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Bigraphs whose names have
multiple locality

Robin Milner1

Abstract The previous definition of binding bigraphs is generalised so
that local names may be located in more than one region, allowing more
succinct and flexible presentation of bigraphical reactivesystems. This re-
port defines the generalisation, verifies that it retains relative pushouts,
and introduces a new notion of bigraphextension; this admits a wider
class of parametric reaction rules. Extension is shown to bewell-behaved
algebraically; one consequence is that —as in the original definition of
bigraphs— discrete parameters are sufficient to generate all reactions.

1University of Cambridge, Computer Laboratory, JJ Thomson Avenue, Cambridge CB3 0FD, UK
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1 Binding bigraphs

We generalise thebinding bigraphsdefined in Section 11 of Jensen and Milner [1],
by allowing the names in an interface to be local to more than one site. We assume
familiarity with Sections 1–10 of [1], but not with Section 11. We also refer the reader
to the bibliography of that paper.

Definition 1.1 (binding signature) A binding signatureK is like a pure one except
that the arity of a controlK : h→ k now consists of a pair of finite ordinals, thebinding
arity h and thefree arityk, indexing respectively thebindingand thefreeports of any
K-node. IfK is atomic thenh = 0.

We denote byKu the pure signature underlyingK; for eachK : h→ k in K it
assigns a single arityh + k, forgetting the binding property of ports.

We wish to define a binding bigraphG in terms of an underlying pure one, in which
all points linked to a binding port of a nodev lie insidev, i.e. the scope of the binding
is (the interior of)v. Some of these points may be inner names, and we need to ensure
that they transmit this scope discipline to another bigraphF in the compositionGF .
For this purpose we enrich interfaces as follows:

Definition 1.2 (binding interface) A binding interfacetakes the formI = 〈m, loc ,X〉,
where thewidthm andname setX are as in pure bigraphs, andloc ⊆ m×X is called
thelocality of I. If (i, x) ∈ loc we say thati is aplaceof x (in I). We callIu = 〈m,X〉
the pure interfaceunderlyingI.

We often writelocI andnmsI for the locality and the names ofI.

Definition 1.3 (binding bigraph) If I and J are binding interfaces, a(concrete)
binding bigraphG : I → J consists of anunderlyingpure bigraphGu : Iu →Ju sat-
isfying certain locality conditions. To state these conditions we first define a relation
locG, assigning places to points and links ofGu, as the smallest relation such that:

POINTS if (i, x) ∈ locI then(i, x) ∈ locG

if p is a binding port of nodev then(v, p) ∈ locG

if p is a free port of nodev then(prntG(v), p) ∈ locG.

LINKS if (j, y) ∈ locJ then(j, y) ∈ locG

if an edgee contains a binding port ofv then(v, e) ∈ locG.

We then impose two rules onG. In the scoping rule (illustrated in Figure 1)q andℓ
range over points and links respectively, andw,w′ over places:

BINDING : A link has at most one binding port; an open link has none.

SCOPING: If linkG(q) = ℓ is a local link thenq is also local, and whenever
(w, q) ∈ locG then there existsw′ such thatw ≤G w′ and(w′, ℓ) ∈ locG.

We shall often callI or J the inner or outerfaceof G : I →J . Note that we are using
the word ‘place’ in two ways. Its simple meaning is a root, node or site of a bigraph;
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Figure 1: The scoping rule for a pointq in a local linkℓ
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Figure 2: A binding bigraphG : ({xy}, {xz}, {z})→({x′}, {x′z′})

but we also talk of the placeof a point or link, meaning a place assigned to a point or
link by the interface or bigraph under consideration.

Consider what the scoping rule implies for a pointq in a local linkℓ. If q is a port
then it has a unique place; the rule insists that this lies inside a place ofℓ. If q is an
inner name the rule is stronger; it insists not only thatq is local, but thateachof its
places lies inside a place ofℓ. In either case, ifℓ is an edge its place is unique, but if it
is an outer name it may have many places.

Figure 2 illustrates a binding bigraph (controls not shown). A local link is indicated
by a small circle at each of its places. Note that the linkx′ has one point in the first
region and two in the second. Note also that there are two closed links; one (containing
the inner namey) is local, and the other is global and straddles two regions.

As for pure bigraphs, we can quotient concrete binding bigraphs to yield abstract
ones. For now we consider only the concrete ones, and omit theword ‘concrete’.

It is easy to check that both composition and tensor product preserve the binding
and the scoping rules. This justifies the following:

Definition 1.4 (s-category of binding bigraphs) Given a binding signatureK, the
wide monoidal s-categorýBBG(K) of binding bigraphs is defined by taking compo-
sition and tensor product of the underlying pure bigraphs. Width and origin are as for
pure bigraphs. The forgetful functor from binding to pure bigraphs is denoted by

U : ´BBG(K)→ ´BIG(Ku) .
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WhenK is understood we shall writéBBG for ´BBG(K).
Binding bigraphs naturally inherit the propertiesbarren, sibling, active, passive,

hard from place graphs, andidle, open, closed, peer, leanfrom link graphs. In addition
we say that a link isbound(by p) if it contains a binding portp, otherwise free. Note
that every open link is free. We shall call a bigraphprime iff it has unit width.

Binding bigraphs also inherit other notions:

Proposition 1.5 (isos, epis, monos)In ´BBG a bigraph isiso (resp.epi, mono) iff its
underlying pure bigraph is iso (resp. epi, mono).

A striking difference from pure bigraphs arises when we consider wirings. In the
terminology of [1], Chapter 9, a wiring is described as a bigraph with interfaces of zero
width (and hence a trivial place graph). But in the present context we need to ‘wire
up’ local names as well as global ones; we are therefore forced to involve places in our
wirings. So we shall adopt the following:

Definition 1.6 (wiring) A wiring is a binding bigraph without nodes. It is aplacing
if its link graph is an identity; it is alinking if its place graph is an identity.

We shall useω andζ to range over wirings,π over placings andλ over linkings re-
spectively. In binding bigraphs a wiring cannot be expressed simply as a combina-
tion 〈π, λ〉 of a place graph with a link graph, since the interfaces have localities and
the scoping rule must be respected. Thus placings and linkings, as defined above,
will involve all three elements: places, links and locality. For example, in a placing
〈2, loc ,X〉→〈2, loc′,X〉 which swaps its two sites, the localitiesloc and loc

′ must
normally differ in order to respect the scoping rule.

Exercise Show thatω : I → J is both a placing and a linking iff its place map and
link map are identities andlocI ⊆ locJ .

We shall postpone further taxonomy of wirings to the following section, where we
explore it just forlocal wirings, i.e. those where every name is local.

A similar difference from pure bigraphs arises when we consider ions. In pure
bigraphs, ifK : k is a non-atomic control with arityk, then for eachk-vector~y of
names there is anion K~y : 〈1, Y 〉, whereY = {~y}, consisting of aK-node whose
ports are named~y in order. (The identity of the node is unspecified.) Within the ion
we may place any ground bigraphG : ǫ→〈1, Z〉, whereZ ∩ Y = ∅; this creates the
molecule(K~y ⊗ idZ) ◦G, with outer face〈1, Y ⊎ Z〉. So the constructionK~y ⊗ idZ

yields a family of ions, indexed by new namesZ to be exported from inside the ion.
The same construction does not work for local namesZ. Instead, we define the

corresponding family directly:

Definition 1.7 (ion, molecule, atom) Let K : h→ k be a control, withh = 0 if K is
atomic. Let~x be anh-vector and~y ak-vector, the members of~x being distinct, and let
X = {~x} andY = {~y}. Then for anyZ disjoint fromX ∪ Y , theion

KZ
~x,~y : (X ⊎ Z)→(Y ⊎ Z)
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Figure 4: Constructing an RPO in binding bigraphs

has a singleK-node, which is parent of its single site. It links the binding and free
ports of the node respectively to the inner and outer names~x and~y, in order, and its
link map also includes the identity function onZ. Figure 3 shows an ion forK : 2→ 1.

A moleculethen takes the form(KZ
~x,~y ⊗ idW ) ◦G whereW are the global outer

names ofG; in a local moleculeW = ∅. The caseZ = W = ∅ andG = ǫ yields an
atom; this must be the case ifK is atomic.

We now have enough elements to construct all binding bigraphs:

Proposition 1.8 (enough elements)Every binding bigraph can be constructed from
ions and wirings using composition and tensor product.

We turn now to the existence of relative pushouts (RPOs) in binding bigraphs. The
way we construct them is, roughly, to pull the construction for pure bigraphs back along
the forgetful functorU . This is what was done for the more limited notion of binding
bigraph in Section 11 of [1].

Construction 1.9 (building a binding RPO) Let the pair(A0, A1) have a bound
(D0,D1) in ´BBG, whereAi : H → Ii andDi : Ii →K (i = 0, 1). We wish to build a
binding RPO

(B0, B1, B)

for (A0, A1) relative to(D0,D1), as shown in the left-hand diagram of Figure 4. We
start by building an RPO(B′

0, B
′

1, B
′) for (Au

0, A
u

1) to (Du

0,D
u

1) in pure bigraphs,
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following [1]; this is shown in the right-hand diagram, withmediating interfaceI ′.
Since a binding bigraph between known interfaces is determined by its underlying pure
bigraph, our construction amounts to finding a binding interfaceI such thatIu = I ′,
and then definingBi andB so thatBu

i = B′

i andBu = B′. Of course, we must then
check that the binding and scoping rules are satisfied.

Let Ii = 〈mi, loci,Xi〉 (i = 0, 1), andI ′ = 〈m,X〉. We proceed to construct
I = 〈m, loc ,X〉 with Iu = I ′; we need only define the locality relationloc . So for
eachx ∈ X we must determine the placesr ∈ m for which (r, x) ∈ loc . Now x is
linked to one or more names inI0 or I1 or both. Wheneverx is linked toxi in Ii,
and(s, xi) ∈ loci, let r be the unique place inI ′ such thats ≤B′

i
r; then declare that

(r, x) ∈ loc . This concludes the definition ofI, and our construction is complete.

This construction is even easier than in the case where each name has at most one
place [1]; for in that case we needed to verify this property when constructingI. How-
ever, we still have to check that our construction is valid inother ways:

Proposition 1.10 (binding RPOs)A binding RPO for(A0, A1) to (D0,D1) is pro-
vided by Construction 1.9.

Proof (outline) Our first task is to show thatBi andB, as constructed, obey the
binding and scoping rules. Having done this, we have to show that, for any relative
bound(C0, C1, C) for (A0, A1) to (D0,D1) with mediating interfaceJ , there exists a
unique mediatorE : I → J with the required commutation properties.

Such a mediator has, as its underlying pure bigraph, the corresponding pure media-
tor between the pure RPO and the pure relative bound(Cu

0 , Cu

1 , Cu); it can be found to
obey the binding and scoping rules. Finally, the unicity ofE follows from the unicity
of Eu and the fact that the forgetful functorU is faithful.

There is no special difficulty in the details of these steps.

2 Local bigraphs

From now on we confine our attention to a subclass of binding bigraphs. It seems that,
once we allow a name to have many places, theglobalnames (those with no place) are
less necessary for modelling. We therefore define

Definition 2.1 (s-category of local bigraphs) A local (binding) interfaceis one in
which every name is local. Alocal (binding) bigraphis one whose interfaces are local.

Given a binding signatureK, the wide monoidal s-category´LBG(K) of local (bind-
ing) bigraphs is the full sub-s-category of´BBG(K) whose interfaces are local.

This definition is justified by the obvious fact that both composition and tensor product
preserve the local property. Note that the scoping rule is slightly simpler for local
bigraphs, because every point is local. Also everyopenlink is local, but aclosedlink
may still be non-local; indeed, the bigraph in Figure 2 is local but has a non-local link.

We now see that this smaller class of binding bigraphs still has RPOs:
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Figure 5: Extending a bigraphG with a wiringω of equal width

Corollary 2.2 (local RPOs) A local RPO for local(A0, A1) to local(D0,D1) is pro-
vided by Construction 1.9.

Proof Given the proof of Proposition 1.10, we need only check that in this case the
interfaceI in the RPO produced by the construction is local; this is immediate.

Notation We shall often represent a localI by 〈m, ~X〉, or even just~X, where the
vector ~X = (X0, . . . ,Xm−1) specifies the names local to eachi ∈ m. We shall callI
a partition if the setsXi are disjoint. In particular(X) is the interface of width 1 with
local namesX. This is in contrast with the interfaceX in pure bigraphs, which has
width 0 andglobal namesX.

As usual we write a ground bigraph in lower case, and writea : I for a : ǫ→ I.
Also we shall writeG : →J for G : I →J when we do not care aboutI.

From now on we shall assume that every bigraph mentioned is local, unless other-
wise stated, and we shall omit the adjective ‘local’. We shall also write a singleton local
interface(X) asX; there is no confusion, since we no longer admit aglobal interface
calledX.

We now proceed to a new operation which is essential for the treatment of wiring in
local bigraphs, especially in handling parametric reaction rules. Recall the construction
of ions in Definition 1.7; we defined a family of ionsKZ

~x~y, so that any bigraph with
outer names~x andZ can be inserted into an ion to form aK-molecule, exporting the
bigraph’s extra namesZ at its outer face. To treat parametric reaction rules we need
to generalise this construction from ions to an arbitrary bigraphs. Consider the bigraph
G : (x, ∅)→ y shown in Figure 5; the figure also shows a wiringω of equal width,
and shows the result of ‘adding’ this wiring toG without widening its interfaces. We
denote this operation by⊕, and call itextension.

In general, we want to be able to compose a contextG : I →J with a parameter
a : I ′ whose outer faceI ′ extendsI, that is, it has the same width asI but possibly extra
names, arbitrarily located. Then the composite should havean outer faceJ ′ similarly
extendingJ . So we must define extension first of interfaces, then of bigraphs.

Definition 2.3 (extension) If two interfacesI = 〈m, loc ,X〉 andI ′ = 〈m, loc′,X ′〉
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have equal width they areconformal. If X ∩ X ′ = ∅ then theextension ofI by I ′ is

I ⊕ I ′
def
= 〈m, loc ⊎ loc

′,X ⊎ X ′〉 .

If a bigraphG : I →J and a wiringω : I ′ → J ′ have equal width and disjoint supports2

they areconformal. This implies that their inner facesI andI ′ are conformal, and so
are their outer faces. Then ifI ⊕ I ′ andJ ⊕ J ′ are defined, theextension ofG byω is

G ⊕ ω : I ⊕ I ′ →J ⊕ J ′ ;

it has the place graph ofG, and the tensor product of the two link graphs.

It is not possible to define the extension ofG by anarbitrary bigraph —or even by
one with equal width— since its place graph would would be ill-defined. We therefore
admitG ⊕ F only whenF is a wiring.

A useful form of wiringω : m→ I has no inner names, and its link map is just the
empty function∅X , whereX are the names ofI. We denote such a wiring just byI
when its place map is determined by the context; for example the idle extensionG⊕ I
simply extends the outer face ofG with idle namesX located byI.

It is easy to check that extension preserves the scoping rule. It also behaves well
with composition:

Proposition 2.4 (composing extensions)The following hold, with appropriate inter-
faces, when both sides are defined:

ω ⊕ ω′ = ω′ ⊕ ω
(G ⊕ ω) ⊕ ω′ = G ⊕ (ω ⊕ ω′)

(F ⊕ ω) ◦ (G ⊕ ω′) = (F ◦G) ⊕ (ω ◦ω′) .

With the help of interface extension we now define two important properties of a
bigraph.

Definition 2.5 (minimal, discrete) Let G : → I ⊕ H be any bigraph.
G is minimal for I if, for all (i, x) ∈ H, the namex is linked to some point ofG

located belowi.
G is discrete forI of it is open, and for all(i, x) ∈ H, the namex is linked to

exactly one point ofG located belowi.
WhenI = ǫ we omit ‘for I ’.

Thus discreteness implies minimality; it also generalisesthe notion of discreteness
defined for binding bigraphs in [1].

We now define some linkings which, when decomposed from the outer face of a
bigraph, reduce it to a bigraph that is open, minimal or discrete.

Definition 2.6 (closure, substitution) Define the following linkings:
A closure/Z : I → I ′ is the identity onI except that it maps every namez ∈

Z ∩ nmsI to an edge, and this name is omitted in formingI ′ from I. A closure may
also contain idle edges.

A substitutionσ : 〈m, loc ,X〉→〈m, loc′,X ′〉 has a surjective link map; in forming
loc

′ from loc , every namex is replaced by its image under the link map.

2Sinceω has no nodes, this merely excludes the possibility thatG andω share an edge.
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x0 x1z′ z′zx0za cx1

Figure 6: A non-open bigrapha as a closurea = /z′ ◦ c, with c open

Recall that afree link is one without a binding port, that anopenlink is an outer
name, and that a bigraphG is openiff every free link is open. For parametric reactions
that replicate parts of their parameters, we need to expressevery bigraph in terms of an
open one, in order to define replication unambiguously.

For example, the ground bigrapha of Figure 6 is not open because it has a closed
link joining two free ports. (It is immaterial whether theseports lie in the same region,
or –as here– in different regions.) However,a can easily be represented as a closure of
an open bigraphc, as shown. In fact, we claim that in general:

Proposition 2.7 (open decomposition)A bigraphG : → I may be expressed uniquely
up to isomorphism asG = /Z ◦F , where/Z : I⊕H → I is a closure andF : → I⊕H
is open and minimal forI.

Proof Include inZ a distinct new namez for each free non-idle edge ofG, and
replace this edge by an open linkz in F . Also include in/Z all the idle edges ofG.

We now come to the most important property of open bigraphs:

Proposition 2.8 (open factorisation)Any open ground bigraphc : ~X with outer width
m can be uniquely factorised into primes, as

c = c0 ‖ · · · ‖ cm−1 , with ci : Xi .

Combining this with open decomposition, we can uniquely determine the prime parts
of any ground bigraph; this allows us to define unambiguously its factorisation into
prime parts. Let us begin with simple form of instantiation,in which all copies of the
same prime part will share their free links.

Definition 2.9 (instantiation) Let ~X be of widthm, and letf : n→m be a map of
ordinals. Define~Y of width n by settingYj

def
= Xf(j) for j ∈ n. We proceed to define

the instantiationf induced byf , a map of ground homsets

f : Gr( ~X)→Gr(~Y ) .

For anya : ~X, by Propositions 2.7 and 2.8 we havea = /Z ◦ (c0 ‖ · · · ‖ cm−1), with
ci : Xi ⊎ Zi andZ =

⋃
i Zi. Let dj ≏ cf(j) (j ∈ n) have disjoint supports, and define

f (a) : ~Y
def
= /Z ◦ (d0 ‖ · · · ‖ dn−1) .
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The unicity results make instantiation well-defined up to support equivalence. Al-
though instantiation is not well-defined for arbitrary bigraphs, nor even for arbitrary
wirings, it extends naturally to linkings:

Definition 2.10 (link instantiation) Let λ : 〈m, ~X〉→〈m, ~X ′〉 be a linking, and let
f : n→m be a map of ordinals. Define~Y and ~Y ′ by Yj = Xf(j) andY ′

j = X ′

f(j)

(j ∈ n). Then define theinstance

λ : 〈n, ~Y 〉→〈n, ~Y ′〉

to havelinkλ ↾Y as its link map, whereY =
⋃
{~Y }.

It is easy to check that this respects the scoping rule. It follows directly that instantia-
tion distributes over composition among linkings and ground bigraphs:

Proposition 2.11 (instantiation distributes) For linkingsλ, λ′ and ground bigraphs
a with appropriate interfaces we have

f (λ ◦λ′) = f (λ) ◦f (λ′)

f (λ ◦a) = f (λ) ◦f (a) .

Now, recalling how instantiation of ground bigraphs is defined in [1], we wish
to refine our definition so that some of the names of each copy ofa prime part are
disjoined, and can therefore be bound differently in a context. This requires explicit
name bijections:

Definition 2.12 (parametric instantiation) Let I = ~X andJ = ~Y be partitions
with widths m andn, and letf : n→m be a map of ordinals. Let~ι be bijections
ιj : Xf(j) →Yj (j ∈ n). Then theparametric instantiation

f~ι : Gr( ~X ⊕ ~X ′)→Gr(~Y ⊕ ~Y ′)

is defined as in Definition 2.9, except that we haveci : Xi ⊕ X ′

i ⊕ Zi and we take
dj ≏ (ιj ⊕ id) ◦ cf(j).

Again we have distributivity, but of a refined form:

Proposition 2.13 (parametric instantiation distributes) Leta : ~X⊕ ~X ′ be a ground
bigraph, with widthm. Letλ : ~X ′ → ~X ′′ be a linking andf : n→m a map of ordinals.
Let~ι be isomorphisms fromXf(j) to Yj (j ∈ n). Then

f~ι((id ~X
⊕ λ) ◦a) = (id~Y

⊕ f (λ)) ◦f~ι(a) .

This result will be important later when we wish to prove that, to generate a reaction
relation from a given set of parametric rules, it is sufficient to consider only parameters
that are appropriately discrete.
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3 Reactions

We are now ready to define reactions, together with the reaction relation they induce
between bigraphs.

Definition 3.1 (reaction rule, reaction relation) A ground (reaction) ruleis a ground
pair (r, r′), redexandreactum, with the same outer face. Given a set of ground rules,
the reaction relation ⊲ over agents is the least, closed under support equivalence
(≏), such thatD ◦ r ⊲ D ◦ r′ for each activeD and each ground rule(r, r′).

Definition 3.2 (parametric reaction rule) A parametric (reaction) ruletakes the form

(R : I →K, R′ : I ′ →K, f, ~ι )

whereR andR′ are called the(parametric) redexandreactum, I = ~X andI ′ = ~X ′

are partitions with widthsm andm′, andf : m′ →m is a map of ordinals. The fourth
component is a vector of bijectionsιj : Xf(j) →X ′

j , one for eachj ∈ m′.
The parametric rule generates ground rule of the form

( (R ⊕ ω) ◦a, (R′ ⊕ ω′) ◦a′ )

as follows. LetI ⊕ H, I ′ ⊕ H ′ andK ⊕ L be interface extensions withH ′ = f (H).
Let ω : H →L andω′ : H ′ →L be wirings that agree on the names ofH ′. Then for
anya : I ⊕ H, complete the ground rule by defininga′ = f~ι(a) : I ′ ⊕ H ′.

The extensionH in the outer face of the parametera allows names to be exported from
it via ω. The names ofH ′ in the outer face of the instancea′ are similarly exported;
these will be among the names ofH, and will coincide with them iff is surjective.

On the other hand, consider a rule which takes a prime parameter and discards it,
so thatm = 1,m′ = 0. Then we may haveH = L andω = idL, while H ′ = ǫ and
ω′ : ǫ→L is simply an idle extension.

We have placed no constraints upon the parametera of a rule. This constrasts with
[1] where we required parameters to be discrete. We can now show that if we con-
fine ourselves to suitably discrete parameters, then we still generate the same reaction
relation. This will make it easier to analyse properties of the latter relation.

First, we need to show that every bigraph can be expressed simply in terms of a
suitably discrete one. The following is closely analogous to Proposition 2.7:

Proposition 3.3 (discrete decomposition)A bigraphG : → I⊕H may be expressed
uniquely up to isomorphism asG = (idI ⊕ λ) ◦D, whereλ : J →H is a linking and
D : → I ⊕ J is discrete forI.

Proof (outline) The linkingλ must do four things: increase the locality fromJ to H
sinceD is to be minimal forI; close some names inJ to form the closed free links of
G; include any idle edges ofG; and identify some names inJ by a substitution since
D is to be discrete.

We are now ready to prove that
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Proposition 3.4 (discrete parameters suffice)The ground rules generated by a para-
metric reaction rule are unchanged if parameters are constrained to be discrete.

Proof Consider a ground rule( (R ⊕ ω) ◦a, (R′ ⊕ ω′) ◦a′ ) generated as in Defini-
tion 3.2. Then we havea : I⊕H anda′ = f~ι(a) : I ′⊕H ′ whereH ′ = f (H). We also
know that the wiringsω : H →L andω′ : H ′ →L agree on the names ofH ′. Further,
By Proposition 3.3 we havea = (idI ⊕ λ) ◦d with d : I ⊕ J discrete forI.

It will be enough to show that our given ground rule can be expressed in the form

( (R ⊕ ζ) ◦d, (R′ ⊕ ζ ′) ◦d′ )

for suitable wiringsζ andζ ′, whered′ = f~ι(d) : I ′ ⊕ J ′ andJ ′ = f (J). We have

(R ⊕ ω) ◦a = (R ⊕ ω) ◦ (idI ⊕ λ) ◦d = (R ⊕ ζ) ◦d by Proposition 2.4

whereζ
def
= ω ◦λ. Next we have

(R′ ⊕ ω′) ◦a′ = (R′ ⊕ ω′) ◦f~ι((idI ⊕ λ) ◦d)

= (R′ ⊕ ω′) ◦ (idI′ ⊕ f (λ)) ◦f~ι(d) by Propositions 2.4, 2.13
= (R′ ⊕ ζ ′) ◦d′

whereζ ′
def
= ω′

◦f (λ). But thenζ andζ ′ agree on the names ofJ ′, so we are done.

Having verified that discrete parameters generate all reactions, we turn attention
to the wirings(ω, ω′) that act on the names(X,X ′) of a parameterd and its instance
d′ = f~ι(d). Wirings are more general than required to export these names (suitably
located); for example they may close some names, or apply a substitution. Since the
latter operations can be applied by an external contextD, we should expect the same
reaction relation to be generated by ground rules that use just placings(π, π′) in place
of arbitrary wirings. We shall now justify this expectation; but we have to allow that
d′ exports fewer names thand, since the instantiation may discard parts ofd. So we
expectπ : H → J andπ′ : H ′ →J ′ whereJ = J ′ ⊕ J ′′.

Proposition 3.5 (placings suffice)The relation relation defined for a parametric re-
action rule in Definition 3.2 is generated by the ground rules

( (R ⊕ π) ◦d, (R′ ⊕ π′ ⊕ J ′′) ◦d′ )

whered′ is the instance of a discrete parameterd and(π, π′) are placings.

Proof Consider a ground rule defined with wirings:

( (R ⊕ ω) ◦d, (R′ ⊕ ω′) ◦d′ ) .

We wish to show that its reactions can be generated instead byusing placings.
We know thatω : H →L andω′ : H ′ →L have link maps that agree on the names

of d′. Let L = ~W with width ℓ. Let H = ~X andH ′ = ~X ′ with X ′

i = Xf(i). It will be
enough to show that we can decompose the wirings as follows:

ω = λ ◦π π : H →J
ω′ = λ ◦ (π′ ⊕ J ′′) π : H ′ → J ′, J = J ′ ⊕ J ′′

14



where the linkingλ is shared, and can therefore be decomposed from the wirings and
absorbed in to a surrounding active contextD.

To achieve this, we first defineJ . It must have exactly the names ofH = ~X, since
a placing has an identity link map. For locality, we takeJ = ~Y where, for eachj ∈ ℓ,

Yj
def
= {x ∈ X | ω(x) ∈ Wj or x closed inω} .

Thus a name closed byω is located everywhere inJ . Now λ, π andπ′ are fully deter-
mined onceJ is fixed; forλ must have identity place map and the link map ofω, while
π andπ′ must have identity link maps and the place maps ofω and ofω′ respectively.

The construction is therefore complete; we leave it to the reader to check that the
scoping rule is obeyed in all three cases.

It appears that this is as far as we can simplify the ground rules needed to generate
the reaction relation from a parametric rule. It concludes this initial study of bigraphs
with multiply located names. Further work is needed to assess the value of such a
naming discipline, and this should involve the use of bigraphs for practical purposes
such as modelling interactions in structured physical environments. It also affects the
way to model fundamental calculi, such as theλ-calculus, in bigraphs. By studying
known proofs of confluence (the Church–Rosser theorem) in the bigraphical setting,
we hope generalise them to establish partial or total confluence in a wide range of
applications. This will be the topic of a sequel to the present paper.

Acknowledgement I thank Ole Jensen for helpful discussions which led to some of
these ideas.
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