine Management: Allows Virtual Machines to be created,

started, stopped and destroyed, and to have the contents of their memory

inspected or modified. These functions are used by higher-level control

software such as the XenoDaemon — to be described in the next section —

to boot guest operating systems, and implement VM suspend/resume and

dynamic migration.

• Virtual Machine Configuration: Enables querying and setting of al-

location and scheduling parameters for CPU, memory, disk and network.

These are typically set at session creation — prior to starting a particular

VM for the first time. While it is technically possible that they are ad-

justed dynamically, it does not fit well with the session-based model, where

a session is an agreement for the provision of a particular set of resources

at a specific pricing scheme. Higher-level resource descriptions, such as the

ones proposed in Chapter 4, are translated to specific scheduling parameters

passed to Xen.

• Virtual Device Configuration: Allows the administrator to configure

virtual block devices — dynamic partitions — and virtual network inter-

faces.

The VCI is accessible only by Virtual Machines that are created with special

privileges — such as the MVM; by default, only certain introspection aspects of

the interface are accessible to other (client) VMs.

5.1.1.2 XenoDaemon

The xend tools are sufficient for local XenoServer administration, but do not

allow interaction with the rest of the XenoServer platform. This role is handled

by XenoDaemon, a network daemon process that runs within the MVM. Xeno-

Daemon is responsible for interfacing with both clients and XenoCorp, and its

internal architecture is shown in Figure 5.2.

147

R
M

I i
nt

er
fa

ce
s

VM
controller

Advert.
writer

Admission
controller

Config.
manager

Sessions
manager

Accounting
manager

XenoCorp
charge purchase order

client
create session,
destroy session,
restart environment,
migrate environment,
query XenoServer,
get feeback

Session
create

Xen

Local disk

Remote
storage

XenoDaemon

xend
MVM

roles,
policies

config.

Session
destroy

restart /
migrate

env.

query /
feedback

template f/s,
cache

handlers

VM control interface

Mounter

overlay f/s

architecture-
dependent

part

2

3

4

5

6

7

8

active
sessions

1

1

XenoCorp
validate purchase order

RBRM

Internet

Figure 5.2: Control-plane architecture of a XenoServer

At the start of the day, the configuration manager module of the XenoDaemon

is called; this loads configuration information from the storage location that has

been chosen to store that information, such as a local hard disk, a web site, or the

server’s XenoStore location — operation 1 in Figure 5.2. It reads configuration

parameters such as the server’s own ID and credentials, the location where server

advertisements — described later — are to be stored, and the location where

audit trails are to be saved. It also reads the list of resources initially available

on the server, which can be defined by the server operator using external tools

provided.

The manager also reads the list of XenoCorps with which the server is regis-

tered, and the parameters of the server’s agreement with each one, such as the

purchase order validation and charging policy, the authentication infrastructure

to be used, and the way the server is to receive payments from each XenoCorp

— for instance, proportional to resource consumption, fixed monthly payment,

or a proportion of the XenoCorp’s profit.

148

The XenoDaemon allows remote clients to place requests, subject to authen-

tication; this is performed ahead of the interactions described here using digital

certificates, as explained in Section 5.1.3.

A user requests creation of a session — i.e. deployment of a Virtual Machine

— on a particular XenoServer by using a client program to invoke the RMI

interfaces exported by XenoDaemon. To do so, a deployment specification and

a valid purchase order need to be submitted to the XenoServer. A deployment

specification describes which operating system kernel image and file system to

use when booting a Virtual Machine, and is accompanied by a set of resources to

be reserved, which describes the required amount of CPU time, physical memory,

and so on. A session creation request may also specify that, instead of creating

a new VM, a previously suspended (to a file) VM should be resumed.

At this point, a handler thread is created to serve the session creation request

— operation 2 in Figure 5.2. Using new threads to serve requests by other

components of the platform allows for the operation of XenoDaemon to continue

while the request is served.

The handler for a session creation in turn requests the help of the admission

controller module to decide whether to agree to provide the requested resources

— operation 3 in Figure 5.2. The admission controller performs purchase order

validation and admission control at this point.

The controller may proceed — according to the arrangement between the

XenoServer and its affiliated XenoCorp — with validating the purchase order

with XenoCorp. If the order is valid, the controller invokes a prototype version of

the role-based resource management (RBRM) framework described in Chapter 4

to decide whether the requested resources can be allocated. According to the

policies defined by the federated stakeholders, RBRM makes a positive or negative

recommendation regarding the allocation of the requested resources. External

tools have been developed for declaring and deploying RBRM policies.

The file system to be used as the root file system of the guestOS to be launched

may be stored locally on the XenoServer, fetched from a remote storage location,

or may be an overlay comprising both local and remote elements — as described

in more detail in Section 5.2. Provided that the admission controller’s recommen-

dation is positive, the handler requests the help of the mounter module to mount

the remote and local storage locations as required — operation 4 in Figure 5.2.

This decodes the URLs it is given and, according to the scheme portions — such

as nfs:// or afs:// — determines how mounting is to be performed.

149

The handler then calls the VM controller to translate deployment specifica-

tions to low-level deployment parameters — operation 5 in Figure 5.2 — and

determine whether a new VM is to be created, or a suspended one is to be re-

sumed. The controller then uses xend, a user-space tool that provides interface

wrappers around the low-level VCI, to communicate with Xen and have a VM

created, configured and started. The new session’s specifications and resource

reservations are stored in the sessions manager, which keeps track of all live ses-

sions and handles persistent storage of that information to the disk — operation 6

in Figure 5.2.

Clients receive console output during boot and throughout the operation of the

VMs associated with the sessions they have created; subsequently, users interact

with their VMs in whichever way they wish, such as via SSH if they have started

the appropriate server-side daemon, in order to start, configure, and manage tasks

that are running on the VM. In guestOS execution environments, they may also

specify the operations to be performed for their tasks to be started in boot-time

scripts — such as the /etc/rc.d scripts in *NIX guestOSs (e.g. Unix, Linux,

BSD).

XenoDaemon also creates an accounting manager thread for each VM started,

and schedules its periodic execution — operation 7 in Figure 5.2. While a VM

is running, the accounting manager periodically checks and accounts for resource

consumption, records activity in audit trails, and sends the corresponding ac-

counting and billing information back to XenoCorp. Clients, if so configured,

may also receive updates regarding the resource usage and charges incurred by

their VMs.

When a client requests the destruction of a session, the corresponding exe-

cution environment is terminated, and the resource reservations released. If so

requested, the VM’s image can be suspended — saved to a file at a user-defined

location, such as a virtual disk on the XenoServer, a private storage server of the

client, or a XenoStore location. This allows for the VM to be resumed at a later

stage using a quick, lightweight operation.

Clients can also submit requests to get feedback about existing sessions and

invoke management operations, such as to restart, or migrate execution environ-

ments. Xen’s support for live migration of execution environments is explained

in detail in [CFH+04]. A client uses the session handle he or she has been given

at session creation to reference a session and request management operations on

the VM associated with it.

150

The advertisement writer module of XenoDaemon is part of the server selec-

tion and resource discovery infrastructure. Based on initial resource availability

read by the configuration manager, and current resource usage, it periodically

produces a server advertisement and stores it in a user-defined location, such as

a web or XenoStore location — operation 8 in Figure 5.2. An advertisement is

a digest of the server’s current status, location, resource availability, and pric-

ing schemes as described in Chapter 4. The XIS and XenoSearch services can

then collect advertisements and allow clients to perform searches on those, thus

increasing a XenoServer’s exposure to its customer base.

The existence of two levels of indirection — handlers and managers or VM

controllers — serves the important goal of the platform openness. Techniques

specific to particular XenoDaemon implementations, such as the way persistent

storage is handled (files, databases of a particular type, or XenoStore objects),

how XenoServer configuration is represented, or how VMs are configured, started,

and managed (using the low-level control interfaces) can be altered easily by

replacing the controller and managers, without requiring changes to the rest of

the XenoDaemon software.

5.1.2 XenoClient

The software running on users’ machines is termed XenoClient. It is responsible

for communicating with XenoCorp for registration and purchase order creation,

with the XIS and XenoSearch for server discovery and selection, and with Xeno-

Servers for service deployment and management. This section describes the im-

plementation of the prototype XenoClient and its interface. Its architecture is

shown in Figure 5.3.

There are no architectural restrictions mandating that the prototype version

of XenoClient is exclusively used. Alternative client applications can be devel-

oped and used for communication with the other components of the XenoServer

platform, as long as they comply with the interfaces defined in Chapter 3.

At the start of the day, the configuration manager retrieves settings and

coordination information, such as XenoCorps that the client is registered with,

and the XIS or XenoSearch services that may be used — operation 1 in Figure 5.3.

The prototype XenoClient provides a graphical interface for user convenience.

The client is designed to allow disconnected operation. For each operation that

151

Controller

XenoCorp
register,
create purchase order,
get valid purchase orders,
top-up purchase order,
merge purchase orders

local disk

remote
storage

XenoClient

active services,
sessions

Graphical user interface

user

register

create/get/
top-up/merge p.o.

lookup
XenoServer

create/destroy
session

threads

restart/
migrate env.

ping/query/
get feedback

query
XenoServer

XIS
lookup XenoServer

XenoServer
create session,
destroy session,
restart environment,
migrate environment,
query XenoServer,
get feedback

Storage
manager

Services/sessions
manager

Configuration
manager

2

3

4

11

Coallocator

6

7

9

10

12

8

1

5

Internet

Figure 5.3: Architecture of XenoClient

users request, which involves interaction with other components of the XenoServer

platform, a new thread is launched to handle it; this allows for the uninterrupted

operation of the graphical environment, and permits running several operations

concurrently.

The first operation a user typically undertakes is that of registering with

XenoCorp — operation 2 in Figure 5.3; the interface provided to clients for

performing this process is shown in Figure 5.4. Registration is carried out the

first time that XenoClient is launched, and after that every time the user wishes

to join a new XenoCorp’s domain.

Before deploying services, the user needs to create a purchase order with

XenoCorp — operation 3 in Figure 5.3. In a wide-area deployment, this would

ring-fence an amount of money in the users’ bank account or credit card to

be used for funding resource consumption on XenoServers. As the prototype

implementation is not linked to a real credit card or direct debit system, the

amount is reserved from a credit balance that each user has on XenoCorp.

When creating a purchase order a user may also specify additional constraints,

for instance to require that the order is tied to a particular XenoServer, or to set

the frequency at which the order is charged by the server — inside a predefined

range.

152

Figure 5.4: Interface for user registration

The user can request a list of his or her valid purchase orders from XenoCorp,

top-up an existing order, and merge orders to add one order’s funds to another to

reduce fragmentation of funds. The interface for creating and managing purchase

orders is shown in Figure 5.5.

The next step is typically server selection; this may include server discovery,

which can be carried out using the XIS directly, or through one of the available

XenoSearch components — operation 4 in Figure 5.3. Server selection does not

necessarily require server discovery though; the user can select servers directly

from the cache of recently used XenoServers that XenoClient maintains, or just

type in the host names of XenoServers already known to the user. The interface

for server discovery and selection is shown in Figure 5.6.

When servers are selected, the user can proceed with selecting the resource

reservations he or she wishes to make on the servers; this ensures that the re-

sources required to run the service to be deployed are available on the XenoServers

153

Figure 5.5: Interface for purchase order creation and management

throughout the course of its execution. The interface for resource reservations is

shown in Figure 5.7. XenoClient automatically queries the selected XenoServers

— operation 5 in Figure 5.3 — to retrieve up-to-date status and resource avail-

ability information, subsequently displayed in the table on the left in Figure 5.7.

For user convenience, if more than one server is selected at a time, XenoClient

can automatically determine and display the common resource availability to the

user — i.e. the maximum set of resources available on all selected XenoServers.

Resources are internally represented as described in Section 4.2.1, but dis-

played to the user in human-readable form. The translation is performed using

the resource kinds and pricing units maps provided by XenoCorp at registration,

as described in the same chapter.

XenoClient comes with a number of template resource envelopes, which are

lists of resources required for the execution of some common services — such

as an Apache web server or a Quake3 game server. Generic envelopes are also

provided, for instance allowing the execution of different types of average-sized

distributed applications requiring memory, CPU time, and network connectivity.

More fine-grained resource envelopes for specific applications can be calculated

154

Figure 5.6: Interface for XenoServer discovery and selection

using techniques under development at the time of writing by the XenoServer

project team, which do not constitute part of this work.

Resource envelopes can be loaded, altered — in terms of resources to be

reserved and quantity of each resource to be requested — and saved to the disk

for later use. The list of resources to be purchased is shown on the right, together

with resource pricing information and the estimated costs.

When the list of resources to be purchased is finalised, the user can request

for sessions to be created on the selected XenoServers — operation 6 in Fig-

ure 5.3. At this point XenoClient negotiates with XenoServers, proceeds with

coallocating resources on all selected XenoServers — operation 7 in Figure 5.3 —

if so requested, and informs the user about the success or failure of the process.

Information about the newly created sessions is passed on to the sessions and

services manager — operation 8 in Figure 5.3, which handles permanent stor-

age of the client’s state. Storing information about the currently active services

and sessions on disk is necessary to allow the client to continue operating when

XenoServers are not reachable and to recover from a fault or a software restart.

155

Figure 5.7: Interface for purchasing resources on a XenoServer

When requesting the creation of a session, the client needs to build a deploy-

ment specification, selecting the root file system and type of execution environ-

ment required — for instance, a VM on Xen, the guestOS kernel to be used —

such as XenoLinux 2.4.26. The user can also choose whether overlaying func-

tionality is to be used. If so, the user selects the overlay and persistently cached

reference file system to be used — as described in Section 5.2. The user can

also select whether a new VM is required, or whether one that has been previ-

ously suspended to a file is to be resumed. The interface for building deployment

specifications is shown in Figure 5.8.

Although it is not necessary that the XenoClient is used for that purpose,

facility is provided for managing external storage, such as local disks, XenoStore,

AFS [SS96], or NFS directories, web locations, and so on — operation 9 in Fig-

ure 5.3. This allows the user to easily transfer the data required to deploy services

wherever is convenient, and perform simple data management operations.

XenoClient provides an interface for monitoring and managing sessions and

distributed services — sets of sessions on one or more XenoServers, shown in

Figure 5.9. On request of a session destruction — operation 10 in Figure 5.3,

156

Figure 5.8: Interface for building deployment specifications

the XenoServer stops the tasks that are running on the corresponding VM, shuts

down the VM, terminates resource reservations, and submits the final payment

claim to XenoCorp for resources consumed by that session. If so requested by

the user, the VM’s image is stored to a file, to allow resumption at a later stage.

Requesting feedback — operation 11 in Figure 5.3 — returns up-to-date in-

formation about a session’s current status — alive, dead, or unknown — and its

resource consumption, which is displayed in detail in the table at the bottom in

Figure 5.9. Resource pricing details and current charges are also shown. Querying

a server returns information about its current resource availability and pricing.

Restarting execution environments is a useful feature in cases of environment

failure, or when a new operating system kernel is to be booted in an existing

session. Migration of environments allows for the VM to be relocated to another

session on the same or a different XenoServer — operation 12 in Figure 5.3.

5.1.3 XenoCorp

XenoCorp is the trusted third party that handles authentication and registration

of clients and servers, billing, and payments. As XenoCorp is envisaged to be run,

administered, and maintained by expert users or qualified administrators rather

than home users, a graphical user interface has not been developed as part of

the prototype implementation. The internal architecture of XenoCorp is shown

in Figure 5.10. Communication between XenoCorp and other components of the

platform is done through the RMI interfaces exported.

157

Figure 5.9: Interface for service and session management

Clients and XenoServers register with XenoCorp to join the platform. After

that, clients can create, renew, and get their valid purchase orders. XenoServers

contact XenoCorp for validating purchase orders or requesting charging on re-

source consumption — accompanying the request with billing details. As the

prototype implementation is not linked to a real credit card or direct debit sys-

tem, charges for resource consumption are simply deducted from purchase orders.

Creation of a purchase order deducts an amount from the credit balance that a

user has on XenoCorp.

When any of these RMI interfaces is called, XenoCorp invokes an appropriate

handler thread to carry out the request — operation 1 in Figure 5.10.

Servers may also specify at registration time a location where they wish to

receive configuration and coordination information, such as the list of available

resource kinds and pricing units in this XenoCorp’s domain. XenoCorp places the

requested data at a remote location of the XenoServer’s choice — which may be a

directory on a XenoStore server, its own AFS server, or a publicly accessible web

location — operation 2 in Figure 5.10. XenoCorp also stores the Advertisement

Locations Catalogue (ALC) at a storage location of its choice.

158

R
M

I i
nt

er
fa

ce
s

Users
manager

Purchase
orders

manager

XenoServer
register,
validate P.O.,
charge P.O.

client
register,
create P.O.,
top-up P.O.,
get valid P.O.,
merge P.O.

mySQL
database

XenoCorp

XenoServers
manager

Register
Server

Resource
coordinator

remote
storage

Register
User

Get valid
orders

P.O.
creation

P.O.
charging

P.O.
validation

P.O.
top-up

JD
B

C

handlers

1

2

3

1

1

1

1

1

1

3

3

3

3

3

3
Internet

Figure 5.10: Architecture of XenoCorp

Permanent storage of information about registered clients and XenoServers,

purchase orders, as well as charging and payment history, is handled by managers.

In the prototype implementation, information is stored in a MySQL database,

with which managers communicate using a JDBC driver. Managers are contacted

— operation 3 in Figure 5.10 — to insert or delete entries from the database, to

retrieve information on behalf of the handlers, and to administer run-time state

— such as caching entries in memory data structures for performance.

As before, the existence of two levels of indirection — handlers and managers

— enhances the platform’s openness; XenoCorp can easily be ported to run on a

different type of database or database communication driver, as this only involves

changing the manager modules.

Alternative implementations of XenoCorp may be distributed; by splitting its

functionality between several distributed components, and running each compo-

nent on a different XenoServer, the scalability and fault-tolerance of XenoCorp

can be improved. However, as this is the trusted third party that handles au-

thentication, and charging, distributing it over more than one machine compli-

cates trust relationships. For simplicity, a centralised prototype implementation

of XenoCorp has been chosen; incremental scalability can still be achieved by

allowing the coexistence of multiple XenoCorps.

159

XenoServer

XenoCorp

Client

1) create public/private
 key pair
2) generate certificate

3) request signature
5) response

4) challenge
7) signed certificate

8) signed certificate

10) encrypted
session creation request

11) use public key
 to decrypt

9) encrypt session
 creation request using
 private key

6) use public key
 to decrypt

Figure 5.11: Authentication in the prototype XenoServer platform

Authentication. Authentication of XenoCorp to clients and XenoServers takes

place using digital certificates on which XenoCorp has obtained a signature from

a well-known certification authority. Authentication of clients to XenoServers is

achieved using XenoCorp as a certification authority, as shown in Figure 5.11 —

authentication of XenoServers to clients is carried out similarly. First, a client

generates a public/private key pair, and creates a digital certificate that includes

its public key and unique client identifier — operations 1 and 2 in Figure 5.11.

Then, the client requests to be registered with XenoCorp — operation 3 in

Figure 5.11; this involves XenoCorp signing the client’s certificate, as a form of

endorsing its credentials. Authentication of clients (and XenoServers) to Xeno-

Corp when they first contact it to register uses a challenge/response mechanism;

XenoCorp asks the invoker to encrypt a random message using its private key

— operation 4 in Figure 5.11. The client returns the encrypted result — opera-

tion 5 in Figure 5.11, and XenoCorp checks whether the encrypted result can be

decrypted properly using the invoker’s public key — operation 6 in Figure 5.11.

Upon completion of the challenge/response phase, XenoCorp signs, stores, and

returns the client’s certificate — operation 7 in Figure 5.11. The signed certificate

is passed on to a XenoServer on which the client wishes to create sessions —

operation 8 in Figure 5.11. The client then submits a session creation request,

which is encrypted using its private key — operations 9 and 10 in Figure 5.11; the

XenoServer uses the client’s public key, contained in the certificate, to decrypt

the session creation request — operation 11 in Figure 5.11. If the request can be

decrypted successfully then the server can be sure that the client is who it claims

to be. At the same time, the deployment specification and purchase order that

a client submits are non-repudiable, as they are encrypted using the private key

that only the client possesses.

160

R
M

I i
nt

er
fa

ce
s

Advert.
collector

client
lookup server,
ping

ping

1) find ALC
2) get ALC

3) collect advertisements
4) store collection

Lookup

read
collection

XIS

remote
storage

5

Internet

Figure 5.12: Architecture of a XenoServer Information Service node

5.1.4 XenoServer Information Service

The XIS provides a server advertisement aggregation and lookup service; it pe-

riodically collects advertisements from individual XenoServers’ storage locations

and stores them in a structured, searchable manner. Basic lookup functionality

that allows searching for advertisements that present values inside a predefined

range for a specific token is provided. Its internal structure is shown in Fig-

ure 5.12.

Initially, the XIS reads from a well-known web server the storage location

where the Advertisement Locations Catalogue (ALC) can be found, as described

in Chapter 3 — operation 1 in Figure 5.12. This is a list maintained by XenoCorp,

and may be advertised on a web server or stored in a remote storage location.

The advertisement collector thread is invoked periodically, reads the ALC

— operation 2 in Figure 5.12, and collects all fresh advertisements from the

locations specified — operation 3 in Figure 5.12. It then stores advertisements

in another storage location in a structured manner — operation 4 in Figure 5.12.

Old advertisements, or ones that are not properly signed by the advertisers, are

161

ignored. The XIS exports a lookup interface to clients and returns the list of

servers matching the queries — operation 5 in Figure 5.12.

This indirection is important: servers and XenoCorp respectively do not have

to be queried every time their advertisements or ALC are to be retrieved; instead,

they periodically perform a low-cost push operation to storage locations from

where these can be accessed by clients or search systems. Moreover, the ALC

and advertisements can be replicated on demand to balance load.

For better load distribution, performance and scalability, the XIS is deployed

as a replicated rather than single, central service; there are several instances of the

XIS running simultaneously, termed nodes, which themselves may be deployed on

XenoServers, with each one providing the same facility of indexing and retrieval

of server advertisements.

5.1.5 Storage

In the prototype implementation of the XenoServer Open Platform, an external

XenoStore storage system is provided. The difference between XenoStore and

other types of external storage, such as private NFS or web servers maintained by

individual XenoServers or clients, is that the former is trusted by XenoServers and

clients; it is run and administered by reputable organisations on well-maintained

machines, and has long-term presence in the infrastructure.

XenoStore is not required for service deployment, and is not part of the core

infrastructure of the XenoServer Open Platform. Clients and XenoServers can

use alternative storage locations of their choice. Storage space is useful for:

• Automatic configuration. XenoCorp can automatically push configura-

tion parameters to clients’ and servers’ XenoStore quotas or other storage

locations.

• Resource advertisement. XenoServers can periodically store their di-

gests of status and resource availability in their XenoStore quotas or other

storage locations, and the XIS or XenoSearch services can pull these from

there.

• Resource description coordination. XenoCorp pushes the list of com-

mon resource types and pricing units, and mappings to their human-readable

names to XenoServers’ and clients’ storage locations.

162

• Efficient deployment. As analysed in more detail in 5.2, storage pro-

vides users a convenient and efficient mechanism for parallel deployment of

services to large numbers of servers around the world.

For providing a simple prototype XenoStore service the distributed Andrew File

System (AFS) has been chosen, since its design makes it more suitable for a

wide-area deployment compared to other mature off-the-shelf distributed file sys-

tems, such as NFS. AFS has been designed for wide-area scalability [Sat92], and

its interaction model allows relatively efficient bulk data transfer even when the

round-trip delay is high, as in realistic wide-area deployment scenarios. At the

same time, its persistent caching mechanism provides greatly increased perfor-

mance relative to NFS when used in the wide-area.

Using AFS is sufficient to validate this approach and, as shown in Chap-

ter 6, performs more than adequately well. The XenoServer team is, at the time

of writing, looking to implement XenoStore as an entirely new distributed file

system (Xest), incorporating ideas from SFS [MKKW99], Pond [REG+03] and

Pasta [MPH02] to produce a file system which seamlessly combines the ‘push’

model of the distribution templates with the ‘pull’ model of demand caching.

The design and development of Xest does not constitute part of my work or of

this dissertation.

To provide secure communication between XenoStore and the XenoServers

and clients that are using it secure Virtual Private Networks based on the In-

ternet Protocol Security (IPSEC) [KA98, IBM98] are used. This creates a per-

manent safe IP-layer link between XenoStore and XenoServers, and ensures all

information sent on it is properly encrypted to protect clients and servers from

eavesdropping.

AFS uses Kerberos [NT94] to handle authentication. Clients and XenoServers

are initially authenticated on XenoStore using their digital certificates signed by

XenoCorp. Then they are provided with their Kerberos ticket that they can use

to access their data from that point on. Note that different implementations of

XenoStore services can follow different authentication approaches.

This dissertation focuses on building the core XenoServer platform. It has

not been a purpose of this work to develop a production-quality implementation

of XenoStore or any other high-level, third-party service. The sole purpose of

using the simple XenoStore service described here is to demonstrate the benefits

of external storage for server discovery and service deployment. Mechanisms

163

that realistic XenoStore services should comprise, such as quota management,

accounting, and perhaps charging for usage of storage resources, have not been

investigated or implemented.

5.1.6 XenoSearch

It is necessary that XenoSearch implementations can scale to large numbers of

XenoServers and users scattered around the globe. Although a semi-centralised

solution might be possible — like the one employed by google1, it is sensible to

aim for a distributed one, provided that communication between search nodes

can be minimised, and no central point of failure is introduced. Additionally,

XenoSearch is anticipated to be collecting updates about XenoServers’ current

resource availability much more frequently than web content is updated.

Considering these factors, the XenoServer team has designed and implemented

XenoSearch II [SHH04]. This replaces XenoSearch I [SH03] and provides a dis-

tributed topologically-aware search service that supports complex queries, which

combine spatial (location) constraints with multi-dimensional resource availabil-

ity requirements. XenoSearch II comprises a set of approximately 100 nodes

distributed around the globe, which periodically harvest resource availability in-

formation from the XIS or from individual XenoServers’ storage locations. Each

XenoSearch II node holds at least imprecise information about the resource usage

and location of each XenoServer, and so can produce an approximate query result

independently of any other node.

The goal of XenoSearch II is not to obtain a single “best” result for a given

user’s query. The system is designed to produce a set of results, which are

presented to the user in an order determined by a heuristic, much like a page-

ranking system in a web-search engine. However given that information may be

out of date, and the client’s utility function is unknown, the choice is ultimately

left to the end user.

The implementation of the prototype XenoSearch II component has not been

part of my work, and is not part of this dissertation. It is described in more

detail in [SHH04].

1http://www.google.com

164

5.2 Service deployment

This section focuses on service deployment ; this is the step where users, after

having selected a number of XenoServers on which the service is to be deployed,

proceed to contact the XenoServers to configure and start the Virtual Machines

that accommodate the service components, and to launch the service components

themselves.

Here, I describe deployment models followed by other distributed deployment

platforms, discuss why global public computing needs more than the conventional

ad hoc means used to deploy services in the wide-area, and propose an effective

solution to address these problems. Work on service deployment mechanisms for

the XenoServer Open Platform has been presented in [KMP+04].

5.2.1 Other deployment models

Distributed deployment infrastructures comprise deployment models — solutions

for storing and transferring the data required to deploy distributed services to

the servers involved — that are often adequate for the needs of the environments

they are designed to serve, but unsuitable for general-purpose global-scale service

deployment.

Denali [WSG02] and Grid computing projects [FK97, TTL04, FGK04] all fol-

low the same model, where users have to transfer the data required for service

deployment to every server involved, and configure the machines individually.

Grid services are deployed using the APIs provided by the Grid infrastructure,

which usually employs mechanisms such as GridFTP [LGT+01] for data distri-

bution. The configuration and execution of the services on each individual server

can be done either manually, or with the help of an automated tool. This repre-

sents a push approach in service deployment.

The PlanetLab project, as described in Section 2.4.4, only offers basic support

for service distribution, requiring users to connect over SSH to each node indi-

vidually to copy, configure, and control the custom service, a process that may

be tedious when deploying to hundreds of nodes. More recently, the CoDeploy2

service has been developed. This considerably eases the task of distributing ex-

perimental software to a set of PlanetLab nodes, and operates efficiently by using

2http://codeen.cs.princeton.edu/codeploy/

165

the CoDeen [WPP02] CDN. It is not aimed at distributing operating system ker-

nels or entire file system images, however, where higher commonality of files —

most users request a few popular operating systems’ kernels and distribution file

systems — allows for persistent caching on the servers. Our system exploits this

to allow efficient and parallel deployment, and mobility of services.

System imaging is a technique that enables archiving and copying disk im-

ages, usually containing operating system distributions and applications. Images

can be used to clone servers by automating image deployment and configuration.

Partition Image3 generates disk images and uses domain-specific data compres-

sion techniques, while Frisbee [HSL+03] employs local-area multicast for efficient

distribution of images in local networks.

Imaging focuses on the replication of entire disks’ — and sometimes memory

— contents to other machines in the local network for ease of configuration. The

proposed system is different in that it aims at global-scale data distribution at

deployment time and support for per node configuration, parallel deployment and

Virtual Machine migration.

VMatrix [AR02] follows a similar concept to that of disk imaging, facilitating

the imaging of the run-time state of the machine along with files on the disk,

and distributes such “Virtual Machines” on servers for easier configuration. The

Internet Suspend/Resume project [KS02] allows users to capture and transfer

the state of machines through the network. It targets the movement of a single

Virtual Machine between two points, and does not address parallel deployment

or per node customisation.

5.2.2 Deployment requirements

In global public computing deployment models followed by other distributed plat-

forms are inadequate due to the following challenging requirements:

• Ease of deployment: It is necessary that the cost of deploying large-scale

distributed services on XenoServers remains low, both in terms of money

and effort. Offering users mechanisms to “configure once, deploy anywhere”

is necessary; after preparing their VM configurations, launching services on

large numbers of servers should be trivial.

3http://www.partimage.org

166

• Efficiency: To provide users full and flexible control of the configuration

of their Virtual Machines, each new VM is specified from the ground up

in terms of a file system image and kernel. In a naive deployment model,

this would incur transfers of several gigabytes to each selected XenoServer

for each service deployment, and would raise the cost of deployment to

potentially prohibitive heights.

• Support for migration: Services are likely to be location sensitive, mean-

ing that service instances may need to be migrated as search tools determine

better deployment positions within the network according to service-specific

criteria. For instance, it may be decided that migrating a service to a new

network location may reduce the total round-trip time between the service

component and its clients, or the hosting costs. For performance and con-

venience, it is necessary that the deployment architecture allows services

to move around at a low cost. The platform must not require that large

amounts of service data be transferred to the new deployment position at

every service migration.

• Parallel deployment: Location-sensitive services may be widely repli-

cated and deployed simultaneously on large numbers of machines around

the world. Transferring large volumes of data required to launch a com-

plex service to large numbers of remote servers incurs significant overhead

in terms of time, as long-haul network transfers can be slow. It also re-

quires more funds for the additional storage space required for storing the

service replicas on each server involved. Furthermore, it increases costs

incurred by international traffic. At the same time, configuration of each

replica individually must be allowed, for the required customisation to be

supported.

5.2.3 Deployment in global public computing

The deployment model proposed in this dissertation is a pull one; instead of

mandating that users transfer data required to deploy a service to the servers

involved, servers pull that data from a location specified by the client when-

ever that is needed. In order to avoid the transfer of several gigabytes for each

deployment, overlaying techniques are used; stock distributions of commodity op-

erating systems that most clients are anticipated to use are persistently cached at

XenoServers as template images. Users describe tailored images in terms of mod-

ifications to these templates, called overlays. This greatly reduces the amount

167

of data that must be shipped to a XenoServer during deployment, reducing the

setup time for a new Virtual Machine. This further enables dynamic replication

or migration of services to proactively respond to offered load.

Although template images are stored locally at the XenoServer, client over-

lays are remotely accessed across the network. This extra level of indirection

means that clients may configure their overlay independently of where their VM

is instantiated. Since the overlay is remote, it may be shared between multiple

VMs running on a set of XenoServers — for example, to facilitate replicated

server instances — and easily accessed by migrating services. Several layers of

stacking are also supported, hence allowing per service instance customisations

and writable directories as required. Example customisations might include new

start-up scripts, SSL certificates, or software packages.

5.2.4 Deployment configurations

The prototype platform implementation supports two different configurations for

deployment, in terms of where an overlay is to be fetched from. Both use a copy-

on-write (CoW) stacking file system to merge a read-only template file system

image stored on the XenoServer’s local disk and an overlay file system stored

remotely, though in slightly different fashions.

The first configuration, shown in Figure 5.13, assumes a XenoStore service

that is trusted by XenoServers and clients. Mounting inside the privileged Man-

agement Virtual Machine (MVM) a storage location that is exported by an un-

trusted remote server can be risky, as disconnected operation is not entirely

supported, thus server failure — or malicious servers — may cause problems

to client operation in several distributed file system protocols such as NFS or

AFS [HH93, She99]. Since XenoStore is trusted, it is reasonable for the MVM to

use client-provided credentials to mount parts of their storage area.

In this configuration, the template file system, fetched from the local disk —

operation 1 in Figure 5.13, is merged with the overlay, fetched from the XenoStore

server — operation 2 in Figure 5.13, by a copy-on-write NFS server4. The NFS

server then re-exports the resulting, overlaid file system to VMs — operation 3 in

Figure 5.13, which boot from NFS-root over the machine-local virtual network.

A CoW NFS server was chosen as NFS is supported by a wide range of guestOSs.

4The copy-on-write NFS server used was developed by the XenoServer team. Its design and

implementation do not constitute part of this dissertation.

168

local
disk (R/O)

1) read template
file system

MVM client VM

user
space

kernel
space

 CoW NFS
server

AFS

2) read
overlay

XenoStore

trusted
AFS server

remote
storage

" / "

ext3 NFSIPSEC

IP
S

E
Coverlay

3) overlaid file system

Internet

Figure 5.13: Service deployment from XenoStore

The second configuration, shown in Figure 5.14, does not require XenoStore:

clients implement the copy-on-write functionality within their VMs directly. They

use a copy-on-write component that again merges the template file system stored

locally — operation 1 in Figure 5.14 — with the overlay stored in the untrusted

storage — operation 2 in Figure 5.14. They can employ their own copy-on-write

NFS server to re-export the overlaid file system to themselves — operation 3

in Figure 5.14. In the case of Linux guests, an implementation of a block-level

copy-on-write device that may achieve better performance can be used instead of

the CoW NFS server. This allows for untrusted storage locations to be mounted,

as they can only affect the operation of unprivileged, client VMs.

Each of the XenoStore and private storage configurations have their benefits

and drawbacks. XenoStore services run on well-provisioned and well-connected

servers, and so access latency should be low and data availability high. However

it does require that users “buy in” to XenoStore. Potential performance benefits

from sharing template file systems within the buffer cache of the MVM are coun-

terbalanced by Xen’s capabilities for inter-VM buffer cache sharing. The private

169

ext3

client VM

user
space

kernel
space

 CoW NFS
server

AFS

private
machine

AFS server

NFS

" / "

MVM

local
disk (R/O)

1) read template
file system

2) read
overlay

remote
storage

overlay

3) overlaid file system

Internet

Figure 5.14: Service deployment from private remote storage

storage approach has a potentially lower barrier to entry ; any user with a file

server may remotely access this to populate their overlay file system. However

it requires some additional complexity at VM boot time, as overlaying has to be

done while the VM is booting — discussed in more detail in the next section.

In both configurations, Virtual Machines are able to lease virtual disks al-

located on sections of the XenoServer’s local disk drives, using the interfaces

exported by Xen. Virtual disks may be employed, for instance, to provide fast

predictable access to a local copy of a file system or database, or to implement a

large file system cache to improve the performance of a network file system.

5.2.5 Prototype implementation

A key component is the stacking CoW NFS server, designed and implemented by

the XenoServer project team, which overlays template images with one or more

user-provided file systems to construct the root file system for a client VM.

The CoW server interprets a .mount file in any directory to specify a list of

file systems to overlay at that subtree; this is presented as a unified namespace

170

in which the order of the mounts specified determines which of two identically-

named objects overrides the other, reminiscent of union directories5 in the file

system of the Plan 9 operating system [PPT+92]. Modifications are written

through to the first listed writable file system on a per file copy-on-write basis.

When using the XenoStore model shown in Figure 5.13, the user-provided de-

ployment specification, submitted by the client to the XenoServer at session cre-

ation, includes a URL identifying the overlaid file system along with a XenoStore-

specific storage access certificate signed by the user that allows the XenoServer

access to that storage for a specified period. XenoDaemon parses the URL, and

uses the scheme portion — such as nfs:// or afs:// — to determine the file sys-

tem type. It then mounts the remote overlay so that it is accessible by the MVM

at a path chosen according to the new VM’s identifier, and notifies the copy-on-

write NFS server. This subsequently exports that locally-accessible path as /

such that it may only be mounted by the user’s Virtual Machine; the link-local

address Xen assigns to each VM is unforgeable, and so is used for this purpose.

Subtrees in multiple file systems can be overlaid at any point in a path, and

hence mounting may be required on-demand. The stacking file system server

invokes the mounter module of the XenoDaemon to mount any such remote

storage systems. This gives a clear separation between the manipulation of the

overlaid namespace — performed by the copy-on-write file system — and the

mounting of templates and remote file systems — carried out by XenoDaemon’s

mounter.

By convention, XenoDaemon uses the convention template:// to name read-

only operating system distribution templates. Immutable naming schemes pro-

vide a guarantee to a client using the template that the contents underneath it

will not change. Mappings are also maintained from well-known names, such

as template://RedHat/9/current, to these immutable identifiers, allowing ‘de-

fault’ distributions to be updated or have security patches applied. Choice of

template identifier allows a client to specify the degree to which a service’s file

system is subject to any template maintenance process.

5An interesting feature of Plan 9 was union directories, allowing directories across different

media or across a network to be bound to other directories transparently. For example, another

computer’s /bin directory can be bound to one’s own, and then this directory will hold both

local binaries and the remote binaries and can use both transparently. Under Unix, mapping

directories in this fashion would make the original disappear, one “covered” the other. Using

the same system, under Plan 9 external devices and resources can be bound to /dev, making

all devices network devices without additional code (from http://www.wikipedia.org).

171

If a VM is being deployed using the private storage model any overlaying must

be performed by the VM itself; in this case the VM has to mount the remote

user-tailored file system, run the copy-on-write file system server, and overlay the

remote file system and a local template. The VM has to perform these operations

as it boots. This is achieved by generating an initial ramdisk image that starts

the file system servers necessary to construct the root file system — including

the optional creation of a persistent cache on virtual disk — and then performs

a chroot to hand control to /sbin/init to let the normal boot process proceed.

Tools to automatically construct an appropriate ramdisk are provided as part of

the XenoDaemon installation package.

5.3 Summary

This chapter has focused on practical issues related to the implementation and de-

ployment of the prototype XenoServer Open Platform. The first part of the chap-

ter presented the internal architecture of platform components, and described how

they deliver the required functionality.

The prototype XenoServer consists of two key components: the first one is

the low-level Xen Virtual Machine Monitor, used to achieve effective protection

and resource isolation of execution environments. The second one, the high-level

XenoDaemon, handles server configuration, user authentication, session creation,

configuration of Virtual Machines to be initialised, admission control, resource

management, accounting, auditing, submission of payment claims, and server

advertisement.

The facilities provided by the prototype XenoClient tool have been presented,

allowing users to conveniently register with XenoCorp, create purchase orders,

discover and select XenoServers, purchase resources on servers, create, monitor,

and manage sessions on XenoServers, and administer storage locations. The

implementation of XenoCorp over a MySQL database has been described. It

stores information about registered clients and XenoServers and details of exist-

ing purchase orders, and provides configuration and coordination information to

its affiliated servers and clients. For supporting discovery of XenoServers, a pro-

totype XenoServer Information Service has been developed as a service running

on the platform. It collects server advertisements and performs simple searches

on those on behalf of users.

172

In the second part of this chapter, a service deployment model suitable for

global public computing settings has been presented. Inadequacies of existing

deployment models have been discussed, and an alternative based on overlaying

techniques has been suggested. The proposed model reduces the amount of data

to be transferred over the network, as demonstrated in the next chapter, while

allowing users to launch customised execution environments on large numbers

of machines around the world. Two practical implementations of the proposed

model have been described.

The platform has been designed and implemented to meet the goals for global

public computing, set in Chapter 2. The following chapter assesses, through

experiments and discussion, the efficiency, scalability, and effectiveness of the

design decisions made and the mechanisms employed.

173

Chapter 6

Evaluation

This section evaluates the design and mechanisms implemented for building the

XenoServer Open Platform for global public computing, by carrying out two types

of practical experiments on the prototype deployment of the platform. Perfor-

mance evaluation assesses the overhead imposed by the XenoServer platform in

terms of time and network traffic. Scalability tests measure the ability of the

platform to cope with increasing numbers of participants.

The principal goal of this chapter is to demonstrate the overall effectiveness

of the architecture’s design and implemented mechanisms. Given the facility

provided by the prototype XenoServer platform and the results of the perfor-

mance and scalability experiments, I examine in detail how each of the design

requirements that have been set in Chapter 2 is met.

6.1 Experimental setup

All experiments were performed using machines connected to the Systems Re-

search Group’s local Ethernet. XenoServers were Dell 2650 machines configured

with dual 2.4GHz Xeon processors, 2GB RAM, Broadcom Tigon 3 Gigabit Eth-

ernet NICs, and Hitachi DK32EJ 146GB 10k RPM SCSI disks. XenoCorp was a

Compaq ProLiant DL360 with two 1.4GHz P4 processors, 4GB RAM, Compaq

NC7780 Gigabit Ethernet NICs, and 36.4GB 10k RPM SCSI disks. The ma-

chine used as XenoStore, storing clients’ overlays, was a dual processor 2.4GHz

with 1GB RAM, and was running a stock Andrew File System (AFS) server.

XenoSearch II was deployed on 100 PlanetLab nodes around the world, as ex-

174

XenoSearch II

XenoStore
AFS server

XenoServer

XenoCorp

Client

0.2 ms
580,000 Kbits/sec

85 ms
864 Kbits/sec

60 ms
928 Kbits/sec

168 ms
568 Kbits/sec

85 ms
864 Kb/sec

Dell 2650,
Dual Xeon 2.4GHz,

2GB RAM,
Gigabit Ethernet

P4 2.4GHz,
512MB RAM,

Gigabit Ethernet

Dual P4 1.4GHz,
4GB RAM,

Gigabit Ethernet

Dual Xeon 2.4GHz,
1GB RAM,

Gigabit Ethernet

100 nodes

Figure 6.1: The experimental evaluation setup

plained in [SHH04]. This setup is shown in Figure 6.1, and was used in all

experiments presented in this chapter.

In order to measure wide area network effects under controlled conditions,

the NISTNet [DBCF95] emulator was deployed on a machine configured as an

IP router. NIST allows a single PC set up as a router to emulate a wide variety

of network conditions. Delay and bandwidth limits were specified as shown in

Figure 6.1. This configuration was illustrative of an arrangement in which the

client and the AFS server were in Cambridge, UK, the three XenoServers in New

York, NY, and the XenoCorp in Berkeley, CA. Round-trip times were distributed

normally with a standard deviation of 5% of the mean shown.

6.2 Performance

In this section I evaluate the process of service deployment. I focus on two

applications that are representative of the types of service that are expected

to be common on the XenoServer platform — an Apache web server, and a

Quake 3 game server. I divide the service deployment process into the specific

175

Service Overlay (KB) Total F/S (KB) Proportion

Apache 23,695 2,318,937 1%

Quake3 533,671 2,828,913 18.8%

Table 6.1: Size of copy-on-write overlays

steps identified in Section 3.2.3 and measure the cost of each step, using the

XenoStore deployment model described in the previous chapter.

Preliminary results for service deployment using the private storage model in-

dicated almost identical performance to that of the XenoStore deployment model.

As there is no technical reason to suggest that a significant performance differ-

ence should be expected, the performance of the private storage model is not

investigated further in this dissertation.

6.2.1 Overlay size

Before measuring the deployment process for the two services, overlays have been

prepared for them using the copy-on-write file system server mounted loopback

by a local NFS client over an immutable template.

The template Red Hat 9 file system was persistently cached on the Xeno-

Servers’ local disks, and the overlays were stored and fetched from XenoStore.

The copy-on-write NFS server combined overlays with template images, and ex-

ported the resulting file system to the client VMs to be launched, as described in

Section 5.2.4.

Table 6.1 shows that the total size of modified files required to support the

services is a small fraction of the total file system size. This result demonstrates

the importance of the overlaying functionality; most of the data required for

launching services can be persistently cached on the servers, and overlays that

need to be fetched over the network are small.

Therefore, it can be expected that overlaying will provide efficiency bene-

fits in terms of reducing network traffic and speeding up service deployment.

Recent studies also confirm the significant commonality found in Linux file sys-

tems [PP04].

176

find servers

time (sec)

resume guestOS
running Apache

44.7

create
P.O.

2.5

launch
Apache

3.9 6 8.8 47

operations on
XenoCorp

operations on
XenoSearch

operations on
XenoServers

0

launch guestOS

44.2

launch guestOS launch Quake3

register

2

Figure 6.2: Service deployment timeline, showing the individual operations taking

place and the time needed for each one

6.2.2 Deployment timeline

Measurements of the constituent phases of a service deployment, as shown in

Figure 6.2, were conducted. Each experiment was repeated 100 times; times are

measured as the UK user perceives operations to complete, including processing

time on the user-side for submitting and receiving requests, and network latency

between the components involved. Think times of the users are not measured or

included in the calculations.

Before using the platform, a new user must register with XenoCorp to estab-

lish credentials. This takes around 2 seconds in the prototype implementation; in

a real world deployment this would be dominated by credit card processing delays.

The time recorded as find servers measures the time that XenoSearch II requires

in order to answer a query to locate three XenoServers satisfying a complex re-

source constraint set by the user. The query returns a ranked set of suggestions

meeting the criteria. Using XenoSearch II does not require that users be reg-

istered with XenoCorp; thus, registration and server selection can be done in

parallel.

The next step is for the user to ask XenoCorp for purchase order creation. The

user then builds the deployment specification, loads the corresponding resource

envelope, and contacts the XenoServers directly. The XenoServers perform ad-

mission control and, upon acceptance of the job, configure and instantiate Virtual

Machines (launch guestOS in Figure 6.2). The guest operating systems — Linux

2.4.26 in this example — boot and then deploy the target applications (launch

Apache or Quake3 in Figure 6.2).

177

Components New Resumed

XenoCorp - XenoServer 132 (15KB)

User - XenoCorp 158 (19KB)

User - XenoServer 255 (37KB) 35 (6.5KB)

User - XenoStore 25193 (25.6MB) none

XenoServer - XenoStore 1055 (731KB) 714 (720KB)

Table 6.2: Messages exchanged during deploying a service from a new guestOS and a

previously suspended one (total amount of data exchanged in parentheses)

The results of this experiment are summarised in Figure 6.2. A new user

can join the XenoServer platform, locate a number of suitable XenoServers, and

deploy a new web server in less than 45 seconds and a new Quake3 server in

about 47 seconds. Most of the time spent in service deployment is in booting the

guestOS to host the new service. The timeline also shows an example of using

Xen’s capability to suspend and resume entire guest operating system images.

By restoring an operating system image from a previously saved snapshot the

application deployment time is reduced substantially, to just over 6 seconds in

this example. Most of this time is spent in registering and creating a purchase

order; a previously registered user can resume sessions in just above 2 seconds.

Given that all measured times include wide-area deployment latencies, as

described in 6.1, this is a more than satisfactory result. This is partly due to

the overlaying infrastructure, and partly due to AFS’s caching mechanisms, both

of which significantly reduce the amount of data that have to be fetched from

remote locations.

6.2.3 Network traffic

Table 6.2 shows the average network traffic generated, in terms of size of data

transferred and messages (packets) exchanged, from the register phase through to

the completion of the deploy software stage for an Apache service. The experiment

was carried out in two settings: (a) launching a completely new VM for deploying

Apache and (b) resuming a previously suspended VM.

The user–XenoStore figure accounts for the transfer of the Apache overlay to

the XenoStore AFS server. This operation can be performed off-line, thus does

not delay service deployment. Furthermore, since this is only performed once

178

for each service deployment — or more rarely, if overlays can be shared — and

also since overlays are small compared to entire file systems, this represents a

significant saving on the PlanetLab and Grid models. These models require a

transfer per Virtual Machine instantiation, and at the same time do not provide

the flexibility that overlaying techniques support. This shows the efficiency of the

service deployment mechanisms, and emphasises the ease of service migration and

redeployment using the suspend/resume mechanism.

Note that only approximately 720KB of data were transferred from XenoStore

to XenoServers. This may seem intuitively unexpected, as the overlay size for

a file system that includes the Apache web server is around 23.5MB. This is

partly due to the fact that not all files in the Apache distribution are required

immediately when the web server starts up, and partly due to AFS’s persistent

caching mechanisms; as the experiment was repeated 100 times, it is likely that

the AFS caches on XenoServers were warm in most deployment operations.

Files required by Apache are transparently cached on the XenoServers by AFS,

and need not be fetched over the network from the remote XenoStore at the time

of service deployment. This is an important feature for allowing efficient and

rapid service deployment. AFS writes cached files back to the their permanent

storage location (XenoStore) when they are closed, and this happens after the

service is deployed, producing around 9MB of traffic from each XenoServer to

XenoStore.

6.3 Scalability

As part of the evaluation of the design of the XenoServer Open Platform and its

prototype implementation, it is important to assess its ability to work well under

increasing load.

In this section, I first examine the platform design and main operations from

the point of view of potential scalability concerns raised. Then, I describe exper-

iments conducted to observe the platform’s behaviour as the numbers of partici-

pating XenoServers and clients registered with a XenoCorp increase.

Finally, I employ techniques from operational analysis to measure the com-

ponents’ relative utilisation, and determine thresholds of scaling in a XenoCorp’s

domain, above which bottlenecks emerge to inhibit its further growth.

179

Storage
(XenoStore/web/...)Storage

(XenoStore/web/...)Storage
(XenoStore/web/...)

XenoServer

XenoCorp

XenoServer

XenoServer

XenoServer

XenoServer

Client

Client

Client

Client

Client

... ...

register client,
create purchase order
top-up purchase order

register XenoServer
validate purchase order
charge purchase order

XISXISXIS XenoSearchXISStorage
(XenoStore/web/...)

Figure 6.3: XenoCorp as a potential scalability bottleneck in its domain

6.3.1 Domain scalability

This section discusses scalability issues in the proposed system design, raised

by the different types of participating components and operations carried out be-

tween them. Let us consider a XenoCorp domain, shown in Figure 6.3, consisting

of one XenoCorp, a number of XenoServers and clients, and a number of external

services, such as storage, the XIS, or XenoSearch components.

The XenoServer platform scales with increase in the numbers of clients and

their activity. Thus, clients themselves do not present scalability concerns, as it

is their activity that stimulates scaling in the first place.

XenoServers do not pose any potential scalability concerns either; if the num-

bers of clients and XenoServers increase in proportion, then the average workload

of each XenoServer will remain constant. If clients increase faster than Xeno-

Servers, placing more workload on each server, some servers will get more utilised

than others. XenoServer owners are given the flexibility to set the prices of their

own resources themselves. Together with the full control that users are allowed

over which servers and resources they select, this ensures that the platform oper-

ates as a “free market”, where load may naturally be distributed towards servers

180

that offer better deals. At the same time, if load on many servers increases as a

result of growing customer demand, the business potential may attract more new

XenoServers in the platform. XenoServer owners can price their resources higher

than before, thus generating additional profit to acquire more machines.

Scalability of components that are not in the core infrastructure, such as

the XIS, external storage, or XenoSearch, is not tied to the scalability of the

platform itself, mainly because the use of such components is optional and not

on the critical path of platform operation. This is analogous to the scalability

of on-line search engines not affecting the growth of the Internet; as there can

be an unlimited number of such third-party services, competing and coexisting,

it is expected that load will be naturally distributed, and client demand will

determine the number of support services in the platform.

The only potential inhibiting factor for platform growth is XenoCorp: it is

only one in each domain, it is on the critical path of platform operation, and its

use by both XenoServers and clients is mandatory. At some point of domain ex-

pansion, it may not be able to cope with the increasing number of participants. I

demonstrate this behaviour by conducting experiments described in Section 6.3.4.

As XenoCorp is a potential impediment to platform scalability, it should be

limited to serving as few frequent operations as possible; this is one of the rea-

sons why server discovery has been chosen to be a third-party service rather

than functionality provided by XenoCorp as part of the core infrastructure. This

also avoids accusations that XenoCorp may favour particular XenoServers, sup-

ports local control, and allows for competition and specialisation of search service

providers.

The following are the main operations in the XenoServer platform, and the

potential scalability concerns for each one:

• Registration. Clients and XenoServers contact XenoCorp to obtain their

credentials. This operation is infrequent, as it only occurs when a new

client or XenoServer joins the domain, and does not present any potential

scalability problems.

• Purchase order creation. Clients request that XenoCorp creates pur-

chase orders to be used for funding sessions on XenoServers. This operation

is also relatively infrequent, as clients are anticipated not to create a sep-

arate order per session but to use a single purchase order to create several

sessions on XenoServers.

181

• Server discovery. XenoServers independently store their advertisements

to their individual storage locations. Clients directly contact a third-party,

such as the XIS or a XenoSearch system, to retrieve information about

available servers.

• Service deployment. Clients contact XenoServers directly to deploy

services. As XenoCorp does not participate in the deployment process, this

operation does not present any scalability risks.

• Purchase order validation. XenoServers communicate with XenoCorp

to check if a purchase order contains an adequate amount to fund a session,

and ring-fence that amount. This operation is more lightweight than server

discovery. Whether it is frequent or not depends on the validation strat-

egy that each XenoCorp applies according to current conditions, on a per

purchase order basis; they may not validate some orders, or none at all if

their sponsors are trusted, or if XenoCorps are confident that it is possible

to track them down, should they try to avoid paying. XenoCorps may also

demand that orders be validated in advance but at a lower frequency, or

only on a random sample, if load is high and increasing.

• Service and environment management. Clients contact XenoServers

to administer services they have launched or to perform management oper-

ations on the execution environments hosting the tasks — such as stopping

or restarting. No potential scalability issues exist here, as XenoCorp is not

involved.

• Charging purchase order. XenoServers submit accounting and billing

information to XenoCorp to request that charges be made against a par-

ticular purchase order that has been used for funding a session. Similarly

to purchase order validation, XenoCorps may adjust charging strategies ac-

cording to their current load — for instance, buffer and carry out charging

in batches when load is low.

182

6.3.2 Experiments

To assess the scalability of the prototype XenoServer platform, experiments were

conducted to measure properties of the system in conditions that resemble its

normal operation under increasing numbers of participating XenoServers and

clients. The same experimental setting as in previous sections, shown in Fig-

ure 6.1, was used to run a XenoCorp and a number of XenoServers and clients.

All experiments focused on a single XenoCorp’s domain.

Note that a difference between the previous set of experiments and the scala-

bility tests presented here is that in the latter case session creations were “dry”;

no VMs were launched on the XenoServers as a result of session creations. This

allowed running relatively large numbers of XenoDaemons on a single machine,

which would not have been possible otherwise due to hardware — mainly memory

— limitations combined with inefficient use of memory by Java RMI.

Three scenarios of system operation were considered: in the first one, called

draconian, XenoServers make sure they do not lose any profit; before each session

creation, they validate the purchase order to be used and ring-fence the amount

corresponding to the resource reservations to be made in the sponsor’s account

to guarantee it is available for charging at any later stage.

In the second, easygoing scenario, XenoServers do not validate purchase orders

in advance; they trust that clients generally pay, and if not they are confident

they can trace them and pursue payments. An analogy can be drawn between

this model and the way restaurants operate; a diner’s ability to pay is rarely

verified before the meal. In both the draconian and easygoing cases XenoServers

charge clients after sessions are finished and destroyed, in batches of 50.

Finally, in the lazy scenario XenoServers neither validate purchase orders nor

charge clients soon after they destroy their sessions. In this case, XenoCorp has

agreed with XenoServers that payment claims may only be submitted in batches

at times of low load, for example during the night.

Note that XenoCorps can select the approach that they follow — draconian,

easygoing, lazy, or any custom policy — on a per purchase order basis; they

can apply different policies to different clients, according to their history and

credibility, and the associated estimated risk. In the experiments, I looked at the

“extreme” cases where the same policy applied to all clients, both for simplicity

and for determining a domain’s scalability bounds.

183

Nservers Nclients Nsessions/client Nsessions

5 15 2 30

10 30 3 90

15 45 5 225

20 60 6 360

25 75 8 600

30 90 10 900

35 105 11 1155

40 120 13 1560

45 135 15 2025

Table 6.3: System parameters used for domain growth reconstruction

The system parameters that were varied to reflect domain growth from 30 to

2025 active sessions are:

• Nservers is the number of active XenoServers in the domain

• Nclients is the number of active XenoClients in the domain

• Nsessions/client is the number of sessions each XenoClient launches

• Nsessions is the approximate number of active sessions in the domain at any

time

For each scenario and stage of domain growth — combination of system param-

eters, represented by a row in Table 6.3 — the following iteration was executed

to reconstruct the platform operation:

1. XenoCorp starts

2. Nservers XenoServers start

3. Nclients XenoClients start

4. Each XenoClient selects Nsessions/client XenoServers at random

5. Each XenoClient registers with XenoCorp and creates a purchase order

after a random amount of time tregister, where 0 < tregister < 20 sec

184

 0

 5

 10

 15

 20

 30 90 225 360 600 900 1155 1560 2025

U
se

d
C

P
U

 o
n

X
en

oC
or

p
(%

)

Approximate number of active sessions

draconian
easygoing

lazy

Figure 6.4: CPU utilisation on XenoCorp as its domain expands (graph scaled to a

maximum of 20%)

6. Each XenoClient creates Nsessions/client sessions, one on each of the randomly

selected XenoServers, after time tdeploy, where 0 < tdeploy < 60 sec.

7. Each XenoClient destroys the sessions it created after time tdestroy, where

0 < tdestroy < 120 sec

8. Each XenoClient returns to stage 6 and repeats.

The algorithm was run for a 20-minute period for each combination of scenario

and system parameters. Aspects of the system’s behaviour, such as the number

of requests each component received, its average CPU and memory usage, and

network traffic generated, were measured in all the aforementioned scenarios and

increasing load conditions.

6.3.3 Performance and network traffic effects

I describe the effects of domain growth on XenoCorp in terms of CPU and main

memory utilisation, and network traffic to and from XenoCorp. CPU and memory

185

 0

 5

 10

 15

 20

 25

 30

 35

 40

 30 90 225 360 600 900 1155 1560 2025

U
se

d
m

em
or

y
on

 X
en

oC
or

p
(%

)

Approximate number of active sessions

draconian
easygoing

lazy

Figure 6.5: Memory utilisation on XenoCorp as its domain expands (graph scaled to

a maximum of 40%)

utilisation figures were obtained using Linux’s top command1, and network traffic

measurements using the Ethereal [OR04] network protocol analyser. Results of

this experiment are shown in Figures 6.4, 6.5, and 6.6.

The obtained results show that CPU utilisation on XenoCorp increases slightly

in the lazy and easygoing scenarios and more steeply in the draconian case as

the numbers of participating servers and clients increase, as shown in Figure 6.4.

Memory usage on XenoCorp remains largely unaffected by domain growth, as

shown in Figure 6.5.

This behaviour can be explained by considering that most of the part of

memory that appears as “used” is the part obtained by the Java Virtual Machine

at start-up and reserved for the applications to be deployed on it, called the heap.

Management of the heap and memory allocation to threads is handled by JVM

itself; the heap appears as a reserved memory portion of a fixed size to the

operating system.

Moreover, the heap is cleaned-up periodically by the garbage collector, which

removes unused — not referenced — objects to free up space. As the domain size

1http://sourceforge.net/projects/unixtop

186

 0

 100

 200

 300

 400

 500

 600

 700

 30 90 225 360 600 900 1155 1560 2025

N
et

w
or

k
tra

ffi
c

(K
bi

ts
/s

ec
)

Approximate number of active sessions

draconian
easygoing

lazy

Figure 6.6: Network traffic to/from XenoCorp as its domain expands

increases, XenoCorp has to carry out more and more operations per time unit.

This results in higher CPU utilisation because of both request processing and

garbage collection; under increased load, XenoCorp’s heap fills up quicker, and

the garbage collector has to run more often, which consumes increasing amounts

of CPU cycles.

Regarding the network traffic generated to and from XenoCorp — as shown

in Figure 6.6 — results are very close to what was expected. The draconian

approach requires much more communication with XenoCorp per created session

than the easygoing and lazy scenarios. The latter two scale considerably better,

generating less than 42 and 18 Kbits/sec respectively for 2025 active sessions,

compared to approximately 591 Kbits/sec under draconian tracking. This is

because of the looser relationship between the number of sessions created and

operations involving XenoCorp under easygoing and lazy tracking.

The above numbers impact the cost for XenoCorp; hence unreliable users

that need “draconian” tracking may be requested to pay more to cover for the

additional resource usage their tracking incurs. Assuming that the $2480 machine

used as the prototype XenoCorp is to be replaced in two years, each second

of CPU time costs 0.004c. Assuming also that a permanent guaranteed 100

Mbits/sec connection to the Internet costs $2000 — at a standard co-location

187

Scenario CPU cycles Traffic Total

Draconian 0.011 0.00400 0.01500

Easygoing 0.004 0.00028 0.00428

Lazy 0.003 0.00012 0.00312

Table 6.4: Cost in c (US$ cents) for XenoCorp handling one client for 20 minutes in

each scenario

facility, at the time of writing — the estimated costs incurred by one client

in each of the three scenarios are shown in Table 6.4. An unreliable customer

may be requested to pay up to approximately 0.011c more per 20 minutes than

customers for which easygoing tracking is applied. This can be implemented

as an agreement between XenoCorp and XenoServers that would see XenoCorp

retaining a higher proportion of payments for resource consumption for unreliable

users. XenoServers would cover that by applying an additional surcharge to those

users or pricing their resources differently for such user groups — this can be

achieved using the flexible resource management scheme proposed in Chapter 4.

6.3.4 Bottleneck analysis

A bottleneck is one process in a chain of processes, such that its limited capacity

reduces the capacity of the whole chain2. Saturation in a communications system

is the condition in which a component of the system has reached its maximum

traffic-handling capacity2.

These two concepts are often confused, but differ fundamentally; being a bot-

tleneck is an inherent property of a component in a particular system, as it is

determined by its capacity to handle workload in relation to other components’

capacity, and is not related to its current load. Saturation is a temporary con-

dition, in which the component is fully utilised. A bottleneck component is a

bottleneck regardless of whether it is currently saturated or not. A bottleneck

component is the one to saturate first in a system, and a saturated bottleneck

slows down the rest of the system.

In the following sections, I examine the behaviour of the prototype XenoServer

Open Platform to detect bottlenecks at different stages of domain growth.

2Definitions from http://www.wikipedia.org.

188

6.3.4.1 Background

Operational analysis offers a methodology for identifying bottlenecks in a simple

interactive system. For simplicity, the system is assumed to be load-independent3

— the throughput of components is not affected by the queue length at each

component.

The following quantities are defined:

• C is the number of completions of requests in the system, and Ci is the

number of completions at component i.

• Vi is the visit count for component i, indicating the number of completions

of requests at that component for every completion in the entire system:

Vi =
Ci
C

• Si is the average service requirement for component i. This denotes the

mean time that the component spends for serving each request.

• X is the system throughput — the mean number of requests the system

serves per time unit — and Xi is the throughput of component i. This can

be expressed as

Xi = ViX

• Ui is the utilisation of component i, indicating the proportion of the time

that the component is busy. Utilisation can be expressed as

Ui = XiSi

As Vi are intrinsic properties of system design and setup in a simple interactive

system, and Si are independent of the queue length at i — because the system

is load-independent — the ratio of utilisation of components i and j

3This assumption may not be accurate in a real deployment; if the memory utilisation

on XenoCorp increases beyond a specific threshold, intensive garbage collection will require

additional processing resources.

189

Ui
Uj

=
XiSi
XjSj

=
ViXSi
VjXSj

=
ViSi
VjSj

(6.1)

indicates which component of i and j will be the first to achieve 100% utilisation;

if the ratio is greater than one then i will saturate first, otherwise j will. This can

be used to determine the system bottleneck, as this will be the component that

saturates first. The following section uses this metric to examine the system’s

behaviour under increasing load.

6.3.4.2 Utilisation ratio measurement

In the case of the XenoServer Open Platform, each XenoCorp is a single central

component in its domain, which has to cope with potentially ever increasing

numbers of participating servers and clients. Intuitively, it is very likely that

each XenoCorp will be a bottleneck at some point of domain growth.

This experiment aimed to determine the threshold of domain size, above which

XenoCorp becomes a bottleneck in its domain. Note, however, that the existence

of a bottleneck does not indicate saturation; the utilisation of a saturated bot-

tleneck component i is Ui → 1.

In this experiment, I measured the visit count Vi for XenoCorp and each

XenoDaemon for all combinations of parameters of domain growth and scenarios

in the experimental setting described in Section 6.3.2, using counters added in the

prototype platform code. The average service requirement Si for each component

was calculated using the times required for performing each platform operation,

which were measured earlier in Section 6.2.2. Note that, since Si are based on

times measured in a setting where session creation did launch VMs on the servers,

results of this section do not correspond to a “dry” session creation scenario.

I used the Vi and Si values obtained to calculate the ratio of utilisation of

XenoCorp to XenoDaemon — as in Equation 6.1 — as a function of domain

growth, and plotted the results in Figure 6.7.

The figure shows that for all scenarios and domain sizes measured the util-

isation ratio was well below one, which means that the bottlenecks were Xeno-

Daemon instances, not XenoCorp. For fewer than 2025 active sessions, Xeno-

Daemon instances will saturate first; thus, even if they all worked at capacity,

XenoCorp would be able to cope comfortably.

190

 0

 0.005

 0.01

 0.015

 0.02

 30 90 225 360 600 900 1155 1560 2025

U
til

is
at

io
n

ra
tio

 (X
en

oC
or

p/
X

en
oD

ae
m

on
)

Approximate number of active sessions

draconian
easygoing

lazy

Figure 6.7: XenoCorp/XenoDaemon utilisation ratio

Scenario Nservers Nclients Nsessions/client Nsessions

Draconian 359 1077 119 129,000

Easygoing 664 1992 221 441,000

Lazy 1464 4392 488 2,142,000

Table 6.5: Estimated threshold above which XenoCorp becomes a bottleneck in the

system in all three operation scenarios

However, the ratio, while low, is linearly increasing. It can be safely assumed

that the ratio increase will remain linear for higher numbers of active sessions

as the system is assumed to be load-independent — thus Si is constant for each

component — and the proportions of the number of servers to that of clients

and the number of servers to that of active sessions are constant — thus Vi will

increase linearly. Then the graph can be extrapolated to determine the threshold

above which XenoCorp will become a bottleneck in its domain — the point at

which the ratio will surpass one. Results of this projection are summarised in

Table 6.5.

As expected, the lazy scenario is the most scalable, as XenoCorp is effectively

only registering clients and XenoServers when they first join the platform and

create purchase orders for them. After that, the number of participating clients

191

and servers makes no difference to XenoCorp’s workload, as it is not involved in

purchase order validation or payment claims.

Each lazy XenoCorp can cope, without being a bottleneck in the system,

with more than 2.1 million concurrently active sessions; this corresponds to 4392

clients, each one maintaining sessions on 488 of the 1464 XenoServers present.

XenoCorp may be able to cope with higher numbers, depending on the utilisation

of XenoServers, but will be the first component to saturate.

This is an encouraging result, given that the chosen experimental parameters

generate conditions of exceptionally high load ; in the experiments undertaken,

clients create sessions on a third of all available XenoServers at most every three

minutes. Such conditions would be hardly realistic in a real-world platform de-

ployment, where most clients would need fewer machines and would deploy more

long-lived sessions. Also, multiple, competing XenoCorps will exist in a real-

world deployment, allowing for much higher participation figures. Furthermore,

real XenoCorps are anticipated to comprise more expensive, high-end hardware,

and thus be able to scale to much higher numbers.

6.4 Effectiveness

Previous sections in this chapter have shown that the implementation of the

XenoServer platform provides an efficient and scalable service deployment infras-

tructure. Here, I discuss in detail how each of the requirements for global public

computing — as identified in Section 2.4.6 — is met through a combination of

design decisions, mechanisms provided, and implementation choices followed.

Ease of deployment. Mechanisms for efficient and easy global-scale service

deployment allow customers to dynamically obtain computing resources on de-

mand, and run services on a number of XenoServers around the world.

Service deployment is made easy as users do not have to push their services’

data on to the servers where the services are to be deployed, but can instead

specify the location from which all necessary data is to be pulled by the servers.

The approach of using overlays significantly eases management of replicated

services. Since overlays can be constructed ahead of time and may be applied to

more than one deployed instance, no administrative intervention is required when

192

an instance migrates. This is in contrast to PlanetLab or Grids which require

users to actively transfer files to servers.

Common distribution file system templates and operating system kernels are

cached persistently on XenoServers for efficiency. The copy-on-write architecture

used allows users to maintain customised views of these, and ensures that only

what is required to allow this customisation is fetched over the network. Parallel

deployment allows users to deploy services on several XenoServers concurrently.

The efficiency of the developed mechanisms is evident from the results of the

performance evaluation experiments, which show that users can deploy complex

services on multiple XenoServers in 45 seconds. Also, experiments have shown

that, using the XenoServer platform’s overlaying deployment mechanisms, much

smaller amounts of data had to be transferred to the servers, than if the con-

ventional “push” deployment model was followed — up to 99% less if an Apache

web server was to be launched.

The overlaying functionality provided allows users to trade off the degree of

customisation they require against the ensuing impact on performance, network

traffic, and the associated real-world costs. As demonstrated in Section 6.2.1,

the relative size of an overlay for realistic service deployments is generally small;

however there is nothing to prevent a user from specifying an entirely bespoke

file system should they require it.

Non-cooperative users. The XenoServer platform does not assume a cooper-

ative user community, unlike PlanetLab, Grids, and scientific computing applica-

tions. Server owners are given explicit monetary rewards for providing resources

on their machines.

XenoServers account for resources consumed by the various services and re-

quest payments from XenoCorp, providing billing and accounting details. Xeno-

Corp then passes the charges on to the users, and retains some proportion of

these for funding its own operation. The accounting, charging, and billing infras-

tructure has been described in Chapter 3.

Untrusted code. The XenoServer Open Platform anticipates competing users

running potentially unsafe and untrusted services. For that reason, it has been

chosen to provide harder resource isolation and protection at a layer below the

operating system using the Xen Virtual Machine Monitor.

193

Xen securely multiplexes several operating system instances on a single physi-

cal machine. As shown in [BDF+03a], Xen does protect VMs effectively; extensive

tests, presented in that paper, have shown that even intentionally malicious code

running in a VM has not been able to adversely affect other VMs running on the

same machine in any way.

However, there are some cases where the inter-VM protection provided by

Xen is not adequate; services may use resources on XenoServers not to directly

harm services running in other VMs, but to perform illegal activities, such as

spread viruses, perform port-scans, or participate in distributed denial of service

(DDoS) attacks.

This problem is tackled by a combination of three techniques: first, all users

of the platform can be tied to real-world identities, for instance through credit

card or bank account details provided; this does not allow the comfort of full

anonymity and provides the threat of prosecution. Second, XenoServers record

information about service activity in audit trails, to allow tracking down the spon-

sor of malicious actions. Third, external services such as XenoTrust [DHH+03]

can be employed to allow clients and XenoServers to exchange opinions about

other servers and clients according to their past experiences. In a free-market

environment, such as the one of the XenoServer Open Platform, it is envisaged

that servers and clients who get consistently bad reputation will naturally get

isolated, not only if XenoCorp pursues disciplinary action against them, but as

a result of the unwillingness of others to pursue business with them.

Out-of-the-box applications. In the prototype implementation, services are

hosted in VMs running on Xen, which are defined from the ground up at deploy-

ment time, in terms of the operating system kernel image and root file system

to be used. Additionally, the XenoServer platform does not require that services

to be deployed are programmed to use a platform-wide API or middleware. The

platform can run unmodified, out-of-the-box services, written and compiled to

run on normal, commodity operating systems. The interfaces that VMs present

to applications are not affected by the underlying presence of Xen.

The advantage of using entirely customisable guestOSs as execution environ-

ments presents another important benefit; experimental kernel code can be safely

deployed on the servers without the possibility of harming any other service. This

allows using the platform’s wide-area deployment facilities for operating systems

or networking research.

194

However, as Xen does not perform full virtualisation of physical resources for

performance reasons, it is necessary that guestOSs are themselves ported to Xen.

While the modifications required are not significant, as shown in [BDF+03a],

this presents a limitation of the VMM-based approach; it is not possible to run

off-the-shelf operating systems.

In the case of global public computing, it is much more important to accommo-

date unmodified applications than unmodified guestOSs; common guestOSs are

few, and can be modified relatively easily, whereas user applications are practi-

cally infinite, and modifying those requires significantly higher amounts of effort.

It is important that the cost of entry to the end users is low; a self-financing

public computing platform can afford employing a few trained software engineers

to modify popular guestOSs whenever a new major version is released4.

Self-financing. The business model behind the XenoServer platform differs sig-

nificantly from those found in other deployment infrastructures; those are usually

built, funded, and maintained by universities or research institutes. Resources

are provided for free in the interest of science.

The XenoServer platform aims to be self-financing. Corporations owning

XenoServers meet the costs of maintaining and upgrading servers by profit gen-

erated by selling their servers’ resources to users. XenoCorp retains a portion of

payments to XenoServers, which funds its own operation and potentially that of

the XIS, XenoSearch, and XenoStore, if these services are provided by XenoCorp.

According to the arrangement between XenoCorps and XenoServers in their

domain, XenoServer payments can be proportional to resource consumption on

the servers, a flat monthly payment, or proportional to XenoCorp’s profit. Other

custom payment options may also be devised and employed.

The built-in mechanisms that the XenoServer platform provides for support-

ing competing untrusted users, and facilitating accurate accounting, charging,

and billing, are reusable for implementing utility computing functionality. The

framework for flexible and open description of resources and pricing schemes

for the coordination of common descriptions, allows partitioning and selling re-

sources easily. The role-based resource management facility provides support for

policy-based fine-grained control over resources to be sold.

4Barring potential legal concerns related to licensing for porting commercial operating sys-

tems on Xen, which are not investigated by this dissertation.

195

Short timescales. As shown by the results of the performance evaluation ex-

periments, it is possible to acquire resources on several XenoServers around the

world and deploy complex distributed services in entirely new Virtual Machines

in less than 45 seconds. Thus, there is nothing to prevent users from reserving

resources even only for a few minutes if this suits their services’ needs to keep

hosting costs down and achieve greater flexibility in terms of relocating their

resources according to geographical changes in demand.

A number of mechanisms are employed to enhance the efficiency of service

deployment; cached XenoSearch results at the client side, AFS’s caching mech-

anisms, persistently cached template file systems and operating system images

stored locally on XenoServers, and the overlaying functionality provided. When

rapid deployment is required, this can be achieved by storing an environment’s

memory image on disk when it is stopped and then resuming it, rather than build-

ing a new VM from scratch when a new session is started. This allows resuming

execution environments over very short timescales, in just above 2 seconds.

Incremental Scalability. As shown by experiments described in Section 6.3,

the prototype deployment of the XenoServer Open Platform is able to scale to

large numbers of participating components — more than 2.1 million5 simulta-

neous sessions in each XenoCorp’s domain under exceptionally heavy load —

without any component presenting a performance bottleneck.

At the same time, as the operation and coexistence of multiple, competing

XenoCorps and third-party services — such as the XIS, server discovery services,

and external storage services — is allowed and encouraged, the system can grow

to accommodate much greater numbers of participants on demand.

Flexible server selection. The XenoServer platform comprises open and ex-

tensible resource discovery mechanisms; servers advertise their resource availabil-

ity at globally accessible locations, and then the XenoServer Information Service

(XIS) collects and stores those in a structured manner. Other higher-level ser-

vices, such as XenoSearch, can be employed for more advanced searching facility.

No single matchmaker component or matchmaking algorithm is assumed in

the XenoServer platform. Multiple different server discovery services (such as

XenoSearch, XIS) can coexist, providing different specialised searching algo-

5This result is accurate only if the system is load-independent.

196

rithms, or simply competing with each other. At the same time, as resource

discovery is not part of the core infrastructure of the XenoServer platform, al-

ternative components may be developed that carry out matchmaking in entirely

different ways from the XIS and XenoSearch. Users are free not to use any server

discovery mechanisms at all if they so wish, and have ultimate control on which

servers they select.

This has a number of important benefits; first, it enhances openness and

extensibility of the platform, as it allows the evolution of matchmaker components

to meet specialised needs of the user community that cannot be anticipated at

the time the XenoServer platform is designed; new distributed services that may

emerge once the enabling global-scale service deployment technology is in place

may require searching features that are not obvious at the time of platform design.

Furthermore, it allows for incremental scalability, as decentralising match-

making removes the matchmaker bottleneck found in distributed deployment

platforms. Also, it removes single points of failure, as if one XenoSearch system

is unavailable users can simply consult another one.

Resource-oriented vs. location-oriented. As discussed in the previous

paragraph, different XenoSearch systems may implement any kind of searching

algorithms the customer communities they target require. Some may support

traditional resource-oriented server discovery — for instance, answering queries

such as “suggest a group of servers that will carry out a specific distributed job

in less than five minutes”. Others may also provide search functionality based on

different metrics, such as location-based resource discovery — answering queries

such as “suggest a server that will be located at a point in the network which

minimises the total round-trip time among the server and a particular set of

clients”. No architectural decision has been made to tie the platform to either

model, or any other specific model of server discovery.

Resource description coordination. While XenoServers can independently

describe and advertise their resources, the platform provides coordination mech-

anisms to limit the use of arbitrary names that would lead to inconsistencies —

as described in Section 4.2.3. Common resource types and pricing units are given

uniform platform-wide names, while servers retain the ability to independently

describe new types of resources or pricing schemes, to allow for unusual hardware

or exotic charging set-ups.

197

Resource management. In the XenoServers’ case, resource management is

carried out using two different mechanisms. An implicit mechanism for influenc-

ing the way resources are allocated, which is not present in Grids and PlanetLab,

is that of pricing. XenoServer owners can adjust the prices they associate with

the different resources according to demand and availability, thus influencing fu-

ture demand and trying to ensure costs of upgrades and acquisition of additional

hardware when required are covered.

Explicit resource management can also be achieved using the role-based re-

source management framework presented in Chapter 4. VCI interfaces exported

by the Xen Virtual Machine Monitor are used to enforce restrictions on the re-

sources that each user VM is allowed to use, according to the recommendations

of the admission controller module of the XenoDaemon.

Policy-based management. The role-based resource management framework

allows easy and convenient management of resources on XenoServers. It provides

expressive and flexible mechanisms to participating entities for defining role-based

policies, influencing how resources are to be apportioned between different users

or user groups on the servers.

Convenient management. The role-based approach employed for managing

resource allocation provides significant management conveniences, and offers an

intuitive and flexible, yet sufficiently expressive and powerful, technique for ex-

pressing resource management policies. Users can be grouped according to their

properties or membership of other roles, and enumeration of principals is not

required.

Access to resources is quantified ; RBRM uses the mechanisms provided for

policy federation and overlapping resolution to determine how much of each re-

source a user is entitled to get. It also allows much more fine-grained control of a

server’s resources than most resource management architectures found in distri-

buted deployment platforms; for example, it supports defining different allocation

policies for different resources on the same server, or even for different parts of

the same resource that are priced differently.

Local control. In the XenoServer platform, the evaluation of resource man-

agement policies is carried out at an explicit admission control stage on the

XenoServers themselves — when users contact servers directly to deploy services.

198

This is in contrast to previously available deployment infrastructures, which car-

ried out policy evaluation on the matchmaker at the resource discovery stage —

when users are searching for suitable servers.

The approach employed by XenoServers provides significant flexibility ; as poli-

cies are self-contained objects, not carried in the resource advertisements, chang-

ing policies on a server does not require changing the server advertisements that

have been submitted. Also, it provides a clearer separation of control and func-

tionality ; evaluating policies locally means that no remote matchmaker has to be

trusted, and ultimate control naturally remains on the server owners.

At the same time, individual XenoServers are allowed to define their own

resources, decide on the pricing schemes to be used, and advertise their resource

availability accordingly. No central component is responsible of ensuring that they

do not present false information about their capabilities; in cases of misbehaviour,

reputation systems, audit trails, and information about their owners maintained

by XenoCorp can be used for penalising them.

Furthermore, the XenoServer platform does not aim to provide platform-wide

optimisation of resource usage, as some distributed deployment platforms do. It

provides the mechanisms required for resource discovery and server selection, and

allows end-to-end decisions to be made; clients can request any resources on any

servers — provided that they are able to pay — and servers may accept or deny

any such request, according to the federated resource management policies de-

fined. The end-to-end principle simplifies the business model, allows competition

of services, and independent control of XenoServers.

Federated and overlapping policies. The proposed resource management

framework allows multiple entities to independently define federated resource allo-

cation policies. Server owners, XenoCorp services, local network administrators,

affiliated organisations, law enforcement agencies, and other entities are allowed

to express and maintain subjective views on role memberships as well as whether

and to what extent to take policies expressed by other entities into account. The

ability to express federated policies is crucial for global public computing because

of the inherently federated (not centrally controlled) nature of such systems. Dif-

ferent stakeholders have different interests and potentially different views on how

resources are to be apportioned on the servers.

Federated policies expressed by independent entities can be overlapping : when

more than one policy rule matches exist for the same resource and user group on

199

the same machine. In conventional resource management systems, such overlaps

are either quietly ignored, or require manual intervention to be resolved. The pro-

posed framework provides mechanisms for specifying explicitly how such overlaps

are to be resolved and removes the need for manual intervention. This is another

important feature of the XenoServer platform; distributively-owned systems are

likely to comprise entities with distinct goals and interests, thus with different

and possibly overlapping resource allocation policies. At the same time, due to

the global scale in which the platform is envisaged to operate, the availability of

manual intervention when required cannot be assumed.

200

Chapter 7

Conclusion

Change is inevitable - except from a vending machine.

— Robert C. Gallagher

XenoServers are not about changing the world but rather are building the in-

frastructure that allows it to change by providing a compelling platform for

general-purpose public computing. Challenges in service deployment, resource

description and pricing, server selection, resource management, accounting, and

charging have been addressed so as to substantially lower the barrier to entry for

deploying new services and applications on a global scale, allowing the participa-

tion of uncooperative, competing, and untrusted users.

This has been achieved by a combination of novel ideas — such as the proposed

role-based resource management framework for expressing federated policies —

with off-the-shelf components — such as the Xen Virtual Machine Monitor, and

AFS. New deployment models have been devised to allow users to launch their

applications on large numbers of machines easily and quickly. At the same time,

the use of the Xen VMM for low-level multiplexing of VMs has been instrumental

in maintaining a low cost of entry, as it allows out-of-the-box applications to run on

client VMs, without requiring that they be rewritten to comply with a particular

platform-wide API or middleware or to be executable on a specific operating

system.

A prototype implementation of the XenoServer Open Platform has been de-

veloped, deployed, and shown to be functional on a number of machines in the

local network of the Systems Research Group. Performance and scalability eval-

uation results — in a simulated wide-area setting — have shown that the system

201

can operate efficiently and facilitate rapid service deployment, allowing users to

launch complex services on large numbers of XenoServers around the world in

less than 45 seconds. At the same time, it has been shown that, even in the mod-

est experimental setting on which the experiments were attempted — real-world

XenoCorps would possess more advanced and expensive hardware — and under

exceptionally heavy load, each XenoCorp’s domain can scale to more than 2.1

million active sessions without presenting performance bottlenecks.

7.1 Contributions

This dissertation makes the following contributions:

• Introduces the concept of general-purpose, commercial, global public com-

puting, and the main research challenges that need to be tackled by systems

providing such functionality.

• Describes the design and implementation of the XenoServer Open Platform

for global public computing, and demonstrates that the mechanisms and

techniques employed work efficiently and scalably.

• Provides reusable public computing mechanisms, such as a comprehensive

and flexible role-based resource management framework, and an efficient

global-scale service deployment architecture.

The XenoServer Open Platform presented in this dissertation has employed the

Xen Virtual Machine Monitor, which securely isolates execution environments

on a XenoServer, XenoSearch, which supports high-level server discovery, and

the copy-on-write NFS server, to perform overlaying. All three components have

been designed and developed by other members of the XenoServer team and are

not part of the work presented in this dissertation.

7.2 Future work

Work presented in this dissertation has demonstrated that building an infras-

tructure to allow the deployment of untrusted global-scale services by competing

202

users is possible. The internal roll-out of the XenoServer platform has been de-

scribed, and initial experimental results have been analysed. The next step will

be to deploy the platform on larger numbers of machines outside the Computer

Laboratory network, enabling the development of meaningful next-generation

distributed services.

In parallel with that, the autonomy of servers and clients raises important

trust management challenges, for instance requiring mechanisms for the dissemi-

nation of participants’ opinions about others. Security aspects, such as automated

recognition and interception of malicious service activity, need to be investigated.

Furthermore, the applicability of dynamic pricing can be examined, both as a

means of maximising revenue for XenoServer owners and as a mechanism for

regulating server congestion.

Large-scale deployment. Having tested the platform on an internal deploy-

ment setting, a large-scale deployment, outside the internal Computer Laboratory

network, is planned. This will provide valuable feedback for potential refinements

of platform implementation aspects, and open the way for a beta trial ; this will

make the platform open to the general public, and will use credit cards for au-

thentication and for billing nominal sums for resource credits on the platform.

The next stage will be to see whether the XenoServer platform prototype can

be transitioned into a sustainable self-financing infrastructure which both indi-

viduals and commercial organisations are prepared to trust for their application

deployment needs.

Next-generation services. The existence of an infrastructure that allows

users to deploy any kind of global-scale distributed services easily, efficiently,

and at a low cost, will give birth to new types of on-line services that do not ex-

ist at the time of writing because of limitations of the existing service deployment

technology. Instead of maintaining a static network of server mirrors and requir-

ing that the user communicates with the closest one, next-generation distributed

services will themselves move closer to the users to maintain low latency, reduce

long-haul network traffic, and maintain predictable quality of service.

Distributed massively multi-player games may be developed, whose infrastruc-

ture of game servers will dynamically relocate to adapt to geographical changes

in player demand. Next-generation mobile agent systems may allow traditionally

centralised and static services — such as video streaming — to be implemented

203

distributively [GMS+01], actively migrate closer to the users, and follow their

movement. Competing high-level resource brokerage systems may achieve dis-

counts by purchasing XenoServer resources in bulk, and provide users of Grids or

utility computing infrastructures transparent access to incrementally large groups

of resources — similar to the way competing telephone companies often share the

same physical network but provide different services and pricing schemes.

Trust management. In the real world, servers and clients operate autono-

mously. Servers may be unreliable or untrustworthy, trying to overcharge clients

or not run programs faithfully. Clients may attempt to abuse the platform by

avoiding paying their bills, or by running programs with nefarious, anti-social or

illegal goals.

The problem may initially seem to be a security one; mechanisms need to be

designed to ensure that only properly authenticated components can participate

in the platform. If a component — client or server — misbehaves, a complaint to

the XenoCorp with which it is registered can result in its credentials being invali-

dated. Problems can arise, however, in a number of ways. Firstly, it is unrealistic

to expect all of the participants to agree on common standards of behaviour —

even if a single “acceptable use policy” could be enforced by XenoCorp it would

most likely be written in a natural language. Secondly, the volume of complaints

may be large and the distinction between trivial and important ones unclear.

Finally, issuing a complaint is difficult when the source of misbehaviour is not

straightforward to determine. As an analogy to the real-world, a customer can

complain to VISA if a restaurant overcharges him or her, but not if the food is

of unsatisfactory quality.

Reputation management systems such as the eBay1 and amazon marketplace2

rating schemes have very limited expressiveness, as they assume that all partic-

ipants agree on the criteria on which such reputations are based, and that they

attach equal credence to everyone’s statements. Moreover, reputation in those

systems is usually unidimensional, and their scalability is restricted, as the cen-

tral repository or agent that stores the reputation information is a single point

of failure, and has to grow in proportion to the number of participants.

Initial work on an event-based trust management architecture that is being

developed for use in the XenoServer Open Platform is described in [DHH+03,

1http://www.ebay.com
2http://www.amazon.com/

204

DKHP03]. It allows XenoServers and clients to exchange views about others’

performance in several different areas based on their past interactions. To en-

courage clients and servers to provide information about each other, initial work

on a system that provides incentives for honest participation in trust management

infrastructures has been undertaken [FKOD04]. The system aims to improve the

quality of information contained in trust management systems by reducing free-

riding and encouraging honesty.

Security and privacy. The XenoServer platform allows untrusted users to

obtain computing resources on large numbers of servers around the world based

on their ability to pay. This enables malicious users with access to monetary

resources to, for instance, easily build large networks of agent hosts to launch

distributed denial of service attacks, or to use resources on XenoServers to engage

in other antisocial or illegal activities.

Such problems have been tackled using auditing in the prototype development

of the XenoServer platform. However, this may often require manual interven-

tion by a XenoCorp administrator or other authorities to discover illegal activity

and track down the sponsor of the corresponding task. For a global-scale deploy-

ment, additional automated tools may be used for discovery of malicious activity

and automatic interception of such behaviour — for instance, by immediately

restricting the network resources allocated to the suspicious service’s execution

environment.

Another important research challenge is safeguarding user privacy ; work will

be undertaken on a methodology that will protect users from intrusive Xeno-

Server owners. By using purchase orders for authentication of clients on Xeno-

Servers, their actions can be completely disassociated from their identity on the

XenoServer. The server will only know which order may be used to charge for

resources consumed by a service, but will have no information about its owner or

sponsor. In cases of misbehaviour, the sponsor will be traceable by XenoCorp.

Dynamic pricing. Software components can be developed, which will adjust

the resource pricing schemes on a XenoServer according to resource demand.

For instance, a dynamic pricing component could decide to increase the price

of network bandwidth if the overall network load on a server increases. This

approach may be applied on groups of more than one server where, for example,

the owner of a number of machines elects to run a dynamic pricing component to

205

make sure her revenue is maximised. This bears similarity to research on dynamic

road pricing based on the time of day and traffic [SLDI01].

This approach imposes a number of challenges, ranging from accurately mea-

suring — or estimating — resource demand and supply, disseminating this in-

formation between other servers in the same pricing group, and using this infor-

mation to adjust prices. Communication with smart “dynamic pricing-aware”

applications could be facilitated to allow applications to adjust their resource

requirements according to the current pricing scheme — for instance, a smart

application might decide to consume less CPU and more memory if the former

becomes more expensive than a specific threshold.

206

Bibliography

[AAF+02] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke

Kawaguchi, David Orchard, Stefano Pogliani, Karsten Riemer, Su-

san Struble, Pal Takacsi-Nagy, Ivana Trickovic, and Sinisa Zimek.

Web Service Choreography Interface (WSCI) 1.0. W3C Note, World

Wide Web Consortium, August 2002. Available from http://www.

w3.org/TR/wsci/.

[ABCC66] R. J. Adair, R. U. Bayles, L. W. Comeau, and R. J. Creasy. A

Virtual Machine System for the 360/40. Tehnical Report 320-2007,

IBM Corporation, Cambridge Scientific Center, May 1966.

[Aka03] Akamai Technologies, Inc. Akamai EdgeComputing, 2003. Brochure,

available from http://www.akamai.com/.

[AMK98] Elan Amir, Steven McCanne, and Randy H. Katz. An Active Service

Framework and Its Application to Real-Time Multimedia Transcod-

ing. In Proceedings of the ACM Annual Conference of the Special

Interest Group on Data Communication (SIGCOMM 1998), pages

178–189, Vancouver, Canada, 1998.

[And04] Anne H. Anderson. An Introduction to the Web Services Policy

Language (WSPL). In 5th IEEE International Workshop on Poli-

cies for Distributed Systems and Networks (POLICY ’04), pages

189–192, Yorktown Heights, NY, USA, June 2004. IEEE Computer

Society.

[AR02] Amr Awadallah and Mendel Rosenblum. The vMatrix: A Network

of Virtual Machine Monitors for Dynamic Content Distribution.

In Proceedings of the 7th International Workshop on Web Content

Caching and Distribution (WCW 2002), Boulder, CO, USA, August

2002.

207

[BAG00] R. Buyya, R. Abramson, and D. Giddy. Nimrod/G: An Architecture

of a Resource Management and Scheduling System in a Global Com-

putational Grid. In Proceedings of the 4th International Conference

on High Performance Computing and Grid in Asia Pacific Region,

Beijing, China, May 2000. IEEE Computer Society Press.

[BBC+04] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,

L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating

System Support for Planetary-Scale Network Services. In Proceed-

ings of the 1st Symposium on Networked Systems Design and Im-

plementation (NSDI ’04), pages 253–266, San Francisco, CA, March

2004.

[BBR+97] Michael A. Bauer, Richard B. Bunt, Asham El Rayess, Patrick J.

Finnigan, Thomas Kunz, Hanan Lutfiyya, Andrew D. Marshall,

Patrick Martin, Gregory M. Oster, Wendy Powley, Jerome A. Rolia,

David Taylor, and C. Murray Woodside. Services Supporting Man-

agement of Distributed Applications and Systems. IBM Systems

Journal, 36(4):508–526, 1997.

[BDF+03a] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen

and The Art of Virtualization. In Proceedings of the Nineteenth ACM

Symposium on Operating Systems Principles (SOSP19), pages 164–

177, Bolton Landing, NY, USA, 2003. ACM Press.

[BDF+03b] Paul R. Barham, Boris Dragovic, Keir A. Fraser, Steven M. Hand,

Timothy L. Harris, Alex C. Ho, Evangelos Kotsovinos, Anil V.S.

Madhavapeddy, Rolf Neugebauer, Ian A. Pratt, and Andrew K.

Warfield. Xen 2002. Technical Report UCAM-CL-TR-553, Uni-

versity of Cambridge, Computer Laboratory, January 2003.

[BDH+03] Bob Briscoe, Vasilios Darlagiannis, Oliver Heckmann, Huw Oliver,

Vasilios A. Siris, David Songhurst, and Burkhard Stiller. A Market

Managed Multi-Service Internet (M3I). Computer Communications,

26(4):404–414, 2003.

[BHL01] T. Berners-Lee, J. Hendler, and O. Lassilia. The Semantic Web.

Scientific American, May 2001.

[BKR98] Jonathan Bredin, David Kotz, and Daniela Rus. Market-based Re-

source Control for Mobile Agents. In Proceedings of the Second Inter-

208

national Conference on Autonomous Agents, pages 197–204. ACM

Press, 1998.

[Bla01] Muriel Blanchier. Video games. White Paper, Societe Generale

Group, June 2001.

[BLT98] P. Bernadat, D. Lambright, and F. Travostino. Towards a Resource-

safe Java for Service Guarantees in Uncooperative Environments. In

Proceedings of the IEEE Workshop on Programming Languages for

Real-Time Industrial Applications, pages 101–111, Madrid, Spain,

December 1998.

[BM02] L. Boloni and D. Marinescu. Robust Scheduling of Meta-Programs

in a Nondeterministic Environment. Technical Report PDN–02–

005, Department of Computer Sciences, Purdue University, CSD-TR

#98-003, October 2002.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote

Procedure Calls. ACM Transactions on Computer Systems, 2(1):39–

59, 1984.

[BPS98] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible

Markup Language (XML) 1.0. W3C Recommendation REC-XML-

19980210, World Wide Web Consortium, February 1998. Available

from http://www.w3.org/TR/REC-xml/.

[BSP+95] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski,

D. Becker, S. Eggers, and C. Chambers. Extensibility, Safety and

Performance in the SPIN Operating System. In Symposium on Oper-

ating Systems Principles (SOSP ’95), pages 267–284, Copper Moun-

tain Resort, Colorado, December 1995.

[BTS+98] Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C. Hsieh,

and Jay Lepreau. Java Operating Systems: Design and Implemen-

tation. Technical Report UUCS-98-015, University of Utah, Depart-

ment of Computer Science, August 1998.

[Bul80] G. M. Bull. Dartmouth Time-Sharing System. Halsted Press, Jan-

uary 1980.

[CAD+03] F. Curbera, T. Andrews, H. Dholakia, Y. Goland, J. Klein,

F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,

209

I. Trickovic, and S. Weerawarana. Business Process Execu-

tion Language For Web Services, version 1.1. White paper,

2003. Available from http://www-106.ibm.com/developerworks/

webservices/library/ws-bpel/.

[Cau00] Brian Caulfield. Searching for Something New - Gnutella,

Freenet, Napster Swap Files and Meet the RIAA, November 2000.

In the Internet World magazine. Available from http://www.

internetworld.com.

[CCMN04] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decentralized

Orchestration of Composite Web Services. In Proceedings of the 13th

International World Wide Web Conference, New York City, USA,

May 2004.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva

Weerawarana. Web Services Description Language (WSDL) 1.1.

W3C Note, World Wide Web Consortium, March 2001. Available

from http://www.w3.org/TR/wsdl.

[CCR+03] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry

Peterson, Mike Wawrzoniak, and Mic Bowman. PlanetLab: An

Overlay Testbed for Broad-Coverage Services. ACM SIGCOMM

Computer Communication Review, 33(3):3–12, July 2003.

[CDD62] F. J. Corbató, M. M. Daggett, and R. C. Daley. An Experimental

Time-Sharing System. In Proceedings of the Spring Joint Computer

Conference (SJCC), pages 335–344, San Francisco, CA, 1962.

[CFH+04] Christopher Clark, Keir Fraser, Steve Hand, Jakob Gorm Hansen,

Eric Jul, Christian Limpach, Ian Pratt, and Andy Warfield. Live Mi-

gration of Virtual Machines, October 2004. Under review, submitted

to a refereed international conference.

[CFK+98] Karl Czajkowski, Ian T. Foster, Nicholas T. Karonis, Carl Kessel-

man, Stuart Martin, Warren Smith, and Steven Tuecke. A Resource

Management Architecture for Metacomputing Systems. In Proceed-

ings of the Workshop on Job Scheduling Strategies for Parallel Pro-

cessing, pages 62–82, Orlando, Florida, USA, 1998. Springer-Verlag.

[CFK99] Karl Czajkowski, Ian Foster, and Carl Kesselman. Resource Co-

Allocation in Computational Grids. In Proceedings of the The Eighth

210

IEEE International Symposium on High Performance Distributed

Computing, page 37, Redondo Beach, California, August 1999. IEEE

Computer Society.

[CFN90] D. Chaum, A. Fiat, and M. Naor. Untraceable Electronic Cash.

In Proceedings on Advances in Cryptology, pages 319–327, Santa

Barbara, CA, 1990. Springer-Verlag New York, Inc.

[CKR+01] Michael J. Carey, Steve Kirsch, Mary Roth, Bert Van der Lin-

den, Nicolas Adiba, Michael Blow, Daniela Florescu, David Li, Ivan

Oprencak, Rajendra Panwar, Runping Qi, David Rieber, John C.

Shafer, Brian Sterling, Tolga Urhan, Brian Vickery, Dan Wineman,

and Kuan Yee. The Propel Distributed Services Platform. In The

International Journal on Very Large Databases (VLDB), pages 671–

674, 2001.

[CMA00] M. Covington, M. Moyer, and M. Ahamad. Generalized Role-

Based Access Control for Securing Future Applications. In Proceed-

ings of the 23rd National Information Systems Security Conference

(NISSC), Baltimore, MD, October 2000.

[Con00] Connectix. The Technology of Virtual PC. White Paper, 2000.

Available from http://www.connectix.com/downloadcenter/

pdf/vpc5w_whitepaper.pdf.

[Cox00] Tony Cox. Online Gaming, October 2000. Talk, in

the Visualization and Virtual Environments Community Club

(VVECC). Available from http://www-ais.itd.clrc.ac.uk/

VVECC/proceed/entertain/materials/cox/.

[CRLS03] Nicholas Coleman, Rajesh Raman, Miron Livny, and Marvin

Solomon. Distributed Policy Management and Comprehension with

Classified Advertisements. Tehnical Report UW-CS-TR-1481, Uni-

versity of Wisconsin - Madison Computer Sciences Department,

April 2003.

[CS03] Brent Chun and Tammo Spalink. Slice Creation and Management.

Technical Report PDN–03–013, PlanetLab Consortium, July 2003.

[CV65] F. J. Corbató and V. A. Vyssotsky. Introduction and Overview of

the Multics System. In Proceedings of the Fall Joint Computer Con-

ference (AFIPS), pages 185–196, New York, 1965. Spartan Books.

211

[DA99] T. Dierks and C. Allen. The TLS Protocol — Version 1.0. RFC 2246,

Internet Engineering Task Force (IETF), January 1999. Available

from http://www.rfc-editor.org/rfc/rfc2246.txt.

[DBCF95] N. Davies, G.S. Blair, K. Cheverst, and A. Friday. A Network Emu-

lator to Support the Development of Adaptive Applications. In 2nd

USENIX Symposium on Mobile and Location Independent Comput-

ing, Ann Arbor, MI, April 1995.

[DDLS01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-

man. The Ponder Policy Specification Language. In Proceedings

of the Workshop on Policies for Distributed Systems and Networks

(Policy2001), Bristol, UK, January 2001.

[Den64] J. B Dennis. A Multiuser Computation Facility for Education and

Research. Communications of the ACM, 7:521–529, September 1964.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryp-

tography. IEEE Transactions on Information Theory, IT-22(6):644–

654, 1976.

[DHH+03] Boris Dragovic, Steven Hand, Tim Harris, Evangelos Kotsovinos,

and Andrew Twigg. Managing Trust and Reputation in the Xeno-

Server Open Platform. In Proceedings of the 1st International

Conference on Trust Management, pages 59–64, Heraklion, Crete,

Greece, May 2003. Also published in Springer-Verlag Lecture Notes

in Computer Science (LNCS), Volume 2692, pp. 59-74.

[DI89] M. V. Devarakonda and R. K. Iyer. Predictability of Process Re-

source Usage: A Measurement-Based Study on UNIX. IEEE Trans-

actions on Software Engineering, 15(12):1579–1586, 1989.

[Dik01] Jeff Dike. User-mode Linux. In Proceedings of the 5th Annual

Linux Showcase and Conference, pages 3–14, Oakland, CA, Novem-

ber 2001.

[DKHP03] Boris Dragovic, Evangelos Kotsovinos, Steven Hand, and Peter Piet-

zuch. XenoTrust: Event-Based Distributed Trust Management. In

Proceedings of the Second IEEE International Workshop on Trust

and Privacy in Digital Business (DEXA Workshop), pages 410–414,

Prague, Czech Republic, September 2003.

212

[Dou02] John R. Douceur. The Sybil Attack. In Revised papers from the

1st International Workshop on Peer-to-Peer Systems (IPTPS ’02),

pages 251–260, Cambridge, MA, USA, March 2002. Springer-Verlag.

[DS68] Daniel S. Diamond and Lee L. Selwyn. Considerations for Computer

Utility Pricing Policies. In Proceedings of the 23rd ACM National

Conference, pages 189–200, Washington, DC, 1968.

[Dun99] L. Dunn. The Internet2 Project. The Internet Protocol Journal,

2(4), December 1999.

[Ele97] Electronic Arts Inc. Ultima Online, 1997. On-line Multiplayer Com-

puter Game. Web Site at http://www.uo.com.

[Ens78] P.H. Enslow Jr. What Is a ’Distributed’ Data Processing System?

Computer, 11(1):13–21, January 1978.

[Ens03] Ensim Corporation. Ensim Virtual Private Server. Datasheet, 2003.

Available from http://www.ensim.com/products/materials/

datasheet_vps_051003.pdf.

[Fan65] R. M. Fano. The MAC System: The Computer Utility Approach.

IEEE Spectrum, pages 56–64, January 1965.

[FC90] R. F. Freund and D. S. Conwell. Superconcurency: A Form of Dis-

tributed Heterogeneous Supercomputing. Supercomputing Review,

October 1990.

[FFK+97] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith,

and S. Tuecke. A Directory Service for Configuring High-

Performance Distributed Computations. In Proceedings of the

6th IEEE Symposium on High Performance Distributed Computing

(HPDC6), pages 365–375, Portland, Oregon, 1997. IEEE Computer

Society Press.

[FGK04] I. Foster, D. Gannon, and H. Kishimoto. Open Grid Services Ar-

chitecture (OGSA) - Version 019. Technical Report, Global Grid

Forum, July 2004. Available from www.ggf.org/ogsa-wg/.

[FHH+03] Keir Fraser, Steven Hand, Tim Harris, Ian Leslie, and Ian Pratt. The

Xenoserver Computing Infrastructure. Technical Report UCAM-CL-

TR-552, Computer Laboratory, University of Cambridge, January

2003.

213

[Fit01] Steven Fitzgerald. Grid Information Services for Distributed Re-

source Sharing. In Proceedings of the 10th IEEE International Sym-

posium on High Performance Distributed Computing (HPDC10),

page 181, San Francisco, CA, 2001. IEEE Computer Society.

[FK92] D. Ferraiolo and R. Kuhn. Role-Based Access Controls. In Proceed-

ings of the 15th NIST-NCSC National Computer Security Confer-

ence, pages 554–563, Baltimore, MD, 1992.

[FK97] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastruc-

ture Toolkit. The International Journal of Supercomputer Applica-

tions and High Performance Computing, 11(2):115–128, 1997.

[FKL+99] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and

A. Roy. A Distributed Resource Management Architecture that

Supports Advance Reservations and Co-Allocation. In Proceedings

of the International Workshop on Quality of Service (IWQoS ’99),

London, UK, June 1999.

[FKNT02] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology

of the Grid: An Open Grid Services Architecture for Distributed

Systems Integration. GGF Working Draft, Global Grid Forum, Open

Grid Service Infrastructure (OGSA) Working Group, June 2002.

[FKOD04] Alberto Fernandes, Evangelos Kotsovinos, Sven Östring, and Boris

Dragovic. Pinocchio: Incentives for Honest Participation in Distri-

buted Trust Management. In Proceedings of the 2nd International

Conference on Trust Management (iTrust 2004), pages 63–77, Ox-

ford, UK, March 2004. Also published in Springer-Verlag Lecture

Notes in Computer Science (LNCS), Volume 2995, pp. 63-77.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the

Grid: Enabling Scalable Virtual Organization. The International

Journal of High Performance Computing Applications, 15(3):200–

222, 2001.

[Fly66] M. J. Flynn. Very High-Speed Computing Systems. In Proceedings

of the IEEE, volume 54, pages 1901–1909, December 1966.

[Fre89] R. F. Freund. Optimal Selection Theory for Superconcurrency. In

Proceedings of Supercomputing ’89, pages 699–703, Reno, Nevada,

November 1989.

214

[FTF+02] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve

Tuecke. Condor-G: A Computation Management Agent for Multi-

Institutional Grids. Cluster Computing, 5:237–246, 2002.

[Gel03] Jacques Gelinas. Virtual Private Servers and Security Contexts,

2003. Available from http://www.solucorp.qc.ca/miscprj/s_

context.hc.

[GGKS02] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to

Web Services Architecture. IBM Systems Journal, 41(2):170–177,

2002.

[Gho02] Atanu Ghosh. Towards the Rapid Network-Wide Deployment of New

Application Specific Network Protocols, Using Application Level Ac-

tive Networking, January 2002. PhD dissertation, University College

London.

[Glo00] The Globus Alliance. The Globus Resource Specification Language

RSL v1.0, February 2000. Available from http://www.globus.org/

gram/rsl_spec1.html.

[Glo03a] Global Grid Forum, Distributed Resource Management Applica-

tion API (DRMAA) Working Group. Advance Reservations: State

of the Art. GGF Working Draft ggf-draft-sched-graap-2.0, June

2003. Available from http://www.fz-juelich.de/zam/RD/coop/

ggf/graap/graap-wg.html.

[Glo03b] Global Grid Forum, Grid Resource Allocation Agreement Proto-

col (GRAAP) Working Group. Presentation in the GGF7 meeting,

March 2003. Available from http://www.fz-juelich.de/zam/RD/

coop/ggf/graap/graap-wg.html.

[GMC+01] V. Galtier, K. Mills, Y. Carlinet, S. Bush, and A. Kulkarni. Pre-

dicting and Controlling Resource Usage in a Heterogeneous Active

Network. In Proceedings of the Third Annual International Work-

shop on Active Middleware Services (AMS), page 35, San Francisco,

CA, August 2001. IEEE Computer Society.

[GMS+01] E. Gialama, E. Markatos, J. Sevasslidou, D. Serpanos, E. Kotsovi-

nos, and X. Asimakopoulou. DIVISOR: Distributed Video Server

For Streaming. In Proceedings of the 5th IEEE/WSES International

Conference on Circuits, Systems, Communications and Computers

(CSCC), pages 4531–4536, Rethymno, Crete, Greece, June 2001.

215

[Gol00] Germán Goldszmidt. The Océano Project - A Multi-Domain Cluster

for a Computing Utility. In Proceedings of the 2nd IEEE Interna-

tional Conference on Cluster Computing (CLUSTER 2000), Chem-

nitz, Germany, November 2000.

[Gon02] Li Gong. Project JXTA: A Technology Overview. White Paper,

Sun Microsystems, Inc., October 2002. Available from http://www.

jxta.org/.

[Gra78] Jim Gray. Notes on Data Base Operating Systems. In Operating Sys-

tems, An Advanced Course, pages 393–481. Springer-Verlag, 1978.

[Gri03] Grid.org. The PatriotGrid - A Global Effort to Combat Bioterror-

ism, February 2003. Web site at http://www.grid.org/projects/

patriot.htm.

[GS92] G. A. Geist and V. S. Sunderam. Network-Based Concurrent Com-

puting on the PVM System. Concurrency: Practice and Experience,

4(4):293–311, 1992.

[Hay96] Richard Hayton. An Open Architecture for Secure Interworking

Services. Technical Report UCAM-CL-TR-399, University of Cam-

bridge, Computer Laboratory, June 1996.

[HBM98] R. J. Hayton, J. M. Bacon, and K. Moody. Access Control in an

Open Distributed Environment. In Proceedings of the 1998 IEEE

Symposium on Security and Privacy, Oakland, CA, May 1998.

[HCK95] Colin G. Harrison, David M. Chess, and Aaron Kershenbaum. Mo-

bile Agents: Are They a Good Idea? Tehnical Report, IBM Re-

search Division, T. J. Watson Research Center, Yorktown Heights,

New York, 1995.

[HH93] L. B. Huston and P. Honeyman. Disconnected Operation for AFS. In

Proceedings of the USENIX Mobile and Location-Independent Com-

puting Symposium, pages 1–10, Cambridge, MA, 2–3 1993.

[HHKP03] Steven Hand, Timothy L Harris, Evangelos Kotsovinos, and Ian

Pratt. Controlling the XenoServer Open Platform. In Proceedings of

the 6th International Conference on Open Architectures and Network

Programming (OPENARCH), San Francisco, CA, April 2003.

216

[HKM+98] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter,

and Scott Nettles. PLAN: A Packet Language for Active Networks.

In Proceedings of the Third ACM SIGPLAN International Confer-

ence on Functional Programming Languages, pages 86–93, London,

UK, January 1998. ACM Press.

[HL73] Hurwicz and Leonid. The Design of Mechanisms for Resource Allo-

cation. American Economic Review, 63(2):1–30, May 1973.

[HM02] J. Hodges and R. Morgan. Lightweight Directory Access Protocol

(v3): Technical Specification. RFC 3377, Network Working Group,

September 2002.

[HP03] Infrastructure and Management Solutions for the Adaptive Enter-

prise. White Paper, Hewlett Packard, May 2003. Available from

http://whitepapers.zdnet.co.uk/.

[HSL+03] Mike Hibler, Leigh Stoller, Jay Lepreau, Robert Ricci, and Chad

Barb. Fast, Scalable Disk Imaging with Frisbee. In Proceedings of

the 2003 USENIX Annual Technical Conference, pages 283–296, San

Antonio, TX, June 2003. USENIX Association.

[IBM98] Using IPSEC to Construct Secure Virtual Private Networks. White

Paper, IBM, 1998. Available from http://whitepapers.zdnet.co.

uk.

[IBM02] IBM. Living in an On Demand World. White Paper, October

2002. Available from http://www-306.ibm.com/e-business/doc/

content/literature/literature_ebu%siness.html.

[Ide04] Best Practices for Resolving Business-Critical Application Problems.

White paper, Identify Software, October 2004. Available from http:

//itresearch.forbes.com/.

[ITI04] P2P and Music Statistics for September 2004. Press Release, IT

Innovations and Concepts (ITIC), October 2004. Available from

http://www.itic.ca/DIC/News/.

[Jac04] Robert Jacques. Application Downtime Costs More Than $100K

An Hour, April 2004. Article in vnunet.com. Available from http:

//www.vnunet.com/News/1154519.

217

[JD96] D. Jonscher and K. R. Dittrich. Argos – A Configurable Access Con-

trol System for Interoperable Environments. In Database Security,

IX: Status and Prospects, pages 43–60. Chapman & Hall, 1996.

[JXT01] Project JXTA: An Open, Innovative Collaboration. White Paper,

Sun Microsystems, Inc., April 2001. Availble from http://www.

jxta.org.

[KA98] S. Kent and R. Atkinson. Security Architecture for the Internet

Protocol. RFC 2401, Internet Engineering Task Force (IETF), 1998.

Available from http://www.ietf.org/rfc/rfc2401.txt.

[Kay03] John Kay. The Truth About Markets: Their Genius, Their Limits,

Their Follies. Allen Lane, May 2003.

[Ken81] S. Kent. Protecting Externally Supplied Software in Small Com-

puters. Tehnical Report MIT-LCS-TR-255, Massachusetts Institute

of Technology, January 1981. Available from http://www.ncstrl.

org/.

[KH03] Evangelos Kotsovinos and Tim Harris. Role-Based Resource Man-

agement. In Proceedings of the 8th CaberNet Radicals Workshop,

Corsica, France, October 2003.

[KHG00] Jeffrey O. Kephart, James E. Hanson, and Amy R. Greenwald. Dy-

namic Pricing by Software Agents. Computer Networks, 32(6):731–

752, 2000.

[KMP+04] Evangelos Kotsovinos, Tim Moreton, Ian Pratt, Russ Ross, Keir

Fraser, Steven Hand, and Tim Harris. Global-Scale Service De-

ployment in the XenoServer Platform. In Proceedings of the First

Workshop on Real, Large Distributed Systems (WORLDS ’04), San

Francisco, CA, December 2004.

[KRRS04] Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott Shenker.

Spurring Adoption of DHTs with OpenHash, a Public DHT Service.

In Proceedings of the 3nd International Workshop on Peer-to-Peer

Systems (IPTPS ’04), San Diego, CA, February 2004.

[KS91] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the

Coda File System. In Proceedings of the Thirteenth ACM Symposium

on Operating Systems Principles (SOSP13), volume 25, pages 213–

225, Pacific Grove, CA, 1991. ACM Press.

218

[KS02] Michael Kozuch and M. Satyanarayanan. Internet Suspend/Resume.

In Proceedings of the Fourth IEEE Workshop on Mobile Computing

Systems and Applications, page 40, Callicoon, New York, June 2002.

IEEE Computer Society.

[KS03] E. Kotsovinos and D. Spence. The XenoServer Open Platform: De-

ploying Global-Scale Services for Fun and Profit. In Proceedings of

ACM SIGCOMM ’03 (poster session), Karlsruhe, Germany, August

2003.

[KWL+03] K. Keahey, V. Welch, S. Lang, B. Liu, and S. Meder. Fine-Grain

Authorization Policies in the GRID: Design and Implementation. In

1st International Workshop on Middleware for Grid Computing, Rio

de Janeiro, Brazil, June 2003.

[Lam86] Butler Lampson. Personal Distributed Computing: The Alto and

Ethernet Software. In Proceedings of the ACM Conference on The

history of personal workstations, pages 101–131, Palo Alto, CA,

1986. ACM Press.

[LBRT97] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum.

Mechanisms for High Throughput Computing. SPEEDUP Journal,

11(1), June 1997.

[LGT+01] Jason Lee, Dan Gunter, Brian Tierney, Bill Allcock, Joe Bester,

John Bresnahan, and Steve Tuecke. Applied Techniques for High

Bandwidth Data Transfers Across Wide Area Networks. In Proceed-

ings of International Conference on Computing in High Energy and

Nuclear Physics, Beijing, China, September 2001.

[Lin03] LinkPro Technologies. Web Site Mirroring From A Staging Server

To Multiple Web Servers. White Paper, 2003. Available from http:

//whitepapers.zdnet.co.uk.

[LJ03] R. Lepro and S. Jackson. Usage Record - XML Format. GGF Work-

ing Draft, Global Grid Forum, Usage Record (UR) Working Group,

December 2003. Available from http://www.psc.edu/~lfm/Grid/

UR-WG/.

[LLM88] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor – A

Hunter of Idle Workstations. In Proceedings of the 8th International

Conference of Distributed Computing Systems (ICDCS), San Jose,

CA, June 1988.

219

[LLS02] Leonidas Lymberopoulos, Emil Lupu, and Morris Sloman. An adap-

tive policy based management framework for differentiated services

networks. In 3rd International Workshop on Policies for Distributed

Systems and Networks (POLICY ’02), pages 147–158. IEEE Com-

puter Society, June 2002.

[LMSY96] Emil C. Lupu, Damian A. Marriott, Morris S. Sloman, and Nicholas

Yialelis. A Policy Based Role Framework for Access Control. In Pro-

ceedings of the first ACM Workshop on Role-Based Access Control,

page 11, Gaithersburg, Maryland, USA, 1996. ACM Press.

[LMW02] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design

of a Role-Based Trust Management Framework. In Proceedings of

the IEEE Symposium on Security and Privacy, Oakland, CA, May

2002.

[LPL+03] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and

Sumit Shah. First experiences using xacml for access control in

distributed systems. In XMLSEC ’03: Proceedings of the 2003 ACM

workshop on XML security, pages 25–37. ACM Press, 2003.

[LS79] Butler Lampson and Howard Sturgis. Crash Recovery in a Dis-

tributed Data Storage System. Unpublished Tehnical Report, Xe-

rox Palo Alto Research Center, June 1979. Available from http:

//research.microsoft.com/Lampson/.

[LS99] Emil C. Lupu and Morris Sloman. Conflicts in Policy-Based Distri-

buted Systems Management. IEEE Transactions on Software Engi-

neering, 25(6):852–869, 1999.

[LSP03] Stefan M. Larson, Christopher D. Snow, and Vijay S. Pande. Fold-

ing@Home and Genome@Home: Using Distributed Computing to

Tackle Previously Intractable Problems in Computational Biology.

Modern Methods in Computational Biology, 2003.

[Mac04] Rodney Mach. Accounting Interchange Natural Language Descrip-

tion. GGF Working Draft, Global Grid Forum, Usage Record (UR)

Working Group, April 2004. Available from http://www.psc.edu/

~lfm/Grid/UR-WG/.

[MBHJ98] D. Marinescu, L. Blni, R. Hao, and K. Jun. An Alternative Model

for Scheduling on a Computational Grid. In Proceedings of the Thir-

220

teenth International Symposium on Computer and Information Sci-

ences, Antalya, Turkey, October 1998.

[MC04] Johan Muskens and Michel R. V. Chaudron. Prediction of Run-

Time Resource Consumption in Multi-task Component-Based Soft-

ware Systems. In Proceedings of the 7th International Symposium on

Component-Based Software Engineering (CBSE7), Edinburgh, Scot-

land, May 2004.

[Mic03] Privacy-Enabling Enhancements in the Next-Generation Secure

Computing Base. White paper, Microsoft Corporation, November

2003. Available at http://www.microsoft.com/resources/ngscb/

productinfo.mspx.

[MJK94] G. Mansfield, T. Johannsen, and M. Knopper. Charting Networks

in the X.500 Directory. RFC 1609, Network Working Group, March

1994. Available from ftp://ftp.internic.net/rfc/rfc1609.txt.

[MKKW99] David Mazieres, Michael Kaminsky, M. Frans Kaashoek, and Em-

mett Witchel. Separating Key Management from File System Se-

curity. In Proceedings of the 17th ACM Symposium on Operating

Systems Principles (SOSP17), pages 124–139, Kiawah Island, South

Carolina, USA, December 1999.

[MMS03] A. Maedche, B. Motik, and L. Stojanovic. Managing Multiple and

Distributed Ontologies on the Semantic Web. The VLDB Journal,

12(4):286–302, 2003.

[MPH02] T. Moreton, I. Pratt, and T. Harris. Storage, Mutability and Naming

in Pasta. In Proceedings of the International Workshop on Peer-to-

Peer Computing at Networking 2002, Pisa, Italy, May 2002.

[MW77] J. M. McQuillan and D. C. Walden. The ARPANET Design Deci-

sions. Computer Networks, 1(5), August 1977.

[MZE02] C. Mascolo, L. Zanolin, and W. Emmerich. XMILE: an XML based

Approach for Incremental Code Mobility and Update. Automated

Software Engineering. 9(2):151–165, 2002.

[Nec97] George C. Necula. Proof-Carrying Code. In Conference Record of

POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages (POPL97), pages 106–119, Paris,

France, January 1997.

221

[New03] S. Newhouse. Grid Economic Services. GGF Working Draft, Global

Grid Forum, Grid Economic Services Architecture (GESA) Work-

ing Group, June 2003. Available from http://www.doc.ic.ac.uk/

~sjn5/GGF/gesa-wg.html.

[New04] S. Newhouse. Resource Usage Service. GGF Working Draft draft-

ggf-rus-service-1, Global Grid Forum, Resource Usage Service (RUS)

Working Group, February 2004. Available from http://www.doc.

ic.ac.uk/~sjn5/GGF/rus-wg.html.

[NFS89] NFS: Network File System Protocol Specification. RFC 1094, Net-

work Working Group, March 1989. Available from http://www.

faqs.org/rfcs/rfc1094.html.

[NH82] R.M. Needham and A.J Herbert. The Cambridge Distributed Com-

puting System. Addison-Wesley, November 1982.

[NO95] Matunda Nyanchama and Sylvia Osborn. Access Rights Adminis-

tration in Role-Based Security Systems. In Proceedings of the 8th

IFIP WG 11.3 Working Conference on Database Security, volume A-

60 of IFIP Transactions, Bad Salzdetfurth, Germany, August 1995.

North-Holland (Elsevier).

[NSN+97] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,

J. Flinn, and K. R. Walker. Agile Application-Aware Adapta-

tion for Mobility. In Symposium on Operating Systems Principles

(SOSP ’97), pages 276–287, Kiawah Island, South Carolina, USA,

1997. ACM Press.

[NT94] B. Clifford Neuman and Theodore Ts’o. Kerberos: An Authentica-

tion Service for Computer Networks. IEEE Communications Maga-

zine, 32(9):33–38, 1994.

[OAPV04] David Oppenheimer, Jeannie Albrecht, David Patterson, and

Amin Vahdat. Distributed Resource Discovery on PlanetLab with

SWORD. In Proceedings of the First Workshop on Real, Large

Distributed Systems (WORLDS ’04), San Francisco, CA, December

2004.

[Obj91] Object Management Group and X/Open. The Common Object Re-

quest Broker: Architecture and Specification (CORBA). Technical

Report 91.12.1, Object Management Group (OMG), 1991. Available

from http://www.omg.org.

222

[OR04] Angela D. Orebaugh and Gilbert Ramirez. Ethereal Packet Sniffing.

Syngress Publishing, February 2004.

[OW99] P. C. Van Oorschot and M. J. Wiener. Parallel Collision Search

with Cryptanalytic Applications. Journal of Cryptology, 12(1):1–28,

1999.

[Par00] Sanjay Parthasarathy. The Simplest Way to Define .NET. White

Paper, Microsoft Corporation, December 2000. Available from http:

//www.microsoft.com/malaysia/net/whitepapers.htm.

[Pat02] Dave Patterson. A New Focus for a New Century: Availability

and Maintainability → Performance, January 2002. Keynote talk

in the Conference on File and Storage Technologies (FAST 2002).

Available from http://www.usenix.org/publications/library/

proceedings/fast02/.

[PB02] Peter R. Pietzuch and Jean Bacon. Hermes: A Distributed Event-

Based Middleware Architecture. In Proceedings of the 22nd Inter-

national Conference on Distributed Computing Systems (ICDCS),

pages 611–618, Vienna, Austria, July 2002. IEEE Computer Soci-

ety.

[PCAR02] Larry Peterson, David Culler, Tom Anderson, and Timothy Roscoe.

A Blueprint for Introducing Disruptive Technology into the Inter-

net. In Proceedings of the 1st Workshop on Hot Topics in Networks

(HotNets-I), Princeton, New Jersey, USA, October 2002.

[PP04] Calicrates Policroniades and Ian Pratt. Alternatives for Detecting

Redundancy in Storage Systems Data. In USENIX 2004 Annual

Technical Conference, pages 73–86, Boston, MA, June 2004.

[PPD+95] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,

H. Trickey, and P. Winterbottom. Plan 9 from Bell Labs. Com-

puting Systems, 8(3):221–254, 1995.

[PPT+92] R. Pike, D. Presotto, K. Thompson, H. Trickey, and P. Winterbot-

tom. The Use of Name Spaces in Plan 9. In Proceedings of the

5th ACM SIGOPS European Workshop, pages 72–76, Mont Saint-

Michel, France, September 1992.

223

[PPTH72] R. Parmelee, T. Peterson, C. Tillman, and D. Hatfield. Virtual Stor-

age and Virtual Machine Concepts. IBM Systems Journal, 11(2):99–

130, 1972.

[PS01] Deval Parikh and Mohanbir Sawhney. Where Value Lives in a Net-

worked World. Harvard Business Review, pages 79–86, January

2001.

[Pul03] Darren W. Pulsipher. Policy Use Cases for Grid Systems. GGF

Informational Memo, Global Grid Forum, Grid Policy (POLICY)

Research Group, August 2003. Available from http://forge.

gridforum.org/projects/policy-rg/.

[PV02] Larry Peterson and Amin Vahdat. Dynamic Slice Creation. Techni-

cal Report PDN–02–005, PlanetLab Consortium, October 2002.

[RBC+04] Hrabri Rajic, Roger Brobst, Waiman Chan, Jeff Gardiner, John P.

Robarts, Andreas Haasand, Bill Nitzberg, Hrabri Rajic, and John

Tollefsrud. Distributed Resource Management Application API

Specification 1.0. GGF Recommendation, Global Grid Forum, Dis-

tributed Resource Management Application API (DRMAA) Work-

ing Group, June 2004. Available from http://www.drmaa.org/.

[RBTD99] Mike Rizzo, Bob Briscoe, J. Tassel, and K. Damianakis. A Dynamic

Pricing Framework to Support a Scalable, Usage-Based Charging

Model for Packet-Switched Networks. In IWAN ’99: Proceedings

of the First International Working Conference on Active Networks,

pages 48–59. Springer-Verlag, 1999.

[REG+03] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben

Zhao, and John Kubiatowicz. Pond: The OceanStore Prototype.

In Proceedings of the 2nd USENIX Conference on File and Storage

Technologies (FAST’03), San Francisco, CA, March 2003.

[Rit01] Jordan Ritter. Why Gnutella Can’t Scale. No, Really, February

2001. Unpublished. Available from http://www.darkridge.com/

~jpr5/doc/gnutella.html.

[RLS98] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking:

Distributed Resource Management for High Throughput Comput-

ing. In Proceedings of the Seventh IEEE International Symposium

on High Performance Distributed Computing (HPDC7), Chicago, IL,

July 1998.

224

[RLS00] Rajesh Raman, Miron Livny, and Marvin Solomon. Resource Man-

agement through Multilateral Matchmaking. In Proceedings of the

Ninth IEEE Symposium on High Performance Distributed Comput-

ing (HPDC9), pages 290–291, Pittsburgh, PA, August 2000.

[RLS03] Rajesh Raman, Miron Livny, and Marvin Solomon. Policy Driven

Heterogeneous Resource Co-Allocation with Gangmatching. In Pro-

ceedings of the Twelfth IEEE International Symposium on High

Performance Distributed Computing (HPDC12), Seattle, WA, June

2003.

[Rob95] B. Robertson. Toy Story: A Triumph of Animation. Computer

Graphics World, 18(8):28–38, August 1995.

[Rog98] Ron Rogerson. Circular 3/98: JANET Network Charges. White Pa-

per, Joint Information Systems Committee, March 1998. Available

from http://www.jisc.ac.uk/index.cfm?name=news_circular_

3_98.

[RPM+99] Dickon Reed, Ian Pratt, Paul Menage, Stephen Early, and Neil Strat-

ford. Xenoservers: Accounted Execution of Untrusted Code. In Pro-

ceedings of the 7th Workshop on Hot Topics in Operating Systems

(HotOS-VII), Rio Rico, AZ, 1999. IEEE Computer Society Press.

[RRPK01] David Ratner, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuen-

ning. Replication Requirements in Mobile Environments. Mobile

Networks and Applications, 6(6):525–533, 2001.

[RT04] Stephan Reiff-Marganiec and Kenneth J. Turner. Feature Interaction

in Policies. Computer Networks, 45(5):569–584, 2004.

[RTBS01] Paul Rutten, Mickey Tauman, Hagai Bar-Lev, and Avner Son-

nino. Is Moore’s Law Infinite? The Economics Of Moore s Law.

White Paper, Kellogg School of Management, Northwestern Univer-

sity, 2001. In Kellogg TechVenture 2001 Anthology. Available from

http://www.ranjaygulati.com/new/research/ISMOORES.pdf.

[Rym01] Arthur Ryman. Simple Object Access Protocol (SOAP) and Web

Services. In Proceedings of the 23rd International Conference on

Software Engineering, page 689, Toronto, Ontario, Canada, May

2001. IEEE Computer Society.

225

[Sat92] Mahadev Satyanarayanan. The Influence of Scale on Distributed

File System Design. IEEE Transactions on Software Engineering,

18(1):1–8, 1992.

[Sat04] Tetsuya Sato. Annual Report of the Earth Simulator Center. Tehni-

cal Report, The Earth Simulator Center, Japan Agency for Marine-

Earth Science and Technology, February 2004. Available from

http://www.es.jamstec.go.jp/.

[SB78] Harold S. Stone and S. H. Bokhari. Control of Distributed Processes.

IEEE Computer, 11(7):97–106, July 1978.

[SC92] Larry Smarr and Charles E. Catlett. Metacomputing. Communica-

tions of the ACM, 35(6):44–52, 1992.

[SH82] John F. Shoch and Jon A. Hupp. The “Worm” Programs — Early

Experience with a Distributed Computation. Communications of

the ACM, 25(3):172–180, 1982.

[SH03] David Spence and Tim Harris. XenoSearch: Distributed Resource

Discovery in the XenoServer Open Platform. In Proceedings of the

Twelfth IEEE International Symposium on High Performance Dis-

tributed Computing (HPDC12), Seattle, WA, June 2003.

[She99] S. Shepler. NFS Version 4 Design Considerations. RFC 2624, Net-

work Working Group, June 1999.

[SHH04] David Spence, Steven Hand, and Tim Harris. XenoSearch II: Dis-

tributed Location-Based Server Co-Selection, 2004. Submitted to a

refereed international conference, currently under review.

[SLDI01] James Edward Stada, Steven Logghe, Griet De Ceuster, and Lam-

bertus H. Immers. Time-Of-Day Modeling Using a Quasi-Dynamic

Equilibrium Assignment Approach. In Proceedings of TRISTAN IV,

São Miguel, Azores Islands, Portugal, June 2001.

[SM99] Neil Stratford and Richard Mortier. An Economic Approach to

Adaptive Resource Management. In Proceedings of the fifth Work-

shop on Hot Topics in Operating Systems (HotOS-VII), page 142,

Rio Rico, AZ, 1999. IEEE Computer Society Press.

[Son99] Sony Online. Everquest, 1999. On-line Multiplayer Computer Game.

Web Site at http://www.everquest.com.

226

[SPM04] Jeffrey Shneidman, David C. Parkes, and Laurent Massoulié. Faith-

fulness in Internet Algorithms. In Proceedings of the ACM SIG-

COMM Workshop on Practice and Theory of Incentives in Net-

worked Systems, pages 220–227, Portland, Oregon, USA, September

2004.

[Sri01] Kunwadee Sripanidkulchai. The Popularity of Gnutella Queries

and Its Implications on Scalability. White Paper, Carnegie Mel-

lon University, February 2001. Featured on O’Reilly’s http://www.

openp2p.com website. Available from http://www-2.cs.cmu.edu/

~kunwadee/research/p2p/gnutella.html.

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The Protection

of Information in Computer Systems. Proceedings of the IEEE,

63(9):1278–1308, September 1975.

[SS96] M. Spasojevic and M. Satyanarayanan. An Empirical Study of a

Wide-Area Distributed File System. ACM Transactions on Com-

puter Systems, 14(2):200–222, 1996.

[Sun90] V. S. Sunderam. PVM: a Framework for Parallel Distributed Com-

puting. Concurrency: Practice and Experience, 2(4):315–339, 1990.

[Sun99] Sun Microsystems, Inc., Palo Alto, California. Java Remote Method

Invocation Specification, Revision 1.7, Java 2 SDK edition, December

1999.

[Sun02] N1 Grid - Introducing Just In Time Computing. White Paper,

Sun microsystems, 2002. Available from http://wwws.sun.com/

software/solutions/n1/docs.html.

[TCF+03] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kessel-

man, T.Maquire, T. Sandholm, D. Snelling, and P. Vanderbilt. Open

Grid Services Infrastructure (OGSI) - Version 1.0. Technical Report

draft-ggf-ogsi-gridservice-33, Global Grid Forum, June 2003. Avail-

able from http://www.ggf.org/ogsi-wg/.

[Tch04] Dmitri Tcherevik. Managing Web Services With Unicenter Web Ser-

vices Distributed Management. White Paper, Computer Associates,

May 2004.

[TL03] Douglas Thain and Miron Livny. Building Reliable Clients and

Servers. In Ian Foster and Carl Kesselman, editors, The Grid:

227

Blueprint for a New Computing Infrastructure. Morgan Kaufmann,

2003.

[TTL04] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed

Computing In Practice: The Condor Experience. Concurrency and

Computation: Practice and Experience, To appear, 2004.

[TW96] David L. Tennenhouse and David J. Wetherall. Towards an Ac-

tive Network Architecture. SIGCOMM Computer Communication

Review, 26(2):5–17, 1996.

[TXKN03] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos. To-

wards High Performance Peer-to-Peer Content and Resource Sharing

Systems. In Proceedings of the 1st Biennial Conference on Innovative

Data Systems Research (CIDR 2003), Pacific Grove, CA, January

2003.

[vD00] Leendert van Doorn. A Secure Java Virtual Machine. In Proceed-

ings of the 9th USENIX Security Symposium, pages 19–34, Denver,

Colorado, August 2000.

[vLF98] G. von Laszewski and I. Foster. Usage of LDAP in Globus. Short

Note, The Globus Alliance, April 1998. Available from http://www.

globus.org.

[VMW99] VMware Virtual Platform. White Paper, VMware Inc, 1999.

[WCL+01] Dan Werthimer, Jeff Cobb, Matt Lebofsky, David Anderson, and

Eric Korpela. SETI@HOME - Massively Distributed Computing for

SETI. Computing in Science and Engineering, 3(1):78–83, 2001.

[WFLY04] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Col-

lisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD,

August 2004. In Cryptology ePrint Archive. Available from http:

//eprint.iacr.org/.

[WGT98] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A Toolkit for

Building and Dynamically Deploying Network Protocols. In Proceed-

ings of the First IEEE Conference on Open Architectures and Net-

work Programming (IEEE OPENARCH), San Francisco, CA, April

1998.

228

[WGT99] David Wetherall, John Guttag, and David Tennenhouse. ANTS:

Network Services Without the Red Tape. IEEE Computer, 32(4):42–

48, April 1999.

[WJOP01] Ian Wakeman, Alan Jeffrey, Tim Owen, and Damyan Pepper. Safe-

tyNet: A Language-Based Approach to Programmable Networks.

Computer Networks, 36(1):101–114, 2001.

[WPP02] Limin Wang, Vivek Pai, and Larry Peterson. The Effectiveness

of Request Redirecion on CDN Robustness. In Proceedings of the

5th Symposium on Operating Systems Design and Implementation

(OSDI ’02), Boston, MA USA, December 2002.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributed Ob-

ject Model for the Java System. In Proceedings of the Conference

on Object-Oriented Technologies, pages 219–231, Toronto, Canada,

June 1996. Sun Microsystems Laboratories, USENIX. Avail-

able online at http://www.usenix.org/publications/library/

proceedings/coots96/wollrath%.html.

[WS03] A. Westerinen and R. Strechay. Grid Policy Framework Mapping.

GGF Working Draft, Global Grid Forum, Grid Policy (POLICY)

Research Group, September 2003. Available from http://forge.

gridforum.org/projects/policy-rg/.

[WSG02] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale

and Performance in the Denali Isolation Kernel. In Proceedings of the

5th Symposium on Operating Systems Design and Implementation

(OSDI 2002), ACM Operating Systems Review, Winter 2002 Special

Issue, pages 195–210, Boston, MA, USA, December 2002.

[WSS+01] A. Westerinen, J. Schnizlein, J. Strassner, M.Scherling, B. Quinn,

S. Herzog, A. Huynh, M. Carlson, J. Perry, and S. Waldbusser. Ter-

minology for Policy-Based Management. RFC 3198, November 2001.

Available from http://www.faqs.org/rfcs/rfc3198.html.

[Ylo96] T. Ylonen. SSH – Secure Login Connections over the Internet. In

Proceedings of the 6th USENIX Security Symposium, page 37, San

Jose, CA, July 1996.

229

