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Abstract

Computer systems need to control access to their resources, in order to give

precedence to urgent or important tasks. This is increasingly important in

networked applications, which need to interact with other machines but may

be subject to abuse unless protected from attack. To do this effectively, they

need an explicit resource model, and a way to assess others’ actions in terms of

it. This dissertation shows how the actions can be represented using resource-

based computational contracts, together with a rich trust model which monitors

and enforces contract compliance.

Related research in the area has focused on individual aspects of this problem,

such as resource pricing and auctions, trust modelling and reputation systems,

or resource-constrained computing and resource-aware middleware. These need

to be integrated into a single model, in order to provide a general framework

for computing by contract.

This work explores automatic computerized contracts for negotiating and con-

trolling resource usage in a distributed system. Contracts express the terms

under which client and server promise to exchange resources, such as processor

time in exchange for money, using a constrained language which can be auto-

matically interpreted. A novel, distributed trust model is used to enforce these

promises, and this also supports trust delegation through cryptographic certifi-

cates. The model is formally proved to have appropriate properties of safety

and liveness, which ensure that cheats cannot systematically gain resources by

deceit, and that mutually profitable contracts continue to be supported.

The contract framework has many applications, in automating distributed ser-

vices and in limiting the disruptiveness of users’ programs. Applications such as

resource-constrained sandboxes, operating system multimedia support and au-

tomatic distribution of personal address book entries can all treat the user’s time

as a scarce resource, to trade off computational costs against user distraction.

Similarly, commercial Grid services can prioritise computations with contracts,

while a cooperative service such as distributed composite event detection can

use contracts for detector placement and load balancing. Thus the contract

framework provides a general purpose tool for managing distributed computa-

tion, allowing participants to take calculated risks and rationally choose which

contracts to perform.
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Chapter 1

Introduction

When computers perform tasks, they normally do so blindly and with no real

understanding of their actions. This dissertation shows how this problem can

be resolved by using a realistic virtual economy to produce autonomous yet

accountable computer systems.

For example, suppose Olivia is on the train, browsing the Internet using her

laptop and mobile phone. She pays 0.2p/KB for her GPRS data link and her

laptop battery is only 60% full, but that should be enough for her to read her

email and the latest medical journal abstracts for an hour, before she arrives to

give a presentation at a conference.

Her laptop now begins to download the latest operating system updates in the

background, at considerable expense, making the web connection feel sluggish.

At the same time, the disk drive begins a periodic integrity check, draining the

battery much faster than before. Neither task appreciates the impact of its

actions, so Olivia has to stop using her laptop after only half an hour.

At the same time, Sipho in Cape Town wants to generate 3D views of a house

that he is designing, to show his clients. The ray tracing will take 30 minutes,

but he’ll have to wait an extra hour because the office computers are already

busy. He knows that all of the computers in Los Angeles are idle where it is

midnight, and wishes he could pay to have his job run there, but he does not

have access to them.

Both of these scenarios illustrate the limitations of computer programs as in-

scrutable tasks, independent from their environment. This dissertation in-

stead proposes a sophisticated resource model, which lets programs define their

needs and monitor their resource usage, and an expressive accounting model
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12 CHAPTER 1. INTRODUCTION

for computing the value of the resources. These are combined in a contract

framework, in which a computer’s tasks are represented as explicit contracts to

exchange resources. Inevitably, some contracts will not live up to their promises,

so a robust trust model is also needed, to protect against attacks and failures

from broken contracts.

This framework serves as the basis for many types of application, ranging from

the desktop and Grid computing applications suggested above, to others involv-

ing direct human interaction and cooperative distributed services.

The following chapter reviews relevant literature on resource constrained com-

puting, trust and security modelling, as well as self-organising distributed sys-

tems and Grid computing. We define the contract framework in Chapter 3; this

includes a novel accounting model in which tasks can express complex account-

ing policies, but ensures that these policies have predictable, bounded resource

needs.

Chapter 4 extends the scope of the contract model, by supporting interactions

with untrustworthy or unreliable parties. It contributes a general purpose,

formally proved, trust model for contracts, that offers safety against attacks

without compromising honest and successful contracts. Personal recommen-

dations between participants are also supported in the model, with the same

safety guarantees, and illustrated in a compute server application.

Then we focus on the scope and limitations of the contract framework;

Chapter 5 shows its use for non-computational resources such as the user’s time

and its integration with access control credentials to support self-financing web

services. In addition, a PDA collaboration scenario shows the limitations of the

model when it cannot assess resource usage automatically, and demonstrates

how it could be extended for this application. Chapter 6 then explores col-

laborative distributed applications, in which the contract framework is used to

implement load balancing for a composite event service, with trust as a model

of competence. Finally, Chapter 7 shows the compute server implementation

with performance results, followed by conclusions in Chapter 8.



Chapter 2

Literature Review

Computers need to monitor their environment and their interactions with oth-

ers, to tailor their actions to the available resources. For example, a user of a

peer-to-peer file backup service might want to store one backup copy of each of

her files on the network if the copies are held by trusted nodes, but two separate

copies when the recipients are untrusted.

This chapter reviews research into resource management, trust and security

modelling and self-organising distributed computation, which all have bearing

on the contract framework. However, existing work has focused primarily on

individual aspects of the problem, and needs to be integrated into a single model

in order to provide a general framework for computing by contract.

2.1 Resource Constrained Computing

Computer applications are often faced with a shortage of resources, which need

to be apportioned to tasks carefully to allow them to operate effectively. These

resource allocation issues are crucial to the performance of both individual

computer systems and distributed computing environments.

Within a single computer, a CPU scheduler decides when and for how long

each process should be able to perform computations [95]; the algorithms for

this range from simple priority-based schemes to proportional-fair algorithms,

in which a process can be guaranteed x time units every y time quanta. This can

be compared to a virtual economy on each CPU, in which processes receive an

allocation of funds, and effectively purchase their CPU cycles [104], or receive

‘shares’ in a machine which can be used to prioritise jobs as on the IBM 370/165

13



14 CHAPTER 2. LITERATURE REVIEW

at Cambridge University in 1974 [65]. On multiprocessor systems, these deci-

sions become more complex, because processes can also be migrated between

processors for better performance, but at considerable extra cost. Nevertheless,

for interactive applications which have soft real-time constraints, proportional-

fair schedulers can still be very effective [19]. CPU schedulers also need to

avoid using excessive resources themselves when scheduling other processes,

particularly when the number of processes is high — as illustrated by the con-

stant overhead scheduler recently integrated into the Linux kernel [76], which

shows substantial performance improvements on many multi-threaded bench-

mark tests.

Distributed applications also suffer from resource constraints, but without the

convenience of a central point of control, or even clear knowledge of the re-

sources available. As a result, resources can be difficult to price appropriately.

For example, in wireless sensor networks [100] and ubiquitous computing ap-

plications, the energy available is limited so resource usage has the double cost

of reducing system lifetime and pre-empting other tasks — and some of these

tasks such as forwarding data to other nodes are particularly hard to assess

from the perspective of a resource-limited, myopic server. The problem of un-

priced resources or flat-rate pricing affects not only users but also providers of

services, such as Internet Service Providers which then need to overcharge light

users to subsidize heavy users [33].

Predicting resource needs in advance is part of the difficulty of job schedul-

ing. Although many metrics have been used to profile computational resource

requirements, job schedulers are hard to test because of the difficulty of auto-

matically generating representative workloads [37]. This arises partly because

programs do not usually make their resource requests or needs known in ad-

vance, and partly because there is little outside support for these requests.

Research into proof-carrying code (PCC) [77] has shown that it is possible to

formally prove the resource requirements of program code; consumers of the

code can then validate the proof before allowing the code to execute. How-

ever, the usefulness of PCC is limited for complex programs whose resource

usage is limited by data they process, not their inherent structure. The TIN-

MAN project [74] has recently proposed modifying this approach by instead

attempting to predict resource bounds statistically at the source code level

before generating resource certificates for validating and monitoring code exe-

cution. However, this then imposes extra run-time monitoring overheads which

could be avoided with pure PCC.
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Control of resource usage is limited partly by a lack of communication between

the scheduler and the programs using the resources. For some applications, ac-

tions can be planned in advance, especially when the plans involve real, physical

resources that are far more expensive or scarce than the cost of the CPU cycles

needed to establish an efficient plan. For example, collaborative calendar ap-

plications can use automatic conflict reconciliation strategies to save the users

from time spent in rescheduling appointments [84], but at the cost of leaving

the schedule undecided until the reconciliation is actually performed; similarly,

planning frameworks for robotic applications attempt to schedule a plan which

meets mission goals, but minimises the cost of power or fuel used [51]. Business

applications can also express their needs and obligations as deontic logic con-

tracts [67] so that they can be monitored and enforced. Nevertheless for most

computer programs, these plans would be at too high a level and too structured

to be directly useful in controlling computational resources.

A few operating system architectures do give applications explicit control over

their resource usage, such as XenoServers for Nemesis [85] and the MIT exok-

ernel project [54], but generally only in the sense of hard resource reservation

guarantees, and with limited support for explicit resource pricing strategies or

integration of external resources.

Reflective middleware architectures attempt to go beyond this, with a more

holistic approach to resource management. In these architectures, program-

mers can explicitly control all aspects of a middleware service. Some architec-

tures such as DynamicTAO [58] allow programs to activate only the essential

middleware services they need, enabling them to operate with a very small

memory footprint when on resource-constrained devices, by delegating resource

control to separate modules. Others such as the Open ORB project [30] pro-

vide integrated support for resource control, allowing applications to inspect

and reconfigure their resource allocations dynamically.

Some reflective middleware environments offer a simple economic approach to

resource provisioning: in Geihs’s architecture [41] applications can identify a

number of operating levels, each with an associated resource demand tuple (e.g.

CPU time and bandwidth) and a utility value showing the value to the user

of the application operating at that level. The resource middleware can then

attempt to optimise all of the utility functions simultaneously to identify the

best mix of applications which meets the resource supply, although in practice

it may be more efficient to identify a good but sub-optimal combination instead.

Reflective middlewares can also be used for flexible control of Quality of Service
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(QoS) properties of middleware services such as connection multiplexing and

redundancy [105]. This adaptive reconfiguration facilitates strategies to limit

resource usage, such as automatically unlinking infrequently used application

components, albeit at the potential cost of needing to relink them if they were

needed again.

Many of these aspects of system control are seen as orthogonal to the conven-

tional procedural program code. Aspect-oriented programming (AOP) provides

an alternative mechanism for this control by extending programming languages

to allow each aspect to be factorised out and programmed independently, in

languages such as AspectJ and Hyper/J [35]. However, Kienzle and Guerraoui

argue that some issues such as concurrency and failures interact poorly with

AOP, as they need to be exposed directly to the main application for it to

make informed decisions in context [56]. Treating resource usage as an aspect

could be subject to the same limitations, which are not inherent in resource

middleware architectures.

Although resource usage modelling is crucial in many computer systems, it is

often impossible for programs to make their resource needs explicit. Even when

this is allowed, applications are usually limited to resource reservation schemes,

rather than dynamically negotiating their needs — even the most expressive

frameworks limit the expression of resource needs to listing a few acceptable

permutations. Nevertheless, existing frameworks would have the potential to

provide support for the creation of more complex resource control schemes.

2.2 Trust Modelling

Trust management and trust modelling are increasingly important in networked

applications, which need to interact with other machines but may be subject

to abuse unless they are protected from attack. The term ‘trust’ has many

definitions and interpretations, but the focus in this dissertation is on trust as

a computational construct, for moderating observations to identify productive

actions. In the typology of McKnight and Chervany [71], trust is divided into

a hierarchy of dispositional trust, institution-based trust, trusting beliefs and

trusting intention. The focus of this work is on trusting beliefs about the pre-

dictability of other participants’ behaviour, based on observations and leading

to implicit trusting beliefs about the integrity of others — the extent to which

they behave honestly and keep their promises. In earlier work, Marsh [70] also

argued for the use of trust as a formal computational concept.
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Trust management has become a generic term for describing security access

policies and their associated credentials, in which ‘trust’ becomes a generali-

sation of privilege and restricts access to trusted actions. Blaze, Feigenbaum

and Lacy [10] introduced the term for their PolicyMaker trust management

system, which uses a restricted language to link policies, credentials and trust

relationships and authorise actions, which they later integrated with existing

public-key infrastructures in the KeyNote [9] system. Although this approach

to trust management was originally targeted at security systems, discussed in

more detail in Section 2.3, it is also generic enough to apply to evidence-based

or personal notions of trust.

Trust models can use direct observations to assess the trustworthiness of oth-

ers, basing trustworthiness on behaviour rather than on information from other

sources such as certificates. The resulting trust models are often informal, and

based on ad hoc rules for correlating actions with changes in trust. These rules

also define the trust categories available, such as ‘Very Trustworthy’, ‘Trust-

worthy’, ‘Untrustworthy’ and ‘Very Untrustworthy’ [1] or values from 0 to 1 in

a Blackjack application scenario which are then partitioned into high, medium

and low trust bands [45].

These informal trust models typically have a finite range of trust values from

least to most trusted, or possibly a linearly ordered interval. This linearity re-

stricts the expressive power of the models, by restricting their ability to retain

a history of past interactions. Although multiple models could be combined in

parallel to model different trust aspects of an application, the inherent linearity

still remains because of the independence of the separate models. Furthermore,

while the mappings from evidence to trust do allow a high degree of configu-

ration, they also make it difficult to predict the system’s overall behaviour or

properties without extensive experiments [64].

As the field of trust modelling grows, more formal and more complex models

of trust are being developed. These set out to provide formal frameworks for

modelling trust, either based on statistical techniques or by constructing generic

structures in which to express a range of trust applications.

For example, trust values can formally model the effect of evidence for and

against trusting a principal simultaneously, as shown in Jøsang’s [52] Subjec-

tive Logic, an extension of the Dempster-Shafer theory of evidence, which is

proposed for use in electronic markets by Daskalopulu et al. [22]. This model

allows uncertainty in a trustworthiness assessment to be considered explicitly,

in contrast with simpler trust representations.
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In subjective logic, a combination of belief, disbelief and uncertainty functions

represents the apparent trustworthiness of a participant. These values are sub-

jectively determined by each participant, based on their experiences. For exam-

ple, if participant A knew nothing about participant B, then A would initially

assign a belief value of 0, a disbelief value of 0, and an uncertainty of 1 to

proposition ϕ that B would behave truthfully. Thus A’s opinion ωAϕ would be

represented by the triple (b, d, u) = (0, 0, 1). Conversely, if A knew that par-

ticipant C had been truthful in only 5 out of 10 dealings, then A might hold

the opinion ωAψ = (0.3, 0.3, 0.4) where ψ is the proposition that C would behave

truthfully. One of the coordinates of each opinion triple is redundant; the sum

of belief, disbelief and uncertainty is always 1.

Strictly, a fourth value should be included: the relative atomicity, which mea-

sures the overlap or correlation between the data on which the opinion is based,

and the domain of the proposition ϕ under consideration. This relative atom-

icity is required to accurately estimate the expected probability of ϕ:

E(ϕ) = b(ϕ) + a(ϕ)u(ϕ) where ωϕ = (b(ϕ), d(ϕ), u(ϕ), a(ϕ)) (2.1)

If it is assumed that past behaviour is a good predictor of future behaviour [93],

then this becomes

E(ϕ) =
b(ϕ)

b(ϕ) + d(ϕ)
if b(ϕ) + d(ϕ) 6= 0, otherwise E(ϕ) = k (2.2)

where k is a constant reflecting the expected behaviour of previously unknown

participants.

By making uncertainty in trust explicit, it is possible to estimate the effects

of decisions based on trust, and their expected bounds. In the above example,

given k = 0.5, A’s expected returns would be the same when transacting with

B or C; however, the predicted minimum and maximum returns would cover a

wider range for B than for C. This would be particularly important if the cost

of a failed transaction were significantly greater than the benefits of a successful

transaction, or A were very risk averse.

The subjective logic also provides natural operators for discounting and consen-

sus: discounting allows principal A to weight observations provided by principal

B about C appropriately, by discounting the observations according to A’s trust

in C; consensus allows two trust triples to be combined together to produce a

new trust value, such as when incorporating new observations into existing

belief triples.
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Although the subjective logic model provides a rich representation, it has a

few significant limitations. Firstly, its essential premise is that each principal

has a static, binary state: either ‘trustworthy’ or ‘untrustworthy’. Trust triples

then represent the belief, disbelief and uncertainty that the state is actually

‘trustworthy’. Thus E(ϕ) = 0.4 means that there is a 40% probability that the

principal is trustworthy, based on current evidence, not that the principal is

trustworthy 40% of the time. Secondly, a measure of relative atomicity is need

when incorporating new observations into existing trust values, to ensure that

they are weighted appropriately; this can be difficult to obtain especially when

many participants might unknowingly be witnessing the same event, and then

combining their observations.

Others propose using explicit Bayesian models to formally derive trust val-

ues from observations, especially in Peer-to-Peer networks [21]. This can be

achieved by treating each aspect of a client’s abilities such as download speed

or file type availability as a Bayesian prior, whose distribution is to be deduced

from the observations [106].

While these trust models defined the details of trust calculation formally, other

trust models focus instead on generic frameworks for trust modelling, which

can be applied to a wide range of disparate applications. For example, the

SECURE project [15] (which stands for Secure Environments for Collabora-

tion among Ubiquitous Roaming Entities) attempts to combine all aspects of

trust modelling into a single framework, ranging from trust modelling and risk

analysis to entity recognition and collaboration models.

The SECURE trust model allows each principal to express their trust policy as

a mathematical function which determines their trust in everyone else, in terms

of everyone else’s trust assignments. These trust policies can then be combined

to produce a consistent trust assignment for all principals; this is expressed as

the least fixed point that results when all the policy functions are combined

into a single trust function, and is guaranteed to exist provided that the policy

functions are all suitably monotone [16]. This model extends the work of Weeks

in formalising trust management in security access control systems in terms of

least fixed point calculations [107], into evidence-based trust models.

Models and analogies such as the prisoner’s dilemma [60] have often been used

to represent the incentive to cheat, and the social effects of this. Experiments

suggest that the best strategy in the prisoner’s dilemma is usually ‘Tit for Tat’:

cooperating initially, then imitating the opponent’s previous move from then

on. However, with imperfect information or measurement error, Generous Tit



20 CHAPTER 2. LITERATURE REVIEW

for Tat which forgives cheating with a probability of 1
3 is a superior strategy [46].

Studies have also been made in which the trustworthiness of the opponent is

known statistically — represented as the ability of the enforcing agency to per-

suade the opponent to cooperate [12]. (Reputation systems and other mecha-

nisms for encouraging cooperation may be seen as distributed enforcing agencies

in this context.) These preliminary studies suggest that underestimating the

opponent’s trustworthiness tends to harm both participants, though the rela-

tive costs of underestimating and overestimating have not been analysed; they

probably depend on circumstances. In other words, erring on the side of cau-

tion may not be the best strategy. Even the definition of partial trust is open

to debate [73]. In some contexts, partial trust implies that the opponent’s ca-

pabilities, or ability to do damage, are limited (either directly or through the

properties of the enforcing agency). In others, it implies that the opponent is

trusted to cause only limited damage. This highlights the difference between

the absolutist security approach and the statistical economic approach to trust

management, though the two are usually combined to some extent.

Systemic fraud must also be prevented, both locally and globally — it should

be impossible for an agent to systematically pilfer significant resources, either

from another agent [18], or from the society as a whole.

Reputation and Recommendations

Networks of trusting principals often use reputation services and recommenda-

tions to allow trust information to propagate between principals [1]. Reputation

services combine the observations of a number of principals, to provide a com-

mon reference for trust information — analogous to trusted third parties in

security systems. Recommendations, on the other hand, are personal obser-

vations by one principal about another, which can be passed to a reputation

service or directly to other principals.

Clearly, the protection of reputation services from slander is an important con-

sideration too [24], to prevent deceitful participants from maliciously damaging

the reputations of others. Conversely, measures are needed to prevent princi-

pals with bad reputations from simply creating new identities for future inter-

actions [99].

Trust model and reputation or recommendation services have been used in many

applications, such as peer-to-peer file sharing systems [106] — although it has

been argued that these cannot be truly decentralized without being vulnerable



2.3. SECURITY AND ACCESS CONTROL 21

to Sybil attacks [28] in which a single attacker pretends to have numerous

identities. Other applications include agent-based computing environments [53],

internet commerce and web service applications [102], and using trust to limit

cryptographic overheads where appropriate for Grid computing [5].

Reputation models are also used in other contexts too, such as in data mining

web links to compute the reputation of pages with respect to a certain topic

in a weblogging community [43]. Unlike the Google PageRank [78] algorithm,

this algorithm treats the problem of reputation assessment as separate from

information retrieval. Finally, some projects such as XenoTrust [29] seek to

combine reputation-based trust with conventional security into a single trust

management architecture. Here, a publish/subscribe system is used both for

notification of changes in trustworthiness, and for aggregation of reputation

information.

2.3 Security and Access Control

Traditional aspects of security modelling are also vitally important for large-

scale computer systems to operate safely and reliably. In this dissertation, the

most important of these are access control schemes and policy specification,

unforgeable certificates and proof of identity.

Access control systems are designed to limit which users can access certain data

or resources in a computer system. These range from discretionary and manda-

tory access control schemes (DAC and MAC) to more recent rôle-based access

control (RBAC) models [89]. While DAC and MAC operate by allowing users

to grant (or deny) others access to specific objects, and through the checking

of security labels respectively, RBAC adds an extra level of indirection: users

instead gain access to rôles — usually by presenting other credentials — which

then lead on to permission to access data or resources.

This indirection allows RBAC models to support rich, dynamic access control

policy, which can be defined and altered independently from the rest of the

system. For example, some rôles could be used as prerequisites for activating

other rôles, allowing a least privilege principle to be observed. Some RBAC

systems, such as OASIS [7] also allow parametrized rôles, delegation in which

some users can grant extra rôles to others, and dynamic revocation of privileges

if their preconditions fail.

Policies can also be used to control access to resources at the lower levels of
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a system, such as to implement QoS guarantees in the management of Differ-

entiated Service (DiffServ) networks [68]. The policy specifications are then

compiled from their textual representation into low-level commands for each

routing device.

Conventional trust management systems assume that trustworthiness is known

correctly at the time when it is used. The degree of trust is then represented in

various ways: as a number in economic models [12], as membership of a trust

class in privacy systems such as PGP [10] and in other trust frameworks [1], or

as membership of a rôle in access control systems [7]. These models implicitly

assume that there will be no further information about agents’ trustworthiness,

and therefore do not represent the accuracy of the knowledge assessments. Trust

models are frequently designed for security applications, which must ultimately

make a once-off decision to accept or reject a user’s credentials based on the

trustworthiness estimate. Thus, no further provision is made for limiting the

risk of fraud from authenticated participants either, since these conditions are

very difficult to express as security policies.

Access control systems often depend on signed credential certificates to support

distributed operation efficiently. These certificates are electronically signed by

the issuer, and used as tokens of authorisation or rôle membership. Because

the certificates are prohibitively difficult to forge, they can often be used even

when the issuer is uncontactable, e.g. because of network failures, to authorise

a user — as long as the issuer is known to be trusted in this context.

Electronic societies need to protect against malicious agents causing damage

or stealing resources. This is traditionally achieved by restricting the abilities

of agents, as in the Java sandbox model [44]. Here, program code is digitally

signed by the author, and a local access policy file specifies which authors’ pro-

grams can access which resources outside of the sandbox. Unsigned programs or

programs from unknown sources are then given no outside access by default. A

more difficult task is protecting agents from each other while still allowing them

to interact usefully; this requires a combination of trust management tools, and

cautious design.

Trust management has also been approached from a number of formal perspec-

tives. Palsberg and Ørbæk have demonstrated how trust annotations can be

applied to higher-order languages such as the λ-calculus [79], in such a way that

they can be analysed statically before the program is actually evaluated. Other

formal systems, such as the boxed-π calculus [92] and ambient calculi [17] can

also be used to wrap untrusted code and enforce security policies.
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Certificates and Signing

The use of certificates depends strongly on effective schemes for digital signa-

tures and proof of identity. In public-key cryptography, each principal has two

keys: a public key which is freely distributed, and a secret, private key that

only that principal knows [72]. Using the public key, principals can encrypt

messages that can only be read by the holder of the private key. Conversely,

the private key can be used to digitally sign messages, with a signature that

can be verified by any holder of the public key. Although the private key could

in principle be discovered through exhaustive testing, a sufficiently long key is

computationally infeasible to crack. On the other hand, cryptographic security

in messages does not offer a perfect guarantee against key compromise, as the

key could conceivably be obtained by other means such as installing a rogue

program on the signer’s computer to extract the unencrypted key from main

memory. Institutions such as banks try to avoid this limitation by providing

cryptoprocessors for customers, in which the secret key is physically protected

inside a special processor which can be used only for cryptographic tasks. How-

ever, many of these processors still have vulnerable interfaces which can be used

to extract information about their private key and thus crack it [11]. Even with

effective cryptoprocessors, flawed processes may be persuaded to sign messages

without the user’s knowledge, unless a specially secured terminal is used [8], so

a digital signature provides high but not perfect confidence in the validity of a

message.

The X.509 Public Key Infrastructure (PKI) [48] specifies a standardised format

for digital certificates, primarily for use in identifying principals (as discussed

in the following section), but which has also been used for other purposes such

as expressing rôle membership certificates in RBAC schemes. These certificates

can have many attributes for carrying information, and are signed by the issuers

to prove their authenticity.

Signing is useful not only for certificates and messages, but also for providing

indirect guarantees of authenticity. For example, digital signatures can be used

to generate post-unforgeable transaction logs to prove that a computation was

actually performed at a certain time, but without communicating all of the

intermediate results. This is achieved by generating a secure hash1 of the inter-

mediate results, and sending only the signature of this to a well-known trusted

1A secure hash function such as SHA-1 [32] condenses a message into a small, fixed-length
message digest. The digest is secure in the sense that it is computationally infeasible to
discover a message which generates a given digest, or two messages that produce the same
digest. Thus the digest can act as a fingerprint for the original message.
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third party to hold as proof. Successive hashes can be chained together, by

incorporating the previous hash into the new signature, making this a secure

audit mechanism that can be used to prove that computations were indeed

performed.

There are also other techniques for proving that computations have been per-

formed, such as multi-party secure computation, which distributes a computa-

tion over many machines, but prevents any minority from altering the result. In

principle, multi-party secure computation would allow secure auditing to take

place, but this could be prohibitively expensive to implement [47]. Further-

more, this would still not protect against cheats falsifying the original inputs,

as long as this cheating was achieved in real time.

A particularly important shared computation is fair exchange of information

between two computers, which seeks to ensure that the exchange is either com-

pletely successful or else aborted so that neither party holds the other’s infor-

mation [69]. For example, this can be used for electronic payment schemes, to

ensure a process in which all payments are acknowledged with signed receipts.

Section 3.3 covers fair exchange protocols in more detail.

Proof of Identity

Proof of identity is also needed for security systems, to ensure that principals

can recognise and identify those they interact with. On the other hand, this

drive for identification clashes with some principals’ need to remain anonymous.

To some extent, both of these problems can be solved using public-key cryp-

tography, by using principals’ public keys to identify them. A few well-known

principals can then be established as Certificate Authorities (CAs) which sign

others’ public keys, issuing X.509 certificates that link them to their real-world

identities. Each CA acts as a Trusted Third Party (TTP) in the sense that its

users all trust it to generate certificates honestly and unambiguously, and to

keep its private key safe from being compromised. These CAs are convention-

ally linked hierarchically, with one root CA authenticating other CAs which

can in turn authenticate others [34]. This hierarchy can be extended further by

users themselves, who can use their primary identity to authenticate their other

identities. Then if one of the user’s secondary private keys were compromised,

the owner could publish a revocation certificate and create a new identity to

replace it. In the short term, access to the compromised keys might allow dam-

age to be done, but ultimately it would not reflect a total loss of the principal’s
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identity.

PGP has an analogous mechanism whereby one participant can sign another’s

public key, to act as an ‘introducer’ to a third party. The resulting ‘web of

trust’ [10] allows the identity of previously unknown participants to be verified

indirectly, to allow secure communication to take place. This was novel be-

cause it allowed arbitrary trust relationships, instead of enforcing hierarchical

delegation of trust.

On the other hand, principals that need to remain anonymous can generate

fresh public/private key pairs to identity themselves pseudonymously to others,

unlinked to their other identities. Of course, these nonce-principals would be

unknown to others and thus untrusted; in security systems, untrusted principals

would usually have the lowest trust possible, to prevent others with minimum

trust from generating fresh identities instead to gain trust and access to re-

sources. Nevertheless, they could establish some trust from others by paying

money to them anonymously using untraceable electronic cash [20] or other

transferable securities similar to the code number of a mobile phone credit

top-up card. Alternatively, they could use environmental proofs of identity to

establish trust initially with only partial loss of anonymity — such as knowledge

of a guest username and password, possession of a delegated rôle membership

certificate, or location-based identification such as an IP address on a secure

intranet — although there is ongoing research into principal identification by

correlating behaviour and other evidence [91].

There is no universal cure for untrustworthy agents; however with long-lived

principal identities (whether linked to real world identities or not), trustwor-

thiness can be characterised, to provide an incentive not to cheat. Through

the use of reputation systems, virtual social institutions [25], or other enforce-

ment agencies, this can be achieved. However, this necessarily leads to reduced

anonymity for participants, and makes it more difficult for newcomers to enter

relationships (since they might be incorrigible cheats, masquerading as new-

comers) [99]. Nevertheless, there may be even greater rewards for this sacrifice

of anonymity than previously believed [23], because large networks of trust can

then be generated easily between previously unfamiliar participants, as char-

acterised by Metcalfe’s Law, which states that the usefulness, or utility, of a

network varies with the square of the number of users.
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2.4 Self-organising Distributed Systems

This section reviews techniques and tools for organising computations in large-

scale distributed systems, ranging from centrally controlled computer clusters,

through loosely coupled scientific ‘Grid’ applications, to peer-to-peer techniques

for ad hoc collaboration between strangers. It focuses on how interactions

can be controlled and monitored in these systems, through explicit contractual

agreements and economic modelling.

Computational economies offer a relatively new, but promising approach to

distributed cooperation. In the Spawn system [103], each task has a budget, and

uses this to bid for an idle CPU in a network of workstations. Important tasks

are assigned a larger budget than other tasks, which they can use for priority

access to resources. By choosing an appropriate bidding strategy, tasks can

optimise their use of funds. This has led to the stride scheduling proportional-

share algorithm for CPU process scheduling, based on a ticket system.

More recently, interest in shared application servers for large corporations has

led to plans by companies such as HP Laboratories (in the eOS project [110])

to support automatically migrating commercial applications on a global scale,

based on resource availability. Similarly, Intel Research is sponsoring the Plan-

etLab project ‘for developing, deploying, and accessing planetary-scale ser-

vices’ [83], while other scientific and commercial consortia such as the Globus

alliance [38] are developing generic toolkits for engineering Grid applications.

The EU and CERN are also developing a DataGrid project [13], to act as a

huge computing resource, for scientific and commercial applications, while the

GRACE grid project [14] uses a distributed computational economy to prioritise

its tasks.

Underlying most of these plans is the idea of a huge, global computing net-

work, which will become a basic resource, comparable to the electricity grid.

Computers on the Grid would all be reasonably trustworthy, paid for by appli-

cation service providers, who would in turn charge for the facilities they offered,

probably using standardised commodity pricing schemes, again comparable to

electricity markets. Nevertheless, current Grid applications are mainly repeti-

tive parameter-sweep tasks operating over trusting networks.

The main challenge is not simply allowing distribution of code — systems such

as PVM already allow this ([42], outlined below) — but discovering how to

build programs which can take advantage of this automatically [66]. Ideally,

independent services should discover each other dynamically, and be able to
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subcontract tasks wherever appropriate. This necessarily introduces the issue

of trust between services (rather than between services and the underlying net-

work), as well as the need for a language in which agents can make their needs

known.

First steps towards this have been taken with agent languages such as KQML,

the Knowledge Query and Manipulation Language — a language and protocol

for exchanging information and knowledge, part of the larger ARPA Knowledge

Sharing Effort [61]. Some have also suggested making these agents market-

aware [108], but again there is a lack of suitable tools for developing them.

Indeed, the strengths and weaknesses of these multi-agent systems are seldom

critically analysed [66] — a few studies have been performed for distributed

engineering control applications [111] to help rectify this, but only for simple

problems.

The Mojo Nation project was the first real example of a public computational

economy (until February 2002), though the services initially available were lim-

ited to file sharing and distribution [109]. In this system, users pay to locate

and retrieve files using the ‘Mojo’ currency, and are paid in turn when they

supply files to others. According to the authors, accounting and load balancing

are also decentralized, but it seems that the global name service is centralized

in one or two ‘metatrackers’. (In October 2000, the Mojo Nation network failed

and had to be modified, because more than 10 000 new users tried to join the

network on a single day.) It also seems that only content-related resource usage

is accounted, exposing the higher level services such as accounting to denial-of-

service attacks. The successes and failures of this project illustrate the power

and complexity of large-scale computational economies, and also the need for

realistic simulation to assess the scalability of a system.

Other peer-to-peer file sharing services have also tried to use market mechanisms

— either formally or informally – to ensure that participants provide resources

as well as consume them. For example, the Free Haven anonymous storage ser-

vice [26] uses an economy in which participants are effectively paid for provid-

ing shares (fragments of files) to others, and charged for losing blocks. Projects

such as SETI@home [59] have made use of large-scale distributed networks to

solve computational problems, but these are currently limited to computational

tasks that are based on distributing work units for (essentially) off-line process-

ing and eventual hierarchical submission of results. However, these projects

support only a very limited range of economic and computational interactions;

general purpose tasks would need richer behaviour.
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Contract Formation and Representation

A contract is an agreement between two or more parties about the actions

they are to perform; similar contracts also regulate behaviour when computers

cooperate. These contracts range in sophistication from simple, hard-coded

communication protocols, to the exchange of entire programs to be executed.

The simplest computerised contracts are communication protocols, which are

rules which allow computers to unambiguously interpret each other’s messages.

These protocols allow only simple, circumscribed actions to be performed, such

as making a copy of a particular file, or authenticating a user’s identity over a

network. In areas such as access control [7], this enforced simplicity enhances

security by allowing only predefined actions to take place. However, for tasks

such as flexible distributed computation, a contracting system would need to

allow for the dissemination and use of new software on the fly.

For example, PVM (Parallel Virtual Machine) is a software system which links

separate host machines into a single virtual computer, for use in scientific sim-

ulations and other applications [42]. In PVM, it is the user’s responsibility to

initially distribute the program code to each node, before executing it in parallel

through PVM. The control program (also written by the user) is then respon-

sible for distributing the active tasks between nodes, and collating the results.

In this scenario, nodes have two conceptual levels of contractual obligation:

1. to execute subroutines as directed by PVM, at the implementation level,

2. to faithfully contribute results towards the overall computation, at the

interface level; this is not made explicit, but is important to the user.

While the PVM protocols specify the mechanics of distribution, it is the control

program’s responsibility to organise what might be called the social interactions

of the nodes so that they cooperate effectively. The contractual agreements

underlying this are PVM’s hard-coded protocols, and the inscrutable executable

subroutines, respectively. PVM implicitly assumes that the user is trustworthy

and the program is correct, thus a malicious or faulty PVM module can damage

the network. Furthermore, accounting of resource usage is difficult and not

explicitly supported by PVM, hindering efficient use of resources.

This suggests that an intermediate level of contract might be desirable — less

rigid than the hard-coded protocols, but more comprehensible than ordinary

executable code, and subject to introspection.
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Making Contracts Explicit

This section reviews how contracts have been made explicit in existing sys-

tems, and highlights the distinction between the contract itself and the actions

involved in performing it.

The archetypical example of this is the Contract Net protocol [96], in which

computer nodes advertise tasks which need to be done, or bid to perform them.

The initial negotiations involve only high-level descriptions of the tasks, and

nodes are usually selected according to their speed and suitability for the par-

ticular task. Worker nodes may also subcontract their calculations, if necessary.

The protocol was at first designed for remote sensing applications, but has been

used in many other domains too. The original implementation assumed that all

participants were trustworthy, and all tasks important; more recently, Sandholm

and Lesser [88] have explored levelled commitment and breakable contracts,

though still only with trustworthy agents, and Dellarocas and Klein [25] have

postulated the need for electronic social institutions to provide robustness in

an open contract net marketplace.

Others have analysed the relevance of business contract theory in this do-

main. On the one hand, computers can be used to partially automate business

contracts, through enforceable online transaction systems [49] and automated

contract negotiation [57]. On the other hand, traditional business accounting

controls, such as double entry bookkeeping, segregation of duties and auditing

techniques, can be applied to computerised contracts [99], instead of reinventing

them from nothing. Similarly, business theory suggests that both computational

and mental ‘transactional costs’ — the overheads of performing contracts —

should be included in a comprehensive contract model, as does human-computer

interaction research into unintrusive or distraction-free computing [40].

Explicit contracts are also used for specifying network service needs, in the form

of Service Level Agreements (SLAs). Although these are traditionally limited

to paper-based contracts, other projects such as TAPAS [75] are investigating

electronically enforced SLAs.

This leads to the problem of assessing whether a contract has been correctly

performed. The primary difficulty here is the lack or cost of this information —

which is often why a contract was formed in the first instance. For some tasks,

such as NP complete problems [80], generating an answer is far more difficult

than checking its correctness. However, this would not help verify original

information from suspect sources, unless corroborating information could be
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found elsewhere. Studies in linguistics have investigated the complexity of lies,

and the difficulties of defining them [62, pp. 71–74]. There is also the larger

problem of differentiating between intentional and unintentional breaches of a

contract, and situations where the contract was improperly constituted in the

first place [4].

Many of these problems can never be completely resolved, or would be too

expensive to rectify. Nevertheless, high-level contracts can help to formalise re-

lationships between computers, improving accountability and providing a level

at which trust analysis may be feasible.

2.5 Summary and Nomenclature

For computer systems to manage their resources appropriately, they need to

explicitly codify their resource usage. This applies equally to local resource

management and to resource management in distributed systems, which can be

seen as cooperating networks of autonomous nodes. To express this effectively,

each node also needs to model the cost and benefits or priority of its contracted

tasks, as well as the trust it has that other nodes will cooperate with it. While

existing systems do support contracted operations, they are very limited in the

range of interactions possible, and in their abilities to express the link between

a task’s resource needs and its priority. Thus there is a need for a consistent

framework to control and monitor resource usage, for trust-based interactions

in distributed computing environments.

Throughout the rest of this dissertation, following concepts are crucial: A com-

putational contract defines an exchange of resources between a client and a

server; the rate of exchange is defined by its accounting function. Resources

include computational resources such as CPU time and network bandwidth,

and also payments and external constraints. Trust represents the expected be-

haviour of a participant in performing contracts, in economic terms; the trust

model is the operational framework for identifying worthwhile contracts. Con-

tracts are useful in both competitive applications and as service contracts which

use their accounting functions to support cooperative distributed services.

The following chapter (Chapter 3) defines a general purpose contract frame-

work, for modelling interactions in both centralized and distributed systems.

Chapter 4 then integrates trust modelling into the framework and proves the

model’s resilience to attack, before illustrating its usefulness in a compute server
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application. Later chapters show that the framework’s techniques can also be

applied to other tasks such as automating human-computer interactions and

controlling distributed service provision.
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Chapter 3

A Framework for Contracts

A contract framework lets computer systems formally agree to the tasks they

undertake, taking into account the resources they need. Payments or resource

exchanges can also be expressed in the same resource model, so that contract

compliance can be defined and measured. Contracts need to be negotiated

and signed electronically too, to ensure that both parties accept their terms as

binding. Finally, a trust model will be needed to help identify good contracts

from reliable participants automatically.

The contractual approach is useful for a wide range of applications, such as

task management on a single computer, or distributed computation in ad hoc

virtual communities where contracts protect against service disruption by un-

scrupulous participants. This chapter establishes the framework for contracts

and introduces its novel and expressive resource model, while Chapter 4 goes

on to show how trustworthiness and reliability can be modelled as contract

transformations, both within secure local domains and in virtual communities

connected only by personal recommendations. Thus the contract model con-

tributes an intermediate representation for tasks that acts a bridge between

inscrutable computations and measurable utility.

Instead of insisting on a substantial trusted third party infrastructure for the

contracting framework, we allow subjective contract assessment, and propose

the use of a rich trust model to allow these subjective assessments to be com-

bined. Although this allows clients and servers to try to lie about contract

compliance, the opportunities for this are very limited (since actions such as

contract payment are cryptographically signed by both parties, acting as con-

tract checkpoints: see Section 3.3.1) and the benefits are bounded by the trust

model’s safety properties (see Section 4.2.3).

33
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3.1 Motivation

Computer systems need to control access to their resources. These resources

may be scarce or expensive, and so urgent or important tasks should take

precedence in using them. However, even the most important tasks need to be

monitored to stop them consuming more resources than intended. This moni-

toring should be automatic, to allow computer systems to regulate themselves

with little external intervention.

Traditionally, access control permissions and task priority levels are used to

decide which tasks are run, and when. These decisions are implemented at

many layers, ranging from interrupt request prioritization at the hardware level,

through the operating system’s task scheduler and file permission controls, to

middleware for high level access control of services.

All of these mechanisms trade off flexibility of control against the overheads they

impose; more powerful control mechanisms are also more difficult to analyse

to ensure code safety and liveness, which guarantee that the system behaves

correctly and yet makes progress. However the resulting power allows for fine-

grained control, while simplifying resource administration — for example in

rôle based access control systems, policy authors can associate a privilege with

a group of users acting in a certain context, rather than simply with local

user identities. Furthermore, this administration and authentication can be

performed remotely in a different domain, then applied locally.

For tasks where security is paramount, a permission based approach to control

is appropriate. On the other hand, when resources are scare, this is not enough:

two tasks might be permitted to access the same resource, when only one can

actually do so. In a sense therefore, access control systems are designed for re-

stricting access, not enabling it. What is needed is a mechanism for authorizing

access based on resource consumption.

For authorized resource consumption, the client (seeking to use the resource)

must negotiate with the server (offering the resource) to match its needs to

the resources available. The server’s authorization can then be expressed as an

explicit contract to supply resources. Conversely, the client should also enter

into the contract, promising to abide by the resource allocation, and perhaps

to provide payment or other resources in exchange for those of the server.

Expressing services through contracts would allow computer systems to plan

for their resource usage and consumption, and allow scarce resources to be
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apportioned between claimants appropriately. Although clients cannot always

precisely predict their resource needs in advance, contracts would still guarantee

a minimum quality of service, and could also express the terms of exchange for

extra resources used. By assigning a value to each resource type — either

statically or using a market value — servers could also differentiate between

contracts in assigning extra resources beyond the minimum level promised.

The applications of this contract framework would include not only selling CPU

time on compute servers and similar services, but also extending traditional

notions of access control to take into account resource consumption too. For

example, a resource-constrained sandbox could be created for running untrusted

code, and interruptions of the user’s time by programs in the background could

be limited by treating this as a scarce, contractable resource.

Clearly, contract specifications would need to be constrained, to prevent them

executing arbitrarily code which would make contract analysis prohibitively

difficult. Furthermore, untrustworthy or unreliable clients and servers might

break their promises, in breach of contract. As a result a trust model would be

needed, for monitoring the contract framework, and to help in deciding which

contracts should be accepted.

3.1.1 Applications

There are two broad classes of applications of the contract framework: service

oriented and user oriented applications. Distributed services need to perform

computational tasks remotely for their clients across a network, possibly because

they have special resources (such as extremely fast or underused processors) or a

special location in the network, or because the same resources can be reused for

many clients. In contrast, user oriented applications must focus on controlling

many tasks vying for the user’s scarce time and attention.

To test the contract framework motivated above, three applications were

developed:

1. a compute server which runs others’ programs for money in a market

economy,

2. a collaborative PDA application, in which the user’s time is protected by

resource contracts, and
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3. a distributed service to detect composite event patterns in a publish/

subscribe network, which migrates pattern detectors through the network

towards event sources.

These applications exercise the contract framework, and test its effectiveness as

a general purpose resource control framework, able to consider the suitability

of complex contracts and take into account trust dynamics in many application

domains. Although each application is independent and emphasises a differ-

ent aspect of the framework, they all use the same underlying infrastructure,

together exercising all facets.

3.1.2 Contract Executability

If contracts are to control the resource usage in computer systems, then the

resource overheads of the contracts need to be taken into account too. This can

only work effectively if the contract framework can limit or predict the resources

used in assessing a contract, by controlling the granularity of analysis and the

level of expressiveness of contracts.1

On the one hand, contracts need to be expressive enough to represent concepts

such as tiered resource exchange rates and other stateful provisions, resource

prices varying with market conditions, and contract prerequisites such as re-

source deposits and the corresponding returns on successful completion.

On the other hand, contract terms which are too expressive or even Turing com-

plete may themselves consume resources unpredictably, defeating their purpose

of controlling consumption; in an extreme case, maliciously designed contract

terms could be used to overwhelm a server in a denial of service attack. Fur-

thermore, if the contract framework is to be able to analyse contracts before

agreeing to them, it must be possible to simulate the contract terms in isolation

without performing the contract action.

The aim is therefore to choose a contract representation with predictable re-

source bounds, yet which is expressive enough to allow rich, stateful provisions.

Furthermore, very little (if any) interaction should be allowed between the con-

tract itself and the action performed under it, in order to allow contracts to be

simulated in a planning framework.

1The alternative would be a global certification framework, in which programs were certified
only if they controlled their own resource usage. However, even here, a methodology would
be needed for proving or enforcing the effectiveness of this control.
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3.1.3 The Need for Trust

Even if contract terms are constrained in complexity, they might not always be

honoured by all parties to the contract. A trust model (Chapter 4) can be used

to compensate for this: by storing up information about each participant’s

previous behaviour, it can predict whether it would be worthwhile to enter

into a new contract, or reject it as probably unprofitable. This information

could include not only direct observations of contract compliance, but also

indirect sources of information such as trust recommendations based on others’

observations. The same trust model could also be used to decide whether to

continue supporting existing contracts when the other party was violating the

contract terms.

Contract violations might be malicious or accidental, caused perhaps by a fail-

ure or a lack of resources. From the perspective of the aggrieved party, these

have the same effect, and could thus be treated as equivalent in a subjective

trust model. For reliability, the trust model should support disconnected opera-

tion, although recommendations from other participants or well known trusted

agencies may be used for bootstrapping the trust model with new participants.

Ultimately, the trust model should aim to preserve the safety of the resource

system, by preventing attacks which consistently milk the system of resources

— such as engaging in many small, successful contracts in order to win even

more resources back by cheating on a large contract — while ensuring live-

ness by facilitating honest behaviour and bootstrapping trust values. Thus

the trust model should oversee contract negotiation and execution, restricting

participants’ access to resources based on their reliability.

3.2 Contract Specification

A contracting framework allows computerised resources to be controlled con-

sistently and rationally. This section defines these contracts, how they express

their resource needs, and how they are negotiated and managed. When con-

tracts are interpreted, their conditions are moderated by input from the trust

model defined in Chapter 4, to discourage cheating.

A contract defines an exchange of resources between a client and a server. Thus

a contract specifies the following:

The server promises to offer resources through the contract.
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The client will be responsible for paying the server for resources used under

the contract.

Resource requirements specify the minimum levels of resources the server

will offer.

Accounting function defines the terms of exchange between server and client

resources.

Contract action will use the resources which the server offers. This would

usually refer to program code provided by the client (such as a Java

method signature) which should be executed under the contract.

The structure of resources is defined hierarchically, to allow resources to be

described in summary at a high level, and also in full detail.

Resources R is the space of all resource types. In a typical system, these

might include computational resources such as CPU time, network band-

width and storage usage. Money would also be treated as a resource of

exchange, allowing financial contracts.

The space of resources is subdivided by resource type and subtype. For

example RCPU ⊆ R denotes CPU resources, while RCPU,ix86 ⊆ RCPU

denotes CPU resources on Intel processors. These subspaces allow con-

tracts to specify the resources they require as specifically as necessary,

while allowing the contracting server flexibility when appropriate.

Cumulative resource usage RU shows cumulative usage of resources of all

types over time. Each resource usage entry u ∈ RU is a function of time

and resource type, which returns the total resources used until the time

of interest. For example, u(t1,RCPU) = 10.5 means that 10.5 normalised

units of CPU time were used until time t1, with u : R× P(R)→ R.

A cumulative resource usage function attributes resources to all matching

categories. Thus u(t1,RCPU) would include all CPU resources — both

those for specific architectures such as RCPU,ix86 and those for no specific

architecture. However, u(t1,RCPU,ix86) would comprise only resources of

type (CPU, ix86).

Having formalised the space of resources and their usage over time, we can

re-express a contract’s resource requirements and accounting function formally:

the resource requirements of a contract c are given by require(c, t) ∈ P(RU ),

the collection of resource combinations that would satisfy the contract. So a

given resource pattern u ∈ RU satisfies the contract’s resource requirements
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until time t∈R if u ∈ require(c, t). The resources actually used are then passed

to the contract’s accounting function account(c) : RU → RU to determine the

minimum level of resources that should be provided by the client in return.

Coupled with the resource hierarchy, this allows resource requirements to be

made as general or specific as necessary.

When a contract is being executed at time t, used(c, t) ∈ RU represents the

resources used by the client, and paid(c, t) ∈ RU shows the resources repaid.

Lastly, offered(c, t) ∈ RU are the resources that the server had made available

to the client until time t.

A client need not use all the resources made available to it under a contract,

thus used(c, t) ≤ offered(c, t),∀t ∈ R, where the ordering on RU is the natural,

pointwise ordering. Addition and subtraction are similarly defined pointwise.

However, the resources offered must comply with the contract requirements.

Contract compliance measures the extent to which a server or client is com-

plying with the terms of the contract. This is not simply a boolean yes/

no answer, but instead expresses the resource shortfall or surplus, com-

pared to the contract terms. If more resources are offered in a compliant

contract, it remains compliant:

∀u, v ∈ RU , u<v ∧ u ∈ require(c, t) ⇒ v ∈ require(c, t)

A server complies with contract c at time t if offered(c, t) ∈ require(c, t).

The server’s contract shortfall or surplus is s if

s+offered(c, t) ∈ require(c, t) and

∀u<s, u+offered(c, t) /∈ require(c, t)

If paid(c, t) represents the cumulative resources provided by the client in

a contract until time t, then client compliance is measured as

paid(c, t)− account(c)(used(c, t))

If contract terms are not met, the other party is not obliged to continue with the

contract although it may be in its interests to do so, in case the non-compliance

is accidental, or if it has already allowed for a degree of non-compliance in

analysing and accepting the contract. (This aspect of trust is defined in more

detail in Chapter 4.)
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Assessment of contract compliance, and attribution of responsibility for non-

compliance, is often local and subjective. For example, if a client is obliged to

make a financial payment to a server, the server might simulate a communi-

cation failure and blame the client for non-compliance, while the client would

blame the server. No third party could distinguish which version of events

was accurate and determine whether to distrust client or server, without extra

information.

In the simple example above, communications could be monitored by a trusted

intermediary to determine responsibility. However, other disputes would not

be as easily resolved: a contract action typically refers to code to be executed

under the contract. If the client and server disagree on whether this code has

been executed correctly, external validation might be impossible or at least

prohibitively expensive: the server would have to have recorded all relevant

communication, and reliably logged this information with a trusted third party,

such as by sending it a secure hash of the data [32] which acts as an unforgeable

data fingerprint and makes it impossible to falsify retrospectively. To validate

its claim, the third party would then need to simulate the operation of the

entire contract again, at considerable expense.

3.2.1 Contract Specification in a Simple Compute Server

As a concrete demonstration of contracts, resources and compliance, we consider

the example of a simple compute server, which offers to run programs for others

in exchange for money.

For simplicity of exposition, we assume that the space of resource types R

has just three elements; R= {CPU, I/O,money} and is partitioned into three

independent subtypes: CPU resources RCPU, input/output bandwidth RI/O

and money Rmoney. In a real system, these subtypes would probably be further

subdivided, e.g. by location and currency.

In this system, a cumulative resource usage entry u can chart how each resource

type is used over time. For example, if 1 CPU unit and 2 units of bandwidth

were used per second for the first 10 seconds, and nothing else, this would

correspond to the usage graph a shown in Figure 3.1.

A contract c1 might give its resource requirements require(c1, t) as a number of

checkpoints, such as ‘at least 1 CPU unit per second for the first 5 seconds, plus

an extra 10 units within the first 10 seconds’. The CPU resources needed to

satisfy this contract for the first 5 and first 20 seconds are shown in Figure 3.2.
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Figure 3.1. Graph of resource usage a ∈ RU over time
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Figure 3.2. Possible values of u(t,RCPU), if u satisfies contract c1

The first graph shows that at the end of each second, an extra unit of CPU

resources is required to satisfy the contract. The shaded area of the graph shows

the range of values associated with compliant resource offerings offered(c1, 5)

satisfying require(c1, 5). For example, the graph a of Figure 3.1 clearly satisfies

contract c1 for the first 5 seconds, and lies wholly within the shaded area of

Figure 3.2(a). However, it no longer satisfies the contract after 20 seconds,

since a(10,RCPU) = 10, but c1 requires at least 15 CPU units within the first

10 seconds. This can be seen graphically too, since a(t,RCPU) lies beneath the

shaded area of Figure 3.2(b) for t ∈ [10, 20].

The graphical representation conveniently summarizes the requirements of a

contract, but risks oversimplifying matters: no usage graph which extends out-

side the shaded requirements will be compliant, but the reverse is not always

true. For example, supplying 15 CPU units within the first second and nothing

else will not satisfy c1, despite lying inside the shaded requirements area. This

is because requirements definitions are not simply pointwise, but can depend
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on the entire usage graph. Thus require(c1, t) should be defined formally as:

u ∈ require(c1, t) ⇐⇒ u(1,RCPU)− u(0,RCPU) ≥ 1 if t ≥ 1

and u(2,RCPU)− u(1,RCPU) ≥ 1 if t ≥ 2

and u(3,RCPU)− u(2,RCPU) ≥ 1 if t ≥ 3

and u(4,RCPU)− u(3,RCPU) ≥ 1 if t ≥ 4

and u(5,RCPU)− u(4,RCPU) ≥ 1 if t ≥ 5

and u(10,RCPU)− u(0,RCPU) ≥ 15 if t ≥ 10

This is obtained by combining 6 independent conditions, one for each line of

the definition:

u ∈ require1(c1, t) ⇐⇒ u(1,RCPU)− u(0,RCPU) ≥ 1 if t ≥ 1

u ∈ require2(c1, t) ⇐⇒ u(2,RCPU)− u(1,RCPU) ≥ 1 if t ≥ 1

...

u ∈ require6(c1, t) ⇐⇒ u(10,RCPU)− u(0,RCPU) ≥ 10 if t ≥ 10

Then, assuming CPU resource usage never decreases,

require(c1, t) =
6
∑

i=1

requirei(c1, t) with addition defined naturally.

Both the graph and the formal definition show that require(c1, tf ) places no

constraints on its elements u(t,RCPU) for t > tf . In other words, the require-

ments function constrains only past, not future usage at each moment. This

can be seen in Figure 3.2(a) where all usage values are shaded for t > 5.

Why the elaborate system with two time axes? Firstly, this allows for the sim-

plest representation of contract requirements, since the time of assessment tf

and the assessment history timeline t are explicitly differentiated. Secondly,

the ability to refer to the past allows compliance to depend on both past be-

haviour and current resource provisioning. Finally, independent time axes allow

contract requirements to change over time. This allows maximum flexibility in

contract specification, and allows a contract’s terms to be changed on the fly

without changing the compliance history. In our example, if the server does not

provide enough resources for the client, it violates the contract and continues

to do so indefinitely. However, the client and server could negotiate a penalty

fee, and change the contract terms to allow the penalty to offset the original

shortfall. This would allow the contract to become compliant again, but should
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(b) a2 offers a SPARC CPU

Figure 3.3. Illustration of Resource Generalisation

still not alter the fact that it was violated earlier — otherwise past observa-

tions and testaments about the contract’s progress would have to be revoked.

Instead, by changing only the contract’s future conditions, past violation could

be reconciled with present compliance.

The contract’s provisions for resource shortfall need not have been added retro-

spectively; alternatively they could have been included explicitly in the original

contract terms. Thus a resource shortfall would have led to only a period of

non-compliance, until suitable reparation was made and compliance was re-

established.

The example given above is necessarily simplistic and incomplete; it does not

address aspects of the contract framework such as resource generalisation and

client compliance, nor practical considerations such as participant trustworthi-

ness and contract selection. Many of these are covered in a more comprehensive

computer server application in Section 4.3, but the contractual aspects are also

illustrated below.

An important feature of the contract formalism not addressed in our simple

example is resource generalisation. While this might not be sensible for com-

bining heterogeneous resource types such as CPU time and bandwidth, it can

be extremely useful for aggregating different resource subtypes. In contracts,

this allows resource requirements to be expressed as generally or as specifically

as needed. For example, if R = {CPU ix86,CPU SPARC, I/O,money} with

RCPU,ix86 = {CPU ix86} and RCPU = {CPU ix86,CPU SPARC} then the

resources offered by a1 ∈ RU in Figure 3.3(a) would satisfy both c2 and c3

defined below, but a2 ∈ RU in Figure 3.3(b) would satisfy only c2:

u ∈ require(c2, tf ) ⇐⇒ u(t,RCPU) ≥ t if t∈ [0, tf ]

u ∈ require(c3, tf ) ⇐⇒ u(t,RCPU,ix86) ≥ t if t∈ [0, tf ]
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This is because contract c2 requires 1 CPU unit of any type per second, while c3

requires the same resources on an ix86 processor only. As a1 offers resources on

an ix86 processor, and a2 a SPARC, we obtain the result above. To illustrate

this, a2 /∈ require(c3, 5) since a2(4,RCPU,ix86) = 0 < 5 even though 4∈ [0, 5].

Formal contract specification ensures that participants can consistently inter-

pret a contract’s terms, and evaluate contract compliance. This also allows

them to assess the suitability of a contract before entering into it, during con-

tract negotiation and signing.

3.3 Contract Negotiation and Signing Protocols

For computational contracts to be useful, all participants must agree to them.

This agreement could be expressed using digital signatures to prove contract

acceptance — ultimately, each participant seeks to prove to itself that the other

participant understood and agreed to the contract. Formal contract specifica-

tion ensures a common interpretation, while contract negotiation and signing

allow proof of agreement.

Proof of identity is also important in contract signing, to prevent rogue par-

ticipants from pretending to be others. However, it is not always necessary to

bind computational and physical identities together, or to prevent participants

from creating many pseudonymous identities. When this binding is needed,

dedicated, well-known naming services can be used to verify participants’ pub-

lic keys and hence their identities (as described in Section 2.3). In practice,

participants typically need to use consistent identities to establish trust in their

contract compliance in any event (see Section 4.1.2), and public/private keys

prevent man in the middle attacks for future interactions.

Contract and message signing protocols have been extensively studied else-

where [36, 39]; they allow contract signatories to prove to others that they

accept the terms of a contract. Fairness is an important aspect of contract

signing schemes, and is itself part of the more general topic of fair exchange.

In a fair exchange protocol, eventually ‘either all involved parties obtain their

expected items or none (even a part) of the information to be exchanged with

respect to the missing items is received’ [69]. In contract signing, this means

that ultimately either all parties will provably accept the contract, or all will

reject it.

Any contract signing scheme trades off caution against speed of response, and
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accountability against participant anonymity. On one extreme, for every action

a message could be signed, countersigned and registered with a trusted third

party. Conversely, participants could enter into contracts based on blind trust,

with no computational proof of the other party’s intentions. Although neither

scheme is suitable for all applications, both are used successfully in certain niche

applications: for example digital wallets facilitate online payment by credit

card by signing payment authorisation messages which the card issuer must

countersign before the payment is accepted [31]. On the other hand, many

scientific grid applications simply restrict access to their computers to a known

set of users or to credentials issued through pre-approved organisations [14].

This section therefore approaches contract signing from an essentially functional

perspective, but with the understanding that the outcome of a contract signing

is often unknown or unprovable when it is actually needed. This could be be-

cause of unreliable communication links in a distributed system, or the result of

deception from cheating participants. Thus the contract framework must allow

decisions to be made with incomplete information, based on past experiences

and risk estimates. These will in turn be based on earlier experiences attested

to through the signing process, hence the need for signature fairness to ensure

information symmetry, eventually.

Other aspects of fairness are also important in a signature scheme: abuse-

freeness [39] and timeliness [69]. Abuse-free protocols prevent participants from

ever proving to others that they have the power to force a contract to be ac-

cepted or rejected, part way through the exchange; this ensures that partici-

pants cannot leverage incomplete signings in negotiating further contracts with

others. In contrast, timeliness ensures that no participant can indefinitely delay

the progress of a protocol. Thus abuse-freeness and timeliness represent fairness

about making protocol statements, and fairness about controlling progress.

If a signature scheme is to be suitable for contract signing and resource ex-

change, it should interact as little as possible with the contract framework, so

that signings can be treated as primitive, lower-level operations. To ensure this,

we would like the scheme to have the properties of fairness (to ensure mutual

information), abuse-freeness (to prevent signature leveraging) and timeliness

(to discourage stalling and hedging). Although this does not prevent signature

interactions, it ensures they can only be based on probabilistic reasoning and

trust, not on certainty and proof. For example, a manipulative participant

would not be able to indefinitely delay the signing of a contract while looking

elsewhere for a more favourable alternative. However, they could briefly con-
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sider other options, but with some risk of being forced by the signature scheme

to agree to enter two contracts at once.

We model the progress of a signature exchange with the Exchange programming

interface shown below. While a more detailed interface might allow more oppor-

tunity to manipulate the signature mechanism, this interface provides enough

information and control to monitor and avoid others’ signature delays or abuses.

interface Exchange {

complete() // Try to successfully complete the exchange, if possible

abort() // Try to abort the exchange, where possible

ExchangeState getState() // Return INITIAL, COMPLETED, ABORTED

// or UNKNOWN

addListener(ExchangeListener e) // Monitor state changes

}

For example, the following exchange protocol provides fairness, abuse-freeness

and timeliness [3, 69], whenA andB exchange an item for a signature. Although

the help of a trusted third party (TTP) is needed when recovering from failures

in the main protocol, the protocol is optimistic in the sense that successful

exchanges need not involve the TTP.

• Main protocol:

1. A→ B: committed item (the TTP can open it without A’s help)

2. B → A: committed signature

3. A→ B: item

4. B → A: signature

• Recovery protocol:

1. A or B → TTP: committed item and B’s committed signature

2. TTP→ A: B’s signature

3. TTP→ B: A’s item

• Abort protocol:

1. A→ TTP: abort request

2. TTP→ A: abort confirmation

3. TTP→ B: abort confirmation
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Figure 3.4. A state transition diagram for fair information exchange

The TTP will allow either a recovery or an abort for a particular exchange,

but not both. If the main protocol is completed successfully, then a subsequent

abort is ignored. Figure 3.4 shows the correlation between protocol steps and

signature states reported by getState(), from the perspective of the initiating

participant, A.

In one sense, it can be argued that this protocol is not fair in conventional

terms [69]; for example, B is informed by the TTP if A aborts the protocol. On

the other hand, B can effectively abort without informing A, by not replying

to the first message. However, these issues affect only the inner workings of

the exchange protocol, not the outcomes. The fairness of the exchange is still

preserved, thus participants have little incentive to manipulate the protocol, as

they are blind to the information being exchanged.

The protocol is also well suited to distributed operation when used for signing

and countersigning contract messages, despite the need for trusted third parties.

This is because the actual content of a signature is not usually needed except

as evidence of good faith dealings. Thus participants can prove to themselves

that a signature can be recovered, and defer the actual recovery until the TTP

can easily be contacted.

3.3.1 Contract Messages

Signatures on contract messages are important because they are proof of a

willing exchange between principals. Firstly, they allow principals to verify

the origin and authenticity of each message, preventing attackers from inter-

jecting misinformation. Secondly, signed messages can be used as evidence,

demonstrating a participant’s interaction history to others as a credential (see

Section 4.2).
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However, there is more to contract maintenance than simply exchanging sig-

natures. This section outlines how contracts are negotiated and agreed upon,

maintained and terminated, between two participants identified by their pub-

lic/private key pairs. It also illustrates how contracts can fail, and examines

the possible consequences.

There are three essential phases to the life-cycle of a contract: initial negoti-

ation, activity, and termination. These phases are controlled by asynchronous

messages for requesting actions and exchanging signatures.

Initial negotiation can establish a new contract between two principals, or

update the terms of an existing contract. A contract request proposes

a contract but is not a binding offer. (The request is, however, signed

to prove its origin and protect against denial of service attacks.) These

requests allow participants to negotiate contracts inexpensively, without

having to set aside resources in advance, as they would otherwise have to

if the requests were binding.

A contract exchange establishes a binding contract, provided both prin-

cipals agree to its terms by signing it; a copy of the contract together

with both signatures proves that it was accepted. Ideally, a fair exchange

protocol would be used, ensuring either a completed contract exchange

in which each participant receives the other’s signature, or an aborted

contract exchange with no signature exchange.2

Activity in a contract is regulated through payment messages; participants

use these to claim or validate that they have performed their part in a

contract, and to request payments from others. As above, there are two

forms of payment messages: signed but non binding payment requests,

and signed payment exchanges which become binding if the exchange is

completed successfully.

The terms of an active contract can also be modified on the fly, with a

new contract exchange. This might be used, for example, to rectify a

contract breach such as a missed payment or a resource shortfall.

Termination concludes a contract cleanly, and consists of optional termina-

tion requests before a final termination exchange. Even though a client

or server could simply abandon a contract part way through, this would

2Without a fair exchange, contracts can still be agreed on using signed and countersigned
contract messages, but this would involve some extra risk — for example, when receiving a
signed contract, the recipient could delay before countersigning or rejecting it, while using the
contract as a bargaining tool with others.
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risk a loss of trust in future contracts, so proper contract termination is

important.

Conversely, proof of a successful termination could also be used as ev-

idence of past trustworthiness, to allow participants to bootstrap their

trust relationships with others.

This messaging protocol allows contracts to be modified dynamically with the

consent of both participants. An alternative, equivalent approach would be to

terminate the old contract, and simultaneously begin a new contract linked back

to the old one. This could again be used to resolve contractual breaches, but

would introduce more race conditions than the approach above; for example, if

a client was trying to simultaneously make a contract payment, and upgrade

the contract by terminating it, the payment might be accepted or rejected de-

pending on whether it was received before or after termination. If the payment

was rejected, it would need to be resent in terms of the new contract, or else the

definition of contract identity would need to be changed to avoid this, simply

mirroring the message scheme above.

Figure 3.5 illustrates the progress of a typical contract for a computer server

application, from initial negotiation through to termination. Each step shows

a single higher level activity (such as ‘Contract Request’); for clarity the initial

steps also show the lower level messages needed to effect them.

This example is by no means exhaustive. For example in step 1, if the client had

considered contract c2 unsuitable, it could have aborted the signature exchange,

and then proposed a third contract, or waited for another offer from the server,

or abandoned the negotiation altogether.

The simplicity of the exchange in Figure 3.5 belies the complex decisions that

must be made in deciding how to proceed with a contract. For example, which

contracts should be accepted? How often should payments be requested? In one

sense, these decisions are part of an implementation, not part of the protocol

design. Furthermore, they are tightly connected to the trust model, which

moderates them in order to manage cost and risk, as discussed in more detail

in Section 4.2. As a result, the issues are addressed only briefly below.

In adjusting contract performance, the trust engine must essentially trade off

the overheads of sending additional messages and signatures, against the risk

of the other party cheating. Since most of these messages will be accounted

and charged for under the contract, it would seem at first that servers actually

have an incentive to send as many contract messages as possible. However, the
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Step Message flow Message and contents

Initial negotiation phase:

0 Client−→Server Contract Request for contract c1=‘xxx’
Client sends Server c1, and a signature
sigClient(Request c1)

1 Server←→Client Contract Exchange of contract c2=‘yyy’
Server sends Client c2. Then server and client
exchange signatures sigServer(Exchange c2) and
sigClient(Exchange c2)

Activity phase:

2 Server−→Client Payment Request

3 Client←→Server Payment Exchange

Termination phase:

4 Client−→Server Termination Request

5 Server−→Client Payment Request

6 Client←→Server Payment Exchange

7 Server←→Client Termination Exchange

Figure 3.5. Example of the messages of a contract

client would then perceive this as an extra overhead for that server, and either

choose another server or else appropriately discount the rate at which it was

prepared to exchange resources with the server in future. Clients have a similar

cost incentive to send as few messages as possible.

On the other hand, especially for long-running contracts, both clients and

servers need to ensure each other’s compliance, to ensure they are not defrauded

of resources. Even messages which cannot be attributed to any successful con-

tract must still be accounted for — e.g. from aborted contract negotiations —

to prevent Denial of Service attacks, by adding a dummy contract for over-

heads. There is even a subtle benefit to the cost overhead of signing messages:

participants attempting to attack the system need to consume their own com-

putational resources in signing the messages they send. This makes it more

costly to stage an attack, decreasing the rational incentive to do so.3

To further protect against local and distributed DoS attacks, proposers of new

contracts could also be required to prove their suitability by adding a Hash-

Cash [6] stamp to their new contract requests. This proof-of-work stamp is com-

putationally expensive to generate but cheap to check, providing an adjustable

barrier of entry for untrusted participants into the contracting framework.

3Well-funded, irrational attacks are essentially impossible to guard against; a rational
attack expects to gain more resources than it expends, while irrational attacks attempt to
cause disruption while expecting a net loss of resources. Thus irrational attacks become
indistinguishable from an ordinarily overloaded system.
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3.3.2 Contract Selection

Participants can also use the cost of resources to decide which contracts to

accept or reject, by rationally comparing real costs against the terms offered.

A compute server might know the real cost of its communication bandwidth,

charged by its Internet service provider, and could aim to amortise the cost

of the computer equipment and annual electricity costs in assessing the cost

of providing CPU cycles. In assessing a contract, the server could offset these

expected costs against the subjective value of the payment expected.

This subjective economic model lets participants predict which contracts should

be worth accepting — but what happens when things go wrong? Again, the

economic model provides a mechanism for monitoring contract performance,

and assessing this against the contract terms. However, the difficulty is in

deciding what to do about this — which depends on correctly identifying the

source of the failure:

Server failure The server might fail in its contractual obligations, either de-

liberately or because of a shortage of resources. Alternatively, the server

might try to defraud the client, by misreporting resource usage.

Client failure is similar to server failure; this occurs when the client fails to

make a payment expected under a contract.

Contract failure represents an inconsistency between the high-level resource

representation of a contract, and the resources needed for its low-level

contract actions. This is thus a mismatch between a contract’s terms and

its actual resource requirements. As a result, performing the contract

may require more or fewer resources than expected. Although this is not

strictly speaking a failure of the contract, it may cause the contract to

fail, even though both client and server have complied with the contract

terms.

Unless the contract’s terms are renegotiated, neither client nor server can

decide from the resource usage alone whether the contract has nearly

finished, and is worth completing — even if there are extra resources

available.

Communication failure can cause a contract to fail, by masquerading as an

apparent server failure from the client’s perspective, or vice versa. Thus

a contract could fail even though both client and server behaved honestly

and correctly.
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The cause of failure is not always clear, either because of a lack of information or

because of deliberate misinformation. For example, an apparent communication

failure could be used by a server to disguise a server failure caused by a shortage

of resources.

Failures such as these are inevitable in a large scale distributed system. How-

ever, they need not lead to a complete breakdown of the contracts involved. For

example, if a server and client persist with a contract, despite communication

failures, they may be able to complete it successfully by ignoring occasional

late payments — one of the goals of trust modelling is to support and justify

this risky behaviour appropriately in a distributed system without encouraging

opportunistic attacks on gullible participants. Indeed, even if one or both sides

was cheating, a failing contract might still be successful and mutually profitable.

Trust modelling also provides a longer term incentive to perform contracts

honestly and correctly, in spite of short-term losses. A market linked contract

might become more or less profitable than expected, or a new and more lucrative

contract might be available. The only incentive to persevere with the loss-

making contract might be the risk of losing others’ trust in future.

This chapter has presented a framework for computerised contracts, which al-

lows users (human or electronic) of a computer system to explicitly negotiate

their resource needs and terms of payment in terms of a rich resource model.

The applications of this framework range from supporting profit-making or co-

operative computer services to improving automation of interactive processes

by valuing the user’s time (see Chapter 5). For this approach to be effective, the

resource overheads of monitoring also need to be included, and contract terms

must be offset against the trustworthiness or reliability of the participants.

The basic contract model imposes few constraints on resource structure or con-

tract terms, and supports many applications including compute servers which

run others’ programs for money. Asynchronous contract messages are also de-

fined for negotiating, managing and terminating contracts, leading to an anal-

ysis of the causes of contract failures and the need for trust modelling.



Chapter 4

Trust Modelling

Trust modelling completes the contract framework, by providing feedback and

control of contract performance — this is necessary to protect against cheats

and unreliable participants. Here ‘trust’ represents the expected disposition or

behaviour of a participant in various circumstances. By ordering these trust

values, a distinction can be made between suitable and unsuitable contract

partners.

This chapter shows how formal modelling of trustworthiness can help guarantee

protection from attacks, while encouraging profitable interactions. These prop-

erties are proved formally here for a general model of contractual interactions,

thus they also cover all implementations which conform to this model.

A trust assessment is necessarily local and subjective, both to prevent self-

aggrandising cheats, and because of the nature of distributed systems — for

example, an unreliable link between two branch offices of a company might cause

participants in each branch to distrust contract offers from the other branch, but

trust their local colleagues. This apparently contradictory trust assignment is

valid because trustworthiness can depend on the assessor’s identity and network

location.

Participants can use their trustworthiness to vouch for others, through ‘trust

recommendations’. These recommendations can help bootstrap the trust sys-

tem, by providing strangers with a reason to trust each other. Furthermore,

recommendations can be used to structure and manage trust relationships; a

consulting company could vouch for its employees, to ensure that they were

trusted to use clients’ computers. Recommendations also subsume trust rep-

utation agencies — conventionally used as initial sources of trust — but in a

53
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Computer A Computer C
40%

Computer B
30%

Figure 4.1. A simple trust map

way that is safe and appropriate for distributed systems.

Trust and contracts are bound together by the contract resource model. This

provides a concrete interpretation of trust, in the same terms in which contracts

are specified. These contracts need to be negotiated honestly and accurately.

To ensure this, contract compliance is monitored, and expressed using the trust

model. The trust model essentially represents each participant’s belief in the

expected compliance of every other principal.

The chapter begins by defining trust models in general terms, together with an

analysis of the role and usefulness of trust recommendations in trust manage-

ment. The trust model template is then extended to computational contracts

to produce a formal, general purpose trust model for all contracts. This general

model provides essential safety and liveness guarantees, which prove that all

implementations built around it are safe from attack but allow productive con-

tracts to proceed. Lastly, a typical application of the trust model is shown, in

the form of a compute server which sells its computational resources for money.

This implementation shows how contracts and trust recommendations can be

represented as computer code, and demonstrates how this relates back to the

formal model, ensuring its safety.

4.1 Definition of a Trust Model

A trust model represents the trustworthiness of each principal, in the opinion of

other principals. Thus each principal associates a trust value with every other

principal. For example, Computer A might hold the belief that Computer B

successfully completes 30% of contracts, while Computer C might believe that

Computer B was 40% successful. These trust values could either be stored

explicitly by the trust model, or derived implicitly when needed.

The trust value assignments in this simple example are illustrated in Figure 4.1

as a directed graph. Such a simplistic, linear range of trust values (e.g. 0%

to 100%) is generally not enough: a principal’s trustworthiness might vary

depending on the context or application, being higher in some areas and lower

in others. Instead, we define a family of trust models in terms of their external

properties, which includes the earlier example as a special case.
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We use the following symbols and terms in modelling trust:

Principals P engage in contracts, which they can digitally sign. They can also

sign other statements such as trust recommendations, in order to assert

them to others; in practice, a principal p ∈ P is identified with its public/

private key pair [72], and the two can be treated synonymously.

As a result, principal identities are pseudonymous: a user or a computer

could be associated with any number of principals, and a single principal

might apparently operate from more than one location simultaneously —

if multiple processes shared copies of its private key.

Although principals represent computational processes, they are often

named after the machines, people or organisations for which these pro-

cesses act, e.g. Computer A, Olivia or Amazon. For illustrative purposes,

generic principal names Alice, Bob and Charlie are often used as place-

holders for real principal identities.

Trust Values T represent belief in a principal’s trustworthiness. In essence,

a single trust value t ∈ T represents everything one principal can express

about another’s trustworthiness, when predicting its actions.

A Trust Model Tm shows each principal’s belief in every other principal’s

trustworthiness, Tm : P × P → T . This view of the trust model defines

only its external structure; internally it could use other information such

as recommendation certificates to derive the trust values.

A wide range of trust models is possible, from static lookup tables provided by

centralized reputation agencies (as used by some credit card machines) to local,

subjective models which can take into account personal recommendations and

certificate-based evidence of trustworthiness.

The rest of this section refines the overall structure of the trust models we use,

in terms of how trust values are ordered and calculated. These are then applied

to the contracting framework, which allows us to establish a general purpose

trust model for contracts.

4.1.1 Trust Ordering

Trust values can often be compared; in the simple example above, Alice might

consider Bob less trustworthy than Charlie does. However, not all trust value

pairs are comparable: for example Alice might rate Bob’s trustworthiness in
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Alice Bob Charlie

Alice 100% 30% 30%

Bob 0% 100% 0%

Charlie 10% 40% 90%

Table 4.1. Table of simple trust assignments

one area more highly than Charlie does, but do the reverse in another context.

In that case, Alice and Charlie’s trust values for Bob might be incomparable.

Thus ‘trustworthiness’ forms a partial ordering of trust values, denoted �.

We extend this to a complete partial order (CPO) by assuming that every set

of trust values T ⊆ T has a greatest lower bound. This allows trust values to

be combined safely. In particular, this means that there is a unique minimal

trust value ⊥�, the bottom trust element: this represents the worst possible

trustworthiness a principal can have.

In many applications, another special trust value is identified, representing an

unknown principal tunknown. This is particularly useful for implementing a trust

model, where the space of principals P could be arbitrarily large, but at any

given instant each principal is aware of only a relatively small number of other

principals. By using the unknown trust value as the default, the trust model

can be treated as a sparse matrix for efficiency, storing only the entries that

differ from the default.

For example, for the simplistic scenario illustrated in Figure 4.1, the trust model

would assign to each participant pair (P={Alice,Bob,Charlie}) a trust ranking

from the space of trust values T =[0%, 100%]. Here the bottom trust value is

⊥� = 0% and the natural ordering is <=�. Suitable trust assignments Tm are

shown in Table 4.1.

This illustrates how trust assignments need not be consistent or symmet-

rical: Tm(Alice,Bob) = 30% but Tm(Charlie,Bob) = 40%, and similarly

Tm(Charlie,Bob) 6= Tm(Bob,Charlie). However, this model is not expressive

enough for some purposes, such as explicitly distinguishing between unknown

and untrusted participants; whatever the value of tunknown, say 50%, there

would be no way to distinguish between a previously unknown participant, and

a participant that had demonstrated 50% reliability over hundreds of interac-

tions.

How complex should the trust model be, then? On the two extremes lie trivial

trust models, which trust everyone equally, and evidence based models which

simply store a complete interaction history. The best solution depends on the
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application, and must offset the benefits of summarising and precomputing

trust values, against the corresponding loss of information. In the trivial exam-

ple above, this loss of information means that there is not expressive power to

simultaneously capture participants’ dispositional trustworthiness as a percent-

age, and also the weight of evidence for this — hence the ambiguity of ‘50%

trust’. This linear scale would be enough for certain simpler representations

though, such as a binary good/bad dispositional trustworthiness for which each

item of positive evidence could be offset by a corresponding item of negative ev-

idence; this form of belief representation is used for PBIL stochastic search [81]

to identify bit values for an optimal solution, and is also implicitly used for

simple trust modelling in ad hoc networking [63] and wireless gaming [45] ap-

plications.

Extending the trivial model to T ′ = N
2 allows successes and failures to be

counted independently, providing a much richer representation. Although an

instantaneous decision might not need this extra information, the advantage lies

in being better able to incorporate history when updating trust values. This new

model also makes explicit the ambiguity of comparing trust values. For example,

if Alice had had 3 successful interactions with Bob, and 7 failures, this might

be represented in the trust model as T ′
m(Alice,Bob) = (3, 7), corresponding

to the ‘30% trust’ assessment of Figure 4.1. Similarly, Charlie’s 40% trust in

Bob might be based on five interactions, with T ′
m(Charlie,Bob) = (2, 3). How

should these trust values be compared? They could be ordered consistently

with the trivial example:

(a1, b1) � (a2, b2) ⇐⇒ a1(a2 + b2) < a2(a1 + b1)

or (a1 =a2) ∧ (b1 =b2) (4.1)

This is a proper partial order, since it satisfies the properties of reflexivity,

transitivity and antisymmetry. Other orderings are also possible, such as an

informational ordering ⊑ which identifies which pieces of information could have

resulted from the same sequence of observations:

(a1, b1) ⊑ (a2, b2) ⇐⇒ (a1 ≤ a2) ∧ (b1 ≤ b2) (4.2)

The ideal trust model is an elusive concept, because of the competing goals

it would have to satisfy. In part, this stems from the colloquial use of the

word ‘trust’, to fluidly encapsulate belief, predicted actions, disposition and

evidence, as well as other concepts such as physical reliability. Practically,
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too, a trust model must trade off storing and summarising information. One

approach would simply store all accumulated evidence as the trust value for

each participant; if the space of evidence were E then the trust values would

consist of all evidence combinations t ∈ P(E) = T . These trust values could be

ordered according to information content

t1 ⊑ t2 ⇐⇒ t1 ⊆ t2 (4.3)

with bottom element ⊥⊑ = ∅ representing no evidence at all. This evidence-

based model is simple to use and update, but provides no insight into how trust

values should be used to make decisions. These decisions could also be arbitrar-

ily expensive to compute, because the evidence set could be arbitrarily large,

making this model doubly inappropriate for monitoring resource contracts.

The opposite approach would be a trust model which summarised information

until it was simply a table of decisions for particular questions. The difficulty

here is that it becomes impossible to update the trust model directly with new

evidence, using only the past trust value. Therefore the ideal trust model needs

to bridge the gap between evidence and decisions, allowing new evidence to

be easily incorporated into trust values, and allowing the trust values to lead

naturally to decisions.

4.1.2 Trust Recommendations

Recommendations allow participants to transfer their trust assessments to oth-

ers. In isolation, trust values are a useful approach for consistently summaris-

ing evidence about participants’ past interactions, in order to control future

behaviour and prevent abuse of the underlying contract framework. Their use

can be considerably extended though, by allowing trust values to be combined

together to take into account the opinions of others.

This transfer of trust could be managed either actively or passively. On the

one hand, participants could explicitly notify others of whom they trust, and to

what extent; this would give them direct control over the trust recommendations

they issued (although these might then be passed on to others without their

knowledge). These trust recommendations could be seen as promises, vouching

for other participants’ trustworthiness — so participants who make incorrect

recommendations stand to lose trust, and vice versa.

Conversely, participants could passively reveal their trust beliefs to others, to
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be used or ignored at will. However, as they would not be compelled to use

these trust assignments internally, the external beliefs could be assigned any

trust values, and could even be changed for different viewers. Furthermore,

if a participant found another’s trust assignments to be incorrect, then they

should be less inclined to trust those recommendations in future, resulting in a

loss of trustworthiness, even if the recommendations nominally had no underly-

ing promise. Thus active and passive recommendation models are functionally

equivalent, and differ only in perspective. Here trust recommendations are dis-

cussed from an active perspective, since this makes explicit the risk of losing

trust, and because this message-oriented model is most appropriate for fac-

torising trust models into independent components, suitable for asynchronous

distribution over a network.

A recommendation is therefore seen as a statement by a witness about the

recommended trustworthiness of its subject principal, to be interpreted by the

receiver. The witness would sign the recommendation to make it self-contained

and unforgeable.

Recommendations can also be seen as credentials, which can be used to obtain

trust from other principals, comparable to Rôle Based Access Control (RBAC)

credentials which are used to obtain privileges. Trust recommendations can be

considered as an extension of the contract framework, by extending the resource

model to incorporate trust as another resource. Chapter 5 discusses this and

other resource extensions in more detail.

On a more practical level, trust recommendations share many common proper-

ties with conventional access control credentials. As with other credentials,

• a trust recommendation is signed by the issuer to certify its authenticity,

• it typically carries a validity period or expiry date to limit its use,1 and

• it is parameterized or labelled to control the context in which it may be

used, allowing only partial access to the space of all privileges.

Trust recommendations not only have a similar representation to RBAC cre-

dentials; they are also interpreted similarly:

• the interpretation may be subjective, with different participants interpret-

ing the same credentials differently,

1A simple message timestamp would not be enough, since this would provide an ambiguous
interpretation affecting the witness’s perceived trustworthiness; instead, any validity period
would need to expressed in absolute terms.
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• unexpired credentials may be taken at face value, revalidated with the

issuer or checked against certificate revocation lists, in a trade-off between

speed and safety, and

• credentials may be combined or chained together to authorise extra privi-

leges which would not be available if the credentials were presented singly.

Finally, while access control systems use explicit policies to define the privileges

associated with credentials, for trust recommendations this is the task of the

trust model, which defines how trust values are decided on and combined.

Recommendations allow partial transfer of trust from witnesses to subjects,

from the perspectives of the receivers. The trustworthiness recommended by

a witness is then discounted by the receiver according to the receiver’s trust

in the witness and any other terms of the recommendation, analogously to the

discounting of second hand evidence in logics of uncertainty [52]. This trust

transfer necessarily acts in both directions; if a recommendation can change

the apparent trustworthiness of its subject, then the subject’s actions will also

affect the recipient’s trust in the witness of the recommendation.

This distributed trust model, based on recommendations, has many advantages

over the alternative centralized or ad hoc models. In a centralized model, rep-

utation agencies are used to accumulate and disseminate information about

participant trustworthiness. Thus, to determine if a previously unknown prin-

cipal is to be trusted, one can ask the reputation agency, which acts similarly

to a commercial credit rating agency. Although for many small or localized ap-

plications this may be a good approach, it is not general enough for distributed

applications where participants have limited or unreliable network connectivity,

or need to generate and manage new identities dynamically.

Purely local, ad hoc trust models are also inappropriate, since they have no

shared terms of reference, and do not allow participants to exchange trust in-

formation effectively with each other. As a result, although these models do

not suffer the reliability problems of a centralized model, they lose the advan-

tages of having a large trust network in which observations have a common

interpretation and can be pooled.

Figure 4.2 shows the basic structure of a typical trust recommendation; the

interaction with contracts is discussed in more detail in Section 4.2. In this

recommendation, Alice vouches for Bob’s trustworthiness in a certain context.

The degree of trust shows how much trust Alice says she has in Bob — £3 worth

of successful interactions and £7 worth of failures — while the limits show the
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Alice recommends Bob

Context for contracts within cl.cam.ac.uk

Degree t = (3, 7) (measured in £)

Limits £2.00, 25%

Expiry 22 October 2003 at 11:30 UTC

Signature Alice’s signature

Figure 4.2. Example of a trust recommendation certificate

maximum sum and the maximum percentage of a debt Alice is prepared to pay

on Bob’s behalf. Finally, the expiry date and Alice’s signature complete the

trustworthiness certificate.

Recommendations are well suited for distributed applications because they need

no central administration, they are easily factorised, and they can help take ad-

vantage of local broadcast communication mechanisms. Any participant can

issue recommendations, so commonly agreed reputation agencies are not re-

quired. Still, certain very well known companies such as credit card companies

might act as de facto reputation agencies when they issued trust certificates;

in this sense, the recommendation-based model subsumes conventional central-

ized models, while still allowing personal recommendations between partici-

pants. Because recommendations are inherently self-contained, they can be

distributed through a network independently and even asynchronously — for

example using gossip protocols [55]. For many applications the small world

property holds in which most participants are connected by only a few degrees

of separation. For example Alice might not know Charlie, but if Alice knows

Bob and Bob knows Charlie then Alice is connected to Charlie with degree 2.

In human interactions, this degree has been shown to be typically between 5

and 7 in large-scale tests [27], so if participants store partial recommendation

chains starting or ending with themselves, and assume that local broadcast re-

cipients are particularly likely to interact in similar contexts, then participants

can efficiently and automatically discover recommendation chains which link

them together in order to establish trust.

Chains of recommendations can also be managed manually; Figure 4.3 illus-

trates a corporate scenario in which a company issues trust recommendation

certificates to its employees, so that clients which trust the company will also

trust the employees.

Bootstrapping of the trust framework is essential in order that contracts can be

established satisfactorily, which will then generate further recommendations au-

tomatically. Here recommendations can help too, both directly and indirectly.
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Employee 3Employee 2

Employee 1

Acme Inc.
Rec’n 2

Rec’n 4Rec’n 3

Manager

Recommendation 1

Figure 4.3. Recommendations can give trust to employees

Firstly, recommendations could be issued directly by preconfigured trusted par-

ticipants; each client would then need to trust only a single preconfigured par-

ticipant to enter the trust network sensibly, and establish itself. Secondly, a

participant could establish a single, imaginary entity to represent unknown

principals. By automatically issuing recommendations from this principal to

previously unknown participants, new participants would be able to gain some

trust initially, which they could then build up through further interactions —

provided that the representative of the unknown principals had a good trust

value already.

This mechanism would be self-limiting, since over time the trust in the represen-

tative would reflect the typical trust of unknown principals. Thus if unknown

principals were usually trustworthy then their representative would be trusted,

and vice versa. Clearly, an attacker could potentially gain resources by faking

a number of new identities, to effectively cash in on the goodwill generated by

others. However, this effect could be lessened by using the HashCash scheme

described in Section 3.3.1 to force the attacker to expend significant resources

itself when creating new identities.

A server could also deliberately encourage new participants, banking on future

business in order to avoid the overhead costs of standing idle, by effectively

donating resources to this by trickle-charging the trust value of the unknown

principals’ representative. Recommendations are thus an important tool for

both bootstrapping and maintaining the trust framework.

The use and chaining together of recommendations does make implicit assump-

tions about the independence of principal trustworthiness. When the trust-

worthiness of a principal is assessed, it could in fact be a number of distinct

entities working together, such as a web server together with its database on

another machine, or a computer and its network. Ideally, the reliability of these

components would be modelled independently, by treating each as a principal

with its own trust value assignment. If this distinction is impossible to make,
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Router R1

Charlie

BobAlice

Figure 4.4. Multiple entities can masquerade as a single principal

then these principals will need to be treated as a single compound principal —

even if some of the components lie beyond the control of the principal nominally

being assessed.

The following discussion demonstrates informally that this is a safe assumption

even when recommendations are chained, although it may unfairly weaken the

trust in the combination. We assume that observed trustworthiness is decreased

by each additional principal which contributes to a route. For example in

Figure 4.4, Alice’s observations of ‘Bob’ might in fact be observations of the

compound principal BobAlice = {Router R1,Bob}. If Bob’s observations of

Charlie are also affected by router R1 (CharlieBob = {Router R1,Charlie}),

but Alice is on the same network segment as Charlie (CharlieAlice = {Charlie}),

then Alice might take into account Router R1’s unreliability twice in computing

her trust in Charlie via Bob’s recommendation, when she should not count it

at all. However, because Router R1’s contribution would only serve to decrease

the strength of the trust, the resulting trust given to Charlie will be safe, if

possibly erring on the side of caution. This result applies similarly when longer

recommendation sequences are combined too.

Groups attacks are also effectively protected against using this distributed rec-

ommendation model. As long as all resources are accounted for within the

contract framework, any attack which affects service performance will be re-

flected there and identified with the attacker; this will result in a loss of trust

for them and their recommenders (up to the recommendation limits). Even

when a group of principals attack a server, they can only gain a bounded quan-

tity of resources before they and possibly their clique of recommenders are seen

as unprofitable and disallowed access. If a group attacked many servers simul-

taneously, they could increase their gains in the short term, but only until up-

dated recommendation information was propagated between servers according

to the implementation’s communication policy. Thus localised, subjective cost

assessments and the distributed recommendation model still give appropriate,

distributed protection against group attack.

Recommendations may be used in many ways in managing a trust model. But
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finally, the ontological question remains: what do they really mean? On a

practical level, they can simply be seen as tools for transferring trust between

principals, akin to RBAC credentials. (Chapter 5 reinterprets this metaphorical

transfer as a literal exchange of commodities.) On a second level, recommen-

dations signify both a claim and a promise: a claim that another principal is

trustworthy, possibly backed up by explicit evidence of successful contracts in

the past, and a promise by the recommender to stand by the claim either by

explicitly standing surety for potential debts or by risking a loss of trust if the

debts are not repaid.2

The essential question is then about the nature of this promise: is it part of

the trust framework or does it exist at a higher level? In principal, either

answer to this question is a valid implementation decision. However, if trust in

a principal’s ability to recommend were independent of trust in their ability to

perform contracts [50], then higher level recommendations could be made about

others’ abilities to recommend at successively higher levels, unless this were

explicitly disallowed or an arbitrary cap were imposed. Furthermore, the trust

levels would not be truly independent, as principals with high recommendation

trust could simply recommend themselves (or their pseudonyms) for ordinary

trust, in order to attack the system.

Therefore we choose the simpler solution, which equates the ability to perform

contracts and the ability to recommend. As a side effect, this makes recommen-

dations into a form of contract themselves, in which the exchange is of trust.

This unification of contracts and recommendations shows both the expressive-

ness of the contract framework (Chapter 3), and the need for a careful analysis

of the space of resources (see Chapter 5). Until then, though, we can still practi-

cally manage recommendations and their significance as promises, even without

explicitly acknowledging them to be contracts. To do this, we first examine the

direct effects of trust on contracts and resources, and the resulting properties

of safety and liveness which ensure that cheats are ostracised while successful

contracts proceed.

4.2 Trust and Contracts

Trust and contracts are bound together by the contract resource model. This

binding allows principals’ trustworthiness to be computed and monitored as

2Principals are not forced to issue recommendations, but those that do will be judged on
them.
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contracts are performed, and facilitates the selection of appropriate contracts

in future based on participants’ trustworthiness.

Contracts define an exchange of resources, which the trust model seeks to mon-

itor. The aim of the trust model is to predict how the other principals will

comply with their contracts’ terms, to help the owner of the trust model con-

duct profitable contracts. For clarity, this is presented from the perspective of

a server offering resources to a client, but the client would assess the server in

exactly the same way.

To do this, the server needs to appropriately model causes of failure as outlined

in Section 3.3.2, particularly client failure and contract failure. If communica-

tion failures cannot be assessed independently then these can be attributed to

client failure for simplicity, while server failure (whether deliberate or caused

by resource shortage) can also be modelled by the same mechanisms that model

client failure, so the server can discount its own reliability appropriately too.

Client failure occurs when a principal does not provide the resources expected

by the server, as specified in the contract accounting function. Here the server

tries to model how the actual payment compares to the expected payment.

While in principle each resource type could be assessed separately, it is simpler

for the server to instead assess the subjective value of each payment or resource

transfer, against the expected payment’s value. Thus the server stores a pair

of numbers for each participant (total value of resources received from client,

total value expected from client) which can be seen as representing the server’s

trust in the client in the context of repaying debts. This allows the server to

weight the client’s contract payment assertions appropriately, to better predict

how subjectively profitable its contracts with that client will be.

In contrast, contract failure represents a contract which incorrectly estimates

the resources it requires, resulting in a resource shortage. This too can be

modelled as a pair of values: (value of actual resource outlay, value of expected

outlay). These values could be associated either with the client or with the

contract terms, but our assumption is that the client chose the contract’s terms

and is therefore responsible for the contract. Put another way, if two different

clients enter into ostensibly the same contract (but with different input data

sets), then one client’s faulty resource estimate should have no bearing on our

assessment of the other’s.

Putting these values together shows that each principal has a 4 component trust
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value t ∈ T = R
4 with

t = (expected receipt, actual receipt, expected outlay, actual outlay)

= (ter, tar, teo, tao) (4.4)

where each component represents the subjective value of the resources involved.

Participants can then use these trust values to adjust their expectations of

profitability for future contracts. (These trust values conceptually represent

the total accumulated benefits and costs of past interactions with the other

participant.)

In the simplest case, if a new client presents the same contract twice in suc-

cession, all else being equal, then the server could scale the second contract’s

expected outlay by tao

teo
and expected receipt by tar

ter
to get an accurate prediction

of its expected subjective profitability.

The net profitability of a client from a server’s perspective can also be assessed

from this trust value, as tar − tao. This can be used to help decide on the

total resource outlay that should be allowed before demanding payment from

the other party in a contract. The implicit assumption is that this historical

profitability can be treated as a reserve, and tapped into for future contracts, as

long as the net profitability remains positive. This has important implications

for profit-taking by both participants in a contract. From the perspective of a

server holding a client’s trust quadruple (or vice versa), it may be necessary to

reduce the risk associated with this profitability reserve, and set aside a portion

of it in case the client is compromised or cheats in future. This can be achieved

either by scaling down all components of the client’s trust value proportion-

ally (assuming that client trustworthiness has remained the same over time,

perturbed only by measurement errors), or by discarding the contribution of

earlier contracts to the totals (assuming clients become more or less trustworthy

over time).

Profits can also be taken from the other side of a contract too, although with less

predictable consequences. For example, a client may try to induce a server to

continue to give it resources, while delaying any payments. However, the client

cannot know when it will exhaust the server’s patience, making it difficult

to predictably obtain resources in this way. Furthermore, this client profit-

taking could jeopardise future contracts too, as it reduces the client’s apparent

trustworthiness for the server. Finally, this increases the overheads of contracts,

such as the extra resources consumed in supporting more frequent payments.
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Thus profit-taking decreases the risk of loss if behaviour changes in future, but

also decreases the profitability of future contracts, if past behaviour is continued.

The trust model’s profitability assessment shown above has many similarities

with the successful ‘tit for tat’ strategy for the iterated prisoner’s dilemma prob-

lem (see Section 2.2). In both strategies, each participant tries to compensate

for the other’s behaviour by mirroring their actions. In tit for tat, cooperative

behaviour is rewarded with cooperation in the next iteration, while the trust

model effectively inflates prices when the other party underpays. Still, there are

significant differences too, because the contract framework has contracts with a

wide range of sizes, and because contract selection is not an objective decision

because of the subjectivity of assessing profitability.

Contracts have arbitrary sizes, in terms of the value of the resources involved.

As a result, their effect on trustworthiness must also be scaled proportionately

— otherwise a client could undertake many small, low-valued contracts in order

to gain extra resources later from a single very large contract. Section 4.2.3

shows more formally that it is impossible to consistently pump resources from

the system in this way. In contrast in the prisoner’s dilemma, all interactions

are equally significant in potential value. This has two side effects: firstly, the

tit for tat strategy needs only a single item of history to decide on its next

action, because past slights can be made up for in a single step. Secondly,

constant transaction sizes in the prisoner’s dilemma, and no choice in selecting

the other party, mean there is no notion of relative risk in tit for tat, again

negating the need to store extra state.

Continuing the analogy, when measurement error is incorporated into the pris-

oner’s dilemma, tit for tat is often outperformed by a generous variation [46],

in which cheating is occasionally forgiven. This can be compared to the strat-

egy described in Section 4.1.2 of trickle-charging principals’ trust as a system

overhead, for bootstrapping and to encourage a high system load.

In this way, the trust model seeks to ensure that contracts are profitable, by

monitoring expected and actual resource usage, and using these to predict the

resource needs of future contracts. This general purpose model is specified for-

mally below, and then proved to give important practical guarantees of liveness

and safety.
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4.2.1 General Purpose Trust Model for Contracts

By basing trust for contracts on resources and profitability, we have established

a formal, measurable definition of trust that is practical yet simple to use. It is

based on the following assumptions:

• Contracts break down because of a shortage of resources (including pay-

ments) or because they were incorrectly specified.

• Participants are expected to make similar errors in payment and predic-

tion in future to those they made in the past.

(Other mechanisms such as profit-taking and intrusion detection can in-

stantaneously change trust assessments, effectively rewriting history, but

these act outside of the trust model.)

• Profitable contracts from profitable clients are to be preferred, based on

a local assessment of the costs of the resources involved.

The contract trust model for use by a principal p operates in the following way:

Let P be the space of all principals.3 Then p stores its trust beliefs using

Tm : P × P → T (4.5)

with T = R
4 and t = (ter, tar, teo, tao), ∀t ∈ T

When p decides whether to interact with principal p1 on a contract c1, it needs

to consider three factors: whether interactions with p1 are profitable, whether

the contract offers good returns, and whether p has the resources to support

the contract. This section shows how these calculations are performed.

1. To assess participant profitability, let

(ter, tar, teo, tao) = Tm(p, p1) (4.6)

Reject the contract if tar − tao ≤ 0, since this would show p1 to be un-

profitable.

2. Compute the expected return on investment (ROI) for the contract sub-

jectively. (This is possible only if p has past experience of p1, i.e. ter 6= 0,

3Although P could be arbitrarily large, principals need only consider those other principals
with which they have interacted, or whose recommendations they accept.
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teo 6= 0.)

Expected ROI =
Cost of expected return for contract c1
Cost of expected outlay for contract c1

(4.7)

p computes this by deriving a second contract c′1 which adjusts c1 ac-

cording to p’s trust in p1, by scaling the expected resource usage by tao

teo

and the accounting function by tar

ter
. In the formalism of Section 3.2, this

means

require(c′1, t) =

{

tao
teo
.v, ∀v ∈ require(c1, t)

}

(4.8)

with scalar multiplication naturally defined. Similarly

account(c′1)(u) =
tar
ter
.account(c1)(u), ∀u ∈ RU (4.9)

Then the cost of the expected outlay is computed by applying p’s resource

cost function costp to the resource requirements. As the requirements are

formally expressed as a set of acceptable resource combinations, there may

be a choice of different resource outlays which satisfy the contract, from

which p selects the one which matches the resources it expects to offer, in

order to perform an accurate cost analysis. For example, if p always tries

to choose the least costly outlay, the expected resource outlay will be

vbest ∈ lim
t→∞

require(c′1, t) : costp(vbest)= inf
v∈limt→∞ require(c′1,t)

costp(v)

(4.10)

Expected ROI for c1 =
costp(account(c′1)(vbest))

costp(vbest)
(4.11)

(This cost infimum is guaranteed to exist as long c1 is satisfiable with some

resource combination, since costs are real valued. Technically, it might be

that no minimum cost vbest existed, but in that case there would be other

resource combinations arbitrarily close in cost to vbest which did satisfy

contract c1, which could be used instead.)

Contracts are then prioritised according to expected ROI; those with

ROI ≤ 1 are rejected automatically as unprofitable, and those with the

highest ROI are considered first.

3. Finally, p considers whether it has the resources available to accept a

particular contract: either the vbest calculated above in Equation 4.10, or

some other acceptable resource combination (although this would then

require a recalculation of the expected ROI).
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4. Once the contract has been accepted it will be executed, constantly updat-

ing p’s trust in p1 as resources are used and received. If ever tar−tao ≤ 0,

the contract may be suspended until more resources are received.4 Oth-

erwise, the contract continues until it is completed.

Adding Recommendations to the Trust Model

Recommendations can also be incorporated into the general purpose trust model

above. As with the rest of the trust model, this still leaves scope for config-

uring exactly how recommendations are interpreted for a specific application.

However, this model ensures that all implementations, however configured, will

nevertheless satisfy the essential properties of safety and liveness proved below.

One interpretation of a recommendation is as an actual contract itself, a promise

to provide resources on behalf of another principal. Together with this, there

would also be a reciprocal contract rewarding the recommender with a dividend

if their recommendation was helpful.

Interpreting recommendations explicitly as contracts would require an extra

level of management in the contracting framework, as discussed in Section 4.1.2.

Instead, they can be directly integrated into the trust model as follows:

Let Crec be the space of possible recommendations. (We consider Crec to be

a subspace of the space of all contracts C.) Assume principal p has an initial

trust model Tm and a collection of recommendations Rec ⊆ Crec. Then, after

the recommendations have been considered, the effective trust values governing

a contract c1 are defined by

consideredTrust(Tm, Rec, c1) = Tm,considered (4.12)

This function defines how recommendations lead to trust values, which are then

interpreted as before according to the algorithm given above.

The way in which the trust model is updated also changes when recommenda-

tions are taken into account. Without recommendations, individual trust en-

tries are updated as a contract is processed by simply adding the extra resources

expected, used or received. However, when recommendations are included, a

function of the following form is used to define how updates change trust values:

4If the profitability tar − tao falls below a certain lower bound, the contract could be
cancelled instead of suspended, avoiding any extra resource cost.
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updatedTrust(Tm, Rec, p1, c1,∆t, p2) = (T ′
m, Rec

′) (4.13)

where p1 is the other participant in the contract c1, ∆t ∈ T is the change in re-

source value, and p2 is the participant which actually contributed the resources.

Finally, any valid recommendation framework must preserve trust model safety,

by ensuring that trust is conserved when trust values are updated (Equa-

tion 4.14) and that suspended principals cannot give trust to others through

recommendations (Equation 4.15):

If updatedTrust(Tm, Rec, p1, c1,∆t, p2) = (T ′
m, Rec

′)

consideredTrust(Tm, Rec, c1) = Tm,considered

consideredTrust(T ′
m, Rec, c1) = T ′

m,considered

then
∑

p3∈P

T ′
m,considered(p, p3) =

∑

p3∈P

Tm,considered(p, p3) + ∆t (4.14)

and

∀p3 ∈ Pr{p1}, if (ter,tar,teo,tao) = Tm,considered(p, p3) and

(t′er,t
′
ar,t

′
eo,t

′
ao) = T ′

m,considered(p, p3)

then t′ar−t
′
ao ≥ 0 or (tar−tao ≤ 0 and t′ar−t

′
ao ≥ tar−tao)

(4.15)

Together, consideredTrust and updatedTrust allow trust values to take into ac-

count both general recommendations and recommendations which apply only to

particular contracts. Furthermore, resource usage can change not only trust in

the participant directly involved, but also trust in others and the recommenda-

tion state. This might be used, for example, if a particular recommendation had

a maximum liability limit, to allow incremental resource usage to be counted

cumulatively towards the limit.

The original trust model, without recommendations, is in fact a special

case of this recommendation model, as shown by the following definitions of

consideredTrust0 and updatedTrust0:

Let consideredTrust0(Tm, Rec, c1) = Tm

updatedTrust0(Tm, Rec, p1, c1,∆t, p2) = (T ′
m, Rec)

where ∀p3, p4∈P, T
′
m(p3, p4) =

{

Tm(p3, p4)+∆t if (p3, p4)=(p, p1)

Tm(p3, p4) otherwise

Clearly, these functions consideredTrust0 and updatedTrust0 satisfy Equa-
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tions 4.14 and 4.15, showing that trust is effectively conserved and suspension

is respected.

A more sophisticated recommendation model is given in Section 4.3 for a com-

pute server application, which also satisfies the same constraints. This illus-

trates how minimal restrictions in the general purpose trust model can support

a wide range of applications, without needing to impose excessive simplicity or

unnecessary complexity on all implementations.

When complex interconnected recommendations need to be combined, the al-

gorithm which calculates the resulting considered trust values should be shown

to be consistent, so that the better a participant’s initial trust, the better their

resulting trust. If this function is suitably monotone, then the algorithm for cal-

culating this trust can be re-expressed as the function’s least fixed point [107];

Section 5.3 illustrates trust assignments with recommendations in these terms.

Furthermore, the general purpose operational trust model defined above ensures

useful properties of liveness and safety, which show that the trust model contin-

ues to accept profitable contracts and is protected against systematic resource

theft.

4.2.2 Trust Model Liveness

Theorem 4.1. Correct, profitable contracts remain subjectively profitable

when correctly performed.

Assume principal p is interacting with principal p1, who has behaved exactly

according to contract to date. If contract c1 is accepted by p with expected ROI

r1>1, and if p and p1 behave honestly and the contract proceeds as stated (and

without intermediate errors) then a similar contract c2 will also have expected

ROI r2 =r1>1, as long as the resource valuations do not change over time, and

p has similar resources available when considering c1 and c2. Furthermore, the

contract c1 increases p1’s overall profitability for p.

Proof: Let Tm be the initial state of the trust model, and T ′
m the state after

contract c1 is completed.

Let (ter, tar, teo, tao) = Tm(p, p1) and (t′er, t
′
ar, t

′
eo, t

′
ao) = T ′

m(p, p1)

Because p1 has behaved according to contract to date, ter = tar and teo = tao.

Now, r1 =
costp(account(c′1)(vbest))

costp(vbest)
=

costp(
tar

ter
.account(c1)(vbest))

costp(vbest)
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where vbest satisfies Equation 4.10.

Furthermore, contract c1 was correct and correctly performed, thus

t′eo = teo + costp(vbest) and t′ao = tao + costp(vbest)

t′er = ter + r1.costp(vbest) and t′ar = tar + r1.costp(vbest)

Then t′eo = t′ao and t′er = t′ar, and so by Equations 4.8 and 4.10,

require(c′2, t) = require(c′1, t), ∀t ∈ R and v′best = vbest

Therefore,

r2 =
costp(account(c′2)(v

′
best))

costp(v′best)

=
costp(

t′ar

t′er
.account(c2)(v

′
best))

costp(v′best)

=
costp(

tar

ter
.account(c1)(vbest))

costp(vbest)
= r1

Hence r2 = r1 > 1, and there is also an increase in profitability since

t′ar − t
′
ao = tar−tao + (r1 − 1).costp(vbest)

≥ tar−tao > 0 since r1>1 and c1 was initially accepted.

�

Theorem 4.2. Correctly predicted contracts are profitable, when performed

as expected.

Assume principal p is interacting with principal p1. If contract c1 is accepted

by p with expected ROI r1>1, and p1 (and c1) behave as predicted by the trust

model (or better), then a similar contract c2 will have expected ROI r2≥ r1>1

and p1’s net profitability tar−tao will increase.

Proof: As in the proof of Theorem 4.1, let Tm be the initial state of the trust

model, and T ′
m the state after contract c1 is completed, with

(ter, tar, teo, tao) = Tm(p, p1) and (t′er, t
′
ar, t

′
eo, t

′
ao) = T ′

m(p, p1)
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If c1 proceeds as predicted, then (reversing the scaling of Equation 4.8)

t′ao = tao + costp(vbest) while t′eo = teo + costp(
teo
tao

.vbest)

Similarly, t′ar ≥ tar + r1.costp(vbest) and t′er = ter + r1.
ter
tar
.costp(vbest)

Then, assuming linearity in p’s subjective resource cost function costp,

t′ao
t′eo

=
tao + costp(vbest)

teo + costp(
teo

tao
.vbest)

=
1
teo

tao

.
tao + costp(vbest)

tao + costp(vbest)
=
tao
teo

Similarly,
t′ar
t′er
≥
tar
ter

(provided that ter>0)

Thus require(c′2, t) = require(c′1, t), ∀t ∈ R and v′best = vbest.

Therefore, r2 =
costp(account(c′2)(v

′
best))

costp(v′best)

=
costp(

t′ar

t′er
.account(c2)(v

′
best))

costp(v′best)

≥
costp(

tar

ter
.account(c1)(vbest))

costp(vbest)

since account(c1)

= account(c2)

=
costp(account(c′1)(vbest))

costp(vbest)
= r1

Furthermore,

t′ar − t
′
ao ≥ tar + r1.costp(vbest)− tao − costp(vbest)

= tar−tao + (r1 − 1).costp(vbest)

≥ tar−tao > 0 since r1>1 and c1 was initially accepted.

�

4.2.3 Trust Model Safety

Theorem 4.3. No principal p1 can extract more resource value from a contract

c1 with p than the sum of its initial profitability (tar−tao), and the resources it

contributed, from p’s perspective.

Proof: This follows as a direct consequence of Step 4 of the trust model def-

inition in Section 4.2.1. Whenever resources are consumed under a contract
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(beyond some quantisation level), p’s current trust model state T ′
m is checked

to ensure that t′ar−t
′
ao > 0 where (t′er, t

′
ar, t

′
eo, t

′
ao) = Tm(p, p1), otherwise the

trust model is suspended. Provided that all the resources used in these checks

are themselves accounted for, and at each step lie below the quantisation level,

then p1 cannot extract further useful resources from the contract.

Let (ter, tar, teo, tao) be p’s initial trust in p1. Then the resources value which

p1 contributed is t′ar−tar and the resource value extracted is t′ao−tao. Then

t′ar − t
′
ao > 0

⇐⇒ t′ao < t′ar

⇐⇒ t′ao − tao < (tar−tao) + (t′ar−tar)

�

Practically, some small quantity of resources might be lost in discovering that

a principal is unprofitable, which might not be recovered. However, in practice

this loss will be bounded in size, and does not represent profitable work that

the attacker could gain by. Furthermore, any loss would be recovered if the

contract ever returned to profitability.

Theorem 4.4. When using recommendations, no group of principals can ex-

tract more resource value than they input, combined with their initial consid-

ered profitability (or 0 if this is negative), from the recipient’s perspective.

Proof: Although we show this result using a single contract, if concurrent con-

tracts use the same trust model then it will hold for them too. This is because

the concurrent contracts could be decomposed into a sequence of contract frag-

ments, which act as a sequence of non-overlapping short contracts from the

perspective of the trust model, and to which the proof below applies.

Let (p1,1, c1,1,∆t1, p2,1), . . . , (p1,n, c1,n,∆tn, p2,n) be a sequence of trust updates

as contemplated in Equation 4.13 computed by principal p. Let profit(p, p3, i)

be the subjective, considered profitability tar−tao attributed by p to principal

p3 after update i, or initially if i = 0, for 0 ≤ i ≤ n and p3 ∈ P.

Let Pclique ⊆ P be those principals whose trust values were changed by one

of the trust updates, or were part of one of the update actions. Then let

(∆ter,∆tar,∆teo,∆tao) =
∑n

i=1 ∆ti. Here, ∆tar represents the total resource

value received by p, while ∆tao represents p’s total costs. Equation 4.14 ensures



76 CHAPTER 4. TRUST MODELLING

that trust is conserved, so

n
∑

i=1

∑

p3∈P

(profit(p, p3, i)− profit(p, p3, i−1)) = ∆tar −∆tao

⇐⇒
∑

p3∈P

(profit(p, p3, n)− profit(p, p3, 0)) = ∆tar −∆tao

⇐⇒ ∆tao = ∆tar +
∑

p3∈P

(profit(p, p3, 0)− profit(p, p3, n))

Also, Equation 4.15 ensures that, ∀p3∈P, ∀i : 0≤ i≤n,

profit(p, p3, i) ≥ 0

∨ (profit(p, p3, 0) ≤ 0 ∧ profit(p, p3, i) ≥ profit(p, p3, 0))

In particular,

profit(p, p3, 0) ≥ 0⇒ profit(p, p3, n) ≥ 0

otherwise, profit(p, p3, n)−profit(p, p3, 0) ≥ 0

Hence, ∆tao ≤ ∆tar +
∑

p3∈P

(profit(p, p3, 0)− profit(p, p3, n))

+
∑

p3∈P

(

profit(p, p3, n) if profit(p,p3,0)≥0

profit(p, p3, n)−profit(p, p3, 0) otherwise

)

= ∆tar +
∑

p3∈P

( profit(p, p3, 0) if profit(p, p3, 0) ≥ 0

0 otherwise

)

As the only principals whose trust values changed are the members of Pclique,

the other principals do not affect the sum above. Furthermore, ∆tao represents

the resource value received by Pclique, and ∆tar shows the resources they input,

giving the desired inequality,

∆tao ≤ ∆tar +
∑

p3∈Pclique

( profit(p, p3, 0) if profit(p, p3, 0) ≥ 0

0 otherwise

)

�

Lemma 4.5. An attacker cannot systematically pump the system for useful,

contracted resources.

Proof: If an attacker could pump the system for resources, then eventually they

would obtain more resources than they had contributed. This would contradict
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Theorems 4.3 and 4.4, disproving the initial assumption that pumping was

possible. �

These proofs show that the trust framework presented here provides protection

against attacks where the attacker undertakes a large number of small, success-

ful transactions, with a view to then cheating on a much larger transaction.

This attack is typified by fraudsters on the eBay online auction site, who build

up an excellent reputation selling low value items, then try to auction a bogus

Ferrari to a gullible bidder [98].

The trust framework does still allow risk taking behaviour. However, continu-

ous trust monitoring ensures that the risks are limited to the granularity of the

accounting processes, and the resource outlay is limited to the perceived prof-

itability of the recipient. Thus, by artificially inflating this profitability, larger

risks would be allowed; however, this would not contradict the results above,

since the trust model would still subjectively believe that it was in the black.

4.3 Trust Model for Implementing a Compute

Server

This section outlines one of the applications of the contract framework and

trust model. The goal of the compute server is straight-forward: to sell access

to its computational resources in order to make a profit. While later chapters

illustrate the generality of the framework in a wide range of applications, this

section focuses on how the formal definitions translate into a practical applica-

tion.

A compute server brings together the essential aspects of the contract frame-

work: contract specification and resource accounting, trust management and

contract selection.

4.3.1 Contract Specification and Resource Accounting

Each compute server contract specifies a piece of computer code that a server

is to execute for the client, together with the resource requirements and terms

of payment. Here, resources are identified by basic type, subtype and place,

as shown in Table 4.2, measuring CPU time, storage, network bandwidth and

currency. When a contract specifies its resource requirements, it may specify

the subtype or place or both, or leave them empty if there are no specific
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Basic Type Subtype Place Units

CPU time architecture
(e.g. ix86, SPARC)

machine name Speed in normalised

CPU seconds

Storage memory or disk machine name Kilobyte seconds

Network
bandwidth

N/A pair of machines, or

default for flat rate

Kilobytes transferred

Money currency N/A Units of currency

Table 4.2. Table of compute server resource types

requirements. For example, if the contract code to be executed requires a

specific machine architecture, the contract may require resources of basic type

CPU time and subtype ix86.

Therefore, in the formalism of Section 3.2, this means that the space of resource

types R consists of triples of basic type, subtype and place.

Each quantum of resource usage is expressed as a resource type triple, a quan-

tity of resources used, and a start and end time. (When representing these

approximations in continuous terms, it is assumed that the resources were used

evenly over the time interval specified.) The resources used by a contract are

then represented as a collection of these ResourceAtoms. Formally, patterns of

resource usage RU are represented by ResourceAtom collections.

This model allows the compute server implementation to represent resource us-

age arbitrarily accurately if necessary, but also allows detailed resource usage

patterns to be compressed into a more compact summary form too. The ac-

tual level of detail is thus decided on by the compute server: the more detail,

the more accurate the resource accounting will be, but at the cost of higher

overheads. Ultimately, the server aims to keep its overheads as low as pos-

sible, while still computing resource usage accurately enough to convince the

client of the validity of payment request calculations and prevent the client from

manipulating the measurements.

Resource usage is defined in compute server contracts to consist of two compo-

nents: static and continuous requirements:

Static requirements. These express the needs of batch calculations, and

are represented as the total resource requirements for each resource

type, together with a maximum time within which they must be made

available. They can also be used to represent the initialisation and

startup requirements of multimedia applications. For example, a re-

quirement for 10 normalised units of CPU time on any PC, within the
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first 30 seconds of the contract, would be expressed as (ResourceAtom(

cpuTime,ix86,’’,10,None,None), 30). (The ‘None’s signify that the CPU

resources are not otherwise limited to a particular time.)

Continuous requirements. These allow applications to ensure a constant

supply of resources at regular intervals, such as that needed by multimedia

applications. For example, to ensure 1 normalised unit of CPU time and 2

kilobytes of network bandwidth, per tenth of a second for 60 seconds, the

contract would request (ResourceAtom(cpuTime,ix86,’’,1,None,None)+

ResourceAtom(network,’’,’’,2,None,None), 0.1, 60).

If (v1, t1) represents the static resource requirements v1 over a time period t1

for contract c, and (v2, t2, t3) represents the continuous requirements v2 per t2

seconds for a total of t3 seconds, then this can be re-expressed formally, by

analogy to Section 3.2.1, as

require(c, t) =
∑

i

requirei(c, t)

with u ∈ require0(c, t) ⇐⇒ u(t1)− u(0) ≥ v1 if t ≥ t1

and ∀k ∈ N : 1 ≤ k.t2 ≤ t3,

u ∈ requirek(c, t) ⇐⇒ u(k.t2)− u((k−1).t2) ≥ v2 if t ≥ k.t2

The compute server implementation uses a novel accounting language to specify

the resource exchange rates for each contract. This allows complex accounting

policies to be specified, including those based on market prices or featuring

sophisticated pricing functions.

Accounting functions are written using a simple procedural language, to rep-

resent the exchange of resources required by a contract. The grammar of this

language has been designed to ensure that all accounting functions are also legal

statements in the Python language [101], so that it may easily be learnt. How-

ever, its expressive power is deliberately limited, to guarantee that accounting

operations can be performed in a predictably short time interval. An example

of an accounting function follows:

1:class Accountant(resources.ResourceContract):

2: importList = [’localResourceValues1’]

3: totalCPU = 0

4: def processResourceAtom(self, atom, imports):

5: if atom.type != resources.cpuTime:
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6: return [] # Charge for CPU only

7: rate = imports[0]

8: if self.totalCPU < 10: result = rate+0.01

9: else: result = rate+0.002

10: self.totalCPU += atom.quantity

11: return [ResourceAtom(resources.money, ’£’, ’’,

12: result*atom.quantity,

13: atom.startTime, atom.endTime)]

This illustrates a sophisticated payment policy, in which a contract action will

be charged for the CPU time which it uses. The price proposed is slightly more

than the market rate, but with a discount if more than 10 seconds of CPU time

is used.

No direct communication between the accounting function and the contract

action is allowed — this ensures that the accounting function is entirely self-

contained. This also allows servers to simulate and predict the effects of ac-

cepting a particular contract, and thus model the attendant risks.

The accounting language has a tightly constrained syntax. It allows each ac-

counting function to specify a list of resource rate inputs, and initial values for

any persistent variables. Whenever the accounting function processes a basic

resource atom, it returns the list of resources owed under the contract — to

do this, it can consider only its current state, the details of the atom, and the

current values of the resource rates initially requested.

Two special resource atoms, with types resources.begin and resources.end,

are used to signal to the accounting function when a contract begins and ends,

allowing initial and final charges to be implemented. For example, an account-

ing function might specify that the client would be reimbursed if the server

ended the contract prematurely, as shown by the subtype of the terminating

resource.

The state of an accounting function is stored in the persistent variables listed

at the start of its specification. These and all local variables may store only

numbers — either integers or floating point numbers, depending on the calcu-

lation which generated them. Strings and arrays may be used only to specify

imported resources and to construct new resources owed under a contract.

An extract of the accounting language’s BNF grammar is given in Table 4.3.

The remaining rules are simplifications of the rules of the standard Python

grammar [101], to allow only variable assignment, numerical arithmetic, and if

. . . elif . . . else statements. There are no general rules for exception handling,
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accounting input: ’class’ NAME ’(’ BASECLASS ’)’ ’:’ NEWLINE

INDENT import list var list+ accounting fn DEDENT

import list: ’importList’ ’=’ ’[’ [string list] ’]’ NEWLINE

var list: NAME ’=’ NUMBER NEWLINE

accounting fn: ’def’ PROCESSFN ’(’ ’self’ ’,’ ’atom’ ’,’

’imports’ ’)’ ’:’ suite

suite: simple stmt | NEWLINE INDENT stmt+ DEDENT

stmt: simple stmt | if stmt | return stmt

return stmt: ’return’ ’[’ [result list] ’]’

result list: resource (’,’ resource)* [’,’]

simple stmt: small stmt (’;’ small stmt)* [’;’] NEWLINE

small stmt: expr stmt | pass stmt

expr stmt: test (augassign test | (’=’ test)*)

test: and test (’or’ and test)*

not test: ’not’ not test | comparison

. . .
resource: ’ResourceAtom’ ’(’ test ’,’ (test | STRING) ’,’ test

’,’ test ’,’ test ’)’

atom: ’(’ [test] ’)’ | NAME | NUMBER | ’imports’ ’[’ NUMBER ’]’

Table 4.3. Extracts from BNF grammar for compute server accounting language

object creation, array or list processing, iteration or function calls; instead,

specific rules and keywords allow resource atoms to be returned and import

lists to be specified.

Additional checks on accounting functions are performed when they are com-

piled, such as ensuring that only previously declared persistent variables are

referenced. The lexical analyser also imposes certain restrictions, particularly

on the use of dotted notation: all occurrences of self.var are parsed into a

NAME token, where var is any legal variable name. Similarly, resources.id and

atom.id are NUMBER tokens, provided that id is one of the predefined attributes

allowed (such as quantity or startTime).

This accounting model has important formal and practical advantages. For-

mally, it provides an expressive mechanism for translating resource usage

patterns RU into other resources RU expected in payment, and corresponds to

the function account(c). Practically, the mechanism is well suited to resource

constrained computation, because of the special properties of the accounting

language: constant-time execution and incremental computation.

The accounting language ensures that each accounting iteration requires a con-

stant, bounded quantity of resources. Because there are no looping or recursive

constructs, each statement in a specification will be executed at most once per

atom processed. Only simple operations are allowed, so each statement can

be guaranteed to complete within a predictable amount of time. Therefore
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the total resources required per ResourceAtom by the accounting function can

be predicted. Thus the accounting overheads of a contract action are limited

by the number of resource atoms generated. Accounting overheads result in

additional resource consumption, generating more accounting overheads. How-

ever, these overheads can be controlled and minimized by adjusting the resource

atom size used by the server, preserving system stability. When a contract ter-

minates, there may be one accounting iteration unaccounted for. Nevertheless,

this overhead is both small and bounded, and can therefore be factored into

resource predictions.

Incremental computation further ensures low marginal costs in accounting for

additional resources consumed under a contract: accounting functions are ex-

pressed in terms of change in payment versus change in resource usage. This

allows complex, stateful accounting functions to be specified while maintaining

a fixed marginal accounting cost.

The textual representation of a contract illustrated below shows how these

aspects are brought together practically, incorporating all the essential compo-

nents defined in Section 3.2, apart from the client and server identities which

are defined by the context:

1:contract.ContractTemplate( description = "makeCPUload contract",

2: resourcesRequired =

3: ((ResourceAtom(cpuTime,ix86,’’,10,None,None), 30),

4: (ResourceAtom(cpuTime,ix86,’’,1,None,None) +

5: ResourceAtom(network,’’,’’,2,None,None), 0.1, 60)),

6: # Both static and continuous resource requirements

7: accountingFunction =

8: """class Accountant(resources.ResourceContract):

9: importList = [’localResourceValues1’]

10: totalCPU = 0

11: def processResourceAtom(self, atom, imports):

12: if atom.type != resources.cpuTime:

13: return [] # Charge for CPU only

14: rate = imports[0]

15: if self.totalCPU < 10: result = rate+0.01

16: else: result = rate+0.002

17: self.totalCPU += atom.quantity

18: return [ResourceAtom(resources.money, ’£’, ’’,

19: result*atom.quantity,

20: atom.startTime, atom.endTime)]

21: """,

22: codeToRun =
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23: """def runMe():

24: import test.contracts.PBIL

25: return test.contracts.PBIL.PBILServer\

26: (dest="taff:8085",10,6, events=events)

27: """)

In this example, the code to be run by the server is defined to be a Python

function, but this could equally be a reference to a Java method signature,

or code in another language. To actually establish the contract, this contract

representation would be incorporated in a signed contract message (as detailed

in Section 3.3), sent between server and client. For communication efficiency

in the compute server implementation, contract representations and also their

accounting functions are cached by both parties (and identified by SHA-1 hash),

so that each contract need be sent in full only once.

The example above is discussed in more detail in Chapter 7, as part of the

implementation of the compute server and tests of its performance. The rest of

this section defines the trust model for that implementation, and shows how it

relates to the formalisms of this chapter.

4.3.2 Trust Management and Contract Selection

The compute server needs support from a trust model, in order to rationally

select contracts which are worth its while to perform. In broad terms, this

trust model follows the same form as the general purpose model defined in

Section 4.2.1. However, that model does not specify the details of how the

effect of recommendations is computed, nor the cost model to be employed;

this section defines these for the compute server implementation.

Recommendations can be used both as a trust management tool, and to boot-

strap servers and clients into a network. For compute server contracts, trust

values T consist of 4-tuples of values of the form (ter, tar, teo, tao). A recom-

mendation then takes the following form:

1:Recommendation( Recommender = "http://server1:8011",

2: Recommended = "http://server2:8015",

3: Context = "",

4: Degree = (5.0, 6.2, 5.6, 5.4),

5: Limits = (2.0, 0.25),

6: Expiry = "22 Oct 2003 11:30:00 +0000")

This recommendation is then encapsulated in a signed message, which authen-
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ticates its contents and allows it to be used as a certificate of trustworthiness.

In the implementation, principals are identified by a URL, which is also used

as their point of contact for establishing contracts. Each principal has a pub-

lic and private key pair; recommendations and contract messages are signed

with the private key, and the public key can be obtained either directly from

the principal or from a trusted third party directory service, in the form of a

well-known secure web site that maps URLs to public keys.

The example above shows a recommendation from principal p1

("http://server1:8011") about p2 ("http://server2:8015"), recommend-

ing that for all contracts (in any context), p2 should receive extra trust

(5.0, 6.2, 5.6, 5.4), limited to a maximum of £2 or 25% of their existing trust,

whichever is less. The recommendation is valid until 22 October 2003 at

11:30am, if appropriately signed.

Recommendations are used in the compute server as certificates of trustworthi-

ness, to allow participants to stand surety for others. They are thus presented

by clients to servers, and vice versa, during contract negotiations. Because

of this constrained mode of operation, the implementation requires that the

recommendations presented are free of cycles.

The integration of recommendations into trust values is best illustrated with

an example: assume that participant p2 is attempting to enter into a contract

with p, with the help of the recommendation from p1. Assume that p has an

initial trust model Tm of its own direct experiences. If

Tm(p, p1) = (60, 50, 30, 40)

and Tm(p, p2) = (10, 10, 9.5, 9.5)

then p sees the recommender p1’s net profitability as £10. As this is posi-

tive, the recommendation is worth considering, and p begins by discounting

the recommendation according to p1’s behaviour in past contracts. (This is

appropriate, since this is how any other contract originating from p1 would be

adjusted.) The degree of strength of the normalised recommendation is then

(

60
50 × 5.0, 50

50 × 6.2, 30
40 × 5.6, 40

40 × 5.4
)

= (6.0, 6.2, 4.2, 5.4)

This adjusts the expected return ratios to compensate for historical bias, and

would also ensure the correct interpretation if principals were to recommend

themselves with full trust. Secondly, the recommendation is scaled if necessary,

to ensure that it does not exceed the limits of £2 or 25% of p1’s net prof-
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itability (£2.50), in terms of its contribution to either p2’s actual or expected

profitability. In the example, there is no change as |6.2 − 5.4| = |0.8| < 2 and

|6.0− 4.2| = |1.8| < 2.

The new, normalised and scaled recommendation is then added to p2’s existing

trust to obtain a considered trust value, so

Tm,considered(p, p2) = Tm(p, p2) + (6.0, 6.2, 4.2, 5.4)

= (16.0, 16.2, 13.7, 14.9)

When there are many recommendations, they are all added iteratively to the

trust model to obtain the final trust assignment. If some recommendations

affect principals who themselves make other recommendations, then these rec-

ommendations are applied before their dependencies. Because recommendation

cycles are disallowed, this process will eventually cover all of the recommenda-

tions presented. In formal terms, this resulting algorithm defines the function

consideredTrust(Tm, Rec, c1) of Equation 4.12.5

When recommendations are used for bootstrapping trust interactions, then each

contract between client and server is potentially affected by two sets of recom-

mendations: those already held for bootstrapping, and those presented under

the contract. In that case, consideredTrust applies the local recommendations

first, before applying those presented.

Trust values must also be updated as contracts progress, while taking rec-

ommendations into account. In the compute server implementation, this is

achieved by apportioning responsibility for a principals trustworthiness between

that principal and their recommenders, in proportion to their contribution to

the overall apparent trustworthiness. For example, in the scenario above, p1’s

recommendation contributed £0.80 of net apparent profitability to p2’s exist-

ing £0.50, giving a 62%:38% split in trust assignment. Thus a trust update of

∆t = (0.39, 0.39, 0.26, 0.26) would change p1 and p2’s basic levels of trust to

5To ensure balance and maintain the properties defined in Section 4.2.1, principals that
make recommendations lose the same amount of trust that they give to others, for the pur-
poses of the contract concerned. This local loss of trust does not directly affect the other
contracts they enter into, but does help protect against principals issuing numerous indirect
recommendations to artificially boost the trust of a single principal. Chapter 7 discusses more
fully other mechanisms for limiting the number of contracts principals enter simultaneously.
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T ′
m(p, p1) = (60, 50, 30, 40) +

5

13
×(0.39, 0.39, 0.26, 0.26)

= (60.15, 50.15, 30.1, 40.1)

and T ′
m(p, p2) = (10, 10, 9.5, 9.5) +

8

13
×(0.39, 0.39, 0.26, 0.26)

= (10.24, 10.24, 9.66, 9.66)

There are also a few special cases that need to be considered. To ensure that

principals themselves can gain some profit, even if they start out with no or very

little trust and depend on recommendations, a minimum personal contribution

is defined, set to 5% in the current implementation. Thus, even if p1 had con-

tributed all of p2’s trust, p2 would still gain 5% of the profits. The same would

apply if p2 had negative initial profitability. These rules are all combined to

create a function updatedTrust(Tm, Rec, p1, c1,∆t, p2) for Equation 4.13 which

defines how trust values are updated as contracts progress.

After the recommendations have been considered, contracts are then selected

on the basis of their expected profitability. In order to do this, principals need

a model for pricing resource value, and a mechanism for estimating this value

based on a contract’s resource requirements. In the compute server implemen-

tation, each compute server p has a resource pricing function costp in which

the costs are those it pays for its resources and for equipment depreciation.

Clients, on the other hand, are supplied with contracts and funds over time

(analogously to stride scheduling [104] in operating systems), and attempt to

choose the cheapest server they can afford for each contract; they obtain recent

market rates from a pricing server, to compute the cost of the different resource

types. Finally, the uncorrected resource outlay of a contract (vbest in the formal

definition) is taken to be the stated resource requirements, consumed continu-

ously over the intervals specified. For example, in the contract specified above,

this would amount to 101
3 units of ix86 CPU time per second over the first

30 seconds, and 10 units per second over the next 30 seconds, as well as 20

kilobytes per second of bandwidth for the first 60 seconds. Section 4.2.1 then

specifies how these resources are adjusted to correct for trustworthiness, and

compute the expected return on investment that results.

This section has shown how a compute server implementation complies with the

formal resource and trust models for contracts presented earlier. This compli-

ance ensures that the proofs of liveness and safety in Sections 4.2.2 and 4.2.3 also

apply to it. Conversely, the implementation also validates the formal model, by

demonstrating that it leads to useful and practical implementations.



4.3. TRUST MODEL FOR IMPLEMENTING A COMPUTE SERVER 87

Trust modelling is essential in a distributed contract framework, to monitor

performance and protect against loss of resources. In this chapter, a formal trust

model for contracts has been developed, which offers provable safety and liveness

guarantees. The usefulness of this model is further illustrated by applying it

to a compute server implementation. This implementation is discussed in more

detail in Chapter 7, together with performance results and analyses of its other

security properties. First however, Chapter 5 extends the notion of resources

to include both access control privileges and also unconventional factors such

as trust and the cost of the user’s time.
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Chapter 5

Non-Computational Resources

This chapter explores the rôle of resources in contracts, including non-

computational resources such as the user’s time, and shows how authentication

credentials can explicitly control contract accounting policies. Finally, a PDA

collaboration scenario illustrates the other extreme, in which trust is manually

controlled and the trust model is pre-eminent.

5.1 The User’s Time as a Resource

This section develops the idea that the user’s time can be treated as a resource

in the contract framework. Explicit costing of users’ time promotes appropriate

security in computer systems, and encourages programs to shield users from un-

necessary interruption. Furthermore, integrating this feature into the contract

framework allows program code signing to be used to restrict access to both

conventional resources and to the user’s attention.

The user’s time is a scarce and valuable resource in computer systems [40, 86,

94]. These systems therefore need to protect the user from unnecessary inconve-

nience or interruption. This is particularly true in multitasking environments,

in which many different programs might be vying for the user’s attention, in-

creasing the risk of distracting the user from their train of thought.

As a result, the user’s time needs to be explicitly costed, and offset against

the value of getting an answer, to decide whether a question is appropriate.

For example if access to a web page costs a fraction of a penny, it may be

better to automatically accept the charge, instead of asking the user to consider

accepting or rejecting it. Similarly, if security measures are too cumbersome

89
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then the user might decide to circumvent them, such as by logging in with a

colleague’s password if they forget their own [90]. These decisions can only

be made appropriately if they take into account the value users attribute to

their own time, and offset this against the realistic benefits of obtaining the

information.

A two-pronged approach is needed to ensure respect for the user’s time. Firstly,

programs need to be aware of the value of that time. This value would not

necessarily be static, but could vary with the user’s activity. For instance, if

a user had just been interrupted to answer a question, then it would be less

disruptive to ask a second question at the same time rather than five minutes

later. Similarly, the cost of interrupting the user as they read their email might

be less than if they were busy typing or in a meeting.

Secondly, this respect needs to be enforced. Here, the contract framework can

be used, by treating the user’s time as a contractable resource. Programs would

agree in advance on how much they would interact with the user, and would

then be held to this agreement unless they negotiated a change of conditions.

In one sense, scheduling access to the user’s time is comparable to CPU schedul-

ing by the operating system: no process is ordinarily starved of access to the

CPU; instead, the rate of access is limited in favour of other tasks. The differ-

ence is that apparent user idleness (from the computer’s perspective) is also an

important task, unlike the scheduling of CPU idle time.

5.1.1 Self-Financing Web Services

A self-financing web server demonstrates how resource pricing can interact with

the pricing of the user’s time. In this example, a web server assigns prices to

each of its web pages, and charges users who ask to view them. For example,

news articles might be charged at a price of 2p each, while the main page and

any images might be provided free of charge (to take advantage of web caches

for the bulk of the bandwidth).

The contract framework could simply be applied to this application by entering

into a new contract for every page downloaded. However, if most users were

expected to access more than one page, then it would be more efficient to

instead start a single contract upon the first request, covering all of the pages

on the site, followed by payment for page views at set intervals. This would

be particularly appropriate for resources of low value, for which even existing
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Figure 5.1. Pricing information on the Internet

micro-payment systems are not cost-effective because of excessive overheads —

the use of contracts would allow fewer, larger payments for these services.

The web server’s resource model treats page requests as its resources, instead

of conventional resources such as CPU time; the subtype of a resource denotes

its URL and hence its pricing. Thus page requests can be priced using resource

accounting functions, as part of the contracts between client and server. Fur-

thermore, since all of these requests fall under the same contract, sophisticated

pricing policies can easily be incorporated, such as progressive volume discounts

for multiple requests.1

This addition of contracts to the Internet is made nearly transparent, by in-

serting contract-aware proxy servers between standard web browsers and web

servers, as shown in Figure 5.1. On the browser side, contract information

is added to HTTP requests, while on the server side this information is used

to charge users for the information they requested. Simultaneously, the user’s

proxy monitors its costs and contract information, occasionally interrupting the

user for extra information such as to confirm contracts.

A näıve implementation of the user’s proxy server in Figure 5.1 would ask the

user to confirm every contract message and payment explicitly, to ensure that

they knew of all the costs and charges. A more sophisticated implementation

can better support the user however, by acting as an intelligent intermediary:

• The proxy is given a discretionary resource allowance, which it can use to

make payments automatically.2

• Beyond this budget, the user is contacted to validate or reject payments,

either once or repeatedly for that contract, e.g. ‘accept this payment seven

times over’.

1With iterated single requests, this would still have been possible, but far less transparent
to the user and more costly to implement.

2This allowance is either paid continuously over time, or earned by the proxy as a fixed
mark-up on resource prices.
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• The user’s proxy enters into explicit contracts with the server’s proxy.

But there is also an implicit contract between the user’s proxy and the

user, in which the user’s time is one of the resources.

The contract between the user and their proxy provides the proxy with funds,

in exchange for data from the self-financing web servers and access to the user’s

time. In this scenario, there is no need for trust management or formal contract

exchanges between the user and the proxy; the contract framework is instead

used at the design stage to engineer the proxy’s actions. The proxy server

tries to optimise its subjective profitability by choosing between automating

decisions and asking the user for guidance — but asking for guidance has a

cost, as set by the user. The proxy is also constrained in its actions to limit its

autonomy:

• The proxy may not automatically enter new contracts, but may extend

existing ones.

• The proxy may not overspend its discretionary financial budget.

• Decisions authorised by the user are funded from the user’s purse. If they

support the proxy’s earlier automatic decisions, the proxy is refunded its

discretionary spending on them.

Finally, in situations where users pay for the bandwidth which they use, such

as when using a GPRS mobile telephone for Internet access, the user’s proxy

can assess the bandwidth costs too when retrieving web pages and other infor-

mation. For example, only the first portion of a very long document might be

downloaded, until the user had decided whether or not it was relevant.

Thus treating time as one resource among many enables computer programs

to rationally avoid distracting the user with unnecessary questions, without

compromising safety for important decisions.

5.1.2 Code Signing and Resource-Limited Sandboxes

The user’s time can also feature explicitly in contracts. This allows code sign-

ing and sandboxed operation [44] to be extended to allow resource limits and

protection of the user from interruptions.

Code signing conventionally limits which resources a program has access to; for

example, a Java applet ordinarily has no access to the local disk storage, or to

sites on the Internet other than its host web server. However, the program code
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can be signed by a trusted supplier to authorise its access to these resources.

As with other access control systems, this access is normally granted on an

all-or-nothing basis for a particular group of resources. For example, an applet

might be given read/write access to file /tmp/test.log, but it could then make

arbitrary use of that file, filling the drive with data or constantly changing the

file’s contents.

Even an untrusted applet can conventionally cause a local Denial of Service

attack, by monopolising the CPU and available memory, or generating too

many threads for the operating system scheduler to manage. Although these

difficulties can be overcome by setting extra operating system limits for the Java

virtual machine, these same limits would then have to apply to all applets, or

be manually configured for each. The essential difficulty is that access control

grants rights on a per-resource basis, not on the basis of usage — there is zero

marginal cost to the applet for actually using the resources, even for scarce

shared resources.3

Instead, code signing can be extended using the contract framework of this

thesis, allowing applets or programs to express their resource needs as an at-

tached contract. This allows a resource-limited sandbox to be created, free

from the risks of Denial of Service attack associated with conventional sand-

boxes — provided that the signed contracts encompass all resources in the

system. (Section 5.2 discusses in more detail the trade-offs between direct and

indirect resource representation.) Furthermore, since each signed applet would

automatically receive a resource allocation from the user (by default, enough for

the resources it requested), the user could simply adjust this allocation linearly

to promote or restrain a task.

This algorithm reduces directly to CPU stride scheduling [104] in the simple case

where CPU time is the only resource considered; such proportional-share algo-

rithms typically show better responsiveness for multimedia applications than

traditional priority-based algorithms (augmented to promote idle tasks) [87].

Code signing with contracts still supports the access control restrictions of or-

dinary code signing, but also allows more specific resource usage limits to be

added. In this context, the contract is between the code signer (represented by

the code they produce) and the user’s computer; the resource requirements are

specified in the signed code, and the accounting function is specified by the user

3The applet could try to use proxy measures, such as changes to the delay in completing
requests, to try to detect resource contention, but at the risk of giving up resources only to
have them taken by less cooperative contenders.
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to represent the availability of resources. Since the user decides on the resources

to give to the signed code to adjust its responsiveness, trustworthiness is not an

essential metric, although it can be used to report to the user which programs

are trying to exceed their resource limits.

These contracts can include the user’s time as a resource too: interrupting the

user carries a cost for the signed code. Here, interruption is defined as opening

a new input window when another task has the user’s mouse focus. Because

signed code is aware of its contractual terms, it can limit its attempts to contact

the user appropriately; if it does not, its input requests may be delayed until it

has enough resources available.

For example, a user might run an MP3 player, which would request enough

CPU resources and bandwidth to play its data streams in real time. If it was

later given a very high bitrate MP3 stream to play, it might try to renegotiate

its contract to ensure enough resources. Failing this — if the user declined the

request or the communication budget with the user was exhausted — it would

have to hope for more resources than promised, or play the track with lower

fidelity, or pause or skip it entirely. Similarly, a peer-to-peer file sharing service

might be installed by a user under contract to upload data at no more than

3KB/second to avoid saturating the user’s network link. Here too, the service

would agree to limit its interruptions of the user (e.g. upgrade notification

messages), while the user could tweak this by configuring the value of their

time.

Thus contract resources need not be only computational or financial; this section

has shown how the user’s time can be integrated into a resource framework,

as can operational resources such as web page accesses and file operations.

The following section extends this latter idea further, by showing how not just

actions but also access control credentials can be integrated into the resource

framework.

5.2 Resources and Credentials

Resources hold the information against which contracts are assessed. This

information need not just come from performing the contract, but could also

incorporate outside information too. In this section, access control credentials

and trust information are examined as contract resources, demonstrating the

duality of trust and resources.
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5.2.1 Access Control Credentials as Resources

Imagine a contract such as ‘Web pages cost 2p each to download, or 0.1p each

for subscribers’. In the contract framework examples presented thus far, this

would have to be organised as two separate contracts, with an initial contract

negotiation phase to decide which version would be offered.

Instead, a special resource type can be created to identify subscribers: a sub-

scriber that holds an IsSubscriber rôle membership certificate can present this

to the server as proof. The server would then give the subscriber’s contract a

ProvenSubscriber resource item, which the contract accounting function would

use to adjust its pricing function.

Unlike conventional resources, these ProvenSubscriber resources would not be

conserved, but would be created whenever needed by a server. Thus the re-

source does not represent the credential itself, but rather the property of hav-

ing the credential. These access control credential resources have a number of

advantages, but with corresponding limitations too:

• Adding credentials to contracts reduces the need for extra contract nego-

tiation, as credentials need not be exchanged before the terms are agreed,

but the resulting contracts are longer, and harder to analyse automati-

cally.

• Credential augmented contracts provide their participants with extra in-

formation, which they can use to better optimise their costs, but this

information may be confidential, in which case early credential exchange

would still be needed.

• Contract terms can change on the fly when a new credential is received,

but this reduces the predictability of contract value.

Thus access control credentials can sometimes still be needed in initial contract

negotiation, but can also greatly improve contract flexibility if they are treated

as contract resources albeit at some extra cost.

The example above can be represented in the formalisms of the resource

framework, with a space of resources R = {Rmoney,Rweb,RProvenSubscriber}

where Rmoney is money in pounds, Rweb represents a web page request and

RProvenSubscriber is the pseudo-resource identifying subscribers. Then the ac-

counting function described at the beginning of this section is defined by:
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∀u∈RU ,∀t∈R,∀R⊆R,

account(c)(u)(t, R) =

{

k . u(t, {Rweb}) if Rmoney∈R

0 otherwise

where k =

{

0.001 if u(t, {RProvenSubscriber}) > 0

0.02 otherwise

This function charges money for the number of accesses to the Rweb resources,

and scales the charge calculated at time t appropriately according to whether

any RProvenSubscriber resources had been received by the contract by that time.

In this function, a new subscriber is effectively refunded the difference in price

for pages viewed earlier under the same contract before subscribing; the func-

tion could equally have been defined not to refund this. Parameterized creden-

tials [7] can also be incorporated in the model in the same way, by appropriately

subtyping the new resources.

Incorporating access control credentials directly into the contract framework

does not negate the need for conventional access control systems. These dedi-

cated systems allow sophisticated policies to be expressed, analysed and man-

aged on a large scale, with special mechanisms for credential revocation and

negotiation. However, the example above shows how rôle-based access control

credentials can feature explicitly in a resource contract, allowing better integra-

tion of contracts with existing access control systems.

The subscription example also shows how actions such as retrieving a web page

can be treated as resources too. This approach can interact with credential

resources, to allow access control credentials to effect resource limits via the

resource pricing system. For example, holders of rôle credential IsGuest might

be entitled to view five web pages for free as a promotional trial, but no more.

This can be achieved by giving the first 5 accesses a cost of zero, then setting

the cost impossibly high for subsequent access. Rather than choose an arbitrary

price for this, we introduce a new resource type Rimpossible which nobody can

ever obtain, to use in enforcing the policy. This is illustrated in the following

accounting function, which follows the same template as the compute server

policies of Section 4.3:

1:class Accountant(resources.ResourceContract):

2: IsGuest = 0

3: FreeWebPages = 0

4: IsSubscriber = 0

5: def processResourceAtom(self, atom, imports):

6: if atom.type == resources.provenGuest:
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7: self.IsGuest = 1; return []

8: if atom.type == resources.provenSubscriber:

9: self.IsSubscriber = 1; return []

10: if atom.type == resources.web:

11: if self.IsSubscriber:

12: return [ResourceAtom(resources.money, ’£’, ’’,

13: 0.001*atom.quantity,

14: atom.startTime, atom.endTime)]

15: if self.IsGuest:

16: self.FreeWebPages += atom.quantity

17: if self.FreeWebPages <= 5:

18: return [] # Free trial

19: # Prohibit web page views for users who have exceeded the

20: # free trial limits, or are neither guests nor subscribers.

21: return [ResourceAtom(resources.impossible, ’’, ’’,

22: 1, atom.startTime, atom.endTime)]

23: return [] # Other resource types are free.

If the web server checks and updates its accounts before serving each page, then

no guest contract will be allowed more than 5 pages as they will be unable to

provide the necessary Rimpossible resources before retrieving the page. Other-

wise, the guest account will be suspended automatically if it exceeds its limit,

at the next accounting iteration.4 (For those automated applications in which a

manual override is needed, such as health information systems, Rimpossible could

be replaced in the accounting function with another resource type available only

through the override process.)

Thus prospective enforcement of accounting policy allows access control en-

forcement from within the contract framework. Although this would be more

expensive to implement in this way than with a dedicated access control solu-

tion, the advantage is that it allows complex limitations to be expressed in terms

of resource usage combinations, which would not be possible with conventional

access control systems.

Using novel resource types also highlights the trade-off between resource model

completeness and complexity. On the one hand, the resource model aims to

protect a system from attack or loss by ensuring that all system resources

are accounted for, suggesting a minimal, low-level resource model that directly

represents resources such as CPU time and network bandwidth. On the other

hand, users of a service expect pricing in terms of the services provided, not the

4In this accounting function example, guests can become subscribers to continue to pay
for and receive web pages, but non-subscribers cannot retrieve anything without becoming a
guest.
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mechanisms used to offer them. The risk is that this can lead to incomplete,

indirect models that are unable to measure or detect attacks, and therefore

unable to protect against them.

There are two ways to protect indirect resource models from these attacks:

complete interface instrumentation, or covert modelling of extra resources in

contracts.

Complete instrumentation assumes that a system’s direct resource usage

can always be attributed to some part of its interface to the outside world,

and that each interaction leads to a bounded amount of resource usage.

Therefore, monitoring all aspects of this interface allows bounds to be

placed on the total direct usage, and so with restrictions on these inter-

faces, the total resource usage can be controlled. The disadvantage is

that the monitoring and control is very indirect, and based on maximum

resource usage bounds as opposed to actual usage. Thus the effects of

some actions may be overrated, causing them to be curtailed unneces-

sarily. Nevertheless, provided all resources have non-zero cost, resource

losses can always be identified.

Covert modelling extends contracts as they are being established by adding

an extra layer of accounting for the direct system resources; this supple-

ments the accounting contract agreed between client and server. This

extra layer can either be independent, or be created by rewriting and ex-

tending the existing accounting functions. The extra modelling ensures

that all resources are taken into account internally, and can limit access

to them when this is unexpectedly high. This approach is similar to

that taken by many online email service providers to detect spammers

using their services: only mailbox size and message length are nominally

limited, but the email service also tracks each user’s bandwidth and the

number of messages which they send. Accounts which exceed limits on

these secondary metrics are then suspended as suspected spammers.

Covert modelling allows abnormal resource usage to be detected and con-

trolled directly. This does introduce the risk that the service may then

be seen as unreliable or unpredictable by those users affected, resulting in

a loss of trust, since they continue to assess the contract in terms of the

agreed metrics only. Thus covert modelling needs to be used carefully,

with restrictions applied only very occasionally and preferably to slow

down access rather than disallow it completely.
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Access control systems can be integrated well with the contract framework;

credentials can be represented as contract resources to express sophisticated

resource pricing policies, and when the controlled actions are also exposed as

resources, these policies can help enforce access restrictions. Lastly, these re-

sources can help protect a system from outside attack, but only as long as all

resource usage is monitored, either indirectly at the interfaces or directly from

within.

5.2.2 Trust as a Resource

Trust values may themselves be seen as resources in the contract framework,

albeit associated with principals instead of contracts — and in contrast with

the conventional view of trust as part of the contract control structure. This

contrast helps illustrate the contention between information and control in the

contract framework, and shows why this distinction is simultaneously both im-

portant and irrelevant.

Since trust values are a reflection of the recipient’s contract actions over time,

these could be represented as resources within the contract resource model.

For example, in the contract trust model of Section 4.2.1, a trust value is a

four-tuple of the form (ter, tar, teo, tao). Each of these components could then

be represented as a resource type, and updated as the contract progressed. In

one sense, this would reduce the independence of the contract resource model

from outside information, although it could be argued that all resource usage

is subject to outside influences. Besides, simulation of contracts for resource

price estimation purposes relies on the fact that accounting functions do not

need to communicate with the outside world to generate accurate results, not

that they do not affect it.

Recommendations could then be seen as credentials authorising the transfer or

trust resources between principals, much as access control credentials authorise

the use of other resources. Recommendations could even act as resources them-

selves, by analogy with the previous section, and be incorporated explicitly into

the resource pricing of contracts.

Furthermore, certificates attesting to past successful contracts could be used by

participants to obtain better contract terms, either as resources themselves or

as a source of extra trust.

What would this add to the contract framework? The separate resource and

trust models would be replaced with a single unified model, and a unified
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accounting function would factor in both direct costs and trust-based discount-

ing in order to simultaneously price resource usage and update its resource

tallies. The result would be a less restrictive but weaker model for contracts

than that presented in Section 4.2.1. Thus this new model would be at least

as expressive as that ‘general purpose contract model’ — the existing model

is simply a specific instance of it — and it can also be used to generate new

families of contract frameworks.

However, this new unified model has less intrinsic structure than its predecessor,

making the management of contracts more open-ended and harder to analyse.

For example, instead of necessarily pricing resource usage and adjusting for

trust in order to choose profitable contracts, contracts could be chosen on any

basis at all. Similarly, the properties of contract liveness and safety proved

in Sections 4.2.2 and 4.2.3 would no longer necessarily hold with these new

open-ended ‘contracts’.

In the existing contract model, there is a clear distinction between the informa-

tion associated with a contract (the resource usage) and the control structures

(accounting functions and trust values). The unified model presented above

shows that this distinction is only a matter of perspective, constrained partly

by the choice of contract model. At the same time, this distinction is necessary,

because the structure it imposes confers useful, general properties on contracts,

and makes their analysis tractable.

In summary, this section has shown the richness and expressiveness of the con-

tract resource model, which can incorporate both credentials and the actions

they govern. However, extending it still further and conflating trust and re-

sources simply weakens the model and its properties, without offering clear

advantages. For a different perspective on the rôle of trust and resources, the

following section defines a PDA collaboration scenario which uses only elemen-

tary resources but features a sophisticated model of trust transfer.

5.3 PDA Collaboration

The principles of the contract framework can also be used to create models of

trust and resources that do not clearly follow the conventional contract model,

but are more tightly defined than the ‘unified model’ of the previous section. For

example, in a PDA address book scenario, users need strictly controlled trust

management so that they can limit the spread of their personal information,
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Figure 5.2. Visualising a belief-disbelief pair (0.4, 0.2)

while the scope for automatic monitoring of actions is considerably more limited

than for fully computerised applications such as compute servers.5

In the address book scenario, the users structure their personal information by

linking together related items; for example, Alice’s telephone number, name and

address would all be linked to an item representing her identity. Some of these

items might be confidential and others public knowledge, e.g. Alice’s personal

mobile telephone number as opposed to her company switchboard number. This

confidentiality of information is expressed by linking the entries to appropriate

categories.

Each link is also labelled with the confidence the linker has in it, and signed to

certify its authenticity. This confidence measure is represented by a pair of num-

bers (b, d) which signify respectively the strength of belief and/or disbelief in

the link, with the constraint b+d ≤ 1. Here, (1, 0) represents certain knowledge,

(0, 1) is pure disbelief and (0, 0) gives no information at all. This representa-

tion can be compared to Jøsang’s logic of uncertain probabilities [52], which

is in turn based on the Dempster-Shafer theory of evidence (see Section 2.2).

However, the trust values here are chosen to be read directly by human users

rather than formally grounded in statistics, since the trust structures are to be

formed by the users themselves. In keeping with this intuitive approach, the

strength or weight of a recommendation is given by b−d and is used to help

decide which links to accept.

Belief-disbelief pairs can also be represented graphically as intervals on a unit

line, as illustrated in Figure 5.2. If the belief is stronger than the disbelief,

then the midpoint of the interval will lie to the right of the 0.5 mark, showing

how this view also gives the user practical assistance in understanding the data.

(The midpoint lies at x = b+ 1−b−d
2 = 1

2 + b−d
2 . Thus x > 1

2 iff b > d.)

Each labelled address book link is treated as a recommendation from the is-

suer, thus if Bob links category ‘work’ to Alice’s phone number 763-621 with

confidence (0.4, 0.2) then this recommendation signifies that Bob trusts mem-

5This PDA scenario and its trust calculation functions extend earlier work with Nathan
Dimmock and Jean Bacon, published in a paper at the PerCom 2003 conference [94]. That
paper demonstrated that the PDA address book was an implementation of the SECURE EU
project’s trust and risk models.
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(0.4, 0.2)
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Figure 5.3. Dashed lines show how PDA recommendations are chained together

bers of that category to know Alice’s phone numbers. Recommendations are

also automatically chained together, thus if Bob also recommends that Charlie

be allowed to read work contracts, then Bob will allow Charlie to read Alice’s

phone number.6 Recommendations are also combined to allow delegation of

privileges, so that if Charlie recommended Devaki for the work category, then

Bob would honour that recommendation and trust her too, albeit not with more

weight than Bob’s trust of Charlie as a work colleague.

Thus recommendations essentially treat the friend of a friend as a friend, al-

lowing social networks to be simulated. Figure 5.3 shows the recommendations

described above, with the deduced recommendations marked with dashed lines.

Each arc is labelled with the recommender’s identity and the strength of the

link (if specified in the text), and the arc destinations show the recommendation

contexts. These recommendations have a similar structure to those described

in Chapter 4, but they differ in that the context represents not a family of

contracts but rather a subspace of the trust space.

These recommendations also act as permissions, e.g. ‘Bob gives Charlie per-

mission to read the work category’, but in this section the primary concern

is instead their representation as a trust model, and the resulting operational

model.

Trust values in this application, assigned by principals to each other, map items

to belief-disbelief pairs. In the notation of Section 4.1, this means that the space

of trust values T is defined by

T : P → Tb, with basic trust values Tb = {(b, d) ∈ [0, 1] : b+ d ≤ 1}

and the trust model is then Tm : P × P → T .

Here, the space of principals P has been extended to also include not just

6In fact, it would be Bob’s PDA that would allow Charlie’s PDA to read the number.
Similarly, principal identities also refer to people’s computational representatives and only
indirectly to the people themselves. However, this distinction is often glossed over in this
section when there is no ambiguity.
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From To A C D PA PL

A X X X

C X

D X

PA

PL

Table 5.1. Recommendation linkages allowed

‘actors’ or human principals (identified by their public cryptographic keys),

but also the category permissions and data item identities. The complete space

P consists of the following:

Actor Permissions A are used to identify people (and their aliases), such as

‘Alice’ or ‘asa21’.

Category Permissions C represent membership of a category such as ‘work’.

Data Entry Permissions D refer to address book entries, including tele-

phone numbers and names in this application.

Action Permissions PA = {Read,Write}×C allow the holder to read or

write data in a particular category.

Link Permissions PL = {Link}×(A ∪ C) are used when data is written, to

recommend that it be associated with a category or an actor.

Only certain pairs of permissions may sensibly be linked by recommendations,

as illustrated in Table 5.1. These links are then chained together to compute

the resulting trust values for the trust model Tm.

5.3.1 Trust Assignments as a Least Fixed Point

When many recommendations affect the same item, they need to be combined

sensibly to produce the resulting trust values. In the field of access control

systems, this consistent interpretation can be expressed as the least fixed point

of a system of equations [107]. While those decisions are binary, and PDA

collaboration produces trust intervals, the same technique can still be applied

here by defining proper orderings over the intervals. (The approach of using

least fixed points for trust and recommendation systems has been developed by

the SECURE project [16].)

Two possible orderings for Tb order values by trustworthiness or by information.

The trustworthiness order � is defined by (b1, d1) � (b2, d2) iff (b1 ≤ b2) and

(d2≤d1), which forms a lattice on our trust domain Tb and has bottom element
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(0, 1). However, it is the second natural ordering ⊑, according to information,

where (b1, d1) ⊑ (b2, d2) iff (b1≤ b2) and (d1≤ d2) with bottom element (0, 0),

which we will use in combining recommendations below.

Users must combine their own recommendations with others’ to assess trust.

This is achieved by forming a policy function for each principal’s recommenda-

tions; these policy functions are then combined to reach the appropriate trust

conclusions. Each policy function denotes the trust each principal places in oth-

ers’ trust information; Polx(T, y, z) is the degree to which principal x believes

y should hold permission z, if everyone else’s trust assignments are given in T .

This combines x’s own recommendations with recommendations by others x

trusts. Let dx(y, z) summarise x’s recommendations, with dx(y, z) = t if x rec-

ommends that y be linked to z with certainty t, and (0,0) otherwise. (Newer

recommendations are assumed to supersede older ones.) Two sorts of recom-

mendations are then transitively combined, generalising the chaining shown in

Figure 5.3:

• those where x associates y with p, and p with z, and

• those where x gives p permission z, and p recommends y for z.

This is summed up in the policy function

Polx(T, y, z) =
⊕

{

⋃

p∈P

T (x, y, p)⊗ T (x, p, z) ∪
⋃

p∈P

T (x, p, z)⊗ T (p, y, z)

∪ dx(y, z)
}

(5.1)

where

Polx : (P→(P→(P→Tb)))→ (P→(P→Tb)) (5.2)

(b, d)⊗ (e, f) =

{

(0, 0) if b ≤ d

( ek ,
f
k ) otherwise

with k = max
(

e
b−d ,

f
b−d ,1

)

(5.3)

The ⊗ operator acts in the same way as the discounting operator in Jøsang’s

logic, to adjust trust values produced by another principal according to their

perceived trustworthiness. The operator here ensures that only principals with

positive net trust weight can make recommendations, and that these recom-

mendations cannot be stronger in effect than the original weight of trust in the

recommender.

We also define
⊕

Xi to combine a number of recommendations monotonically

(with respect to ⊑), by averaging their belief and disbelief components re-
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Combine to form

Figure 5.4. Combination of recommendation certainties

spectively. For example, given three recommendations (0.2, 0), (0.25, 0.5) and

(0.36, 0.4) as shown in Figure 5.4, the compound recommendation deduced by
⊕

is (0.27, 0.3).

Informally, this considers the influence of the original recommendations d, to-

gether with the recommendation chains shown above. These are then combined

to deduce an updated trust value. By repeating this process, the trust values

converge to a final trust assessment.

To guarantee this convergence, each policy function Polx must be monotone

with respect to T , as shown in equation 5.4. If we then combine all the in-

dividual policy functions into a single function Pol(T ), this will also then be

monotone, and have a least fixed point Tm = Pol(Tm), which will be the final

trust model and considered trust assessment.

T ′ ≥ T ⇒ Polx(T
′,y,z) ≥ Polx(T,y,z), ∀x,y,z∈P (5.4)

Pol(T )(x, y, z) = Polx(T, y, z), ∀x,y,z∈P (5.5)

Pol : (P→(P→(P→Tb))) → (P→(P→(P→Tb))) (5.6)

The policy function Pol given above always converges for non-cyclical recom-

mendation sets, such as those used in the address book application. However,

it is not always monotone as it stands — it needs to be augmented to ensure

monotonicity, and hence convergence under recommendation cycles.

Therefore, in computing the trust policy, we augment each trust value Tb with

a list of ‘parent’ recommendations that contributed to it. As the trust policy

calculation iterates, the parent lists increase in terms of an extended information

order ⊑′, whose bottom element ⊥⊑′ = (0,0, []) represents no recommendations

at all. The least fixed point will then correspond to the least specific trust

assignments justified by the available recommendations.
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Extensions are also needed for the operators ⊗ and
⊕

to propagate parent

lists to the deduced recommendations, and to ignore any cyclical contributions

from recommendations whose parents include the recommendation currently

being computed. This ensures theoretical monotonicity, while still producing

the same deduced trust values as before in the absence of cycles.

Thus the least fixed point of the policy function Pol produces a considered trust

model Tm, which consistently combines all recommendations in order to deduce

the trust that should be placed in each link.

5.3.2 Trust for Decisions

Trust calculations ultimately lead to decisions about which actions a principal

will allow to be performed. As with the contract framework, this is based on an

economic analysis of the expected costs and benefits involved, and the decisions

are then prioritised based on the expected utility of each.

This is done with the help of a hierarchy of information categories (such as

‘work’, ‘friends’, ‘personal’) which are used to assign an economic value to

each piece of information — the user assigns a value valc to each category c.

These categories are also ordered by the user who arranges them in a lattice

structure, e.g. allowing ‘personal’ acquaintances to read their friends’ contact

details. Finally, the user also configures two other values; valread represents

the importance of providing information to others, in terms of the value of the

expected goodwill in return, and valtime defines the cost to the user of being

interrupted. These two values would be reconfigured by the user depending on

the context, such as whether she was busy in a meeting or trying to exchange

phone numbers with colleagues.

Whenever an address book entry is accessed, a decision is needed on whether to

provide the information automatically, query the PDA owner for confirmation,

or refuse the request. However, the cost of the owner’s time also needs to be

taken into account in deciding whether to interrupt them — this extra cost

affects the expected benefit of asking, and only if a net benefit is expected is

the user interrupted, otherwise an automatic ‘no’ is given to the request for

access.

Principals and data may be associated with multiple categories in an address

book, for example some work colleagues might also be considered friends. Thus

if Alice’s PDA is considering allowing Bob access to data item d on her PDA,

it must consider all pairs of categories (cp, cd) for which members of cp are
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allowed to read from cd with certainty (b1, d1) = Tm(Alice, cp, Read cd) and

b1−d1 > 0, when deciding on the appropriate response to a request. In practice,

only a few of these permutations are relevant for a particular request, so the

extra overheads involved are small. Furthermore, this data can be calculated

in advance before the request is made, as it depends only on Alice’s category

lattice.

Alice’s PDA then calculates the appropriate costs and benefits on her behalf.

Let (b2, d2) be Alice’s considered trust in Bob’s membership of cp, to which

Alice has assigned value valcp .

There is clearly a benefit (from Alice’s perspective) to not giving out data

in cd if she does not believe that Bob should have access to it, signified by

recommendations yielding b2 < d2. This benefit can be defined as

Benefitno(b2−d2,valcp) = −valcp .(b2−d2)

To calculate Benefityes, Alice’s PDA considers how strongly Bob is associated

with cp and the expected benefit of that association, set against the importance

of the data he is trying to read, which encodes the potential cost of Bob

ignoring Alice’s recommendations and redistributing it indiscriminately. The

function represents the benefit of helping someone who is well trusted to read

low-value information, while requiring greater assurance to allow access to

more valuable information.

Benefityes(b2−d2,valcp ,valcd) = valcp .(b2−d2)−max (valcd−valread, 0)

This definition balances the expected benefit of assisting Bob, valcp .(b2−d2) +

valread, against the value of the data being read valcd , while preventing the

benefit of giving out information from exceeding the expected benefit of inter-

acting with Bob, even if the value of valread is greater than the value of the

data involved.

The last cost function determines whether it would be worthwhile to interrupt

Alice for a decision, based on her trust in Bob and the expected value of the

information to be read, offset against the cost of her time.

Benefitask(b2−d2, valcp) = valcp .(b2−d2)−valtime+valread

Alice’s PDA performs these benefit calculations, prioritising them so that an

automatic ‘no’ trumps a ‘yes’, which in turn overrides an ‘ask’ decision. If no

decisions have a net benefit, then the decision is a ‘no’.
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5.3.3 Comparison with the Contract Model

This application is relevant to the contract framework because it presents a

very different model for applying trust and the cost of user’s time to support

automatic decision making. While the PDA scenario can be moulded to fit into

the existing contract framework, it is more appropriate first to question why it

does not fit immediately, and decide whether this is a limitation of the scenario

or of the framework.

The most important differences between this application and the others are:

Contract duration In the PDA scenario, each decision is made atomically

and in isolation, based on the information available at the time. As a

result, there is no need to track resource usage over time, unlike ordinary

computational contracts which must be reassessed continually as they

progress.

Automatic assessment Computational contracts are able to assess the out-

comes of their decisions, and can automatically update their trust as-

sessments by comparing actual and expected resource usage. Even when

human interactions are part of the contract, these feed back into the re-

source model. In the PDA scenario, even though the trust model is as

rich, this automatic analysis and introspection is not appropriate since

the value and privacy of confidential information can only be assigned by

the user — it is not even possible to deduce information from the user’s

decisions, e.g. if the user is asked to decide whether to release information

to someone else, then neither a ‘yes’ nor a ‘no’ means that it was wrong

to consult them.

Nevertheless, both the PDA scenario and other contract applications aim

to support automatic decision making, and both similarly use rich trust

models to allow them to make appropriate cost-benefit analyses, leading

to automatic decisions about which interactions to accept. The difference

is that purely computational contracts can be completely automatic, while

PDA contracts provide partial automation but sometimes need to defer

to the user for confirmation.

Contract diversity All PDA interactions answer the same basic question:

should Bob be trusted with this information? Although the weights and

information values are adjusted by the user, the computational analysis

is otherwise identical — beyond that, the user monitors the behaviour of

other principals. For generalised contracts, however, far more configurable
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resource accounting functions are allowed. While this is not a limitation

of the contract framework, it is a feature that a PDA application would

not make use of, arguing for a specialised implementation even though it

fits within the contract framework.

These distinctions show that the PDA scenario has much in common with the

general contract framework, but they differ in their core contributions. The

trust model for PDA collaboration shows how recommendations can be used

to establish electronic analogues of social structures, to control the exchange of

personal information. This novel trust model is combined with an explicit cost-

benefit analysis to provide an appropriate level of security, without interrupting

the user unnecessarily for simple decisions.

On the other hand, the contract model also provides scope for complex trust

assessment, but without forcing the choice of a particular model. Instead, the

focus there is on expressing low-level interactions in a high-level resource model,

against which contract performance is assessed. This assessment depends on

explicitly configurable accounting functions, which allow robust, automatic con-

tract assessment tempered with trust.

Thus the PDA scenario fits within the contract framework, but without using

its full power. Most importantly, contract compliance monitoring is not fully

automatic, but becomes the responsibility of the user, who adjusts the trust

assignments appropriately through recommendations. The contracts here gov-

ern the right to give out or withhold information or interrupt the PDA owner,

and are established whenever information is requested. These are moderated

by trust recommendations, and the resources used are intrinsically defined by

the interaction itself: they are the data items to be transferred, with their price

defined by the PDA owner through the structured information categories. Nev-

ertheless, even this partial automation effectively shields the user from many

distractions, providing a significant improvement over the traditional PDA ex-

change model of confirming every transfer manually. Furthermore, the PDA

model presented here provides extra information about the items being trans-

ferred, protecting sensitive information from accidental disclosure by others.

Resource measurement and modelling is an essential first step in automatic

computation. The effectiveness of this depends on resources being represented

accurately and appropriately, to allow a suitable level of control. These need

not include only traditional computer resources such as CPU time, but can

also incorporate the cost of the user’s time, access control credentials, and

to a limited extent trust itself. Finally, a PDA collaboration scenario shows
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the limits of this resource model, in a trust management application in which

direct observation of resources gives way to manual configuration, and complete

automation is replaced with automated decision support to shield the user from

distractions.



Chapter 6

Service Contracts

This chapter shows how the contract framework can support cooperative dis-

tributed services, by treating contracts as guarantees of resource availability

with explicit penalty clauses. This is validated by using the contract frame-

work for load balancing in a composite event service for a distributed sensor

network.

6.1 Events in Contracts

Contract accounting functions monitor their contracts via event notifications as

resources are consumed. These notifications can also carry other information

about contract performance, such as the special events introduced in Section 4.3

for contract creation and termination.

Extending the range of these events allows contract accounting functions to

play a more active rôle in contract management. Not all applications need this;

for example, compute servers allow clients to run arbitrary code on a server’s

computer, and could thus provide contract management in that code. However,

for contracts with more constrained actions, the accounting code is the only part

of the contract that can be used for this extra control, both because there is

nowhere else to incorporate general purpose code and because of the inherent

safety of the accounting language with its predictable resource usage profile.

Increased contract complexity, and interaction with outside processes, can make

it more difficult to analyse a contract in advance for its expected ‘profitability’.

However, the threat model for these constrained applications would typically be

different from that for general purpose applications; instead of a very cautious
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approach anticipating attack or abuse by unknown parties, these more specific

and more controlled scenarios would imply some extra degree of trust — in

the other party, in the nature of the request, or in the contract terms such as

conformance to predefined, formulaic accounting templates. This implied trust

would clearly not be absolute, but would represent the belief that the contract

terms were inherently favourable instead of needing to prove this by stochastic

simulation.1

Extra events allow the accounting function to stand in for the client as its proxy.

This extends the scope of contracts as effective guarantees of behaviour. For

example, a contract may include explicit penalty clauses for client or server

failures. Thus the contract’s guarantee would be like a manufacturer’s product

guarantee — a promise of compensation if there is a flaw, not a theoretical

guarantee of perfection. This ability to treat contracts as guarantees makes

it simpler to design resource control systems in situations in which a purely

traditional resource model would not receive enough information to monitor

contract performance.

Contracts need not only control competitive environments; they can also serve

as the control system for a collaborative network, which provides a service

to outside users. In this case, contract profitability would not ultimately be

associated with financial resources, but rather with resources in a constructed

economy used only to prioritise cooperative actions.

A collaborative approach retains the notion of cost accounting, but makes more

assumptions about others’ abilities. The contracting framework does still pro-

vide a degree of resilience, but only to failures measured by the accounting

functions. Thus, for example, an application might enable the detection of an

overloaded node with high data lag, but not of a rogue node providing incorrect

data.

A contract-based approach allows both competitive and cooperative environ-

ments to monitor and control activities, using cost as a metric and with the

contracts as effective behaviour guarantees. To demonstrate this, the follow-

ing section describes a distributed service for composite event detection, while

Section 6.3 shows performance results when contracts are used to assist in the

detector placement within an unreliable network.

1By the same token, a more complex accounting function would make it harder for a client
to decide whether it was being applied accurately and correctly, so the client would also need
enough intrinsic trust in the server to accept the contract.



6.2. EVENT COMPOSITION IN DISTRIBUTED SYSTEMS 113

6.2 Event Composition in Distributed Systems

Event-based systems allow large-scale, reliable distributed applications to be

built, structured around notification messages sent between their components

when something of interest occurs. However, especially in large-scale applica-

tions, the recipients might be overwhelmed by the vast number of primitive,

low-level events from many sources, and would benefit from a higher-level view.

Composite events can provide this view, by automatically detecting when a

pattern of events occurs and then generating only a single notification message.

For example, a company might use an event system to coordinate its internal

network services and databases across a number of autonomous departments.

Thus the sales department would notify the warehouses of the availability of its

ordering database and also when new orders were placed, and the warehouses

would in turn notify suppliers when more inventory was needed. A composite

event service would then allow more sophisticated requests, such as manage-

ment requests for notification of all orders over £10 000 from new clients, or of

database failures lasting longer than 15 minutes.

In a publish/subscribe event system, events are the basic communication mech-

anism. Components in the system are identified as event sources, event sinks,

or both: event sources publish messages, which are in turn received by those

event sinks which subscribe to them. The event system is then responsible

for efficiently routing the messages to their recipients. A publish/subscribe

system may also provide extra features, such as service guarantees (e.g. guar-

anteed delivery, event logging, message security) and expressive subscriptions;

in topic-based services, each event is published with an associated topic, and

is received only by sources which subscribe to that topic2, while content-based

services allow subscriptions based on the contents of an event’s attributes, e.g.

only order notification events of more than £10 000.

Publish/subscribe systems also often have a messaging infrastructure consisting

of a network of intermediate broker nodes, which are used to route messages

efficiently between publishers and subscribers. These broker nodes can make

more efficient use of bandwidth than direct point-to-point notification between

publishers and subscribers, because only one copy of each message needs to be

sent from each broker to the next, and the final brokers can then use high-

bandwidth local area networks for the final notifications.

Lastly, the indirection of a publish/subscribe network provides extra flexibility

2or a parent topic, in a topic hierarchy
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and anonymity for publishers and subscribers. Because subscriptions are based

on topic and content, not the publisher’s identity, the publisher is effectively

anonymous (in the sense that their identity need not be known) — there need

not even be only one publisher for each topic. Similarly, the publisher does

not need to know the identities of its subscribers. This allows publishers and

subscribers to be added and removed independently of each other, improving

system stability and reducing the need to reconfigure as the flow of information

changes.

Composite event support need not necessarily be built into an event system

directly. Instead, it can be an independent extension to an existing event ser-

vice, by providing a proxy interface through which the application can access

the event services. For publishing and subscribing to primitive, non-composite

events, the proxy interface simply redirects requests to the original event inter-

face. The other requests are instead processed by the composite event service,

which disguises composite events by encapsulating them into primitive events

with special type names or similar identifiers. Composite event publications

and subscriptions are therefore translated into appropriate primitive event re-

quests for the disguised events. The underlying event system is also used to

coordinate the operation of special composite event detection broker nodes in

the network, which host composite event detectors for external subscribers.

6.2.1 A Language for Composite Events

The composite event detection framework presented in this section includes a

language for expressing event patterns. This language was designed to satisfy

three goals: compatibility with existing regular expression syntax, potential for

distribution of common sub-expressions, and ability to reflect the underlying

publish/subscribe system.

Regular expressions provide a well-known syntax for defining words and pat-

terns in strings of text, and are an essential tool in the design of compilers [2].

The composite event language extends the standard regular expression opera-

tors, with operators for timing control, parallelisation and weak/strong event

sequencing. (Section 6.2.2 explains interval timestamps for composite events,

which induce two event orderings.) This language is minimal in that there are

no redundant operators, and furthermore, it includes basic regular expressions

as a subspace.

Distribution allows parts of a complex expression to be distributed to different
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computers in the event network. This allows commonly occurring subexpres-

sions to be reused, improving efficiency. Subexpressions can also be positioned

close in the network to the sources of the events they detect — this saves band-

width, and can indirectly reduce latency too by reducing network congestion.

The composite event language structure therefore needs to have a structure

which supports factorisation and expression reuse.

For effective distribution, expressions must also have bounded computational

needs — otherwise it would be unsafe for brokers in the network to host dis-

tributed expressions because of the risk that these would have unsustainable

resource needs.

Reflecting the underlying publish/subscribe system allows the composite event

framework to take full advantage of extra features when they are available, such

as content-based event filtering. However, by isolating these features from the

core composite event framework, it can still remain useful even when they are

not available.

The language consists of the following structures:3

Atoms. [A,B,C, · · · ⊆ Σ0]. Atoms detect individual events in the input

stream. Here, only events in A∪B∪C ∪ . . . will be successfully matched.

Other events in Σ0 will cause a failed detection, and events outside Σ0

will be ignored. We abbreviate negation using [¬E⊆Σ] for [Σ\E ⊆ Σ],

and also write [E] instead of [E⊆E]. (Negation ensures any other events

in Σ will stop the detection, such as timeouts or stopper events.)

Concatenation. C1C2. Detects expression C1 weakly followed by C2.

Sequence. C1; C2. This detects expression C1 strongly followed by C2. Thus C1

and C2 must not overlap in a sequence, but they may in a concatenation.

Iteration. C ∗
1 . Detects any number of occurrences of expression C1. If C1

detects a symbol which causes it to fail, then C ∗
1 will fail too. (So [A][A⊆

{A,B}]∗[C] would match input AAC but not AABC.)

Alternation. C1 | C2. This expression will match if either C1 or C2 is matched.

Timing. (C1, C2)T1=timespec. The timing operator detects event combinations

within, or not within, a given interval. The second expression C2 can then

use T1 in its event specification.

3This formal language specification and the automata derivation were published in a paper
for the Middleware 2003 conference, in collaboration with Peter Pietzuch and Jean Bacon [82].
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Parallelisation. C1 ‖ C2. Parallelisation detects two composite events in paral-

lel, and succeeds only if both are detected. Unlike alternation, any order

is allowed, and the events may overlap in time.

In this model, atoms act as the interface between the composite event service

and the underlying event system. Not only do they allow primitive events to

be included in composite event expressions, but they also provide a mechanism

for composite event expressions to be distributed over a network and benefit

from the extra features of the underlying event system.

Whenever a composite event is generated, it is encapsulated into a new event,

and sent to its recipients using the publish/subscribe system. This event, c1,

could also be received by another composite event detector as part of an event

atom, provided that the space of acceptable inputs allowed it (c1 ∈ Σ). Fur-

thermore, the new detector could use the publish/subscribe system to impose

constraints on its input if the subscription model supported them, e.g. ensuring

that c1’s constituent primitive events all referred to the same person (if the

publish/subscribe system supported parameterized attribute filtering).

The following examples show how the core composite event language can be

used to describe composite events. Let A be the events corresponding to

‘a large order is placed’, let B be ‘the ordering database is offline’ and C

‘the ordering database is online’. These would each represent an expression

in the original event subscription language; for example A might stand for

OrderEvent(value>10000).

1. Two large orders are placed within an hour of each other:

([A], [A⊆{A, T1}])T1=1hour

2. A large order is placed but the ordering database is offline: [B][A⊆{A,C}]

6.2.2 Composite Event Detection Automata

Expressions in the composite event language are automatically compiled into

automata, similar to the finite state machines used to detect regular expressions.

There are differences though, because composite event detection automata have

a richer time model and are inherently nondeterministic.

Interval timestamps Events can be ordered by the time at which they oc-

curred. However, in a large-scale distributed system, event timestamps

may have a degree of uncertainty associated with them. Furthermore,

composite events naturally occur not at an instant but over an interval of
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time; incorporating the uncertainty of all of the constituent events, this

runs from the earliest possible start time of the first event until the last

possible end of the last event). Events are therefore sequenced using an

interval timestamp. A partial order < shows which events definitely oc-

curred before others and is used for the strong event sequencing operator

— but with this operator, some event times may not be comparable when

their intervals overlap. (Either it is unknown which occurred first, or they

might be composite events which really overlap in time.) There is also a

total order ≺, used for the weak concatenation operator, which extends

the partial order using a tie-breaker convention to allow all events to be

placed in some consistent order.

Nondeterminism Conventional finite state automata can always be converted

from non-deterministic to deterministic form. However, the composite

event automata are inherently nondeterministic, because each state needs

an associated timestamp to support strong and weak event sequencing;

converting the automata to a deterministic form would require multiple

timestamps per state.

Each state has an input domain, the family of events it can match. When in

a given state, the automaton processes only those new events that lie within

the state’s domain (as opposed to finite state machines which conventionally

receive all symbols in a text string). The diagram below shows the four types

of state: an initial (ordinary) state, an ordinary state, a generative state for a

composite event of type ‘A;B’, and a generative state for a time event, which

will be generated automatically after the time interval and can feature in the

input domain of later states. The input domains are Σ0 . . .Σ3.

S0

Σ0

Initial State

Σ1

Ordinary State

A;B

Σ2

Generative State

T1

Σ3

Gen. Time State

(1 min)

States are connected by strong or weak transitions: strong transitions are rep-

resented by solid lines and require that the next event detected must strongly

follow the previous event in the interval time model, while weak transitions

allow overlapping events and are shown as dashed lines. Each transition is also

labelled with the events that will cause it to be taken.

Expressions in the event composition language are translated into automata

recursively, beginning with the simplest, innermost expressions and working

outwards according to the constructions shown in Figure 6.1.
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S0

Σ0

E1, E2, E3, . . .

(a) Atoms

S0 S0 S0

C1 C2

εε ε
C1 C2 C1C2

(b) Concatenation

S0 S0 S0

C1 C2

εε ε
C1 C2

C1;C2

(c) Sequence

S0 S0

ε

ε

C1

(d) Iteration

S0

S0

S0

ε

ε

ε

ε

C2

C1

C2

C1 C1|C2

(e) Alternation

S0 S0 S0

Σ0∪{T1}Σ1∪{T1}

C1 C2

εε ε
T1

(f) Timing

S0

C1‖C2C1

C2

C2

C1

S0 S0

C1 C2

(g) Parallelisation

Figure 6.1. Construction of composite event detectors

However, if a subexpression is to be distributed to another broker node, it is

generated independently, and its placeholder in the overall detector is replaced

with a single transition, representing a subscription to the composite event

generated by the subexpression.

For example, if the ordering system goes down twice within an hour, the sales

department might want to double-check any orders made during the uptime

before the second failure. As before, B means ‘the ordering database is of-

fline’, C is ‘the ordering database is online’ and let O represent all new order

notifications. The expression to be detected is then

C1 = ([B], [C⊆{B,C, T1}] [O⊆{B,O, T1}]
∗ [B⊆{B,O, T1}])T1=1 hour

This is compiled into the following automaton, according to the rules above:

S0

{B}

T1

{B, C, T1}

(1 hour)

{B, O, T1}

B C

O

B
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This novel composite event detection framework demonstrates how this can be

implemented as a generic middleware extension, independently of the under-

lying event system. The composite event service does not require any special

features of the underlying event middleware, but can take full advantage of its

expressive power in detecting patterns of events. A decomposable core lan-

guage allows these expressions to be factorised into independent subexpressions

and distributed across the network for efficiency and redundancy, where they

are compiled into detection automata. Finally, this distribution is inherently

safe because the constrained structure of composite event expressions limits the

detectors’ resource consumption.

6.3 Contracts in Event Composition

Detector distribution is important for the performance of composite event de-

tection, as outlined in the previous section. This is demonstrated here with

performance results from a sensor network application, which uses the contract

framework for load balancing.

The sensor network consists of a number of environmental sensors in a building,

all connected to a publish/subscribe network with 100 event brokers. Sensors

generate events periodically or when they detect a change in the environment.

These event notifications are then routed to their subscribers via the event bro-

kers, following the model of Java Message Service (JMS) implementations [97].

Composite event support is provided by enabling each event broker to host

composite event detectors, in addition to its basic event forwarding behaviour.

Communications within the sensor network are assumed to be performed on a

best-effort basis, over an unreliable network [100]. In particular, the network

links have only a limited bandwidth available and limited storage buffers for

holding unprocessed data; data packets (events) which overflow these buffers

are discarded. This unreliability need not be a major problem for the network,

provided that its effect is randomly distributed; for example, if events are re-

peated periodically, then all subscribers will eventually receive status updates

for long-term changes even though transient changes might be lost.4 This is

appropriate for sensor networks such as those which monitor the status and

usage of a building: although changes in state such as room temperature need

to be monitored, occasional data loss is acceptable, simply resulting in a less

4Events from a sensor can also include a timestamp or sequence counter. This would allow
lost events to be inferred for monitoring purposes, even if their contents were lost.
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responsive system and not in any real damage. Nevertheless, the best effort

system would still provide better responsiveness on average than a guaranteed

delivery system designed to generate all events slowly enough not to exceed the

network’s peak rate under any circumstances.

Guaranteed delivery does still have a rôle in the sensor network, for emergency

use. By giving emergency traffic priority over all other data, the network can be

engineered to ensure that it has enough capacity to guarantee the delivery of all

emergency events, even faced with multiple emergencies, e.g. fires in different

parts of the building, coupled with a burst water main. Any unused capacity

can then be used for best-effort delivery of other sensor events.

Composite event detector placement within the sensor network affects the re-

liability with which event patterns are detected and the results made known.

Although detection will always be unreliable, good detector placement can re-

duce data loss and thus improve the system’s responsiveness. For example, a

detector on an overloaded broker or on one with poor links to its event sources

would lose more data than one closer to the sources in network terms. As there

may be many, changing, event sources for a given subscription, this distance

metric is a theoretical measure only. However, it can be assessed in relative

terms by comparing the outputs of two similar detectors to each other.

To test the effect of detector placement policies, a sensor network was created

as described above, and populated with 50 sensors as publishers and with 25

composite event subscribers. Each subscription consisted of a random concate-

nation of five primitive events, e.g. [A][B][D][D][C]. For the composite event

subscriptions, detectors were constructed automatically, initially at random bro-

ker locations in the network; the configuration for a single composite event type

is shown in Figure 6.2. The subscription expressions were also automatically

factorised where possible, to improve subexpression reuse. Finally, for analysis

purposes and to split the load, each composite event detector was replicated

onto two brokers, and subscribers were assigned a detector at random. Together

with the replication, a monitor was added for each expression, collocated with

an existing subscriber and subscribing to both detectors to support performance

comparisons, as illustrated in Figure 6.2. In this diagram, ordinary subscrip-

tions are shown as dashed lines, while the solid lines are monitoring contracts

combined with subscriptions. The detectors for this subscription are located on

the shaded broker nodes; these detectors in turn subscribe to other primitive

and composite event sources, which are replicated themselves and have their

own monitors.
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Client subscribers
and contract monitors

Composite event
detectors at broker nodes

Publishers of
primitive events

Client3

Client2

Client1

Monitor

Figure 6.2. Contracts and subscriptions for a single composite event subscription type

This testbed was exercised with two different detector placement policies: näıve

placement and contract-based load balancing.

Näıve placement positioned the detectors randomly throughout the broker

network. Each monitor detected if either of its detectors had failed en-

tirely, but would not migrate detectors to new locations otherwise.

Contract-based detection treated each broker as a server for hosting event

composition detection contracts, with the monitors as clients requesting

these services. The servers here tried to satisfy all requests by creating

detectors for all composite event expressions contracted for by the mon-

itors, while the monitor clients assessed contract performance in terms

of the total number of detections and the number of failed detections, in

order to calculate contract profitability. Failed detections were identified

whenever a monitor received a particular composite event notification

from only one of its detectors but not the other, within a given time

window. If a broker performed poorly (relative to its opposite number)

then it was replaced with another of higher apparent trustworthiness, if

possible. Brokers could either have pre-initialised trust values, allowing

an operator to guide detector placement on a per-type basis, or assess

trust values purely dynamically. Profitability analysis effectively defines

a target error rate that is acceptable, below which the monitor will not

actively seek out new brokers for its expression.5 This is implemented by

the following contract accounting function:

1:class Accountant(resources.ResourceContract):

2: def processResourceAtom(self, atom, imports):

3: if atom.type == resources.eventGenerated:

4: rate = 1

5This strategy could be altered to speculatively test a new broker occasionally, irrespective
of the current brokers’ performance.
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5: elif atom.type == resources.eventFailure:

6: rate = -20

7: else: return [] # Charge only for the above types

8: return [ResourceAtom(resources.money, ’£’, ’’,

9: rate*atom.quantity,

10: atom.startTime, atom.endTime)]

The contract monitors essentially act at the type owners for their corresponding

composite event types, since they are responsible for controlling the detector-

hosting brokers which publish all events of those types. These monitors are

currently identified by sending messages on a special administration topic —

this is handled transparently by the composite event interface library. If no

reply is received, a new contract monitor is established for that type. This may

occasionally result in multiple masters for a particular composite event type;

this will not lead to failures, but could cause more events to be transmitted

than necessary, so the monitors also subscribe to other monitors’ replies on the

administration topic. If one monitor discovers another on the same topic, they

negotiate a handover of subscriptions and the unneeded monitor is then shut

down.

The contract monitors and the composite event detectors together form a sin-

gle cooperative trust network, which operates in a peer-to-peer fashion. This

network acts to regulate itself by migrating underperforming detectors to other

nodes, thus performing load balancing when brokers are overloaded.

The performance results of the composite event detection experiment are shown

in Figures 6.3 and 6.4, which compare näıve and contract-based detector place-

ment while 20 000 primitive events were published, in terms of the number of

composite event detection failures and the relative frequency of these failures

— lower values are better in both graphs.

These results show that contract-based placement reduced the overall number

of failures by 20% (from 2009 to 1602), and the relative rate of failure by

27% (from about 3.9% to about 2.8%). This second measure of improvement is

higher than the first because it also takes into account the concomitant increase

in the number of successful messages together with the decrease in failures.

The early portion of each performance graph also shows a period where no

failures are detected, and a brief interval where the näıve solution seems to

perform better. The initial absence of failure detections has two causes: there

is a period where few composite events are detected as events propagate and the

detectors begin to form partial matches of event patterns, and an intentional
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Figure 6.4. Graph of ratio between successful and failed composite event receipts

lag is also inserted into the failure calculation code which waits for a predefined

period of time before labelling an event detection disparity as a failure. The

brief interval of performance inversion is caused by the first wave of detector

migrations; in the current implementation, any partial composite event match

notifications that were still in transit when the detector migration occurred

are lost (to the composite event detection framework), so detector migration

can introduce additional transient detection failures. Nevertheless, this effect

could be mitigated with a more sophisticated detector migration protocol, at

the cost of sending extra event notifications. Overall however, the contract-

based solution shows a clear and consistent increase in performance over the

näıve approach.

Thus a contract model can assist in the development and implementation of
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distributed services and peer-to-peer networks. In these applications — whether

competitive or collaborative — contracts’ accounting functions act as explicit

guarantees of behaviour, incorporating penalty clauses to be used in the event of

failures. The effectiveness of this approach is demonstrated using a distributed

composite event service, in which data loss on a best-effort network was reduced

by 20% by using cooperative contracts to guide detector placement.



Chapter 7

Implementation and Results

This chapter validates the computational contract framework in the implemen-

tation of a compute server. Section 7.1 presents a standalone server which shows

that the accounting model successfully prioritises more lucrative contracts, and

that resource-based trust modelling increases profitability over simple trust.

Section 7.2 extends the server with support for trust recommendations, showing

that recommendations can bootstrap a corporate network, but that subjective

trust assessments are then adjusted over time to reflect the quality of service

actually available. Finally, cheating principals test the resilience of the trust

system to attack.

7.1 Compute Server Implementation

A compute server lies at the heart of a commercial Grid service. To be effective

and useful, it needs both to ensure that its tasks are profitable, and to perform

them faithfully so that its users trust it. This section shows how the compute

server described in Section 4.3 is implemented.

7.1.1 Architecture and Implementation Design

Figure 7.1 illustrates the major components of the compute server, which has

two separate threads of execution — for contract computation and for com-

munications. In the computation thread, the contract scheduler decides which

contract should next receive more resources, and then allows it to execute for

a time. After the contract has waived or exhausted its resource allocation (e.g.

at the end of its time slice), control is passed to the accounting module, which
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Figure 7.1. Threads of execution in a compute server

calculates the payment expected from the contract’s updated resource tallies,

before returning control to the contract scheduler again. At the same time, an

HTTP server operates in the communication thread, listening for contract mes-

sages from others and taking responsibility for sending out contract messages

such as payment requests. Within each thread, the flow of control is shown

using solid arrows.

Communication between the two threads takes place indirectly via two message

queues (shown as in Figure 7.1). The contract scheduler and accounting

module place messages that need to be sent into a queue for the HTTP server,

while messages received by the HTTP server are placed in the contract sched-

uler’s queue, signified by dashed arrows to the corresponding queues. These

producer/consumer queues ensure that neither thread blocks the other for an

appreciable length of time.

Accounting of resource usage takes place at a number points in the compute

server application, indicated by meter icons ( ) in Figure 7.1. At each of these

points, the extra resources used since the previous measurement are computed

and added to the tally of the appropriate contract. Resources used in executing

a contract and in its accounting both contribute to the contract’s resource tally,

while those used by the contract scheduler contribute to its tally. Periodically,

the contract scheduler’s resource usage is split between the current contracts,

to be paid for by their accounting functions, as it represents collective system

overheads that cannot effectively be attributed to a particular task.

The communication thread also accounts for the resources that it uses on behalf

of each contract, in sending or receiving messages. Both the messages received

and the resources used are communicated to the contract scheduler through its

queue, ensuring that only the computation thread is responsible for adjusting

resource consumption.1 Some communication resources may not be attributable

1The communication thread can nevertheless read resource consumption values for con-
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to a particular contract, such as those used if a contract is abandoned after ini-

tial negotiations. These are then attributed to a special dummy ‘null contract’,

which can either be subsidized by the server as part of the overhead of doing

business (to be offset against net profitability as described in Section 3.3.1)

or else periodically divided proportionally between the active contracts, in the

same way as the contract scheduler’s overheads.

The compute server is implemented using the interpreted Python language for

all its operations, including contract management and contract execution. Al-

though reimplementing the code in a compiled language such as C++ would

undoubtedly reduce the computational overheads of the contract framework, the

overall effect on relative performance would be small since the Python-based

contracts themselves have proportionately similar overheads. Furthermore, al-

though contract accounting functions could be interpreted more efficiently with

the help of a dedicated parser, they are written using a valid Python subset and

can therefore be evaluated directly using the standard Python interpreter.2

The tasks of each component are as follows:

Contract Scheduler The scheduler ensures that tasks are given the resources

promised in their contracts, if possible and if they have paid the amounts

expected. It is also responsible for processing contract messages and up-

dating the contract state accordingly. (The HTTP Server performs any

complex calculations and signature verification; the contract server simply

integrates this information.) If a contract is due to provide payments, the

amounts are expressed as resources and stored in a resourcesToBeProvided

field, together with timestamps representing when each payment falls due.

To ensure consistency, contracts whose participants have paid the full

resource amount expected are always allowed to be scheduled when re-

sources are due to them under the contract terms. For other contracts,

the participant profitability tests of Chapter 4 are used to exclude un-

rewarding contracts and prioritise those which are profitable, when pro-

viding both the minimum resource allocation guaranteed and any extra

resources that are available.

tracts and principals, and thus avoid wasting resources on principals whose contracts have
been found to be unprofitable.

2Strictly speaking, the current implementation should check that accounting functions
do indeed conform to the Python subset specified in Table 4.3 and automatically ignore
them if they do not; accounting functions that parse correctly are necessarily be safe to
execute. However, this extra protection is not needed in the tests below, which test the
contract framework’s robustness through attacks such as non-payment and deceptive contract
specifications.
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Accounting Module This module assesses the compliance of each contract

with its terms, and determines any payment required. To do so, it as-

sociates extra information with each contract, representing the current

state of the contract’s accounting function and resources used under the

contract but not yet accounted for (as resourcesUnaccounted). The ac-

counting module also updates the tallies of resources received and still to

be received by the contract from the compute server system, such as CPU

resources and bandwidth, and resources provided and still to be provided

to the system by the contract, such as payments.

HTTP Server The web server which receives contract messages is also re-

sponsible for checking message signatures on receipt, and for signing or

countersigning outgoing messages to other compute servers. For simplic-

ity, the current implementation assumes that servers have another mech-

anism for establishing pairwise shared symmetric keys when needed (with

the help of public and private key pairs), and servers then use these keys to

encrypt the contract data en route. Resources used in this encryption and

decryption are automatically reported back to the contract scheduler for

later accounting. Payment messages are currently only processed inter-

nally with a specified resource overhead, instead of actually passing them

to an online micro-payment service in order to credit a real account [99].

Finally, the HTTP server is also responsible for deciding which new con-

tracts to accept, based on past participant profitability and profitability

predicted from the contract terms.

Both the accounting module and the contract scheduler interface with the un-

derlying operating system exclusively through a ResourceSystem class instance

with three methods: giveResources, enterFrame and exitFrame. giveResources

is used by the contract scheduler to request that a contract be given a specific

allocation of resources. In the current implementation, this entails a cooperative

call to the Python code implementing the contract, but this mechanism could

equally be used to control an existing operating system scheduler or a dedicated

preemptive CPU scheduler. (This is discussed in more detail in Section 7.3.)

The enterFrame and exitFrame methods act as checkpoints for calculating ac-

tual resource consumption and passing this information on to the accounting

module to integrate it into the appropriate contract. These methods maintain

a contract stack, with the innermost contract responsible for the resources used

at any given moment; this nesting ensures that there is always some contract

responsible for all resource usage, so that no resource usage goes unaccounted
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Figure 7.2. A time-line showing how resources are attributed to contracts.

for. This is illustrated in Figure 7.2 which shows a time-line of contract execu-

tion, and the contract to which resource usage is attributed at each moment.

Periodically, the scheduler exits and re-enters its own resource frame, so that

its resource usage can be accounted for too.

7.1.2 Tests and Results

Automatic tests are required to test the effectiveness of the contract framework,

assessing the general overheads of contract support, the effectiveness of the

accounting model in identifying and prioritising appropriate contracts, and the

ability of the trust model to ensure overall profitability of the system in the

face of clients defaulting on their payments.

The tests of the contracting framework are performed using a network simula-

tion similar to that described in Section 6.3. However, while that network pro-

vided unreliable, best effort delivery (such as that provided by UDP in TCP/IP

networks), this network simulates reliable delivery over variable bandwidth links

(as with TCP).

In this environment, a single machine simulates a large number of networked

nodes; each node’s simulator runs as an independent process, operating a sin-

gle contract scheduler and its corresponding communication thread. All inter-

contract communication takes place through these threads, both for contract

management messages and for messages generated in the execution of the con-

tract. This allows all communication resources to be monitored directly by

the contracting system, while CPU resource usage is assessed by each contract
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scheduler using standard operating system calls. Cooperative multitasking al-

lows the contracts themselves to assess their own resource usage through the

same mechanisms, and the corresponding entry and exit points (or yield points)

are used as their mechanism for sending and receiving messages.

Contracts can send messages to other contracts, and also special mes-

sages which have meaning for their contract scheduler. For example, re-

turning the event events.Sleep(10) requests that the scheduler not pro-

vide the process with more CPU resources for the next 10 seconds (un-

less new messages are received through the communication thread), while an

events.TerminateMe() message requests that the contract be cleanly termi-

nated, and events.PercentageDone(0.80) signals that the contract’s code is

80% complete.

The network simulator associates a timestamp with each message sent and

received, appropriately adjusted for delays introduced by the network. Each

node simulator maintains an internal timestamp reflecting the time that has

elapsed for its processes. When a node receives a message, that message is then

held in a queue, until the simulated time of the node reaches the delivery time

of the message, when it is delivered to the appropriate contract. To ensure

consistency, the simulation framework also ensures that no node advances its

clock substantially beyond the others’.

Testing of the contract framework aims to measure the overhead it introduces,

and the effects of introspection and continual trust assessment. The results are

collated by contracts themselves, and also by the network simulation environ-

ment. Three tests were carried out:

Contract Overheads

This tests stochastic optimisation with and without contracts. In the contract-

based portion of this test, a control node establishes a PBIL optimisation server

at one node, which uses contracts to establish clients on remote nodes.

Population-Based Incremental Learning (PBIL) [81] is an optimisation tech-

nique which is well suited to distributed operation. It uses a random process

to generate conjectured optimal parameters for the function being analysed,

expressed as bit sequences. The parameters that generate the best outputs are

then used as seeds to bias the random process in the next iteration to generate

similar parameters in future. PBIL can take advantage of distribution in two

ways: firstly, a function may have a number of local optima which make it diffi-
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cult to locate the global optimum, therefore a number of independent searches

should be performed. Secondly, the calculations within each search can be

spread over a number of computational nodes; each node generates and tests

its own set of random parameter values, but also periodically notifies the other

nodes of its best results, which they then incorporate into their populations.

In this test, each client runs optimisations for approximately a minute (of sim-

ulated time), returning intermediate results at 10 second intervals. The server

spawns 10 generations of client before reporting its conclusions to the control

node. The conventional portion of this test uses dedicated PBIL clients instead

of establishing them by contract, with the same simulated network topology:

ISDN links between all nodes. The results of this test give the CPU and network

overheads of the contract framework.

For this test, contract messages accounted for 26% of all communication mes-

sages, but only 16% of the communication bandwidth. The CPU overheads

were approximately 2% of total CPU usage.

Introspection

This test assesses the usefulness of introspectible contract accounting, in which

the expected profitability of contracts is automatically assessed from their ac-

counting functions, and then compared to actual profitability. For this test,

a server with or without introspection is presented with five contracts within

its resource budget. The first proves unprofitable to perform (though is not

clear in advance), two are exceptionally lucrative, and the others are moder-

ately profitable. When a contract is completed (each uses a minute of simulated

CPU time), another identical contract is offered to the server; after 10 minutes,

the overall profitability of the server is measured, to determine whether it has

prioritised effectively.

Using a conservative resource allocation strategy, the simple server treated all

contracts equally, and had an overall profitability of 26%. With introspection,

the profitable contracts were successfully identified, and the overall profitability

rose to 38%.

Trustworthiness

This test compares second order trust modelling and blind trust. Here, four

clients request one contract each on a single server. The first client is always
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trustworthy, the second pays 50% of its bills, the third pays diminishing frac-

tions of each bill, and the last pays each bill late. The server’s costs and the

contract terms ensure that at least 30% payment is required for a contract to

be worthwhile. Each contract uses 1 minute of simulated CPU time, and each

contract is renewed when it terminates. Again, the overall server profitability

is measured for each of the trust models.

This test yielded profitability values of 165% for trust modelling and 132% for

blind trust, showing that effective trust modelling can improve performance.

These values are significantly higher than in the earlier test because these con-

tracts were designed to be potentially extremely profitable.

7.2 Trust Integration

The second set of tests demonstrates that trust recommendations are effective

for establishing and maintaining appropriate trust in a corporate environment.

In these tests, two branch offices are simulated with very good local intercon-

nections but with an unreliable link between the offices. On each side of the

link are five computers, each running a compute server, named a1 to a5 and b1

to b5.

The first of these tests uses recommendations to bootstrap trust values in the

network. A manager issues recommendations for each computer in the local

office, and a user u1 (who has strong trust in the manager) applies these recom-

mendations to compute its trust assessment. These recommendations are issued

in pairs; the manager m1 not only recommends a5 to u1 (in the recommendation

given below), but also recommends u1 to a5.

1:Recommendation( Recommender = "m1",

2: Recommended = "a5",

3: Degree = (5.0, 5.0, 3.0, 3.0),

4: Limits = (5.0, 0.20))

When the user performs computations on the servers, it selects servers which

are profitable and have a high expected return on investment tar

tao
. The likeli-

hood of selecting a server is biased according to the expected benefits, so that

a server whose computations resulted in 20% average profit would be selected

twice as frequently as one generating 10% average profit. The rationale for this

user behaviour would be to spread the contract risk between servers, and at the

same time gather extra information about service reliability levels, while still



7.2. TRUST INTEGRATION 133

 0

 20

 40

 60

 80

 100

 0  100  200  300

C
on

si
de

re
d 

R
et

ur
ns

  t
ar

Time

Heavy load: a1
Heavy load: a2
50% failure: a3
50% failure: a4

Light load: a5

Figure 7.3. Graph of servers’ actual returns over time tar, for user u1

 0

 10

 20

 30

 40

 50

 0  100  200  300

C
on

si
de

re
d 

P
ro

fit
ab

ili
ty

  t
ar

−
t a

o

Time

Heavy load: a1
Heavy load: a2
50% failure: a3
50% failure: a4

Light load: a5

Figure 7.4. Graph of server profitability over time tar − tao, for user u1

ensuring only profitable contracts were undertaken. The user is also allocated a

constant-rate resource budget with which to pay for contracts; this leads to the

gross contract returns and profitabilities shown in Figure 7.3 and Figure 7.4,

calculated after considering the effect of recommendations. For these graphs,

two of the servers (a1 and a2) are assumed to be heavily loaded and refusing

contracts, two (a3 and a4) are heavily loaded but failing to complete 50% of con-

tracts, and one (a5) is lightly loaded and performing all its contracts correctly.

At first, the recommendations account for almost all of u1’s trust in each server;

as productive contracts with a5 proceed, u1 begins to trust a5 in its own right

and the weight of the recommendation is reduced. The scheme described in

Section 4.3.2 is used to ensure that a5 gains at least 5% of the resulting trust

even when its apparent profitability arises only from recommendations. How-
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ever, when contracts with a1 and a2 are attempted, the requests are refused.

The overheads of the contract requests consume small quantities of resources,

ultimately proving the servers to be unprofitable, as shown by the slowly de-

creasing dashed lines in Figure 7.4. Ultimately these drop to zero when the

limits of the manager’s trust recommendation are reached. (This also explains

the drops in considered contract returns in Figure 7.3 at time 295 and time 320,

since these apparent returns stemmed from the recommendations.) Finally, the

unreliable server a3 performs two contracts successfully before proving unprof-

itable, while a4 is immediately abandoned after the first contract. Interactions

with a3 eventually lead to a slight net resource loss, but this is strictly limited

because the user u1 is programmed to hazard the value of a contract in ad-

vance once it has been agreed upon, and not expect any return until after it is

completed.

Suppose the manager then at time 400 issues a strong recommendation to u1 for

a lightly loaded computer b1 on the other side of the link which charges less for

its resources than a5; this is integrated into the user’s trust assessment so that

the user’s trust in b1 goes from (ter, tar, teo, tao) = (0, 0, 0, 0) to (10, 10, 5.5, 6),

based on u1’s experience of the manager’s past recommendations. Figure 7.5

illustrates how the user’s expected return on contracts with b1 changes over

time; initially, the unreliable link between the branch offices causes 65% of

the computational results from contracts to be excessively delayed in transit

giving tar

tao
≈ 1.25, but after time 650, the link quality increases to 90% and the

assessment of b1’s expected return on investment also rises to approximately

1.5, performing better than the consistent but more expensive a5 at 1.45.

Finally, a second user u2 is introduced at time 1400, recommended by the same
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manager as the first. However, this user cheats by paying only the first 20%

of the value of each contract. Figure 7.6 shows that the trust system protects

against this behaviour without restricting user u1’s resource usage, in a graph

which shows the computational throughput for both users over time as a running

average of computations performed. This helps to validate the trust model’s

liveness and safety guarantees proved in Sections 4.2.2 and 4.2.3.

7.3 Compute Server Extensions and Limitations

There are a number of ways in which the compute server implementation of this

section could be extended and enhanced, both to enable more varied contracts

and to better support cooperation between federated servers in a computational

Grid.

The first extension would be to allow native code execution and pre-emption

in contracts. This can be achieved crudely with no operating system changes,

by spawning native tasks as subprocesses of the contract and then using oper-

ating system calls to monitor their resource consumption periodically. Tasks

which exceeded their resource budget or failed to make payments could also

be temporarily suspended and resumed or killed outright through system calls.

This extension would entail some change to the ResourceSystem class to allow

resource monitoring and attribution of subprocesses. Similar changes could also

be used for multi-CPU computers, in which multiple contracts can be executed

simultaneously; the scheduler could again use the ResourceSystem to periodi-

cally authorise resources for contracts to use on other CPUs, and also to monitor



136 CHAPTER 7. IMPLEMENTATION AND RESULTS

ongoing resource usage. With a more controllable operating system kernel, the

same mechanisms could be used for finer grained control.

The HTTP server, which currently performs its own resource measurements,

could be modified to use the ResourceSystem interface to monitor resources.

However, there are two limitations which would make this more difficult: firstly,

the appropriate contract for a message may not be known in advance before

significant resources are expended; secondly, the communication thread would

not be able to update accounting values without introducing complex, cum-

bersome lock structures for each contract, or else it would need to continue to

update the values indirectly — unlike the computation thread.

For extra safety, the HTTP server could be extended to provide greater protec-

tion against deliberate denial of service attack; firstly, messages from unknown

sources could be refused at an early stage, and messages purporting to be from

past collaborators could be only partly decoded initially, to ensure that they

were indeed valid and properly encrypted. Secondly, the bar to entry could be

raised by requiring a computational proof of work (such as HashCash) to be

provided before exchanging keys. There are nevertheless limits to the protec-

tion that this approach can provide against a concerted attack; for example, if

the compute server had a low bandwidth network link through a modem then

that could be flooded with useless packets, regardless of the user’s software

protection.

The contract resource model can be adjusted to limit the number of contracts

principals enter into simultaneously; this is achieved by assigning an extra loss

of trust upon entering into a contract, with a corresponding trust gain when

the contract is terminated. This could be extended to a distributed solution by

having servers notify recommenders when their recommendations contributed

to the signing of a contract, allowing them to adjust their trust values appro-

priately.

The current compute server implementation acts as an isolated server making

its own contract decisions. For greater efficiency, such as when providing a Grid

computing service, a number of servers could cooperate in accepting contracts

by pooling information about their resource availability into a single place (in

the reverse of the Contract Net [96] protocol). This node would then act as a

broker for the others in deciding which contracts to accept. The broker could

even be run as an independent service, acting as an auction-house and applying

a mark-up on contracts it had outsourced to other nodes. Conversely, clients

could pool their contract requests in a virtual market, which servers could



7.3. EXTENSIONS AND LIMITATIONS 137

monitor to establish suitable contracts.

This chapter has shown how the compute server framework can be used to im-

plement a practical compute server which is able to identify profitable contracts

through trust modelling. Support for recommendations allows trust bootstrap-

ping, but still protects the server from attacks from its users while allowing

profitable contracts to continue. This helps to validate the contract framework

of Chapter 3 together with the trust model and safety and liveness proofs of

Chapter 4. The implementation can also be extended into a general purpose

Grid server, with support for native processes and for federation of servers using

contract brokers. The following chapter concludes this dissertation, and outlines

the relevance of the contract framework implementations for the framework as

a whole.
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Chapter 8

Conclusions

Computer systems need to control access to their resources, to manage sharing

and to safely perform services for unknown principals. To do this effectively,

they need an explicit resource model, and a way to assess others’ actions in

terms of it. This dissertation shows how the actions can be represented us-

ing resource-based computational contracts, together with a rich trust model

which monitors and enforces contract compliance. These contracts establish a

realistic virtual economy for producing autonomous yet accountable computer

systems; autonomy can save users and administrators time and effort spent

micro-managing computer systems, while accountability is important to ensure

that the automatic decisions are appropriate.

Many computer applications face a shortage of resources and need an effective

mechanism for monitoring and controlling their resource usage, both in isolated

situations where many components must share the same resources, and when

interacting with other trusted and untrusted principals for distributed tasks.

Existing systems focus on individual aspects of this, but do not integrate well

with each other because they have no common terms of reference.

The essential challenge is that computer systems have no higher level under-

standing of the effects of their actions, and therefore blindly perform the same

actions in all contexts — such as a laptop that checks its hard disk for er-

rors at the same time every day regardless of the state of the battery. This

could be resolved with formal planning frameworks, but they provide a level

of control that is too indirect for interactive computerised tasks. Instead, this

dissertation proposes a resource model on an intermediate level, that can easily

integrate traditional computational resources but is also expressive enough to

represent more abstract concepts, ranging from resource generalisations (e.g.

139
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‘CPU time on any ix86 server’) and computerised actions (e.g. ‘number of web

pages downloaded’) to external resources such as the user’s time.

Contracts link computations to the resource model, by expressing agreements

between clients and servers as promises to exchange resources, and binding them

to the underlying computations that use the resources. Contracts also have an

expressive accounting language for resource exchange that is computationally

safe with predictable resource needs. This framework allows planning at a level

that supports automatic cost-benefit analysis, but also corresponds directly to

computational processes.

A trust model protects against unreliable or untrustworthy contract partners, by

monitoring contractual promises against actual resource usage. This is impor-

tant in open distributed applications to protect participants from attacks which

steal or monopolise their resources, and in controlled applications for detecting

and isolating failures. The contract framework’s novel trust model assesses con-

tract compliance in terms of resource usage and subjective cost functions. This

general trust model applies to all implementations of the contract framework,

and theoretical proofs show that it guarantees protection against resource loss

without disrupting honest, faithfully performed contracts. These properties still

hold even when the trust model is extended to support virtual communities,

managed with personal trust recommendations.

Extensions of the resource model show that the contract framework can also

support higher level applications, such as the sale of information online, with

contracts that treat complex actions as primitive resources. However, contracts

need to be able to monitor their performance; for some applications such as

PDA collaboration, this means that contracts can take a supportive rôle so

that the user provides extra information only for ambiguous decisions.

Finally, tests of two implementations of the contract framework for a distributed

composite event service and a Grid compute server show experimentally that

the contract framework is directly useful for practical applications, and lives up

to its promises of resource protection.

The contract framework provides both a generic structure and an operational

model for simultaneously performing and monitoring computer tasks. The re-

source abstraction allows efficient assessment and prediction of contracts’ im-

pact, but leaves scope for integrating external influences into the same model.

Together with robust, distributed trust modelling, this enables self-enforcing,

automatic contracts to rationally control resource usage in computer systems.
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8.1 Further Work

The contract framework also gives rise to further extensions and applications:

collaboration modelling, contract negotiation, contract nesting and transparent

monitoring of web service applications.

Collaboration modelling schemes would allow contracts between more than

two participants, such as between a client, a web server and a database

server. These can currently be arranged as chains of pairwise contracts,

but combined multi-party contracts would be more efficient and simpler

to analyse. Collaboration modelling would also allow participants to ex-

plicitly arrange contracts for processing by any one of a group of servers.

Contract negotiation schemes should be analysed in more detail, to establish

efficient contract transformations that participants can use to establish a

mutually satisfactory contract.

Contract nesting would structure contract interrelations in a nested way,

analogously to a transactional database access model. These nestings

would also introduce dependencies between contracts, allowing parent

contracts to take responsibility for their subcontracts.

Dispute resolution and testimonials of successful contract completion could

be added to the contract framework. This would allow the use of ev-

idence of incorrect contract performance, such as conflicting computa-

tional results from another source, for activing explicit penalty clauses

in a contract, or for presentation to an external arbiter. Testimonials of

past, successful contracts would also be needed, both as direct evidence

for disputes, and as indirect evidence of trustworthiness.

Transparent monitoring of web services provides another application for the

contract framework, to track the resource usage of web services per user

and flag users needing excessive resources. This would be useful both

for monitoring the deployment of services and protecting against attacks.

The application would be able to assess the need for more servers, and

identify the users and contracts contributing the most load. Giving con-

trol to the monitor would enable it to maintain good service for all users by

throttling back service access appropriately for high load users, either au-

tomatically or after manual confirmation from the system administrator.

The safety properties of the resource framework would also offer protec-

tion against attacks or broken clients of the web services. This monitoring
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and protecting would manage the load using the contract framework, to

provide reliable and efficient service to the users.

These additions would extend the scope of the contract framework for greater

efficiency and more commercial applications. This would further enhance its

contribution as a general purpose tool for managing distributed computation

that allows participants to take calculated risks and rationally decide on their

actions, to produce autonomous yet accountable computer systems.
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